| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171 |
- #include "ops.h"
- #include "ggml-cpu.h"
- #include "ggml-impl.h"
- #include "binary-ops.h"
- #include "ggml.h"
- #include "unary-ops.h"
- #include "vec.h"
- #include <float.h>
- // ggml_compute_forward_dup
- static void ggml_compute_forward_dup_same_cont(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- GGML_ASSERT(src0->type == dst->type);
- const size_t nb0 = ggml_type_size(src0->type);
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by blocks
- const int nk = ggml_nelements(src0)/ggml_blck_size(src0->type);
- const int dr = (nk + nth - 1) / nth;
- const int k0 = dr * ith;
- const int k1 = MIN(k0 + dr, nk);
- if (k0 < k1) {
- memcpy(
- ((char *) dst->data + k0*nb0),
- ((char *) src0->data + k0*nb0),
- (k1 - k0) * nb0);
- }
- }
- static void ggml_compute_forward_dup_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_TENSOR_UNARY_OP_LOCALS
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_fp16_t)) {
- if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_CPU_FP16_TO_FP32(src0_ptr[i00]);
- }
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_CPU_FP16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(float *) dst_ptr = GGML_CPU_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup_bf16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_TENSOR_UNARY_OP_LOCALS
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
- if (ggml_is_contiguous(dst)) {
- if (nb00 == sizeof(ggml_bf16_t)) {
- if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- const size_t rs = ne00 * nb00;
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (ggml_get_type_traits_cpu(dst->type)->from_float) {
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dst->type)->from_float;
- float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- for (int i00 = 0; i00 < ne00; i00++) {
- src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
- }
- quantize_row_q(src0_f32, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_BF16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
- if (++i10 == ne00) {
- i10 = 0;
- if (++i11 == ne01) {
- i11 = 0;
- if (++i12 == ne02) {
- i12 = 0;
- if (++i13 == ne03) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
- static void ggml_compute_forward_dup_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_TENSOR_UNARY_OP_LOCALS
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ne00 == ne0 &&
- nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
- // copy by rows
- const size_t rs = ne00*nb00;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- if (ggml_is_contiguous(dst)) {
- // TODO: simplify
- if (nb00 == sizeof(float)) {
- if (ggml_get_type_traits_cpu(dst->type)->from_float) {
- ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
- size_t id = 0;
- size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
- char * dst_ptr = (char *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- from_float(src0_ptr, dst_ptr + id, ne00);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- if (dst->type == GGML_TYPE_F32) {
- size_t id = 0;
- float * dst_ptr = (float *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = *src0_ptr;
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- size_t id = 0;
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_CPU_FP32_TO_FP16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- size_t id = 0;
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
- for (int i03 = 0; i03 < ne03; i03++) {
- for (int i02 = 0; i02 < ne02; i02++) {
- id += ne00 * ir0;
- for (int i01 = ir0; i01 < ir1; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
- id++;
- }
- }
- id += ne00 * (ne01 - ir1);
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
- return;
- }
- // dst counters
- int64_t i10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- if (dst->type == GGML_TYPE_F32) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, sizeof(float));
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_F16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(ggml_fp16_t *) dst_ptr = GGML_CPU_FP32_TO_FP16(*(const float *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else if (dst->type == GGML_TYPE_BF16) {
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- i10 += ne00 * ir0;
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
- if (++i10 == ne0) {
- i10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- i10 += ne00 * (ne01 - ir1);
- while (i10 >= ne0) {
- i10 -= ne0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- } else {
- GGML_ABORT("fatal error"); // TODO: implement
- }
- }
- // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
- static void ggml_compute_forward_dup_bytes(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(src0->type == dst->type);
- GGML_TENSOR_UNARY_OP_LOCALS;
- if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
- ggml_compute_forward_dup_same_cont(params, dst);
- return;
- }
- const size_t type_size = ggml_type_size(src0->type);
- const int ith = params->ith; // thread index
- const int nth = params->nth; // number of threads
- // parallelize by rows
- const int nr = ne01;
- // number of rows per thread
- const int dr = (nr + nth - 1) / nth;
- // row range for this thread
- const int ir0 = dr * ith;
- const int ir1 = MIN(ir0 + dr, nr);
- if (src0->type == dst->type &&
- ggml_are_same_shape(src0, dst) &&
- nb00 == type_size && nb0 == type_size) {
- // copy by rows
- const size_t rs = ggml_row_size(src0->type, ne00);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- memcpy(
- ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
- rs);
- }
- }
- }
- return;
- }
- if (ggml_is_contiguous(dst)) {
- size_t id = 0;
- char * dst_ptr = (char *) dst->data;
- const size_t rs = ne00 * type_size;
- if (nb00 == type_size) {
- // src0 is contigous on first dimension, copy by rows
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, rs);
- id += rs;
- }
- id += rs * (ne01 - ir1);
- }
- }
- } else {
- //printf("%s: this is not optimal - fix me\n", __func__);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- id += rs * ir0;
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
- memcpy(dst_ptr + id, src0_ptr, type_size);
- id += type_size;
- }
- }
- id += rs * (ne01 - ir1);
- }
- }
- }
- return;
- }
- // dst counters
- int64_t k10 = 0;
- int64_t i11 = 0;
- int64_t i12 = 0;
- int64_t i13 = 0;
- // number of blocks in a row
- const int64_t nk00 = ne00 / ggml_blck_size(src0->type);
- const int64_t nk0 = ne0 / ggml_blck_size(dst->type);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- k10 += nk00 * ir0;
- while (k10 >= nk0) {
- k10 -= nk0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- for (int64_t i01 = ir0; i01 < ir1; i01++) {
- for (int64_t k00 = 0; k00 < nk00; k00++) {
- const char * src0_ptr = ((char *) src0->data + k00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- char * dst_ptr = ((char *) dst->data + k10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
- memcpy(dst_ptr, src0_ptr, type_size);
- if (++k10 == nk0) {
- k10 = 0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- k10 += nk00 * (ne01 - ir1);
- while (k10 >= nk0) {
- k10 -= nk0;
- if (++i11 == ne1) {
- i11 = 0;
- if (++i12 == ne2) {
- i12 = 0;
- if (++i13 == ne3) {
- i13 = 0;
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_dup_q(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
- size_t qk = ggml_blck_size(type);
- const int64_t nr = ggml_nelements(src1) / qk;
- // destination must be contiguous in the first dimension
- GGML_ASSERT(nb10 == ggml_type_size(dst->type));
- // must either have first dimension large enough to hold a row, or fully contiguous
- GGML_ASSERT((ne10 % qk) == 0 || ggml_is_contiguous(dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int64_t ir = ir0; ir < ir1; ++ir) {
- uint32_t i = ir * qk;
- const int64_t i03 = i/(ne00 * ne01 * ne02);
- const int64_t i02 = (i - i03*ne00*ne01*ne02 )/ (ne00*ne01);
- const int64_t i01 = (i - i03*ne00*ne01*ne02 - i02*ne01*ne00) / ne00;
- const int64_t i00 = i - i03*ne00*ne01*ne02 - i02*ne01*ne00 - i01*ne00;
- const int64_t x_offset = (i00/qk)*nb00 + i01*nb01 + i02*nb02 + i03 * nb03;
- const int64_t i13 = i/(ne10 * ne11 * ne12);
- const int64_t i12 = (i - i13*ne10*ne11*ne12) / (ne10*ne11);
- const int64_t i11 = (i - i13*ne10*ne11*ne12 - i12*ne10*ne11) / ne10;
- const int64_t i10 = i - i13*ne10*ne11*ne12 - i12*ne10*ne11 - i11*ne10;
- const int64_t dst_offset = i10*nb10 + i11*nb11 + i12*nb12 + i13*nb13;
- dequantize_row_q(
- (const void *) ((char *) src0->data + x_offset),
- (float *) ((char *) dst->data + dst_offset), qk);
- }
- }
- void ggml_compute_forward_dup(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (src0->type == dst->type) {
- ggml_compute_forward_dup_bytes(params, dst);
- return;
- }
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_dup_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_dup_bf16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_dup_f32(params, dst);
- } break;
- default:
- {
- if (ggml_is_quantized(src0->type) && dst->type == GGML_TYPE_F32) {
- ggml_compute_forward_dup_q(params, dst);
- break;
- }
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_add
- static void ggml_compute_forward_add_q_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const ggml_type type = src0->type;
- const ggml_type dtype = dst->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(dtype)->from_float;
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == ggml_type_size(type));
- GGML_ASSERT(nb10 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 indices
- const int i03 = ir/(ne02*ne01);
- const int i02 = (ir - i03*ne02*ne01)/ne01;
- const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
- // src1 and dst are same shape as src0 => same indices
- const int i13 = i03;
- const int i12 = i02;
- const int i11 = i01;
- const int i3 = i03;
- const int i2 = i02;
- const int i1 = i01;
- void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
- float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
- void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- assert(ne00 % 32 == 0);
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne00);
- // add src1
- ggml_vec_acc_f32(ne00, wdata, src1_row);
- // quantize row to dst
- if (quantize_row_q != NULL) {
- quantize_row_q(wdata, dst_row, ne00);
- } else {
- memcpy(dst_row, wdata, ne0*nb0);
- }
- }
- }
- void ggml_compute_forward_add(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_add_non_quantized(params, dst);
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_add_q_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_add1
- static void ggml_compute_forward_add1_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- #ifdef GGML_USE_ACCELERATE
- GGML_UNUSED(ggml_vec_add1_f32);
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
- (float *) ((char *) src1->data), 0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
- ne0);
- #else
- ggml_vec_add1_f32(ne0,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
- *(float *) src1->data);
- #endif
- }
- }
- static void ggml_compute_forward_add1_f16_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_f16_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- // scalar to add
- const float v = GGML_CPU_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F16);
- GGML_ASSERT(dst->type == GGML_TYPE_F16);
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_CPU_FP32_TO_FP16(GGML_CPU_FP16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_q_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- const ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
- ggml_from_float_t const quantize_row_q = ggml_get_type_traits_cpu(type)->from_float;
- // we don't support permuted src0
- GGML_ASSERT(nb00 == ggml_type_size(type));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ggml_is_quantized(src0->type));
- GGML_ASSERT(dst->type == src0->type);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
- void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
- assert(ne0 % 32 == 0);
- // unquantize row from src0 to temp buffer
- dequantize_row_q(src0_row, wdata, ne0);
- // add src1
- ggml_vec_acc1_f32(ne0, wdata, v);
- // quantize row to dst
- quantize_row_q(wdata, dst_row, ne0);
- }
- }
- static void ggml_compute_forward_add1_bf16_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- // scalar to add
- const float v = *(float *) src1->data;
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(src0->type == GGML_TYPE_BF16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(dst->type == GGML_TYPE_BF16);
- GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- static void ggml_compute_forward_add1_bf16_bf16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_scalar(src1));
- // scalar to add
- const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(src0->type == GGML_TYPE_BF16);
- GGML_ASSERT(src1->type == GGML_TYPE_BF16);
- GGML_ASSERT(dst->type == GGML_TYPE_BF16);
- GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are same shape => same indices
- const int i3 = ir/(ne2*ne1);
- const int i2 = (ir - i3*ne2*ne1)/ne1;
- const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
- ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
- ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
- for (int i = 0; i < ne0; i++) {
- dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
- }
- }
- }
- void ggml_compute_forward_add1(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add1_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- if (src1->type == GGML_TYPE_F16) {
- ggml_compute_forward_add1_f16_f16(params, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_f16_f32(params, dst);
- }
- else {
- GGML_ABORT("fatal error");
- }
- } break;
- case GGML_TYPE_BF16:
- {
- if (src1->type == GGML_TYPE_BF16) {
- ggml_compute_forward_add1_bf16_bf16(params, dst);
- }
- else if (src1->type == GGML_TYPE_F32) {
- ggml_compute_forward_add1_bf16_f32(params, dst);
- }
- else {
- GGML_ABORT("fatal error");
- }
- } break;
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_add1_q_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_acc
- static void ggml_compute_forward_acc_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- // view src0 and dst with these strides and data offset inbytes during acc
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
- if (!inplace) {
- if (params->ith == 0) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
- // src0 and dst as viewed during acc
- const size_t nb0 = ggml_element_size(src0);
- const size_t nb00 = nb0;
- const size_t nb01 = nb1;
- const size_t nb02 = nb2;
- const size_t nb03 = nb3;
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
- GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
- GGML_ASSERT(nb10 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- #ifdef GGML_USE_ACCELERATE
- vDSP_vadd(
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
- #else
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- #endif
- }
- }
- void ggml_compute_forward_acc(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_acc_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_sum
- static void ggml_compute_forward_sum_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(float));
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
- ggml_float sum = 0;
- ggml_float row_sum = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32_ggf(ne00,
- &row_sum,
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- sum += row_sum;
- }
- }
- }
- ((float *) dst->data)[0] = sum;
- }
- static void ggml_compute_forward_sum_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
- float sum = 0;
- float row_sum = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f16_ggf(ne00,
- &row_sum,
- (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
- sum += row_sum;
- }
- }
- }
- ((ggml_fp16_t *) dst->data)[0] = GGML_CPU_FP32_TO_FP16(sum);
- }
- static void ggml_compute_forward_sum_bf16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- assert(ggml_is_scalar(dst));
- assert(src0->nb[0] == sizeof(ggml_bf16_t));
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
- float sum = 0;
- float row_sum = 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_bf16_ggf(ne00,
- &row_sum,
- (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
- sum += row_sum;
- }
- }
- }
- ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
- }
- void ggml_compute_forward_sum(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_sum_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_sum_bf16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_sum_rows
- static void ggml_compute_forward_sum_rows_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(dst->nb[0] == sizeof(float));
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(ne0 == 1);
- GGML_ASSERT(ne1 == ne01);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- for (int64_t i3 = 0; i3 < ne03; i3++) {
- for (int64_t i2 = 0; i2 < ne02; i2++) {
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
- float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
- float row_sum = 0;
- ggml_vec_sum_f32(ne00, &row_sum, src_row);
- dst_row[0] = row_sum;
- }
- }
- }
- }
- void ggml_compute_forward_sum_rows(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_sum_rows_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_mean
- static void ggml_compute_forward_mean_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- assert(src0->nb[0] == sizeof(float));
- GGML_TENSOR_UNARY_OP_LOCALS
- assert(ne0 == 1);
- assert(ne1 == ne01);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
- GGML_UNUSED(ne0);
- GGML_UNUSED(ne1);
- GGML_UNUSED(ne2);
- GGML_UNUSED(ne3);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- ggml_vec_sum_f32(ne00,
- (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
- *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
- }
- }
- }
- }
- void ggml_compute_forward_mean(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_mean_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_argmax
- static void ggml_compute_forward_argmax_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- assert(src0->nb[0] == sizeof(float));
- assert(dst->nb[0] == sizeof(float));
- const int64_t ne00 = src0->ne[0];
- const int64_t ne01 = src0->ne[1];
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
- for (int64_t i1 = 0; i1 < ne01; i1++) {
- float * src = (float *) ((char *) src0->data + i1*nb01);
- int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
- int v = 0;
- ggml_vec_argmax_f32(ne00, &v, src);
- dst_[0] = v;
- }
- }
- void ggml_compute_forward_argmax(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argmax_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_count_equal
- static void ggml_compute_forward_count_equal_i32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS;
- GGML_ASSERT(src0->type == GGML_TYPE_I32);
- GGML_ASSERT(src1->type == GGML_TYPE_I32);
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- GGML_ASSERT(ggml_is_scalar(dst));
- GGML_ASSERT(dst->type == GGML_TYPE_I64);
- const int64_t nr = ggml_nrows(src0);
- const int ith = params->ith;
- const int nth = params->nth;
- int64_t * sums = (int64_t *) params->wdata;
- int64_t sum_thread = 0;
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- for (int64_t ir = ir0; ir < ir1; ++ir) {
- const int64_t i03 = ir / (ne02*ne01);
- const int64_t i02 = (ir - i03*ne03) / ne01;
- const int64_t i01 = ir - i03*ne03 - i02*ne02;
- const char * data0 = (const char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01;
- const char * data1 = (const char *) src1->data + i03*nb13 + i02*nb12 + i01*nb11;
- for (int64_t i00 = 0; i00 < ne00; ++i00) {
- const int32_t val0 = *((const int32_t *) (data0 + i00*nb00));
- const int32_t val1 = *((const int32_t *) (data1 + i00*nb10));
- sum_thread += val0 == val1;
- }
- }
- if (ith != 0) {
- sums[ith] = sum_thread;
- }
- ggml_barrier(params->threadpool);
- if (ith != 0) {
- return;
- }
- for (int ith_other = 1; ith_other < nth; ++ith_other) {
- sum_thread += sums[ith_other];
- }
- *((int64_t *) dst->data) = sum_thread;
- }
- void ggml_compute_forward_count_equal(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_count_equal_i32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_repeat
- static void ggml_compute_forward_repeat_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- GGML_ASSERT(ggml_can_repeat(src0, dst));
- GGML_TENSOR_UNARY_OP_LOCALS
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_cpy_f32(ne00,
- (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
- (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
- }
- }
- }
- }
- }
- }
- }
- }
- static void ggml_compute_forward_repeat_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- GGML_ASSERT(ggml_can_repeat(src0, dst));
- GGML_TENSOR_UNARY_OP_LOCALS
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne0/ne00);
- const int nr1 = (int)(ne1/ne01);
- const int nr2 = (int)(ne2/ne02);
- const int nr3 = (int)(ne3/ne03);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne03; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne02; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne01; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
- ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
- // ggml_vec_cpy_f16(ne00, y, x)
- for (int i = 0; i < ne00; ++i) {
- y[i] = x[i];
- }
- }
- }
- }
- }
- }
- }
- }
- }
- void ggml_compute_forward_repeat(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_I16:
- {
- ggml_compute_forward_repeat_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_repeat_f32(params, dst);
- } break;
- // TODO: templateify the implemenation and support for I64
- // ref https://github.com/ggml-org/llama.cpp/pull/14274#discussion_r2169492225
- //case GGML_TYPE_I64:
- // {
- // ggml_compute_forward_repeat_i64(params, dst);
- // } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_repeat_back
- static void ggml_compute_forward_repeat_back_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- GGML_ASSERT(ggml_can_repeat(dst, src0));
- GGML_TENSOR_UNARY_OP_LOCALS
- // guaranteed to be an integer due to the check in ggml_can_repeat
- const int nr0 = (int)(ne00/ne0);
- const int nr1 = (int)(ne01/ne1);
- const int nr2 = (int)(ne02/ne2);
- const int nr3 = (int)(ne03/ne3);
- // TODO: support for transposed / permuted tensors
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- if (ggml_is_contiguous(dst)) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
- } else {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- ggml_vec_set_f32(ne0,
- (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
- 0);
- }
- }
- }
- }
- // TODO: maybe this is not optimal?
- for (int i3 = 0; i3 < nr3; i3++) {
- for (int k3 = 0; k3 < ne3; k3++) {
- for (int i2 = 0; i2 < nr2; i2++) {
- for (int k2 = 0; k2 < ne2; k2++) {
- for (int i1 = 0; i1 < nr1; i1++) {
- for (int k1 = 0; k1 < ne1; k1++) {
- for (int i0 = 0; i0 < nr0; i0++) {
- ggml_vec_acc_f32(ne0,
- (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
- (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
- }
- }
- }
- }
- }
- }
- }
- }
- void ggml_compute_forward_repeat_back(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_repeat_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_concat
- static void ggml_compute_forward_concat_any(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- const size_t len = ggml_type_size(src0->type);
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_BINARY_OP_LOCALS
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
- GGML_ASSERT(dim >= 0 && dim < 4);
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
- const char * x;
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03;
- } else {
- x = (const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13;
- }
- char * y = (char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3;
- memcpy(y, x, len);
- }
- }
- }
- }
- }
- static void ggml_compute_forward_concat_i8(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_type_size(src0->type) == sizeof(int8_t));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_BINARY_OP_LOCALS
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
- GGML_ASSERT(dim >= 0 && dim < 4);
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
- const int8_t * x;
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const int8_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
- } else {
- x = (const int8_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
- }
- int8_t * y = (int8_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
- *y = *x;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_concat_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_type_size(src0->type) == sizeof(ggml_fp16_t));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_BINARY_OP_LOCALS
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
- GGML_ASSERT(dim >= 0 && dim < 4);
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
- const ggml_fp16_t * x;
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const ggml_fp16_t *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
- } else {
- x = (const ggml_fp16_t *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
- }
- ggml_fp16_t * y = (ggml_fp16_t *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
- *y = *x;
- }
- }
- }
- }
- }
- static void ggml_compute_forward_concat_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_type_size(src0->type) == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_BINARY_OP_LOCALS
- const int32_t dim = ggml_get_op_params_i32(dst, 0);
- GGML_ASSERT(dim >= 0 && dim < 4);
- int64_t o[4] = {0, 0, 0, 0};
- o[dim] = src0->ne[dim];
- const float * x;
- // TODO: smarter multi-theading
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = ith; i2 < ne2; i2 += nth) {
- for (int i1 = 0; i1 < ne1; i1++) {
- for (int i0 = 0; i0 < ne0; i0++) {
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
- } else {
- x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
- }
- float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
- *y = *x;
- }
- }
- }
- }
- }
- void ggml_compute_forward_concat(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_I16:
- {
- ggml_compute_forward_concat_f16(params, dst);
- } break;
- case GGML_TYPE_I8:
- {
- ggml_compute_forward_concat_i8(params, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_concat_f32(params, dst);
- } break;
- default:
- {
- ggml_compute_forward_concat_any(params, dst);
- }
- }
- }
- // ggml_compute_forward_gelu
- static void ggml_compute_forward_gelu_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_CPU_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_gelu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_gelu_erf
- static void ggml_compute_forward_gelu_erf_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_erf_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu_erf_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_erf_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_CPU_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu_erf(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_erf_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_gelu_erf_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_gelu_quick
- static void ggml_compute_forward_gelu_quick_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_quick_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu_quick_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_gelu_quick_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_CPU_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_gelu_quick(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gelu_quick_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_gelu_quick_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_silu
- static void ggml_compute_forward_silu_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i1*(src0->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])))[k];
- const float v = GGML_CPU_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_silu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_leaky_relu
- static void ggml_compute_forward_leaky_relu_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
- assert(dst->nb[0] == sizeof(float));
- assert(src0->nb[0] == sizeof(float));
- for (int i = 0; i < n; i++) {
- ggml_vec_leaky_relu_f32(nc,
- (float *) ((char *) dst->data + i*( dst->nb[1])),
- (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
- }
- }
- static void ggml_compute_forward_leaky_relu_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- assert(ggml_is_contiguous_1(src0));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src0, dst));
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- float negative_slope;
- memcpy(&negative_slope, dst->op_params, sizeof(float));
- assert(dst->nb[0] == sizeof(ggml_fp16_t));
- assert(src0->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < n; i++) {
- ggml_vec_leaky_relu_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
- }
- }
- void ggml_compute_forward_leaky_relu(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_leaky_relu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_leaky_relu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_silu_back
- static void ggml_compute_forward_silu_back_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * grad = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- assert(ggml_is_contiguous_1(grad));
- assert(ggml_is_contiguous_1(src1));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src1, dst));
- assert(ggml_are_same_shape(src1, grad));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1->ne[0];
- const int nr = ggml_nrows(src1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_backward_f32(nc,
- (float *) ((char *) dst->data + i1*( dst->nb[1])),
- (float *) ((char *) src1->data + i1*(src1->nb[1])),
- (float *) ((char *) grad->data + i1*(grad->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_silu_back_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * grad = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- assert(ggml_is_contiguous_1(grad));
- assert(ggml_is_contiguous_1(src1));
- assert(ggml_is_contiguous_1(dst));
- assert(ggml_are_same_shape(src1, dst));
- assert(ggml_are_same_shape(src1, grad));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1->ne[0];
- const int nr = ggml_nrows(src1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_vec_silu_backward_f16(nc,
- (ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])),
- (ggml_fp16_t *) ((char *) src1->data + i1*(src1->nb[1])),
- (ggml_fp16_t *) ((char *) grad->data + i1*(grad->nb[1])));
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_CPU_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- void ggml_compute_forward_silu_back(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_silu_back_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_silu_back_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_reglu
- static void ggml_compute_forward_reglu_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * src0_p = (float *) (src0_d + i1*src0_o);
- float * src1_p = (float *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_reglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_reglu_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
- ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_reglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_reglu(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_reglu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_reglu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_geglu
- static void ggml_compute_forward_geglu_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * src0_p = (float *) (src0_d + i1*src0_o);
- float * src1_p = (float *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_geglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_geglu_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
- ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_geglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_geglu(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_geglu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_geglu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_swiglu
- static void ggml_compute_forward_swiglu_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * src0_p = (float *) (src0_d + i1*src0_o);
- float * src1_p = (float *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_swiglu_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_swiglu_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
- ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_swiglu_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_swiglu(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_swiglu_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_swiglu_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_geglu_erf
- static void ggml_compute_forward_geglu_erf_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * src0_p = (float *) (src0_d + i1*src0_o);
- float * src1_p = (float *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_geglu_erf_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_geglu_erf_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
- ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_geglu_erf_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_geglu_erf(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_geglu_erf_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_geglu_erf_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_geglu_quick
- static void ggml_compute_forward_geglu_quick_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * src0_p = (float *) (src0_d + i1*src0_o);
- float * src1_p = (float *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_geglu_quick_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- GGML_UNUSED(x);
- assert(!isnan(x));
- assert(!isinf(x));
- }
- #endif
- }
- }
- static void ggml_compute_forward_geglu_quick_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- char * src0_d = (char *) src0->data;
- char * src1_d = (char *) (src1 ? src1->data : src0->data);
- const size_t src0_o = src0->nb[1];
- const size_t src1_o = src1 ? src1->nb[1] : src0->nb[1];
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- GGML_ASSERT(ggml_is_contiguous_1(dst));
- if (src1) {
- GGML_ASSERT(ggml_is_contiguous_1(src1));
- GGML_ASSERT(src0->type == src1->type);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1 ? src0->ne[0] : src0->ne[0] / 2;
- const int nr = ggml_nrows(src0);
- GGML_ASSERT(dst->ne[0] == nc);
- GGML_ASSERT(ggml_nrows(dst) == nr);
- const int32_t swapped = ggml_get_op_params_i32(dst, 1);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- ggml_fp16_t * src0_p = (ggml_fp16_t *) (src0_d + i1*src0_o);
- ggml_fp16_t * src1_p = (ggml_fp16_t *) (src1_d + i1*src1_o);
- if (!src1) {
- src0_p += swapped ? nc : 0;
- src1_p += swapped ? 0 : nc;
- }
- ggml_vec_geglu_quick_f16(nc, (ggml_fp16_t *) ((char *) dst->data + i1*(dst->nb[1])), src0_p, src1_p);
- #ifndef NDEBUG
- for (int k = 0; k < nc; k++) {
- const ggml_fp16_t x = ((ggml_fp16_t *) ((char *) dst->data + i1*( dst->nb[1])))[k];
- const float v = GGML_FP16_TO_FP32(x);
- GGML_UNUSED(v);
- assert(!isnan(v));
- assert(!isinf(v));
- }
- #endif
- }
- }
- static void ggml_compute_forward_geglu_quick(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_geglu_quick_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_geglu_quick_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_norm
- static void ggml_compute_forward_norm_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- GGML_ASSERT(eps >= 0.0f);
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)x[i00];
- }
- float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- ggml_float sum2 = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sum2 += (ggml_float)(v*v);
- }
- float variance = sum2/ne00;
- const float scale = 1.0f/sqrtf(variance + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- void ggml_compute_forward_norm(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_group_rms_norm
- static void ggml_compute_forward_rms_norm_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- GGML_ASSERT(eps >= 0.0f);
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
- const float mean = sum/ne00;
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- memcpy(y, x, ne00 * sizeof(float));
- // for (int i00 = 0; i00 < ne00; i00++) {
- // y[i00] = x[i00];
- // }
- const float scale = 1.0f/sqrtf(mean + eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- void ggml_compute_forward_rms_norm(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- static void ggml_compute_forward_rms_norm_back_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0]; // gradients from forward pass output
- const ggml_tensor * src1 = dst->src[1]; // src1 from forward pass
- GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_BINARY_OP_LOCALS
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- // src1 is same shape as src0 => same indices
- const int64_t i11 = i01;
- const int64_t i12 = i02;
- const int64_t i13 = i03;
- const float * dz = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- const float * x = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
- ggml_float sum_xx = 0.0;
- ggml_float sum_xdz = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum_xx += (ggml_float)(x[i00] * x[i00]);
- sum_xdz += (ggml_float)(x[i00] * dz[i00]);
- }
- //const float mean = (float)(sum_xx)/ne00;
- const float mean_eps = (float)(sum_xx)/ne00 + eps;
- const float sum_eps = (float)(sum_xx) + eps*ne00;
- //const float mean_xdz = (float)(sum_xdz)/ne00;
- // we could cache rms from forward pass to improve performance.
- // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
- //const float rms = sqrtf(mean_eps);
- const float rrms = 1.0f / sqrtf(mean_eps);
- //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
- {
- // z = rms_norm(x)
- //
- // rms_norm(src1) =
- // scale(
- // src1,
- // div(
- // 1,
- // sqrt(
- // add(
- // scale(
- // sum(
- // sqr(
- // src1)),
- // (1.0/N)),
- // eps))));
- // postorder:
- // ## op args grad
- // 00 param src1 grad[#00]
- // 01 const 1
- // 02 sqr (#00) grad[#02]
- // 03 sum (#02) grad[#03]
- // 04 const 1/N
- // 05 scale (#03, #04) grad[#05]
- // 06 const eps
- // 07 add (#05, #06) grad[#07]
- // 08 sqrt (#07) grad[#08]
- // 09 div (#01,#08) grad[#09]
- // 10 scale (#00,#09) grad[#10]
- //
- // backward pass, given grad[#10]
- // #10: scale
- // grad[#00] += scale(grad[#10],#09)
- // grad[#09] += sum(mul(grad[#10],#00))
- // #09: div
- // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
- // #08: sqrt
- // grad[#07] += mul(grad[#08], div(0.5, #08))
- // #07: add
- // grad[#05] += grad[#07]
- // #05: scale
- // grad[#03] += scale(grad[#05],#04)
- // #03: sum
- // grad[#02] += repeat(grad[#03], #02)
- // #02:
- // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
- //
- // substitute and simplify:
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#02] = repeat(grad[#03], #02)
- // grad[#02] = repeat(scale(grad[#05],#04), #02)
- // grad[#02] = repeat(scale(grad[#07],#04), #02)
- // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
- // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
- // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
- // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
- // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
- // a = b*c + d*e
- // a = b*c*f/f + d*e*f/f
- // a = (b*c*f + d*e*f)*(1/f)
- // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
- // a = (b + d*e/c)*c
- // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
- // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
- // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
- // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
- // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
- // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
- // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
- // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- }
- // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
- // post-order:
- // dx := x
- // dx := scale(dx,-mean_xdz/mean_eps)
- // dx := add(dx, dz)
- // dx := scale(dx, rrms)
- float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- // dx[i00] = (x*(-sum_xdz/sum_eps) + dz) / sqrtf(mean_eps)
- ggml_vec_cpy_f32 (ne00, dx, x);
- // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
- ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
- ggml_vec_acc_f32 (ne00, dx, dz);
- ggml_vec_scale_f32(ne00, dx, rrms);
- }
- }
- }
- }
- void ggml_compute_forward_rms_norm_back(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rms_norm_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_group_norm
- static void ggml_compute_forward_group_norm_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- // TODO: optimize
- float eps;
- memcpy(&eps, dst->op_params + 1, sizeof(float));
- int n_channels = src0->ne[2];
- int n_groups = dst->op_params[0];
- int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
- for (int i = ith; i < n_groups; i += nth) {
- int start = i * n_channels_per_group;
- int end = start + n_channels_per_group;
- if (end > n_channels) {
- end = n_channels;
- }
- int step = end - start;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- ggml_float sum = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
- ggml_float sumr = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sumr += (ggml_float)x[i00];
- }
- sum += sumr;
- }
- }
- const float mean = sum / (ne00 * ne01 * step);
- ggml_float sum2 = 0.0;
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
- ggml_float sumr = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- float v = x[i00] - mean;
- y[i00] = v;
- sumr += (ggml_float)(v * v);
- }
- sum2 += sumr;
- }
- }
- const float variance = sum2 / (ne00 * ne01 * step);
- const float scale = 1.0f / sqrtf(variance + eps);
- for (int64_t i02 = start; i02 < end; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- }
- void ggml_compute_forward_group_norm(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_group_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_l2_norm
- static void ggml_compute_forward_l2_norm_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- GGML_ASSERT(eps >= 0.0f);
- // TODO: optimize
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- ggml_float sum = 0.0;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- sum += (ggml_float)(x[i00] * x[i00]);
- }
- float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- memcpy(y, x, ne00 * sizeof(float));
- const float scale = 1.0f/fmaxf(sqrtf(sum), eps);
- ggml_vec_scale_f32(ne00, y, scale);
- }
- }
- }
- }
- void ggml_compute_forward_l2_norm(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_l2_norm_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_out_prod
- static void ggml_compute_forward_out_prod_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- GGML_ASSERT(ne2 % ne02 == 0);
- GGML_ASSERT(ne3 % ne03 == 0);
- // we don't support permuted src0 or src1
- GGML_ASSERT(nb00 == sizeof(float));
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- if (ith == 0) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
- }
- ggml_barrier(params->threadpool);
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
- // parallelize by last three dimensions
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- // block-tiling attempt
- const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
- const int64_t blck_1 = 16;
- // dps == dst per src0, used for group query attention
- const int64_t dps2 = ne2 / ne02;
- const int64_t dps3 = ne3 / ne03;
- for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
- const int64_t bir1 = MIN(bir + blck_1, ir1);
- for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
- const int64_t bne01 = MIN(bi01 + blck_0, ne01);
- for (int64_t ir = bir; ir < bir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
- const int64_t i02 = i2 / dps2;
- const int64_t i03 = i3 / dps3;
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
- #if GGML_VEC_MAD_UNROLL > 2
- const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
- for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
- }
- for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- }
- #else
- for (int64_t i01 = bi01; i01 < bne01; ++i01) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- ggml_vec_mad_f32(ne0, d, s0, *s1);
- }
- #endif
- }
- }
- }
- }
- static void ggml_compute_forward_out_prod_q_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int ith = params->ith;
- const int nth = params->nth;
- const ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
- GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(ne03 == ne13);
- GGML_ASSERT(ne2 == ne12);
- GGML_ASSERT(ne3 == ne13);
- // we don't support permuted src0 dim0
- GGML_ASSERT(nb00 == ggml_type_size(type));
- // dst dim0 cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- // GGML_ASSERT(nb0 <= nb1);
- // GGML_ASSERT(nb1 <= nb2);
- // GGML_ASSERT(nb2 <= nb3);
- GGML_ASSERT(ne0 == ne00);
- GGML_ASSERT(ne1 == ne10);
- GGML_ASSERT(ne2 == ne02);
- GGML_ASSERT(ne3 == ne03);
- // nb01 >= nb00 - src0 is not transposed
- // compute by src0 rows
- if (ith == 0) {
- ggml_vec_set_f32(ne0*ne1*ne2*ne3, (float *)dst->data, 0);
- }
- ggml_barrier(params->threadpool);
- // parallelize by last three dimensions
- // total rows in dst
- const int64_t nr = ne1*ne2*ne3;
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- // dst[:,:,:,:] = 0
- // for i2,i3:
- // for i1:
- // for i01:
- // for i0:
- // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
- float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
- for (int64_t ir = ir0; ir < ir1; ++ir) {
- // dst indices
- const int64_t i3 = ir/(ne2*ne1);
- const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
- const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
- const int64_t i02 = i2;
- const int64_t i03 = i3;
- //const int64_t i10 = i1;
- const int64_t i12 = i2;
- const int64_t i13 = i3;
- for (int64_t i01 = 0; i01 < ne01; ++i01) {
- const int64_t i11 = i01;
- float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
- float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
- float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
- dequantize_row_q(s0, wdata, ne0);
- ggml_vec_mad_f32(ne0, d, wdata, *s1);
- }
- }
- }
- void ggml_compute_forward_out_prod(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_out_prod_q_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- GGML_ABORT("fatal error"); // todo
- // ggml_compute_forward_out_prod_f16_f32(params, dst);
- }
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_out_prod_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_scale
- static void ggml_compute_forward_scale_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- // scale factor
- float v;
- memcpy(&v, dst->op_params, sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const size_t nb01 = src0->nb[1];
- const size_t nb1 = dst->nb[1];
- for (int i1 = ir0; i1 < ir1; i1++) {
- if (dst->data != src0->data) {
- // src0 is same shape as dst => same indices
- memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
- }
- ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
- }
- }
- void ggml_compute_forward_scale(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_scale_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_set
- static void ggml_compute_forward_set_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- // view src0 and dst with these strides and data offset inbytes during set
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
- if (!inplace) {
- if (params->ith == 0) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
- // src0 and dst as viewed during set
- const size_t nb0 = ggml_element_size(src0);
- const int im0 = (ne10 == 0 ? 0 : ne10-1);
- const int im1 = (ne11 == 0 ? 0 : ne11-1);
- const int im2 = (ne12 == 0 ? 0 : ne12-1);
- const int im3 = (ne13 == 0 ? 0 : ne13-1);
- GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
- GGML_ASSERT(nb10 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- }
- }
- static void ggml_compute_forward_set_i32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- // view src0 and dst with these strides and data offset inbytes during set
- // nb0 is implicitly element_size because src0 and dst are contiguous
- size_t nb1 = ((int32_t *) dst->op_params)[0];
- size_t nb2 = ((int32_t *) dst->op_params)[1];
- size_t nb3 = ((int32_t *) dst->op_params)[2];
- size_t offset = ((int32_t *) dst->op_params)[3];
- bool inplace = (bool) ((int32_t *) dst->op_params)[4];
- if (!inplace) {
- if (params->ith == 0) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src1);
- const int nc = src1->ne[0];
- GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
- GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
- // src0 and dst as viewed during set
- const size_t nb0 = ggml_element_size(src0);
- const int im0 = (ne10 == 0 ? 0 : ne10-1);
- const int im1 = (ne11 == 0 ? 0 : ne11-1);
- const int im2 = (ne12 == 0 ? 0 : ne12-1);
- const int im3 = (ne13 == 0 ? 0 : ne13-1);
- GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
- GGML_ASSERT(nb10 == sizeof(int32_t));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int ir = ir0; ir < ir1; ++ir) {
- // src0 and dst are viewed with shape of src1 and offset
- // => same indices
- const int i3 = ir/(ne12*ne11);
- const int i2 = (ir - i3*ne12*ne11)/ne11;
- const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
- ggml_vec_cpy_i32(nc,
- (int32_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
- (int32_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
- }
- }
- void ggml_compute_forward_set(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_set_f32(params, dst);
- } break;
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_set_i32(params, dst);
- } break;
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_cpy
- void ggml_compute_forward_cpy(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- ggml_compute_forward_dup(params, dst);
- }
- // ggml_compute_forward_cont
- void ggml_compute_forward_cont(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- ggml_compute_forward_dup(params, dst);
- }
- // ggml_compute_forward_reshape
- void ggml_compute_forward_reshape(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- // NOP
- GGML_UNUSED(params);
- GGML_UNUSED(dst);
- }
- // ggml_compute_forward_view
- void ggml_compute_forward_view(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- // NOP
- GGML_UNUSED(params);
- GGML_UNUSED(dst);
- }
- // ggml_compute_forward_permute
- void ggml_compute_forward_permute(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- // NOP
- GGML_UNUSED(params);
- GGML_UNUSED(dst);
- }
- // ggml_compute_forward_transpose
- void ggml_compute_forward_transpose(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- // NOP
- GGML_UNUSED(params);
- GGML_UNUSED(dst);
- }
- // ggml_compute_forward_get_rows
- static void ggml_compute_forward_get_rows_q(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
- const ggml_type type = src0->type;
- ggml_to_float_t const dequantize_row_q = ggml_get_type_traits(type)->to_float;
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == ggml_type_size(type));
- assert(ggml_nrows(dst) == nr);
- const int ith = params->ith;
- const int nth = params->nth;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- GGML_ASSERT(i01 >= 0 && i01 < ne01);
- dequantize_row_q(
- (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
- }
- static void ggml_compute_forward_get_rows_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(ggml_fp16_t));
- assert(ggml_nrows(dst) == nr);
- const int ith = params->ith;
- const int nth = params->nth;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- GGML_ASSERT(i01 >= 0 && i01 < ne01);
- ggml_cpu_fp16_to_fp32(
- (const ggml_fp16_t*) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
- }
- static void ggml_compute_forward_get_rows_bf16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(ggml_bf16_t));
- assert(ggml_nrows(dst) == nr);
- const int ith = params->ith;
- const int nth = params->nth;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- GGML_ASSERT(i01 >= 0 && i01 < ne01);
- ggml_cpu_bf16_to_fp32(
- (const ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
- }
- }
- static void ggml_compute_forward_get_rows_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t nc = ne00;
- const int64_t nr = ggml_nelements(src1);
- assert(ne0 == nc);
- assert(ne02 == ne11);
- assert(nb00 == sizeof(float));
- assert(ggml_nrows(dst) == nr);
- const int ith = params->ith;
- const int nth = params->nth;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i/(ne11*ne10);
- const int64_t i11 = (i - i12*ne11*ne10)/ne10;
- const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
- const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- GGML_ASSERT(i01 >= 0 && i01 < ne01);
- ggml_vec_cpy_f32(nc,
- (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
- (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
- }
- }
- void ggml_compute_forward_get_rows(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- {
- ggml_compute_forward_get_rows_q(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_get_rows_bf16(params, dst);
- } break;
- case GGML_TYPE_F32:
- case GGML_TYPE_I32:
- {
- ggml_compute_forward_get_rows_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- static void ggml_compute_forward_set_rows_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_TENSOR_BINARY_OP_LOCALS
- const int64_t nc = ne00;
- const int64_t nr = ne01;
- assert(ne0 == nc);
- assert(ne2 == ne02);
- assert(ne3 == ne03);
- assert(src0->type == GGML_TYPE_F32);
- assert(ne02 % ne11 == 0);
- assert(ne03 % ne12 == 0);
- const int ith = params->ith;
- const int nth = params->nth;
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = std::min(ir0 + dr, nr);
- ggml_from_float_t const from_float = ggml_get_type_traits_cpu(dst->type)->from_float;
- for (int64_t i03 = 0; i03 < ne03; ++i03) {
- for (int64_t i02 = 0; i02 < ne02; ++i02) {
- for (int64_t i = ir0; i < ir1; ++i) {
- const int64_t i12 = i03%ne12;
- const int64_t i11 = i02%ne11;
- const int64_t i10 = i;
- const int64_t i1 = *(int64_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
- GGML_ASSERT(i1 >= 0 && i1 < ne1);
- from_float(
- (const float *) ((char *) src0->data + i*nb01 + i02*nb02 + i03*nb03),
- ((char *) dst->data + i1*nb1 + i02*nb2 + i03*nb3), nc);
- }
- }
- }
- }
- void ggml_compute_forward_set_rows(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_set_rows_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("src0->type = %d (%s) not supported", src0->type, ggml_type_name(src0->type));
- }
- }
- }
- // ggml_compute_forward_get_rows_back
- static void ggml_compute_forward_get_rows_back_f32_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- if (params->ith != 0) {
- return;
- }
- GGML_ASSERT(ggml_is_contiguous(dst));
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
- memset(dst->data, 0, ggml_nbytes(dst));
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- for (int j = 0; j < nc; ++j) {
- ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
- ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_CPU_FP16_TO_FP32(v);
- }
- }
- }
- static void ggml_compute_forward_get_rows_back_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- if (params->ith != 0) {
- return;
- }
- GGML_ASSERT(ggml_is_contiguous(dst));
- // ggml_compute_forward_dup_same_cont(params, opt0, dst);
- memset(dst->data, 0, ggml_nbytes(dst));
- const int nc = src0->ne[0];
- const int nr = ggml_nelements(src1);
- GGML_ASSERT( dst->ne[0] == nc);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int i = 0; i < nr; ++i) {
- const int r = ((int32_t *) src1->data)[i];
- ggml_vec_add_f32(nc,
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) dst->data + r*dst->nb[1]),
- (float *) ((char *) src0->data + i*src0->nb[1]));
- }
- }
- void ggml_compute_forward_get_rows_back(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_get_rows_back_f32_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_get_rows_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- //static bool first = true;
- //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
- //if (first) {
- // first = false;
- //} else {
- // for (int k = 0; k < dst->ne[1]; ++k) {
- // for (int j = 0; j < dst->ne[0]/16; ++j) {
- // for (int i = 0; i < 16; ++i) {
- // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
- // }
- // printf("\n");
- // }
- // printf("\n");
- // }
- // printf("\n");
- // exit(0);
- //}
- }
- // ggml_compute_forward_diag
- static void ggml_compute_forward_diag_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- if (params->ith != 0) {
- return;
- }
- // TODO: handle transposed/permuted matrices
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(ne00 == ne0);
- GGML_ASSERT(ne00 == ne1);
- GGML_ASSERT(ne01 == 1);
- GGML_ASSERT(ne02 == ne2);
- GGML_ASSERT(ne03 == ne3);
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb0 == sizeof(float));
- for (int i3 = 0; i3 < ne3; i3++) {
- for (int i2 = 0; i2 < ne2; i2++) {
- for (int i1 = 0; i1 < ne1; i1++) {
- float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
- float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
- for (int i0 = 0; i0 < i1; i0++) {
- d[i0] = 0;
- }
- d[i1] = s[i1];
- for (int i0 = i1+1; i0 < ne0; i0++) {
- d[i0] = 0;
- }
- }
- }
- }
- }
- void ggml_compute_forward_diag(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_diag_mask_inf
- static void ggml_compute_forward_diag_mask_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst,
- const float value) {
- const ggml_tensor * src0 = dst->src[0];
- const int ith = params->ith;
- const int nth = params->nth;
- const int n_past = ((int32_t *) dst->op_params)[0];
- const bool inplace = src0->data == dst->data;
- GGML_ASSERT(n_past >= 0);
- if (!inplace) {
- if (ith == 0) {
- // memcpy needs to be synchronized across threads to avoid race conditions.
- // => do it in INIT phase
- GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
- GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
- memcpy(
- ((char *) dst->data),
- ((char *) src0->data),
- ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
- // TODO: handle transposed/permuted matrices
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const int nr = src0->ne[1];
- const int nz = n/nr;
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- for (int k = 0; k < nz; k++) {
- for (int j = ith; j < nr; j += nth) {
- for (int i = n_past; i < nc; i++) {
- if (i > n_past + j) {
- *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
- }
- }
- }
- }
- }
- void ggml_compute_forward_diag_mask_inf(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- void ggml_compute_forward_diag_mask_zero(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_diag_mask_f32(params, dst, 0);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_soft_max
- static void ggml_compute_forward_soft_max_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- assert(ggml_is_contiguous(dst));
- assert(ggml_are_same_shape(src0, dst));
- float scale = 1.0f;
- float max_bias = 0.0f;
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- const int64_t nb11 = src1 ? src1->nb[1] : 1;
- const int64_t nb12 = src1 ? src1->nb[2] : 1;
- const int64_t nb13 = src1 ? src1->nb[3] : 1;
- const int64_t ne12 = src1 ? src1->ne[2] : 1;
- const int64_t ne13 = src1 ? src1->ne[3] : 1;
- // TODO: is this supposed to be ceil instead of floor?
- // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
- const uint32_t n_head = ne02;
- const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- float * wp = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
- const int64_t i11 = i01;
- const int64_t i12 = i02%ne12;
- const int64_t i13 = i03%ne13;
- // ALiBi
- const uint32_t h = i02; // head
- const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
- float * sp = (float *)((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
- float * dp = (float *)((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
- // broadcast the mask across rows
- ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
- float * mp_f32 = src1 ? (float *)((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13) : NULL;
- ggml_vec_cpy_f32 (ne00, wp, sp);
- ggml_vec_scale_f32(ne00, wp, scale);
- if (mp_f32) {
- if (use_f16) {
- for (int i = 0; i < ne00; ++i) {
- wp[i] += slope*GGML_CPU_FP16_TO_FP32(mp_f16[i]);
- }
- } else {
- for (int i = 0; i < ne00; ++i) {
- wp[i] += slope*mp_f32[i];
- }
- }
- }
- #ifndef NDEBUG
- for (int i = 0; i < ne00; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(wp[i]));
- }
- #endif
- float max = -INFINITY;
- ggml_vec_max_f32(ne00, &max, wp);
- ggml_float sum = ggml_vec_soft_max_f32(ne00, dp, wp, max);
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(ne00, dp, sum);
- #ifndef NDEBUG
- for (int i = 0; i < ne00; ++i) {
- assert(!isnan(dp[i]));
- assert(!isinf(dp[i]));
- }
- #endif
- }
- }
- }
- }
- void ggml_compute_forward_soft_max(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_soft_max_ext_back
- static void ggml_compute_forward_soft_max_ext_back_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_are_same_shape(src0, dst));
- GGML_ASSERT(ggml_are_same_shape(src1, dst));
- float scale = 1.0f;
- float max_bias = 0.0f;
- memcpy(&scale, (const float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (const float *) dst->op_params + 1, sizeof(float));
- GGML_ASSERT(max_bias == 0.0f);
- // TODO: handle transposed/permuted matrices
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src0->ne[0];
- const int nr = ggml_nrows(src0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- for (int i1 = ir0; i1 < ir1; i1++) {
- float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
- float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
- float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(dy[i]));
- assert(!isnan(y[i]));
- }
- #endif
- // Jii = yi - yi*yi
- // Jij = -yi*yj
- // J = diag(y)-y.T*y
- // dx = J * dy
- // dxk = sum_i(Jki * dyi)
- // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
- // dxk = sum_i(-yk*yi * dyi) + yk*dyk
- // dxk = -yk * sum_i(yi * dyi) + yk*dyk
- // dxk = -yk * dot(y, dy) + yk*dyk
- // dxk = yk * (- dot(y, dy) + dyk)
- // dxk = yk * (dyk - dot(y, dy))
- //
- // post-order:
- // dot_y_dy := dot(y, dy)
- // dx := dy
- // dx := dx - dot_y_dy
- // dx := dx * y
- // linear runtime, no additional memory
- float dot_y_dy = 0;
- ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
- ggml_vec_cpy_f32 (nc, dx, dy);
- ggml_vec_acc1_f32 (nc, dx, -dot_y_dy);
- ggml_vec_mul_f32 (nc, dx, dx, y);
- ggml_vec_scale_f32(nc, dx, scale);
- #ifndef NDEBUG
- for (int i = 0; i < nc; ++i) {
- assert(!isnan(dx[i]));
- assert(!isinf(dx[i]));
- }
- #endif
- }
- }
- void ggml_compute_forward_soft_max_ext_back(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_soft_max_ext_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_clamp
- static void ggml_compute_forward_clamp_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- float min;
- float max;
- memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- GGML_ASSERT( nb0 == sizeof(float));
- GGML_ASSERT(nb00 == sizeof(float));
- for (int j = ith; j < n; j += nth) {
- float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
- float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
- for (int i = 0; i < nc; i++) {
- dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
- }
- }
- }
- static void ggml_compute_forward_clamp_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- float min;
- float max;
- memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int n = ggml_nrows(src0);
- const int nc = src0->ne[0];
- const size_t nb00 = src0->nb[0];
- const size_t nb01 = src0->nb[1];
- const size_t nb0 = dst->nb[0];
- const size_t nb1 = dst->nb[1];
- GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- for (int j = ith; j < n; j += nth) {
- ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
- ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
- for (int i = 0; i < nc; i++) {
- float v = GGML_CPU_FP16_TO_FP32(src0_ptr[i]);
- dst_ptr[i] = GGML_CPU_FP32_TO_FP16(MAX(MIN(v, max), min));
- }
- }
- }
- void ggml_compute_forward_clamp(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_clamp_f32(params, dst);
- } break;
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_clamp_f16(params, dst);
- } break;
- case GGML_TYPE_BF16:
- case GGML_TYPE_Q4_0:
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q5_0:
- case GGML_TYPE_Q5_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q8_1:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- case GGML_TYPE_TQ1_0:
- case GGML_TYPE_TQ2_0:
- case GGML_TYPE_IQ2_XXS:
- case GGML_TYPE_IQ2_XS:
- case GGML_TYPE_IQ3_XXS:
- case GGML_TYPE_IQ1_S:
- case GGML_TYPE_IQ1_M:
- case GGML_TYPE_IQ4_NL:
- case GGML_TYPE_IQ4_XS:
- case GGML_TYPE_IQ3_S:
- case GGML_TYPE_IQ2_S:
- case GGML_TYPE_Q8_K:
- case GGML_TYPE_I8:
- case GGML_TYPE_I16:
- case GGML_TYPE_I32:
- case GGML_TYPE_I64:
- case GGML_TYPE_F64:
- case GGML_TYPE_COUNT:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_rope
- static float rope_yarn_ramp(const float low, const float high, const int i0) {
- const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
- return 1 - MIN(1, MAX(0, y));
- }
- // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
- // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
- static void rope_yarn(
- float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
- float * cos_theta, float * sin_theta) {
- // Get n-d rotational scaling corrected for extrapolation
- float theta_interp = freq_scale * theta_extrap;
- float theta = theta_interp;
- if (ext_factor != 0.0f) {
- float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
- theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
- // Get n-d magnitude scaling corrected for interpolation
- mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
- }
- *cos_theta = cosf(theta) * mscale;
- *sin_theta = sinf(theta) * mscale;
- }
- static void ggml_rope_cache_init(
- float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
- float * cache, float sin_sign, float theta_scale) {
- // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
- float theta = theta_base;
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
- rope_yarn(
- theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
- );
- cache[i0 + 1] *= sin_sign;
- theta *= theta_scale;
- }
- }
- static void ggml_mrope_cache_init(
- float theta_base_t, float theta_base_h, float theta_base_w, float theta_base_e, int sections[4], bool indep_sects,
- float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
- float * cache, float sin_sign, float theta_scale) {
- // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
- float theta_t = theta_base_t;
- float theta_h = theta_base_h;
- float theta_w = theta_base_w;
- float theta_e = theta_base_e; // extra position id for vision encoder
- int sect_dims = sections[0] + sections[1] + sections[2] + sections[3];
- int sec_w = sections[1] + sections[0];
- int sec_e = sections[2] + sec_w;
- GGML_ASSERT(sect_dims <= ne0);
- for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
- const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
- int sector = (i0 / 2) % sect_dims;
- if (indep_sects) {
- // compute theta independently for each dim sections
- // (i.e. reset corresponding theta when `i0` go from one section to another)
- if (sector == 0) {
- theta_t = theta_base_t;
- }
- else if (sector == sections[0]) {
- theta_h = theta_base_h;;
- }
- else if (sector == sec_w) {
- theta_w = theta_base_w;
- }
- else if (sector == sec_e) {
- theta_e = theta_base_e;
- }
- }
- float theta = theta_t;
- if (sector >= sections[0] && sector < sec_w) {
- theta = theta_h;
- }
- else if (sector >= sec_w && sector < sec_w + sections[2]) {
- theta = theta_w;
- }
- else if (sector >= sec_w + sections[2]) {
- theta = theta_e;
- }
- rope_yarn(
- theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
- );
- cache[i0 + 1] *= sin_sign;
- theta_t *= theta_scale;
- theta_w *= theta_scale;
- theta_h *= theta_scale;
- theta_e *= theta_scale;
- }
- }
- static void ggml_compute_forward_rope_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst,
- const bool forward) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- const ggml_tensor * src2 = dst->src[2];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- int sections[4];
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- //const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
- GGML_TENSOR_UNARY_OP_LOCALS
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- GGML_ASSERT(nb00 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
- const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE; // ggml_rope_multi, multimodal rotary position embedding
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- if (is_mrope) {
- GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
- }
- if (is_vision) {
- GGML_ASSERT(n_dims == ne0/2);
- }
- const float * freq_factors = NULL;
- if (src2 != NULL) {
- GGML_ASSERT(src2->type == GGML_TYPE_F32);
- GGML_ASSERT(src2->ne[0] >= n_dims / 2);
- freq_factors = (const float *) src2->data;
- }
- // backward process uses inverse rotation by cos and sin.
- // cos and sin build a rotation matrix, where the inverse is the transpose.
- // this essentially just switches the sign of sin.
- const float sin_sign = forward ? 1.0f : -1.0f;
- const int32_t * pos = (const int32_t *) src1->data;
- for (int64_t i3 = 0; i3 < ne3; i3++) { // batch
- for (int64_t i2 = 0; i2 < ne2; i2++) { // seq-len
- float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
- if (!is_mrope) {
- const int64_t p = pos[i2];
- ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
- else {
- const int64_t p_t = pos[i2];
- const int64_t p_h = pos[i2 + ne2];
- const int64_t p_w = pos[i2 + ne2 * 2];
- const int64_t p_e = pos[i2 + ne2 * 3];
- ggml_mrope_cache_init(
- p_t, p_h, p_w, p_e, sections, is_vision,
- freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
- for (int64_t i1 = 0; i1 < ne1; i1++) { // attn-heads
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- if (is_neox || is_mrope) {
- if (is_vision){
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
- const float x0 = src[0];
- const float x1 = src[n_dims];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
- const float x0 = src[0];
- const float x1 = src[n_dims/2];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
- }
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = src[0];
- const float x1 = src[1];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[1] = x0*sin_theta + x1*cos_theta;
- }
- }
- if (is_vision) {
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const int64_t ic = i0/2;
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
- const float x0 = src[0];
- const float x1 = src[n_dims];
- dst_data[0] = x0*cos_theta - x1*sin_theta;
- dst_data[n_dims] = x0*sin_theta + x1*cos_theta;
- }
- } else {
- // fill the remain channels with data from src tensor
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- dst_data[0] = src[0];
- dst_data[1] = src[1];
- }
- }
- }
- }
- }
- }
- // TODO: deduplicate f16/f32 code
- static void ggml_compute_forward_rope_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst,
- const bool forward) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- const ggml_tensor * src2 = dst->src[2];
- float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
- int sections[4];
- //const int n_past = ((int32_t *) dst->op_params)[0];
- const int n_dims = ((int32_t *) dst->op_params)[1];
- const int mode = ((int32_t *) dst->op_params)[2];
- //const int n_ctx = ((int32_t *) dst->op_params)[3];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- memcpy(§ions, (int32_t *) dst->op_params + 11, sizeof(int)*4);
- GGML_TENSOR_UNARY_OP_LOCALS
- //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
- //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
- GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(dst);
- GGML_ASSERT(n_dims <= ne0);
- GGML_ASSERT(n_dims % 2 == 0);
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- // row index used to determine which thread to use
- int ir = 0;
- const float theta_scale = powf(freq_base, -2.0f/n_dims);
- float corr_dims[2];
- ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
- const bool is_neox = mode & GGML_ROPE_TYPE_NEOX;
- const bool is_mrope = mode & GGML_ROPE_TYPE_MROPE;
- const bool is_vision = mode == GGML_ROPE_TYPE_VISION;
- if (is_mrope) {
- GGML_ASSERT(sections[0] > 0 || sections[1] > 0 || sections[2] > 0);
- }
- if (is_vision) {
- GGML_ASSERT(n_dims == ne0/2);
- }
- const float * freq_factors = NULL;
- if (src2 != NULL) {
- GGML_ASSERT(src2->type == GGML_TYPE_F32);
- GGML_ASSERT(src2->ne[0] >= n_dims / 2);
- freq_factors = (const float *) src2->data;
- }
- // backward process uses inverse rotation by cos and sin.
- // cos and sin build a rotation matrix, where the inverse is the transpose.
- // this essentially just switches the sign of sin.
- const float sin_sign = forward ? 1.0f : -1.0f;
- const int32_t * pos = (const int32_t *) src1->data;
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
- if (!is_mrope) {
- const int64_t p = pos[i2];
- ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
- else {
- const int64_t p_t = pos[i2];
- const int64_t p_h = pos[i2 + ne2];
- const int64_t p_w = pos[i2 + ne2 * 2];
- const int64_t p_e = pos[i2 + ne2 * 3];
- ggml_mrope_cache_init(
- p_t, p_h, p_w, p_e, sections, is_vision,
- freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
- }
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- if (ir++ < ir0) continue;
- if (ir > ir1) break;
- if (is_neox || is_mrope) {
- if (is_vision) {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
- const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
- const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
- dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const int64_t ic = i0/2;
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
- const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
- const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims/2]);
- dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims/2] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- }
- } else {
- for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
- const float x1 = GGML_CPU_FP16_TO_FP32(src[1]);
- dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[1] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- }
- if (is_vision) {
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const int64_t ic = i0/2;
- const float cos_theta = cache[i0 + 0];
- const float sin_theta = cache[i0 + 1];
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
- const float x0 = GGML_CPU_FP16_TO_FP32(src[0]);
- const float x1 = GGML_CPU_FP16_TO_FP32(src[n_dims]);
- dst_data[0] = GGML_CPU_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
- dst_data[n_dims] = GGML_CPU_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
- }
- } else {
- for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
- dst_data[0] = src[0];
- dst_data[1] = src[1];
- }
- }
- }
- }
- }
- }
- void ggml_compute_forward_rope(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, dst, true);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, dst, true);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_rope_back
- void ggml_compute_forward_rope_back(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_rope_f16(params, dst, false);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rope_f32(params, dst, false);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_conv_transpose_1d
- static void ggml_compute_forward_conv_transpose_1d_f16_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00*ne01*ne02;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (ith == 0) {
- memset(params->wdata, 0, params->wsize);
- // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
- ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ne02 + i02] = src[i00];
- }
- }
- }
- }
- // permute source data (src1) from (L x Cin) to (Cin x L)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- ggml_fp16_t * dst_data = wdata;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne11 + i11] = GGML_CPU_FP32_TO_FP16(src[i10]);
- }
- }
- }
- // need to zero dst since we are accumulating into it
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- // total rows in dst
- const int nr = ne1;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i10*ne11;
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne02, &v, 0,
- (ggml_fp16_t *) wdata_src + i1n, 0,
- (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
- dst_data[i10*s0 + i00] += v;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_transpose_1d_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00*ne01*ne02;
- GGML_ASSERT(nb00 == sizeof(float));
- GGML_ASSERT(nb10 == sizeof(float));
- if (ith == 0) {
- memset(params->wdata, 0, params->wsize);
- // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
- {
- float * const wdata = (float *) params->wdata + 0;
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
- float * dst_data = wdata + i01*ne00*ne02;
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i00*ne02 + i02] = src[i00];
- }
- }
- }
- }
- // prepare source data (src1)
- {
- float * const wdata = (float *) params->wdata + nk;
- float * dst_data = wdata;
- for (int64_t i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i11*nb11);
- for (int64_t i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne11 + i11] = src[i10];
- }
- }
- }
- // need to zero dst since we are accumulating into it
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
- // total rows in dst
- const int nr = ne1;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float * const wdata = (float *) params->wdata + 0;
- float * const wdata_src = wdata + nk;
- for (int i1 = ir0; i1 < ir1; i1++) {
- float * dst_data = (float *)((char *) dst->data + i1*nb1);
- float * wdata_kernel = wdata + i1*ne02*ne00;
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i10*ne11;
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f32(ne02, &v, 0,
- wdata_src + i1n, 0,
- wdata_kernel + i00*ne02, 0, 1);
- dst_data[i10*s0 + i00] += v;
- }
- }
- }
- }
- void ggml_compute_forward_conv_transpose_1d(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_conv_transpose_1d_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_im2col_f32
- // src0: kernel [OC, IC, KH, KW]
- // src1: image [N, IC, IH, IW]
- // dst: result [N, OH, OW, IC*KH*KW]
- static void ggml_compute_forward_im2col_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t N = is_2D ? ne13 : ne12;
- const int64_t IC = is_2D ? ne12 : ne11;
- const int64_t IH = is_2D ? ne11 : 1;
- const int64_t IW = ne10;
- const int64_t KH = is_2D ? ne01 : 1;
- const int64_t KW = ne00;
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
- int ofs0 = is_2D ? nb13 : nb12;
- int ofs1 = is_2D ? nb12 : nb11;
- GGML_ASSERT(nb10 == sizeof(float));
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- float * const wdata = (float *) dst->data;
- for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
- for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
- // micro kernel
- float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
- for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- const int64_t iiw = iow*s0 + ikw*d0 - p0;
- const int64_t iih = ioh*s1 + ikh*d1 - p1;
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
- } else {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
- }
- // ggml_compute_forward_im2col_f16
- // src0: kernel [OC, IC, KH, KW]
- // src1: image [N, IC, IH, IW]
- // dst: result [N, OH, OW, IC*KH*KW]
- static void ggml_compute_forward_im2col_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F16);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t N = is_2D ? ne13 : ne12;
- const int64_t IC = is_2D ? ne12 : ne11;
- const int64_t IH = is_2D ? ne11 : 1;
- const int64_t IW = ne10;
- const int64_t KH = is_2D ? ne01 : 1;
- const int64_t KW = ne00;
- const int64_t OH = is_2D ? ne2 : 1;
- const int64_t OW = ne1;
- int ofs0 = is_2D ? nb13 : nb12;
- int ofs1 = is_2D ? nb12 : nb11;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
- for (int64_t in = 0; in < N; in++) {
- for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
- for (int64_t iow = 0; iow < OW; iow++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
- // micro kernel
- ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
- for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- const int64_t iiw = iow*s0 + ikw*d0 - p0;
- const int64_t iih = ioh*s1 + ikh*d1 - p1;
- if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
- } else {
- dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_CPU_FP32_TO_FP16(src_data[iih*IW + iiw]);
- }
- }
- }
- }
- }
- }
- }
- }
- }
- void ggml_compute_forward_im2col(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- switch (dst->type) {
- case GGML_TYPE_F16:
- {
- ggml_compute_forward_im2col_f16(params, dst);
- } break;
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_im2col_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_im2col_back_f32
- void ggml_compute_forward_im2col_back_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
- const ggml_tensor * src1 = dst->src[1]; // convolution kernel
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS;
- const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
- const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
- const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
- const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
- const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t N = is_2D ? ne3 : ne2;
- const int64_t IC = is_2D ? ne2 : ne1;
- const int64_t IH = is_2D ? ne1 : 1;
- const int64_t IW = ne0;
- const int64_t KH = is_2D ? ne11 : 1;
- const int64_t KW = ne10;
- const int64_t OH = is_2D ? ne02 : 1;
- const int64_t OW = ne01;
- int ofs0 = is_2D ? nb3 : nb2;
- int ofs1 = is_2D ? nb2 : nb1;
- GGML_ASSERT(nb0 == sizeof(float));
- // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
- {
- float * const wdata = (float *) dst->data;
- for (int64_t in = 0; in < N; in++) {
- for (int64_t iic = ith; iic < IC; iic += nth) {
- for (int64_t iih = 0; iih < IH; iih++) {
- for (int64_t iiw = 0; iiw < IW; iiw++) {
- // micro kernel
- float grad = 0.0f;
- for (int64_t ikh = 0; ikh < KH; ikh++) {
- for (int64_t ikw = 0; ikw < KW; ikw++) {
- // For s0 > 1 some values were skipped over in the forward pass.
- // These values have tmpw % s0 != 0 and need to be skipped in the backwards pass as well.
- const int64_t tmpw = (iiw + p0 - ikw*d0);
- if (tmpw % s0 != 0) {
- continue;
- }
- const int64_t iow = tmpw / s0;
- // Equivalent logic as above except for s1.
- int64_t ioh;
- if (is_2D) {
- const int64_t tmph = iih + p1 - ikh*d1;
- if (tmph % s1 != 0) {
- continue;
- }
- ioh = tmph / s1;
- } else {
- ioh = 0;
- }
- if (iow < 0 || iow >= OW || ioh < 0 || ioh >= OH) {
- continue;
- }
- const float * const grad_in = (const float *) src0->data
- + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
- grad += grad_in[iic*(KH*KW) + ikh*KW + ikw];
- }
- }
- float * dst_data = (float *)((char *) wdata + (in*ofs0 + iic*ofs1)); // [IH, IW]
- dst_data[iih*IW + iiw] = grad;
- }
- }
- }
- }
- }
- }
- static void ggml_call_mul_mat(ggml_type type, const ggml_compute_params * params, int64_t m, int64_t n, int64_t k,
- void * a, void * b, float * c) {
- const ggml_type_traits * traits = ggml_get_type_traits(type);
- struct ggml_tensor src1 = {};
- src1.type = type;
- src1.ne[0] = k;
- src1.ne[1] = m;
- src1.ne[2] = 1;
- src1.ne[3] = 1;
- src1.nb[0] = traits->type_size;
- src1.nb[1] = k * traits->type_size;
- src1.nb[2] = src1.nb[1];
- src1.nb[3] = src1.nb[2];
- src1.data = a;
- struct ggml_tensor src0 = {};
- src0.type = type;
- src0.ne[0] = k;
- src0.ne[1] = n;
- src0.ne[2] = 1;
- src0.ne[3] = 1;
- src0.nb[0] = traits->type_size;
- src0.nb[1] = k * traits->type_size;
- src0.nb[2] = src0.nb[1];
- src0.nb[3] = src0.nb[2];
- src0.data = b;
- struct ggml_tensor dst = {};
- dst.ne[0] = n;
- dst.ne[1] = m;
- dst.ne[2] = 1;
- dst.ne[3] = 1;
- dst.nb[0] = sizeof(float);
- dst.nb[1] = n * sizeof(float);
- dst.nb[2] = dst.nb[1];
- dst.nb[3] = dst.nb[2];
- dst.data = c;
- dst.src[0] = &src0;
- dst.src[1] = &src1;
- ggml_compute_forward_mul_mat(params, &dst);
- }
- // ggml_compute_forward_conv_2d
- static void ggml_compute_forward_conv_2d_impl(const ggml_compute_params * params,
- const ggml_tensor * kernel, // [KW, KH, IC, OC]
- const ggml_tensor * src, // [W, H, C, N]
- ggml_tensor * dst, // [OW, OH, OC, N]
- ggml_type kernel_type) {
- GGML_ASSERT(ggml_is_contiguous(kernel));
- GGML_ASSERT(kernel_type == GGML_TYPE_F16 || kernel_type == GGML_TYPE_F32);
- GGML_ASSERT(kernel->type == kernel_type);
- const ggml_type_traits * traits = ggml_get_type_traits(kernel_type);
- const int32_t stride_x = dst->op_params[0];
- const int32_t stride_y = dst->op_params[1];
- const int32_t pad_x = dst->op_params[2];
- const int32_t pad_y = dst->op_params[3];
- const int32_t dilation_x = dst->op_params[4];
- const int32_t dilation_y = dst->op_params[5];
- const int64_t c_in = src->ne[2];
- const int64_t c_out = kernel->ne[3];
- GGML_ASSERT(c_in == kernel->ne[2]);
- const int64_t src_w = src->ne[0];
- const int64_t src_h = src->ne[1];
- const int64_t knl_w = kernel->ne[0];
- const int64_t knl_h = kernel->ne[1];
- const int64_t dst_w = dst->ne[0];
- const int64_t dst_h = dst->ne[1];
- const float * src_data = (float *) src->data;
- void * knl_data = kernel->data;
- float * dst_data = (float *) dst->data;
- const int64_t knl_n = knl_w * knl_h * c_in;
- const int64_t patch_total = dst->ne[3] * dst_w * dst_h;
- const int64_t space_per_patch = knl_n * traits->type_size + c_out * sizeof(float);
- const int64_t batch_size = params->wsize / space_per_patch;
- const int64_t patches_per_batch = batch_size > 8 ? (batch_size / 8) * 8 : batch_size;
- const int64_t batch_n = (patch_total + patches_per_batch - 1) / patches_per_batch;
- GGML_ASSERT(patches_per_batch > 0 && batch_size >= 1);
- void * tmp = params->wdata;
- for (int64_t batch_i = 0; batch_i < batch_n; ++batch_i) {
- const int64_t patch_start_batch = batch_i * patches_per_batch;
- const int64_t patch_end_batch = std::min(patch_start_batch + patches_per_batch,
- patch_total);
- const int64_t patch_n = patch_end_batch - patch_start_batch;
- const int64_t patch_per_thread = (patch_n + params->nth - 1) / params->nth;
- const int64_t patch_start = patch_start_batch + params->ith * patch_per_thread;
- const int64_t patch_end = std::min(patch_start + patch_per_thread, patch_end_batch);
- //im2col for a patch
- for (int64_t p = patch_start; p < patch_end; ++p) {
- const int64_t batch_n = p / (dst_w * dst_h);
- const int64_t src_x = (p / dst_w) % dst_h;
- const int64_t src_y = p % dst_w;
- const float * src_base = (const float *)((const char *)src_data + batch_n * src->nb[3]);
- char * dst_row = (char *) tmp + (p % patches_per_batch) * knl_n * traits->type_size;
- for (int64_t ic = 0; ic < c_in; ++ic) {
- for (int64_t ky = 0; ky < knl_h; ++ky) {
- for (int64_t kx = 0; kx < knl_w; ++kx) {
- const int64_t sy = src_x * stride_y + ky * dilation_y - pad_y;
- const int64_t sx = src_y * stride_x + kx * dilation_x - pad_x;
- int64_t dst_idx = ic * (knl_h * knl_w) + ky * knl_w + kx;
- float src_val;
- if (sy < 0 || sy >= src_h || sx < 0 || sx >= src_w) {
- src_val = 0.0f;
- } else {
- const float * src_ptr = (const float *)((const char *)src_base + sx * src->nb[0] + sy * src->nb[1] + ic * src->nb[2]);
- src_val = *src_ptr;
- }
- char * element_ptr = dst_row + dst_idx * traits->type_size;
- if (kernel_type == GGML_TYPE_F32) {
- *(float *) element_ptr = src_val;
- } else if (kernel_type == GGML_TYPE_F16) {
- *(ggml_fp16_t *) element_ptr = GGML_CPU_FP32_TO_FP16(src_val);
- }
- }
- }
- }
- } // patches handled by this thread
- ggml_barrier(params->threadpool);
- float * gemm_output = (float *) ((char *) tmp + patches_per_batch * knl_n * traits->type_size);
- GGML_ASSERT(gemm_output + patch_n * c_out <= (float*)tmp + params->wsize);
- // GEMM: patches[patch_n, knl_n] × kernel[knl_n, c_out] = output[patch_n, c_out]
- ggml_call_mul_mat(kernel_type, params, patch_n, c_out, knl_n, tmp, knl_data, gemm_output);
- ggml_barrier(params->threadpool);
- //permute back [OC, N, OH, OW] to [N, OC, OH, OW]
- const int64_t permute_per_thread = (patch_n + params->nth - 1) / params->nth;
- const int64_t permute_start = params->ith * permute_per_thread;
- const int64_t permute_end = std::min(permute_start + permute_per_thread, patch_n);
- for (int64_t i = permute_start; i < permute_end; ++i) {
- const int64_t p = patch_start_batch + i;
- const int64_t batch_n = p / (dst_w * dst_h);
- const int64_t dst_y = (p / dst_w) % dst_h;
- const int64_t dst_x = p % dst_w;
- for (int64_t oc = 0; oc < c_out; ++oc) {
- const float value = gemm_output[i * c_out + oc];
- float * dst_ptr = (float *)((char *)dst_data + dst_x * dst->nb[0] + dst_y * dst->nb[1] + oc * dst->nb[2] + batch_n * dst->nb[3]);
- *dst_ptr = value;
- }
- }
- }
- }
- void ggml_compute_forward_conv_2d(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- ggml_compute_forward_conv_2d_impl(params, src0, src1, dst, src0->type);
- }
- // ggml_compute_forward_conv_transpose_2d
- void ggml_compute_forward_conv_transpose_2d(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(src0->type == GGML_TYPE_F16);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- GGML_TENSOR_BINARY_OP_LOCALS
- const int ith = params->ith;
- const int nth = params->nth;
- const int nk = ne00*ne01*ne02*ne03;
- GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
- GGML_ASSERT(nb10 == sizeof(float));
- if (ith == 0) {
- memset(params->wdata, 0, params->wsize);
- // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- for (int64_t i03 = 0; i03 < ne03; i03++) {
- for (int64_t i02 = 0; i02 < ne02; i02++) {
- const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
- ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
- for (int64_t i01 = 0; i01 < ne01; i01++) {
- for (int64_t i00 = 0; i00 < ne00; i00++) {
- dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
- }
- }
- }
- }
- }
- // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
- {
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
- for (int i12 = 0; i12 < ne12; i12++) {
- for (int i11 = 0; i11 < ne11; i11++) {
- const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
- ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
- for (int i10 = 0; i10 < ne10; i10++) {
- dst_data[i10*ne12 + i12] = GGML_CPU_FP32_TO_FP16(src[i10]);
- }
- }
- }
- }
- memset(dst->data, 0, ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- const int32_t stride = ggml_get_op_params_i32(dst, 0);
- // total patches in dst
- const int np = ne2;
- // patches per thread
- const int dp = (np + nth - 1)/nth;
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
- ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
- ggml_fp16_t * const wdata_src = wdata + nk;
- for (int i2 = ip0; i2 < ip1; i2++) { // Cout
- float * dst_data = (float *)((char *) dst->data + i2*nb2);
- ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
- for (int i11 = 0; i11 < ne11; i11++) {
- for (int i10 = 0; i10 < ne10; i10++) {
- const int i1n = i11*ne10*ne12 + i10*ne12;
- for (int i01 = 0; i01 < ne01; i01++) {
- for (int i00 = 0; i00 < ne00; i00++) {
- float v = 0;
- ggml_vec_dot_f16(ne03, &v, 0,
- wdata_src + i1n, 0,
- wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
- dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
- }
- }
- }
- }
- }
- }
- // ggml_compute_forward_conv_2d_dw
- struct ggml_conv_2d_dw_params {
- int64_t channels;
- int64_t batch;
- int64_t src_w;
- int64_t src_h;
- int64_t dst_w;
- int64_t dst_h;
- int64_t knl_w;
- int64_t knl_h;
- int stride_x;
- int stride_y;
- int pad_x;
- int pad_y;
- int dilation_x;
- int dilation_y;
- };
- static void ggml_compute_forward_conv_2d_dw_cwhn(
- const ggml_compute_params * params,
- const ggml_tensor * src,
- const ggml_tensor * kernel,
- ggml_tensor * dst,
- const ggml_conv_2d_dw_params & p) {
- const int64_t c = p.channels;
- const float * knl_data = (const float *)kernel->data;
- const int64_t rows_total = p.dst_h * p.batch;
- const int64_t rows_per_thread = (rows_total + params->nth - 1) / params->nth;
- const int64_t row_start = params->ith * rows_per_thread;
- const int64_t row_end = MIN(row_start + rows_per_thread, rows_total);
- #ifdef GGML_SIMD
- const int64_t pkg_size = GGML_F32_EPR;
- const int64_t pkg_count = c / pkg_size;
- const int64_t c_pkg_end = pkg_count * pkg_size;
- #else
- const int64_t c_pkg_end = 0;
- #endif
- for (int64_t row = row_start; row < row_end; ++row) {
- const int64_t dst_y = row % p.dst_h;
- const float * src_data = (const float *)src->data + (row / p.dst_h) * p.src_w * p.src_h * c;
- for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
- float * dst_data = (float *)dst->data + (row * p.dst_w + dst_x) * c;
- const int64_t src_y_base = dst_y * p.stride_y - p.pad_y;
- const int64_t src_x_base = dst_x * p.stride_x - p.pad_x;
- #ifdef GGML_SIMD
- // Vectorized loop
- for (int64_t c_i = 0; c_i < c_pkg_end; c_i += pkg_size) {
- GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
- for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
- const int64_t src_y = src_y_base + knl_y * p.dilation_y;
- if (src_y < 0 || src_y >= p.src_h) {
- continue;
- }
- for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
- const int64_t src_x = src_x_base + knl_x * p.dilation_x;
- if (src_x < 0 || src_x >= p.src_w) {
- continue;
- }
- GGML_F32_VEC k = GGML_F32_VEC_LOAD(knl_data + (knl_y * p.knl_w + knl_x) * c + c_i);
- GGML_F32_VEC s = GGML_F32_VEC_LOAD(src_data + (src_y * p.src_w + src_x) * c + c_i);
- sum = GGML_F32_VEC_FMA(sum, k, s);
- }
- }
- GGML_F32_VEC_STORE(dst_data + c_i, sum);
- }
- #endif
- // Scalar loop
- for (int64_t c_i = c_pkg_end; c_i < c; ++c_i) {
- float sum = 0.0f;
- for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
- const int64_t src_y = src_y_base + knl_y * p.dilation_y;
- if (src_y < 0 || src_y >= p.src_h) {
- continue;
- }
- for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
- const int64_t src_x = src_x_base + knl_x * p.dilation_x;
- if (src_x < 0 || src_x >= p.src_w) {
- continue;
- }
- sum += knl_data[(knl_y * p.knl_w + knl_x) * c + c_i]
- * src_data[(src_y * p.src_w + src_x) * c + c_i];
- }
- }
- dst_data[c_i] = sum;
- }
- }
- }
- }
- static void ggml_compute_forward_conv_2d_dw_whcn(
- const ggml_compute_params * params,
- const ggml_tensor * src,
- const ggml_tensor * kernel,
- ggml_tensor * dst,
- const ggml_conv_2d_dw_params & p) {
- const int64_t n = p.channels * p.batch;
- const int64_t per_thread = (n + params->nth - 1) / params->nth;
- const int64_t start = params->ith * per_thread;
- const int64_t end = MIN(start + per_thread, n);
- for (int64_t i = start; i < end; ++i) {
- const float * knl_data = (const float *)kernel->data + (i % p.channels) * p.knl_w * p.knl_h;
- const float * src_data = (const float *)src->data + i * p.src_w * p.src_h;
- float * dst_data = (float *)dst->data + i * p.dst_w * p.dst_h;
- for (int64_t dst_y = 0; dst_y < p.dst_h; ++dst_y) {
- for (int64_t dst_x = 0; dst_x < p.dst_w; ++dst_x) {
- float sum = 0.0f;
- for (int64_t knl_y = 0; knl_y < p.knl_h; ++knl_y) {
- const int64_t src_y = dst_y * p.stride_y + knl_y * p.dilation_y - p.pad_y;
- if (src_y < 0 || src_y >= p.src_h) {
- continue;
- }
- for (int64_t knl_x = 0; knl_x < p.knl_w; ++knl_x) {
- const int64_t src_x = dst_x * p.stride_x + knl_x * p.dilation_x - p.pad_x;
- if (src_x < 0 || src_x >= p.src_w) {
- continue;
- }
- sum += knl_data[knl_y * p.knl_w + knl_x]
- * src_data[src_y * p.src_w + src_x];
- }
- }
- dst_data[dst_y * p.dst_w + dst_x] = sum;
- }
- }
- }
- }
- void ggml_compute_forward_conv_2d_dw(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * kernel = dst->src[0];
- const ggml_tensor * src = dst->src[1];
- ggml_conv_2d_dw_params p;
- p.channels = src->ne[2];
- p.batch = src->ne[3];
- p.src_w = src->ne[0];
- p.src_h = src->ne[1];
- p.dst_w = dst->ne[0];
- p.dst_h = dst->ne[1];
- p.knl_w = kernel->ne[0];
- p.knl_h = kernel->ne[1];
- p.stride_x = dst->op_params[0];
- p.stride_y = dst->op_params[1];
- p.pad_x = dst->op_params[2];
- p.pad_y = dst->op_params[3];
- p.dilation_x = dst->op_params[4];
- p.dilation_y = dst->op_params[5];
- GGML_ASSERT(kernel->ne[3] == p.channels);
- GGML_ASSERT(dst->ne[3] == p.batch);
- if (ggml_is_contiguous(src)) {
- ggml_compute_forward_conv_2d_dw_whcn(params, src, kernel, dst, p);
- } else if (ggml_is_contiguous_channels(src)) {
- // kernel should also have channels most contiguous in memory
- GGML_ASSERT(kernel->nb[0] >= kernel->nb[2] && kernel->nb[1] >= kernel->nb[0]);
- ggml_compute_forward_conv_2d_dw_cwhn(params, src, kernel, dst, p);
- } else {
- GGML_ABORT("non-contiguous memory layout not supported");
- }
- }
- // ggml_compute_forward_pool_1d_sk_p0
- static void ggml_compute_forward_pool_1d_sk_p0(
- const ggml_compute_params * params,
- const ggml_op_pool op,
- const int k,
- ggml_tensor * dst) {
- const ggml_tensor * src = dst->src[0];
- assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
- if (params->ith != 0) {
- return;
- }
- const char * cdata = (const char *)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
- float * drow = (float *)dst->data;
- const int64_t rs = dst->ne[0];
- while (cdata < data_end) {
- const void * srow = (const void *)cdata;
- int j = 0;
- for (int64_t i = 0; i < rs; ++i) {
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] = 0; break;
- case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- for (int ki = 0; ki < k; ++ki) {
- const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
- case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- ++j;
- }
- switch (op) {
- case GGML_OP_POOL_AVG: drow[i] /= k; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- }
- cdata += src->nb[1];
- drow += rs;
- }
- }
- // ggml_compute_forward_pool_1d
- void ggml_compute_forward_pool_1d(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const int32_t * opts = (const int32_t *)dst->op_params;
- ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
- const int k0 = opts[1];
- const int s0 = opts[2];
- const int p0 = opts[3];
- GGML_ASSERT(p0 == 0); // padding not supported
- GGML_ASSERT(k0 == s0); // only s = k supported
- ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
- }
- // ggml_compute_forward_pool_2d
- void ggml_compute_forward_pool_2d(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src = dst->src[0];
- assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
- if (params->ith != 0) {
- return;
- }
- const int32_t * opts = (const int32_t *)dst->op_params;
- ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- const char * cdata = (const char*)src->data;
- const char * const data_end = cdata + ggml_nbytes(src);
- const int64_t px = dst->ne[0];
- const int64_t py = dst->ne[1];
- const int64_t pa = px * py;
- float * dplane = (float *)dst->data;
- const int ka = k0 * k1;
- const int offset0 = -p0;
- const int offset1 = -p1;
- while (cdata < data_end) {
- for (int oy = 0; oy < py; ++oy) {
- float * const drow = dplane + oy * px;
- for (int ox = 0; ox < px; ++ox) {
- float * const out = drow + ox;
- switch (op) {
- case GGML_OP_POOL_AVG: *out = 0; break;
- case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- const int ix = offset0 + ox * s0;
- const int iy = offset1 + oy * s1;
- for (int ky = 0; ky < k1; ++ky) {
- if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
- const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- if (j < 0 || j >= src->ne[0]) continue;
- const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
- switch (op) {
- case GGML_OP_POOL_AVG: *out += srow_j; break;
- case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- }
- }
- switch (op) {
- case GGML_OP_POOL_AVG: *out /= ka; break;
- case GGML_OP_POOL_MAX: break;
- case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
- }
- }
- }
- cdata += src->nb[2];
- dplane += pa;
- }
- }
- // ggml_compute_forward_pool_2d_back
- void ggml_compute_forward_pool_2d_back(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src = dst->src[0];
- const ggml_tensor * dstf = dst->src[1]; // forward tensor of dst
- assert(dst->type == GGML_TYPE_F32 || dst->type == GGML_TYPE_F16);
- if (params->ith != 0) {
- return;
- }
- const int32_t * opts = (const int32_t *)dst->op_params;
- ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
- const int k0 = opts[1];
- const int k1 = opts[2];
- const int s0 = opts[3];
- const int s1 = opts[4];
- const int p0 = opts[5];
- const int p1 = opts[6];
- char * cdata = (char *) dst->data;
- const char * cdataf = (const char *) dstf->data;
- const char * const data_end = cdata + ggml_nbytes(dst);
- GGML_ASSERT(params->ith == 0);
- memset(cdata, 0, ggml_nbytes(dst));
- const int64_t px = src->ne[0];
- const int64_t py = src->ne[1];
- const int64_t pa = px * py;
- const float * splane = (const float *) src->data;
- const int ka = k0 * k1;
- const int offset0 = -p0;
- const int offset1 = -p1;
- while (cdata < data_end) {
- for (int oy = 0; oy < py; ++oy) {
- const float * const srow = splane + oy * px;
- for (int ox = 0; ox < px; ++ox) {
- const float grad0 = srow[ox];
- const int ix = offset0 + ox * s0;
- const int iy = offset1 + oy * s1;
- if (op == GGML_OP_POOL_MAX) {
- float maxval = -FLT_MAX;
- int kxmax = -1;
- int kymax = -1;
- for (int ky = 0; ky < k1; ++ky) {
- if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
- continue;
- }
- const void * drowf = (const void *)(cdataf + dst->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- if (j < 0 || j >= dst->ne[0]) {
- continue;
- }
- const float val = dst->type == GGML_TYPE_F32 ?
- ((const float *) drowf)[j] : GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drowf)[j]);
- if (val <= maxval) {
- continue;
- }
- maxval = val;
- kxmax = kx;
- kymax = ky;
- }
- }
- if (kxmax == -1 || kymax == -1) {
- continue;
- }
- void * drow = (void *)(cdata + dst->nb[1] * (iy + kymax));
- const int j = ix + kxmax;
- if (dst->type == GGML_TYPE_F32) {
- ((float *) drow)[j] += grad0;
- } else {
- ((ggml_fp16_t *) drow)[j] = GGML_CPU_FP32_TO_FP16(grad0 + GGML_CPU_FP16_TO_FP32(((const ggml_fp16_t *) drow)[j]));
- }
- } else if (op == GGML_OP_POOL_AVG) {
- const float grad = grad0 / ka;
- for (int ky = 0; ky < k1; ++ky) {
- if (iy + ky < 0 || iy + ky >= dst->ne[1]) {
- continue;
- }
- void * drow = (void *)(cdata + dst->nb[1] * (iy + ky));
- for (int kx = 0; kx < k0; ++kx) {
- int j = ix + kx;
- if (j < 0 || j >= dst->ne[0]) {
- continue;
- }
- if (dst->type == GGML_TYPE_F32) {
- ((float *) drow)[j] += grad;
- } else {
- ((ggml_fp16_t *) drow)[j] += GGML_CPU_FP32_TO_FP16(grad);
- }
- }
- }
- } else {
- GGML_ASSERT(false);
- }
- }
- }
- cdata += dst->nb[2];
- cdataf += dst->nb[2];
- splane += pa;
- }
- }
- // ggml_compute_forward_upscale
- static void ggml_compute_forward_upscale_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- float sf0 = (float)ne0/src0->ne[0];
- float sf1 = (float)ne1/src0->ne[1];
- float sf2 = (float)ne2/src0->ne[2];
- float sf3 = (float)ne3/src0->ne[3];
- const int32_t mode_flags = ggml_get_op_params_i32(dst, 0);
- const ggml_scale_mode mode = (ggml_scale_mode) (mode_flags & 0xFF);
- if (mode == GGML_SCALE_MODE_NEAREST) {
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- const int64_t i03 = i3 / sf3;
- for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
- const int64_t i02 = i2 / sf2;
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- const int64_t i01 = i1 / sf1;
- for (int64_t i0 = 0; i0 < ne0; i0++) {
- const int64_t i00 = i0 / sf0;
- const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
- float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
- *y = *x;
- }
- }
- }
- }
- } else if (mode == GGML_SCALE_MODE_BILINEAR) {
- float pixel_offset = 0.5f;
- if (mode_flags & GGML_SCALE_FLAG_ALIGN_CORNERS) {
- pixel_offset = 0.0f;
- sf0 = (float)(ne0 - 1) / (src0->ne[0] - 1);
- sf1 = (float)(ne1 - 1) / (src0->ne[1] - 1);
- }
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- const int64_t i03 = i3 / sf3;
- for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
- const int64_t i02 = i2 / sf2;
- for (int64_t i1 = 0; i1 < ne1; i1++) {
- const float y = ((float)i1 + pixel_offset) / sf1 - pixel_offset;
- int64_t y0 = (int64_t)floorf(y);
- int64_t y1 = y0 + 1;
- y0 = std::max(int64_t(0), std::min(y0, ne01 - 1));
- y1 = std::max(int64_t(0), std::min(y1, ne01 - 1));
- float dy = y - (float)y0;
- dy = std::max(0.0f, std::min(dy, 1.0f));
- for (int64_t i0 = 0; i0 < ne0; i0++) {
- const float x = ((float)i0 + pixel_offset) / sf0 - pixel_offset;
- int64_t x0 = (int64_t)floorf(x);
- int64_t x1 = x0 + 1;
- x0 = std::max(int64_t(0), std::min(x0, ne00 - 1));
- x1 = std::max(int64_t(0), std::min(x1, ne00 - 1));
- float dx = x - (float)x0;
- dx = std::max(0.0f, std::min(dx, 1.0f));
- // fetch the four surrounding pixel values and interpolate
- const float a = *(const float *)((const char *)src0->data + x0*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
- const float b = *(const float *)((const char *)src0->data + x1*nb00 + y0*nb01 + i02*nb02 + i03*nb03);
- const float c = *(const float *)((const char *)src0->data + x0*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
- const float d = *(const float *)((const char *)src0->data + x1*nb00 + y1*nb01 + i02*nb02 + i03*nb03);
- const float val = a*(1 - dx)*(1 - dy) + b*dx*(1 - dy) + c*(1 - dx)*dy + d*dx*dy;
- float * y_dst = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
- *y_dst = val;
- }
- }
- }
- }
- } else {
- GGML_ABORT("unsupported upscale mode");
- }
- }
- void ggml_compute_forward_upscale(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_upscale_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_pad
- static void ggml_compute_forward_pad_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT( dst->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- float * dst_ptr = (float *) dst->data;
- // TODO: optimize
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- for (int64_t i3 = 0; i3 < ne3; ++i3) {
- const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
- const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
- if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
- dst_ptr[dst_idx] = *src_ptr;
- } else {
- dst_ptr[dst_idx] = 0;
- }
- }
- }
- }
- }
- }
- void ggml_compute_forward_pad(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_pad_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_pad_reflect_1d
- void ggml_compute_forward_pad_reflect_1d(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT( dst->type == GGML_TYPE_F32);
- const int ith = params->ith;
- const int nth = params->nth;
- const int32_t * opts = (const int32_t *) dst->op_params;
- const int p0 = opts[0];
- const int p1 = opts[1];
- GGML_TENSOR_UNARY_OP_LOCALS
- for (int64_t i3 = 0; i3 < ne3; i3++) {
- for (int64_t i2 = 0; i2 < ne2; i2++) {
- for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
- float * left = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + p0*nb0);
- float * right = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (ne0-p1-1)*nb0);
- ggml_vec_cpy_f32(ne00, left, (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01));
- for (int i0 = 1; i0 <= p0; i0++) { left[-i0] = left[i0]; }
- for (int i0 = 1; i0 <= p1; i0++) { right[i0] = right[-i0]; }
- }
- }
- }
- }
- // ggml_compute_forward_roll
- static int64_t ggml_wrap_index(int64_t i, int64_t ne) {
- if (i < 0) {
- return i + ne;
- } else if (i >= ne) {
- return i - ne;
- }
- return i;
- }
- static void ggml_compute_forward_roll_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const float * src_data = (const float *) src0->data;
- float * dst_data = (float *) dst->data;
- GGML_TENSOR_UNARY_OP_LOCALS
- const int s0 = ggml_get_op_params_i32(dst, 0);
- const int s1 = ggml_get_op_params_i32(dst, 1);
- const int s2 = ggml_get_op_params_i32(dst, 2);
- const int s3 = ggml_get_op_params_i32(dst, 3);
- const int64_t total = ne1 * ne2 * ne3;
- const int64_t per_thread = (total + params->nth) / params->nth;
- const int64_t start = params->ith * per_thread;
- const int64_t end = std::min(start + per_thread, total);
- for (int64_t i = start; i < end; ++i) {
- const int64_t i1 = i % ne1;
- const int64_t i2 = (i / ne1) % ne2;
- const int64_t i3 = i / (ne2 * ne1);
- float * dst_row = dst_data + (i3*nb3 + i2*nb2 + i1*nb1) / sizeof(float);
- const int64_t i01 = ggml_wrap_index(i1 - s1, ne01);
- const int64_t i02 = ggml_wrap_index(i2 - s2, ne02);
- const int64_t i03 = ggml_wrap_index(i3 - s3, ne03);
- const float * src_row = src_data + (i03*nb03 + i02*nb02 + i01*nb01) / sizeof(float);
- const int64_t s = ggml_wrap_index(-s0, ne00);
- const int64_t n = ne00 - s;
- ggml_vec_cpy_f32(n, dst_row, src_row + s);
- ggml_vec_cpy_f32(s, dst_row + n, src_row);
- }
- }
- void ggml_compute_forward_roll(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_roll_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_arange
- static void ggml_compute_forward_arange_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- GGML_ASSERT(dst->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const float start = ggml_get_op_params_f32(dst, 0);
- const float stop = ggml_get_op_params_f32(dst, 1);
- const float step = ggml_get_op_params_f32(dst, 2);
- const int64_t steps = (int64_t) ceilf((stop - start) / step);
- GGML_ASSERT(ggml_nelements(dst) == steps);
- for (int64_t i = ith; i < steps; i+= nth) {
- float value = start + step * i;
- ((float *)dst->data)[i] = value;
- }
- }
- void ggml_compute_forward_arange(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- switch (dst->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_arange_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- static void ggml_compute_forward_timestep_embedding_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- GGML_TENSOR_UNARY_OP_LOCALS
- const int dim = ggml_get_op_params_i32(dst, 0);
- const int max_period = ggml_get_op_params_i32(dst, 1);
- int half = dim / 2;
- for (int64_t i = 0; i < ne00; i++) {
- float * embed_data = (float *)((char *) dst->data + i*nb1);
- for (int64_t j = ith; j < half; j += nth) {
- float timestep = ((float *)src0->data)[i];
- float freq = (float)expf(-logf(max_period) * j / half);
- float arg = timestep * freq;
- embed_data[j] = cosf(arg);
- embed_data[j + half] = sinf(arg);
- }
- if (dim % 2 != 0 && ith == 0) {
- embed_data[dim] = 0.f;
- }
- }
- }
- void ggml_compute_forward_timestep_embedding(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_timestep_embedding_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_argsort
- static void ggml_compute_forward_argsort_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(nb0 == sizeof(float));
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t nr = ggml_nrows(src0);
- ggml_sort_order order = (ggml_sort_order) ggml_get_op_params_i32(dst, 0);
- for (int64_t i = ith; i < nr; i += nth) {
- int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
- const float * src_data = (float *)((char *) src0->data + i*nb01);
- for (int64_t j = 0; j < ne0; j++) {
- dst_data[j] = j;
- }
- // C doesn't have a functional sort, so we do a bubble sort instead
- for (int64_t j = 0; j < ne0; j++) {
- for (int64_t k = j + 1; k < ne0; k++) {
- if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
- (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
- int32_t tmp = dst_data[j];
- dst_data[j] = dst_data[k];
- dst_data[k] = tmp;
- }
- }
- }
- }
- }
- void ggml_compute_forward_argsort(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_argsort_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_flash_attn_ext
- static void ggml_compute_forward_flash_attn_ext_f16(
- const ggml_compute_params * params,
- const ggml_tensor * q,
- const ggml_tensor * k,
- const ggml_tensor * v,
- const ggml_tensor * mask,
- ggml_tensor * dst) {
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t DK = nek0;
- const int64_t DV = nev0;
- const int64_t N = neq1;
- GGML_ASSERT(ne0 == DV);
- GGML_ASSERT(ne2 == N);
- // input tensor rows must be contiguous
- GGML_ASSERT(nbq0 == ggml_type_size(q->type));
- GGML_ASSERT(nbk0 == ggml_type_size(k->type));
- GGML_ASSERT(nbv0 == ggml_type_size(v->type));
- GGML_ASSERT(neq0 == DK);
- GGML_ASSERT(nek0 == DK);
- GGML_ASSERT(nev0 == DV);
- GGML_ASSERT(neq1 == N);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- // broadcast factors
- const int64_t rk2 = neq2/nek2;
- const int64_t rk3 = neq3/nek3;
- const int64_t rv2 = neq2/nev2;
- const int64_t rv3 = neq3/nev3;
- // parallelize by q rows using ggml_vec_dot_f32
- // total rows in q
- const int nr = neq1*neq2*neq3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- float scale = 1.0f;
- float max_bias = 0.0f;
- float logit_softcap = 0.0f;
- memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
- memcpy(&logit_softcap, (float *) dst->op_params + 2, sizeof(float));
- if (logit_softcap != 0) {
- scale /= logit_softcap;
- }
- const uint32_t n_head = neq2;
- const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- ggml_type const k_vec_dot_type = ggml_get_type_traits_cpu(k->type)->vec_dot_type;
- ggml_from_float_t const q_to_vec_dot = ggml_get_type_traits_cpu(k_vec_dot_type)->from_float;
- ggml_vec_dot_t const kq_vec_dot = ggml_get_type_traits_cpu(k->type)->vec_dot;
- ggml_to_float_t const v_to_float = ggml_get_type_traits(v->type)->to_float;
- GGML_ASSERT(( q_to_vec_dot) && "fattn: unsupported K-type");
- GGML_ASSERT((v->type == GGML_TYPE_F32 || v_to_float ) && "fattn: unsupported V-type");
- // loop over n_batch and n_head
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int iq3 = ir/(neq2*neq1);
- const int iq2 = (ir - iq3*neq2*neq1)/neq1;
- const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
- const uint32_t h = iq2; // head index
- const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
- float S = 0.0f; // sum
- float M = -INFINITY; // maximum KQ value
- float * VKQ32 = (float *) params->wdata + ith*(1*DK + 2*DV + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
- float * V32 = (VKQ32 + 1*DV); // (temporary) FP32 V buffer
- ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*DV); // (temporary) FP16 VKQ accumulator
- ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*DV); // (temporary) buffer for Q converted to quantized/FP16
- if (v->type == GGML_TYPE_F16) {
- memset(VKQ16, 0, DV*sizeof(ggml_fp16_t));
- } else {
- memset(VKQ32, 0, DV*sizeof(float));
- }
- const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1] + (iq2%mask->ne[2])*mask->nb[2] + (iq3%mask->ne[3])*mask->nb[3]) : NULL;
- // k indices
- const int ik3 = iq3 / rk3;
- const int ik2 = iq2 / rk2;
- // v indices
- const int iv3 = iq3 / rv3;
- const int iv2 = iq2 / rv2;
- const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
- q_to_vec_dot(pq, Q_q, DK);
- // online softmax / attention
- // loop over n_kv and n_head_kv
- // ref: https://arxiv.org/pdf/2112.05682.pdf
- for (int64_t ic = 0; ic < nek1; ++ic) {
- const float mv = mp ? slope*GGML_CPU_FP16_TO_FP32(mp[ic]) : 0.0f;
- if (mv == -INFINITY) {
- continue;
- }
- float s; // KQ value
- const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
- kq_vec_dot(DK, &s, 0, k_data, 0, Q_q, 0, 1);
- s = s*scale; // scale KQ value
- if (logit_softcap != 0.0f) {
- s = logit_softcap*tanhf(s);
- }
- s += mv; // apply mask
- const float Mold = M;
- float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
- float vs = 1.0f; // post-softmax KQ value, expf(s - M)
- const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
- if (v->type == GGML_TYPE_F16) {
- if (s > M) {
- // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
- M = s;
- ms = expf(Mold - M);
- // V = V*expf(Mold - M)
- ggml_vec_scale_f16(DV, VKQ16, ms);
- } else {
- // no new maximum, ms == 1.0f, vs != 1.0f
- vs = expf(s - M);
- }
- // V += v*expf(s - M)
- ggml_vec_mad_f16(DV, VKQ16, (const ggml_fp16_t *) v_data, vs);
- } else {
- if (s > M) {
- // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
- M = s;
- ms = expf(Mold - M);
- // V = V*expf(Mold - M)
- ggml_vec_scale_f32(DV, VKQ32, ms);
- } else {
- // no new maximum, ms == 1.0f, vs != 1.0f
- vs = expf(s - M);
- }
- // V += v*expf(s - M)
- if (v_to_float) {
- v_to_float(v_data, V32, DV);
- ggml_vec_mad_f32(DV, VKQ32, V32, vs);
- } else {
- // V is F32
- ggml_vec_mad_f32(DV, VKQ32, (const float *) v_data, vs);
- }
- }
- S = S*ms + vs; // scale and increment sum with partial sum
- }
- if (v->type == GGML_TYPE_F16) {
- for (int64_t d = 0; d < DV; ++d) {
- VKQ32[d] = GGML_CPU_FP16_TO_FP32(VKQ16[d]);
- }
- }
- // V /= S
- const float S_inv = 1.0f/S;
- ggml_vec_scale_f32(DV, VKQ32, S_inv);
- // dst indices
- const int i1 = iq1;
- const int i2 = iq2;
- const int i3 = iq3;
- // original
- //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
- // permute(0, 2, 1, 3)
- memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
- }
- }
- void ggml_compute_forward_flash_attn_ext(
- const ggml_compute_params * params,
- const ggml_tensor * q,
- const ggml_tensor * k,
- const ggml_tensor * v,
- const ggml_tensor * mask,
- ggml_tensor * dst) {
- switch (dst->op_params[3]) {
- case GGML_PREC_DEFAULT:
- case GGML_PREC_F32:
- {
- // uses F32 accumulators
- ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_flash_attn_back
- static void ggml_compute_forward_flash_attn_back_f32(
- const ggml_compute_params * params,
- const bool masked,
- ggml_tensor * dst) {
- const ggml_tensor * q = dst->src[0];
- const ggml_tensor * k = dst->src[1];
- const ggml_tensor * v = dst->src[2];
- const ggml_tensor * d = dst->src[3];
- GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
- GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
- GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
- GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
- GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
- GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
- GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
- GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t D = neq0;
- const int64_t N = neq1;
- const int64_t P = nek1 - N;
- const int64_t M = P + N;
- const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
- const int mxDM = MAX(D, Mup);
- // GGML_ASSERT(ne0 == D);
- // GGML_ASSERT(ne1 == N);
- GGML_ASSERT(P >= 0);
- GGML_ASSERT(nbq0 == sizeof(float));
- GGML_ASSERT(nbk0 == sizeof(float));
- GGML_ASSERT(nbv0 == sizeof(float));
- GGML_ASSERT(neq0 == D);
- GGML_ASSERT(nek0 == D);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned0 == D);
- GGML_ASSERT(neq1 == N);
- GGML_ASSERT(nek1 == N + P);
- GGML_ASSERT(nev1 == D);
- GGML_ASSERT(ned1 == N);
- // dst cannot be transposed or permuted
- GGML_ASSERT(nb0 == sizeof(float));
- GGML_ASSERT(nb0 <= nb1);
- GGML_ASSERT(nb1 <= nb2);
- GGML_ASSERT(nb2 <= nb3);
- if (ith == 0) {
- memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
- }
- ggml_barrier(params->threadpool);
- const int64_t elem_q = ggml_nelements(q);
- const int64_t elem_k = ggml_nelements(k);
- ggml_type result_type = dst->type;
- GGML_ASSERT(ggml_blck_size(result_type) == 1);
- const size_t tsize = ggml_type_size(result_type);
- const size_t offs_q = 0;
- const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
- const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
- void * grad_q = (char *) dst->data;
- void * grad_k = (char *) dst->data + offs_k;
- void * grad_v = (char *) dst->data + offs_v;
- const size_t nbgq1 = nb0*neq0;
- const size_t nbgq2 = nb0*neq0*neq1;
- const size_t nbgq3 = nb0*neq0*neq1*neq2;
- const size_t nbgk1 = nb0*nek0;
- const size_t nbgk2 = nb0*nek0*nek1;
- const size_t nbgk3 = nb0*nek0*nek1*neq2;
- const size_t nbgv1 = nb0*nev0;
- const size_t nbgv2 = nb0*nev0*nev1;
- const size_t nbgv3 = nb0*nev0*nev1*neq2;
- // parallelize by k rows using ggml_vec_dot_f32
- // total rows in k
- const int nr = nek2*nek3;
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float scale = 1.0f/sqrtf(D);
- //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
- // how often k2 (and v2) is repeated in q2
- int nrep = neq2/nek2;
- for (int ir = ir0; ir < ir1; ++ir) {
- // q indices
- const int ik3 = ir/(nek2);
- const int ik2 = ir - ik3*nek2;
- const int iq3 = ik3;
- const int id3 = ik3;
- const int iv3 = ik3;
- const int iv2 = ik2;
- for (int irep = 0; irep < nrep; ++irep) {
- const int iq2 = ik2 + irep*nek2;
- const int id2 = iq2;
- // (ik2 + irep*nek2) % nek2 == ik2
- for (int iq1 = 0; iq1 < neq1; ++iq1) {
- const int id1 = iq1;
- // not sure about CACHE_LINE_SIZE_F32..
- // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
- float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
- float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
- for (int i = M; i < Mup; ++i) {
- S[i] = -INFINITY;
- }
- const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- // k indices
- const int ik1 = ic;
- // S indices
- const int i1 = ik1;
- ggml_vec_dot_f32(neq0,
- S + i1, 0,
- (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
- }
- // scale
- ggml_vec_scale_f32(masked_begin, S, scale);
- for (int64_t i = masked_begin; i < M; i++) {
- S[i] = -INFINITY;
- }
- // softmax
- // exclude known -INF S[..] values from max and loop
- // dont forget to set their SM values to zero
- {
- float max = -INFINITY;
- ggml_vec_max_f32(masked_begin, &max, S);
- ggml_float sum = 0.0;
- {
- #ifdef GGML_SOFT_MAX_ACCELERATE
- max = -max;
- vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
- vvexpf(SM, SM, &Mup);
- ggml_vec_sum_f32(Mup, &sum, SM);
- #else
- sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
- #endif
- }
- assert(sum > 0.0);
- sum = 1.0/sum;
- ggml_vec_scale_f32(masked_begin, SM, sum);
- }
- // step-by-step explanation
- {
- // forward-process shape grads from backward process
- // parallel_for ik2,ik3:
- // for irep:
- // iq2 = ik2 + irep*nek2
- // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
- // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
- // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
- // for iq1:
- // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
- // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
- // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
- // S0 = -Inf [D,1,1,1]
- // ~S1[i] = dot(kcur[:D,i], qcur)
- // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
- // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
- // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
- // ~S5[i] = dot(vcur[:,i], S4)
- // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
- // ~dst[i,iq1,iq2,iq3] = S5[i] ^
- // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
- // dst backward-/ grad[dst] = d
- //
- // output gradients with their dependencies:
- //
- // grad[kcur] = grad[S1].T @ qcur
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S4] = grad[S5] @ vcur
- // grad[S4] = d[:D,id1,id2,id3] @ vcur
- // grad[qcur] = grad[S1] @ kcur
- // grad[vcur] = grad[S5].T @ S4
- // grad[vcur] = d[:D,id1,id2,id3].T @ S4
- //
- // in post-order:
- //
- // S1 = qcur @ kcur.T
- // S2 = S1 * scale
- // S3 = diag_mask_inf(S2, P)
- // S4 = softmax(S3)
- // grad[S4] = d[:D,id1,id2,id3] @ vcur
- // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
- // grad[S1] = diag_mask_zero(grad[S3], P) * scale
- // grad[qcur] = grad[S1] @ kcur
- // grad[kcur] = grad[S1].T @ qcur
- // grad[vcur] = d[:D,id1,id2,id3].T @ S4
- //
- // using less variables (SM=S4):
- //
- // S = diag_mask_inf(qcur @ kcur.T * scale, P)
- // SM = softmax(S)
- // S = d[:D,iq1,iq2,iq3] @ vcur
- // dot_SM_gradSM = dot(SM, S)
- // S = SM * (S - dot(SM, S))
- // S = diag_mask_zero(S, P) * scale
- //
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
- // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
- }
- // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
- // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
- // for ic:
- // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
- // exclude known future zero S[..] values from operation
- ggml_vec_set_f32(masked_begin, S, 0);
- for (int64_t ic = 0; ic < D; ++ic) {
- ggml_vec_mad_f32(masked_begin,
- S,
- (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
- *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
- }
- // S = SM * (S - dot(SM, S))
- float dot_SM_gradSM = 0;
- ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
- ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
- ggml_vec_mul_f32 (masked_begin, S, S, SM);
- // S = diag_mask_zero(S, P) * scale
- // already done by above ggml_vec_set_f32
- // exclude known zero S[..] values from operation
- ggml_vec_scale_f32(masked_begin, S, scale);
- // S shape [M,1]
- // SM shape [M,1]
- // kcur shape [D,M]
- // qcur shape [D,1]
- // vcur shape [M,D]
- // grad[q][:D,iq1,iq2,iq3] += S @ kcur
- // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
- // for ic:
- // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
- // exclude known zero S[..] values from loop
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
- (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
- S[ic]);
- }
- // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
- // for ic:
- // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
- // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
- // exclude known zero S[..] values from loop
- for (int64_t ic = 0; ic < masked_begin; ++ic) {
- ggml_vec_mad_f32(D,
- (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
- (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
- S[ic]);
- }
- // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
- // for ic:
- // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
- // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
- // exclude known zero SM[..] values from mad
- for (int64_t ic = 0; ic < D; ++ic) {
- ggml_vec_mad_f32(masked_begin,
- (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
- SM,
- *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
- }
- }
- }
- }
- }
- void ggml_compute_forward_flash_attn_back(
- const ggml_compute_params * params,
- const bool masked,
- ggml_tensor * dst) {
- const ggml_tensor * q = dst->src[0];
- switch (q->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_ssm_conv
- static void ggml_compute_forward_ssm_conv_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0]; // conv_x
- const ggml_tensor * src1 = dst->src[1]; // conv1d.weight
- const int ith = params->ith;
- const int nth = params->nth;
- const int nc = src1->ne[0]; // d_conv
- const int ncs = src0->ne[0]; // d_conv - 1 + n_t
- const int nr = src0->ne[1]; // d_inner
- const int n_t = dst->ne[1]; // tokens per sequence
- const int n_s = dst->ne[2]; // number of sequences in the batch
- GGML_ASSERT( dst->ne[0] == nr);
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
- GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const int ir = ir1 - ir0;
- for (int i3 = 0; i3 < n_s; ++i3) {
- for (int i2 = 0; i2 < n_t; ++i2) {
- // {d_conv - 1 + n_t, d_inner, n_seqs}
- // sliding window
- const float * s = (const float *) ((const char *) src0->data + ir0*(src0->nb[1]) + i2*(src0->nb[0]) + i3*(src0->nb[2])); // {d_conv, d_inner, n_s}
- const float * c = (const float *) ((const char *) src1->data + ir0*(src1->nb[1])); // {d_conv, d_inner}
- float * x = (float *) ((char *) dst->data + ir0*(dst->nb[0]) + i2*(dst->nb[1]) + i3*(dst->nb[2])); // {d_inner, n_t, n_s}
- // TODO: transpose the output for smaller strides for big batches?
- // d_inner
- for (int i1 = 0; i1 < ir; ++i1) {
- // rowwise dot product
- // NOTE: not using ggml_vec_dot_f32, because its sum is in double precision
- float sumf = 0.0f;
- // d_conv
- for (int i0 = 0; i0 < nc; ++i0) {
- sumf += s[i0 + i1*ncs] * c[i0 + i1*nc];
- }
- x[i1] = sumf;
- }
- }
- }
- }
- void ggml_compute_forward_ssm_conv(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- switch (dst->src[0]->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_ssm_conv_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_ssm_scan
- static void ggml_compute_forward_ssm_scan_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0]; // s {d_state, dim, n_head, n_seqs+}
- const ggml_tensor * src1 = dst->src[1]; // x {dim, n_head, n_seq_tokens, n_seqs}
- const ggml_tensor * src2 = dst->src[2]; // dt {n_head, n_seq_tokens, n_seqs}
- const ggml_tensor * src3 = dst->src[3]; // A {d_state, n_head} or {1, n_head}
- const ggml_tensor * src4 = dst->src[4]; // B {d_state, n_group, n_seq_tokens, n_seqs}
- const ggml_tensor * src5 = dst->src[5]; // C {d_state, n_group, n_seq_tokens, n_seqs}
- const ggml_tensor * src6 = dst->src[6]; // ids {n_seqs}
- const int ith = params->ith;
- const int nth = params->nth;
- const int64_t nc = src0->ne[0]; // d_state
- const int64_t nr = src0->ne[1]; // dim
- const int64_t nh = src1->ne[1]; // n_head
- const int64_t ng = src4->ne[1];
- const int64_t nt = src1->ne[2]; // number of tokens per sequence
- const int64_t ns = src1->ne[3]; // number of sequences in the batch
- // can't use ggml_nbytes because src1 is not necessarily contiguous
- const int64_t s_off = ggml_nelements(src1) * ggml_element_size(src1);
- GGML_ASSERT(ggml_nelements(src1) + nc*nr*nh*ns == ggml_nelements(dst));
- GGML_ASSERT(src0->nb[0] == sizeof(float));
- GGML_ASSERT(src1->nb[0] == sizeof(float));
- GGML_ASSERT(src2->nb[0] == sizeof(float));
- GGML_ASSERT(src3->nb[0] == sizeof(float));
- GGML_ASSERT(src4->nb[0] == sizeof(float));
- GGML_ASSERT(src5->nb[0] == sizeof(float));
- GGML_ASSERT(src6->nb[0] == sizeof(int32_t));
- // allows optimizing the modulo since n_group should be a power of 2
- GGML_ASSERT((ng & -ng) == ng);
- // heads per thread
- const int dh = (nh + nth - 1)/nth;
- // head range for this thread
- const int ih0 = dh*ith;
- const int ih1 = MIN(ih0 + dh, nh);
- const int32_t * ids = (const int32_t *) src6->data;
- for (int i3 = 0; i3 < ns; ++i3) {
- const float * s0 = (const float *) ((const char *) src0->data + ids[i3]*(src0->nb[3])); // {d_state, dim, nh, ns}
- float * s = ( float *) (( char *) dst->data + i3*(src0->nb[3]) + s_off); // {d_state, dim, nh, ns}
- for (int i2 = 0; i2 < nt; ++i2) {
- const float * x = (const float *) ((const char *) src1->data + i2*(src1->nb[2]) + i3*(src1->nb[3])); // {dim, nh, nt, ns}
- const float * dt = (const float *) ((const char *) src2->data + i2*(src2->nb[1]) + i3*(src2->nb[2])); // {nh, nt, ns}
- const float * A = (const float *) ((const char *) src3->data); // {d_state, nh} or {1, nh}
- const float * B = (const float *) ((const char *) src4->data + i2*(src4->nb[2]) + i3*(src4->nb[3])); // {d_state, ng, nt, ns}
- const float * C = (const float *) ((const char *) src5->data + i2*(src5->nb[2]) + i3*(src5->nb[3])); // {d_state, ng, nt, ns}
- float * y = ( float *) (( char *) dst->data + i2*(nh*nr*sizeof(float)) + i3*(nt*nh*nr*sizeof(float))); // {dim, nh, nt, ns}
- if (src3->ne[0] == 1) {
- // Mamba-2 has a scalar decay factor per head; dA can be outside the state-wise loop
- // n_head
- for (int h = ih0; h < ih1; ++h) {
- // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
- const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
- const float dA = expf(dt_soft_plus * A[h]);
- // dim
- for (int i1 = 0; i1 < nr; ++i1) {
- const int ii = i1 + h*nr;
- const float x_dt = x[ii] * dt_soft_plus;
- float sumf = 0.0f;
- #if defined(GGML_SIMD)
- #if defined(__ARM_FEATURE_SVE)
- const int ggml_f32_epr = svcntw();
- const int ggml_f32_step = 1 * ggml_f32_epr;
- const int np = (nc & ~(ggml_f32_step - 1));
- GGML_F32_VEC sum = GGML_F32_VEC_ZERO;
- GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
- GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
- for (int i = 0; i < np; i += ggml_f32_step) {
- // TODO: maybe unroll more?
- for (int j = 0; j < 1; j++) {
- GGML_F32_VEC t0 = GGML_F32_VEC_LOAD(s0 + i + j*ggml_f32_epr + ii*nc);
- GGML_F32_VEC t1 = GGML_F32_VEC_LOAD(B + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
- GGML_F32_VEC t2 = GGML_F32_VEC_LOAD(C + i + j*ggml_f32_epr + (h & (ng - 1))*nc);
- t0 = GGML_F32_VEC_MUL(t0, adA);
- t1 = GGML_F32_VEC_MUL(t1, axdt);
- t0 = GGML_F32_VEC_ADD(t0, t1);
- sum = GGML_F32_VEC_FMA(sum, t0, t2);
- GGML_F32_VEC_STORE(s + i + j*ggml_f32_epr + ii*nc, t0);
- }
- }
- sumf = GGML_F32xt_REDUCE_ONE(sum);
- #else
- const int np = (nc & ~(GGML_F32_STEP - 1));
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- GGML_F32_VEC adA = GGML_F32_VEC_SET1(dA);
- GGML_F32_VEC axdt = GGML_F32_VEC_SET1(x_dt);
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- GGML_F32_VEC az[GGML_F32_ARR];
- for (int i = 0; i < np; i += GGML_F32_STEP) {
- for (int j = 0; j < GGML_F32_ARR; j++) {
- ax[j] = GGML_F32_VEC_LOAD(s0 + i + j*GGML_F32_EPR + ii*nc);
- ay[j] = GGML_F32_VEC_LOAD(B + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
- az[j] = GGML_F32_VEC_LOAD(C + i + j*GGML_F32_EPR + (h & (ng - 1))*nc);
- ax[j] = GGML_F32_VEC_MUL(ax[j], adA);
- ay[j] = GGML_F32_VEC_MUL(ay[j], axdt);
- ax[j] = GGML_F32_VEC_ADD(ax[j], ay[j]);
- sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], az[j]);
- GGML_F32_VEC_STORE(s + i + j*GGML_F32_EPR + ii*nc, ax[j]);
- }
- }
- // reduce sum0..sum3 to sum0
- GGML_F32_VEC_REDUCE(sumf, sum);
- #endif
- #else
- const int np = 0;
- #endif
- // d_state
- for (int i0 = np; i0 < nc; ++i0) {
- const int i = i0 + ii*nc;
- const int ig = i0 + (h & (ng - 1))*nc;
- // state = prev_state * dA + dB * x
- const float state = (s0[i] * dA) + (B[ig] * x_dt);
- // y = rowwise_dotprod(state, C)
- sumf += state * C[ig];
- s[i] = state;
- }
- y[ii] = sumf;
- }
- }
- } else {
- // Mamba-1 has an element-wise decay factor for the states
- // n_head
- for (int h = ih0; h < ih1; ++h) {
- // ref: https://github.com/state-spaces/mamba/blob/62db608da60f6fc790b8ed9f4b3225e95ca15fde/mamba_ssm/ops/triton/softplus.py#L16
- const float dt_soft_plus = dt[h] <= 20.0f ? log1pf(expf(dt[h])) : dt[h];
- // dim
- for (int i1 = 0; i1 < nr; ++i1) {
- const int ii = i1 + h*nr;
- const float x_dt = x[ii] * dt_soft_plus;
- #if defined(__ARM_FEATURE_SVE)
- svfloat32_t vx_dt = GGML_F32_VEC_SET1(x_dt);
- svfloat32_t vdt_soft_plus = GGML_F32_VEC_SET1(dt_soft_plus);
- svfloat32_t r1_vector = GGML_F32_VEC_ZERO;
- // d_state
- // TODO: what happens when (d_state % svcntw()) != 0?
- for (int64_t k = 0; k < nc; k += svcntw()) {
- svfloat32_t vA = GGML_F32_VEC_LOAD(&A[h*nc + k]);
- svfloat32_t vB = GGML_F32_VEC_LOAD(&B[k + (h & (ng - 1))*nc]);
- svfloat32_t vC = GGML_F32_VEC_LOAD(&C[k + (h & (ng - 1))*nc]);
- svfloat32_t vs0 = GGML_F32_VEC_LOAD(&s0[ii*nc + k]);
- svfloat32_t t1 = GGML_F32_VEC_MUL(vdt_soft_plus, vA);
- t1 = exp_ps_sve(svptrue_b32(), t1);
- svfloat32_t t2 = GGML_F32_VEC_MUL(vx_dt, vB);
- vs0 = GGML_F32_VEC_FMA(t2, vs0, t1);
- r1_vector = GGML_F32_VEC_ADD(GGML_F32_VEC_MUL(vs0, vC), r1_vector);
- GGML_F32_VEC_STORE(&s[ii*nc + k], vs0);
- }
- y[ii] = GGML_F32xt_REDUCE_ONE(r1_vector);
- #else
- float sumf = 0.0f;
- // NOTE: can't really use GGML_SIMD here because d_state is usually 16
- // and also because expf is used within the loop.
- // d_state
- for (int i0 = 0; i0 < nc; ++i0) {
- const int i = i0 + ii*nc;
- const int ig = i0 + (h & (ng - 1))*nc;
- // state = prev_state * dA + dB * x
- const float state = (s0[i] * expf(dt_soft_plus * A[i0 + h*nc])) + (B[ig] * x_dt);
- // y = rowwise_dotprod(state, C)
- sumf += state * C[ig];
- s[i] = state;
- }
- y[ii] = sumf;
- #endif
- }
- }
- }
- // use the output as the source when it's not the first token-wise iteration
- s0 = s;
- }
- }
- }
- void ggml_compute_forward_ssm_scan(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- switch (dst->src[0]->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_ssm_scan_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_win_part
- static void ggml_compute_forward_win_part_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- GGML_UNUSED(params);
- const ggml_tensor * src0 = dst->src[0];
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
- const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
- const int32_t w = ((const int32_t *)(dst->op_params))[2];
- assert(ne00 == ne0);
- assert(ne3 == nep0*nep1);
- // TODO: optimize / multi-thread
- for (int py = 0; py < nep1; ++py) {
- for (int px = 0; px < nep0; ++px) {
- const int64_t i3 = py*nep0 + px;
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int64_t i02 = py*w + i2;
- const int64_t i01 = px*w + i1;
- const int64_t i00 = i0;
- const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
- const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
- if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
- ((float *) dst->data)[i] = 0.0f;
- } else {
- ((float *) dst->data)[i] = ((float *) src0->data)[j];
- }
- }
- }
- }
- }
- }
- }
- void ggml_compute_forward_win_part(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_win_part_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_win_unpart
- static void ggml_compute_forward_win_unpart_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- GGML_UNUSED(params);
- const ggml_tensor * src0 = dst->src[0];
- GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
- GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
- const int32_t w = ((const int32_t *)(dst->op_params))[0];
- // padding
- const int px = (w - ne1%w)%w;
- //const int py = (w - ne2%w)%w;
- const int npx = (px + ne1)/w;
- //const int npy = (py + ne2)/w;
- assert(ne0 == ne00);
- // TODO: optimize / multi-thread
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- const int ip2 = i2/w;
- const int ip1 = i1/w;
- const int64_t i02 = i2%w;
- const int64_t i01 = i1%w;
- const int64_t i00 = i0;
- const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
- const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
- ((float *) dst->data)[j] = ((float *) src0->data)[i];
- }
- }
- }
- }
- void ggml_compute_forward_win_unpart(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_win_unpart_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- //gmml_compute_forward_unary
- void ggml_compute_forward_unary(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_unary_op op = ggml_get_unary_op(dst);
- switch (op) {
- case GGML_UNARY_OP_ABS:
- {
- ggml_compute_forward_abs(params, dst);
- } break;
- case GGML_UNARY_OP_SGN:
- {
- ggml_compute_forward_sgn(params, dst);
- } break;
- case GGML_UNARY_OP_NEG:
- {
- ggml_compute_forward_neg(params, dst);
- } break;
- case GGML_UNARY_OP_STEP:
- {
- ggml_compute_forward_step(params, dst);
- } break;
- case GGML_UNARY_OP_TANH:
- {
- ggml_compute_forward_tanh(params, dst);
- } break;
- case GGML_UNARY_OP_ELU:
- {
- ggml_compute_forward_elu(params, dst);
- } break;
- case GGML_UNARY_OP_RELU:
- {
- ggml_compute_forward_relu(params, dst);
- } break;
- case GGML_UNARY_OP_SIGMOID:
- {
- ggml_compute_forward_sigmoid(params, dst);
- } break;
- case GGML_UNARY_OP_GELU:
- {
- ggml_compute_forward_gelu(params, dst);
- } break;
- case GGML_UNARY_OP_GELU_ERF:
- {
- ggml_compute_forward_gelu_erf(params, dst);
- } break;
- case GGML_UNARY_OP_GELU_QUICK:
- {
- ggml_compute_forward_gelu_quick(params, dst);
- } break;
- case GGML_UNARY_OP_SILU:
- {
- ggml_compute_forward_silu(params, dst);
- } break;
- case GGML_UNARY_OP_HARDSWISH:
- {
- ggml_compute_forward_hardswish(params, dst);
- } break;
- case GGML_UNARY_OP_HARDSIGMOID:
- {
- ggml_compute_forward_hardsigmoid(params, dst);
- } break;
- case GGML_UNARY_OP_EXP:
- {
- ggml_compute_forward_exp(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- //ggml_compute_forward_glu
- void ggml_compute_forward_glu(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_glu_op op = ggml_get_glu_op(dst);
- switch (op) {
- case GGML_GLU_OP_REGLU:
- {
- ggml_compute_forward_reglu(params, dst);
- } break;
- case GGML_GLU_OP_GEGLU:
- {
- ggml_compute_forward_geglu(params, dst);
- } break;
- case GGML_GLU_OP_SWIGLU:
- {
- ggml_compute_forward_swiglu(params, dst);
- } break;
- case GGML_GLU_OP_GEGLU_ERF:
- {
- ggml_compute_forward_geglu_erf(params, dst);
- } break;
- case GGML_GLU_OP_GEGLU_QUICK:
- {
- ggml_compute_forward_geglu_quick(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_get_rel_pos
- static void ggml_compute_forward_get_rel_pos_f16(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- GGML_UNUSED(params);
- const ggml_tensor * src0 = dst->src[0];
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
- GGML_TENSOR_UNARY_OP_LOCALS
- const int64_t w = ne1;
- ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
- ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
- for (int64_t i2 = 0; i2 < ne2; ++i2) {
- for (int64_t i1 = 0; i1 < ne1; ++i1) {
- const int64_t pos = (w - i1 - 1) + i2;
- for (int64_t i0 = 0; i0 < ne0; ++i0) {
- dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
- }
- }
- }
- }
- void ggml_compute_forward_get_rel_pos(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_BF16:
- {
- ggml_compute_forward_get_rel_pos_f16(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_add_rel_pos
- static void ggml_compute_forward_add_rel_pos_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- const ggml_tensor * src2 = dst->src[2];
- const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
- if (!inplace) {
- if (params->ith == 0) {
- memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
- }
- ggml_barrier(params->threadpool);
- }
- // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
- float * src1_data = (float *) src1->data;
- float * src2_data = (float *) src2->data;
- float * dst_data = (float *) dst->data;
- const int64_t ne10 = src1->ne[0];
- const int64_t ne11 = src1->ne[1];
- const int64_t ne12 = src1->ne[2];
- const int64_t ne13 = src1->ne[3];
- const int ith = params->ith;
- const int nth = params->nth;
- // total patches in dst
- const int np = ne13;
- // patches per thread
- const int dp = (np + nth - 1)/nth;
- // patch range for this thread
- const int ip0 = dp*ith;
- const int ip1 = MIN(ip0 + dp, np);
- for (int64_t i13 = ip0; i13 < ip1; ++i13) {
- for (int64_t i12 = 0; i12 < ne12; ++i12) {
- for (int64_t i11 = 0; i11 < ne11; ++i11) {
- const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
- for (int64_t i10 = 0; i10 < ne10; ++i10) {
- const int64_t jp0 = jp1 + i10;
- const float src1_e = src1_data[jp0];
- const float src2_e = src2_data[jp0];
- const int64_t jdh = jp0 * ne10;
- const int64_t jdw = jdh - (ne10 - 1) * i10;
- for (int64_t j = 0; j < ne10; ++j) {
- dst_data[jdh + j ] += src2_e;
- dst_data[jdw + j*ne10] += src1_e;
- }
- }
- }
- }
- }
- }
- void ggml_compute_forward_add_rel_pos(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_add_rel_pos_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_rwkv_wkv6
- static void ggml_compute_forward_rwkv_wkv6_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const int64_t T = dst->src[1]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t HEADS = dst->src[1]->ne[1];
- const int64_t n_seqs = dst->src[5]->ne[1];
- const int64_t head_size = C / HEADS;
- float * dst_data = (float *) dst->data;
- float * state = ((float *) dst->data) + C * T;
- const int ith = params->ith;
- const int nth = params->nth;
- if (ith >= HEADS) {
- return;
- }
- const int h_start = (HEADS * ith) / nth;
- const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
- (HEADS * (ith + 1)) / nth : HEADS;
- float * k = (float *) dst->src[0]->data;
- float * v = (float *) dst->src[1]->data;
- float * r = (float *) dst->src[2]->data;
- float * time_faaaa = (float *) dst->src[3]->data;
- float * time_decay = (float *) dst->src[4]->data;
- size_t t_stride = HEADS * head_size; // Same to C
- size_t h_stride = C / HEADS;
- GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
- size_t h_stride_2d = head_size * head_size;
- if (ith == 0) {
- memset(dst_data, 0, T * C * sizeof(float));
- }
- ggml_barrier(params->threadpool);
- #if defined(__AVX__) && !defined(__AVX512F__)
- #define GGML_F32X GGML_F32x8
- #define GGML_F32X_SET1 GGML_F32x8_SET1
- #define GGML_F32X_LOAD GGML_F32x8_LOAD
- #define GGML_F32X_STORE GGML_F32x8_STORE
- #define GGML_F32X_MUL GGML_F32x8_MUL
- #define GGML_F32X_FMA GGML_F32x8_FMA
- #define WKV_VECTOR_SIZE 8
- #elif defined(__AVX512F__)
- #define GGML_F32X GGML_F32x16
- #define GGML_F32X_SET1 GGML_F32x16_SET1
- #define GGML_F32X_LOAD GGML_F32x16_LOAD
- #define GGML_F32X_STORE GGML_F32x16_STORE
- #define GGML_F32X_MUL GGML_F32x16_MUL
- #define GGML_F32X_FMA GGML_F32x16_FMA
- #define WKV_VECTOR_SIZE 16
- #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
- #define GGML_F32X GGML_F32xt
- #define GGML_F32X_SET1 GGML_F32xt_SET1
- #define GGML_F32X_LOAD GGML_F32xt_LOAD
- #define GGML_F32X_STORE GGML_F32xt_STORE
- #define GGML_F32X_MUL GGML_F32xt_MUL
- #define GGML_F32X_FMA GGML_F32xt_FMA
- #define WKV_VECTOR_SIZE 8
- #elif defined(__ARM_NEON) && defined(__aarch64__)
- #define GGML_F32X GGML_F32x4
- #define GGML_F32X_SET1 GGML_F32x4_SET1
- #define GGML_F32X_LOAD GGML_F32x4_LOAD
- #define GGML_F32X_STORE GGML_F32x4_STORE
- #define GGML_F32X_MUL GGML_F32x4_MUL
- #define GGML_F32X_FMA GGML_F32x4_FMA
- #define WKV_VECTOR_SIZE 4
- #endif
- #ifdef WKV_VECTOR_SIZE
- int wkv_vector_size;
- #if defined(__ARM_FEATURE_SVE)
- wkv_vector_size = svcntw();
- #else
- wkv_vector_size = WKV_VECTOR_SIZE;
- #endif
- const int64_t vec_count = head_size / wkv_vector_size;
- for (int64_t t = 0; t < T; t++) {
- size_t t_offset = t * t_stride;
- size_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
- for (int64_t h = h_start; h < h_end; h++) {
- size_t h_offset = h * h_stride;
- size_t t_h_offset = t_offset + h_offset;
- size_t h_2d_offset = h * h_stride_2d;
- for (int64_t i = 0; i < head_size; i++) {
- size_t t_h_i_offset = t_h_offset + i;
- size_t h_i_offset = h_offset + i;
- size_t h_2d_i_offset = h_2d_offset + i * h_stride;
- float k_val = k[t_h_i_offset];
- float r_val = r[t_h_i_offset];
- float time_faaaa_val = time_faaaa[h_i_offset];
- float time_decay_val = time_decay[t_h_i_offset];
- // Broadcast scalar values to vectors
- GGML_F32X k_vec = GGML_F32X_SET1(k_val);
- GGML_F32X r_vec = GGML_F32X_SET1(r_val);
- GGML_F32X time_faaaa_vec = GGML_F32X_SET1(time_faaaa_val);
- GGML_F32X time_decay_vec = GGML_F32X_SET1(time_decay_val);
- for (int64_t j = 0; j < vec_count; j++) {
- size_t base_j = j * wkv_vector_size;
- size_t t_h_j_offset = t_h_offset + base_j;
- size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
- // Load x elements at once
- GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
- GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
- GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
- // Compute kv = v * k
- GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
- // Compute temp = kv * time_faaaa + prev_state
- GGML_F32X temp_vec = GGML_F32X_FMA(prev_state_vec, kv_vec, time_faaaa_vec);
- // Update dst: dst += temp * r
- dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, r_vec);
- GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
- // Update state: state = prev_state * time_decay + kv
- GGML_F32X new_state_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, time_decay_vec);
- GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], new_state_vec);
- }
- // Handle remaining elements, this will not be used.
- for (int64_t j = vec_count * wkv_vector_size; j < head_size; j++) {
- size_t t_h_j_offset = t_h_offset + j;
- size_t h_2d_i_j_offset = h_2d_i_offset + j;
- float v_val = v[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- float temp_val = kv_val * time_faaaa_val + prev_state_val;
- dst_data[t_h_j_offset] += temp_val * r_val;
- state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
- }
- }
- }
- }
- #else
- // basically fused operations:
- // dst = r @ (time_faaaa * (k @ v) + state),
- // state = time_decay * state + (k @ v),
- // recursive through each token
- for (int64_t t = 0; t < T; t++) {
- size_t t_offset = t * t_stride;
- size_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[5]->data + state_offset;
- for (int64_t h = h_start; h < h_end; h++) {
- size_t h_offset = h * h_stride;
- size_t t_h_offset = t_offset + h_offset;
- size_t h_2d_offset = h * h_stride_2d;
- for (int64_t i = 0; i < head_size; i++) {
- size_t t_h_i_offset = t_h_offset + i;
- size_t h_i_offset = h_offset + i;
- size_t h_2d_i_offset = h_2d_offset + i * h_stride;
- float k_val = k[t_h_i_offset];
- float r_val = r[t_h_i_offset];
- float time_faaaa_val = time_faaaa[h_i_offset];
- // RWKV v6: different time_decay for each token.
- float time_decay_val = time_decay[t_h_i_offset];
- for (int64_t j = 0; j < head_size; j++) {
- size_t t_h_j_offset = t_h_offset + j;
- size_t h_2d_i_j_offset = h_2d_i_offset + j;
- float v_val = v[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- float temp_val = kv_val * time_faaaa_val + prev_state_val;
- dst_data[t_h_j_offset] += temp_val * r_val;
- state_cur[h_2d_i_j_offset] = prev_state_val * time_decay_val + kv_val;
- }
- }
- }
- }
- #endif
- }
- void ggml_compute_forward_rwkv_wkv6(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rwkv_wkv6_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_gla
- static void ggml_compute_forward_gla_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const int64_t T = dst->src[1]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t HEADS = dst->src[1]->ne[1];
- const int64_t n_seqs = dst->src[4]->ne[1];
- const int64_t head_size = C / HEADS;
- const float scale = ggml_get_op_params_f32(dst, 0);
- float * dst_data = (float *) dst->data;
- float * state = ((float *) dst->data) + C * T;
- const int ith = params->ith;
- const int nth = params->nth;
- if (ith >= HEADS) {
- return;
- }
- const int h_start = (HEADS * ith) / nth;
- const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
- (HEADS * (ith + 1)) / nth : HEADS;
- float * k = (float *) dst->src[0]->data;
- float * v = (float *) dst->src[1]->data;
- float * q = (float *) dst->src[2]->data;
- float * g = (float *) dst->src[3]->data;
- size_t t_stride = HEADS * head_size; // Same to C
- size_t h_stride = C / HEADS;
- GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
- size_t h_stride_2d = head_size * head_size;
- if (ith == 0) {
- memset(dst_data, 0, T * C * sizeof(float));
- }
- ggml_barrier(params->threadpool);
- #if defined(__AVX__) && !defined(__AVX512F__)
- #define GGML_F32X GGML_F32x8
- #define GGML_F32X_SET1 GGML_F32x8_SET1
- #define GGML_F32X_LOAD GGML_F32x8_LOAD
- #define GGML_F32X_STORE GGML_F32x8_STORE
- #define GGML_F32X_MUL GGML_F32x8_MUL
- #define GGML_F32X_FMA GGML_F32x8_FMA
- #define GLA_VECTOR_SIZE 8
- #elif defined(__AVX512F__)
- #define GGML_F32X GGML_F32x16
- #define GGML_F32X_SET1 GGML_F32x16_SET1
- #define GGML_F32X_LOAD GGML_F32x16_LOAD
- #define GGML_F32X_STORE GGML_F32x16_STORE
- #define GGML_F32X_MUL GGML_F32x16_MUL
- #define GGML_F32X_FMA GGML_F32x16_FMA
- #define GLA_VECTOR_SIZE 16
- #elif defined(__ARM_FEATURE_SVE) && defined(__aarch64__)
- #define GGML_F32X GGML_F32xt
- #define GGML_F32X_SET1 GGML_F32xt_SET1
- #define GGML_F32X_LOAD GGML_F32xt_LOAD
- #define GGML_F32X_STORE GGML_F32xt_STORE
- #define GGML_F32X_MUL GGML_F32xt_MUL
- #define GGML_F32X_FMA GGML_F32xt_FMA
- #define GLA_VECTOR_SIZE 8
- #elif defined(__ARM_NEON) && defined(__aarch64__)
- #define GGML_F32X GGML_F32x4
- #define GGML_F32X_SET1 GGML_F32x4_SET1
- #define GGML_F32X_LOAD GGML_F32x4_LOAD
- #define GGML_F32X_STORE GGML_F32x4_STORE
- #define GGML_F32X_MUL GGML_F32x4_MUL
- #define GGML_F32X_FMA GGML_F32x4_FMA
- #define GLA_VECTOR_SIZE 4
- #endif
- #ifdef GLA_VECTOR_SIZE
- int gla_vector_size;
- #if defined(__ARM_FEATURE_SVE)
- gla_vector_size = svcntw();
- #else
- gla_vector_size = GLA_VECTOR_SIZE;
- #endif
- const int64_t vec_count = head_size / gla_vector_size;
- for (int64_t t = 0; t < T; t++) {
- size_t t_offset = t * t_stride;
- size_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
- for (int64_t h = h_start; h < h_end; h++) {
- size_t h_offset = h * h_stride;
- size_t t_h_offset = t_offset + h_offset;
- size_t h_2d_offset = h * h_stride_2d;
- for (int64_t i = 0; i < head_size; i++) {
- size_t t_h_i_offset = t_h_offset + i;
- size_t h_2d_i_offset = h_2d_offset + i * h_stride;
- float k_val = k[t_h_i_offset];
- float q_val = q[t_h_i_offset] * scale;
- float g_val = g[t_h_i_offset];
- // Broadcast scalar values to vectors
- GGML_F32X k_vec = GGML_F32X_SET1(k_val);
- GGML_F32X q_vec = GGML_F32X_SET1(q_val);
- GGML_F32X g_vec = GGML_F32X_SET1(g_val);
- for (int64_t j = 0; j < vec_count; j++) {
- size_t base_j = j * gla_vector_size;
- size_t t_h_j_offset = t_h_offset + base_j;
- size_t h_2d_i_j_offset = h_2d_i_offset + base_j;
- // Load x elements at once
- GGML_F32X v_vec = GGML_F32X_LOAD(&v[t_h_j_offset]);
- GGML_F32X prev_state_vec = GGML_F32X_LOAD(&state_prev[h_2d_i_j_offset]);
- GGML_F32X dst_vec = GGML_F32X_LOAD(&dst_data[t_h_j_offset]);
- // Compute kv = v * k
- GGML_F32X kv_vec = GGML_F32X_MUL(v_vec, k_vec);
- // Compute temp = prev_state * g + kv
- GGML_F32X temp_vec = GGML_F32X_FMA(kv_vec, prev_state_vec, g_vec);
- // Update dst: dst += temp * q
- dst_vec = GGML_F32X_FMA(dst_vec, temp_vec, q_vec);
- GGML_F32X_STORE(&dst_data[t_h_j_offset], dst_vec);
- // Update state
- GGML_F32X_STORE(&state_cur[h_2d_i_j_offset], temp_vec);
- }
- // Handle remaining elements, this will not be used.
- for (int64_t j = vec_count * gla_vector_size; j < head_size; j++) {
- size_t t_h_j_offset = t_h_offset + j;
- size_t h_2d_i_j_offset = h_2d_i_offset + j;
- float v_val = v[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- float temp_val = kv_val + prev_state_val * g_val;
- dst_data[t_h_j_offset] += temp_val * q_val;
- state_cur[h_2d_i_j_offset] = temp_val;
- }
- }
- }
- }
- #else
- for (int64_t t = 0; t < T; t++) {
- size_t t_offset = t * t_stride;
- size_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[4]->data + state_offset;
- for (int64_t h = h_start; h < h_end; h++) {
- size_t h_offset = h * h_stride;
- size_t t_h_offset = t_offset + h_offset;
- size_t h_2d_offset = h * h_stride_2d;
- for (int64_t i = 0; i < head_size; i++) {
- size_t t_h_i_offset = t_h_offset + i;
- size_t h_2d_i_offset = h_2d_offset + i * h_stride;
- float k_val = k[t_h_i_offset];
- float q_val = q[t_h_i_offset] * scale;
- float g_val = g[t_h_i_offset];
- for (int64_t j = 0; j < head_size; j++) {
- size_t t_h_j_offset = t_h_offset + j;
- size_t h_2d_i_j_offset = h_2d_i_offset + j;
- float v_val = v[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- float temp_val = prev_state_val * g_val + kv_val;
- dst_data[t_h_j_offset] += temp_val * q_val;
- state_cur[h_2d_i_j_offset] = temp_val;
- }
- }
- }
- }
- #endif
- }
- void ggml_compute_forward_gla(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_gla_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_rwkv_wkv7
- static void ggml_compute_forward_rwkv_wkv7_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const int64_t T = dst->src[1]->ne[2];
- const int64_t C = dst->ne[0];
- const int64_t HEADS = dst->src[1]->ne[1];
- const int64_t n_seqs = dst->src[6]->ne[1];
- const int64_t head_size = C / HEADS;
- float * dst_data = (float *) dst->data;
- float * state = ((float *) dst->data) + C * T;
- const int ith = params->ith;
- const int nth = params->nth;
- if (ith >= HEADS) {
- return;
- }
- const int h_start = (HEADS * ith) / nth;
- const int h_end = ((HEADS * (ith + 1)) / nth < HEADS) ?
- (HEADS * (ith + 1)) / nth : HEADS;
- float * r = (float *) dst->src[0]->data;
- float * w = (float *) dst->src[1]->data;
- float * k = (float *) dst->src[2]->data;
- float * v = (float *) dst->src[3]->data;
- float * a = (float *) dst->src[4]->data;
- float * b = (float *) dst->src[5]->data;
- int64_t t_stride = HEADS * head_size; // Same to C
- int64_t h_stride = C / HEADS;
- GGML_ASSERT(C % HEADS == 0); // C must be divisible by HEADS
- int64_t h_stride_2d = head_size * head_size;
- #if defined(GGML_SIMD)
- #if defined(__ARM_FEATURE_SVE)
- // scalar Route to scalar implementation //TODO: Write SVE code
- for (int64_t t = 0; t < T; t++) {
- int64_t t_offset = t * t_stride;
- int64_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
- for (int64_t h = h_start; h < h_end; h++) {
- int64_t h_offset = h * h_stride;
- int64_t t_h_offset = t_offset + h_offset;
- int64_t h_2d_offset = h * h_stride_2d;
- for (int64_t i = 0; i < head_size; i++) {
- int64_t t_h_i_offset = t_h_offset + i;
- int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
- float v_val = v[t_h_i_offset];
- float sa = 0, result = 0;
- for (int64_t j = 0; j < head_size; j++) {
- sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
- }
- for (int64_t j = 0; j < head_size; j++) {
- int64_t t_h_j_offset = t_h_offset + j;
- int64_t h_2d_i_j_offset = h_2d_i_offset + j;
- float r_val = r[t_h_j_offset];
- float w_val = w[t_h_j_offset];
- float k_val = k[t_h_j_offset];
- float b_val = b[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
- result += state_cur[h_2d_i_j_offset] * r_val;
- }
- dst_data[t_h_i_offset] = result;
- }
- }
- }
- #else
- for (int64_t t = 0; t < T; t++) {
- int64_t t_offset = t * t_stride;
- int64_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
- for (int64_t h = h_start; h < h_end; h++) {
- int64_t h_offset = h * h_stride;
- int64_t t_h_offset = t_offset + h_offset;
- int64_t h_2d_offset = h * h_stride_2d;
- for (int64_t ii = 0; ii < head_size; ii++) {
- int64_t t_h_i_offset = t_h_offset + ii;
- int64_t h_2d_i_offset = h_2d_offset + ii * h_stride;
- GGML_F32_VEC v_vec = GGML_F32_VEC_SET1(v[t_h_i_offset]);
- float sa = 0;
- {
- GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- GGML_F32_VEC ax[GGML_F32_ARR];
- GGML_F32_VEC ay[GGML_F32_ARR];
- for (int64_t j = 0; j < head_size; j += GGML_F32_STEP) {
- for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
- ax[kk] = GGML_F32_VEC_LOAD(&a[t_h_offset + j + kk * GGML_F32_EPR]);
- ay[kk] = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_offset + j + kk * GGML_F32_EPR]);
- sum[kk] = GGML_F32_VEC_FMA(sum[kk], ax[kk], ay[kk]);
- }
- }
- GGML_F32_VEC_REDUCE(sa, sum);
- }
- GGML_F32_VEC sa_vec = GGML_F32_VEC_SET1(sa);
- int64_t j = 0;
- GGML_F32_VEC result_vec[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
- for (; j < head_size; j += GGML_F32_STEP) {
- for (int64_t kk = 0; kk < GGML_F32_ARR; kk++) {
- int64_t t_h_j_offset = t_h_offset + j + kk * GGML_F32_EPR;
- int64_t h_2d_i_j_offset = h_2d_i_offset + j + kk * GGML_F32_EPR;
- GGML_F32_VEC r_vec = GGML_F32_VEC_LOAD(&r[t_h_j_offset]);
- GGML_F32_VEC w_vec = GGML_F32_VEC_LOAD(&w[t_h_j_offset]);
- GGML_F32_VEC k_vec = GGML_F32_VEC_LOAD(&k[t_h_j_offset]);
- GGML_F32_VEC b_vec = GGML_F32_VEC_LOAD(&b[t_h_j_offset]);
- k_vec = GGML_F32_VEC_MUL(v_vec, k_vec);
- GGML_F32_VEC state_vec = GGML_F32_VEC_LOAD(&state_prev[h_2d_i_j_offset]);
- // kv + s * decay + sa * b
- state_vec = GGML_F32_VEC_FMA(k_vec, state_vec, w_vec);
- state_vec = GGML_F32_VEC_FMA(state_vec, sa_vec, b_vec);
- GGML_F32_VEC_STORE(&state_cur[h_2d_i_j_offset], state_vec);
- result_vec[kk] = GGML_F32_VEC_FMA(result_vec[kk], state_vec, r_vec);
- }
- }
- GGML_F32_VEC_REDUCE(dst_data[t_h_i_offset], result_vec);
- // There shouldn't be left-overs though.
- for (; j < head_size; j++) {
- int64_t t_h_j_offset = t_h_offset + j;
- int64_t h_2d_i_j_offset = h_2d_i_offset + j;
- float r_val = r[t_h_j_offset];
- float w_val = w[t_h_j_offset];
- float k_val = k[t_h_j_offset];
- float b_val = b[t_h_j_offset];
- float kv_val = v[t_h_i_offset] * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
- dst_data[t_h_i_offset] += state_cur[h_2d_i_j_offset] * r_val;
- }
- }
- }
- }
- #endif
- #else
- for (int64_t t = 0; t < T; t++) {
- int64_t t_offset = t * t_stride;
- int64_t state_offset = head_size * C * (t / (T / n_seqs));
- float * state_cur = state + state_offset;
- float * state_prev = t % (T / n_seqs) ? state_cur : (float*)dst->src[6]->data + state_offset;
- for (int64_t h = h_start; h < h_end; h++) {
- int64_t h_offset = h * h_stride;
- int64_t t_h_offset = t_offset + h_offset;
- int64_t h_2d_offset = h * h_stride_2d;
- for (int64_t i = 0; i < head_size; i++) {
- int64_t t_h_i_offset = t_h_offset + i;
- int64_t h_2d_i_offset = h_2d_offset + i * h_stride;
- float v_val = v[t_h_i_offset];
- float sa = 0, result = 0;
- for (int64_t j = 0; j < head_size; j++) {
- sa += a[t_h_offset + j] * state_prev[h_2d_i_offset + j];
- }
- for (int64_t j = 0; j < head_size; j++) {
- int64_t t_h_j_offset = t_h_offset + j;
- int64_t h_2d_i_j_offset = h_2d_i_offset + j;
- float r_val = r[t_h_j_offset];
- float w_val = w[t_h_j_offset];
- float k_val = k[t_h_j_offset];
- float b_val = b[t_h_j_offset];
- float kv_val = v_val * k_val;
- float prev_state_val = state_prev[h_2d_i_j_offset];
- state_cur[h_2d_i_j_offset] = prev_state_val * w_val + kv_val + sa * b_val;
- result += state_cur[h_2d_i_j_offset] * r_val;
- }
- dst_data[t_h_i_offset] = result;
- }
- }
- }
- #endif
- }
- void ggml_compute_forward_rwkv_wkv7(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_rwkv_wkv7_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_map_custom1
- void ggml_compute_forward_map_custom1(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * a = dst->src[0];
- struct ggml_map_custom1_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
- p.fun(dst, a, params->ith, params->nth, p.userdata);
- }
- // ggml_compute_forward_map_custom2
- void ggml_compute_forward_map_custom2(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * a = dst->src[0];
- const ggml_tensor * b = dst->src[1];
- struct ggml_map_custom2_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
- p.fun(dst, a, b, params->ith, params->nth, p.userdata);
- }
- // ggml_compute_forward_map_custom3
- void ggml_compute_forward_map_custom3(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * a = dst->src[0];
- const ggml_tensor * b = dst->src[1];
- const ggml_tensor * c = dst->src[2];
- struct ggml_map_custom3_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
- p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
- }
- // ggml_compute_forward_custom
- void ggml_compute_forward_custom(
- const struct ggml_compute_params * params,
- struct ggml_tensor * dst) {
- struct ggml_custom_op_params p;
- memcpy(&p, dst->op_params, sizeof(p));
- p.fun(dst, params->ith, params->nth, p.userdata);
- }
- // ggml_compute_forward_cross_entropy_loss
- static void ggml_compute_forward_cross_entropy_loss_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src1 = dst->src[1];
- GGML_ASSERT(src0->type == GGML_TYPE_F32);
- GGML_ASSERT(src1->type == GGML_TYPE_F32);
- GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
- GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
- GGML_ASSERT(ggml_are_same_shape(src0, src1));
- GGML_ASSERT(ggml_is_scalar(dst));
- GGML_ASSERT(dst->type == GGML_TYPE_F32);
- // TODO: handle transposed/permuted matrices
- const int64_t nc = src0->ne[0];
- const int64_t nr = ggml_nrows(src0);
- const int ith = params->ith;
- const int nth = params->nth;
- float * sums = (float *) params->wdata;
- float * st = ((float *) params->wdata) + nth + ith*nc;
- float sum_thread = 0.0f;
- GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- for (int64_t i1 = ir0; i1 < ir1; ++i1) {
- const float * s0 = (const float *)((const char *) src0->data + i1*src0->nb[1]);
- const float * s1 = (const float *)((const char *) src1->data + i1*src1->nb[1]);
- #ifndef NDEBUG
- for (int64_t i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
- #endif
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- const ggml_float sum_softmax = ggml_vec_log_soft_max_f32(nc, st, s0, max);
- assert(sum_softmax >= 0.0);
- ggml_vec_add1_f32(nc, st, st, -sum_softmax);
- ggml_vec_mul_f32(nc, st, st, s1);
- float sum_st = 0.0f;
- ggml_vec_sum_f32(nc, &sum_st, st);
- sum_thread += sum_st;
- #ifndef NDEBUG
- for (int64_t i = 0; i < nc; ++i) {
- assert(!isnan(st[i]));
- assert(!isinf(st[i]));
- }
- #endif
- }
- sums[ith] = sum_thread;
- ggml_barrier(params->threadpool);
- if (ith == 0) {
- float * dp = (float *) dst->data;
- ggml_vec_sum_f32(nth, dp, sums);
- dp[0] *= -1.0f / (float) nr;
- }
- }
- void ggml_compute_forward_cross_entropy_loss(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- // ggml_compute_forward_cross_entropy_loss_back
- static void ggml_compute_forward_cross_entropy_loss_back_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * grad = dst->src[0]; // gradient of forward pass output
- const ggml_tensor * src0f = dst->src[1]; // src0 of forward pass
- const ggml_tensor * src1f = dst->src[2]; // src1 of forward pass
- GGML_ASSERT(ggml_is_contiguous(dst));
- GGML_ASSERT(ggml_is_contiguous(src0f));
- GGML_ASSERT(ggml_is_contiguous(src1f));
- GGML_ASSERT(ggml_is_contiguous(grad));
- GGML_ASSERT(ggml_are_same_shape(src0f, src1f) && ggml_are_same_shape(src0f, dst));
- const int64_t ith = params->ith;
- const int64_t nth = params->nth;
- // TODO: handle transposed/permuted matrices
- const int64_t nc = src0f->ne[0];
- const int64_t nr = ggml_nrows(src0f);
- // rows per thread
- const int64_t dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int64_t ir0 = dr*ith;
- const int64_t ir1 = MIN(ir0 + dr, nr);
- const float d_by_nr = ((const float *) grad->data)[0] / (float) nr;
- for (int64_t i1 = ir0; i1 < ir1; i1++) {
- float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
- const float * s0 = (const float *)((const char *) src0f->data + i1*src0f->nb[1]);
- const float * s1 = (const float *)((const char *) src1f->data + i1*src1f->nb[1]);
- #ifndef NDEBUG
- for (int64_t i = 0; i < nc; ++i) {
- //printf("p[%d] = %f\n", i, p[i]);
- assert(!isnan(s0[i]));
- assert(!isnan(s1[i]));
- }
- #endif
- // soft_max
- float max = -INFINITY;
- ggml_vec_max_f32(nc, &max, s0);
- const ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
- assert(sum > 0.0);
- ggml_vec_scale_f32(nc, ds0, 1.0/sum);
- // grad(src0f) = (softmax(src0f) - src1f) * grad(cross_entropy_loss(src0f, src1f)) / nr
- ggml_vec_sub_f32(nc, ds0, ds0, s1);
- ggml_vec_scale_f32(nc, ds0, d_by_nr);
- #ifndef NDEBUG
- for (int64_t i = 0; i < nc; ++i) {
- assert(!isnan(ds0[i]));
- assert(!isinf(ds0[i]));
- }
- #endif
- }
- }
- void ggml_compute_forward_cross_entropy_loss_back(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
- static void ggml_compute_forward_opt_step_adamw_f32(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- const ggml_tensor * src0_grad = dst->src[1];
- const ggml_tensor * src0_grad_m = dst->src[2];
- const ggml_tensor * src0_grad_v = dst->src[3];
- const ggml_tensor * adamw_params = dst->src[4];
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad));
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_m));
- GGML_ASSERT(ggml_are_same_shape(src0, src0_grad_v));
- GGML_ASSERT(ggml_nelements(adamw_params) == 7);
- const int ith = params->ith;
- const int nth = params->nth;
- const int nr = ggml_nrows(src0);
- GGML_TENSOR_UNARY_OP_LOCALS
- GGML_ASSERT(nb00 == sizeof(float));
- // rows per thread
- const int dr = (nr + nth - 1)/nth;
- // row range for this thread
- const int ir0 = dr*ith;
- const int ir1 = MIN(ir0 + dr, nr);
- const float * adamw_params_ptr = ggml_get_data_f32(adamw_params);
- const float alpha = adamw_params_ptr[0];
- const float beta1 = adamw_params_ptr[1];
- const float beta2 = adamw_params_ptr[2];
- const float eps = adamw_params_ptr[3];
- const float wd = adamw_params_ptr[4];
- const float beta1h = adamw_params_ptr[5];
- const float beta2h = adamw_params_ptr[6];
- for (int ir = ir0; ir < ir1; ++ir) {
- const int64_t i03 = ir/(ne02*ne01);
- const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
- const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
- const size_t offset = i03*nb03 + i02*nb02 + i01*nb01;
- float * w = (float *) ((char *) src0->data + offset); // weight
- const float * g = (const float *) ((const char *) src0_grad->data + offset); // grad
- float * m = (float *) ((char *) src0_grad_m->data + offset);
- float * v = (float *) ((char *) src0_grad_v->data + offset);
- for (int i00 = 0; i00 < ne00; ++i00) {
- m[i00] = m[i00]*beta1 + g[i00]*(1.0f - beta1);
- v[i00] = v[i00]*beta2 + g[i00]*g[i00]*(1.0f - beta2);
- const float mh = m[i00]*beta1h;
- const float vh = sqrtf(v[i00]*beta2h) + eps;
- // The weight decay is applied independently of the Adam momenta m and v.
- // This is NOT equivalent to l2 regularization that adds w[i00]*w[i00] to the loss.
- // See: https://arxiv.org/pdf/1711.05101v3.pdf
- w[i00] = w[i00]*(1.0f - alpha*wd) - alpha*mh/vh;
- }
- }
- }
- void ggml_compute_forward_opt_step_adamw(
- const ggml_compute_params * params,
- ggml_tensor * dst) {
- const ggml_tensor * src0 = dst->src[0];
- switch (src0->type) {
- case GGML_TYPE_F32:
- {
- ggml_compute_forward_opt_step_adamw_f32(params, dst);
- } break;
- default:
- {
- GGML_ABORT("fatal error");
- }
- }
- }
|