tensor_mapping.py 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. ),
  20. # Token type embeddings
  21. MODEL_TENSOR.TOKEN_TYPES: (
  22. "embeddings.token_type_embeddings", # bert
  23. ),
  24. # Normalization of token embeddings
  25. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  26. "word_embeddings_layernorm", # bloom
  27. "embeddings.LayerNorm", # bert
  28. ),
  29. # Position embeddings
  30. MODEL_TENSOR.POS_EMBD: (
  31. "transformer.wpe", # gpt2
  32. "embeddings.position_embeddings", # bert
  33. "wpe", # gpt2
  34. ),
  35. # Output
  36. MODEL_TENSOR.OUTPUT: (
  37. "embed_out", # gptneox
  38. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
  39. "output", # llama-pth bloom internlm2
  40. "word_embeddings_for_head", # persimmon
  41. "lm_head.linear", # phi2
  42. ),
  43. # Output norm
  44. MODEL_TENSOR.OUTPUT_NORM: (
  45. "gpt_neox.final_layer_norm", # gptneox
  46. "transformer.ln_f", # gpt2 gpt-j falcon
  47. "model.norm", # llama-hf baichuan internlm2
  48. "norm", # llama-pth
  49. "transformer.norm_f", # mpt
  50. "ln_f", # refact bloom qwen gpt2
  51. "language_model.encoder.final_layernorm", # persimmon
  52. "model.final_layernorm", # persimmon
  53. "lm_head.ln", # phi2
  54. ),
  55. # Rope frequencies
  56. MODEL_TENSOR.ROPE_FREQS: (
  57. "rope.freqs", # llama-pth
  58. ),
  59. }
  60. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  61. # Attention norm
  62. MODEL_TENSOR.ATTN_NORM: (
  63. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  64. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen
  65. "transformer.blocks.{bid}.norm_1", # mpt
  66. "transformer.h.{bid}.input_layernorm", # falcon7b
  67. "h.{bid}.input_layernorm", # bloom
  68. "transformer.h.{bid}.ln_mlp", # falcon40b
  69. "model.layers.{bid}.input_layernorm", # llama-hf
  70. "layers.{bid}.attention_norm", # llama-pth
  71. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  72. "model.layers.{bid}.ln1", # yi
  73. "h.{bid}.ln_1", # gpt2
  74. "transformer.h.{bid}.ln", # phi2
  75. "model.layers.layers.{bid}.norm", # plamo
  76. "model.layers.{bid}.attention_norm", # internlm2
  77. ),
  78. # Attention norm 2
  79. MODEL_TENSOR.ATTN_NORM_2: (
  80. "transformer.h.{bid}.ln_attn", # falcon40b
  81. ),
  82. # Attention query-key-value
  83. MODEL_TENSOR.ATTN_QKV: (
  84. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  85. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen
  86. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  87. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  88. "h.{bid}.self_attention.query_key_value", # bloom
  89. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  90. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  91. "h.{bid}.attn.c_attn", # gpt2
  92. "transformer.h.{bid}.mixer.Wqkv", # phi2
  93. ),
  94. # Attention query
  95. MODEL_TENSOR.ATTN_Q: (
  96. "model.layers.{bid}.self_attn.q_proj", # llama-hf
  97. "layers.{bid}.attention.wq", # llama-pth
  98. "encoder.layer.{bid}.attention.self.query", # bert
  99. "transformer.h.{bid}.attn.q_proj", # gpt-j
  100. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  101. "model.layers.{bid}.attention.wq" # internlm2
  102. ),
  103. # Attention key
  104. MODEL_TENSOR.ATTN_K: (
  105. "model.layers.{bid}.self_attn.k_proj", # llama-hf
  106. "layers.{bid}.attention.wk", # llama-pth
  107. "encoder.layer.{bid}.attention.self.key", # bert
  108. "transformer.h.{bid}.attn.k_proj", # gpt-j
  109. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  110. "model.layers.{bid}.attention.wk" # internlm2
  111. ),
  112. # Attention value
  113. MODEL_TENSOR.ATTN_V: (
  114. "model.layers.{bid}.self_attn.v_proj", # llama-hf
  115. "layers.{bid}.attention.wv", # llama-pth
  116. "encoder.layer.{bid}.attention.self.value", # bert
  117. "transformer.h.{bid}.attn.v_proj", # gpt-j
  118. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  119. "model.layers.{bid}.attention.wv" # internlm2
  120. ),
  121. # Attention output
  122. MODEL_TENSOR.ATTN_OUT: (
  123. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  124. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
  125. "transformer.blocks.{bid}.attn.out_proj", # mpt
  126. "transformer.h.{bid}.self_attention.dense", # falcon
  127. "h.{bid}.self_attention.dense", # bloom
  128. "model.layers.{bid}.self_attn.o_proj", # llama-hf
  129. "layers.{bid}.attention.wo", # llama-pth
  130. "encoder.layer.{bid}.attention.output.dense", # bert
  131. "transformer.h.{bid}.attn.out_proj", # gpt-j
  132. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  133. "model.layers.{bid}.self_attn.dense", # persimmon
  134. "h.{bid}.attn.c_proj", # gpt2
  135. "transformer.h.{bid}.mixer.out_proj", # phi2
  136. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  137. "model.layers.{bid}.attention.wo", # internlm2
  138. ),
  139. # Attention output norm
  140. MODEL_TENSOR.ATTN_OUT_NORM: (
  141. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  142. ),
  143. # Rotary embeddings
  144. MODEL_TENSOR.ATTN_ROT_EMBD: (
  145. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  146. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  147. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  148. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  149. ),
  150. # Feed-forward norm
  151. MODEL_TENSOR.FFN_NORM: (
  152. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  153. "transformer.h.{bid}.ln_2", # gpt2 refact qwen
  154. "h.{bid}.post_attention_layernorm", # bloom
  155. "transformer.blocks.{bid}.norm_2", # mpt
  156. "model.layers.{bid}.post_attention_layernorm", # llama-hf
  157. "layers.{bid}.ffn_norm", # llama-pth
  158. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  159. "model.layers.{bid}.ln2", # yi
  160. "h.{bid}.ln_2", # gpt2
  161. "model.layers.{bid}.ffn_norm", # internlm2
  162. ),
  163. MODEL_TENSOR.FFN_GATE_INP: (
  164. "layers.{bid}.feed_forward.gate", # mixtral
  165. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  166. ),
  167. # Feed-forward up
  168. MODEL_TENSOR.FFN_UP: (
  169. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  170. "transformer.h.{bid}.mlp.c_fc", # gpt2
  171. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  172. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  173. "h.{bid}.mlp.dense_h_to_4h", # bloom
  174. "model.layers.{bid}.mlp.up_proj", # llama-hf refact
  175. "layers.{bid}.feed_forward.w3", # llama-pth
  176. "encoder.layer.{bid}.intermediate.dense", # bert
  177. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  178. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  179. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  180. "transformer.h.{bid}.mlp.w1", # qwen
  181. "h.{bid}.mlp.c_fc", # gpt2
  182. "transformer.h.{bid}.mlp.fc1", # phi2
  183. "model.layers.{bid}.mlp.fc1", # phi2
  184. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  185. "model.layers.{bid}.feed_forward.w3", # internlm2
  186. ),
  187. MODEL_TENSOR.FFN_UP_EXP: (
  188. "layers.{bid}.feed_forward.experts.{xid}.w3", # mixtral
  189. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
  190. ),
  191. # AWQ-activation gate
  192. MODEL_TENSOR.FFN_ACT: (
  193. "transformer.blocks.{bid}.ffn.act", # mpt
  194. ),
  195. # Feed-forward gate
  196. MODEL_TENSOR.FFN_GATE: (
  197. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact
  198. "layers.{bid}.feed_forward.w1", # llama-pth
  199. "transformer.h.{bid}.mlp.w2", # qwen
  200. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  201. "model.layers.{bid}.feed_forward.w1", # internlm2
  202. ),
  203. MODEL_TENSOR.FFN_GATE_EXP: (
  204. "layers.{bid}.feed_forward.experts.{xid}.w1", # mixtral
  205. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w1", # mixtral
  206. ),
  207. # Feed-forward down
  208. MODEL_TENSOR.FFN_DOWN: (
  209. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  210. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen
  211. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  212. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  213. "h.{bid}.mlp.dense_4h_to_h", # bloom
  214. "model.layers.{bid}.mlp.down_proj", # llama-hf
  215. "layers.{bid}.feed_forward.w2", # llama-pth
  216. "encoder.layer.{bid}.output.dense", # bert
  217. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  218. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  219. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  220. "h.{bid}.mlp.c_proj", # gpt2
  221. "transformer.h.{bid}.mlp.fc2", # phi2
  222. "model.layers.{bid}.mlp.fc2", # phi2
  223. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  224. "model.layers.{bid}.feed_forward.w2", # internlm2
  225. ),
  226. MODEL_TENSOR.FFN_DOWN_EXP: (
  227. "layers.{bid}.feed_forward.experts.{xid}.w2", # mixtral
  228. "model.layers.{bid}.block_sparse_moe.experts.{xid}.w2", # mixtral
  229. ),
  230. MODEL_TENSOR.ATTN_Q_NORM: (
  231. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  232. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  233. ),
  234. MODEL_TENSOR.ATTN_K_NORM: (
  235. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  236. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  237. ),
  238. MODEL_TENSOR.ROPE_FREQS: (
  239. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  240. ),
  241. MODEL_TENSOR.LAYER_OUT_NORM: (
  242. "encoder.layer.{bid}.output.LayerNorm", # bert
  243. )
  244. }
  245. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  246. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  247. self.mapping = {}
  248. for tensor, keys in self.mappings_cfg.items():
  249. if tensor not in MODEL_TENSORS[arch]:
  250. continue
  251. tensor_name = TENSOR_NAMES[tensor]
  252. self.mapping[tensor_name] = (tensor, tensor_name)
  253. for key in keys:
  254. self.mapping[key] = (tensor, tensor_name)
  255. for bid in range(n_blocks):
  256. for tensor, keys in self.block_mappings_cfg.items():
  257. if tensor not in MODEL_TENSORS[arch]:
  258. continue
  259. # TODO: make this configurable
  260. n_experts = 8
  261. for xid in range(n_experts):
  262. tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
  263. self.mapping[tensor_name] = (tensor, tensor_name)
  264. for key in keys:
  265. key = key.format(bid = bid, xid = xid)
  266. self.mapping[key] = (tensor, tensor_name)
  267. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  268. result = self.mapping.get(key)
  269. if result is not None:
  270. return result
  271. for suffix in try_suffixes:
  272. if key.endswith(suffix):
  273. result = self.mapping.get(key[:-len(suffix)])
  274. if result is not None:
  275. return result[0], result[1] + suffix
  276. return None
  277. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  278. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  279. if result is None:
  280. return None
  281. return result[1]
  282. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  283. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  284. if result is None:
  285. return None
  286. return result[0]
  287. def __getitem__(self, key: str) -> str:
  288. try:
  289. return self.mapping[key][1]
  290. except KeyError:
  291. raise KeyError(key)
  292. def __contains__(self, key: str) -> bool:
  293. return key in self.mapping
  294. def __repr__(self) -> str:
  295. return repr(self.mapping)
  296. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  297. return TensorNameMap(arch, n_blocks)