utils.h 3.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104
  1. // Various helper functions and utilities
  2. #pragma once
  3. #include <string>
  4. #include <map>
  5. #include <vector>
  6. #include <random>
  7. #include <thread>
  8. //
  9. // CLI argument parsing
  10. //
  11. struct gpt_params {
  12. int32_t seed = -1; // RNG seed
  13. int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
  14. int32_t n_predict = 128; // new tokens to predict
  15. int32_t repeat_last_n = 64; // last n tokens to penalize
  16. // sampling parameters
  17. int32_t top_k = 40;
  18. float top_p = 0.95f;
  19. float temp = 0.80f;
  20. float repeat_penalty = 1.30f;
  21. int32_t n_batch = 8; // batch size for prompt processing
  22. std::string model = "models/lamma-7B/ggml-model.bin"; // model path
  23. std::string prompt;
  24. bool use_color = false; // use color to distinguish generations and inputs
  25. bool interactive = false; // interactive mode
  26. bool interactive_start = false; // reverse prompt immediately
  27. std::string antiprompt = ""; // string upon seeing which more user input is prompted
  28. };
  29. bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
  30. void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
  31. std::string gpt_random_prompt(std::mt19937 & rng);
  32. //
  33. // Vocab utils
  34. //
  35. struct gpt_vocab {
  36. using id = int32_t;
  37. using token = std::string;
  38. std::map<token, id> token_to_id;
  39. std::map<id, token> id_to_token;
  40. };
  41. void replace(std::string & str, const std::string & needle, const std::string & replacement);
  42. // poor-man's JSON parsing
  43. std::map<std::string, int32_t> json_parse(const std::string & fname);
  44. // split text into tokens
  45. //
  46. // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
  47. //
  48. // Regex (Python):
  49. // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
  50. //
  51. // Regex (C++):
  52. // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
  53. //
  54. std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
  55. // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
  56. // ref: https://github.com/google/sentencepiece
  57. std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
  58. // load the tokens from encoder.json
  59. bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
  60. // sample next token given probabilities for each embedding
  61. //
  62. // - consider only the top K tokens
  63. // - from them, consider only the top tokens with cumulative probability > P
  64. //
  65. gpt_vocab::id llama_sample_top_p_top_k(
  66. const gpt_vocab & vocab,
  67. const float * logits,
  68. std::vector<gpt_vocab::id> & last_n_tokens,
  69. double repeat_penalty,
  70. int top_k,
  71. double top_p,
  72. double temp,
  73. std::mt19937 & rng);
  74. // filer to top K tokens from list of logits
  75. void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k);
  76. //
  77. // Quantization
  78. //
  79. size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
  80. size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);