convert_hf_to_gguf.py 178 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import logging
  5. import argparse
  6. import contextlib
  7. import json
  8. import os
  9. import re
  10. import sys
  11. from enum import IntEnum
  12. from pathlib import Path
  13. from hashlib import sha256
  14. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  15. import math
  16. import numpy as np
  17. import torch
  18. if TYPE_CHECKING:
  19. from torch import Tensor
  20. if 'NO_LOCAL_GGUF' not in os.environ:
  21. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  22. import gguf
  23. logger = logging.getLogger("hf-to-gguf")
  24. ###### MODEL DEFINITIONS ######
  25. class SentencePieceTokenTypes(IntEnum):
  26. NORMAL = 1
  27. UNKNOWN = 2
  28. CONTROL = 3
  29. USER_DEFINED = 4
  30. UNUSED = 5
  31. BYTE = 6
  32. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  33. class Model:
  34. _model_classes: dict[str, type[Model]] = {}
  35. dir_model: Path
  36. ftype: gguf.LlamaFileType
  37. fname_out: Path
  38. is_big_endian: bool
  39. endianess: gguf.GGUFEndian
  40. use_temp_file: bool
  41. lazy: bool
  42. part_names: list[str]
  43. is_safetensors: bool
  44. hparams: dict[str, Any]
  45. block_count: int
  46. tensor_map: gguf.TensorNameMap
  47. tensor_names: set[str] | None
  48. gguf_writer: gguf.GGUFWriter
  49. model_name: str | None
  50. metadata_override: Path | None
  51. dir_model_card: Path
  52. # subclasses should define this!
  53. model_arch: gguf.MODEL_ARCH
  54. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  55. use_temp_file: bool = False, eager: bool = False,
  56. metadata_override: Path | None = None, model_name: str | None = None,
  57. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False, small_first_shard: bool = False):
  58. if type(self) is Model:
  59. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  60. self.dir_model = dir_model
  61. self.ftype = ftype
  62. self.fname_out = fname_out
  63. self.is_big_endian = is_big_endian
  64. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  65. self.use_temp_file = use_temp_file
  66. self.lazy = not eager
  67. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  68. self.is_safetensors = len(self.part_names) > 0
  69. if not self.is_safetensors:
  70. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  71. self.hparams = Model.load_hparams(self.dir_model)
  72. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  73. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  74. self.tensor_names = None
  75. self.metadata_override = metadata_override
  76. self.model_name = model_name
  77. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  78. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  79. if self.ftype == gguf.LlamaFileType.GUESSED:
  80. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  81. _, first_tensor = next(self.get_tensors())
  82. if first_tensor.dtype == torch.float16:
  83. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  84. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  85. else:
  86. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  88. # Configure GGUF Writer
  89. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  90. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  91. @classmethod
  92. def __init_subclass__(cls):
  93. # can't use an abstract property, because overriding it without type errors
  94. # would require using decorated functions instead of simply defining the property
  95. if "model_arch" not in cls.__dict__:
  96. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  97. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  98. key = next((k for k in keys if k in self.hparams), None)
  99. if key is not None:
  100. return self.hparams[key]
  101. if optional:
  102. return None
  103. raise KeyError(f"could not find any of: {keys}")
  104. def set_vocab(self):
  105. self._set_vocab_gpt2()
  106. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  107. tensor_names_from_parts: set[str] = set()
  108. if len(self.part_names) > 1:
  109. self.tensor_names = set()
  110. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  111. index_name += ".index.json"
  112. logger.info(f"gguf: loading model weight map from '{index_name}'")
  113. with open(self.dir_model / index_name, "r", encoding="utf-8") as f:
  114. index: dict[str, Any] = json.load(f)
  115. weight_map = index.get("weight_map")
  116. if weight_map is None or not isinstance(weight_map, dict):
  117. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  118. self.tensor_names.update(weight_map.keys())
  119. else:
  120. self.tensor_names = tensor_names_from_parts
  121. for part_name in self.part_names:
  122. logger.info(f"gguf: loading model part '{part_name}'")
  123. ctx: ContextManager[Any]
  124. if self.is_safetensors:
  125. from safetensors import safe_open
  126. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  127. else:
  128. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  129. with ctx as model_part:
  130. tensor_names_from_parts.update(model_part.keys())
  131. for name in model_part.keys():
  132. if self.is_safetensors:
  133. if self.lazy:
  134. data = model_part.get_slice(name)
  135. data = LazyTorchTensor.from_safetensors_slice(data)
  136. else:
  137. data = model_part.get_tensor(name)
  138. else:
  139. data = model_part[name]
  140. if self.lazy:
  141. data = LazyTorchTensor.from_eager(data)
  142. yield name, data
  143. # only verify tensor name presence; it doesn't matter if they are not in the right files
  144. if len(sym_diff := tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  145. raise ValueError(f"Mismatch between weight map and model parts for tensor names: {sym_diff}")
  146. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  147. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  148. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  149. name: str = gguf.TENSOR_NAMES[key]
  150. if "{bid}" in name:
  151. assert bid is not None
  152. name = name.format(bid=bid)
  153. return name + suffix
  154. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  155. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  156. return False
  157. key_name: str = gguf.TENSOR_NAMES[key]
  158. if "{bid}" in key_name:
  159. if bid is None:
  160. return False
  161. key_name = key_name.format(bid=bid)
  162. else:
  163. if bid is not None:
  164. return False
  165. return name == (key_name + suffix)
  166. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  167. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  168. if new_name is None:
  169. raise ValueError(f"Can not map tensor {name!r}")
  170. return new_name
  171. def set_gguf_parameters(self):
  172. self.gguf_writer.add_block_count(self.block_count)
  173. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  174. self.gguf_writer.add_context_length(n_ctx)
  175. logger.info(f"gguf: context length = {n_ctx}")
  176. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  177. self.gguf_writer.add_embedding_length(n_embd)
  178. logger.info(f"gguf: embedding length = {n_embd}")
  179. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  180. self.gguf_writer.add_feed_forward_length(n_ff)
  181. logger.info(f"gguf: feed forward length = {n_ff}")
  182. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  183. self.gguf_writer.add_head_count(n_head)
  184. logger.info(f"gguf: head count = {n_head}")
  185. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  186. self.gguf_writer.add_head_count_kv(n_head_kv)
  187. logger.info(f"gguf: key-value head count = {n_head_kv}")
  188. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  189. self.gguf_writer.add_rope_freq_base(rope_theta)
  190. logger.info(f"gguf: rope theta = {rope_theta}")
  191. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  192. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  193. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  194. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  195. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  196. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  197. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  198. self.gguf_writer.add_expert_count(n_experts)
  199. logger.info(f"gguf: expert count = {n_experts}")
  200. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  201. self.gguf_writer.add_expert_used_count(n_experts_used)
  202. logger.info(f"gguf: experts used count = {n_experts_used}")
  203. if (head_dim := self.hparams.get("head_dim")) is not None:
  204. self.gguf_writer.add_key_length(head_dim)
  205. self.gguf_writer.add_value_length(head_dim)
  206. self.gguf_writer.add_file_type(self.ftype)
  207. logger.info(f"gguf: file type = {self.ftype}")
  208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  209. del bid # unused
  210. return [(self.map_tensor_name(name), data_torch)]
  211. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  212. del name, new_name, bid, n_dims # unused
  213. return False
  214. def prepare_tensors(self):
  215. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  216. for name, data_torch in self.get_tensors():
  217. # we don't need these
  218. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  219. continue
  220. old_dtype = data_torch.dtype
  221. # convert any unsupported data types to float32
  222. if data_torch.dtype not in (torch.float16, torch.float32):
  223. data_torch = data_torch.to(torch.float32)
  224. # use the first number-like part of the tensor name as the block id
  225. bid = None
  226. for part in name.split("."):
  227. if part.isdecimal():
  228. bid = int(part)
  229. break
  230. for new_name, data in ((n, d.squeeze().numpy()) for n, d in self.modify_tensors(data_torch, name, bid)):
  231. data: np.ndarray # type hint
  232. n_dims = len(data.shape)
  233. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  234. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  235. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  236. data_qtype = gguf.GGMLQuantizationType.F32
  237. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  238. # Some tensor types are always in float32
  239. if data_qtype is False and (
  240. any(
  241. self.match_model_tensor_name(new_name, key, bid)
  242. for key in (
  243. gguf.MODEL_TENSOR.FFN_GATE_INP,
  244. gguf.MODEL_TENSOR.POS_EMBD,
  245. gguf.MODEL_TENSOR.TOKEN_TYPES,
  246. )
  247. )
  248. or not name.endswith(".weight")
  249. ):
  250. data_qtype = gguf.GGMLQuantizationType.F32
  251. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  252. if isinstance(data_qtype, bool):
  253. if self.ftype == gguf.LlamaFileType.ALL_F32:
  254. data_qtype = gguf.GGMLQuantizationType.F32
  255. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  256. data_qtype = gguf.GGMLQuantizationType.F16
  257. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  258. data_qtype = gguf.GGMLQuantizationType.BF16
  259. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  260. data_qtype = gguf.GGMLQuantizationType.Q8_0
  261. else:
  262. raise ValueError(f"Unknown file type: {self.ftype.name}")
  263. try:
  264. data = gguf.quants.quantize(data, data_qtype)
  265. except gguf.QuantError as e:
  266. logger.warning("%s, %s", e, "falling back to F16")
  267. data_qtype = gguf.GGMLQuantizationType.F16
  268. data = gguf.quants.quantize(data, data_qtype)
  269. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  270. # reverse shape to make it similar to the internal ggml dimension order
  271. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  272. # n_dims is implicit in the shape
  273. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  274. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  275. def set_type(self):
  276. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  277. def prepare_metadata(self, vocab_only: bool):
  278. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  279. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  280. # Fallback to model directory name if metadata name is still missing
  281. if self.metadata.name is None:
  282. self.metadata.name = self.dir_model.name
  283. # Generate parameter weight class (useful for leader boards) if not yet determined
  284. if self.metadata.size_label is None and total_params > 0:
  285. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  286. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  287. output_type: str = self.ftype.name.partition("_")[2]
  288. # Filename Output
  289. if self.fname_out.is_dir():
  290. # Generate default filename based on model specification and available metadata
  291. if not vocab_only:
  292. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  293. else:
  294. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  295. # Use the default filename
  296. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  297. else:
  298. # Output path is a custom defined templated filename
  299. # Note: `not is_dir()` is used because `.is_file()` will not detect
  300. # file template strings as it doesn't actually exist as a file
  301. # Process templated file name with the output ftype, useful with the "auto" ftype
  302. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  303. self.set_type()
  304. logger.info("Set meta model")
  305. self.metadata.set_gguf_meta_model(self.gguf_writer)
  306. logger.info("Set model parameters")
  307. self.set_gguf_parameters()
  308. logger.info("Set model tokenizer")
  309. self.set_vocab()
  310. logger.info("Set model quantization version")
  311. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  312. def write(self):
  313. self.prepare_tensors()
  314. self.prepare_metadata(vocab_only=False)
  315. self.gguf_writer.write_header_to_file(path=self.fname_out)
  316. self.gguf_writer.write_kv_data_to_file()
  317. self.gguf_writer.write_tensors_to_file(progress=True)
  318. self.gguf_writer.close()
  319. def write_vocab(self):
  320. if len(self.gguf_writer.tensors) != 1:
  321. raise ValueError('Splitting the vocabulary is not supported')
  322. self.prepare_metadata(vocab_only=True)
  323. self.gguf_writer.write_header_to_file(path=self.fname_out)
  324. self.gguf_writer.write_kv_data_to_file()
  325. self.gguf_writer.close()
  326. @staticmethod
  327. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  328. part_names: list[str] = []
  329. for filename in os.listdir(dir_model):
  330. if filename.startswith(prefix) and filename.endswith(suffix):
  331. part_names.append(filename)
  332. part_names.sort()
  333. return part_names
  334. @staticmethod
  335. def load_hparams(dir_model: Path):
  336. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  337. return json.load(f)
  338. @classmethod
  339. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  340. assert names
  341. def func(modelcls: AnyModel) -> AnyModel:
  342. for name in names:
  343. cls._model_classes[name] = modelcls
  344. return modelcls
  345. return func
  346. @classmethod
  347. def from_model_architecture(cls, arch: str) -> type[Model]:
  348. try:
  349. return cls._model_classes[arch]
  350. except KeyError:
  351. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  352. def does_token_look_special(self, token: str | bytes) -> bool:
  353. if isinstance(token, (bytes, bytearray)):
  354. token_text = token.decode(encoding="utf-8")
  355. elif isinstance(token, memoryview):
  356. token_text = token.tobytes().decode(encoding="utf-8")
  357. else:
  358. token_text = token
  359. # Some models mark some added tokens which ought to be control tokens as not special.
  360. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  361. seems_special = token_text in (
  362. "<pad>", # deepseek-coder
  363. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  364. )
  365. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  366. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  367. # TODO: should these be marked as UNUSED instead? (maybe not)
  368. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  369. return seems_special
  370. # used for GPT-2 BPE and WordPiece vocabs
  371. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  372. tokens: list[str] = []
  373. toktypes: list[int] = []
  374. from transformers import AutoTokenizer
  375. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  376. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  377. assert max(tokenizer.vocab.values()) < vocab_size
  378. tokpre = self.get_vocab_base_pre(tokenizer)
  379. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  380. added_vocab = tokenizer.get_added_vocab()
  381. for i in range(vocab_size):
  382. if i not in reverse_vocab:
  383. tokens.append(f"[PAD{i}]")
  384. toktypes.append(gguf.TokenType.UNUSED)
  385. else:
  386. token: str = reverse_vocab[i]
  387. if token in added_vocab:
  388. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  389. toktypes.append(gguf.TokenType.CONTROL)
  390. else:
  391. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  392. toktypes.append(gguf.TokenType.USER_DEFINED)
  393. else:
  394. toktypes.append(gguf.TokenType.NORMAL)
  395. tokens.append(token)
  396. return tokens, toktypes, tokpre
  397. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  398. # do not modify it manually!
  399. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  400. # Marker: Start get_vocab_base_pre
  401. def get_vocab_base_pre(self, tokenizer) -> str:
  402. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  403. # is specific for the BPE pre-tokenizer used by the model
  404. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  405. # use in llama.cpp to implement the same pre-tokenizer
  406. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  407. chktok = tokenizer.encode(chktxt)
  408. chkhsh = sha256(str(chktok).encode()).hexdigest()
  409. logger.debug(f"chktok: {chktok}")
  410. logger.debug(f"chkhsh: {chkhsh}")
  411. res = None
  412. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  413. # or pull the latest version of the model from Huggingface
  414. # don't edit the hashes manually!
  415. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  416. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  417. res = "llama-bpe"
  418. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  419. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  420. res = "deepseek-llm"
  421. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  422. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  423. res = "deepseek-coder"
  424. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  425. # ref: https://huggingface.co/tiiuae/falcon-7b
  426. res = "falcon"
  427. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  428. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  429. res = "bert-bge"
  430. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  431. # ref: https://huggingface.co/mosaicml/mpt-7b
  432. res = "mpt"
  433. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  434. # ref: https://huggingface.co/bigcode/starcoder2-3b
  435. res = "starcoder"
  436. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  437. # ref: https://huggingface.co/openai-community/gpt2
  438. res = "gpt-2"
  439. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  440. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  441. res = "stablelm2"
  442. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  443. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  444. res = "refact"
  445. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  446. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  447. res = "command-r"
  448. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  449. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  450. res = "qwen2"
  451. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  452. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  453. res = "olmo"
  454. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  455. # ref: https://huggingface.co/databricks/dbrx-base
  456. res = "dbrx"
  457. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  458. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  459. res = "jina-v2-en"
  460. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  461. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  462. res = "jina-v2-es"
  463. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  464. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  465. res = "jina-v2-de"
  466. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  467. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  468. res = "smaug-bpe"
  469. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  470. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  471. res = "poro-chat"
  472. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  473. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  474. res = "jina-v2-code"
  475. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  476. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  477. res = "chatglm-bpe"
  478. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  479. # ref: https://huggingface.co/LumiOpen/Viking-7B
  480. res = "viking"
  481. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  482. # ref: https://huggingface.co/core42/jais-13b
  483. res = "jais"
  484. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  485. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  486. res = "codeshell"
  487. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  488. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  489. res = "tekken"
  490. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  491. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  492. res = "smollm"
  493. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  494. # ref: https://huggingface.co/bigscience/bloom
  495. res = "bloom"
  496. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  497. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  498. res = "gpt3-finnish"
  499. if res is None:
  500. logger.warning("\n")
  501. logger.warning("**************************************************************************************")
  502. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  503. logger.warning("** There are 2 possible reasons for this:")
  504. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  505. logger.warning("** - the pre-tokenization config has changed upstream")
  506. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  507. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  508. logger.warning("**")
  509. logger.warning(f"** chkhsh: {chkhsh}")
  510. logger.warning("**************************************************************************************")
  511. logger.warning("\n")
  512. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  513. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  514. logger.debug(f"chkhsh: {chkhsh}")
  515. return res
  516. # Marker: End get_vocab_base_pre
  517. def _set_vocab_gpt2(self) -> None:
  518. tokens, toktypes, tokpre = self.get_vocab_base()
  519. self.gguf_writer.add_tokenizer_model("gpt2")
  520. self.gguf_writer.add_tokenizer_pre(tokpre)
  521. self.gguf_writer.add_token_list(tokens)
  522. self.gguf_writer.add_token_types(toktypes)
  523. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  524. special_vocab.add_to_gguf(self.gguf_writer)
  525. def _set_vocab_qwen(self):
  526. dir_model = self.dir_model
  527. hparams = self.hparams
  528. tokens: list[str] = []
  529. toktypes: list[int] = []
  530. from transformers import AutoTokenizer
  531. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  532. vocab_size = hparams["vocab_size"]
  533. assert max(tokenizer.get_vocab().values()) < vocab_size
  534. tokpre = self.get_vocab_base_pre(tokenizer)
  535. merges = []
  536. vocab = {}
  537. mergeable_ranks = tokenizer.mergeable_ranks
  538. for token, rank in mergeable_ranks.items():
  539. vocab[QwenModel.token_bytes_to_string(token)] = rank
  540. if len(token) == 1:
  541. continue
  542. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  543. assert len(merged) == 2
  544. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  545. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  546. added_vocab = tokenizer.special_tokens
  547. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  548. for i in range(vocab_size):
  549. if i not in reverse_vocab:
  550. tokens.append(f"[PAD{i}]")
  551. toktypes.append(gguf.TokenType.UNUSED)
  552. elif reverse_vocab[i] in added_vocab:
  553. tokens.append(reverse_vocab[i])
  554. toktypes.append(gguf.TokenType.CONTROL)
  555. else:
  556. tokens.append(reverse_vocab[i])
  557. toktypes.append(gguf.TokenType.NORMAL)
  558. self.gguf_writer.add_tokenizer_model("gpt2")
  559. self.gguf_writer.add_tokenizer_pre(tokpre)
  560. self.gguf_writer.add_token_list(tokens)
  561. self.gguf_writer.add_token_types(toktypes)
  562. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  563. special_vocab.merges = merges
  564. # only add special tokens when they were not already loaded from config.json
  565. if len(special_vocab.special_token_ids) == 0:
  566. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  567. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  568. # this one is usually not in config.json anyway
  569. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  570. special_vocab.add_to_gguf(self.gguf_writer)
  571. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  572. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  573. self.gguf_writer.add_tokenizer_model("llama")
  574. self.gguf_writer.add_tokenizer_pre("default")
  575. self.gguf_writer.add_token_list(tokens)
  576. self.gguf_writer.add_token_scores(scores)
  577. self.gguf_writer.add_token_types(toktypes)
  578. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  579. special_vocab.add_to_gguf(self.gguf_writer)
  580. def _create_vocab_sentencepiece(self):
  581. from sentencepiece import SentencePieceProcessor
  582. tokenizer_path = self.dir_model / 'tokenizer.model'
  583. if not tokenizer_path.is_file():
  584. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  585. tokenizer = SentencePieceProcessor()
  586. tokenizer.LoadFromFile(str(tokenizer_path))
  587. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  588. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  589. scores: list[float] = [-10000.0] * vocab_size
  590. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  591. for token_id in range(tokenizer.vocab_size()):
  592. piece = tokenizer.IdToPiece(token_id)
  593. text = piece.encode("utf-8")
  594. score = tokenizer.GetScore(token_id)
  595. toktype = SentencePieceTokenTypes.NORMAL
  596. if tokenizer.IsUnknown(token_id):
  597. toktype = SentencePieceTokenTypes.UNKNOWN
  598. elif tokenizer.IsControl(token_id):
  599. toktype = SentencePieceTokenTypes.CONTROL
  600. elif tokenizer.IsUnused(token_id):
  601. toktype = SentencePieceTokenTypes.UNUSED
  602. elif tokenizer.IsByte(token_id):
  603. toktype = SentencePieceTokenTypes.BYTE
  604. tokens[token_id] = text
  605. scores[token_id] = score
  606. toktypes[token_id] = toktype
  607. added_tokens_file = self.dir_model / 'added_tokens.json'
  608. if added_tokens_file.is_file():
  609. with open(added_tokens_file, "r", encoding="utf-8") as f:
  610. added_tokens_json = json.load(f)
  611. for key in added_tokens_json:
  612. token_id = added_tokens_json[key]
  613. if token_id >= vocab_size:
  614. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  615. continue
  616. tokens[token_id] = key.encode("utf-8")
  617. scores[token_id] = -1000.0
  618. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  619. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  620. if tokenizer_config_file.is_file():
  621. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  622. tokenizer_config_json = json.load(f)
  623. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  624. for token_id, token_data in added_tokens_decoder.items():
  625. token_id = int(token_id)
  626. token: str = token_data["content"]
  627. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  628. if tokens[token_id] != token.encode("utf-8"):
  629. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  630. if token_data.get("special") or self.does_token_look_special(token):
  631. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  632. else:
  633. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  634. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  635. scores[token_id] = -1000.0
  636. tokens[token_id] = token.encode("utf-8")
  637. if vocab_size > len(tokens):
  638. pad_count = vocab_size - len(tokens)
  639. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  640. for i in range(1, pad_count + 1):
  641. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  642. scores.append(-1000.0)
  643. toktypes.append(SentencePieceTokenTypes.UNUSED)
  644. return tokens, scores, toktypes
  645. def _set_vocab_llama_hf(self):
  646. vocab = gguf.LlamaHfVocab(self.dir_model)
  647. tokens = []
  648. scores = []
  649. toktypes = []
  650. for text, score, toktype in vocab.all_tokens():
  651. tokens.append(text)
  652. scores.append(score)
  653. toktypes.append(toktype)
  654. assert len(tokens) == vocab.vocab_size
  655. self.gguf_writer.add_tokenizer_model("llama")
  656. self.gguf_writer.add_tokenizer_pre("default")
  657. self.gguf_writer.add_token_list(tokens)
  658. self.gguf_writer.add_token_scores(scores)
  659. self.gguf_writer.add_token_types(toktypes)
  660. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  661. special_vocab.add_to_gguf(self.gguf_writer)
  662. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  663. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  664. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  665. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  666. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  667. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  668. assert field # tokenizer model
  669. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  670. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  671. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  672. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  673. assert field # token list
  674. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  675. if model_name == "llama-spm":
  676. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  677. assert field # token scores
  678. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  679. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  680. assert field # token types
  681. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  682. if model_name != "llama-spm":
  683. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  684. assert field # token merges
  685. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  686. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  687. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  688. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  689. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  690. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  691. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  692. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  693. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  694. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  695. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  696. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  697. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  698. @Model.register("GPTNeoXForCausalLM")
  699. class GPTNeoXModel(Model):
  700. model_arch = gguf.MODEL_ARCH.GPTNEOX
  701. def set_gguf_parameters(self):
  702. block_count = self.hparams["num_hidden_layers"]
  703. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  704. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  705. self.gguf_writer.add_block_count(block_count)
  706. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  707. self.gguf_writer.add_rope_dimension_count(
  708. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  709. )
  710. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  711. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  712. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  714. del bid # unused
  715. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  716. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  717. tensors: list[tuple[str, Tensor]] = []
  718. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  719. # Map bloom-style qkv_linear to gpt-style qkv_linear
  720. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  721. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  722. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  723. data_torch = torch.cat(
  724. (
  725. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  726. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  727. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  728. ),
  729. dim=0,
  730. )
  731. logger.info("re-format attention.linear_qkv.weight")
  732. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  733. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  734. data_torch = torch.cat(
  735. (
  736. qkv_bias[:, 0, :].reshape((n_embed,)),
  737. qkv_bias[:, 1, :].reshape((n_embed,)),
  738. qkv_bias[:, 2, :].reshape((n_embed,)),
  739. ),
  740. dim=0,
  741. )
  742. logger.info("re-format attention.linear_qkv.bias")
  743. tensors.append((self.map_tensor_name(name), data_torch))
  744. return tensors
  745. @Model.register("BloomForCausalLM", "BloomModel")
  746. class BloomModel(Model):
  747. model_arch = gguf.MODEL_ARCH.BLOOM
  748. def set_gguf_parameters(self):
  749. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  750. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  751. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  752. self.gguf_writer.add_embedding_length(n_embed)
  753. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  754. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  755. self.gguf_writer.add_head_count(n_head)
  756. self.gguf_writer.add_head_count_kv(n_head)
  757. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  758. self.gguf_writer.add_file_type(self.ftype)
  759. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  760. del bid # unused
  761. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  762. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  763. name = re.sub(r'transformer\.', '', name)
  764. tensors: list[tuple[str, Tensor]] = []
  765. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  766. # Map bloom-style qkv_linear to gpt-style qkv_linear
  767. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  768. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  769. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  770. data_torch = torch.cat(
  771. (
  772. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  773. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  774. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  775. ),
  776. dim=0,
  777. )
  778. logger.info("re-format attention.linear_qkv.weight")
  779. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  780. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  781. data_torch = torch.cat(
  782. (
  783. qkv_bias[:, 0, :].reshape((n_embed,)),
  784. qkv_bias[:, 1, :].reshape((n_embed,)),
  785. qkv_bias[:, 2, :].reshape((n_embed,)),
  786. ),
  787. dim=0,
  788. )
  789. logger.info("re-format attention.linear_qkv.bias")
  790. tensors.append((self.map_tensor_name(name), data_torch))
  791. if name == "word_embeddings.weight":
  792. assert self.tensor_names is not None
  793. # TODO: tie them at runtime, don't duplicate in the model file
  794. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  795. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  796. return tensors
  797. @Model.register("MPTForCausalLM")
  798. class MPTModel(Model):
  799. model_arch = gguf.MODEL_ARCH.MPT
  800. def set_vocab(self):
  801. try:
  802. self._set_vocab_gpt2()
  803. except Exception:
  804. # Fallback for SEA-LION model
  805. self._set_vocab_sentencepiece()
  806. self.gguf_writer.add_add_bos_token(False)
  807. self.gguf_writer.add_pad_token_id(3)
  808. self.gguf_writer.add_eos_token_id(1)
  809. self.gguf_writer.add_unk_token_id(0)
  810. def set_gguf_parameters(self):
  811. block_count = self.hparams["n_layers"]
  812. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  813. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  814. self.gguf_writer.add_block_count(block_count)
  815. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  816. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  817. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  818. self.gguf_writer.add_head_count_kv(kv_n_heads)
  819. self.gguf_writer.add_layer_norm_eps(1e-5)
  820. if self.hparams["attn_config"]["clip_qkv"] is not None:
  821. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  822. if self.hparams["attn_config"]["alibi"]:
  823. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  824. else:
  825. self.gguf_writer.add_max_alibi_bias(0.0)
  826. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  827. del bid # unused
  828. if "scales" in name:
  829. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  830. new_name = new_name.replace("scales", "act.scales")
  831. else:
  832. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  833. return [(new_name, data_torch)]
  834. @Model.register("OrionForCausalLM")
  835. class OrionModel(Model):
  836. model_arch = gguf.MODEL_ARCH.ORION
  837. def set_vocab(self):
  838. self._set_vocab_sentencepiece()
  839. def set_gguf_parameters(self):
  840. block_count = self.hparams["num_hidden_layers"]
  841. head_count = self.hparams["num_attention_heads"]
  842. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  843. ctx_length = 0
  844. if "max_sequence_length" in self.hparams:
  845. ctx_length = self.hparams["max_sequence_length"]
  846. elif "max_position_embeddings" in self.hparams:
  847. ctx_length = self.hparams["max_position_embeddings"]
  848. elif "model_max_length" in self.hparams:
  849. ctx_length = self.hparams["model_max_length"]
  850. else:
  851. raise ValueError("gguf: can not find ctx length parameter.")
  852. self.gguf_writer.add_file_type(self.ftype)
  853. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  854. self.gguf_writer.add_context_length(ctx_length)
  855. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  856. self.gguf_writer.add_block_count(block_count)
  857. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  858. self.gguf_writer.add_head_count(head_count)
  859. self.gguf_writer.add_head_count_kv(head_count_kv)
  860. # note: config provides rms norm but it is actually layer norm
  861. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  862. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  863. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  864. class BaichuanModel(Model):
  865. model_arch = gguf.MODEL_ARCH.BAICHUAN
  866. def set_vocab(self):
  867. self._set_vocab_sentencepiece()
  868. def set_gguf_parameters(self):
  869. block_count = self.hparams["num_hidden_layers"]
  870. head_count = self.hparams["num_attention_heads"]
  871. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  872. ctx_length = 0
  873. if "max_sequence_length" in self.hparams:
  874. ctx_length = self.hparams["max_sequence_length"]
  875. elif "max_position_embeddings" in self.hparams:
  876. ctx_length = self.hparams["max_position_embeddings"]
  877. elif "model_max_length" in self.hparams:
  878. ctx_length = self.hparams["model_max_length"]
  879. else:
  880. raise ValueError("gguf: can not find ctx length parameter.")
  881. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  882. self.gguf_writer.add_context_length(ctx_length)
  883. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  884. self.gguf_writer.add_block_count(block_count)
  885. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  886. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  887. self.gguf_writer.add_head_count(head_count)
  888. self.gguf_writer.add_head_count_kv(head_count_kv)
  889. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  890. self.gguf_writer.add_file_type(self.ftype)
  891. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  892. if self.hparams["rope_scaling"].get("type") == "linear":
  893. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  894. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  895. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  896. head_count = self.hparams["num_attention_heads"]
  897. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  898. tensors: list[tuple[str, Tensor]] = []
  899. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  900. logger.info(f"Unpacking and permuting layer {bid}")
  901. tensors = [
  902. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  903. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  904. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  905. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  906. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  907. self._reverse_hf_part(data_torch, 2)),
  908. ]
  909. else:
  910. tensors = [(self.map_tensor_name(name), data_torch)]
  911. return tensors
  912. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  913. if n_kv_head is not None and n_head != n_kv_head:
  914. n_head //= n_kv_head
  915. return (
  916. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  917. .swapaxes(1, 2)
  918. .reshape(weights.shape)
  919. )
  920. def _reverse_hf_permute_part(
  921. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  922. ) -> Tensor:
  923. r = weights.shape[0] // 3
  924. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  925. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  926. r = weights.shape[0] // 3
  927. return weights[r * n_part:r * n_part + r, ...]
  928. @Model.register("XverseForCausalLM")
  929. class XverseModel(Model):
  930. model_arch = gguf.MODEL_ARCH.XVERSE
  931. def set_vocab(self):
  932. assert (self.dir_model / "tokenizer.json").is_file()
  933. dir_model = self.dir_model
  934. hparams = self.hparams
  935. tokens: list[bytes] = []
  936. toktypes: list[int] = []
  937. from transformers import AutoTokenizer
  938. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  939. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  940. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  941. # because vocab_size is the count of items, and indexes start at 0.
  942. max_vocab_index = max(tokenizer.get_vocab().values())
  943. if max_vocab_index >= vocab_size:
  944. raise ValueError("Vocabulary size exceeds expected maximum size.")
  945. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  946. added_vocab = tokenizer.get_added_vocab()
  947. for token_id in range(vocab_size):
  948. token_text = reverse_vocab[token_id].encode('utf-8')
  949. # replace "\x00" to string with length > 0
  950. if token_text == b"\x00":
  951. toktype = gguf.TokenType.BYTE # special
  952. token_text = f"<{token_text}>".encode('utf-8')
  953. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  954. toktype = gguf.TokenType.BYTE # special
  955. elif reverse_vocab[token_id] in added_vocab:
  956. if tokenizer.added_tokens_decoder[token_id].special:
  957. toktype = gguf.TokenType.CONTROL
  958. else:
  959. toktype = gguf.TokenType.USER_DEFINED
  960. else:
  961. toktype = gguf.TokenType.NORMAL
  962. tokens.append(token_text)
  963. toktypes.append(toktype)
  964. self.gguf_writer.add_tokenizer_model("llama")
  965. self.gguf_writer.add_tokenizer_pre("default")
  966. self.gguf_writer.add_token_list(tokens)
  967. self.gguf_writer.add_token_types(toktypes)
  968. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  969. special_vocab.add_to_gguf(self.gguf_writer)
  970. def set_gguf_parameters(self):
  971. block_count = self.hparams["num_hidden_layers"]
  972. head_count = self.hparams["num_attention_heads"]
  973. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  974. ctx_length = 0
  975. if "max_sequence_length" in self.hparams:
  976. ctx_length = self.hparams["max_sequence_length"]
  977. elif "max_position_embeddings" in self.hparams:
  978. ctx_length = self.hparams["max_position_embeddings"]
  979. elif "model_max_length" in self.hparams:
  980. ctx_length = self.hparams["model_max_length"]
  981. else:
  982. raise ValueError("gguf: can not find ctx length parameter.")
  983. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  984. self.gguf_writer.add_context_length(ctx_length)
  985. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  986. self.gguf_writer.add_block_count(block_count)
  987. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  988. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  989. self.gguf_writer.add_head_count(head_count)
  990. self.gguf_writer.add_head_count_kv(head_count_kv)
  991. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  992. self.gguf_writer.add_file_type(self.ftype)
  993. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  994. if self.hparams["rope_scaling"].get("type") == "linear":
  995. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  996. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  998. del bid # unused
  999. head_count = self.hparams["num_attention_heads"]
  1000. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1001. # HF models permute some of the tensors, so we need to undo that
  1002. if name.endswith("q_proj.weight"):
  1003. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1004. if name.endswith("k_proj.weight"):
  1005. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1006. return [(self.map_tensor_name(name), data_torch)]
  1007. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1008. if n_kv_head is not None and n_head != n_kv_head:
  1009. n_head //= n_kv_head
  1010. return (
  1011. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1012. .swapaxes(1, 2)
  1013. .reshape(weights.shape)
  1014. )
  1015. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1016. class FalconModel(Model):
  1017. model_arch = gguf.MODEL_ARCH.FALCON
  1018. def set_gguf_parameters(self):
  1019. block_count = self.hparams.get("num_hidden_layers")
  1020. if block_count is None:
  1021. block_count = self.hparams["n_layer"] # old name
  1022. n_head = self.hparams.get("num_attention_heads")
  1023. if n_head is None:
  1024. n_head = self.hparams["n_head"] # old name
  1025. n_head_kv = self.hparams.get("num_kv_heads")
  1026. if n_head_kv is None:
  1027. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1028. self.gguf_writer.add_context_length(2048) # not in config.json
  1029. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1030. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1031. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1032. self.gguf_writer.add_block_count(block_count)
  1033. self.gguf_writer.add_head_count(n_head)
  1034. self.gguf_writer.add_head_count_kv(n_head_kv)
  1035. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1036. self.gguf_writer.add_file_type(self.ftype)
  1037. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1038. del bid # unused
  1039. # QKV tensor transform
  1040. # The original query_key_value tensor contains n_head_kv "kv groups",
  1041. # each consisting of n_head/n_head_kv query weights followed by one key
  1042. # and one value weight (shared by all query heads in the kv group).
  1043. # This layout makes it a big pain to work with in GGML.
  1044. # So we rearrange them here,, so that we have n_head query weights
  1045. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1046. # in contiguous fashion.
  1047. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1048. if "query_key_value" in name:
  1049. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1050. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1051. head_dim = self.hparams["hidden_size"] // n_head
  1052. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1053. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1054. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1055. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1056. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1057. return [(self.map_tensor_name(name), data_torch)]
  1058. @Model.register("GPTBigCodeForCausalLM")
  1059. class StarCoderModel(Model):
  1060. model_arch = gguf.MODEL_ARCH.STARCODER
  1061. def set_gguf_parameters(self):
  1062. block_count = self.hparams["n_layer"]
  1063. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1064. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1065. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1066. self.gguf_writer.add_block_count(block_count)
  1067. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1068. self.gguf_writer.add_head_count_kv(1)
  1069. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1070. self.gguf_writer.add_file_type(self.ftype)
  1071. @Model.register("GPTRefactForCausalLM")
  1072. class RefactModel(Model):
  1073. model_arch = gguf.MODEL_ARCH.REFACT
  1074. def set_vocab(self):
  1075. super().set_vocab()
  1076. # TODO: how to determine special FIM tokens automatically?
  1077. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1078. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1079. special_vocab._set_special_token("prefix", 1)
  1080. special_vocab._set_special_token("suffix", 3)
  1081. special_vocab._set_special_token("middle", 2)
  1082. special_vocab.chat_template = None # do not add it twice
  1083. special_vocab.add_to_gguf(self.gguf_writer)
  1084. def set_gguf_parameters(self):
  1085. hidden_dim = self.hparams["n_embd"]
  1086. inner_dim = 4 * hidden_dim
  1087. hidden_dim = int(2 * inner_dim / 3)
  1088. multiple_of = 256
  1089. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1090. block_count = self.hparams["n_layer"]
  1091. # refact uses Alibi. So this is from config.json which might be used by training.
  1092. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1093. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1094. self.gguf_writer.add_feed_forward_length(ff_dim)
  1095. self.gguf_writer.add_block_count(block_count)
  1096. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1097. self.gguf_writer.add_head_count_kv(1)
  1098. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1099. self.gguf_writer.add_file_type(self.ftype)
  1100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1101. hidden_dim = self.hparams["n_embd"]
  1102. inner_dim = 4 * hidden_dim
  1103. hidden_dim = int(2 * inner_dim / 3)
  1104. multiple_of = 256
  1105. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1106. n_head = self.hparams["n_head"]
  1107. n_head_kv = 1
  1108. head_dim = self.hparams["n_embd"] // n_head
  1109. tensors: list[tuple[str, Tensor]] = []
  1110. if bid is not None:
  1111. if name == f"transformer.h.{bid}.attn.kv.weight":
  1112. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1113. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1114. elif name == f"transformer.h.{bid}.attn.q.weight":
  1115. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1116. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1117. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1118. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1119. if len(tensors) == 0:
  1120. tensors.append((self.map_tensor_name(name), data_torch))
  1121. return tensors
  1122. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1123. class StableLMModel(Model):
  1124. model_arch = gguf.MODEL_ARCH.STABLELM
  1125. def set_vocab(self):
  1126. if (self.dir_model / "tokenizer.json").is_file():
  1127. self._set_vocab_gpt2()
  1128. else:
  1129. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1130. self._set_vocab_qwen()
  1131. def set_gguf_parameters(self):
  1132. hparams = self.hparams
  1133. block_count = hparams["num_hidden_layers"]
  1134. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1135. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1136. self.gguf_writer.add_block_count(block_count)
  1137. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1138. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1139. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1140. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1141. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1142. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1143. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1144. self.gguf_writer.add_file_type(self.ftype)
  1145. _q_norms: list[dict[str, Tensor]] | None = None
  1146. _k_norms: list[dict[str, Tensor]] | None = None
  1147. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1148. n_head = self.hparams["num_attention_heads"]
  1149. n_kv_head = self.hparams["num_key_value_heads"]
  1150. if name.find("q_layernorm.norms") != -1:
  1151. assert bid is not None
  1152. if self._q_norms is None:
  1153. self._q_norms = [{} for _ in range(self.block_count)]
  1154. self._q_norms[bid][name] = data_torch
  1155. if len(self._q_norms[bid]) >= n_head:
  1156. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1157. else:
  1158. return []
  1159. if name.find("k_layernorm.norms") != -1:
  1160. assert bid is not None
  1161. if self._k_norms is None:
  1162. self._k_norms = [{} for _ in range(self.block_count)]
  1163. self._k_norms[bid][name] = data_torch
  1164. if len(self._k_norms[bid]) >= n_kv_head:
  1165. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1166. else:
  1167. return []
  1168. return [(self.map_tensor_name(name), data_torch)]
  1169. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1170. datas: list[Tensor] = []
  1171. # extract the norms in order
  1172. for xid in range(n_head):
  1173. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1174. datas.append(norms[ename])
  1175. del norms[ename]
  1176. data_torch = torch.stack(datas, dim=0)
  1177. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1178. new_name = self.map_tensor_name(merged_name)
  1179. return [(new_name, data_torch)]
  1180. def prepare_tensors(self):
  1181. super().prepare_tensors()
  1182. if self._q_norms is not None or self._k_norms is not None:
  1183. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1184. norms = (
  1185. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1186. ) + (
  1187. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1188. )
  1189. if len(norms) > 0:
  1190. raise ValueError(f"Unprocessed norms: {norms}")
  1191. @Model.register("LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1192. class LlamaModel(Model):
  1193. model_arch = gguf.MODEL_ARCH.LLAMA
  1194. def set_vocab(self):
  1195. try:
  1196. self._set_vocab_sentencepiece()
  1197. except FileNotFoundError:
  1198. try:
  1199. self._set_vocab_llama_hf()
  1200. except (FileNotFoundError, TypeError):
  1201. # Llama 3
  1202. self._set_vocab_gpt2()
  1203. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1204. if self.hparams.get("vocab_size", 32000) == 32016:
  1205. special_vocab = gguf.SpecialVocab(
  1206. self.dir_model, load_merges=False,
  1207. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1208. )
  1209. special_vocab._set_special_token("prefix", 32007)
  1210. special_vocab._set_special_token("suffix", 32008)
  1211. special_vocab._set_special_token("middle", 32009)
  1212. special_vocab._set_special_token("eot", 32010)
  1213. special_vocab.add_to_gguf(self.gguf_writer)
  1214. def set_gguf_parameters(self):
  1215. super().set_gguf_parameters()
  1216. hparams = self.hparams
  1217. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1218. if "head_dim" in hparams:
  1219. rope_dim = hparams["head_dim"]
  1220. else:
  1221. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1222. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1223. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1224. if self.hparams["rope_scaling"].get("type") == "linear":
  1225. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1226. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1227. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1228. if tokenizer_config_file.is_file():
  1229. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1230. tokenizer_config_json = json.load(f)
  1231. if "add_prefix_space" in tokenizer_config_json:
  1232. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1233. # Apply to granite small models only
  1234. if self.hparams.get("vocab_size", 32000) == 49152:
  1235. self.gguf_writer.add_add_bos_token(False)
  1236. @staticmethod
  1237. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1238. if n_head_kv is not None and n_head != n_head_kv:
  1239. n_head = n_head_kv
  1240. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1241. .swapaxes(1, 2)
  1242. .reshape(weights.shape))
  1243. _experts: list[dict[str, Tensor]] | None = None
  1244. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1245. n_head = self.hparams["num_attention_heads"]
  1246. n_kv_head = self.hparams.get("num_key_value_heads")
  1247. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1248. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1249. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1250. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1251. # process the experts separately
  1252. if name.find("block_sparse_moe.experts") != -1:
  1253. n_experts = self.hparams["num_local_experts"]
  1254. assert bid is not None
  1255. if self._experts is None:
  1256. self._experts = [{} for _ in range(self.block_count)]
  1257. self._experts[bid][name] = data_torch
  1258. if len(self._experts[bid]) >= n_experts * 3:
  1259. tensors: list[tuple[str, Tensor]] = []
  1260. # merge the experts into a single 3d tensor
  1261. for wid in ["w1", "w2", "w3"]:
  1262. datas: list[Tensor] = []
  1263. for xid in range(n_experts):
  1264. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1265. datas.append(self._experts[bid][ename])
  1266. del self._experts[bid][ename]
  1267. data_torch = torch.stack(datas, dim=0)
  1268. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1269. new_name = self.map_tensor_name(merged_name)
  1270. tensors.append((new_name, data_torch))
  1271. return tensors
  1272. else:
  1273. return []
  1274. return [(self.map_tensor_name(name), data_torch)]
  1275. def prepare_tensors(self):
  1276. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1277. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1278. base = self.hparams.get("rope_theta", 10000.0)
  1279. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1280. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1281. factor = rope_scaling.get("factor", 8.0)
  1282. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1283. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1284. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1285. low_freq_wavelen = old_context_len / low_freq_factor
  1286. high_freq_wavelen = old_context_len / high_freq_factor
  1287. assert low_freq_wavelen != high_freq_wavelen
  1288. rope_factors = []
  1289. for freq in freqs:
  1290. wavelen = 2 * math.pi / freq
  1291. if wavelen < high_freq_wavelen:
  1292. rope_factors.append(1)
  1293. elif wavelen > low_freq_wavelen:
  1294. rope_factors.append(factor)
  1295. else:
  1296. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1297. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1298. self.gguf_writer.add_tensor(self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), np.array(rope_factors, dtype=np.float32))
  1299. super().prepare_tensors()
  1300. if self._experts is not None:
  1301. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1302. experts = [k for d in self._experts for k in d.keys()]
  1303. if len(experts) > 0:
  1304. raise ValueError(f"Unprocessed experts: {experts}")
  1305. @Model.register("BitnetForCausalLM")
  1306. class BitnetModel(Model):
  1307. model_arch = gguf.MODEL_ARCH.BITNET
  1308. def set_vocab(self):
  1309. self._set_vocab_sentencepiece()
  1310. def set_gguf_parameters(self):
  1311. super().set_gguf_parameters()
  1312. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1313. self.gguf_writer.add_rope_scaling_factor(1.0)
  1314. def weight_quant(self, weight):
  1315. dtype = weight.dtype
  1316. weight = weight.float()
  1317. s = 1 / weight.abs().mean().clamp(min=1e-5)
  1318. weight = (weight * s).round().clamp(-1, 1) / s
  1319. scale = weight.abs().max().unsqueeze(0)
  1320. weight = torch.where(weight.abs().less(1e-6), 0, weight).type(dtype)
  1321. weight = torch.sign(weight).type(dtype)
  1322. return weight.type(dtype), scale.type(torch.float32)
  1323. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1324. new_name = self.map_tensor_name(name)
  1325. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1326. gguf.MODEL_TENSOR.ATTN_Q,
  1327. gguf.MODEL_TENSOR.ATTN_K,
  1328. gguf.MODEL_TENSOR.ATTN_V,
  1329. gguf.MODEL_TENSOR.ATTN_OUT,
  1330. gguf.MODEL_TENSOR.FFN_UP,
  1331. gguf.MODEL_TENSOR.FFN_DOWN,
  1332. gguf.MODEL_TENSOR.FFN_GATE,
  1333. ]):
  1334. # transform weight into 1/0/-1 (in fp32)
  1335. weight_torch, scale_torch = self.weight_quant(data_torch)
  1336. yield (new_name, weight_torch)
  1337. yield (new_name.removesuffix(".weight") + ".scale", scale_torch)
  1338. else:
  1339. yield (new_name, data_torch)
  1340. @Model.register("GrokForCausalLM")
  1341. class GrokModel(Model):
  1342. model_arch = gguf.MODEL_ARCH.GROK
  1343. def set_vocab(self):
  1344. self._set_vocab_sentencepiece()
  1345. def __init__(self, *args, **kwargs):
  1346. super().__init__(*args, **kwargs)
  1347. def set_gguf_parameters(self):
  1348. super().set_gguf_parameters()
  1349. _experts: list[dict[str, Tensor]] | None = None
  1350. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1351. # process the experts separately
  1352. if name.find(".moe.") != -1:
  1353. n_experts = self.hparams["num_local_experts"]
  1354. assert bid is not None
  1355. if self._experts is None:
  1356. self._experts = [{} for _ in range(self.block_count)]
  1357. self._experts[bid][name] = data_torch
  1358. if len(self._experts[bid]) >= n_experts * 3:
  1359. tensors: list[tuple[str, Tensor]] = []
  1360. # merge the experts into a single 3d tensor
  1361. for wid in ["linear", "linear_1", "linear_v"]:
  1362. datas: list[Tensor] = []
  1363. for xid in range(n_experts):
  1364. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1365. datas.append(self._experts[bid][ename])
  1366. del self._experts[bid][ename]
  1367. data_torch = torch.stack(datas, dim=0)
  1368. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1369. new_name = self.map_tensor_name(merged_name)
  1370. tensors.append((new_name, data_torch))
  1371. return tensors
  1372. else:
  1373. return []
  1374. return [(self.map_tensor_name(name), data_torch)]
  1375. @Model.register("DbrxForCausalLM")
  1376. class DbrxModel(Model):
  1377. model_arch = gguf.MODEL_ARCH.DBRX
  1378. def set_gguf_parameters(self):
  1379. ffn_config = self.hparams["ffn_config"]
  1380. attn_config = self.hparams["attn_config"]
  1381. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1382. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1383. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1384. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1385. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1386. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1387. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1388. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1389. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1390. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1391. self.gguf_writer.add_layer_norm_eps(1e-5)
  1392. self.gguf_writer.add_file_type(self.ftype)
  1393. logger.info(f"gguf: file type = {self.ftype}")
  1394. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1395. del bid # unused
  1396. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1397. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1398. n_embd = self.hparams["d_model"]
  1399. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1400. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1401. # But llama.cpp moe graph works differently
  1402. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1403. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1404. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1405. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1406. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1407. experts = False
  1408. for exp_tensor_name in exp_tensor_names.keys():
  1409. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1410. experts = True
  1411. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1412. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1413. data_torch = data_torch.permute(*permute_tensor)
  1414. break
  1415. # map tensor names
  1416. # In MoE models the ffn tensors are typically most of the model weights,
  1417. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1418. # Every other model has the weight names ending in .weight,
  1419. # let's assume that is the convention which is not the case for dbrx:
  1420. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1421. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1422. return [(new_name, data_torch)]
  1423. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1424. del name, new_name, bid # unused
  1425. return n_dims > 1
  1426. @Model.register("MiniCPMForCausalLM")
  1427. class MiniCPMModel(Model):
  1428. model_arch = gguf.MODEL_ARCH.MINICPM
  1429. def set_gguf_parameters(self):
  1430. block_count = self.hparams["num_hidden_layers"]
  1431. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1432. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1433. self.gguf_writer.add_block_count(block_count)
  1434. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1435. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1436. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1437. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1438. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1439. self.gguf_writer.add_file_type(self.ftype)
  1440. def set_vocab(self):
  1441. self._set_vocab_llama_hf()
  1442. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1443. if n_kv_head is not None and n_head != n_kv_head:
  1444. n_head //= n_kv_head
  1445. return (
  1446. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1447. .swapaxes(1, 2)
  1448. .reshape(weights.shape)
  1449. )
  1450. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1451. del bid # unused
  1452. n_head = self.hparams["num_attention_heads"]
  1453. n_kv_head = self.hparams.get("num_key_value_heads")
  1454. # HF models permute some of the tensors, so we need to undo that
  1455. if name.endswith(("q_proj.weight")):
  1456. data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
  1457. if name.endswith(("k_proj.weight")):
  1458. data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
  1459. return [(self.map_tensor_name(name), data_torch)]
  1460. @Model.register("QWenLMHeadModel")
  1461. class QwenModel(Model):
  1462. model_arch = gguf.MODEL_ARCH.QWEN
  1463. @staticmethod
  1464. def token_bytes_to_string(b):
  1465. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1466. byte_encoder = bytes_to_unicode()
  1467. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1468. @staticmethod
  1469. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1470. parts = [bytes([b]) for b in token]
  1471. while True:
  1472. min_idx = None
  1473. min_rank = None
  1474. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1475. rank = mergeable_ranks.get(pair[0] + pair[1])
  1476. if rank is not None and (min_rank is None or rank < min_rank):
  1477. min_idx = i
  1478. min_rank = rank
  1479. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1480. break
  1481. assert min_idx is not None
  1482. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1483. return parts
  1484. def set_vocab(self):
  1485. self._set_vocab_qwen()
  1486. def set_gguf_parameters(self):
  1487. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1488. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1489. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1490. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1491. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1492. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1493. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1494. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1495. self.gguf_writer.add_file_type(self.ftype)
  1496. @Model.register("Qwen2ForCausalLM")
  1497. class Qwen2Model(Model):
  1498. model_arch = gguf.MODEL_ARCH.QWEN2
  1499. def set_vocab(self):
  1500. try:
  1501. self._set_vocab_sentencepiece()
  1502. except FileNotFoundError:
  1503. self._set_vocab_gpt2()
  1504. @Model.register("Qwen2MoeForCausalLM")
  1505. class Qwen2MoeModel(Model):
  1506. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1507. def set_gguf_parameters(self):
  1508. super().set_gguf_parameters()
  1509. if (n_experts := self.hparams.get("num_experts")) is not None:
  1510. self.gguf_writer.add_expert_count(n_experts)
  1511. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1512. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1513. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1514. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1515. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1516. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1517. _experts: list[dict[str, Tensor]] | None = None
  1518. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1519. # process the experts separately
  1520. if name.find("experts") != -1:
  1521. n_experts = self.hparams["num_experts"]
  1522. assert bid is not None
  1523. if self._experts is None:
  1524. self._experts = [{} for _ in range(self.block_count)]
  1525. self._experts[bid][name] = data_torch
  1526. if len(self._experts[bid]) >= n_experts * 3:
  1527. tensors: list[tuple[str, Tensor]] = []
  1528. # merge the experts into a single 3d tensor
  1529. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1530. datas: list[Tensor] = []
  1531. for xid in range(n_experts):
  1532. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1533. datas.append(self._experts[bid][ename])
  1534. del self._experts[bid][ename]
  1535. data_torch = torch.stack(datas, dim=0)
  1536. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1537. new_name = self.map_tensor_name(merged_name)
  1538. tensors.append((new_name, data_torch))
  1539. return tensors
  1540. else:
  1541. return []
  1542. return [(self.map_tensor_name(name), data_torch)]
  1543. def prepare_tensors(self):
  1544. super().prepare_tensors()
  1545. if self._experts is not None:
  1546. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1547. experts = [k for d in self._experts for k in d.keys()]
  1548. if len(experts) > 0:
  1549. raise ValueError(f"Unprocessed experts: {experts}")
  1550. @Model.register("GPT2LMHeadModel")
  1551. class GPT2Model(Model):
  1552. model_arch = gguf.MODEL_ARCH.GPT2
  1553. def set_gguf_parameters(self):
  1554. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1555. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1556. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1557. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1558. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1559. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1560. self.gguf_writer.add_file_type(self.ftype)
  1561. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1562. del bid # unused
  1563. tensors: list[tuple[str, Tensor]] = []
  1564. # we don't need these
  1565. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1566. return tensors
  1567. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1568. data_torch = data_torch.transpose(1, 0)
  1569. new_name = self.map_tensor_name(name)
  1570. tensors.append((new_name, data_torch))
  1571. # note: GPT2 output is tied to (same as) wte in original model
  1572. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1573. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1574. return tensors
  1575. @Model.register("PhiForCausalLM")
  1576. class Phi2Model(Model):
  1577. model_arch = gguf.MODEL_ARCH.PHI2
  1578. def set_gguf_parameters(self):
  1579. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1580. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1581. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1582. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1583. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1584. self.gguf_writer.add_embedding_length(n_embd)
  1585. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1586. self.gguf_writer.add_block_count(block_count)
  1587. self.gguf_writer.add_head_count(n_head)
  1588. self.gguf_writer.add_head_count_kv(n_head)
  1589. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1590. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1591. self.gguf_writer.add_file_type(self.ftype)
  1592. self.gguf_writer.add_add_bos_token(False)
  1593. @Model.register("Phi3ForCausalLM")
  1594. class Phi3MiniModel(Model):
  1595. model_arch = gguf.MODEL_ARCH.PHI3
  1596. def set_vocab(self):
  1597. from sentencepiece import SentencePieceProcessor
  1598. tokenizer_path = self.dir_model / 'tokenizer.model'
  1599. if not tokenizer_path.is_file():
  1600. raise ValueError(f'Error: Missing {tokenizer_path}')
  1601. tokenizer = SentencePieceProcessor()
  1602. tokenizer.LoadFromFile(str(tokenizer_path))
  1603. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1604. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1605. scores: list[float] = [-10000.0] * vocab_size
  1606. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1607. for token_id in range(tokenizer.vocab_size()):
  1608. piece = tokenizer.IdToPiece(token_id)
  1609. text = piece.encode("utf-8")
  1610. score = tokenizer.GetScore(token_id)
  1611. toktype = SentencePieceTokenTypes.NORMAL
  1612. if tokenizer.IsUnknown(token_id):
  1613. toktype = SentencePieceTokenTypes.UNKNOWN
  1614. elif tokenizer.IsControl(token_id):
  1615. toktype = SentencePieceTokenTypes.CONTROL
  1616. elif tokenizer.IsUnused(token_id):
  1617. toktype = SentencePieceTokenTypes.UNUSED
  1618. elif tokenizer.IsByte(token_id):
  1619. toktype = SentencePieceTokenTypes.BYTE
  1620. tokens[token_id] = text
  1621. scores[token_id] = score
  1622. toktypes[token_id] = toktype
  1623. added_tokens_file = self.dir_model / 'added_tokens.json'
  1624. if added_tokens_file.is_file():
  1625. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1626. added_tokens_json = json.load(f)
  1627. for key in added_tokens_json:
  1628. token_id = added_tokens_json[key]
  1629. if token_id >= vocab_size:
  1630. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1631. continue
  1632. tokens[token_id] = key.encode("utf-8")
  1633. scores[token_id] = -1000.0
  1634. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1635. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1636. if tokenizer_config_file.is_file():
  1637. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1638. tokenizer_config_json = json.load(f)
  1639. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1640. for token_id, foken_data in added_tokens_decoder.items():
  1641. token_id = int(token_id)
  1642. token = foken_data["content"].encode("utf-8")
  1643. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1644. if tokens[token_id] != token:
  1645. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1646. tokens[token_id] = token
  1647. scores[token_id] = -1000.0
  1648. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1649. if foken_data.get("special"):
  1650. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1651. tokenizer_file = self.dir_model / 'tokenizer.json'
  1652. if tokenizer_file.is_file():
  1653. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1654. tokenizer_json = json.load(f)
  1655. added_tokens = tokenizer_json.get("added_tokens", [])
  1656. for foken_data in added_tokens:
  1657. token_id = int(foken_data["id"])
  1658. token = foken_data["content"].encode("utf-8")
  1659. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1660. if tokens[token_id] != token:
  1661. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1662. tokens[token_id] = token
  1663. scores[token_id] = -1000.0
  1664. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1665. if foken_data.get("special"):
  1666. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1667. self.gguf_writer.add_tokenizer_model("llama")
  1668. self.gguf_writer.add_tokenizer_pre("default")
  1669. self.gguf_writer.add_token_list(tokens)
  1670. self.gguf_writer.add_token_scores(scores)
  1671. self.gguf_writer.add_token_types(toktypes)
  1672. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1673. special_vocab.add_to_gguf(self.gguf_writer)
  1674. def set_gguf_parameters(self):
  1675. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1676. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1677. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1678. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1679. rms_eps = self.find_hparam(["rms_norm_eps"])
  1680. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1681. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1682. rope_dims = n_embd // n_head
  1683. self.gguf_writer.add_context_length(max_pos_embds)
  1684. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1685. self.gguf_writer.add_embedding_length(n_embd)
  1686. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1687. self.gguf_writer.add_block_count(block_count)
  1688. self.gguf_writer.add_head_count(n_head)
  1689. self.gguf_writer.add_head_count_kv(n_head_kv)
  1690. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1691. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1692. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1693. self.gguf_writer.add_file_type(self.ftype)
  1694. self.gguf_writer.add_sliding_window(self.find_hparam(["sliding_window"]))
  1695. # write rope scaling for long context (128k) model
  1696. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1697. if rope_scaling is None:
  1698. return
  1699. scale = max_pos_embds / orig_max_pos_embds
  1700. rope_scaling_type = rope_scaling.get('type', '').lower()
  1701. if len(rope_scaling_type) == 0:
  1702. raise KeyError('Missing the required key rope_scaling.type')
  1703. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1704. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1705. elif rope_scaling_type == 'yarn':
  1706. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1707. else:
  1708. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1709. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1710. long_factors = rope_scaling.get('long_factor', None)
  1711. short_factors = rope_scaling.get('short_factor', None)
  1712. if long_factors is None or short_factors is None:
  1713. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1714. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1715. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1716. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_LONG] + ".weight", np.array(long_factors, dtype=np.float32))
  1717. self.gguf_writer.add_tensor(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT] + ".weight", np.array(short_factors, dtype=np.float32))
  1718. @Model.register("PlamoForCausalLM")
  1719. class PlamoModel(Model):
  1720. model_arch = gguf.MODEL_ARCH.PLAMO
  1721. def set_vocab(self):
  1722. self._set_vocab_sentencepiece()
  1723. def set_gguf_parameters(self):
  1724. hparams = self.hparams
  1725. block_count = hparams["num_hidden_layers"]
  1726. self.gguf_writer.add_context_length(4096) # not in config.json
  1727. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1728. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1729. self.gguf_writer.add_block_count(block_count)
  1730. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1731. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1732. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1733. self.gguf_writer.add_file_type(self.ftype)
  1734. def shuffle_attn_q_weight(self, data_torch):
  1735. assert data_torch.size() == (5120, 5120)
  1736. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1737. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1738. data_torch = torch.reshape(data_torch, (5120, 5120))
  1739. return data_torch
  1740. def shuffle_attn_output_weight(self, data_torch):
  1741. assert data_torch.size() == (5120, 5120)
  1742. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1743. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1744. data_torch = torch.reshape(data_torch, (5120, 5120))
  1745. return data_torch
  1746. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1747. del bid # unused
  1748. new_name = self.map_tensor_name(name)
  1749. # shuffle for broadcasting of gqa in ggml_mul_mat
  1750. if new_name.endswith("attn_q.weight"):
  1751. data_torch = self.shuffle_attn_q_weight(data_torch)
  1752. elif new_name.endswith("attn_output.weight"):
  1753. data_torch = self.shuffle_attn_output_weight(data_torch)
  1754. return [(new_name, data_torch)]
  1755. @Model.register("CodeShellForCausalLM")
  1756. class CodeShellModel(Model):
  1757. model_arch = gguf.MODEL_ARCH.CODESHELL
  1758. def set_gguf_parameters(self):
  1759. block_count = self.hparams["n_layer"]
  1760. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1761. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1762. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1763. self.gguf_writer.add_block_count(block_count)
  1764. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1765. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1766. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1767. self.gguf_writer.add_file_type(self.ftype)
  1768. self.gguf_writer.add_rope_freq_base(10000.0)
  1769. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1770. self.gguf_writer.add_rope_scaling_factor(1.0)
  1771. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1772. del bid # unused
  1773. new_name = self.map_tensor_name(name)
  1774. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1775. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1776. assert self.tensor_names is not None
  1777. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1778. # copy tok_embd.weight to output.weight
  1779. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1780. return tensors
  1781. @Model.register("InternLM2ForCausalLM")
  1782. class InternLM2Model(Model):
  1783. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1784. def set_vocab(self):
  1785. # (TODO): Is there a better way?
  1786. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1787. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1788. # recognized as an empty string in C++.
  1789. from sentencepiece import SentencePieceProcessor
  1790. from sentencepiece import sentencepiece_model_pb2 as model
  1791. tokenizer_path = self.dir_model / 'tokenizer.model'
  1792. tokens: list[bytes] = []
  1793. scores: list[float] = []
  1794. toktypes: list[int] = []
  1795. if not tokenizer_path.is_file():
  1796. logger.error(f'Error: Missing {tokenizer_path}')
  1797. sys.exit(1)
  1798. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1799. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1800. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1801. tokenizer = SentencePieceProcessor()
  1802. tokenizer.LoadFromFile(str(tokenizer_path))
  1803. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1804. for token_id in range(vocab_size):
  1805. piece = tokenizer.IdToPiece(token_id)
  1806. text = piece.encode("utf-8")
  1807. score = tokenizer.GetScore(token_id)
  1808. if text == b"\x00":
  1809. # (TODO): fixme
  1810. # Hack here and replace the \x00 characters.
  1811. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  1812. text = "🐉".encode("utf-8")
  1813. toktype = SentencePieceTokenTypes.NORMAL
  1814. if tokenizer.IsUnknown(token_id):
  1815. toktype = SentencePieceTokenTypes.UNKNOWN
  1816. elif tokenizer.IsControl(token_id):
  1817. toktype = SentencePieceTokenTypes.CONTROL
  1818. elif tokenizer.IsUnused(token_id):
  1819. toktype = SentencePieceTokenTypes.UNUSED
  1820. elif tokenizer.IsByte(token_id):
  1821. toktype = SentencePieceTokenTypes.BYTE
  1822. # take care of ununsed raw token
  1823. if piece.startswith('[UNUSED'):
  1824. toktype = SentencePieceTokenTypes.UNUSED
  1825. tokens.append(text)
  1826. scores.append(score)
  1827. toktypes.append(toktype)
  1828. added_tokens_file = self.dir_model / 'added_tokens.json'
  1829. if added_tokens_file.is_file():
  1830. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1831. added_tokens_json = json.load(f)
  1832. for key in added_tokens_json:
  1833. tokens.append(key.encode("utf-8"))
  1834. scores.append(-1000.0)
  1835. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  1836. chat_eos_token = '<|im_end|>'
  1837. chat_eos_token_id = None
  1838. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1839. if tokenizer_config_file.is_file():
  1840. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1841. tokenizer_config_json = json.load(f)
  1842. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1843. for token_id, foken_data in added_tokens_decoder.items():
  1844. token_id = int(token_id)
  1845. token = foken_data["content"]
  1846. if token == chat_eos_token:
  1847. chat_eos_token_id = token_id
  1848. token = token.encode("utf-8")
  1849. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1850. if tokens[token_id] != token:
  1851. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1852. tokens[token_id] = token
  1853. scores[token_id] = -1000.0
  1854. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1855. if foken_data.get("special"):
  1856. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1857. tokenizer_file = self.dir_model / 'tokenizer.json'
  1858. if tokenizer_file.is_file():
  1859. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1860. tokenizer_json = json.load(f)
  1861. added_tokens = tokenizer_json.get("added_tokens", [])
  1862. for foken_data in added_tokens:
  1863. token_id = int(foken_data["id"])
  1864. token = foken_data["content"]
  1865. if token == chat_eos_token:
  1866. chat_eos_token_id = token_id
  1867. token = token.encode("utf-8")
  1868. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1869. if tokens[token_id] != token:
  1870. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1871. tokens[token_id] = token
  1872. scores[token_id] = -1000.0
  1873. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1874. if foken_data.get("special"):
  1875. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1876. self.gguf_writer.add_tokenizer_model("llama")
  1877. self.gguf_writer.add_tokenizer_pre("default")
  1878. self.gguf_writer.add_token_list(tokens)
  1879. self.gguf_writer.add_token_scores(scores)
  1880. self.gguf_writer.add_token_types(toktypes)
  1881. self.gguf_writer.add_add_space_prefix(add_prefix)
  1882. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1883. old_eos = special_vocab.special_token_ids["eos"]
  1884. if chat_eos_token_id is not None:
  1885. # For the chat model, we replace the eos with '<|im_end|>'.
  1886. # TODO: this is a hack, should be fixed
  1887. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  1888. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  1889. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  1890. " in chat mode so that the conversation can end normally.")
  1891. special_vocab.add_to_gguf(self.gguf_writer)
  1892. def set_gguf_parameters(self):
  1893. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1894. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1895. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1896. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1897. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  1898. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1899. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1900. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  1901. self.gguf_writer.add_file_type(self.ftype)
  1902. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1903. if self.hparams["rope_scaling"].get("type") == "linear":
  1904. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1905. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1906. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1907. num_heads = self.hparams["num_attention_heads"]
  1908. num_kv_heads = self.hparams["num_key_value_heads"]
  1909. n_embd = self.hparams["hidden_size"]
  1910. q_per_kv = num_heads // num_kv_heads
  1911. head_dim = n_embd // num_heads
  1912. num_groups = num_heads // q_per_kv
  1913. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  1914. qkv = data_torch
  1915. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  1916. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  1917. # The model weights of q and k equire additional reshape.
  1918. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  1919. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  1920. v = v.reshape((-1, v.shape[-1]))
  1921. return [
  1922. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  1923. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  1924. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  1925. ]
  1926. else:
  1927. return [(self.map_tensor_name(name), data_torch)]
  1928. @Model.register("BertModel", "CamembertModel")
  1929. class BertModel(Model):
  1930. model_arch = gguf.MODEL_ARCH.BERT
  1931. def __init__(self, *args, **kwargs):
  1932. super().__init__(*args, **kwargs)
  1933. self.vocab_size = None
  1934. def set_gguf_parameters(self):
  1935. super().set_gguf_parameters()
  1936. self.gguf_writer.add_causal_attention(False)
  1937. # get pooling path
  1938. pooling_path = None
  1939. module_path = self.dir_model / "modules.json"
  1940. if module_path.is_file():
  1941. with open(module_path, encoding="utf-8") as f:
  1942. modules = json.load(f)
  1943. for mod in modules:
  1944. if mod["type"] == "sentence_transformers.models.Pooling":
  1945. pooling_path = mod["path"]
  1946. break
  1947. # get pooling type
  1948. if pooling_path is not None:
  1949. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1950. pooling = json.load(f)
  1951. if pooling["pooling_mode_mean_tokens"]:
  1952. pooling_type = gguf.PoolingType.MEAN
  1953. elif pooling["pooling_mode_cls_token"]:
  1954. pooling_type = gguf.PoolingType.CLS
  1955. else:
  1956. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  1957. self.gguf_writer.add_pooling_type(pooling_type)
  1958. def set_vocab(self):
  1959. tokens, toktypes, tokpre = self.get_vocab_base()
  1960. self.vocab_size = len(tokens)
  1961. # we need this to validate the size of the token_type embeddings
  1962. # though currently we are passing all zeros to the token_type embeddings
  1963. self.gguf_writer.add_token_type_count(2) # "Sequence A" or "Sequence B"
  1964. # convert to phantom space vocab
  1965. def phantom(tok):
  1966. if tok.startswith("[") and tok.endswith("]"):
  1967. return tok
  1968. if tok.startswith("##"):
  1969. return tok[2:]
  1970. return "\u2581" + tok
  1971. tokens = list(map(phantom, tokens))
  1972. # add vocab to gguf
  1973. self.gguf_writer.add_tokenizer_model("bert")
  1974. self.gguf_writer.add_tokenizer_pre(tokpre)
  1975. self.gguf_writer.add_token_list(tokens)
  1976. self.gguf_writer.add_token_types(toktypes)
  1977. # handle special tokens
  1978. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1979. special_vocab.add_to_gguf(self.gguf_writer)
  1980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1981. del bid # unused
  1982. # we are only using BERT for embeddings so we don't need the pooling layer
  1983. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  1984. return [] # we don't need these
  1985. return [(self.map_tensor_name(name), data_torch)]
  1986. @Model.register("NomicBertModel")
  1987. class NomicBertModel(BertModel):
  1988. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  1989. def __init__(self, *args, **kwargs):
  1990. super().__init__(*args, **kwargs)
  1991. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  1992. self.hparams["n_ctx"] = 2048
  1993. # SwigLU activation
  1994. assert self.hparams["activation_function"] == "swiglu"
  1995. # this doesn't do anything in the HF version
  1996. assert self.hparams["causal"] is False
  1997. # no bias tensors
  1998. assert self.hparams["qkv_proj_bias"] is False
  1999. assert self.hparams["mlp_fc1_bias"] is False
  2000. assert self.hparams["mlp_fc2_bias"] is False
  2001. # norm at end of layer
  2002. assert self.hparams["prenorm"] is False
  2003. # standard RoPE
  2004. assert self.hparams["rotary_emb_fraction"] == 1.0
  2005. assert self.hparams["rotary_emb_interleaved"] is False
  2006. assert self.hparams["rotary_emb_scale_base"] is None
  2007. def set_gguf_parameters(self):
  2008. super().set_gguf_parameters()
  2009. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2010. @Model.register("XLMRobertaModel")
  2011. class XLMRobertaModel(BertModel):
  2012. model_arch = gguf.MODEL_ARCH.BERT
  2013. def __init__(self, *args, **kwargs):
  2014. super().__init__(*args, **kwargs)
  2015. # we need the pad_token_id to know how to chop down position_embd matrix
  2016. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2017. self._position_offset = 1 + pad_token_id
  2018. if "max_position_embeddings" in self.hparams:
  2019. self.hparams["max_position_embeddings"] -= self._position_offset
  2020. else:
  2021. self._position_offset = None
  2022. def set_vocab(self):
  2023. # to avoid TypeError: Descriptors cannot be created directly
  2024. # exception when importing sentencepiece_model_pb2
  2025. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2026. from sentencepiece import SentencePieceProcessor
  2027. from sentencepiece import sentencepiece_model_pb2 as model
  2028. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2029. if not tokenizer_path.is_file():
  2030. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2031. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2032. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2033. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2034. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2035. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2036. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2037. tokenizer = SentencePieceProcessor()
  2038. tokenizer.LoadFromFile(str(tokenizer_path))
  2039. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2040. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2041. scores: list[float] = [-10000.0] * vocab_size
  2042. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2043. for token_id in range(tokenizer.vocab_size()):
  2044. piece = tokenizer.IdToPiece(token_id)
  2045. text = piece.encode("utf-8")
  2046. score = tokenizer.GetScore(token_id)
  2047. toktype = SentencePieceTokenTypes.NORMAL
  2048. if tokenizer.IsUnknown(token_id):
  2049. toktype = SentencePieceTokenTypes.UNKNOWN
  2050. elif tokenizer.IsControl(token_id):
  2051. toktype = SentencePieceTokenTypes.CONTROL
  2052. elif tokenizer.IsUnused(token_id):
  2053. toktype = SentencePieceTokenTypes.UNUSED
  2054. elif tokenizer.IsByte(token_id):
  2055. toktype = SentencePieceTokenTypes.BYTE
  2056. tokens[token_id] = text
  2057. scores[token_id] = score
  2058. toktypes[token_id] = toktype
  2059. if vocab_size > len(tokens):
  2060. pad_count = vocab_size - len(tokens)
  2061. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2062. for i in range(1, pad_count + 1):
  2063. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2064. scores.append(-1000.0)
  2065. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2066. # realign tokens (see HF tokenizer code)
  2067. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2068. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2069. toktypes = [
  2070. SentencePieceTokenTypes.CONTROL,
  2071. SentencePieceTokenTypes.CONTROL,
  2072. SentencePieceTokenTypes.CONTROL,
  2073. SentencePieceTokenTypes.UNKNOWN,
  2074. ] + toktypes[3:-1]
  2075. self.gguf_writer.add_tokenizer_model("t5")
  2076. self.gguf_writer.add_tokenizer_pre("default")
  2077. self.gguf_writer.add_token_list(tokens)
  2078. self.gguf_writer.add_token_scores(scores)
  2079. self.gguf_writer.add_token_types(toktypes)
  2080. self.gguf_writer.add_add_space_prefix(add_prefix)
  2081. self.gguf_writer.add_token_type_count(1)
  2082. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2083. if precompiled_charsmap:
  2084. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2085. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2086. special_vocab.add_to_gguf(self.gguf_writer)
  2087. self.gguf_writer.add_add_bos_token(True)
  2088. self.gguf_writer.add_add_eos_token(True)
  2089. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2090. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2091. if name == "embeddings.position_embeddings.weight":
  2092. if self._position_offset is not None:
  2093. data_torch = data_torch[self._position_offset:,:]
  2094. return super().modify_tensors(data_torch, name, bid)
  2095. @Model.register("GemmaForCausalLM")
  2096. class GemmaModel(Model):
  2097. model_arch = gguf.MODEL_ARCH.GEMMA
  2098. def set_vocab(self):
  2099. self._set_vocab_sentencepiece()
  2100. # TODO: these special tokens should be exported only for the CodeGemma family
  2101. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2102. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2103. special_vocab._set_special_token("prefix", 67)
  2104. special_vocab._set_special_token("suffix", 69)
  2105. special_vocab._set_special_token("middle", 68)
  2106. special_vocab._set_special_token("fsep", 70)
  2107. special_vocab._set_special_token("eot", 107)
  2108. special_vocab.chat_template = None # do not add it twice
  2109. special_vocab.add_to_gguf(self.gguf_writer)
  2110. self.gguf_writer.add_add_space_prefix(False)
  2111. def set_gguf_parameters(self):
  2112. hparams = self.hparams
  2113. block_count = hparams["num_hidden_layers"]
  2114. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2115. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2116. self.gguf_writer.add_block_count(block_count)
  2117. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2118. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2119. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2120. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2121. self.gguf_writer.add_key_length(hparams["head_dim"])
  2122. self.gguf_writer.add_value_length(hparams["head_dim"])
  2123. self.gguf_writer.add_file_type(self.ftype)
  2124. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2125. del bid # unused
  2126. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2127. # To prevent errors, skip loading lm_head.weight.
  2128. if name == "lm_head.weight":
  2129. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2130. return []
  2131. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2132. if name.endswith("norm.weight"):
  2133. data_torch = data_torch + 1
  2134. return [(self.map_tensor_name(name), data_torch)]
  2135. @Model.register("Gemma2ForCausalLM")
  2136. class Gemma2Model(Model):
  2137. model_arch = gguf.MODEL_ARCH.GEMMA2
  2138. def set_vocab(self):
  2139. self._set_vocab_sentencepiece()
  2140. self.gguf_writer.add_add_space_prefix(False)
  2141. def set_gguf_parameters(self):
  2142. hparams = self.hparams
  2143. block_count = hparams["num_hidden_layers"]
  2144. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2145. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2146. self.gguf_writer.add_block_count(block_count)
  2147. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2148. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2149. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2150. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2151. self.gguf_writer.add_key_length(hparams["head_dim"])
  2152. self.gguf_writer.add_value_length(hparams["head_dim"])
  2153. self.gguf_writer.add_file_type(self.ftype)
  2154. self.gguf_writer.add_attn_logit_softcapping(
  2155. self.hparams["attn_logit_softcapping"]
  2156. )
  2157. self.gguf_writer.add_final_logit_softcapping(
  2158. self.hparams["final_logit_softcapping"]
  2159. )
  2160. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2161. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2162. del bid # unused
  2163. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2164. # To prevent errors, skip loading lm_head.weight.
  2165. if name == "lm_head.weight":
  2166. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2167. return []
  2168. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2169. if name.endswith("norm.weight"):
  2170. data_torch = data_torch + 1
  2171. return [(self.map_tensor_name(name), data_torch)]
  2172. @Model.register("Starcoder2ForCausalLM")
  2173. class StarCoder2Model(Model):
  2174. model_arch = gguf.MODEL_ARCH.STARCODER2
  2175. @Model.register("MambaForCausalLM", "MambaLMHeadModel")
  2176. class MambaModel(Model):
  2177. model_arch = gguf.MODEL_ARCH.MAMBA
  2178. def set_vocab(self):
  2179. vocab_size = self.hparams["vocab_size"]
  2180. # Round vocab size to next multiple of 8
  2181. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2182. # pad using ceiling division
  2183. # ref: https://stackoverflow.com/a/17511341/22827863
  2184. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2185. self.hparams["vocab_size"] = vocab_size
  2186. if (self.dir_model / "tokenizer.json").is_file():
  2187. self._set_vocab_gpt2()
  2188. elif (self.dir_model / "tokenizer.model").is_file():
  2189. self._set_vocab_sentencepiece()
  2190. else:
  2191. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2192. self._set_vocab_builtin("gpt-neox", vocab_size)
  2193. def set_gguf_parameters(self):
  2194. d_model = self.find_hparam(["hidden_size", "d_model"])
  2195. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2196. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2197. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2198. # ceiling division
  2199. # ref: https://stackoverflow.com/a/17511341/22827863
  2200. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2201. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2202. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2203. # Fail early for models which don't have a block expansion factor of 2
  2204. assert d_inner == 2 * d_model
  2205. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2206. self.gguf_writer.add_embedding_length(d_model)
  2207. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2208. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2209. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2210. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2211. self.gguf_writer.add_ssm_inner_size(d_inner)
  2212. self.gguf_writer.add_ssm_state_size(d_state)
  2213. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2214. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2215. self.gguf_writer.add_file_type(self.ftype)
  2216. _tok_embd = None
  2217. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2218. del bid # unused
  2219. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2220. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2221. new_name = self.map_tensor_name(name)
  2222. if name.endswith(".A_log"):
  2223. logger.debug("A_log --> A ==> " + new_name)
  2224. data_torch = -torch.exp(data_torch)
  2225. # assuming token_embd.weight is seen before output.weight
  2226. if self._tok_embd is not None and new_name == output_name:
  2227. if torch.equal(self._tok_embd, data_torch):
  2228. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2229. return []
  2230. elif new_name == tok_embd_name:
  2231. self._tok_embd = data_torch
  2232. return [(new_name, data_torch)]
  2233. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2234. if bid is not None and new_name in (
  2235. self.format_tensor_name(
  2236. n, bid, ".weight" if name.endswith(".weight") else ""
  2237. )
  2238. for n in [
  2239. gguf.MODEL_TENSOR.SSM_CONV1D,
  2240. gguf.MODEL_TENSOR.SSM_X,
  2241. gguf.MODEL_TENSOR.SSM_DT,
  2242. gguf.MODEL_TENSOR.SSM_A,
  2243. gguf.MODEL_TENSOR.SSM_D,
  2244. ]
  2245. ):
  2246. return gguf.GGMLQuantizationType.F32
  2247. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2248. @Model.register("CohereForCausalLM")
  2249. class CommandR2Model(Model):
  2250. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2251. def __init__(self, *args, **kwargs):
  2252. super().__init__(*args, **kwargs)
  2253. # max_position_embeddings = 8192 in config.json but model was actually
  2254. # trained on 128k context length
  2255. # aya-23 models don't have model_max_length specified
  2256. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2257. def set_gguf_parameters(self):
  2258. super().set_gguf_parameters()
  2259. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2260. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2261. @Model.register("OlmoForCausalLM")
  2262. @Model.register("OLMoForCausalLM")
  2263. class OlmoModel(Model):
  2264. model_arch = gguf.MODEL_ARCH.OLMO
  2265. def set_gguf_parameters(self):
  2266. super().set_gguf_parameters()
  2267. self.gguf_writer.add_layer_norm_eps(1e-5)
  2268. clip_qkv = self.hparams.get("clip_qkv")
  2269. if clip_qkv is not None:
  2270. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2271. # Same as super class, but permuting q_proj, k_proj
  2272. # Copied from: LlamaModel
  2273. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2274. del bid # unused
  2275. n_head = self.hparams["num_attention_heads"]
  2276. n_kv_head = self.hparams.get("num_key_value_heads")
  2277. if name.endswith("q_proj.weight"):
  2278. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2279. if name.endswith("k_proj.weight"):
  2280. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2281. return [(self.map_tensor_name(name), data_torch)]
  2282. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2283. class JinaBertV2Model(BertModel):
  2284. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2285. def __init__(self, *args, **kwargs):
  2286. super().__init__(*args, **kwargs)
  2287. self.intermediate_size = self.hparams["intermediate_size"]
  2288. def get_tensors(self):
  2289. for name, data in super().get_tensors():
  2290. if 'gated_layer' in name:
  2291. d1 = data[:self.intermediate_size, :]
  2292. name1 = name.replace('gated_layers', 'gated_layers_w')
  2293. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2294. d2 = data[self.intermediate_size:, :]
  2295. name2 = name.replace('gated_layers', 'gated_layers_v')
  2296. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2297. yield name1, d1
  2298. yield name2, d2
  2299. continue
  2300. yield name, data
  2301. def set_vocab(self):
  2302. tokenizer_class = 'BertTokenizer'
  2303. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2304. tokenizer_class = json.load(f)['tokenizer_class']
  2305. if tokenizer_class == 'BertTokenizer':
  2306. super().set_vocab()
  2307. elif tokenizer_class == 'RobertaTokenizer':
  2308. self._set_vocab_gpt2()
  2309. self.gguf_writer.add_token_type_count(2)
  2310. else:
  2311. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2312. self.gguf_writer.add_add_bos_token(True)
  2313. self.gguf_writer.add_add_eos_token(True)
  2314. @Model.register("OpenELMForCausalLM")
  2315. class OpenELMModel(Model):
  2316. model_arch = gguf.MODEL_ARCH.OPENELM
  2317. @staticmethod
  2318. def _make_divisible(v: float | int, divisor: int) -> int:
  2319. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2320. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2321. # Make sure that round down does not go down by more than 10%.
  2322. if new_v < 0.9 * v:
  2323. new_v += divisor
  2324. return new_v
  2325. def __init__(self, *args, **kwargs):
  2326. super().__init__(*args, **kwargs)
  2327. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2328. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2329. self._n_embd: int = self.hparams["model_dim"]
  2330. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2331. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2332. self._ffn_dims: list[int] = [
  2333. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2334. for multiplier in ffn_multipliers
  2335. ]
  2336. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2337. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2338. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2339. def set_vocab(self):
  2340. try:
  2341. self._set_vocab_sentencepiece()
  2342. except FileNotFoundError:
  2343. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2344. def set_gguf_parameters(self):
  2345. n_embd = self._n_embd
  2346. head_dim = self.hparams["head_dim"]
  2347. rot_pct = 1.0
  2348. assert self.block_count == len(self._num_kv_heads)
  2349. assert self.block_count == len(self._num_query_heads)
  2350. assert self.block_count == len(self._ffn_dims)
  2351. self.gguf_writer.add_block_count(self.block_count)
  2352. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2353. self.gguf_writer.add_embedding_length(n_embd)
  2354. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2355. self.gguf_writer.add_head_count(self._num_query_heads)
  2356. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2357. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2358. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2359. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2360. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2361. self.gguf_writer.add_key_length(head_dim)
  2362. self.gguf_writer.add_value_length(head_dim)
  2363. self.gguf_writer.add_file_type(self.ftype)
  2364. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2365. if "n_layers" in keys:
  2366. return self.hparams["num_transformer_layers"]
  2367. return super().find_hparam(keys, optional)
  2368. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2369. # split ff
  2370. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2371. ff_dim = self._ffn_dims[bid]
  2372. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2373. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2374. return
  2375. yield (self.map_tensor_name(name), data_torch)
  2376. @Model.register("ArcticForCausalLM")
  2377. class ArcticModel(Model):
  2378. model_arch = gguf.MODEL_ARCH.ARCTIC
  2379. def set_vocab(self):
  2380. # The reason for using a custom implementation here is that the
  2381. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2382. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2383. from sentencepiece import SentencePieceProcessor
  2384. tokenizer_path = self.dir_model / 'tokenizer.model'
  2385. if not tokenizer_path.is_file():
  2386. logger.error(f'Error: Missing {tokenizer_path}')
  2387. sys.exit(1)
  2388. # Read the whole vocabulary from the tokenizer.model file
  2389. tokenizer = SentencePieceProcessor()
  2390. tokenizer.LoadFromFile(str(tokenizer_path))
  2391. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2392. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2393. scores: list[float] = [-10000.0] * vocab_size
  2394. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2395. for token_id in range(tokenizer.vocab_size()):
  2396. piece = tokenizer.IdToPiece(token_id)
  2397. text = piece.encode("utf-8")
  2398. score = tokenizer.GetScore(token_id)
  2399. toktype = SentencePieceTokenTypes.NORMAL
  2400. if tokenizer.IsUnknown(token_id):
  2401. toktype = SentencePieceTokenTypes.UNKNOWN
  2402. elif tokenizer.IsControl(token_id):
  2403. toktype = SentencePieceTokenTypes.CONTROL
  2404. elif tokenizer.IsUnused(token_id):
  2405. toktype = SentencePieceTokenTypes.UNUSED
  2406. elif tokenizer.IsByte(token_id):
  2407. toktype = SentencePieceTokenTypes.BYTE
  2408. tokens[token_id] = text
  2409. scores[token_id] = score
  2410. toktypes[token_id] = toktype
  2411. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2412. # of information about added/redefined tokens and modify them accordingly.
  2413. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2414. if tokenizer_config_file.is_file():
  2415. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2416. tokenizer_config_json = json.load(f)
  2417. if "added_tokens_decoder" in tokenizer_config_json:
  2418. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2419. for token_id, token_json in added_tokens_decoder.items():
  2420. token_id = int(token_id)
  2421. if token_id >= vocab_size:
  2422. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2423. continue
  2424. token_content = token_json["content"]
  2425. token_type = SentencePieceTokenTypes.USER_DEFINED
  2426. token_score = -10000.0
  2427. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2428. # Set the score to 0.0 as in the original tokenizer.model
  2429. if ("special" in token_json) and token_json["special"]:
  2430. if token_content == tokenizer_config_json["unk_token"]:
  2431. token_type = SentencePieceTokenTypes.UNKNOWN
  2432. else:
  2433. token_type = SentencePieceTokenTypes.CONTROL
  2434. token_score = 0.0
  2435. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2436. tokens[token_id] = token_content.encode("utf-8")
  2437. toktypes[token_id] = token_type
  2438. scores[token_id] = token_score
  2439. self.gguf_writer.add_tokenizer_model("llama")
  2440. self.gguf_writer.add_tokenizer_pre("default")
  2441. self.gguf_writer.add_token_list(tokens)
  2442. self.gguf_writer.add_token_scores(scores)
  2443. self.gguf_writer.add_token_types(toktypes)
  2444. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2445. special_vocab.add_to_gguf(self.gguf_writer)
  2446. def set_gguf_parameters(self):
  2447. super().set_gguf_parameters()
  2448. hparams = self.hparams
  2449. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2450. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2451. _experts: list[dict[str, Tensor]] | None = None
  2452. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2453. n_head = self.hparams["num_attention_heads"]
  2454. n_kv_head = self.hparams.get("num_key_value_heads")
  2455. if name.endswith("q_proj.weight"):
  2456. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2457. if name.endswith("k_proj.weight"):
  2458. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2459. # process the experts separately
  2460. if name.find("block_sparse_moe.experts") != -1:
  2461. n_experts = self.hparams["num_local_experts"]
  2462. assert bid is not None
  2463. if self._experts is None:
  2464. self._experts = [{} for _ in range(self.block_count)]
  2465. self._experts[bid][name] = data_torch
  2466. if len(self._experts[bid]) >= n_experts * 3:
  2467. tensors: list[tuple[str, Tensor]] = []
  2468. # merge the experts into a single 3d tensor
  2469. for wid in ["w1", "w2", "w3"]:
  2470. datas: list[Tensor] = []
  2471. for xid in range(n_experts):
  2472. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2473. datas.append(self._experts[bid][ename])
  2474. del self._experts[bid][ename]
  2475. data_torch = torch.stack(datas, dim=0)
  2476. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2477. new_name = self.map_tensor_name(merged_name)
  2478. tensors.append((new_name, data_torch))
  2479. return tensors
  2480. else:
  2481. return []
  2482. return [(self.map_tensor_name(name), data_torch)]
  2483. def prepare_tensors(self):
  2484. super().prepare_tensors()
  2485. if self._experts is not None:
  2486. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2487. experts = [k for d in self._experts for k in d.keys()]
  2488. if len(experts) > 0:
  2489. raise ValueError(f"Unprocessed experts: {experts}")
  2490. @Model.register("DeepseekV2ForCausalLM")
  2491. class DeepseekV2Model(Model):
  2492. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2493. def set_vocab(self):
  2494. self._set_vocab_gpt2()
  2495. def set_gguf_parameters(self):
  2496. super().set_gguf_parameters()
  2497. hparams = self.hparams
  2498. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2499. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2500. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2501. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2502. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2503. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2504. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2505. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2506. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2507. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2508. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2509. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2510. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2511. if self.hparams["rope_scaling"].get("type") == "yarn":
  2512. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2513. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2514. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2515. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2516. _experts: list[dict[str, Tensor]] | None = None
  2517. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2518. # process the experts separately
  2519. if name.find("mlp.experts") != -1:
  2520. n_experts = self.hparams["n_routed_experts"]
  2521. assert bid is not None
  2522. if self._experts is None:
  2523. self._experts = [{} for _ in range(self.block_count)]
  2524. self._experts[bid][name] = data_torch
  2525. if len(self._experts[bid]) >= n_experts * 3:
  2526. tensors: list[tuple[str, Tensor]] = []
  2527. # merge the experts into a single 3d tensor
  2528. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2529. datas: list[Tensor] = []
  2530. for xid in range(n_experts):
  2531. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2532. datas.append(self._experts[bid][ename])
  2533. del self._experts[bid][ename]
  2534. data_torch = torch.stack(datas, dim=0)
  2535. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2536. new_name = self.map_tensor_name(merged_name)
  2537. tensors.append((new_name, data_torch))
  2538. return tensors
  2539. else:
  2540. return []
  2541. return [(self.map_tensor_name(name), data_torch)]
  2542. def prepare_tensors(self):
  2543. super().prepare_tensors()
  2544. if self._experts is not None:
  2545. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2546. experts = [k for d in self._experts for k in d.keys()]
  2547. if len(experts) > 0:
  2548. raise ValueError(f"Unprocessed experts: {experts}")
  2549. @Model.register("T5WithLMHeadModel")
  2550. @Model.register("T5ForConditionalGeneration")
  2551. @Model.register("MT5ForConditionalGeneration")
  2552. @Model.register("UMT5ForConditionalGeneration")
  2553. class T5Model(Model):
  2554. model_arch = gguf.MODEL_ARCH.T5
  2555. def __init__(self, *args, **kwargs):
  2556. super().__init__(*args, **kwargs)
  2557. self.shared_token_embeddings_found = False
  2558. def set_vocab(self):
  2559. # to avoid TypeError: Descriptors cannot be created directly
  2560. # exception when importing sentencepiece_model_pb2
  2561. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2562. from sentencepiece import SentencePieceProcessor
  2563. from sentencepiece import sentencepiece_model_pb2 as model
  2564. tokenizer_path = self.dir_model / 'tokenizer.model'
  2565. # many older models use spiece.model tokenizer model filename
  2566. if not tokenizer_path.is_file():
  2567. tokenizer_path = self.dir_model / 'spiece.model'
  2568. if not tokenizer_path.is_file():
  2569. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2570. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2571. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2572. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2573. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2574. # assure the tokenizer model file name is correct
  2575. assert tokenizer_path.name == 'tokenizer.model'
  2576. return self._set_vocab_sentencepiece()
  2577. else:
  2578. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2579. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2580. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2581. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2582. tokenizer = SentencePieceProcessor()
  2583. tokenizer.LoadFromFile(str(tokenizer_path))
  2584. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2585. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2586. scores: list[float] = [-10000.0] * vocab_size
  2587. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2588. for token_id in range(tokenizer.vocab_size()):
  2589. piece = tokenizer.IdToPiece(token_id)
  2590. text = piece.encode("utf-8")
  2591. score = tokenizer.GetScore(token_id)
  2592. toktype = SentencePieceTokenTypes.NORMAL
  2593. if tokenizer.IsUnknown(token_id):
  2594. toktype = SentencePieceTokenTypes.UNKNOWN
  2595. elif tokenizer.IsControl(token_id):
  2596. toktype = SentencePieceTokenTypes.CONTROL
  2597. elif tokenizer.IsUnused(token_id):
  2598. toktype = SentencePieceTokenTypes.UNUSED
  2599. elif tokenizer.IsByte(token_id):
  2600. toktype = SentencePieceTokenTypes.BYTE
  2601. tokens[token_id] = text
  2602. scores[token_id] = score
  2603. toktypes[token_id] = toktype
  2604. added_tokens_file = self.dir_model / 'added_tokens.json'
  2605. if added_tokens_file.is_file():
  2606. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2607. added_tokens_json = json.load(f)
  2608. for key in added_tokens_json:
  2609. token_id = added_tokens_json[key]
  2610. if token_id >= vocab_size:
  2611. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2612. continue
  2613. tokens[token_id] = key.encode("utf-8")
  2614. scores[token_id] = -1000.0
  2615. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2616. if vocab_size > len(tokens):
  2617. pad_count = vocab_size - len(tokens)
  2618. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2619. for i in range(1, pad_count + 1):
  2620. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2621. scores.append(-1000.0)
  2622. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2623. self.gguf_writer.add_tokenizer_model("t5")
  2624. self.gguf_writer.add_tokenizer_pre("default")
  2625. self.gguf_writer.add_token_list(tokens)
  2626. self.gguf_writer.add_token_scores(scores)
  2627. self.gguf_writer.add_token_types(toktypes)
  2628. self.gguf_writer.add_add_space_prefix(add_prefix)
  2629. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2630. if precompiled_charsmap:
  2631. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2632. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2633. special_vocab.add_to_gguf(self.gguf_writer)
  2634. self.gguf_writer.add_add_bos_token(False)
  2635. self.gguf_writer.add_add_eos_token(True)
  2636. def set_gguf_parameters(self):
  2637. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2638. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2639. n_ctx = 512
  2640. self.gguf_writer.add_context_length(n_ctx)
  2641. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2642. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2643. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2644. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2645. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2646. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2647. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2648. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2649. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2650. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  2651. self.gguf_writer.add_file_type(self.ftype)
  2652. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2653. del bid # unused
  2654. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2655. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2656. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2657. # and decoder and ignore the remaining ones.
  2658. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2659. if not self.shared_token_embeddings_found:
  2660. name = "shared.weight"
  2661. self.shared_token_embeddings_found = True
  2662. else:
  2663. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2664. return []
  2665. return [(self.map_tensor_name(name), data_torch)]
  2666. @Model.register("T5EncoderModel")
  2667. class T5EncoderModel(Model):
  2668. model_arch = gguf.MODEL_ARCH.T5ENCODER
  2669. def __init__(self, *args, **kwargs):
  2670. super().__init__(*args, **kwargs)
  2671. self.shared_token_embeddings_found = False
  2672. def set_vocab(self):
  2673. # to avoid TypeError: Descriptors cannot be created directly
  2674. # exception when importing sentencepiece_model_pb2
  2675. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2676. from sentencepiece import SentencePieceProcessor
  2677. from sentencepiece import sentencepiece_model_pb2 as model
  2678. tokenizer_path = self.dir_model / 'tokenizer.model'
  2679. # many older models use spiece.model tokenizer model filename
  2680. if not tokenizer_path.is_file():
  2681. tokenizer_path = self.dir_model / 'spiece.model'
  2682. if not tokenizer_path.is_file():
  2683. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2684. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2685. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2686. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2687. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2688. # assure the tokenizer model file name is correct
  2689. assert tokenizer_path.name == 'tokenizer.model'
  2690. return self._set_vocab_sentencepiece()
  2691. else:
  2692. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2693. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2694. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2695. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2696. tokenizer = SentencePieceProcessor()
  2697. tokenizer.LoadFromFile(str(tokenizer_path))
  2698. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2699. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2700. scores: list[float] = [-10000.0] * vocab_size
  2701. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2702. for token_id in range(tokenizer.vocab_size()):
  2703. piece = tokenizer.IdToPiece(token_id)
  2704. text = piece.encode("utf-8")
  2705. score = tokenizer.GetScore(token_id)
  2706. toktype = SentencePieceTokenTypes.NORMAL
  2707. if tokenizer.IsUnknown(token_id):
  2708. toktype = SentencePieceTokenTypes.UNKNOWN
  2709. elif tokenizer.IsControl(token_id):
  2710. toktype = SentencePieceTokenTypes.CONTROL
  2711. elif tokenizer.IsUnused(token_id):
  2712. toktype = SentencePieceTokenTypes.UNUSED
  2713. elif tokenizer.IsByte(token_id):
  2714. toktype = SentencePieceTokenTypes.BYTE
  2715. tokens[token_id] = text
  2716. scores[token_id] = score
  2717. toktypes[token_id] = toktype
  2718. added_tokens_file = self.dir_model / 'added_tokens.json'
  2719. if added_tokens_file.is_file():
  2720. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2721. added_tokens_json = json.load(f)
  2722. for key in added_tokens_json:
  2723. token_id = added_tokens_json[key]
  2724. if token_id >= vocab_size:
  2725. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2726. continue
  2727. tokens[token_id] = key.encode("utf-8")
  2728. scores[token_id] = -1000.0
  2729. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2730. if vocab_size > len(tokens):
  2731. pad_count = vocab_size - len(tokens)
  2732. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2733. for i in range(1, pad_count + 1):
  2734. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2735. scores.append(-1000.0)
  2736. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2737. self.gguf_writer.add_tokenizer_model("t5")
  2738. self.gguf_writer.add_tokenizer_pre("default")
  2739. self.gguf_writer.add_token_list(tokens)
  2740. self.gguf_writer.add_token_scores(scores)
  2741. self.gguf_writer.add_token_types(toktypes)
  2742. self.gguf_writer.add_add_space_prefix(add_prefix)
  2743. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2744. if precompiled_charsmap:
  2745. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2746. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2747. special_vocab.add_to_gguf(self.gguf_writer)
  2748. self.gguf_writer.add_add_bos_token(False)
  2749. self.gguf_writer.add_add_eos_token(True)
  2750. def set_gguf_parameters(self):
  2751. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  2752. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  2753. n_ctx = 512
  2754. self.gguf_writer.add_context_length(n_ctx)
  2755. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2756. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  2757. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2758. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  2759. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  2760. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  2761. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2762. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  2763. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2764. self.gguf_writer.add_file_type(self.ftype)
  2765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2766. del bid # unused
  2767. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  2768. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  2769. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  2770. # and decoder and ignore the remaining ones.
  2771. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  2772. if not self.shared_token_embeddings_found:
  2773. name = "shared.weight"
  2774. self.shared_token_embeddings_found = True
  2775. else:
  2776. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  2777. return []
  2778. return [(self.map_tensor_name(name), data_torch)]
  2779. @Model.register("JAISLMHeadModel")
  2780. class JaisModel(Model):
  2781. model_arch = gguf.MODEL_ARCH.JAIS
  2782. def __init__(self, *args, **kwargs):
  2783. super().__init__(*args, **kwargs)
  2784. # SwigLU activation
  2785. assert self.hparams["activation_function"] == "swiglu"
  2786. # ALiBi position embedding
  2787. assert self.hparams["position_embedding_type"] == "alibi"
  2788. # Embeddings scale
  2789. self.embeddings_scale = 1.0
  2790. # note: For some JAIS flavors, output is tied to (same as) wte in original model
  2791. self.output_is_wte = False
  2792. if 'mup_embeddings_scale' in self.hparams:
  2793. self.output_is_wte = True # Hack (?)
  2794. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  2795. elif 'embeddings_scale' in self.hparams:
  2796. self.embeddings_scale = self.hparams['embeddings_scale']
  2797. else:
  2798. assert False
  2799. self.width_scale = 1.0
  2800. if 'mup_output_alpha' in self.hparams:
  2801. assert 'mup_width_scale' in self.hparams
  2802. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  2803. elif 'width_scale' in self.hparams:
  2804. self.width_scale = self.hparams['width_scale']
  2805. else:
  2806. assert False
  2807. self.max_alibi_bias = 8.0
  2808. def set_vocab(self):
  2809. self._set_vocab_gpt2()
  2810. def set_gguf_parameters(self):
  2811. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2812. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2813. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2814. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  2815. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2816. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2817. self.gguf_writer.add_file_type(self.ftype)
  2818. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2819. del bid # unused
  2820. tensors: list[tuple[str, Tensor]] = []
  2821. # we don't need these
  2822. if name.endswith((".attn.bias")):
  2823. return tensors
  2824. if name.endswith(("relative_pe.slopes")):
  2825. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  2826. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  2827. # but Jais's PyTorch model simply precalculates the slope values and places them
  2828. # in relative_pes.slopes
  2829. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  2830. first_val = float(data_torch[0].item())
  2831. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  2832. return tensors
  2833. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  2834. data_torch = data_torch.transpose(1, 0)
  2835. new_name = self.map_tensor_name(name)
  2836. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  2837. tensors.append((new_name, data_torch * self.embeddings_scale))
  2838. if self.output_is_wte:
  2839. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch * self.width_scale))
  2840. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2841. assert not self.output_is_wte
  2842. tensors.append((new_name, data_torch * self.width_scale))
  2843. else:
  2844. tensors.append((new_name, data_torch))
  2845. return tensors
  2846. def prepare_tensors(self):
  2847. super().prepare_tensors()
  2848. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  2849. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  2850. class ChatGLMModel(Model):
  2851. model_arch = gguf.MODEL_ARCH.CHATGLM
  2852. def set_vocab_chatglm3(self):
  2853. dir_model = self.dir_model
  2854. hparams = self.hparams
  2855. tokens: list[bytes] = []
  2856. toktypes: list[int] = []
  2857. scores: list[float] = []
  2858. from transformers import AutoTokenizer
  2859. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2860. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  2861. assert max(tokenizer.get_vocab().values()) < vocab_size
  2862. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  2863. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  2864. for token_id in range(vocab_size):
  2865. piece = tokenizer._convert_id_to_token(token_id)
  2866. if token_id == 0:
  2867. piece = "<unk>"
  2868. elif token_id == 1:
  2869. piece = "<bos>"
  2870. elif token_id == 2:
  2871. piece = "<eos>"
  2872. text = piece.encode("utf-8")
  2873. score = 0.0
  2874. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  2875. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  2876. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  2877. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  2878. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  2879. if piece in special_tokens:
  2880. toktype = SentencePieceTokenTypes.CONTROL
  2881. elif len(piece) == 0:
  2882. text = f"[PAD{token_id}]".encode("utf-8")
  2883. toktype = SentencePieceTokenTypes.UNUSED
  2884. else:
  2885. toktype = SentencePieceTokenTypes.USER_DEFINED
  2886. tokens.append(text)
  2887. scores.append(score)
  2888. toktypes.append(toktype)
  2889. continue
  2890. toktype = SentencePieceTokenTypes.NORMAL
  2891. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  2892. toktype = SentencePieceTokenTypes.UNKNOWN
  2893. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  2894. toktype = SentencePieceTokenTypes.CONTROL
  2895. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  2896. toktype = SentencePieceTokenTypes.UNUSED
  2897. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  2898. toktype = SentencePieceTokenTypes.BYTE
  2899. tokens.append(text)
  2900. scores.append(score)
  2901. toktypes.append(toktype)
  2902. self.gguf_writer.add_tokenizer_model("llama")
  2903. # glm3 needs prefix and suffix formatted as:
  2904. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  2905. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  2906. self.gguf_writer.add_token_list(tokens)
  2907. self.gguf_writer.add_token_scores(scores)
  2908. self.gguf_writer.add_token_types(toktypes)
  2909. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2910. special_vocab.add_to_gguf(self.gguf_writer)
  2911. @staticmethod
  2912. def token_bytes_to_string(b):
  2913. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2914. byte_encoder = bytes_to_unicode()
  2915. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2916. @staticmethod
  2917. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2918. parts = [bytes([b]) for b in token]
  2919. while True:
  2920. min_idx = None
  2921. min_rank = None
  2922. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2923. rank = mergeable_ranks.get(pair[0] + pair[1])
  2924. if rank is not None and (min_rank is None or rank < min_rank):
  2925. min_idx = i
  2926. min_rank = rank
  2927. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2928. break
  2929. assert min_idx is not None
  2930. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2931. return parts
  2932. def set_vocab(self):
  2933. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  2934. self.set_vocab_chatglm3()
  2935. return
  2936. dir_model = self.dir_model
  2937. hparams = self.hparams
  2938. tokens: list[str] = []
  2939. toktypes: list[int] = []
  2940. from transformers import AutoTokenizer
  2941. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  2942. vocab_size = hparams["padded_vocab_size"]
  2943. assert max(tokenizer.get_vocab().values()) < vocab_size
  2944. tokpre = self.get_vocab_base_pre(tokenizer)
  2945. merges = []
  2946. vocab = {}
  2947. mergeable_ranks = tokenizer.mergeable_ranks
  2948. for token, rank in mergeable_ranks.items():
  2949. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  2950. if len(token) == 1:
  2951. continue
  2952. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  2953. assert len(merged) >= 2 and len(merged) <= 7
  2954. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  2955. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  2956. added_vocab = tokenizer.get_added_vocab()
  2957. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  2958. for i in range(vocab_size):
  2959. if i not in reverse_vocab:
  2960. tokens.append(f"[PAD{i}]")
  2961. toktypes.append(gguf.TokenType.UNUSED)
  2962. elif reverse_vocab[i] in added_vocab:
  2963. tokens.append(reverse_vocab[i])
  2964. if tokenizer.added_tokens_decoder[i].special:
  2965. toktypes.append(gguf.TokenType.CONTROL)
  2966. else:
  2967. toktypes.append(gguf.TokenType.USER_DEFINED)
  2968. else:
  2969. tokens.append(reverse_vocab[i])
  2970. toktypes.append(gguf.TokenType.NORMAL)
  2971. self.gguf_writer.add_tokenizer_model("gpt2")
  2972. self.gguf_writer.add_tokenizer_pre(tokpre)
  2973. self.gguf_writer.add_token_list(tokens)
  2974. self.gguf_writer.add_token_types(toktypes)
  2975. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  2976. special_vocab.merges = merges
  2977. # only add special tokens when they were not already loaded from config.json
  2978. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  2979. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  2980. # this one is usually not in config.json anyway
  2981. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  2982. special_vocab.add_to_gguf(self.gguf_writer)
  2983. def set_gguf_parameters(self):
  2984. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  2985. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  2986. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  2987. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  2988. self.gguf_writer.add_embedding_length(n_embed)
  2989. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  2990. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  2991. self.gguf_writer.add_head_count(n_head)
  2992. self.gguf_writer.add_head_count_kv(n_head_kv)
  2993. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  2994. self.gguf_writer.add_file_type(self.ftype)
  2995. self.gguf_writer.add_rope_dimension_count(64)
  2996. self.gguf_writer.add_add_bos_token(False)
  2997. rope_freq = 10000
  2998. if "rope_ratio" in self.hparams:
  2999. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3000. self.gguf_writer.add_rope_freq_base(rope_freq)
  3001. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3002. del bid # unused
  3003. if name.endswith(".rotary_pos_emb.inv_freq"):
  3004. return []
  3005. name = name.removeprefix("transformer.")
  3006. return [(self.map_tensor_name(name), data_torch)]
  3007. @Model.register("NemotronForCausalLM")
  3008. class NemotronModel(Model):
  3009. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3010. def set_vocab(self):
  3011. self._set_vocab_sentencepiece()
  3012. self.gguf_writer.add_pad_token_id(0)
  3013. self.gguf_writer.add_unk_token_id(1)
  3014. def set_gguf_parameters(self):
  3015. super().set_gguf_parameters()
  3016. hparams = self.hparams
  3017. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3018. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3019. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3020. # * Partial RoPE
  3021. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3022. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3023. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3024. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3025. # * RopeScaling for Nemotron
  3026. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3027. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3028. else:
  3029. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3030. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3031. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3032. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3033. # model.layers.{l}.input_layernorm.weight
  3034. # model.layers.{l}.post_attention_layernorm.weight
  3035. # model.norm.weight
  3036. if name.endswith("norm.weight"):
  3037. data_torch = data_torch + 1
  3038. return [(self.map_tensor_name(name), data_torch)]
  3039. ###### CONVERSION LOGIC ######
  3040. # tree of lazy tensors
  3041. class LazyTorchTensor(gguf.LazyBase):
  3042. _tensor_type = torch.Tensor
  3043. # to keep the type-checker happy
  3044. dtype: torch.dtype
  3045. shape: torch.Size
  3046. # only used when converting a torch.Tensor to a np.ndarray
  3047. _dtype_map: dict[torch.dtype, type] = {
  3048. torch.float16: np.float16,
  3049. torch.float32: np.float32,
  3050. }
  3051. # used for safetensors slices
  3052. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3053. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3054. _dtype_str_map: dict[str, torch.dtype] = {
  3055. "F64": torch.float64,
  3056. "F32": torch.float32,
  3057. "BF16": torch.bfloat16,
  3058. "F16": torch.float16,
  3059. # "U64": torch.uint64,
  3060. "I64": torch.int64,
  3061. # "U32": torch.uint32,
  3062. "I32": torch.int32,
  3063. # "U16": torch.uint16,
  3064. "I16": torch.int16,
  3065. "U8": torch.uint8,
  3066. "I8": torch.int8,
  3067. "BOOL": torch.bool,
  3068. "F8_E4M3": torch.float8_e4m3fn,
  3069. "F8_E5M2": torch.float8_e5m2,
  3070. }
  3071. def numpy(self) -> gguf.LazyNumpyTensor:
  3072. dtype = self._dtype_map[self.dtype]
  3073. return gguf.LazyNumpyTensor(
  3074. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3075. args=(self,),
  3076. func=(lambda s: s.numpy())
  3077. )
  3078. @classmethod
  3079. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3080. return torch.empty(size=shape, dtype=dtype, device="meta")
  3081. @classmethod
  3082. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3083. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3084. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3085. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3086. return cast(torch.Tensor, lazy)
  3087. @classmethod
  3088. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3089. del types # unused
  3090. if kwargs is None:
  3091. kwargs = {}
  3092. if func is torch.Tensor.numpy:
  3093. return args[0].numpy()
  3094. return cls._wrap_fn(func)(*args, **kwargs)
  3095. def parse_args() -> argparse.Namespace:
  3096. parser = argparse.ArgumentParser(
  3097. description="Convert a huggingface model to a GGML compatible file")
  3098. parser.add_argument(
  3099. "--vocab-only", action="store_true",
  3100. help="extract only the vocab",
  3101. )
  3102. parser.add_argument(
  3103. "--outfile", type=Path,
  3104. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3105. )
  3106. parser.add_argument(
  3107. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "auto"], default="f16",
  3108. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3109. )
  3110. parser.add_argument(
  3111. "--bigendian", action="store_true",
  3112. help="model is executed on big endian machine",
  3113. )
  3114. parser.add_argument(
  3115. "model", type=Path,
  3116. help="directory containing model file",
  3117. )
  3118. parser.add_argument(
  3119. "--use-temp-file", action="store_true",
  3120. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3121. )
  3122. parser.add_argument(
  3123. "--no-lazy", action="store_true",
  3124. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3125. )
  3126. parser.add_argument(
  3127. "--model-name", type=str, default=None,
  3128. help="name of the model",
  3129. )
  3130. parser.add_argument(
  3131. "--verbose", action="store_true",
  3132. help="increase output verbosity",
  3133. )
  3134. parser.add_argument(
  3135. "--split-max-tensors", type=int, default=0,
  3136. help="max tensors in each split",
  3137. )
  3138. parser.add_argument(
  3139. "--split-max-size", type=str, default="0",
  3140. help="max size per split N(M|G)",
  3141. )
  3142. parser.add_argument(
  3143. "--dry-run", action="store_true",
  3144. help="only print out a split plan and exit, without writing any new files",
  3145. )
  3146. parser.add_argument(
  3147. "--no-tensor-first-split", action="store_true",
  3148. help="do not add tensors to the first split (disabled by default)"
  3149. )
  3150. parser.add_argument(
  3151. "--metadata", type=Path,
  3152. help="Specify the path for an authorship metadata override file"
  3153. )
  3154. return parser.parse_args()
  3155. def split_str_to_n_bytes(split_str: str) -> int:
  3156. if split_str.endswith("K"):
  3157. n = int(split_str[:-1]) * 1000
  3158. elif split_str.endswith("M"):
  3159. n = int(split_str[:-1]) * 1000 * 1000
  3160. elif split_str.endswith("G"):
  3161. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3162. elif split_str.isnumeric():
  3163. n = int(split_str)
  3164. else:
  3165. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3166. if n < 0:
  3167. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3168. return n
  3169. def main() -> None:
  3170. args = parse_args()
  3171. if args.verbose:
  3172. logging.basicConfig(level=logging.DEBUG)
  3173. else:
  3174. logging.basicConfig(level=logging.INFO)
  3175. dir_model = args.model
  3176. if not dir_model.is_dir():
  3177. logger.error(f'Error: {args.model} is not a directory')
  3178. sys.exit(1)
  3179. ftype_map: dict[str, gguf.LlamaFileType] = {
  3180. "f32": gguf.LlamaFileType.ALL_F32,
  3181. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3182. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3183. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3184. "auto": gguf.LlamaFileType.GUESSED,
  3185. }
  3186. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3187. if args.use_temp_file and is_split:
  3188. logger.error("Error: Cannot use temp file when splitting")
  3189. sys.exit(1)
  3190. if args.outfile is not None:
  3191. fname_out = args.outfile
  3192. else:
  3193. fname_out = dir_model
  3194. logger.info(f"Loading model: {dir_model.name}")
  3195. hparams = Model.load_hparams(dir_model)
  3196. with torch.inference_mode():
  3197. output_type = ftype_map[args.outtype]
  3198. model_architecture = hparams["architectures"][0]
  3199. try:
  3200. model_class = Model.from_model_architecture(model_architecture)
  3201. except NotImplementedError:
  3202. logger.error(f"Model {model_architecture} is not supported")
  3203. sys.exit(1)
  3204. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3205. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3206. eager=args.no_lazy,
  3207. metadata_override=args.metadata, model_name=args.model_name,
  3208. split_max_tensors=args.split_max_tensors,
  3209. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3210. small_first_shard=args.no_tensor_first_split)
  3211. if args.vocab_only:
  3212. logger.info("Exporting model vocab...")
  3213. model_instance.write_vocab()
  3214. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3215. else:
  3216. logger.info("Exporting model...")
  3217. model_instance.write()
  3218. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3219. logger.info(f"Model successfully exported to {out_path}")
  3220. if __name__ == '__main__':
  3221. main()