| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382 |
- import argparse
- import os
- import json
- import re
- import torch
- import numpy as np
- from gguf import *
- from transformers.models.idefics2.modeling_idefics2 import Idefics2VisionTransformer, Idefics2VisionConfig
- TEXT = "clip.text"
- VISION = "clip.vision"
- def add_key_str(raw_key: str, arch: str) -> str:
- return raw_key.format(arch=arch)
- def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_minicpmv: bool) -> bool:
- if name in (
- "logit_scale",
- "text_model.embeddings.position_ids",
- "vision_model.embeddings.position_ids",
- ):
- return True
- if has_minicpmv and name in ["visual_projection.weight"]:
- return True
- if name.startswith("v") and not has_vision:
- return True
- if name.startswith("t") and not has_text:
- return True
- return False
- def get_tensor_name(name: str) -> str:
- if "projection" in name:
- return name
- if "mm_projector" in name:
- name = name.replace("model.mm_projector", "mm")
- name = re.sub(r'mm\.mlp\.mlp', 'mm.model.mlp', name, count=1)
- name = re.sub(r'mm\.peg\.peg', 'mm.model.peg', name, count=1)
- return name
- return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
- def bytes_to_unicode():
- """
- Returns list of utf-8 byte and a corresponding list of unicode strings.
- The reversible bpe codes work on unicode strings.
- This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
- When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
- This is a significant percentage of your normal, say, 32K bpe vocab.
- To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
- And avoids mapping to whitespace/control characters the bpe code barfs on.
- """
- bs = (
- list(range(ord("!"), ord("~") + 1))
- + list(range(ord("¡"), ord("¬") + 1))
- + list(range(ord("®"), ord("ÿ") + 1))
- )
- cs = bs[:]
- n = 0
- for b in range(2**8):
- if b not in bs:
- bs.append(b)
- cs.append(2**8 + n)
- n += 1
- cs = [chr(n) for n in cs]
- return dict(zip(bs, cs))
- ap = argparse.ArgumentParser()
- ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
- ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
- ap.add_argument("--text-only", action="store_true", required=False,
- help="Save a text-only model. It can't be used to encode images")
- ap.add_argument("--vision-only", action="store_true", required=False,
- help="Save a vision-only model. It can't be used to encode texts")
- ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
- help="The clip model is a pure vision model (ShareGPT4V vision extract for example)")
- ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
- help="The clip model is from openclip (for ViT-SO400M type))")
- ap.add_argument("--minicpmv-projector", help="Path to minicpmv.projector file. If specified, save an image encoder for MiniCPM-V models.")
- ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
- ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
- # Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
- # Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
- default_image_mean = [0.48145466, 0.4578275, 0.40821073]
- default_image_std = [0.26862954, 0.26130258, 0.27577711]
- ap.add_argument('--image-mean', type=float, nargs='+', help='Mean of the images for normalization (overrides processor) ', default=None)
- ap.add_argument('--image-std', type=float, nargs='+', help='Standard deviation of the images for normalization (overrides processor)', default=None)
- # with proper
- args = ap.parse_args()
- if args.text_only and args.vision_only:
- print("--text-only and --image-only arguments cannot be specified at the same time.")
- exit(1)
- if args.use_f32:
- print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
- # output in the same directory as the model if output_dir is None
- dir_model = args.model_dir
- if args.clip_model_is_vision or not os.path.exists(dir_model + "/vocab.json") or args.clip_model_is_openclip:
- vocab = None
- tokens = None
- else:
- with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
- vocab = json.load(f)
- tokens = [key for key in vocab]
- # possible data types
- # ftype == 0 -> float32
- # ftype == 1 -> float16
- #
- # map from ftype to string
- ftype_str = ["f32", "f16"]
- ftype = 1
- if args.use_f32:
- ftype = 0
- # if args.clip_model_is_vision or args.clip_model_is_openclip:
- # model = CLIPVisionModel.from_pretrained(dir_model)
- # processor = None
- # else:
- # model = CLIPModel.from_pretrained(dir_model)
- # processor = CLIPProcessor.from_pretrained(dir_model)
- default_vision_config = {
- "hidden_size": 1152,
- "image_size": 980,
- "intermediate_size": 4304,
- "model_type": "idefics2",
- "num_attention_heads": 16,
- "num_hidden_layers": 27,
- "patch_size": 14,
- }
- vision_config = Idefics2VisionConfig(**default_vision_config)
- model = Idefics2VisionTransformer(vision_config)
- processor = None
- # if model.attn_pool is not None:
- # model.attn_pool = torch.nn.Identity()
- # model.blocks = model.blocks[:-1]
- model.load_state_dict(torch.load(os.path.join(dir_model, "minicpmv.clip")))
- fname_middle = None
- has_text_encoder = True
- has_vision_encoder = True
- has_minicpmv_projector = False
- if args.text_only:
- fname_middle = "text-"
- has_vision_encoder = False
- elif args.minicpmv_projector is not None:
- fname_middle = "mmproj-"
- has_text_encoder = False
- has_minicpmv_projector = True
- elif args.vision_only:
- fname_middle = "vision-"
- has_text_encoder = False
- else:
- fname_middle = ""
- output_dir = args.output_dir if args.output_dir is not None else dir_model
- os.makedirs(output_dir, exist_ok=True)
- output_prefix = os.path.basename(output_dir).replace("ggml_", "")
- fname_out = os.path.join(output_dir, f"{fname_middle}model-{ftype_str[ftype]}.gguf")
- fout = GGUFWriter(path=fname_out, arch="clip")
- fout.add_bool("clip.has_text_encoder", has_text_encoder)
- fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
- fout.add_bool("clip.has_minicpmv_projector", has_minicpmv_projector)
- fout.add_file_type(ftype)
- if args.text_only:
- fout.add_description("text-only CLIP model")
- elif args.vision_only and not has_minicpmv_projector:
- fout.add_description("vision-only CLIP model")
- elif has_minicpmv_projector:
- fout.add_description("image encoder for MiniCPM-V")
- # add projector type
- fout.add_string("clip.projector_type", "resampler")
- else:
- fout.add_description("two-tower CLIP model")
- if has_vision_encoder:
- # vision_model hparams
- fout.add_uint32("clip.vision.image_size", 448)
- fout.add_uint32("clip.vision.patch_size", 14)
- fout.add_uint32(add_key_str(KEY_EMBEDDING_LENGTH, VISION), 1152)
- fout.add_uint32(add_key_str(KEY_FEED_FORWARD_LENGTH, VISION), 4304)
- fout.add_uint32("clip.vision.projection_dim", 0)
- fout.add_uint32(add_key_str(KEY_ATTENTION_HEAD_COUNT, VISION), 16)
- fout.add_float32(add_key_str(KEY_ATTENTION_LAYERNORM_EPS, VISION), 1e-6)
- block_count = 26
- fout.add_uint32(add_key_str(KEY_BLOCK_COUNT, VISION), block_count)
- if processor is not None:
- image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
- image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
- else:
- image_mean = args.image_mean if args.image_mean is not None else default_image_mean
- image_std = args.image_std if args.image_std is not None else default_image_std
- fout.add_array("clip.vision.image_mean", image_mean)
- fout.add_array("clip.vision.image_std", image_std)
- use_gelu = True
- fout.add_bool("clip.use_gelu", use_gelu)
- def get_1d_sincos_pos_embed_from_grid(embed_dim, pos):
- """
- embed_dim: output dimension for each position
- pos: a list of positions to be encoded: size (M,)
- out: (M, D)
- """
- assert embed_dim % 2 == 0
- omega = np.arange(embed_dim // 2, dtype=np.float32)
- omega /= embed_dim / 2.
- omega = 1. / 10000 ** omega # (D/2,)
- pos = pos.reshape(-1) # (M,)
- out = np.einsum('m,d->md', pos, omega) # (M, D/2), outer product
- emb_sin = np.sin(out) # (M, D/2)
- emb_cos = np.cos(out) # (M, D/2)
- emb = np.concatenate([emb_sin, emb_cos], axis=1) # (M, D)
- return emb
- def get_2d_sincos_pos_embed_from_grid(embed_dim, grid):
- assert embed_dim % 2 == 0
- # use half of dimensions to encode grid_h
- emb_h = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[0]) # (H*W, D/2)
- emb_w = get_1d_sincos_pos_embed_from_grid(embed_dim // 2, grid[1]) # (H*W, D/2)
- emb = np.concatenate([emb_h, emb_w], axis=1) # (H*W, D)
- return emb
- # https://github.com/facebookresearch/mae/blob/efb2a8062c206524e35e47d04501ed4f544c0ae8/util/pos_embed.py#L20
- def get_2d_sincos_pos_embed(embed_dim, grid_size, cls_token=False):
- """
- grid_size: int of the grid height and width
- return:
- pos_embed: [grid_size*grid_size, embed_dim] or [1+grid_size*grid_size, embed_dim] (w/ or w/o cls_token)
- """
- if isinstance(grid_size, int):
- grid_h_size, grid_w_size = grid_size, grid_size
- else:
- grid_h_size, grid_w_size = grid_size[0], grid_size[1]
- grid_h = np.arange(grid_h_size, dtype=np.float32)
- grid_w = np.arange(grid_w_size, dtype=np.float32)
- grid = np.meshgrid(grid_w, grid_h) # here w goes first
- grid = np.stack(grid, axis=0)
- grid = grid.reshape([2, 1, grid_h_size, grid_w_size])
- pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid)
- if cls_token:
- pos_embed = np.concatenate([np.zeros([1, embed_dim]), pos_embed], axis=0)
- return pos_embed
- def _replace_name_resampler(s, v):
- if re.match("resampler.pos_embed", s):
- return {
- s: v,
- re.sub("pos_embed", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
- }
- if re.match("resampler.proj", s):
- return {
- re.sub("proj", "pos_embed_k", s): torch.from_numpy(get_2d_sincos_pos_embed(4096, (70, 70))),
- re.sub("proj", "proj.weight", s): v.transpose(-1, -2).contiguous(),
- }
- if re.match("resampler.attn.in_proj_.*", s):
- return {
- re.sub("attn.in_proj_", "attn.q.", s): v.chunk(3, dim=0)[0],
- re.sub("attn.in_proj_", "attn.k.", s): v.chunk(3, dim=0)[1],
- re.sub("attn.in_proj_", "attn.v.", s): v.chunk(3, dim=0)[2],
- }
- return {s: v}
- if has_minicpmv_projector:
- projector = torch.load(args.minicpmv_projector)
- new_state_dict = {}
- for k, v in projector.items():
- kvs = _replace_name_resampler(k, v)
- for nk, nv in kvs.items():
- new_state_dict[nk] = nv
- projector = new_state_dict
- ftype_cur = 0
- for name, data in projector.items():
- name = get_tensor_name(name)
- data = data.squeeze().numpy()
- n_dims = len(data.shape)
- if ftype == 1:
- if name[-7:] == ".weight" and n_dims == 2:
- print(" Converting to float16")
- data = data.astype(np.float16)
- ftype_cur = 1
- else:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- else:
- if data.dtype != np.float32:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- fout.add_tensor(name, data)
- print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
- print("Projector tensors added\n")
- def _replace_name(s, v):
- s = "vision_model." + s
- if re.match("vision_model.embeddings.position_embedding", s):
- v = v.unsqueeze(0)
- return {s: v}
- return {s: v}
- state_dict = model.state_dict()
- new_state_dict = {}
- for k, v in state_dict.items():
- kvs = _replace_name(k, v)
- for nk, nv in kvs.items():
- new_state_dict[nk] = nv
- state_dict = new_state_dict
- for name, data in state_dict.items():
- if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_minicpmv_projector):
- # we don't need this
- print(f"skipping parameter: {name}")
- continue
- name = get_tensor_name(name)
- data = data.squeeze().numpy()
- n_dims = len(data.shape)
- # ftype == 0 -> float32, ftype == 1 -> float16
- ftype_cur = 0
- if n_dims == 4:
- print(f"tensor {name} is always saved in f16")
- data = data.astype(np.float16)
- ftype_cur = 1
- elif ftype == 1:
- if name[-7:] == ".weight" and n_dims == 2:
- print(" Converting to float16")
- data = data.astype(np.float16)
- ftype_cur = 1
- else:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- else:
- if data.dtype != np.float32:
- print(" Converting to float32")
- data = data.astype(np.float32)
- ftype_cur = 0
- print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
- fout.add_tensor(name, data)
- fout.write_header_to_file()
- fout.write_kv_data_to_file()
- fout.write_tensors_to_file()
- fout.close()
- print("Done. Output file: " + fname_out)
|