ggml.c 519 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #include "ggml-quants-k.h"
  5. #if defined(_MSC_VER) || defined(__MINGW32__)
  6. #include <malloc.h> // using malloc.h with MSC/MINGW
  7. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  8. #include <alloca.h>
  9. #endif
  10. #include <assert.h>
  11. #include <errno.h>
  12. #include <time.h>
  13. #include <math.h>
  14. #include <stdlib.h>
  15. #include <string.h>
  16. #include <stdint.h>
  17. #include <inttypes.h>
  18. #include <stdio.h>
  19. #include <float.h>
  20. #include <limits.h>
  21. #ifdef GGML_USE_METAL
  22. #include <unistd.h>
  23. #endif
  24. // if C99 - static_assert is noop
  25. // ref: https://stackoverflow.com/a/53923785/4039976
  26. #ifndef static_assert
  27. #define static_assert(cond, msg) struct global_scope_noop_trick
  28. #endif
  29. #if defined(_WIN32)
  30. #include <windows.h>
  31. typedef volatile LONG atomic_int;
  32. typedef atomic_int atomic_bool;
  33. static void atomic_store(atomic_int* ptr, LONG val) {
  34. InterlockedExchange(ptr, val);
  35. }
  36. static LONG atomic_load(atomic_int* ptr) {
  37. return InterlockedCompareExchange(ptr, 0, 0);
  38. }
  39. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  40. return InterlockedExchangeAdd(ptr, inc);
  41. }
  42. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  43. return atomic_fetch_add(ptr, -(dec));
  44. }
  45. typedef HANDLE pthread_t;
  46. typedef DWORD thread_ret_t;
  47. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  48. (void) unused;
  49. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  50. if (handle == NULL)
  51. {
  52. return EAGAIN;
  53. }
  54. *out = handle;
  55. return 0;
  56. }
  57. static int pthread_join(pthread_t thread, void* unused) {
  58. (void) unused;
  59. return (int) WaitForSingleObject(thread, INFINITE);
  60. }
  61. static int sched_yield (void) {
  62. Sleep (0);
  63. return 0;
  64. }
  65. #else
  66. #include <pthread.h>
  67. #include <stdatomic.h>
  68. typedef void* thread_ret_t;
  69. #endif
  70. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  71. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  72. #ifndef __FMA__
  73. #define __FMA__
  74. #endif
  75. #ifndef __F16C__
  76. #define __F16C__
  77. #endif
  78. #ifndef __SSE3__
  79. #define __SSE3__
  80. #endif
  81. #endif
  82. #ifdef __HAIKU__
  83. #define static_assert(cond, msg) _Static_assert(cond, msg)
  84. #endif
  85. /*#define GGML_PERF*/
  86. #define GGML_DEBUG 0
  87. #define GGML_GELU_FP16
  88. #define GGML_SILU_FP16
  89. #define GGML_SOFT_MAX_UNROLL 4
  90. #define GGML_VEC_DOT_UNROLL 2
  91. #ifdef GGML_USE_ACCELERATE
  92. // uncomment to use vDSP for soft max computation
  93. // note: not sure if it is actually faster
  94. //#define GGML_SOFT_MAX_ACCELERATE
  95. #endif
  96. #if UINTPTR_MAX == 0xFFFFFFFF
  97. #define GGML_MEM_ALIGN 4
  98. #else
  99. #define GGML_MEM_ALIGN 16
  100. #endif
  101. #if defined(_MSC_VER) || defined(__MINGW32__)
  102. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  103. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  104. #else
  105. inline static void* ggml_aligned_malloc(size_t size) {
  106. void* aligned_memory = NULL;
  107. #ifdef GGML_USE_METAL
  108. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  109. #else
  110. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  111. #endif
  112. if (result != 0) {
  113. // Handle allocation failure
  114. return NULL;
  115. }
  116. return aligned_memory;
  117. }
  118. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  119. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  120. #endif
  121. #define UNUSED(x) (void)(x)
  122. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  123. #if defined(GGML_USE_ACCELERATE)
  124. #include <Accelerate/Accelerate.h>
  125. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  126. #include "ggml-opencl.h"
  127. #endif
  128. #elif defined(GGML_USE_OPENBLAS)
  129. #include <cblas.h>
  130. #elif defined(GGML_USE_CUBLAS)
  131. #include "ggml-cuda.h"
  132. #elif defined(GGML_USE_CLBLAST)
  133. #include "ggml-opencl.h"
  134. #endif
  135. #undef MIN
  136. #undef MAX
  137. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  138. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  139. // floating point type used to accumulate sums
  140. typedef double ggml_float;
  141. // 16-bit float
  142. // on Arm, we use __fp16
  143. // on x86, we use uint16_t
  144. #ifdef __ARM_NEON
  145. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  146. //
  147. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  148. //
  149. #include <arm_neon.h>
  150. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  151. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  152. #define GGML_FP16_TO_FP32(x) ((float) (x))
  153. #define GGML_FP32_TO_FP16(x) (x)
  154. #else
  155. #ifdef __wasm_simd128__
  156. #include <wasm_simd128.h>
  157. #else
  158. #ifdef __POWER9_VECTOR__
  159. #include <altivec.h>
  160. #undef bool
  161. #define bool _Bool
  162. #else
  163. #if defined(_MSC_VER) || defined(__MINGW32__)
  164. #include <intrin.h>
  165. #else
  166. #if !defined(__riscv)
  167. #include <immintrin.h>
  168. #endif
  169. #endif
  170. #endif
  171. #endif
  172. #ifdef __F16C__
  173. #ifdef _MSC_VER
  174. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  175. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  176. #else
  177. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  178. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  179. #endif
  180. #elif defined(__POWER9_VECTOR__)
  181. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  182. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  183. /* the inline asm below is about 12% faster than the lookup method */
  184. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  185. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  186. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  187. register float f;
  188. register double d;
  189. __asm__(
  190. "mtfprd %0,%2\n"
  191. "xscvhpdp %0,%0\n"
  192. "frsp %1,%0\n" :
  193. /* temp */ "=d"(d),
  194. /* out */ "=f"(f):
  195. /* in */ "r"(h));
  196. return f;
  197. }
  198. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  199. register double d;
  200. register ggml_fp16_t r;
  201. __asm__( /* xscvdphp can work on double or single precision */
  202. "xscvdphp %0,%2\n"
  203. "mffprd %1,%0\n" :
  204. /* temp */ "=d"(d),
  205. /* out */ "=r"(r):
  206. /* in */ "f"(f));
  207. return r;
  208. }
  209. #else
  210. // FP16 <-> FP32
  211. // ref: https://github.com/Maratyszcza/FP16
  212. static inline float fp32_from_bits(uint32_t w) {
  213. union {
  214. uint32_t as_bits;
  215. float as_value;
  216. } fp32;
  217. fp32.as_bits = w;
  218. return fp32.as_value;
  219. }
  220. static inline uint32_t fp32_to_bits(float f) {
  221. union {
  222. float as_value;
  223. uint32_t as_bits;
  224. } fp32;
  225. fp32.as_value = f;
  226. return fp32.as_bits;
  227. }
  228. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  229. const uint32_t w = (uint32_t) h << 16;
  230. const uint32_t sign = w & UINT32_C(0x80000000);
  231. const uint32_t two_w = w + w;
  232. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  233. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  234. const float exp_scale = 0x1.0p-112f;
  235. #else
  236. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  237. #endif
  238. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  239. const uint32_t magic_mask = UINT32_C(126) << 23;
  240. const float magic_bias = 0.5f;
  241. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  242. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  243. const uint32_t result = sign |
  244. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  245. return fp32_from_bits(result);
  246. }
  247. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  248. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  249. const float scale_to_inf = 0x1.0p+112f;
  250. const float scale_to_zero = 0x1.0p-110f;
  251. #else
  252. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  253. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  254. #endif
  255. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  256. const uint32_t w = fp32_to_bits(f);
  257. const uint32_t shl1_w = w + w;
  258. const uint32_t sign = w & UINT32_C(0x80000000);
  259. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  260. if (bias < UINT32_C(0x71000000)) {
  261. bias = UINT32_C(0x71000000);
  262. }
  263. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  264. const uint32_t bits = fp32_to_bits(base);
  265. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  266. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  267. const uint32_t nonsign = exp_bits + mantissa_bits;
  268. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  269. }
  270. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  271. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  272. #endif // __F16C__
  273. #endif // __ARM_NEON
  274. //
  275. // global data
  276. //
  277. // precomputed gelu table for f16 (128 KB)
  278. static ggml_fp16_t table_gelu_f16[1 << 16];
  279. // precomputed silu table for f16 (128 KB)
  280. static ggml_fp16_t table_silu_f16[1 << 16];
  281. // precomputed exp table for f16 (128 KB)
  282. static ggml_fp16_t table_exp_f16[1 << 16];
  283. // precomputed f32 table for f16 (256 KB)
  284. static float table_f32_f16[1 << 16];
  285. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  286. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  287. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  288. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  289. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  290. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  291. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  292. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  293. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  294. // precomputed tables for expanding 8bits to 8 bytes:
  295. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  296. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  297. #endif
  298. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  299. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  300. // This is also true for POWER9.
  301. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  302. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  303. uint16_t s;
  304. memcpy(&s, &f, sizeof(uint16_t));
  305. return table_f32_f16[s];
  306. }
  307. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  308. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  309. #endif
  310. // note: do not use these inside ggml.c
  311. // these are meant to be used via the ggml.h API
  312. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  313. return (float) GGML_FP16_TO_FP32(x);
  314. }
  315. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  316. return GGML_FP32_TO_FP16(x);
  317. }
  318. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  319. for (size_t i = 0; i < n; i++) {
  320. y[i] = GGML_FP16_TO_FP32(x[i]);
  321. }
  322. }
  323. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  324. size_t i = 0;
  325. #if defined(__F16C__)
  326. for (; i + 7 < n; i += 8) {
  327. __m256 x_vec = _mm256_loadu_ps(x + i);
  328. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  329. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  330. }
  331. for(; i + 3 < n; i += 4) {
  332. __m128 x_vec = _mm_loadu_ps(x + i);
  333. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  334. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  335. }
  336. #endif
  337. for (; i < n; i++) {
  338. y[i] = GGML_FP32_TO_FP16(x[i]);
  339. }
  340. }
  341. //
  342. // timing
  343. //
  344. #if defined(_MSC_VER) || defined(__MINGW32__)
  345. static int64_t timer_freq, timer_start;
  346. void ggml_time_init(void) {
  347. LARGE_INTEGER t;
  348. QueryPerformanceFrequency(&t);
  349. timer_freq = t.QuadPart;
  350. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  351. // and the uptime is high enough.
  352. // We subtract the program start time to reduce the likelihood of that happening.
  353. QueryPerformanceCounter(&t);
  354. timer_start = t.QuadPart;
  355. }
  356. int64_t ggml_time_ms(void) {
  357. LARGE_INTEGER t;
  358. QueryPerformanceCounter(&t);
  359. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  360. }
  361. int64_t ggml_time_us(void) {
  362. LARGE_INTEGER t;
  363. QueryPerformanceCounter(&t);
  364. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  365. }
  366. #else
  367. void ggml_time_init(void) {}
  368. int64_t ggml_time_ms(void) {
  369. struct timespec ts;
  370. clock_gettime(CLOCK_MONOTONIC, &ts);
  371. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  372. }
  373. int64_t ggml_time_us(void) {
  374. struct timespec ts;
  375. clock_gettime(CLOCK_MONOTONIC, &ts);
  376. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  377. }
  378. #endif
  379. int64_t ggml_cycles(void) {
  380. return clock();
  381. }
  382. int64_t ggml_cycles_per_ms(void) {
  383. return CLOCKS_PER_SEC/1000;
  384. }
  385. #ifdef GGML_PERF
  386. #define ggml_perf_time_ms() ggml_time_ms()
  387. #define ggml_perf_time_us() ggml_time_us()
  388. #define ggml_perf_cycles() ggml_cycles()
  389. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  390. #else
  391. #define ggml_perf_time_ms() 0
  392. #define ggml_perf_time_us() 0
  393. #define ggml_perf_cycles() 0
  394. #define ggml_perf_cycles_per_ms() 0
  395. #endif
  396. //
  397. // cache line
  398. //
  399. #if defined(__cpp_lib_hardware_interference_size)
  400. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  401. #else
  402. #if defined(__POWER9_VECTOR__)
  403. #define CACHE_LINE_SIZE 128
  404. #else
  405. #define CACHE_LINE_SIZE 64
  406. #endif
  407. #endif
  408. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  409. //
  410. // quantization
  411. //
  412. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  413. // multiply int8_t, add results pairwise twice
  414. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  415. // Get absolute values of x vectors
  416. const __m128i ax = _mm_sign_epi8(x, x);
  417. // Sign the values of the y vectors
  418. const __m128i sy = _mm_sign_epi8(y, x);
  419. // Perform multiplication and create 16-bit values
  420. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  421. const __m128i ones = _mm_set1_epi16(1);
  422. return _mm_madd_epi16(ones, dot);
  423. }
  424. #if __AVX__ || __AVX2__ || __AVX512F__
  425. // horizontally add 8 floats
  426. static inline float hsum_float_8(const __m256 x) {
  427. __m128 res = _mm256_extractf128_ps(x, 1);
  428. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  429. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  430. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  431. return _mm_cvtss_f32(res);
  432. }
  433. // horizontally add 8 int32_t
  434. static inline int hsum_i32_8(const __m256i a) {
  435. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  436. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  437. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  438. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  439. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  440. }
  441. // horizontally add 4 int32_t
  442. static inline int hsum_i32_4(const __m128i a) {
  443. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  444. const __m128i sum64 = _mm_add_epi32(hi64, a);
  445. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  446. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  447. }
  448. #if defined(__AVX2__) || defined(__AVX512F__)
  449. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  450. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  451. uint32_t x32;
  452. memcpy(&x32, x, sizeof(uint32_t));
  453. const __m256i shuf_mask = _mm256_set_epi64x(
  454. 0x0303030303030303, 0x0202020202020202,
  455. 0x0101010101010101, 0x0000000000000000);
  456. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  457. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  458. bytes = _mm256_or_si256(bytes, bit_mask);
  459. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  460. }
  461. // Unpack 32 4-bit fields into 32 bytes
  462. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  463. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  464. {
  465. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  466. const __m256i bytes = _mm256_set_m128i(_mm_srli_epi16(tmp, 4), tmp);
  467. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  468. return _mm256_and_si256(lowMask, bytes);
  469. }
  470. // add int16_t pairwise and return as float vector
  471. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  472. const __m256i ones = _mm256_set1_epi16(1);
  473. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  474. return _mm256_cvtepi32_ps(summed_pairs);
  475. }
  476. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  477. #if __AVXVNNI__
  478. const __m256i zero = _mm256_setzero_si256();
  479. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  480. return _mm256_cvtepi32_ps(summed_pairs);
  481. #else
  482. // Perform multiplication and create 16-bit values
  483. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  484. return sum_i16_pairs_float(dot);
  485. #endif
  486. }
  487. // multiply int8_t, add results pairwise twice and return as float vector
  488. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  489. #if __AVXVNNIINT8__
  490. const __m256i zero = _mm256_setzero_si256();
  491. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  492. return _mm256_cvtepi32_ps(summed_pairs);
  493. #else
  494. // Get absolute values of x vectors
  495. const __m256i ax = _mm256_sign_epi8(x, x);
  496. // Sign the values of the y vectors
  497. const __m256i sy = _mm256_sign_epi8(y, x);
  498. return mul_sum_us8_pairs_float(ax, sy);
  499. #endif
  500. }
  501. static inline __m128i packNibbles( __m256i bytes )
  502. {
  503. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  504. #if __AVX512F__
  505. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  506. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  507. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  508. #else
  509. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  510. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  511. __m256i low = _mm256_and_si256( lowByte, bytes );
  512. high = _mm256_srli_epi16( high, 4 );
  513. bytes = _mm256_or_si256( low, high );
  514. // Compress uint16_t lanes into bytes
  515. __m128i r0 = _mm256_castsi256_si128( bytes );
  516. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  517. return _mm_packus_epi16( r0, r1 );
  518. #endif
  519. }
  520. #elif defined(__AVX__)
  521. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  522. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  523. uint32_t x32;
  524. memcpy(&x32, x, sizeof(uint32_t));
  525. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  526. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  527. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  528. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  529. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  530. bytesl = _mm_or_si128(bytesl, bit_mask);
  531. bytesh = _mm_or_si128(bytesh, bit_mask);
  532. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  533. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  534. return _mm256_set_m128i(bytesh, bytesl);
  535. }
  536. // Unpack 32 4-bit fields into 32 bytes
  537. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  538. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  539. {
  540. // Load 16 bytes from memory
  541. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  542. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  543. const __m128i lowMask = _mm_set1_epi8(0xF);
  544. tmpl = _mm_and_si128(lowMask, tmpl);
  545. tmph = _mm_and_si128(lowMask, tmph);
  546. return _mm256_set_m128i(tmph, tmpl);
  547. }
  548. // add int16_t pairwise and return as float vector
  549. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  550. const __m128i ones = _mm_set1_epi16(1);
  551. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  552. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  553. const __m256i summed_pairs = _mm256_set_m128i(summed_pairsh, summed_pairsl);
  554. return _mm256_cvtepi32_ps(summed_pairs);
  555. }
  556. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  557. const __m128i axl = _mm256_castsi256_si128(ax);
  558. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  559. const __m128i syl = _mm256_castsi256_si128(sy);
  560. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  561. // Perform multiplication and create 16-bit values
  562. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  563. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  564. return sum_i16_pairs_float(doth, dotl);
  565. }
  566. // multiply int8_t, add results pairwise twice and return as float vector
  567. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  568. const __m128i xl = _mm256_castsi256_si128(x);
  569. const __m128i xh = _mm256_extractf128_si256(x, 1);
  570. const __m128i yl = _mm256_castsi256_si128(y);
  571. const __m128i yh = _mm256_extractf128_si256(y, 1);
  572. // Get absolute values of x vectors
  573. const __m128i axl = _mm_sign_epi8(xl, xl);
  574. const __m128i axh = _mm_sign_epi8(xh, xh);
  575. // Sign the values of the y vectors
  576. const __m128i syl = _mm_sign_epi8(yl, xl);
  577. const __m128i syh = _mm_sign_epi8(yh, xh);
  578. // Perform multiplication and create 16-bit values
  579. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  580. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  581. return sum_i16_pairs_float(doth, dotl);
  582. }
  583. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  584. {
  585. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  586. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  587. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  588. __m128i low = _mm_and_si128( lowByte, bytes1 );
  589. high = _mm_srli_epi16( high, 4 );
  590. bytes1 = _mm_or_si128( low, high );
  591. high = _mm_andnot_si128( lowByte, bytes2 );
  592. low = _mm_and_si128( lowByte, bytes2 );
  593. high = _mm_srli_epi16( high, 4 );
  594. bytes2 = _mm_or_si128( low, high );
  595. return _mm_packus_epi16( bytes1, bytes2);
  596. }
  597. #endif
  598. #elif defined(__SSSE3__)
  599. // horizontally add 4x4 floats
  600. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  601. __m128 res_0 =_mm_hadd_ps(a, b);
  602. __m128 res_1 =_mm_hadd_ps(c, d);
  603. __m128 res =_mm_hadd_ps(res_0, res_1);
  604. res =_mm_hadd_ps(res, res);
  605. res =_mm_hadd_ps(res, res);
  606. return _mm_cvtss_f32(res);
  607. }
  608. #endif // __AVX__ || __AVX2__ || __AVX512F__
  609. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  610. #if defined(__ARM_NEON)
  611. #if !defined(__aarch64__)
  612. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  613. return
  614. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  615. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  616. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  617. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  618. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  619. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  620. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  621. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  622. }
  623. inline static int16_t vaddvq_s8(int8x16_t v) {
  624. return
  625. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  626. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  627. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  628. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  629. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  630. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  631. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  632. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  633. }
  634. inline static int32_t vaddvq_s16(int16x8_t v) {
  635. return
  636. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  637. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  638. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  639. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  640. }
  641. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  642. return
  643. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  644. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  645. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  646. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  647. }
  648. inline static int32_t vaddvq_s32(int32x4_t v) {
  649. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  650. }
  651. inline static float vaddvq_f32(float32x4_t v) {
  652. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  653. }
  654. inline static float vminvq_f32(float32x4_t v) {
  655. return
  656. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  657. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  658. }
  659. inline static float vmaxvq_f32(float32x4_t v) {
  660. return
  661. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  662. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  663. }
  664. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  665. int32x4_t res;
  666. res[0] = roundf(vgetq_lane_f32(v, 0));
  667. res[1] = roundf(vgetq_lane_f32(v, 1));
  668. res[2] = roundf(vgetq_lane_f32(v, 2));
  669. res[3] = roundf(vgetq_lane_f32(v, 3));
  670. return res;
  671. }
  672. #endif
  673. #endif
  674. #define QK4_0 32
  675. typedef struct {
  676. ggml_fp16_t d; // delta
  677. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  678. } block_q4_0;
  679. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  680. #define QK4_1 32
  681. typedef struct {
  682. ggml_fp16_t d; // delta
  683. ggml_fp16_t m; // min
  684. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  685. } block_q4_1;
  686. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  687. #define QK5_0 32
  688. typedef struct {
  689. ggml_fp16_t d; // delta
  690. uint8_t qh[4]; // 5-th bit of quants
  691. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  692. } block_q5_0;
  693. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  694. #define QK5_1 32
  695. typedef struct {
  696. ggml_fp16_t d; // delta
  697. ggml_fp16_t m; // min
  698. uint8_t qh[4]; // 5-th bit of quants
  699. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  700. } block_q5_1;
  701. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  702. #define QK8_0 32
  703. typedef struct {
  704. ggml_fp16_t d; // delta
  705. int8_t qs[QK8_0]; // quants
  706. } block_q8_0;
  707. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  708. #define QK8_1 32
  709. typedef struct {
  710. float d; // delta
  711. float s; // d * sum(qs[i])
  712. int8_t qs[QK8_1]; // quants
  713. } block_q8_1;
  714. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  715. // reference implementation for deterministic creation of model files
  716. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  717. static const int qk = QK4_0;
  718. assert(k % qk == 0);
  719. const int nb = k / qk;
  720. for (int i = 0; i < nb; i++) {
  721. float amax = 0.0f; // absolute max
  722. float max = 0.0f;
  723. for (int j = 0; j < qk; j++) {
  724. const float v = x[i*qk + j];
  725. if (amax < fabsf(v)) {
  726. amax = fabsf(v);
  727. max = v;
  728. }
  729. }
  730. const float d = max / -8;
  731. const float id = d ? 1.0f/d : 0.0f;
  732. y[i].d = GGML_FP32_TO_FP16(d);
  733. for (int j = 0; j < qk/2; ++j) {
  734. const float x0 = x[i*qk + 0 + j]*id;
  735. const float x1 = x[i*qk + qk/2 + j]*id;
  736. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  737. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  738. y[i].qs[j] = xi0;
  739. y[i].qs[j] |= xi1 << 4;
  740. }
  741. }
  742. }
  743. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  744. quantize_row_q4_0_reference(x, y, k);
  745. }
  746. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  747. const int qk = QK4_1;
  748. assert(k % qk == 0);
  749. const int nb = k / qk;
  750. for (int i = 0; i < nb; i++) {
  751. float min = FLT_MAX;
  752. float max = -FLT_MAX;
  753. for (int j = 0; j < qk; j++) {
  754. const float v = x[i*qk + j];
  755. if (v < min) min = v;
  756. if (v > max) max = v;
  757. }
  758. const float d = (max - min) / ((1 << 4) - 1);
  759. const float id = d ? 1.0f/d : 0.0f;
  760. y[i].d = GGML_FP32_TO_FP16(d);
  761. y[i].m = GGML_FP32_TO_FP16(min);
  762. for (int j = 0; j < qk/2; ++j) {
  763. const float x0 = (x[i*qk + 0 + j] - min)*id;
  764. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  765. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  766. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  767. y[i].qs[j] = xi0;
  768. y[i].qs[j] |= xi1 << 4;
  769. }
  770. }
  771. }
  772. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  773. quantize_row_q4_1_reference(x, y, k);
  774. }
  775. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  776. static const int qk = QK5_0;
  777. assert(k % qk == 0);
  778. const int nb = k / qk;
  779. for (int i = 0; i < nb; i++) {
  780. float amax = 0.0f; // absolute max
  781. float max = 0.0f;
  782. for (int j = 0; j < qk; j++) {
  783. const float v = x[i*qk + j];
  784. if (amax < fabsf(v)) {
  785. amax = fabsf(v);
  786. max = v;
  787. }
  788. }
  789. const float d = max / -16;
  790. const float id = d ? 1.0f/d : 0.0f;
  791. y[i].d = GGML_FP32_TO_FP16(d);
  792. uint32_t qh = 0;
  793. for (int j = 0; j < qk/2; ++j) {
  794. const float x0 = x[i*qk + 0 + j]*id;
  795. const float x1 = x[i*qk + qk/2 + j]*id;
  796. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  797. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  798. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  799. // get the 5-th bit and store it in qh at the right position
  800. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  801. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  802. }
  803. memcpy(&y[i].qh, &qh, sizeof(qh));
  804. }
  805. }
  806. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  807. quantize_row_q5_0_reference(x, y, k);
  808. }
  809. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  810. const int qk = QK5_1;
  811. assert(k % qk == 0);
  812. const int nb = k / qk;
  813. for (int i = 0; i < nb; i++) {
  814. float min = FLT_MAX;
  815. float max = -FLT_MAX;
  816. for (int j = 0; j < qk; j++) {
  817. const float v = x[i*qk + j];
  818. if (v < min) min = v;
  819. if (v > max) max = v;
  820. }
  821. const float d = (max - min) / ((1 << 5) - 1);
  822. const float id = d ? 1.0f/d : 0.0f;
  823. y[i].d = GGML_FP32_TO_FP16(d);
  824. y[i].m = GGML_FP32_TO_FP16(min);
  825. uint32_t qh = 0;
  826. for (int j = 0; j < qk/2; ++j) {
  827. const float x0 = (x[i*qk + 0 + j] - min)*id;
  828. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  829. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  830. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  831. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  832. // get the 5-th bit and store it in qh at the right position
  833. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  834. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  835. }
  836. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  837. }
  838. }
  839. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  840. quantize_row_q5_1_reference(x, y, k);
  841. }
  842. // reference implementation for deterministic creation of model files
  843. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  844. assert(k % QK8_0 == 0);
  845. const int nb = k / QK8_0;
  846. for (int i = 0; i < nb; i++) {
  847. float amax = 0.0f; // absolute max
  848. for (int j = 0; j < QK8_0; j++) {
  849. const float v = x[i*QK8_0 + j];
  850. amax = MAX(amax, fabsf(v));
  851. }
  852. const float d = amax / ((1 << 7) - 1);
  853. const float id = d ? 1.0f/d : 0.0f;
  854. y[i].d = GGML_FP32_TO_FP16(d);
  855. for (int j = 0; j < QK8_0; ++j) {
  856. const float x0 = x[i*QK8_0 + j]*id;
  857. y[i].qs[j] = roundf(x0);
  858. }
  859. }
  860. }
  861. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  862. assert(QK8_0 == 32);
  863. assert(k % QK8_0 == 0);
  864. const int nb = k / QK8_0;
  865. block_q8_0 * restrict y = vy;
  866. #if defined(__ARM_NEON)
  867. for (int i = 0; i < nb; i++) {
  868. float32x4_t srcv [8];
  869. float32x4_t asrcv[8];
  870. float32x4_t amaxv[8];
  871. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  872. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  873. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  874. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  875. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  876. const float amax = vmaxvq_f32(amaxv[0]);
  877. const float d = amax / ((1 << 7) - 1);
  878. const float id = d ? 1.0f/d : 0.0f;
  879. y[i].d = GGML_FP32_TO_FP16(d);
  880. for (int j = 0; j < 8; j++) {
  881. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  882. const int32x4_t vi = vcvtnq_s32_f32(v);
  883. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  884. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  885. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  886. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  887. }
  888. }
  889. #elif defined(__wasm_simd128__)
  890. for (int i = 0; i < nb; i++) {
  891. v128_t srcv [8];
  892. v128_t asrcv[8];
  893. v128_t amaxv[8];
  894. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  895. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  896. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  897. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  898. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  899. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  900. wasm_f32x4_extract_lane(amaxv[0], 1)),
  901. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  902. wasm_f32x4_extract_lane(amaxv[0], 3)));
  903. const float d = amax / ((1 << 7) - 1);
  904. const float id = d ? 1.0f/d : 0.0f;
  905. y[i].d = GGML_FP32_TO_FP16(d);
  906. for (int j = 0; j < 8; j++) {
  907. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  908. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  909. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  910. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  911. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  912. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  913. }
  914. }
  915. #elif defined(__AVX2__) || defined(__AVX__)
  916. for (int i = 0; i < nb; i++) {
  917. // Load elements into 4 AVX vectors
  918. __m256 v0 = _mm256_loadu_ps( x );
  919. __m256 v1 = _mm256_loadu_ps( x + 8 );
  920. __m256 v2 = _mm256_loadu_ps( x + 16 );
  921. __m256 v3 = _mm256_loadu_ps( x + 24 );
  922. x += 32;
  923. // Compute max(abs(e)) for the block
  924. const __m256 signBit = _mm256_set1_ps( -0.0f );
  925. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  926. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  927. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  928. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  929. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  930. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  931. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  932. const float maxScalar = _mm_cvtss_f32( max4 );
  933. // Quantize these floats
  934. const float d = maxScalar / 127.f;
  935. y[i].d = GGML_FP32_TO_FP16(d);
  936. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  937. const __m256 mul = _mm256_set1_ps( id );
  938. // Apply the multiplier
  939. v0 = _mm256_mul_ps( v0, mul );
  940. v1 = _mm256_mul_ps( v1, mul );
  941. v2 = _mm256_mul_ps( v2, mul );
  942. v3 = _mm256_mul_ps( v3, mul );
  943. // Round to nearest integer
  944. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  945. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  946. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  947. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  948. // Convert floats to integers
  949. __m256i i0 = _mm256_cvtps_epi32( v0 );
  950. __m256i i1 = _mm256_cvtps_epi32( v1 );
  951. __m256i i2 = _mm256_cvtps_epi32( v2 );
  952. __m256i i3 = _mm256_cvtps_epi32( v3 );
  953. #if defined(__AVX2__)
  954. // Convert int32 to int16
  955. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  956. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  957. // Convert int16 to int8
  958. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  959. // We got our precious signed bytes, but the order is now wrong
  960. // These AVX2 pack instructions process 16-byte pieces independently
  961. // The following instruction is fixing the order
  962. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  963. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  964. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  965. #else
  966. // Since we don't have in AVX some necessary functions,
  967. // we split the registers in half and call AVX2 analogs from SSE
  968. __m128i ni0 = _mm256_castsi256_si128( i0 );
  969. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  970. __m128i ni2 = _mm256_castsi256_si128( i1 );
  971. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  972. __m128i ni4 = _mm256_castsi256_si128( i2 );
  973. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  974. __m128i ni6 = _mm256_castsi256_si128( i3 );
  975. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  976. // Convert int32 to int16
  977. ni0 = _mm_packs_epi32( ni0, ni1 );
  978. ni2 = _mm_packs_epi32( ni2, ni3 );
  979. ni4 = _mm_packs_epi32( ni4, ni5 );
  980. ni6 = _mm_packs_epi32( ni6, ni7 );
  981. // Convert int16 to int8
  982. ni0 = _mm_packs_epi16( ni0, ni2 );
  983. ni4 = _mm_packs_epi16( ni4, ni6 );
  984. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  985. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  986. #endif
  987. }
  988. #else
  989. // scalar
  990. quantize_row_q8_0_reference(x, y, k);
  991. #endif
  992. }
  993. // reference implementation for deterministic creation of model files
  994. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  995. assert(QK8_1 == 32);
  996. assert(k % QK8_1 == 0);
  997. const int nb = k / QK8_1;
  998. for (int i = 0; i < nb; i++) {
  999. float amax = 0.0f; // absolute max
  1000. for (int j = 0; j < QK8_1; j++) {
  1001. const float v = x[i*QK8_1 + j];
  1002. amax = MAX(amax, fabsf(v));
  1003. }
  1004. const float d = amax / ((1 << 7) - 1);
  1005. const float id = d ? 1.0f/d : 0.0f;
  1006. y[i].d = d;
  1007. int sum = 0;
  1008. for (int j = 0; j < QK8_1/2; ++j) {
  1009. const float v0 = x[i*QK8_1 + j]*id;
  1010. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1011. y[i].qs[ j] = roundf(v0);
  1012. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1013. sum += y[i].qs[ j];
  1014. sum += y[i].qs[QK8_1/2 + j];
  1015. }
  1016. y[i].s = sum*d;
  1017. }
  1018. }
  1019. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1020. assert(k % QK8_1 == 0);
  1021. const int nb = k / QK8_1;
  1022. block_q8_1 * restrict y = vy;
  1023. #if defined(__ARM_NEON)
  1024. for (int i = 0; i < nb; i++) {
  1025. float32x4_t srcv [8];
  1026. float32x4_t asrcv[8];
  1027. float32x4_t amaxv[8];
  1028. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1029. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1030. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1031. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1032. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1033. const float amax = vmaxvq_f32(amaxv[0]);
  1034. const float d = amax / ((1 << 7) - 1);
  1035. const float id = d ? 1.0f/d : 0.0f;
  1036. y[i].d = d;
  1037. int32x4_t accv = vdupq_n_s32(0);
  1038. for (int j = 0; j < 8; j++) {
  1039. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1040. const int32x4_t vi = vcvtnq_s32_f32(v);
  1041. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1042. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1043. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1044. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1045. accv = vaddq_s32(accv, vi);
  1046. }
  1047. y[i].s = d * vaddvq_s32(accv);
  1048. }
  1049. #elif defined(__wasm_simd128__)
  1050. for (int i = 0; i < nb; i++) {
  1051. v128_t srcv [8];
  1052. v128_t asrcv[8];
  1053. v128_t amaxv[8];
  1054. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1055. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1056. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1057. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1058. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1059. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1060. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1061. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1062. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1063. const float d = amax / ((1 << 7) - 1);
  1064. const float id = d ? 1.0f/d : 0.0f;
  1065. y[i].d = d;
  1066. v128_t accv = wasm_i32x4_splat(0);
  1067. for (int j = 0; j < 8; j++) {
  1068. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1069. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1070. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1071. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1072. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1073. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1074. accv = wasm_i32x4_add(accv, vi);
  1075. }
  1076. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1077. wasm_i32x4_extract_lane(accv, 1) +
  1078. wasm_i32x4_extract_lane(accv, 2) +
  1079. wasm_i32x4_extract_lane(accv, 3));
  1080. }
  1081. #elif defined(__AVX2__) || defined(__AVX__)
  1082. for (int i = 0; i < nb; i++) {
  1083. // Load elements into 4 AVX vectors
  1084. __m256 v0 = _mm256_loadu_ps( x );
  1085. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1086. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1087. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1088. x += 32;
  1089. // Compute max(abs(e)) for the block
  1090. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1091. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1092. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1093. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1094. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1095. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1096. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1097. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1098. const float maxScalar = _mm_cvtss_f32( max4 );
  1099. // Quantize these floats
  1100. const float d = maxScalar / 127.f;
  1101. y[i].d = d;
  1102. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1103. const __m256 mul = _mm256_set1_ps( id );
  1104. // Apply the multiplier
  1105. v0 = _mm256_mul_ps( v0, mul );
  1106. v1 = _mm256_mul_ps( v1, mul );
  1107. v2 = _mm256_mul_ps( v2, mul );
  1108. v3 = _mm256_mul_ps( v3, mul );
  1109. // Round to nearest integer
  1110. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1111. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1112. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1113. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1114. // Convert floats to integers
  1115. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1116. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1117. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1118. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1119. #if defined(__AVX2__)
  1120. // Compute the sum of the quants and set y[i].s
  1121. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1122. // Convert int32 to int16
  1123. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1124. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1125. // Convert int16 to int8
  1126. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1127. // We got our precious signed bytes, but the order is now wrong
  1128. // These AVX2 pack instructions process 16-byte pieces independently
  1129. // The following instruction is fixing the order
  1130. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1131. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1132. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1133. #else
  1134. // Since we don't have in AVX some necessary functions,
  1135. // we split the registers in half and call AVX2 analogs from SSE
  1136. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1137. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1138. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1139. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1140. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1141. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1142. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1143. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1144. // Compute the sum of the quants and set y[i].s
  1145. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1146. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1147. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1148. // Convert int32 to int16
  1149. ni0 = _mm_packs_epi32( ni0, ni1 );
  1150. ni2 = _mm_packs_epi32( ni2, ni3 );
  1151. ni4 = _mm_packs_epi32( ni4, ni5 );
  1152. ni6 = _mm_packs_epi32( ni6, ni7 );
  1153. // Convert int16 to int8
  1154. ni0 = _mm_packs_epi16( ni0, ni2 );
  1155. ni4 = _mm_packs_epi16( ni4, ni6 );
  1156. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1157. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1158. #endif
  1159. }
  1160. #else
  1161. // scalar
  1162. quantize_row_q8_1_reference(x, y, k);
  1163. #endif
  1164. }
  1165. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1166. static const int qk = QK4_0;
  1167. assert(k % qk == 0);
  1168. const int nb = k / qk;
  1169. for (int i = 0; i < nb; i++) {
  1170. const float d = GGML_FP16_TO_FP32(x[i].d);
  1171. for (int j = 0; j < qk/2; ++j) {
  1172. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1173. const int x1 = (x[i].qs[j] >> 4) - 8;
  1174. y[i*qk + j + 0 ] = x0*d;
  1175. y[i*qk + j + qk/2] = x1*d;
  1176. }
  1177. }
  1178. }
  1179. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1180. static const int qk = QK4_1;
  1181. assert(k % qk == 0);
  1182. const int nb = k / qk;
  1183. for (int i = 0; i < nb; i++) {
  1184. const float d = GGML_FP16_TO_FP32(x[i].d);
  1185. const float m = GGML_FP16_TO_FP32(x[i].m);
  1186. for (int j = 0; j < qk/2; ++j) {
  1187. const int x0 = (x[i].qs[j] & 0x0F);
  1188. const int x1 = (x[i].qs[j] >> 4);
  1189. y[i*qk + j + 0 ] = x0*d + m;
  1190. y[i*qk + j + qk/2] = x1*d + m;
  1191. }
  1192. }
  1193. }
  1194. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1195. static const int qk = QK5_0;
  1196. assert(k % qk == 0);
  1197. const int nb = k / qk;
  1198. for (int i = 0; i < nb; i++) {
  1199. const float d = GGML_FP16_TO_FP32(x[i].d);
  1200. uint32_t qh;
  1201. memcpy(&qh, x[i].qh, sizeof(qh));
  1202. for (int j = 0; j < qk/2; ++j) {
  1203. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1204. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1205. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1206. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1207. y[i*qk + j + 0 ] = x0*d;
  1208. y[i*qk + j + qk/2] = x1*d;
  1209. }
  1210. }
  1211. }
  1212. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1213. static const int qk = QK5_1;
  1214. assert(k % qk == 0);
  1215. const int nb = k / qk;
  1216. for (int i = 0; i < nb; i++) {
  1217. const float d = GGML_FP16_TO_FP32(x[i].d);
  1218. const float m = GGML_FP16_TO_FP32(x[i].m);
  1219. uint32_t qh;
  1220. memcpy(&qh, x[i].qh, sizeof(qh));
  1221. for (int j = 0; j < qk/2; ++j) {
  1222. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1223. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1224. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1225. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1226. y[i*qk + j + 0 ] = x0*d + m;
  1227. y[i*qk + j + qk/2] = x1*d + m;
  1228. }
  1229. }
  1230. }
  1231. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1232. static const int qk = QK8_0;
  1233. assert(k % qk == 0);
  1234. const int nb = k / qk;
  1235. const block_q8_0 * restrict x = vx;
  1236. for (int i = 0; i < nb; i++) {
  1237. const float d = GGML_FP16_TO_FP32(x[i].d);
  1238. for (int j = 0; j < qk; ++j) {
  1239. y[i*qk + j] = x[i].qs[j]*d;
  1240. }
  1241. }
  1242. }
  1243. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1244. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1245. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1246. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1247. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1248. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1249. [GGML_TYPE_Q4_0] = {
  1250. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1251. .quantize_row_q = quantize_row_q4_0,
  1252. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1253. .quantize_row_q_dot = quantize_row_q8_0,
  1254. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1255. .vec_dot_type = GGML_TYPE_Q8_0,
  1256. },
  1257. [GGML_TYPE_Q4_1] = {
  1258. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1259. .quantize_row_q = quantize_row_q4_1,
  1260. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1261. .quantize_row_q_dot = quantize_row_q8_1,
  1262. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1263. .vec_dot_type = GGML_TYPE_Q8_1,
  1264. },
  1265. [GGML_TYPE_Q5_0] = {
  1266. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1267. .quantize_row_q = quantize_row_q5_0,
  1268. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1269. .quantize_row_q_dot = quantize_row_q8_0,
  1270. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1271. .vec_dot_type = GGML_TYPE_Q8_0,
  1272. },
  1273. [GGML_TYPE_Q5_1] = {
  1274. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1275. .quantize_row_q = quantize_row_q5_1,
  1276. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1277. .quantize_row_q_dot = quantize_row_q8_1,
  1278. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1279. .vec_dot_type = GGML_TYPE_Q8_1,
  1280. },
  1281. [GGML_TYPE_Q8_0] = {
  1282. .dequantize_row_q = dequantize_row_q8_0,
  1283. .quantize_row_q = quantize_row_q8_0,
  1284. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1285. .quantize_row_q_dot = quantize_row_q8_0,
  1286. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1287. .vec_dot_type = GGML_TYPE_Q8_0,
  1288. },
  1289. [GGML_TYPE_Q8_1] = {
  1290. .dequantize_row_q = NULL, // TODO
  1291. .quantize_row_q = quantize_row_q8_1,
  1292. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1293. .quantize_row_q_dot = quantize_row_q8_1,
  1294. .vec_dot_q = NULL, // TODO
  1295. .vec_dot_type = GGML_TYPE_Q8_1,
  1296. },
  1297. [GGML_TYPE_Q2_K] = {
  1298. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_k,
  1299. .quantize_row_q = quantize_row_q2_k,
  1300. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_k_reference,
  1301. .quantize_row_q_dot = quantize_row_q8_k,
  1302. .vec_dot_q = ggml_vec_dot_q2_k_q8_k,
  1303. .vec_dot_type = GGML_TYPE_Q8_K,
  1304. },
  1305. [GGML_TYPE_Q3_K] = {
  1306. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_k,
  1307. .quantize_row_q = quantize_row_q3_k,
  1308. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_k_reference,
  1309. .quantize_row_q_dot = quantize_row_q8_k,
  1310. .vec_dot_q = ggml_vec_dot_q3_k_q8_k,
  1311. .vec_dot_type = GGML_TYPE_Q8_K,
  1312. },
  1313. [GGML_TYPE_Q4_K] = {
  1314. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_k,
  1315. .quantize_row_q = quantize_row_q4_k,
  1316. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_k_reference,
  1317. .quantize_row_q_dot = quantize_row_q8_k,
  1318. .vec_dot_q = ggml_vec_dot_q4_k_q8_k,
  1319. .vec_dot_type = GGML_TYPE_Q8_K,
  1320. },
  1321. [GGML_TYPE_Q5_K] = {
  1322. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_k,
  1323. .quantize_row_q = quantize_row_q5_k,
  1324. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_k_reference,
  1325. .quantize_row_q_dot = quantize_row_q8_k,
  1326. .vec_dot_q = ggml_vec_dot_q5_k_q8_k,
  1327. .vec_dot_type = GGML_TYPE_Q8_K,
  1328. },
  1329. [GGML_TYPE_Q6_K] = {
  1330. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_k,
  1331. .quantize_row_q = quantize_row_q6_k,
  1332. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_k_reference,
  1333. .quantize_row_q_dot = quantize_row_q8_k,
  1334. .vec_dot_q = ggml_vec_dot_q6_k_q8_k,
  1335. .vec_dot_type = GGML_TYPE_Q8_K,
  1336. },
  1337. };
  1338. // For internal test use
  1339. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1340. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1341. return quantize_fns[i];
  1342. }
  1343. //
  1344. // simd mappings
  1345. //
  1346. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1347. // we then implement the fundamental computation operations below using only these macros
  1348. // adding support for new architectures requires to define the corresponding SIMD macros
  1349. //
  1350. // GGML_F32_STEP / GGML_F16_STEP
  1351. // number of elements to process in a single step
  1352. //
  1353. // GGML_F32_EPR / GGML_F16_EPR
  1354. // number of elements to fit in a single register
  1355. //
  1356. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1357. #define GGML_SIMD
  1358. // F32 NEON
  1359. #define GGML_F32_STEP 16
  1360. #define GGML_F32_EPR 4
  1361. #define GGML_F32x4 float32x4_t
  1362. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1363. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1364. #define GGML_F32x4_LOAD vld1q_f32
  1365. #define GGML_F32x4_STORE vst1q_f32
  1366. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1367. #define GGML_F32x4_ADD vaddq_f32
  1368. #define GGML_F32x4_MUL vmulq_f32
  1369. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1370. #define GGML_F32x4_REDUCE(res, x) \
  1371. { \
  1372. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1373. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1374. } \
  1375. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1376. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1377. } \
  1378. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1379. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1380. } \
  1381. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1382. }
  1383. #define GGML_F32_VEC GGML_F32x4
  1384. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1385. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1386. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1387. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1388. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1389. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1390. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1391. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1392. // F16 NEON
  1393. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1394. #define GGML_F16_STEP 32
  1395. #define GGML_F16_EPR 8
  1396. #define GGML_F16x8 float16x8_t
  1397. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1398. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1399. #define GGML_F16x8_LOAD vld1q_f16
  1400. #define GGML_F16x8_STORE vst1q_f16
  1401. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1402. #define GGML_F16x8_ADD vaddq_f16
  1403. #define GGML_F16x8_MUL vmulq_f16
  1404. #define GGML_F16x8_REDUCE(res, x) \
  1405. { \
  1406. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1407. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1408. } \
  1409. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1410. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1411. } \
  1412. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1413. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1414. } \
  1415. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1416. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1417. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1418. }
  1419. #define GGML_F16_VEC GGML_F16x8
  1420. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1421. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1422. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1423. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1424. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1425. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1426. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1427. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1428. #else
  1429. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1430. // and take advantage of the vcvt_ functions to convert to/from FP16
  1431. #define GGML_F16_STEP 16
  1432. #define GGML_F16_EPR 4
  1433. #define GGML_F32Cx4 float32x4_t
  1434. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1435. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1436. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1437. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1438. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1439. #define GGML_F32Cx4_ADD vaddq_f32
  1440. #define GGML_F32Cx4_MUL vmulq_f32
  1441. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1442. #define GGML_F16_VEC GGML_F32Cx4
  1443. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1444. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1445. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1446. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1447. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1448. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1449. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1450. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1451. #endif
  1452. #elif defined(__AVX__)
  1453. #define GGML_SIMD
  1454. // F32 AVX
  1455. #define GGML_F32_STEP 32
  1456. #define GGML_F32_EPR 8
  1457. #define GGML_F32x8 __m256
  1458. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1459. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1460. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1461. #define GGML_F32x8_STORE _mm256_storeu_ps
  1462. #if defined(__FMA__)
  1463. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1464. #else
  1465. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1466. #endif
  1467. #define GGML_F32x8_ADD _mm256_add_ps
  1468. #define GGML_F32x8_MUL _mm256_mul_ps
  1469. #define GGML_F32x8_REDUCE(res, x) \
  1470. { \
  1471. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1472. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1473. } \
  1474. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1475. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1476. } \
  1477. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1478. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1479. } \
  1480. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1481. _mm256_extractf128_ps(x[0], 1)); \
  1482. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1483. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1484. }
  1485. // TODO: is this optimal ?
  1486. #define GGML_F32_VEC GGML_F32x8
  1487. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1488. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1489. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1490. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1491. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1492. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1493. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1494. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1495. // F16 AVX
  1496. #define GGML_F16_STEP 32
  1497. #define GGML_F16_EPR 8
  1498. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1499. #define GGML_F32Cx8 __m256
  1500. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1501. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1502. #if defined(__F16C__)
  1503. // the _mm256_cvt intrinsics require F16C
  1504. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1505. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1506. #else
  1507. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1508. float tmp[8];
  1509. for (int i = 0; i < 8; i++) {
  1510. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1511. }
  1512. return _mm256_loadu_ps(tmp);
  1513. }
  1514. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1515. float arr[8];
  1516. _mm256_storeu_ps(arr, y);
  1517. for (int i = 0; i < 8; i++)
  1518. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1519. }
  1520. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1521. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1522. #endif
  1523. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1524. #define GGML_F32Cx8_ADD _mm256_add_ps
  1525. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1526. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1527. #define GGML_F16_VEC GGML_F32Cx8
  1528. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1529. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1530. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1531. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1532. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1533. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1534. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1535. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1536. #elif defined(__POWER9_VECTOR__)
  1537. #define GGML_SIMD
  1538. // F32 POWER9
  1539. #define GGML_F32_STEP 32
  1540. #define GGML_F32_EPR 4
  1541. #define GGML_F32x4 vector float
  1542. #define GGML_F32x4_ZERO 0.0f
  1543. #define GGML_F32x4_SET1 vec_splats
  1544. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1545. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1546. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1547. #define GGML_F32x4_ADD vec_add
  1548. #define GGML_F32x4_MUL vec_mul
  1549. #define GGML_F32x4_REDUCE(res, x) \
  1550. { \
  1551. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1552. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1553. } \
  1554. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1555. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1556. } \
  1557. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1558. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1559. } \
  1560. res = vec_extract(x[0], 0) + \
  1561. vec_extract(x[0], 1) + \
  1562. vec_extract(x[0], 2) + \
  1563. vec_extract(x[0], 3); \
  1564. }
  1565. #define GGML_F32_VEC GGML_F32x4
  1566. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1567. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1568. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1569. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1570. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1571. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1572. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1573. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1574. // F16 POWER9
  1575. #define GGML_F16_STEP GGML_F32_STEP
  1576. #define GGML_F16_EPR GGML_F32_EPR
  1577. #define GGML_F16_VEC GGML_F32x4
  1578. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1579. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1580. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1581. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1582. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1583. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1584. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1585. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1586. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1587. #define GGML_F16_VEC_STORE(p, r, i) \
  1588. if (i & 0x1) \
  1589. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1590. r[i - GGML_ENDIAN_BYTE(0)]), \
  1591. 0, p - GGML_F16_EPR)
  1592. #elif defined(__wasm_simd128__)
  1593. #define GGML_SIMD
  1594. // F32 WASM
  1595. #define GGML_F32_STEP 16
  1596. #define GGML_F32_EPR 4
  1597. #define GGML_F32x4 v128_t
  1598. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1599. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1600. #define GGML_F32x4_LOAD wasm_v128_load
  1601. #define GGML_F32x4_STORE wasm_v128_store
  1602. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1603. #define GGML_F32x4_ADD wasm_f32x4_add
  1604. #define GGML_F32x4_MUL wasm_f32x4_mul
  1605. #define GGML_F32x4_REDUCE(res, x) \
  1606. { \
  1607. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1608. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1609. } \
  1610. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1611. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1612. } \
  1613. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1614. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1615. } \
  1616. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1617. wasm_f32x4_extract_lane(x[0], 1) + \
  1618. wasm_f32x4_extract_lane(x[0], 2) + \
  1619. wasm_f32x4_extract_lane(x[0], 3); \
  1620. }
  1621. #define GGML_F32_VEC GGML_F32x4
  1622. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1623. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1624. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1625. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1626. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1627. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1628. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1629. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1630. // F16 WASM
  1631. #define GGML_F16_STEP 16
  1632. #define GGML_F16_EPR 4
  1633. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1634. float tmp[4];
  1635. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1636. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1637. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1638. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1639. return wasm_v128_load(tmp);
  1640. }
  1641. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1642. float tmp[4];
  1643. wasm_v128_store(tmp, x);
  1644. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1645. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1646. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1647. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1648. }
  1649. #define GGML_F16x4 v128_t
  1650. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1651. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1652. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1653. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1654. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1655. #define GGML_F16x4_ADD wasm_f32x4_add
  1656. #define GGML_F16x4_MUL wasm_f32x4_mul
  1657. #define GGML_F16x4_REDUCE(res, x) \
  1658. { \
  1659. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1660. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1661. } \
  1662. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1663. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1664. } \
  1665. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1666. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1667. } \
  1668. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1669. wasm_f32x4_extract_lane(x[0], 1) + \
  1670. wasm_f32x4_extract_lane(x[0], 2) + \
  1671. wasm_f32x4_extract_lane(x[0], 3); \
  1672. }
  1673. #define GGML_F16_VEC GGML_F16x4
  1674. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1675. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1676. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1677. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1678. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1679. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1680. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1681. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1682. #elif defined(__SSE3__)
  1683. #define GGML_SIMD
  1684. // F32 SSE
  1685. #define GGML_F32_STEP 32
  1686. #define GGML_F32_EPR 4
  1687. #define GGML_F32x4 __m128
  1688. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1689. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1690. #define GGML_F32x4_LOAD _mm_loadu_ps
  1691. #define GGML_F32x4_STORE _mm_storeu_ps
  1692. #if defined(__FMA__)
  1693. // TODO: Does this work?
  1694. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1695. #else
  1696. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1697. #endif
  1698. #define GGML_F32x4_ADD _mm_add_ps
  1699. #define GGML_F32x4_MUL _mm_mul_ps
  1700. #define GGML_F32x4_REDUCE(res, x) \
  1701. { \
  1702. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1703. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1704. } \
  1705. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1706. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1707. } \
  1708. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1709. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1710. } \
  1711. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1712. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1713. }
  1714. // TODO: is this optimal ?
  1715. #define GGML_F32_VEC GGML_F32x4
  1716. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1717. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1718. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1719. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1720. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1721. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1722. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1723. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1724. // F16 SSE
  1725. #define GGML_F16_STEP 32
  1726. #define GGML_F16_EPR 4
  1727. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1728. float tmp[4];
  1729. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1730. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1731. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1732. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1733. return _mm_loadu_ps(tmp);
  1734. }
  1735. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1736. float arr[4];
  1737. _mm_storeu_ps(arr, y);
  1738. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1739. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1740. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1741. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1742. }
  1743. #define GGML_F32Cx4 __m128
  1744. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1745. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1746. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1747. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1748. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1749. #define GGML_F32Cx4_ADD _mm_add_ps
  1750. #define GGML_F32Cx4_MUL _mm_mul_ps
  1751. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1752. #define GGML_F16_VEC GGML_F32Cx4
  1753. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1754. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1755. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1756. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1757. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1758. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1759. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1760. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1761. #endif
  1762. // GGML_F32_ARR / GGML_F16_ARR
  1763. // number of registers to use per step
  1764. #ifdef GGML_SIMD
  1765. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1766. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1767. #endif
  1768. //
  1769. // fundamental operations
  1770. //
  1771. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1772. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1773. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1774. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1775. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1776. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1777. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1778. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1779. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1780. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1781. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1782. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1783. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1784. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1785. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1786. #ifdef GGML_SIMD
  1787. float sumf = 0.0f;
  1788. const int np = (n & ~(GGML_F32_STEP - 1));
  1789. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1790. GGML_F32_VEC ax[GGML_F32_ARR];
  1791. GGML_F32_VEC ay[GGML_F32_ARR];
  1792. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1793. for (int j = 0; j < GGML_F32_ARR; j++) {
  1794. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1795. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1796. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1797. }
  1798. }
  1799. // reduce sum0..sum3 to sum0
  1800. GGML_F32_VEC_REDUCE(sumf, sum);
  1801. // leftovers
  1802. for (int i = np; i < n; ++i) {
  1803. sumf += x[i]*y[i];
  1804. }
  1805. #else
  1806. // scalar
  1807. ggml_float sumf = 0.0;
  1808. for (int i = 0; i < n; ++i) {
  1809. sumf += (ggml_float)(x[i]*y[i]);
  1810. }
  1811. #endif
  1812. *s = sumf;
  1813. }
  1814. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1815. ggml_float sumf = 0.0;
  1816. #if defined(GGML_SIMD)
  1817. const int np = (n & ~(GGML_F16_STEP - 1));
  1818. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1819. GGML_F16_VEC ax[GGML_F16_ARR];
  1820. GGML_F16_VEC ay[GGML_F16_ARR];
  1821. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1822. for (int j = 0; j < GGML_F16_ARR; j++) {
  1823. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1824. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1825. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1826. }
  1827. }
  1828. // reduce sum0..sum3 to sum0
  1829. GGML_F16_VEC_REDUCE(sumf, sum);
  1830. // leftovers
  1831. for (int i = np; i < n; ++i) {
  1832. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1833. }
  1834. #else
  1835. for (int i = 0; i < n; ++i) {
  1836. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1837. }
  1838. #endif
  1839. *s = sumf;
  1840. }
  1841. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1842. const int qk = QK8_0;
  1843. const int nb = n / qk;
  1844. assert(n % qk == 0);
  1845. assert(nb % 2 == 0);
  1846. const block_q4_0 * restrict x = vx;
  1847. const block_q8_0 * restrict y = vy;
  1848. #if defined(__ARM_NEON)
  1849. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1850. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1851. for (int i = 0; i < nb; i += 2) {
  1852. const block_q4_0 * restrict x0 = &x[i + 0];
  1853. const block_q4_0 * restrict x1 = &x[i + 1];
  1854. const block_q8_0 * restrict y0 = &y[i + 0];
  1855. const block_q8_0 * restrict y1 = &y[i + 1];
  1856. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1857. const int8x16_t s8b = vdupq_n_s8(0x8);
  1858. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1859. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1860. // 4-bit -> 8-bit
  1861. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1862. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1863. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1864. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1865. // sub 8
  1866. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1867. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1868. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1869. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1870. // load y
  1871. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1872. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1873. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1874. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1875. #if defined(__ARM_FEATURE_DOTPROD)
  1876. // dot product into int32x4_t
  1877. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1878. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1879. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1880. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1881. #else
  1882. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1883. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1884. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1885. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1886. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1887. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1888. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1889. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1890. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1891. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1892. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1893. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1894. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1895. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1896. #endif
  1897. }
  1898. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1899. #elif defined(__AVX2__)
  1900. // Initialize accumulator with zeros
  1901. __m256 acc = _mm256_setzero_ps();
  1902. // Main loop
  1903. for (int i = 0; i < nb; ++i) {
  1904. /* Compute combined scale for the block */
  1905. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1906. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1907. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1908. const __m256i off = _mm256_set1_epi8( 8 );
  1909. bx = _mm256_sub_epi8( bx, off );
  1910. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  1911. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  1912. /* Multiply q with scale and accumulate */
  1913. acc = _mm256_fmadd_ps( d, q, acc );
  1914. }
  1915. *s = hsum_float_8(acc);
  1916. #elif defined(__AVX__)
  1917. // Initialize accumulator with zeros
  1918. __m256 acc = _mm256_setzero_ps();
  1919. // Main loop
  1920. for (int i = 0; i < nb; ++i) {
  1921. // Compute combined scale for the block
  1922. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1923. const __m128i lowMask = _mm_set1_epi8(0xF);
  1924. const __m128i off = _mm_set1_epi8(8);
  1925. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  1926. __m128i bx = _mm_and_si128(lowMask, tmp);
  1927. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  1928. bx = _mm_sub_epi8(bx, off);
  1929. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  1930. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  1931. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  1932. bx = _mm_sub_epi8(bx, off);
  1933. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  1934. // Convert int32_t to float
  1935. __m256 p = _mm256_cvtepi32_ps(_mm256_set_m128i(i32_0, i32_1));
  1936. // Apply the scale, and accumulate
  1937. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  1938. }
  1939. *s = hsum_float_8(acc);
  1940. #elif defined(__SSSE3__)
  1941. // set constants
  1942. const __m128i lowMask = _mm_set1_epi8(0xF);
  1943. const __m128i off = _mm_set1_epi8(8);
  1944. // Initialize accumulator with zeros
  1945. __m128 acc_0 = _mm_setzero_ps();
  1946. __m128 acc_1 = _mm_setzero_ps();
  1947. __m128 acc_2 = _mm_setzero_ps();
  1948. __m128 acc_3 = _mm_setzero_ps();
  1949. // First round without accumulation
  1950. {
  1951. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  1952. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  1953. // Compute combined scale for the block 0 and 1
  1954. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  1955. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  1956. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1957. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  1958. bx_0 = _mm_sub_epi8(bx_0, off);
  1959. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1960. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  1961. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  1962. bx_1 = _mm_sub_epi8(bx_1, off);
  1963. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  1964. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  1965. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  1966. // Compute combined scale for the block 2 and 3
  1967. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  1968. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  1969. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  1970. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  1971. bx_2 = _mm_sub_epi8(bx_2, off);
  1972. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  1973. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  1974. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  1975. bx_3 = _mm_sub_epi8(bx_3, off);
  1976. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  1977. // Convert int32_t to float
  1978. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  1979. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  1980. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  1981. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  1982. // Apply the scale
  1983. acc_0 = _mm_mul_ps( d_0_1, p0 );
  1984. acc_1 = _mm_mul_ps( d_0_1, p1 );
  1985. acc_2 = _mm_mul_ps( d_2_3, p2 );
  1986. acc_3 = _mm_mul_ps( d_2_3, p3 );
  1987. }
  1988. // Main loop
  1989. for (int i = 2; i < nb; i+=2) {
  1990. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  1991. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  1992. // Compute combined scale for the block 0 and 1
  1993. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1994. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  1995. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  1996. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  1997. bx_0 = _mm_sub_epi8(bx_0, off);
  1998. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  1999. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2000. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2001. bx_1 = _mm_sub_epi8(bx_1, off);
  2002. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2003. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2004. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2005. // Compute combined scale for the block 2 and 3
  2006. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2007. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2008. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2009. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2010. bx_2 = _mm_sub_epi8(bx_2, off);
  2011. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2012. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2013. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2014. bx_3 = _mm_sub_epi8(bx_3, off);
  2015. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2016. // Convert int32_t to float
  2017. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2018. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2019. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2020. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2021. // Apply the scale
  2022. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2023. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2024. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2025. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2026. // Acummulate
  2027. acc_0 = _mm_add_ps(p0_d, acc_0);
  2028. acc_1 = _mm_add_ps(p1_d, acc_1);
  2029. acc_2 = _mm_add_ps(p2_d, acc_2);
  2030. acc_3 = _mm_add_ps(p3_d, acc_3);
  2031. }
  2032. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2033. #else
  2034. // scalar
  2035. float sumf = 0.0;
  2036. for (int i = 0; i < nb; i++) {
  2037. int sumi = 0;
  2038. for (int j = 0; j < qk/2; ++j) {
  2039. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2040. const int v1 = (x[i].qs[j] >> 4) - 8;
  2041. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2042. }
  2043. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2044. }
  2045. *s = sumf;
  2046. #endif
  2047. }
  2048. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2049. const int qk = QK8_1;
  2050. const int nb = n / qk;
  2051. assert(n % qk == 0);
  2052. assert(nb % 2 == 0);
  2053. const block_q4_1 * restrict x = vx;
  2054. const block_q8_1 * restrict y = vy;
  2055. // TODO: add WASM SIMD
  2056. #if defined(__ARM_NEON)
  2057. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2058. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2059. float summs = 0;
  2060. for (int i = 0; i < nb; i += 2) {
  2061. const block_q4_1 * restrict x0 = &x[i + 0];
  2062. const block_q4_1 * restrict x1 = &x[i + 1];
  2063. const block_q8_1 * restrict y0 = &y[i + 0];
  2064. const block_q8_1 * restrict y1 = &y[i + 1];
  2065. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2066. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2067. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2068. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2069. // 4-bit -> 8-bit
  2070. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2071. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2072. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2073. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2074. // load y
  2075. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2076. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2077. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2078. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2079. #if defined(__ARM_FEATURE_DOTPROD)
  2080. // dot product into int32x4_t
  2081. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2082. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2083. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2084. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2085. #else
  2086. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2087. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2088. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2089. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2090. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2091. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2092. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2093. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2094. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2095. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2096. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2097. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2098. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2099. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2100. #endif
  2101. }
  2102. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2103. #elif defined(__AVX2__) || defined(__AVX__)
  2104. // Initialize accumulator with zeros
  2105. __m256 acc = _mm256_setzero_ps();
  2106. float summs = 0;
  2107. // Main loop
  2108. for (int i = 0; i < nb; ++i) {
  2109. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2110. const float d1 = y[i].d;
  2111. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2112. const __m256 d0v = _mm256_set1_ps( d0 );
  2113. const __m256 d1v = _mm256_set1_ps( d1 );
  2114. // Compute combined scales
  2115. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2116. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2117. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2118. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2119. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2120. // Accumulate d0*d1*x*y
  2121. #if defined(__AVX2__)
  2122. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2123. #else
  2124. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2125. #endif
  2126. }
  2127. *s = hsum_float_8(acc) + summs;
  2128. #else
  2129. // scalar
  2130. float sumf = 0.0;
  2131. for (int i = 0; i < nb; i++) {
  2132. int sumi = 0;
  2133. for (int j = 0; j < qk/2; ++j) {
  2134. const int v0 = (x[i].qs[j] & 0x0F);
  2135. const int v1 = (x[i].qs[j] >> 4);
  2136. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2137. }
  2138. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2139. }
  2140. *s = sumf;
  2141. #endif
  2142. }
  2143. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2144. const int qk = QK8_0;
  2145. const int nb = n / qk;
  2146. assert(n % qk == 0);
  2147. assert(nb % 2 == 0);
  2148. assert(qk == QK5_0);
  2149. const block_q5_0 * restrict x = vx;
  2150. const block_q8_0 * restrict y = vy;
  2151. #if defined(__ARM_NEON)
  2152. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2153. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2154. uint32_t qh0;
  2155. uint32_t qh1;
  2156. uint64_t tmp0[4];
  2157. uint64_t tmp1[4];
  2158. for (int i = 0; i < nb; i += 2) {
  2159. const block_q5_0 * restrict x0 = &x[i];
  2160. const block_q5_0 * restrict x1 = &x[i + 1];
  2161. const block_q8_0 * restrict y0 = &y[i];
  2162. const block_q8_0 * restrict y1 = &y[i + 1];
  2163. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2164. // extract the 5th bit via lookup table ((!b) << 4)
  2165. memcpy(&qh0, x0->qh, sizeof(qh0));
  2166. memcpy(&qh1, x1->qh, sizeof(qh1));
  2167. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2168. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2169. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2170. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2171. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2172. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2173. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2174. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2175. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2176. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2177. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2178. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2179. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2180. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2181. // 4-bit -> 8-bit
  2182. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2183. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2184. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2185. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2186. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2187. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2188. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2189. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2190. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2191. // load y
  2192. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2193. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2194. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2195. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2196. #if defined(__ARM_FEATURE_DOTPROD)
  2197. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2198. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2199. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2200. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2201. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2202. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2203. #else
  2204. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2205. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2206. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2207. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2208. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2209. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2210. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2211. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2212. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2213. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2214. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2215. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2216. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2217. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2218. #endif
  2219. }
  2220. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2221. #elif defined(__wasm_simd128__)
  2222. v128_t sumv = wasm_f32x4_splat(0.0f);
  2223. uint32_t qh;
  2224. uint64_t tmp[4];
  2225. // TODO: check if unrolling this is better
  2226. for (int i = 0; i < nb; ++i) {
  2227. const block_q5_0 * restrict x0 = &x[i];
  2228. const block_q8_0 * restrict y0 = &y[i];
  2229. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2230. // extract the 5th bit
  2231. memcpy(&qh, x0->qh, sizeof(qh));
  2232. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2233. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2234. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2235. tmp[3] = table_b2b_1[(qh >> 24) ];
  2236. const v128_t qhl = wasm_v128_load(tmp + 0);
  2237. const v128_t qhh = wasm_v128_load(tmp + 2);
  2238. const v128_t v0 = wasm_v128_load(x0->qs);
  2239. // 4-bit -> 8-bit
  2240. const v128_t v0l = wasm_v128_and (v0, m4b);
  2241. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2242. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2243. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2244. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2245. // load y
  2246. const v128_t v1l = wasm_v128_load(y0->qs);
  2247. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2248. // int8x16 -> int16x8
  2249. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2250. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2251. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2252. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2253. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2254. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2255. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2256. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2257. // dot product
  2258. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2259. wasm_i32x4_add(
  2260. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2261. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2262. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2263. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2264. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2265. }
  2266. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2267. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2268. #elif defined(__AVX2__)
  2269. // Initialize accumulator with zeros
  2270. __m256 acc = _mm256_setzero_ps();
  2271. // Main loop
  2272. for (int i = 0; i < nb; i++) {
  2273. /* Compute combined scale for the block */
  2274. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2275. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2276. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2277. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2278. bx = _mm256_or_si256(bx, bxhi);
  2279. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2280. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2281. /* Multiply q with scale and accumulate */
  2282. acc = _mm256_fmadd_ps(d, q, acc);
  2283. }
  2284. *s = hsum_float_8(acc);
  2285. #elif defined(__AVX__)
  2286. // Initialize accumulator with zeros
  2287. __m256 acc = _mm256_setzero_ps();
  2288. __m128i mask = _mm_set1_epi8((char)0xF0);
  2289. // Main loop
  2290. for (int i = 0; i < nb; i++) {
  2291. /* Compute combined scale for the block */
  2292. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2293. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2294. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2295. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2296. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2297. bxhil = _mm_andnot_si128(bxhil, mask);
  2298. bxhih = _mm_andnot_si128(bxhih, mask);
  2299. __m128i bxl = _mm256_castsi256_si128(bx);
  2300. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2301. bxl = _mm_or_si128(bxl, bxhil);
  2302. bxh = _mm_or_si128(bxh, bxhih);
  2303. bx = _mm256_set_m128i(bxh, bxl);
  2304. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2305. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2306. /* Multiply q with scale and accumulate */
  2307. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2308. }
  2309. *s = hsum_float_8(acc);
  2310. #else
  2311. // scalar
  2312. float sumf = 0.0;
  2313. for (int i = 0; i < nb; i++) {
  2314. uint32_t qh;
  2315. memcpy(&qh, x[i].qh, sizeof(qh));
  2316. int sumi = 0;
  2317. for (int j = 0; j < qk/2; ++j) {
  2318. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2319. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2320. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2321. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2322. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2323. }
  2324. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2325. }
  2326. *s = sumf;
  2327. #endif
  2328. }
  2329. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2330. const int qk = QK8_1;
  2331. const int nb = n / qk;
  2332. assert(n % qk == 0);
  2333. assert(nb % 2 == 0);
  2334. assert(qk == QK5_1);
  2335. const block_q5_1 * restrict x = vx;
  2336. const block_q8_1 * restrict y = vy;
  2337. #if defined(__ARM_NEON)
  2338. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2339. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2340. float summs0 = 0.0f;
  2341. float summs1 = 0.0f;
  2342. uint32_t qh0;
  2343. uint32_t qh1;
  2344. uint64_t tmp0[4];
  2345. uint64_t tmp1[4];
  2346. for (int i = 0; i < nb; i += 2) {
  2347. const block_q5_1 * restrict x0 = &x[i];
  2348. const block_q5_1 * restrict x1 = &x[i + 1];
  2349. const block_q8_1 * restrict y0 = &y[i];
  2350. const block_q8_1 * restrict y1 = &y[i + 1];
  2351. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2352. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2353. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2354. // extract the 5th bit via lookup table ((b) << 4)
  2355. memcpy(&qh0, x0->qh, sizeof(qh0));
  2356. memcpy(&qh1, x1->qh, sizeof(qh1));
  2357. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2358. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2359. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2360. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2361. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2362. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2363. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2364. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2365. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2366. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2367. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2368. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2369. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2370. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2371. // 4-bit -> 8-bit
  2372. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2373. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2374. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2375. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2376. // add high bit
  2377. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2378. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2379. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2380. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2381. // load y
  2382. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2383. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2384. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2385. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2386. #if defined(__ARM_FEATURE_DOTPROD)
  2387. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2388. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2389. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2390. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2391. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2392. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2393. #else
  2394. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2395. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2396. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2397. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2398. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2399. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2400. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2401. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2402. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2403. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2404. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2405. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2406. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2407. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2408. #endif
  2409. }
  2410. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2411. #elif defined(__wasm_simd128__)
  2412. v128_t sumv = wasm_f32x4_splat(0.0f);
  2413. float summs = 0.0f;
  2414. uint32_t qh;
  2415. uint64_t tmp[4];
  2416. // TODO: check if unrolling this is better
  2417. for (int i = 0; i < nb; ++i) {
  2418. const block_q5_1 * restrict x0 = &x[i];
  2419. const block_q8_1 * restrict y0 = &y[i];
  2420. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2421. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2422. // extract the 5th bit
  2423. memcpy(&qh, x0->qh, sizeof(qh));
  2424. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2425. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2426. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2427. tmp[3] = table_b2b_0[(qh >> 24) ];
  2428. const v128_t qhl = wasm_v128_load(tmp + 0);
  2429. const v128_t qhh = wasm_v128_load(tmp + 2);
  2430. const v128_t v0 = wasm_v128_load(x0->qs);
  2431. // 4-bit -> 8-bit
  2432. const v128_t v0l = wasm_v128_and (v0, m4b);
  2433. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2434. // add high bit
  2435. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2436. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2437. // load y
  2438. const v128_t v1l = wasm_v128_load(y0->qs);
  2439. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2440. // int8x16 -> int16x8
  2441. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2442. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2443. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2444. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2445. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2446. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2447. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2448. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2449. // dot product
  2450. sumv = wasm_f32x4_add(sumv,
  2451. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2452. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2453. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2454. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2455. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2456. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2457. }
  2458. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2459. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2460. #elif defined(__AVX2__)
  2461. // Initialize accumulator with zeros
  2462. __m256 acc = _mm256_setzero_ps();
  2463. float summs = 0.0f;
  2464. // Main loop
  2465. for (int i = 0; i < nb; i++) {
  2466. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2467. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2468. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2469. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2470. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2471. bx = _mm256_or_si256(bx, bxhi);
  2472. const __m256 dy = _mm256_set1_ps(y[i].d);
  2473. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2474. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2475. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2476. }
  2477. *s = hsum_float_8(acc) + summs;
  2478. #elif defined(__AVX__)
  2479. // Initialize accumulator with zeros
  2480. __m256 acc = _mm256_setzero_ps();
  2481. __m128i mask = _mm_set1_epi8(0x10);
  2482. float summs = 0.0f;
  2483. // Main loop
  2484. for (int i = 0; i < nb; i++) {
  2485. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2486. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2487. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2488. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2489. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2490. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2491. bxhil = _mm_and_si128(bxhil, mask);
  2492. bxhih = _mm_and_si128(bxhih, mask);
  2493. __m128i bxl = _mm256_castsi256_si128(bx);
  2494. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2495. bxl = _mm_or_si128(bxl, bxhil);
  2496. bxh = _mm_or_si128(bxh, bxhih);
  2497. bx = _mm256_set_m128i(bxh, bxl);
  2498. const __m256 dy = _mm256_set1_ps(y[i].d);
  2499. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2500. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2501. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2502. }
  2503. *s = hsum_float_8(acc) + summs;
  2504. #else
  2505. // scalar
  2506. float sumf = 0.0;
  2507. for (int i = 0; i < nb; i++) {
  2508. uint32_t qh;
  2509. memcpy(&qh, x[i].qh, sizeof(qh));
  2510. int sumi = 0;
  2511. for (int j = 0; j < qk/2; ++j) {
  2512. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2513. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2514. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2515. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2516. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2517. }
  2518. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2519. }
  2520. *s = sumf;
  2521. #endif
  2522. }
  2523. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2524. const int qk = QK8_0;
  2525. const int nb = n / qk;
  2526. assert(n % qk == 0);
  2527. assert(nb % 2 == 0);
  2528. const block_q8_0 * restrict x = vx;
  2529. const block_q8_0 * restrict y = vy;
  2530. #if defined(__ARM_NEON)
  2531. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2532. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2533. for (int i = 0; i < nb; i += 2) {
  2534. const block_q8_0 * restrict x0 = &x[i + 0];
  2535. const block_q8_0 * restrict x1 = &x[i + 1];
  2536. const block_q8_0 * restrict y0 = &y[i + 0];
  2537. const block_q8_0 * restrict y1 = &y[i + 1];
  2538. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2539. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2540. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2541. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2542. // load y
  2543. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2544. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2545. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2546. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2547. #if defined(__ARM_FEATURE_DOTPROD)
  2548. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2549. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2550. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2551. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2552. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2553. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2554. #else
  2555. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2556. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2557. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2558. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2559. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2560. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2561. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2562. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2563. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2564. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2565. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2566. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2567. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2568. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2569. #endif
  2570. }
  2571. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2572. #elif defined(__AVX2__) || defined(__AVX__)
  2573. // Initialize accumulator with zeros
  2574. __m256 acc = _mm256_setzero_ps();
  2575. // Main loop
  2576. for (int i = 0; i < nb; ++i) {
  2577. // Compute combined scale for the block
  2578. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2579. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2580. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2581. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2582. // Multiply q with scale and accumulate
  2583. #if defined(__AVX2__)
  2584. acc = _mm256_fmadd_ps( d, q, acc );
  2585. #else
  2586. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2587. #endif
  2588. }
  2589. *s = hsum_float_8(acc);
  2590. #else
  2591. // scalar
  2592. float sumf = 0.0;
  2593. for (int i = 0; i < nb; i++) {
  2594. int sumi = 0;
  2595. for (int j = 0; j < qk; j++) {
  2596. sumi += x[i].qs[j]*y[i].qs[j];
  2597. }
  2598. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2599. }
  2600. *s = sumf;
  2601. #endif
  2602. }
  2603. // compute GGML_VEC_DOT_UNROLL dot products at once
  2604. // xs - x row stride in bytes
  2605. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2606. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2607. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2608. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2609. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2610. }
  2611. #if defined(GGML_SIMD)
  2612. const int np = (n & ~(GGML_F16_STEP - 1));
  2613. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2614. GGML_F16_VEC ax[GGML_F16_ARR];
  2615. GGML_F16_VEC ay[GGML_F16_ARR];
  2616. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2617. for (int j = 0; j < GGML_F16_ARR; j++) {
  2618. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2619. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2620. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2621. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2622. }
  2623. }
  2624. }
  2625. // reduce sum0..sum3 to sum0
  2626. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2627. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2628. }
  2629. // leftovers
  2630. for (int i = np; i < n; ++i) {
  2631. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2632. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2633. }
  2634. }
  2635. #else
  2636. for (int i = 0; i < n; ++i) {
  2637. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2638. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2639. }
  2640. }
  2641. #endif
  2642. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2643. s[i] = sumf[i];
  2644. }
  2645. }
  2646. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2647. #if defined(GGML_SIMD)
  2648. const int np = (n & ~(GGML_F32_STEP - 1));
  2649. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2650. GGML_F32_VEC ax[GGML_F32_ARR];
  2651. GGML_F32_VEC ay[GGML_F32_ARR];
  2652. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2653. for (int j = 0; j < GGML_F32_ARR; j++) {
  2654. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2655. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2656. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2657. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2658. }
  2659. }
  2660. // leftovers
  2661. for (int i = np; i < n; ++i) {
  2662. y[i] += x[i]*v;
  2663. }
  2664. #else
  2665. // scalar
  2666. for (int i = 0; i < n; ++i) {
  2667. y[i] += x[i]*v;
  2668. }
  2669. #endif
  2670. }
  2671. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2672. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2673. #if defined(GGML_SIMD)
  2674. const int np = (n & ~(GGML_F32_STEP - 1));
  2675. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2676. GGML_F32_VEC ay[GGML_F32_ARR];
  2677. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2678. for (int j = 0; j < GGML_F32_ARR; j++) {
  2679. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2680. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2681. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2682. }
  2683. }
  2684. // leftovers
  2685. for (int i = np; i < n; ++i) {
  2686. y[i] *= v;
  2687. }
  2688. #else
  2689. // scalar
  2690. for (int i = 0; i < n; ++i) {
  2691. y[i] *= v;
  2692. }
  2693. #endif
  2694. }
  2695. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2696. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2697. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2698. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2699. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2700. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2701. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2702. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2703. static const float GELU_COEF_A = 0.044715f;
  2704. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2705. inline static float ggml_gelu_f32(float x) {
  2706. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2707. }
  2708. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2709. const uint16_t * i16 = (const uint16_t *) x;
  2710. for (int i = 0; i < n; ++i) {
  2711. y[i] = table_gelu_f16[i16[i]];
  2712. }
  2713. }
  2714. #ifdef GGML_GELU_FP16
  2715. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2716. uint16_t t;
  2717. for (int i = 0; i < n; ++i) {
  2718. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2719. memcpy(&t, &fp16, sizeof(uint16_t));
  2720. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2721. }
  2722. }
  2723. #else
  2724. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2725. for (int i = 0; i < n; ++i) {
  2726. y[i] = ggml_gelu_f32(x[i]);
  2727. }
  2728. }
  2729. #endif
  2730. // Sigmoid Linear Unit (SiLU) function
  2731. inline static float ggml_silu_f32(float x) {
  2732. return x/(1.0f + expf(-x));
  2733. }
  2734. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2735. // const uint16_t * i16 = (const uint16_t *) x;
  2736. // for (int i = 0; i < n; ++i) {
  2737. // y[i] = table_silu_f16[i16[i]];
  2738. // }
  2739. //}
  2740. #ifdef GGML_SILU_FP16
  2741. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2742. uint16_t t;
  2743. for (int i = 0; i < n; ++i) {
  2744. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2745. memcpy(&t, &fp16, sizeof(uint16_t));
  2746. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2747. }
  2748. }
  2749. #else
  2750. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2751. for (int i = 0; i < n; ++i) {
  2752. y[i] = ggml_silu_f32(x[i]);
  2753. }
  2754. }
  2755. #endif
  2756. inline static float ggml_silu_backward_f32(float x, float dy) {
  2757. const float s = 1.0f/(1.0f + expf(-x));
  2758. return dy*s*(1.0f + x*(1.0f - s));
  2759. }
  2760. #ifdef GGML_SILU_FP16
  2761. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2762. for (int i = 0; i < n; ++i) {
  2763. // we did not use x[i] to compute forward silu but its f16 equivalent
  2764. // take derivative at f16 of x[i]:
  2765. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2766. float usedx = GGML_FP16_TO_FP32(fp16);
  2767. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2768. }
  2769. }
  2770. #else
  2771. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2772. for (int i = 0; i < n; ++i) {
  2773. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2774. }
  2775. }
  2776. #endif
  2777. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2778. #ifndef GGML_USE_ACCELERATE
  2779. ggml_float sum = 0.0;
  2780. for (int i = 0; i < n; ++i) {
  2781. sum += (ggml_float)x[i];
  2782. }
  2783. *s = sum;
  2784. #else
  2785. vDSP_sve(x, 1, s, n);
  2786. #endif
  2787. }
  2788. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2789. ggml_float sum = 0.0;
  2790. for (int i = 0; i < n; ++i) {
  2791. sum += (ggml_float)x[i];
  2792. }
  2793. *s = sum;
  2794. }
  2795. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2796. #ifndef GGML_USE_ACCELERATE
  2797. float max = -INFINITY;
  2798. for (int i = 0; i < n; ++i) {
  2799. max = MAX(max, x[i]);
  2800. }
  2801. *s = max;
  2802. #else
  2803. vDSP_maxv(x, 1, s, n);
  2804. #endif
  2805. }
  2806. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2807. ggml_vec_norm_f32(n, s, x);
  2808. *s = 1.f/(*s);
  2809. }
  2810. //
  2811. // logging
  2812. //
  2813. #if (GGML_DEBUG >= 1)
  2814. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  2815. #else
  2816. #define GGML_PRINT_DEBUG(...)
  2817. #endif
  2818. #if (GGML_DEBUG >= 5)
  2819. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  2820. #else
  2821. #define GGML_PRINT_DEBUG_5(...)
  2822. #endif
  2823. #if (GGML_DEBUG >= 10)
  2824. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  2825. #else
  2826. #define GGML_PRINT_DEBUG_10(...)
  2827. #endif
  2828. #define GGML_PRINT(...) printf(__VA_ARGS__)
  2829. //
  2830. // data types
  2831. //
  2832. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2833. [GGML_TYPE_F32] = 1,
  2834. [GGML_TYPE_F16] = 1,
  2835. [GGML_TYPE_Q4_0] = QK4_0,
  2836. [GGML_TYPE_Q4_1] = QK4_1,
  2837. [GGML_TYPE_Q5_0] = QK5_0,
  2838. [GGML_TYPE_Q5_1] = QK5_1,
  2839. [GGML_TYPE_Q8_0] = QK8_0,
  2840. [GGML_TYPE_Q8_1] = QK8_1,
  2841. [GGML_TYPE_Q2_K] = QK_K,
  2842. [GGML_TYPE_Q3_K] = QK_K,
  2843. [GGML_TYPE_Q4_K] = QK_K,
  2844. [GGML_TYPE_Q5_K] = QK_K,
  2845. [GGML_TYPE_Q6_K] = QK_K,
  2846. [GGML_TYPE_Q8_K] = QK_K,
  2847. [GGML_TYPE_I8] = 1,
  2848. [GGML_TYPE_I16] = 1,
  2849. [GGML_TYPE_I32] = 1,
  2850. };
  2851. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2852. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2853. [GGML_TYPE_F32] = sizeof(float),
  2854. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2855. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2856. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2857. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2858. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2859. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2860. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2861. [GGML_TYPE_Q2_K] = sizeof(block_q2_k),
  2862. [GGML_TYPE_Q3_K] = sizeof(block_q3_k),
  2863. [GGML_TYPE_Q4_K] = sizeof(block_q4_k),
  2864. [GGML_TYPE_Q5_K] = sizeof(block_q5_k),
  2865. [GGML_TYPE_Q6_K] = sizeof(block_q6_k),
  2866. [GGML_TYPE_Q8_K] = sizeof(block_q8_k),
  2867. [GGML_TYPE_I8] = sizeof(int8_t),
  2868. [GGML_TYPE_I16] = sizeof(int16_t),
  2869. [GGML_TYPE_I32] = sizeof(int32_t),
  2870. };
  2871. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2872. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2873. [GGML_TYPE_F32] = "f32",
  2874. [GGML_TYPE_F16] = "f16",
  2875. [GGML_TYPE_Q4_0] = "q4_0",
  2876. [GGML_TYPE_Q4_1] = "q4_1",
  2877. [GGML_TYPE_Q5_0] = "q5_0",
  2878. [GGML_TYPE_Q5_1] = "q5_1",
  2879. [GGML_TYPE_Q8_0] = "q8_0",
  2880. [GGML_TYPE_Q8_1] = "q8_1",
  2881. [GGML_TYPE_Q2_K] = "q2_k",
  2882. [GGML_TYPE_Q3_K] = "q3_k",
  2883. [GGML_TYPE_Q4_K] = "q4_k",
  2884. [GGML_TYPE_Q5_K] = "q5_k",
  2885. [GGML_TYPE_Q6_K] = "q6_k",
  2886. [GGML_TYPE_Q8_K] = "q8_k",
  2887. [GGML_TYPE_I8] = "i8",
  2888. [GGML_TYPE_I16] = "i16",
  2889. [GGML_TYPE_I32] = "i32",
  2890. };
  2891. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2892. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2893. [GGML_TYPE_F32] = false,
  2894. [GGML_TYPE_F16] = false,
  2895. [GGML_TYPE_Q4_0] = true,
  2896. [GGML_TYPE_Q4_1] = true,
  2897. [GGML_TYPE_Q5_0] = true,
  2898. [GGML_TYPE_Q5_1] = true,
  2899. [GGML_TYPE_Q8_0] = true,
  2900. [GGML_TYPE_Q8_1] = true,
  2901. [GGML_TYPE_Q2_K] = true,
  2902. [GGML_TYPE_Q3_K] = true,
  2903. [GGML_TYPE_Q4_K] = true,
  2904. [GGML_TYPE_Q5_K] = true,
  2905. [GGML_TYPE_Q6_K] = true,
  2906. [GGML_TYPE_Q8_K] = true,
  2907. [GGML_TYPE_I8] = false,
  2908. [GGML_TYPE_I16] = false,
  2909. [GGML_TYPE_I32] = false,
  2910. };
  2911. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  2912. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2913. "NONE",
  2914. "DUP",
  2915. "ADD",
  2916. "ADD1",
  2917. "ACC",
  2918. "SUB",
  2919. "MUL",
  2920. "DIV",
  2921. "SQR",
  2922. "SQRT",
  2923. "LOG",
  2924. "SUM",
  2925. "SUM_ROWS",
  2926. "MEAN",
  2927. "REPEAT",
  2928. "ABS",
  2929. "SGN",
  2930. "NEG",
  2931. "STEP",
  2932. "RELU",
  2933. "GELU",
  2934. "SILU",
  2935. "SILU_BACK",
  2936. "NORM",
  2937. "RMS_NORM",
  2938. "RMS_NORM_BACK",
  2939. "MUL_MAT",
  2940. "SCALE",
  2941. "SET",
  2942. "CPY",
  2943. "CONT",
  2944. "RESHAPE",
  2945. "VIEW",
  2946. "PERMUTE",
  2947. "TRANSPOSE",
  2948. "GET_ROWS",
  2949. "GET_ROWS_BACK",
  2950. "DIAG",
  2951. "DIAG_MASK_INF",
  2952. "DIAG_MASK_ZERO",
  2953. "SOFT_MAX",
  2954. "ROPE",
  2955. "ROPE_BACK",
  2956. "ALIBI",
  2957. "CLAMP",
  2958. "CONV_1D_1S",
  2959. "CONV_1D_2S",
  2960. "FLASH_ATTN",
  2961. "FLASH_FF",
  2962. "MAP_UNARY",
  2963. "MAP_BINARY",
  2964. };
  2965. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  2966. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2967. "none",
  2968. "x",
  2969. "x+y",
  2970. "x+y",
  2971. "view(x,nb,offset)+=y->x",
  2972. "x-y",
  2973. "x*y",
  2974. "x/y",
  2975. "x^2",
  2976. "√x",
  2977. "log(x)",
  2978. "Σx",
  2979. "Σx_k",
  2980. "Σx/n",
  2981. "repeat(x)",
  2982. "abs(x)",
  2983. "sgn(x)",
  2984. "-x",
  2985. "step(x)",
  2986. "relu(x)",
  2987. "gelu(x)",
  2988. "silu(x)",
  2989. "silu_back(x)",
  2990. "norm(x)",
  2991. "rms_norm(x)",
  2992. "rms_norm_back(x)",
  2993. "X*Y",
  2994. "x*v",
  2995. "y-\\>view(x)",
  2996. "x-\\>y",
  2997. "cont(x)",
  2998. "reshape(x)",
  2999. "view(x)",
  3000. "permute(x)",
  3001. "transpose(x)",
  3002. "get_rows(x)",
  3003. "get_rows_back(x)",
  3004. "diag(x)",
  3005. "diag_mask_inf(x)",
  3006. "diag_mask_zero(x)",
  3007. "soft_max(x)",
  3008. "rope(x)",
  3009. "rope_back(x)",
  3010. "alibi(x)",
  3011. "clamp(x)",
  3012. "conv_1d_1s(x)",
  3013. "conv_1d_2s(x)",
  3014. "flash_attn(x)",
  3015. "flash_ff(x)",
  3016. "f(x)",
  3017. "f(x,y)",
  3018. };
  3019. static_assert(GGML_OP_COUNT == 51, "GGML_OP_COUNT != 51");
  3020. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3021. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3022. //
  3023. // ggml context
  3024. //
  3025. struct ggml_context {
  3026. size_t mem_size;
  3027. void * mem_buffer;
  3028. bool mem_buffer_owned;
  3029. bool no_alloc;
  3030. int n_objects;
  3031. struct ggml_object * objects_begin;
  3032. struct ggml_object * objects_end;
  3033. struct ggml_scratch scratch;
  3034. struct ggml_scratch scratch_save;
  3035. };
  3036. struct ggml_context_container {
  3037. bool used;
  3038. struct ggml_context context;
  3039. };
  3040. //
  3041. // ggml state
  3042. //
  3043. struct ggml_state {
  3044. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3045. };
  3046. // global state
  3047. static struct ggml_state g_state;
  3048. static atomic_int g_state_barrier = 0;
  3049. // barrier via spin lock
  3050. inline static void ggml_critical_section_start(void) {
  3051. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3052. while (processing > 0) {
  3053. // wait for other threads to finish
  3054. atomic_fetch_sub(&g_state_barrier, 1);
  3055. sched_yield(); // TODO: reconsider this
  3056. processing = atomic_fetch_add(&g_state_barrier, 1);
  3057. }
  3058. }
  3059. // TODO: make this somehow automatically executed
  3060. // some sort of "sentry" mechanism
  3061. inline static void ggml_critical_section_end(void) {
  3062. atomic_fetch_sub(&g_state_barrier, 1);
  3063. }
  3064. ////////////////////////////////////////////////////////////////////////////////
  3065. void ggml_print_object(const struct ggml_object * obj) {
  3066. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3067. obj->offs, obj->size, (const void *) obj->next);
  3068. }
  3069. void ggml_print_objects(const struct ggml_context * ctx) {
  3070. struct ggml_object * obj = ctx->objects_begin;
  3071. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3072. while (obj != NULL) {
  3073. ggml_print_object(obj);
  3074. obj = obj->next;
  3075. }
  3076. GGML_PRINT("%s: --- end ---\n", __func__);
  3077. }
  3078. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3079. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3080. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3081. }
  3082. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3083. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3084. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3085. }
  3086. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3087. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3088. // this should handle cases where the tensor is not contiguous in memory
  3089. // probaby just:
  3090. //
  3091. // return tensor->ne[3]*tensor->nb[3]
  3092. //
  3093. // is enough, but just in case, adding the second part
  3094. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3095. }
  3096. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3097. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3098. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3099. }
  3100. int ggml_blck_size(enum ggml_type type) {
  3101. return GGML_BLCK_SIZE[type];
  3102. }
  3103. size_t ggml_type_size(enum ggml_type type) {
  3104. return GGML_TYPE_SIZE[type];
  3105. }
  3106. float ggml_type_sizef(enum ggml_type type) {
  3107. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3108. }
  3109. const char * ggml_type_name(enum ggml_type type) {
  3110. return GGML_TYPE_NAME[type];
  3111. }
  3112. const char * ggml_op_name(enum ggml_op op) {
  3113. return GGML_OP_NAME[op];
  3114. }
  3115. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3116. return GGML_TYPE_SIZE[tensor->type];
  3117. }
  3118. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3119. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3120. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3121. }
  3122. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3123. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3124. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3125. }
  3126. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3127. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3128. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3129. }
  3130. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3131. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3132. return
  3133. (t0->ne[0] == t1->ne[0]) &&
  3134. (t0->ne[2] == t1->ne[2]) &&
  3135. (t0->ne[3] == t1->ne[3]);
  3136. }
  3137. bool ggml_is_quantized(enum ggml_type type) {
  3138. return GGML_IS_QUANTIZED[type];
  3139. }
  3140. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3141. enum ggml_type wtype = GGML_TYPE_COUNT;
  3142. switch (ftype) {
  3143. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3144. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3145. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3146. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3147. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3148. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3149. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3150. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3151. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3152. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3153. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3154. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3155. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3156. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3157. }
  3158. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3159. return wtype;
  3160. }
  3161. size_t ggml_tensor_overhead(void) {
  3162. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3163. }
  3164. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3165. return tensor->nb[0] > tensor->nb[1];
  3166. }
  3167. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3168. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3169. return
  3170. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3171. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3172. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3173. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3174. }
  3175. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3176. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3177. return
  3178. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3179. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3180. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3181. }
  3182. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3183. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3184. return
  3185. (t0->ne[0] == t1->ne[0] ) &&
  3186. (t0->ne[1] == t1->ne[1] ) &&
  3187. (t0->ne[2] == t1->ne[2] ) &&
  3188. (t0->ne[3] == t1->ne[3] );
  3189. }
  3190. // check if t1 can be represented as a repeatition of t0
  3191. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3192. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3193. return
  3194. (t1->ne[0]%t0->ne[0] == 0) &&
  3195. (t1->ne[1]%t0->ne[1] == 0) &&
  3196. (t1->ne[2]%t0->ne[2] == 0) &&
  3197. (t1->ne[3]%t0->ne[3] == 0);
  3198. }
  3199. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3200. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3201. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3202. }
  3203. static inline int ggml_up32(int n) {
  3204. return (n + 31) & ~31;
  3205. }
  3206. //static inline int ggml_up64(int n) {
  3207. // return (n + 63) & ~63;
  3208. //}
  3209. static inline int ggml_up(int n, int m) {
  3210. // assert m is a power of 2
  3211. GGML_ASSERT((m & (m - 1)) == 0);
  3212. return (n + m - 1) & ~(m - 1);
  3213. }
  3214. // assert that pointer is aligned to GGML_MEM_ALIGN
  3215. #define ggml_assert_aligned(ptr) \
  3216. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3217. ////////////////////////////////////////////////////////////////////////////////
  3218. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3219. // make this function thread safe
  3220. ggml_critical_section_start();
  3221. static bool is_first_call = true;
  3222. if (is_first_call) {
  3223. // initialize time system (required on Windows)
  3224. ggml_time_init();
  3225. // initialize GELU, SILU and EXP F32 tables
  3226. {
  3227. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3228. ggml_fp16_t ii;
  3229. for (int i = 0; i < (1 << 16); ++i) {
  3230. uint16_t ui = i;
  3231. memcpy(&ii, &ui, sizeof(ii));
  3232. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3233. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3234. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3235. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3236. }
  3237. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3238. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3239. }
  3240. // initialize g_state
  3241. {
  3242. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3243. g_state = (struct ggml_state) {
  3244. /*.contexts =*/ { { 0 } },
  3245. };
  3246. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3247. g_state.contexts[i].used = false;
  3248. }
  3249. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3250. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3251. }
  3252. #if defined(GGML_USE_CUBLAS)
  3253. ggml_init_cublas();
  3254. #elif defined(GGML_USE_CLBLAST)
  3255. ggml_cl_init();
  3256. #endif
  3257. is_first_call = false;
  3258. }
  3259. // find non-used context in g_state
  3260. struct ggml_context * ctx = NULL;
  3261. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3262. if (!g_state.contexts[i].used) {
  3263. g_state.contexts[i].used = true;
  3264. ctx = &g_state.contexts[i].context;
  3265. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3266. break;
  3267. }
  3268. }
  3269. if (ctx == NULL) {
  3270. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3271. ggml_critical_section_end();
  3272. return NULL;
  3273. }
  3274. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3275. *ctx = (struct ggml_context) {
  3276. /*.mem_size =*/ mem_size,
  3277. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3278. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3279. /*.no_alloc =*/ params.no_alloc,
  3280. /*.n_objects =*/ 0,
  3281. /*.objects_begin =*/ NULL,
  3282. /*.objects_end =*/ NULL,
  3283. /*.scratch =*/ { 0, 0, NULL, },
  3284. /*.scratch_save =*/ { 0, 0, NULL, },
  3285. };
  3286. GGML_ASSERT(ctx->mem_buffer != NULL);
  3287. ggml_assert_aligned(ctx->mem_buffer);
  3288. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3289. ggml_critical_section_end();
  3290. return ctx;
  3291. }
  3292. void ggml_free(struct ggml_context * ctx) {
  3293. // make this function thread safe
  3294. ggml_critical_section_start();
  3295. bool found = false;
  3296. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3297. if (&g_state.contexts[i].context == ctx) {
  3298. g_state.contexts[i].used = false;
  3299. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3300. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3301. if (ctx->mem_buffer_owned) {
  3302. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3303. }
  3304. found = true;
  3305. break;
  3306. }
  3307. }
  3308. if (!found) {
  3309. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3310. }
  3311. ggml_critical_section_end();
  3312. }
  3313. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3314. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3315. }
  3316. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3317. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3318. ctx->scratch = scratch;
  3319. return result;
  3320. }
  3321. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3322. ctx->no_alloc = no_alloc;
  3323. }
  3324. void * ggml_get_mem_buffer(struct ggml_context * ctx) {
  3325. return ctx->mem_buffer;
  3326. }
  3327. size_t ggml_get_mem_size(struct ggml_context * ctx) {
  3328. return ctx->mem_size;
  3329. }
  3330. // IMPORTANT:
  3331. // when creating "opt" tensors, always save and load the scratch buffer
  3332. // this is an error prone process, but it is necessary to support inplace
  3333. // operators when using scratch buffers
  3334. // TODO: implement a better way
  3335. void ggml_scratch_save(struct ggml_context * ctx) {
  3336. ctx->scratch_save = ctx->scratch;
  3337. ctx->scratch.data = NULL;
  3338. }
  3339. void ggml_scratch_load(struct ggml_context * ctx) {
  3340. ctx->scratch = ctx->scratch_save;
  3341. }
  3342. ////////////////////////////////////////////////////////////////////////////////
  3343. struct ggml_tensor * ggml_new_tensor_impl(
  3344. struct ggml_context * ctx,
  3345. enum ggml_type type,
  3346. int n_dims,
  3347. const int64_t* ne,
  3348. void* data) {
  3349. // always insert objects at the end of the context's memory pool
  3350. struct ggml_object * obj_cur = ctx->objects_end;
  3351. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3352. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3353. const size_t cur_end = cur_offs + cur_size;
  3354. size_t size_needed = 0;
  3355. if (data == NULL && !ctx->no_alloc) {
  3356. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3357. for (int i = 1; i < n_dims; i++) {
  3358. size_needed *= ne[i];
  3359. }
  3360. // align to GGML_MEM_ALIGN
  3361. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3362. }
  3363. char * const mem_buffer = ctx->mem_buffer;
  3364. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3365. if (ctx->scratch.data == NULL || data != NULL) {
  3366. size_needed += GGML_TENSOR_SIZE;
  3367. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3368. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3369. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3370. assert(false);
  3371. return NULL;
  3372. }
  3373. *obj_new = (struct ggml_object) {
  3374. .offs = cur_end + GGML_OBJECT_SIZE,
  3375. .size = size_needed,
  3376. .next = NULL,
  3377. };
  3378. } else {
  3379. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3380. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3381. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3382. assert(false);
  3383. return NULL;
  3384. }
  3385. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3386. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3387. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3388. assert(false);
  3389. return NULL;
  3390. }
  3391. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3392. *obj_new = (struct ggml_object) {
  3393. .offs = cur_end + GGML_OBJECT_SIZE,
  3394. .size = GGML_TENSOR_SIZE,
  3395. .next = NULL,
  3396. };
  3397. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3398. ctx->scratch.offs += size_needed;
  3399. }
  3400. if (obj_cur != NULL) {
  3401. obj_cur->next = obj_new;
  3402. } else {
  3403. // this is the first object in this context
  3404. ctx->objects_begin = obj_new;
  3405. }
  3406. ctx->objects_end = obj_new;
  3407. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3408. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3409. ggml_assert_aligned(result);
  3410. *result = (struct ggml_tensor) {
  3411. /*.type =*/ type,
  3412. /*.backend =*/ GGML_BACKEND_CPU,
  3413. /*.n_dims =*/ n_dims,
  3414. /*.ne =*/ { 1, 1, 1, 1 },
  3415. /*.nb =*/ { 0, 0, 0, 0 },
  3416. /*.op =*/ GGML_OP_NONE,
  3417. /*.is_param =*/ false,
  3418. /*.grad =*/ NULL,
  3419. /*.src0 =*/ NULL,
  3420. /*.src1 =*/ NULL,
  3421. /*.opt =*/ { NULL },
  3422. /*.n_tasks =*/ 0,
  3423. /*.perf_runs =*/ 0,
  3424. /*.perf_cycles =*/ 0,
  3425. /*.perf_time_us =*/ 0,
  3426. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3427. /*.name =*/ { 0 },
  3428. /*.extra =*/ NULL,
  3429. /*.pad =*/ { 0 },
  3430. };
  3431. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3432. //ggml_assert_aligned(result->data);
  3433. for (int i = 0; i < n_dims; i++) {
  3434. result->ne[i] = ne[i];
  3435. }
  3436. result->nb[0] = GGML_TYPE_SIZE[type];
  3437. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3438. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3439. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3440. }
  3441. ctx->n_objects++;
  3442. return result;
  3443. }
  3444. struct ggml_tensor * ggml_new_tensor(
  3445. struct ggml_context * ctx,
  3446. enum ggml_type type,
  3447. int n_dims,
  3448. const int64_t * ne) {
  3449. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3450. }
  3451. struct ggml_tensor * ggml_new_tensor_1d(
  3452. struct ggml_context * ctx,
  3453. enum ggml_type type,
  3454. int64_t ne0) {
  3455. return ggml_new_tensor(ctx, type, 1, &ne0);
  3456. }
  3457. struct ggml_tensor * ggml_new_tensor_2d(
  3458. struct ggml_context * ctx,
  3459. enum ggml_type type,
  3460. int64_t ne0,
  3461. int64_t ne1) {
  3462. const int64_t ne[2] = { ne0, ne1 };
  3463. return ggml_new_tensor(ctx, type, 2, ne);
  3464. }
  3465. struct ggml_tensor * ggml_new_tensor_3d(
  3466. struct ggml_context * ctx,
  3467. enum ggml_type type,
  3468. int64_t ne0,
  3469. int64_t ne1,
  3470. int64_t ne2) {
  3471. const int64_t ne[3] = { ne0, ne1, ne2 };
  3472. return ggml_new_tensor(ctx, type, 3, ne);
  3473. }
  3474. struct ggml_tensor * ggml_new_tensor_4d(
  3475. struct ggml_context * ctx,
  3476. enum ggml_type type,
  3477. int64_t ne0,
  3478. int64_t ne1,
  3479. int64_t ne2,
  3480. int64_t ne3) {
  3481. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3482. return ggml_new_tensor(ctx, type, 4, ne);
  3483. }
  3484. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3485. ggml_scratch_save(ctx);
  3486. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3487. ggml_scratch_load(ctx);
  3488. ggml_set_i32(result, value);
  3489. return result;
  3490. }
  3491. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3492. ggml_scratch_save(ctx);
  3493. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3494. ggml_scratch_load(ctx);
  3495. ggml_set_f32(result, value);
  3496. return result;
  3497. }
  3498. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3499. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3500. }
  3501. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3502. memset(tensor->data, 0, ggml_nbytes(tensor));
  3503. return tensor;
  3504. }
  3505. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3506. const int n = ggml_nrows(tensor);
  3507. const int nc = tensor->ne[0];
  3508. const size_t n1 = tensor->nb[1];
  3509. char * const data = tensor->data;
  3510. switch (tensor->type) {
  3511. case GGML_TYPE_I8:
  3512. {
  3513. assert(tensor->nb[0] == sizeof(int8_t));
  3514. for (int i = 0; i < n; i++) {
  3515. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3516. }
  3517. } break;
  3518. case GGML_TYPE_I16:
  3519. {
  3520. assert(tensor->nb[0] == sizeof(int16_t));
  3521. for (int i = 0; i < n; i++) {
  3522. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3523. }
  3524. } break;
  3525. case GGML_TYPE_I32:
  3526. {
  3527. assert(tensor->nb[0] == sizeof(int32_t));
  3528. for (int i = 0; i < n; i++) {
  3529. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3530. }
  3531. } break;
  3532. case GGML_TYPE_F16:
  3533. {
  3534. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3535. for (int i = 0; i < n; i++) {
  3536. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3537. }
  3538. } break;
  3539. case GGML_TYPE_F32:
  3540. {
  3541. assert(tensor->nb[0] == sizeof(float));
  3542. for (int i = 0; i < n; i++) {
  3543. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3544. }
  3545. } break;
  3546. default:
  3547. {
  3548. GGML_ASSERT(false);
  3549. } break;
  3550. }
  3551. return tensor;
  3552. }
  3553. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3554. const int n = ggml_nrows(tensor);
  3555. const int nc = tensor->ne[0];
  3556. const size_t n1 = tensor->nb[1];
  3557. char * const data = tensor->data;
  3558. switch (tensor->type) {
  3559. case GGML_TYPE_I8:
  3560. {
  3561. assert(tensor->nb[0] == sizeof(int8_t));
  3562. for (int i = 0; i < n; i++) {
  3563. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3564. }
  3565. } break;
  3566. case GGML_TYPE_I16:
  3567. {
  3568. assert(tensor->nb[0] == sizeof(int16_t));
  3569. for (int i = 0; i < n; i++) {
  3570. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3571. }
  3572. } break;
  3573. case GGML_TYPE_I32:
  3574. {
  3575. assert(tensor->nb[0] == sizeof(int32_t));
  3576. for (int i = 0; i < n; i++) {
  3577. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3578. }
  3579. } break;
  3580. case GGML_TYPE_F16:
  3581. {
  3582. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3583. for (int i = 0; i < n; i++) {
  3584. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3585. }
  3586. } break;
  3587. case GGML_TYPE_F32:
  3588. {
  3589. assert(tensor->nb[0] == sizeof(float));
  3590. for (int i = 0; i < n; i++) {
  3591. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3592. }
  3593. } break;
  3594. default:
  3595. {
  3596. GGML_ASSERT(false);
  3597. } break;
  3598. }
  3599. return tensor;
  3600. }
  3601. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3602. switch (tensor->type) {
  3603. case GGML_TYPE_I8:
  3604. {
  3605. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3606. return ((int8_t *)(tensor->data))[i];
  3607. } break;
  3608. case GGML_TYPE_I16:
  3609. {
  3610. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3611. return ((int16_t *)(tensor->data))[i];
  3612. } break;
  3613. case GGML_TYPE_I32:
  3614. {
  3615. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3616. return ((int32_t *)(tensor->data))[i];
  3617. } break;
  3618. case GGML_TYPE_F16:
  3619. {
  3620. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3621. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3622. } break;
  3623. case GGML_TYPE_F32:
  3624. {
  3625. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3626. return ((float *)(tensor->data))[i];
  3627. } break;
  3628. default:
  3629. {
  3630. GGML_ASSERT(false);
  3631. } break;
  3632. }
  3633. return 0.0f;
  3634. }
  3635. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3636. switch (tensor->type) {
  3637. case GGML_TYPE_I8:
  3638. {
  3639. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3640. ((int8_t *)(tensor->data))[i] = value;
  3641. } break;
  3642. case GGML_TYPE_I16:
  3643. {
  3644. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3645. ((int16_t *)(tensor->data))[i] = value;
  3646. } break;
  3647. case GGML_TYPE_I32:
  3648. {
  3649. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3650. ((int32_t *)(tensor->data))[i] = value;
  3651. } break;
  3652. case GGML_TYPE_F16:
  3653. {
  3654. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3655. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3656. } break;
  3657. case GGML_TYPE_F32:
  3658. {
  3659. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3660. ((float *)(tensor->data))[i] = value;
  3661. } break;
  3662. default:
  3663. {
  3664. GGML_ASSERT(false);
  3665. } break;
  3666. }
  3667. }
  3668. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3669. switch (tensor->type) {
  3670. case GGML_TYPE_I8:
  3671. {
  3672. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3673. return ((int8_t *)(tensor->data))[i];
  3674. } break;
  3675. case GGML_TYPE_I16:
  3676. {
  3677. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3678. return ((int16_t *)(tensor->data))[i];
  3679. } break;
  3680. case GGML_TYPE_I32:
  3681. {
  3682. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3683. return ((int32_t *)(tensor->data))[i];
  3684. } break;
  3685. case GGML_TYPE_F16:
  3686. {
  3687. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3688. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3689. } break;
  3690. case GGML_TYPE_F32:
  3691. {
  3692. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3693. return ((float *)(tensor->data))[i];
  3694. } break;
  3695. default:
  3696. {
  3697. GGML_ASSERT(false);
  3698. } break;
  3699. }
  3700. return 0.0f;
  3701. }
  3702. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3703. switch (tensor->type) {
  3704. case GGML_TYPE_I8:
  3705. {
  3706. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3707. ((int8_t *)(tensor->data))[i] = value;
  3708. } break;
  3709. case GGML_TYPE_I16:
  3710. {
  3711. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3712. ((int16_t *)(tensor->data))[i] = value;
  3713. } break;
  3714. case GGML_TYPE_I32:
  3715. {
  3716. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3717. ((int32_t *)(tensor->data))[i] = value;
  3718. } break;
  3719. case GGML_TYPE_F16:
  3720. {
  3721. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3722. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3723. } break;
  3724. case GGML_TYPE_F32:
  3725. {
  3726. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3727. ((float *)(tensor->data))[i] = value;
  3728. } break;
  3729. default:
  3730. {
  3731. GGML_ASSERT(false);
  3732. } break;
  3733. }
  3734. }
  3735. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3736. return tensor->data;
  3737. }
  3738. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3739. assert(tensor->type == GGML_TYPE_F32);
  3740. return (float *)(tensor->data);
  3741. }
  3742. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3743. return tensor->name;
  3744. }
  3745. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3746. strncpy(tensor->name, name, sizeof(tensor->name));
  3747. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3748. }
  3749. struct ggml_tensor * ggml_view_tensor(
  3750. struct ggml_context * ctx,
  3751. const struct ggml_tensor * src) {
  3752. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3753. result->nb[0] = src->nb[0];
  3754. result->nb[1] = src->nb[1];
  3755. result->nb[2] = src->nb[2];
  3756. result->nb[3] = src->nb[3];
  3757. return result;
  3758. }
  3759. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3760. struct ggml_object * obj = ctx->objects_begin;
  3761. char * const mem_buffer = ctx->mem_buffer;
  3762. while (obj != NULL) {
  3763. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3764. if (strcmp(cur->name, name) == 0) {
  3765. return cur;
  3766. }
  3767. obj = obj->next;
  3768. }
  3769. return NULL;
  3770. }
  3771. ////////////////////////////////////////////////////////////////////////////////
  3772. // ggml_dup
  3773. struct ggml_tensor * ggml_dup_impl(
  3774. struct ggml_context * ctx,
  3775. struct ggml_tensor * a,
  3776. bool inplace) {
  3777. bool is_node = false;
  3778. if (!inplace && (a->grad)) {
  3779. is_node = true;
  3780. }
  3781. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3782. result->op = GGML_OP_DUP;
  3783. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3784. result->src0 = a;
  3785. result->src1 = NULL;
  3786. return result;
  3787. }
  3788. struct ggml_tensor * ggml_dup(
  3789. struct ggml_context * ctx,
  3790. struct ggml_tensor * a) {
  3791. return ggml_dup_impl(ctx, a, false);
  3792. }
  3793. struct ggml_tensor * ggml_dup_inplace(
  3794. struct ggml_context * ctx,
  3795. struct ggml_tensor * a) {
  3796. return ggml_dup_impl(ctx, a, true);
  3797. }
  3798. // ggml_add
  3799. struct ggml_tensor * ggml_add_impl(
  3800. struct ggml_context * ctx,
  3801. struct ggml_tensor * a,
  3802. struct ggml_tensor * b,
  3803. bool inplace) {
  3804. GGML_ASSERT(ggml_are_same_shape(a, b));
  3805. bool is_node = false;
  3806. if (!inplace && (a->grad || b->grad)) {
  3807. is_node = true;
  3808. }
  3809. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3810. result->op = GGML_OP_ADD;
  3811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3812. result->src0 = a;
  3813. result->src1 = b;
  3814. return result;
  3815. }
  3816. struct ggml_tensor * ggml_add(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. struct ggml_tensor * b) {
  3820. return ggml_add_impl(ctx, a, b, false);
  3821. }
  3822. struct ggml_tensor * ggml_add_inplace(
  3823. struct ggml_context * ctx,
  3824. struct ggml_tensor * a,
  3825. struct ggml_tensor * b) {
  3826. return ggml_add_impl(ctx, a, b, true);
  3827. }
  3828. // ggml_add1
  3829. struct ggml_tensor * ggml_add1_impl(
  3830. struct ggml_context * ctx,
  3831. struct ggml_tensor * a,
  3832. struct ggml_tensor * b,
  3833. bool inplace) {
  3834. GGML_ASSERT(ggml_is_scalar(b));
  3835. GGML_ASSERT(ggml_is_padded_1d(a));
  3836. bool is_node = false;
  3837. if (!inplace && (a->grad || b->grad)) {
  3838. is_node = true;
  3839. }
  3840. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3841. result->op = GGML_OP_ADD1;
  3842. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3843. result->src0 = a;
  3844. result->src1 = b;
  3845. return result;
  3846. }
  3847. struct ggml_tensor * ggml_add1(
  3848. struct ggml_context * ctx,
  3849. struct ggml_tensor * a,
  3850. struct ggml_tensor * b) {
  3851. return ggml_add1_impl(ctx, a, b, false);
  3852. }
  3853. struct ggml_tensor * ggml_add1_inplace(
  3854. struct ggml_context * ctx,
  3855. struct ggml_tensor * a,
  3856. struct ggml_tensor * b) {
  3857. return ggml_add1_impl(ctx, a, b, true);
  3858. }
  3859. // ggml_acc
  3860. struct ggml_tensor * ggml_acc_impl(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. struct ggml_tensor * b,
  3864. size_t nb1,
  3865. size_t nb2,
  3866. size_t nb3,
  3867. size_t offset,
  3868. bool inplace) {
  3869. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3870. GGML_ASSERT(ggml_is_contiguous(a));
  3871. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3872. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3873. bool is_node = false;
  3874. if (!inplace && (a->grad || b->grad)) {
  3875. is_node = true;
  3876. }
  3877. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3878. ggml_scratch_save(ctx);
  3879. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  3880. ((int32_t *) c->data)[0] = nb1;
  3881. ((int32_t *) c->data)[1] = nb2;
  3882. ((int32_t *) c->data)[2] = nb3;
  3883. ((int32_t *) c->data)[3] = offset;
  3884. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  3885. ggml_scratch_load(ctx);
  3886. result->op = GGML_OP_ACC;
  3887. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3888. result->src0 = a;
  3889. result->src1 = b;
  3890. result->opt[0] = c;
  3891. return result;
  3892. }
  3893. struct ggml_tensor * ggml_acc(
  3894. struct ggml_context * ctx,
  3895. struct ggml_tensor * a,
  3896. struct ggml_tensor * b,
  3897. size_t nb1,
  3898. size_t nb2,
  3899. size_t nb3,
  3900. size_t offset) {
  3901. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3902. }
  3903. struct ggml_tensor * ggml_acc_inplace(
  3904. struct ggml_context * ctx,
  3905. struct ggml_tensor * a,
  3906. struct ggml_tensor * b,
  3907. size_t nb1,
  3908. size_t nb2,
  3909. size_t nb3,
  3910. size_t offset) {
  3911. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3912. }
  3913. // ggml_sub
  3914. struct ggml_tensor * ggml_sub_impl(
  3915. struct ggml_context * ctx,
  3916. struct ggml_tensor * a,
  3917. struct ggml_tensor * b,
  3918. bool inplace) {
  3919. GGML_ASSERT(ggml_are_same_shape(a, b));
  3920. bool is_node = false;
  3921. if (!inplace && (a->grad || b->grad)) {
  3922. is_node = true;
  3923. }
  3924. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3925. result->op = GGML_OP_SUB;
  3926. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3927. result->src0 = a;
  3928. result->src1 = b;
  3929. return result;
  3930. }
  3931. struct ggml_tensor * ggml_sub(
  3932. struct ggml_context * ctx,
  3933. struct ggml_tensor * a,
  3934. struct ggml_tensor * b) {
  3935. return ggml_sub_impl(ctx, a, b, false);
  3936. }
  3937. struct ggml_tensor * ggml_sub_inplace(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. struct ggml_tensor * b) {
  3941. return ggml_sub_impl(ctx, a, b, true);
  3942. }
  3943. // ggml_mul
  3944. struct ggml_tensor * ggml_mul_impl(
  3945. struct ggml_context * ctx,
  3946. struct ggml_tensor * a,
  3947. struct ggml_tensor * b,
  3948. bool inplace) {
  3949. // TODO: support less-strict constraint
  3950. // GGML_ASSERT(ggml_can_repeat(b, a));
  3951. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3952. bool is_node = false;
  3953. if (!inplace && (a->grad || b->grad)) {
  3954. // TODO: support backward pass for broadcasting
  3955. GGML_ASSERT(ggml_are_same_shape(a, b));
  3956. is_node = true;
  3957. }
  3958. if (inplace) {
  3959. GGML_ASSERT(is_node == false);
  3960. }
  3961. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3962. result->op = GGML_OP_MUL;
  3963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3964. result->src0 = a;
  3965. result->src1 = b;
  3966. return result;
  3967. }
  3968. struct ggml_tensor * ggml_mul(
  3969. struct ggml_context * ctx,
  3970. struct ggml_tensor * a,
  3971. struct ggml_tensor * b) {
  3972. return ggml_mul_impl(ctx, a, b, false);
  3973. }
  3974. struct ggml_tensor * ggml_mul_inplace(
  3975. struct ggml_context * ctx,
  3976. struct ggml_tensor * a,
  3977. struct ggml_tensor * b) {
  3978. return ggml_mul_impl(ctx, a, b, true);
  3979. }
  3980. // ggml_div
  3981. struct ggml_tensor * ggml_div_impl(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b,
  3985. bool inplace) {
  3986. GGML_ASSERT(ggml_are_same_shape(a, b));
  3987. bool is_node = false;
  3988. if (!inplace && (a->grad || b->grad)) {
  3989. is_node = true;
  3990. }
  3991. if (inplace) {
  3992. GGML_ASSERT(is_node == false);
  3993. }
  3994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3995. result->op = GGML_OP_DIV;
  3996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3997. result->src0 = a;
  3998. result->src1 = b;
  3999. return result;
  4000. }
  4001. struct ggml_tensor * ggml_div(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. struct ggml_tensor * b) {
  4005. return ggml_div_impl(ctx, a, b, false);
  4006. }
  4007. struct ggml_tensor * ggml_div_inplace(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. struct ggml_tensor * b) {
  4011. return ggml_div_impl(ctx, a, b, true);
  4012. }
  4013. // ggml_sqr
  4014. struct ggml_tensor * ggml_sqr_impl(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a,
  4017. bool inplace) {
  4018. bool is_node = false;
  4019. if (!inplace && (a->grad)) {
  4020. is_node = true;
  4021. }
  4022. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4023. result->op = GGML_OP_SQR;
  4024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4025. result->src0 = a;
  4026. result->src1 = NULL;
  4027. return result;
  4028. }
  4029. struct ggml_tensor * ggml_sqr(
  4030. struct ggml_context * ctx,
  4031. struct ggml_tensor * a) {
  4032. return ggml_sqr_impl(ctx, a, false);
  4033. }
  4034. struct ggml_tensor * ggml_sqr_inplace(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a) {
  4037. return ggml_sqr_impl(ctx, a, true);
  4038. }
  4039. // ggml_sqrt
  4040. struct ggml_tensor * ggml_sqrt_impl(
  4041. struct ggml_context * ctx,
  4042. struct ggml_tensor * a,
  4043. bool inplace) {
  4044. bool is_node = false;
  4045. if (!inplace && (a->grad)) {
  4046. is_node = true;
  4047. }
  4048. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4049. result->op = GGML_OP_SQRT;
  4050. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4051. result->src0 = a;
  4052. result->src1 = NULL;
  4053. return result;
  4054. }
  4055. struct ggml_tensor * ggml_sqrt(
  4056. struct ggml_context * ctx,
  4057. struct ggml_tensor * a) {
  4058. return ggml_sqrt_impl(ctx, a, false);
  4059. }
  4060. struct ggml_tensor * ggml_sqrt_inplace(
  4061. struct ggml_context * ctx,
  4062. struct ggml_tensor * a) {
  4063. return ggml_sqrt_impl(ctx, a, true);
  4064. }
  4065. // ggml_log
  4066. struct ggml_tensor * ggml_log_impl(
  4067. struct ggml_context * ctx,
  4068. struct ggml_tensor * a,
  4069. bool inplace) {
  4070. bool is_node = false;
  4071. if (!inplace && (a->grad)) {
  4072. is_node = true;
  4073. }
  4074. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4075. result->op = GGML_OP_LOG;
  4076. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4077. result->src0 = a;
  4078. result->src1 = NULL;
  4079. return result;
  4080. }
  4081. struct ggml_tensor * ggml_log(
  4082. struct ggml_context * ctx,
  4083. struct ggml_tensor * a) {
  4084. return ggml_log_impl(ctx, a, false);
  4085. }
  4086. struct ggml_tensor * ggml_log_inplace(
  4087. struct ggml_context * ctx,
  4088. struct ggml_tensor * a) {
  4089. return ggml_log_impl(ctx, a, true);
  4090. }
  4091. // ggml_sum
  4092. struct ggml_tensor * ggml_sum(
  4093. struct ggml_context * ctx,
  4094. struct ggml_tensor * a) {
  4095. bool is_node = false;
  4096. if (a->grad) {
  4097. is_node = true;
  4098. }
  4099. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4100. result->op = GGML_OP_SUM;
  4101. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4102. result->src0 = a;
  4103. result->src1 = NULL;
  4104. return result;
  4105. }
  4106. // ggml_sum_rows
  4107. struct ggml_tensor * ggml_sum_rows(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a) {
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. is_node = true;
  4113. }
  4114. int64_t ne[4] = {1,1,1,1};
  4115. for (int i=1; i<a->n_dims; ++i) {
  4116. ne[i] = a->ne[i];
  4117. }
  4118. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4119. result->op = GGML_OP_SUM_ROWS;
  4120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4121. result->src0 = a;
  4122. result->src1 = NULL;
  4123. return result;
  4124. }
  4125. // ggml_mean
  4126. struct ggml_tensor * ggml_mean(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a) {
  4129. bool is_node = false;
  4130. if (a->grad) {
  4131. GGML_ASSERT(false); // TODO: implement
  4132. is_node = true;
  4133. }
  4134. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4135. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4136. result->op = GGML_OP_MEAN;
  4137. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4138. result->src0 = a;
  4139. result->src1 = NULL;
  4140. return result;
  4141. }
  4142. // ggml_repeat
  4143. struct ggml_tensor * ggml_repeat(
  4144. struct ggml_context * ctx,
  4145. struct ggml_tensor * a,
  4146. struct ggml_tensor * b) {
  4147. GGML_ASSERT(ggml_can_repeat(a, b));
  4148. bool is_node = false;
  4149. if (a->grad) {
  4150. is_node = true;
  4151. }
  4152. if (ggml_are_same_shape(a, b) && !is_node) {
  4153. return a;
  4154. }
  4155. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4156. result->op = GGML_OP_REPEAT;
  4157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4158. result->src0 = a;
  4159. result->src1 = b;
  4160. return result;
  4161. }
  4162. // ggml_abs
  4163. struct ggml_tensor * ggml_abs_impl(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a,
  4166. bool inplace) {
  4167. bool is_node = false;
  4168. if (!inplace && (a->grad)) {
  4169. is_node = true;
  4170. }
  4171. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4172. result->op = GGML_OP_ABS;
  4173. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4174. result->src0 = a;
  4175. result->src1 = NULL;
  4176. return result;
  4177. }
  4178. struct ggml_tensor * ggml_abs(
  4179. struct ggml_context * ctx,
  4180. struct ggml_tensor * a) {
  4181. return ggml_abs_impl(ctx, a, false);
  4182. }
  4183. struct ggml_tensor * ggml_abs_inplace(
  4184. struct ggml_context * ctx,
  4185. struct ggml_tensor * a) {
  4186. return ggml_abs_impl(ctx, a, true);
  4187. }
  4188. // ggml_sgn
  4189. struct ggml_tensor * ggml_sgn_impl(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a,
  4192. bool inplace) {
  4193. bool is_node = false;
  4194. if (!inplace && (a->grad)) {
  4195. is_node = true;
  4196. }
  4197. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4198. result->op = GGML_OP_SGN;
  4199. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4200. result->src0 = a;
  4201. result->src1 = NULL;
  4202. return result;
  4203. }
  4204. struct ggml_tensor * ggml_sgn(
  4205. struct ggml_context * ctx,
  4206. struct ggml_tensor * a) {
  4207. return ggml_sgn_impl(ctx, a, false);
  4208. }
  4209. struct ggml_tensor * ggml_sgn_inplace(
  4210. struct ggml_context * ctx,
  4211. struct ggml_tensor * a) {
  4212. return ggml_sgn_impl(ctx, a, true);
  4213. }
  4214. // ggml_neg
  4215. struct ggml_tensor * ggml_neg_impl(
  4216. struct ggml_context * ctx,
  4217. struct ggml_tensor * a,
  4218. bool inplace) {
  4219. bool is_node = false;
  4220. if (!inplace && (a->grad)) {
  4221. is_node = true;
  4222. }
  4223. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4224. result->op = GGML_OP_NEG;
  4225. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4226. result->src0 = a;
  4227. result->src1 = NULL;
  4228. return result;
  4229. }
  4230. struct ggml_tensor * ggml_neg(
  4231. struct ggml_context * ctx,
  4232. struct ggml_tensor * a) {
  4233. return ggml_neg_impl(ctx, a, false);
  4234. }
  4235. struct ggml_tensor * ggml_neg_inplace(
  4236. struct ggml_context * ctx,
  4237. struct ggml_tensor * a) {
  4238. return ggml_neg_impl(ctx, a, true);
  4239. }
  4240. // ggml_step
  4241. struct ggml_tensor * ggml_step_impl(
  4242. struct ggml_context * ctx,
  4243. struct ggml_tensor * a,
  4244. bool inplace) {
  4245. bool is_node = false;
  4246. if (!inplace && (a->grad)) {
  4247. is_node = true;
  4248. }
  4249. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4250. result->op = GGML_OP_STEP;
  4251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4252. result->src0 = a;
  4253. result->src1 = NULL;
  4254. return result;
  4255. }
  4256. struct ggml_tensor * ggml_step(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a) {
  4259. return ggml_step_impl(ctx, a, false);
  4260. }
  4261. struct ggml_tensor * ggml_step_inplace(
  4262. struct ggml_context * ctx,
  4263. struct ggml_tensor * a) {
  4264. return ggml_step_impl(ctx, a, true);
  4265. }
  4266. // ggml_relu
  4267. struct ggml_tensor * ggml_relu_impl(
  4268. struct ggml_context * ctx,
  4269. struct ggml_tensor * a,
  4270. bool inplace) {
  4271. bool is_node = false;
  4272. if (!inplace && (a->grad)) {
  4273. is_node = true;
  4274. }
  4275. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4276. result->op = GGML_OP_RELU;
  4277. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4278. result->src0 = a;
  4279. result->src1 = NULL;
  4280. return result;
  4281. }
  4282. struct ggml_tensor * ggml_relu(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_relu_impl(ctx, a, false);
  4286. }
  4287. struct ggml_tensor * ggml_relu_inplace(
  4288. struct ggml_context * ctx,
  4289. struct ggml_tensor * a) {
  4290. return ggml_relu_impl(ctx, a, true);
  4291. }
  4292. // ggml_gelu
  4293. struct ggml_tensor * ggml_gelu_impl(
  4294. struct ggml_context * ctx,
  4295. struct ggml_tensor * a,
  4296. bool inplace) {
  4297. bool is_node = false;
  4298. if (!inplace && (a->grad)) {
  4299. is_node = true;
  4300. }
  4301. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4302. result->op = GGML_OP_GELU;
  4303. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4304. result->src0 = a;
  4305. result->src1 = NULL;
  4306. return result;
  4307. }
  4308. struct ggml_tensor * ggml_gelu(
  4309. struct ggml_context * ctx,
  4310. struct ggml_tensor * a) {
  4311. return ggml_gelu_impl(ctx, a, false);
  4312. }
  4313. struct ggml_tensor * ggml_gelu_inplace(
  4314. struct ggml_context * ctx,
  4315. struct ggml_tensor * a) {
  4316. return ggml_gelu_impl(ctx, a, true);
  4317. }
  4318. // ggml_silu
  4319. struct ggml_tensor * ggml_silu_impl(
  4320. struct ggml_context * ctx,
  4321. struct ggml_tensor * a,
  4322. bool inplace) {
  4323. bool is_node = false;
  4324. if (!inplace && (a->grad)) {
  4325. is_node = true;
  4326. }
  4327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4328. result->op = GGML_OP_SILU;
  4329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4330. result->src0 = a;
  4331. result->src1 = NULL;
  4332. return result;
  4333. }
  4334. struct ggml_tensor * ggml_silu(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a) {
  4337. return ggml_silu_impl(ctx, a, false);
  4338. }
  4339. struct ggml_tensor * ggml_silu_inplace(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a) {
  4342. return ggml_silu_impl(ctx, a, true);
  4343. }
  4344. // ggml_silu_back
  4345. struct ggml_tensor * ggml_silu_back(
  4346. struct ggml_context * ctx,
  4347. struct ggml_tensor * a,
  4348. struct ggml_tensor * b) {
  4349. bool is_node = false;
  4350. if (a->grad || b->grad) {
  4351. // TODO: implement backward
  4352. is_node = true;
  4353. }
  4354. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4355. result->op = GGML_OP_SILU_BACK;
  4356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4357. result->src0 = a;
  4358. result->src1 = b;
  4359. return result;
  4360. }
  4361. // ggml_norm
  4362. struct ggml_tensor * ggml_norm_impl(
  4363. struct ggml_context * ctx,
  4364. struct ggml_tensor * a,
  4365. bool inplace) {
  4366. bool is_node = false;
  4367. if (!inplace && (a->grad)) {
  4368. GGML_ASSERT(false); // TODO: implement backward
  4369. is_node = true;
  4370. }
  4371. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4372. result->op = GGML_OP_NORM;
  4373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4374. result->src0 = a;
  4375. result->src1 = NULL; // TODO: maybe store epsilon here?
  4376. return result;
  4377. }
  4378. struct ggml_tensor * ggml_norm(
  4379. struct ggml_context * ctx,
  4380. struct ggml_tensor * a) {
  4381. return ggml_norm_impl(ctx, a, false);
  4382. }
  4383. struct ggml_tensor * ggml_norm_inplace(
  4384. struct ggml_context * ctx,
  4385. struct ggml_tensor * a) {
  4386. return ggml_norm_impl(ctx, a, true);
  4387. }
  4388. struct ggml_tensor * ggml_rms_norm_impl(
  4389. struct ggml_context * ctx,
  4390. struct ggml_tensor * a,
  4391. bool inplace) {
  4392. bool is_node = false;
  4393. if (!inplace && (a->grad)) {
  4394. is_node = true;
  4395. }
  4396. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4397. result->op = GGML_OP_RMS_NORM;
  4398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4399. result->src0 = a;
  4400. result->src1 = NULL; // TODO: maybe store epsilon here?
  4401. return result;
  4402. }
  4403. struct ggml_tensor * ggml_rms_norm(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a) {
  4406. return ggml_rms_norm_impl(ctx, a, false);
  4407. }
  4408. struct ggml_tensor * ggml_rms_norm_inplace(
  4409. struct ggml_context * ctx,
  4410. struct ggml_tensor * a) {
  4411. return ggml_rms_norm_impl(ctx, a, true);
  4412. }
  4413. struct ggml_tensor * ggml_rms_norm_back(
  4414. struct ggml_context * ctx,
  4415. struct ggml_tensor * a,
  4416. struct ggml_tensor * b) {
  4417. bool is_node = false;
  4418. if (a->grad) {
  4419. // TODO: implement backward
  4420. is_node = true;
  4421. }
  4422. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4423. result->op = GGML_OP_RMS_NORM_BACK;
  4424. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4425. result->src0 = a;
  4426. result->src1 = b;
  4427. return result;
  4428. }
  4429. // ggml_mul_mat
  4430. struct ggml_tensor * ggml_mul_mat(
  4431. struct ggml_context * ctx,
  4432. struct ggml_tensor * a,
  4433. struct ggml_tensor * b) {
  4434. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4435. GGML_ASSERT(!ggml_is_transposed(a));
  4436. bool is_node = false;
  4437. if (a->grad || b->grad) {
  4438. is_node = true;
  4439. }
  4440. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4441. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4442. result->op = GGML_OP_MUL_MAT;
  4443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4444. result->src0 = a;
  4445. result->src1 = b;
  4446. return result;
  4447. }
  4448. // ggml_scale
  4449. struct ggml_tensor * ggml_scale_impl(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a,
  4452. struct ggml_tensor * b,
  4453. bool inplace) {
  4454. GGML_ASSERT(ggml_is_scalar(b));
  4455. GGML_ASSERT(ggml_is_padded_1d(a));
  4456. bool is_node = false;
  4457. if (!inplace && (a->grad || b->grad)) {
  4458. is_node = true;
  4459. }
  4460. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4461. result->op = GGML_OP_SCALE;
  4462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4463. result->src0 = a;
  4464. result->src1 = b;
  4465. return result;
  4466. }
  4467. struct ggml_tensor * ggml_scale(
  4468. struct ggml_context * ctx,
  4469. struct ggml_tensor * a,
  4470. struct ggml_tensor * b) {
  4471. return ggml_scale_impl(ctx, a, b, false);
  4472. }
  4473. struct ggml_tensor * ggml_scale_inplace(
  4474. struct ggml_context * ctx,
  4475. struct ggml_tensor * a,
  4476. struct ggml_tensor * b) {
  4477. return ggml_scale_impl(ctx, a, b, true);
  4478. }
  4479. // ggml_set
  4480. struct ggml_tensor * ggml_set_impl(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a,
  4483. struct ggml_tensor * b,
  4484. size_t nb1,
  4485. size_t nb2,
  4486. size_t nb3,
  4487. size_t offset,
  4488. bool inplace) {
  4489. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4490. bool is_node = false;
  4491. if (!inplace && (a->grad || b->grad)) {
  4492. is_node = true;
  4493. }
  4494. // make a view of the destination
  4495. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4496. ggml_scratch_save(ctx);
  4497. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4498. (( int32_t * ) c->data)[0] = nb1;
  4499. (( int32_t * ) c->data)[1] = nb2;
  4500. (( int32_t * ) c->data)[2] = nb3;
  4501. (( int32_t * ) c->data)[3] = offset;
  4502. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4503. ggml_scratch_load(ctx);
  4504. result->op = GGML_OP_SET;
  4505. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4506. result->src0 = a;
  4507. result->src1 = b;
  4508. result->opt[0] = c;
  4509. return result;
  4510. }
  4511. struct ggml_tensor * ggml_set(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. struct ggml_tensor * b,
  4515. size_t nb1,
  4516. size_t nb2,
  4517. size_t nb3,
  4518. size_t offset) {
  4519. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4520. }
  4521. struct ggml_tensor * ggml_set_inplace(
  4522. struct ggml_context * ctx,
  4523. struct ggml_tensor * a,
  4524. struct ggml_tensor * b,
  4525. size_t nb1,
  4526. size_t nb2,
  4527. size_t nb3,
  4528. size_t offset) {
  4529. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4530. }
  4531. struct ggml_tensor * ggml_set_1d(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. struct ggml_tensor * b,
  4535. size_t offset) {
  4536. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4537. }
  4538. struct ggml_tensor * ggml_set_1d_inplace(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a,
  4541. struct ggml_tensor * b,
  4542. size_t offset) {
  4543. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4544. }
  4545. struct ggml_tensor * ggml_set_2d(
  4546. struct ggml_context * ctx,
  4547. struct ggml_tensor * a,
  4548. struct ggml_tensor * b,
  4549. size_t nb1,
  4550. size_t offset) {
  4551. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4552. }
  4553. struct ggml_tensor * ggml_set_2d_inplace(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a,
  4556. struct ggml_tensor * b,
  4557. size_t nb1,
  4558. size_t offset) {
  4559. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4560. }
  4561. // ggml_cpy
  4562. struct ggml_tensor * ggml_cpy_impl(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a,
  4565. struct ggml_tensor * b,
  4566. bool inplace) {
  4567. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4568. bool is_node = false;
  4569. if (!inplace && (a->grad || b->grad)) {
  4570. is_node = true;
  4571. }
  4572. // make a view of the destination
  4573. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4574. result->op = GGML_OP_CPY;
  4575. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4576. result->src0 = a;
  4577. result->src1 = b;
  4578. return result;
  4579. }
  4580. struct ggml_tensor * ggml_cpy(
  4581. struct ggml_context * ctx,
  4582. struct ggml_tensor * a,
  4583. struct ggml_tensor * b) {
  4584. return ggml_cpy_impl(ctx, a, b, false);
  4585. }
  4586. struct ggml_tensor * ggml_cpy_inplace(
  4587. struct ggml_context * ctx,
  4588. struct ggml_tensor * a,
  4589. struct ggml_tensor * b) {
  4590. return ggml_cpy_impl(ctx, a, b, true);
  4591. }
  4592. // ggml_cont
  4593. struct ggml_tensor * ggml_cont_impl(
  4594. struct ggml_context * ctx,
  4595. struct ggml_tensor * a,
  4596. bool inplace) {
  4597. bool is_node = false;
  4598. if (!inplace && a->grad) {
  4599. is_node = true;
  4600. }
  4601. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4602. result->op = GGML_OP_CONT;
  4603. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4604. result->src0 = a;
  4605. result->src1 = NULL;
  4606. return result;
  4607. }
  4608. struct ggml_tensor * ggml_cont(
  4609. struct ggml_context * ctx,
  4610. struct ggml_tensor * a) {
  4611. return ggml_cont_impl(ctx, a, false);
  4612. }
  4613. struct ggml_tensor * ggml_cont_inplace(
  4614. struct ggml_context * ctx,
  4615. struct ggml_tensor * a) {
  4616. return ggml_cont_impl(ctx, a, true);
  4617. }
  4618. // ggml_reshape
  4619. struct ggml_tensor * ggml_reshape(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. struct ggml_tensor * b) {
  4623. GGML_ASSERT(ggml_is_contiguous(a));
  4624. GGML_ASSERT(ggml_is_contiguous(b));
  4625. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4626. bool is_node = false;
  4627. if (a->grad) {
  4628. is_node = true;
  4629. }
  4630. if (b->grad) {
  4631. // gradient propagation is not supported
  4632. //GGML_ASSERT(false);
  4633. }
  4634. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4635. result->op = GGML_OP_RESHAPE;
  4636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4637. result->src0 = a;
  4638. result->src1 = NULL;
  4639. return result;
  4640. }
  4641. struct ggml_tensor * ggml_reshape_1d(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. int64_t ne0) {
  4645. GGML_ASSERT(ggml_is_contiguous(a));
  4646. GGML_ASSERT(ggml_nelements(a) == ne0);
  4647. bool is_node = false;
  4648. if (a->grad) {
  4649. is_node = true;
  4650. }
  4651. const int64_t ne[1] = { ne0 };
  4652. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  4653. result->op = GGML_OP_RESHAPE;
  4654. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4655. result->src0 = a;
  4656. result->src1 = NULL;
  4657. return result;
  4658. }
  4659. struct ggml_tensor * ggml_reshape_2d(
  4660. struct ggml_context * ctx,
  4661. struct ggml_tensor * a,
  4662. int64_t ne0,
  4663. int64_t ne1) {
  4664. GGML_ASSERT(ggml_is_contiguous(a));
  4665. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4666. bool is_node = false;
  4667. if (a->grad) {
  4668. is_node = true;
  4669. }
  4670. const int64_t ne[2] = { ne0, ne1 };
  4671. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4672. result->op = GGML_OP_RESHAPE;
  4673. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4674. result->src0 = a;
  4675. result->src1 = NULL;
  4676. return result;
  4677. }
  4678. struct ggml_tensor * ggml_reshape_3d(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. int64_t ne0,
  4682. int64_t ne1,
  4683. int64_t ne2) {
  4684. GGML_ASSERT(ggml_is_contiguous(a));
  4685. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4686. bool is_node = false;
  4687. if (a->grad) {
  4688. is_node = true;
  4689. }
  4690. const int64_t ne[3] = { ne0, ne1, ne2 };
  4691. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4692. result->op = GGML_OP_RESHAPE;
  4693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4694. result->src0 = a;
  4695. result->src1 = NULL;
  4696. return result;
  4697. }
  4698. struct ggml_tensor * ggml_reshape_4d(
  4699. struct ggml_context * ctx,
  4700. struct ggml_tensor * a,
  4701. int64_t ne0,
  4702. int64_t ne1,
  4703. int64_t ne2,
  4704. int64_t ne3) {
  4705. GGML_ASSERT(ggml_is_contiguous(a));
  4706. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4707. bool is_node = false;
  4708. if (a->grad) {
  4709. is_node = true;
  4710. }
  4711. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4712. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  4713. result->op = GGML_OP_RESHAPE;
  4714. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4715. result->src0 = a;
  4716. result->src1 = NULL;
  4717. return result;
  4718. }
  4719. // ggml_view_1d
  4720. struct ggml_tensor * ggml_view_1d(
  4721. struct ggml_context * ctx,
  4722. struct ggml_tensor * a,
  4723. int64_t ne0,
  4724. size_t offset) {
  4725. bool is_node = false;
  4726. if (a->grad) {
  4727. is_node = true;
  4728. }
  4729. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4730. ggml_scratch_save(ctx);
  4731. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4732. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4733. ggml_scratch_load(ctx);
  4734. result->op = GGML_OP_VIEW;
  4735. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4736. result->src0 = a;
  4737. result->src1 = NULL;
  4738. result->opt[0] = offs;
  4739. if (is_node) {
  4740. memcpy(result->padding, &offset, sizeof(offset));
  4741. }
  4742. return result;
  4743. }
  4744. // ggml_view_2d
  4745. struct ggml_tensor * ggml_view_2d(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. int64_t ne0,
  4749. int64_t ne1,
  4750. size_t nb1,
  4751. size_t offset) {
  4752. bool is_node = false;
  4753. if (a->grad) {
  4754. is_node = true;
  4755. }
  4756. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4757. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4758. ggml_scratch_save(ctx);
  4759. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4760. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4761. ggml_scratch_load(ctx);
  4762. result->nb[1] = nb1;
  4763. result->nb[2] = result->nb[1]*ne1;
  4764. result->nb[3] = result->nb[2];
  4765. result->op = GGML_OP_VIEW;
  4766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4767. result->src0 = a;
  4768. result->src1 = NULL;
  4769. result->opt[0] = offs;
  4770. if (is_node) {
  4771. memcpy(result->padding, &offset, sizeof(offset));
  4772. }
  4773. return result;
  4774. }
  4775. // ggml_view_3d
  4776. struct ggml_tensor * ggml_view_3d(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. int64_t ne0,
  4780. int64_t ne1,
  4781. int64_t ne2,
  4782. size_t nb1,
  4783. size_t nb2,
  4784. size_t offset) {
  4785. bool is_node = false;
  4786. if (a->grad) {
  4787. is_node = true;
  4788. }
  4789. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4790. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4791. ggml_scratch_save(ctx);
  4792. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4793. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4794. ggml_scratch_load(ctx);
  4795. result->nb[1] = nb1;
  4796. result->nb[2] = nb2;
  4797. result->nb[3] = result->nb[2]*ne2;
  4798. result->op = GGML_OP_VIEW;
  4799. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4800. result->src0 = a;
  4801. result->src1 = NULL;
  4802. result->opt[0] = offs;
  4803. if (is_node) {
  4804. memcpy(result->padding, &offset, sizeof(offset));
  4805. }
  4806. return result;
  4807. }
  4808. // ggml_view_4d
  4809. struct ggml_tensor * ggml_view_4d(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. int64_t ne0,
  4813. int64_t ne1,
  4814. int64_t ne2,
  4815. int64_t ne3,
  4816. size_t nb1,
  4817. size_t nb2,
  4818. size_t nb3,
  4819. size_t offset) {
  4820. bool is_node = false;
  4821. if (a->grad) {
  4822. is_node = true;
  4823. }
  4824. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  4825. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  4826. ggml_scratch_save(ctx);
  4827. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4828. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  4829. ggml_scratch_load(ctx);
  4830. result->nb[1] = nb1;
  4831. result->nb[2] = nb2;
  4832. result->nb[3] = nb3;
  4833. result->op = GGML_OP_VIEW;
  4834. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4835. result->src0 = a;
  4836. result->src1 = NULL;
  4837. result->opt[0] = offs;
  4838. if (is_node) {
  4839. memcpy(result->padding, &offset, sizeof(offset));
  4840. }
  4841. return result;
  4842. }
  4843. // ggml_permute
  4844. struct ggml_tensor * ggml_permute(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. int axis0,
  4848. int axis1,
  4849. int axis2,
  4850. int axis3) {
  4851. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4852. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4853. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4854. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4855. GGML_ASSERT(axis0 != axis1);
  4856. GGML_ASSERT(axis0 != axis2);
  4857. GGML_ASSERT(axis0 != axis3);
  4858. GGML_ASSERT(axis1 != axis2);
  4859. GGML_ASSERT(axis1 != axis3);
  4860. GGML_ASSERT(axis2 != axis3);
  4861. bool is_node = false;
  4862. if (a->grad) {
  4863. is_node = true;
  4864. }
  4865. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4866. int ne[GGML_MAX_DIMS];
  4867. int nb[GGML_MAX_DIMS];
  4868. ne[axis0] = a->ne[0];
  4869. ne[axis1] = a->ne[1];
  4870. ne[axis2] = a->ne[2];
  4871. ne[axis3] = a->ne[3];
  4872. nb[axis0] = a->nb[0];
  4873. nb[axis1] = a->nb[1];
  4874. nb[axis2] = a->nb[2];
  4875. nb[axis3] = a->nb[3];
  4876. result->ne[0] = ne[0];
  4877. result->ne[1] = ne[1];
  4878. result->ne[2] = ne[2];
  4879. result->ne[3] = ne[3];
  4880. result->nb[0] = nb[0];
  4881. result->nb[1] = nb[1];
  4882. result->nb[2] = nb[2];
  4883. result->nb[3] = nb[3];
  4884. result->op = GGML_OP_PERMUTE;
  4885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4886. result->src0 = a;
  4887. result->src1 = NULL;
  4888. if (is_node) {
  4889. result->padding[0] = axis0;
  4890. result->padding[1] = axis1;
  4891. result->padding[2] = axis2;
  4892. result->padding[3] = axis3;
  4893. }
  4894. return result;
  4895. }
  4896. // ggml_transpose
  4897. struct ggml_tensor * ggml_transpose(
  4898. struct ggml_context * ctx,
  4899. struct ggml_tensor * a) {
  4900. bool is_node = false;
  4901. if (a->grad) {
  4902. is_node = true;
  4903. }
  4904. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4905. result->ne[0] = a->ne[1];
  4906. result->ne[1] = a->ne[0];
  4907. result->nb[0] = a->nb[1];
  4908. result->nb[1] = a->nb[0];
  4909. result->op = GGML_OP_TRANSPOSE;
  4910. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4911. result->src0 = a;
  4912. result->src1 = NULL;
  4913. return result;
  4914. }
  4915. // ggml_get_rows
  4916. struct ggml_tensor * ggml_get_rows(
  4917. struct ggml_context * ctx,
  4918. struct ggml_tensor * a,
  4919. struct ggml_tensor * b) {
  4920. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4921. bool is_node = false;
  4922. if (a->grad || b->grad) {
  4923. is_node = true;
  4924. }
  4925. // TODO: implement non F32 return
  4926. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4927. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4928. result->op = GGML_OP_GET_ROWS;
  4929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4930. result->src0 = a;
  4931. result->src1 = b;
  4932. return result;
  4933. }
  4934. // ggml_get_rows_back
  4935. struct ggml_tensor * ggml_get_rows_back(
  4936. struct ggml_context * ctx,
  4937. struct ggml_tensor * a,
  4938. struct ggml_tensor * b,
  4939. struct ggml_tensor * c) {
  4940. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4941. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4942. bool is_node = false;
  4943. if (a->grad || b->grad) {
  4944. is_node = true;
  4945. }
  4946. // TODO: implement non F32 return
  4947. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4948. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4949. result->op = GGML_OP_GET_ROWS_BACK;
  4950. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4951. result->src0 = a;
  4952. result->src1 = b;
  4953. result->opt[0] = c;
  4954. return result;
  4955. }
  4956. // ggml_diag
  4957. struct ggml_tensor * ggml_diag(
  4958. struct ggml_context * ctx,
  4959. struct ggml_tensor * a) {
  4960. GGML_ASSERT(a->ne[1] == 1);
  4961. bool is_node = false;
  4962. if (a->grad) {
  4963. is_node = true;
  4964. }
  4965. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  4966. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  4967. result->op = GGML_OP_DIAG;
  4968. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4969. result->src0 = a;
  4970. result->src1 = NULL;
  4971. return result;
  4972. }
  4973. // ggml_diag_mask_inf
  4974. struct ggml_tensor * ggml_diag_mask_inf_impl(
  4975. struct ggml_context * ctx,
  4976. struct ggml_tensor * a,
  4977. int n_past,
  4978. bool inplace) {
  4979. bool is_node = false;
  4980. if (a->grad) {
  4981. is_node = true;
  4982. }
  4983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4984. ggml_scratch_save(ctx);
  4985. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4986. ((int32_t *) b->data)[0] = n_past;
  4987. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  4988. ggml_scratch_load(ctx);
  4989. result->op = GGML_OP_DIAG_MASK_INF;
  4990. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4991. result->src0 = a;
  4992. result->src1 = b;
  4993. return result;
  4994. }
  4995. struct ggml_tensor * ggml_diag_mask_inf(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. int n_past) {
  4999. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5000. }
  5001. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5002. struct ggml_context * ctx,
  5003. struct ggml_tensor * a,
  5004. int n_past) {
  5005. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5006. }
  5007. // ggml_diag_mask_zero
  5008. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5009. struct ggml_context * ctx,
  5010. struct ggml_tensor * a,
  5011. int n_past,
  5012. bool inplace) {
  5013. bool is_node = false;
  5014. if (a->grad) {
  5015. is_node = true;
  5016. }
  5017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5018. ggml_scratch_save(ctx);
  5019. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5020. ggml_set_name(b, "n_past, inplace");
  5021. ((int32_t *) b->data)[0] = n_past;
  5022. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5023. ggml_scratch_load(ctx);
  5024. result->op = GGML_OP_DIAG_MASK_ZERO;
  5025. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5026. result->src0 = a;
  5027. result->src1 = b;
  5028. return result;
  5029. }
  5030. struct ggml_tensor * ggml_diag_mask_zero(
  5031. struct ggml_context * ctx,
  5032. struct ggml_tensor * a,
  5033. int n_past) {
  5034. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5035. }
  5036. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a,
  5039. int n_past) {
  5040. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5041. }
  5042. // ggml_soft_max
  5043. struct ggml_tensor * ggml_soft_max_impl(
  5044. struct ggml_context * ctx,
  5045. struct ggml_tensor * a,
  5046. bool inplace) {
  5047. bool is_node = false;
  5048. if (a->grad) {
  5049. is_node = true;
  5050. }
  5051. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5052. result->op = GGML_OP_SOFT_MAX;
  5053. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5054. result->src0 = a;
  5055. result->src1 = NULL;
  5056. return result;
  5057. }
  5058. struct ggml_tensor * ggml_soft_max(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a) {
  5061. return ggml_soft_max_impl(ctx, a, false);
  5062. }
  5063. struct ggml_tensor * ggml_soft_max_inplace(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a) {
  5066. return ggml_soft_max_impl(ctx, a, true);
  5067. }
  5068. // ggml_rope
  5069. struct ggml_tensor * ggml_rope_impl(
  5070. struct ggml_context * ctx,
  5071. struct ggml_tensor * a,
  5072. int n_past,
  5073. int n_dims,
  5074. int mode,
  5075. bool inplace) {
  5076. GGML_ASSERT(n_past >= 0);
  5077. bool is_node = false;
  5078. if (!inplace && a->grad) {
  5079. is_node = true;
  5080. }
  5081. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5082. ggml_scratch_save(ctx);
  5083. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5084. ((int32_t *) b->data)[0] = n_past;
  5085. ((int32_t *) b->data)[1] = n_dims;
  5086. ((int32_t *) b->data)[2] = mode;
  5087. ggml_scratch_load(ctx);
  5088. result->op = GGML_OP_ROPE;
  5089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5090. result->src0 = a;
  5091. result->src1 = b;
  5092. return result;
  5093. }
  5094. struct ggml_tensor * ggml_rope(
  5095. struct ggml_context * ctx,
  5096. struct ggml_tensor * a,
  5097. int n_past,
  5098. int n_dims,
  5099. int mode) {
  5100. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, false);
  5101. }
  5102. struct ggml_tensor * ggml_rope_inplace(
  5103. struct ggml_context * ctx,
  5104. struct ggml_tensor * a,
  5105. int n_past,
  5106. int n_dims,
  5107. int mode) {
  5108. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, true);
  5109. }
  5110. // ggml_rope_back
  5111. struct ggml_tensor * ggml_rope_back(
  5112. struct ggml_context * ctx,
  5113. struct ggml_tensor * a,
  5114. int n_past,
  5115. int n_dims,
  5116. int mode) {
  5117. GGML_ASSERT(n_past >= 0);
  5118. bool is_node = false;
  5119. if (a->grad) {
  5120. GGML_ASSERT(false); // TODO: implement backward
  5121. is_node = true;
  5122. }
  5123. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5124. ggml_scratch_save(ctx);
  5125. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5126. ggml_set_name(b, "n_past, n_dims, mode");
  5127. ((int32_t *) b->data)[0] = n_past;
  5128. ((int32_t *) b->data)[1] = n_dims;
  5129. ((int32_t *) b->data)[2] = mode;
  5130. ggml_scratch_load(ctx);
  5131. result->op = GGML_OP_ROPE_BACK;
  5132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5133. result->src0 = a;
  5134. result->src1 = b;
  5135. return result;
  5136. }
  5137. // ggml_alibi
  5138. struct ggml_tensor * ggml_alibi(
  5139. struct ggml_context * ctx,
  5140. struct ggml_tensor * a,
  5141. int n_past,
  5142. int n_head,
  5143. float bias_max) {
  5144. GGML_ASSERT(n_past >= 0);
  5145. bool is_node = false;
  5146. if (a->grad) {
  5147. GGML_ASSERT(false); // TODO: implement backward
  5148. is_node = true;
  5149. }
  5150. // TODO: when implement backward, fix this:
  5151. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5152. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5153. ggml_scratch_save(ctx);
  5154. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5155. ((int32_t *) b->data)[0] = n_past;
  5156. ((int32_t *) b->data)[1] = n_head;
  5157. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5158. (((float *) b->data)[2]) = bias_max;
  5159. ggml_scratch_load(ctx);
  5160. result->op = GGML_OP_ALIBI;
  5161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5162. result->src0 = a;
  5163. result->src1 = b;
  5164. return result;
  5165. }
  5166. // ggml_clamp
  5167. struct ggml_tensor * ggml_clamp(
  5168. struct ggml_context * ctx,
  5169. struct ggml_tensor * a,
  5170. float min,
  5171. float max) {
  5172. bool is_node = false;
  5173. if (a->grad) {
  5174. GGML_ASSERT(false); // TODO: implement backward
  5175. is_node = true;
  5176. }
  5177. // TODO: when implement backward, fix this:
  5178. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5179. ggml_scratch_save(ctx);
  5180. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5181. ((float *) b->data)[0] = min;
  5182. ((float *) b->data)[1] = max;
  5183. ggml_scratch_load(ctx);
  5184. result->op = GGML_OP_CLAMP;
  5185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5186. result->src0 = a;
  5187. result->src1 = b;
  5188. return result;
  5189. }
  5190. // ggml_conv_1d_1s
  5191. struct ggml_tensor * ggml_conv_1d_1s(
  5192. struct ggml_context * ctx,
  5193. struct ggml_tensor * a,
  5194. struct ggml_tensor * b) {
  5195. GGML_ASSERT(ggml_is_matrix(b));
  5196. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5197. GGML_ASSERT(a->ne[3] == 1);
  5198. bool is_node = false;
  5199. if (a->grad || b->grad) {
  5200. GGML_ASSERT(false); // TODO: implement backward
  5201. is_node = true;
  5202. }
  5203. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5204. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5205. result->op = GGML_OP_CONV_1D_1S;
  5206. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5207. result->src0 = a;
  5208. result->src1 = b;
  5209. return result;
  5210. }
  5211. // ggml_conv_1d_2s
  5212. struct ggml_tensor * ggml_conv_1d_2s(
  5213. struct ggml_context * ctx,
  5214. struct ggml_tensor * a,
  5215. struct ggml_tensor * b) {
  5216. GGML_ASSERT(ggml_is_matrix(b));
  5217. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5218. GGML_ASSERT(a->ne[3] == 1);
  5219. bool is_node = false;
  5220. if (a->grad || b->grad) {
  5221. GGML_ASSERT(false); // TODO: implement backward
  5222. is_node = true;
  5223. }
  5224. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5225. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5226. result->op = GGML_OP_CONV_1D_2S;
  5227. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5228. result->src0 = a;
  5229. result->src1 = b;
  5230. return result;
  5231. }
  5232. // ggml_flash_attn
  5233. struct ggml_tensor * ggml_flash_attn(
  5234. struct ggml_context * ctx,
  5235. struct ggml_tensor * q,
  5236. struct ggml_tensor * k,
  5237. struct ggml_tensor * v,
  5238. bool masked) {
  5239. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5240. // TODO: check if vT can be multiplied by (k*qT)
  5241. bool is_node = false;
  5242. if (q->grad || k->grad || v->grad) {
  5243. GGML_ASSERT(false); // TODO: implement backward
  5244. is_node = true;
  5245. }
  5246. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5247. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5248. result->op = GGML_OP_FLASH_ATTN;
  5249. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5250. result->src0 = q;
  5251. result->src1 = k;
  5252. result->opt[0] = v;
  5253. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5254. return result;
  5255. }
  5256. // ggml_flash_ff
  5257. struct ggml_tensor * ggml_flash_ff(
  5258. struct ggml_context * ctx,
  5259. struct ggml_tensor * a,
  5260. struct ggml_tensor * b0,
  5261. struct ggml_tensor * b1,
  5262. struct ggml_tensor * c0,
  5263. struct ggml_tensor * c1) {
  5264. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5265. // TODO: more checks
  5266. bool is_node = false;
  5267. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5268. GGML_ASSERT(false); // TODO: implement backward
  5269. is_node = true;
  5270. }
  5271. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5272. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5273. result->op = GGML_OP_FLASH_FF;
  5274. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5275. result->src0 = a;
  5276. result->src1 = b0;
  5277. result->opt[0] = b1;
  5278. result->opt[1] = c0;
  5279. result->opt[2] = c1;
  5280. return result;
  5281. }
  5282. // ggml_map_unary
  5283. struct ggml_tensor * ggml_map_unary_impl_f32(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * a,
  5286. const ggml_unary_op_f32_t fun,
  5287. bool inplace) {
  5288. bool is_node = false;
  5289. if (!inplace && a->grad) {
  5290. is_node = true;
  5291. }
  5292. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5293. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5294. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5295. result->op = GGML_OP_MAP_UNARY;
  5296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5297. result->src0 = a;
  5298. result->opt[0] = addr_tensor;
  5299. return result;
  5300. }
  5301. struct ggml_tensor * ggml_map_unary_f32(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. const ggml_unary_op_f32_t fun) {
  5305. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5306. }
  5307. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5308. struct ggml_context * ctx,
  5309. struct ggml_tensor * a,
  5310. const ggml_unary_op_f32_t fun) {
  5311. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5312. }
  5313. // ggml_map_binary
  5314. struct ggml_tensor * ggml_map_binary_impl_f32(
  5315. struct ggml_context * ctx,
  5316. struct ggml_tensor * a,
  5317. struct ggml_tensor * b,
  5318. const ggml_binary_op_f32_t fun,
  5319. bool inplace) {
  5320. GGML_ASSERT(ggml_are_same_shape(a, b));
  5321. bool is_node = false;
  5322. if (!inplace && (a->grad || b->grad)) {
  5323. is_node = true;
  5324. }
  5325. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5326. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5327. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5328. result->op = GGML_OP_MAP_BINARY;
  5329. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5330. result->src0 = a;
  5331. result->src1 = b;
  5332. result->opt[0] = addr_tensor;
  5333. return result;
  5334. }
  5335. struct ggml_tensor * ggml_map_binary_f32(
  5336. struct ggml_context * ctx,
  5337. struct ggml_tensor * a,
  5338. struct ggml_tensor * b,
  5339. const ggml_binary_op_f32_t fun) {
  5340. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5341. }
  5342. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. struct ggml_tensor * b,
  5346. const ggml_binary_op_f32_t fun) {
  5347. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5348. }
  5349. ////////////////////////////////////////////////////////////////////////////////
  5350. void ggml_set_param(
  5351. struct ggml_context * ctx,
  5352. struct ggml_tensor * tensor) {
  5353. tensor->is_param = true;
  5354. GGML_ASSERT(tensor->grad == NULL);
  5355. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5356. }
  5357. // ggml_compute_forward_dup
  5358. static void ggml_compute_forward_dup_same_cont(
  5359. const struct ggml_compute_params * params,
  5360. const struct ggml_tensor * src0,
  5361. struct ggml_tensor * dst) {
  5362. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5363. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  5364. GGML_ASSERT(src0->type == dst->type);
  5365. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5366. return;
  5367. }
  5368. const size_t nb00 = src0->nb[0];
  5369. const size_t nb0 = dst->nb[0];
  5370. const int ith = params->ith; // thread index
  5371. const int nth = params->nth; // number of threads
  5372. // parallelize by elements
  5373. const int ne = ggml_nelements(dst);
  5374. const int dr = (ne + nth - 1) / nth;
  5375. const int ie0 = dr * ith;
  5376. const int ie1 = MIN(ie0 + dr, ne);
  5377. if (ie0 < ie1) {
  5378. memcpy(
  5379. ((char *) dst->data + ie0*nb0),
  5380. ((char *) src0->data + ie0*nb00),
  5381. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5382. }
  5383. }
  5384. static void ggml_compute_forward_dup_f16(
  5385. const struct ggml_compute_params * params,
  5386. const struct ggml_tensor * src0,
  5387. struct ggml_tensor * dst) {
  5388. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5389. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5390. return;
  5391. }
  5392. const int64_t ne00 = src0->ne[0];
  5393. const int64_t ne01 = src0->ne[1];
  5394. const int64_t ne02 = src0->ne[2];
  5395. const int64_t ne03 = src0->ne[3];
  5396. const int64_t ne0 = dst->ne[0];
  5397. const int64_t ne1 = dst->ne[1];
  5398. const int64_t ne2 = dst->ne[2];
  5399. const int64_t ne3 = dst->ne[3];
  5400. const size_t nb00 = src0->nb[0];
  5401. const size_t nb01 = src0->nb[1];
  5402. const size_t nb02 = src0->nb[2];
  5403. const size_t nb03 = src0->nb[3];
  5404. const size_t nb0 = dst->nb[0];
  5405. const size_t nb1 = dst->nb[1];
  5406. const size_t nb2 = dst->nb[2];
  5407. const size_t nb3 = dst->nb[3];
  5408. const int ith = params->ith; // thread index
  5409. const int nth = params->nth; // number of threads
  5410. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5411. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5412. return;
  5413. }
  5414. // parallelize by rows
  5415. const int nr = ne01;
  5416. // number of rows per thread
  5417. const int dr = (nr + nth - 1) / nth;
  5418. // row range for this thread
  5419. const int ir0 = dr * ith;
  5420. const int ir1 = MIN(ir0 + dr, nr);
  5421. if (src0->type == dst->type &&
  5422. ne00 == ne0 &&
  5423. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5424. // copy by rows
  5425. const size_t rs = ne00*nb00;
  5426. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5427. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5428. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5429. memcpy(
  5430. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5431. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5432. rs);
  5433. }
  5434. }
  5435. }
  5436. return;
  5437. }
  5438. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5439. if (ggml_is_contiguous(dst)) {
  5440. if (nb00 == sizeof(ggml_fp16_t)) {
  5441. if (dst->type == GGML_TYPE_F16) {
  5442. size_t id = 0;
  5443. const size_t rs = ne00 * nb00;
  5444. char * dst_ptr = (char *) dst->data;
  5445. for (int i03 = 0; i03 < ne03; i03++) {
  5446. for (int i02 = 0; i02 < ne02; i02++) {
  5447. id += rs * ir0;
  5448. for (int i01 = ir0; i01 < ir1; i01++) {
  5449. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5450. memcpy(dst_ptr + id, src0_ptr, rs);
  5451. id += rs;
  5452. }
  5453. id += rs * (ne01 - ir1);
  5454. }
  5455. }
  5456. } else if (dst->type == GGML_TYPE_F32) {
  5457. size_t id = 0;
  5458. float * dst_ptr = (float *) dst->data;
  5459. for (int i03 = 0; i03 < ne03; i03++) {
  5460. for (int i02 = 0; i02 < ne02; i02++) {
  5461. id += ne00 * ir0;
  5462. for (int i01 = ir0; i01 < ir1; i01++) {
  5463. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5464. for (int i00 = 0; i00 < ne00; i00++) {
  5465. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5466. id++;
  5467. }
  5468. }
  5469. id += ne00 * (ne01 - ir1);
  5470. }
  5471. }
  5472. } else if (ggml_is_quantized(dst->type)) {
  5473. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5474. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5475. size_t id = 0;
  5476. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5477. char * dst_ptr = (char *) dst->data;
  5478. for (int i03 = 0; i03 < ne03; i03++) {
  5479. for (int i02 = 0; i02 < ne02; i02++) {
  5480. id += rs * ir0;
  5481. for (int i01 = ir0; i01 < ir1; i01++) {
  5482. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5483. for (int i00 = 0; i00 < ne00; i00++) {
  5484. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5485. }
  5486. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5487. id += rs;
  5488. }
  5489. id += rs * (ne01 - ir1);
  5490. }
  5491. }
  5492. } else {
  5493. GGML_ASSERT(false); // TODO: implement
  5494. }
  5495. } else {
  5496. //printf("%s: this is not optimal - fix me\n", __func__);
  5497. if (dst->type == GGML_TYPE_F32) {
  5498. size_t id = 0;
  5499. float * dst_ptr = (float *) dst->data;
  5500. for (int i03 = 0; i03 < ne03; i03++) {
  5501. for (int i02 = 0; i02 < ne02; i02++) {
  5502. id += ne00 * ir0;
  5503. for (int i01 = ir0; i01 < ir1; i01++) {
  5504. for (int i00 = 0; i00 < ne00; i00++) {
  5505. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5506. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5507. id++;
  5508. }
  5509. }
  5510. id += ne00 * (ne01 - ir1);
  5511. }
  5512. }
  5513. } else if (dst->type == GGML_TYPE_F16) {
  5514. size_t id = 0;
  5515. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5516. for (int i03 = 0; i03 < ne03; i03++) {
  5517. for (int i02 = 0; i02 < ne02; i02++) {
  5518. id += ne00 * ir0;
  5519. for (int i01 = ir0; i01 < ir1; i01++) {
  5520. for (int i00 = 0; i00 < ne00; i00++) {
  5521. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5522. dst_ptr[id] = *src0_ptr;
  5523. id++;
  5524. }
  5525. }
  5526. id += ne00 * (ne01 - ir1);
  5527. }
  5528. }
  5529. } else {
  5530. GGML_ASSERT(false); // TODO: implement
  5531. }
  5532. }
  5533. return;
  5534. }
  5535. // dst counters
  5536. int64_t i10 = 0;
  5537. int64_t i11 = 0;
  5538. int64_t i12 = 0;
  5539. int64_t i13 = 0;
  5540. if (dst->type == GGML_TYPE_F16) {
  5541. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5542. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5543. i10 += ne00 * ir0;
  5544. while (i10 >= ne0) {
  5545. i10 -= ne0;
  5546. if (++i11 == ne1) {
  5547. i11 = 0;
  5548. if (++i12 == ne2) {
  5549. i12 = 0;
  5550. if (++i13 == ne3) {
  5551. i13 = 0;
  5552. }
  5553. }
  5554. }
  5555. }
  5556. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5557. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5558. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5559. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5560. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5561. if (++i10 == ne00) {
  5562. i10 = 0;
  5563. if (++i11 == ne01) {
  5564. i11 = 0;
  5565. if (++i12 == ne02) {
  5566. i12 = 0;
  5567. if (++i13 == ne03) {
  5568. i13 = 0;
  5569. }
  5570. }
  5571. }
  5572. }
  5573. }
  5574. }
  5575. i10 += ne00 * (ne01 - ir1);
  5576. while (i10 >= ne0) {
  5577. i10 -= ne0;
  5578. if (++i11 == ne1) {
  5579. i11 = 0;
  5580. if (++i12 == ne2) {
  5581. i12 = 0;
  5582. if (++i13 == ne3) {
  5583. i13 = 0;
  5584. }
  5585. }
  5586. }
  5587. }
  5588. }
  5589. }
  5590. } else if (dst->type == GGML_TYPE_F32) {
  5591. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5592. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5593. i10 += ne00 * ir0;
  5594. while (i10 >= ne0) {
  5595. i10 -= ne0;
  5596. if (++i11 == ne1) {
  5597. i11 = 0;
  5598. if (++i12 == ne2) {
  5599. i12 = 0;
  5600. if (++i13 == ne3) {
  5601. i13 = 0;
  5602. }
  5603. }
  5604. }
  5605. }
  5606. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5607. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5608. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5609. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5610. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5611. if (++i10 == ne0) {
  5612. i10 = 0;
  5613. if (++i11 == ne1) {
  5614. i11 = 0;
  5615. if (++i12 == ne2) {
  5616. i12 = 0;
  5617. if (++i13 == ne3) {
  5618. i13 = 0;
  5619. }
  5620. }
  5621. }
  5622. }
  5623. }
  5624. }
  5625. i10 += ne00 * (ne01 - ir1);
  5626. while (i10 >= ne0) {
  5627. i10 -= ne0;
  5628. if (++i11 == ne1) {
  5629. i11 = 0;
  5630. if (++i12 == ne2) {
  5631. i12 = 0;
  5632. if (++i13 == ne3) {
  5633. i13 = 0;
  5634. }
  5635. }
  5636. }
  5637. }
  5638. }
  5639. }
  5640. } else {
  5641. GGML_ASSERT(false); // TODO: implement
  5642. }
  5643. }
  5644. static void ggml_compute_forward_dup_f32(
  5645. const struct ggml_compute_params * params,
  5646. const struct ggml_tensor * src0,
  5647. struct ggml_tensor * dst) {
  5648. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5649. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5650. return;
  5651. }
  5652. const int64_t ne00 = src0->ne[0];
  5653. const int64_t ne01 = src0->ne[1];
  5654. const int64_t ne02 = src0->ne[2];
  5655. const int64_t ne03 = src0->ne[3];
  5656. const int64_t ne0 = dst->ne[0];
  5657. const int64_t ne1 = dst->ne[1];
  5658. const int64_t ne2 = dst->ne[2];
  5659. const int64_t ne3 = dst->ne[3];
  5660. const size_t nb00 = src0->nb[0];
  5661. const size_t nb01 = src0->nb[1];
  5662. const size_t nb02 = src0->nb[2];
  5663. const size_t nb03 = src0->nb[3];
  5664. const size_t nb0 = dst->nb[0];
  5665. const size_t nb1 = dst->nb[1];
  5666. const size_t nb2 = dst->nb[2];
  5667. const size_t nb3 = dst->nb[3];
  5668. const int ith = params->ith; // thread index
  5669. const int nth = params->nth; // number of threads
  5670. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5671. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5672. return;
  5673. }
  5674. // parallelize by rows
  5675. const int nr = ne01;
  5676. // number of rows per thread
  5677. const int dr = (nr + nth - 1) / nth;
  5678. // row range for this thread
  5679. const int ir0 = dr * ith;
  5680. const int ir1 = MIN(ir0 + dr, nr);
  5681. if (src0->type == dst->type &&
  5682. ne00 == ne0 &&
  5683. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5684. // copy by rows
  5685. const size_t rs = ne00*nb00;
  5686. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5687. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5688. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5689. memcpy(
  5690. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5691. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5692. rs);
  5693. }
  5694. }
  5695. }
  5696. return;
  5697. }
  5698. if (ggml_is_contiguous(dst)) {
  5699. // TODO: simplify
  5700. if (nb00 == sizeof(float)) {
  5701. if (dst->type == GGML_TYPE_F32) {
  5702. size_t id = 0;
  5703. const size_t rs = ne00 * nb00;
  5704. char * dst_ptr = (char *) dst->data;
  5705. for (int i03 = 0; i03 < ne03; i03++) {
  5706. for (int i02 = 0; i02 < ne02; i02++) {
  5707. id += rs * ir0;
  5708. for (int i01 = ir0; i01 < ir1; i01++) {
  5709. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5710. memcpy(dst_ptr + id, src0_ptr, rs);
  5711. id += rs;
  5712. }
  5713. id += rs * (ne01 - ir1);
  5714. }
  5715. }
  5716. } else if (dst->type == GGML_TYPE_F16) {
  5717. size_t id = 0;
  5718. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5719. for (int i03 = 0; i03 < ne03; i03++) {
  5720. for (int i02 = 0; i02 < ne02; i02++) {
  5721. id += ne00 * ir0;
  5722. for (int i01 = ir0; i01 < ir1; i01++) {
  5723. for (int i00 = 0; i00 < ne00; i00++) {
  5724. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5725. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5726. id++;
  5727. }
  5728. }
  5729. id += ne00 * (ne01 - ir1);
  5730. }
  5731. }
  5732. } else if (ggml_is_quantized(dst->type)) {
  5733. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5734. size_t id = 0;
  5735. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5736. char * dst_ptr = (char *) dst->data;
  5737. for (int i03 = 0; i03 < ne03; i03++) {
  5738. for (int i02 = 0; i02 < ne02; i02++) {
  5739. id += rs * ir0;
  5740. for (int i01 = ir0; i01 < ir1; i01++) {
  5741. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5742. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5743. id += rs;
  5744. }
  5745. id += rs * (ne01 - ir1);
  5746. }
  5747. }
  5748. } else {
  5749. GGML_ASSERT(false); // TODO: implement
  5750. }
  5751. } else {
  5752. //printf("%s: this is not optimal - fix me\n", __func__);
  5753. if (dst->type == GGML_TYPE_F32) {
  5754. size_t id = 0;
  5755. float * dst_ptr = (float *) dst->data;
  5756. for (int i03 = 0; i03 < ne03; i03++) {
  5757. for (int i02 = 0; i02 < ne02; i02++) {
  5758. id += ne00 * ir0;
  5759. for (int i01 = ir0; i01 < ir1; i01++) {
  5760. for (int i00 = 0; i00 < ne00; i00++) {
  5761. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5762. dst_ptr[id] = *src0_ptr;
  5763. id++;
  5764. }
  5765. }
  5766. id += ne00 * (ne01 - ir1);
  5767. }
  5768. }
  5769. } else if (dst->type == GGML_TYPE_F16) {
  5770. size_t id = 0;
  5771. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5772. for (int i03 = 0; i03 < ne03; i03++) {
  5773. for (int i02 = 0; i02 < ne02; i02++) {
  5774. id += ne00 * ir0;
  5775. for (int i01 = ir0; i01 < ir1; i01++) {
  5776. for (int i00 = 0; i00 < ne00; i00++) {
  5777. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5778. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5779. id++;
  5780. }
  5781. }
  5782. id += ne00 * (ne01 - ir1);
  5783. }
  5784. }
  5785. } else {
  5786. GGML_ASSERT(false); // TODO: implement
  5787. }
  5788. }
  5789. return;
  5790. }
  5791. // dst counters
  5792. int64_t i10 = 0;
  5793. int64_t i11 = 0;
  5794. int64_t i12 = 0;
  5795. int64_t i13 = 0;
  5796. if (dst->type == GGML_TYPE_F32) {
  5797. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5798. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5799. i10 += ne00 * ir0;
  5800. while (i10 >= ne0) {
  5801. i10 -= ne0;
  5802. if (++i11 == ne1) {
  5803. i11 = 0;
  5804. if (++i12 == ne2) {
  5805. i12 = 0;
  5806. if (++i13 == ne3) {
  5807. i13 = 0;
  5808. }
  5809. }
  5810. }
  5811. }
  5812. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5813. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5814. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5815. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5816. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5817. if (++i10 == ne0) {
  5818. i10 = 0;
  5819. if (++i11 == ne1) {
  5820. i11 = 0;
  5821. if (++i12 == ne2) {
  5822. i12 = 0;
  5823. if (++i13 == ne3) {
  5824. i13 = 0;
  5825. }
  5826. }
  5827. }
  5828. }
  5829. }
  5830. }
  5831. i10 += ne00 * (ne01 - ir1);
  5832. while (i10 >= ne0) {
  5833. i10 -= ne0;
  5834. if (++i11 == ne1) {
  5835. i11 = 0;
  5836. if (++i12 == ne2) {
  5837. i12 = 0;
  5838. if (++i13 == ne3) {
  5839. i13 = 0;
  5840. }
  5841. }
  5842. }
  5843. }
  5844. }
  5845. }
  5846. } else if (dst->type == GGML_TYPE_F16) {
  5847. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5848. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5849. i10 += ne00 * ir0;
  5850. while (i10 >= ne0) {
  5851. i10 -= ne0;
  5852. if (++i11 == ne1) {
  5853. i11 = 0;
  5854. if (++i12 == ne2) {
  5855. i12 = 0;
  5856. if (++i13 == ne3) {
  5857. i13 = 0;
  5858. }
  5859. }
  5860. }
  5861. }
  5862. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5863. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5864. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5865. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5866. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5867. if (++i10 == ne0) {
  5868. i10 = 0;
  5869. if (++i11 == ne1) {
  5870. i11 = 0;
  5871. if (++i12 == ne2) {
  5872. i12 = 0;
  5873. if (++i13 == ne3) {
  5874. i13 = 0;
  5875. }
  5876. }
  5877. }
  5878. }
  5879. }
  5880. }
  5881. i10 += ne00 * (ne01 - ir1);
  5882. while (i10 >= ne0) {
  5883. i10 -= ne0;
  5884. if (++i11 == ne1) {
  5885. i11 = 0;
  5886. if (++i12 == ne2) {
  5887. i12 = 0;
  5888. if (++i13 == ne3) {
  5889. i13 = 0;
  5890. }
  5891. }
  5892. }
  5893. }
  5894. }
  5895. }
  5896. } else {
  5897. GGML_ASSERT(false); // TODO: implement
  5898. }
  5899. }
  5900. static void ggml_compute_forward_dup(
  5901. const struct ggml_compute_params * params,
  5902. const struct ggml_tensor * src0,
  5903. struct ggml_tensor * dst) {
  5904. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5905. ggml_compute_forward_dup_same_cont(params, src0, dst);
  5906. return;
  5907. }
  5908. switch (src0->type) {
  5909. case GGML_TYPE_F16:
  5910. {
  5911. ggml_compute_forward_dup_f16(params, src0, dst);
  5912. } break;
  5913. case GGML_TYPE_F32:
  5914. {
  5915. ggml_compute_forward_dup_f32(params, src0, dst);
  5916. } break;
  5917. default:
  5918. {
  5919. GGML_ASSERT(false);
  5920. } break;
  5921. }
  5922. }
  5923. // ggml_compute_forward_add
  5924. static void ggml_compute_forward_add_f32(
  5925. const struct ggml_compute_params * params,
  5926. const struct ggml_tensor * src0,
  5927. const struct ggml_tensor * src1,
  5928. struct ggml_tensor * dst) {
  5929. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5930. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5931. return;
  5932. }
  5933. const int ith = params->ith;
  5934. const int nth = params->nth;
  5935. const int nr = ggml_nrows(src0);
  5936. const int64_t ne0 = src0->ne[0];
  5937. const int64_t ne1 = src0->ne[1];
  5938. const int64_t ne2 = src0->ne[2];
  5939. const size_t nb00 = src0->nb[0];
  5940. const size_t nb01 = src0->nb[1];
  5941. const size_t nb02 = src0->nb[2];
  5942. const size_t nb03 = src0->nb[3];
  5943. const size_t nb10 = src1->nb[0];
  5944. const size_t nb11 = src1->nb[1];
  5945. const size_t nb12 = src1->nb[2];
  5946. const size_t nb13 = src1->nb[3];
  5947. const size_t nb0 = dst->nb[0];
  5948. const size_t nb1 = dst->nb[1];
  5949. const size_t nb2 = dst->nb[2];
  5950. const size_t nb3 = dst->nb[3];
  5951. GGML_ASSERT( nb0 == sizeof(float));
  5952. GGML_ASSERT(nb00 == sizeof(float));
  5953. // rows per thread
  5954. const int dr = (nr + nth - 1)/nth;
  5955. // row range for this thread
  5956. const int ir0 = dr*ith;
  5957. const int ir1 = MIN(ir0 + dr, nr);
  5958. if (nb10 == sizeof(float)) {
  5959. for (int ir = ir0; ir < ir1; ++ir) {
  5960. // src0, src1 and dst are same shape => same indices
  5961. const int i3 = ir/(ne2*ne1);
  5962. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5963. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5964. #ifdef GGML_USE_ACCELERATE
  5965. vDSP_vadd(
  5966. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  5967. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  5968. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  5969. ne0);
  5970. #else
  5971. ggml_vec_add_f32(ne0,
  5972. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  5973. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  5974. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  5975. #endif
  5976. // }
  5977. // }
  5978. }
  5979. } else {
  5980. // src1 is not contiguous
  5981. for (int ir = ir0; ir < ir1; ++ir) {
  5982. // src0, src1 and dst are same shape => same indices
  5983. const int i3 = ir/(ne2*ne1);
  5984. const int i2 = (ir - i3*ne2*ne1)/ne1;
  5985. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  5986. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  5987. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  5988. for (int i0 = 0; i0 < ne0; i0++) {
  5989. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  5990. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  5991. }
  5992. }
  5993. }
  5994. }
  5995. static void ggml_compute_forward_add_f16_f32(
  5996. const struct ggml_compute_params * params,
  5997. const struct ggml_tensor * src0,
  5998. const struct ggml_tensor * src1,
  5999. struct ggml_tensor * dst) {
  6000. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6001. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6002. return;
  6003. }
  6004. const int ith = params->ith;
  6005. const int nth = params->nth;
  6006. const int nr = ggml_nrows(src0);
  6007. const int64_t ne0 = src0->ne[0];
  6008. const int64_t ne1 = src0->ne[1];
  6009. const int64_t ne2 = src0->ne[2];
  6010. const size_t nb00 = src0->nb[0];
  6011. const size_t nb01 = src0->nb[1];
  6012. const size_t nb02 = src0->nb[2];
  6013. const size_t nb03 = src0->nb[3];
  6014. const size_t nb10 = src1->nb[0];
  6015. const size_t nb11 = src1->nb[1];
  6016. const size_t nb12 = src1->nb[2];
  6017. const size_t nb13 = src1->nb[3];
  6018. const size_t nb0 = dst->nb[0];
  6019. const size_t nb1 = dst->nb[1];
  6020. const size_t nb2 = dst->nb[2];
  6021. const size_t nb3 = dst->nb[3];
  6022. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6023. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6024. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6025. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6026. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6027. // rows per thread
  6028. const int dr = (nr + nth - 1)/nth;
  6029. // row range for this thread
  6030. const int ir0 = dr*ith;
  6031. const int ir1 = MIN(ir0 + dr, nr);
  6032. if (nb10 == sizeof(float)) {
  6033. for (int ir = ir0; ir < ir1; ++ir) {
  6034. // src0, src1 and dst are same shape => same indices
  6035. const int i3 = ir/(ne2*ne1);
  6036. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6037. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6038. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6039. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6040. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6041. for (int i = 0; i < ne0; i++) {
  6042. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6043. }
  6044. }
  6045. }
  6046. else {
  6047. // src1 is not contiguous
  6048. GGML_ASSERT(false);
  6049. }
  6050. }
  6051. static void ggml_compute_forward_add_f16_f16(
  6052. const struct ggml_compute_params * params,
  6053. const struct ggml_tensor * src0,
  6054. const struct ggml_tensor * src1,
  6055. struct ggml_tensor * dst) {
  6056. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6057. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6058. return;
  6059. }
  6060. const int ith = params->ith;
  6061. const int nth = params->nth;
  6062. const int nr = ggml_nrows(src0);
  6063. const int64_t ne0 = src0->ne[0];
  6064. const int64_t ne1 = src0->ne[1];
  6065. const int64_t ne2 = src0->ne[2];
  6066. const size_t nb00 = src0->nb[0];
  6067. const size_t nb01 = src0->nb[1];
  6068. const size_t nb02 = src0->nb[2];
  6069. const size_t nb03 = src0->nb[3];
  6070. const size_t nb10 = src1->nb[0];
  6071. const size_t nb11 = src1->nb[1];
  6072. const size_t nb12 = src1->nb[2];
  6073. const size_t nb13 = src1->nb[3];
  6074. const size_t nb0 = dst->nb[0];
  6075. const size_t nb1 = dst->nb[1];
  6076. const size_t nb2 = dst->nb[2];
  6077. const size_t nb3 = dst->nb[3];
  6078. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6079. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6080. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6081. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6082. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6083. // rows per thread
  6084. const int dr = (nr + nth - 1)/nth;
  6085. // row range for this thread
  6086. const int ir0 = dr*ith;
  6087. const int ir1 = MIN(ir0 + dr, nr);
  6088. if (nb10 == sizeof(ggml_fp16_t)) {
  6089. for (int ir = ir0; ir < ir1; ++ir) {
  6090. // src0, src1 and dst are same shape => same indices
  6091. const int i3 = ir/(ne2*ne1);
  6092. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6093. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6094. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6095. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6096. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6097. for (int i = 0; i < ne0; i++) {
  6098. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6099. }
  6100. }
  6101. }
  6102. else {
  6103. // src1 is not contiguous
  6104. GGML_ASSERT(false);
  6105. }
  6106. }
  6107. static void ggml_compute_forward_add_q_f32(
  6108. const struct ggml_compute_params * params,
  6109. const struct ggml_tensor * src0,
  6110. const struct ggml_tensor * src1,
  6111. struct ggml_tensor * dst) {
  6112. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6113. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6114. return;
  6115. }
  6116. const int nr = ggml_nrows(src0);
  6117. const int64_t ne00 = src0->ne[0];
  6118. const int64_t ne01 = src0->ne[1];
  6119. const int64_t ne02 = src0->ne[2];
  6120. //const int64_t ne03 = src0->ne[3];
  6121. const size_t nb00 = src0->nb[0];
  6122. const size_t nb01 = src0->nb[1];
  6123. const size_t nb02 = src0->nb[2];
  6124. const size_t nb03 = src0->nb[3];
  6125. const size_t nb10 = src1->nb[0];
  6126. const size_t nb11 = src1->nb[1];
  6127. const size_t nb12 = src1->nb[2];
  6128. const size_t nb13 = src1->nb[3];
  6129. const size_t nb0 = dst->nb[0];
  6130. const size_t nb1 = dst->nb[1];
  6131. const size_t nb2 = dst->nb[2];
  6132. const size_t nb3 = dst->nb[3];
  6133. const int ith = params->ith;
  6134. const int nth = params->nth;
  6135. const enum ggml_type type = src0->type;
  6136. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6137. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6138. // we don't support permuted src0 or src1
  6139. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6140. GGML_ASSERT(nb10 == sizeof(float));
  6141. // dst cannot be transposed or permuted
  6142. GGML_ASSERT(nb0 <= nb1);
  6143. GGML_ASSERT(nb1 <= nb2);
  6144. GGML_ASSERT(nb2 <= nb3);
  6145. GGML_ASSERT(ggml_is_quantized(src0->type));
  6146. GGML_ASSERT(dst->type == src0->type);
  6147. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6148. // rows per thread
  6149. const int dr = (nr + nth - 1)/nth;
  6150. // row range for this thread
  6151. const int ir0 = dr*ith;
  6152. const int ir1 = MIN(ir0 + dr, nr);
  6153. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6154. for (int ir = ir0; ir < ir1; ++ir) {
  6155. // src0 indices
  6156. const int i03 = ir/(ne02*ne01);
  6157. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6158. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6159. // src1 and dst are same shape as src0 => same indices
  6160. const int i13 = i03;
  6161. const int i12 = i02;
  6162. const int i11 = i01;
  6163. const int i3 = i03;
  6164. const int i2 = i02;
  6165. const int i1 = i01;
  6166. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6167. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6168. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  6169. assert(ne00 % 32 == 0);
  6170. // unquantize row from src0 to temp buffer
  6171. dequantize_row_q(src0_row, wdata, ne00);
  6172. // add src1
  6173. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6174. // quantize row to dst
  6175. quantize_row_q(wdata, dst_row, ne00);
  6176. }
  6177. }
  6178. static void ggml_compute_forward_add(
  6179. const struct ggml_compute_params * params,
  6180. const struct ggml_tensor * src0,
  6181. const struct ggml_tensor * src1,
  6182. struct ggml_tensor * dst) {
  6183. switch (src0->type) {
  6184. case GGML_TYPE_F32:
  6185. {
  6186. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6187. } break;
  6188. case GGML_TYPE_F16:
  6189. {
  6190. if (src1->type == GGML_TYPE_F16) {
  6191. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6192. }
  6193. else if (src1->type == GGML_TYPE_F32) {
  6194. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6195. }
  6196. else {
  6197. GGML_ASSERT(false);
  6198. }
  6199. } break;
  6200. case GGML_TYPE_Q4_0:
  6201. case GGML_TYPE_Q4_1:
  6202. case GGML_TYPE_Q5_0:
  6203. case GGML_TYPE_Q5_1:
  6204. case GGML_TYPE_Q8_0:
  6205. case GGML_TYPE_Q2_K:
  6206. case GGML_TYPE_Q3_K:
  6207. case GGML_TYPE_Q4_K:
  6208. case GGML_TYPE_Q5_K:
  6209. case GGML_TYPE_Q6_K:
  6210. {
  6211. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6212. } break;
  6213. default:
  6214. {
  6215. GGML_ASSERT(false);
  6216. } break;
  6217. }
  6218. }
  6219. // ggml_compute_forward_add1
  6220. static void ggml_compute_forward_add1_f32(
  6221. const struct ggml_compute_params * params,
  6222. const struct ggml_tensor * src0,
  6223. const struct ggml_tensor * src1,
  6224. struct ggml_tensor * dst) {
  6225. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6226. GGML_ASSERT(ggml_is_scalar(src1));
  6227. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6228. return;
  6229. }
  6230. const int ith = params->ith;
  6231. const int nth = params->nth;
  6232. const int nr = ggml_nrows(src0);
  6233. const int64_t ne0 = src0->ne[0];
  6234. const int64_t ne1 = src0->ne[1];
  6235. const int64_t ne2 = src0->ne[2];
  6236. const size_t nb00 = src0->nb[0];
  6237. const size_t nb01 = src0->nb[1];
  6238. const size_t nb02 = src0->nb[2];
  6239. const size_t nb03 = src0->nb[3];
  6240. const size_t nb0 = dst->nb[0];
  6241. const size_t nb1 = dst->nb[1];
  6242. const size_t nb2 = dst->nb[2];
  6243. const size_t nb3 = dst->nb[3];
  6244. GGML_ASSERT( nb0 == sizeof(float));
  6245. GGML_ASSERT(nb00 == sizeof(float));
  6246. // rows per thread
  6247. const int dr = (nr + nth - 1)/nth;
  6248. // row range for this thread
  6249. const int ir0 = dr*ith;
  6250. const int ir1 = MIN(ir0 + dr, nr);
  6251. for (int ir = ir0; ir < ir1; ++ir) {
  6252. // src0 and dst are same shape => same indices
  6253. const int i3 = ir/(ne2*ne1);
  6254. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6255. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6256. #ifdef GGML_USE_ACCELERATE
  6257. UNUSED(ggml_vec_add1_f32);
  6258. vDSP_vadd(
  6259. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6260. (float *) ((char *) src1->data), 0,
  6261. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6262. ne0);
  6263. #else
  6264. ggml_vec_add1_f32(ne0,
  6265. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6266. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6267. *(float *) src1->data);
  6268. #endif
  6269. }
  6270. }
  6271. static void ggml_compute_forward_add1_f16_f32(
  6272. const struct ggml_compute_params * params,
  6273. const struct ggml_tensor * src0,
  6274. const struct ggml_tensor * src1,
  6275. struct ggml_tensor * dst) {
  6276. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6277. GGML_ASSERT(ggml_is_scalar(src1));
  6278. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6279. return;
  6280. }
  6281. // scalar to add
  6282. const float v = *(float *) src1->data;
  6283. const int ith = params->ith;
  6284. const int nth = params->nth;
  6285. const int nr = ggml_nrows(src0);
  6286. const int64_t ne0 = src0->ne[0];
  6287. const int64_t ne1 = src0->ne[1];
  6288. const int64_t ne2 = src0->ne[2];
  6289. const size_t nb00 = src0->nb[0];
  6290. const size_t nb01 = src0->nb[1];
  6291. const size_t nb02 = src0->nb[2];
  6292. const size_t nb03 = src0->nb[3];
  6293. const size_t nb0 = dst->nb[0];
  6294. const size_t nb1 = dst->nb[1];
  6295. const size_t nb2 = dst->nb[2];
  6296. const size_t nb3 = dst->nb[3];
  6297. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6298. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6299. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6300. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6301. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6302. // rows per thread
  6303. const int dr = (nr + nth - 1)/nth;
  6304. // row range for this thread
  6305. const int ir0 = dr*ith;
  6306. const int ir1 = MIN(ir0 + dr, nr);
  6307. for (int ir = ir0; ir < ir1; ++ir) {
  6308. // src0 and dst are same shape => same indices
  6309. const int i3 = ir/(ne2*ne1);
  6310. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6311. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6312. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6313. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6314. for (int i = 0; i < ne0; i++) {
  6315. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6316. }
  6317. }
  6318. }
  6319. static void ggml_compute_forward_add1_f16_f16(
  6320. const struct ggml_compute_params * params,
  6321. const struct ggml_tensor * src0,
  6322. const struct ggml_tensor * src1,
  6323. struct ggml_tensor * dst) {
  6324. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6325. GGML_ASSERT(ggml_is_scalar(src1));
  6326. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6327. return;
  6328. }
  6329. // scalar to add
  6330. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6331. const int ith = params->ith;
  6332. const int nth = params->nth;
  6333. const int nr = ggml_nrows(src0);
  6334. const int64_t ne0 = src0->ne[0];
  6335. const int64_t ne1 = src0->ne[1];
  6336. const int64_t ne2 = src0->ne[2];
  6337. const size_t nb00 = src0->nb[0];
  6338. const size_t nb01 = src0->nb[1];
  6339. const size_t nb02 = src0->nb[2];
  6340. const size_t nb03 = src0->nb[3];
  6341. const size_t nb0 = dst->nb[0];
  6342. const size_t nb1 = dst->nb[1];
  6343. const size_t nb2 = dst->nb[2];
  6344. const size_t nb3 = dst->nb[3];
  6345. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6346. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6347. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6348. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6349. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6350. // rows per thread
  6351. const int dr = (nr + nth - 1)/nth;
  6352. // row range for this thread
  6353. const int ir0 = dr*ith;
  6354. const int ir1 = MIN(ir0 + dr, nr);
  6355. for (int ir = ir0; ir < ir1; ++ir) {
  6356. // src0 and dst are same shape => same indices
  6357. const int i3 = ir/(ne2*ne1);
  6358. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6359. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6360. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6361. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6362. for (int i = 0; i < ne0; i++) {
  6363. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6364. }
  6365. }
  6366. }
  6367. static void ggml_compute_forward_add1_q_f32(
  6368. const struct ggml_compute_params * params,
  6369. const struct ggml_tensor * src0,
  6370. const struct ggml_tensor * src1,
  6371. struct ggml_tensor * dst) {
  6372. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6373. GGML_ASSERT(ggml_is_scalar(src1));
  6374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6375. return;
  6376. }
  6377. // scalar to add
  6378. const float v = *(float *) src1->data;
  6379. const int ith = params->ith;
  6380. const int nth = params->nth;
  6381. const int nr = ggml_nrows(src0);
  6382. const int64_t ne0 = src0->ne[0];
  6383. const int64_t ne1 = src0->ne[1];
  6384. const int64_t ne2 = src0->ne[2];
  6385. const size_t nb00 = src0->nb[0];
  6386. const size_t nb01 = src0->nb[1];
  6387. const size_t nb02 = src0->nb[2];
  6388. const size_t nb03 = src0->nb[3];
  6389. const size_t nb0 = dst->nb[0];
  6390. const size_t nb1 = dst->nb[1];
  6391. const size_t nb2 = dst->nb[2];
  6392. const size_t nb3 = dst->nb[3];
  6393. const enum ggml_type type = src0->type;
  6394. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6395. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6396. // we don't support permuted src0
  6397. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6398. // dst cannot be transposed or permuted
  6399. GGML_ASSERT(nb0 <= nb1);
  6400. GGML_ASSERT(nb1 <= nb2);
  6401. GGML_ASSERT(nb2 <= nb3);
  6402. GGML_ASSERT(ggml_is_quantized(src0->type));
  6403. GGML_ASSERT(dst->type == src0->type);
  6404. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6405. // rows per thread
  6406. const int dr = (nr + nth - 1)/nth;
  6407. // row range for this thread
  6408. const int ir0 = dr*ith;
  6409. const int ir1 = MIN(ir0 + dr, nr);
  6410. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  6411. for (int ir = ir0; ir < ir1; ++ir) {
  6412. // src0 and dst are same shape => same indices
  6413. const int i3 = ir/(ne2*ne1);
  6414. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6415. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6416. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  6417. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  6418. assert(ne0 % 32 == 0);
  6419. // unquantize row from src0 to temp buffer
  6420. dequantize_row_q(src0_row, wdata, ne0);
  6421. // add src1
  6422. ggml_vec_acc1_f32(ne0, wdata, v);
  6423. // quantize row to dst
  6424. quantize_row_q(wdata, dst_row, ne0);
  6425. }
  6426. }
  6427. static void ggml_compute_forward_add1(
  6428. const struct ggml_compute_params * params,
  6429. const struct ggml_tensor * src0,
  6430. const struct ggml_tensor * src1,
  6431. struct ggml_tensor * dst) {
  6432. switch (src0->type) {
  6433. case GGML_TYPE_F32:
  6434. {
  6435. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  6436. } break;
  6437. case GGML_TYPE_F16:
  6438. {
  6439. if (src1->type == GGML_TYPE_F16) {
  6440. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  6441. }
  6442. else if (src1->type == GGML_TYPE_F32) {
  6443. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  6444. }
  6445. else {
  6446. GGML_ASSERT(false);
  6447. }
  6448. } break;
  6449. case GGML_TYPE_Q4_0:
  6450. case GGML_TYPE_Q4_1:
  6451. case GGML_TYPE_Q5_0:
  6452. case GGML_TYPE_Q5_1:
  6453. case GGML_TYPE_Q8_0:
  6454. case GGML_TYPE_Q8_1:
  6455. case GGML_TYPE_Q2_K:
  6456. case GGML_TYPE_Q3_K:
  6457. case GGML_TYPE_Q4_K:
  6458. case GGML_TYPE_Q5_K:
  6459. case GGML_TYPE_Q6_K:
  6460. {
  6461. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  6462. } break;
  6463. default:
  6464. {
  6465. GGML_ASSERT(false);
  6466. } break;
  6467. }
  6468. }
  6469. // ggml_compute_forward_acc
  6470. static void ggml_compute_forward_acc_f32(
  6471. const struct ggml_compute_params * params,
  6472. const struct ggml_tensor * src0,
  6473. const struct ggml_tensor * src1,
  6474. const struct ggml_tensor * opt0,
  6475. struct ggml_tensor * dst) {
  6476. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6477. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6478. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  6479. GGML_ASSERT(ggml_nelements(opt0) == 5);
  6480. // view src0 and dst with these strides and data offset inbytes during acc
  6481. // nb0 is implicitely element_size because src0 and dst are contiguous
  6482. size_t nb1 = ((int32_t *) opt0->data)[0];
  6483. size_t nb2 = ((int32_t *) opt0->data)[1];
  6484. size_t nb3 = ((int32_t *) opt0->data)[2];
  6485. size_t offset = ((int32_t *) opt0->data)[3];
  6486. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  6487. if (!inplace && (params->type == GGML_TASK_INIT)) {
  6488. // memcpy needs to be synchronized across threads to avoid race conditions.
  6489. // => do it in INIT phase
  6490. memcpy(
  6491. ((char *) dst->data),
  6492. ((char *) src0->data),
  6493. ggml_nbytes(dst));
  6494. }
  6495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6496. return;
  6497. }
  6498. const int ith = params->ith;
  6499. const int nth = params->nth;
  6500. const int nr = ggml_nrows(src1);
  6501. const int nc = src1->ne[0];
  6502. const int64_t ne10 = src1->ne[0];
  6503. const int64_t ne11 = src1->ne[1];
  6504. const int64_t ne12 = src1->ne[2];
  6505. const int64_t ne13 = src1->ne[3];
  6506. const size_t nb10 = src1->nb[0];
  6507. const size_t nb11 = src1->nb[1];
  6508. const size_t nb12 = src1->nb[2];
  6509. const size_t nb13 = src1->nb[3];
  6510. // src0 and dst as viewed during acc
  6511. const size_t nb0 = ggml_element_size(src0);
  6512. const size_t nb00 = nb0;
  6513. const size_t nb01 = nb1;
  6514. const size_t nb02 = nb2;
  6515. const size_t nb03 = nb3;
  6516. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  6517. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  6518. GGML_ASSERT(nb10 == sizeof(float));
  6519. // rows per thread
  6520. const int dr = (nr + nth - 1)/nth;
  6521. // row range for this thread
  6522. const int ir0 = dr*ith;
  6523. const int ir1 = MIN(ir0 + dr, nr);
  6524. for (int ir = ir0; ir < ir1; ++ir) {
  6525. // src0 and dst are viewed with shape of src1 and offset
  6526. // => same indices
  6527. const int i3 = ir/(ne12*ne11);
  6528. const int i2 = (ir - i3*ne12*ne11)/ne11;
  6529. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  6530. #ifdef GGML_USE_ACCELERATE
  6531. vDSP_vadd(
  6532. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  6533. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6534. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  6535. #else
  6536. ggml_vec_add_f32(nc,
  6537. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  6538. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  6539. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6540. #endif
  6541. }
  6542. }
  6543. static void ggml_compute_forward_acc(
  6544. const struct ggml_compute_params * params,
  6545. const struct ggml_tensor * src0,
  6546. const struct ggml_tensor * src1,
  6547. const struct ggml_tensor * opt0,
  6548. struct ggml_tensor * dst) {
  6549. switch (src0->type) {
  6550. case GGML_TYPE_F32:
  6551. {
  6552. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  6553. } break;
  6554. case GGML_TYPE_F16:
  6555. case GGML_TYPE_Q4_0:
  6556. case GGML_TYPE_Q4_1:
  6557. case GGML_TYPE_Q5_0:
  6558. case GGML_TYPE_Q5_1:
  6559. case GGML_TYPE_Q8_0:
  6560. case GGML_TYPE_Q8_1:
  6561. case GGML_TYPE_Q2_K:
  6562. case GGML_TYPE_Q3_K:
  6563. case GGML_TYPE_Q4_K:
  6564. case GGML_TYPE_Q5_K:
  6565. case GGML_TYPE_Q6_K:
  6566. default:
  6567. {
  6568. GGML_ASSERT(false);
  6569. } break;
  6570. }
  6571. }
  6572. // ggml_compute_forward_sub
  6573. static void ggml_compute_forward_sub_f32(
  6574. const struct ggml_compute_params * params,
  6575. const struct ggml_tensor * src0,
  6576. const struct ggml_tensor * src1,
  6577. struct ggml_tensor * dst) {
  6578. assert(params->ith == 0);
  6579. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6581. return;
  6582. }
  6583. const int nr = ggml_nrows(src0);
  6584. const int64_t ne0 = src0->ne[0];
  6585. const int64_t ne1 = src0->ne[1];
  6586. const int64_t ne2 = src0->ne[2];
  6587. const size_t nb00 = src0->nb[0];
  6588. const size_t nb01 = src0->nb[1];
  6589. const size_t nb02 = src0->nb[2];
  6590. const size_t nb03 = src0->nb[3];
  6591. const size_t nb10 = src1->nb[0];
  6592. const size_t nb11 = src1->nb[1];
  6593. const size_t nb12 = src1->nb[2];
  6594. const size_t nb13 = src1->nb[3];
  6595. const size_t nb0 = dst->nb[0];
  6596. const size_t nb1 = dst->nb[1];
  6597. const size_t nb2 = dst->nb[2];
  6598. const size_t nb3 = dst->nb[3];
  6599. GGML_ASSERT( nb0 == sizeof(float));
  6600. GGML_ASSERT(nb00 == sizeof(float));
  6601. if (nb10 == sizeof(float)) {
  6602. for (int ir = 0; ir < nr; ++ir) {
  6603. // src0, src1 and dst are same shape => same indices
  6604. const int i3 = ir/(ne2*ne1);
  6605. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6606. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6607. #ifdef GGML_USE_ACCELERATE
  6608. vDSP_vsub(
  6609. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6610. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6611. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6612. ne0);
  6613. #else
  6614. ggml_vec_sub_f32(ne0,
  6615. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6616. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6617. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6618. #endif
  6619. // }
  6620. // }
  6621. }
  6622. } else {
  6623. // src1 is not contiguous
  6624. for (int ir = 0; ir < nr; ++ir) {
  6625. // src0, src1 and dst are same shape => same indices
  6626. const int i3 = ir/(ne2*ne1);
  6627. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6628. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6629. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6630. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6631. for (int i0 = 0; i0 < ne0; i0++) {
  6632. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6633. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  6634. }
  6635. }
  6636. }
  6637. }
  6638. static void ggml_compute_forward_sub(
  6639. const struct ggml_compute_params * params,
  6640. const struct ggml_tensor * src0,
  6641. const struct ggml_tensor * src1,
  6642. struct ggml_tensor * dst) {
  6643. switch (src0->type) {
  6644. case GGML_TYPE_F32:
  6645. {
  6646. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  6647. } break;
  6648. default:
  6649. {
  6650. GGML_ASSERT(false);
  6651. } break;
  6652. }
  6653. }
  6654. // ggml_compute_forward_mul
  6655. static void ggml_compute_forward_mul_f32(
  6656. const struct ggml_compute_params * params,
  6657. const struct ggml_tensor * src0,
  6658. const struct ggml_tensor * src1,
  6659. struct ggml_tensor * dst) {
  6660. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6661. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6662. return;
  6663. }
  6664. const int ith = params->ith;
  6665. const int nth = params->nth;
  6666. #ifdef GGML_USE_CLBLAST
  6667. if (src1->backend == GGML_BACKEND_GPU) {
  6668. if (ith == 0) {
  6669. ggml_cl_mul(src0, src1, dst);
  6670. }
  6671. return;
  6672. }
  6673. #endif
  6674. const int64_t nr = ggml_nrows(src0);
  6675. const int64_t ne00 = src0->ne[0];
  6676. const int64_t ne01 = src0->ne[1];
  6677. const int64_t ne02 = src0->ne[2];
  6678. const int64_t ne10 = src1->ne[0];
  6679. const int64_t ne11 = src1->ne[1];
  6680. const int64_t ne12 = src1->ne[2];
  6681. const int64_t ne13 = src1->ne[3];
  6682. const size_t nb00 = src0->nb[0];
  6683. const size_t nb01 = src0->nb[1];
  6684. const size_t nb02 = src0->nb[2];
  6685. const size_t nb03 = src0->nb[3];
  6686. const size_t nb10 = src1->nb[0];
  6687. const size_t nb11 = src1->nb[1];
  6688. const size_t nb12 = src1->nb[2];
  6689. const size_t nb13 = src1->nb[3];
  6690. const size_t nb0 = dst->nb[0];
  6691. const size_t nb1 = dst->nb[1];
  6692. const size_t nb2 = dst->nb[2];
  6693. const size_t nb3 = dst->nb[3];
  6694. GGML_ASSERT( nb0 == sizeof(float));
  6695. GGML_ASSERT(nb00 == sizeof(float));
  6696. GGML_ASSERT(ne00 == ne10);
  6697. if (nb10 == sizeof(float)) {
  6698. for (int64_t ir = ith; ir < nr; ir += nth) {
  6699. // src0 and dst are same shape => same indices
  6700. const int64_t i03 = ir/(ne02*ne01);
  6701. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6702. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6703. const int64_t i13 = i03 % ne13;
  6704. const int64_t i12 = i02 % ne12;
  6705. const int64_t i11 = i01 % ne11;
  6706. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6707. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6708. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6709. #ifdef GGML_USE_ACCELERATE
  6710. UNUSED(ggml_vec_mul_f32);
  6711. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6712. #else
  6713. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6714. #endif
  6715. // }
  6716. // }
  6717. }
  6718. } else {
  6719. // src1 is not contiguous
  6720. for (int64_t ir = ith; ir < nr; ir += nth) {
  6721. // src0 and dst are same shape => same indices
  6722. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6723. const int64_t i03 = ir/(ne02*ne01);
  6724. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6725. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6726. const int64_t i13 = i03 % ne13;
  6727. const int64_t i12 = i02 % ne12;
  6728. const int64_t i11 = i01 % ne11;
  6729. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6730. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6731. for (int64_t i0 = 0; i0 < ne00; i0++) {
  6732. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6733. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  6734. }
  6735. }
  6736. }
  6737. }
  6738. static void ggml_compute_forward_mul(
  6739. const struct ggml_compute_params * params,
  6740. const struct ggml_tensor * src0,
  6741. const struct ggml_tensor * src1,
  6742. struct ggml_tensor * dst) {
  6743. switch (src0->type) {
  6744. case GGML_TYPE_F32:
  6745. {
  6746. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  6747. } break;
  6748. default:
  6749. {
  6750. GGML_ASSERT(false);
  6751. } break;
  6752. }
  6753. }
  6754. // ggml_compute_forward_div
  6755. static void ggml_compute_forward_div_f32(
  6756. const struct ggml_compute_params * params,
  6757. const struct ggml_tensor * src0,
  6758. const struct ggml_tensor * src1,
  6759. struct ggml_tensor * dst) {
  6760. assert(params->ith == 0);
  6761. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6762. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6763. return;
  6764. }
  6765. const int nr = ggml_nrows(src0);
  6766. const int64_t ne0 = src0->ne[0];
  6767. const int64_t ne1 = src0->ne[1];
  6768. const int64_t ne2 = src0->ne[2];
  6769. const size_t nb00 = src0->nb[0];
  6770. const size_t nb01 = src0->nb[1];
  6771. const size_t nb02 = src0->nb[2];
  6772. const size_t nb03 = src0->nb[3];
  6773. const size_t nb10 = src1->nb[0];
  6774. const size_t nb11 = src1->nb[1];
  6775. const size_t nb12 = src1->nb[2];
  6776. const size_t nb13 = src1->nb[3];
  6777. const size_t nb0 = dst->nb[0];
  6778. const size_t nb1 = dst->nb[1];
  6779. const size_t nb2 = dst->nb[2];
  6780. const size_t nb3 = dst->nb[3];
  6781. GGML_ASSERT( nb0 == sizeof(float));
  6782. GGML_ASSERT(nb00 == sizeof(float));
  6783. if (nb10 == sizeof(float)) {
  6784. for (int ir = 0; ir < nr; ++ir) {
  6785. // src0, src1 and dst are same shape => same indices
  6786. const int i3 = ir/(ne2*ne1);
  6787. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6788. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6789. #ifdef GGML_USE_ACCELERATE
  6790. vDSP_vdiv(
  6791. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6792. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6793. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6794. ne0);
  6795. #else
  6796. ggml_vec_div_f32(ne0,
  6797. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6798. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6799. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6800. #endif
  6801. // }
  6802. // }
  6803. }
  6804. } else {
  6805. // src1 is not contiguous
  6806. for (int ir = 0; ir < nr; ++ir) {
  6807. // src0, src1 and dst are same shape => same indices
  6808. const int i3 = ir/(ne2*ne1);
  6809. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6810. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6811. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6812. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6813. for (int i0 = 0; i0 < ne0; i0++) {
  6814. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6815. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  6816. }
  6817. }
  6818. }
  6819. }
  6820. static void ggml_compute_forward_div(
  6821. const struct ggml_compute_params * params,
  6822. const struct ggml_tensor * src0,
  6823. const struct ggml_tensor * src1,
  6824. struct ggml_tensor * dst) {
  6825. switch (src0->type) {
  6826. case GGML_TYPE_F32:
  6827. {
  6828. ggml_compute_forward_div_f32(params, src0, src1, dst);
  6829. } break;
  6830. default:
  6831. {
  6832. GGML_ASSERT(false);
  6833. } break;
  6834. }
  6835. }
  6836. // ggml_compute_forward_sqr
  6837. static void ggml_compute_forward_sqr_f32(
  6838. const struct ggml_compute_params * params,
  6839. const struct ggml_tensor * src0,
  6840. struct ggml_tensor * dst) {
  6841. assert(params->ith == 0);
  6842. assert(ggml_are_same_shape(src0, dst));
  6843. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6844. return;
  6845. }
  6846. const int n = ggml_nrows(src0);
  6847. const int nc = src0->ne[0];
  6848. assert( dst->nb[0] == sizeof(float));
  6849. assert(src0->nb[0] == sizeof(float));
  6850. for (int i = 0; i < n; i++) {
  6851. ggml_vec_sqr_f32(nc,
  6852. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6853. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6854. }
  6855. }
  6856. static void ggml_compute_forward_sqr(
  6857. const struct ggml_compute_params * params,
  6858. const struct ggml_tensor * src0,
  6859. struct ggml_tensor * dst) {
  6860. switch (src0->type) {
  6861. case GGML_TYPE_F32:
  6862. {
  6863. ggml_compute_forward_sqr_f32(params, src0, dst);
  6864. } break;
  6865. default:
  6866. {
  6867. GGML_ASSERT(false);
  6868. } break;
  6869. }
  6870. }
  6871. // ggml_compute_forward_sqrt
  6872. static void ggml_compute_forward_sqrt_f32(
  6873. const struct ggml_compute_params * params,
  6874. const struct ggml_tensor * src0,
  6875. struct ggml_tensor * dst) {
  6876. assert(params->ith == 0);
  6877. assert(ggml_are_same_shape(src0, dst));
  6878. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6879. return;
  6880. }
  6881. const int n = ggml_nrows(src0);
  6882. const int nc = src0->ne[0];
  6883. assert( dst->nb[0] == sizeof(float));
  6884. assert(src0->nb[0] == sizeof(float));
  6885. for (int i = 0; i < n; i++) {
  6886. ggml_vec_sqrt_f32(nc,
  6887. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6888. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6889. }
  6890. }
  6891. static void ggml_compute_forward_sqrt(
  6892. const struct ggml_compute_params * params,
  6893. const struct ggml_tensor * src0,
  6894. struct ggml_tensor * dst) {
  6895. switch (src0->type) {
  6896. case GGML_TYPE_F32:
  6897. {
  6898. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6899. } break;
  6900. default:
  6901. {
  6902. GGML_ASSERT(false);
  6903. } break;
  6904. }
  6905. }
  6906. // ggml_compute_forward_log
  6907. static void ggml_compute_forward_log_f32(
  6908. const struct ggml_compute_params * params,
  6909. const struct ggml_tensor * src0,
  6910. struct ggml_tensor * dst) {
  6911. GGML_ASSERT(params->ith == 0);
  6912. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6913. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6914. return;
  6915. }
  6916. const int n = ggml_nrows(src0);
  6917. const int nc = src0->ne[0];
  6918. GGML_ASSERT( dst->nb[0] == sizeof(float));
  6919. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6920. for (int i = 0; i < n; i++) {
  6921. ggml_vec_log_f32(nc,
  6922. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6923. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6924. }
  6925. }
  6926. static void ggml_compute_forward_log(
  6927. const struct ggml_compute_params * params,
  6928. const struct ggml_tensor * src0,
  6929. struct ggml_tensor * dst) {
  6930. switch (src0->type) {
  6931. case GGML_TYPE_F32:
  6932. {
  6933. ggml_compute_forward_log_f32(params, src0, dst);
  6934. } break;
  6935. default:
  6936. {
  6937. GGML_ASSERT(false);
  6938. } break;
  6939. }
  6940. }
  6941. // ggml_compute_forward_sum
  6942. static void ggml_compute_forward_sum_f32(
  6943. const struct ggml_compute_params * params,
  6944. const struct ggml_tensor * src0,
  6945. struct ggml_tensor * dst) {
  6946. assert(params->ith == 0);
  6947. assert(ggml_is_scalar(dst));
  6948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6949. return;
  6950. }
  6951. assert(ggml_is_scalar(dst));
  6952. assert(src0->nb[0] == sizeof(float));
  6953. const int64_t ne00 = src0->ne[0];
  6954. const int64_t ne01 = src0->ne[1];
  6955. const int64_t ne02 = src0->ne[2];
  6956. const int64_t ne03 = src0->ne[3];
  6957. const size_t nb01 = src0->nb[1];
  6958. const size_t nb02 = src0->nb[2];
  6959. const size_t nb03 = src0->nb[3];
  6960. ggml_float sum = 0;
  6961. ggml_float row_sum = 0;
  6962. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6963. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6964. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6965. ggml_vec_sum_ggf(ne00,
  6966. &row_sum,
  6967. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6968. sum += row_sum;
  6969. }
  6970. }
  6971. }
  6972. ((float *) dst->data)[0] = sum;
  6973. }
  6974. static void ggml_compute_forward_sum(
  6975. const struct ggml_compute_params * params,
  6976. const struct ggml_tensor * src0,
  6977. struct ggml_tensor * dst) {
  6978. switch (src0->type) {
  6979. case GGML_TYPE_F32:
  6980. {
  6981. ggml_compute_forward_sum_f32(params, src0, dst);
  6982. } break;
  6983. default:
  6984. {
  6985. GGML_ASSERT(false);
  6986. } break;
  6987. }
  6988. }
  6989. // ggml_compute_forward_sum_rows
  6990. static void ggml_compute_forward_sum_rows_f32(
  6991. const struct ggml_compute_params * params,
  6992. const struct ggml_tensor * src0,
  6993. struct ggml_tensor * dst) {
  6994. GGML_ASSERT(params->ith == 0);
  6995. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6996. return;
  6997. }
  6998. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6999. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7000. const int64_t ne00 = src0->ne[0];
  7001. const int64_t ne01 = src0->ne[1];
  7002. const int64_t ne02 = src0->ne[2];
  7003. const int64_t ne03 = src0->ne[3];
  7004. const int64_t ne0 = dst->ne[0];
  7005. const int64_t ne1 = dst->ne[1];
  7006. const int64_t ne2 = dst->ne[2];
  7007. const int64_t ne3 = dst->ne[3];
  7008. GGML_ASSERT(ne0 == 1);
  7009. GGML_ASSERT(ne1 == ne01);
  7010. GGML_ASSERT(ne2 == ne02);
  7011. GGML_ASSERT(ne3 == ne03);
  7012. const size_t nb01 = src0->nb[1];
  7013. const size_t nb02 = src0->nb[2];
  7014. const size_t nb03 = src0->nb[3];
  7015. const size_t nb1 = dst->nb[1];
  7016. const size_t nb2 = dst->nb[2];
  7017. const size_t nb3 = dst->nb[3];
  7018. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7019. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7020. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7021. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7022. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7023. float row_sum = 0;
  7024. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7025. dst_row[0] = row_sum;
  7026. }
  7027. }
  7028. }
  7029. }
  7030. static void ggml_compute_forward_sum_rows(
  7031. const struct ggml_compute_params * params,
  7032. const struct ggml_tensor * src0,
  7033. struct ggml_tensor * dst) {
  7034. switch (src0->type) {
  7035. case GGML_TYPE_F32:
  7036. {
  7037. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7038. } break;
  7039. default:
  7040. {
  7041. GGML_ASSERT(false);
  7042. } break;
  7043. }
  7044. }
  7045. // ggml_compute_forward_mean
  7046. static void ggml_compute_forward_mean_f32(
  7047. const struct ggml_compute_params * params,
  7048. const struct ggml_tensor * src0,
  7049. struct ggml_tensor * dst) {
  7050. assert(params->ith == 0);
  7051. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7052. return;
  7053. }
  7054. assert(src0->nb[0] == sizeof(float));
  7055. const int64_t ne00 = src0->ne[0];
  7056. const int64_t ne01 = src0->ne[1];
  7057. const int64_t ne02 = src0->ne[2];
  7058. const int64_t ne03 = src0->ne[3];
  7059. const size_t nb01 = src0->nb[1];
  7060. const size_t nb02 = src0->nb[2];
  7061. const size_t nb03 = src0->nb[3];
  7062. const int64_t ne0 = dst->ne[0];
  7063. const int64_t ne1 = dst->ne[1];
  7064. const int64_t ne2 = dst->ne[2];
  7065. const int64_t ne3 = dst->ne[3];
  7066. assert(ne0 == 1);
  7067. assert(ne1 == ne01);
  7068. assert(ne2 == ne02);
  7069. assert(ne3 == ne03);
  7070. UNUSED(ne0);
  7071. UNUSED(ne1);
  7072. UNUSED(ne2);
  7073. UNUSED(ne3);
  7074. const size_t nb1 = dst->nb[1];
  7075. const size_t nb2 = dst->nb[2];
  7076. const size_t nb3 = dst->nb[3];
  7077. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7078. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7079. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7080. ggml_vec_sum_f32(ne00,
  7081. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7082. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7083. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7084. }
  7085. }
  7086. }
  7087. }
  7088. static void ggml_compute_forward_mean(
  7089. const struct ggml_compute_params * params,
  7090. const struct ggml_tensor * src0,
  7091. struct ggml_tensor * dst) {
  7092. switch (src0->type) {
  7093. case GGML_TYPE_F32:
  7094. {
  7095. ggml_compute_forward_mean_f32(params, src0, dst);
  7096. } break;
  7097. default:
  7098. {
  7099. GGML_ASSERT(false);
  7100. } break;
  7101. }
  7102. }
  7103. // ggml_compute_forward_repeat
  7104. static void ggml_compute_forward_repeat_f32(
  7105. const struct ggml_compute_params * params,
  7106. const struct ggml_tensor * src0,
  7107. struct ggml_tensor * dst) {
  7108. GGML_ASSERT(params->ith == 0);
  7109. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7110. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7111. return;
  7112. }
  7113. const int64_t ne0 = dst->ne[0];
  7114. const int64_t ne1 = dst->ne[1];
  7115. const int64_t ne2 = dst->ne[2];
  7116. const int64_t ne3 = dst->ne[3];
  7117. const int64_t ne00 = src0->ne[0];
  7118. const int64_t ne01 = src0->ne[1];
  7119. const int64_t ne02 = src0->ne[2];
  7120. const int64_t ne03 = src0->ne[3];
  7121. const size_t nb0 = dst->nb[0];
  7122. const size_t nb1 = dst->nb[1];
  7123. const size_t nb2 = dst->nb[2];
  7124. const size_t nb3 = dst->nb[3];
  7125. const size_t nb00 = src0->nb[0];
  7126. const size_t nb01 = src0->nb[1];
  7127. const size_t nb02 = src0->nb[2];
  7128. const size_t nb03 = src0->nb[3];
  7129. // guaranteed to be an integer due to the check in ggml_can_repeat
  7130. const int nr0 = (int)(ne0/ne00);
  7131. const int nr1 = (int)(ne1/ne01);
  7132. const int nr2 = (int)(ne2/ne02);
  7133. const int nr3 = (int)(ne3/ne03);
  7134. // TODO: support for transposed / permuted tensors
  7135. GGML_ASSERT(nb0 == sizeof(float));
  7136. GGML_ASSERT(nb00 == sizeof(float));
  7137. // TODO: maybe this is not optimal?
  7138. for (int i3 = 0; i3 < nr3; i3++) {
  7139. for (int k3 = 0; k3 < ne03; k3++) {
  7140. for (int i2 = 0; i2 < nr2; i2++) {
  7141. for (int k2 = 0; k2 < ne02; k2++) {
  7142. for (int i1 = 0; i1 < nr1; i1++) {
  7143. for (int k1 = 0; k1 < ne01; k1++) {
  7144. for (int i0 = 0; i0 < nr0; i0++) {
  7145. ggml_vec_cpy_f32(ne00,
  7146. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7147. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7148. }
  7149. }
  7150. }
  7151. }
  7152. }
  7153. }
  7154. }
  7155. }
  7156. static void ggml_compute_forward_repeat(
  7157. const struct ggml_compute_params * params,
  7158. const struct ggml_tensor * src0,
  7159. struct ggml_tensor * dst) {
  7160. switch (src0->type) {
  7161. case GGML_TYPE_F32:
  7162. {
  7163. ggml_compute_forward_repeat_f32(params, src0, dst);
  7164. } break;
  7165. default:
  7166. {
  7167. GGML_ASSERT(false);
  7168. } break;
  7169. }
  7170. }
  7171. // ggml_compute_forward_abs
  7172. static void ggml_compute_forward_abs_f32(
  7173. const struct ggml_compute_params * params,
  7174. const struct ggml_tensor * src0,
  7175. struct ggml_tensor * dst) {
  7176. assert(params->ith == 0);
  7177. assert(ggml_are_same_shape(src0, dst));
  7178. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7179. return;
  7180. }
  7181. const int n = ggml_nrows(src0);
  7182. const int nc = src0->ne[0];
  7183. assert(dst->nb[0] == sizeof(float));
  7184. assert(src0->nb[0] == sizeof(float));
  7185. for (int i = 0; i < n; i++) {
  7186. ggml_vec_abs_f32(nc,
  7187. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7188. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7189. }
  7190. }
  7191. static void ggml_compute_forward_abs(
  7192. const struct ggml_compute_params * params,
  7193. const struct ggml_tensor * src0,
  7194. struct ggml_tensor * dst) {
  7195. switch (src0->type) {
  7196. case GGML_TYPE_F32:
  7197. {
  7198. ggml_compute_forward_abs_f32(params, src0, dst);
  7199. } break;
  7200. default:
  7201. {
  7202. GGML_ASSERT(false);
  7203. } break;
  7204. }
  7205. }
  7206. // ggml_compute_forward_sgn
  7207. static void ggml_compute_forward_sgn_f32(
  7208. const struct ggml_compute_params * params,
  7209. const struct ggml_tensor * src0,
  7210. struct ggml_tensor * dst) {
  7211. assert(params->ith == 0);
  7212. assert(ggml_are_same_shape(src0, dst));
  7213. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7214. return;
  7215. }
  7216. const int n = ggml_nrows(src0);
  7217. const int nc = src0->ne[0];
  7218. assert(dst->nb[0] == sizeof(float));
  7219. assert(src0->nb[0] == sizeof(float));
  7220. for (int i = 0; i < n; i++) {
  7221. ggml_vec_sgn_f32(nc,
  7222. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7223. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7224. }
  7225. }
  7226. static void ggml_compute_forward_sgn(
  7227. const struct ggml_compute_params * params,
  7228. const struct ggml_tensor * src0,
  7229. struct ggml_tensor * dst) {
  7230. switch (src0->type) {
  7231. case GGML_TYPE_F32:
  7232. {
  7233. ggml_compute_forward_sgn_f32(params, src0, dst);
  7234. } break;
  7235. default:
  7236. {
  7237. GGML_ASSERT(false);
  7238. } break;
  7239. }
  7240. }
  7241. // ggml_compute_forward_neg
  7242. static void ggml_compute_forward_neg_f32(
  7243. const struct ggml_compute_params * params,
  7244. const struct ggml_tensor * src0,
  7245. struct ggml_tensor * dst) {
  7246. assert(params->ith == 0);
  7247. assert(ggml_are_same_shape(src0, dst));
  7248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7249. return;
  7250. }
  7251. const int n = ggml_nrows(src0);
  7252. const int nc = src0->ne[0];
  7253. assert(dst->nb[0] == sizeof(float));
  7254. assert(src0->nb[0] == sizeof(float));
  7255. for (int i = 0; i < n; i++) {
  7256. ggml_vec_neg_f32(nc,
  7257. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7258. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7259. }
  7260. }
  7261. static void ggml_compute_forward_neg(
  7262. const struct ggml_compute_params * params,
  7263. const struct ggml_tensor * src0,
  7264. struct ggml_tensor * dst) {
  7265. switch (src0->type) {
  7266. case GGML_TYPE_F32:
  7267. {
  7268. ggml_compute_forward_neg_f32(params, src0, dst);
  7269. } break;
  7270. default:
  7271. {
  7272. GGML_ASSERT(false);
  7273. } break;
  7274. }
  7275. }
  7276. // ggml_compute_forward_step
  7277. static void ggml_compute_forward_step_f32(
  7278. const struct ggml_compute_params * params,
  7279. const struct ggml_tensor * src0,
  7280. struct ggml_tensor * dst) {
  7281. assert(params->ith == 0);
  7282. assert(ggml_are_same_shape(src0, dst));
  7283. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7284. return;
  7285. }
  7286. const int n = ggml_nrows(src0);
  7287. const int nc = src0->ne[0];
  7288. assert(dst->nb[0] == sizeof(float));
  7289. assert(src0->nb[0] == sizeof(float));
  7290. for (int i = 0; i < n; i++) {
  7291. ggml_vec_step_f32(nc,
  7292. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7293. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7294. }
  7295. }
  7296. static void ggml_compute_forward_step(
  7297. const struct ggml_compute_params * params,
  7298. const struct ggml_tensor * src0,
  7299. struct ggml_tensor * dst) {
  7300. switch (src0->type) {
  7301. case GGML_TYPE_F32:
  7302. {
  7303. ggml_compute_forward_step_f32(params, src0, dst);
  7304. } break;
  7305. default:
  7306. {
  7307. GGML_ASSERT(false);
  7308. } break;
  7309. }
  7310. }
  7311. // ggml_compute_forward_relu
  7312. static void ggml_compute_forward_relu_f32(
  7313. const struct ggml_compute_params * params,
  7314. const struct ggml_tensor * src0,
  7315. struct ggml_tensor * dst) {
  7316. assert(params->ith == 0);
  7317. assert(ggml_are_same_shape(src0, dst));
  7318. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7319. return;
  7320. }
  7321. const int n = ggml_nrows(src0);
  7322. const int nc = src0->ne[0];
  7323. assert(dst->nb[0] == sizeof(float));
  7324. assert(src0->nb[0] == sizeof(float));
  7325. for (int i = 0; i < n; i++) {
  7326. ggml_vec_relu_f32(nc,
  7327. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7328. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7329. }
  7330. }
  7331. static void ggml_compute_forward_relu(
  7332. const struct ggml_compute_params * params,
  7333. const struct ggml_tensor * src0,
  7334. struct ggml_tensor * dst) {
  7335. switch (src0->type) {
  7336. case GGML_TYPE_F32:
  7337. {
  7338. ggml_compute_forward_relu_f32(params, src0, dst);
  7339. } break;
  7340. default:
  7341. {
  7342. GGML_ASSERT(false);
  7343. } break;
  7344. }
  7345. }
  7346. // ggml_compute_forward_gelu
  7347. static void ggml_compute_forward_gelu_f32(
  7348. const struct ggml_compute_params * params,
  7349. const struct ggml_tensor * src0,
  7350. struct ggml_tensor * dst) {
  7351. GGML_ASSERT(ggml_is_contiguous(src0));
  7352. GGML_ASSERT(ggml_is_contiguous(dst));
  7353. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7354. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7355. return;
  7356. }
  7357. const int ith = params->ith;
  7358. const int nth = params->nth;
  7359. const int nc = src0->ne[0];
  7360. const int nr = ggml_nrows(src0);
  7361. // rows per thread
  7362. const int dr = (nr + nth - 1)/nth;
  7363. // row range for this thread
  7364. const int ir0 = dr*ith;
  7365. const int ir1 = MIN(ir0 + dr, nr);
  7366. for (int i1 = ir0; i1 < ir1; i1++) {
  7367. ggml_vec_gelu_f32(nc,
  7368. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7369. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7370. #ifndef NDEBUG
  7371. for (int k = 0; k < nc; k++) {
  7372. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7373. UNUSED(x);
  7374. assert(!isnan(x));
  7375. assert(!isinf(x));
  7376. }
  7377. #endif
  7378. }
  7379. }
  7380. static void ggml_compute_forward_gelu(
  7381. const struct ggml_compute_params * params,
  7382. const struct ggml_tensor * src0,
  7383. struct ggml_tensor * dst) {
  7384. switch (src0->type) {
  7385. case GGML_TYPE_F32:
  7386. {
  7387. ggml_compute_forward_gelu_f32(params, src0, dst);
  7388. } break;
  7389. default:
  7390. {
  7391. GGML_ASSERT(false);
  7392. } break;
  7393. }
  7394. //printf("XXXXXXXX gelu\n");
  7395. }
  7396. // ggml_compute_forward_silu
  7397. static void ggml_compute_forward_silu_f32(
  7398. const struct ggml_compute_params * params,
  7399. const struct ggml_tensor * src0,
  7400. struct ggml_tensor * dst) {
  7401. GGML_ASSERT(ggml_is_contiguous(src0));
  7402. GGML_ASSERT(ggml_is_contiguous(dst));
  7403. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7404. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7405. return;
  7406. }
  7407. const int ith = params->ith;
  7408. const int nth = params->nth;
  7409. const int nc = src0->ne[0];
  7410. const int nr = ggml_nrows(src0);
  7411. // rows per thread
  7412. const int dr = (nr + nth - 1)/nth;
  7413. // row range for this thread
  7414. const int ir0 = dr*ith;
  7415. const int ir1 = MIN(ir0 + dr, nr);
  7416. for (int i1 = ir0; i1 < ir1; i1++) {
  7417. ggml_vec_silu_f32(nc,
  7418. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7419. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  7420. #ifndef NDEBUG
  7421. for (int k = 0; k < nc; k++) {
  7422. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7423. UNUSED(x);
  7424. assert(!isnan(x));
  7425. assert(!isinf(x));
  7426. }
  7427. #endif
  7428. }
  7429. }
  7430. static void ggml_compute_forward_silu(
  7431. const struct ggml_compute_params * params,
  7432. const struct ggml_tensor * src0,
  7433. struct ggml_tensor * dst) {
  7434. switch (src0->type) {
  7435. case GGML_TYPE_F32:
  7436. {
  7437. ggml_compute_forward_silu_f32(params, src0, dst);
  7438. } break;
  7439. default:
  7440. {
  7441. GGML_ASSERT(false);
  7442. } break;
  7443. }
  7444. }
  7445. // ggml_compute_forward_silu_back
  7446. static void ggml_compute_forward_silu_back_f32(
  7447. const struct ggml_compute_params * params,
  7448. const struct ggml_tensor * src0,
  7449. const struct ggml_tensor * grad,
  7450. struct ggml_tensor * dst) {
  7451. GGML_ASSERT(ggml_is_contiguous(grad));
  7452. GGML_ASSERT(ggml_is_contiguous(src0));
  7453. GGML_ASSERT(ggml_is_contiguous(dst));
  7454. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7455. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  7456. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7457. return;
  7458. }
  7459. const int ith = params->ith;
  7460. const int nth = params->nth;
  7461. const int nc = src0->ne[0];
  7462. const int nr = ggml_nrows(src0);
  7463. // rows per thread
  7464. const int dr = (nr + nth - 1)/nth;
  7465. // row range for this thread
  7466. const int ir0 = dr*ith;
  7467. const int ir1 = MIN(ir0 + dr, nr);
  7468. for (int i1 = ir0; i1 < ir1; i1++) {
  7469. ggml_vec_silu_backward_f32(nc,
  7470. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  7471. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  7472. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  7473. #ifndef NDEBUG
  7474. for (int k = 0; k < nc; k++) {
  7475. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  7476. UNUSED(x);
  7477. assert(!isnan(x));
  7478. assert(!isinf(x));
  7479. }
  7480. #endif
  7481. }
  7482. }
  7483. static void ggml_compute_forward_silu_back(
  7484. const struct ggml_compute_params * params,
  7485. const struct ggml_tensor * src0,
  7486. const struct ggml_tensor * grad,
  7487. struct ggml_tensor * dst) {
  7488. switch (src0->type) {
  7489. case GGML_TYPE_F32:
  7490. {
  7491. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  7492. } break;
  7493. default:
  7494. {
  7495. GGML_ASSERT(false);
  7496. } break;
  7497. }
  7498. }
  7499. // ggml_compute_forward_norm
  7500. static void ggml_compute_forward_norm_f32(
  7501. const struct ggml_compute_params * params,
  7502. const struct ggml_tensor * src0,
  7503. struct ggml_tensor * dst) {
  7504. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7506. return;
  7507. }
  7508. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7509. const int ith = params->ith;
  7510. const int nth = params->nth;
  7511. const int64_t ne00 = src0->ne[0];
  7512. const int64_t ne01 = src0->ne[1];
  7513. const int64_t ne02 = src0->ne[2];
  7514. const int64_t ne03 = src0->ne[3];
  7515. const size_t nb01 = src0->nb[1];
  7516. const size_t nb02 = src0->nb[2];
  7517. const size_t nb03 = src0->nb[3];
  7518. const size_t nb1 = dst->nb[1];
  7519. const size_t nb2 = dst->nb[2];
  7520. const size_t nb3 = dst->nb[3];
  7521. const float eps = 1e-5f; // TODO: make this a parameter
  7522. // TODO: optimize
  7523. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7524. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7525. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7526. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7527. ggml_float sum = 0.0;
  7528. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7529. sum += (ggml_float)x[i00];
  7530. }
  7531. float mean = sum/ne00;
  7532. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7533. ggml_float sum2 = 0.0;
  7534. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7535. float v = x[i00] - mean;
  7536. y[i00] = v;
  7537. sum2 += (ggml_float)(v*v);
  7538. }
  7539. float variance = sum2/ne00;
  7540. const float scale = 1.0f/sqrtf(variance + eps);
  7541. ggml_vec_scale_f32(ne00, y, scale);
  7542. }
  7543. }
  7544. }
  7545. }
  7546. static void ggml_compute_forward_norm(
  7547. const struct ggml_compute_params * params,
  7548. const struct ggml_tensor * src0,
  7549. struct ggml_tensor * dst) {
  7550. switch (src0->type) {
  7551. case GGML_TYPE_F32:
  7552. {
  7553. ggml_compute_forward_norm_f32(params, src0, dst);
  7554. } break;
  7555. default:
  7556. {
  7557. GGML_ASSERT(false);
  7558. } break;
  7559. }
  7560. }
  7561. static void ggml_compute_forward_rms_norm_f32(
  7562. const struct ggml_compute_params * params,
  7563. const struct ggml_tensor * src0,
  7564. struct ggml_tensor * dst) {
  7565. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7566. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7567. return;
  7568. }
  7569. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7570. const int ith = params->ith;
  7571. const int nth = params->nth;
  7572. const int64_t ne00 = src0->ne[0];
  7573. const int64_t ne01 = src0->ne[1];
  7574. const int64_t ne02 = src0->ne[2];
  7575. const int64_t ne03 = src0->ne[3];
  7576. const size_t nb01 = src0->nb[1];
  7577. const size_t nb02 = src0->nb[2];
  7578. const size_t nb03 = src0->nb[3];
  7579. const size_t nb1 = dst->nb[1];
  7580. const size_t nb2 = dst->nb[2];
  7581. const size_t nb3 = dst->nb[3];
  7582. const float eps = 1e-6f; // TODO: make this a parameter
  7583. // TODO: optimize
  7584. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7585. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7586. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7587. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7588. ggml_float sum = 0.0;
  7589. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7590. sum += (ggml_float)(x[i00] * x[i00]);
  7591. }
  7592. const float mean = sum/ne00;
  7593. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7594. memcpy(y, x, ne00 * sizeof(float));
  7595. // for (int i00 = 0; i00 < ne00; i00++) {
  7596. // y[i00] = x[i00];
  7597. // }
  7598. const float scale = 1.0f/sqrtf(mean + eps);
  7599. ggml_vec_scale_f32(ne00, y, scale);
  7600. }
  7601. }
  7602. }
  7603. }
  7604. static void ggml_compute_forward_rms_norm(
  7605. const struct ggml_compute_params * params,
  7606. const struct ggml_tensor * src0,
  7607. struct ggml_tensor * dst) {
  7608. switch (src0->type) {
  7609. case GGML_TYPE_F32:
  7610. {
  7611. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  7612. } break;
  7613. default:
  7614. {
  7615. GGML_ASSERT(false);
  7616. } break;
  7617. }
  7618. }
  7619. static void ggml_compute_forward_rms_norm_back_f32(
  7620. const struct ggml_compute_params * params,
  7621. const struct ggml_tensor * src0,
  7622. const struct ggml_tensor * src1,
  7623. struct ggml_tensor * dst) {
  7624. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  7625. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7626. return;
  7627. }
  7628. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7629. const int ith = params->ith;
  7630. const int nth = params->nth;
  7631. const int64_t ne00 = src0->ne[0];
  7632. const int64_t ne01 = src0->ne[1];
  7633. const int64_t ne02 = src0->ne[2];
  7634. const int64_t ne03 = src0->ne[3];
  7635. const size_t nb01 = src0->nb[1];
  7636. const size_t nb02 = src0->nb[2];
  7637. const size_t nb03 = src0->nb[3];
  7638. const size_t nb11 = src1->nb[1];
  7639. const size_t nb12 = src1->nb[2];
  7640. const size_t nb13 = src1->nb[3];
  7641. const size_t nb1 = dst->nb[1];
  7642. const size_t nb2 = dst->nb[2];
  7643. const size_t nb3 = dst->nb[3];
  7644. const float eps = 1e-6f; // TODO: make this a parameter
  7645. // TODO: optimize
  7646. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7647. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7648. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  7649. // src1 is same shape as src0 => same indices
  7650. const int64_t i11 = i01;
  7651. const int64_t i12 = i02;
  7652. const int64_t i13 = i03;
  7653. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7654. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  7655. ggml_float sum_xx = 0.0;
  7656. ggml_float sum_xdz = 0.0;
  7657. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7658. sum_xx += (ggml_float)(x[i00] * x[i00]);
  7659. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  7660. }
  7661. //const float mean = (float)(sum_xx)/ne00;
  7662. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  7663. const float sum_eps = (float)(sum_xx) + eps*ne00;
  7664. //const float mean_xdz = (float)(sum_xdz)/ne00;
  7665. // we could cache rms from forward pass to improve performance.
  7666. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  7667. //const float rms = sqrtf(mean_eps);
  7668. const float rrms = 1.0f / sqrtf(mean_eps);
  7669. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  7670. {
  7671. // z = rms_norm(x)
  7672. //
  7673. // rms_norm(src0) =
  7674. // scale(
  7675. // src0,
  7676. // div(
  7677. // 1,
  7678. // sqrt(
  7679. // add(
  7680. // scale(
  7681. // sum(
  7682. // sqr(
  7683. // src0)),
  7684. // (1.0/N)),
  7685. // eps))));
  7686. // postorder:
  7687. // ## op args grad
  7688. // 00 param src0 grad[#00]
  7689. // 01 const 1
  7690. // 02 sqr (#00) grad[#02]
  7691. // 03 sum (#02) grad[#03]
  7692. // 04 const 1/N
  7693. // 05 scale (#03, #04) grad[#05]
  7694. // 06 const eps
  7695. // 07 add (#05, #06) grad[#07]
  7696. // 08 sqrt (#07) grad[#08]
  7697. // 09 div (#01,#08) grad[#09]
  7698. // 10 scale (#00,#09) grad[#10]
  7699. //
  7700. // backward pass, given grad[#10]
  7701. // #10: scale
  7702. // grad[#00] += scale(grad[#10],#09)
  7703. // grad[#09] += sum(mul(grad[#10],#00))
  7704. // #09: div
  7705. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  7706. // #08: sqrt
  7707. // grad[#07] += mul(grad[#08], div(0.5, #08))
  7708. // #07: add
  7709. // grad[#05] += grad[#07]
  7710. // #05: scale
  7711. // grad[#03] += scale(grad[#05],#04)
  7712. // #03: sum
  7713. // grad[#02] += repeat(grad[#03], #02)
  7714. // #02:
  7715. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  7716. //
  7717. // substitute and simplify:
  7718. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7719. // grad[#02] = repeat(grad[#03], #02)
  7720. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  7721. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  7722. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  7723. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  7724. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  7725. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  7726. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  7727. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  7728. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  7729. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  7730. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  7731. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  7732. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  7733. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7734. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  7735. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  7736. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  7737. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  7738. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  7739. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  7740. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  7741. // a = b*c + d*e
  7742. // a = b*c*f/f + d*e*f/f
  7743. // a = (b*c*f + d*e*f)*(1/f)
  7744. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  7745. // a = (b + d*e/c)*c
  7746. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  7747. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  7748. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  7749. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  7750. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  7751. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  7752. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  7753. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  7754. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7755. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7756. }
  7757. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  7758. // post-order:
  7759. // dx := x
  7760. // dx := scale(dx,-mean_xdz/mean_eps)
  7761. // dx := add(dx, dz)
  7762. // dx := scale(dx, rrms)
  7763. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  7764. ggml_vec_cpy_f32 (ne00, dx, x);
  7765. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  7766. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  7767. ggml_vec_acc_f32 (ne00, dx, dz);
  7768. ggml_vec_scale_f32(ne00, dx, rrms);
  7769. }
  7770. }
  7771. }
  7772. }
  7773. static void ggml_compute_forward_rms_norm_back(
  7774. const struct ggml_compute_params * params,
  7775. const struct ggml_tensor * src0,
  7776. const struct ggml_tensor * src1,
  7777. struct ggml_tensor * dst) {
  7778. switch (src0->type) {
  7779. case GGML_TYPE_F32:
  7780. {
  7781. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  7782. } break;
  7783. default:
  7784. {
  7785. GGML_ASSERT(false);
  7786. } break;
  7787. }
  7788. }
  7789. // ggml_compute_forward_mul_mat
  7790. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7791. // helper function to determine if it is better to use BLAS or not
  7792. // for large matrices, BLAS is faster
  7793. static bool ggml_compute_forward_mul_mat_use_blas(
  7794. const struct ggml_tensor * src0,
  7795. const struct ggml_tensor * src1,
  7796. struct ggml_tensor * dst) {
  7797. //const int64_t ne00 = src0->ne[0];
  7798. //const int64_t ne01 = src0->ne[1];
  7799. const int64_t ne10 = src1->ne[0];
  7800. const int64_t ne0 = dst->ne[0];
  7801. const int64_t ne1 = dst->ne[1];
  7802. // TODO: find the optimal values for these
  7803. if (ggml_is_contiguous(src0) &&
  7804. ggml_is_contiguous(src1) &&
  7805. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  7806. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  7807. return true;
  7808. }
  7809. return false;
  7810. }
  7811. #endif
  7812. static void ggml_compute_forward_mul_mat_f32(
  7813. const struct ggml_compute_params * params,
  7814. const struct ggml_tensor * src0,
  7815. const struct ggml_tensor * src1,
  7816. struct ggml_tensor * dst) {
  7817. int64_t t0 = ggml_perf_time_us();
  7818. UNUSED(t0);
  7819. const int64_t ne00 = src0->ne[0];
  7820. const int64_t ne01 = src0->ne[1];
  7821. const int64_t ne02 = src0->ne[2];
  7822. const int64_t ne03 = src0->ne[3];
  7823. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7824. const int64_t ne10 = src1->ne[0];
  7825. #endif
  7826. const int64_t ne11 = src1->ne[1];
  7827. #ifndef NDEBUG
  7828. const int64_t ne12 = src1->ne[2];
  7829. const int64_t ne13 = src1->ne[3];
  7830. const int64_t ne0 = dst->ne[0];
  7831. const int64_t ne1 = dst->ne[1];
  7832. const int64_t ne2 = dst->ne[2];
  7833. const int64_t ne3 = dst->ne[3];
  7834. const int nb00 = src0->nb[0];
  7835. #endif
  7836. const int nb01 = src0->nb[1];
  7837. const int nb02 = src0->nb[2];
  7838. const int nb03 = src0->nb[3];
  7839. #ifndef NDEBUG
  7840. const int nb10 = src1->nb[0];
  7841. #endif
  7842. const int nb11 = src1->nb[1];
  7843. const int nb12 = src1->nb[2];
  7844. const int nb13 = src1->nb[3];
  7845. const int nb0 = dst->nb[0];
  7846. const int nb1 = dst->nb[1];
  7847. const int nb2 = dst->nb[2];
  7848. const int nb3 = dst->nb[3];
  7849. const int ith = params->ith;
  7850. const int nth = params->nth;
  7851. assert(ne02 == ne12);
  7852. assert(ne03 == ne13);
  7853. assert(ne2 == ne12);
  7854. assert(ne3 == ne13);
  7855. // we don't support permuted src0 or src1
  7856. assert(nb00 == sizeof(float));
  7857. assert(nb10 == sizeof(float));
  7858. // dst cannot be transposed or permuted
  7859. assert(nb0 == sizeof(float));
  7860. assert(nb0 <= nb1);
  7861. assert(nb1 <= nb2);
  7862. assert(nb2 <= nb3);
  7863. assert(ne0 == ne01);
  7864. assert(ne1 == ne11);
  7865. assert(ne2 == ne02);
  7866. assert(ne3 == ne03);
  7867. // nb01 >= nb00 - src0 is not transposed
  7868. // compute by src0 rows
  7869. #if defined(GGML_USE_CLBLAST)
  7870. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  7871. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  7872. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  7873. }
  7874. return;
  7875. }
  7876. #endif
  7877. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7878. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  7879. if (params->ith != 0) {
  7880. return;
  7881. }
  7882. if (params->type == GGML_TASK_INIT) {
  7883. return;
  7884. }
  7885. if (params->type == GGML_TASK_FINALIZE) {
  7886. return;
  7887. }
  7888. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7889. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7890. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  7891. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  7892. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  7893. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7894. ne11, ne01, ne10,
  7895. 1.0f, y, ne10,
  7896. x, ne00,
  7897. 0.0f, d, ne01);
  7898. }
  7899. }
  7900. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7901. return;
  7902. }
  7903. #endif
  7904. if (params->type == GGML_TASK_INIT) {
  7905. return;
  7906. }
  7907. if (params->type == GGML_TASK_FINALIZE) {
  7908. return;
  7909. }
  7910. // parallelize by src0 rows using ggml_vec_dot_f32
  7911. // total rows in src0
  7912. const int nr = ne01*ne02*ne03;
  7913. // rows per thread
  7914. const int dr = (nr + nth - 1)/nth;
  7915. // row range for this thread
  7916. const int ir0 = dr*ith;
  7917. const int ir1 = MIN(ir0 + dr, nr);
  7918. for (int ir = ir0; ir < ir1; ++ir) {
  7919. // src0 indices
  7920. const int i03 = ir/(ne02*ne01);
  7921. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7922. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7923. for (int64_t ic = 0; ic < ne11; ++ic) {
  7924. // src1 indices
  7925. const int i13 = i03;
  7926. const int i12 = i02;
  7927. const int i11 = ic;
  7928. // dst indices
  7929. const int i0 = i01;
  7930. const int i1 = i11;
  7931. const int i2 = i02;
  7932. const int i3 = i03;
  7933. ggml_vec_dot_f32(ne00,
  7934. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  7935. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  7936. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  7937. }
  7938. }
  7939. //int64_t t1 = ggml_perf_time_us();
  7940. //static int64_t acc = 0;
  7941. //acc += t1 - t0;
  7942. //if (t1 - t0 > 10) {
  7943. // printf("\n");
  7944. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7945. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7946. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7947. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  7948. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7949. //}
  7950. }
  7951. static void ggml_compute_forward_mul_mat_f16_f32(
  7952. const struct ggml_compute_params * params,
  7953. const struct ggml_tensor * src0,
  7954. const struct ggml_tensor * src1,
  7955. struct ggml_tensor * dst) {
  7956. int64_t t0 = ggml_perf_time_us();
  7957. UNUSED(t0);
  7958. const int64_t ne00 = src0->ne[0];
  7959. const int64_t ne01 = src0->ne[1];
  7960. const int64_t ne02 = src0->ne[2];
  7961. const int64_t ne03 = src0->ne[3];
  7962. const int64_t ne10 = src1->ne[0];
  7963. const int64_t ne11 = src1->ne[1];
  7964. const int64_t ne12 = src1->ne[2];
  7965. const int64_t ne13 = src1->ne[3];
  7966. const int64_t ne0 = dst->ne[0];
  7967. const int64_t ne1 = dst->ne[1];
  7968. const int64_t ne2 = dst->ne[2];
  7969. const int64_t ne3 = dst->ne[3];
  7970. //const int64_t ne = ne0*ne1*ne2*ne3;
  7971. const int nb00 = src0->nb[0];
  7972. const int nb01 = src0->nb[1];
  7973. const int nb02 = src0->nb[2];
  7974. const int nb03 = src0->nb[3];
  7975. const int nb10 = src1->nb[0];
  7976. const int nb11 = src1->nb[1];
  7977. const int nb12 = src1->nb[2];
  7978. const int nb13 = src1->nb[3];
  7979. const int nb0 = dst->nb[0];
  7980. const int nb1 = dst->nb[1];
  7981. const int nb2 = dst->nb[2];
  7982. const int nb3 = dst->nb[3];
  7983. const int ith = params->ith;
  7984. const int nth = params->nth;
  7985. GGML_ASSERT(ne02 == ne12);
  7986. GGML_ASSERT(ne03 == ne13);
  7987. GGML_ASSERT(ne2 == ne12);
  7988. GGML_ASSERT(ne3 == ne13);
  7989. // TODO: we don't support permuted src0
  7990. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7991. // dst cannot be transposed or permuted
  7992. GGML_ASSERT(nb0 == sizeof(float));
  7993. GGML_ASSERT(nb0 <= nb1);
  7994. GGML_ASSERT(nb1 <= nb2);
  7995. GGML_ASSERT(nb2 <= nb3);
  7996. GGML_ASSERT(ne0 == ne01);
  7997. GGML_ASSERT(ne1 == ne11);
  7998. GGML_ASSERT(ne2 == ne02);
  7999. GGML_ASSERT(ne3 == ne03);
  8000. // nb01 >= nb00 - src0 is not transposed
  8001. // compute by src0 rows
  8002. #if defined(GGML_USE_CLBLAST)
  8003. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8004. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8005. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8006. }
  8007. return;
  8008. }
  8009. #endif
  8010. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8011. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8012. GGML_ASSERT(nb10 == sizeof(float));
  8013. if (params->ith != 0) {
  8014. return;
  8015. }
  8016. if (params->type == GGML_TASK_INIT) {
  8017. return;
  8018. }
  8019. if (params->type == GGML_TASK_FINALIZE) {
  8020. return;
  8021. }
  8022. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8023. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8024. float * const wdata = params->wdata;
  8025. {
  8026. size_t id = 0;
  8027. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8028. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8029. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8030. }
  8031. }
  8032. assert(id*sizeof(float) <= params->wsize);
  8033. }
  8034. const float * x = wdata;
  8035. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8036. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8037. // zT = y * xT
  8038. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8039. ne11, ne01, ne10,
  8040. 1.0f, y, ne10,
  8041. x, ne00,
  8042. 0.0f, d, ne01);
  8043. }
  8044. }
  8045. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8046. return;
  8047. }
  8048. #endif
  8049. if (params->type == GGML_TASK_INIT) {
  8050. ggml_fp16_t * const wdata = params->wdata;
  8051. size_t id = 0;
  8052. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8053. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8054. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8055. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8056. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8057. }
  8058. }
  8059. }
  8060. }
  8061. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8062. return;
  8063. }
  8064. if (params->type == GGML_TASK_FINALIZE) {
  8065. return;
  8066. }
  8067. // fp16 -> half the size, so divide by 2
  8068. // TODO: do not support transposed src1
  8069. assert(nb10/2 == sizeof(ggml_fp16_t));
  8070. // parallelize by src0 rows using ggml_vec_dot_f16
  8071. // total rows in src0
  8072. const int nr = ne01*ne02*ne03;
  8073. // rows per thread
  8074. const int dr = (nr + nth - 1)/nth;
  8075. // row range for this thread
  8076. const int ir0 = dr*ith;
  8077. const int ir1 = MIN(ir0 + dr, nr);
  8078. ggml_fp16_t * wdata = params->wdata;
  8079. for (int ir = ir0; ir < ir1; ++ir) {
  8080. // src0 indices
  8081. const int i03 = ir/(ne02*ne01);
  8082. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8083. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8084. const int i13 = i03;
  8085. const int i12 = i02;
  8086. const int i0 = i01;
  8087. const int i2 = i02;
  8088. const int i3 = i03;
  8089. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8090. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8091. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8092. for (int64_t ic = 0; ic < ne11; ++ic) {
  8093. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8094. }
  8095. }
  8096. //int64_t t1 = ggml_time_us();
  8097. //static int64_t acc = 0;
  8098. //acc += t1 - t0;
  8099. //if (t1 - t0 > 10) {
  8100. // printf("\n");
  8101. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8102. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8103. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8104. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8105. //}
  8106. }
  8107. static void ggml_compute_forward_mul_mat_q_f32(
  8108. const struct ggml_compute_params * params,
  8109. const struct ggml_tensor * src0,
  8110. const struct ggml_tensor * src1,
  8111. struct ggml_tensor * dst) {
  8112. int64_t t0 = ggml_perf_time_us();
  8113. UNUSED(t0);
  8114. const int64_t ne00 = src0->ne[0];
  8115. const int64_t ne01 = src0->ne[1];
  8116. const int64_t ne02 = src0->ne[2];
  8117. const int64_t ne03 = src0->ne[3];
  8118. const int64_t ne10 = src1->ne[0];
  8119. const int64_t ne11 = src1->ne[1];
  8120. const int64_t ne12 = src1->ne[2];
  8121. const int64_t ne13 = src1->ne[3];
  8122. const int64_t ne0 = dst->ne[0];
  8123. const int64_t ne1 = dst->ne[1];
  8124. const int64_t ne2 = dst->ne[2];
  8125. const int64_t ne3 = dst->ne[3];
  8126. const int nb00 = src0->nb[0];
  8127. const int nb01 = src0->nb[1];
  8128. const int nb02 = src0->nb[2];
  8129. const int nb03 = src0->nb[3];
  8130. const int nb10 = src1->nb[0];
  8131. const int nb11 = src1->nb[1];
  8132. const int nb12 = src1->nb[2];
  8133. const int nb13 = src1->nb[3];
  8134. const int nb0 = dst->nb[0];
  8135. const int nb1 = dst->nb[1];
  8136. const int nb2 = dst->nb[2];
  8137. const int nb3 = dst->nb[3];
  8138. const int ith = params->ith;
  8139. const int nth = params->nth;
  8140. GGML_ASSERT(ne02 == ne12);
  8141. GGML_ASSERT(ne03 == ne13);
  8142. GGML_ASSERT(ne2 == ne12);
  8143. GGML_ASSERT(ne3 == ne13);
  8144. const enum ggml_type type = src0->type;
  8145. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8146. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8147. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8148. // we don't support permuted src0 or src1
  8149. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8150. GGML_ASSERT(nb10 == sizeof(float));
  8151. // dst cannot be transposed or permuted
  8152. GGML_ASSERT(nb0 == sizeof(float));
  8153. GGML_ASSERT(nb0 <= nb1);
  8154. GGML_ASSERT(nb1 <= nb2);
  8155. GGML_ASSERT(nb2 <= nb3);
  8156. GGML_ASSERT(ne0 == ne01);
  8157. GGML_ASSERT(ne1 == ne11);
  8158. GGML_ASSERT(ne2 == ne02);
  8159. GGML_ASSERT(ne3 == ne03);
  8160. // nb01 >= nb00 - src0 is not transposed
  8161. // compute by src0 rows
  8162. #if defined(GGML_USE_CLBLAST)
  8163. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8164. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8165. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8166. }
  8167. return;
  8168. }
  8169. #endif
  8170. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8171. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8172. if (params->ith != 0) {
  8173. return;
  8174. }
  8175. if (params->type == GGML_TASK_INIT) {
  8176. return;
  8177. }
  8178. if (params->type == GGML_TASK_FINALIZE) {
  8179. return;
  8180. }
  8181. float * const wdata = params->wdata;
  8182. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8183. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8184. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8185. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8186. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8187. {
  8188. size_t id = 0;
  8189. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8190. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8191. id += ne00;
  8192. }
  8193. assert(id*sizeof(float) <= params->wsize);
  8194. }
  8195. const float * x = wdata;
  8196. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8197. ne11, ne01, ne10,
  8198. 1.0f, y, ne10,
  8199. x, ne00,
  8200. 0.0f, d, ne01);
  8201. }
  8202. }
  8203. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8204. return;
  8205. }
  8206. #endif
  8207. if (params->type == GGML_TASK_INIT) {
  8208. char * wdata = params->wdata;
  8209. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8210. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8211. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8212. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8213. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8214. wdata += row_size;
  8215. }
  8216. }
  8217. }
  8218. return;
  8219. }
  8220. if (params->type == GGML_TASK_FINALIZE) {
  8221. return;
  8222. }
  8223. // parallelize by src0 rows using ggml_vec_dot_q
  8224. // total rows in src0
  8225. const int nr = ne01*ne02*ne03;
  8226. // rows per thread
  8227. const int dr = (nr + nth - 1)/nth;
  8228. // row range for this thread
  8229. const int ir0 = dr*ith;
  8230. const int ir1 = MIN(ir0 + dr, nr);
  8231. void * wdata = params->wdata;
  8232. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8233. for (int ir = ir0; ir < ir1; ++ir) {
  8234. // src0 indices
  8235. const int i03 = ir/(ne02*ne01);
  8236. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8237. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8238. const int i13 = i03;
  8239. const int i12 = i02;
  8240. const int i0 = i01;
  8241. const int i2 = i02;
  8242. const int i3 = i03;
  8243. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8244. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8245. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8246. assert(ne00 % 32 == 0);
  8247. for (int64_t ic = 0; ic < ne11; ++ic) {
  8248. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8249. }
  8250. }
  8251. //int64_t t1 = ggml_time_us();
  8252. //static int64_t acc = 0;
  8253. //acc += t1 - t0;
  8254. //if (t1 - t0 > 10) {
  8255. // printf("\n");
  8256. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8257. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8258. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8259. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8260. //}
  8261. }
  8262. static void ggml_compute_forward_mul_mat(
  8263. const struct ggml_compute_params * params,
  8264. const struct ggml_tensor * src0,
  8265. const struct ggml_tensor * src1,
  8266. struct ggml_tensor * dst) {
  8267. switch (src0->type) {
  8268. case GGML_TYPE_Q4_0:
  8269. case GGML_TYPE_Q4_1:
  8270. case GGML_TYPE_Q5_0:
  8271. case GGML_TYPE_Q5_1:
  8272. case GGML_TYPE_Q8_0:
  8273. case GGML_TYPE_Q8_1:
  8274. case GGML_TYPE_Q2_K:
  8275. case GGML_TYPE_Q3_K:
  8276. case GGML_TYPE_Q4_K:
  8277. case GGML_TYPE_Q5_K:
  8278. case GGML_TYPE_Q6_K:
  8279. {
  8280. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  8281. } break;
  8282. case GGML_TYPE_F16:
  8283. {
  8284. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  8285. } break;
  8286. case GGML_TYPE_F32:
  8287. {
  8288. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  8289. } break;
  8290. default:
  8291. {
  8292. GGML_ASSERT(false);
  8293. } break;
  8294. }
  8295. }
  8296. // ggml_compute_forward_scale
  8297. static void ggml_compute_forward_scale_f32(
  8298. const struct ggml_compute_params * params,
  8299. const struct ggml_tensor * src0,
  8300. const struct ggml_tensor * src1,
  8301. struct ggml_tensor * dst) {
  8302. GGML_ASSERT(ggml_is_contiguous(src0));
  8303. GGML_ASSERT(ggml_is_contiguous(dst));
  8304. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8305. GGML_ASSERT(ggml_is_scalar(src1));
  8306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8307. return;
  8308. }
  8309. // scale factor
  8310. const float v = *(float *) src1->data;
  8311. const int ith = params->ith;
  8312. const int nth = params->nth;
  8313. const int nc = src0->ne[0];
  8314. const int nr = ggml_nrows(src0);
  8315. // rows per thread
  8316. const int dr = (nr + nth - 1)/nth;
  8317. // row range for this thread
  8318. const int ir0 = dr*ith;
  8319. const int ir1 = MIN(ir0 + dr, nr);
  8320. const size_t nb01 = src0->nb[1];
  8321. const size_t nb1 = dst->nb[1];
  8322. for (int i1 = ir0; i1 < ir1; i1++) {
  8323. if (dst->data != src0->data) {
  8324. // src0 is same shape as dst => same indices
  8325. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8326. }
  8327. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8328. }
  8329. }
  8330. static void ggml_compute_forward_scale(
  8331. const struct ggml_compute_params * params,
  8332. const struct ggml_tensor * src0,
  8333. const struct ggml_tensor * src1,
  8334. struct ggml_tensor * dst) {
  8335. switch (src0->type) {
  8336. case GGML_TYPE_F32:
  8337. {
  8338. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8339. } break;
  8340. default:
  8341. {
  8342. GGML_ASSERT(false);
  8343. } break;
  8344. }
  8345. }
  8346. // ggml_compute_forward_set
  8347. static void ggml_compute_forward_set_f32(
  8348. const struct ggml_compute_params * params,
  8349. const struct ggml_tensor * src0,
  8350. const struct ggml_tensor * src1,
  8351. const struct ggml_tensor * opt0,
  8352. struct ggml_tensor * dst) {
  8353. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8354. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8355. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8356. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8357. // view src0 and dst with these strides and data offset inbytes during set
  8358. // nb0 is implicitely element_size because src0 and dst are contiguous
  8359. size_t nb1 = ((int32_t *) opt0->data)[0];
  8360. size_t nb2 = ((int32_t *) opt0->data)[1];
  8361. size_t nb3 = ((int32_t *) opt0->data)[2];
  8362. size_t offset = ((int32_t *) opt0->data)[3];
  8363. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8364. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8365. // memcpy needs to be synchronized across threads to avoid race conditions.
  8366. // => do it in INIT phase
  8367. memcpy(
  8368. ((char *) dst->data),
  8369. ((char *) src0->data),
  8370. ggml_nbytes(dst));
  8371. }
  8372. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8373. return;
  8374. }
  8375. const int ith = params->ith;
  8376. const int nth = params->nth;
  8377. const int nr = ggml_nrows(src1);
  8378. const int nc = src1->ne[0];
  8379. const int64_t ne10 = src1->ne[0];
  8380. const int64_t ne11 = src1->ne[1];
  8381. const int64_t ne12 = src1->ne[2];
  8382. const int64_t ne13 = src1->ne[3];
  8383. const size_t nb10 = src1->nb[0];
  8384. const size_t nb11 = src1->nb[1];
  8385. const size_t nb12 = src1->nb[2];
  8386. const size_t nb13 = src1->nb[3];
  8387. // src0 and dst as viewed during set
  8388. const size_t nb0 = ggml_element_size(src0);
  8389. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8390. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8391. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8392. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8393. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 < ggml_nbytes(dst));
  8394. GGML_ASSERT(nb10 == sizeof(float));
  8395. // rows per thread
  8396. const int dr = (nr + nth - 1)/nth;
  8397. // row range for this thread
  8398. const int ir0 = dr*ith;
  8399. const int ir1 = MIN(ir0 + dr, nr);
  8400. for (int ir = ir0; ir < ir1; ++ir) {
  8401. // src0 and dst are viewed with shape of src1 and offset
  8402. // => same indices
  8403. const int i3 = ir/(ne12*ne11);
  8404. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8405. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8406. ggml_vec_cpy_f32(nc,
  8407. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8408. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8409. }
  8410. }
  8411. static void ggml_compute_forward_set(
  8412. const struct ggml_compute_params * params,
  8413. const struct ggml_tensor * src0,
  8414. const struct ggml_tensor * src1,
  8415. const struct ggml_tensor * opt0,
  8416. struct ggml_tensor * dst) {
  8417. switch (src0->type) {
  8418. case GGML_TYPE_F32:
  8419. {
  8420. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8421. } break;
  8422. case GGML_TYPE_F16:
  8423. case GGML_TYPE_Q4_0:
  8424. case GGML_TYPE_Q4_1:
  8425. case GGML_TYPE_Q5_0:
  8426. case GGML_TYPE_Q5_1:
  8427. case GGML_TYPE_Q8_0:
  8428. case GGML_TYPE_Q8_1:
  8429. case GGML_TYPE_Q2_K:
  8430. case GGML_TYPE_Q3_K:
  8431. case GGML_TYPE_Q4_K:
  8432. case GGML_TYPE_Q5_K:
  8433. case GGML_TYPE_Q6_K:
  8434. default:
  8435. {
  8436. GGML_ASSERT(false);
  8437. } break;
  8438. }
  8439. }
  8440. // ggml_compute_forward_cpy
  8441. static void ggml_compute_forward_cpy(
  8442. const struct ggml_compute_params * params,
  8443. const struct ggml_tensor * src0,
  8444. struct ggml_tensor * dst) {
  8445. ggml_compute_forward_dup(params, src0, dst);
  8446. }
  8447. // ggml_compute_forward_cont
  8448. static void ggml_compute_forward_cont(
  8449. const struct ggml_compute_params * params,
  8450. const struct ggml_tensor * src0,
  8451. struct ggml_tensor * dst) {
  8452. ggml_compute_forward_dup(params, src0, dst);
  8453. }
  8454. // ggml_compute_forward_reshape
  8455. static void ggml_compute_forward_reshape(
  8456. const struct ggml_compute_params * params,
  8457. const struct ggml_tensor * src0,
  8458. struct ggml_tensor * dst) {
  8459. // NOP
  8460. UNUSED(params);
  8461. UNUSED(src0);
  8462. UNUSED(dst);
  8463. }
  8464. // ggml_compute_forward_view
  8465. static void ggml_compute_forward_view(
  8466. const struct ggml_compute_params * params,
  8467. const struct ggml_tensor * src0) {
  8468. // NOP
  8469. UNUSED(params);
  8470. UNUSED(src0);
  8471. }
  8472. // ggml_compute_forward_permute
  8473. static void ggml_compute_forward_permute(
  8474. const struct ggml_compute_params * params,
  8475. const struct ggml_tensor * src0) {
  8476. // NOP
  8477. UNUSED(params);
  8478. UNUSED(src0);
  8479. }
  8480. // ggml_compute_forward_transpose
  8481. static void ggml_compute_forward_transpose(
  8482. const struct ggml_compute_params * params,
  8483. const struct ggml_tensor * src0) {
  8484. // NOP
  8485. UNUSED(params);
  8486. UNUSED(src0);
  8487. }
  8488. // ggml_compute_forward_get_rows
  8489. static void ggml_compute_forward_get_rows_q(
  8490. const struct ggml_compute_params * params,
  8491. const struct ggml_tensor * src0,
  8492. const struct ggml_tensor * src1,
  8493. struct ggml_tensor * dst) {
  8494. assert(params->ith == 0);
  8495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8496. return;
  8497. }
  8498. const int nc = src0->ne[0];
  8499. const int nr = ggml_nelements(src1);
  8500. const enum ggml_type type = src0->type;
  8501. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8502. assert( dst->ne[0] == nc);
  8503. assert( dst->ne[1] == nr);
  8504. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  8505. for (int i = 0; i < nr; ++i) {
  8506. const int r = ((int32_t *) src1->data)[i];
  8507. dequantize_row_q(
  8508. (const void *) ((char *) src0->data + r*src0->nb[1]),
  8509. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  8510. }
  8511. }
  8512. static void ggml_compute_forward_get_rows_f16(
  8513. const struct ggml_compute_params * params,
  8514. const struct ggml_tensor * src0,
  8515. const struct ggml_tensor * src1,
  8516. struct ggml_tensor * dst) {
  8517. assert(params->ith == 0);
  8518. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8519. return;
  8520. }
  8521. const int nc = src0->ne[0];
  8522. const int nr = ggml_nelements(src1);
  8523. assert( dst->ne[0] == nc);
  8524. assert( dst->ne[1] == nr);
  8525. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8526. for (int i = 0; i < nr; ++i) {
  8527. const int r = ((int32_t *) src1->data)[i];
  8528. for (int j = 0; j < nc; ++j) {
  8529. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  8530. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  8531. }
  8532. }
  8533. }
  8534. static void ggml_compute_forward_get_rows_f32(
  8535. const struct ggml_compute_params * params,
  8536. const struct ggml_tensor * src0,
  8537. const struct ggml_tensor * src1,
  8538. struct ggml_tensor * dst) {
  8539. assert(params->ith == 0);
  8540. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8541. return;
  8542. }
  8543. const int nc = src0->ne[0];
  8544. const int nr = ggml_nelements(src1);
  8545. assert( dst->ne[0] == nc);
  8546. assert( dst->ne[1] == nr);
  8547. assert(src0->nb[0] == sizeof(float));
  8548. for (int i = 0; i < nr; ++i) {
  8549. const int r = ((int32_t *) src1->data)[i];
  8550. ggml_vec_cpy_f32(nc,
  8551. (float *) ((char *) dst->data + i*dst->nb[1]),
  8552. (float *) ((char *) src0->data + r*src0->nb[1]));
  8553. }
  8554. }
  8555. static void ggml_compute_forward_get_rows(
  8556. const struct ggml_compute_params * params,
  8557. const struct ggml_tensor * src0,
  8558. const struct ggml_tensor * src1,
  8559. struct ggml_tensor * dst) {
  8560. switch (src0->type) {
  8561. case GGML_TYPE_Q4_0:
  8562. case GGML_TYPE_Q4_1:
  8563. case GGML_TYPE_Q5_0:
  8564. case GGML_TYPE_Q5_1:
  8565. case GGML_TYPE_Q8_0:
  8566. case GGML_TYPE_Q8_1:
  8567. case GGML_TYPE_Q2_K:
  8568. case GGML_TYPE_Q3_K:
  8569. case GGML_TYPE_Q4_K:
  8570. case GGML_TYPE_Q5_K:
  8571. case GGML_TYPE_Q6_K:
  8572. {
  8573. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  8574. } break;
  8575. case GGML_TYPE_F16:
  8576. {
  8577. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  8578. } break;
  8579. case GGML_TYPE_F32:
  8580. {
  8581. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  8582. } break;
  8583. default:
  8584. {
  8585. GGML_ASSERT(false);
  8586. } break;
  8587. }
  8588. //static bool first = true;
  8589. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8590. //if (first) {
  8591. // first = false;
  8592. //} else {
  8593. // for (int k = 0; k < dst->ne[1]; ++k) {
  8594. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8595. // for (int i = 0; i < 16; ++i) {
  8596. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8597. // }
  8598. // printf("\n");
  8599. // }
  8600. // printf("\n");
  8601. // }
  8602. // printf("\n");
  8603. // exit(0);
  8604. //}
  8605. }
  8606. // ggml_compute_forward_get_rows_back
  8607. static void ggml_compute_forward_get_rows_back_f32_f16(
  8608. const struct ggml_compute_params * params,
  8609. const struct ggml_tensor * src0,
  8610. const struct ggml_tensor * src1,
  8611. const struct ggml_tensor * opt0,
  8612. struct ggml_tensor * dst) {
  8613. GGML_ASSERT(params->ith == 0);
  8614. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8615. GGML_ASSERT(ggml_is_contiguous(opt0));
  8616. GGML_ASSERT(ggml_is_contiguous(dst));
  8617. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8618. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8619. return;
  8620. }
  8621. const int nc = src0->ne[0];
  8622. const int nr = ggml_nelements(src1);
  8623. GGML_ASSERT( dst->ne[0] == nc);
  8624. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  8625. for (int i = 0; i < nr; ++i) {
  8626. const int r = ((int32_t *) src1->data)[i];
  8627. for (int j = 0; j < nc; ++j) {
  8628. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  8629. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  8630. }
  8631. }
  8632. }
  8633. static void ggml_compute_forward_get_rows_back_f32(
  8634. const struct ggml_compute_params * params,
  8635. const struct ggml_tensor * src0,
  8636. const struct ggml_tensor * src1,
  8637. const struct ggml_tensor * opt0,
  8638. struct ggml_tensor * dst) {
  8639. GGML_ASSERT(params->ith == 0);
  8640. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  8641. GGML_ASSERT(ggml_is_contiguous(opt0));
  8642. GGML_ASSERT(ggml_is_contiguous(dst));
  8643. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  8644. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8645. return;
  8646. }
  8647. const int nc = src0->ne[0];
  8648. const int nr = ggml_nelements(src1);
  8649. GGML_ASSERT( dst->ne[0] == nc);
  8650. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8651. for (int i = 0; i < nr; ++i) {
  8652. const int r = ((int32_t *) src1->data)[i];
  8653. ggml_vec_add_f32(nc,
  8654. (float *) ((char *) dst->data + r*dst->nb[1]),
  8655. (float *) ((char *) dst->data + r*dst->nb[1]),
  8656. (float *) ((char *) src0->data + i*src0->nb[1]));
  8657. }
  8658. }
  8659. static void ggml_compute_forward_get_rows_back(
  8660. const struct ggml_compute_params * params,
  8661. const struct ggml_tensor * src0,
  8662. const struct ggml_tensor * src1,
  8663. const struct ggml_tensor * opt0,
  8664. struct ggml_tensor * dst) {
  8665. switch (src0->type) {
  8666. case GGML_TYPE_F16:
  8667. {
  8668. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  8669. } break;
  8670. case GGML_TYPE_F32:
  8671. {
  8672. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  8673. } break;
  8674. default:
  8675. {
  8676. GGML_ASSERT(false);
  8677. } break;
  8678. }
  8679. //static bool first = true;
  8680. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  8681. //if (first) {
  8682. // first = false;
  8683. //} else {
  8684. // for (int k = 0; k < dst->ne[1]; ++k) {
  8685. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  8686. // for (int i = 0; i < 16; ++i) {
  8687. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  8688. // }
  8689. // printf("\n");
  8690. // }
  8691. // printf("\n");
  8692. // }
  8693. // printf("\n");
  8694. // exit(0);
  8695. //}
  8696. }
  8697. // ggml_compute_forward_diag
  8698. static void ggml_compute_forward_diag_f32(
  8699. const struct ggml_compute_params * params,
  8700. const struct ggml_tensor * src0,
  8701. struct ggml_tensor * dst) {
  8702. GGML_ASSERT(params->ith == 0);
  8703. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8704. return;
  8705. }
  8706. // TODO: handle transposed/permuted matrices
  8707. const int ne00 = src0->ne[0];
  8708. const int ne01 = src0->ne[1];
  8709. const int ne02 = src0->ne[2];
  8710. const int ne03 = src0->ne[3];
  8711. const int ne0 = dst->ne[0];
  8712. const int ne1 = dst->ne[1];
  8713. const int ne2 = dst->ne[2];
  8714. const int ne3 = dst->ne[3];
  8715. GGML_ASSERT(ne00 == ne0);
  8716. GGML_ASSERT(ne00 == ne1);
  8717. GGML_ASSERT(ne01 == 1);
  8718. GGML_ASSERT(ne02 == ne2);
  8719. GGML_ASSERT(ne03 == ne3);
  8720. const int nb00 = src0->nb[0];
  8721. //const int nb01 = src0->nb[1];
  8722. const int nb02 = src0->nb[2];
  8723. const int nb03 = src0->nb[3];
  8724. const int nb0 = dst->nb[0];
  8725. const int nb1 = dst->nb[1];
  8726. const int nb2 = dst->nb[2];
  8727. const int nb3 = dst->nb[3];
  8728. GGML_ASSERT(nb00 == sizeof(float));
  8729. GGML_ASSERT(nb0 == sizeof(float));
  8730. for (int i3 = 0; i3 < ne3; i3++) {
  8731. for (int i2 = 0; i2 < ne2; i2++) {
  8732. for (int i1 = 0; i1 < ne1; i1++) {
  8733. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  8734. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  8735. for (int i0 = 0; i0 < i1; i0++) {
  8736. d[i0] = 0;
  8737. }
  8738. d[i1] = s[i1];
  8739. for (int i0 = i1+1; i0 < ne0; i0++) {
  8740. d[i0] = 0;
  8741. }
  8742. }
  8743. }
  8744. }
  8745. }
  8746. static void ggml_compute_forward_diag(
  8747. const struct ggml_compute_params * params,
  8748. const struct ggml_tensor * src0,
  8749. struct ggml_tensor * dst) {
  8750. switch (src0->type) {
  8751. case GGML_TYPE_F32:
  8752. {
  8753. ggml_compute_forward_diag_f32(params, src0, dst);
  8754. } break;
  8755. default:
  8756. {
  8757. GGML_ASSERT(false);
  8758. } break;
  8759. }
  8760. }
  8761. // ggml_compute_forward_diag_mask_inf
  8762. static void ggml_compute_forward_diag_mask_f32(
  8763. const struct ggml_compute_params * params,
  8764. const struct ggml_tensor * src0,
  8765. const struct ggml_tensor * src1,
  8766. struct ggml_tensor * dst,
  8767. const float value) {
  8768. assert(src1->type == GGML_TYPE_I32);
  8769. assert(ggml_nelements(src1) == 2);
  8770. const int ith = params->ith;
  8771. const int nth = params->nth;
  8772. const int n_past = ((int32_t *) src1->data)[0];
  8773. const bool inplace = (bool)((int32_t *) src1->data)[1];
  8774. assert(n_past >= 0);
  8775. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8776. // memcpy needs to be synchronized across threads to avoid race conditions.
  8777. // => do it in INIT phase
  8778. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  8779. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8780. memcpy(
  8781. ((char *) dst->data),
  8782. ((char *) src0->data),
  8783. ggml_nbytes(dst));
  8784. }
  8785. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8786. return;
  8787. }
  8788. // TODO: handle transposed/permuted matrices
  8789. const int n = ggml_nrows(src0);
  8790. const int nc = src0->ne[0];
  8791. const int nr = src0->ne[1];
  8792. const int nz = n/nr;
  8793. assert( dst->nb[0] == sizeof(float));
  8794. assert(src0->nb[0] == sizeof(float));
  8795. for (int k = 0; k < nz; k++) {
  8796. for (int j = ith; j < nr; j += nth) {
  8797. for (int i = n_past; i < nc; i++) {
  8798. if (i > n_past + j) {
  8799. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  8800. }
  8801. }
  8802. }
  8803. }
  8804. }
  8805. static void ggml_compute_forward_diag_mask_inf(
  8806. const struct ggml_compute_params * params,
  8807. const struct ggml_tensor * src0,
  8808. const struct ggml_tensor * src1,
  8809. struct ggml_tensor * dst) {
  8810. switch (src0->type) {
  8811. case GGML_TYPE_F32:
  8812. {
  8813. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  8814. } break;
  8815. default:
  8816. {
  8817. GGML_ASSERT(false);
  8818. } break;
  8819. }
  8820. }
  8821. static void ggml_compute_forward_diag_mask_zero(
  8822. const struct ggml_compute_params * params,
  8823. const struct ggml_tensor * src0,
  8824. const struct ggml_tensor * src1,
  8825. struct ggml_tensor * dst) {
  8826. switch (src0->type) {
  8827. case GGML_TYPE_F32:
  8828. {
  8829. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  8830. } break;
  8831. default:
  8832. {
  8833. GGML_ASSERT(false);
  8834. } break;
  8835. }
  8836. }
  8837. // ggml_compute_forward_soft_max
  8838. static void ggml_compute_forward_soft_max_f32(
  8839. const struct ggml_compute_params * params,
  8840. const struct ggml_tensor * src0,
  8841. struct ggml_tensor * dst) {
  8842. GGML_ASSERT(ggml_is_contiguous(src0));
  8843. GGML_ASSERT(ggml_is_contiguous(dst));
  8844. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8846. return;
  8847. }
  8848. // TODO: handle transposed/permuted matrices
  8849. const int ith = params->ith;
  8850. const int nth = params->nth;
  8851. const int nc = src0->ne[0];
  8852. const int nr = ggml_nrows(src0);
  8853. // rows per thread
  8854. const int dr = (nr + nth - 1)/nth;
  8855. // row range for this thread
  8856. const int ir0 = dr*ith;
  8857. const int ir1 = MIN(ir0 + dr, nr);
  8858. for (int i1 = ir0; i1 < ir1; i1++) {
  8859. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  8860. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  8861. #ifndef NDEBUG
  8862. for (int i = 0; i < nc; ++i) {
  8863. //printf("p[%d] = %f\n", i, p[i]);
  8864. assert(!isnan(sp[i]));
  8865. }
  8866. #endif
  8867. float max = -INFINITY;
  8868. ggml_vec_max_f32(nc, &max, sp);
  8869. ggml_float sum = 0.0;
  8870. uint16_t scvt;
  8871. for (int i = 0; i < nc; i++) {
  8872. if (sp[i] == -INFINITY) {
  8873. dp[i] = 0.0f;
  8874. } else {
  8875. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  8876. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  8877. memcpy(&scvt, &s, sizeof(scvt));
  8878. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  8879. sum += (ggml_float)val;
  8880. dp[i] = val;
  8881. }
  8882. }
  8883. assert(sum > 0.0);
  8884. sum = 1.0/sum;
  8885. ggml_vec_scale_f32(nc, dp, sum);
  8886. #ifndef NDEBUG
  8887. for (int i = 0; i < nc; ++i) {
  8888. assert(!isnan(dp[i]));
  8889. assert(!isinf(dp[i]));
  8890. }
  8891. #endif
  8892. }
  8893. }
  8894. static void ggml_compute_forward_soft_max(
  8895. const struct ggml_compute_params * params,
  8896. const struct ggml_tensor * src0,
  8897. struct ggml_tensor * dst) {
  8898. switch (src0->type) {
  8899. case GGML_TYPE_F32:
  8900. {
  8901. ggml_compute_forward_soft_max_f32(params, src0, dst);
  8902. } break;
  8903. default:
  8904. {
  8905. GGML_ASSERT(false);
  8906. } break;
  8907. }
  8908. }
  8909. // ggml_compute_forward_alibi
  8910. static void ggml_compute_forward_alibi_f32(
  8911. const struct ggml_compute_params * params,
  8912. const struct ggml_tensor * src0,
  8913. const struct ggml_tensor * src1,
  8914. struct ggml_tensor * dst) {
  8915. assert(params->ith == 0);
  8916. assert(src1->type == GGML_TYPE_I32);
  8917. assert(ggml_nelements(src1) == 3);
  8918. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8919. return;
  8920. }
  8921. const int n_past = ((int32_t *) src1->data)[0];
  8922. const int n_head = ((int32_t *) src1->data)[1];
  8923. const float max_bias = ((float *) src1->data)[2];
  8924. assert(n_past >= 0);
  8925. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8926. const int ne1 = src0->ne[1]; // seq_len_without_past
  8927. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8928. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8929. const int n = ggml_nrows(src0);
  8930. const int ne2_ne3 = n/ne1; // ne2*ne3
  8931. const int nb0 = src0->nb[0];
  8932. const int nb1 = src0->nb[1];
  8933. const int nb2 = src0->nb[2];
  8934. //const int nb3 = src0->nb[3];
  8935. assert(nb0 == sizeof(float));
  8936. assert(ne1 + n_past == ne0); (void) n_past;
  8937. // add alibi to src0 (KQ_scaled)
  8938. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8939. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8940. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8941. for (int i = 0; i < ne0; i++) {
  8942. for (int j = 0; j < ne1; j++) {
  8943. for (int k = 0; k < ne2_ne3; k++) {
  8944. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8945. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8946. // TODO: k*nb2 or k*nb3
  8947. float m_k;
  8948. if (k < n_heads_log2_floor) {
  8949. m_k = powf(m0, k + 1);
  8950. } else {
  8951. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  8952. }
  8953. pdst[0] = (i-ne0+1) * m_k + src[0];
  8954. }
  8955. }
  8956. }
  8957. }
  8958. static void ggml_compute_forward_alibi_f16(
  8959. const struct ggml_compute_params * params,
  8960. const struct ggml_tensor * src0,
  8961. const struct ggml_tensor * src1,
  8962. struct ggml_tensor * dst) {
  8963. assert(params->ith == 0);
  8964. assert(src1->type == GGML_TYPE_I32);
  8965. assert(ggml_nelements(src1) == 3);
  8966. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8967. return;
  8968. }
  8969. const int n_past = ((int32_t *) src1->data)[0];
  8970. const int n_head = ((int32_t *) src1->data)[1];
  8971. const float max_bias = ((float *) src1->data)[2];
  8972. assert(n_past >= 0);
  8973. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  8974. const int ne1 = src0->ne[1]; // seq_len_without_past
  8975. //const int ne2 = src0->ne[2]; // n_head -> this is k
  8976. //const int ne3 = src0->ne[3]; // 1 -> bsz
  8977. const int n = ggml_nrows(src0);
  8978. const int ne2_ne3 = n/ne1; // ne2*ne3
  8979. const int nb0 = src0->nb[0];
  8980. const int nb1 = src0->nb[1];
  8981. const int nb2 = src0->nb[2];
  8982. //const int nb3 = src0->nb[3];
  8983. assert(nb0 == sizeof(ggml_fp16_t));
  8984. assert(ne1 + n_past == ne0); (void) n_past;
  8985. // add alibi to src0 (KQ_scaled)
  8986. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  8987. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  8988. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  8989. for (int i = 0; i < ne0; i++) {
  8990. for (int j = 0; j < ne1; j++) {
  8991. for (int k = 0; k < ne2_ne3; k++) {
  8992. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  8993. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  8994. // TODO: k*nb2 or k*nb3
  8995. float m_k;
  8996. if (k < n_heads_log2_floor) {
  8997. m_k = powf(m0, k + 1);
  8998. } else {
  8999. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9000. }
  9001. // we return F32
  9002. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  9003. }
  9004. }
  9005. }
  9006. }
  9007. static void ggml_compute_forward_alibi(
  9008. const struct ggml_compute_params * params,
  9009. const struct ggml_tensor * src0,
  9010. const struct ggml_tensor * src1,
  9011. struct ggml_tensor * dst) {
  9012. switch (src0->type) {
  9013. case GGML_TYPE_F16:
  9014. {
  9015. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9016. } break;
  9017. case GGML_TYPE_F32:
  9018. {
  9019. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9020. } break;
  9021. case GGML_TYPE_Q4_0:
  9022. case GGML_TYPE_Q4_1:
  9023. case GGML_TYPE_Q5_0:
  9024. case GGML_TYPE_Q5_1:
  9025. case GGML_TYPE_Q8_0:
  9026. case GGML_TYPE_Q8_1:
  9027. case GGML_TYPE_Q2_K:
  9028. case GGML_TYPE_Q3_K:
  9029. case GGML_TYPE_Q4_K:
  9030. case GGML_TYPE_Q5_K:
  9031. case GGML_TYPE_Q6_K:
  9032. case GGML_TYPE_Q8_K:
  9033. case GGML_TYPE_I8:
  9034. case GGML_TYPE_I16:
  9035. case GGML_TYPE_I32:
  9036. case GGML_TYPE_COUNT:
  9037. {
  9038. GGML_ASSERT(false);
  9039. } break;
  9040. }
  9041. }
  9042. // ggml_compute_forward_clamp
  9043. static void ggml_compute_forward_clamp_f32(
  9044. const struct ggml_compute_params * params,
  9045. const struct ggml_tensor * src0,
  9046. const struct ggml_tensor * src1,
  9047. struct ggml_tensor * dst) {
  9048. assert(params->ith == 0);
  9049. assert(src1->type == GGML_TYPE_I32);
  9050. assert(ggml_nelements(src1) == 2);
  9051. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9052. return;
  9053. }
  9054. const int min = ((float *) src1->data)[0];
  9055. const int max = ((float *) src1->data)[1];
  9056. const int ith = params->ith;
  9057. const int nth = params->nth;
  9058. const int n = ggml_nrows(src0);
  9059. const int nc = src0->ne[0];
  9060. const size_t nb00 = src0->nb[0];
  9061. const size_t nb01 = src0->nb[1];
  9062. const size_t nb0 = dst->nb[0];
  9063. const size_t nb1 = dst->nb[1];
  9064. GGML_ASSERT( nb0 == sizeof(float));
  9065. GGML_ASSERT(nb00 == sizeof(float));
  9066. for (int j = ith; j < n; j += nth) {
  9067. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9068. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9069. for (int i = 0; i < nc; i++) {
  9070. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9071. }
  9072. }
  9073. }
  9074. static void ggml_compute_forward_clamp(
  9075. const struct ggml_compute_params * params,
  9076. const struct ggml_tensor * src0,
  9077. const struct ggml_tensor * src1,
  9078. struct ggml_tensor * dst) {
  9079. switch (src0->type) {
  9080. case GGML_TYPE_F32:
  9081. {
  9082. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9083. } break;
  9084. case GGML_TYPE_F16:
  9085. case GGML_TYPE_Q4_0:
  9086. case GGML_TYPE_Q4_1:
  9087. case GGML_TYPE_Q5_0:
  9088. case GGML_TYPE_Q5_1:
  9089. case GGML_TYPE_Q8_0:
  9090. case GGML_TYPE_Q8_1:
  9091. case GGML_TYPE_Q2_K:
  9092. case GGML_TYPE_Q3_K:
  9093. case GGML_TYPE_Q4_K:
  9094. case GGML_TYPE_Q5_K:
  9095. case GGML_TYPE_Q6_K:
  9096. case GGML_TYPE_Q8_K:
  9097. case GGML_TYPE_I8:
  9098. case GGML_TYPE_I16:
  9099. case GGML_TYPE_I32:
  9100. case GGML_TYPE_COUNT:
  9101. {
  9102. GGML_ASSERT(false);
  9103. } break;
  9104. }
  9105. }
  9106. // ggml_compute_forward_rope
  9107. static void ggml_compute_forward_rope_f32(
  9108. const struct ggml_compute_params * params,
  9109. const struct ggml_tensor * src0,
  9110. const struct ggml_tensor * src1,
  9111. struct ggml_tensor * dst) {
  9112. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9113. GGML_ASSERT(ggml_nelements(src1) == 3);
  9114. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9115. return;
  9116. }
  9117. const int n_past = ((int32_t *) src1->data)[0];
  9118. const int n_dims = ((int32_t *) src1->data)[1];
  9119. const int mode = ((int32_t *) src1->data)[2];
  9120. assert(n_past >= 0);
  9121. const size_t nb00 = src0->nb[0];
  9122. const size_t nb01 = src0->nb[1];
  9123. const size_t nb02 = src0->nb[2];
  9124. const size_t nb03 = src0->nb[3];
  9125. const int64_t ne0 = dst->ne[0];
  9126. const int64_t ne1 = dst->ne[1];
  9127. const int64_t ne2 = dst->ne[2];
  9128. const int64_t ne3 = dst->ne[3];
  9129. const size_t nb0 = dst->nb[0];
  9130. const size_t nb1 = dst->nb[1];
  9131. const size_t nb2 = dst->nb[2];
  9132. const size_t nb3 = dst->nb[3];
  9133. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9134. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9135. GGML_ASSERT(nb00 == sizeof(float));
  9136. const int ith = params->ith;
  9137. const int nth = params->nth;
  9138. const int nr = ggml_nrows(dst);
  9139. GGML_ASSERT(n_dims <= ne0);
  9140. GGML_ASSERT(n_dims % 2 == 0);
  9141. // rows per thread
  9142. const int dr = (nr + nth - 1)/nth;
  9143. // row range for this thread
  9144. const int ir0 = dr*ith;
  9145. const int ir1 = MIN(ir0 + dr, nr);
  9146. // row index used to determine which thread to use
  9147. int ir = 0;
  9148. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9149. const bool is_neox = mode & 2;
  9150. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9151. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9152. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9153. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9154. if (ir++ < ir0) continue;
  9155. if (ir > ir1) break;
  9156. float theta = (float)p;
  9157. if (!is_neox) {
  9158. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9159. const float cos_theta = cosf(theta);
  9160. const float sin_theta = sinf(theta);
  9161. theta *= theta_scale;
  9162. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9163. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9164. const float x0 = src[0];
  9165. const float x1 = src[1];
  9166. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9167. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9168. }
  9169. } else {
  9170. // TODO: this is probably wrong, but I can't figure it out ..
  9171. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9172. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9173. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9174. const float cos_theta = cosf(theta);
  9175. const float sin_theta = sinf(theta);
  9176. theta *= theta_scale;
  9177. const int64_t i0 = ib*n_dims + ic/2;
  9178. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9179. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9180. const float x0 = src[0];
  9181. const float x1 = src[n_dims/2];
  9182. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9183. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9184. }
  9185. }
  9186. }
  9187. }
  9188. }
  9189. }
  9190. }
  9191. static void ggml_compute_forward_rope_f16(
  9192. const struct ggml_compute_params * params,
  9193. const struct ggml_tensor * src0,
  9194. const struct ggml_tensor * src1,
  9195. struct ggml_tensor * dst) {
  9196. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9197. GGML_ASSERT(ggml_nelements(src1) == 3);
  9198. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9199. return;
  9200. }
  9201. const int n_past = ((int32_t *) src1->data)[0];
  9202. const int n_dims = ((int32_t *) src1->data)[1];
  9203. const int mode = ((int32_t *) src1->data)[2];
  9204. assert(n_past >= 0);
  9205. const size_t nb00 = src0->nb[0];
  9206. const size_t nb01 = src0->nb[1];
  9207. const size_t nb02 = src0->nb[2];
  9208. const size_t nb03 = src0->nb[3];
  9209. const int64_t ne0 = dst->ne[0];
  9210. const int64_t ne1 = dst->ne[1];
  9211. const int64_t ne2 = dst->ne[2];
  9212. const int64_t ne3 = dst->ne[3];
  9213. const size_t nb0 = dst->nb[0];
  9214. const size_t nb1 = dst->nb[1];
  9215. const size_t nb2 = dst->nb[2];
  9216. const size_t nb3 = dst->nb[3];
  9217. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9218. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9219. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9220. const int ith = params->ith;
  9221. const int nth = params->nth;
  9222. const int nr = ggml_nrows(dst);
  9223. GGML_ASSERT(n_dims <= ne0);
  9224. GGML_ASSERT(n_dims % 2 == 0);
  9225. // rows per thread
  9226. const int dr = (nr + nth - 1)/nth;
  9227. // row range for this thread
  9228. const int ir0 = dr*ith;
  9229. const int ir1 = MIN(ir0 + dr, nr);
  9230. // row index used to determine which thread to use
  9231. int ir = 0;
  9232. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9233. const bool is_neox = mode & 2;
  9234. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9235. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9236. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9237. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9238. if (ir++ < ir0) continue;
  9239. if (ir > ir1) break;
  9240. float theta = (float)p;
  9241. if (!is_neox) {
  9242. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9243. const float cos_theta = cosf(theta);
  9244. const float sin_theta = sinf(theta);
  9245. theta *= theta_scale;
  9246. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9247. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9248. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9249. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9250. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9251. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9252. }
  9253. } else {
  9254. // TODO: this is probably wrong, but I can't figure it out ..
  9255. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9256. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9257. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9258. const float cos_theta = cosf(theta);
  9259. const float sin_theta = sinf(theta);
  9260. theta *= theta_scale;
  9261. const int64_t i0 = ib*n_dims + ic/2;
  9262. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9263. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9264. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9265. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9266. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9267. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9268. }
  9269. }
  9270. }
  9271. }
  9272. }
  9273. }
  9274. }
  9275. static void ggml_compute_forward_rope(
  9276. const struct ggml_compute_params * params,
  9277. const struct ggml_tensor * src0,
  9278. const struct ggml_tensor * src1,
  9279. struct ggml_tensor * dst) {
  9280. switch (src0->type) {
  9281. case GGML_TYPE_F16:
  9282. {
  9283. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9284. } break;
  9285. case GGML_TYPE_F32:
  9286. {
  9287. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9288. } break;
  9289. default:
  9290. {
  9291. GGML_ASSERT(false);
  9292. } break;
  9293. }
  9294. }
  9295. // ggml_compute_forward_rope_back
  9296. static void ggml_compute_forward_rope_back_f32(
  9297. const struct ggml_compute_params * params,
  9298. const struct ggml_tensor * src0,
  9299. const struct ggml_tensor * src1,
  9300. struct ggml_tensor * dst) {
  9301. assert(src1->type == GGML_TYPE_I32);
  9302. assert(ggml_nelements(src1) == 3);
  9303. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9304. return;
  9305. }
  9306. // y = rope(x, src1)
  9307. // dx = rope_back(dy, src1)
  9308. // src0 is dy, src1 contains options
  9309. const int n_past = ((int32_t *) src1->data)[0];
  9310. const int n_dims = ((int32_t *) src1->data)[1];
  9311. const int mode = ((int32_t *) src1->data)[2];
  9312. assert(n_past >= 0);
  9313. const size_t nb00 = src0->nb[0];
  9314. const size_t nb01 = src0->nb[1];
  9315. const size_t nb02 = src0->nb[2];
  9316. const size_t nb03 = src0->nb[3];
  9317. const int64_t ne0 = dst->ne[0];
  9318. const int64_t ne1 = dst->ne[1];
  9319. const int64_t ne2 = dst->ne[2];
  9320. const int64_t ne3 = dst->ne[3];
  9321. const size_t nb0 = dst->nb[0];
  9322. const size_t nb1 = dst->nb[1];
  9323. const size_t nb2 = dst->nb[2];
  9324. const size_t nb3 = dst->nb[3];
  9325. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9326. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9327. assert(nb0 == sizeof(float));
  9328. const int ith = params->ith;
  9329. const int nth = params->nth;
  9330. const int nr = ggml_nrows(dst);
  9331. // rows per thread
  9332. const int dr = (nr + nth - 1)/nth;
  9333. // row range for this thread
  9334. const int ir0 = dr*ith;
  9335. const int ir1 = MIN(ir0 + dr, nr);
  9336. // row index used to determine which thread to use
  9337. int ir = 0;
  9338. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9339. const bool is_neox = mode & 2;
  9340. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9341. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9342. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9343. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9344. if (ir++ < ir0) continue;
  9345. if (ir > ir1) break;
  9346. float theta = (float)p;
  9347. if (!is_neox) {
  9348. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9349. const float cos_theta = cosf(theta);
  9350. const float sin_theta = sinf(theta);
  9351. theta *= theta_scale;
  9352. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9353. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9354. const float dy0 = dy[0];
  9355. const float dy1 = dy[1];
  9356. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9357. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9358. }
  9359. } else {
  9360. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9361. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9362. const float cos_theta = cosf(theta);
  9363. const float sin_theta = sinf(theta);
  9364. theta *= theta_scale;
  9365. const int64_t i0 = ib*n_dims + ic/2;
  9366. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9367. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9368. const float dy0 = dy[0];
  9369. const float dy1 = dy[n_dims/2];
  9370. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9371. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9372. }
  9373. }
  9374. }
  9375. }
  9376. }
  9377. }
  9378. }
  9379. static void ggml_compute_forward_rope_back_f16(
  9380. const struct ggml_compute_params * params,
  9381. const struct ggml_tensor * src0,
  9382. const struct ggml_tensor * src1,
  9383. struct ggml_tensor * dst) {
  9384. assert(src1->type == GGML_TYPE_I32);
  9385. assert(ggml_nelements(src1) == 3);
  9386. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9387. return;
  9388. }
  9389. // y = rope(x, src1)
  9390. // dx = rope_back(dy, src1)
  9391. // src0 is dy, src1 contains options
  9392. const int n_past = ((int32_t *) src1->data)[0];
  9393. const int n_dims = ((int32_t *) src1->data)[1];
  9394. const int mode = ((int32_t *) src1->data)[2];
  9395. assert(n_past >= 0);
  9396. const size_t nb00 = src0->nb[0];
  9397. const size_t nb01 = src0->nb[1];
  9398. const size_t nb02 = src0->nb[2];
  9399. const size_t nb03 = src0->nb[3];
  9400. const int64_t ne0 = dst->ne[0];
  9401. const int64_t ne1 = dst->ne[1];
  9402. const int64_t ne2 = dst->ne[2];
  9403. const int64_t ne3 = dst->ne[3];
  9404. const size_t nb0 = dst->nb[0];
  9405. const size_t nb1 = dst->nb[1];
  9406. const size_t nb2 = dst->nb[2];
  9407. const size_t nb3 = dst->nb[3];
  9408. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9409. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9410. assert(nb0 == sizeof(ggml_fp16_t));
  9411. const int ith = params->ith;
  9412. const int nth = params->nth;
  9413. const int nr = ggml_nrows(dst);
  9414. // rows per thread
  9415. const int dr = (nr + nth - 1)/nth;
  9416. // row range for this thread
  9417. const int ir0 = dr*ith;
  9418. const int ir1 = MIN(ir0 + dr, nr);
  9419. // row index used to determine which thread to use
  9420. int ir = 0;
  9421. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9422. const bool is_neox = mode & 2;
  9423. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9424. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9425. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9426. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9427. if (ir++ < ir0) continue;
  9428. if (ir > ir1) break;
  9429. float theta = (float)p;
  9430. if (!is_neox) {
  9431. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9432. const float cos_theta = cosf(theta);
  9433. const float sin_theta = sinf(theta);
  9434. theta *= theta_scale;
  9435. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9436. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9437. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9438. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  9439. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9440. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9441. }
  9442. } else {
  9443. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9444. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9445. const float cos_theta = cosf(theta);
  9446. const float sin_theta = sinf(theta);
  9447. theta *= theta_scale;
  9448. const int64_t i0 = ib*n_dims + ic/2;
  9449. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9450. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9451. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  9452. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  9453. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  9454. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  9455. }
  9456. }
  9457. }
  9458. }
  9459. }
  9460. }
  9461. }
  9462. static void ggml_compute_forward_rope_back(
  9463. const struct ggml_compute_params * params,
  9464. const struct ggml_tensor * src0,
  9465. const struct ggml_tensor * src1,
  9466. struct ggml_tensor * dst) {
  9467. switch (src0->type) {
  9468. case GGML_TYPE_F16:
  9469. {
  9470. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  9471. } break;
  9472. case GGML_TYPE_F32:
  9473. {
  9474. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  9475. } break;
  9476. default:
  9477. {
  9478. GGML_ASSERT(false);
  9479. } break;
  9480. }
  9481. }
  9482. // ggml_compute_forward_conv_1d_1s
  9483. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  9484. const struct ggml_compute_params * params,
  9485. const struct ggml_tensor * src0,
  9486. const struct ggml_tensor * src1,
  9487. struct ggml_tensor * dst) {
  9488. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9489. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9490. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9491. int64_t t0 = ggml_perf_time_us();
  9492. UNUSED(t0);
  9493. const int64_t ne00 = src0->ne[0];
  9494. const int64_t ne01 = src0->ne[1];
  9495. const int64_t ne02 = src0->ne[2];
  9496. //const int64_t ne03 = src0->ne[3];
  9497. const int64_t ne10 = src1->ne[0];
  9498. const int64_t ne11 = src1->ne[1];
  9499. //const int64_t ne12 = src1->ne[2];
  9500. //const int64_t ne13 = src1->ne[3];
  9501. //const int64_t ne0 = dst->ne[0];
  9502. //const int64_t ne1 = dst->ne[1];
  9503. //const int64_t ne2 = dst->ne[2];
  9504. //const int64_t ne3 = dst->ne[3];
  9505. //const int64_t ne = ne0*ne1*ne2*ne3;
  9506. const int nb00 = src0->nb[0];
  9507. const int nb01 = src0->nb[1];
  9508. const int nb02 = src0->nb[2];
  9509. //const int nb03 = src0->nb[3];
  9510. const int nb10 = src1->nb[0];
  9511. const int nb11 = src1->nb[1];
  9512. //const int nb12 = src1->nb[2];
  9513. //const int nb13 = src1->nb[3];
  9514. //const int nb0 = dst->nb[0];
  9515. const int nb1 = dst->nb[1];
  9516. //const int nb2 = dst->nb[2];
  9517. //const int nb3 = dst->nb[3];
  9518. const int ith = params->ith;
  9519. const int nth = params->nth;
  9520. const int nk = ne00;
  9521. const int nh = nk/2;
  9522. const int ew0 = ggml_up32(ne01);
  9523. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9524. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9525. GGML_ASSERT(nb10 == sizeof(float));
  9526. if (params->type == GGML_TASK_INIT) {
  9527. // TODO: fix this memset (wsize is overestimated)
  9528. memset(params->wdata, 0, params->wsize);
  9529. // prepare kernel data (src0)
  9530. {
  9531. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9532. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9533. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9534. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9535. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9536. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9537. dst_data[i00*ew0 + i01] = src[i00];
  9538. }
  9539. }
  9540. }
  9541. }
  9542. // prepare source data (src1)
  9543. {
  9544. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9545. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9546. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9547. ggml_fp16_t * dst_data = wdata;
  9548. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9549. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9550. }
  9551. }
  9552. }
  9553. return;
  9554. }
  9555. if (params->type == GGML_TASK_FINALIZE) {
  9556. return;
  9557. }
  9558. // total rows in dst
  9559. const int nr = ne02;
  9560. // rows per thread
  9561. const int dr = (nr + nth - 1)/nth;
  9562. // row range for this thread
  9563. const int ir0 = dr*ith;
  9564. const int ir1 = MIN(ir0 + dr, nr);
  9565. for (int i1 = ir0; i1 < ir1; i1++) {
  9566. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9567. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9568. dst_data[i0] = 0;
  9569. for (int k = -nh; k <= nh; k++) {
  9570. float v = 0.0f;
  9571. ggml_vec_dot_f16(ew0, &v,
  9572. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9573. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9574. dst_data[i0] += v;
  9575. }
  9576. }
  9577. }
  9578. }
  9579. static void ggml_compute_forward_conv_1d_1s_f32(
  9580. const struct ggml_compute_params * params,
  9581. const struct ggml_tensor * src0,
  9582. const struct ggml_tensor * src1,
  9583. struct ggml_tensor * dst) {
  9584. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9585. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9586. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9587. int64_t t0 = ggml_perf_time_us();
  9588. UNUSED(t0);
  9589. const int64_t ne00 = src0->ne[0];
  9590. const int64_t ne01 = src0->ne[1];
  9591. const int64_t ne02 = src0->ne[2];
  9592. //const int64_t ne03 = src0->ne[3];
  9593. const int64_t ne10 = src1->ne[0];
  9594. const int64_t ne11 = src1->ne[1];
  9595. //const int64_t ne12 = src1->ne[2];
  9596. //const int64_t ne13 = src1->ne[3];
  9597. //const int64_t ne0 = dst->ne[0];
  9598. //const int64_t ne1 = dst->ne[1];
  9599. //const int64_t ne2 = dst->ne[2];
  9600. //const int64_t ne3 = dst->ne[3];
  9601. //const int64_t ne = ne0*ne1*ne2*ne3;
  9602. const int nb00 = src0->nb[0];
  9603. const int nb01 = src0->nb[1];
  9604. const int nb02 = src0->nb[2];
  9605. //const int nb03 = src0->nb[3];
  9606. const int nb10 = src1->nb[0];
  9607. const int nb11 = src1->nb[1];
  9608. //const int nb12 = src1->nb[2];
  9609. //const int nb13 = src1->nb[3];
  9610. //const int nb0 = dst->nb[0];
  9611. const int nb1 = dst->nb[1];
  9612. //const int nb2 = dst->nb[2];
  9613. //const int nb3 = dst->nb[3];
  9614. const int ith = params->ith;
  9615. const int nth = params->nth;
  9616. const int nk = ne00;
  9617. const int nh = nk/2;
  9618. const int ew0 = ggml_up32(ne01);
  9619. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9620. GGML_ASSERT(nb00 == sizeof(float));
  9621. GGML_ASSERT(nb10 == sizeof(float));
  9622. if (params->type == GGML_TASK_INIT) {
  9623. // TODO: fix this memset (wsize is overestimated)
  9624. memset(params->wdata, 0, params->wsize);
  9625. // prepare kernel data (src0)
  9626. {
  9627. float * const wdata = (float *) params->wdata + 0;
  9628. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9629. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9630. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9631. float * dst_data = wdata + i02*ew0*ne00;
  9632. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9633. dst_data[i00*ew0 + i01] = src[i00];
  9634. }
  9635. }
  9636. }
  9637. }
  9638. // prepare source data (src1)
  9639. {
  9640. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9641. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9642. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9643. float * dst_data = wdata;
  9644. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9645. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9646. }
  9647. }
  9648. }
  9649. return;
  9650. }
  9651. if (params->type == GGML_TASK_FINALIZE) {
  9652. return;
  9653. }
  9654. // total rows in dst
  9655. const int nr = ne02;
  9656. // rows per thread
  9657. const int dr = (nr + nth - 1)/nth;
  9658. // row range for this thread
  9659. const int ir0 = dr*ith;
  9660. const int ir1 = MIN(ir0 + dr, nr);
  9661. for (int i1 = ir0; i1 < ir1; i1++) {
  9662. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9663. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  9664. dst_data[i0] = 0;
  9665. for (int k = -nh; k <= nh; k++) {
  9666. float v = 0.0f;
  9667. ggml_vec_dot_f32(ew0, &v,
  9668. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9669. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9670. dst_data[i0] += v;
  9671. }
  9672. }
  9673. }
  9674. }
  9675. static void ggml_compute_forward_conv_1d_1s(
  9676. const struct ggml_compute_params * params,
  9677. const struct ggml_tensor * src0,
  9678. const struct ggml_tensor * src1,
  9679. struct ggml_tensor * dst) {
  9680. switch (src0->type) {
  9681. case GGML_TYPE_F16:
  9682. {
  9683. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  9684. } break;
  9685. case GGML_TYPE_F32:
  9686. {
  9687. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  9688. } break;
  9689. default:
  9690. {
  9691. GGML_ASSERT(false);
  9692. } break;
  9693. }
  9694. }
  9695. // ggml_compute_forward_conv_1d_2s
  9696. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  9697. const struct ggml_compute_params * params,
  9698. const struct ggml_tensor * src0,
  9699. const struct ggml_tensor * src1,
  9700. struct ggml_tensor * dst) {
  9701. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  9702. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9703. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9704. int64_t t0 = ggml_perf_time_us();
  9705. UNUSED(t0);
  9706. const int64_t ne00 = src0->ne[0];
  9707. const int64_t ne01 = src0->ne[1];
  9708. const int64_t ne02 = src0->ne[2];
  9709. //const int64_t ne03 = src0->ne[3];
  9710. const int64_t ne10 = src1->ne[0];
  9711. const int64_t ne11 = src1->ne[1];
  9712. //const int64_t ne12 = src1->ne[2];
  9713. //const int64_t ne13 = src1->ne[3];
  9714. //const int64_t ne0 = dst->ne[0];
  9715. //const int64_t ne1 = dst->ne[1];
  9716. //const int64_t ne2 = dst->ne[2];
  9717. //const int64_t ne3 = dst->ne[3];
  9718. //const int64_t ne = ne0*ne1*ne2*ne3;
  9719. const int nb00 = src0->nb[0];
  9720. const int nb01 = src0->nb[1];
  9721. const int nb02 = src0->nb[2];
  9722. //const int nb03 = src0->nb[3];
  9723. const int nb10 = src1->nb[0];
  9724. const int nb11 = src1->nb[1];
  9725. //const int nb12 = src1->nb[2];
  9726. //const int nb13 = src1->nb[3];
  9727. //const int nb0 = dst->nb[0];
  9728. const int nb1 = dst->nb[1];
  9729. //const int nb2 = dst->nb[2];
  9730. //const int nb3 = dst->nb[3];
  9731. const int ith = params->ith;
  9732. const int nth = params->nth;
  9733. const int nk = ne00;
  9734. const int nh = nk/2;
  9735. const int ew0 = ggml_up32(ne01);
  9736. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9737. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  9738. GGML_ASSERT(nb10 == sizeof(float));
  9739. if (params->type == GGML_TASK_INIT) {
  9740. // TODO: fix this memset (wsize is overestimated)
  9741. memset(params->wdata, 0, params->wsize);
  9742. // prepare kernel data (src0)
  9743. {
  9744. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  9745. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9746. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9747. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  9748. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  9749. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9750. dst_data[i00*ew0 + i01] = src[i00];
  9751. }
  9752. }
  9753. }
  9754. }
  9755. // prepare source data (src1)
  9756. {
  9757. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  9758. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9759. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9760. ggml_fp16_t * dst_data = wdata;
  9761. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9762. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  9763. }
  9764. }
  9765. }
  9766. return;
  9767. }
  9768. if (params->type == GGML_TASK_FINALIZE) {
  9769. return;
  9770. }
  9771. // total rows in dst
  9772. const int nr = ne02;
  9773. // rows per thread
  9774. const int dr = (nr + nth - 1)/nth;
  9775. // row range for this thread
  9776. const int ir0 = dr*ith;
  9777. const int ir1 = MIN(ir0 + dr, nr);
  9778. for (int i1 = ir0; i1 < ir1; i1++) {
  9779. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9780. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9781. dst_data[i0/2] = 0;
  9782. for (int k = -nh; k <= nh; k++) {
  9783. float v = 0.0f;
  9784. ggml_vec_dot_f16(ew0, &v,
  9785. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9786. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9787. dst_data[i0/2] += v;
  9788. }
  9789. }
  9790. }
  9791. }
  9792. static void ggml_compute_forward_conv_1d_2s_f32(
  9793. const struct ggml_compute_params * params,
  9794. const struct ggml_tensor * src0,
  9795. const struct ggml_tensor * src1,
  9796. struct ggml_tensor * dst) {
  9797. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  9798. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9799. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  9800. int64_t t0 = ggml_perf_time_us();
  9801. UNUSED(t0);
  9802. const int64_t ne00 = src0->ne[0];
  9803. const int64_t ne01 = src0->ne[1];
  9804. const int64_t ne02 = src0->ne[2];
  9805. //const int64_t ne03 = src0->ne[3];
  9806. const int64_t ne10 = src1->ne[0];
  9807. const int64_t ne11 = src1->ne[1];
  9808. //const int64_t ne12 = src1->ne[2];
  9809. //const int64_t ne13 = src1->ne[3];
  9810. //const int64_t ne0 = dst->ne[0];
  9811. //const int64_t ne1 = dst->ne[1];
  9812. //const int64_t ne2 = dst->ne[2];
  9813. //const int64_t ne3 = dst->ne[3];
  9814. //const int64_t ne = ne0*ne1*ne2*ne3;
  9815. const int nb00 = src0->nb[0];
  9816. const int nb01 = src0->nb[1];
  9817. const int nb02 = src0->nb[2];
  9818. //const int nb03 = src0->nb[3];
  9819. const int nb10 = src1->nb[0];
  9820. const int nb11 = src1->nb[1];
  9821. //const int nb12 = src1->nb[2];
  9822. //const int nb13 = src1->nb[3];
  9823. //const int nb0 = dst->nb[0];
  9824. const int nb1 = dst->nb[1];
  9825. //const int nb2 = dst->nb[2];
  9826. //const int nb3 = dst->nb[3];
  9827. const int ith = params->ith;
  9828. const int nth = params->nth;
  9829. const int nk = ne00;
  9830. const int nh = nk/2;
  9831. const int ew0 = ggml_up32(ne01);
  9832. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  9833. GGML_ASSERT(nb00 == sizeof(float));
  9834. GGML_ASSERT(nb10 == sizeof(float));
  9835. if (params->type == GGML_TASK_INIT) {
  9836. // TODO: fix this memset (wsize is overestimated)
  9837. memset(params->wdata, 0, params->wsize);
  9838. // prepare kernel data (src0)
  9839. {
  9840. float * const wdata = (float *) params->wdata + 0;
  9841. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9842. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9843. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  9844. float * dst_data = wdata + i02*ew0*ne00;
  9845. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9846. dst_data[i00*ew0 + i01] = src[i00];
  9847. }
  9848. }
  9849. }
  9850. }
  9851. // prepare source data (src1)
  9852. {
  9853. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  9854. for (int64_t i11 = 0; i11 < ne11; i11++) {
  9855. const float * const src = (float *)((char *) src1->data + i11*nb11);
  9856. float * dst_data = wdata;
  9857. for (int64_t i10 = 0; i10 < ne10; i10++) {
  9858. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  9859. }
  9860. }
  9861. }
  9862. return;
  9863. }
  9864. if (params->type == GGML_TASK_FINALIZE) {
  9865. return;
  9866. }
  9867. // total rows in dst
  9868. const int nr = ne02;
  9869. // rows per thread
  9870. const int dr = (nr + nth - 1)/nth;
  9871. // row range for this thread
  9872. const int ir0 = dr*ith;
  9873. const int ir1 = MIN(ir0 + dr, nr);
  9874. for (int i1 = ir0; i1 < ir1; i1++) {
  9875. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  9876. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  9877. dst_data[i0/2] = 0;
  9878. for (int k = -nh; k <= nh; k++) {
  9879. float v = 0.0f;
  9880. ggml_vec_dot_f32(ew0, &v,
  9881. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  9882. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  9883. dst_data[i0/2] += v;
  9884. }
  9885. }
  9886. }
  9887. }
  9888. static void ggml_compute_forward_conv_1d_2s(
  9889. const struct ggml_compute_params * params,
  9890. const struct ggml_tensor * src0,
  9891. const struct ggml_tensor * src1,
  9892. struct ggml_tensor * dst) {
  9893. switch (src0->type) {
  9894. case GGML_TYPE_F16:
  9895. {
  9896. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  9897. } break;
  9898. case GGML_TYPE_F32:
  9899. {
  9900. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  9901. } break;
  9902. default:
  9903. {
  9904. GGML_ASSERT(false);
  9905. } break;
  9906. }
  9907. }
  9908. // ggml_compute_forward_flash_attn
  9909. static void ggml_compute_forward_flash_attn_f32(
  9910. const struct ggml_compute_params * params,
  9911. const struct ggml_tensor * q,
  9912. const struct ggml_tensor * k,
  9913. const struct ggml_tensor * v,
  9914. const bool masked,
  9915. struct ggml_tensor * dst) {
  9916. int64_t t0 = ggml_perf_time_us();
  9917. UNUSED(t0);
  9918. const int64_t neq0 = q->ne[0];
  9919. const int64_t neq1 = q->ne[1];
  9920. const int64_t neq2 = q->ne[2];
  9921. const int64_t neq3 = q->ne[3];
  9922. const int64_t nek0 = k->ne[0];
  9923. const int64_t nek1 = k->ne[1];
  9924. //const int64_t nek2 = k->ne[2];
  9925. //const int64_t nek3 = k->ne[3];
  9926. //const int64_t nev0 = v->ne[0];
  9927. const int64_t nev1 = v->ne[1];
  9928. //const int64_t nev2 = v->ne[2];
  9929. //const int64_t nev3 = v->ne[3];
  9930. const int64_t ne0 = dst->ne[0];
  9931. const int64_t ne1 = dst->ne[1];
  9932. //const int64_t ne2 = dst->ne[2];
  9933. //const int64_t ne3 = dst->ne[3];
  9934. const int nbk0 = k->nb[0];
  9935. const int nbk1 = k->nb[1];
  9936. const int nbk2 = k->nb[2];
  9937. const int nbk3 = k->nb[3];
  9938. const int nbq0 = q->nb[0];
  9939. const int nbq1 = q->nb[1];
  9940. const int nbq2 = q->nb[2];
  9941. const int nbq3 = q->nb[3];
  9942. const int nbv0 = v->nb[0];
  9943. const int nbv1 = v->nb[1];
  9944. const int nbv2 = v->nb[2];
  9945. const int nbv3 = v->nb[3];
  9946. const int nb0 = dst->nb[0];
  9947. const int nb1 = dst->nb[1];
  9948. const int nb2 = dst->nb[2];
  9949. const int nb3 = dst->nb[3];
  9950. const int ith = params->ith;
  9951. const int nth = params->nth;
  9952. const int64_t D = neq0;
  9953. const int64_t N = neq1;
  9954. const int64_t P = nek1 - N;
  9955. const int64_t M = P + N;
  9956. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  9957. GGML_ASSERT(ne0 == D);
  9958. GGML_ASSERT(ne1 == N);
  9959. GGML_ASSERT(P >= 0);
  9960. GGML_ASSERT(nbq0 == sizeof(float));
  9961. GGML_ASSERT(nbk0 == sizeof(float));
  9962. GGML_ASSERT(nbv0 == sizeof(float));
  9963. GGML_ASSERT(neq0 == D);
  9964. GGML_ASSERT(nek0 == D);
  9965. GGML_ASSERT(nev1 == D);
  9966. GGML_ASSERT(neq1 == N);
  9967. GGML_ASSERT(nek1 == N + P);
  9968. GGML_ASSERT(nev1 == D);
  9969. // dst cannot be transposed or permuted
  9970. GGML_ASSERT(nb0 == sizeof(float));
  9971. GGML_ASSERT(nb0 <= nb1);
  9972. GGML_ASSERT(nb1 <= nb2);
  9973. GGML_ASSERT(nb2 <= nb3);
  9974. if (params->type == GGML_TASK_INIT) {
  9975. return;
  9976. }
  9977. if (params->type == GGML_TASK_FINALIZE) {
  9978. return;
  9979. }
  9980. // parallelize by q rows using ggml_vec_dot_f32
  9981. // total rows in q
  9982. const int nr = neq1*neq2*neq3;
  9983. // rows per thread
  9984. const int dr = (nr + nth - 1)/nth;
  9985. // row range for this thread
  9986. const int ir0 = dr*ith;
  9987. const int ir1 = MIN(ir0 + dr, nr);
  9988. const float scale = 1.0f/sqrtf(D);
  9989. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  9990. for (int ir = ir0; ir < ir1; ++ir) {
  9991. // q indices
  9992. const int iq3 = ir/(neq2*neq1);
  9993. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  9994. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  9995. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  9996. for (int i = M; i < Mup; ++i) {
  9997. S[i] = -INFINITY;
  9998. }
  9999. for (int64_t ic = 0; ic < nek1; ++ic) {
  10000. // k indices
  10001. const int ik3 = iq3;
  10002. const int ik2 = iq2;
  10003. const int ik1 = ic;
  10004. // S indices
  10005. const int i1 = ik1;
  10006. ggml_vec_dot_f32(neq0,
  10007. S + i1,
  10008. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10009. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10010. }
  10011. // scale
  10012. ggml_vec_scale_f32(nek1, S, scale);
  10013. if (masked) {
  10014. for (int64_t i = P; i < M; i++) {
  10015. if (i > P + iq1) {
  10016. S[i] = -INFINITY;
  10017. }
  10018. }
  10019. }
  10020. // softmax
  10021. {
  10022. float max = -INFINITY;
  10023. ggml_vec_max_f32(M, &max, S);
  10024. ggml_float sum = 0.0;
  10025. {
  10026. #ifdef GGML_SOFT_MAX_ACCELERATE
  10027. max = -max;
  10028. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10029. vvexpf(S, S, &Mup);
  10030. ggml_vec_sum_f32(Mup, &sum, S);
  10031. #else
  10032. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10033. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10034. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10035. float * SS = S + i;
  10036. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10037. if (SS[j] == -INFINITY) {
  10038. SS[j] = 0.0f;
  10039. } else {
  10040. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10041. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10042. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10043. sump[j] += (ggml_float)val;
  10044. SS[j] = val;
  10045. }
  10046. }
  10047. }
  10048. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10049. sum += sump[i];
  10050. }
  10051. #endif
  10052. }
  10053. assert(sum > 0.0);
  10054. sum = 1.0/sum;
  10055. ggml_vec_scale_f32(M, S, sum);
  10056. #ifndef NDEBUG
  10057. for (int i = 0; i < M; ++i) {
  10058. assert(!isnan(S[i]));
  10059. assert(!isinf(S[i]));
  10060. }
  10061. #endif
  10062. }
  10063. for (int64_t ic = 0; ic < nev1; ++ic) {
  10064. // dst indices
  10065. const int i1 = iq1;
  10066. const int i2 = iq2;
  10067. const int i3 = iq3;
  10068. ggml_vec_dot_f32(nek1,
  10069. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10070. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10071. S);
  10072. }
  10073. }
  10074. }
  10075. static void ggml_compute_forward_flash_attn_f16(
  10076. const struct ggml_compute_params * params,
  10077. const struct ggml_tensor * q,
  10078. const struct ggml_tensor * k,
  10079. const struct ggml_tensor * v,
  10080. const bool masked,
  10081. struct ggml_tensor * dst) {
  10082. int64_t t0 = ggml_perf_time_us();
  10083. UNUSED(t0);
  10084. const int64_t neq0 = q->ne[0];
  10085. const int64_t neq1 = q->ne[1];
  10086. const int64_t neq2 = q->ne[2];
  10087. const int64_t neq3 = q->ne[3];
  10088. const int64_t nek0 = k->ne[0];
  10089. const int64_t nek1 = k->ne[1];
  10090. //const int64_t nek2 = k->ne[2];
  10091. //const int64_t nek3 = k->ne[3];
  10092. //const int64_t nev0 = v->ne[0];
  10093. const int64_t nev1 = v->ne[1];
  10094. //const int64_t nev2 = v->ne[2];
  10095. //const int64_t nev3 = v->ne[3];
  10096. const int64_t ne0 = dst->ne[0];
  10097. const int64_t ne1 = dst->ne[1];
  10098. //const int64_t ne2 = dst->ne[2];
  10099. //const int64_t ne3 = dst->ne[3];
  10100. const int nbk0 = k->nb[0];
  10101. const int nbk1 = k->nb[1];
  10102. const int nbk2 = k->nb[2];
  10103. const int nbk3 = k->nb[3];
  10104. const int nbq0 = q->nb[0];
  10105. const int nbq1 = q->nb[1];
  10106. const int nbq2 = q->nb[2];
  10107. const int nbq3 = q->nb[3];
  10108. const int nbv0 = v->nb[0];
  10109. const int nbv1 = v->nb[1];
  10110. const int nbv2 = v->nb[2];
  10111. const int nbv3 = v->nb[3];
  10112. const int nb0 = dst->nb[0];
  10113. const int nb1 = dst->nb[1];
  10114. const int nb2 = dst->nb[2];
  10115. const int nb3 = dst->nb[3];
  10116. const int ith = params->ith;
  10117. const int nth = params->nth;
  10118. const int64_t D = neq0;
  10119. const int64_t N = neq1;
  10120. const int64_t P = nek1 - N;
  10121. const int64_t M = P + N;
  10122. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10123. GGML_ASSERT(ne0 == D);
  10124. GGML_ASSERT(ne1 == N);
  10125. GGML_ASSERT(P >= 0);
  10126. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10127. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10128. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10129. GGML_ASSERT(neq0 == D);
  10130. GGML_ASSERT(nek0 == D);
  10131. GGML_ASSERT(nev1 == D);
  10132. GGML_ASSERT(neq1 == N);
  10133. GGML_ASSERT(nek1 == N + P);
  10134. GGML_ASSERT(nev1 == D);
  10135. // dst cannot be transposed or permuted
  10136. GGML_ASSERT(nb0 == sizeof(float));
  10137. GGML_ASSERT(nb0 <= nb1);
  10138. GGML_ASSERT(nb1 <= nb2);
  10139. GGML_ASSERT(nb2 <= nb3);
  10140. if (params->type == GGML_TASK_INIT) {
  10141. return;
  10142. }
  10143. if (params->type == GGML_TASK_FINALIZE) {
  10144. return;
  10145. }
  10146. // parallelize by q rows using ggml_vec_dot_f32
  10147. // total rows in q
  10148. const int nr = neq1*neq2*neq3;
  10149. // rows per thread
  10150. const int dr = (nr + nth - 1)/nth;
  10151. // row range for this thread
  10152. const int ir0 = dr*ith;
  10153. const int ir1 = MIN(ir0 + dr, nr);
  10154. const float scale = 1.0f/sqrtf(D);
  10155. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10156. for (int ir = ir0; ir < ir1; ++ir) {
  10157. // q indices
  10158. const int iq3 = ir/(neq2*neq1);
  10159. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10160. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10161. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10162. for (int i = M; i < Mup; ++i) {
  10163. S[i] = -INFINITY;
  10164. }
  10165. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10166. for (int64_t ic = 0; ic < nek1; ++ic) {
  10167. // k indices
  10168. const int ik3 = iq3;
  10169. const int ik2 = iq2;
  10170. const int ik1 = ic;
  10171. // S indices
  10172. const int i1 = ik1;
  10173. ggml_vec_dot_f16(neq0,
  10174. S + i1,
  10175. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10176. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10177. }
  10178. } else {
  10179. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10180. // k indices
  10181. const int ik3 = iq3;
  10182. const int ik2 = iq2;
  10183. const int ik1 = ic;
  10184. // S indices
  10185. const int i1 = ik1;
  10186. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10187. S + i1,
  10188. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10189. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10190. }
  10191. }
  10192. // scale
  10193. ggml_vec_scale_f32(nek1, S, scale);
  10194. if (masked) {
  10195. for (int64_t i = P; i < M; i++) {
  10196. if (i > P + iq1) {
  10197. S[i] = -INFINITY;
  10198. }
  10199. }
  10200. }
  10201. // softmax
  10202. {
  10203. float max = -INFINITY;
  10204. ggml_vec_max_f32(M, &max, S);
  10205. ggml_float sum = 0.0;
  10206. {
  10207. #ifdef GGML_SOFT_MAX_ACCELERATE
  10208. max = -max;
  10209. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10210. vvexpf(S, S, &Mup);
  10211. ggml_vec_sum_f32(Mup, &sum, S);
  10212. #else
  10213. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10214. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10215. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10216. float * SS = S + i;
  10217. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10218. if (SS[j] == -INFINITY) {
  10219. SS[j] = 0.0f;
  10220. } else {
  10221. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10222. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10223. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10224. sump[j] += (ggml_float)val;
  10225. SS[j] = val;
  10226. }
  10227. }
  10228. }
  10229. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10230. sum += sump[i];
  10231. }
  10232. #endif
  10233. }
  10234. assert(sum > 0.0);
  10235. sum = 1.0/sum;
  10236. ggml_vec_scale_f32(M, S, sum);
  10237. #ifndef NDEBUG
  10238. for (int i = 0; i < M; ++i) {
  10239. assert(!isnan(S[i]));
  10240. assert(!isinf(S[i]));
  10241. }
  10242. #endif
  10243. }
  10244. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10245. for (int64_t i = 0; i < M; i++) {
  10246. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10247. }
  10248. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10249. for (int64_t ic = 0; ic < nev1; ++ic) {
  10250. // dst indices
  10251. const int i1 = iq1;
  10252. const int i2 = iq2;
  10253. const int i3 = iq3;
  10254. ggml_vec_dot_f16(nek1,
  10255. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10256. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10257. S16);
  10258. }
  10259. } else {
  10260. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10261. // dst indices
  10262. const int i1 = iq1;
  10263. const int i2 = iq2;
  10264. const int i3 = iq3;
  10265. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10266. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10267. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10268. S16);
  10269. }
  10270. }
  10271. }
  10272. }
  10273. static void ggml_compute_forward_flash_attn(
  10274. const struct ggml_compute_params * params,
  10275. const struct ggml_tensor * q,
  10276. const struct ggml_tensor * k,
  10277. const struct ggml_tensor * v,
  10278. const bool masked,
  10279. struct ggml_tensor * dst) {
  10280. switch (q->type) {
  10281. case GGML_TYPE_F16:
  10282. {
  10283. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10284. } break;
  10285. case GGML_TYPE_F32:
  10286. {
  10287. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10288. } break;
  10289. default:
  10290. {
  10291. GGML_ASSERT(false);
  10292. } break;
  10293. }
  10294. }
  10295. // ggml_compute_forward_flash_ff
  10296. static void ggml_compute_forward_flash_ff_f16(
  10297. const struct ggml_compute_params * params,
  10298. const struct ggml_tensor * a, // F16
  10299. const struct ggml_tensor * b0, // F16 fc_w
  10300. const struct ggml_tensor * b1, // F32 fc_b
  10301. const struct ggml_tensor * c0, // F16 proj_w
  10302. const struct ggml_tensor * c1, // F32 proj_b
  10303. struct ggml_tensor * dst) {
  10304. int64_t t0 = ggml_perf_time_us();
  10305. UNUSED(t0);
  10306. const int64_t nea0 = a->ne[0];
  10307. const int64_t nea1 = a->ne[1];
  10308. const int64_t nea2 = a->ne[2];
  10309. const int64_t nea3 = a->ne[3];
  10310. const int64_t neb00 = b0->ne[0];
  10311. const int64_t neb01 = b0->ne[1];
  10312. //const int64_t neb02 = b0->ne[2];
  10313. //const int64_t neb03 = b0->ne[3];
  10314. const int64_t neb10 = b1->ne[0];
  10315. const int64_t neb11 = b1->ne[1];
  10316. //const int64_t neb12 = b1->ne[2];
  10317. //const int64_t neb13 = b1->ne[3];
  10318. const int64_t nec00 = c0->ne[0];
  10319. const int64_t nec01 = c0->ne[1];
  10320. //const int64_t nec02 = c0->ne[2];
  10321. //const int64_t nec03 = c0->ne[3];
  10322. const int64_t nec10 = c1->ne[0];
  10323. const int64_t nec11 = c1->ne[1];
  10324. //const int64_t nec12 = c1->ne[2];
  10325. //const int64_t nec13 = c1->ne[3];
  10326. const int64_t ne0 = dst->ne[0];
  10327. const int64_t ne1 = dst->ne[1];
  10328. const int64_t ne2 = dst->ne[2];
  10329. //const int64_t ne3 = dst->ne[3];
  10330. const int nba0 = a->nb[0];
  10331. const int nba1 = a->nb[1];
  10332. const int nba2 = a->nb[2];
  10333. const int nba3 = a->nb[3];
  10334. const int nbb00 = b0->nb[0];
  10335. const int nbb01 = b0->nb[1];
  10336. const int nbb02 = b0->nb[2];
  10337. const int nbb03 = b0->nb[3];
  10338. const int nbb10 = b1->nb[0];
  10339. //const int nbb11 = b1->nb[1];
  10340. //const int nbb12 = b1->nb[2];
  10341. //const int nbb13 = b1->nb[3];
  10342. const int nbc00 = c0->nb[0];
  10343. const int nbc01 = c0->nb[1];
  10344. const int nbc02 = c0->nb[2];
  10345. const int nbc03 = c0->nb[3];
  10346. const int nbc10 = c1->nb[0];
  10347. //const int nbc11 = c1->nb[1];
  10348. //const int nbc12 = c1->nb[2];
  10349. //const int nbc13 = c1->nb[3];
  10350. const int nb0 = dst->nb[0];
  10351. const int nb1 = dst->nb[1];
  10352. const int nb2 = dst->nb[2];
  10353. const int nb3 = dst->nb[3];
  10354. const int ith = params->ith;
  10355. const int nth = params->nth;
  10356. const int64_t D = nea0;
  10357. //const int64_t N = nea1;
  10358. const int64_t M = neb01;
  10359. GGML_ASSERT(ne0 == nea0);
  10360. GGML_ASSERT(ne1 == nea1);
  10361. GGML_ASSERT(ne2 == nea2);
  10362. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10363. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10364. GGML_ASSERT(nbb10 == sizeof(float));
  10365. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10366. GGML_ASSERT(nbc10 == sizeof(float));
  10367. GGML_ASSERT(neb00 == D);
  10368. GGML_ASSERT(neb01 == M);
  10369. GGML_ASSERT(neb10 == M);
  10370. GGML_ASSERT(neb11 == 1);
  10371. GGML_ASSERT(nec00 == M);
  10372. GGML_ASSERT(nec01 == D);
  10373. GGML_ASSERT(nec10 == D);
  10374. GGML_ASSERT(nec11 == 1);
  10375. // dst cannot be transposed or permuted
  10376. GGML_ASSERT(nb0 == sizeof(float));
  10377. GGML_ASSERT(nb0 <= nb1);
  10378. GGML_ASSERT(nb1 <= nb2);
  10379. GGML_ASSERT(nb2 <= nb3);
  10380. if (params->type == GGML_TASK_INIT) {
  10381. return;
  10382. }
  10383. if (params->type == GGML_TASK_FINALIZE) {
  10384. return;
  10385. }
  10386. // parallelize by a rows using ggml_vec_dot_f32
  10387. // total rows in a
  10388. const int nr = nea1*nea2*nea3;
  10389. // rows per thread
  10390. const int dr = (nr + nth - 1)/nth;
  10391. // row range for this thread
  10392. const int ir0 = dr*ith;
  10393. const int ir1 = MIN(ir0 + dr, nr);
  10394. for (int ir = ir0; ir < ir1; ++ir) {
  10395. // a indices
  10396. const int ia3 = ir/(nea2*nea1);
  10397. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10398. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10399. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10400. for (int64_t ic = 0; ic < neb01; ++ic) {
  10401. // b0 indices
  10402. const int ib03 = ia3;
  10403. const int ib02 = ia2;
  10404. const int ib01 = ic;
  10405. // S indices
  10406. const int i1 = ib01;
  10407. ggml_vec_dot_f16(nea0,
  10408. S + i1,
  10409. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10410. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10411. }
  10412. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10413. //ggml_vec_gelu_f32(neb01, S, S);
  10414. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10415. for (int64_t i = 0; i < M; i++) {
  10416. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10417. }
  10418. ggml_vec_gelu_f16(neb01, S16, S16);
  10419. {
  10420. // dst indices
  10421. const int i1 = ia1;
  10422. const int i2 = ia2;
  10423. const int i3 = ia3;
  10424. for (int64_t ic = 0; ic < nec01; ++ic) {
  10425. ggml_vec_dot_f16(neb01,
  10426. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10427. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10428. S16);
  10429. }
  10430. ggml_vec_add_f32(nec01,
  10431. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10432. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10433. (float *) c1->data);
  10434. }
  10435. }
  10436. }
  10437. static void ggml_compute_forward_flash_ff(
  10438. const struct ggml_compute_params * params,
  10439. const struct ggml_tensor * a,
  10440. const struct ggml_tensor * b0,
  10441. const struct ggml_tensor * b1,
  10442. const struct ggml_tensor * c0,
  10443. const struct ggml_tensor * c1,
  10444. struct ggml_tensor * dst) {
  10445. switch (b0->type) {
  10446. case GGML_TYPE_F16:
  10447. {
  10448. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10449. } break;
  10450. case GGML_TYPE_F32:
  10451. {
  10452. GGML_ASSERT(false); // TODO
  10453. } break;
  10454. default:
  10455. {
  10456. GGML_ASSERT(false);
  10457. } break;
  10458. }
  10459. }
  10460. // ggml_compute_forward_map_unary
  10461. static void ggml_compute_forward_map_unary_f32(
  10462. const struct ggml_compute_params * params,
  10463. const struct ggml_tensor * src0,
  10464. struct ggml_tensor * dst,
  10465. const ggml_unary_op_f32_t fun) {
  10466. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10467. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10468. return;
  10469. }
  10470. const int n = ggml_nrows(src0);
  10471. const int nc = src0->ne[0];
  10472. assert( dst->nb[0] == sizeof(float));
  10473. assert(src0->nb[0] == sizeof(float));
  10474. for (int i = 0; i < n; i++) {
  10475. fun(nc,
  10476. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10477. (float *) ((char *) src0->data + i*(src0->nb[1])));
  10478. }
  10479. }
  10480. static void ggml_compute_forward_map_unary(
  10481. const struct ggml_compute_params * params,
  10482. const struct ggml_tensor * src0,
  10483. struct ggml_tensor * dst,
  10484. const ggml_unary_op_f32_t fun) {
  10485. switch (src0->type) {
  10486. case GGML_TYPE_F32:
  10487. {
  10488. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  10489. } break;
  10490. default:
  10491. {
  10492. GGML_ASSERT(false);
  10493. } break;
  10494. }
  10495. }
  10496. // ggml_compute_forward_map_binary
  10497. static void ggml_compute_forward_map_binary_f32(
  10498. const struct ggml_compute_params * params,
  10499. const struct ggml_tensor * src0,
  10500. const struct ggml_tensor * src1,
  10501. struct ggml_tensor * dst,
  10502. const ggml_binary_op_f32_t fun) {
  10503. assert(params->ith == 0);
  10504. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  10505. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10506. return;
  10507. }
  10508. const int n = ggml_nrows(src0);
  10509. const int nc = src0->ne[0];
  10510. assert( dst->nb[0] == sizeof(float));
  10511. assert(src0->nb[0] == sizeof(float));
  10512. assert(src1->nb[0] == sizeof(float));
  10513. for (int i = 0; i < n; i++) {
  10514. fun(nc,
  10515. (float *) ((char *) dst->data + i*( dst->nb[1])),
  10516. (float *) ((char *) src0->data + i*(src0->nb[1])),
  10517. (float *) ((char *) src1->data + i*(src1->nb[1])));
  10518. }
  10519. }
  10520. static void ggml_compute_forward_map_binary(
  10521. const struct ggml_compute_params * params,
  10522. const struct ggml_tensor * src0,
  10523. const struct ggml_tensor * src1,
  10524. struct ggml_tensor * dst,
  10525. const ggml_binary_op_f32_t fun) {
  10526. switch (src0->type) {
  10527. case GGML_TYPE_F32:
  10528. {
  10529. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  10530. } break;
  10531. default:
  10532. {
  10533. GGML_ASSERT(false);
  10534. } break;
  10535. }
  10536. }
  10537. /////////////////////////////////
  10538. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  10539. GGML_ASSERT(params);
  10540. #ifdef GGML_USE_CUBLAS
  10541. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  10542. if (skip_cpu) {
  10543. return;
  10544. }
  10545. GGML_ASSERT(tensor->src0->backend == GGML_BACKEND_CPU);
  10546. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  10547. #endif // GGML_USE_CUBLAS
  10548. switch (tensor->op) {
  10549. case GGML_OP_DUP:
  10550. {
  10551. ggml_compute_forward_dup(params, tensor->src0, tensor);
  10552. } break;
  10553. case GGML_OP_ADD:
  10554. {
  10555. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  10556. } break;
  10557. case GGML_OP_ADD1:
  10558. {
  10559. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  10560. } break;
  10561. case GGML_OP_ACC:
  10562. {
  10563. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10564. } break;
  10565. case GGML_OP_SUB:
  10566. {
  10567. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  10568. } break;
  10569. case GGML_OP_MUL:
  10570. {
  10571. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  10572. } break;
  10573. case GGML_OP_DIV:
  10574. {
  10575. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  10576. } break;
  10577. case GGML_OP_SQR:
  10578. {
  10579. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  10580. } break;
  10581. case GGML_OP_SQRT:
  10582. {
  10583. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  10584. } break;
  10585. case GGML_OP_LOG:
  10586. {
  10587. ggml_compute_forward_log(params, tensor->src0, tensor);
  10588. } break;
  10589. case GGML_OP_SUM:
  10590. {
  10591. ggml_compute_forward_sum(params, tensor->src0, tensor);
  10592. } break;
  10593. case GGML_OP_SUM_ROWS:
  10594. {
  10595. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  10596. } break;
  10597. case GGML_OP_MEAN:
  10598. {
  10599. ggml_compute_forward_mean(params, tensor->src0, tensor);
  10600. } break;
  10601. case GGML_OP_REPEAT:
  10602. {
  10603. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  10604. } break;
  10605. case GGML_OP_ABS:
  10606. {
  10607. ggml_compute_forward_abs(params, tensor->src0, tensor);
  10608. } break;
  10609. case GGML_OP_SGN:
  10610. {
  10611. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  10612. } break;
  10613. case GGML_OP_NEG:
  10614. {
  10615. ggml_compute_forward_neg(params, tensor->src0, tensor);
  10616. } break;
  10617. case GGML_OP_STEP:
  10618. {
  10619. ggml_compute_forward_step(params, tensor->src0, tensor);
  10620. } break;
  10621. case GGML_OP_RELU:
  10622. {
  10623. ggml_compute_forward_relu(params, tensor->src0, tensor);
  10624. } break;
  10625. case GGML_OP_GELU:
  10626. {
  10627. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  10628. } break;
  10629. case GGML_OP_SILU:
  10630. {
  10631. ggml_compute_forward_silu(params, tensor->src0, tensor);
  10632. } break;
  10633. case GGML_OP_SILU_BACK:
  10634. {
  10635. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  10636. } break;
  10637. case GGML_OP_NORM:
  10638. {
  10639. ggml_compute_forward_norm(params, tensor->src0, tensor);
  10640. } break;
  10641. case GGML_OP_RMS_NORM:
  10642. {
  10643. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  10644. } break;
  10645. case GGML_OP_RMS_NORM_BACK:
  10646. {
  10647. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  10648. } break;
  10649. case GGML_OP_MUL_MAT:
  10650. {
  10651. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  10652. } break;
  10653. case GGML_OP_SCALE:
  10654. {
  10655. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  10656. } break;
  10657. case GGML_OP_SET:
  10658. {
  10659. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10660. } break;
  10661. case GGML_OP_CPY:
  10662. {
  10663. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  10664. } break;
  10665. case GGML_OP_CONT:
  10666. {
  10667. ggml_compute_forward_cont(params, tensor->src0, tensor);
  10668. } break;
  10669. case GGML_OP_RESHAPE:
  10670. {
  10671. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  10672. } break;
  10673. case GGML_OP_VIEW:
  10674. {
  10675. ggml_compute_forward_view(params, tensor->src0);
  10676. } break;
  10677. case GGML_OP_PERMUTE:
  10678. {
  10679. ggml_compute_forward_permute(params, tensor->src0);
  10680. } break;
  10681. case GGML_OP_TRANSPOSE:
  10682. {
  10683. ggml_compute_forward_transpose(params, tensor->src0);
  10684. } break;
  10685. case GGML_OP_GET_ROWS:
  10686. {
  10687. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  10688. } break;
  10689. case GGML_OP_GET_ROWS_BACK:
  10690. {
  10691. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  10692. } break;
  10693. case GGML_OP_DIAG:
  10694. {
  10695. ggml_compute_forward_diag(params, tensor->src0, tensor);
  10696. } break;
  10697. case GGML_OP_DIAG_MASK_INF:
  10698. {
  10699. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  10700. } break;
  10701. case GGML_OP_DIAG_MASK_ZERO:
  10702. {
  10703. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  10704. } break;
  10705. case GGML_OP_SOFT_MAX:
  10706. {
  10707. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  10708. } break;
  10709. case GGML_OP_ROPE:
  10710. {
  10711. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  10712. } break;
  10713. case GGML_OP_ROPE_BACK:
  10714. {
  10715. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  10716. } break;
  10717. case GGML_OP_ALIBI:
  10718. {
  10719. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  10720. } break;
  10721. case GGML_OP_CLAMP:
  10722. {
  10723. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  10724. } break;
  10725. case GGML_OP_CONV_1D_1S:
  10726. {
  10727. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  10728. } break;
  10729. case GGML_OP_CONV_1D_2S:
  10730. {
  10731. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  10732. } break;
  10733. case GGML_OP_FLASH_ATTN:
  10734. {
  10735. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  10736. GGML_ASSERT(t == 0 || t == 1);
  10737. bool masked = t != 0;
  10738. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  10739. } break;
  10740. case GGML_OP_FLASH_FF:
  10741. {
  10742. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  10743. } break;
  10744. case GGML_OP_MAP_UNARY:
  10745. {
  10746. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  10747. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  10748. }
  10749. break;
  10750. case GGML_OP_MAP_BINARY:
  10751. {
  10752. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  10753. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  10754. }
  10755. break;
  10756. case GGML_OP_NONE:
  10757. {
  10758. // nop
  10759. } break;
  10760. case GGML_OP_COUNT:
  10761. {
  10762. GGML_ASSERT(false);
  10763. } break;
  10764. }
  10765. }
  10766. ////////////////////////////////////////////////////////////////////////////////
  10767. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  10768. struct ggml_tensor * src0 = tensor->src0;
  10769. struct ggml_tensor * src1 = tensor->src1;
  10770. switch (tensor->op) {
  10771. case GGML_OP_DUP:
  10772. {
  10773. if (src0->grad) {
  10774. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10775. }
  10776. } break;
  10777. case GGML_OP_ADD:
  10778. {
  10779. if (src0->grad) {
  10780. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10781. }
  10782. if (src1->grad) {
  10783. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  10784. }
  10785. } break;
  10786. case GGML_OP_ADD1:
  10787. {
  10788. if (src0->grad) {
  10789. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10790. }
  10791. if (src1->grad) {
  10792. src1->grad = ggml_add_impl(ctx,
  10793. src1->grad,
  10794. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  10795. inplace);
  10796. }
  10797. } break;
  10798. case GGML_OP_ACC:
  10799. {
  10800. if (src0->grad) {
  10801. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10802. }
  10803. if (src1->grad) {
  10804. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  10805. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  10806. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  10807. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  10808. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  10809. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  10810. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  10811. tensor->grad,
  10812. src1->grad->ne[0],
  10813. src1->grad->ne[1],
  10814. src1->grad->ne[2],
  10815. src1->grad->ne[3],
  10816. nb1, nb2, nb3, offset);
  10817. src1->grad =
  10818. ggml_add_impl(ctx,
  10819. src1->grad,
  10820. ggml_reshape(ctx,
  10821. ggml_cont(ctx, tensor_grad_view),
  10822. src1->grad),
  10823. inplace);
  10824. }
  10825. } break;
  10826. case GGML_OP_SUB:
  10827. {
  10828. if (src0->grad) {
  10829. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  10830. }
  10831. if (src1->grad) {
  10832. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  10833. }
  10834. } break;
  10835. case GGML_OP_MUL:
  10836. {
  10837. if (src0->grad) {
  10838. src0->grad =
  10839. ggml_add_impl(ctx,
  10840. src0->grad,
  10841. ggml_mul(ctx, src1, tensor->grad),
  10842. inplace);
  10843. }
  10844. if (src1->grad) {
  10845. src1->grad =
  10846. ggml_add_impl(ctx,
  10847. src1->grad,
  10848. ggml_mul(ctx, src0, tensor->grad),
  10849. inplace);
  10850. }
  10851. } break;
  10852. case GGML_OP_DIV:
  10853. {
  10854. if (src0->grad) {
  10855. src0->grad =
  10856. ggml_add_impl(ctx,
  10857. src0->grad,
  10858. ggml_div(ctx, tensor->grad, src1),
  10859. inplace);
  10860. }
  10861. if (src1->grad) {
  10862. src1->grad =
  10863. ggml_sub_impl(ctx,
  10864. src1->grad,
  10865. ggml_mul(ctx,
  10866. tensor->grad,
  10867. ggml_div(ctx, tensor, src1)),
  10868. inplace);
  10869. }
  10870. } break;
  10871. case GGML_OP_SQR:
  10872. {
  10873. if (src0->grad) {
  10874. src0->grad =
  10875. ggml_add_impl(ctx,
  10876. src0->grad,
  10877. ggml_scale(ctx,
  10878. ggml_mul(ctx, src0, tensor->grad),
  10879. ggml_new_f32(ctx, 2.0f)),
  10880. inplace);
  10881. }
  10882. } break;
  10883. case GGML_OP_SQRT:
  10884. {
  10885. if (src0->grad) {
  10886. src0->grad =
  10887. ggml_add_impl(ctx,
  10888. src0->grad,
  10889. ggml_mul(ctx,
  10890. tensor->grad, // this was not catched by test_grad because in test_grad tensor->grad is 1
  10891. ggml_div(ctx,
  10892. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  10893. tensor)),
  10894. inplace);
  10895. }
  10896. } break;
  10897. case GGML_OP_LOG:
  10898. {
  10899. if (src0->grad) {
  10900. src0->grad =
  10901. ggml_add_impl(ctx,
  10902. src0->grad,
  10903. ggml_div(ctx,
  10904. tensor->grad,
  10905. src0),
  10906. inplace);
  10907. }
  10908. } break;
  10909. case GGML_OP_SUM:
  10910. {
  10911. if (src0->grad) {
  10912. src0->grad =
  10913. ggml_add1_impl(ctx,
  10914. src0->grad,
  10915. tensor->grad,
  10916. inplace);
  10917. }
  10918. } break;
  10919. case GGML_OP_SUM_ROWS:
  10920. {
  10921. if (src0->grad) {
  10922. src0->grad =
  10923. ggml_add_impl(ctx,
  10924. src0->grad,
  10925. ggml_repeat(ctx,
  10926. tensor->grad,
  10927. src0->grad),
  10928. inplace);
  10929. }
  10930. } break;
  10931. case GGML_OP_MEAN:
  10932. {
  10933. GGML_ASSERT(false); // TODO: implement
  10934. } break;
  10935. case GGML_OP_REPEAT:
  10936. {
  10937. // necessary for llama
  10938. if (src0->grad) {
  10939. GGML_ASSERT(src0->n_dims == 1 || src0->n_dims == 2);
  10940. const int nc = tensor->ne[0];
  10941. const int nr = tensor->ne[1];
  10942. const int nc0 = src0->ne[0];
  10943. const int nr0 = src0->ne[1];
  10944. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10945. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  10946. // tensor->grad [nc,nr,1,1]
  10947. // reshape [nc0,nc/nc0,nr0,nr/nr0]
  10948. // permute [nc0,nr0,nc/nc0,nr/nr0]
  10949. // substitute [nc0,nr0,ncr,nrr]
  10950. // reshape [nc0*nr0,ncr*nrr,1,1]
  10951. // transpose [ncr*nrr,nc0*nr0,1,1]
  10952. // sum rows [1,nc0*nr0,1,1]
  10953. // transpose [nc0*nr0,1,1]
  10954. // reshape [nc0,nr0,1,1] reshape_1d or reshape_2d
  10955. // add to src0->grad
  10956. int64_t ne[4] = {nc0,ncr,nr0,nrr};
  10957. struct ggml_tensor* F00 = tensor->grad;
  10958. struct ggml_tensor* F01 = ggml_reshape (ctx, F00, ggml_new_tensor(ctx,tensor->grad->type,4,ne));
  10959. struct ggml_tensor* F02 = ggml_permute (ctx, F01, 0,2,1,3);
  10960. struct ggml_tensor* F03 = ggml_cont (ctx, F02);
  10961. struct ggml_tensor* F04 = ggml_reshape_2d(ctx, F03, nc0*nr0, ncr*nrr);
  10962. struct ggml_tensor* F05 = ggml_transpose (ctx, F04);
  10963. struct ggml_tensor* F06 = ggml_cont (ctx, F05);
  10964. struct ggml_tensor* F07 = ggml_sum_rows (ctx, F06);
  10965. struct ggml_tensor* F08 = ggml_transpose (ctx, F07);
  10966. struct ggml_tensor* F09 = ggml_cont (ctx, F08);
  10967. struct ggml_tensor* F10 = ggml_reshape (ctx, F09, src0->grad);
  10968. src0->grad =
  10969. ggml_add_impl(ctx,
  10970. src0->grad,
  10971. F10,
  10972. inplace);
  10973. }
  10974. } break;
  10975. case GGML_OP_ABS:
  10976. {
  10977. if (src0->grad) {
  10978. src0->grad =
  10979. ggml_add_impl(ctx,
  10980. src0->grad,
  10981. ggml_mul(ctx,
  10982. ggml_sgn(ctx, src0),
  10983. tensor->grad),
  10984. inplace);
  10985. }
  10986. } break;
  10987. case GGML_OP_SGN:
  10988. {
  10989. if (src0->grad) {
  10990. // noop
  10991. }
  10992. } break;
  10993. case GGML_OP_NEG:
  10994. {
  10995. if (src0->grad) {
  10996. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  10997. }
  10998. } break;
  10999. case GGML_OP_STEP:
  11000. {
  11001. if (src0->grad) {
  11002. // noop
  11003. }
  11004. } break;
  11005. case GGML_OP_RELU:
  11006. {
  11007. if (src0->grad) {
  11008. src0->grad = ggml_sub_impl(ctx,
  11009. src0->grad,
  11010. ggml_mul(ctx,
  11011. ggml_step(ctx, src0),
  11012. tensor->grad),
  11013. inplace);
  11014. }
  11015. } break;
  11016. case GGML_OP_GELU:
  11017. {
  11018. GGML_ASSERT(false); // TODO: not implemented
  11019. } break;
  11020. case GGML_OP_ALIBI:
  11021. {
  11022. GGML_ASSERT(false); // TODO: not implemented
  11023. } break;
  11024. case GGML_OP_CLAMP:
  11025. {
  11026. GGML_ASSERT(false); // TODO: not implemented
  11027. } break;
  11028. case GGML_OP_SILU:
  11029. {
  11030. // necessary for llama
  11031. if (src0->grad) {
  11032. src0->grad = ggml_add_impl(ctx,
  11033. src0->grad,
  11034. ggml_silu_back(ctx, src0, tensor->grad),
  11035. inplace);
  11036. }
  11037. } break;
  11038. case GGML_OP_SILU_BACK:
  11039. {
  11040. GGML_ASSERT(false); // TODO: not implemented
  11041. } break;
  11042. case GGML_OP_NORM:
  11043. {
  11044. GGML_ASSERT(false); // TODO: not implemented
  11045. } break;
  11046. case GGML_OP_RMS_NORM:
  11047. {
  11048. // necessary for llama
  11049. if (src0->grad) {
  11050. src0->grad = ggml_add_impl(ctx,
  11051. src0->grad,
  11052. ggml_rms_norm_back(ctx, src0, tensor->grad),
  11053. inplace);
  11054. }
  11055. } break;
  11056. case GGML_OP_RMS_NORM_BACK:
  11057. {
  11058. GGML_ASSERT(false); // TODO: not implemented
  11059. } break;
  11060. case GGML_OP_MUL_MAT:
  11061. {
  11062. // https://cs231n.github.io/optimization-2/#staged
  11063. // # forward pass
  11064. // s0 = np.random.randn(5, 10)
  11065. // s1 = np.random.randn(10, 3)
  11066. // t = s0.dot(s1)
  11067. // # now suppose we had the gradient on t from above in the circuit
  11068. // dt = np.random.randn(*t.shape) # same shape as t
  11069. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  11070. // ds1 = t.T.dot(dt)
  11071. // tensor.shape [m,p]
  11072. // src0.shape [n,m]
  11073. // src1.shape [n,p]
  11074. // necessary for llama
  11075. if (src0->grad) {
  11076. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  11077. src0->grad =
  11078. ggml_add_impl(ctx,
  11079. src0->grad,
  11080. // ds0 = dt.dot(s1.T)
  11081. // ggml_out_prod(ctx, // [n,m]
  11082. // src1, // [n,p]
  11083. // tensor->grad), // [m,p]
  11084. // for now just using A*B==(B.T*A.T).T
  11085. ggml_cont(ctx, // [n,m]
  11086. ggml_transpose(ctx, // [n,m]
  11087. ggml_mul_mat(ctx, // [m,n]
  11088. ggml_cont(ctx, // [p,m]
  11089. ggml_transpose(ctx, // [p,m]
  11090. tensor->grad)), // [m,p]
  11091. ggml_cont(ctx, // [p,n]
  11092. ggml_transpose(ctx, // [p,n]
  11093. src1))))), // [n,p]
  11094. inplace);
  11095. }
  11096. if (src1->grad) {
  11097. src1->grad =
  11098. ggml_add_impl(ctx,
  11099. src1->grad,
  11100. // ds1 = s0.T.dot(dt):
  11101. ggml_mul_mat(ctx, // [n,p]
  11102. ggml_cont(ctx, // [m,n]
  11103. ggml_transpose(ctx, src0)), // [m,n]
  11104. tensor->grad), // [m,p]
  11105. inplace);
  11106. }
  11107. } break;
  11108. case GGML_OP_SCALE:
  11109. {
  11110. // necessary for llama
  11111. if (src0->grad) {
  11112. src0->grad =
  11113. ggml_add_impl(ctx,
  11114. src0->grad,
  11115. ggml_scale_impl(ctx, tensor->grad, src1, false),
  11116. inplace);
  11117. }
  11118. if (src1->grad) {
  11119. src1->grad =
  11120. ggml_add_impl(ctx,
  11121. src1->grad,
  11122. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  11123. inplace);
  11124. }
  11125. } break;
  11126. case GGML_OP_SET:
  11127. {
  11128. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  11129. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  11130. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  11131. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  11132. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  11133. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  11134. struct ggml_tensor * tensor_grad_view = NULL;
  11135. if (src0->grad || src1->grad) {
  11136. GGML_ASSERT(src0->type == tensor->type);
  11137. GGML_ASSERT(tensor->grad->type == tensor->type);
  11138. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  11139. tensor_grad_view = ggml_view_4d(ctx,
  11140. tensor->grad,
  11141. src1->grad->ne[0],
  11142. src1->grad->ne[1],
  11143. src1->grad->ne[2],
  11144. src1->grad->ne[3],
  11145. nb1, nb2, nb3, offset);
  11146. }
  11147. if (src0->grad) {
  11148. src0->grad = ggml_add_impl(ctx,
  11149. src0->grad,
  11150. ggml_acc_impl(ctx,
  11151. tensor->grad,
  11152. ggml_neg(ctx, tensor_grad_view),
  11153. nb1, nb2, nb3, offset, false),
  11154. inplace);
  11155. }
  11156. if (src1->grad) {
  11157. src1->grad =
  11158. ggml_add_impl(ctx,
  11159. src1->grad,
  11160. ggml_reshape(ctx,
  11161. ggml_cont(ctx, tensor_grad_view),
  11162. src1->grad),
  11163. inplace);
  11164. }
  11165. } break;
  11166. case GGML_OP_CPY:
  11167. {
  11168. // necessary for llama
  11169. // cpy overwrites value of src1 by src0 and returns view(src1)
  11170. // the overwriting is mathematically equivalent to:
  11171. // tensor = src0 * 1 + src1 * 0
  11172. if (src0->grad) {
  11173. // dsrc0 = dtensor * 1
  11174. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11175. }
  11176. if (src1->grad) {
  11177. // dsrc1 = dtensor * 0 -> noop
  11178. }
  11179. } break;
  11180. case GGML_OP_CONT:
  11181. {
  11182. // same as cpy
  11183. if (src0->grad) {
  11184. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  11185. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  11186. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  11187. }
  11188. } break;
  11189. case GGML_OP_RESHAPE:
  11190. {
  11191. // necessary for llama
  11192. if (src0->grad) {
  11193. src0->grad =
  11194. ggml_add_impl(ctx, src0->grad,
  11195. ggml_reshape(ctx, tensor->grad, src0->grad),
  11196. inplace);
  11197. }
  11198. } break;
  11199. case GGML_OP_VIEW:
  11200. {
  11201. // necessary for llama
  11202. if (src0->grad) {
  11203. size_t offset;
  11204. memcpy(&offset, tensor->padding, sizeof(offset));
  11205. size_t nb1 = tensor->nb[1];
  11206. size_t nb2 = tensor->nb[2];
  11207. size_t nb3 = tensor->nb[3];
  11208. if (src0->type != src0->grad->type) {
  11209. // gradient is typically F32, but src0 could be other type
  11210. size_t ng = ggml_element_size(src0->grad);
  11211. size_t n0 = ggml_element_size(src0);
  11212. GGML_ASSERT(offset % n0 == 0);
  11213. GGML_ASSERT(nb1 % n0 == 0);
  11214. GGML_ASSERT(nb2 % n0 == 0);
  11215. GGML_ASSERT(nb3 % n0 == 0);
  11216. offset = (offset / n0) * ng;
  11217. nb1 = (nb1 / n0) * ng;
  11218. nb2 = (nb2 / n0) * ng;
  11219. nb3 = (nb3 / n0) * ng;
  11220. }
  11221. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  11222. }
  11223. } break;
  11224. case GGML_OP_PERMUTE:
  11225. {
  11226. // necessary for llama
  11227. if (src0->grad) {
  11228. int axis0 = tensor->padding[0] & 0x3;
  11229. int axis1 = tensor->padding[1] & 0x3;
  11230. int axis2 = tensor->padding[2] & 0x3;
  11231. int axis3 = tensor->padding[3] & 0x3;
  11232. int axes_backward[4] = {0,0,0,0};
  11233. axes_backward[axis0] = 0;
  11234. axes_backward[axis1] = 1;
  11235. axes_backward[axis2] = 2;
  11236. axes_backward[axis3] = 3;
  11237. src0->grad =
  11238. ggml_add_impl(ctx, src0->grad,
  11239. ggml_permute(ctx,
  11240. tensor->grad,
  11241. axes_backward[0],
  11242. axes_backward[1],
  11243. axes_backward[2],
  11244. axes_backward[3]),
  11245. inplace);
  11246. }
  11247. } break;
  11248. case GGML_OP_TRANSPOSE:
  11249. {
  11250. // necessary for llama
  11251. if (src0->grad) {
  11252. src0->grad =
  11253. ggml_add_impl(ctx, src0->grad,
  11254. ggml_transpose(ctx, tensor->grad),
  11255. inplace);
  11256. }
  11257. } break;
  11258. case GGML_OP_GET_ROWS:
  11259. {
  11260. // necessary for llama (only for tokenizer)
  11261. if (src0->grad) {
  11262. src0->grad =
  11263. ggml_add_impl(ctx, src0->grad,
  11264. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  11265. inplace);
  11266. }
  11267. if (src1->grad) {
  11268. // noop
  11269. }
  11270. } break;
  11271. case GGML_OP_GET_ROWS_BACK:
  11272. {
  11273. GGML_ASSERT(false); // TODO: not implemented
  11274. } break;
  11275. case GGML_OP_DIAG:
  11276. {
  11277. GGML_ASSERT(false); // TODO: not implemented
  11278. } break;
  11279. case GGML_OP_DIAG_MASK_INF:
  11280. {
  11281. // necessary for llama
  11282. if (src0->grad) {
  11283. assert(src1->type == GGML_TYPE_I32);
  11284. assert(ggml_nelements(src1) == 2);
  11285. const int n_past = ((int32_t *) src1->data)[0];
  11286. src0->grad =
  11287. ggml_add_impl(ctx, src0->grad,
  11288. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11289. inplace);
  11290. }
  11291. if (src1->grad) {
  11292. // noop
  11293. }
  11294. } break;
  11295. case GGML_OP_DIAG_MASK_ZERO:
  11296. {
  11297. // necessary for llama
  11298. if (src0->grad) {
  11299. assert(src1->type == GGML_TYPE_I32);
  11300. assert(ggml_nelements(src1) == 2);
  11301. const int n_past = ((int32_t *) src1->data)[0];
  11302. src0->grad =
  11303. ggml_add_impl(ctx, src0->grad,
  11304. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  11305. inplace);
  11306. }
  11307. if (src1->grad) {
  11308. // noop
  11309. }
  11310. } break;
  11311. case GGML_OP_SOFT_MAX:
  11312. {
  11313. // necessary for llama
  11314. if (src0->grad) {
  11315. // y = softmax(x)
  11316. //
  11317. // Jii = yi - yi*yi
  11318. // Jij = -yi*yj
  11319. // J = diag(y)-y.*y
  11320. // dx = J * dy
  11321. // dxk = sum(Jkj * dyk)
  11322. int64_t ne2[4] = {
  11323. tensor->ne[0],
  11324. 1,
  11325. tensor->ne[1]*tensor->ne[2],
  11326. tensor->ne[3]
  11327. };
  11328. struct ggml_tensor * tensor2 = ggml_cont(ctx,
  11329. ggml_reshape_4d(ctx,
  11330. ggml_cont(ctx, tensor),
  11331. ne2[0], ne2[1], ne2[2], ne2[3]));
  11332. struct ggml_tensor * grad2 = ggml_cont(ctx,
  11333. ggml_reshape_4d(ctx,
  11334. ggml_cont(ctx, tensor->grad),
  11335. ne2[0], ne2[1], ne2[2], ne2[3]));
  11336. struct ggml_tensor * tensor2_t = ggml_cont(ctx, // [1,ne0,ne1*ne2,ne3]
  11337. ggml_permute(ctx, // [1,ne0,ne1*ne2,ne3]
  11338. tensor2, // [ne0,1,ne1*ne2,ne3]
  11339. 1, 0, 2, 3));
  11340. src0->grad =
  11341. ggml_add_impl(ctx,
  11342. src0->grad, // [ne0,ne1,ne2,ne3]
  11343. ggml_reshape(ctx, // [ne0,ne1,ne2,ne3]
  11344. ggml_mul_mat(ctx, // [ne0,1,ne1*ne2,ne3]
  11345. ggml_sub(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11346. ggml_diag(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11347. tensor2), // [ne0,1,ne1*ne2,ne3]
  11348. ggml_mul_mat(ctx, // [ne0,ne0,ne1*ne2,ne3]
  11349. tensor2_t, // [1,ne0,ne1*ne2,ne3]
  11350. tensor2_t)), // [1,ne0,ne1*ne2,ne3]
  11351. grad2), // [ne0,1,ne1*ne2,ne3]
  11352. src0->grad),
  11353. inplace);
  11354. }
  11355. } break;
  11356. case GGML_OP_ROPE:
  11357. {
  11358. // necessary for llama
  11359. if (src0->grad) {
  11360. assert(src1->type == GGML_TYPE_I32);
  11361. assert(ggml_nelements(src1) == 3);
  11362. const int n_past = ((int32_t *) src1->data)[0];
  11363. const int n_dims = ((int32_t *) src1->data)[1];
  11364. const int mode = ((int32_t *) src1->data)[2];
  11365. src0->grad = ggml_add_impl(ctx,
  11366. src0->grad,
  11367. ggml_rope_back(ctx,
  11368. tensor->grad,
  11369. n_past,
  11370. n_dims,
  11371. mode),
  11372. inplace);
  11373. }
  11374. if (src1->grad) {
  11375. // noop
  11376. }
  11377. } break;
  11378. case GGML_OP_ROPE_BACK:
  11379. {
  11380. if (src0->grad) {
  11381. assert(src1->type == GGML_TYPE_I32);
  11382. assert(ggml_nelements(src1) == 3);
  11383. const int n_past = ((int32_t *) src1->data)[0];
  11384. const int n_dims = ((int32_t *) src1->data)[1];
  11385. const int mode = ((int32_t *) src1->data)[2];
  11386. src0->grad = ggml_add_impl(ctx,
  11387. src0->grad,
  11388. ggml_rope(ctx,
  11389. tensor->grad,
  11390. n_past,
  11391. n_dims,
  11392. mode),
  11393. inplace);
  11394. }
  11395. if (src1->grad) {
  11396. // noop
  11397. }
  11398. } break;
  11399. case GGML_OP_CONV_1D_1S:
  11400. {
  11401. GGML_ASSERT(false); // TODO: not implemented
  11402. } break;
  11403. case GGML_OP_CONV_1D_2S:
  11404. {
  11405. GGML_ASSERT(false); // TODO: not implemented
  11406. } break;
  11407. case GGML_OP_FLASH_ATTN:
  11408. {
  11409. GGML_ASSERT(false); // not supported
  11410. } break;
  11411. case GGML_OP_FLASH_FF:
  11412. {
  11413. GGML_ASSERT(false); // not supported
  11414. } break;
  11415. case GGML_OP_MAP_UNARY:
  11416. case GGML_OP_MAP_BINARY:
  11417. {
  11418. GGML_ASSERT(false); // not supported
  11419. } break;
  11420. case GGML_OP_NONE:
  11421. {
  11422. // nop
  11423. } break;
  11424. case GGML_OP_COUNT:
  11425. {
  11426. GGML_ASSERT(false);
  11427. } break;
  11428. }
  11429. }
  11430. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  11431. if (node->grad == NULL) {
  11432. // this usually happens when we generate intermediate nodes from constants in the backward pass
  11433. // it can also happen during forward pass, if the user performs computations with constants
  11434. if (node->op != GGML_OP_NONE) {
  11435. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  11436. }
  11437. }
  11438. // check if already visited
  11439. for (int i = 0; i < cgraph->n_nodes; i++) {
  11440. if (cgraph->nodes[i] == node) {
  11441. return;
  11442. }
  11443. }
  11444. for (int i = 0; i < cgraph->n_leafs; i++) {
  11445. if (cgraph->leafs[i] == node) {
  11446. return;
  11447. }
  11448. }
  11449. if (node->src0) {
  11450. ggml_visit_parents(cgraph, node->src0);
  11451. }
  11452. if (node->src1) {
  11453. ggml_visit_parents(cgraph, node->src1);
  11454. }
  11455. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  11456. if (node->opt[i]) {
  11457. ggml_visit_parents(cgraph, node->opt[i]);
  11458. }
  11459. }
  11460. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  11461. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  11462. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  11463. if (strlen(node->name) == 0) {
  11464. snprintf(node->name, sizeof(node->name), "leaf_%d", cgraph->n_leafs);
  11465. }
  11466. cgraph->leafs[cgraph->n_leafs] = node;
  11467. cgraph->n_leafs++;
  11468. } else {
  11469. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  11470. if (strlen(node->name) == 0) {
  11471. snprintf(node->name, sizeof(node->name), "node_%d", cgraph->n_nodes);
  11472. }
  11473. cgraph->nodes[cgraph->n_nodes] = node;
  11474. cgraph->grads[cgraph->n_nodes] = node->grad;
  11475. cgraph->n_nodes++;
  11476. }
  11477. }
  11478. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  11479. if (!expand) {
  11480. cgraph->n_nodes = 0;
  11481. cgraph->n_leafs = 0;
  11482. }
  11483. const int n0 = cgraph->n_nodes;
  11484. UNUSED(n0);
  11485. ggml_visit_parents(cgraph, tensor);
  11486. const int n_new = cgraph->n_nodes - n0;
  11487. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  11488. if (n_new > 0) {
  11489. // the last added node should always be starting point
  11490. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  11491. }
  11492. }
  11493. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  11494. ggml_build_forward_impl(cgraph, tensor, true);
  11495. }
  11496. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  11497. struct ggml_cgraph result = {
  11498. /*.n_nodes =*/ 0,
  11499. /*.n_leafs =*/ 0,
  11500. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  11501. /*.work_size =*/ 0,
  11502. /*.work =*/ NULL,
  11503. /*.nodes =*/ { NULL },
  11504. /*.grads =*/ { NULL },
  11505. /*.leafs =*/ { NULL },
  11506. /*.perf_runs =*/ 0,
  11507. /*.perf_cycles =*/ 0,
  11508. /*.perf_time_us =*/ 0,
  11509. };
  11510. ggml_build_forward_impl(&result, tensor, false);
  11511. return result;
  11512. }
  11513. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  11514. struct ggml_cgraph result = *gf;
  11515. GGML_ASSERT(gf->n_nodes > 0);
  11516. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  11517. if (keep) {
  11518. for (int i = 0; i < gf->n_nodes; i++) {
  11519. struct ggml_tensor * node = gf->nodes[i];
  11520. if (node->grad) {
  11521. node->grad = ggml_dup_tensor(ctx, node);
  11522. gf->grads[i] = node->grad;
  11523. }
  11524. }
  11525. }
  11526. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11527. struct ggml_tensor * node = gf->nodes[i];
  11528. // because we detached the grad nodes from the original graph, we can afford inplace operations
  11529. if (node->grad) {
  11530. ggml_compute_backward(ctx, node, keep);
  11531. }
  11532. }
  11533. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  11534. struct ggml_tensor * node = gf->nodes[i];
  11535. if (node->is_param) {
  11536. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  11537. ggml_build_forward_impl(&result, node->grad, true);
  11538. }
  11539. }
  11540. return result;
  11541. }
  11542. //
  11543. // thread data
  11544. //
  11545. // synchronization is done via busy loops
  11546. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  11547. //
  11548. #ifdef __APPLE__
  11549. //#include <os/lock.h>
  11550. //
  11551. //typedef os_unfair_lock ggml_lock_t;
  11552. //
  11553. //#define ggml_lock_init(x) UNUSED(x)
  11554. //#define ggml_lock_destroy(x) UNUSED(x)
  11555. //#define ggml_lock_lock os_unfair_lock_lock
  11556. //#define ggml_lock_unlock os_unfair_lock_unlock
  11557. //
  11558. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  11559. typedef int ggml_lock_t;
  11560. #define ggml_lock_init(x) UNUSED(x)
  11561. #define ggml_lock_destroy(x) UNUSED(x)
  11562. #define ggml_lock_lock(x) UNUSED(x)
  11563. #define ggml_lock_unlock(x) UNUSED(x)
  11564. #define GGML_LOCK_INITIALIZER 0
  11565. typedef pthread_t ggml_thread_t;
  11566. #define ggml_thread_create pthread_create
  11567. #define ggml_thread_join pthread_join
  11568. #else
  11569. //typedef pthread_spinlock_t ggml_lock_t;
  11570. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  11571. //#define ggml_lock_destroy pthread_spin_destroy
  11572. //#define ggml_lock_lock pthread_spin_lock
  11573. //#define ggml_lock_unlock pthread_spin_unlock
  11574. typedef int ggml_lock_t;
  11575. #define ggml_lock_init(x) UNUSED(x)
  11576. #define ggml_lock_destroy(x) UNUSED(x)
  11577. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  11578. #define ggml_lock_lock(x) _mm_pause()
  11579. #else
  11580. #define ggml_lock_lock(x) UNUSED(x)
  11581. #endif
  11582. #define ggml_lock_unlock(x) UNUSED(x)
  11583. #define GGML_LOCK_INITIALIZER 0
  11584. typedef pthread_t ggml_thread_t;
  11585. #define ggml_thread_create pthread_create
  11586. #define ggml_thread_join pthread_join
  11587. #endif
  11588. struct ggml_compute_state_shared {
  11589. ggml_lock_t spin;
  11590. int n_threads;
  11591. // synchronization primitives
  11592. atomic_int n_ready;
  11593. atomic_bool has_work;
  11594. atomic_bool stop; // stop all threads
  11595. };
  11596. struct ggml_compute_state {
  11597. ggml_thread_t thrd;
  11598. struct ggml_compute_params params;
  11599. struct ggml_tensor * node;
  11600. struct ggml_compute_state_shared * shared;
  11601. };
  11602. static thread_ret_t ggml_graph_compute_thread(void * data) {
  11603. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  11604. const int n_threads = state->shared->n_threads;
  11605. while (true) {
  11606. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  11607. atomic_store(&state->shared->has_work, false);
  11608. } else {
  11609. while (atomic_load(&state->shared->has_work)) {
  11610. if (atomic_load(&state->shared->stop)) {
  11611. return 0;
  11612. }
  11613. ggml_lock_lock (&state->shared->spin);
  11614. ggml_lock_unlock(&state->shared->spin);
  11615. }
  11616. }
  11617. atomic_fetch_sub(&state->shared->n_ready, 1);
  11618. // wait for work
  11619. while (!atomic_load(&state->shared->has_work)) {
  11620. if (atomic_load(&state->shared->stop)) {
  11621. return 0;
  11622. }
  11623. ggml_lock_lock (&state->shared->spin);
  11624. ggml_lock_unlock(&state->shared->spin);
  11625. }
  11626. // check if we should stop
  11627. if (atomic_load(&state->shared->stop)) {
  11628. break;
  11629. }
  11630. if (state->node) {
  11631. if (state->params.ith < state->params.nth) {
  11632. ggml_compute_forward(&state->params, state->node);
  11633. }
  11634. state->node = NULL;
  11635. } else {
  11636. break;
  11637. }
  11638. }
  11639. return 0;
  11640. }
  11641. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  11642. const int n_threads = cgraph->n_threads;
  11643. struct ggml_compute_state_shared state_shared = {
  11644. /*.spin =*/ GGML_LOCK_INITIALIZER,
  11645. /*.n_threads =*/ n_threads,
  11646. /*.n_ready =*/ 0,
  11647. /*.has_work =*/ false,
  11648. /*.stop =*/ false,
  11649. };
  11650. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  11651. // create thread pool
  11652. if (n_threads > 1) {
  11653. ggml_lock_init(&state_shared.spin);
  11654. atomic_store(&state_shared.has_work, true);
  11655. for (int j = 0; j < n_threads - 1; j++) {
  11656. workers[j] = (struct ggml_compute_state) {
  11657. .thrd = 0,
  11658. .params = {
  11659. .type = GGML_TASK_COMPUTE,
  11660. .ith = j + 1,
  11661. .nth = n_threads,
  11662. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11663. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11664. },
  11665. .node = NULL,
  11666. .shared = &state_shared,
  11667. };
  11668. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  11669. GGML_ASSERT(rc == 0);
  11670. UNUSED(rc);
  11671. }
  11672. }
  11673. // initialize tasks + work buffer
  11674. {
  11675. size_t work_size = 0;
  11676. // thread scheduling for the different operations
  11677. for (int i = 0; i < cgraph->n_nodes; i++) {
  11678. struct ggml_tensor * node = cgraph->nodes[i];
  11679. switch (node->op) {
  11680. case GGML_OP_CPY:
  11681. case GGML_OP_DUP:
  11682. {
  11683. node->n_tasks = n_threads;
  11684. size_t cur = 0;
  11685. if (ggml_is_quantized(node->type)) {
  11686. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  11687. }
  11688. work_size = MAX(work_size, cur);
  11689. } break;
  11690. case GGML_OP_ADD:
  11691. case GGML_OP_ADD1:
  11692. {
  11693. node->n_tasks = n_threads;
  11694. size_t cur = 0;
  11695. if (ggml_is_quantized(node->src0->type)) {
  11696. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  11697. }
  11698. work_size = MAX(work_size, cur);
  11699. } break;
  11700. case GGML_OP_ACC:
  11701. {
  11702. node->n_tasks = n_threads;
  11703. size_t cur = 0;
  11704. if (ggml_is_quantized(node->src0->type)) {
  11705. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  11706. }
  11707. work_size = MAX(work_size, cur);
  11708. } break;
  11709. case GGML_OP_SUB:
  11710. case GGML_OP_DIV:
  11711. case GGML_OP_SQR:
  11712. case GGML_OP_SQRT:
  11713. case GGML_OP_LOG:
  11714. case GGML_OP_SUM:
  11715. case GGML_OP_SUM_ROWS:
  11716. case GGML_OP_MEAN:
  11717. case GGML_OP_REPEAT:
  11718. case GGML_OP_ABS:
  11719. case GGML_OP_SGN:
  11720. case GGML_OP_NEG:
  11721. case GGML_OP_STEP:
  11722. case GGML_OP_RELU:
  11723. {
  11724. node->n_tasks = 1;
  11725. } break;
  11726. case GGML_OP_MUL:
  11727. case GGML_OP_GELU:
  11728. case GGML_OP_SILU:
  11729. case GGML_OP_SILU_BACK:
  11730. case GGML_OP_NORM:
  11731. case GGML_OP_RMS_NORM:
  11732. case GGML_OP_RMS_NORM_BACK:
  11733. {
  11734. node->n_tasks = n_threads;
  11735. } break;
  11736. case GGML_OP_MUL_MAT:
  11737. {
  11738. node->n_tasks = n_threads;
  11739. // TODO: use different scheduling for different matrix sizes
  11740. //const int nr0 = ggml_nrows(node->src0);
  11741. //const int nr1 = ggml_nrows(node->src1);
  11742. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  11743. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  11744. size_t cur = 0;
  11745. #if defined(GGML_USE_CUBLAS)
  11746. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  11747. node->n_tasks = 1; // TODO: this actually is doing nothing
  11748. // the threads are still spinning
  11749. }
  11750. else
  11751. #elif defined(GGML_USE_CLBLAST)
  11752. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  11753. node->n_tasks = 1; // TODO: this actually is doing nothing
  11754. // the threads are still spinning
  11755. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  11756. }
  11757. else
  11758. #endif
  11759. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  11760. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11761. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11762. node->n_tasks = 1; // TODO: this actually is doing nothing
  11763. // the threads are still spinning
  11764. // here we need memory just for single 2D matrix from src0
  11765. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11766. } else {
  11767. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11768. }
  11769. #else
  11770. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  11771. #endif
  11772. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  11773. cur = 0;
  11774. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11775. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11776. node->n_tasks = 1;
  11777. }
  11778. #endif
  11779. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  11780. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  11781. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  11782. node->n_tasks = 1;
  11783. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  11784. } else
  11785. #endif
  11786. {
  11787. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  11788. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  11789. }
  11790. } else {
  11791. GGML_ASSERT(false);
  11792. }
  11793. work_size = MAX(work_size, cur);
  11794. } break;
  11795. case GGML_OP_SCALE:
  11796. {
  11797. node->n_tasks = n_threads;
  11798. } break;
  11799. case GGML_OP_SET:
  11800. case GGML_OP_CONT:
  11801. case GGML_OP_RESHAPE:
  11802. case GGML_OP_VIEW:
  11803. case GGML_OP_PERMUTE:
  11804. case GGML_OP_TRANSPOSE:
  11805. case GGML_OP_GET_ROWS:
  11806. case GGML_OP_GET_ROWS_BACK:
  11807. case GGML_OP_DIAG:
  11808. case GGML_OP_DIAG_MASK_ZERO:
  11809. {
  11810. node->n_tasks = 1;
  11811. } break;
  11812. case GGML_OP_DIAG_MASK_INF:
  11813. case GGML_OP_SOFT_MAX:
  11814. case GGML_OP_ROPE:
  11815. case GGML_OP_ROPE_BACK:
  11816. {
  11817. node->n_tasks = n_threads;
  11818. } break;
  11819. case GGML_OP_ALIBI:
  11820. {
  11821. node->n_tasks = 1; //TODO
  11822. } break;
  11823. case GGML_OP_CLAMP:
  11824. {
  11825. node->n_tasks = 1; //TODO
  11826. } break;
  11827. case GGML_OP_CONV_1D_1S:
  11828. case GGML_OP_CONV_1D_2S:
  11829. {
  11830. node->n_tasks = n_threads;
  11831. GGML_ASSERT(node->src0->ne[3] == 1);
  11832. GGML_ASSERT(node->src1->ne[2] == 1);
  11833. GGML_ASSERT(node->src1->ne[3] == 1);
  11834. size_t cur = 0;
  11835. const int nk = node->src0->ne[0];
  11836. if (node->src0->type == GGML_TYPE_F16 &&
  11837. node->src1->type == GGML_TYPE_F32) {
  11838. cur = sizeof(ggml_fp16_t)*(
  11839. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11840. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11841. );
  11842. } else if (node->src0->type == GGML_TYPE_F32 &&
  11843. node->src1->type == GGML_TYPE_F32) {
  11844. cur = sizeof(float)*(
  11845. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  11846. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  11847. );
  11848. } else {
  11849. GGML_ASSERT(false);
  11850. }
  11851. work_size = MAX(work_size, cur);
  11852. } break;
  11853. case GGML_OP_FLASH_ATTN:
  11854. {
  11855. node->n_tasks = n_threads;
  11856. size_t cur = 0;
  11857. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  11858. if (node->src1->type == GGML_TYPE_F32) {
  11859. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11860. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11861. }
  11862. if (node->src1->type == GGML_TYPE_F16) {
  11863. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  11864. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  11865. }
  11866. work_size = MAX(work_size, cur);
  11867. } break;
  11868. case GGML_OP_FLASH_FF:
  11869. {
  11870. node->n_tasks = n_threads;
  11871. size_t cur = 0;
  11872. if (node->src1->type == GGML_TYPE_F32) {
  11873. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11874. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11875. }
  11876. if (node->src1->type == GGML_TYPE_F16) {
  11877. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  11878. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  11879. }
  11880. work_size = MAX(work_size, cur);
  11881. } break;
  11882. case GGML_OP_MAP_UNARY:
  11883. case GGML_OP_MAP_BINARY:
  11884. {
  11885. node->n_tasks = 1;
  11886. } break;
  11887. case GGML_OP_NONE:
  11888. {
  11889. node->n_tasks = 1;
  11890. } break;
  11891. case GGML_OP_COUNT:
  11892. {
  11893. GGML_ASSERT(false);
  11894. } break;
  11895. }
  11896. }
  11897. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  11898. GGML_ASSERT(false); // TODO: better handling
  11899. }
  11900. if (work_size > 0 && cgraph->work == NULL) {
  11901. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  11902. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  11903. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  11904. }
  11905. }
  11906. const int64_t perf_start_cycles = ggml_perf_cycles();
  11907. const int64_t perf_start_time_us = ggml_perf_time_us();
  11908. for (int i = 0; i < cgraph->n_nodes; i++) {
  11909. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  11910. struct ggml_tensor * node = cgraph->nodes[i];
  11911. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  11912. //if (node->grad == NULL && node->perf_runs > 0) {
  11913. // continue;
  11914. //}
  11915. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  11916. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  11917. // INIT
  11918. struct ggml_compute_params params = {
  11919. /*.type =*/ GGML_TASK_INIT,
  11920. /*.ith =*/ 0,
  11921. /*.nth =*/ node->n_tasks,
  11922. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11923. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  11924. };
  11925. ggml_compute_forward(&params, node);
  11926. // COMPUTE
  11927. if (node->n_tasks > 1) {
  11928. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11929. atomic_store(&state_shared.has_work, false);
  11930. }
  11931. while (atomic_load(&state_shared.has_work)) {
  11932. ggml_lock_lock (&state_shared.spin);
  11933. ggml_lock_unlock(&state_shared.spin);
  11934. }
  11935. // launch thread pool
  11936. for (int j = 0; j < n_threads - 1; j++) {
  11937. workers[j].params = (struct ggml_compute_params) {
  11938. .type = GGML_TASK_COMPUTE,
  11939. .ith = j + 1,
  11940. .nth = node->n_tasks,
  11941. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11942. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11943. };
  11944. workers[j].node = node;
  11945. }
  11946. atomic_fetch_sub(&state_shared.n_ready, 1);
  11947. while (atomic_load(&state_shared.n_ready) > 0) {
  11948. ggml_lock_lock (&state_shared.spin);
  11949. ggml_lock_unlock(&state_shared.spin);
  11950. }
  11951. atomic_store(&state_shared.has_work, true);
  11952. }
  11953. params.type = GGML_TASK_COMPUTE;
  11954. ggml_compute_forward(&params, node);
  11955. // wait for thread pool
  11956. if (node->n_tasks > 1) {
  11957. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11958. atomic_store(&state_shared.has_work, false);
  11959. }
  11960. while (atomic_load(&state_shared.has_work)) {
  11961. ggml_lock_lock (&state_shared.spin);
  11962. ggml_lock_unlock(&state_shared.spin);
  11963. }
  11964. atomic_fetch_sub(&state_shared.n_ready, 1);
  11965. while (atomic_load(&state_shared.n_ready) != 0) {
  11966. ggml_lock_lock (&state_shared.spin);
  11967. ggml_lock_unlock(&state_shared.spin);
  11968. }
  11969. }
  11970. // FINALIZE
  11971. if (node->n_tasks > 1) {
  11972. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  11973. atomic_store(&state_shared.has_work, false);
  11974. }
  11975. while (atomic_load(&state_shared.has_work)) {
  11976. ggml_lock_lock (&state_shared.spin);
  11977. ggml_lock_unlock(&state_shared.spin);
  11978. }
  11979. // launch thread pool
  11980. for (int j = 0; j < n_threads - 1; j++) {
  11981. workers[j].params = (struct ggml_compute_params) {
  11982. .type = GGML_TASK_FINALIZE,
  11983. .ith = j + 1,
  11984. .nth = node->n_tasks,
  11985. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  11986. .wdata = cgraph->work ? cgraph->work->data : NULL,
  11987. };
  11988. workers[j].node = node;
  11989. }
  11990. atomic_fetch_sub(&state_shared.n_ready, 1);
  11991. while (atomic_load(&state_shared.n_ready) > 0) {
  11992. ggml_lock_lock (&state_shared.spin);
  11993. ggml_lock_unlock(&state_shared.spin);
  11994. }
  11995. atomic_store(&state_shared.has_work, true);
  11996. }
  11997. params.type = GGML_TASK_FINALIZE;
  11998. ggml_compute_forward(&params, node);
  11999. // wait for thread pool
  12000. if (node->n_tasks > 1) {
  12001. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  12002. atomic_store(&state_shared.has_work, false);
  12003. }
  12004. while (atomic_load(&state_shared.has_work)) {
  12005. ggml_lock_lock (&state_shared.spin);
  12006. ggml_lock_unlock(&state_shared.spin);
  12007. }
  12008. atomic_fetch_sub(&state_shared.n_ready, 1);
  12009. while (atomic_load(&state_shared.n_ready) != 0) {
  12010. ggml_lock_lock (&state_shared.spin);
  12011. ggml_lock_unlock(&state_shared.spin);
  12012. }
  12013. }
  12014. // performance stats (node)
  12015. {
  12016. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  12017. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  12018. node->perf_runs++;
  12019. node->perf_cycles += perf_cycles_cur;
  12020. node->perf_time_us += perf_time_us_cur;
  12021. }
  12022. }
  12023. // join thread pool
  12024. if (n_threads > 1) {
  12025. atomic_store(&state_shared.stop, true);
  12026. atomic_store(&state_shared.has_work, true);
  12027. for (int j = 0; j < n_threads - 1; j++) {
  12028. int rc = ggml_thread_join(workers[j].thrd, NULL);
  12029. GGML_ASSERT(rc == 0);
  12030. UNUSED(rc);
  12031. }
  12032. ggml_lock_destroy(&state_shared.spin);
  12033. }
  12034. // performance stats (graph)
  12035. {
  12036. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  12037. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  12038. cgraph->perf_runs++;
  12039. cgraph->perf_cycles += perf_cycles_cur;
  12040. cgraph->perf_time_us += perf_time_us_cur;
  12041. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  12042. __func__, cgraph->perf_runs,
  12043. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  12044. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  12045. (double) perf_time_us_cur / 1000.0,
  12046. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  12047. }
  12048. }
  12049. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  12050. for (int i = 0; i < cgraph->n_nodes; i++) {
  12051. struct ggml_tensor * grad = cgraph->grads[i];
  12052. if (grad) {
  12053. ggml_set_zero(grad);
  12054. }
  12055. }
  12056. }
  12057. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  12058. for (int i = 0; i < cgraph->n_leafs; i++) {
  12059. struct ggml_tensor * leaf = cgraph->leafs[i];
  12060. if (strcmp(leaf->name, name) == 0) {
  12061. return leaf;
  12062. }
  12063. }
  12064. for (int i = 0; i < cgraph->n_nodes; i++) {
  12065. struct ggml_tensor * node = cgraph->nodes[i];
  12066. if (strcmp(node->name, name) == 0) {
  12067. return node;
  12068. }
  12069. }
  12070. return NULL;
  12071. }
  12072. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  12073. const int64_t * ne = tensor->ne;
  12074. const size_t * nb = tensor->nb;
  12075. fprintf(fout, "%-6s %-12s %8d %8d %d %d %d %16zu %16zu %16zu %16zu %16p %32s\n",
  12076. ggml_type_name(tensor->type),
  12077. ggml_op_name (tensor->op),
  12078. tensor->n_dims,
  12079. (int) ne[0], (int) ne[1], (int) ne[2], (int) ne[3],
  12080. nb[0], nb[1], nb[2], nb[3],
  12081. tensor->data,
  12082. tensor->name);
  12083. }
  12084. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  12085. const int64_t * ne = tensor->ne;
  12086. const size_t * nb = tensor->nb;
  12087. fprintf(fout, "%-6s %-6s %-12s %8d %d %d %d %d %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  12088. arg,
  12089. ggml_type_name(tensor->type),
  12090. ggml_op_name (tensor->op),
  12091. tensor->n_dims,
  12092. (int) ne[0], (int) ne[1], (int) ne[2], (int) ne[3],
  12093. nb[0], nb[1], nb[2], nb[3],
  12094. tensor->n_tasks,
  12095. tensor->data,
  12096. tensor->name);
  12097. }
  12098. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  12099. //assert(cgraph->work == NULL);
  12100. //assert(cgraph->work_size == 0);
  12101. uint64_t size_eval = 0;
  12102. // compute size of intermediate results
  12103. // TODO: does not take into account scratch buffers !!!!
  12104. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12105. size_eval += ggml_nbytes(cgraph->nodes[i]);
  12106. }
  12107. // print
  12108. {
  12109. FILE * fout = stdout;
  12110. fprintf(fout, "\n");
  12111. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  12112. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  12113. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  12114. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  12115. fprintf(fout, "%-16s %8d\n", "eval", (int) size_eval);
  12116. // header
  12117. fprintf(fout, "\n");
  12118. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  12119. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  12120. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12121. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  12122. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  12123. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  12124. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  12125. }
  12126. // header
  12127. fprintf(fout, "\n");
  12128. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  12129. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  12130. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12131. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  12132. if (cgraph->nodes[i]->src0) {
  12133. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  12134. }
  12135. if (cgraph->nodes[i]->src1) {
  12136. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  12137. }
  12138. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12139. if (cgraph->nodes[i]->opt[j]) {
  12140. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  12141. }
  12142. }
  12143. fprintf(fout, "\n");
  12144. }
  12145. fprintf(fout, "\n");
  12146. }
  12147. // write binary data
  12148. {
  12149. FILE * fout = fopen(fname, "wb");
  12150. if (!fout) {
  12151. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12152. return;
  12153. }
  12154. // header
  12155. {
  12156. const uint32_t magic = GGML_FILE_MAGIC;
  12157. const uint32_t version = GGML_FILE_VERSION;
  12158. const uint32_t n_leafs = cgraph->n_leafs;
  12159. const uint32_t nodes = cgraph->n_nodes;
  12160. fwrite(&magic, sizeof(uint32_t), 1, fout);
  12161. fwrite(&version, sizeof(uint32_t), 1, fout);
  12162. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  12163. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  12164. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  12165. }
  12166. // leafs
  12167. {
  12168. for (int i = 0; i < cgraph->n_leafs; ++i) {
  12169. const struct ggml_tensor * tensor = cgraph->leafs[i];
  12170. const uint32_t type = tensor->type;
  12171. const uint32_t op = tensor->op;
  12172. const uint32_t n_dims = tensor->n_dims;
  12173. fwrite(&type, sizeof(uint32_t), 1, fout);
  12174. fwrite(&op, sizeof(uint32_t), 1, fout);
  12175. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12176. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12177. const uint64_t ne = tensor->ne[j];
  12178. const uint64_t nb = tensor->nb[j];
  12179. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12180. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12181. }
  12182. // store the pointer address
  12183. {
  12184. const uint64_t ptr = (uint64_t) tensor->data;
  12185. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12186. }
  12187. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12188. // dump the data
  12189. // TODO: pad this to 32 byte boundary
  12190. {
  12191. const size_t size = ggml_nbytes(tensor);
  12192. fwrite(tensor->data, sizeof(char), size, fout);
  12193. }
  12194. }
  12195. }
  12196. // nodes
  12197. {
  12198. for (int i = 0; i < cgraph->n_nodes; ++i) {
  12199. const struct ggml_tensor * tensor = cgraph->nodes[i];
  12200. const uint32_t type = tensor->type;
  12201. const uint32_t op = tensor->op;
  12202. const uint32_t n_dims = tensor->n_dims;
  12203. fwrite(&type, sizeof(uint32_t), 1, fout);
  12204. fwrite(&op, sizeof(uint32_t), 1, fout);
  12205. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  12206. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12207. const uint64_t ne = tensor->ne[j];
  12208. const uint64_t nb = tensor->nb[j];
  12209. fwrite(&ne, sizeof(uint64_t), 1, fout);
  12210. fwrite(&nb, sizeof(uint64_t), 1, fout);
  12211. }
  12212. // store the pointer address
  12213. {
  12214. const uint64_t ptr = (uint64_t) tensor->data;
  12215. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  12216. }
  12217. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  12218. // output the op arguments
  12219. {
  12220. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12221. args[0] = tensor->src0;
  12222. args[1] = tensor->src1;
  12223. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12224. args[2 + j] = tensor->opt[j];
  12225. }
  12226. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12227. if (args[j]) {
  12228. int32_t idx = -1;
  12229. // check if leaf
  12230. {
  12231. for (int k = 0; k < cgraph->n_leafs; ++k) {
  12232. if (args[j] == cgraph->leafs[k]) {
  12233. idx = k;
  12234. break;
  12235. }
  12236. }
  12237. }
  12238. // check if node
  12239. if (idx == -1) {
  12240. for (int k = 0; k < cgraph->n_nodes; ++k) {
  12241. if (args[j] == cgraph->nodes[k]) {
  12242. idx = GGML_MAX_NODES + k;
  12243. break;
  12244. }
  12245. }
  12246. }
  12247. if (idx == -1) {
  12248. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  12249. return;
  12250. }
  12251. fwrite(&idx, sizeof(int32_t), 1, fout);
  12252. } else {
  12253. const int32_t nul = -1;
  12254. fwrite(&nul, sizeof(int32_t), 1, fout);
  12255. }
  12256. }
  12257. }
  12258. }
  12259. }
  12260. fclose(fout);
  12261. }
  12262. }
  12263. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  12264. assert(*ctx_data == NULL);
  12265. assert(*ctx_eval == NULL);
  12266. struct ggml_cgraph result = { 0 };
  12267. struct ggml_tensor * data = NULL;
  12268. // read file into data
  12269. {
  12270. FILE * fin = fopen(fname, "rb");
  12271. if (!fin) {
  12272. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  12273. return result;
  12274. }
  12275. size_t fsize = 0;
  12276. fseek(fin, 0, SEEK_END);
  12277. fsize = ftell(fin);
  12278. fseek(fin, 0, SEEK_SET);
  12279. // create the data context
  12280. {
  12281. const size_t overhead = 1*ggml_tensor_overhead();
  12282. struct ggml_init_params params = {
  12283. .mem_size = fsize + overhead,
  12284. .mem_buffer = NULL,
  12285. .no_alloc = false,
  12286. };
  12287. *ctx_data = ggml_init(params);
  12288. if (!*ctx_data) {
  12289. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12290. return result;
  12291. }
  12292. }
  12293. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  12294. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  12295. if (ret != fsize) {
  12296. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  12297. return result;
  12298. }
  12299. fclose(fin);
  12300. }
  12301. // populate result
  12302. {
  12303. char * ptr = (char *) data->data;
  12304. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  12305. if (magic != GGML_FILE_MAGIC) {
  12306. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  12307. return result;
  12308. }
  12309. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  12310. if (version != GGML_FILE_VERSION) {
  12311. fprintf(stderr, "%s: invalid version number\n", __func__);
  12312. return result;
  12313. }
  12314. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  12315. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  12316. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  12317. result.n_leafs = n_leafs;
  12318. result.n_nodes = n_nodes;
  12319. // create the data context
  12320. {
  12321. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  12322. struct ggml_init_params params = {
  12323. .mem_size = size_eval + overhead,
  12324. .mem_buffer = NULL,
  12325. .no_alloc = true,
  12326. };
  12327. *ctx_eval = ggml_init(params);
  12328. if (!*ctx_eval) {
  12329. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  12330. return result;
  12331. }
  12332. }
  12333. // leafs
  12334. {
  12335. uint32_t type;
  12336. uint32_t op;
  12337. uint32_t n_dims;
  12338. for (uint32_t i = 0; i < n_leafs; ++i) {
  12339. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12340. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12341. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12342. int64_t ne[GGML_MAX_DIMS];
  12343. size_t nb[GGML_MAX_DIMS];
  12344. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12345. uint64_t ne_cur;
  12346. uint64_t nb_cur;
  12347. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12348. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12349. ne[j] = ne_cur;
  12350. nb[j] = nb_cur;
  12351. }
  12352. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12353. tensor->op = (enum ggml_op) op;
  12354. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  12355. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  12356. tensor->data = (void *) ptr;
  12357. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12358. tensor->nb[j] = nb[j];
  12359. }
  12360. result.leafs[i] = tensor;
  12361. ptr += ggml_nbytes(tensor);
  12362. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12363. }
  12364. }
  12365. ggml_set_no_alloc(*ctx_eval, false);
  12366. // nodes
  12367. {
  12368. uint32_t type;
  12369. uint32_t op;
  12370. uint32_t n_dims;
  12371. for (uint32_t i = 0; i < n_nodes; ++i) {
  12372. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  12373. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  12374. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  12375. enum ggml_op eop = (enum ggml_op) op;
  12376. int64_t ne[GGML_MAX_DIMS];
  12377. size_t nb[GGML_MAX_DIMS];
  12378. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12379. uint64_t ne_cur;
  12380. uint64_t nb_cur;
  12381. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  12382. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  12383. ne[j] = ne_cur;
  12384. nb[j] = nb_cur;
  12385. }
  12386. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  12387. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  12388. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  12389. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  12390. // parse args
  12391. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  12392. const int32_t arg_idx = ptr_arg_idx[j];
  12393. if (arg_idx == -1) {
  12394. continue;
  12395. }
  12396. if (arg_idx < GGML_MAX_NODES) {
  12397. args[j] = result.leafs[arg_idx];
  12398. } else {
  12399. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  12400. }
  12401. }
  12402. // create the tensor
  12403. // "view" operations are handled differently
  12404. // TODO: handle inplace ops - currently a copy is always made
  12405. struct ggml_tensor * tensor = NULL;
  12406. switch (eop) {
  12407. // TODO: implement other view ops
  12408. case GGML_OP_RESHAPE:
  12409. {
  12410. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  12411. } break;
  12412. case GGML_OP_VIEW:
  12413. {
  12414. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12415. uint64_t offs;
  12416. memcpy(&offs, args[2]->data, sizeof(offs));
  12417. tensor->data = ((char *) tensor->data) + offs;
  12418. } break;
  12419. case GGML_OP_TRANSPOSE:
  12420. {
  12421. tensor = ggml_transpose(*ctx_eval, args[0]);
  12422. } break;
  12423. case GGML_OP_PERMUTE:
  12424. {
  12425. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  12426. } break;
  12427. default:
  12428. {
  12429. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  12430. tensor->op = eop;
  12431. } break;
  12432. }
  12433. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  12434. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  12435. tensor->nb[j] = nb[j];
  12436. }
  12437. tensor->src0 = args[0];
  12438. tensor->src1 = args[1];
  12439. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  12440. tensor->opt[j] = args[2 + j];
  12441. }
  12442. result.nodes[i] = tensor;
  12443. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  12444. }
  12445. }
  12446. }
  12447. return result;
  12448. }
  12449. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  12450. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  12451. GGML_PRINT("=== GRAPH ===\n");
  12452. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  12453. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  12454. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  12455. for (int i = 0; i < cgraph->n_nodes; i++) {
  12456. struct ggml_tensor * node = cgraph->nodes[i];
  12457. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  12458. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  12459. i,
  12460. node->ne[0], node->ne[1], node->ne[2],
  12461. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  12462. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  12463. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  12464. (double) node->perf_time_us / 1000.0,
  12465. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  12466. }
  12467. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  12468. for (int i = 0; i < cgraph->n_leafs; i++) {
  12469. struct ggml_tensor * node = cgraph->leafs[i];
  12470. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  12471. i,
  12472. node->ne[0], node->ne[1],
  12473. GGML_OP_NAME[node->op]);
  12474. }
  12475. for (int i = 0; i < GGML_OP_COUNT; i++) {
  12476. if (perf_total_per_op_us[i] == 0) {
  12477. continue;
  12478. }
  12479. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  12480. }
  12481. GGML_PRINT("========================================\n");
  12482. }
  12483. // check if node is part of the graph
  12484. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12485. if (cgraph == NULL) {
  12486. return true;
  12487. }
  12488. for (int i = 0; i < cgraph->n_nodes; i++) {
  12489. if (cgraph->nodes[i] == node) {
  12490. return true;
  12491. }
  12492. }
  12493. return false;
  12494. }
  12495. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  12496. for (int i = 0; i < cgraph->n_nodes; i++) {
  12497. struct ggml_tensor * parent = cgraph->nodes[i];
  12498. if (parent->grad == node) {
  12499. return parent;
  12500. }
  12501. }
  12502. return NULL;
  12503. }
  12504. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  12505. char color[16];
  12506. FILE * fp = fopen(filename, "w");
  12507. GGML_ASSERT(fp);
  12508. fprintf(fp, "digraph G {\n");
  12509. fprintf(fp, " newrank = true;\n");
  12510. fprintf(fp, " rankdir = LR;\n");
  12511. for (int i = 0; i < gb->n_nodes; i++) {
  12512. struct ggml_tensor * node = gb->nodes[i];
  12513. if (ggml_graph_get_parent(gb, node) != NULL) {
  12514. continue;
  12515. }
  12516. if (node->is_param) {
  12517. snprintf(color, sizeof(color), "yellow");
  12518. } else if (node->grad) {
  12519. if (ggml_graph_find(gf, node)) {
  12520. snprintf(color, sizeof(color), "green");
  12521. } else {
  12522. snprintf(color, sizeof(color), "lightblue");
  12523. }
  12524. } else {
  12525. snprintf(color, sizeof(color), "white");
  12526. }
  12527. fprintf(fp, " \"%p\" [ "
  12528. "style = filled; fillcolor = %s; shape = record; "
  12529. "label=\"",
  12530. (void *) node, color);
  12531. if (strlen(node->name) > 0) {
  12532. fprintf(fp, "%s |", node->name);
  12533. }
  12534. if (node->n_dims == 2) {
  12535. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  12536. } else {
  12537. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  12538. }
  12539. if (node->grad) {
  12540. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  12541. } else {
  12542. fprintf(fp, "\"; ]\n");
  12543. }
  12544. }
  12545. for (int i = 0; i < gb->n_leafs; i++) {
  12546. struct ggml_tensor * node = gb->leafs[i];
  12547. snprintf(color, sizeof(color), "pink");
  12548. fprintf(fp, " \"%p\" [ "
  12549. "style = filled; fillcolor = %s; shape = record; "
  12550. "label=\"<x>",
  12551. (void *) node, color);
  12552. if (strlen(node->name) > 0) {
  12553. fprintf(fp, "%s | ", node->name);
  12554. }
  12555. if (ggml_nelements(node) == 1) {
  12556. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  12557. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  12558. }
  12559. else {
  12560. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  12561. }
  12562. }
  12563. else {
  12564. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  12565. }
  12566. fprintf(fp, "\"; ]\n");
  12567. }
  12568. for (int i = 0; i < gb->n_nodes; i++) {
  12569. struct ggml_tensor * node = gb->nodes[i];
  12570. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  12571. if (node->src0) {
  12572. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  12573. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  12574. parent0 ? (void *) parent0 : (void *) node->src0,
  12575. parent0 ? "g" : "x",
  12576. parent ? (void *) parent : (void *) node,
  12577. parent ? "g" : "x",
  12578. parent ? "empty" : "vee",
  12579. parent ? "dashed" : "solid");
  12580. }
  12581. if (node->src1) {
  12582. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  12583. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  12584. parent1 ? (void *) parent1 : (void *) node->src1,
  12585. parent1 ? "g" : "x",
  12586. parent ? (void *) parent : (void *) node,
  12587. parent ? "g" : "x",
  12588. parent ? "empty" : "vee",
  12589. parent ? "dashed" : "solid");
  12590. }
  12591. }
  12592. for (int i = 0; i < gb->n_leafs; i++) {
  12593. struct ggml_tensor * node = gb->leafs[i];
  12594. if (node->src0) {
  12595. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  12596. (void *) node->src0, "x",
  12597. (void *) node, "x");
  12598. }
  12599. if (node->src1) {
  12600. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  12601. (void *) node->src1, "x",
  12602. (void *) node, "x");
  12603. }
  12604. }
  12605. fprintf(fp, "}\n");
  12606. fclose(fp);
  12607. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  12608. }
  12609. ////////////////////////////////////////////////////////////////////////////////
  12610. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  12611. int i = 0;
  12612. for (int p = 0; p < np; ++p) {
  12613. const int64_t ne = ggml_nelements(ps[p]) ;
  12614. // TODO: add function to set tensor from array
  12615. for (int64_t j = 0; j < ne; ++j) {
  12616. ggml_set_f32_1d(ps[p], j, x[i++]);
  12617. }
  12618. }
  12619. }
  12620. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  12621. int i = 0;
  12622. for (int p = 0; p < np; ++p) {
  12623. const int64_t ne = ggml_nelements(ps[p]) ;
  12624. // TODO: add function to get all elements at once
  12625. for (int64_t j = 0; j < ne; ++j) {
  12626. x[i++] = ggml_get_f32_1d(ps[p], j);
  12627. }
  12628. }
  12629. }
  12630. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  12631. int i = 0;
  12632. for (int p = 0; p < np; ++p) {
  12633. const int64_t ne = ggml_nelements(ps[p]) ;
  12634. // TODO: add function to get all elements at once
  12635. for (int64_t j = 0; j < ne; ++j) {
  12636. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  12637. }
  12638. }
  12639. }
  12640. //
  12641. // ADAM
  12642. //
  12643. // ref: https://arxiv.org/pdf/1412.6980.pdf
  12644. //
  12645. static enum ggml_opt_result ggml_opt_adam(
  12646. struct ggml_context * ctx,
  12647. struct ggml_opt_params params,
  12648. struct ggml_tensor * f,
  12649. struct ggml_cgraph * gf,
  12650. struct ggml_cgraph * gb) {
  12651. GGML_ASSERT(ggml_is_scalar(f));
  12652. gf->n_threads = params.n_threads;
  12653. gb->n_threads = params.n_threads;
  12654. // these will store the parameters we want to optimize
  12655. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12656. int np = 0;
  12657. int nx = 0;
  12658. for (int i = 0; i < gf->n_nodes; ++i) {
  12659. if (gf->nodes[i]->is_param) {
  12660. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12661. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12662. ps[np++] = gf->nodes[i];
  12663. nx += ggml_nelements(gf->nodes[i]);
  12664. }
  12665. }
  12666. // constants
  12667. const float alpha = params.adam.alpha;
  12668. const float beta1 = params.adam.beta1;
  12669. const float beta2 = params.adam.beta2;
  12670. const float eps = params.adam.eps;
  12671. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  12672. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  12673. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  12674. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  12675. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  12676. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  12677. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  12678. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12679. // initialize
  12680. ggml_vec_set_f32(nx, m, 0.0f);
  12681. ggml_vec_set_f32(nx, v, 0.0f);
  12682. // update view
  12683. ggml_opt_get_params(np, ps, x);
  12684. // compute the function value
  12685. ggml_graph_reset (gf);
  12686. ggml_set_f32 (f->grad, 1.0f);
  12687. ggml_graph_compute(ctx, gb);
  12688. float fx_prev = ggml_get_f32_1d(f, 0);
  12689. if (pf) {
  12690. pf[0] = fx_prev;
  12691. }
  12692. int n_no_improvement = 0;
  12693. float fx_best = fx_prev;
  12694. // run the optimizer
  12695. for (int t = 0; t < params.adam.n_iter; ++t) {
  12696. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  12697. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12698. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  12699. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  12700. for (int i = 0; i < np; ++i) {
  12701. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  12702. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  12703. }
  12704. const int64_t t_start_wall = ggml_time_us();
  12705. const int64_t t_start_cpu = ggml_cycles();
  12706. UNUSED(t_start_wall);
  12707. UNUSED(t_start_cpu);
  12708. {
  12709. // update the gradient
  12710. ggml_opt_get_grad(np, ps, g1);
  12711. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  12712. ggml_vec_scale_f32(nx, m, beta1);
  12713. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  12714. // g2 = g1^2
  12715. ggml_vec_sqr_f32 (nx, g2, g1);
  12716. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  12717. ggml_vec_scale_f32(nx, v, beta2);
  12718. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  12719. // m^hat = m_t / (1 - beta1^t)
  12720. // v^hat = v_t / (1 - beta2^t)
  12721. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  12722. ggml_vec_cpy_f32 (nx, mh, m);
  12723. ggml_vec_cpy_f32 (nx, vh, v);
  12724. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  12725. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  12726. ggml_vec_sqrt_f32 (nx, vh, vh);
  12727. ggml_vec_acc1_f32 (nx, vh, eps);
  12728. ggml_vec_div_f32 (nx, mh, mh, vh);
  12729. ggml_vec_sub_f32 (nx, x, x, mh);
  12730. // update the parameters
  12731. ggml_opt_set_params(np, ps, x);
  12732. }
  12733. ggml_graph_reset (gf);
  12734. ggml_set_f32 (f->grad, 1.0f);
  12735. ggml_graph_compute(ctx, gb);
  12736. const float fx = ggml_get_f32_1d(f, 0);
  12737. // check convergence
  12738. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  12739. GGML_PRINT_DEBUG("converged\n");
  12740. return GGML_OPT_OK;
  12741. }
  12742. // delta-based convergence test
  12743. if (pf != NULL) {
  12744. // need at least params.past iterations to start checking for convergence
  12745. if (params.past <= t) {
  12746. const float rate = (pf[t%params.past] - fx)/fx;
  12747. if (fabsf(rate) < params.delta) {
  12748. return GGML_OPT_OK;
  12749. }
  12750. }
  12751. pf[t%params.past] = fx;
  12752. }
  12753. // check for improvement
  12754. if (params.max_no_improvement > 0) {
  12755. if (fx_best > fx) {
  12756. fx_best = fx;
  12757. n_no_improvement = 0;
  12758. } else {
  12759. ++n_no_improvement;
  12760. if (n_no_improvement >= params.max_no_improvement) {
  12761. return GGML_OPT_OK;
  12762. }
  12763. }
  12764. }
  12765. fx_prev = fx;
  12766. {
  12767. const int64_t t_end_cpu = ggml_cycles();
  12768. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  12769. UNUSED(t_end_cpu);
  12770. const int64_t t_end_wall = ggml_time_us();
  12771. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  12772. UNUSED(t_end_wall);
  12773. }
  12774. }
  12775. return GGML_OPT_DID_NOT_CONVERGE;
  12776. }
  12777. //
  12778. // L-BFGS
  12779. //
  12780. // the L-BFGS implementation below is based on the following implementation:
  12781. //
  12782. // https://github.com/chokkan/liblbfgs
  12783. //
  12784. struct ggml_lbfgs_iteration_data {
  12785. float alpha;
  12786. float ys;
  12787. float * s;
  12788. float * y;
  12789. };
  12790. static enum ggml_opt_result linesearch_backtracking(
  12791. struct ggml_context * ctx,
  12792. const struct ggml_opt_params * params,
  12793. int nx,
  12794. float * x,
  12795. float * fx,
  12796. float * g,
  12797. float * d,
  12798. float * step,
  12799. const float * xp,
  12800. struct ggml_tensor * f,
  12801. struct ggml_cgraph * gf,
  12802. struct ggml_cgraph * gb,
  12803. const int np,
  12804. struct ggml_tensor * ps[]) {
  12805. int count = 0;
  12806. float width = 0.0f;
  12807. float dg = 0.0f;
  12808. float finit = 0.0f;
  12809. float dginit = 0.0f;
  12810. float dgtest = 0.0f;
  12811. const float dec = 0.5f;
  12812. const float inc = 2.1f;
  12813. if (*step <= 0.f) {
  12814. return GGML_LINESEARCH_INVALID_PARAMETERS;
  12815. }
  12816. // compute the initial gradient in the search direction
  12817. ggml_vec_dot_f32(nx, &dginit, g, d);
  12818. // make sure that d points to a descent direction
  12819. if (0 < dginit) {
  12820. return GGML_LINESEARCH_FAIL;
  12821. }
  12822. // initialize local variables
  12823. finit = *fx;
  12824. dgtest = params->lbfgs.ftol*dginit;
  12825. while (true) {
  12826. ggml_vec_cpy_f32(nx, x, xp);
  12827. ggml_vec_mad_f32(nx, x, d, *step);
  12828. // evaluate the function and gradient values
  12829. {
  12830. ggml_opt_set_params(np, ps, x);
  12831. ggml_graph_reset (gf);
  12832. ggml_set_f32 (f->grad, 1.0f);
  12833. ggml_graph_compute(ctx, gb);
  12834. ggml_opt_get_grad(np, ps, g);
  12835. *fx = ggml_get_f32_1d(f, 0);
  12836. }
  12837. ++count;
  12838. if (*fx > finit + (*step)*dgtest) {
  12839. width = dec;
  12840. } else {
  12841. // Armijo condition is satisfied
  12842. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  12843. return count;
  12844. }
  12845. ggml_vec_dot_f32(nx, &dg, g, d);
  12846. // check the Wolfe condition
  12847. if (dg < params->lbfgs.wolfe * dginit) {
  12848. width = inc;
  12849. } else {
  12850. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  12851. // regular Wolfe conditions
  12852. return count;
  12853. }
  12854. if(dg > -params->lbfgs.wolfe*dginit) {
  12855. width = dec;
  12856. } else {
  12857. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  12858. return count;
  12859. }
  12860. return count;
  12861. }
  12862. }
  12863. if (*step < params->lbfgs.min_step) {
  12864. return GGML_LINESEARCH_MINIMUM_STEP;
  12865. }
  12866. if (*step > params->lbfgs.max_step) {
  12867. return GGML_LINESEARCH_MAXIMUM_STEP;
  12868. }
  12869. if (params->lbfgs.max_linesearch <= count) {
  12870. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  12871. }
  12872. (*step) *= width;
  12873. }
  12874. return GGML_LINESEARCH_FAIL;
  12875. }
  12876. static enum ggml_opt_result ggml_opt_lbfgs(
  12877. struct ggml_context * ctx,
  12878. struct ggml_opt_params params,
  12879. struct ggml_tensor * f,
  12880. struct ggml_cgraph * gf,
  12881. struct ggml_cgraph * gb) {
  12882. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  12883. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  12884. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  12885. return GGML_OPT_INVALID_WOLFE;
  12886. }
  12887. }
  12888. gf->n_threads = params.n_threads;
  12889. gb->n_threads = params.n_threads;
  12890. const int m = params.lbfgs.m;
  12891. // these will store the parameters we want to optimize
  12892. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  12893. int np = 0;
  12894. int nx = 0;
  12895. for (int i = 0; i < gf->n_nodes; ++i) {
  12896. if (gf->nodes[i]->is_param) {
  12897. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  12898. GGML_ASSERT(np < GGML_MAX_PARAMS);
  12899. ps[np++] = gf->nodes[i];
  12900. nx += ggml_nelements(gf->nodes[i]);
  12901. }
  12902. }
  12903. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  12904. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  12905. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  12906. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  12907. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  12908. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  12909. float fx = 0.0f; // cost function value
  12910. float xnorm = 0.0f; // ||x||
  12911. float gnorm = 0.0f; // ||g||
  12912. float step = 0.0f;
  12913. // initialize x from the graph nodes
  12914. ggml_opt_get_params(np, ps, x);
  12915. // the L-BFGS memory
  12916. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  12917. for (int i = 0; i < m; ++i) {
  12918. lm[i].alpha = 0.0f;
  12919. lm[i].ys = 0.0f;
  12920. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12921. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  12922. }
  12923. // evaluate the function value and its gradient
  12924. {
  12925. ggml_opt_set_params(np, ps, x);
  12926. ggml_graph_reset (gf);
  12927. ggml_set_f32 (f->grad, 1.0f);
  12928. ggml_graph_compute(ctx, gb);
  12929. ggml_opt_get_grad(np, ps, g);
  12930. fx = ggml_get_f32_1d(f, 0);
  12931. }
  12932. if (pf) {
  12933. pf[0] = fx;
  12934. }
  12935. float fx_best = fx;
  12936. // search direction = -gradient
  12937. ggml_vec_neg_f32(nx, d, g);
  12938. // ||x||, ||g||
  12939. ggml_vec_norm_f32(nx, &xnorm, x);
  12940. ggml_vec_norm_f32(nx, &gnorm, g);
  12941. if (xnorm < 1.0f) {
  12942. xnorm = 1.0f;
  12943. }
  12944. // already optimized
  12945. if (gnorm/xnorm <= params.lbfgs.eps) {
  12946. return GGML_OPT_OK;
  12947. }
  12948. // initial step
  12949. ggml_vec_norm_inv_f32(nx, &step, d);
  12950. int j = 0;
  12951. int k = 1;
  12952. int ls = 0;
  12953. int end = 0;
  12954. int bound = 0;
  12955. int n_no_improvement = 0;
  12956. float ys = 0.0f;
  12957. float yy = 0.0f;
  12958. float beta = 0.0f;
  12959. while (true) {
  12960. // store the current position and gradient vectors
  12961. ggml_vec_cpy_f32(nx, xp, x);
  12962. ggml_vec_cpy_f32(nx, gp, g);
  12963. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  12964. if (ls < 0) {
  12965. // linesearch failed - go back to the previous point and return
  12966. ggml_vec_cpy_f32(nx, x, xp);
  12967. ggml_vec_cpy_f32(nx, g, gp);
  12968. return ls;
  12969. }
  12970. ggml_vec_norm_f32(nx, &xnorm, x);
  12971. ggml_vec_norm_f32(nx, &gnorm, g);
  12972. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  12973. if (xnorm < 1.0f) {
  12974. xnorm = 1.0f;
  12975. }
  12976. if (gnorm/xnorm <= params.lbfgs.eps) {
  12977. // converged
  12978. return GGML_OPT_OK;
  12979. }
  12980. // delta-based convergence test
  12981. if (pf != NULL) {
  12982. // need at least params.past iterations to start checking for convergence
  12983. if (params.past <= k) {
  12984. const float rate = (pf[k%params.past] - fx)/fx;
  12985. if (fabsf(rate) < params.delta) {
  12986. return GGML_OPT_OK;
  12987. }
  12988. }
  12989. pf[k%params.past] = fx;
  12990. }
  12991. // check for improvement
  12992. if (params.max_no_improvement > 0) {
  12993. if (fx < fx_best) {
  12994. fx_best = fx;
  12995. n_no_improvement = 0;
  12996. } else {
  12997. n_no_improvement++;
  12998. if (n_no_improvement >= params.max_no_improvement) {
  12999. return GGML_OPT_OK;
  13000. }
  13001. }
  13002. }
  13003. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  13004. // reached the maximum number of iterations
  13005. return GGML_OPT_DID_NOT_CONVERGE;
  13006. }
  13007. // update vectors s and y:
  13008. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  13009. // y_{k+1} = g_{k+1} - g_{k}.
  13010. //
  13011. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  13012. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  13013. // compute scalars ys and yy:
  13014. // ys = y^t \cdot s -> 1 / \rho.
  13015. // yy = y^t \cdot y.
  13016. //
  13017. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  13018. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  13019. lm[end].ys = ys;
  13020. // find new search direction
  13021. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  13022. bound = (m <= k) ? m : k;
  13023. k++;
  13024. end = (end + 1)%m;
  13025. // initialize search direction with -g
  13026. ggml_vec_neg_f32(nx, d, g);
  13027. j = end;
  13028. for (int i = 0; i < bound; ++i) {
  13029. j = (j + m - 1) % m;
  13030. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  13031. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  13032. lm[j].alpha /= lm[j].ys;
  13033. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  13034. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  13035. }
  13036. ggml_vec_scale_f32(nx, d, ys/yy);
  13037. for (int i = 0; i < bound; ++i) {
  13038. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  13039. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  13040. beta /= lm[j].ys;
  13041. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  13042. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  13043. j = (j + 1)%m;
  13044. }
  13045. step = 1.0;
  13046. }
  13047. return GGML_OPT_DID_NOT_CONVERGE;
  13048. }
  13049. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  13050. struct ggml_opt_params result;
  13051. switch (type) {
  13052. case GGML_OPT_ADAM:
  13053. {
  13054. result = (struct ggml_opt_params) {
  13055. .type = GGML_OPT_ADAM,
  13056. .n_threads = 1,
  13057. .past = 0,
  13058. .delta = 1e-5f,
  13059. .max_no_improvement = 100,
  13060. .print_forward_graph = true,
  13061. .print_backward_graph = true,
  13062. .adam = {
  13063. .n_iter = 10000,
  13064. .alpha = 0.001f,
  13065. .beta1 = 0.9f,
  13066. .beta2 = 0.999f,
  13067. .eps = 1e-8f,
  13068. .eps_f = 1e-5f,
  13069. .eps_g = 1e-3f,
  13070. },
  13071. };
  13072. } break;
  13073. case GGML_OPT_LBFGS:
  13074. {
  13075. result = (struct ggml_opt_params) {
  13076. .type = GGML_OPT_LBFGS,
  13077. .n_threads = 1,
  13078. .past = 0,
  13079. .delta = 1e-5f,
  13080. .max_no_improvement = 0,
  13081. .print_forward_graph = true,
  13082. .print_backward_graph = true,
  13083. .lbfgs = {
  13084. .m = 6,
  13085. .n_iter = 100,
  13086. .max_linesearch = 20,
  13087. .eps = 1e-5f,
  13088. .ftol = 1e-4f,
  13089. .wolfe = 0.9f,
  13090. .min_step = 1e-20f,
  13091. .max_step = 1e+20f,
  13092. .linesearch = GGML_LINESEARCH_DEFAULT,
  13093. },
  13094. };
  13095. } break;
  13096. }
  13097. return result;
  13098. }
  13099. enum ggml_opt_result ggml_opt(
  13100. struct ggml_context * ctx,
  13101. struct ggml_opt_params params,
  13102. struct ggml_tensor * f) {
  13103. bool free_ctx = false;
  13104. if (ctx == NULL) {
  13105. struct ggml_init_params params_ctx = {
  13106. .mem_size = 16*1024*1024,
  13107. .mem_buffer = NULL,
  13108. .no_alloc = false,
  13109. };
  13110. ctx = ggml_init(params_ctx);
  13111. if (ctx == NULL) {
  13112. return GGML_OPT_NO_CONTEXT;
  13113. }
  13114. free_ctx = true;
  13115. }
  13116. enum ggml_opt_result result = GGML_OPT_OK;
  13117. // build forward + backward compute graphs
  13118. struct ggml_cgraph gf = ggml_build_forward (f);
  13119. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, true);
  13120. switch (params.type) {
  13121. case GGML_OPT_ADAM:
  13122. {
  13123. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  13124. } break;
  13125. case GGML_OPT_LBFGS:
  13126. {
  13127. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  13128. } break;
  13129. }
  13130. if (params.print_forward_graph) {
  13131. ggml_graph_print (&gf);
  13132. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  13133. }
  13134. if (params.print_backward_graph) {
  13135. ggml_graph_print (&gb);
  13136. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  13137. }
  13138. if (free_ctx) {
  13139. ggml_free(ctx);
  13140. }
  13141. return result;
  13142. }
  13143. ////////////////////////////////////////////////////////////////////////////////
  13144. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13145. assert(k % QK4_0 == 0);
  13146. const int nb = k / QK4_0;
  13147. for (int b = 0; b < n; b += k) {
  13148. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  13149. quantize_row_q4_0_reference(src + b, y, k);
  13150. for (int i = 0; i < nb; i++) {
  13151. for (int j = 0; j < QK4_0; j += 2) {
  13152. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13153. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13154. hist[vi0]++;
  13155. hist[vi1]++;
  13156. }
  13157. }
  13158. }
  13159. return (n/QK4_0*sizeof(block_q4_0));
  13160. }
  13161. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13162. assert(k % QK4_1 == 0);
  13163. const int nb = k / QK4_1;
  13164. for (int b = 0; b < n; b += k) {
  13165. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  13166. quantize_row_q4_1_reference(src + b, y, k);
  13167. for (int i = 0; i < nb; i++) {
  13168. for (int j = 0; j < QK4_1; j += 2) {
  13169. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  13170. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  13171. hist[vi0]++;
  13172. hist[vi1]++;
  13173. }
  13174. }
  13175. }
  13176. return (n/QK4_1*sizeof(block_q4_1));
  13177. }
  13178. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13179. assert(k % QK5_0 == 0);
  13180. const int nb = k / QK5_0;
  13181. for (int b = 0; b < n; b += k) {
  13182. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  13183. quantize_row_q5_0_reference(src + b, y, k);
  13184. for (int i = 0; i < nb; i++) {
  13185. uint32_t qh;
  13186. memcpy(&qh, &y[i].qh, sizeof(qh));
  13187. for (int j = 0; j < QK5_0; j += 2) {
  13188. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13189. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13190. // cast to 16 bins
  13191. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13192. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13193. hist[vi0]++;
  13194. hist[vi1]++;
  13195. }
  13196. }
  13197. }
  13198. return (n/QK5_0*sizeof(block_q5_0));
  13199. }
  13200. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  13201. assert(k % QK5_1 == 0);
  13202. const int nb = k / QK5_1;
  13203. for (int b = 0; b < n; b += k) {
  13204. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  13205. quantize_row_q5_1_reference(src + b, y, k);
  13206. for (int i = 0; i < nb; i++) {
  13207. uint32_t qh;
  13208. memcpy(&qh, &y[i].qh, sizeof(qh));
  13209. for (int j = 0; j < QK5_1; j += 2) {
  13210. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  13211. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  13212. // cast to 16 bins
  13213. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  13214. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  13215. hist[vi0]++;
  13216. hist[vi1]++;
  13217. }
  13218. }
  13219. }
  13220. return (n/QK5_1*sizeof(block_q5_1));
  13221. }
  13222. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  13223. assert(k % QK8_0 == 0);
  13224. const int nb = k / QK8_0;
  13225. for (int b = 0; b < n; b += k) {
  13226. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  13227. quantize_row_q8_0_reference(src + b, y, k);
  13228. for (int i = 0; i < nb; i++) {
  13229. for (int j = 0; j < QK8_0; ++j) {
  13230. const int8_t vi = y[i].qs[j];
  13231. hist[vi/16 + 8]++;
  13232. }
  13233. }
  13234. }
  13235. return (n/QK8_0*sizeof(block_q8_0));
  13236. }
  13237. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  13238. size_t result = 0;
  13239. switch (type) {
  13240. case GGML_TYPE_Q4_0:
  13241. {
  13242. GGML_ASSERT(start % QK4_0 == 0);
  13243. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  13244. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  13245. } break;
  13246. case GGML_TYPE_Q4_1:
  13247. {
  13248. GGML_ASSERT(start % QK4_1 == 0);
  13249. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  13250. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  13251. } break;
  13252. case GGML_TYPE_Q5_0:
  13253. {
  13254. GGML_ASSERT(start % QK5_0 == 0);
  13255. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  13256. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  13257. } break;
  13258. case GGML_TYPE_Q5_1:
  13259. {
  13260. GGML_ASSERT(start % QK5_1 == 0);
  13261. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  13262. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  13263. } break;
  13264. case GGML_TYPE_Q8_0:
  13265. {
  13266. GGML_ASSERT(start % QK8_0 == 0);
  13267. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  13268. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  13269. } break;
  13270. case GGML_TYPE_Q2_K:
  13271. {
  13272. GGML_ASSERT(start % QK_K == 0);
  13273. block_q2_k * block = (block_q2_k*)dst + start / QK_K;
  13274. result = ggml_quantize_q2_k(src + start, block, n, n, hist);
  13275. } break;
  13276. case GGML_TYPE_Q3_K:
  13277. {
  13278. GGML_ASSERT(start % QK_K == 0);
  13279. block_q3_k * block = (block_q3_k*)dst + start / QK_K;
  13280. result = ggml_quantize_q3_k(src + start, block, n, n, hist);
  13281. } break;
  13282. case GGML_TYPE_Q4_K:
  13283. {
  13284. GGML_ASSERT(start % QK_K == 0);
  13285. block_q4_k * block = (block_q4_k*)dst + start / QK_K;
  13286. result = ggml_quantize_q4_k(src + start, block, n, n, hist);
  13287. } break;
  13288. case GGML_TYPE_Q5_K:
  13289. {
  13290. GGML_ASSERT(start % QK_K == 0);
  13291. block_q5_k * block = (block_q5_k*)dst + start / QK_K;
  13292. result = ggml_quantize_q5_k(src + start, block, n, n, hist);
  13293. } break;
  13294. case GGML_TYPE_Q6_K:
  13295. {
  13296. GGML_ASSERT(start % QK_K == 0);
  13297. block_q6_k * block = (block_q6_k*)dst + start / QK_K;
  13298. result = ggml_quantize_q6_k(src + start, block, n, n, hist);
  13299. } break;
  13300. default:
  13301. assert(false);
  13302. }
  13303. return result;
  13304. }
  13305. ////////////////////////////////////////////////////////////////////////////////
  13306. int ggml_cpu_has_avx(void) {
  13307. #if defined(__AVX__)
  13308. return 1;
  13309. #else
  13310. return 0;
  13311. #endif
  13312. }
  13313. int ggml_cpu_has_avx2(void) {
  13314. #if defined(__AVX2__)
  13315. return 1;
  13316. #else
  13317. return 0;
  13318. #endif
  13319. }
  13320. int ggml_cpu_has_avx512(void) {
  13321. #if defined(__AVX512F__)
  13322. return 1;
  13323. #else
  13324. return 0;
  13325. #endif
  13326. }
  13327. int ggml_cpu_has_avx512_vbmi(void) {
  13328. #if defined(__AVX512VBMI__)
  13329. return 1;
  13330. #else
  13331. return 0;
  13332. #endif
  13333. }
  13334. int ggml_cpu_has_avx512_vnni(void) {
  13335. #if defined(__AVX512VNNI__)
  13336. return 1;
  13337. #else
  13338. return 0;
  13339. #endif
  13340. }
  13341. int ggml_cpu_has_fma(void) {
  13342. #if defined(__FMA__)
  13343. return 1;
  13344. #else
  13345. return 0;
  13346. #endif
  13347. }
  13348. int ggml_cpu_has_neon(void) {
  13349. #if defined(__ARM_NEON)
  13350. return 1;
  13351. #else
  13352. return 0;
  13353. #endif
  13354. }
  13355. int ggml_cpu_has_arm_fma(void) {
  13356. #if defined(__ARM_FEATURE_FMA)
  13357. return 1;
  13358. #else
  13359. return 0;
  13360. #endif
  13361. }
  13362. int ggml_cpu_has_f16c(void) {
  13363. #if defined(__F16C__)
  13364. return 1;
  13365. #else
  13366. return 0;
  13367. #endif
  13368. }
  13369. int ggml_cpu_has_fp16_va(void) {
  13370. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  13371. return 1;
  13372. #else
  13373. return 0;
  13374. #endif
  13375. }
  13376. int ggml_cpu_has_wasm_simd(void) {
  13377. #if defined(__wasm_simd128__)
  13378. return 1;
  13379. #else
  13380. return 0;
  13381. #endif
  13382. }
  13383. int ggml_cpu_has_blas(void) {
  13384. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  13385. return 1;
  13386. #else
  13387. return 0;
  13388. #endif
  13389. }
  13390. int ggml_cpu_has_cublas(void) {
  13391. #if defined(GGML_USE_CUBLAS)
  13392. return 1;
  13393. #else
  13394. return 0;
  13395. #endif
  13396. }
  13397. int ggml_cpu_has_clblast(void) {
  13398. #if defined(GGML_USE_CLBLAST)
  13399. return 1;
  13400. #else
  13401. return 0;
  13402. #endif
  13403. }
  13404. int ggml_cpu_has_gpublas(void) {
  13405. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  13406. }
  13407. int ggml_cpu_has_sse3(void) {
  13408. #if defined(__SSE3__)
  13409. return 1;
  13410. #else
  13411. return 0;
  13412. #endif
  13413. }
  13414. int ggml_cpu_has_vsx(void) {
  13415. #if defined(__POWER9_VECTOR__)
  13416. return 1;
  13417. #else
  13418. return 0;
  13419. #endif
  13420. }
  13421. ////////////////////////////////////////////////////////////////////////////////