ggml.c 311 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339
  1. // Defines CLOCK_MONOTONIC and asprintf on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <float.h>
  18. // if C99 - static_assert is noop
  19. // ref: https://stackoverflow.com/a/53923785/4039976
  20. #ifndef static_assert
  21. #define static_assert(cond, msg) struct global_scope_noop_trick
  22. #endif
  23. #if defined _MSC_VER || defined(__MINGW32__)
  24. #if !defined(__MINGW32__)
  25. #include <Windows.h>
  26. #else
  27. // ref: https://github.com/ggerganov/whisper.cpp/issues/168
  28. #include <windows.h>
  29. #endif
  30. typedef volatile LONG atomic_int;
  31. typedef atomic_int atomic_bool;
  32. static void atomic_store(atomic_int* ptr, LONG val) {
  33. InterlockedExchange(ptr, val);
  34. }
  35. static LONG atomic_load(atomic_int* ptr) {
  36. return InterlockedCompareExchange(ptr, 0, 0);
  37. }
  38. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  39. return InterlockedExchangeAdd(ptr, inc);
  40. }
  41. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  42. return atomic_fetch_add(ptr, -(dec));
  43. }
  44. typedef HANDLE pthread_t;
  45. typedef DWORD thread_ret_t;
  46. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  47. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  48. if (handle == NULL)
  49. {
  50. return EAGAIN;
  51. }
  52. *out = handle;
  53. return 0;
  54. }
  55. static int pthread_join(pthread_t thread, void* unused) {
  56. return (int) WaitForSingleObject(thread, INFINITE);
  57. }
  58. static int sched_yield (void) {
  59. Sleep (0);
  60. return 0;
  61. }
  62. #else
  63. #include <pthread.h>
  64. #include <stdatomic.h>
  65. typedef void* thread_ret_t;
  66. #endif
  67. #ifdef __HAIKU__
  68. #define static_assert(cond, msg) _Static_assert(cond, msg)
  69. #endif
  70. #define GGML_MLOCK_SUPPORT 0
  71. #ifdef __has_include
  72. #if __has_include(<sys/mman.h>)
  73. #undef GGML_MLOCK_SUPPORT
  74. #define GGML_MLOCK_SUPPORT 1
  75. #include <sys/mman.h>
  76. #endif
  77. #endif
  78. /*#define GGML_PERF*/
  79. #define GGML_DEBUG 0
  80. #define GGML_GELU_FP16
  81. #define GGML_SILU_FP16
  82. #define GGML_SOFT_MAX_UNROLL 4
  83. #define GGML_VEC_DOT_UNROLL 2
  84. #ifdef GGML_USE_ACCELERATE
  85. // uncomment to use vDSP for soft max computation
  86. // note: not sure if it is actually faster
  87. //#define GGML_SOFT_MAX_ACCELERATE
  88. #endif
  89. #if UINTPTR_MAX == 0xFFFFFFFF
  90. #define GGML_MEM_ALIGN 4
  91. #else
  92. #define GGML_MEM_ALIGN 16
  93. #endif
  94. #define UNUSED(x) (void)(x)
  95. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  96. #define GGML_ASSERT(x) \
  97. do { \
  98. if (!(x)) { \
  99. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  100. abort(); \
  101. } \
  102. } while (0)
  103. #ifdef GGML_USE_ACCELERATE
  104. #include <Accelerate/Accelerate.h>
  105. #elif GGML_USE_OPENBLAS
  106. #include <cblas.h>
  107. #endif
  108. #undef MIN
  109. #undef MAX
  110. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  111. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  112. // floating point type used to accumulate sums
  113. typedef double ggml_float;
  114. // 16-bit float
  115. // on Arm, we use __fp16
  116. // on x86, we use uint16_t
  117. #ifdef __ARM_NEON
  118. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  119. //
  120. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  121. //
  122. #include <arm_neon.h>
  123. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  124. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  125. #define GGML_FP16_TO_FP32(x) ((float) (x))
  126. #define GGML_FP32_TO_FP16(x) (x)
  127. #else
  128. #ifdef __wasm_simd128__
  129. #include <wasm_simd128.h>
  130. #else
  131. #ifdef __POWER9_VECTOR__
  132. #include <altivec.h>
  133. #undef bool
  134. #define bool _Bool
  135. #else
  136. #include <immintrin.h>
  137. #endif
  138. #endif
  139. #ifdef __F16C__
  140. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  141. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  142. #elif defined(__POWER9_VECTOR__)
  143. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  144. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  145. /* the inline asm below is about 12% faster than the lookup method */
  146. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  147. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  148. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  149. register float f;
  150. register double d;
  151. __asm__(
  152. "mtfprd %0,%2\n"
  153. "xscvhpdp %0,%0\n"
  154. "frsp %1,%0\n" :
  155. /* temp */ "=d"(d),
  156. /* out */ "=f"(f):
  157. /* in */ "r"(h));
  158. return f;
  159. }
  160. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  161. register double d;
  162. register ggml_fp16_t r;
  163. __asm__( /* xscvdphp can work on double or single precision */
  164. "xscvdphp %0,%2\n"
  165. "mffprd %1,%0\n" :
  166. /* temp */ "=d"(d),
  167. /* out */ "=r"(r):
  168. /* in */ "f"(f));
  169. return r;
  170. }
  171. #else
  172. // FP16 <-> FP32
  173. // ref: https://github.com/Maratyszcza/FP16
  174. static inline float fp32_from_bits(uint32_t w) {
  175. union {
  176. uint32_t as_bits;
  177. float as_value;
  178. } fp32;
  179. fp32.as_bits = w;
  180. return fp32.as_value;
  181. }
  182. static inline uint32_t fp32_to_bits(float f) {
  183. union {
  184. float as_value;
  185. uint32_t as_bits;
  186. } fp32;
  187. fp32.as_value = f;
  188. return fp32.as_bits;
  189. }
  190. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  191. const uint32_t w = (uint32_t) h << 16;
  192. const uint32_t sign = w & UINT32_C(0x80000000);
  193. const uint32_t two_w = w + w;
  194. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  195. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  196. const float exp_scale = 0x1.0p-112f;
  197. #else
  198. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  199. #endif
  200. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  201. const uint32_t magic_mask = UINT32_C(126) << 23;
  202. const float magic_bias = 0.5f;
  203. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  204. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  205. const uint32_t result = sign |
  206. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  207. return fp32_from_bits(result);
  208. }
  209. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  210. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  211. const float scale_to_inf = 0x1.0p+112f;
  212. const float scale_to_zero = 0x1.0p-110f;
  213. #else
  214. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  215. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  216. #endif
  217. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  218. const uint32_t w = fp32_to_bits(f);
  219. const uint32_t shl1_w = w + w;
  220. const uint32_t sign = w & UINT32_C(0x80000000);
  221. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  222. if (bias < UINT32_C(0x71000000)) {
  223. bias = UINT32_C(0x71000000);
  224. }
  225. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  226. const uint32_t bits = fp32_to_bits(base);
  227. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  228. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  229. const uint32_t nonsign = exp_bits + mantissa_bits;
  230. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  231. }
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  234. #endif // __F16C__
  235. #endif // __ARM_NEON
  236. //
  237. // global data
  238. //
  239. // precomputed gelu table for f16 (128 KB)
  240. static ggml_fp16_t table_gelu_f16[1 << 16];
  241. // precomputed silu table for f16 (128 KB)
  242. static ggml_fp16_t table_silu_f16[1 << 16];
  243. // precomputed exp table for f16 (128 KB)
  244. static ggml_fp16_t table_exp_f16[1 << 16];
  245. // precomputed f32 table for f16 (256 KB)
  246. static float table_f32_f16[1 << 16];
  247. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  248. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  249. // This is also true for POWER9.
  250. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  251. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  252. uint16_t s;
  253. memcpy(&s, &f, sizeof(uint16_t));
  254. return table_f32_f16[s];
  255. }
  256. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  257. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  258. #endif
  259. // note: do not use these inside ggml.c
  260. // these are meant to be used via the ggml.h API
  261. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  262. return (float) GGML_FP16_TO_FP32(x);
  263. }
  264. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  265. return GGML_FP32_TO_FP16(x);
  266. }
  267. //
  268. // timing
  269. //
  270. #if defined(_MSC_VER) || defined(__MINGW32__)
  271. static int64_t timer_freq;
  272. void ggml_time_init(void) {
  273. LARGE_INTEGER frequency;
  274. QueryPerformanceFrequency(&frequency);
  275. timer_freq = frequency.QuadPart;
  276. }
  277. int64_t ggml_time_ms(void) {
  278. LARGE_INTEGER t;
  279. QueryPerformanceCounter(&t);
  280. return (t.QuadPart * 1000) / timer_freq;
  281. }
  282. int64_t ggml_time_us(void) {
  283. LARGE_INTEGER t;
  284. QueryPerformanceCounter(&t);
  285. return (t.QuadPart * 1000000) / timer_freq;
  286. }
  287. #else
  288. void ggml_time_init(void) {}
  289. int64_t ggml_time_ms(void) {
  290. struct timespec ts;
  291. clock_gettime(CLOCK_MONOTONIC, &ts);
  292. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  293. }
  294. int64_t ggml_time_us(void) {
  295. struct timespec ts;
  296. clock_gettime(CLOCK_MONOTONIC, &ts);
  297. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  298. }
  299. #endif
  300. int64_t ggml_cycles(void) {
  301. return clock();
  302. }
  303. int64_t ggml_cycles_per_ms(void) {
  304. return CLOCKS_PER_SEC/1000;
  305. }
  306. #ifdef GGML_PERF
  307. #define ggml_perf_time_ms() ggml_time_ms()
  308. #define ggml_perf_time_us() ggml_time_us()
  309. #define ggml_perf_cycles() ggml_cycles()
  310. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  311. #else
  312. #define ggml_perf_time_ms() 0
  313. #define ggml_perf_time_us() 0
  314. #define ggml_perf_cycles() 0
  315. #define ggml_perf_cycles_per_ms() 0
  316. #endif
  317. //
  318. // cache line
  319. //
  320. #if defined(__cpp_lib_hardware_interference_size)
  321. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  322. #else
  323. #if defined(__POWER9_VECTOR__)
  324. #define CACHE_LINE_SIZE 128
  325. #else
  326. #define CACHE_LINE_SIZE 64
  327. #endif
  328. #endif
  329. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  330. //
  331. // quantization
  332. //
  333. #define QK 32
  334. // AVX routines provided by GH user Const-me
  335. // ref: https://github.com/ggerganov/ggml/pull/27#issuecomment-1464934600
  336. #if __AVX2__ || __AVX512F__
  337. // Unpack 32 4-bit fields into 32 bytes
  338. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  339. static inline __m256i bytesFromNibbles( const uint8_t* rsi )
  340. {
  341. // Load 16 bytes from memory
  342. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  343. // Expand bytes into uint16_t values
  344. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  345. // Unpack values into individual bytes
  346. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  347. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  348. __m256i low = _mm256_and_si256( lowMask, bytes );
  349. high = _mm256_slli_epi16( high, 4 );
  350. bytes = _mm256_or_si256( low, high );
  351. return bytes;
  352. }
  353. static inline __m128i packNibbles( __m256i bytes )
  354. {
  355. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  356. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  357. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  358. __m256i low = _mm256_and_si256( lowByte, bytes );
  359. high = _mm256_srli_epi16( high, 4 );
  360. bytes = _mm256_or_si256( low, high );
  361. // Compress uint16_t lanes into bytes
  362. __m128i r0 = _mm256_castsi256_si128( bytes );
  363. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  364. return _mm_packus_epi16( r0, r1 );
  365. }
  366. #endif
  367. // method 5
  368. // blocks of QK elements
  369. // represented with a single float (delta) and QK/2 8-bit ints (i.e QK 4-bit signed integer factors)
  370. typedef struct {
  371. float d; // delta
  372. uint8_t qs[QK / 2]; // nibbles / quants
  373. } block_q4_0;
  374. static_assert(sizeof(block_q4_0) == sizeof(float) + QK / 2, "wrong q4_0 block size/padding");
  375. // method 4
  376. // blocks of QK elements
  377. // represented with 2 floats (delta + min) and QK/2 8-bit ints (i.e QK 4-bit unsigned integer factors)
  378. typedef struct {
  379. float d;
  380. float m;
  381. uint8_t qs[QK / 2]; // nibbles / quants
  382. } block_q4_1;
  383. static_assert(sizeof(block_q4_1) == sizeof(float) * 2 + QK / 2, "wrong q4_1 block size/padding");
  384. // reference implementation for deterministic creation of model files
  385. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  386. assert(k % QK == 0);
  387. const int nb = k / QK;
  388. uint8_t pp[QK/2];
  389. for (int i = 0; i < nb; i++) {
  390. float amax = 0.0f; // absolute max
  391. for (int l = 0; l < QK; l++) {
  392. const float v = x[i*QK + l];
  393. amax = MAX(amax, fabsf(v));
  394. }
  395. const float d = amax / ((1 << 3) - 1);
  396. const float id = d ? 1.0f/d : 0.0f;
  397. y[i].d = d;
  398. for (int l = 0; l < QK; l += 2) {
  399. const float v0 = x[i*QK + l + 0]*id;
  400. const float v1 = x[i*QK + l + 1]*id;
  401. const uint8_t vi0 = (int8_t)roundf(v0) + 8;
  402. const uint8_t vi1 = (int8_t)roundf(v1) + 8;
  403. assert(vi0 >= 0 && vi0 < 16);
  404. assert(vi1 >= 0 && vi1 < 16);
  405. pp[l/2] = vi0 | (vi1 << 4);
  406. }
  407. memcpy(y[i].qs, pp, sizeof(pp));
  408. }
  409. }
  410. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  411. assert(k % QK == 0);
  412. const int nb = k / QK;
  413. block_q4_0 * restrict y = vy;
  414. #if defined(__POWER9_VECTOR__)
  415. const vector float v85 = vec_splats(8.5f);
  416. for (int i = 0; i < nb; i++) {
  417. float amax = 0.0f; // absolute max
  418. vector float srcv [8];
  419. vector float asrcv[8];
  420. vector float amaxv[8];
  421. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  422. for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  423. for (int l = 0; l < 4; l++) amaxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  424. //for (int l = 0; l < 2; l++) amaxv[4*l] = vec_max(amaxv[4*l], amaxv[4*l+2]);
  425. amaxv[0] = vec_max(amaxv[0], amaxv[2]);
  426. amaxv[4] = vec_max(amaxv[4], amaxv[6]);
  427. //for (int l = 0; l < 1; l++) amaxv[8*l] = vec_max(amaxv[8*l], amaxv[8*l+4]);
  428. amaxv[0] = vec_max(amaxv[0], amaxv[4]);
  429. amax = MAX(
  430. MAX(vec_extract(amaxv[0], 0), vec_extract(amaxv[0], 1)),
  431. MAX(vec_extract(amaxv[0], 2), vec_extract(amaxv[0], 3)));
  432. const float d = amax / ((1 << 3) - 1);
  433. const float id = d ? 1.0/d : 0.0;
  434. y[i].d = d;
  435. const vector float vid = vec_splats(id);
  436. uint8_t * restrict pb = y[i].qs;
  437. for (int l = 0; l < 8; l++) {
  438. const vector float vf = vec_madd(srcv[l], vid, v85);
  439. const vector signed int vi = vec_signed(vf);
  440. pb[2*l + 0] = vec_extract(vi, 0) | (vec_extract(vi, 1) << 4);
  441. pb[2*l + 1] = vec_extract(vi, 2) | (vec_extract(vi, 3) << 4);
  442. }
  443. }
  444. #elif __ARM_NEON
  445. uint8_t pp[QK/2];
  446. for (int i = 0; i < nb; i++) {
  447. float amax = 0.0f; // absolute max
  448. float32x4_t srcv [8];
  449. float32x4_t asrcv[8];
  450. float32x4_t amaxv[8];
  451. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  452. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  453. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  454. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  455. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  456. amax = MAX(
  457. MAX(vgetq_lane_f32(amaxv[0], 0), vgetq_lane_f32(amaxv[0], 1)),
  458. MAX(vgetq_lane_f32(amaxv[0], 2), vgetq_lane_f32(amaxv[0], 3)));
  459. const float d = amax / ((1 << 3) - 1);
  460. const float id = d ? 1.0f/d : 0.0f;
  461. y[i].d = d;
  462. for (int l = 0; l < 8; l++) {
  463. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  464. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  465. const int32x4_t vi = vcvtq_s32_f32(vf);
  466. pp[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  467. pp[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  468. }
  469. memcpy(y[i].qs, pp, sizeof(pp));
  470. }
  471. #elif defined(__AVX2__)
  472. for (int i = 0; i < nb; i++) {
  473. // Load elements into 4 AVX vectors
  474. __m256 v0 = _mm256_loadu_ps( x );
  475. __m256 v1 = _mm256_loadu_ps( x + 8 );
  476. __m256 v2 = _mm256_loadu_ps( x + 16 );
  477. __m256 v3 = _mm256_loadu_ps( x + 24 );
  478. x += 32;
  479. // Compute max(abs(e)) for the block
  480. const __m256 signBit = _mm256_set1_ps( -0.0f );
  481. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  482. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  483. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  484. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  485. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  486. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  487. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  488. const float maxScalar = _mm_cvtss_f32( max4 );
  489. // Quantize these floats
  490. const float d = maxScalar / 7.0f;
  491. y[i].d = d;
  492. const float id = ( maxScalar != 0.0f ) ? 7.0f / maxScalar : 0.0f;
  493. const __m256 mul = _mm256_set1_ps( id );
  494. // Apply the multiplier
  495. v0 = _mm256_mul_ps( v0, mul );
  496. v1 = _mm256_mul_ps( v1, mul );
  497. v2 = _mm256_mul_ps( v2, mul );
  498. v3 = _mm256_mul_ps( v3, mul );
  499. // Round to nearest integer
  500. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  501. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  502. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  503. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  504. // Convert floats to integers
  505. __m256i i0 = _mm256_cvtps_epi32( v0 );
  506. __m256i i1 = _mm256_cvtps_epi32( v1 );
  507. __m256i i2 = _mm256_cvtps_epi32( v2 );
  508. __m256i i3 = _mm256_cvtps_epi32( v3 );
  509. // Convert int32 to int16
  510. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  511. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  512. // Convert int16 to int8
  513. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  514. // We got our precious signed bytes, but the order is now wrong
  515. // These AVX2 pack instructions process 16-byte pieces independently
  516. // The following instruction is fixing the order
  517. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  518. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  519. // Apply offset to translate the range from [ -7 .. +7 ] into [ +1 .. +15 ]
  520. const __m256i off = _mm256_set1_epi8( 8 );
  521. i0 = _mm256_add_epi8( i0, off );
  522. // Compress the vector into 4 bit/value, and store
  523. __m128i res = packNibbles( i0 );
  524. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  525. }
  526. #elif defined(__wasm_simd128__)
  527. uint8_t pp[QK/2];
  528. for (int i = 0; i < nb; i++) {
  529. float amax = 0.0f; // absolute max
  530. v128_t srcv [8];
  531. v128_t asrcv[8];
  532. v128_t amaxv[8];
  533. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  534. for (int l = 0; l < 8; l++) asrcv[l] = wasm_f32x4_abs(srcv[l]);
  535. for (int l = 0; l < 4; l++) amaxv[2*l] = wasm_f32x4_max(asrcv[2*l], asrcv[2*l+1]);
  536. for (int l = 0; l < 2; l++) amaxv[4*l] = wasm_f32x4_max(amaxv[4*l], amaxv[4*l+2]);
  537. for (int l = 0; l < 1; l++) amaxv[8*l] = wasm_f32x4_max(amaxv[8*l], amaxv[8*l+4]);
  538. amax = MAX(
  539. MAX(wasm_f32x4_extract_lane(amaxv[0], 0), wasm_f32x4_extract_lane(amaxv[0], 1)),
  540. MAX(wasm_f32x4_extract_lane(amaxv[0], 2), wasm_f32x4_extract_lane(amaxv[0], 3)));
  541. const float d = amax / ((1 << 3) - 1);
  542. const float id = d ? 1.0/d : 0.0;
  543. y[i].d = d;
  544. for (int l = 0; l < 8; l++) {
  545. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  546. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  547. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  548. pp[2*l + 0] = wasm_i32x4_extract_lane(vi, 0) | (wasm_i32x4_extract_lane(vi, 1) << 4);
  549. pp[2*l + 1] = wasm_i32x4_extract_lane(vi, 2) | (wasm_i32x4_extract_lane(vi, 3) << 4);
  550. }
  551. memcpy(y[i].qs, pp, sizeof(pp));
  552. }
  553. #else
  554. // scalar
  555. quantize_row_q4_0_reference(x, y, k);
  556. #endif
  557. }
  558. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  559. assert(k % QK == 0);
  560. const int nb = k / QK;
  561. block_q4_1 * restrict y = vy;
  562. uint8_t pp[QK/2];
  563. for (int i = 0; i < nb; i++) {
  564. float min = FLT_MAX;
  565. float max = -FLT_MAX;
  566. for (int l = 0; l < QK; l++) {
  567. const float v = x[i*QK + l];
  568. if (v < min) min = v;
  569. if (v > max) max = v;
  570. }
  571. const float d = (max - min) / ((1 << 4) - 1);
  572. const float id = d ? 1.0f/d : 0.0f;
  573. y[i].d = d;
  574. y[i].m = min;
  575. for (int l = 0; l < QK; l += 2) {
  576. const float v0 = (x[i*QK + l + 0] - min)*id;
  577. const float v1 = (x[i*QK + l + 1] - min)*id;
  578. const uint8_t vi0 = roundf(v0);
  579. const uint8_t vi1 = roundf(v1);
  580. assert(vi0 >= 0 && vi0 < 16);
  581. assert(vi1 >= 0 && vi1 < 16);
  582. pp[l/2] = vi0 | (vi1 << 4);
  583. }
  584. memcpy(y[i].qs, pp, sizeof(pp));
  585. }
  586. }
  587. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  588. assert(k % QK == 0);
  589. #if defined(__AVX2__)
  590. const int nb = k / QK;
  591. block_q4_1 * restrict y = vy;
  592. for (int i = 0; i < nb; i++) {
  593. // Load elements into 4 AVX vectors
  594. __m256 v0 = _mm256_loadu_ps( x );
  595. __m256 v1 = _mm256_loadu_ps( x + 8 );
  596. __m256 v2 = _mm256_loadu_ps( x + 16 );
  597. __m256 v3 = _mm256_loadu_ps( x + 24 );
  598. x += 32;
  599. // Compute max for the block
  600. __m256 vmax;
  601. vmax = _mm256_max_ps( v0, v1 );
  602. vmax = _mm256_max_ps( vmax, v2 );
  603. vmax = _mm256_max_ps( vmax, v3 );
  604. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  605. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  606. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  607. const float maxScalar = _mm_cvtss_f32( max4 );
  608. // Compute min for the block
  609. __m256 vmin;
  610. vmin = _mm256_min_ps( v0, v1 );
  611. vmin = _mm256_min_ps( vmin, v2 );
  612. vmin = _mm256_min_ps( vmin, v3 );
  613. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  614. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  615. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  616. const float minScalar = _mm_cvtss_f32( min4 );
  617. // Quantize these floats
  618. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  619. const float id = d ? 1.0f/d : 0.0f;
  620. y[i].m = minScalar;
  621. y[i].d = d;
  622. // x = (x-min)*id
  623. const __m256 mul = _mm256_set1_ps( id );
  624. const __m256 off = _mm256_set1_ps( minScalar );
  625. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  626. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  627. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  628. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  629. // Round to nearest integer
  630. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  631. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  632. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  633. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  634. // Convert floats to integers
  635. __m256i i0 = _mm256_cvtps_epi32( v0 );
  636. __m256i i1 = _mm256_cvtps_epi32( v1 );
  637. __m256i i2 = _mm256_cvtps_epi32( v2 );
  638. __m256i i3 = _mm256_cvtps_epi32( v3 );
  639. // Convert int32 to int16
  640. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  641. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  642. // Convert int16 to int8
  643. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  644. // We got our precious signed bytes, but the order is now wrong
  645. // These AVX2 pack instructions process 16-byte pieces independently
  646. // The following instruction is fixing the order
  647. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  648. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  649. // Compress the vector into 4 bit/value, and store
  650. __m128i res = packNibbles( i0 );
  651. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  652. }
  653. #else
  654. // scalar
  655. quantize_row_q4_1_reference(x, vy, k);
  656. #endif
  657. }
  658. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  659. assert(k % QK == 0);
  660. const int nb = k / QK;
  661. const block_q4_0 * restrict x = vx;
  662. #if defined(__AVX2__)
  663. for (int i = 0; i < nb; i++) {
  664. // scale factor
  665. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  666. const uint8_t * restrict pp = x[i].qs;
  667. for (int l = 0; l < QK; l += 32) {
  668. // Load 32x4-bit integers into 32x8-bit integers
  669. __m256i vx8 = bytesFromNibbles(pp+l/2);
  670. // Subtract 8 from the integers
  671. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  672. // Convert to 16-bit int
  673. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  674. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  675. // Convert to 32-bit int -> float 32
  676. const __m256 vf[4] = {
  677. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  678. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  679. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  680. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  681. };
  682. // Scale and store
  683. for (int j = 0; j < 4; j++) {
  684. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  685. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  686. }
  687. }
  688. }
  689. #elif defined(__ARM_NEON)
  690. for (int i = 0; i < nb; i++) {
  691. const float32x4_t vd = vdupq_n_f32(x[i].d);
  692. const uint8_t * restrict pp = x[i].qs;
  693. for (int l = 0; l < QK; l += 16) {
  694. // Load 16x4-bit integers into 8x8-bit integers
  695. const uint8x8_t v8 = vld1_u8(pp + l/2);
  696. // Expand 4-bit qs to 8-bit bytes
  697. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0f));
  698. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  699. // Convert to signed 8-bit integers
  700. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  701. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  702. // Subtract 8 from each byte
  703. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  704. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  705. // Interleave and combine
  706. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  707. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  708. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  709. // convert to 2x int16x8_t
  710. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  711. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  712. // convert to 4x float32x4_t
  713. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  714. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  715. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  716. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  717. // Multiply by d
  718. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  719. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  720. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  721. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  722. // Store
  723. vst1q_f32(y + i*QK + l + 0, r0);
  724. vst1q_f32(y + i*QK + l + 4, r1);
  725. vst1q_f32(y + i*QK + l + 8, r2);
  726. vst1q_f32(y + i*QK + l + 12, r3);
  727. }
  728. }
  729. #else
  730. // scalar
  731. for (int i = 0; i < nb; i++) {
  732. const float d = x[i].d;
  733. const uint8_t * restrict pp = x[i].qs;
  734. for (int l = 0; l < QK; l += 2) {
  735. const uint8_t vi = pp[l/2];
  736. const int8_t vi0 = vi & 0xf;
  737. const int8_t vi1 = vi >> 4;
  738. const float v0 = (vi0 - 8)*d;
  739. const float v1 = (vi1 - 8)*d;
  740. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  741. y[i*QK + l + 0] = v0;
  742. y[i*QK + l + 1] = v1;
  743. assert(!isnan(y[i*QK + l + 0]));
  744. assert(!isnan(y[i*QK + l + 1]));
  745. }
  746. }
  747. #endif
  748. }
  749. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  750. assert(k % QK == 0);
  751. const int nb = k / QK;
  752. const block_q4_1 * restrict x = vx;
  753. #if defined(__AVX2__)
  754. for (int i = 0; i < nb; i++) {
  755. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  756. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  757. const uint8_t * restrict pp = x[i].qs;
  758. for (int l = 0; l < QK; l += 32) {
  759. // Load 32x4-bit integers into 32x8-bit integers
  760. __m256i vx8 = bytesFromNibbles(pp+l/2);
  761. // Convert to 16-bit int
  762. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  763. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  764. // Convert to 32-bit int -> float 32
  765. const __m256 vf[4] = {
  766. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  767. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  768. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  769. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  770. };
  771. // Scale, add m and store
  772. for (int j = 0; j < 4; j++) {
  773. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  774. _mm256_storeu_ps(y + i * QK + l + j*8, result);
  775. }
  776. }
  777. }
  778. #else
  779. for (int i = 0; i < nb; i++) {
  780. const float d = x[i].d;
  781. const float m = x[i].m;
  782. const uint8_t * restrict pp = x[i].qs;
  783. for (int l = 0; l < QK; l += 2) {
  784. const uint8_t vi = pp[l/2];
  785. const int8_t vi0 = vi & 0xf;
  786. const int8_t vi1 = vi >> 4;
  787. const float v0 = vi0*d + m;
  788. const float v1 = vi1*d + m;
  789. y[i*QK + l + 0] = v0;
  790. y[i*QK + l + 1] = v1;
  791. assert(!isnan(y[i*QK + l + 0]));
  792. assert(!isnan(y[i*QK + l + 1]));
  793. }
  794. }
  795. #endif
  796. }
  797. //
  798. // simd mappings
  799. //
  800. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  801. // we then implement the fundamental computation operations below using only these macros
  802. // adding support for new architectures requires to define the corresponding SIMD macros
  803. //
  804. // GGML_F32_STEP / GGML_F16_STEP
  805. // number of elements to process in a single step
  806. //
  807. // GGML_F32_EPR / GGML_F16_EPR
  808. // number of elements to fit in a single register
  809. //
  810. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  811. #define GGML_SIMD
  812. // F32 NEON
  813. #define GGML_F32_STEP 16
  814. #define GGML_F32_EPR 4
  815. #define GGML_F32x4 float32x4_t
  816. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  817. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  818. #define GGML_F32x4_LOAD vld1q_f32
  819. #define GGML_F32x4_STORE vst1q_f32
  820. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  821. #define GGML_F32x4_ADD vaddq_f32
  822. #define GGML_F32x4_MUL vmulq_f32
  823. #if defined(__ARM_FEATURE_QRDMX)
  824. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  825. #else
  826. #define GGML_F32x4_REDUCE_ONE(x) \
  827. (vgetq_lane_f32(x, 0) + \
  828. vgetq_lane_f32(x, 1) + \
  829. vgetq_lane_f32(x, 2) + \
  830. vgetq_lane_f32(x, 3))
  831. #endif
  832. #define GGML_F32x4_REDUCE(res, x) \
  833. { \
  834. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  835. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  836. } \
  837. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  838. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  839. } \
  840. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  841. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  842. } \
  843. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  844. }
  845. #define GGML_F32_VEC GGML_F32x4
  846. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  847. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  848. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  849. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  850. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  851. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  852. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  853. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  854. // F16 NEON
  855. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  856. #define GGML_F16_STEP 32
  857. #define GGML_F16_EPR 8
  858. #define GGML_F16x8 float16x8_t
  859. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  860. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  861. #define GGML_F16x8_LOAD vld1q_f16
  862. #define GGML_F16x8_STORE vst1q_f16
  863. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  864. #define GGML_F16x8_ADD vaddq_f16
  865. #define GGML_F16x8_MUL vmulq_f16
  866. #define GGML_F16x8_REDUCE(res, x) \
  867. { \
  868. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  869. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  870. } \
  871. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  872. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  873. } \
  874. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  875. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  876. } \
  877. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  878. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  879. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  880. }
  881. #define GGML_F16_VEC GGML_F16x8
  882. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  883. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  884. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  885. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  886. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  887. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  888. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  889. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  890. #else
  891. // if FP16 vector arithmetic is not supported, we use FP32 instead
  892. // and take advantage of the vcvt_ functions to convert to/from FP16
  893. #define GGML_F16_STEP 16
  894. #define GGML_F16_EPR 4
  895. #define GGML_F32Cx4 float32x4_t
  896. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  897. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  898. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  899. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  900. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  901. #define GGML_F32Cx4_ADD vaddq_f32
  902. #define GGML_F32Cx4_MUL vmulq_f32
  903. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  904. #define GGML_F16_VEC GGML_F32Cx4
  905. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  906. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  907. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  908. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  909. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  910. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  911. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  912. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  913. #endif
  914. #elif defined(__AVX__)
  915. #define GGML_SIMD
  916. // F32 AVX
  917. #define GGML_F32_STEP 32
  918. #define GGML_F32_EPR 8
  919. #define GGML_F32x8 __m256
  920. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  921. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  922. #define GGML_F32x8_LOAD _mm256_loadu_ps
  923. #define GGML_F32x8_STORE _mm256_storeu_ps
  924. #if defined(__FMA__)
  925. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  926. #else
  927. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  928. #endif
  929. #define GGML_F32x8_ADD _mm256_add_ps
  930. #define GGML_F32x8_MUL _mm256_mul_ps
  931. #define GGML_F32x8_REDUCE(res, x) \
  932. { \
  933. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  934. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  935. } \
  936. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  937. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  938. } \
  939. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  940. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  941. } \
  942. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  943. _mm256_extractf128_ps(x[0], 1)); \
  944. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  945. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  946. }
  947. // TODO: is this optimal ?
  948. #define GGML_F32_VEC GGML_F32x8
  949. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  950. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  951. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  952. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  953. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  954. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  955. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  956. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  957. // F16 AVX
  958. #define GGML_F16_STEP 32
  959. #define GGML_F16_EPR 8
  960. // F16 arithmetic is not supported by AVX, so we use F32 instead
  961. #define GGML_F32Cx8 __m256
  962. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  963. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  964. #if defined(__F16C__)
  965. // the _mm256_cvt intrinsics require F16C
  966. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  967. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  968. #else
  969. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  970. float tmp[8];
  971. for (int i = 0; i < 8; i++)
  972. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  973. return _mm256_loadu_ps(tmp);
  974. }
  975. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  976. float arr[8];
  977. _mm256_storeu_ps(arr, y);
  978. for (int i = 0; i < 8; i++)
  979. x[i] = GGML_FP16_TO_FP32(arr[i]);
  980. }
  981. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  982. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  983. #endif
  984. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  985. #define GGML_F32Cx8_ADD _mm256_add_ps
  986. #define GGML_F32Cx8_MUL _mm256_mul_ps
  987. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  988. #define GGML_F16_VEC GGML_F32Cx8
  989. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  990. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  991. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  992. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  993. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  994. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  995. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  996. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  997. #elif defined(__POWER9_VECTOR__)
  998. #define GGML_SIMD
  999. // F32 POWER9
  1000. #define GGML_F32_STEP 32
  1001. #define GGML_F32_EPR 4
  1002. #define GGML_F32x4 vector float
  1003. #define GGML_F32x4_ZERO 0.0f
  1004. #define GGML_F32x4_SET1 vec_splats
  1005. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1006. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1007. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1008. #define GGML_F32x4_ADD vec_add
  1009. #define GGML_F32x4_MUL vec_mul
  1010. #define GGML_F32x4_REDUCE(res, x) \
  1011. { \
  1012. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1013. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1014. } \
  1015. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1016. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1017. } \
  1018. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1019. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1020. } \
  1021. res = vec_extract(x[0], 0) + \
  1022. vec_extract(x[0], 1) + \
  1023. vec_extract(x[0], 2) + \
  1024. vec_extract(x[0], 3); \
  1025. }
  1026. #define GGML_F32_VEC GGML_F32x4
  1027. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1028. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1029. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1030. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1031. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1032. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1033. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1034. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1035. // F16 POWER9
  1036. #define GGML_F16_STEP GGML_F32_STEP
  1037. #define GGML_F16_EPR GGML_F32_EPR
  1038. #define GGML_F16_VEC GGML_F32x4
  1039. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1040. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1041. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1042. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1043. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1044. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1045. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1046. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1047. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1048. #define GGML_F16_VEC_STORE(p, r, i) \
  1049. if (i & 0x1) \
  1050. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1051. r[i - GGML_ENDIAN_BYTE(0)]), \
  1052. 0, p - GGML_F16_EPR)
  1053. #elif defined(__wasm_simd128__)
  1054. #define GGML_SIMD
  1055. // F32 WASM
  1056. #define GGML_F32_STEP 16
  1057. #define GGML_F32_EPR 4
  1058. #define GGML_F32x4 v128_t
  1059. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1060. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1061. #define GGML_F32x4_LOAD wasm_v128_load
  1062. #define GGML_F32x4_STORE wasm_v128_store
  1063. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1064. #define GGML_F32x4_ADD wasm_f32x4_add
  1065. #define GGML_F32x4_MUL wasm_f32x4_mul
  1066. #define GGML_F32x4_REDUCE(res, x) \
  1067. { \
  1068. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1069. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1070. } \
  1071. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1072. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1073. } \
  1074. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1075. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1076. } \
  1077. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1078. wasm_f32x4_extract_lane(x[0], 1) + \
  1079. wasm_f32x4_extract_lane(x[0], 2) + \
  1080. wasm_f32x4_extract_lane(x[0], 3); \
  1081. }
  1082. #define GGML_F32_VEC GGML_F32x4
  1083. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1084. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1085. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1086. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1087. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1088. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1089. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1090. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1091. // F16 WASM
  1092. #define GGML_F16_STEP 16
  1093. #define GGML_F16_EPR 4
  1094. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1095. float tmp[4];
  1096. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1097. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1098. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1099. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1100. return wasm_v128_load(tmp);
  1101. }
  1102. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1103. float tmp[4];
  1104. wasm_v128_store(tmp, x);
  1105. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1106. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1107. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1108. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1109. }
  1110. #define GGML_F16x4 v128_t
  1111. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1112. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1113. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1114. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1115. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1116. #define GGML_F16x4_ADD wasm_f32x4_add
  1117. #define GGML_F16x4_MUL wasm_f32x4_mul
  1118. #define GGML_F16x4_REDUCE(res, x) \
  1119. { \
  1120. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1121. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1122. } \
  1123. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1124. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1125. } \
  1126. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1127. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1128. } \
  1129. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1130. wasm_f32x4_extract_lane(x[0], 1) + \
  1131. wasm_f32x4_extract_lane(x[0], 2) + \
  1132. wasm_f32x4_extract_lane(x[0], 3); \
  1133. }
  1134. #define GGML_F16_VEC GGML_F16x4
  1135. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1136. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1137. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1138. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1139. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1140. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1141. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1142. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1143. #elif defined(__SSE3__)
  1144. #define GGML_SIMD
  1145. // F32 SSE
  1146. #define GGML_F32_STEP 32
  1147. #define GGML_F32_EPR 4
  1148. #define GGML_F32x4 __m128
  1149. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1150. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1151. #define GGML_F32x4_LOAD _mm_loadu_ps
  1152. #define GGML_F32x4_STORE _mm_storeu_ps
  1153. #if defined(__FMA__)
  1154. // TODO: Does this work?
  1155. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1156. #else
  1157. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1158. #endif
  1159. #define GGML_F32x4_ADD _mm_add_ps
  1160. #define GGML_F32x4_MUL _mm_mul_ps
  1161. #define GGML_F32x4_REDUCE(res, x) \
  1162. { \
  1163. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1164. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  1165. } \
  1166. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1167. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  1168. } \
  1169. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1170. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  1171. } \
  1172. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1173. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1174. }
  1175. // TODO: is this optimal ?
  1176. #define GGML_F32_VEC GGML_F32x4
  1177. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1178. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1179. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1180. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1181. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1182. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1183. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1184. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1185. // F16 SSE
  1186. #define GGML_F16_STEP 32
  1187. #define GGML_F16_EPR 4
  1188. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1189. float tmp[4];
  1190. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1191. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1192. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1193. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1194. return _mm_loadu_ps(tmp);
  1195. }
  1196. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1197. float arr[4];
  1198. _mm_storeu_ps(arr, y);
  1199. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1200. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1201. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1202. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1203. }
  1204. #define GGML_F32Cx4 __m128
  1205. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1206. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1207. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1208. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1209. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1210. #define GGML_F32Cx4_ADD _mm_add_ps
  1211. #define GGML_F32Cx4_MUL _mm_mul_ps
  1212. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1213. #define GGML_F16_VEC GGML_F32Cx4
  1214. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1215. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1216. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1217. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1218. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1219. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1220. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1221. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1222. #endif
  1223. // GGML_F32_ARR / GGML_F16_ARR
  1224. // number of registers to use per step
  1225. #ifdef GGML_SIMD
  1226. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1227. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1228. #endif
  1229. //
  1230. // fundamental operations
  1231. //
  1232. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1233. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1234. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1235. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1236. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1237. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1238. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1239. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1240. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1241. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1242. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1243. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1244. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1245. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1246. #ifdef GGML_SIMD
  1247. float sumf = 0.0f;
  1248. const int np = (n & ~(GGML_F32_STEP - 1));
  1249. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1250. GGML_F32_VEC ax[GGML_F32_ARR];
  1251. GGML_F32_VEC ay[GGML_F32_ARR];
  1252. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1253. for (int j = 0; j < GGML_F32_ARR; j++) {
  1254. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1255. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1256. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1257. }
  1258. }
  1259. // reduce sum0..sum3 to sum0
  1260. GGML_F32_VEC_REDUCE(sumf, sum);
  1261. // leftovers
  1262. for (int i = np; i < n; ++i) {
  1263. sumf += x[i]*y[i];
  1264. }
  1265. #else
  1266. // scalar
  1267. ggml_float sumf = 0.0;
  1268. for (int i = 0; i < n; ++i) {
  1269. sumf += (ggml_float)(x[i]*y[i]);
  1270. }
  1271. #endif
  1272. *s = sumf;
  1273. }
  1274. #if __AVX512F__ && QK == 32
  1275. static inline __m512 dot_q4_0_oneblock_avx512(
  1276. __m512 acc,
  1277. const block_q4_0 * restrict x,
  1278. const block_q4_0 * restrict y,
  1279. int i
  1280. ) {
  1281. // Compute combined scale for the block
  1282. __m512 d = _mm512_set1_ps( x[i].d * y[i].d );
  1283. __m256i bx = bytesFromNibbles( x[i].qs );
  1284. __m256i by = bytesFromNibbles( y[i].qs );
  1285. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1286. const __m256i off = _mm256_set1_epi8( 8 );
  1287. bx = _mm256_sub_epi8( bx, off );
  1288. by = _mm256_sub_epi8( by, off );
  1289. // Sign-extend 16 signed bytes into int16_t
  1290. __m512i x32 = _mm512_cvtepi8_epi16( bx );
  1291. __m512i y32 = _mm512_cvtepi8_epi16( by );
  1292. // Compute products of int16_t integers, add pairwise
  1293. __m512i i64 = _mm512_madd_epi16( x32, y32 );
  1294. // Convert int32_t to float
  1295. __m512 p = _mm512_cvtepi32_ps( i64 );
  1296. // Apply the scale, and accumulate
  1297. return _mm512_fmadd_ps( d, p, acc );
  1298. }
  1299. #endif
  1300. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1301. ggml_float sumf = 0.0;
  1302. #if defined(GGML_SIMD)
  1303. const int np = (n & ~(GGML_F16_STEP - 1));
  1304. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1305. GGML_F16_VEC ax[GGML_F16_ARR];
  1306. GGML_F16_VEC ay[GGML_F16_ARR];
  1307. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1308. for (int j = 0; j < GGML_F16_ARR; j++) {
  1309. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1310. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1311. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1312. }
  1313. }
  1314. // reduce sum0..sum3 to sum0
  1315. GGML_F16_VEC_REDUCE(sumf, sum);
  1316. // leftovers
  1317. for (int i = np; i < n; ++i) {
  1318. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1319. }
  1320. #else
  1321. for (int i = 0; i < n; ++i) {
  1322. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1323. }
  1324. #endif
  1325. *s = sumf;
  1326. }
  1327. static void ggml_vec_dot_q4_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1328. const int nb = n / QK;
  1329. assert(n % QK == 0);
  1330. assert(nb % 2 == 0);
  1331. const block_q4_0 * restrict x = vx;
  1332. const block_q4_0 * restrict y = vy;
  1333. ggml_float sumf = 0.0;
  1334. #if defined(__ARM_NEON)
  1335. float sum0 = 0.0f;
  1336. float sum1 = 0.0f;
  1337. for (int i = 0; i < nb; i += 2) {
  1338. const block_q4_0 * restrict x0 = &x[i + 0];
  1339. const block_q4_0 * restrict y0 = &y[i + 0];
  1340. const block_q4_0 * restrict x1 = &x[i + 1];
  1341. const block_q4_0 * restrict y1 = &y[i + 1];
  1342. const uint8x16_t m4b = vdupq_n_u8(0xf);
  1343. const int8x16_t s8b = vdupq_n_s8(0x8);
  1344. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1345. const uint8x16_t v1_0 = vld1q_u8(y0->qs);
  1346. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1347. const uint8x16_t v1_1 = vld1q_u8(y1->qs);
  1348. // 4-bit -> 8-bit
  1349. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8(v0_0, m4b));
  1350. const int8x16_t v1_0l = vreinterpretq_s8_u8(vandq_u8(v1_0, m4b));
  1351. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1352. const int8x16_t v1_0h = vreinterpretq_s8_u8(vshrq_n_u8(v1_0, 4));
  1353. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8(v0_1, m4b));
  1354. const int8x16_t v1_1l = vreinterpretq_s8_u8(vandq_u8(v1_1, m4b));
  1355. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1356. const int8x16_t v1_1h = vreinterpretq_s8_u8(vshrq_n_u8(v1_1, 4));
  1357. // sub 8
  1358. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1359. const int8x16_t v1_0ls = vsubq_s8(v1_0l, s8b);
  1360. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1361. const int8x16_t v1_0hs = vsubq_s8(v1_0h, s8b);
  1362. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1363. const int8x16_t v1_1ls = vsubq_s8(v1_1l, s8b);
  1364. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1365. const int8x16_t v1_1hs = vsubq_s8(v1_1h, s8b);
  1366. #if defined(__ARM_FEATURE_DOTPROD)
  1367. // dot product into int16x8_t
  1368. int32x4_t p_0 = vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0ls);
  1369. int32x4_t p_1 = vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1ls);
  1370. p_0 = vdotq_s32(p_0, v0_0hs, v1_0hs);
  1371. p_1 = vdotq_s32(p_1, v0_1hs, v1_1hs);
  1372. // scalar
  1373. #if defined(__ARM_FEATURE_QRDMX)
  1374. sum0 += x0->d * y0->d * vaddvq_s32(p_0);
  1375. sum1 += x1->d * y1->d * vaddvq_s32(p_1);
  1376. #else
  1377. sum0 += x0->d * y0->d * (vgetq_lane_s32(p_0, 0) + vgetq_lane_s32(p_0, 1) + vgetq_lane_s32(p_0, 2) + vgetq_lane_s32(p_0, 3));
  1378. sum1 += x1->d * y1->d * (vgetq_lane_s32(p_1, 0) + vgetq_lane_s32(p_1, 1) + vgetq_lane_s32(p_1, 2) + vgetq_lane_s32(p_1, 3));
  1379. #endif
  1380. #else
  1381. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0ls));
  1382. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0ls));
  1383. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0hs));
  1384. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0hs));
  1385. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1ls));
  1386. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1ls));
  1387. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1hs));
  1388. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1hs));
  1389. const int16x8_t pl_0 = vaddq_s16(pl0l, pl0h);
  1390. const int16x8_t ph_0 = vaddq_s16(ph0l, ph0h);
  1391. const int16x8_t pl_1 = vaddq_s16(pl1l, pl1h);
  1392. const int16x8_t ph_1 = vaddq_s16(ph1l, ph1h);
  1393. const int16x8_t p_0 = vaddq_s16(pl_0, ph_0);
  1394. const int16x8_t p_1 = vaddq_s16(pl_1, ph_1);
  1395. // scalar
  1396. #if defined(__ARM_FEATURE_QRDMX)
  1397. sum0 += x0->d * y0->d * vaddvq_s16(p_0);
  1398. sum1 += x1->d * y1->d * vaddvq_s16(p_1);
  1399. #else
  1400. sum0 += x0->d * y0->d * (vgetq_lane_s16(p_0, 0) + vgetq_lane_s16(p_0, 1) + vgetq_lane_s16(p_0, 2) + vgetq_lane_s16(p_0, 3) + vgetq_lane_s16(p_0, 4) + vgetq_lane_s16(p_0, 5) + vgetq_lane_s16(p_0, 6) + vgetq_lane_s16(p_0, 7));
  1401. sum1 += x1->d * y1->d * (vgetq_lane_s16(p_1, 0) + vgetq_lane_s16(p_1, 1) + vgetq_lane_s16(p_1, 2) + vgetq_lane_s16(p_1, 3) + vgetq_lane_s16(p_1, 4) + vgetq_lane_s16(p_1, 5) + vgetq_lane_s16(p_1, 6) + vgetq_lane_s16(p_1, 7));
  1402. #endif
  1403. #endif
  1404. }
  1405. sumf = (ggml_float)(sum0 + sum1);
  1406. #elif defined(__AVX512F__)
  1407. // Initialize accumulator with zeros
  1408. __m512 acc0 = _mm512_setzero_ps();
  1409. __m512 acc1 = _mm512_setzero_ps();
  1410. const int superblock_size = 8;
  1411. const int superblock_count = nb / superblock_size;
  1412. const int remainder = nb % superblock_size;
  1413. for (int superblock_ix = 0; superblock_ix < superblock_count; superblock_ix += 1) {
  1414. int i = superblock_ix * superblock_size;
  1415. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+0 );
  1416. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+1 );
  1417. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+2 );
  1418. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+3 );
  1419. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+4 );
  1420. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+5 );
  1421. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i+6 );
  1422. acc1 = dot_q4_0_oneblock_avx512( acc1, x, y, i+7 );
  1423. }
  1424. // Remainders
  1425. for (int i = superblock_count * superblock_size; i < nb; ++i) {
  1426. acc0 = dot_q4_0_oneblock_avx512( acc0, x, y, i );
  1427. }
  1428. // Horizontal sum of all lanes of the accumulator
  1429. sumf = _mm512_reduce_add_ps( acc0 ) + _mm512_reduce_add_ps( acc1 );
  1430. #elif defined(__AVX2__)
  1431. // Initialize accumulator with zeros
  1432. __m256 acc = _mm256_setzero_ps();
  1433. // Main loop
  1434. for (int i = 0; i < nb; ++i) {
  1435. // Compute combined scale for the block
  1436. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  1437. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1438. __m256i bx = bytesFromNibbles( x[i].qs );
  1439. __m256i by = bytesFromNibbles( y[i].qs );
  1440. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1441. const __m256i off = _mm256_set1_epi8( 8 );
  1442. bx = _mm256_sub_epi8( bx, off );
  1443. by = _mm256_sub_epi8( by, off );
  1444. // Sign-extend first 16 signed bytes into int16_t
  1445. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1446. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1447. // Compute products of int16_t integers, add pairwise
  1448. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1449. // Sign-extend last 16 signed bytes into int16_t vectors
  1450. x16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1451. y16 = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1452. // Accumulate products of int16_t integers
  1453. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16, y16 ) );
  1454. // Convert int32_t to float
  1455. __m256 p = _mm256_cvtepi32_ps( i32 );
  1456. // Apply the scale, and accumulate
  1457. acc = _mm256_fmadd_ps( d, p, acc );
  1458. }
  1459. // Return horizontal sum of the acc vector
  1460. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1461. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1462. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1463. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1464. sumf = _mm_cvtss_f32( res );
  1465. #elif defined(__wasm_simd128__)
  1466. // wasm simd
  1467. float sum0 = 0.0f;
  1468. float sum1 = 0.0f;
  1469. for (int i = 0; i < nb; i += 2) {
  1470. const block_q4_0 * restrict x0 = &px[i + 0];
  1471. const block_q4_0 * restrict y0 = &py[i + 0];
  1472. const block_q4_0 * restrict x1 = &px[i + 1];
  1473. const block_q4_0 * restrict y1 = &py[i + 1];
  1474. const v128_t m4b = wasm_u8x16_splat(0xf);
  1475. const v128_t s8b = wasm_i8x16_splat(0x8);
  1476. const v128_t v0_0 = wasm_v128_load(x0.qs);
  1477. const v128_t v0_1 = wasm_v128_load(y0.qs);
  1478. const v128_t v1_0 = wasm_v128_load(x1.qs);
  1479. const v128_t v1_1 = wasm_v128_load(y1.qs);
  1480. // 4-bit -> 8-bit
  1481. const v128_t v0_0l = wasm_v128_and(v0_0, m4b);
  1482. const v128_t v1_0l = wasm_v128_and(v1_0, m4b);
  1483. const v128_t v0_0h = wasm_u8x16_shr(v0_0, 4);
  1484. const v128_t v1_0h = wasm_u8x16_shr(v1_0, 4);
  1485. const v128_t v0_1l = wasm_v128_and(v0_1, m4b);
  1486. const v128_t v1_1l = wasm_v128_and(v1_1, m4b);
  1487. const v128_t v0_1h = wasm_u8x16_shr(v0_1, 4);
  1488. const v128_t v1_1h = wasm_u8x16_shr(v1_1, 4);
  1489. // sub 8
  1490. const v128_t v0_0ls = wasm_i8x16_sub(v0_0l, s8b);
  1491. const v128_t v1_0ls = wasm_i8x16_sub(v1_0l, s8b);
  1492. const v128_t v0_0hs = wasm_i8x16_sub(v0_0h, s8b);
  1493. const v128_t v1_0hs = wasm_i8x16_sub(v1_0h, s8b);
  1494. const v128_t v0_1ls = wasm_i8x16_sub(v0_1l, s8b);
  1495. const v128_t v1_1ls = wasm_i8x16_sub(v1_1l, s8b);
  1496. const v128_t v0_1hs = wasm_i8x16_sub(v0_1h, s8b);
  1497. const v128_t v1_1hs = wasm_i8x16_sub(v1_1h, s8b);
  1498. // dot product into int16x8_t
  1499. const v128_t pl0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0ls), wasm_i16x8_extend_low_i8x16(v1_0ls));
  1500. const v128_t pl0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0ls), wasm_i16x8_extend_high_i8x16(v1_0ls));
  1501. const v128_t ph0l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_0hs), wasm_i16x8_extend_low_i8x16(v1_0hs));
  1502. const v128_t ph0h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_0hs), wasm_i16x8_extend_high_i8x16(v1_0hs));
  1503. const v128_t pl1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1ls), wasm_i16x8_extend_low_i8x16(v1_1ls));
  1504. const v128_t pl1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1ls), wasm_i16x8_extend_high_i8x16(v1_1ls));
  1505. const v128_t ph1l = wasm_i16x8_mul(wasm_i16x8_extend_low_i8x16(v0_1hs), wasm_i16x8_extend_low_i8x16(v1_1hs));
  1506. const v128_t ph1h = wasm_i16x8_mul(wasm_i16x8_extend_high_i8x16(v0_1hs), wasm_i16x8_extend_high_i8x16(v1_1hs));
  1507. const v128_t pl_0 = wasm_i16x8_add(pl0l, pl0h);
  1508. const v128_t ph_0 = wasm_i16x8_add(ph0l, ph0h);
  1509. const v128_t pl_1 = wasm_i16x8_add(pl1l, pl1h);
  1510. const v128_t ph_1 = wasm_i16x8_add(ph1l, ph1h);
  1511. const v128_t p_0 = wasm_i16x8_add(pl_0, ph_0);
  1512. const v128_t p_1 = wasm_i16x8_add(pl_1, ph_1);
  1513. sum0 += x0->d * y0->d * (
  1514. wasm_i16x8_extract_lane(p_0, 0) + wasm_i16x8_extract_lane(p_0, 1) +
  1515. wasm_i16x8_extract_lane(p_0, 2) + wasm_i16x8_extract_lane(p_0, 3) +
  1516. wasm_i16x8_extract_lane(p_0, 4) + wasm_i16x8_extract_lane(p_0, 5) +
  1517. wasm_i16x8_extract_lane(p_0, 6) + wasm_i16x8_extract_lane(p_0, 7));
  1518. sum1 += x1->d * y1->d * (
  1519. wasm_i16x8_extract_lane(p_1, 0) + wasm_i16x8_extract_lane(p_1, 1) +
  1520. wasm_i16x8_extract_lane(p_1, 2) + wasm_i16x8_extract_lane(p_1, 3) +
  1521. wasm_i16x8_extract_lane(p_1, 4) + wasm_i16x8_extract_lane(p_1, 5) +
  1522. wasm_i16x8_extract_lane(p_1, 6) + wasm_i16x8_extract_lane(p_1, 7));
  1523. }
  1524. sumf = sum0 + sum1;
  1525. #else
  1526. // scalar
  1527. for (int i = 0; i < nb; i++) {
  1528. const float d0 = x[i].d;
  1529. const float d1 = y[i].d;
  1530. const uint8_t * restrict p0 = x[i].qs;
  1531. const uint8_t * restrict p1 = y[i].qs;
  1532. for (int j = 0; j < QK/2; j++) {
  1533. const uint8_t v0 = p0[j];
  1534. const uint8_t v1 = p1[j];
  1535. const float f0 = d0*((int8_t) (v0 & 0xf) - 8);
  1536. const float f1 = d0*((int8_t) (v0 >> 4) - 8);
  1537. const float f2 = d1*((int8_t) (v1 & 0xf) - 8);
  1538. const float f3 = d1*((int8_t) (v1 >> 4) - 8);
  1539. sumf += f0*f2 + f1*f3;
  1540. }
  1541. }
  1542. #endif
  1543. *s = sumf;
  1544. }
  1545. static void ggml_vec_dot_q4_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1546. const int nb = n / QK;
  1547. const block_q4_1 * restrict x = vx;
  1548. const block_q4_1 * restrict y = vy;
  1549. float sumf = 0.0;
  1550. #if defined(__AVX2__)
  1551. // Initialize accumulator with zeros
  1552. __m256 acc = _mm256_setzero_ps();
  1553. // Accumulator for constant offsets
  1554. float acc_offset = 0.0f;
  1555. // Main loop
  1556. for (int i = 0; i < nb; ++i) {
  1557. const float * d0 = &x[i].d;
  1558. const float * d1 = &y[i].d;
  1559. const float * m0 = &x[i].m;
  1560. const float * m1 = &y[i].m;
  1561. const __m256 d0v = _mm256_broadcast_ss( d0 );
  1562. const __m256 d1v = _mm256_broadcast_ss( d1 );
  1563. const __m256 m0v = _mm256_broadcast_ss( m0 );
  1564. const __m256 m1v = _mm256_broadcast_ss( m1 );
  1565. // Compute combined scale for the block
  1566. const __m256 scale_01 = _mm256_mul_ps( d0v, d1v );
  1567. // Compute cross scales for the block
  1568. const __m256 scale_0 = _mm256_mul_ps( d0v, m1v );
  1569. const __m256 scale_1 = _mm256_mul_ps( m0v, d1v );
  1570. const __m256 cross_scales = _mm256_blend_ps( scale_0, scale_1, 0b10101010 );
  1571. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  1572. __m256i bx = bytesFromNibbles( x[i].qs );
  1573. __m256i by = bytesFromNibbles( y[i].qs );
  1574. // Now we have a vector with bytes in [ 0 .. 15 ] interval.
  1575. // Sign-extend first 16 signed bytes into int16_t
  1576. __m256i x16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( bx ) );
  1577. __m256i y16 = _mm256_cvtepi8_epi16( _mm256_castsi256_si128( by ) );
  1578. // Compute products of int16_t integers, add pairwise
  1579. __m256i i32 = _mm256_madd_epi16( x16, y16 );
  1580. // Sign-extend last 16 signed bytes into int16_t vectors
  1581. __m256i x16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( bx, 1 ) );
  1582. __m256i y16_h = _mm256_cvtepi8_epi16( _mm256_extracti128_si256( by, 1 ) );
  1583. // Accumulate products of int16_t integers
  1584. i32 = _mm256_add_epi32( i32, _mm256_madd_epi16( x16_h, y16_h ) );
  1585. // compute sums of unsigned bytes in bx, by in blocks of 8.
  1586. // This results in a layout like X100 0000 X200 0000 X300 0000 X400 0000,
  1587. // which we then interleave as X100 Y100 X200 Y200 X300 Y300 X400 Y400.
  1588. // so if we then cast to 8 singles, we get 8 floats like [ x0_7, y0_7, x8_15, y8_15, x16_23, y16_23, x24_31, y24_31 ]
  1589. __m256i xsumi = _mm256_sad_epu8( bx, _mm256_setzero_si256() );
  1590. __m256i ysumi = _mm256_sad_epu8( by, _mm256_setzero_si256() );
  1591. __m256i sumsi = _mm256_or_si256( xsumi, _mm256_slli_si256( ysumi, 4 ) );
  1592. __m256 sums = _mm256_cvtepi32_ps( sumsi );
  1593. // Convert int32_t to float
  1594. __m256 p = _mm256_cvtepi32_ps( i32 );
  1595. // Apply the scale, and accumulate
  1596. // acc += d0*d1*x*y + d0*m1*x + d1*m0*y
  1597. acc = _mm256_fmadd_ps( scale_01, p, acc );
  1598. acc = _mm256_fmadd_ps( cross_scales, sums, acc );
  1599. // acc_offset += m0*m1 (for each entry in the block)
  1600. acc_offset += (*m0)*(*m1);
  1601. }
  1602. // Return horizontal sum of the acc vector
  1603. __m128 res = _mm256_extractf128_ps( acc, 1 );
  1604. res = _mm_add_ps( res, _mm256_castps256_ps128( acc ) );
  1605. res = _mm_add_ps( res, _mm_movehl_ps( res, res ) );
  1606. res = _mm_add_ss( res, _mm_movehdup_ps( res ) );
  1607. sumf = _mm_cvtss_f32( res ) + acc_offset * QK;
  1608. #else
  1609. // scalar
  1610. for (int i = 0; i < nb; i++) {
  1611. const float d0 = x[i].d;
  1612. const float d1 = y[i].d;
  1613. const float m0 = x[i].m;
  1614. const float m1 = y[i].m;
  1615. const uint8_t * restrict p0 = x[i].qs;
  1616. const uint8_t * restrict p1 = y[i].qs;
  1617. for (int j = 0; j < QK/2; j++) {
  1618. const uint8_t v0 = p0[j];
  1619. const uint8_t v1 = p1[j];
  1620. const float f0 = d0*(v0 & 0xf) + m0;
  1621. const float f1 = d0*(v0 >> 4) + m0;
  1622. const float f2 = d1*(v1 & 0xf) + m1;
  1623. const float f3 = d1*(v1 >> 4) + m1;
  1624. sumf += f0*f2 + f1*f3;
  1625. }
  1626. }
  1627. #endif
  1628. *s = sumf;
  1629. }
  1630. // compute GGML_VEC_DOT_UNROLL dot products at once
  1631. // xs - x row stride in bytes
  1632. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1633. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1634. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1635. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1636. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1637. }
  1638. #if defined(GGML_SIMD)
  1639. const int np = (n & ~(GGML_F16_STEP - 1));
  1640. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1641. GGML_F16_VEC ax[GGML_F16_ARR];
  1642. GGML_F16_VEC ay[GGML_F16_ARR];
  1643. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1644. for (int j = 0; j < GGML_F16_ARR; j++) {
  1645. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1646. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1647. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1648. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1649. }
  1650. }
  1651. }
  1652. // reduce sum0..sum3 to sum0
  1653. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1654. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1655. }
  1656. // leftovers
  1657. for (int i = np; i < n; ++i) {
  1658. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1659. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1660. }
  1661. }
  1662. #else
  1663. for (int i = 0; i < n; ++i) {
  1664. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1665. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1666. }
  1667. }
  1668. #endif
  1669. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1670. s[i] = sumf[i];
  1671. }
  1672. }
  1673. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1674. #if defined(GGML_SIMD)
  1675. const int np = (n & ~(GGML_F32_STEP - 1));
  1676. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1677. GGML_F32_VEC ax[GGML_F32_ARR];
  1678. GGML_F32_VEC ay[GGML_F32_ARR];
  1679. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1680. for (int j = 0; j < GGML_F32_ARR; j++) {
  1681. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1682. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1683. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1684. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1685. }
  1686. }
  1687. // leftovers
  1688. for (int i = np; i < n; ++i) {
  1689. y[i] += x[i]*v;
  1690. }
  1691. #else
  1692. // scalar
  1693. for (int i = 0; i < n; ++i) {
  1694. y[i] += x[i]*v;
  1695. }
  1696. #endif
  1697. }
  1698. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1699. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1700. #if defined(GGML_SIMD)
  1701. const int np = (n & ~(GGML_F32_STEP - 1));
  1702. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1703. GGML_F32_VEC ay[GGML_F32_ARR];
  1704. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1705. for (int j = 0; j < GGML_F32_ARR; j++) {
  1706. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1707. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1708. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1709. }
  1710. }
  1711. // leftovers
  1712. for (int i = np; i < n; ++i) {
  1713. y[i] *= v;
  1714. }
  1715. #else
  1716. // scalar
  1717. for (int i = 0; i < n; ++i) {
  1718. y[i] *= v;
  1719. }
  1720. #endif
  1721. }
  1722. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  1723. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1724. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1725. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1726. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1727. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1728. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1729. static const float GELU_COEF_A = 0.044715f;
  1730. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1731. inline static float ggml_gelu_f32(float x) {
  1732. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1733. }
  1734. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1735. const uint16_t * i16 = (const uint16_t *) x;
  1736. for (int i = 0; i < n; ++i) {
  1737. y[i] = table_gelu_f16[i16[i]];
  1738. }
  1739. }
  1740. #ifdef GGML_GELU_FP16
  1741. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1742. uint16_t t;
  1743. for (int i = 0; i < n; ++i) {
  1744. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1745. memcpy(&t, &fp16, sizeof(uint16_t));
  1746. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  1747. }
  1748. }
  1749. #else
  1750. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1751. for (int i = 0; i < n; ++i) {
  1752. y[i] = ggml_gelu_f32(x[i]);
  1753. }
  1754. }
  1755. #endif
  1756. // Sigmoid Linear Unit (SiLU) function
  1757. inline static float ggml_silu_f32(float x) {
  1758. return x/(1.0f + expf(-x));
  1759. }
  1760. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1761. const uint16_t * i16 = (const uint16_t *) x;
  1762. for (int i = 0; i < n; ++i) {
  1763. y[i] = table_silu_f16[i16[i]];
  1764. }
  1765. }
  1766. #ifdef GGML_SILU_FP16
  1767. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1768. uint16_t t;
  1769. for (int i = 0; i < n; ++i) {
  1770. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1771. memcpy(&t, &fp16, sizeof(uint16_t));
  1772. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  1773. }
  1774. }
  1775. #else
  1776. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  1777. for (int i = 0; i < n; ++i) {
  1778. y[i] = ggml_silu_f32(x[i]);
  1779. }
  1780. }
  1781. #endif
  1782. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  1783. #ifndef GGML_USE_ACCELERATE
  1784. ggml_float sum = 0.0;
  1785. for (int i = 0; i < n; ++i) {
  1786. sum += (ggml_float)x[i];
  1787. }
  1788. *s = sum;
  1789. #else
  1790. vDSP_sve(x, 1, s, n);
  1791. #endif
  1792. }
  1793. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  1794. #ifndef GGML_USE_ACCELERATE
  1795. float max = -INFINITY;
  1796. for (int i = 0; i < n; ++i) {
  1797. max = MAX(max, x[i]);
  1798. }
  1799. *s = max;
  1800. #else
  1801. vDSP_maxv(x, 1, s, n);
  1802. #endif
  1803. }
  1804. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  1805. ggml_vec_norm_f32(n, s, x);
  1806. *s = 1.f/(*s);
  1807. }
  1808. //
  1809. // logging
  1810. //
  1811. #if (GGML_DEBUG >= 1)
  1812. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  1813. #else
  1814. #define GGML_PRINT_DEBUG(...)
  1815. #endif
  1816. #if (GGML_DEBUG >= 5)
  1817. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  1818. #else
  1819. #define GGML_PRINT_DEBUG_5(...)
  1820. #endif
  1821. #if (GGML_DEBUG >= 10)
  1822. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  1823. #else
  1824. #define GGML_PRINT_DEBUG_10(...)
  1825. #endif
  1826. #define GGML_PRINT(...) printf(__VA_ARGS__)
  1827. //
  1828. // data types
  1829. //
  1830. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  1831. QK,
  1832. QK,
  1833. 1,
  1834. 1,
  1835. 1,
  1836. 1,
  1837. 1,
  1838. };
  1839. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1840. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  1841. sizeof(block_q4_0),
  1842. sizeof(block_q4_1),
  1843. sizeof(int8_t ),
  1844. sizeof(int16_t),
  1845. sizeof(int32_t),
  1846. sizeof(ggml_fp16_t),
  1847. sizeof(float ),
  1848. };
  1849. // don't forget to update the array above when adding new types
  1850. static_assert(GGML_TYPE_COUNT == 7, "GGML_TYPE_COUNT != 5");
  1851. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  1852. "NONE",
  1853. "DUP",
  1854. "ADD",
  1855. "SUB",
  1856. "MUL",
  1857. "DIV",
  1858. "SQR",
  1859. "SQRT",
  1860. "SUM",
  1861. "MEAN",
  1862. "REPEAT",
  1863. "ABS",
  1864. "SGN",
  1865. "NEG",
  1866. "STEP",
  1867. "RELU",
  1868. "GELU",
  1869. "SILU",
  1870. "NORM",
  1871. "RMS_NORM",
  1872. "MUL_MAT",
  1873. "SCALE",
  1874. "CPY",
  1875. "RESHAPE",
  1876. "VIEW",
  1877. "PERMUTE",
  1878. "TRANSPOSE",
  1879. "GET_ROWS",
  1880. "DIAG_MASK_INF",
  1881. "SOFT_MAX",
  1882. "ROPE",
  1883. "CONV_1D_1S",
  1884. "CONV_1D_2S",
  1885. "FLASH_ATTN",
  1886. "FLASH_FF",
  1887. };
  1888. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1889. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  1890. "none",
  1891. "x",
  1892. "x+y",
  1893. "x-y",
  1894. "x*y",
  1895. "x/y",
  1896. "x^2",
  1897. "√x",
  1898. "Σx",
  1899. "Σx/n",
  1900. "repeat(x)",
  1901. "abs(x)",
  1902. "sgn(x)",
  1903. "-x",
  1904. "step(x)",
  1905. "relu(x)",
  1906. "gelu(x)",
  1907. "silu(x)",
  1908. "norm(x)",
  1909. "rms_norm(x)",
  1910. "X*Y",
  1911. "x*v",
  1912. "x-\\>y",
  1913. "reshape(x)",
  1914. "view(x)",
  1915. "permute(x)",
  1916. "transpose(x)",
  1917. "get_rows(x)",
  1918. "diag_mask_inf(x)",
  1919. "soft_max(x)",
  1920. "rope(x)",
  1921. "conv_1d_1s(x)",
  1922. "conv_1d_2s(x)",
  1923. "flash_attn(x)",
  1924. "flash_ff(x)",
  1925. };
  1926. static_assert(GGML_OP_COUNT == 35, "GGML_OP_COUNT != 35");
  1927. //
  1928. // ggml object
  1929. //
  1930. struct ggml_object {
  1931. size_t offs;
  1932. size_t size;
  1933. struct ggml_object * next;
  1934. char padding[8];
  1935. };
  1936. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  1937. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  1938. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  1939. //
  1940. // ggml context
  1941. //
  1942. struct ggml_context {
  1943. size_t mem_size;
  1944. void * mem_buffer;
  1945. bool mem_buffer_owned;
  1946. bool mem_buffer_mlocked;
  1947. int n_objects;
  1948. struct ggml_object * objects_begin;
  1949. struct ggml_object * objects_end;
  1950. struct ggml_scratch scratch;
  1951. struct ggml_scratch scratch_save;
  1952. };
  1953. struct ggml_context_container {
  1954. bool used;
  1955. struct ggml_context context;
  1956. };
  1957. //
  1958. // compute types
  1959. //
  1960. enum ggml_task_type {
  1961. GGML_TASK_INIT = 0,
  1962. GGML_TASK_COMPUTE,
  1963. GGML_TASK_FINALIZE,
  1964. };
  1965. struct ggml_compute_params {
  1966. enum ggml_task_type type;
  1967. int ith, nth;
  1968. // work buffer for all threads
  1969. size_t wsize;
  1970. void * wdata;
  1971. };
  1972. //
  1973. // ggml state
  1974. //
  1975. struct ggml_state {
  1976. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  1977. };
  1978. // global state
  1979. static struct ggml_state g_state;
  1980. static atomic_int g_state_barrier = 0;
  1981. // barrier via spin lock
  1982. inline static void ggml_critical_section_start(void) {
  1983. int processing = atomic_fetch_add(&g_state_barrier, 1);
  1984. while (processing > 0) {
  1985. // wait for other threads to finish
  1986. atomic_fetch_sub(&g_state_barrier, 1);
  1987. sched_yield(); // TODO: reconsider this
  1988. processing = atomic_fetch_add(&g_state_barrier, 1);
  1989. }
  1990. }
  1991. // TODO: make this somehow automatically executed
  1992. // some sort of "sentry" mechanism
  1993. inline static void ggml_critical_section_end(void) {
  1994. atomic_fetch_sub(&g_state_barrier, 1);
  1995. }
  1996. ////////////////////////////////////////////////////////////////////////////////
  1997. void ggml_print_object(const struct ggml_object * obj) {
  1998. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  1999. obj->offs, obj->size, (const void *) obj->next);
  2000. }
  2001. void ggml_print_objects(const struct ggml_context * ctx) {
  2002. struct ggml_object * obj = ctx->objects_begin;
  2003. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2004. while (obj != NULL) {
  2005. ggml_print_object(obj);
  2006. obj = obj->next;
  2007. }
  2008. GGML_PRINT("%s: --- end ---\n", __func__);
  2009. }
  2010. int ggml_nelements(const struct ggml_tensor * tensor) {
  2011. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2012. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2013. }
  2014. int ggml_nrows(const struct ggml_tensor * tensor) {
  2015. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2016. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2017. }
  2018. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2019. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2020. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  2021. }
  2022. int ggml_blck_size(enum ggml_type type) {
  2023. return GGML_BLCK_SIZE[type];
  2024. }
  2025. size_t ggml_type_size(enum ggml_type type) {
  2026. return GGML_TYPE_SIZE[type];
  2027. }
  2028. float ggml_type_sizef(enum ggml_type type) {
  2029. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  2030. }
  2031. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2032. return GGML_TYPE_SIZE[tensor->type];
  2033. }
  2034. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2035. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2036. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2037. }
  2038. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2039. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2040. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2041. }
  2042. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2043. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2044. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2045. }
  2046. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2047. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2048. return
  2049. (t0->ne[0] == t1->ne[0]) &&
  2050. (t0->ne[2] == t1->ne[2]) &&
  2051. (t0->ne[3] == t1->ne[3]);
  2052. }
  2053. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2054. return tensor->nb[0] > tensor->nb[1];
  2055. }
  2056. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2057. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2058. return
  2059. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2060. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  2061. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2062. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2063. }
  2064. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2065. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2066. return
  2067. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  2068. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2069. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2070. }
  2071. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2072. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2073. return
  2074. (t0->ne[0] == t1->ne[0] ) &&
  2075. (t0->ne[1] == t1->ne[1] ) &&
  2076. (t0->ne[2] == t1->ne[2] ) &&
  2077. (t0->ne[3] == t1->ne[3] );
  2078. }
  2079. // check if t1 can be represented as a repeatition of t0
  2080. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2081. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2082. return
  2083. (t1->ne[0]%t0->ne[0] == 0) &&
  2084. (t1->ne[1]%t0->ne[1] == 0) &&
  2085. (t1->ne[2]%t0->ne[2] == 0) &&
  2086. (t1->ne[3]%t0->ne[3] == 0);
  2087. }
  2088. static inline int ggml_up32(int n) {
  2089. return (n + 31) & ~31;
  2090. }
  2091. static inline int ggml_up64(int n) {
  2092. return (n + 63) & ~63;
  2093. }
  2094. static inline int ggml_up(int n, int m) {
  2095. // assert m is a power of 2
  2096. GGML_ASSERT((m & (m - 1)) == 0);
  2097. return (n + m - 1) & ~(m - 1);
  2098. }
  2099. // assert that pointer is aligned to GGML_MEM_ALIGN
  2100. #define ggml_assert_aligned(ptr) \
  2101. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2102. ////////////////////////////////////////////////////////////////////////////////
  2103. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2104. // make this function thread safe
  2105. ggml_critical_section_start();
  2106. static bool is_first_call = true;
  2107. if (is_first_call) {
  2108. // initialize GELU, SILU and EXP F32 tables
  2109. {
  2110. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2111. ggml_fp16_t ii;
  2112. for (int i = 0; i < (1 << 16); ++i) {
  2113. uint16_t ui = i;
  2114. memcpy(&ii, &ui, sizeof(ii));
  2115. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  2116. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2117. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  2118. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  2119. }
  2120. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2121. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2122. }
  2123. // initialize g_state
  2124. {
  2125. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2126. g_state = (struct ggml_state) {
  2127. /*.contexts =*/ { { 0 } },
  2128. };
  2129. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2130. g_state.contexts[i].used = false;
  2131. }
  2132. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2133. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2134. }
  2135. is_first_call = false;
  2136. }
  2137. // find non-used context in g_state
  2138. struct ggml_context * ctx = NULL;
  2139. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2140. if (!g_state.contexts[i].used) {
  2141. g_state.contexts[i].used = true;
  2142. ctx = &g_state.contexts[i].context;
  2143. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2144. break;
  2145. }
  2146. }
  2147. if (ctx == NULL) {
  2148. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2149. ggml_critical_section_end();
  2150. return NULL;
  2151. }
  2152. *ctx = (struct ggml_context) {
  2153. /*.mem_size =*/ params.mem_size,
  2154. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : malloc(params.mem_size),
  2155. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2156. /*.mem_buffer_mlocked =*/ false,
  2157. /*.n_objects =*/ 0,
  2158. /*.objects_begin =*/ NULL,
  2159. /*.objects_end =*/ NULL,
  2160. /*.scratch =*/ { 0, 0, NULL, },
  2161. /*.scratch_save =*/ { 0, 0, NULL, },
  2162. };
  2163. GGML_ASSERT(ctx->mem_buffer != NULL); // check for allocation failure
  2164. ggml_assert_aligned(ctx->mem_buffer);
  2165. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2166. ggml_critical_section_end();
  2167. return ctx;
  2168. }
  2169. void ggml_free(struct ggml_context * ctx) {
  2170. // make this function thread safe
  2171. ggml_critical_section_start();
  2172. bool found = false;
  2173. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2174. if (&g_state.contexts[i].context == ctx) {
  2175. g_state.contexts[i].used = false;
  2176. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  2177. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  2178. #if GGML_MLOCK_SUPPORT
  2179. if (ctx->mem_buffer_mlocked) {
  2180. if (munlock(ctx->mem_buffer, ctx->mem_size)) {
  2181. fprintf(stderr, "%s: failed to munlock buffer: %s\n", __func__, strerror(errno));
  2182. }
  2183. }
  2184. #endif
  2185. if (ctx->mem_buffer_owned) {
  2186. free(ctx->mem_buffer);
  2187. }
  2188. found = true;
  2189. break;
  2190. }
  2191. }
  2192. if (!found) {
  2193. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2194. }
  2195. ggml_critical_section_end();
  2196. }
  2197. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2198. return ctx->objects_end->offs + ctx->objects_end->size;
  2199. }
  2200. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2201. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2202. ctx->scratch = scratch;
  2203. return result;
  2204. }
  2205. bool ggml_mlock_supported(void) {
  2206. return GGML_MLOCK_SUPPORT;
  2207. }
  2208. #if GGML_MLOCK_SUPPORT
  2209. #ifdef __APPLE__
  2210. #define MLOCK_SUGGESTION "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or\n" \
  2211. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MLOCK (ulimit -l)."
  2212. #else
  2213. #define MLOCK_SUGGESTION "Try increasing RLIMIT_MLOCK (ulimit -l)."
  2214. #endif
  2215. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2216. if (ctx->mem_buffer_mlocked) {
  2217. return true;
  2218. }
  2219. if (mlock(ctx->mem_buffer, ctx->mem_size)) {
  2220. int ret = asprintf(err_p, "failed to mlock %zu-byte buffer: %s\n" MLOCK_SUGGESTION,
  2221. ctx->mem_size, strerror(errno));
  2222. GGML_ASSERT(ret >= 0);
  2223. return false;
  2224. }
  2225. ctx->mem_buffer_mlocked = true;
  2226. return true;
  2227. }
  2228. #else // GGML_MLOCK_SUPPORT
  2229. bool ggml_mlock(struct ggml_context * ctx, char ** err_p) {
  2230. *err_p = strdup("can't mlock because it's not supported on this system");
  2231. return false;
  2232. }
  2233. #endif // GGML_MLOCK_SUPPORT
  2234. ////////////////////////////////////////////////////////////////////////////////
  2235. struct ggml_tensor * ggml_new_tensor_impl(
  2236. struct ggml_context * ctx,
  2237. enum ggml_type type,
  2238. int n_dims,
  2239. const int* ne,
  2240. void* data) {
  2241. // always insert objects at the end of the context's memory pool
  2242. struct ggml_object * obj_cur = ctx->objects_end;
  2243. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  2244. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  2245. const size_t cur_end = cur_offs + cur_size;
  2246. size_t size_needed = 0;
  2247. if (data == NULL) {
  2248. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  2249. for (int i = 1; i < n_dims; i++) {
  2250. size_needed *= ne[i];
  2251. }
  2252. // align to GGML_MEM_ALIGN
  2253. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  2254. }
  2255. char * const mem_buffer = ctx->mem_buffer;
  2256. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  2257. if (ctx->scratch.data == NULL || data != NULL) {
  2258. size_needed += sizeof(struct ggml_tensor);
  2259. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  2260. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2261. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  2262. assert(false);
  2263. return NULL;
  2264. }
  2265. *obj_new = (struct ggml_object) {
  2266. .offs = cur_end + GGML_OBJECT_SIZE,
  2267. .size = size_needed,
  2268. .next = NULL,
  2269. };
  2270. } else {
  2271. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  2272. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  2273. assert(false);
  2274. return NULL;
  2275. }
  2276. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  2277. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  2278. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  2279. assert(false);
  2280. return NULL;
  2281. }
  2282. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  2283. *obj_new = (struct ggml_object) {
  2284. .offs = cur_end + GGML_OBJECT_SIZE,
  2285. .size = sizeof(struct ggml_tensor),
  2286. .next = NULL,
  2287. };
  2288. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  2289. ctx->scratch.offs += size_needed;
  2290. }
  2291. if (obj_cur != NULL) {
  2292. obj_cur->next = obj_new;
  2293. } else {
  2294. // this is the first object in this context
  2295. ctx->objects_begin = obj_new;
  2296. }
  2297. ctx->objects_end = obj_new;
  2298. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  2299. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  2300. ggml_assert_aligned(result);
  2301. *result = (struct ggml_tensor) {
  2302. /*.type =*/ type,
  2303. /*.n_dims =*/ n_dims,
  2304. /*.ne =*/ { 1, 1, 1, 1 },
  2305. /*.nb =*/ { 0, 0, 0, 0 },
  2306. /*.op =*/ GGML_OP_NONE,
  2307. /*.is_param =*/ false,
  2308. /*.grad =*/ NULL,
  2309. /*.src0 =*/ NULL,
  2310. /*.src1 =*/ NULL,
  2311. /*.opt =*/ { NULL },
  2312. /*.n_tasks =*/ 0,
  2313. /*.perf_runs =*/ 0,
  2314. /*.perf_cycles =*/ 0,
  2315. /*.perf_time_us =*/ 0,
  2316. /*.data =*/ data == NULL ? (void *)(result + 1) : data,
  2317. /*.pad =*/ { 0 },
  2318. };
  2319. ggml_assert_aligned(result->data);
  2320. for (int i = 0; i < n_dims; i++) {
  2321. result->ne[i] = ne[i];
  2322. }
  2323. result->nb[0] = GGML_TYPE_SIZE[type];
  2324. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  2325. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  2326. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  2327. }
  2328. ctx->n_objects++;
  2329. return result;
  2330. }
  2331. struct ggml_tensor * ggml_new_tensor(
  2332. struct ggml_context * ctx,
  2333. enum ggml_type type,
  2334. int n_dims,
  2335. const int * ne) {
  2336. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  2337. }
  2338. struct ggml_tensor * ggml_new_tensor_1d(
  2339. struct ggml_context * ctx,
  2340. enum ggml_type type,
  2341. int ne0) {
  2342. return ggml_new_tensor(ctx, type, 1, &ne0);
  2343. }
  2344. struct ggml_tensor * ggml_new_tensor_2d(
  2345. struct ggml_context * ctx,
  2346. enum ggml_type type,
  2347. int ne0,
  2348. int ne1) {
  2349. const int ne[2] = { ne0, ne1 };
  2350. return ggml_new_tensor(ctx, type, 2, ne);
  2351. }
  2352. struct ggml_tensor * ggml_new_tensor_3d(
  2353. struct ggml_context * ctx,
  2354. enum ggml_type type,
  2355. int ne0,
  2356. int ne1,
  2357. int ne2) {
  2358. const int ne[3] = { ne0, ne1, ne2 };
  2359. return ggml_new_tensor(ctx, type, 3, ne);
  2360. }
  2361. struct ggml_tensor * ggml_new_tensor_4d(
  2362. struct ggml_context * ctx,
  2363. enum ggml_type type,
  2364. int ne0,
  2365. int ne1,
  2366. int ne2,
  2367. int ne3) {
  2368. const int ne[4] = { ne0, ne1, ne2, ne3 };
  2369. return ggml_new_tensor(ctx, type, 4, ne);
  2370. }
  2371. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  2372. ctx->scratch_save = ctx->scratch;
  2373. ctx->scratch.data = NULL;
  2374. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  2375. ctx->scratch = ctx->scratch_save;
  2376. ggml_set_i32(result, value);
  2377. return result;
  2378. }
  2379. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  2380. ctx->scratch_save = ctx->scratch;
  2381. ctx->scratch.data = NULL;
  2382. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  2383. ctx->scratch = ctx->scratch_save;
  2384. ggml_set_f32(result, value);
  2385. return result;
  2386. }
  2387. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  2388. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  2389. }
  2390. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  2391. memset(tensor->data, 0, ggml_nbytes(tensor));
  2392. return tensor;
  2393. }
  2394. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  2395. const int n = ggml_nrows(tensor);
  2396. const int nc = tensor->ne[0];
  2397. const size_t n1 = tensor->nb[1];
  2398. char * const data = tensor->data;
  2399. switch (tensor->type) {
  2400. case GGML_TYPE_Q4_0:
  2401. {
  2402. GGML_ASSERT(false);
  2403. } break;
  2404. case GGML_TYPE_Q4_1:
  2405. {
  2406. GGML_ASSERT(false);
  2407. } break;
  2408. case GGML_TYPE_I8:
  2409. {
  2410. assert(tensor->nb[0] == sizeof(int8_t));
  2411. for (int i = 0; i < n; i++) {
  2412. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2413. }
  2414. } break;
  2415. case GGML_TYPE_I16:
  2416. {
  2417. assert(tensor->nb[0] == sizeof(int16_t));
  2418. for (int i = 0; i < n; i++) {
  2419. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2420. }
  2421. } break;
  2422. case GGML_TYPE_I32:
  2423. {
  2424. assert(tensor->nb[0] == sizeof(int32_t));
  2425. for (int i = 0; i < n; i++) {
  2426. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2427. }
  2428. } break;
  2429. case GGML_TYPE_F16:
  2430. {
  2431. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2432. for (int i = 0; i < n; i++) {
  2433. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2434. }
  2435. } break;
  2436. case GGML_TYPE_F32:
  2437. {
  2438. assert(tensor->nb[0] == sizeof(float));
  2439. for (int i = 0; i < n; i++) {
  2440. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2441. }
  2442. } break;
  2443. case GGML_TYPE_COUNT:
  2444. {
  2445. GGML_ASSERT(false);
  2446. } break;
  2447. }
  2448. return tensor;
  2449. }
  2450. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  2451. const int n = ggml_nrows(tensor);
  2452. const int nc = tensor->ne[0];
  2453. const size_t n1 = tensor->nb[1];
  2454. char * const data = tensor->data;
  2455. switch (tensor->type) {
  2456. case GGML_TYPE_Q4_0:
  2457. {
  2458. GGML_ASSERT(false);
  2459. } break;
  2460. case GGML_TYPE_Q4_1:
  2461. {
  2462. GGML_ASSERT(false);
  2463. } break;
  2464. case GGML_TYPE_I8:
  2465. {
  2466. assert(tensor->nb[0] == sizeof(int8_t));
  2467. for (int i = 0; i < n; i++) {
  2468. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  2469. }
  2470. } break;
  2471. case GGML_TYPE_I16:
  2472. {
  2473. assert(tensor->nb[0] == sizeof(int16_t));
  2474. for (int i = 0; i < n; i++) {
  2475. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  2476. }
  2477. } break;
  2478. case GGML_TYPE_I32:
  2479. {
  2480. assert(tensor->nb[0] == sizeof(int32_t));
  2481. for (int i = 0; i < n; i++) {
  2482. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  2483. }
  2484. } break;
  2485. case GGML_TYPE_F16:
  2486. {
  2487. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  2488. for (int i = 0; i < n; i++) {
  2489. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  2490. }
  2491. } break;
  2492. case GGML_TYPE_F32:
  2493. {
  2494. assert(tensor->nb[0] == sizeof(float));
  2495. for (int i = 0; i < n; i++) {
  2496. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  2497. }
  2498. } break;
  2499. case GGML_TYPE_COUNT:
  2500. {
  2501. GGML_ASSERT(false);
  2502. } break;
  2503. }
  2504. return tensor;
  2505. }
  2506. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  2507. switch (tensor->type) {
  2508. case GGML_TYPE_Q4_0:
  2509. {
  2510. GGML_ASSERT(false);
  2511. } break;
  2512. case GGML_TYPE_Q4_1:
  2513. {
  2514. GGML_ASSERT(false);
  2515. } break;
  2516. case GGML_TYPE_I8:
  2517. {
  2518. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2519. return ((int8_t *)(tensor->data))[i];
  2520. } break;
  2521. case GGML_TYPE_I16:
  2522. {
  2523. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2524. return ((int16_t *)(tensor->data))[i];
  2525. } break;
  2526. case GGML_TYPE_I32:
  2527. {
  2528. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2529. return ((int32_t *)(tensor->data))[i];
  2530. } break;
  2531. case GGML_TYPE_F16:
  2532. {
  2533. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2534. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2535. } break;
  2536. case GGML_TYPE_F32:
  2537. {
  2538. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2539. return ((float *)(tensor->data))[i];
  2540. } break;
  2541. case GGML_TYPE_COUNT:
  2542. {
  2543. GGML_ASSERT(false);
  2544. } break;
  2545. }
  2546. return 0.0f;
  2547. }
  2548. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  2549. switch (tensor->type) {
  2550. case GGML_TYPE_Q4_0:
  2551. {
  2552. GGML_ASSERT(false);
  2553. } break;
  2554. case GGML_TYPE_Q4_1:
  2555. {
  2556. GGML_ASSERT(false);
  2557. } break;
  2558. case GGML_TYPE_I8:
  2559. {
  2560. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2561. ((int8_t *)(tensor->data))[i] = value;
  2562. } break;
  2563. case GGML_TYPE_I16:
  2564. {
  2565. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2566. ((int16_t *)(tensor->data))[i] = value;
  2567. } break;
  2568. case GGML_TYPE_I32:
  2569. {
  2570. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2571. ((int32_t *)(tensor->data))[i] = value;
  2572. } break;
  2573. case GGML_TYPE_F16:
  2574. {
  2575. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2576. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2577. } break;
  2578. case GGML_TYPE_F32:
  2579. {
  2580. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2581. ((float *)(tensor->data))[i] = value;
  2582. } break;
  2583. case GGML_TYPE_COUNT:
  2584. {
  2585. GGML_ASSERT(false);
  2586. } break;
  2587. }
  2588. }
  2589. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  2590. switch (tensor->type) {
  2591. case GGML_TYPE_Q4_0:
  2592. {
  2593. GGML_ASSERT(false);
  2594. } break;
  2595. case GGML_TYPE_Q4_1:
  2596. {
  2597. GGML_ASSERT(false);
  2598. } break;
  2599. case GGML_TYPE_I8:
  2600. {
  2601. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2602. return ((int8_t *)(tensor->data))[i];
  2603. } break;
  2604. case GGML_TYPE_I16:
  2605. {
  2606. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2607. return ((int16_t *)(tensor->data))[i];
  2608. } break;
  2609. case GGML_TYPE_I32:
  2610. {
  2611. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2612. return ((int32_t *)(tensor->data))[i];
  2613. } break;
  2614. case GGML_TYPE_F16:
  2615. {
  2616. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2617. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  2618. } break;
  2619. case GGML_TYPE_F32:
  2620. {
  2621. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2622. return ((float *)(tensor->data))[i];
  2623. } break;
  2624. case GGML_TYPE_COUNT:
  2625. {
  2626. GGML_ASSERT(false);
  2627. } break;
  2628. }
  2629. return 0.0f;
  2630. }
  2631. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  2632. switch (tensor->type) {
  2633. case GGML_TYPE_Q4_0:
  2634. {
  2635. GGML_ASSERT(false);
  2636. } break;
  2637. case GGML_TYPE_Q4_1:
  2638. {
  2639. GGML_ASSERT(false);
  2640. } break;
  2641. case GGML_TYPE_I8:
  2642. {
  2643. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  2644. ((int8_t *)(tensor->data))[i] = value;
  2645. } break;
  2646. case GGML_TYPE_I16:
  2647. {
  2648. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  2649. ((int16_t *)(tensor->data))[i] = value;
  2650. } break;
  2651. case GGML_TYPE_I32:
  2652. {
  2653. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  2654. ((int32_t *)(tensor->data))[i] = value;
  2655. } break;
  2656. case GGML_TYPE_F16:
  2657. {
  2658. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  2659. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  2660. } break;
  2661. case GGML_TYPE_F32:
  2662. {
  2663. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  2664. ((float *)(tensor->data))[i] = value;
  2665. } break;
  2666. case GGML_TYPE_COUNT:
  2667. {
  2668. GGML_ASSERT(false);
  2669. } break;
  2670. }
  2671. }
  2672. void * ggml_get_data(const struct ggml_tensor * tensor) {
  2673. return tensor->data;
  2674. }
  2675. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  2676. assert(tensor->type == GGML_TYPE_F32);
  2677. return (float *)(tensor->data);
  2678. }
  2679. struct ggml_tensor * ggml_view_tensor(
  2680. struct ggml_context * ctx,
  2681. const struct ggml_tensor * src) {
  2682. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  2683. }
  2684. ////////////////////////////////////////////////////////////////////////////////
  2685. // ggml_dup
  2686. struct ggml_tensor * ggml_dup_impl(
  2687. struct ggml_context * ctx,
  2688. struct ggml_tensor * a,
  2689. bool inplace) {
  2690. bool is_node = false;
  2691. if (!inplace && (a->grad)) {
  2692. is_node = true;
  2693. }
  2694. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2695. result->op = GGML_OP_DUP;
  2696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2697. result->src0 = a;
  2698. result->src1 = NULL;
  2699. return result;
  2700. }
  2701. struct ggml_tensor * ggml_dup(
  2702. struct ggml_context * ctx,
  2703. struct ggml_tensor * a) {
  2704. return ggml_dup_impl(ctx, a, false);
  2705. }
  2706. struct ggml_tensor * ggml_dup_inplace(
  2707. struct ggml_context * ctx,
  2708. struct ggml_tensor * a) {
  2709. return ggml_dup_impl(ctx, a, true);
  2710. }
  2711. // ggml_add
  2712. struct ggml_tensor * ggml_add_impl(
  2713. struct ggml_context * ctx,
  2714. struct ggml_tensor * a,
  2715. struct ggml_tensor * b,
  2716. bool inplace) {
  2717. GGML_ASSERT(ggml_are_same_shape(a, b));
  2718. bool is_node = false;
  2719. if (!inplace && (a->grad || b->grad)) {
  2720. is_node = true;
  2721. }
  2722. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2723. result->op = GGML_OP_ADD;
  2724. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2725. result->src0 = a;
  2726. result->src1 = b;
  2727. return result;
  2728. }
  2729. struct ggml_tensor * ggml_add(
  2730. struct ggml_context * ctx,
  2731. struct ggml_tensor * a,
  2732. struct ggml_tensor * b) {
  2733. return ggml_add_impl(ctx, a, b, false);
  2734. }
  2735. struct ggml_tensor * ggml_add_inplace(
  2736. struct ggml_context * ctx,
  2737. struct ggml_tensor * a,
  2738. struct ggml_tensor * b) {
  2739. return ggml_add_impl(ctx, a, b, true);
  2740. }
  2741. // ggml_sub
  2742. struct ggml_tensor * ggml_sub_impl(
  2743. struct ggml_context * ctx,
  2744. struct ggml_tensor * a,
  2745. struct ggml_tensor * b,
  2746. bool inplace) {
  2747. GGML_ASSERT(ggml_are_same_shape(a, b));
  2748. bool is_node = false;
  2749. if (!inplace && (a->grad || b->grad)) {
  2750. is_node = true;
  2751. }
  2752. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2753. result->op = GGML_OP_SUB;
  2754. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2755. result->src0 = a;
  2756. result->src1 = b;
  2757. return result;
  2758. }
  2759. struct ggml_tensor * ggml_sub(
  2760. struct ggml_context * ctx,
  2761. struct ggml_tensor * a,
  2762. struct ggml_tensor * b) {
  2763. return ggml_sub_impl(ctx, a, b, false);
  2764. }
  2765. struct ggml_tensor * ggml_sub_inplace(
  2766. struct ggml_context * ctx,
  2767. struct ggml_tensor * a,
  2768. struct ggml_tensor * b) {
  2769. return ggml_sub_impl(ctx, a, b, true);
  2770. }
  2771. // ggml_mul
  2772. struct ggml_tensor * ggml_mul_impl(
  2773. struct ggml_context * ctx,
  2774. struct ggml_tensor * a,
  2775. struct ggml_tensor * b,
  2776. bool inplace) {
  2777. GGML_ASSERT(ggml_are_same_shape(a, b));
  2778. bool is_node = false;
  2779. if (!inplace && (a->grad || b->grad)) {
  2780. is_node = true;
  2781. }
  2782. if (inplace) {
  2783. GGML_ASSERT(is_node == false);
  2784. }
  2785. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2786. result->op = GGML_OP_MUL;
  2787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2788. result->src0 = a;
  2789. result->src1 = b;
  2790. return result;
  2791. }
  2792. struct ggml_tensor * ggml_mul(
  2793. struct ggml_context * ctx,
  2794. struct ggml_tensor * a,
  2795. struct ggml_tensor * b) {
  2796. return ggml_mul_impl(ctx, a, b, false);
  2797. }
  2798. struct ggml_tensor * ggml_mul_inplace(
  2799. struct ggml_context * ctx,
  2800. struct ggml_tensor * a,
  2801. struct ggml_tensor * b) {
  2802. return ggml_mul_impl(ctx, a, b, true);
  2803. }
  2804. // ggml_div
  2805. struct ggml_tensor * ggml_div_impl(
  2806. struct ggml_context * ctx,
  2807. struct ggml_tensor * a,
  2808. struct ggml_tensor * b,
  2809. bool inplace) {
  2810. GGML_ASSERT(ggml_are_same_shape(a, b));
  2811. bool is_node = false;
  2812. if (!inplace && (a->grad || b->grad)) {
  2813. is_node = true;
  2814. }
  2815. if (inplace) {
  2816. GGML_ASSERT(is_node == false);
  2817. }
  2818. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2819. result->op = GGML_OP_DIV;
  2820. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2821. result->src0 = a;
  2822. result->src1 = b;
  2823. return result;
  2824. }
  2825. struct ggml_tensor * ggml_div(
  2826. struct ggml_context * ctx,
  2827. struct ggml_tensor * a,
  2828. struct ggml_tensor * b) {
  2829. return ggml_div_impl(ctx, a, b, false);
  2830. }
  2831. struct ggml_tensor * ggml_div_inplace(
  2832. struct ggml_context * ctx,
  2833. struct ggml_tensor * a,
  2834. struct ggml_tensor * b) {
  2835. return ggml_div_impl(ctx, a, b, true);
  2836. }
  2837. // ggml_sqr
  2838. struct ggml_tensor * ggml_sqr_impl(
  2839. struct ggml_context * ctx,
  2840. struct ggml_tensor * a,
  2841. bool inplace) {
  2842. bool is_node = false;
  2843. if (!inplace && (a->grad)) {
  2844. is_node = true;
  2845. }
  2846. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2847. result->op = GGML_OP_SQR;
  2848. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2849. result->src0 = a;
  2850. result->src1 = NULL;
  2851. return result;
  2852. }
  2853. struct ggml_tensor * ggml_sqr(
  2854. struct ggml_context * ctx,
  2855. struct ggml_tensor * a) {
  2856. return ggml_sqr_impl(ctx, a, false);
  2857. }
  2858. struct ggml_tensor * ggml_sqr_inplace(
  2859. struct ggml_context * ctx,
  2860. struct ggml_tensor * a) {
  2861. return ggml_sqr_impl(ctx, a, true);
  2862. }
  2863. // ggml_sqrt
  2864. struct ggml_tensor * ggml_sqrt_impl(
  2865. struct ggml_context * ctx,
  2866. struct ggml_tensor * a,
  2867. bool inplace) {
  2868. bool is_node = false;
  2869. if (!inplace && (a->grad)) {
  2870. is_node = true;
  2871. }
  2872. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2873. result->op = GGML_OP_SQRT;
  2874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2875. result->src0 = a;
  2876. result->src1 = NULL;
  2877. return result;
  2878. }
  2879. struct ggml_tensor * ggml_sqrt(
  2880. struct ggml_context * ctx,
  2881. struct ggml_tensor * a) {
  2882. return ggml_sqrt_impl(ctx, a, false);
  2883. }
  2884. struct ggml_tensor * ggml_sqrt_inplace(
  2885. struct ggml_context * ctx,
  2886. struct ggml_tensor * a) {
  2887. return ggml_sqrt_impl(ctx, a, true);
  2888. }
  2889. // ggml_sum
  2890. struct ggml_tensor * ggml_sum(
  2891. struct ggml_context * ctx,
  2892. struct ggml_tensor * a) {
  2893. bool is_node = false;
  2894. if (a->grad) {
  2895. is_node = true;
  2896. }
  2897. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  2898. result->op = GGML_OP_SUM;
  2899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2900. result->src0 = a;
  2901. result->src1 = NULL;
  2902. return result;
  2903. }
  2904. // ggml_mean
  2905. struct ggml_tensor * ggml_mean(
  2906. struct ggml_context * ctx,
  2907. struct ggml_tensor * a) {
  2908. bool is_node = false;
  2909. if (a->grad) {
  2910. GGML_ASSERT(false); // TODO: implement
  2911. is_node = true;
  2912. }
  2913. int ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  2914. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  2915. result->op = GGML_OP_MEAN;
  2916. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2917. result->src0 = a;
  2918. result->src1 = NULL;
  2919. return result;
  2920. }
  2921. // ggml_repeat
  2922. struct ggml_tensor * ggml_repeat(
  2923. struct ggml_context * ctx,
  2924. struct ggml_tensor * a,
  2925. struct ggml_tensor * b) {
  2926. GGML_ASSERT(ggml_can_repeat(a, b));
  2927. bool is_node = false;
  2928. if (a->grad) {
  2929. is_node = true;
  2930. }
  2931. if (ggml_are_same_shape(a, b) && !is_node) {
  2932. return a;
  2933. }
  2934. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  2935. result->op = GGML_OP_REPEAT;
  2936. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2937. result->src0 = a;
  2938. result->src1 = b;
  2939. return result;
  2940. }
  2941. // ggml_abs
  2942. struct ggml_tensor * ggml_abs_impl(
  2943. struct ggml_context * ctx,
  2944. struct ggml_tensor * a,
  2945. bool inplace) {
  2946. bool is_node = false;
  2947. if (!inplace && (a->grad)) {
  2948. is_node = true;
  2949. }
  2950. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2951. result->op = GGML_OP_ABS;
  2952. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2953. result->src0 = a;
  2954. result->src1 = NULL;
  2955. return result;
  2956. }
  2957. struct ggml_tensor * ggml_abs(
  2958. struct ggml_context * ctx,
  2959. struct ggml_tensor * a) {
  2960. return ggml_abs_impl(ctx, a, false);
  2961. }
  2962. struct ggml_tensor * ggml_abs_inplace(
  2963. struct ggml_context * ctx,
  2964. struct ggml_tensor * a) {
  2965. return ggml_abs_impl(ctx, a, true);
  2966. }
  2967. // ggml_sgn
  2968. struct ggml_tensor * ggml_sgn_impl(
  2969. struct ggml_context * ctx,
  2970. struct ggml_tensor * a,
  2971. bool inplace) {
  2972. bool is_node = false;
  2973. if (!inplace && (a->grad)) {
  2974. is_node = true;
  2975. }
  2976. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  2977. result->op = GGML_OP_SGN;
  2978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  2979. result->src0 = a;
  2980. result->src1 = NULL;
  2981. return result;
  2982. }
  2983. struct ggml_tensor * ggml_sgn(
  2984. struct ggml_context * ctx,
  2985. struct ggml_tensor * a) {
  2986. return ggml_sgn_impl(ctx, a, false);
  2987. }
  2988. struct ggml_tensor * ggml_sgn_inplace(
  2989. struct ggml_context * ctx,
  2990. struct ggml_tensor * a) {
  2991. return ggml_sgn_impl(ctx, a, true);
  2992. }
  2993. // ggml_neg
  2994. struct ggml_tensor * ggml_neg_impl(
  2995. struct ggml_context * ctx,
  2996. struct ggml_tensor * a,
  2997. bool inplace) {
  2998. bool is_node = false;
  2999. if (!inplace && (a->grad)) {
  3000. is_node = true;
  3001. }
  3002. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3003. result->op = GGML_OP_NEG;
  3004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3005. result->src0 = a;
  3006. result->src1 = NULL;
  3007. return result;
  3008. }
  3009. struct ggml_tensor * ggml_neg(
  3010. struct ggml_context * ctx,
  3011. struct ggml_tensor * a) {
  3012. return ggml_neg_impl(ctx, a, false);
  3013. }
  3014. struct ggml_tensor * ggml_neg_inplace(
  3015. struct ggml_context * ctx,
  3016. struct ggml_tensor * a) {
  3017. return ggml_neg_impl(ctx, a, true);
  3018. }
  3019. // ggml_step
  3020. struct ggml_tensor * ggml_step_impl(
  3021. struct ggml_context * ctx,
  3022. struct ggml_tensor * a,
  3023. bool inplace) {
  3024. bool is_node = false;
  3025. if (!inplace && (a->grad)) {
  3026. is_node = true;
  3027. }
  3028. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3029. result->op = GGML_OP_STEP;
  3030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3031. result->src0 = a;
  3032. result->src1 = NULL;
  3033. return result;
  3034. }
  3035. struct ggml_tensor * ggml_step(
  3036. struct ggml_context * ctx,
  3037. struct ggml_tensor * a) {
  3038. return ggml_step_impl(ctx, a, false);
  3039. }
  3040. struct ggml_tensor * ggml_step_inplace(
  3041. struct ggml_context * ctx,
  3042. struct ggml_tensor * a) {
  3043. return ggml_step_impl(ctx, a, true);
  3044. }
  3045. // ggml_relu
  3046. struct ggml_tensor * ggml_relu_impl(
  3047. struct ggml_context * ctx,
  3048. struct ggml_tensor * a,
  3049. bool inplace) {
  3050. bool is_node = false;
  3051. if (!inplace && (a->grad)) {
  3052. is_node = true;
  3053. }
  3054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3055. result->op = GGML_OP_RELU;
  3056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3057. result->src0 = a;
  3058. result->src1 = NULL;
  3059. return result;
  3060. }
  3061. struct ggml_tensor * ggml_relu(
  3062. struct ggml_context * ctx,
  3063. struct ggml_tensor * a) {
  3064. return ggml_relu_impl(ctx, a, false);
  3065. }
  3066. struct ggml_tensor * ggml_relu_inplace(
  3067. struct ggml_context * ctx,
  3068. struct ggml_tensor * a) {
  3069. return ggml_relu_impl(ctx, a, true);
  3070. }
  3071. // ggml_gelu
  3072. struct ggml_tensor * ggml_gelu_impl(
  3073. struct ggml_context * ctx,
  3074. struct ggml_tensor * a,
  3075. bool inplace) {
  3076. bool is_node = false;
  3077. if (!inplace && (a->grad)) {
  3078. is_node = true;
  3079. }
  3080. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3081. result->op = GGML_OP_GELU;
  3082. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3083. result->src0 = a;
  3084. result->src1 = NULL;
  3085. return result;
  3086. }
  3087. struct ggml_tensor * ggml_gelu(
  3088. struct ggml_context * ctx,
  3089. struct ggml_tensor * a) {
  3090. return ggml_gelu_impl(ctx, a, false);
  3091. }
  3092. struct ggml_tensor * ggml_gelu_inplace(
  3093. struct ggml_context * ctx,
  3094. struct ggml_tensor * a) {
  3095. return ggml_gelu_impl(ctx, a, true);
  3096. }
  3097. // ggml_silu
  3098. struct ggml_tensor * ggml_silu_impl(
  3099. struct ggml_context * ctx,
  3100. struct ggml_tensor * a,
  3101. bool inplace) {
  3102. bool is_node = false;
  3103. if (!inplace && (a->grad)) {
  3104. is_node = true;
  3105. }
  3106. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3107. result->op = GGML_OP_SILU;
  3108. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3109. result->src0 = a;
  3110. result->src1 = NULL;
  3111. return result;
  3112. }
  3113. struct ggml_tensor * ggml_silu(
  3114. struct ggml_context * ctx,
  3115. struct ggml_tensor * a) {
  3116. return ggml_silu_impl(ctx, a, false);
  3117. }
  3118. struct ggml_tensor * ggml_silu_inplace(
  3119. struct ggml_context * ctx,
  3120. struct ggml_tensor * a) {
  3121. return ggml_silu_impl(ctx, a, true);
  3122. }
  3123. // ggml_norm
  3124. struct ggml_tensor * ggml_norm_impl(
  3125. struct ggml_context * ctx,
  3126. struct ggml_tensor * a,
  3127. bool inplace) {
  3128. bool is_node = false;
  3129. if (!inplace && (a->grad)) {
  3130. GGML_ASSERT(false); // TODO: implement backward
  3131. is_node = true;
  3132. }
  3133. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3134. result->op = GGML_OP_NORM;
  3135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3136. result->src0 = a;
  3137. result->src1 = NULL; // TODO: maybe store epsilon here?
  3138. return result;
  3139. }
  3140. struct ggml_tensor * ggml_norm(
  3141. struct ggml_context * ctx,
  3142. struct ggml_tensor * a) {
  3143. return ggml_norm_impl(ctx, a, false);
  3144. }
  3145. struct ggml_tensor * ggml_norm_inplace(
  3146. struct ggml_context * ctx,
  3147. struct ggml_tensor * a) {
  3148. return ggml_norm_impl(ctx, a, true);
  3149. }
  3150. struct ggml_tensor * ggml_rms_norm_impl(
  3151. struct ggml_context * ctx,
  3152. struct ggml_tensor * a,
  3153. bool inplace) {
  3154. bool is_node = false;
  3155. if (!inplace && (a->grad)) {
  3156. GGML_ASSERT(false); // TODO: implement backward
  3157. is_node = true;
  3158. }
  3159. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3160. result->op = GGML_OP_RMS_NORM;
  3161. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3162. result->src0 = a;
  3163. result->src1 = NULL; // TODO: maybe store epsilon here?
  3164. return result;
  3165. }
  3166. struct ggml_tensor * ggml_rms_norm(
  3167. struct ggml_context * ctx,
  3168. struct ggml_tensor * a) {
  3169. return ggml_rms_norm_impl(ctx, a, false);
  3170. }
  3171. struct ggml_tensor * ggml_rms_norm_inplace(
  3172. struct ggml_context * ctx,
  3173. struct ggml_tensor * a) {
  3174. return ggml_rms_norm_impl(ctx, a, true);
  3175. }
  3176. // ggml_mul_mat
  3177. struct ggml_tensor * ggml_mul_mat(
  3178. struct ggml_context * ctx,
  3179. struct ggml_tensor * a,
  3180. struct ggml_tensor * b) {
  3181. GGML_ASSERT(ggml_can_mul_mat(a, b));
  3182. GGML_ASSERT(!ggml_is_transposed(a));
  3183. bool is_node = false;
  3184. if (a->grad || b->grad) {
  3185. is_node = true;
  3186. }
  3187. const int ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  3188. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  3189. result->op = GGML_OP_MUL_MAT;
  3190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3191. result->src0 = a;
  3192. result->src1 = b;
  3193. return result;
  3194. }
  3195. // ggml_scale
  3196. struct ggml_tensor * ggml_scale_impl(
  3197. struct ggml_context * ctx,
  3198. struct ggml_tensor * a,
  3199. struct ggml_tensor * b,
  3200. bool inplace) {
  3201. GGML_ASSERT(ggml_is_scalar(b));
  3202. GGML_ASSERT(ggml_is_padded_1d(a));
  3203. bool is_node = false;
  3204. if (!inplace && (a->grad || b->grad)) {
  3205. GGML_ASSERT(false); // TODO: implement backward
  3206. is_node = true;
  3207. }
  3208. // TODO: when implement backward, fix this:
  3209. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3210. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3211. result->op = GGML_OP_SCALE;
  3212. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3213. result->src0 = a;
  3214. result->src1 = b;
  3215. return result;
  3216. }
  3217. struct ggml_tensor * ggml_scale(
  3218. struct ggml_context * ctx,
  3219. struct ggml_tensor * a,
  3220. struct ggml_tensor * b) {
  3221. return ggml_scale_impl(ctx, a, b, false);
  3222. }
  3223. struct ggml_tensor * ggml_scale_inplace(
  3224. struct ggml_context * ctx,
  3225. struct ggml_tensor * a,
  3226. struct ggml_tensor * b) {
  3227. return ggml_scale_impl(ctx, a, b, true);
  3228. }
  3229. // ggml_cpy
  3230. struct ggml_tensor * ggml_cpy_impl(
  3231. struct ggml_context * ctx,
  3232. struct ggml_tensor * a,
  3233. struct ggml_tensor * b,
  3234. bool inplace) {
  3235. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3236. bool is_node = false;
  3237. if (!inplace && (a->grad || b->grad)) {
  3238. GGML_ASSERT(false); // TODO: implement backward
  3239. is_node = true;
  3240. }
  3241. // make a view of the destination
  3242. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  3243. result->op = GGML_OP_CPY;
  3244. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3245. result->src0 = a;
  3246. result->src1 = b;
  3247. return result;
  3248. }
  3249. struct ggml_tensor * ggml_cpy(
  3250. struct ggml_context * ctx,
  3251. struct ggml_tensor * a,
  3252. struct ggml_tensor * b) {
  3253. return ggml_cpy_impl(ctx, a, b, false);
  3254. }
  3255. struct ggml_tensor * ggml_cpy_inplace(
  3256. struct ggml_context * ctx,
  3257. struct ggml_tensor * a,
  3258. struct ggml_tensor * b) {
  3259. return ggml_cpy_impl(ctx, a, b, true);
  3260. }
  3261. // ggml_reshape
  3262. struct ggml_tensor * ggml_reshape(
  3263. struct ggml_context * ctx,
  3264. struct ggml_tensor * a,
  3265. struct ggml_tensor * b) {
  3266. GGML_ASSERT(ggml_is_contiguous(a));
  3267. GGML_ASSERT(ggml_is_contiguous(b));
  3268. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  3269. bool is_node = false;
  3270. if (a->grad || b->grad) {
  3271. GGML_ASSERT(false); // TODO: implement backward
  3272. is_node = true;
  3273. }
  3274. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  3275. result->op = GGML_OP_RESHAPE;
  3276. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3277. result->src0 = a;
  3278. result->src1 = NULL;
  3279. return result;
  3280. }
  3281. struct ggml_tensor * ggml_reshape_2d(
  3282. struct ggml_context * ctx,
  3283. struct ggml_tensor * a,
  3284. int ne0,
  3285. int ne1) {
  3286. GGML_ASSERT(ggml_is_contiguous(a));
  3287. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  3288. bool is_node = false;
  3289. if (a->grad) {
  3290. GGML_ASSERT(false); // TODO: implement backward
  3291. is_node = true;
  3292. }
  3293. const int ne[2] = { ne0, ne1 };
  3294. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  3295. result->op = GGML_OP_RESHAPE;
  3296. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3297. result->src0 = a;
  3298. result->src1 = NULL;
  3299. return result;
  3300. }
  3301. struct ggml_tensor * ggml_reshape_3d(
  3302. struct ggml_context * ctx,
  3303. struct ggml_tensor * a,
  3304. int ne0,
  3305. int ne1,
  3306. int ne2) {
  3307. GGML_ASSERT(ggml_is_contiguous(a));
  3308. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  3309. bool is_node = false;
  3310. if (a->grad) {
  3311. GGML_ASSERT(false); // TODO: implement backward
  3312. is_node = true;
  3313. }
  3314. const int ne[3] = { ne0, ne1, ne2 };
  3315. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  3316. result->op = GGML_OP_RESHAPE;
  3317. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3318. result->src0 = a;
  3319. result->src1 = NULL;
  3320. return result;
  3321. }
  3322. // ggml_view_1d
  3323. struct ggml_tensor * ggml_view_1d(
  3324. struct ggml_context * ctx,
  3325. struct ggml_tensor * a,
  3326. int ne0,
  3327. size_t offset) {
  3328. if (a->grad) {
  3329. GGML_ASSERT(false); // gradient propagation is not supported
  3330. }
  3331. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  3332. result->op = GGML_OP_VIEW;
  3333. result->grad = NULL;
  3334. result->src0 = a;
  3335. result->src1 = NULL; // TODO: maybe store the offset here?
  3336. return result;
  3337. }
  3338. // ggml_view_2d
  3339. struct ggml_tensor * ggml_view_2d(
  3340. struct ggml_context * ctx,
  3341. struct ggml_tensor * a,
  3342. int ne0,
  3343. int ne1,
  3344. size_t nb1,
  3345. size_t offset) {
  3346. if (a->grad) {
  3347. GGML_ASSERT(false); // gradient propagation is not supported
  3348. }
  3349. const int ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  3350. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  3351. result->nb[1] = nb1;
  3352. result->nb[2] = result->nb[1]*ne1;
  3353. result->nb[3] = result->nb[2];
  3354. result->op = GGML_OP_VIEW;
  3355. result->grad = NULL;
  3356. result->src0 = a;
  3357. result->src1 = NULL; // TODO: maybe store the offset here?
  3358. return result;
  3359. }
  3360. // ggml_permute
  3361. struct ggml_tensor * ggml_permute(
  3362. struct ggml_context * ctx,
  3363. struct ggml_tensor * a,
  3364. int axis0,
  3365. int axis1,
  3366. int axis2,
  3367. int axis3) {
  3368. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  3369. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  3370. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  3371. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  3372. GGML_ASSERT(axis0 != axis1);
  3373. GGML_ASSERT(axis0 != axis2);
  3374. GGML_ASSERT(axis0 != axis3);
  3375. GGML_ASSERT(axis1 != axis2);
  3376. GGML_ASSERT(axis1 != axis3);
  3377. GGML_ASSERT(axis2 != axis3);
  3378. bool is_node = false;
  3379. if (a->grad) {
  3380. GGML_ASSERT(false); // TODO: implement backward
  3381. is_node = true;
  3382. }
  3383. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3384. int ne[GGML_MAX_DIMS];
  3385. int nb[GGML_MAX_DIMS];
  3386. ne[axis0] = a->ne[0];
  3387. ne[axis1] = a->ne[1];
  3388. ne[axis2] = a->ne[2];
  3389. ne[axis3] = a->ne[3];
  3390. nb[axis0] = a->nb[0];
  3391. nb[axis1] = a->nb[1];
  3392. nb[axis2] = a->nb[2];
  3393. nb[axis3] = a->nb[3];
  3394. result->ne[0] = ne[0];
  3395. result->ne[1] = ne[1];
  3396. result->ne[2] = ne[2];
  3397. result->ne[3] = ne[3];
  3398. result->nb[0] = nb[0];
  3399. result->nb[1] = nb[1];
  3400. result->nb[2] = nb[2];
  3401. result->nb[3] = nb[3];
  3402. result->op = GGML_OP_PERMUTE;
  3403. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3404. result->src0 = a;
  3405. result->src1 = NULL; // TODO: maybe store the permutation here?
  3406. return result;
  3407. }
  3408. // ggml_transpose
  3409. struct ggml_tensor * ggml_transpose(
  3410. struct ggml_context * ctx,
  3411. struct ggml_tensor * a) {
  3412. bool is_node = false;
  3413. if (a->grad) {
  3414. GGML_ASSERT(false); // TODO: implement backward
  3415. is_node = true;
  3416. }
  3417. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3418. result->ne[0] = a->ne[1];
  3419. result->ne[1] = a->ne[0];
  3420. result->nb[0] = a->nb[1];
  3421. result->nb[1] = a->nb[0];
  3422. result->op = GGML_OP_TRANSPOSE;
  3423. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3424. result->src0 = a;
  3425. result->src1 = NULL;
  3426. return result;
  3427. }
  3428. // ggml_get_rows
  3429. struct ggml_tensor * ggml_get_rows(
  3430. struct ggml_context * ctx,
  3431. struct ggml_tensor * a,
  3432. struct ggml_tensor * b) {
  3433. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  3434. bool is_node = false;
  3435. if (a->grad || b->grad) {
  3436. GGML_ASSERT(false); // TODO: implement backward
  3437. is_node = true;
  3438. }
  3439. // TODO: implement non F32 return
  3440. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  3441. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  3442. result->op = GGML_OP_GET_ROWS;
  3443. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3444. result->src0 = a;
  3445. result->src1 = b;
  3446. return result;
  3447. }
  3448. // ggml_diag_mask_inf
  3449. struct ggml_tensor * ggml_diag_mask_inf(
  3450. struct ggml_context * ctx,
  3451. struct ggml_tensor * a,
  3452. int n_past) {
  3453. bool is_node = false;
  3454. if (a->grad) {
  3455. GGML_ASSERT(false); // TODO: implement backward
  3456. is_node = true;
  3457. }
  3458. // TODO: when implement backward, fix this:
  3459. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3460. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3461. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  3462. result->op = GGML_OP_DIAG_MASK_INF;
  3463. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3464. result->src0 = a;
  3465. result->src1 = b;
  3466. return result;
  3467. }
  3468. // ggml_soft_max
  3469. struct ggml_tensor * ggml_soft_max(
  3470. struct ggml_context * ctx,
  3471. struct ggml_tensor * a) {
  3472. bool is_node = false;
  3473. if (a->grad) {
  3474. GGML_ASSERT(false); // TODO: implement backward
  3475. is_node = true;
  3476. }
  3477. // TODO: when implement backward, fix this:
  3478. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3479. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3480. result->op = GGML_OP_SOFT_MAX;
  3481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3482. result->src0 = a;
  3483. result->src1 = NULL;
  3484. return result;
  3485. }
  3486. // ggml_rope
  3487. struct ggml_tensor * ggml_rope(
  3488. struct ggml_context * ctx,
  3489. struct ggml_tensor * a,
  3490. int n_past,
  3491. int n_dims,
  3492. int mode) {
  3493. GGML_ASSERT(n_past >= 0);
  3494. bool is_node = false;
  3495. if (a->grad) {
  3496. GGML_ASSERT(false); // TODO: implement backward
  3497. is_node = true;
  3498. }
  3499. // TODO: when implement backward, fix this:
  3500. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3501. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  3502. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  3503. ((int32_t *) b->data)[0] = n_past;
  3504. ((int32_t *) b->data)[1] = n_dims;
  3505. ((int32_t *) b->data)[2] = mode;
  3506. result->op = GGML_OP_ROPE;
  3507. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3508. result->src0 = a;
  3509. result->src1 = b;
  3510. return result;
  3511. }
  3512. // ggml_conv_1d_1s
  3513. struct ggml_tensor * ggml_conv_1d_1s(
  3514. struct ggml_context * ctx,
  3515. struct ggml_tensor * a,
  3516. struct ggml_tensor * b) {
  3517. GGML_ASSERT(ggml_is_matrix(b));
  3518. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3519. GGML_ASSERT(a->ne[3] == 1);
  3520. bool is_node = false;
  3521. if (a->grad || b->grad) {
  3522. GGML_ASSERT(false); // TODO: implement backward
  3523. is_node = true;
  3524. }
  3525. const int ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  3526. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3527. result->op = GGML_OP_CONV_1D_1S;
  3528. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3529. result->src0 = a;
  3530. result->src1 = b;
  3531. return result;
  3532. }
  3533. // ggml_conv_1d_2s
  3534. struct ggml_tensor * ggml_conv_1d_2s(
  3535. struct ggml_context * ctx,
  3536. struct ggml_tensor * a,
  3537. struct ggml_tensor * b) {
  3538. GGML_ASSERT(ggml_is_matrix(b));
  3539. GGML_ASSERT(a->ne[1] == b->ne[1]);
  3540. GGML_ASSERT(a->ne[3] == 1);
  3541. bool is_node = false;
  3542. if (a->grad || b->grad) {
  3543. GGML_ASSERT(false); // TODO: implement backward
  3544. is_node = true;
  3545. }
  3546. const int ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  3547. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  3548. result->op = GGML_OP_CONV_1D_2S;
  3549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3550. result->src0 = a;
  3551. result->src1 = b;
  3552. return result;
  3553. }
  3554. // ggml_flash_attn
  3555. struct ggml_tensor * ggml_flash_attn(
  3556. struct ggml_context * ctx,
  3557. struct ggml_tensor * q,
  3558. struct ggml_tensor * k,
  3559. struct ggml_tensor * v,
  3560. bool masked) {
  3561. GGML_ASSERT(ggml_can_mul_mat(k, q));
  3562. // TODO: check if vT can be multiplied by (k*qT)
  3563. bool is_node = false;
  3564. if (q->grad || k->grad || v->grad) {
  3565. GGML_ASSERT(false); // TODO: implement backward
  3566. is_node = true;
  3567. }
  3568. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  3569. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  3570. result->op = GGML_OP_FLASH_ATTN;
  3571. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3572. result->src0 = q;
  3573. result->src1 = k;
  3574. result->opt[0] = v;
  3575. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  3576. return result;
  3577. }
  3578. // ggml_flash_ff
  3579. struct ggml_tensor * ggml_flash_ff(
  3580. struct ggml_context * ctx,
  3581. struct ggml_tensor * a,
  3582. struct ggml_tensor * b0,
  3583. struct ggml_tensor * b1,
  3584. struct ggml_tensor * c0,
  3585. struct ggml_tensor * c1) {
  3586. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  3587. // TODO: more checks
  3588. bool is_node = false;
  3589. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  3590. GGML_ASSERT(false); // TODO: implement backward
  3591. is_node = true;
  3592. }
  3593. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  3594. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  3595. result->op = GGML_OP_FLASH_FF;
  3596. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3597. result->src0 = a;
  3598. result->src1 = b0;
  3599. result->opt[0] = b1;
  3600. result->opt[1] = c0;
  3601. result->opt[2] = c1;
  3602. return result;
  3603. }
  3604. ////////////////////////////////////////////////////////////////////////////////
  3605. void ggml_set_param(
  3606. struct ggml_context * ctx,
  3607. struct ggml_tensor * tensor) {
  3608. tensor->is_param = true;
  3609. GGML_ASSERT(tensor->grad == NULL);
  3610. tensor->grad = ggml_dup_tensor(ctx, tensor);
  3611. }
  3612. // ggml_compute_forward_dup
  3613. static void ggml_compute_forward_dup_f16(
  3614. const struct ggml_compute_params * params,
  3615. const struct ggml_tensor * src0,
  3616. struct ggml_tensor * dst) {
  3617. GGML_ASSERT(params->ith == 0);
  3618. GGML_ASSERT(ggml_is_contiguous(dst));
  3619. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3620. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3621. return;
  3622. }
  3623. const int ne00 = src0->ne[0];
  3624. const int ne01 = src0->ne[1];
  3625. const int ne02 = src0->ne[2];
  3626. const int ne03 = src0->ne[3];
  3627. const size_t nb00 = src0->nb[0];
  3628. const size_t nb01 = src0->nb[1];
  3629. const size_t nb02 = src0->nb[2];
  3630. const size_t nb03 = src0->nb[3];
  3631. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3632. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3633. return;
  3634. }
  3635. if (src0->nb[0] == sizeof(ggml_fp16_t)) {
  3636. if (dst->type == GGML_TYPE_F16) {
  3637. size_t id = 0;
  3638. const size_t rs = ne00*nb00;
  3639. for (int i03 = 0; i03 < ne03; i03++) {
  3640. for (int i02 = 0; i02 < ne02; i02++) {
  3641. for (int i01 = 0; i01 < ne01; i01++) {
  3642. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3643. char * dst_ptr = (char *) dst->data + id*rs;
  3644. memcpy(dst_ptr, src0_ptr, rs);
  3645. id++;
  3646. }
  3647. }
  3648. }
  3649. } else if (dst->type == GGML_TYPE_F32) {
  3650. size_t id = 0;
  3651. float * dst_ptr = (float *) dst->data;
  3652. for (int i03 = 0; i03 < ne03; i03++) {
  3653. for (int i02 = 0; i02 < ne02; i02++) {
  3654. for (int i01 = 0; i01 < ne01; i01++) {
  3655. for (int i00 = 0; i00 < ne00; i00++) {
  3656. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3657. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3658. id++;
  3659. }
  3660. }
  3661. }
  3662. }
  3663. } else {
  3664. GGML_ASSERT(false); // TODO: implement
  3665. }
  3666. } else {
  3667. //printf("%s: this is not optimal - fix me\n", __func__);
  3668. if (dst->type == GGML_TYPE_F32) {
  3669. size_t id = 0;
  3670. float * dst_ptr = (float *) dst->data;
  3671. for (int i03 = 0; i03 < ne03; i03++) {
  3672. for (int i02 = 0; i02 < ne02; i02++) {
  3673. for (int i01 = 0; i01 < ne01; i01++) {
  3674. for (int i00 = 0; i00 < ne00; i00++) {
  3675. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3676. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  3677. id++;
  3678. }
  3679. }
  3680. }
  3681. }
  3682. } else if (dst->type == GGML_TYPE_F16) {
  3683. size_t id = 0;
  3684. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3685. for (int i03 = 0; i03 < ne03; i03++) {
  3686. for (int i02 = 0; i02 < ne02; i02++) {
  3687. for (int i01 = 0; i01 < ne01; i01++) {
  3688. for (int i00 = 0; i00 < ne00; i00++) {
  3689. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3690. dst_ptr[id] = *src0_ptr;
  3691. id++;
  3692. }
  3693. }
  3694. }
  3695. }
  3696. } else {
  3697. GGML_ASSERT(false); // TODO: implement
  3698. }
  3699. }
  3700. }
  3701. static void ggml_compute_forward_dup_f32(
  3702. const struct ggml_compute_params * params,
  3703. const struct ggml_tensor * src0,
  3704. struct ggml_tensor * dst) {
  3705. GGML_ASSERT(params->ith == 0);
  3706. GGML_ASSERT(ggml_is_contiguous(dst));
  3707. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  3708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3709. return;
  3710. }
  3711. const int ne00 = src0->ne[0];
  3712. const int ne01 = src0->ne[1];
  3713. const int ne02 = src0->ne[2];
  3714. const int ne03 = src0->ne[3];
  3715. const size_t nb00 = src0->nb[0];
  3716. const size_t nb01 = src0->nb[1];
  3717. const size_t nb02 = src0->nb[2];
  3718. const size_t nb03 = src0->nb[3];
  3719. if (ggml_is_contiguous(src0) && src0->type == dst->type) {
  3720. memcpy(dst->data, src0->data, ggml_nelements(dst) * GGML_TYPE_SIZE[src0->type]);
  3721. return;
  3722. }
  3723. if (src0->nb[0] == sizeof(float)) {
  3724. if (dst->type == GGML_TYPE_F32) {
  3725. size_t id = 0;
  3726. const size_t rs = ne00*nb00;
  3727. for (int i03 = 0; i03 < ne03; i03++) {
  3728. for (int i02 = 0; i02 < ne02; i02++) {
  3729. for (int i01 = 0; i01 < ne01; i01++) {
  3730. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  3731. char * dst_ptr = (char *) dst->data + id*rs;
  3732. memcpy(dst_ptr, src0_ptr, rs);
  3733. id++;
  3734. }
  3735. }
  3736. }
  3737. } else if (dst->type == GGML_TYPE_F16) {
  3738. size_t id = 0;
  3739. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3740. for (int i03 = 0; i03 < ne03; i03++) {
  3741. for (int i02 = 0; i02 < ne02; i02++) {
  3742. for (int i01 = 0; i01 < ne01; i01++) {
  3743. for (int i00 = 0; i00 < ne00; i00++) {
  3744. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3745. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3746. id++;
  3747. }
  3748. }
  3749. }
  3750. }
  3751. } else {
  3752. GGML_ASSERT(false); // TODO: implement
  3753. }
  3754. } else {
  3755. //printf("%s: this is not optimal - fix me\n", __func__);
  3756. if (dst->type == GGML_TYPE_F32) {
  3757. size_t id = 0;
  3758. float * dst_ptr = (float *) dst->data;
  3759. for (int i03 = 0; i03 < ne03; i03++) {
  3760. for (int i02 = 0; i02 < ne02; i02++) {
  3761. for (int i01 = 0; i01 < ne01; i01++) {
  3762. for (int i00 = 0; i00 < ne00; i00++) {
  3763. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3764. dst_ptr[id] = *src0_ptr;
  3765. id++;
  3766. }
  3767. }
  3768. }
  3769. }
  3770. } else if (dst->type == GGML_TYPE_F16) {
  3771. size_t id = 0;
  3772. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  3773. for (int i03 = 0; i03 < ne03; i03++) {
  3774. for (int i02 = 0; i02 < ne02; i02++) {
  3775. for (int i01 = 0; i01 < ne01; i01++) {
  3776. for (int i00 = 0; i00 < ne00; i00++) {
  3777. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  3778. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  3779. id++;
  3780. }
  3781. }
  3782. }
  3783. }
  3784. } else {
  3785. GGML_ASSERT(false); // TODO: implement
  3786. }
  3787. }
  3788. }
  3789. static void ggml_compute_forward_dup(
  3790. const struct ggml_compute_params * params,
  3791. const struct ggml_tensor * src0,
  3792. struct ggml_tensor * dst) {
  3793. switch (src0->type) {
  3794. case GGML_TYPE_F16:
  3795. {
  3796. ggml_compute_forward_dup_f16(params, src0, dst);
  3797. } break;
  3798. case GGML_TYPE_F32:
  3799. {
  3800. ggml_compute_forward_dup_f32(params, src0, dst);
  3801. } break;
  3802. case GGML_TYPE_Q4_0:
  3803. case GGML_TYPE_Q4_1:
  3804. case GGML_TYPE_I8:
  3805. case GGML_TYPE_I16:
  3806. case GGML_TYPE_I32:
  3807. case GGML_TYPE_COUNT:
  3808. {
  3809. GGML_ASSERT(false);
  3810. } break;
  3811. }
  3812. }
  3813. // ggml_compute_forward_add
  3814. static void ggml_compute_forward_add_f32(
  3815. const struct ggml_compute_params * params,
  3816. const struct ggml_tensor * src0,
  3817. const struct ggml_tensor * src1,
  3818. struct ggml_tensor * dst) {
  3819. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3820. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3821. return;
  3822. }
  3823. const int ith = params->ith;
  3824. const int nth = params->nth;
  3825. const int n = ggml_nrows(src0);
  3826. const int nc = src0->ne[0];
  3827. const size_t nb00 = src0->nb[0];
  3828. const size_t nb01 = src0->nb[1];
  3829. const size_t nb10 = src1->nb[0];
  3830. const size_t nb11 = src1->nb[1];
  3831. const size_t nb0 = dst->nb[0];
  3832. const size_t nb1 = dst->nb[1];
  3833. GGML_ASSERT( nb0 == sizeof(float));
  3834. GGML_ASSERT(nb00 == sizeof(float));
  3835. if (nb10 == sizeof(float)) {
  3836. const int j0 = (n/nth)*ith;
  3837. const int j1 = ith == nth - 1 ? n : (n/nth)*(ith + 1);
  3838. for (int j = j0; j < j1; j++) {
  3839. ggml_vec_add_f32(nc,
  3840. (float *) ((char *) dst->data + j*nb1),
  3841. (float *) ((char *) src0->data + j*nb01),
  3842. (float *) ((char *) src1->data + j*nb11));
  3843. }
  3844. } else {
  3845. // src1 is not contiguous
  3846. for (int j = ith; j < n; j += nth) {
  3847. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  3848. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  3849. for (int i = 0; i < nc; i++) {
  3850. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  3851. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  3852. }
  3853. }
  3854. }
  3855. }
  3856. static void ggml_compute_forward_add(
  3857. const struct ggml_compute_params * params,
  3858. const struct ggml_tensor * src0,
  3859. const struct ggml_tensor * src1,
  3860. struct ggml_tensor * dst) {
  3861. switch (src0->type) {
  3862. case GGML_TYPE_F32:
  3863. {
  3864. ggml_compute_forward_add_f32(params, src0, src1, dst);
  3865. } break;
  3866. case GGML_TYPE_Q4_0:
  3867. case GGML_TYPE_Q4_1:
  3868. case GGML_TYPE_I8:
  3869. case GGML_TYPE_I16:
  3870. case GGML_TYPE_I32:
  3871. case GGML_TYPE_F16:
  3872. case GGML_TYPE_COUNT:
  3873. {
  3874. GGML_ASSERT(false);
  3875. } break;
  3876. }
  3877. }
  3878. // ggml_compute_forward_sub
  3879. static void ggml_compute_forward_sub_f32(
  3880. const struct ggml_compute_params * params,
  3881. const struct ggml_tensor * src0,
  3882. const struct ggml_tensor * src1,
  3883. struct ggml_tensor * dst) {
  3884. assert(params->ith == 0);
  3885. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3886. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3887. return;
  3888. }
  3889. const int n = ggml_nrows(src0);
  3890. const int nc = src0->ne[0];
  3891. assert( dst->nb[0] == sizeof(float));
  3892. assert(src0->nb[0] == sizeof(float));
  3893. assert(src1->nb[0] == sizeof(float));
  3894. for (int i = 0; i < n; i++) {
  3895. ggml_vec_sub_f32(nc,
  3896. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3897. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3898. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3899. }
  3900. }
  3901. static void ggml_compute_forward_sub(
  3902. const struct ggml_compute_params * params,
  3903. const struct ggml_tensor * src0,
  3904. const struct ggml_tensor * src1,
  3905. struct ggml_tensor * dst) {
  3906. switch (src0->type) {
  3907. case GGML_TYPE_F32:
  3908. {
  3909. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  3910. } break;
  3911. case GGML_TYPE_Q4_0:
  3912. case GGML_TYPE_Q4_1:
  3913. case GGML_TYPE_I8:
  3914. case GGML_TYPE_I16:
  3915. case GGML_TYPE_I32:
  3916. case GGML_TYPE_F16:
  3917. case GGML_TYPE_COUNT:
  3918. {
  3919. GGML_ASSERT(false);
  3920. } break;
  3921. }
  3922. }
  3923. // ggml_compute_forward_mul
  3924. static void ggml_compute_forward_mul_f32(
  3925. const struct ggml_compute_params * params,
  3926. const struct ggml_tensor * src0,
  3927. const struct ggml_tensor * src1,
  3928. struct ggml_tensor * dst) {
  3929. assert(params->ith == 0);
  3930. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3931. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3932. return;
  3933. }
  3934. const int n = ggml_nrows(src0);
  3935. const int nc = src0->ne[0];
  3936. assert( dst->nb[0] == sizeof(float));
  3937. assert(src0->nb[0] == sizeof(float));
  3938. assert(src1->nb[0] == sizeof(float));
  3939. for (int i = 0; i < n; i++) {
  3940. ggml_vec_mul_f32(nc,
  3941. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3942. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3943. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3944. }
  3945. }
  3946. static void ggml_compute_forward_mul(
  3947. const struct ggml_compute_params * params,
  3948. const struct ggml_tensor * src0,
  3949. const struct ggml_tensor * src1,
  3950. struct ggml_tensor * dst) {
  3951. switch (src0->type) {
  3952. case GGML_TYPE_F32:
  3953. {
  3954. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  3955. } break;
  3956. case GGML_TYPE_Q4_0:
  3957. case GGML_TYPE_Q4_1:
  3958. case GGML_TYPE_I8:
  3959. case GGML_TYPE_I16:
  3960. case GGML_TYPE_I32:
  3961. case GGML_TYPE_F16:
  3962. case GGML_TYPE_COUNT:
  3963. {
  3964. GGML_ASSERT(false);
  3965. } break;
  3966. }
  3967. }
  3968. // ggml_compute_forward_div
  3969. static void ggml_compute_forward_div_f32(
  3970. const struct ggml_compute_params * params,
  3971. const struct ggml_tensor * src0,
  3972. const struct ggml_tensor * src1,
  3973. struct ggml_tensor * dst) {
  3974. assert(params->ith == 0);
  3975. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  3976. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  3977. return;
  3978. }
  3979. const int n = ggml_nrows(src0);
  3980. const int nc = src0->ne[0];
  3981. assert( dst->nb[0] == sizeof(float));
  3982. assert(src0->nb[0] == sizeof(float));
  3983. assert(src1->nb[0] == sizeof(float));
  3984. for (int i = 0; i < n; i++) {
  3985. ggml_vec_div_f32(nc,
  3986. (float *) ((char *) dst->data + i*( dst->nb[1])),
  3987. (float *) ((char *) src0->data + i*(src0->nb[1])),
  3988. (float *) ((char *) src1->data + i*(src1->nb[1])));
  3989. }
  3990. }
  3991. static void ggml_compute_forward_div(
  3992. const struct ggml_compute_params * params,
  3993. const struct ggml_tensor * src0,
  3994. const struct ggml_tensor * src1,
  3995. struct ggml_tensor * dst) {
  3996. switch (src0->type) {
  3997. case GGML_TYPE_F32:
  3998. {
  3999. ggml_compute_forward_div_f32(params, src0, src1, dst);
  4000. } break;
  4001. case GGML_TYPE_Q4_0:
  4002. case GGML_TYPE_Q4_1:
  4003. case GGML_TYPE_I8:
  4004. case GGML_TYPE_I16:
  4005. case GGML_TYPE_I32:
  4006. case GGML_TYPE_F16:
  4007. case GGML_TYPE_COUNT:
  4008. {
  4009. GGML_ASSERT(false);
  4010. } break;
  4011. }
  4012. }
  4013. // ggml_compute_forward_sqr
  4014. static void ggml_compute_forward_sqr_f32(
  4015. const struct ggml_compute_params * params,
  4016. const struct ggml_tensor * src0,
  4017. struct ggml_tensor * dst) {
  4018. assert(params->ith == 0);
  4019. assert(ggml_are_same_shape(src0, dst));
  4020. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4021. return;
  4022. }
  4023. const int n = ggml_nrows(src0);
  4024. const int nc = src0->ne[0];
  4025. assert( dst->nb[0] == sizeof(float));
  4026. assert(src0->nb[0] == sizeof(float));
  4027. for (int i = 0; i < n; i++) {
  4028. ggml_vec_sqr_f32(nc,
  4029. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4030. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4031. }
  4032. }
  4033. static void ggml_compute_forward_sqr(
  4034. const struct ggml_compute_params * params,
  4035. const struct ggml_tensor * src0,
  4036. struct ggml_tensor * dst) {
  4037. switch (src0->type) {
  4038. case GGML_TYPE_F32:
  4039. {
  4040. ggml_compute_forward_sqr_f32(params, src0, dst);
  4041. } break;
  4042. case GGML_TYPE_Q4_0:
  4043. case GGML_TYPE_Q4_1:
  4044. case GGML_TYPE_I8:
  4045. case GGML_TYPE_I16:
  4046. case GGML_TYPE_I32:
  4047. case GGML_TYPE_F16:
  4048. case GGML_TYPE_COUNT:
  4049. {
  4050. GGML_ASSERT(false);
  4051. } break;
  4052. }
  4053. }
  4054. // ggml_compute_forward_sqrt
  4055. static void ggml_compute_forward_sqrt_f32(
  4056. const struct ggml_compute_params * params,
  4057. const struct ggml_tensor * src0,
  4058. struct ggml_tensor * dst) {
  4059. assert(params->ith == 0);
  4060. assert(ggml_are_same_shape(src0, dst));
  4061. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4062. return;
  4063. }
  4064. const int n = ggml_nrows(src0);
  4065. const int nc = src0->ne[0];
  4066. assert( dst->nb[0] == sizeof(float));
  4067. assert(src0->nb[0] == sizeof(float));
  4068. for (int i = 0; i < n; i++) {
  4069. ggml_vec_sqrt_f32(nc,
  4070. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4071. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4072. }
  4073. }
  4074. static void ggml_compute_forward_sqrt(
  4075. const struct ggml_compute_params * params,
  4076. const struct ggml_tensor * src0,
  4077. struct ggml_tensor * dst) {
  4078. switch (src0->type) {
  4079. case GGML_TYPE_F32:
  4080. {
  4081. ggml_compute_forward_sqrt_f32(params, src0, dst);
  4082. } break;
  4083. case GGML_TYPE_Q4_0:
  4084. case GGML_TYPE_Q4_1:
  4085. case GGML_TYPE_I8:
  4086. case GGML_TYPE_I16:
  4087. case GGML_TYPE_I32:
  4088. case GGML_TYPE_F16:
  4089. case GGML_TYPE_COUNT:
  4090. {
  4091. GGML_ASSERT(false);
  4092. } break;
  4093. }
  4094. }
  4095. // ggml_compute_forward_sum
  4096. static void ggml_compute_forward_sum_f32(
  4097. const struct ggml_compute_params * params,
  4098. const struct ggml_tensor * src0,
  4099. struct ggml_tensor * dst) {
  4100. assert(params->ith == 0);
  4101. assert(ggml_is_scalar(dst));
  4102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4103. return;
  4104. }
  4105. assert(ggml_is_scalar(dst));
  4106. assert(src0->nb[0] == sizeof(float));
  4107. const int ne00 = src0->ne[0];
  4108. const int ne01 = src0->ne[1];
  4109. const int ne02 = src0->ne[2];
  4110. const int ne03 = src0->ne[3];
  4111. const size_t nb01 = src0->nb[1];
  4112. const size_t nb02 = src0->nb[2];
  4113. const size_t nb03 = src0->nb[3];
  4114. for (int i03 = 0; i03 < ne03; i03++) {
  4115. for (int i02 = 0; i02 < ne02; i02++) {
  4116. for (int i01 = 0; i01 < ne01; i01++) {
  4117. ggml_vec_sum_f32(ne00,
  4118. (float *) (dst->data),
  4119. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4120. }
  4121. }
  4122. }
  4123. }
  4124. static void ggml_compute_forward_sum(
  4125. const struct ggml_compute_params * params,
  4126. const struct ggml_tensor * src0,
  4127. struct ggml_tensor * dst) {
  4128. switch (src0->type) {
  4129. case GGML_TYPE_F32:
  4130. {
  4131. ggml_compute_forward_sum_f32(params, src0, dst);
  4132. } break;
  4133. case GGML_TYPE_Q4_0:
  4134. case GGML_TYPE_Q4_1:
  4135. case GGML_TYPE_I8:
  4136. case GGML_TYPE_I16:
  4137. case GGML_TYPE_I32:
  4138. case GGML_TYPE_F16:
  4139. case GGML_TYPE_COUNT:
  4140. {
  4141. GGML_ASSERT(false);
  4142. } break;
  4143. }
  4144. }
  4145. // ggml_compute_forward_mean
  4146. static void ggml_compute_forward_mean_f32(
  4147. const struct ggml_compute_params * params,
  4148. const struct ggml_tensor * src0,
  4149. struct ggml_tensor * dst) {
  4150. assert(params->ith == 0);
  4151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4152. return;
  4153. }
  4154. assert(src0->nb[0] == sizeof(float));
  4155. const int ne00 = src0->ne[0];
  4156. const int ne01 = src0->ne[1];
  4157. const int ne02 = src0->ne[2];
  4158. const int ne03 = src0->ne[3];
  4159. const size_t nb01 = src0->nb[1];
  4160. const size_t nb02 = src0->nb[2];
  4161. const size_t nb03 = src0->nb[3];
  4162. const int ne0 = dst->ne[0];
  4163. const int ne1 = dst->ne[1];
  4164. const int ne2 = dst->ne[2];
  4165. const int ne3 = dst->ne[3];
  4166. assert(ne0 == 1);
  4167. assert(ne1 == ne01);
  4168. assert(ne2 == ne02);
  4169. assert(ne3 == ne03);
  4170. UNUSED(ne0);
  4171. UNUSED(ne1);
  4172. UNUSED(ne2);
  4173. UNUSED(ne3);
  4174. const size_t nb1 = dst->nb[1];
  4175. const size_t nb2 = dst->nb[2];
  4176. const size_t nb3 = dst->nb[3];
  4177. for (int i03 = 0; i03 < ne03; i03++) {
  4178. for (int i02 = 0; i02 < ne02; i02++) {
  4179. for (int i01 = 0; i01 < ne01; i01++) {
  4180. ggml_vec_sum_f32(ne00,
  4181. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  4182. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  4183. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  4184. }
  4185. }
  4186. }
  4187. }
  4188. static void ggml_compute_forward_mean(
  4189. const struct ggml_compute_params * params,
  4190. const struct ggml_tensor * src0,
  4191. struct ggml_tensor * dst) {
  4192. switch (src0->type) {
  4193. case GGML_TYPE_F32:
  4194. {
  4195. ggml_compute_forward_mean_f32(params, src0, dst);
  4196. } break;
  4197. case GGML_TYPE_Q4_0:
  4198. case GGML_TYPE_Q4_1:
  4199. case GGML_TYPE_I8:
  4200. case GGML_TYPE_I16:
  4201. case GGML_TYPE_I32:
  4202. case GGML_TYPE_F16:
  4203. case GGML_TYPE_COUNT:
  4204. {
  4205. GGML_ASSERT(false);
  4206. } break;
  4207. }
  4208. }
  4209. // ggml_compute_forward_repeat
  4210. static void ggml_compute_forward_repeat_f32(
  4211. const struct ggml_compute_params * params,
  4212. const struct ggml_tensor * src0,
  4213. struct ggml_tensor * dst) {
  4214. assert(params->ith == 0);
  4215. assert(ggml_can_repeat(src0, dst));
  4216. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4217. return;
  4218. }
  4219. // TODO: implement support for rank > 2 tensors
  4220. assert(src0->ne[2] == 1);
  4221. assert(src0->ne[3] == 1);
  4222. assert( dst->ne[2] == 1);
  4223. assert( dst->ne[3] == 1);
  4224. const int nc = dst->ne[0];
  4225. const int nr = dst->ne[1];
  4226. const int nc0 = src0->ne[0];
  4227. const int nr0 = src0->ne[1];
  4228. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4229. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  4230. // TODO: support for transposed / permuted tensors
  4231. assert( dst->nb[0] == sizeof(float));
  4232. assert(src0->nb[0] == sizeof(float));
  4233. // TODO: maybe this is not optimal?
  4234. for (int i = 0; i < nrr; i++) {
  4235. for (int j = 0; j < ncr; j++) {
  4236. for (int k = 0; k < nr0; k++) {
  4237. ggml_vec_cpy_f32(nc0,
  4238. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  4239. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  4240. }
  4241. }
  4242. }
  4243. }
  4244. static void ggml_compute_forward_repeat(
  4245. const struct ggml_compute_params * params,
  4246. const struct ggml_tensor * src0,
  4247. struct ggml_tensor * dst) {
  4248. switch (src0->type) {
  4249. case GGML_TYPE_F32:
  4250. {
  4251. ggml_compute_forward_repeat_f32(params, src0, dst);
  4252. } break;
  4253. case GGML_TYPE_Q4_0:
  4254. case GGML_TYPE_Q4_1:
  4255. case GGML_TYPE_I8:
  4256. case GGML_TYPE_I16:
  4257. case GGML_TYPE_I32:
  4258. case GGML_TYPE_F16:
  4259. case GGML_TYPE_COUNT:
  4260. {
  4261. GGML_ASSERT(false);
  4262. } break;
  4263. }
  4264. }
  4265. // ggml_compute_forward_abs
  4266. static void ggml_compute_forward_abs_f32(
  4267. const struct ggml_compute_params * params,
  4268. const struct ggml_tensor * src0,
  4269. struct ggml_tensor * dst) {
  4270. assert(params->ith == 0);
  4271. assert(ggml_are_same_shape(src0, dst));
  4272. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4273. return;
  4274. }
  4275. const int n = ggml_nrows(src0);
  4276. const int nc = src0->ne[0];
  4277. assert(dst->nb[0] == sizeof(float));
  4278. assert(src0->nb[0] == sizeof(float));
  4279. for (int i = 0; i < n; i++) {
  4280. ggml_vec_abs_f32(nc,
  4281. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4282. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4283. }
  4284. }
  4285. static void ggml_compute_forward_abs(
  4286. const struct ggml_compute_params * params,
  4287. const struct ggml_tensor * src0,
  4288. struct ggml_tensor * dst) {
  4289. switch (src0->type) {
  4290. case GGML_TYPE_F32:
  4291. {
  4292. ggml_compute_forward_abs_f32(params, src0, dst);
  4293. } break;
  4294. case GGML_TYPE_Q4_0:
  4295. case GGML_TYPE_Q4_1:
  4296. case GGML_TYPE_I8:
  4297. case GGML_TYPE_I16:
  4298. case GGML_TYPE_I32:
  4299. case GGML_TYPE_F16:
  4300. case GGML_TYPE_COUNT:
  4301. {
  4302. GGML_ASSERT(false);
  4303. } break;
  4304. }
  4305. }
  4306. // ggml_compute_forward_sgn
  4307. static void ggml_compute_forward_sgn_f32(
  4308. const struct ggml_compute_params * params,
  4309. const struct ggml_tensor * src0,
  4310. struct ggml_tensor * dst) {
  4311. assert(params->ith == 0);
  4312. assert(ggml_are_same_shape(src0, dst));
  4313. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4314. return;
  4315. }
  4316. const int n = ggml_nrows(src0);
  4317. const int nc = src0->ne[0];
  4318. assert(dst->nb[0] == sizeof(float));
  4319. assert(src0->nb[0] == sizeof(float));
  4320. for (int i = 0; i < n; i++) {
  4321. ggml_vec_sgn_f32(nc,
  4322. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4323. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4324. }
  4325. }
  4326. static void ggml_compute_forward_sgn(
  4327. const struct ggml_compute_params * params,
  4328. const struct ggml_tensor * src0,
  4329. struct ggml_tensor * dst) {
  4330. switch (src0->type) {
  4331. case GGML_TYPE_F32:
  4332. {
  4333. ggml_compute_forward_sgn_f32(params, src0, dst);
  4334. } break;
  4335. case GGML_TYPE_Q4_0:
  4336. case GGML_TYPE_Q4_1:
  4337. case GGML_TYPE_I8:
  4338. case GGML_TYPE_I16:
  4339. case GGML_TYPE_I32:
  4340. case GGML_TYPE_F16:
  4341. case GGML_TYPE_COUNT:
  4342. {
  4343. GGML_ASSERT(false);
  4344. } break;
  4345. }
  4346. }
  4347. // ggml_compute_forward_neg
  4348. static void ggml_compute_forward_neg_f32(
  4349. const struct ggml_compute_params * params,
  4350. const struct ggml_tensor * src0,
  4351. struct ggml_tensor * dst) {
  4352. assert(params->ith == 0);
  4353. assert(ggml_are_same_shape(src0, dst));
  4354. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4355. return;
  4356. }
  4357. const int n = ggml_nrows(src0);
  4358. const int nc = src0->ne[0];
  4359. assert(dst->nb[0] == sizeof(float));
  4360. assert(src0->nb[0] == sizeof(float));
  4361. for (int i = 0; i < n; i++) {
  4362. ggml_vec_neg_f32(nc,
  4363. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4364. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4365. }
  4366. }
  4367. static void ggml_compute_forward_neg(
  4368. const struct ggml_compute_params * params,
  4369. const struct ggml_tensor * src0,
  4370. struct ggml_tensor * dst) {
  4371. switch (src0->type) {
  4372. case GGML_TYPE_F32:
  4373. {
  4374. ggml_compute_forward_neg_f32(params, src0, dst);
  4375. } break;
  4376. case GGML_TYPE_Q4_0:
  4377. case GGML_TYPE_Q4_1:
  4378. case GGML_TYPE_I8:
  4379. case GGML_TYPE_I16:
  4380. case GGML_TYPE_I32:
  4381. case GGML_TYPE_F16:
  4382. case GGML_TYPE_COUNT:
  4383. {
  4384. GGML_ASSERT(false);
  4385. } break;
  4386. }
  4387. }
  4388. // ggml_compute_forward_step
  4389. static void ggml_compute_forward_step_f32(
  4390. const struct ggml_compute_params * params,
  4391. const struct ggml_tensor * src0,
  4392. struct ggml_tensor * dst) {
  4393. assert(params->ith == 0);
  4394. assert(ggml_are_same_shape(src0, dst));
  4395. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4396. return;
  4397. }
  4398. const int n = ggml_nrows(src0);
  4399. const int nc = src0->ne[0];
  4400. assert(dst->nb[0] == sizeof(float));
  4401. assert(src0->nb[0] == sizeof(float));
  4402. for (int i = 0; i < n; i++) {
  4403. ggml_vec_step_f32(nc,
  4404. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4405. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4406. }
  4407. }
  4408. static void ggml_compute_forward_step(
  4409. const struct ggml_compute_params * params,
  4410. const struct ggml_tensor * src0,
  4411. struct ggml_tensor * dst) {
  4412. switch (src0->type) {
  4413. case GGML_TYPE_F32:
  4414. {
  4415. ggml_compute_forward_step_f32(params, src0, dst);
  4416. } break;
  4417. case GGML_TYPE_Q4_0:
  4418. case GGML_TYPE_Q4_1:
  4419. case GGML_TYPE_I8:
  4420. case GGML_TYPE_I16:
  4421. case GGML_TYPE_I32:
  4422. case GGML_TYPE_F16:
  4423. case GGML_TYPE_COUNT:
  4424. {
  4425. GGML_ASSERT(false);
  4426. } break;
  4427. }
  4428. }
  4429. // ggml_compute_forward_relu
  4430. static void ggml_compute_forward_relu_f32(
  4431. const struct ggml_compute_params * params,
  4432. const struct ggml_tensor * src0,
  4433. struct ggml_tensor * dst) {
  4434. assert(params->ith == 0);
  4435. assert(ggml_are_same_shape(src0, dst));
  4436. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4437. return;
  4438. }
  4439. const int n = ggml_nrows(src0);
  4440. const int nc = src0->ne[0];
  4441. assert(dst->nb[0] == sizeof(float));
  4442. assert(src0->nb[0] == sizeof(float));
  4443. for (int i = 0; i < n; i++) {
  4444. ggml_vec_relu_f32(nc,
  4445. (float *) ((char *) dst->data + i*( dst->nb[1])),
  4446. (float *) ((char *) src0->data + i*(src0->nb[1])));
  4447. }
  4448. }
  4449. static void ggml_compute_forward_relu(
  4450. const struct ggml_compute_params * params,
  4451. const struct ggml_tensor * src0,
  4452. struct ggml_tensor * dst) {
  4453. switch (src0->type) {
  4454. case GGML_TYPE_F32:
  4455. {
  4456. ggml_compute_forward_relu_f32(params, src0, dst);
  4457. } break;
  4458. case GGML_TYPE_Q4_0:
  4459. case GGML_TYPE_Q4_1:
  4460. case GGML_TYPE_I8:
  4461. case GGML_TYPE_I16:
  4462. case GGML_TYPE_I32:
  4463. case GGML_TYPE_F16:
  4464. case GGML_TYPE_COUNT:
  4465. {
  4466. GGML_ASSERT(false);
  4467. } break;
  4468. }
  4469. }
  4470. // ggml_compute_forward_gelu
  4471. static void ggml_compute_forward_gelu_f32(
  4472. const struct ggml_compute_params * params,
  4473. const struct ggml_tensor * src0,
  4474. struct ggml_tensor * dst) {
  4475. GGML_ASSERT(ggml_is_contiguous(src0));
  4476. GGML_ASSERT(ggml_is_contiguous(dst));
  4477. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4478. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4479. return;
  4480. }
  4481. const int ith = params->ith;
  4482. const int nth = params->nth;
  4483. const int nc = src0->ne[0];
  4484. const int nr = ggml_nrows(src0);
  4485. // rows per thread
  4486. const int dr = (nr + nth - 1)/nth;
  4487. // row range for this thread
  4488. const int ir0 = dr*ith;
  4489. const int ir1 = MIN(ir0 + dr, nr);
  4490. for (int i1 = ir0; i1 < ir1; i1++) {
  4491. ggml_vec_gelu_f32(nc,
  4492. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4493. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4494. #ifndef NDEBUG
  4495. for (int k = 0; k < nc; k++) {
  4496. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4497. UNUSED(x);
  4498. assert(!isnan(x));
  4499. assert(!isinf(x));
  4500. }
  4501. #endif
  4502. }
  4503. }
  4504. static void ggml_compute_forward_gelu(
  4505. const struct ggml_compute_params * params,
  4506. const struct ggml_tensor * src0,
  4507. struct ggml_tensor * dst) {
  4508. switch (src0->type) {
  4509. case GGML_TYPE_F32:
  4510. {
  4511. ggml_compute_forward_gelu_f32(params, src0, dst);
  4512. } break;
  4513. case GGML_TYPE_Q4_0:
  4514. case GGML_TYPE_Q4_1:
  4515. case GGML_TYPE_I8:
  4516. case GGML_TYPE_I16:
  4517. case GGML_TYPE_I32:
  4518. case GGML_TYPE_F16:
  4519. case GGML_TYPE_COUNT:
  4520. {
  4521. GGML_ASSERT(false);
  4522. } break;
  4523. }
  4524. //printf("XXXXXXXX gelu\n");
  4525. }
  4526. // ggml_compute_forward_silu
  4527. static void ggml_compute_forward_silu_f32(
  4528. const struct ggml_compute_params * params,
  4529. const struct ggml_tensor * src0,
  4530. struct ggml_tensor * dst) {
  4531. GGML_ASSERT(ggml_is_contiguous(src0));
  4532. GGML_ASSERT(ggml_is_contiguous(dst));
  4533. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4535. return;
  4536. }
  4537. const int ith = params->ith;
  4538. const int nth = params->nth;
  4539. const int nc = src0->ne[0];
  4540. const int nr = ggml_nrows(src0);
  4541. // rows per thread
  4542. const int dr = (nr + nth - 1)/nth;
  4543. // row range for this thread
  4544. const int ir0 = dr*ith;
  4545. const int ir1 = MIN(ir0 + dr, nr);
  4546. for (int i1 = ir0; i1 < ir1; i1++) {
  4547. ggml_vec_silu_f32(nc,
  4548. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  4549. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  4550. #ifndef NDEBUG
  4551. for (int k = 0; k < nc; k++) {
  4552. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  4553. UNUSED(x);
  4554. assert(!isnan(x));
  4555. assert(!isinf(x));
  4556. }
  4557. #endif
  4558. }
  4559. }
  4560. static void ggml_compute_forward_silu(
  4561. const struct ggml_compute_params * params,
  4562. const struct ggml_tensor * src0,
  4563. struct ggml_tensor * dst) {
  4564. switch (src0->type) {
  4565. case GGML_TYPE_F32:
  4566. {
  4567. ggml_compute_forward_silu_f32(params, src0, dst);
  4568. } break;
  4569. case GGML_TYPE_Q4_0:
  4570. case GGML_TYPE_Q4_1:
  4571. case GGML_TYPE_I8:
  4572. case GGML_TYPE_I16:
  4573. case GGML_TYPE_I32:
  4574. case GGML_TYPE_F16:
  4575. case GGML_TYPE_COUNT:
  4576. {
  4577. GGML_ASSERT(false);
  4578. } break;
  4579. }
  4580. }
  4581. // ggml_compute_forward_norm
  4582. static void ggml_compute_forward_norm_f32(
  4583. const struct ggml_compute_params * params,
  4584. const struct ggml_tensor * src0,
  4585. struct ggml_tensor * dst) {
  4586. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4587. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4588. return;
  4589. }
  4590. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4591. const int ith = params->ith;
  4592. const int nth = params->nth;
  4593. const int ne00 = src0->ne[0];
  4594. const int ne01 = src0->ne[1];
  4595. const int ne02 = src0->ne[2];
  4596. const int ne03 = src0->ne[3];
  4597. const size_t nb01 = src0->nb[1];
  4598. const size_t nb02 = src0->nb[2];
  4599. const size_t nb03 = src0->nb[3];
  4600. const size_t nb1 = dst->nb[1];
  4601. const size_t nb2 = dst->nb[2];
  4602. const size_t nb3 = dst->nb[3];
  4603. const float eps = 1e-5f; // TODO: make this a parameter
  4604. // TODO: optimize
  4605. for (int i03 = 0; i03 < ne03; i03++) {
  4606. for (int i02 = 0; i02 < ne02; i02++) {
  4607. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4608. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4609. ggml_float sum = 0.0;
  4610. for (int i00 = 0; i00 < ne00; i00++) {
  4611. sum += (ggml_float)x[i00];
  4612. }
  4613. float mean = sum/ne00;
  4614. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4615. ggml_float sum2 = 0.0;
  4616. for (int i00 = 0; i00 < ne00; i00++) {
  4617. float v = x[i00] - mean;
  4618. y[i00] = v;
  4619. sum2 += (ggml_float)(v*v);
  4620. }
  4621. float variance = sum2/ne00;
  4622. const float scale = 1.0f/sqrtf(variance + eps);
  4623. ggml_vec_scale_f32(ne00, y, scale);
  4624. }
  4625. }
  4626. }
  4627. }
  4628. static void ggml_compute_forward_norm(
  4629. const struct ggml_compute_params * params,
  4630. const struct ggml_tensor * src0,
  4631. struct ggml_tensor * dst) {
  4632. switch (src0->type) {
  4633. case GGML_TYPE_F32:
  4634. {
  4635. ggml_compute_forward_norm_f32(params, src0, dst);
  4636. } break;
  4637. case GGML_TYPE_Q4_0:
  4638. case GGML_TYPE_Q4_1:
  4639. case GGML_TYPE_I8:
  4640. case GGML_TYPE_I16:
  4641. case GGML_TYPE_I32:
  4642. case GGML_TYPE_F16:
  4643. case GGML_TYPE_COUNT:
  4644. {
  4645. GGML_ASSERT(false);
  4646. } break;
  4647. }
  4648. }
  4649. static void ggml_compute_forward_rms_norm_f32(
  4650. const struct ggml_compute_params * params,
  4651. const struct ggml_tensor * src0,
  4652. struct ggml_tensor * dst) {
  4653. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  4654. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  4655. return;
  4656. }
  4657. GGML_ASSERT(src0->nb[0] == sizeof(float));
  4658. const int ith = params->ith;
  4659. const int nth = params->nth;
  4660. const int ne00 = src0->ne[0];
  4661. const int ne01 = src0->ne[1];
  4662. const int ne02 = src0->ne[2];
  4663. const int ne03 = src0->ne[3];
  4664. const size_t nb01 = src0->nb[1];
  4665. const size_t nb02 = src0->nb[2];
  4666. const size_t nb03 = src0->nb[3];
  4667. const size_t nb1 = dst->nb[1];
  4668. const size_t nb2 = dst->nb[2];
  4669. const size_t nb3 = dst->nb[3];
  4670. const float eps = 1e-6f; // TODO: make this a parameter
  4671. // TODO: optimize
  4672. for (int i03 = 0; i03 < ne03; i03++) {
  4673. for (int i02 = 0; i02 < ne02; i02++) {
  4674. for (int i01 = ith; i01 < ne01; i01 += nth) {
  4675. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  4676. ggml_float sum = 0.0;
  4677. for (int i00 = 0; i00 < ne00; i00++) {
  4678. sum += (ggml_float)(x[i00] * x[i00]);
  4679. }
  4680. float mean = sum/ne00;
  4681. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  4682. memcpy(y, x, ne00 * sizeof(float));
  4683. // for (int i00 = 0; i00 < ne00; i00++) {
  4684. // y[i00] = x[i00];
  4685. // }
  4686. const float scale = 1.0f/sqrtf(mean + eps);
  4687. ggml_vec_scale_f32(ne00, y, scale);
  4688. }
  4689. }
  4690. }
  4691. }
  4692. static void ggml_compute_forward_rms_norm(
  4693. const struct ggml_compute_params * params,
  4694. const struct ggml_tensor * src0,
  4695. struct ggml_tensor * dst) {
  4696. switch (src0->type) {
  4697. case GGML_TYPE_F32:
  4698. {
  4699. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  4700. } break;
  4701. case GGML_TYPE_Q4_0:
  4702. case GGML_TYPE_Q4_1:
  4703. case GGML_TYPE_I8:
  4704. case GGML_TYPE_I16:
  4705. case GGML_TYPE_I32:
  4706. case GGML_TYPE_F16:
  4707. case GGML_TYPE_COUNT:
  4708. {
  4709. GGML_ASSERT(false);
  4710. } break;
  4711. }
  4712. }
  4713. // ggml_compute_forward_mul_mat
  4714. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4715. // helper function to determine if it is better to use BLAS or not
  4716. // for large matrices, BLAS is faster
  4717. static bool ggml_compute_forward_mul_mat_use_blas(
  4718. const struct ggml_tensor * src0,
  4719. const struct ggml_tensor * src1,
  4720. struct ggml_tensor * dst) {
  4721. //const int ne00 = src0->ne[0];
  4722. //const int ne01 = src0->ne[1];
  4723. const int ne10 = src1->ne[0];
  4724. const int ne0 = dst->ne[0];
  4725. const int ne1 = dst->ne[1];
  4726. // TODO: find the optimal values for these
  4727. if (ggml_is_contiguous(src0) &&
  4728. ggml_is_contiguous(src1) && ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32))) {
  4729. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  4730. return true;
  4731. }
  4732. return false;
  4733. }
  4734. #endif
  4735. static void ggml_compute_forward_mul_mat_f32(
  4736. const struct ggml_compute_params * params,
  4737. const struct ggml_tensor * src0,
  4738. const struct ggml_tensor * src1,
  4739. struct ggml_tensor * dst) {
  4740. int64_t t0 = ggml_perf_time_us();
  4741. UNUSED(t0);
  4742. const int ne00 = src0->ne[0];
  4743. const int ne01 = src0->ne[1];
  4744. const int ne02 = src0->ne[2];
  4745. const int ne03 = src0->ne[3];
  4746. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4747. const int ne10 = src1->ne[0];
  4748. #endif
  4749. const int ne11 = src1->ne[1];
  4750. #ifndef NDEBUG
  4751. const int ne12 = src1->ne[2];
  4752. const int ne13 = src1->ne[3];
  4753. const int ne0 = dst->ne[0];
  4754. const int ne1 = dst->ne[1];
  4755. const int ne2 = dst->ne[2];
  4756. const int ne3 = dst->ne[3];
  4757. const int nb00 = src0->nb[0];
  4758. #endif
  4759. const int nb01 = src0->nb[1];
  4760. const int nb02 = src0->nb[2];
  4761. const int nb03 = src0->nb[3];
  4762. #ifndef NDEBUG
  4763. const int nb10 = src1->nb[0];
  4764. #endif
  4765. const int nb11 = src1->nb[1];
  4766. const int nb12 = src1->nb[2];
  4767. const int nb13 = src1->nb[3];
  4768. const int nb0 = dst->nb[0];
  4769. const int nb1 = dst->nb[1];
  4770. const int nb2 = dst->nb[2];
  4771. const int nb3 = dst->nb[3];
  4772. const int ith = params->ith;
  4773. const int nth = params->nth;
  4774. assert(ne02 == ne12);
  4775. assert(ne03 == ne13);
  4776. assert(ne2 == ne12);
  4777. assert(ne3 == ne13);
  4778. // we don't support permuted src0 or src1
  4779. assert(nb00 == sizeof(float));
  4780. assert(nb10 == sizeof(float));
  4781. // dst cannot be transposed or permuted
  4782. assert(nb0 == sizeof(float));
  4783. assert(nb0 <= nb1);
  4784. assert(nb1 <= nb2);
  4785. assert(nb2 <= nb3);
  4786. assert(ne0 == ne01);
  4787. assert(ne1 == ne11);
  4788. assert(ne2 == ne02);
  4789. assert(ne3 == ne03);
  4790. // nb01 >= nb00 - src0 is not transposed
  4791. // compute by src0 rows
  4792. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4793. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4794. if (params->ith != 0) {
  4795. return;
  4796. }
  4797. if (params->type == GGML_TASK_INIT) {
  4798. return;
  4799. }
  4800. if (params->type == GGML_TASK_FINALIZE) {
  4801. return;
  4802. }
  4803. for (int i03 = 0; i03 < ne03; i03++) {
  4804. for (int i02 = 0; i02 < ne02; i02++) {
  4805. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  4806. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4807. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4808. // zT = y * xT
  4809. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4810. ne11, ne01, ne10,
  4811. 1.0f, y, ne10,
  4812. x, ne10,
  4813. 0.0f, d, ne01);
  4814. }
  4815. }
  4816. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  4817. return;
  4818. }
  4819. #endif
  4820. if (params->type == GGML_TASK_INIT) {
  4821. return;
  4822. }
  4823. if (params->type == GGML_TASK_FINALIZE) {
  4824. return;
  4825. }
  4826. // parallelize by src0 rows using ggml_vec_dot_f32
  4827. // total rows in src0
  4828. const int nr = ne01*ne02*ne03;
  4829. // rows per thread
  4830. const int dr = (nr + nth - 1)/nth;
  4831. // row range for this thread
  4832. const int ir0 = dr*ith;
  4833. const int ir1 = MIN(ir0 + dr, nr);
  4834. for (int ir = ir0; ir < ir1; ++ir) {
  4835. // src0 indices
  4836. const int i03 = ir/(ne02*ne01);
  4837. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4838. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4839. for (int ic = 0; ic < ne11; ++ic) {
  4840. // src1 indices
  4841. const int i13 = i03;
  4842. const int i12 = i02;
  4843. const int i11 = ic;
  4844. // dst indices
  4845. const int i0 = i01;
  4846. const int i1 = i11;
  4847. const int i2 = i02;
  4848. const int i3 = i03;
  4849. ggml_vec_dot_f32(ne00,
  4850. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  4851. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  4852. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  4853. }
  4854. }
  4855. //int64_t t1 = ggml_perf_time_us();
  4856. //static int64_t acc = 0;
  4857. //acc += t1 - t0;
  4858. //if (t1 - t0 > 10) {
  4859. // printf("\n");
  4860. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  4861. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  4862. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  4863. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  4864. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  4865. //}
  4866. }
  4867. static void ggml_compute_forward_mul_mat_f16_f32(
  4868. const struct ggml_compute_params * params,
  4869. const struct ggml_tensor * src0,
  4870. const struct ggml_tensor * src1,
  4871. struct ggml_tensor * dst) {
  4872. int64_t t0 = ggml_perf_time_us();
  4873. UNUSED(t0);
  4874. const int ne00 = src0->ne[0];
  4875. const int ne01 = src0->ne[1];
  4876. const int ne02 = src0->ne[2];
  4877. const int ne03 = src0->ne[3];
  4878. const int ne10 = src1->ne[0];
  4879. const int ne11 = src1->ne[1];
  4880. const int ne12 = src1->ne[2];
  4881. const int ne13 = src1->ne[3];
  4882. const int ne0 = dst->ne[0];
  4883. const int ne1 = dst->ne[1];
  4884. const int ne2 = dst->ne[2];
  4885. const int ne3 = dst->ne[3];
  4886. //const int ne = ne0*ne1*ne2*ne3;
  4887. const int nb00 = src0->nb[0];
  4888. const int nb01 = src0->nb[1];
  4889. const int nb02 = src0->nb[2];
  4890. const int nb03 = src0->nb[3];
  4891. const int nb10 = src1->nb[0];
  4892. const int nb11 = src1->nb[1];
  4893. const int nb12 = src1->nb[2];
  4894. const int nb13 = src1->nb[3];
  4895. const int nb0 = dst->nb[0];
  4896. const int nb1 = dst->nb[1];
  4897. const int nb2 = dst->nb[2];
  4898. const int nb3 = dst->nb[3];
  4899. const int ith = params->ith;
  4900. const int nth = params->nth;
  4901. GGML_ASSERT(ne02 == ne12);
  4902. GGML_ASSERT(ne03 == ne13);
  4903. GGML_ASSERT(ne2 == ne12);
  4904. GGML_ASSERT(ne3 == ne13);
  4905. // TODO: we don't support permuted src0
  4906. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  4907. // dst cannot be transposed or permuted
  4908. GGML_ASSERT(nb0 == sizeof(float));
  4909. GGML_ASSERT(nb0 <= nb1);
  4910. GGML_ASSERT(nb1 <= nb2);
  4911. GGML_ASSERT(nb2 <= nb3);
  4912. GGML_ASSERT(ne0 == ne01);
  4913. GGML_ASSERT(ne1 == ne11);
  4914. GGML_ASSERT(ne2 == ne02);
  4915. GGML_ASSERT(ne3 == ne03);
  4916. // nb01 >= nb00 - src0 is not transposed
  4917. // compute by src0 rows
  4918. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  4919. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  4920. GGML_ASSERT(nb10 == sizeof(float));
  4921. if (params->ith != 0) {
  4922. return;
  4923. }
  4924. if (params->type == GGML_TASK_INIT) {
  4925. return;
  4926. }
  4927. if (params->type == GGML_TASK_FINALIZE) {
  4928. return;
  4929. }
  4930. float * const wdata = params->wdata;
  4931. for (int i03 = 0; i03 < ne03; i03++) {
  4932. for (int i02 = 0; i02 < ne02; i02++) {
  4933. {
  4934. size_t id = 0;
  4935. for (int i01 = 0; i01 < ne01; ++i01) {
  4936. for (int i00 = 0; i00 < ne00; ++i00) {
  4937. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  4938. }
  4939. }
  4940. }
  4941. const float * x = wdata;
  4942. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  4943. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  4944. // zT = y * xT
  4945. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  4946. ne11, ne01, ne10,
  4947. 1.0f, y, ne10,
  4948. x, ne10,
  4949. 0.0f, d, ne01);
  4950. }
  4951. }
  4952. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  4953. return;
  4954. }
  4955. #endif
  4956. if (params->type == GGML_TASK_INIT) {
  4957. ggml_fp16_t * const wdata = params->wdata;
  4958. size_t id = 0;
  4959. for (int i13 = 0; i13 < ne13; ++i13) {
  4960. for (int i12 = 0; i12 < ne12; ++i12) {
  4961. for (int i11 = 0; i11 < ne11; ++i11) {
  4962. for (int i10 = 0; i10 < ne10; ++i10) {
  4963. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  4964. }
  4965. }
  4966. }
  4967. }
  4968. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  4969. return;
  4970. }
  4971. if (params->type == GGML_TASK_FINALIZE) {
  4972. return;
  4973. }
  4974. // fp16 -> half the size, so divide by 2
  4975. // TODO: do not support transposed src1
  4976. assert(nb10/2 == sizeof(ggml_fp16_t));
  4977. // parallelize by src0 rows using ggml_vec_dot_f16
  4978. // total rows in src0
  4979. const int nr = ne01*ne02*ne03;
  4980. // rows per thread
  4981. const int dr = (nr + nth - 1)/nth;
  4982. // row range for this thread
  4983. const int ir0 = dr*ith;
  4984. const int ir1 = MIN(ir0 + dr, nr);
  4985. ggml_fp16_t * wdata = params->wdata;
  4986. for (int ir = ir0; ir < ir1; ++ir) {
  4987. // src0 indices
  4988. const int i03 = ir/(ne02*ne01);
  4989. const int i02 = (ir - i03*ne02*ne01)/ne01;
  4990. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  4991. const int i13 = i03;
  4992. const int i12 = i02;
  4993. const int i0 = i01;
  4994. const int i2 = i02;
  4995. const int i3 = i03;
  4996. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  4997. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  4998. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  4999. for (int ic = 0; ic < ne11; ++ic) {
  5000. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  5001. }
  5002. }
  5003. //int64_t t1 = ggml_time_us();
  5004. //static int64_t acc = 0;
  5005. //acc += t1 - t0;
  5006. //if (t1 - t0 > 10) {
  5007. // printf("\n");
  5008. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5009. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5010. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5011. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5012. //}
  5013. }
  5014. typedef void (*dequantize_row_q_t)(const void * restrict x, float * restrict y, int k);
  5015. typedef void (*quantize_row_q_t)(const float * restrict x, void * restrict y, int k);
  5016. typedef void (*vec_dot_q_t)(const int n, float * restrict s, const void * restrict x, const void * restrict y);
  5017. typedef struct {
  5018. dequantize_row_q_t dequantize_row_q;
  5019. quantize_row_q_t quantize_row_q;
  5020. vec_dot_q_t vec_dot_q;
  5021. } quantize_fns_t;
  5022. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  5023. [GGML_TYPE_Q4_0] = {
  5024. .dequantize_row_q = dequantize_row_q4_0,
  5025. .quantize_row_q = quantize_row_q4_0,
  5026. .vec_dot_q = ggml_vec_dot_q4_0,
  5027. },
  5028. [GGML_TYPE_Q4_1] = {
  5029. .dequantize_row_q = dequantize_row_q4_1,
  5030. .quantize_row_q = quantize_row_q4_1,
  5031. .vec_dot_q = ggml_vec_dot_q4_1,
  5032. },
  5033. };
  5034. static void ggml_compute_forward_mul_mat_q_f32(
  5035. const struct ggml_compute_params * params,
  5036. const struct ggml_tensor * src0,
  5037. const struct ggml_tensor * src1,
  5038. struct ggml_tensor * dst) {
  5039. int64_t t0 = ggml_perf_time_us();
  5040. UNUSED(t0);
  5041. const int ne00 = src0->ne[0];
  5042. const int ne01 = src0->ne[1];
  5043. const int ne02 = src0->ne[2];
  5044. const int ne03 = src0->ne[3];
  5045. const int ne10 = src1->ne[0];
  5046. const int ne11 = src1->ne[1];
  5047. const int ne12 = src1->ne[2];
  5048. const int ne13 = src1->ne[3];
  5049. const int ne0 = dst->ne[0];
  5050. const int ne1 = dst->ne[1];
  5051. const int ne2 = dst->ne[2];
  5052. const int ne3 = dst->ne[3];
  5053. const int nb00 = src0->nb[0];
  5054. const int nb01 = src0->nb[1];
  5055. const int nb02 = src0->nb[2];
  5056. const int nb03 = src0->nb[3];
  5057. const int nb10 = src1->nb[0];
  5058. const int nb11 = src1->nb[1];
  5059. const int nb12 = src1->nb[2];
  5060. const int nb13 = src1->nb[3];
  5061. const int nb0 = dst->nb[0];
  5062. const int nb1 = dst->nb[1];
  5063. const int nb2 = dst->nb[2];
  5064. const int nb3 = dst->nb[3];
  5065. const int ith = params->ith;
  5066. const int nth = params->nth;
  5067. GGML_ASSERT(ne02 == ne12);
  5068. GGML_ASSERT(ne03 == ne13);
  5069. GGML_ASSERT(ne2 == ne12);
  5070. GGML_ASSERT(ne3 == ne13);
  5071. const enum ggml_type type = src0->type;
  5072. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5073. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  5074. // we don't support permuted src0 or src1
  5075. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5076. GGML_ASSERT(nb10 == sizeof(float));
  5077. // dst cannot be transposed or permuted
  5078. GGML_ASSERT(nb0 == sizeof(float));
  5079. GGML_ASSERT(nb0 <= nb1);
  5080. GGML_ASSERT(nb1 <= nb2);
  5081. GGML_ASSERT(nb2 <= nb3);
  5082. GGML_ASSERT(ne0 == ne01);
  5083. GGML_ASSERT(ne1 == ne11);
  5084. GGML_ASSERT(ne2 == ne02);
  5085. GGML_ASSERT(ne3 == ne03);
  5086. // nb01 >= nb00 - src0 is not transposed
  5087. // compute by src0 rows
  5088. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  5089. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  5090. if (params->ith != 0) {
  5091. return;
  5092. }
  5093. if (params->type == GGML_TASK_INIT) {
  5094. return;
  5095. }
  5096. if (params->type == GGML_TASK_FINALIZE) {
  5097. return;
  5098. }
  5099. float * const wdata = params->wdata;
  5100. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5101. for (int i03 = 0; i03 < ne03; i03++) {
  5102. for (int i02 = 0; i02 < ne02; i02++) {
  5103. {
  5104. size_t id = 0;
  5105. for (int i01 = 0; i01 < ne01; ++i01) {
  5106. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  5107. id += ne00;
  5108. }
  5109. }
  5110. const float * x = wdata;
  5111. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  5112. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  5113. // zT = y * xT
  5114. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  5115. ne11, ne01, ne10,
  5116. 1.0f, y, ne10,
  5117. x, ne10,
  5118. 0.0f, d, ne01);
  5119. }
  5120. }
  5121. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  5122. return;
  5123. }
  5124. #endif
  5125. if (params->type == GGML_TASK_INIT) {
  5126. char * wdata = params->wdata;
  5127. const size_t row_size = ne10*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5128. for (int i13 = 0; i13 < ne13; ++i13) {
  5129. for (int i12 = 0; i12 < ne12; ++i12) {
  5130. for (int i11 = 0; i11 < ne11; ++i11) {
  5131. quantize_row_q((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  5132. wdata += row_size;
  5133. }
  5134. }
  5135. }
  5136. return;
  5137. }
  5138. if (params->type == GGML_TASK_FINALIZE) {
  5139. return;
  5140. }
  5141. // parallelize by src0 rows using ggml_vec_dot_q
  5142. // total rows in src0
  5143. const int nr = ne01*ne02*ne03;
  5144. // rows per thread
  5145. const int dr = (nr + nth - 1)/nth;
  5146. // row range for this thread
  5147. const int ir0 = dr*ith;
  5148. const int ir1 = MIN(ir0 + dr, nr);
  5149. void * wdata = params->wdata;
  5150. const size_t row_size = ne00*GGML_TYPE_SIZE[type]/GGML_BLCK_SIZE[type];
  5151. for (int ir = ir0; ir < ir1; ++ir) {
  5152. // src0 indices
  5153. const int i03 = ir/(ne02*ne01);
  5154. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5155. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5156. const int i13 = i03;
  5157. const int i12 = i02;
  5158. const int i0 = i01;
  5159. const int i2 = i02;
  5160. const int i3 = i03;
  5161. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5162. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  5163. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  5164. assert(ne00 % 32 == 0);
  5165. for (int ic = 0; ic < ne11; ++ic) {
  5166. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  5167. }
  5168. }
  5169. //int64_t t1 = ggml_time_us();
  5170. //static int64_t acc = 0;
  5171. //acc += t1 - t0;
  5172. //if (t1 - t0 > 10) {
  5173. // printf("\n");
  5174. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  5175. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  5176. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  5177. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  5178. //}
  5179. }
  5180. static void ggml_compute_forward_mul_mat(
  5181. const struct ggml_compute_params * params,
  5182. const struct ggml_tensor * src0,
  5183. const struct ggml_tensor * src1,
  5184. struct ggml_tensor * dst) {
  5185. switch (src0->type) {
  5186. case GGML_TYPE_Q4_0:
  5187. case GGML_TYPE_Q4_1:
  5188. {
  5189. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  5190. } break;
  5191. case GGML_TYPE_F16:
  5192. {
  5193. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  5194. } break;
  5195. case GGML_TYPE_F32:
  5196. {
  5197. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  5198. } break;
  5199. case GGML_TYPE_I8:
  5200. case GGML_TYPE_I16:
  5201. case GGML_TYPE_I32:
  5202. case GGML_TYPE_COUNT:
  5203. {
  5204. GGML_ASSERT(false);
  5205. } break;
  5206. }
  5207. #if 0
  5208. if (src0->type == GGML_TYPE_F16 || src0->type == GGML_TYPE_Q4_1) {
  5209. static int first = 8;
  5210. printf("src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5211. printf("src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5212. printf("dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5213. if (first) {
  5214. --first;
  5215. } else {
  5216. for (int k = 0; k < dst->ne[1]; ++k) {
  5217. for (int j = 0; j < dst->ne[0]/16; ++j) {
  5218. for (int i = 0; i < 16; ++i) {
  5219. printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5220. }
  5221. printf("\n");
  5222. }
  5223. printf("\n");
  5224. }
  5225. printf("\n");
  5226. exit(0);
  5227. }
  5228. } else {
  5229. printf("aaaa src0: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src0->ne[0], src0->ne[1], src0->ne[2]);
  5230. printf("aaaa src1: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", src1->ne[0], src1->ne[1], src1->ne[2]);
  5231. printf("aaaa dst: ne0 = %5d, ne1 = %5d, ne2 = %5d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5232. }
  5233. #endif
  5234. }
  5235. // ggml_compute_forward_scale
  5236. static void ggml_compute_forward_scale_f32(
  5237. const struct ggml_compute_params * params,
  5238. const struct ggml_tensor * src0,
  5239. const struct ggml_tensor * src1,
  5240. struct ggml_tensor * dst) {
  5241. GGML_ASSERT(ggml_is_contiguous(src0));
  5242. GGML_ASSERT(ggml_is_contiguous(dst));
  5243. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5244. GGML_ASSERT(ggml_is_scalar(src1));
  5245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5246. return;
  5247. }
  5248. // scale factor
  5249. const float v = *(float *) src1->data;
  5250. const int ith = params->ith;
  5251. const int nth = params->nth;
  5252. const int nc = src0->ne[0];
  5253. const int nr = ggml_nrows(src0);
  5254. // rows per thread
  5255. const int dr = (nr + nth - 1)/nth;
  5256. // row range for this thread
  5257. const int ir0 = dr*ith;
  5258. const int ir1 = MIN(ir0 + dr, nr);
  5259. for (int i1 = ir0; i1 < ir1; i1++) {
  5260. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  5261. }
  5262. }
  5263. static void ggml_compute_forward_scale(
  5264. const struct ggml_compute_params * params,
  5265. const struct ggml_tensor * src0,
  5266. const struct ggml_tensor * src1,
  5267. struct ggml_tensor * dst) {
  5268. switch (src0->type) {
  5269. case GGML_TYPE_F32:
  5270. {
  5271. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  5272. } break;
  5273. case GGML_TYPE_Q4_0:
  5274. case GGML_TYPE_Q4_1:
  5275. case GGML_TYPE_I8:
  5276. case GGML_TYPE_I16:
  5277. case GGML_TYPE_I32:
  5278. case GGML_TYPE_F16:
  5279. case GGML_TYPE_COUNT:
  5280. {
  5281. GGML_ASSERT(false);
  5282. } break;
  5283. }
  5284. }
  5285. // ggml_compute_forward_cpy
  5286. static void ggml_compute_forward_cpy(
  5287. const struct ggml_compute_params * params,
  5288. const struct ggml_tensor * src0,
  5289. struct ggml_tensor * dst) {
  5290. ggml_compute_forward_dup(params, src0, dst);
  5291. }
  5292. // ggml_compute_forward_reshape
  5293. static void ggml_compute_forward_reshape(
  5294. const struct ggml_compute_params * params,
  5295. const struct ggml_tensor * src0,
  5296. struct ggml_tensor * dst) {
  5297. // NOP
  5298. UNUSED(params);
  5299. UNUSED(src0);
  5300. UNUSED(dst);
  5301. }
  5302. // ggml_compute_forward_view
  5303. static void ggml_compute_forward_view(
  5304. const struct ggml_compute_params * params,
  5305. const struct ggml_tensor * src0) {
  5306. // NOP
  5307. UNUSED(params);
  5308. UNUSED(src0);
  5309. }
  5310. // ggml_compute_forward_permute
  5311. static void ggml_compute_forward_permute(
  5312. const struct ggml_compute_params * params,
  5313. const struct ggml_tensor * src0) {
  5314. // NOP
  5315. UNUSED(params);
  5316. UNUSED(src0);
  5317. }
  5318. // ggml_compute_forward_transpose
  5319. static void ggml_compute_forward_transpose(
  5320. const struct ggml_compute_params * params,
  5321. const struct ggml_tensor * src0) {
  5322. // NOP
  5323. UNUSED(params);
  5324. UNUSED(src0);
  5325. }
  5326. // ggml_compute_forward_get_rows
  5327. static void ggml_compute_forward_get_rows_q(
  5328. const struct ggml_compute_params * params,
  5329. const struct ggml_tensor * src0,
  5330. const struct ggml_tensor * src1,
  5331. struct ggml_tensor * dst) {
  5332. assert(params->ith == 0);
  5333. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5334. return;
  5335. }
  5336. const int nc = src0->ne[0];
  5337. const int nr = ggml_nelements(src1);
  5338. const enum ggml_type type = src0->type;
  5339. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5340. assert( dst->ne[0] == nc);
  5341. assert( dst->ne[1] == nr);
  5342. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  5343. for (int i = 0; i < nr; ++i) {
  5344. const int r = ((int32_t *) src1->data)[i];
  5345. dequantize_row_q(
  5346. (const void *) ((char *) src0->data + r*src0->nb[1]),
  5347. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  5348. }
  5349. }
  5350. static void ggml_compute_forward_get_rows_f16(
  5351. const struct ggml_compute_params * params,
  5352. const struct ggml_tensor * src0,
  5353. const struct ggml_tensor * src1,
  5354. struct ggml_tensor * dst) {
  5355. assert(params->ith == 0);
  5356. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5357. return;
  5358. }
  5359. const int nc = src0->ne[0];
  5360. const int nr = ggml_nelements(src1);
  5361. assert( dst->ne[0] == nc);
  5362. assert( dst->ne[1] == nr);
  5363. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  5364. for (int i = 0; i < nr; ++i) {
  5365. const int r = ((int32_t *) src1->data)[i];
  5366. for (int j = 0; j < nc; ++j) {
  5367. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  5368. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  5369. }
  5370. }
  5371. }
  5372. static void ggml_compute_forward_get_rows_f32(
  5373. const struct ggml_compute_params * params,
  5374. const struct ggml_tensor * src0,
  5375. const struct ggml_tensor * src1,
  5376. struct ggml_tensor * dst) {
  5377. assert(params->ith == 0);
  5378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5379. return;
  5380. }
  5381. const int nc = src0->ne[0];
  5382. const int nr = ggml_nelements(src1);
  5383. assert( dst->ne[0] == nc);
  5384. assert( dst->ne[1] == nr);
  5385. assert(src0->nb[0] == sizeof(float));
  5386. for (int i = 0; i < nr; ++i) {
  5387. const int r = ((int32_t *) src1->data)[i];
  5388. ggml_vec_cpy_f32(nc,
  5389. (float *) ((char *) dst->data + i*dst->nb[1]),
  5390. (float *) ((char *) src0->data + r*src0->nb[1]));
  5391. }
  5392. }
  5393. static void ggml_compute_forward_get_rows(
  5394. const struct ggml_compute_params * params,
  5395. const struct ggml_tensor * src0,
  5396. const struct ggml_tensor * src1,
  5397. struct ggml_tensor * dst) {
  5398. switch (src0->type) {
  5399. case GGML_TYPE_Q4_0:
  5400. case GGML_TYPE_Q4_1:
  5401. {
  5402. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  5403. } break;
  5404. case GGML_TYPE_F16:
  5405. {
  5406. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  5407. } break;
  5408. case GGML_TYPE_F32:
  5409. {
  5410. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  5411. } break;
  5412. case GGML_TYPE_I8:
  5413. case GGML_TYPE_I16:
  5414. case GGML_TYPE_I32:
  5415. case GGML_TYPE_COUNT:
  5416. {
  5417. GGML_ASSERT(false);
  5418. } break;
  5419. }
  5420. //static bool first = true;
  5421. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  5422. //if (first) {
  5423. // first = false;
  5424. //} else {
  5425. // for (int k = 0; k < dst->ne[1]; ++k) {
  5426. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  5427. // for (int i = 0; i < 16; ++i) {
  5428. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  5429. // }
  5430. // printf("\n");
  5431. // }
  5432. // printf("\n");
  5433. // }
  5434. // printf("\n");
  5435. // exit(0);
  5436. //}
  5437. }
  5438. // ggml_compute_forward_diag_mask_inf
  5439. static void ggml_compute_forward_diag_mask_inf_f32(
  5440. const struct ggml_compute_params * params,
  5441. const struct ggml_tensor * src0,
  5442. const struct ggml_tensor * src1,
  5443. struct ggml_tensor * dst) {
  5444. assert(params->ith == 0);
  5445. assert(src1->type == GGML_TYPE_I32);
  5446. assert(ggml_nelements(src1) == 1);
  5447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5448. return;
  5449. }
  5450. const int n_past = ((int32_t *) src1->data)[0];
  5451. // TODO: handle transposed/permuted matrices
  5452. const int n = ggml_nrows(src0);
  5453. const int nc = src0->ne[0];
  5454. const int nr = src0->ne[1];
  5455. const int nz = n/nr;
  5456. assert( dst->nb[0] == sizeof(float));
  5457. assert(src0->nb[0] == sizeof(float));
  5458. for (int k = 0; k < nz; k++) {
  5459. for (int j = 0; j < nr; j++) {
  5460. for (int i = n_past; i < nc; i++) {
  5461. if (i > n_past + j) {
  5462. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  5463. }
  5464. }
  5465. }
  5466. }
  5467. }
  5468. static void ggml_compute_forward_diag_mask_inf(
  5469. const struct ggml_compute_params * params,
  5470. const struct ggml_tensor * src0,
  5471. const struct ggml_tensor * src1,
  5472. struct ggml_tensor * dst) {
  5473. switch (src0->type) {
  5474. case GGML_TYPE_F32:
  5475. {
  5476. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  5477. } break;
  5478. case GGML_TYPE_Q4_0:
  5479. case GGML_TYPE_Q4_1:
  5480. case GGML_TYPE_I8:
  5481. case GGML_TYPE_I16:
  5482. case GGML_TYPE_I32:
  5483. case GGML_TYPE_F16:
  5484. case GGML_TYPE_COUNT:
  5485. {
  5486. GGML_ASSERT(false);
  5487. } break;
  5488. }
  5489. }
  5490. // ggml_compute_forward_soft_max
  5491. static void ggml_compute_forward_soft_max_f32(
  5492. const struct ggml_compute_params * params,
  5493. const struct ggml_tensor * src0,
  5494. struct ggml_tensor * dst) {
  5495. GGML_ASSERT(ggml_is_contiguous(src0));
  5496. GGML_ASSERT(ggml_is_contiguous(dst));
  5497. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  5498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5499. return;
  5500. }
  5501. // TODO: handle transposed/permuted matrices
  5502. const int ith = params->ith;
  5503. const int nth = params->nth;
  5504. const int nc = src0->ne[0];
  5505. const int nr = ggml_nrows(src0);
  5506. // rows per thread
  5507. const int dr = (nr + nth - 1)/nth;
  5508. // row range for this thread
  5509. const int ir0 = dr*ith;
  5510. const int ir1 = MIN(ir0 + dr, nr);
  5511. for (int i1 = ir0; i1 < ir1; i1++) {
  5512. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  5513. #ifndef NDEBUG
  5514. for (int i = 0; i < nc; ++i) {
  5515. //printf("p[%d] = %f\n", i, p[i]);
  5516. assert(!isnan(p[i]));
  5517. }
  5518. #endif
  5519. float max = -INFINITY;
  5520. ggml_vec_max_f32(nc, &max, p);
  5521. ggml_float sum = 0.0;
  5522. uint16_t scvt;
  5523. for (int i = 0; i < nc; i++) {
  5524. if (p[i] == -INFINITY) {
  5525. p[i] = 0.0f;
  5526. } else {
  5527. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  5528. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  5529. memcpy(&scvt, &s, sizeof(scvt));
  5530. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  5531. sum += (ggml_float)val;
  5532. p[i] = val;
  5533. }
  5534. }
  5535. assert(sum > 0.0);
  5536. sum = 1.0/sum;
  5537. ggml_vec_scale_f32(nc, p, sum);
  5538. #ifndef NDEBUG
  5539. for (int i = 0; i < nc; ++i) {
  5540. assert(!isnan(p[i]));
  5541. assert(!isinf(p[i]));
  5542. }
  5543. #endif
  5544. }
  5545. }
  5546. static void ggml_compute_forward_soft_max(
  5547. const struct ggml_compute_params * params,
  5548. const struct ggml_tensor * src0,
  5549. struct ggml_tensor * dst) {
  5550. switch (src0->type) {
  5551. case GGML_TYPE_F32:
  5552. {
  5553. ggml_compute_forward_soft_max_f32(params, src0, dst);
  5554. } break;
  5555. case GGML_TYPE_Q4_0:
  5556. case GGML_TYPE_Q4_1:
  5557. case GGML_TYPE_I8:
  5558. case GGML_TYPE_I16:
  5559. case GGML_TYPE_I32:
  5560. case GGML_TYPE_F16:
  5561. case GGML_TYPE_COUNT:
  5562. {
  5563. GGML_ASSERT(false);
  5564. } break;
  5565. }
  5566. }
  5567. // ggml_compute_forward_rope
  5568. static void ggml_compute_forward_rope_f32(
  5569. const struct ggml_compute_params * params,
  5570. const struct ggml_tensor * src0,
  5571. const struct ggml_tensor * src1,
  5572. struct ggml_tensor * dst) {
  5573. assert(params->ith == 0);
  5574. assert(src1->type == GGML_TYPE_I32);
  5575. assert(ggml_nelements(src1) == 3);
  5576. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5577. return;
  5578. }
  5579. const int n_past = ((int32_t *) src1->data)[0];
  5580. const int n_dims = ((int32_t *) src1->data)[1];
  5581. const int mode = ((int32_t *) src1->data)[2];
  5582. //const int ne0 = src0->ne[0];
  5583. const int ne1 = src0->ne[1];
  5584. const int ne2 = src0->ne[2];
  5585. const int ne3 = src0->ne[3];
  5586. const int nb0 = src0->nb[0];
  5587. const int nb1 = src0->nb[1];
  5588. const int nb2 = src0->nb[2];
  5589. const int nb3 = src0->nb[3];
  5590. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5591. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5592. assert(nb0 == sizeof(float));
  5593. // TODO: optimize
  5594. for (int i3 = 0; i3 < ne3; i3++) {
  5595. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5596. const int p = (mode == 0 ? n_past + i2 : i2);
  5597. for (int i1 = 0; i1 < ne1; i1++) {
  5598. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5599. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5600. const float cos_theta = cosf(p*theta);
  5601. const float sin_theta = sinf(p*theta);
  5602. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5603. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5604. const float x0 = src[0];
  5605. const float x1 = src[1];
  5606. dst_data[0] = x0*cos_theta - x1*sin_theta;
  5607. dst_data[1] = x0*sin_theta + x1*cos_theta;
  5608. }
  5609. }
  5610. }
  5611. }
  5612. }
  5613. static void ggml_compute_forward_rope_f16(
  5614. const struct ggml_compute_params * params,
  5615. const struct ggml_tensor * src0,
  5616. const struct ggml_tensor * src1,
  5617. struct ggml_tensor * dst) {
  5618. assert(params->ith == 0);
  5619. assert(src1->type == GGML_TYPE_I32);
  5620. assert(ggml_nelements(src1) == 3);
  5621. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5622. return;
  5623. }
  5624. const int n_past = ((int32_t *) src1->data)[0];
  5625. const int n_dims = ((int32_t *) src1->data)[1];
  5626. const int mode = ((int32_t *) src1->data)[2];
  5627. //const int ne0 = src0->ne[0];
  5628. const int ne1 = src0->ne[1];
  5629. const int ne2 = src0->ne[2];
  5630. const int ne3 = src0->ne[3];
  5631. const int nb0 = src0->nb[0];
  5632. const int nb1 = src0->nb[1];
  5633. const int nb2 = src0->nb[2];
  5634. const int nb3 = src0->nb[3];
  5635. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  5636. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  5637. assert(nb0 == sizeof(ggml_fp16_t));
  5638. for (int i3 = 0; i3 < ne3; i3++) {
  5639. for (int i2 = (mode == 0 ? 0 : n_past); i2 < ne2; i2++) {
  5640. const int p = (mode == 0 ? n_past + i2 : i2);
  5641. for (int i1 = 0; i1 < ne1; i1++) {
  5642. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  5643. const float theta = powf(10000.0, ((float)-i0)/n_dims);
  5644. const float cos_theta = cosf(p*theta);
  5645. const float sin_theta = sinf(p*theta);
  5646. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5647. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  5648. const float x0 = ggml_fp16_to_fp32(src[0]);
  5649. const float x1 = ggml_fp16_to_fp32(src[1]);
  5650. dst_data[0] = ggml_fp32_to_fp16(x0*cos_theta - x1*sin_theta);
  5651. dst_data[1] = ggml_fp32_to_fp16(x0*sin_theta + x1*cos_theta);
  5652. }
  5653. }
  5654. }
  5655. }
  5656. }
  5657. static void ggml_compute_forward_rope(
  5658. const struct ggml_compute_params * params,
  5659. const struct ggml_tensor * src0,
  5660. const struct ggml_tensor * src1,
  5661. struct ggml_tensor * dst) {
  5662. switch (src0->type) {
  5663. case GGML_TYPE_F16:
  5664. {
  5665. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  5666. } break;
  5667. case GGML_TYPE_F32:
  5668. {
  5669. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  5670. } break;
  5671. case GGML_TYPE_Q4_0:
  5672. case GGML_TYPE_Q4_1:
  5673. case GGML_TYPE_I8:
  5674. case GGML_TYPE_I16:
  5675. case GGML_TYPE_I32:
  5676. case GGML_TYPE_COUNT:
  5677. {
  5678. GGML_ASSERT(false);
  5679. } break;
  5680. }
  5681. }
  5682. // ggml_compute_forward_conv_1d_1s
  5683. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  5684. const struct ggml_compute_params * params,
  5685. const struct ggml_tensor * src0,
  5686. const struct ggml_tensor * src1,
  5687. struct ggml_tensor * dst) {
  5688. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5689. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5690. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5691. int64_t t0 = ggml_perf_time_us();
  5692. UNUSED(t0);
  5693. const int ne00 = src0->ne[0];
  5694. const int ne01 = src0->ne[1];
  5695. const int ne02 = src0->ne[2];
  5696. //const int ne03 = src0->ne[3];
  5697. const int ne10 = src1->ne[0];
  5698. const int ne11 = src1->ne[1];
  5699. //const int ne12 = src1->ne[2];
  5700. //const int ne13 = src1->ne[3];
  5701. //const int ne0 = dst->ne[0];
  5702. //const int ne1 = dst->ne[1];
  5703. //const int ne2 = dst->ne[2];
  5704. //const int ne3 = dst->ne[3];
  5705. //const int ne = ne0*ne1*ne2*ne3;
  5706. const int nb00 = src0->nb[0];
  5707. const int nb01 = src0->nb[1];
  5708. const int nb02 = src0->nb[2];
  5709. //const int nb03 = src0->nb[3];
  5710. const int nb10 = src1->nb[0];
  5711. const int nb11 = src1->nb[1];
  5712. //const int nb12 = src1->nb[2];
  5713. //const int nb13 = src1->nb[3];
  5714. //const int nb0 = dst->nb[0];
  5715. const int nb1 = dst->nb[1];
  5716. //const int nb2 = dst->nb[2];
  5717. //const int nb3 = dst->nb[3];
  5718. const int ith = params->ith;
  5719. const int nth = params->nth;
  5720. const int nk = ne00;
  5721. const int nh = nk/2;
  5722. const int ew0 = ggml_up32(ne01);
  5723. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5724. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5725. GGML_ASSERT(nb10 == sizeof(float));
  5726. if (params->type == GGML_TASK_INIT) {
  5727. // TODO: fix this memset (wsize is overestimated)
  5728. memset(params->wdata, 0, params->wsize);
  5729. // prepare kernel data (src0)
  5730. {
  5731. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5732. for (int i02 = 0; i02 < ne02; i02++) {
  5733. for (int i01 = 0; i01 < ne01; i01++) {
  5734. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5735. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5736. for (int i00 = 0; i00 < ne00; i00++) {
  5737. dst_data[i00*ew0 + i01] = src[i00];
  5738. }
  5739. }
  5740. }
  5741. }
  5742. // prepare source data (src1)
  5743. {
  5744. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5745. for (int i11 = 0; i11 < ne11; i11++) {
  5746. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5747. ggml_fp16_t * dst_data = wdata;
  5748. for (int i10 = 0; i10 < ne10; i10++) {
  5749. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5750. }
  5751. }
  5752. }
  5753. return;
  5754. }
  5755. if (params->type == GGML_TASK_FINALIZE) {
  5756. return;
  5757. }
  5758. // total rows in dst
  5759. const int nr = ne02;
  5760. // rows per thread
  5761. const int dr = (nr + nth - 1)/nth;
  5762. // row range for this thread
  5763. const int ir0 = dr*ith;
  5764. const int ir1 = MIN(ir0 + dr, nr);
  5765. for (int i1 = ir0; i1 < ir1; i1++) {
  5766. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5767. for (int i0 = 0; i0 < ne10; ++i0) {
  5768. dst_data[i0] = 0;
  5769. for (int k = -nh; k <= nh; k++) {
  5770. float v = 0.0f;
  5771. ggml_vec_dot_f16(ew0, &v,
  5772. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5773. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5774. dst_data[i0] += v;
  5775. }
  5776. }
  5777. }
  5778. }
  5779. static void ggml_compute_forward_conv_1d_1s_f32(
  5780. const struct ggml_compute_params * params,
  5781. const struct ggml_tensor * src0,
  5782. const struct ggml_tensor * src1,
  5783. struct ggml_tensor * dst) {
  5784. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  5785. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5786. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5787. int64_t t0 = ggml_perf_time_us();
  5788. UNUSED(t0);
  5789. const int ne00 = src0->ne[0];
  5790. const int ne01 = src0->ne[1];
  5791. const int ne02 = src0->ne[2];
  5792. //const int ne03 = src0->ne[3];
  5793. const int ne10 = src1->ne[0];
  5794. const int ne11 = src1->ne[1];
  5795. //const int ne12 = src1->ne[2];
  5796. //const int ne13 = src1->ne[3];
  5797. //const int ne0 = dst->ne[0];
  5798. //const int ne1 = dst->ne[1];
  5799. //const int ne2 = dst->ne[2];
  5800. //const int ne3 = dst->ne[3];
  5801. //const int ne = ne0*ne1*ne2*ne3;
  5802. const int nb00 = src0->nb[0];
  5803. const int nb01 = src0->nb[1];
  5804. const int nb02 = src0->nb[2];
  5805. //const int nb03 = src0->nb[3];
  5806. const int nb10 = src1->nb[0];
  5807. const int nb11 = src1->nb[1];
  5808. //const int nb12 = src1->nb[2];
  5809. //const int nb13 = src1->nb[3];
  5810. //const int nb0 = dst->nb[0];
  5811. const int nb1 = dst->nb[1];
  5812. //const int nb2 = dst->nb[2];
  5813. //const int nb3 = dst->nb[3];
  5814. const int ith = params->ith;
  5815. const int nth = params->nth;
  5816. const int nk = ne00;
  5817. const int nh = nk/2;
  5818. const int ew0 = ggml_up32(ne01);
  5819. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5820. GGML_ASSERT(nb00 == sizeof(float));
  5821. GGML_ASSERT(nb10 == sizeof(float));
  5822. if (params->type == GGML_TASK_INIT) {
  5823. // TODO: fix this memset (wsize is overestimated)
  5824. memset(params->wdata, 0, params->wsize);
  5825. // prepare kernel data (src0)
  5826. {
  5827. float * const wdata = (float *) params->wdata + 0;
  5828. for (int i02 = 0; i02 < ne02; i02++) {
  5829. for (int i01 = 0; i01 < ne01; i01++) {
  5830. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  5831. float * dst_data = wdata + i02*ew0*ne00;
  5832. for (int i00 = 0; i00 < ne00; i00++) {
  5833. dst_data[i00*ew0 + i01] = src[i00];
  5834. }
  5835. }
  5836. }
  5837. }
  5838. // prepare source data (src1)
  5839. {
  5840. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  5841. for (int i11 = 0; i11 < ne11; i11++) {
  5842. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5843. float * dst_data = wdata;
  5844. for (int i10 = 0; i10 < ne10; i10++) {
  5845. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  5846. }
  5847. }
  5848. }
  5849. return;
  5850. }
  5851. if (params->type == GGML_TASK_FINALIZE) {
  5852. return;
  5853. }
  5854. // total rows in dst
  5855. const int nr = ne02;
  5856. // rows per thread
  5857. const int dr = (nr + nth - 1)/nth;
  5858. // row range for this thread
  5859. const int ir0 = dr*ith;
  5860. const int ir1 = MIN(ir0 + dr, nr);
  5861. for (int i1 = ir0; i1 < ir1; i1++) {
  5862. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5863. for (int i0 = 0; i0 < ne10; ++i0) {
  5864. dst_data[i0] = 0;
  5865. for (int k = -nh; k <= nh; k++) {
  5866. float v = 0.0f;
  5867. ggml_vec_dot_f32(ew0, &v,
  5868. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5869. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5870. dst_data[i0] += v;
  5871. }
  5872. }
  5873. }
  5874. }
  5875. static void ggml_compute_forward_conv_1d_1s(
  5876. const struct ggml_compute_params * params,
  5877. const struct ggml_tensor * src0,
  5878. const struct ggml_tensor * src1,
  5879. struct ggml_tensor * dst) {
  5880. switch (src0->type) {
  5881. case GGML_TYPE_F16:
  5882. {
  5883. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  5884. } break;
  5885. case GGML_TYPE_F32:
  5886. {
  5887. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  5888. } break;
  5889. case GGML_TYPE_Q4_0:
  5890. case GGML_TYPE_Q4_1:
  5891. case GGML_TYPE_I8:
  5892. case GGML_TYPE_I16:
  5893. case GGML_TYPE_I32:
  5894. case GGML_TYPE_COUNT:
  5895. {
  5896. GGML_ASSERT(false);
  5897. } break;
  5898. }
  5899. }
  5900. // ggml_compute_forward_conv_1d_2s
  5901. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  5902. const struct ggml_compute_params * params,
  5903. const struct ggml_tensor * src0,
  5904. const struct ggml_tensor * src1,
  5905. struct ggml_tensor * dst) {
  5906. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5907. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5908. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  5909. int64_t t0 = ggml_perf_time_us();
  5910. UNUSED(t0);
  5911. const int ne00 = src0->ne[0];
  5912. const int ne01 = src0->ne[1];
  5913. const int ne02 = src0->ne[2];
  5914. //const int ne03 = src0->ne[3];
  5915. const int ne10 = src1->ne[0];
  5916. const int ne11 = src1->ne[1];
  5917. //const int ne12 = src1->ne[2];
  5918. //const int ne13 = src1->ne[3];
  5919. //const int ne0 = dst->ne[0];
  5920. //const int ne1 = dst->ne[1];
  5921. //const int ne2 = dst->ne[2];
  5922. //const int ne3 = dst->ne[3];
  5923. //const int ne = ne0*ne1*ne2*ne3;
  5924. const int nb00 = src0->nb[0];
  5925. const int nb01 = src0->nb[1];
  5926. const int nb02 = src0->nb[2];
  5927. //const int nb03 = src0->nb[3];
  5928. const int nb10 = src1->nb[0];
  5929. const int nb11 = src1->nb[1];
  5930. //const int nb12 = src1->nb[2];
  5931. //const int nb13 = src1->nb[3];
  5932. //const int nb0 = dst->nb[0];
  5933. const int nb1 = dst->nb[1];
  5934. //const int nb2 = dst->nb[2];
  5935. //const int nb3 = dst->nb[3];
  5936. const int ith = params->ith;
  5937. const int nth = params->nth;
  5938. const int nk = ne00;
  5939. const int nh = nk/2;
  5940. const int ew0 = ggml_up32(ne01);
  5941. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  5942. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5943. GGML_ASSERT(nb10 == sizeof(float));
  5944. if (params->type == GGML_TASK_INIT) {
  5945. // TODO: fix this memset (wsize is overestimated)
  5946. memset(params->wdata, 0, params->wsize);
  5947. // prepare kernel data (src0)
  5948. {
  5949. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  5950. for (int i02 = 0; i02 < ne02; i02++) {
  5951. for (int i01 = 0; i01 < ne01; i01++) {
  5952. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  5953. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  5954. for (int i00 = 0; i00 < ne00; i00++) {
  5955. dst_data[i00*ew0 + i01] = src[i00];
  5956. }
  5957. }
  5958. }
  5959. }
  5960. // prepare source data (src1)
  5961. {
  5962. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  5963. for (int i11 = 0; i11 < ne11; i11++) {
  5964. const float * const src = (float *)((char *) src1->data + i11*nb11);
  5965. ggml_fp16_t * dst_data = wdata;
  5966. for (int i10 = 0; i10 < ne10; i10++) {
  5967. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  5968. }
  5969. }
  5970. }
  5971. return;
  5972. }
  5973. if (params->type == GGML_TASK_FINALIZE) {
  5974. return;
  5975. }
  5976. // total rows in dst
  5977. const int nr = ne02;
  5978. // rows per thread
  5979. const int dr = (nr + nth - 1)/nth;
  5980. // row range for this thread
  5981. const int ir0 = dr*ith;
  5982. const int ir1 = MIN(ir0 + dr, nr);
  5983. for (int i1 = ir0; i1 < ir1; i1++) {
  5984. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  5985. for (int i0 = 0; i0 < ne10; i0 += 2) {
  5986. dst_data[i0/2] = 0;
  5987. for (int k = -nh; k <= nh; k++) {
  5988. float v = 0.0f;
  5989. ggml_vec_dot_f16(ew0, &v,
  5990. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  5991. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  5992. dst_data[i0/2] += v;
  5993. }
  5994. }
  5995. }
  5996. }
  5997. static void ggml_compute_forward_conv_1d_2s_f32(
  5998. const struct ggml_compute_params * params,
  5999. const struct ggml_tensor * src0,
  6000. const struct ggml_tensor * src1,
  6001. struct ggml_tensor * dst) {
  6002. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  6003. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6004. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  6005. int64_t t0 = ggml_perf_time_us();
  6006. UNUSED(t0);
  6007. const int ne00 = src0->ne[0];
  6008. const int ne01 = src0->ne[1];
  6009. const int ne02 = src0->ne[2];
  6010. //const int ne03 = src0->ne[3];
  6011. const int ne10 = src1->ne[0];
  6012. const int ne11 = src1->ne[1];
  6013. //const int ne12 = src1->ne[2];
  6014. //const int ne13 = src1->ne[3];
  6015. //const int ne0 = dst->ne[0];
  6016. //const int ne1 = dst->ne[1];
  6017. //const int ne2 = dst->ne[2];
  6018. //const int ne3 = dst->ne[3];
  6019. //const int ne = ne0*ne1*ne2*ne3;
  6020. const int nb00 = src0->nb[0];
  6021. const int nb01 = src0->nb[1];
  6022. const int nb02 = src0->nb[2];
  6023. //const int nb03 = src0->nb[3];
  6024. const int nb10 = src1->nb[0];
  6025. const int nb11 = src1->nb[1];
  6026. //const int nb12 = src1->nb[2];
  6027. //const int nb13 = src1->nb[3];
  6028. //const int nb0 = dst->nb[0];
  6029. const int nb1 = dst->nb[1];
  6030. //const int nb2 = dst->nb[2];
  6031. //const int nb3 = dst->nb[3];
  6032. const int ith = params->ith;
  6033. const int nth = params->nth;
  6034. const int nk = ne00;
  6035. const int nh = nk/2;
  6036. const int ew0 = ggml_up32(ne01);
  6037. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  6038. GGML_ASSERT(nb00 == sizeof(float));
  6039. GGML_ASSERT(nb10 == sizeof(float));
  6040. if (params->type == GGML_TASK_INIT) {
  6041. // TODO: fix this memset (wsize is overestimated)
  6042. memset(params->wdata, 0, params->wsize);
  6043. // prepare kernel data (src0)
  6044. {
  6045. float * const wdata = (float *) params->wdata + 0;
  6046. for (int i02 = 0; i02 < ne02; i02++) {
  6047. for (int i01 = 0; i01 < ne01; i01++) {
  6048. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  6049. float * dst_data = wdata + i02*ew0*ne00;
  6050. for (int i00 = 0; i00 < ne00; i00++) {
  6051. dst_data[i00*ew0 + i01] = src[i00];
  6052. }
  6053. }
  6054. }
  6055. }
  6056. // prepare source data (src1)
  6057. {
  6058. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  6059. for (int i11 = 0; i11 < ne11; i11++) {
  6060. const float * const src = (float *)((char *) src1->data + i11*nb11);
  6061. float * dst_data = wdata;
  6062. for (int i10 = 0; i10 < ne10; i10++) {
  6063. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  6064. }
  6065. }
  6066. }
  6067. return;
  6068. }
  6069. if (params->type == GGML_TASK_FINALIZE) {
  6070. return;
  6071. }
  6072. // total rows in dst
  6073. const int nr = ne02;
  6074. // rows per thread
  6075. const int dr = (nr + nth - 1)/nth;
  6076. // row range for this thread
  6077. const int ir0 = dr*ith;
  6078. const int ir1 = MIN(ir0 + dr, nr);
  6079. for (int i1 = ir0; i1 < ir1; i1++) {
  6080. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  6081. for (int i0 = 0; i0 < ne10; i0 += 2) {
  6082. dst_data[i0/2] = 0;
  6083. for (int k = -nh; k <= nh; k++) {
  6084. float v = 0.0f;
  6085. ggml_vec_dot_f32(ew0, &v,
  6086. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  6087. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  6088. dst_data[i0/2] += v;
  6089. }
  6090. }
  6091. }
  6092. }
  6093. static void ggml_compute_forward_conv_1d_2s(
  6094. const struct ggml_compute_params * params,
  6095. const struct ggml_tensor * src0,
  6096. const struct ggml_tensor * src1,
  6097. struct ggml_tensor * dst) {
  6098. switch (src0->type) {
  6099. case GGML_TYPE_F16:
  6100. {
  6101. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  6102. } break;
  6103. case GGML_TYPE_F32:
  6104. {
  6105. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  6106. } break;
  6107. case GGML_TYPE_Q4_0:
  6108. case GGML_TYPE_Q4_1:
  6109. case GGML_TYPE_I8:
  6110. case GGML_TYPE_I16:
  6111. case GGML_TYPE_I32:
  6112. case GGML_TYPE_COUNT:
  6113. {
  6114. GGML_ASSERT(false);
  6115. } break;
  6116. }
  6117. }
  6118. // ggml_compute_forward_flash_attn
  6119. static void ggml_compute_forward_flash_attn_f32(
  6120. const struct ggml_compute_params * params,
  6121. const struct ggml_tensor * q,
  6122. const struct ggml_tensor * k,
  6123. const struct ggml_tensor * v,
  6124. const bool masked,
  6125. struct ggml_tensor * dst) {
  6126. int64_t t0 = ggml_perf_time_us();
  6127. UNUSED(t0);
  6128. const int neq0 = q->ne[0];
  6129. const int neq1 = q->ne[1];
  6130. const int neq2 = q->ne[2];
  6131. const int neq3 = q->ne[3];
  6132. const int nek0 = k->ne[0];
  6133. const int nek1 = k->ne[1];
  6134. //const int nek2 = k->ne[2];
  6135. //const int nek3 = k->ne[3];
  6136. //const int nev0 = v->ne[0];
  6137. const int nev1 = v->ne[1];
  6138. //const int nev2 = v->ne[2];
  6139. //const int nev3 = v->ne[3];
  6140. const int ne0 = dst->ne[0];
  6141. const int ne1 = dst->ne[1];
  6142. //const int ne2 = dst->ne[2];
  6143. //const int ne3 = dst->ne[3];
  6144. const int nbk0 = k->nb[0];
  6145. const int nbk1 = k->nb[1];
  6146. const int nbk2 = k->nb[2];
  6147. const int nbk3 = k->nb[3];
  6148. const int nbq0 = q->nb[0];
  6149. const int nbq1 = q->nb[1];
  6150. const int nbq2 = q->nb[2];
  6151. const int nbq3 = q->nb[3];
  6152. const int nbv0 = v->nb[0];
  6153. const int nbv1 = v->nb[1];
  6154. const int nbv2 = v->nb[2];
  6155. const int nbv3 = v->nb[3];
  6156. const int nb0 = dst->nb[0];
  6157. const int nb1 = dst->nb[1];
  6158. const int nb2 = dst->nb[2];
  6159. const int nb3 = dst->nb[3];
  6160. const int ith = params->ith;
  6161. const int nth = params->nth;
  6162. const int D = neq0;
  6163. const int N = neq1;
  6164. const int P = nek1 - N;
  6165. const int M = P + N;
  6166. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6167. GGML_ASSERT(ne0 == D);
  6168. GGML_ASSERT(ne1 == N);
  6169. GGML_ASSERT(P >= 0);
  6170. GGML_ASSERT(nbq0 == sizeof(float));
  6171. GGML_ASSERT(nbk0 == sizeof(float));
  6172. GGML_ASSERT(nbv0 == sizeof(float));
  6173. GGML_ASSERT(neq0 == D);
  6174. GGML_ASSERT(nek0 == D);
  6175. GGML_ASSERT(nev1 == D);
  6176. GGML_ASSERT(neq1 == N);
  6177. GGML_ASSERT(nek1 == N + P);
  6178. GGML_ASSERT(nev1 == D);
  6179. // dst cannot be transposed or permuted
  6180. GGML_ASSERT(nb0 == sizeof(float));
  6181. GGML_ASSERT(nb0 <= nb1);
  6182. GGML_ASSERT(nb1 <= nb2);
  6183. GGML_ASSERT(nb2 <= nb3);
  6184. if (params->type == GGML_TASK_INIT) {
  6185. return;
  6186. }
  6187. if (params->type == GGML_TASK_FINALIZE) {
  6188. return;
  6189. }
  6190. // parallelize by q rows using ggml_vec_dot_f32
  6191. // total rows in q
  6192. const int nr = neq1*neq2*neq3;
  6193. // rows per thread
  6194. const int dr = (nr + nth - 1)/nth;
  6195. // row range for this thread
  6196. const int ir0 = dr*ith;
  6197. const int ir1 = MIN(ir0 + dr, nr);
  6198. const float scale = 1.0f/sqrtf(D);
  6199. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6200. for (int ir = ir0; ir < ir1; ++ir) {
  6201. // q indices
  6202. const int iq3 = ir/(neq2*neq1);
  6203. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6204. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6205. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  6206. for (int i = M; i < Mup; ++i) {
  6207. S[i] = -INFINITY;
  6208. }
  6209. for (int ic = 0; ic < nek1; ++ic) {
  6210. // k indices
  6211. const int ik3 = iq3;
  6212. const int ik2 = iq2;
  6213. const int ik1 = ic;
  6214. // S indices
  6215. const int i1 = ik1;
  6216. ggml_vec_dot_f32(neq0,
  6217. S + i1,
  6218. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6219. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6220. }
  6221. // scale
  6222. ggml_vec_scale_f32(nek1, S, scale);
  6223. if (masked) {
  6224. for (int i = P; i < M; i++) {
  6225. if (i > P + iq1) {
  6226. S[i] = -INFINITY;
  6227. }
  6228. }
  6229. }
  6230. // softmax
  6231. {
  6232. float max = -INFINITY;
  6233. ggml_vec_max_f32(M, &max, S);
  6234. ggml_float sum = 0.0;
  6235. {
  6236. #ifdef GGML_SOFT_MAX_ACCELERATE
  6237. max = -max;
  6238. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6239. vvexpf(S, S, &Mup);
  6240. ggml_vec_sum_f32(Mup, &sum, S);
  6241. #else
  6242. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6243. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6244. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6245. float * SS = S + i;
  6246. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6247. if (SS[j] == -INFINITY) {
  6248. SS[j] = 0.0f;
  6249. } else {
  6250. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6251. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6252. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6253. sump[j] += (ggml_float)val;
  6254. SS[j] = val;
  6255. }
  6256. }
  6257. }
  6258. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6259. sum += sump[i];
  6260. }
  6261. #endif
  6262. }
  6263. assert(sum > 0.0);
  6264. sum = 1.0/sum;
  6265. ggml_vec_scale_f32(M, S, sum);
  6266. #ifndef NDEBUG
  6267. for (int i = 0; i < M; ++i) {
  6268. assert(!isnan(S[i]));
  6269. assert(!isinf(S[i]));
  6270. }
  6271. #endif
  6272. }
  6273. for (int ic = 0; ic < nev1; ++ic) {
  6274. // dst indices
  6275. const int i1 = iq1;
  6276. const int i2 = iq2;
  6277. const int i3 = iq3;
  6278. ggml_vec_dot_f32(nek1,
  6279. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6280. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6281. S);
  6282. }
  6283. }
  6284. }
  6285. static void ggml_compute_forward_flash_attn_f16(
  6286. const struct ggml_compute_params * params,
  6287. const struct ggml_tensor * q,
  6288. const struct ggml_tensor * k,
  6289. const struct ggml_tensor * v,
  6290. const bool masked,
  6291. struct ggml_tensor * dst) {
  6292. int64_t t0 = ggml_perf_time_us();
  6293. UNUSED(t0);
  6294. const int neq0 = q->ne[0];
  6295. const int neq1 = q->ne[1];
  6296. const int neq2 = q->ne[2];
  6297. const int neq3 = q->ne[3];
  6298. const int nek0 = k->ne[0];
  6299. const int nek1 = k->ne[1];
  6300. //const int nek2 = k->ne[2];
  6301. //const int nek3 = k->ne[3];
  6302. //const int nev0 = v->ne[0];
  6303. const int nev1 = v->ne[1];
  6304. //const int nev2 = v->ne[2];
  6305. //const int nev3 = v->ne[3];
  6306. const int ne0 = dst->ne[0];
  6307. const int ne1 = dst->ne[1];
  6308. //const int ne2 = dst->ne[2];
  6309. //const int ne3 = dst->ne[3];
  6310. const int nbk0 = k->nb[0];
  6311. const int nbk1 = k->nb[1];
  6312. const int nbk2 = k->nb[2];
  6313. const int nbk3 = k->nb[3];
  6314. const int nbq0 = q->nb[0];
  6315. const int nbq1 = q->nb[1];
  6316. const int nbq2 = q->nb[2];
  6317. const int nbq3 = q->nb[3];
  6318. const int nbv0 = v->nb[0];
  6319. const int nbv1 = v->nb[1];
  6320. const int nbv2 = v->nb[2];
  6321. const int nbv3 = v->nb[3];
  6322. const int nb0 = dst->nb[0];
  6323. const int nb1 = dst->nb[1];
  6324. const int nb2 = dst->nb[2];
  6325. const int nb3 = dst->nb[3];
  6326. const int ith = params->ith;
  6327. const int nth = params->nth;
  6328. const int D = neq0;
  6329. const int N = neq1;
  6330. const int P = nek1 - N;
  6331. const int M = P + N;
  6332. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  6333. GGML_ASSERT(ne0 == D);
  6334. GGML_ASSERT(ne1 == N);
  6335. GGML_ASSERT(P >= 0);
  6336. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  6337. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  6338. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  6339. GGML_ASSERT(neq0 == D);
  6340. GGML_ASSERT(nek0 == D);
  6341. GGML_ASSERT(nev1 == D);
  6342. GGML_ASSERT(neq1 == N);
  6343. GGML_ASSERT(nek1 == N + P);
  6344. GGML_ASSERT(nev1 == D);
  6345. // dst cannot be transposed or permuted
  6346. GGML_ASSERT(nb0 == sizeof(float));
  6347. GGML_ASSERT(nb0 <= nb1);
  6348. GGML_ASSERT(nb1 <= nb2);
  6349. GGML_ASSERT(nb2 <= nb3);
  6350. if (params->type == GGML_TASK_INIT) {
  6351. return;
  6352. }
  6353. if (params->type == GGML_TASK_FINALIZE) {
  6354. return;
  6355. }
  6356. // parallelize by q rows using ggml_vec_dot_f32
  6357. // total rows in q
  6358. const int nr = neq1*neq2*neq3;
  6359. // rows per thread
  6360. const int dr = (nr + nth - 1)/nth;
  6361. // row range for this thread
  6362. const int ir0 = dr*ith;
  6363. const int ir1 = MIN(ir0 + dr, nr);
  6364. const float scale = 1.0f/sqrtf(D);
  6365. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  6366. for (int ir = ir0; ir < ir1; ++ir) {
  6367. // q indices
  6368. const int iq3 = ir/(neq2*neq1);
  6369. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  6370. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  6371. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  6372. for (int i = M; i < Mup; ++i) {
  6373. S[i] = -INFINITY;
  6374. }
  6375. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  6376. for (int ic = 0; ic < nek1; ++ic) {
  6377. // k indices
  6378. const int ik3 = iq3;
  6379. const int ik2 = iq2;
  6380. const int ik1 = ic;
  6381. // S indices
  6382. const int i1 = ik1;
  6383. ggml_vec_dot_f16(neq0,
  6384. S + i1,
  6385. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6386. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6387. }
  6388. } else {
  6389. for (int ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  6390. // k indices
  6391. const int ik3 = iq3;
  6392. const int ik2 = iq2;
  6393. const int ik1 = ic;
  6394. // S indices
  6395. const int i1 = ik1;
  6396. ggml_vec_dot_f16_unroll(neq0, nbk1,
  6397. S + i1,
  6398. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  6399. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  6400. }
  6401. }
  6402. // scale
  6403. ggml_vec_scale_f32(nek1, S, scale);
  6404. if (masked) {
  6405. for (int i = P; i < M; i++) {
  6406. if (i > P + iq1) {
  6407. S[i] = -INFINITY;
  6408. }
  6409. }
  6410. }
  6411. // softmax
  6412. {
  6413. float max = -INFINITY;
  6414. ggml_vec_max_f32(M, &max, S);
  6415. ggml_float sum = 0.0;
  6416. {
  6417. #ifdef GGML_SOFT_MAX_ACCELERATE
  6418. max = -max;
  6419. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  6420. vvexpf(S, S, &Mup);
  6421. ggml_vec_sum_f32(Mup, &sum, S);
  6422. #else
  6423. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  6424. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  6425. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  6426. float * SS = S + i;
  6427. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  6428. if (SS[j] == -INFINITY) {
  6429. SS[j] = 0.0f;
  6430. } else {
  6431. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  6432. memcpy(&scvt[j], &s, sizeof(uint16_t));
  6433. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  6434. sump[j] += (ggml_float)val;
  6435. SS[j] = val;
  6436. }
  6437. }
  6438. }
  6439. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  6440. sum += sump[i];
  6441. }
  6442. #endif
  6443. }
  6444. assert(sum > 0.0);
  6445. sum = 1.0/sum;
  6446. ggml_vec_scale_f32(M, S, sum);
  6447. #ifndef NDEBUG
  6448. for (int i = 0; i < M; ++i) {
  6449. assert(!isnan(S[i]));
  6450. assert(!isinf(S[i]));
  6451. }
  6452. #endif
  6453. }
  6454. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  6455. for (int i = 0; i < M; i++) {
  6456. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6457. }
  6458. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  6459. for (int ic = 0; ic < nev1; ++ic) {
  6460. // dst indices
  6461. const int i1 = iq1;
  6462. const int i2 = iq2;
  6463. const int i3 = iq3;
  6464. ggml_vec_dot_f16(nek1,
  6465. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6466. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6467. S16);
  6468. }
  6469. } else {
  6470. for (int ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  6471. // dst indices
  6472. const int i1 = iq1;
  6473. const int i2 = iq2;
  6474. const int i3 = iq3;
  6475. ggml_vec_dot_f16_unroll(nek1, nbv1,
  6476. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6477. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  6478. S16);
  6479. }
  6480. }
  6481. }
  6482. }
  6483. static void ggml_compute_forward_flash_attn(
  6484. const struct ggml_compute_params * params,
  6485. const struct ggml_tensor * q,
  6486. const struct ggml_tensor * k,
  6487. const struct ggml_tensor * v,
  6488. const bool masked,
  6489. struct ggml_tensor * dst) {
  6490. switch (q->type) {
  6491. case GGML_TYPE_F16:
  6492. {
  6493. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  6494. } break;
  6495. case GGML_TYPE_F32:
  6496. {
  6497. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  6498. } break;
  6499. case GGML_TYPE_Q4_0:
  6500. case GGML_TYPE_Q4_1:
  6501. case GGML_TYPE_I8:
  6502. case GGML_TYPE_I16:
  6503. case GGML_TYPE_I32:
  6504. case GGML_TYPE_COUNT:
  6505. {
  6506. GGML_ASSERT(false);
  6507. } break;
  6508. }
  6509. }
  6510. // ggml_compute_forward_flash_ff
  6511. static void ggml_compute_forward_flash_ff_f16(
  6512. const struct ggml_compute_params * params,
  6513. const struct ggml_tensor * a, // F16
  6514. const struct ggml_tensor * b0, // F16 fc_w
  6515. const struct ggml_tensor * b1, // F32 fc_b
  6516. const struct ggml_tensor * c0, // F16 proj_w
  6517. const struct ggml_tensor * c1, // F32 proj_b
  6518. struct ggml_tensor * dst) {
  6519. int64_t t0 = ggml_perf_time_us();
  6520. UNUSED(t0);
  6521. const int nea0 = a->ne[0];
  6522. const int nea1 = a->ne[1];
  6523. const int nea2 = a->ne[2];
  6524. const int nea3 = a->ne[3];
  6525. const int neb00 = b0->ne[0];
  6526. const int neb01 = b0->ne[1];
  6527. //const int neb02 = b0->ne[2];
  6528. //const int neb03 = b0->ne[3];
  6529. const int neb10 = b1->ne[0];
  6530. const int neb11 = b1->ne[1];
  6531. //const int neb12 = b1->ne[2];
  6532. //const int neb13 = b1->ne[3];
  6533. const int nec00 = c0->ne[0];
  6534. const int nec01 = c0->ne[1];
  6535. //const int nec02 = c0->ne[2];
  6536. //const int nec03 = c0->ne[3];
  6537. const int nec10 = c1->ne[0];
  6538. const int nec11 = c1->ne[1];
  6539. //const int nec12 = c1->ne[2];
  6540. //const int nec13 = c1->ne[3];
  6541. const int ne0 = dst->ne[0];
  6542. const int ne1 = dst->ne[1];
  6543. const int ne2 = dst->ne[2];
  6544. //const int ne3 = dst->ne[3];
  6545. const int nba0 = a->nb[0];
  6546. const int nba1 = a->nb[1];
  6547. const int nba2 = a->nb[2];
  6548. const int nba3 = a->nb[3];
  6549. const int nbb00 = b0->nb[0];
  6550. const int nbb01 = b0->nb[1];
  6551. const int nbb02 = b0->nb[2];
  6552. const int nbb03 = b0->nb[3];
  6553. const int nbb10 = b1->nb[0];
  6554. //const int nbb11 = b1->nb[1];
  6555. //const int nbb12 = b1->nb[2];
  6556. //const int nbb13 = b1->nb[3];
  6557. const int nbc00 = c0->nb[0];
  6558. const int nbc01 = c0->nb[1];
  6559. const int nbc02 = c0->nb[2];
  6560. const int nbc03 = c0->nb[3];
  6561. const int nbc10 = c1->nb[0];
  6562. //const int nbc11 = c1->nb[1];
  6563. //const int nbc12 = c1->nb[2];
  6564. //const int nbc13 = c1->nb[3];
  6565. const int nb0 = dst->nb[0];
  6566. const int nb1 = dst->nb[1];
  6567. const int nb2 = dst->nb[2];
  6568. const int nb3 = dst->nb[3];
  6569. const int ith = params->ith;
  6570. const int nth = params->nth;
  6571. const int D = nea0;
  6572. //const int N = nea1;
  6573. const int M = neb01;
  6574. GGML_ASSERT(ne0 == nea0);
  6575. GGML_ASSERT(ne1 == nea1);
  6576. GGML_ASSERT(ne2 == nea2);
  6577. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  6578. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  6579. GGML_ASSERT(nbb10 == sizeof(float));
  6580. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  6581. GGML_ASSERT(nbc10 == sizeof(float));
  6582. GGML_ASSERT(neb00 == D);
  6583. GGML_ASSERT(neb01 == M);
  6584. GGML_ASSERT(neb10 == M);
  6585. GGML_ASSERT(neb11 == 1);
  6586. GGML_ASSERT(nec00 == M);
  6587. GGML_ASSERT(nec01 == D);
  6588. GGML_ASSERT(nec10 == D);
  6589. GGML_ASSERT(nec11 == 1);
  6590. // dst cannot be transposed or permuted
  6591. GGML_ASSERT(nb0 == sizeof(float));
  6592. GGML_ASSERT(nb0 <= nb1);
  6593. GGML_ASSERT(nb1 <= nb2);
  6594. GGML_ASSERT(nb2 <= nb3);
  6595. if (params->type == GGML_TASK_INIT) {
  6596. return;
  6597. }
  6598. if (params->type == GGML_TASK_FINALIZE) {
  6599. return;
  6600. }
  6601. // parallelize by a rows using ggml_vec_dot_f32
  6602. // total rows in a
  6603. const int nr = nea1*nea2*nea3;
  6604. // rows per thread
  6605. const int dr = (nr + nth - 1)/nth;
  6606. // row range for this thread
  6607. const int ir0 = dr*ith;
  6608. const int ir1 = MIN(ir0 + dr, nr);
  6609. for (int ir = ir0; ir < ir1; ++ir) {
  6610. // a indices
  6611. const int ia3 = ir/(nea2*nea1);
  6612. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  6613. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  6614. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  6615. for (int ic = 0; ic < neb01; ++ic) {
  6616. // b0 indices
  6617. const int ib03 = ia3;
  6618. const int ib02 = ia2;
  6619. const int ib01 = ic;
  6620. // S indices
  6621. const int i1 = ib01;
  6622. ggml_vec_dot_f16(nea0,
  6623. S + i1,
  6624. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  6625. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  6626. }
  6627. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  6628. //ggml_vec_gelu_f32(neb01, S, S);
  6629. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  6630. for (int i = 0; i < M; i++) {
  6631. S16[i] = GGML_FP32_TO_FP16(S[i]);
  6632. }
  6633. ggml_vec_gelu_f16(neb01, S16, S16);
  6634. {
  6635. // dst indices
  6636. const int i1 = ia1;
  6637. const int i2 = ia2;
  6638. const int i3 = ia3;
  6639. for (int ic = 0; ic < nec01; ++ic) {
  6640. ggml_vec_dot_f16(neb01,
  6641. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6642. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  6643. S16);
  6644. }
  6645. ggml_vec_add_f32(nec01,
  6646. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6647. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  6648. (float *) c1->data);
  6649. }
  6650. }
  6651. }
  6652. static void ggml_compute_forward_flash_ff(
  6653. const struct ggml_compute_params * params,
  6654. const struct ggml_tensor * a,
  6655. const struct ggml_tensor * b0,
  6656. const struct ggml_tensor * b1,
  6657. const struct ggml_tensor * c0,
  6658. const struct ggml_tensor * c1,
  6659. struct ggml_tensor * dst) {
  6660. switch (b0->type) {
  6661. case GGML_TYPE_F16:
  6662. {
  6663. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  6664. } break;
  6665. case GGML_TYPE_F32:
  6666. {
  6667. GGML_ASSERT(false); // TODO
  6668. } break;
  6669. case GGML_TYPE_Q4_0:
  6670. case GGML_TYPE_Q4_1:
  6671. case GGML_TYPE_I8:
  6672. case GGML_TYPE_I16:
  6673. case GGML_TYPE_I32:
  6674. case GGML_TYPE_COUNT:
  6675. {
  6676. GGML_ASSERT(false);
  6677. } break;
  6678. }
  6679. }
  6680. /////////////////////////////////
  6681. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  6682. GGML_ASSERT(params);
  6683. switch (tensor->op) {
  6684. case GGML_OP_DUP:
  6685. {
  6686. ggml_compute_forward_dup(params, tensor->src0, tensor);
  6687. } break;
  6688. case GGML_OP_ADD:
  6689. {
  6690. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  6691. } break;
  6692. case GGML_OP_SUB:
  6693. {
  6694. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  6695. } break;
  6696. case GGML_OP_MUL:
  6697. {
  6698. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  6699. } break;
  6700. case GGML_OP_DIV:
  6701. {
  6702. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  6703. } break;
  6704. case GGML_OP_SQR:
  6705. {
  6706. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  6707. } break;
  6708. case GGML_OP_SQRT:
  6709. {
  6710. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  6711. } break;
  6712. case GGML_OP_SUM:
  6713. {
  6714. ggml_compute_forward_sum(params, tensor->src0, tensor);
  6715. } break;
  6716. case GGML_OP_MEAN:
  6717. {
  6718. ggml_compute_forward_mean(params, tensor->src0, tensor);
  6719. } break;
  6720. case GGML_OP_REPEAT:
  6721. {
  6722. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  6723. } break;
  6724. case GGML_OP_ABS:
  6725. {
  6726. ggml_compute_forward_abs(params, tensor->src0, tensor);
  6727. } break;
  6728. case GGML_OP_SGN:
  6729. {
  6730. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  6731. } break;
  6732. case GGML_OP_NEG:
  6733. {
  6734. ggml_compute_forward_neg(params, tensor->src0, tensor);
  6735. } break;
  6736. case GGML_OP_STEP:
  6737. {
  6738. ggml_compute_forward_step(params, tensor->src0, tensor);
  6739. } break;
  6740. case GGML_OP_RELU:
  6741. {
  6742. ggml_compute_forward_relu(params, tensor->src0, tensor);
  6743. } break;
  6744. case GGML_OP_GELU:
  6745. {
  6746. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  6747. } break;
  6748. case GGML_OP_SILU:
  6749. {
  6750. ggml_compute_forward_silu(params, tensor->src0, tensor);
  6751. } break;
  6752. case GGML_OP_NORM:
  6753. {
  6754. ggml_compute_forward_norm(params, tensor->src0, tensor);
  6755. } break;
  6756. case GGML_OP_RMS_NORM:
  6757. {
  6758. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  6759. } break;
  6760. case GGML_OP_MUL_MAT:
  6761. {
  6762. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  6763. } break;
  6764. case GGML_OP_SCALE:
  6765. {
  6766. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  6767. } break;
  6768. case GGML_OP_CPY:
  6769. {
  6770. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  6771. } break;
  6772. case GGML_OP_RESHAPE:
  6773. {
  6774. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  6775. } break;
  6776. case GGML_OP_VIEW:
  6777. {
  6778. ggml_compute_forward_view(params, tensor->src0);
  6779. } break;
  6780. case GGML_OP_PERMUTE:
  6781. {
  6782. ggml_compute_forward_permute(params, tensor->src0);
  6783. } break;
  6784. case GGML_OP_TRANSPOSE:
  6785. {
  6786. ggml_compute_forward_transpose(params, tensor->src0);
  6787. } break;
  6788. case GGML_OP_GET_ROWS:
  6789. {
  6790. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  6791. } break;
  6792. case GGML_OP_DIAG_MASK_INF:
  6793. {
  6794. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  6795. } break;
  6796. case GGML_OP_SOFT_MAX:
  6797. {
  6798. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  6799. } break;
  6800. case GGML_OP_ROPE:
  6801. {
  6802. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  6803. } break;
  6804. case GGML_OP_CONV_1D_1S:
  6805. {
  6806. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  6807. } break;
  6808. case GGML_OP_CONV_1D_2S:
  6809. {
  6810. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  6811. } break;
  6812. case GGML_OP_FLASH_ATTN:
  6813. {
  6814. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  6815. GGML_ASSERT(t == 0 || t == 1);
  6816. bool masked = t != 0;
  6817. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  6818. } break;
  6819. case GGML_OP_FLASH_FF:
  6820. {
  6821. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  6822. } break;
  6823. case GGML_OP_NONE:
  6824. {
  6825. // nop
  6826. } break;
  6827. case GGML_OP_COUNT:
  6828. {
  6829. GGML_ASSERT(false);
  6830. } break;
  6831. }
  6832. }
  6833. ////////////////////////////////////////////////////////////////////////////////
  6834. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  6835. struct ggml_tensor * src0 = tensor->src0;
  6836. struct ggml_tensor * src1 = tensor->src1;
  6837. switch (tensor->op) {
  6838. case GGML_OP_DUP:
  6839. {
  6840. if (src0->grad) {
  6841. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6842. }
  6843. } break;
  6844. case GGML_OP_ADD:
  6845. {
  6846. if (src0->grad) {
  6847. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6848. }
  6849. if (src1->grad) {
  6850. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  6851. }
  6852. } break;
  6853. case GGML_OP_SUB:
  6854. {
  6855. if (src0->grad) {
  6856. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  6857. }
  6858. if (src1->grad) {
  6859. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  6860. }
  6861. } break;
  6862. case GGML_OP_MUL:
  6863. {
  6864. if (src0->grad) {
  6865. src0->grad =
  6866. ggml_add_impl(ctx,
  6867. src0->grad,
  6868. ggml_mul(ctx, src1, tensor->grad),
  6869. inplace);
  6870. }
  6871. if (src1->grad) {
  6872. src1->grad =
  6873. ggml_add_impl(ctx,
  6874. src1->grad,
  6875. ggml_mul(ctx, src0, tensor->grad),
  6876. inplace);
  6877. }
  6878. } break;
  6879. case GGML_OP_DIV:
  6880. {
  6881. if (src0->grad) {
  6882. src0->grad =
  6883. ggml_add_impl(ctx,
  6884. src0->grad,
  6885. ggml_div(ctx, tensor->grad, src1),
  6886. inplace);
  6887. }
  6888. if (src1->grad) {
  6889. src1->grad =
  6890. ggml_sub_impl(ctx,
  6891. src1->grad,
  6892. ggml_mul(ctx,
  6893. tensor->grad,
  6894. ggml_div(ctx, tensor, src1)),
  6895. inplace);
  6896. }
  6897. } break;
  6898. case GGML_OP_SQR:
  6899. {
  6900. if (src0->grad) {
  6901. src0->grad =
  6902. ggml_add_impl(ctx,
  6903. src0->grad,
  6904. ggml_mul(ctx,
  6905. ggml_mul(ctx, src0, tensor->grad),
  6906. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  6907. inplace);
  6908. }
  6909. } break;
  6910. case GGML_OP_SQRT:
  6911. {
  6912. if (src0->grad) {
  6913. src0->grad =
  6914. ggml_add_impl(ctx,
  6915. src0->grad,
  6916. ggml_div(ctx,
  6917. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  6918. tensor),
  6919. inplace);
  6920. }
  6921. } break;
  6922. case GGML_OP_SUM:
  6923. {
  6924. if (src0->grad) {
  6925. src0->grad =
  6926. ggml_add_impl(ctx,
  6927. src0->grad,
  6928. ggml_repeat(ctx, tensor->grad, src0->grad),
  6929. inplace);
  6930. }
  6931. } break;
  6932. case GGML_OP_MEAN:
  6933. {
  6934. GGML_ASSERT(false); // TODO: implement
  6935. } break;
  6936. case GGML_OP_REPEAT:
  6937. {
  6938. if (src0->grad) {
  6939. src0->grad =
  6940. ggml_add_impl(ctx,
  6941. src0->grad,
  6942. ggml_sum(ctx, tensor->grad),
  6943. inplace);
  6944. }
  6945. } break;
  6946. case GGML_OP_ABS:
  6947. {
  6948. if (src0->grad) {
  6949. src0->grad =
  6950. ggml_add_impl(ctx,
  6951. src0->grad,
  6952. ggml_mul(ctx,
  6953. ggml_sgn(ctx, src0),
  6954. tensor->grad),
  6955. inplace);
  6956. }
  6957. } break;
  6958. case GGML_OP_SGN:
  6959. {
  6960. if (src0->grad) {
  6961. // noop
  6962. }
  6963. } break;
  6964. case GGML_OP_NEG:
  6965. {
  6966. if (src0->grad) {
  6967. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  6968. }
  6969. } break;
  6970. case GGML_OP_STEP:
  6971. {
  6972. if (src0->grad) {
  6973. // noop
  6974. }
  6975. } break;
  6976. case GGML_OP_RELU:
  6977. {
  6978. if (src0->grad) {
  6979. src0->grad = ggml_sub_impl(ctx,
  6980. src0->grad,
  6981. ggml_mul(ctx,
  6982. ggml_step(ctx, src0),
  6983. tensor->grad),
  6984. inplace);
  6985. }
  6986. } break;
  6987. case GGML_OP_GELU:
  6988. {
  6989. GGML_ASSERT(false); // TODO: not implemented
  6990. } break;
  6991. case GGML_OP_SILU:
  6992. {
  6993. GGML_ASSERT(false); // TODO: not implemented
  6994. } break;
  6995. case GGML_OP_NORM:
  6996. {
  6997. GGML_ASSERT(false); // TODO: not implemented
  6998. } break;
  6999. case GGML_OP_RMS_NORM:
  7000. {
  7001. GGML_ASSERT(false); // TODO: not implemented
  7002. } break;
  7003. case GGML_OP_MUL_MAT:
  7004. {
  7005. if (src0->grad) {
  7006. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  7007. GGML_ASSERT(false);
  7008. }
  7009. if (src1->grad) {
  7010. src1->grad =
  7011. ggml_add_impl(ctx,
  7012. src1->grad,
  7013. // TODO: fix transpose, the node will break the graph connections
  7014. ggml_mul_mat(ctx, ggml_transpose(ctx, src0), tensor->grad),
  7015. inplace);
  7016. }
  7017. } break;
  7018. case GGML_OP_SCALE:
  7019. {
  7020. GGML_ASSERT(false); // TODO: not implemented
  7021. } break;
  7022. case GGML_OP_CPY:
  7023. {
  7024. GGML_ASSERT(false); // TODO: not implemented
  7025. } break;
  7026. case GGML_OP_RESHAPE:
  7027. {
  7028. GGML_ASSERT(false); // TODO: not implemented
  7029. } break;
  7030. case GGML_OP_VIEW:
  7031. {
  7032. GGML_ASSERT(false); // not supported
  7033. } break;
  7034. case GGML_OP_PERMUTE:
  7035. {
  7036. GGML_ASSERT(false); // TODO: not implemented
  7037. } break;
  7038. case GGML_OP_TRANSPOSE:
  7039. {
  7040. GGML_ASSERT(false); // TODO: not implemented
  7041. } break;
  7042. case GGML_OP_GET_ROWS:
  7043. {
  7044. GGML_ASSERT(false); // TODO: not implemented
  7045. } break;
  7046. case GGML_OP_DIAG_MASK_INF:
  7047. {
  7048. GGML_ASSERT(false); // TODO: not implemented
  7049. } break;
  7050. case GGML_OP_SOFT_MAX:
  7051. {
  7052. GGML_ASSERT(false); // TODO: not implemented
  7053. } break;
  7054. case GGML_OP_ROPE:
  7055. {
  7056. GGML_ASSERT(false); // TODO: not implemented
  7057. } break;
  7058. case GGML_OP_CONV_1D_1S:
  7059. {
  7060. GGML_ASSERT(false); // TODO: not implemented
  7061. } break;
  7062. case GGML_OP_CONV_1D_2S:
  7063. {
  7064. GGML_ASSERT(false); // TODO: not implemented
  7065. } break;
  7066. case GGML_OP_FLASH_ATTN:
  7067. {
  7068. GGML_ASSERT(false); // not supported
  7069. } break;
  7070. case GGML_OP_FLASH_FF:
  7071. {
  7072. GGML_ASSERT(false); // not supported
  7073. } break;
  7074. case GGML_OP_NONE:
  7075. {
  7076. // nop
  7077. } break;
  7078. case GGML_OP_COUNT:
  7079. {
  7080. GGML_ASSERT(false);
  7081. } break;
  7082. }
  7083. }
  7084. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  7085. if (node->grad == NULL) {
  7086. // this usually happens when we generate intermediate nodes from constants in the backward pass
  7087. // it can also happen during forward pass, if the user performs computations with constants
  7088. if (node->op != GGML_OP_NONE) {
  7089. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  7090. }
  7091. }
  7092. // check if already visited
  7093. for (int i = 0; i < cgraph->n_nodes; i++) {
  7094. if (cgraph->nodes[i] == node) {
  7095. return;
  7096. }
  7097. }
  7098. for (int i = 0; i < cgraph->n_leafs; i++) {
  7099. if (cgraph->leafs[i] == node) {
  7100. return;
  7101. }
  7102. }
  7103. if (node->src0) {
  7104. ggml_visit_parents(cgraph, node->src0);
  7105. }
  7106. if (node->src1) {
  7107. ggml_visit_parents(cgraph, node->src1);
  7108. }
  7109. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  7110. if (node->opt[i]) {
  7111. ggml_visit_parents(cgraph, node->opt[i]);
  7112. }
  7113. }
  7114. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  7115. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  7116. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  7117. cgraph->leafs[cgraph->n_leafs] = node;
  7118. cgraph->n_leafs++;
  7119. } else {
  7120. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  7121. cgraph->nodes[cgraph->n_nodes] = node;
  7122. cgraph->grads[cgraph->n_nodes] = node->grad;
  7123. cgraph->n_nodes++;
  7124. }
  7125. }
  7126. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  7127. if (!expand) {
  7128. cgraph->n_nodes = 0;
  7129. cgraph->n_leafs = 0;
  7130. }
  7131. const int n0 = cgraph->n_nodes;
  7132. UNUSED(n0);
  7133. ggml_visit_parents(cgraph, tensor);
  7134. const int n_new = cgraph->n_nodes - n0;
  7135. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  7136. if (n_new > 0) {
  7137. // the last added node should always be starting point
  7138. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  7139. }
  7140. }
  7141. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  7142. ggml_build_forward_impl(cgraph, tensor, true);
  7143. }
  7144. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  7145. struct ggml_cgraph result = {
  7146. /*.n_nodes =*/ 0,
  7147. /*.n_leafs =*/ 0,
  7148. /*.n_threads =*/ 0,
  7149. /*.work_size =*/ 0,
  7150. /*.work =*/ NULL,
  7151. /*.nodes =*/ { NULL },
  7152. /*.grads =*/ { NULL },
  7153. /*.leafs =*/ { NULL },
  7154. /*.perf_runs =*/ 0,
  7155. /*.perf_cycles =*/ 0,
  7156. /*.perf_time_us =*/ 0,
  7157. };
  7158. ggml_build_forward_impl(&result, tensor, false);
  7159. return result;
  7160. }
  7161. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  7162. struct ggml_cgraph result = *gf;
  7163. GGML_ASSERT(gf->n_nodes > 0);
  7164. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  7165. if (keep) {
  7166. for (int i = 0; i < gf->n_nodes; i++) {
  7167. struct ggml_tensor * node = gf->nodes[i];
  7168. if (node->grad) {
  7169. node->grad = ggml_dup_tensor(ctx, node);
  7170. gf->grads[i] = node->grad;
  7171. }
  7172. }
  7173. }
  7174. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7175. struct ggml_tensor * node = gf->nodes[i];
  7176. // because we detached the grad nodes from the original graph, we can afford inplace operations
  7177. if (node->grad) {
  7178. ggml_compute_backward(ctx, node, keep);
  7179. }
  7180. }
  7181. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  7182. struct ggml_tensor * node = gf->nodes[i];
  7183. if (node->is_param) {
  7184. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  7185. ggml_build_forward_impl(&result, node->grad, true);
  7186. }
  7187. }
  7188. return result;
  7189. }
  7190. //
  7191. // thread data
  7192. //
  7193. // synchronization is done via busy loops
  7194. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  7195. //
  7196. #ifdef __APPLE__
  7197. //#include <os/lock.h>
  7198. //
  7199. //typedef os_unfair_lock ggml_lock_t;
  7200. //
  7201. //#define ggml_lock_init(x) UNUSED(x)
  7202. //#define ggml_lock_destroy(x) UNUSED(x)
  7203. //#define ggml_lock_lock os_unfair_lock_lock
  7204. //#define ggml_lock_unlock os_unfair_lock_unlock
  7205. //
  7206. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  7207. typedef int ggml_lock_t;
  7208. #define ggml_lock_init(x) UNUSED(x)
  7209. #define ggml_lock_destroy(x) UNUSED(x)
  7210. #define ggml_lock_lock(x) UNUSED(x)
  7211. #define ggml_lock_unlock(x) UNUSED(x)
  7212. #define GGML_LOCK_INITIALIZER 0
  7213. typedef pthread_t ggml_thread_t;
  7214. #define ggml_thread_create pthread_create
  7215. #define ggml_thread_join pthread_join
  7216. #else
  7217. //typedef pthread_spinlock_t ggml_lock_t;
  7218. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  7219. //#define ggml_lock_destroy pthread_spin_destroy
  7220. //#define ggml_lock_lock pthread_spin_lock
  7221. //#define ggml_lock_unlock pthread_spin_unlock
  7222. typedef int ggml_lock_t;
  7223. #define ggml_lock_init(x) UNUSED(x)
  7224. #define ggml_lock_destroy(x) UNUSED(x)
  7225. #define ggml_lock_lock(x) UNUSED(x)
  7226. #define ggml_lock_unlock(x) UNUSED(x)
  7227. #define GGML_LOCK_INITIALIZER 0
  7228. typedef pthread_t ggml_thread_t;
  7229. #define ggml_thread_create pthread_create
  7230. #define ggml_thread_join pthread_join
  7231. #endif
  7232. struct ggml_compute_state_shared {
  7233. ggml_lock_t spin;
  7234. int n_threads;
  7235. // synchronization primitives
  7236. atomic_int n_ready;
  7237. atomic_bool has_work;
  7238. atomic_bool stop; // stop all threads
  7239. };
  7240. struct ggml_compute_state {
  7241. ggml_thread_t thrd;
  7242. struct ggml_compute_params params;
  7243. struct ggml_tensor * node;
  7244. struct ggml_compute_state_shared * shared;
  7245. };
  7246. static thread_ret_t ggml_graph_compute_thread(void * data) {
  7247. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  7248. const int n_threads = state->shared->n_threads;
  7249. while (true) {
  7250. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  7251. atomic_store(&state->shared->has_work, false);
  7252. } else {
  7253. while (atomic_load(&state->shared->has_work)) {
  7254. if (atomic_load(&state->shared->stop)) {
  7255. return 0;
  7256. }
  7257. ggml_lock_lock (&state->shared->spin);
  7258. ggml_lock_unlock(&state->shared->spin);
  7259. }
  7260. }
  7261. atomic_fetch_sub(&state->shared->n_ready, 1);
  7262. // wait for work
  7263. while (!atomic_load(&state->shared->has_work)) {
  7264. if (atomic_load(&state->shared->stop)) {
  7265. return 0;
  7266. }
  7267. ggml_lock_lock (&state->shared->spin);
  7268. ggml_lock_unlock(&state->shared->spin);
  7269. }
  7270. // check if we should stop
  7271. if (atomic_load(&state->shared->stop)) {
  7272. break;
  7273. }
  7274. if (state->node) {
  7275. if (state->params.ith < state->params.nth) {
  7276. ggml_compute_forward(&state->params, state->node);
  7277. }
  7278. state->node = NULL;
  7279. } else {
  7280. break;
  7281. }
  7282. }
  7283. return 0;
  7284. }
  7285. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  7286. const int n_threads = cgraph->n_threads;
  7287. struct ggml_compute_state_shared state_shared = {
  7288. /*.spin =*/ GGML_LOCK_INITIALIZER,
  7289. /*.n_threads =*/ n_threads,
  7290. /*.n_ready =*/ 0,
  7291. /*.has_work =*/ false,
  7292. /*.stop =*/ false,
  7293. };
  7294. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  7295. // create thread pool
  7296. if (n_threads > 1) {
  7297. ggml_lock_init(&state_shared.spin);
  7298. atomic_store(&state_shared.has_work, true);
  7299. for (int j = 0; j < n_threads - 1; j++) {
  7300. workers[j] = (struct ggml_compute_state) {
  7301. .thrd = 0,
  7302. .params = {
  7303. .type = GGML_TASK_COMPUTE,
  7304. .ith = j + 1,
  7305. .nth = n_threads,
  7306. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7307. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7308. },
  7309. .node = NULL,
  7310. .shared = &state_shared,
  7311. };
  7312. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  7313. GGML_ASSERT(rc == 0);
  7314. UNUSED(rc);
  7315. }
  7316. }
  7317. // initialize tasks + work buffer
  7318. {
  7319. size_t work_size = 0;
  7320. // thread scheduling for the different operations
  7321. for (int i = 0; i < cgraph->n_nodes; i++) {
  7322. struct ggml_tensor * node = cgraph->nodes[i];
  7323. switch (node->op) {
  7324. case GGML_OP_DUP:
  7325. {
  7326. node->n_tasks = 1;
  7327. } break;
  7328. case GGML_OP_ADD:
  7329. {
  7330. node->n_tasks = n_threads;
  7331. } break;
  7332. case GGML_OP_SUB:
  7333. case GGML_OP_MUL:
  7334. case GGML_OP_DIV:
  7335. case GGML_OP_SQR:
  7336. case GGML_OP_SQRT:
  7337. case GGML_OP_SUM:
  7338. case GGML_OP_MEAN:
  7339. case GGML_OP_REPEAT:
  7340. case GGML_OP_ABS:
  7341. case GGML_OP_SGN:
  7342. case GGML_OP_NEG:
  7343. case GGML_OP_STEP:
  7344. case GGML_OP_RELU:
  7345. {
  7346. node->n_tasks = 1;
  7347. } break;
  7348. case GGML_OP_GELU:
  7349. {
  7350. node->n_tasks = n_threads;
  7351. } break;
  7352. case GGML_OP_SILU:
  7353. {
  7354. node->n_tasks = n_threads;
  7355. } break;
  7356. case GGML_OP_NORM:
  7357. case GGML_OP_RMS_NORM:
  7358. {
  7359. node->n_tasks = n_threads;
  7360. } break;
  7361. case GGML_OP_MUL_MAT:
  7362. {
  7363. node->n_tasks = n_threads;
  7364. // TODO: use different scheduling for different matrix sizes
  7365. //const int nr0 = ggml_nrows(node->src0);
  7366. //const int nr1 = ggml_nrows(node->src1);
  7367. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  7368. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  7369. size_t cur = 0;
  7370. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  7371. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7372. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7373. node->n_tasks = 1; // TODO: this actually is doing nothing
  7374. // the threads are still spinning
  7375. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7376. //printf("src0: ne0 = %d, ne1 = %d, ne = %d\n", node->src0->ne[0], node->src0->ne[1], node->src0->ne[0]*node->src0->ne[1]);
  7377. //printf("src1: ne0 = %d, ne1 = %d, ne = %d\n", node->src1->ne[0], node->src1->ne[1], node->src1->ne[0]*node->src1->ne[1]);
  7378. //printf("cur = %zu\n", cur);
  7379. } else {
  7380. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7381. }
  7382. #else
  7383. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  7384. #endif
  7385. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  7386. cur = 0;
  7387. } else if (quantize_fns[node->src0->type].vec_dot_q && node->src1->type == GGML_TYPE_F32) {
  7388. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  7389. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  7390. node->n_tasks = 1;
  7391. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  7392. } else
  7393. #endif
  7394. {
  7395. cur = GGML_TYPE_SIZE[node->src0->type]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[node->src0->type];
  7396. }
  7397. } else {
  7398. GGML_ASSERT(false);
  7399. }
  7400. work_size = MAX(work_size, cur);
  7401. } break;
  7402. case GGML_OP_SCALE:
  7403. {
  7404. node->n_tasks = n_threads;
  7405. } break;
  7406. case GGML_OP_CPY:
  7407. case GGML_OP_RESHAPE:
  7408. case GGML_OP_VIEW:
  7409. case GGML_OP_PERMUTE:
  7410. case GGML_OP_TRANSPOSE:
  7411. case GGML_OP_GET_ROWS:
  7412. case GGML_OP_DIAG_MASK_INF:
  7413. {
  7414. node->n_tasks = 1;
  7415. } break;
  7416. case GGML_OP_SOFT_MAX:
  7417. {
  7418. node->n_tasks = n_threads;
  7419. } break;
  7420. case GGML_OP_ROPE:
  7421. {
  7422. node->n_tasks = 1;
  7423. } break;
  7424. case GGML_OP_CONV_1D_1S:
  7425. case GGML_OP_CONV_1D_2S:
  7426. {
  7427. node->n_tasks = n_threads;
  7428. GGML_ASSERT(node->src0->ne[3] == 1);
  7429. GGML_ASSERT(node->src1->ne[2] == 1);
  7430. GGML_ASSERT(node->src1->ne[3] == 1);
  7431. size_t cur = 0;
  7432. const int nk = node->src0->ne[0];
  7433. if (node->src0->type == GGML_TYPE_F16 &&
  7434. node->src1->type == GGML_TYPE_F32) {
  7435. cur = sizeof(ggml_fp16_t)*(
  7436. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7437. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7438. );
  7439. } else if (node->src0->type == GGML_TYPE_F32 &&
  7440. node->src1->type == GGML_TYPE_F32) {
  7441. cur = sizeof(float)*(
  7442. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  7443. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  7444. );
  7445. } else {
  7446. GGML_ASSERT(false);
  7447. }
  7448. work_size = MAX(work_size, cur);
  7449. } break;
  7450. case GGML_OP_FLASH_ATTN:
  7451. {
  7452. node->n_tasks = n_threads;
  7453. size_t cur = 0;
  7454. const int ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  7455. if (node->src1->type == GGML_TYPE_F32) {
  7456. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7457. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7458. }
  7459. if (node->src1->type == GGML_TYPE_F16) {
  7460. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  7461. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  7462. }
  7463. work_size = MAX(work_size, cur);
  7464. } break;
  7465. case GGML_OP_FLASH_FF:
  7466. {
  7467. node->n_tasks = n_threads;
  7468. size_t cur = 0;
  7469. if (node->src1->type == GGML_TYPE_F32) {
  7470. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7471. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7472. }
  7473. if (node->src1->type == GGML_TYPE_F16) {
  7474. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  7475. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  7476. }
  7477. work_size = MAX(work_size, cur);
  7478. } break;
  7479. case GGML_OP_NONE:
  7480. {
  7481. node->n_tasks = 1;
  7482. } break;
  7483. case GGML_OP_COUNT:
  7484. {
  7485. GGML_ASSERT(false);
  7486. } break;
  7487. }
  7488. }
  7489. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  7490. GGML_ASSERT(false); // TODO: better handling
  7491. }
  7492. if (work_size > 0 && cgraph->work == NULL) {
  7493. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  7494. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  7495. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  7496. }
  7497. }
  7498. const int64_t perf_start_cycles = ggml_perf_cycles();
  7499. const int64_t perf_start_time_us = ggml_perf_time_us();
  7500. for (int i = 0; i < cgraph->n_nodes; i++) {
  7501. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  7502. struct ggml_tensor * node = cgraph->nodes[i];
  7503. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  7504. //if (node->grad == NULL && node->perf_runs > 0) {
  7505. // continue;
  7506. //}
  7507. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  7508. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  7509. // INIT
  7510. struct ggml_compute_params params = {
  7511. /*.type =*/ GGML_TASK_INIT,
  7512. /*.ith =*/ 0,
  7513. /*.nth =*/ node->n_tasks,
  7514. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7515. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  7516. };
  7517. ggml_compute_forward(&params, node);
  7518. // COMPUTE
  7519. if (node->n_tasks > 1) {
  7520. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7521. atomic_store(&state_shared.has_work, false);
  7522. }
  7523. while (atomic_load(&state_shared.has_work)) {
  7524. ggml_lock_lock (&state_shared.spin);
  7525. ggml_lock_unlock(&state_shared.spin);
  7526. }
  7527. // launch thread pool
  7528. for (int j = 0; j < n_threads - 1; j++) {
  7529. workers[j].params = (struct ggml_compute_params) {
  7530. .type = GGML_TASK_COMPUTE,
  7531. .ith = j + 1,
  7532. .nth = node->n_tasks,
  7533. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7534. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7535. };
  7536. workers[j].node = node;
  7537. }
  7538. atomic_fetch_sub(&state_shared.n_ready, 1);
  7539. while (atomic_load(&state_shared.n_ready) > 0) {
  7540. ggml_lock_lock (&state_shared.spin);
  7541. ggml_lock_unlock(&state_shared.spin);
  7542. }
  7543. atomic_store(&state_shared.has_work, true);
  7544. }
  7545. params.type = GGML_TASK_COMPUTE;
  7546. ggml_compute_forward(&params, node);
  7547. // wait for thread pool
  7548. if (node->n_tasks > 1) {
  7549. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7550. atomic_store(&state_shared.has_work, false);
  7551. }
  7552. while (atomic_load(&state_shared.has_work)) {
  7553. ggml_lock_lock (&state_shared.spin);
  7554. ggml_lock_unlock(&state_shared.spin);
  7555. }
  7556. atomic_fetch_sub(&state_shared.n_ready, 1);
  7557. while (atomic_load(&state_shared.n_ready) != 0) {
  7558. ggml_lock_lock (&state_shared.spin);
  7559. ggml_lock_unlock(&state_shared.spin);
  7560. }
  7561. }
  7562. // FINALIZE
  7563. if (node->n_tasks > 1) {
  7564. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7565. atomic_store(&state_shared.has_work, false);
  7566. }
  7567. while (atomic_load(&state_shared.has_work)) {
  7568. ggml_lock_lock (&state_shared.spin);
  7569. ggml_lock_unlock(&state_shared.spin);
  7570. }
  7571. // launch thread pool
  7572. for (int j = 0; j < n_threads - 1; j++) {
  7573. workers[j].params = (struct ggml_compute_params) {
  7574. .type = GGML_TASK_FINALIZE,
  7575. .ith = j + 1,
  7576. .nth = node->n_tasks,
  7577. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  7578. .wdata = cgraph->work ? cgraph->work->data : NULL,
  7579. };
  7580. workers[j].node = node;
  7581. }
  7582. atomic_fetch_sub(&state_shared.n_ready, 1);
  7583. while (atomic_load(&state_shared.n_ready) > 0) {
  7584. ggml_lock_lock (&state_shared.spin);
  7585. ggml_lock_unlock(&state_shared.spin);
  7586. }
  7587. atomic_store(&state_shared.has_work, true);
  7588. }
  7589. params.type = GGML_TASK_FINALIZE;
  7590. ggml_compute_forward(&params, node);
  7591. // wait for thread pool
  7592. if (node->n_tasks > 1) {
  7593. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  7594. atomic_store(&state_shared.has_work, false);
  7595. }
  7596. while (atomic_load(&state_shared.has_work)) {
  7597. ggml_lock_lock (&state_shared.spin);
  7598. ggml_lock_unlock(&state_shared.spin);
  7599. }
  7600. atomic_fetch_sub(&state_shared.n_ready, 1);
  7601. while (atomic_load(&state_shared.n_ready) != 0) {
  7602. ggml_lock_lock (&state_shared.spin);
  7603. ggml_lock_unlock(&state_shared.spin);
  7604. }
  7605. }
  7606. // performance stats (node)
  7607. {
  7608. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  7609. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  7610. node->perf_runs++;
  7611. node->perf_cycles += perf_cycles_cur;
  7612. node->perf_time_us += perf_time_us_cur;
  7613. }
  7614. }
  7615. // join thread pool
  7616. if (n_threads > 1) {
  7617. atomic_store(&state_shared.stop, true);
  7618. atomic_store(&state_shared.has_work, true);
  7619. for (int j = 0; j < n_threads - 1; j++) {
  7620. int rc = ggml_thread_join(workers[j].thrd, NULL);
  7621. GGML_ASSERT(rc == 0);
  7622. UNUSED(rc);
  7623. }
  7624. ggml_lock_destroy(&state_shared.spin);
  7625. }
  7626. // performance stats (graph)
  7627. {
  7628. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  7629. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  7630. cgraph->perf_runs++;
  7631. cgraph->perf_cycles += perf_cycles_cur;
  7632. cgraph->perf_time_us += perf_time_us_cur;
  7633. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  7634. __func__, cgraph->perf_runs,
  7635. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  7636. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  7637. (double) perf_time_us_cur / 1000.0,
  7638. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  7639. }
  7640. }
  7641. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  7642. for (int i = 0; i < cgraph->n_nodes; i++) {
  7643. struct ggml_tensor * grad = cgraph->grads[i];
  7644. if (grad) {
  7645. ggml_set_zero(grad);
  7646. }
  7647. }
  7648. }
  7649. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  7650. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  7651. GGML_PRINT("=== GRAPH ===\n");
  7652. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  7653. GGML_PRINT_DEBUG("total work size = %zu bytes\n",cgraph->work_size);
  7654. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  7655. for (int i = 0; i < cgraph->n_nodes; i++) {
  7656. struct ggml_tensor * node = cgraph->nodes[i];
  7657. perf_total_per_op_us[node->op] += node->perf_time_us;
  7658. GGML_PRINT(" - %3d: [ %6d, %6d, %6d] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  7659. i,
  7660. node->ne[0], node->ne[1], node->ne[2],
  7661. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  7662. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  7663. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  7664. (double) node->perf_time_us / 1000.0,
  7665. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  7666. }
  7667. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  7668. for (int i = 0; i < cgraph->n_leafs; i++) {
  7669. struct ggml_tensor * node = cgraph->leafs[i];
  7670. GGML_PRINT(" - %3d: [ %6d, %6d] %8s\n",
  7671. i,
  7672. node->ne[0], node->ne[1],
  7673. GGML_OP_LABEL[node->op]);
  7674. }
  7675. for (int i = 0; i < GGML_OP_COUNT; i++) {
  7676. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  7677. }
  7678. GGML_PRINT("========================================\n");
  7679. }
  7680. // check if node is part of the graph
  7681. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7682. if (cgraph == NULL) {
  7683. return true;
  7684. }
  7685. for (int i = 0; i < cgraph->n_nodes; i++) {
  7686. if (cgraph->nodes[i] == node) {
  7687. return true;
  7688. }
  7689. }
  7690. return false;
  7691. }
  7692. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  7693. for (int i = 0; i < cgraph->n_nodes; i++) {
  7694. struct ggml_tensor * parent = cgraph->nodes[i];
  7695. if (parent->grad == node) {
  7696. return parent;
  7697. }
  7698. }
  7699. return NULL;
  7700. }
  7701. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  7702. char color[16];
  7703. FILE * fp = fopen(filename, "w");
  7704. GGML_ASSERT(fp);
  7705. fprintf(fp, "digraph G {\n");
  7706. fprintf(fp, " newrank = true;\n");
  7707. fprintf(fp, " rankdir = LR;\n");
  7708. for (int i = 0; i < gb->n_nodes; i++) {
  7709. struct ggml_tensor * node = gb->nodes[i];
  7710. if (ggml_graph_get_parent(gb, node) != NULL) {
  7711. continue;
  7712. }
  7713. if (node->is_param) {
  7714. snprintf(color, sizeof(color), "yellow");
  7715. } else if (node->grad) {
  7716. if (ggml_graph_find(gf, node)) {
  7717. snprintf(color, sizeof(color), "green");
  7718. } else {
  7719. snprintf(color, sizeof(color), "lightblue");
  7720. }
  7721. } else {
  7722. snprintf(color, sizeof(color), "white");
  7723. }
  7724. fprintf(fp, " \"%p\" [ \
  7725. style = filled; fillcolor = %s; shape = record; \
  7726. label=\"%d [%d, %d] | <x>%s",
  7727. (void *) node, color,
  7728. i, node->ne[0], node->ne[1],
  7729. GGML_OP_SYMBOL[node->op]);
  7730. if (node->grad) {
  7731. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  7732. } else {
  7733. fprintf(fp, "\"; ]\n");
  7734. }
  7735. }
  7736. for (int i = 0; i < gb->n_leafs; i++) {
  7737. struct ggml_tensor * node = gb->leafs[i];
  7738. snprintf(color, sizeof(color), "pink");
  7739. if (ggml_nelements(node) == 1) {
  7740. fprintf(fp, " \"%p\" [ \
  7741. style = filled; fillcolor = %s; shape = record; \
  7742. label=\"<x>%.1e\"; ]\n",
  7743. (void *) node, color, (double)ggml_get_f32_1d(node, 0));
  7744. } else {
  7745. fprintf(fp, " \"%p\" [ \
  7746. style = filled; fillcolor = %s; shape = record; \
  7747. label=\"<x>CONST %d [%d, %d]\"; ]\n",
  7748. (void *) node, color,
  7749. i, node->ne[0], node->ne[1]);
  7750. }
  7751. }
  7752. for (int i = 0; i < gb->n_nodes; i++) {
  7753. struct ggml_tensor * node = gb->nodes[i];
  7754. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  7755. if (node->src0) {
  7756. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  7757. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  7758. parent0 ? (void *) parent0 : (void *) node->src0,
  7759. parent0 ? "g" : "x",
  7760. parent ? (void *) parent : (void *) node,
  7761. parent ? "g" : "x",
  7762. parent ? "empty" : "vee",
  7763. parent ? "dashed" : "solid");
  7764. }
  7765. if (node->src1) {
  7766. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  7767. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  7768. parent1 ? (void *) parent1 : (void *) node->src1,
  7769. parent1 ? "g" : "x",
  7770. parent ? (void *) parent : (void *) node,
  7771. parent ? "g" : "x",
  7772. parent ? "empty" : "vee",
  7773. parent ? "dashed" : "solid");
  7774. }
  7775. }
  7776. for (int i = 0; i < gb->n_leafs; i++) {
  7777. struct ggml_tensor * node = gb->leafs[i];
  7778. if (node->src0) {
  7779. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  7780. (void *) node->src0, "x",
  7781. (void *) node, "x");
  7782. }
  7783. if (node->src1) {
  7784. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  7785. (void *) node->src1, "x",
  7786. (void *) node, "x");
  7787. }
  7788. }
  7789. fprintf(fp, "}\n");
  7790. fclose(fp);
  7791. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  7792. }
  7793. ////////////////////////////////////////////////////////////////////////////////
  7794. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  7795. int i = 0;
  7796. for (int p = 0; p < np; ++p) {
  7797. const int ne = ggml_nelements(ps[p]) ;
  7798. // TODO: add function to set tensor from array
  7799. for (int j = 0; j < ne; ++j) {
  7800. ggml_set_f32_1d(ps[p], j, x[i++]);
  7801. }
  7802. }
  7803. }
  7804. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  7805. int i = 0;
  7806. for (int p = 0; p < np; ++p) {
  7807. const int ne = ggml_nelements(ps[p]) ;
  7808. // TODO: add function to get all elements at once
  7809. for (int j = 0; j < ne; ++j) {
  7810. x[i++] = ggml_get_f32_1d(ps[p], j);
  7811. }
  7812. }
  7813. }
  7814. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  7815. int i = 0;
  7816. for (int p = 0; p < np; ++p) {
  7817. const int ne = ggml_nelements(ps[p]) ;
  7818. // TODO: add function to get all elements at once
  7819. for (int j = 0; j < ne; ++j) {
  7820. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  7821. }
  7822. }
  7823. }
  7824. //
  7825. // ADAM
  7826. //
  7827. // ref: https://arxiv.org/pdf/1412.6980.pdf
  7828. //
  7829. static enum ggml_opt_result ggml_opt_adam(
  7830. struct ggml_context * ctx,
  7831. struct ggml_opt_params params,
  7832. struct ggml_tensor * f,
  7833. struct ggml_cgraph * gf,
  7834. struct ggml_cgraph * gb) {
  7835. GGML_ASSERT(ggml_is_scalar(f));
  7836. gf->n_threads = params.n_threads;
  7837. gb->n_threads = params.n_threads;
  7838. // these will store the parameters we want to optimize
  7839. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  7840. int np = 0;
  7841. int nx = 0;
  7842. for (int i = 0; i < gf->n_nodes; ++i) {
  7843. if (gf->nodes[i]->is_param) {
  7844. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  7845. GGML_ASSERT(np < GGML_MAX_PARAMS);
  7846. ps[np++] = gf->nodes[i];
  7847. nx += ggml_nelements(gf->nodes[i]);
  7848. }
  7849. }
  7850. // constants
  7851. const float alpha = params.adam.alpha;
  7852. const float beta1 = params.adam.beta1;
  7853. const float beta2 = params.adam.beta2;
  7854. const float eps = params.adam.eps;
  7855. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  7856. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  7857. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  7858. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  7859. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  7860. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  7861. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  7862. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  7863. // initialize
  7864. ggml_vec_set_f32(nx, m, 0.0f);
  7865. ggml_vec_set_f32(nx, v, 0.0f);
  7866. // update view
  7867. ggml_opt_get_params(np, ps, x);
  7868. // compute the function value
  7869. ggml_graph_reset (gf);
  7870. ggml_set_f32 (f->grad, 1.0f);
  7871. ggml_graph_compute(ctx, gb);
  7872. float fx_prev = ggml_get_f32_1d(f, 0);
  7873. if (pf) {
  7874. pf[0] = fx_prev;
  7875. }
  7876. int n_no_improvement = 0;
  7877. float fx_best = fx_prev;
  7878. // run the optimizer
  7879. for (int t = 0; t < params.adam.n_iter; ++t) {
  7880. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  7881. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  7882. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  7883. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  7884. for (int i = 0; i < np; ++i) {
  7885. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  7886. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  7887. }
  7888. const int64_t t_start_wall = ggml_time_us();
  7889. const int64_t t_start_cpu = ggml_cycles();
  7890. UNUSED(t_start_wall);
  7891. UNUSED(t_start_cpu);
  7892. {
  7893. // update the gradient
  7894. ggml_opt_get_grad(np, ps, g1);
  7895. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  7896. ggml_vec_scale_f32(nx, m, beta1);
  7897. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  7898. // g2 = g1^2
  7899. ggml_vec_sqr_f32 (nx, g2, g1);
  7900. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  7901. ggml_vec_scale_f32(nx, v, beta2);
  7902. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  7903. // m^hat = m_t / (1 - beta1^t)
  7904. // v^hat = v_t / (1 - beta2^t)
  7905. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  7906. ggml_vec_cpy_f32 (nx, mh, m);
  7907. ggml_vec_cpy_f32 (nx, vh, v);
  7908. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  7909. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  7910. ggml_vec_sqrt_f32 (nx, vh, vh);
  7911. ggml_vec_acc1_f32 (nx, vh, eps);
  7912. ggml_vec_div_f32 (nx, mh, mh, vh);
  7913. ggml_vec_sub_f32 (nx, x, x, mh);
  7914. // update the parameters
  7915. ggml_opt_set_params(np, ps, x);
  7916. }
  7917. ggml_graph_reset (gf);
  7918. ggml_set_f32 (f->grad, 1.0f);
  7919. ggml_graph_compute(ctx, gb);
  7920. const float fx = ggml_get_f32_1d(f, 0);
  7921. // check convergence
  7922. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  7923. GGML_PRINT_DEBUG("converged\n");
  7924. return GGML_OPT_OK;
  7925. }
  7926. // delta-based convergence test
  7927. if (pf != NULL) {
  7928. // need at least params.past iterations to start checking for convergence
  7929. if (params.past <= t) {
  7930. const float rate = (pf[t%params.past] - fx)/fx;
  7931. if (fabsf(rate) < params.delta) {
  7932. return GGML_OPT_OK;
  7933. }
  7934. }
  7935. pf[t%params.past] = fx;
  7936. }
  7937. // check for improvement
  7938. if (params.max_no_improvement > 0) {
  7939. if (fx_best > fx) {
  7940. fx_best = fx;
  7941. n_no_improvement = 0;
  7942. } else {
  7943. ++n_no_improvement;
  7944. if (n_no_improvement >= params.max_no_improvement) {
  7945. return GGML_OPT_OK;
  7946. }
  7947. }
  7948. }
  7949. fx_prev = fx;
  7950. {
  7951. const int64_t t_end_cpu = ggml_cycles();
  7952. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  7953. UNUSED(t_end_cpu);
  7954. const int64_t t_end_wall = ggml_time_us();
  7955. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  7956. UNUSED(t_end_wall);
  7957. }
  7958. }
  7959. return GGML_OPT_DID_NOT_CONVERGE;
  7960. }
  7961. //
  7962. // L-BFGS
  7963. //
  7964. // the L-BFGS implementation below is based on the following implementation:
  7965. //
  7966. // https://github.com/chokkan/liblbfgs
  7967. //
  7968. struct ggml_lbfgs_iteration_data {
  7969. float alpha;
  7970. float ys;
  7971. float * s;
  7972. float * y;
  7973. };
  7974. static enum ggml_opt_result linesearch_backtracking(
  7975. struct ggml_context * ctx,
  7976. const struct ggml_opt_params * params,
  7977. int nx,
  7978. float * x,
  7979. float * fx,
  7980. float * g,
  7981. float * d,
  7982. float * step,
  7983. const float * xp,
  7984. struct ggml_tensor * f,
  7985. struct ggml_cgraph * gf,
  7986. struct ggml_cgraph * gb,
  7987. const int np,
  7988. struct ggml_tensor * ps[]) {
  7989. int count = 0;
  7990. float width = 0.0f;
  7991. float dg = 0.0f;
  7992. float finit = 0.0f;
  7993. float dginit = 0.0f;
  7994. float dgtest = 0.0f;
  7995. const float dec = 0.5f;
  7996. const float inc = 2.1f;
  7997. if (*step <= 0.f) {
  7998. return GGML_LINESEARCH_INVALID_PARAMETERS;
  7999. }
  8000. // compute the initial gradient in the search direction
  8001. ggml_vec_dot_f32(nx, &dginit, g, d);
  8002. // make sure that d points to a descent direction
  8003. if (0 < dginit) {
  8004. return GGML_LINESEARCH_FAIL;
  8005. }
  8006. // initialize local variables
  8007. finit = *fx;
  8008. dgtest = params->lbfgs.ftol*dginit;
  8009. while (true) {
  8010. ggml_vec_cpy_f32(nx, x, xp);
  8011. ggml_vec_mad_f32(nx, x, d, *step);
  8012. // evaluate the function and gradient values
  8013. {
  8014. ggml_opt_set_params(np, ps, x);
  8015. ggml_graph_reset (gf);
  8016. ggml_set_f32 (f->grad, 1.0f);
  8017. ggml_graph_compute(ctx, gb);
  8018. ggml_opt_get_grad(np, ps, g);
  8019. *fx = ggml_get_f32_1d(f, 0);
  8020. }
  8021. ++count;
  8022. if (*fx > finit + (*step)*dgtest) {
  8023. width = dec;
  8024. } else {
  8025. // Armijo condition is satisfied
  8026. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  8027. return count;
  8028. }
  8029. ggml_vec_dot_f32(nx, &dg, g, d);
  8030. // check the Wolfe condition
  8031. if (dg < params->lbfgs.wolfe * dginit) {
  8032. width = inc;
  8033. } else {
  8034. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  8035. // regular Wolfe conditions
  8036. return count;
  8037. }
  8038. if(dg > -params->lbfgs.wolfe*dginit) {
  8039. width = dec;
  8040. } else {
  8041. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  8042. return count;
  8043. }
  8044. return count;
  8045. }
  8046. }
  8047. if (*step < params->lbfgs.min_step) {
  8048. return GGML_LINESEARCH_MINIMUM_STEP;
  8049. }
  8050. if (*step > params->lbfgs.max_step) {
  8051. return GGML_LINESEARCH_MAXIMUM_STEP;
  8052. }
  8053. if (params->lbfgs.max_linesearch <= count) {
  8054. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  8055. }
  8056. (*step) *= width;
  8057. }
  8058. return GGML_LINESEARCH_FAIL;
  8059. }
  8060. static enum ggml_opt_result ggml_opt_lbfgs(
  8061. struct ggml_context * ctx,
  8062. struct ggml_opt_params params,
  8063. struct ggml_tensor * f,
  8064. struct ggml_cgraph * gf,
  8065. struct ggml_cgraph * gb) {
  8066. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  8067. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  8068. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  8069. return GGML_OPT_INVALID_WOLFE;
  8070. }
  8071. }
  8072. gf->n_threads = params.n_threads;
  8073. gb->n_threads = params.n_threads;
  8074. const int m = params.lbfgs.m;
  8075. // these will store the parameters we want to optimize
  8076. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  8077. int np = 0;
  8078. int nx = 0;
  8079. for (int i = 0; i < gf->n_nodes; ++i) {
  8080. if (gf->nodes[i]->is_param) {
  8081. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  8082. GGML_ASSERT(np < GGML_MAX_PARAMS);
  8083. ps[np++] = gf->nodes[i];
  8084. nx += ggml_nelements(gf->nodes[i]);
  8085. }
  8086. }
  8087. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  8088. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  8089. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  8090. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  8091. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  8092. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  8093. float fx = 0.0f; // cost function value
  8094. float xnorm = 0.0f; // ||x||
  8095. float gnorm = 0.0f; // ||g||
  8096. float step = 0.0f;
  8097. // initialize x from the graph nodes
  8098. ggml_opt_get_params(np, ps, x);
  8099. // the L-BFGS memory
  8100. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  8101. for (int i = 0; i < m; ++i) {
  8102. lm[i].alpha = 0.0f;
  8103. lm[i].ys = 0.0f;
  8104. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8105. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  8106. }
  8107. // evaluate the function value and its gradient
  8108. {
  8109. ggml_opt_set_params(np, ps, x);
  8110. ggml_graph_reset (gf);
  8111. ggml_set_f32 (f->grad, 1.0f);
  8112. ggml_graph_compute(ctx, gb);
  8113. ggml_opt_get_grad(np, ps, g);
  8114. fx = ggml_get_f32_1d(f, 0);
  8115. }
  8116. if (pf) {
  8117. pf[0] = fx;
  8118. }
  8119. float fx_best = fx;
  8120. // search direction = -gradient
  8121. ggml_vec_neg_f32(nx, d, g);
  8122. // ||x||, ||g||
  8123. ggml_vec_norm_f32(nx, &xnorm, x);
  8124. ggml_vec_norm_f32(nx, &gnorm, g);
  8125. if (xnorm < 1.0f) {
  8126. xnorm = 1.0f;
  8127. }
  8128. // already optimized
  8129. if (gnorm/xnorm <= params.lbfgs.eps) {
  8130. return GGML_OPT_OK;
  8131. }
  8132. // initial step
  8133. ggml_vec_norm_inv_f32(nx, &step, d);
  8134. int j = 0;
  8135. int k = 1;
  8136. int ls = 0;
  8137. int end = 0;
  8138. int bound = 0;
  8139. int n_no_improvement = 0;
  8140. float ys = 0.0f;
  8141. float yy = 0.0f;
  8142. float beta = 0.0f;
  8143. while (true) {
  8144. // store the current position and gradient vectors
  8145. ggml_vec_cpy_f32(nx, xp, x);
  8146. ggml_vec_cpy_f32(nx, gp, g);
  8147. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  8148. if (ls < 0) {
  8149. // linesearch failed - go back to the previous point and return
  8150. ggml_vec_cpy_f32(nx, x, xp);
  8151. ggml_vec_cpy_f32(nx, g, gp);
  8152. return ls;
  8153. }
  8154. ggml_vec_norm_f32(nx, &xnorm, x);
  8155. ggml_vec_norm_f32(nx, &gnorm, g);
  8156. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  8157. if (xnorm < 1.0f) {
  8158. xnorm = 1.0f;
  8159. }
  8160. if (gnorm/xnorm <= params.lbfgs.eps) {
  8161. // converged
  8162. return GGML_OPT_OK;
  8163. }
  8164. // delta-based convergence test
  8165. if (pf != NULL) {
  8166. // need at least params.past iterations to start checking for convergence
  8167. if (params.past <= k) {
  8168. const float rate = (pf[k%params.past] - fx)/fx;
  8169. if (fabsf(rate) < params.delta) {
  8170. return GGML_OPT_OK;
  8171. }
  8172. }
  8173. pf[k%params.past] = fx;
  8174. }
  8175. // check for improvement
  8176. if (params.max_no_improvement > 0) {
  8177. if (fx < fx_best) {
  8178. fx_best = fx;
  8179. n_no_improvement = 0;
  8180. } else {
  8181. n_no_improvement++;
  8182. if (n_no_improvement >= params.max_no_improvement) {
  8183. return GGML_OPT_OK;
  8184. }
  8185. }
  8186. }
  8187. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  8188. // reached the maximum number of iterations
  8189. return GGML_OPT_DID_NOT_CONVERGE;
  8190. }
  8191. // update vectors s and y:
  8192. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  8193. // y_{k+1} = g_{k+1} - g_{k}.
  8194. //
  8195. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  8196. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  8197. // compute scalars ys and yy:
  8198. // ys = y^t \cdot s -> 1 / \rho.
  8199. // yy = y^t \cdot y.
  8200. //
  8201. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  8202. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  8203. lm[end].ys = ys;
  8204. // find new search direction
  8205. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  8206. bound = (m <= k) ? m : k;
  8207. k++;
  8208. end = (end + 1)%m;
  8209. // initialize search direction with -g
  8210. ggml_vec_neg_f32(nx, d, g);
  8211. j = end;
  8212. for (int i = 0; i < bound; ++i) {
  8213. j = (j + m - 1) % m;
  8214. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  8215. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  8216. lm[j].alpha /= lm[j].ys;
  8217. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  8218. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  8219. }
  8220. ggml_vec_scale_f32(nx, d, ys/yy);
  8221. for (int i = 0; i < bound; ++i) {
  8222. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  8223. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  8224. beta /= lm[j].ys;
  8225. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  8226. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  8227. j = (j + 1)%m;
  8228. }
  8229. step = 1.0;
  8230. }
  8231. return GGML_OPT_DID_NOT_CONVERGE;
  8232. }
  8233. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  8234. struct ggml_opt_params result;
  8235. switch (type) {
  8236. case GGML_OPT_ADAM:
  8237. {
  8238. result = (struct ggml_opt_params) {
  8239. .type = GGML_OPT_ADAM,
  8240. .n_threads = 1,
  8241. .past = 0,
  8242. .delta = 1e-5f,
  8243. .max_no_improvement = 100,
  8244. .print_forward_graph = true,
  8245. .print_backward_graph = true,
  8246. .adam = {
  8247. .n_iter = 10000,
  8248. .alpha = 0.001f,
  8249. .beta1 = 0.9f,
  8250. .beta2 = 0.999f,
  8251. .eps = 1e-8f,
  8252. .eps_f = 1e-5f,
  8253. .eps_g = 1e-3f,
  8254. },
  8255. };
  8256. } break;
  8257. case GGML_OPT_LBFGS:
  8258. {
  8259. result = (struct ggml_opt_params) {
  8260. .type = GGML_OPT_LBFGS,
  8261. .n_threads = 1,
  8262. .past = 0,
  8263. .delta = 1e-5f,
  8264. .max_no_improvement = 0,
  8265. .print_forward_graph = true,
  8266. .print_backward_graph = true,
  8267. .lbfgs = {
  8268. .m = 6,
  8269. .n_iter = 100,
  8270. .max_linesearch = 20,
  8271. .eps = 1e-5f,
  8272. .ftol = 1e-4f,
  8273. .wolfe = 0.9f,
  8274. .min_step = 1e-20f,
  8275. .max_step = 1e+20f,
  8276. .linesearch = GGML_LINESEARCH_DEFAULT,
  8277. },
  8278. };
  8279. } break;
  8280. }
  8281. return result;
  8282. }
  8283. enum ggml_opt_result ggml_opt(
  8284. struct ggml_context * ctx,
  8285. struct ggml_opt_params params,
  8286. struct ggml_tensor * f) {
  8287. bool free_ctx = false;
  8288. if (ctx == NULL) {
  8289. struct ggml_init_params params_ctx = {
  8290. .mem_size = 16*1024*1024,
  8291. .mem_buffer = NULL,
  8292. };
  8293. ctx = ggml_init(params_ctx);
  8294. if (ctx == NULL) {
  8295. return GGML_OPT_NO_CONTEXT;
  8296. }
  8297. free_ctx = true;
  8298. }
  8299. enum ggml_opt_result result = GGML_OPT_OK;
  8300. // build forward + backward compute graphs
  8301. struct ggml_cgraph gf = ggml_build_forward (f);
  8302. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  8303. switch (params.type) {
  8304. case GGML_OPT_ADAM:
  8305. {
  8306. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  8307. } break;
  8308. case GGML_OPT_LBFGS:
  8309. {
  8310. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  8311. } break;
  8312. }
  8313. if (params.print_forward_graph) {
  8314. ggml_graph_print (&gf);
  8315. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  8316. }
  8317. if (params.print_backward_graph) {
  8318. ggml_graph_print (&gb);
  8319. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  8320. }
  8321. if (free_ctx) {
  8322. ggml_free(ctx);
  8323. }
  8324. return result;
  8325. }
  8326. ////////////////////////////////////////////////////////////////////////////////
  8327. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  8328. assert(k % QK == 0);
  8329. const int nb = k / QK;
  8330. for (int j = 0; j < n; j += k) {
  8331. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK;
  8332. quantize_row_q4_0_reference(src + j, y, k);
  8333. for (int i = 0; i < nb; i++) {
  8334. for (int l = 0; l < QK; l += 2) {
  8335. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8336. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8337. hist[vi0]++;
  8338. hist[vi1]++;
  8339. }
  8340. }
  8341. }
  8342. return (n/QK*sizeof(block_q4_0));
  8343. }
  8344. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  8345. assert(k % QK == 0);
  8346. const int nb = k / QK;
  8347. for (int j = 0; j < n; j += k) {
  8348. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK;
  8349. quantize_row_q4_1_reference(src + j, y, k);
  8350. for (int i = 0; i < nb; i++) {
  8351. for (int l = 0; l < QK; l += 2) {
  8352. const uint8_t vi0 = y[i].qs[l/2] & 0xF;
  8353. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  8354. hist[vi0]++;
  8355. hist[vi1]++;
  8356. }
  8357. }
  8358. }
  8359. return (n/QK*sizeof(block_q4_1));
  8360. }
  8361. ////////////////////////////////////////////////////////////////////////////////
  8362. int ggml_cpu_has_avx(void) {
  8363. #if defined(__AVX__)
  8364. return 1;
  8365. #else
  8366. return 0;
  8367. #endif
  8368. }
  8369. int ggml_cpu_has_avx2(void) {
  8370. #if defined(__AVX2__)
  8371. return 1;
  8372. #else
  8373. return 0;
  8374. #endif
  8375. }
  8376. int ggml_cpu_has_avx512(void) {
  8377. #if defined(__AVX512F__)
  8378. return 1;
  8379. #else
  8380. return 0;
  8381. #endif
  8382. }
  8383. int ggml_cpu_has_fma(void) {
  8384. #if defined(__FMA__)
  8385. return 1;
  8386. #else
  8387. return 0;
  8388. #endif
  8389. }
  8390. int ggml_cpu_has_neon(void) {
  8391. #if defined(__ARM_NEON)
  8392. return 1;
  8393. #else
  8394. return 0;
  8395. #endif
  8396. }
  8397. int ggml_cpu_has_arm_fma(void) {
  8398. #if defined(__ARM_FEATURE_FMA)
  8399. return 1;
  8400. #else
  8401. return 0;
  8402. #endif
  8403. }
  8404. int ggml_cpu_has_f16c(void) {
  8405. #if defined(__F16C__)
  8406. return 1;
  8407. #else
  8408. return 0;
  8409. #endif
  8410. }
  8411. int ggml_cpu_has_fp16_va(void) {
  8412. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  8413. return 1;
  8414. #else
  8415. return 0;
  8416. #endif
  8417. }
  8418. int ggml_cpu_has_wasm_simd(void) {
  8419. #if defined(__wasm_simd128__)
  8420. return 1;
  8421. #else
  8422. return 0;
  8423. #endif
  8424. }
  8425. int ggml_cpu_has_blas(void) {
  8426. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8427. return 1;
  8428. #else
  8429. return 0;
  8430. #endif
  8431. }
  8432. int ggml_cpu_has_sse3(void) {
  8433. #if defined(__SSE3__)
  8434. return 1;
  8435. #else
  8436. return 0;
  8437. #endif
  8438. }
  8439. int ggml_cpu_has_vsx(void) {
  8440. #if defined(__POWER9_VECTOR__)
  8441. return 1;
  8442. #else
  8443. return 0;
  8444. #endif
  8445. }
  8446. ////////////////////////////////////////////////////////////////////////////////