| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435 |
- #!/usr/bin/env python3
- from __future__ import annotations
- import argparse
- import contextlib
- import json
- import os
- import re
- import sys
- from enum import IntEnum
- from pathlib import Path
- from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast
- import numpy as np
- import torch
- if TYPE_CHECKING:
- from torch import Tensor
- if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
- import gguf
- # check for any of the given keys in the dictionary and return the value of the first key found
- def get_key_opts(d, keys):
- for k in keys:
- if k in d:
- return d[k]
- print(f"Could not find any of {keys}")
- sys.exit()
- ###### MODEL DEFINITIONS ######
- class SentencePieceTokenTypes(IntEnum):
- NORMAL = 1
- UNKNOWN = 2
- CONTROL = 3
- USER_DEFINED = 4
- UNUSED = 5
- BYTE = 6
- class Model:
- def __init__(self, dir_model: Path, ftype: int, fname_out: Path, is_big_endian: bool):
- self.dir_model = dir_model
- self.ftype = ftype
- self.fname_out = fname_out
- self.is_big_endian = is_big_endian
- self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
- self.is_safetensors = self._is_model_safetensors()
- self.num_parts = Model.count_model_parts(self.dir_model, ".safetensors" if self.is_safetensors else ".bin")
- self.part_names = self._get_part_names()
- self.hparams = Model.load_hparams(self.dir_model)
- self.model_arch = self._get_model_architecture()
- self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
- def set_vocab(self):
- self._set_vocab_gpt2()
- def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
- for part_name in self.part_names:
- print(f"gguf: loading model part '{part_name}'")
- ctx: ContextManager[Any]
- if self.is_safetensors:
- from safetensors import safe_open
- ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
- else:
- ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
- with ctx as model_part:
- for name in model_part.keys():
- data = model_part.get_tensor(name) if self.is_safetensors else model_part[name]
- yield name, data
- def set_gguf_parameters(self):
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_block_count(self.hparams.get(
- "n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")),
- ))
- if (n_ctx := self.hparams.get("max_position_embeddings")) is not None:
- self.gguf_writer.add_context_length(n_ctx)
- if (n_embd := self.hparams.get("hidden_size")) is not None:
- self.gguf_writer.add_embedding_length(n_embd)
- if (n_ff := self.hparams.get("intermediate_size")) is not None:
- self.gguf_writer.add_feed_forward_length(n_ff)
- if (n_head := self.hparams.get("num_attention_heads")) is not None:
- self.gguf_writer.add_head_count(n_head)
- if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
- self.gguf_writer.add_head_count_kv(n_head_kv)
- if (n_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
- self.gguf_writer.add_layer_norm_rms_eps(n_rms_eps)
- if (n_experts := self.hparams.get("num_local_experts")) is not None:
- self.gguf_writer.add_expert_count(n_experts)
- if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
- self.gguf_writer.add_expert_used_count(n_experts_used)
- self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def write(self):
- self.write_tensors()
- self.gguf_writer.write_header_to_file()
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.write_tensors_to_file()
- self.gguf_writer.close()
- def write_vocab(self):
- self.gguf_writer.write_header_to_file()
- self.gguf_writer.write_kv_data_to_file()
- self.gguf_writer.close()
- @staticmethod
- def count_model_parts(dir_model: Path, prefix: str) -> int:
- num_parts = 0
- for filename in os.listdir(dir_model):
- if filename.endswith(prefix):
- num_parts += 1
- return num_parts
- @staticmethod
- def load_hparams(dir_model):
- with open(dir_model / "config.json", "r", encoding="utf-8") as f:
- return json.load(f)
- @staticmethod
- def from_model_architecture(model_architecture):
- if model_architecture == "GPTNeoXForCausalLM":
- return GPTNeoXModel
- if model_architecture == "BloomForCausalLM":
- return BloomModel
- if model_architecture == "MPTForCausalLM":
- return MPTModel
- if model_architecture in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
- return BaichuanModel
- if model_architecture in ("FalconForCausalLM", "RWForCausalLM"):
- return FalconModel
- if model_architecture == "GPTBigCodeForCausalLM":
- return StarCoderModel
- if model_architecture == "GPTRefactForCausalLM":
- return RefactModel
- if model_architecture == "PersimmonForCausalLM":
- return PersimmonModel
- if model_architecture in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
- return StableLMModel
- if model_architecture == "QWenLMHeadModel":
- return QwenModel
- if model_architecture == "Qwen2ForCausalLM":
- return Model
- if model_architecture == "MixtralForCausalLM":
- return MixtralModel
- if model_architecture == "GPT2LMHeadModel":
- return GPT2Model
- if model_architecture == "PhiForCausalLM":
- return Phi2Model
- if model_architecture == "PlamoForCausalLM":
- return PlamoModel
- if model_architecture == "CodeShellForCausalLM":
- return CodeShellModel
- if model_architecture == "OrionForCausalLM":
- return OrionModel
- return Model
- def _is_model_safetensors(self) -> bool:
- return Model.count_model_parts(self.dir_model, ".safetensors") > 0
- def _get_part_names(self):
- if self.is_safetensors:
- if self.num_parts == 1: # there's only one .safetensors file
- return ("model.safetensors",)
- return (f"model-{n:05}-of-{self.num_parts:05}.safetensors" for n in range(1, self.num_parts + 1))
- if self.num_parts == 1: # there's only one .bin file
- return ("pytorch_model.bin",)
- return (f"pytorch_model-{n:05}-of-{self.num_parts:05}.bin" for n in range(1, self.num_parts + 1))
- def _get_model_architecture(self) -> gguf.MODEL_ARCH:
- arch = self.hparams["architectures"][0]
- if arch == "GPTNeoXForCausalLM":
- return gguf.MODEL_ARCH.GPTNEOX
- if arch == "BloomForCausalLM":
- return gguf.MODEL_ARCH.BLOOM
- if arch == "MPTForCausalLM":
- return gguf.MODEL_ARCH.MPT
- if arch in ("BaichuanForCausalLM", "BaiChuanForCausalLM"):
- return gguf.MODEL_ARCH.BAICHUAN
- if arch in ("FalconForCausalLM", "RWForCausalLM"):
- return gguf.MODEL_ARCH.FALCON
- if arch == "GPTBigCodeForCausalLM":
- return gguf.MODEL_ARCH.STARCODER
- if arch == "GPTRefactForCausalLM":
- return gguf.MODEL_ARCH.REFACT
- if arch == "PersimmonForCausalLM":
- return gguf.MODEL_ARCH.PERSIMMON
- if arch in ("StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM"):
- return gguf.MODEL_ARCH.STABLELM
- if arch == "QWenLMHeadModel":
- return gguf.MODEL_ARCH.QWEN
- if arch == "Qwen2ForCausalLM":
- return gguf.MODEL_ARCH.QWEN2
- if arch == "MixtralForCausalLM":
- return gguf.MODEL_ARCH.LLAMA
- if arch == "GPT2LMHeadModel":
- return gguf.MODEL_ARCH.GPT2
- if arch == "PhiForCausalLM":
- return gguf.MODEL_ARCH.PHI2
- if arch == "PlamoForCausalLM":
- return gguf.MODEL_ARCH.PLAMO
- if arch == "CodeShellForCausalLM":
- return gguf.MODEL_ARCH.CODESHELL
- if arch == "OrionForCausalLM":
- return gguf.MODEL_ARCH.ORION
- raise NotImplementedError(f'Architecture "{arch}" not supported!')
- def _set_vocab_gpt2(self):
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[bytearray] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model)
- vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
- assert max(tokenizer.vocab.values()) < vocab_size
- reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
- added_vocab = tokenizer.get_added_vocab()
- for i in range(vocab_size):
- if i not in reverse_vocab:
- pad_token = f"[PAD{i}]".encode('utf-8')
- tokens.append(bytearray(pad_token))
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- if tokenizer.added_tokens_decoder[i].special:
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- toktypes.append(gguf.TokenType.USER_DEFINED)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, load_merges=True)
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_qwen(self):
- dir_model = self.dir_model
- hparams = self.hparams
- tokens: list[bytearray] = []
- toktypes: list[int] = []
- from transformers import AutoTokenizer
- tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
- vocab_size = hparams["vocab_size"]
- assert max(tokenizer.get_vocab().values()) < vocab_size
- merges = []
- vocab = {}
- mergeable_ranks = tokenizer.mergeable_ranks
- for token, rank in mergeable_ranks.items():
- vocab[QwenModel.token_bytes_to_string(token)] = rank
- if len(token) == 1:
- continue
- merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
- assert len(merged) == 2
- merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
- # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
- added_vocab = tokenizer.special_tokens
- reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()}
- for i in range(vocab_size):
- if i not in reverse_vocab:
- pad_token = f"[PAD{i}]".encode("utf-8")
- tokens.append(bytearray(pad_token))
- toktypes.append(gguf.TokenType.USER_DEFINED)
- elif reverse_vocab[i] in added_vocab:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.CONTROL)
- else:
- tokens.append(reverse_vocab[i])
- toktypes.append(gguf.TokenType.NORMAL)
- self.gguf_writer.add_tokenizer_model("gpt2")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
- special_vocab.merges = merges
- # only add special tokens when they were not already loaded from config.json
- if len(special_vocab.special_token_ids) == 0:
- special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
- special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
- # this one is usually not in config.json anyway
- special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
- special_vocab.add_to_gguf(self.gguf_writer)
- def _set_vocab_sentencepiece(self):
- from sentencepiece import SentencePieceProcessor
- tokenizer_path = self.dir_model / 'tokenizer.model'
- tokens: list[bytes] = []
- scores: list[float] = []
- toktypes: list[int] = []
- if not tokenizer_path.is_file():
- print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
- sys.exit(1)
- tokenizer = SentencePieceProcessor(str(tokenizer_path))
- vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
- for token_id in range(vocab_size):
- piece = tokenizer.id_to_piece(token_id)
- text = piece.encode("utf-8")
- score = tokenizer.get_score(token_id)
- toktype = SentencePieceTokenTypes.NORMAL
- if tokenizer.is_unknown(token_id):
- toktype = SentencePieceTokenTypes.UNKNOWN
- elif tokenizer.is_control(token_id):
- toktype = SentencePieceTokenTypes.CONTROL
- elif tokenizer.is_unused(token_id):
- toktype = SentencePieceTokenTypes.UNUSED
- elif tokenizer.is_byte(token_id):
- toktype = SentencePieceTokenTypes.BYTE
- tokens.append(text)
- scores.append(score)
- toktypes.append(toktype)
- added_tokens_file = self.dir_model / 'added_tokens.json'
- if added_tokens_file.is_file():
- with open(added_tokens_file, "r", encoding="utf-8") as f:
- added_tokens_json = json.load(f)
- for key in added_tokens_json:
- tokens.append(key.encode("utf-8"))
- scores.append(-1000.0)
- toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
- self.gguf_writer.add_tokenizer_model("llama")
- self.gguf_writer.add_token_list(tokens)
- self.gguf_writer.add_token_scores(scores)
- self.gguf_writer.add_token_types(toktypes)
- special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
- special_vocab.add_to_gguf(self.gguf_writer)
- class GPTNeoXModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(
- int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
- )
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
- class BloomModel(Model):
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("Bloom")
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
- self.gguf_writer.add_embedding_length(n_embed)
- self.gguf_writer.add_feed_forward_length(4 * n_embed)
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams["n_layer"]
- tensors = dict(self.get_tensors())
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- has_lm_head = True
- n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
- n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
- for name, data_torch in tensors.items():
- if "lm_head.weight" not in tensors.keys() and "output.weight" not in tensors.keys():
- has_lm_head = False
- name = re.sub(r'transformer\.', '', name)
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
- # Map bloom-style qkv_linear to gpt-style qkv_linear
- # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
- # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
- qkv_weights = data.reshape((n_head, 3, n_embed // n_head, n_embed))
- data = np.concatenate(
- (
- qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
- qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
- ),
- axis=0,
- )
- print("re-format attention.linear_qkv.weight")
- elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
- qkv_bias = data.reshape((n_head, 3, n_embed // n_head))
- data = np.concatenate(
- (
- qkv_bias[:, 0, :].reshape((n_embed,)),
- qkv_bias[:, 1, :].reshape((n_embed,)),
- qkv_bias[:, 2, :].reshape((n_embed,)),
- ),
- axis=0,
- )
- print("re-format attention.linear_qkv.bias")
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"=> {new_name}, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- if not has_lm_head and name == "word_embeddings.weight":
- self.gguf_writer.add_tensor("output.weight", data)
- print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- class MPTModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
- self.gguf_writer.add_embedding_length(self.hparams["d_model"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
- self.gguf_writer.add_head_count(self.hparams["n_heads"])
- if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
- self.gguf_writer.add_head_count_kv(kv_n_heads)
- self.gguf_writer.add_layer_norm_eps(1e-5)
- if self.hparams["attn_config"]["clip_qkv"] is not None:
- self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
- self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers"))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- if "scales" in name:
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
- if new_name is not None:
- new_name = new_name.replace("scales", "act.scales")
- else:
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- # note: MPT output is tied to (same as) wte in original model;
- # for easier implementation in llama.cpp it's duplicated in GGUF, though :/
- if new_name == "token_embd.weight":
- self.gguf_writer.add_tensor("output.weight", data)
- class OrionModel(Model):
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- print("gguf: can not find ctx length parameter.")
- sys.exit()
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
- def write_tensors(self):
- # Collect tensors from generator object
- model_kv = dict(self.get_tensors())
- block_count = self.hparams["num_hidden_layers"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- class BaichuanModel(Model):
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- hf_repo = self.hparams.get("_name_or_path", "")
- ctx_length = 0
- if "max_sequence_length" in self.hparams:
- ctx_length = self.hparams["max_sequence_length"]
- elif "max_position_embeddings" in self.hparams:
- ctx_length = self.hparams["max_position_embeddings"]
- elif "model_max_length" in self.hparams:
- ctx_length = self.hparams["model_max_length"]
- else:
- print("gguf: can not find ctx length parameter.")
- sys.exit()
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_source_hf_repo(hf_repo)
- self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
- self.gguf_writer.add_context_length(ctx_length)
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
- if self.hparams["rope_scaling"].get("type") == "linear":
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
- def write_tensors(self):
- # Collect tensors from generator object
- model_kv = dict(self.get_tensors())
- block_count = self.hparams["num_hidden_layers"]
- head_count = self.hparams["num_attention_heads"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- head_count_kv = self.hparams.get("num_key_value_heads", head_count)
- for i in range(block_count):
- if (w := model_kv.get(f"model.layers.{i}.self_attn.W_pack.weight")) is not None:
- print(f"Unpacking and permuting layer {i}")
- model_kv[f"model.layers.{i}.self_attn.q_proj.weight"] = \
- self._reverse_hf_permute_part(w, 0, head_count, head_count)
- model_kv[f"model.layers.{i}.self_attn.k_proj.weight"] = \
- self._reverse_hf_permute_part(w, 1, head_count, head_count_kv)
- model_kv[f"model.layers.{i}.self_attn.v_proj.weight"] = \
- self._reverse_hf_part(w, 2)
- del model_kv[f"model.layers.{i}.self_attn.W_pack.weight"]
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{name} -> {new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (
- weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape)
- )
- def _reverse_hf_permute_part(
- self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
- ) -> Tensor:
- r = weights.shape[0] // 3
- return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
- def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
- r = weights.shape[0] // 3
- return weights[r * n_part:r * n_part + r, ...]
- class FalconModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams.get("num_hidden_layers")
- if block_count is None:
- block_count = self.hparams["n_layer"] # old name
- n_head = self.hparams.get("num_attention_heads")
- if n_head is None:
- n_head = self.hparams["n_head"] # old name
- n_head_kv = self.hparams.get("num_kv_heads")
- if n_head_kv is None:
- n_head_kv = self.hparams.get("n_head_kv", 1) # old name
- self.gguf_writer.add_name("Falcon")
- self.gguf_writer.add_context_length(2048) # not in config.json
- self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head_kv)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams.get("num_hidden_layers")
- if block_count is None:
- block_count = self.hparams["n_layer"] # old name
- n_head = self.hparams.get("num_attention_heads")
- if n_head is None:
- n_head = self.hparams["n_head"] # old name
- n_head_kv = self.hparams.get("num_kv_heads")
- if n_head_kv is None:
- n_head_kv = self.hparams.get("n_head_kv", 1) # old name
- head_dim = self.hparams["hidden_size"] // n_head
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- # QKV tensor transform
- # The original query_key_value tensor contains n_head_kv "kv groups",
- # each consisting of n_head/n_head_kv query weights followed by one key
- # and one value weight (shared by all query heads in the kv group).
- # This layout makes it a big pain to work with in GGML.
- # So we rearrange them here,, so that we have n_head query weights
- # followed by n_head_kv key weights followed by n_head_kv value weights,
- # in contiguous fashion.
- # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
- if "query_key_value" in name:
- qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
- q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
- k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
- v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
- data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- class StarCoderModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_name("StarCoder")
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- class RefactModel(Model):
- def set_gguf_parameters(self):
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_name("Refact")
- # refact uses Alibi. So this is from config.json which might be used by training.
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(ff_dim)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(1)
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- hidden_dim = self.hparams["n_embd"]
- inner_dim = 4 * hidden_dim
- hidden_dim = int(2 * inner_dim / 3)
- multiple_of = 256
- ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
- n_head = self.hparams["n_head"]
- n_head_kv = 1
- head_dim = self.hparams["n_embd"] // n_head
- block_count = self.hparams["n_layer"]
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- tensors = dict(self.get_tensors())
- for i in range(block_count):
- if (w := tensors.get(f"transformer.h.{i}.attn.kv.weight")) is not None:
- tensors[f"model.layers.{i}.self_attn.k_proj.weight"] = w[:n_head_kv * head_dim]
- tensors[f"model.layers.{i}.self_attn.v_proj.weight"] = w[n_head_kv * head_dim:]
- del tensors[f"transformer.h.{i}.attn.kv.weight"]
- if (w := tensors.get(f"transformer.h.{i}.attn.q.weight")) is not None:
- tensors[f"model.layers.{i}.self_attn.q_proj.weight"] = w
- del tensors[f"transformer.h.{i}.attn.q.weight"]
- if (w := tensors.get(f"transformer.h.{i}.mlp.gate_up_proj.weight")) is not None:
- tensors[f"model.layers.{i}.mlp.gate_proj.weight"] = w[:ff_dim]
- tensors[f"model.layers.{i}.mlp.up_proj.weight"] = w[ff_dim:]
- del tensors[f"transformer.h.{i}.mlp.gate_up_proj.weight"]
- for name, data_torch in tensors.items():
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight",))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- class PersimmonModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
- head_count = self.hparams["num_attention_heads"]
- head_count_kv = head_count
- hidden_size = self.hparams["hidden_size"]
- self.gguf_writer.add_name('persimmon-8b-chat')
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hidden_size)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- # NOTE: not sure about this change - why does the model not have a rope dimension count when it is smaller
- # than the head size?
- # ref: https://github.com/ggerganov/llama.cpp/pull/4889
- # self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
- self.gguf_writer.add_rope_dimension_count(hidden_size // head_count // 2)
- self.gguf_writer.add_head_count(head_count)
- self.gguf_writer.add_head_count_kv(head_count_kv)
- self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- # self.gguf_writer.add_bos_token_id(71013)
- # self.gguf_writer.add_eos_token_id(71013)
- def write_tensors(self):
- block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- if name.endswith(".self_attention.rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
- data = data_torch.to(torch.float32).squeeze().numpy()
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- class StableLMModel(Model):
- def set_vocab(self):
- if (self.dir_model / "tokenizer.json").is_file():
- self._set_vocab_gpt2()
- else:
- # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab
- self._set_vocab_qwen()
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_rope_dimension_count(int(hparams["rope_pct"] * (hparams["hidden_size"] // hparams["num_attention_heads"])))
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
- self.gguf_writer.add_layer_norm_eps(1e-5)
- class MixtralModel(Model):
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- class QwenModel(Model):
- @staticmethod
- def token_bytes_to_string(b):
- from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
- byte_encoder = bytes_to_unicode()
- return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
- @staticmethod
- def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
- parts = [bytes([b]) for b in token]
- while True:
- min_idx = None
- min_rank = None
- for i, pair in enumerate(zip(parts[:-1], parts[1:])):
- rank = mergeable_ranks.get(pair[0] + pair[1])
- if rank is not None and (min_rank is None or rank < min_rank):
- min_idx = i
- min_rank = rank
- if min_rank is None or (max_rank is not None and min_rank >= max_rank):
- break
- assert min_idx is not None
- parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
- return parts
- def set_vocab(self):
- self._set_vocab_qwen()
- def set_gguf_parameters(self):
- self.gguf_writer.add_name("Qwen")
- self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
- self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
- self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
- self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
- self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
- self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
- self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
- def write_tensors(self):
- block_count = self.hparams["num_hidden_layers"]
- model_kv = dict(self.get_tensors())
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in model_kv.items():
- # we don't need these
- if name.endswith(".rotary_emb.inv_freq"):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- class GPT2Model(Model):
- def set_gguf_parameters(self):
- self.gguf_writer.add_name(self.dir_model.name)
- self.gguf_writer.add_block_count(self.hparams["n_layer"])
- self.gguf_writer.add_context_length(self.hparams["n_ctx"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- # we don't need these
- if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq", ".attn.bias")):
- continue
- if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
- data_torch = data_torch.transpose(1, 0)
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- # note: GPT2 output is tied to (same as) wte in original model
- if new_name == "token_embd.weight":
- print(f"output.weight, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor("output.weight", data)
- class Phi2Model(Model):
- def set_gguf_parameters(self):
- block_count = get_key_opts(self.hparams, ["num_hidden_layers", "n_layer"])
- rot_pct = get_key_opts(self.hparams, ["partial_rotary_factor"])
- n_embd = get_key_opts(self.hparams, ["hidden_size", "n_embd"])
- n_head = get_key_opts(self.hparams, ["num_attention_heads", "n_head"])
- self.gguf_writer.add_name("Phi2")
- self.gguf_writer.add_context_length(get_key_opts(self.hparams, ["n_positions", "max_position_embeddings"]))
- self.gguf_writer.add_embedding_length(n_embd)
- self.gguf_writer.add_feed_forward_length(4 * n_embd)
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(n_head)
- self.gguf_writer.add_head_count_kv(n_head)
- self.gguf_writer.add_layer_norm_eps(get_key_opts(self.hparams, ["layer_norm_epsilon", "layer_norm_eps"]))
- self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_add_bos_token(False)
- class PlamoModel(Model):
- def set_vocab(self):
- self._set_vocab_sentencepiece()
- def set_gguf_parameters(self):
- hparams = self.hparams
- block_count = hparams["num_hidden_layers"]
- self.gguf_writer.add_name("PLaMo")
- self.gguf_writer.add_context_length(4096) # not in config.json
- self.gguf_writer.add_embedding_length(hparams["hidden_size"])
- self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(hparams["num_attention_heads"])
- self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
- self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
- def shuffle_attn_q_weight(self, data_torch):
- assert data_torch.size() == (5120, 5120)
- data_torch = data_torch.reshape(8, 5, 128, 5120)
- data_torch = torch.permute(data_torch, (1, 0, 2, 3))
- data_torch = torch.reshape(data_torch, (5120, 5120))
- return data_torch
- def shuffle_attn_output_weight(self, data_torch):
- assert data_torch.size() == (5120, 5120)
- data_torch = data_torch.reshape(5120, 8, 5, 128)
- data_torch = torch.permute(data_torch, (0, 2, 1, 3))
- data_torch = torch.reshape(data_torch, (5120, 5120))
- return data_torch
- def write_tensors(self):
- block_count = self.hparams.get("num_layers", self.hparams.get("num_hidden_layers"))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- for name, data_torch in self.get_tensors():
- if "self_attn.rotary_emb.inv_freq" in name:
- continue
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- # shuffle for broadcasting of gqa in ggml_mul_mat
- if new_name.endswith("attn_q.weight"):
- data_torch = self.shuffle_attn_q_weight(data_torch)
- elif new_name.endswith("attn_output.weight"):
- data_torch = self.shuffle_attn_output_weight(data_torch)
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- class CodeShellModel(Model):
- def set_gguf_parameters(self):
- block_count = self.hparams["n_layer"]
- self.gguf_writer.add_name("CodeShell")
- self.gguf_writer.add_context_length(self.hparams["n_positions"])
- self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
- self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
- self.gguf_writer.add_block_count(block_count)
- self.gguf_writer.add_head_count(self.hparams["n_head"])
- self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
- self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
- self.gguf_writer.add_file_type(self.ftype)
- self.gguf_writer.add_rope_freq_base(10000.0)
- self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
- self.gguf_writer.add_rope_scaling_factor(1.0)
- def write_tensors(self):
- block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
- tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
- tensors = dict(self.get_tensors())
- has_lm_head = "lm_head.weight" in tensors.keys() or "output.weight" in tensors.keys()
- for name, data_torch in tensors.items():
- # we don't need these
- if name.endswith((".attn.rotary_emb.inv_freq")):
- continue
- old_dtype = data_torch.dtype
- # convert any unsupported data types to float32
- if data_torch.dtype not in (torch.float16, torch.float32):
- data_torch = data_torch.to(torch.float32)
- data = data_torch.squeeze().numpy()
- # map tensor names
- new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
- if new_name is None:
- print(f"Can not map tensor {name!r}")
- sys.exit()
- n_dims = len(data.shape)
- data_dtype = data.dtype
- # if f32 desired, convert any float16 to float32
- if self.ftype == 0 and data_dtype == np.float16:
- data = data.astype(np.float32)
- # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
- if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
- data = data.astype(np.float32)
- # if f16 desired, convert any float32 2-dim weight tensors to float16
- if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
- data = data.astype(np.float16)
- print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
- self.gguf_writer.add_tensor(new_name, data)
- if not has_lm_head and name == "transformer.wte.weight":
- self.gguf_writer.add_tensor("output.weight", data)
- print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
- ###### CONVERSION LOGIC ######
- def parse_args() -> argparse.Namespace:
- parser = argparse.ArgumentParser(
- description="Convert a huggingface model to a GGML compatible file")
- parser.add_argument(
- "--vocab-only", action="store_true",
- help="extract only the vocab",
- )
- parser.add_argument(
- "--awq-path", type=Path, default=None,
- help="Path to scale awq cache file")
- parser.add_argument(
- "--outfile", type=Path,
- help="path to write to; default: based on input",
- )
- parser.add_argument(
- "--outtype", type=str, choices=["f32", "f16"], default="f16",
- help="output format - use f32 for float32, f16 for float16",
- )
- parser.add_argument("--bigendian", action="store_true", help="model is executed on big endian machine")
- parser.add_argument(
- "model", type=Path,
- help="directory containing model file",
- )
- return parser.parse_args()
- def main() -> None:
- args = parse_args()
- dir_model = args.model
- if args.awq_path:
- sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
- from awq.apply_awq import add_scale_weights # type: ignore[import-not-found]
- tmp_model_path = args.model / "weighted_model"
- dir_model = tmp_model_path
- if tmp_model_path.is_dir():
- print(f"{tmp_model_path} exists as a weighted model.")
- else:
- tmp_model_path.mkdir(parents=True, exist_ok=True)
- print("Saving new weighted model ...")
- add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
- print(f"Saved weighted model at {tmp_model_path}.")
- if not dir_model.is_dir():
- print(f'Error: {args.model} is not a directory', file=sys.stderr)
- sys.exit(1)
- ftype_map = {
- "f32": gguf.GGMLQuantizationType.F32,
- "f16": gguf.GGMLQuantizationType.F16,
- }
- if args.outfile is not None:
- fname_out = args.outfile
- else:
- # output in the same directory as the model by default
- fname_out = dir_model / f'ggml-model-{args.outtype}.gguf'
- print(f"Loading model: {dir_model.name}")
- hparams = Model.load_hparams(dir_model)
- with torch.inference_mode():
- model_class = Model.from_model_architecture(hparams["architectures"][0])
- model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian)
- print("Set model parameters")
- model_instance.set_gguf_parameters()
- print("Set model tokenizer")
- model_instance.set_vocab()
- if args.vocab_only:
- print(f"Exporting model vocab to '{fname_out}'")
- model_instance.write_vocab()
- else:
- print(f"Exporting model to '{fname_out}'")
- model_instance.write()
- print(f"Model successfully exported to '{fname_out}'")
- if __name__ == '__main__':
- main()
|