ggml.h 83 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303
  1. #pragma once
  2. //
  3. // GGML Tensor Library
  4. //
  5. // This documentation is still a work in progress.
  6. // If you wish some specific topics to be covered, feel free to drop a comment:
  7. //
  8. // https://github.com/ggerganov/whisper.cpp/issues/40
  9. //
  10. // ## Overview
  11. //
  12. // This library implements:
  13. //
  14. // - a set of tensor operations
  15. // - automatic differentiation
  16. // - basic optimization algorithms
  17. //
  18. // The aim of this library is to provide a minimalistic approach for various machine learning tasks. This includes,
  19. // but is not limited to, the following:
  20. //
  21. // - linear regression
  22. // - support vector machines
  23. // - neural networks
  24. //
  25. // The library allows the user to define a certain function using the available tensor operations. This function
  26. // definition is represented internally via a computation graph. Each tensor operation in the function definition
  27. // corresponds to a node in the graph. Having the computation graph defined, the user can choose to compute the
  28. // function's value and/or its gradient with respect to the input variables. Optionally, the function can be optimized
  29. // using one of the available optimization algorithms.
  30. //
  31. // For example, here we define the function: f(x) = a*x^2 + b
  32. //
  33. // {
  34. // struct ggml_init_params params = {
  35. // .mem_size = 16*1024*1024,
  36. // .mem_buffer = NULL,
  37. // };
  38. //
  39. // // memory allocation happens here
  40. // struct ggml_context * ctx = ggml_init(params);
  41. //
  42. // struct ggml_tensor * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  43. //
  44. // ggml_set_param(ctx, x); // x is an input variable
  45. //
  46. // struct ggml_tensor * a = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  47. // struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  48. // struct ggml_tensor * x2 = ggml_mul(ctx, x, x);
  49. // struct ggml_tensor * f = ggml_add(ctx, ggml_mul(ctx, a, x2), b);
  50. //
  51. // ...
  52. // }
  53. //
  54. // Notice that the function definition above does not involve any actual computation. The computation is performed only
  55. // when the user explicitly requests it. For example, to compute the function's value at x = 2.0:
  56. //
  57. // {
  58. // ...
  59. //
  60. // struct ggml_cgraph * gf = ggml_new_graph(ctx);
  61. // ggml_build_forward_expand(gf, f);
  62. //
  63. // // set the input variable and parameter values
  64. // ggml_set_f32(x, 2.0f);
  65. // ggml_set_f32(a, 3.0f);
  66. // ggml_set_f32(b, 4.0f);
  67. //
  68. // ggml_graph_compute_with_ctx(ctx, &gf, n_threads);
  69. //
  70. // printf("f = %f\n", ggml_get_f32_1d(f, 0));
  71. //
  72. // ...
  73. // }
  74. //
  75. // The actual computation is performed in the ggml_graph_compute() function.
  76. //
  77. // The ggml_new_tensor_...() functions create new tensors. They are allocated in the memory buffer provided to the
  78. // ggml_init() function. You have to be careful not to exceed the memory buffer size. Therefore, you have to know
  79. // in advance how much memory you need for your computation. Alternatively, you can allocate a large enough memory
  80. // and after defining the computation graph, call the ggml_used_mem() function to find out how much memory was
  81. // actually needed.
  82. //
  83. // The ggml_set_param() function marks a tensor as an input variable. This is used by the automatic
  84. // differentiation and optimization algorithms.
  85. //
  86. // The described approach allows to define the function graph once and then compute its forward or backward graphs
  87. // multiple times. All computations will use the same memory buffer allocated in the ggml_init() function. This way
  88. // the user can avoid the memory allocation overhead at runtime.
  89. //
  90. // The library supports multi-dimensional tensors - up to 4 dimensions. The FP16 and FP32 data types are first class
  91. // citizens, but in theory the library can be extended to support FP8 and integer data types.
  92. //
  93. // Each tensor operation produces a new tensor. Initially the library was envisioned to support only the use of unary
  94. // and binary operations. Most of the available operations fall into one of these two categories. With time, it became
  95. // clear that the library needs to support more complex operations. The way to support these operations is not clear
  96. // yet, but a few examples are demonstrated in the following operations:
  97. //
  98. // - ggml_permute()
  99. // - ggml_conv_1d_1s()
  100. // - ggml_conv_1d_2s()
  101. //
  102. // For each tensor operator, the library implements a forward and backward computation function. The forward function
  103. // computes the output tensor value given the input tensor values. The backward function computes the adjoint of the
  104. // input tensors given the adjoint of the output tensor. For a detailed explanation of what this means, take a
  105. // calculus class, or watch the following video:
  106. //
  107. // What is Automatic Differentiation?
  108. // https://www.youtube.com/watch?v=wG_nF1awSSY
  109. //
  110. //
  111. // ## Tensor data (struct ggml_tensor)
  112. //
  113. // The tensors are stored in memory via the ggml_tensor struct. The structure provides information about the size of
  114. // the tensor, the data type, and the memory buffer where the tensor data is stored. Additionally, it contains
  115. // pointers to the "source" tensors - i.e. the tensors that were used to compute the current tensor. For example:
  116. //
  117. // {
  118. // struct ggml_tensor * c = ggml_add(ctx, a, b);
  119. //
  120. // assert(c->src[0] == a);
  121. // assert(c->src[1] == b);
  122. // }
  123. //
  124. // The multi-dimensional tensors are stored in row-major order. The ggml_tensor struct contains fields for the
  125. // number of elements in each dimension ("ne") as well as the number of bytes ("nb", a.k.a. stride). This allows
  126. // to store tensors that are not contiguous in memory, which is useful for operations such as transposition and
  127. // permutation. All tensor operations have to take the stride into account and not assume that the tensor is
  128. // contiguous in memory.
  129. //
  130. // The data of the tensor is accessed via the "data" pointer. For example:
  131. //
  132. // {
  133. // const int nx = 2;
  134. // const int ny = 3;
  135. //
  136. // struct ggml_tensor * a = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, ny);
  137. //
  138. // for (int y = 0; y < ny; y++) {
  139. // for (int x = 0; x < nx; x++) {
  140. // *(float *) ((char *) a->data + y*a->nb[1] + x*a->nb[0]) = x + y;
  141. // }
  142. // }
  143. //
  144. // ...
  145. // }
  146. //
  147. // Alternatively, there are helper functions, such as ggml_get_f32_1d() and ggml_set_f32_1d() that can be used.
  148. //
  149. // ## The matrix multiplication operator (ggml_mul_mat)
  150. //
  151. // TODO
  152. //
  153. //
  154. // ## Multi-threading
  155. //
  156. // TODO
  157. //
  158. //
  159. // ## Overview of ggml.c
  160. //
  161. // TODO
  162. //
  163. //
  164. // ## SIMD optimizations
  165. //
  166. // TODO
  167. //
  168. //
  169. // ## Debugging ggml
  170. //
  171. // TODO
  172. //
  173. //
  174. #ifdef GGML_SHARED
  175. # if defined(_WIN32) && !defined(__MINGW32__)
  176. # ifdef GGML_BUILD
  177. # define GGML_API __declspec(dllexport)
  178. # else
  179. # define GGML_API __declspec(dllimport)
  180. # endif
  181. # else
  182. # define GGML_API __attribute__ ((visibility ("default")))
  183. # endif
  184. #else
  185. # define GGML_API
  186. #endif
  187. #ifdef GGML_MULTIPLATFORM
  188. # if defined(_WIN32)
  189. # define GGML_CALL
  190. # else
  191. # define GGML_CALL __attribute__((__ms_abi__))
  192. # endif
  193. #else
  194. # define GGML_CALL
  195. #endif
  196. // TODO: support for clang
  197. #ifdef __GNUC__
  198. # define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  199. #elif defined(_MSC_VER)
  200. # define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  201. #else
  202. # define GGML_DEPRECATED(func, hint) func
  203. #endif
  204. #ifndef __GNUC__
  205. # define GGML_ATTRIBUTE_FORMAT(...)
  206. #elif defined(__MINGW32__)
  207. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  208. #else
  209. # define GGML_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  210. #endif
  211. #include <stdint.h>
  212. #include <stddef.h>
  213. #include <stdbool.h>
  214. #define GGML_FILE_MAGIC 0x67676d6c // "ggml"
  215. #define GGML_FILE_VERSION 1
  216. #define GGML_QNT_VERSION 2 // bump this on quantization format changes
  217. #define GGML_QNT_VERSION_FACTOR 1000 // do not change this
  218. #define GGML_MAX_DIMS 4
  219. #define GGML_MAX_PARAMS 2048
  220. #define GGML_MAX_CONTEXTS 64
  221. #define GGML_MAX_SRC 10
  222. #ifndef GGML_MAX_NAME
  223. #define GGML_MAX_NAME 64
  224. #endif
  225. #define GGML_MAX_OP_PARAMS 64
  226. #define GGML_DEFAULT_N_THREADS 4
  227. #define GGML_DEFAULT_GRAPH_SIZE 2048
  228. #if UINTPTR_MAX == 0xFFFFFFFF
  229. #define GGML_MEM_ALIGN 4
  230. #else
  231. #define GGML_MEM_ALIGN 16
  232. #endif
  233. #define GGML_EXIT_SUCCESS 0
  234. #define GGML_EXIT_ABORTED 1
  235. #define GGUF_MAGIC "GGUF"
  236. #define GGUF_VERSION 3
  237. #define GGUF_DEFAULT_ALIGNMENT 32
  238. #define GGML_UNUSED(x) (void)(x)
  239. #define GGML_PAD(x, n) (((x) + (n) - 1) & ~((n) - 1))
  240. #define GGML_ASSERT(x) \
  241. do { \
  242. if (!(x)) { \
  243. fflush(stdout); \
  244. fprintf(stderr, "GGML_ASSERT: %s:%d: %s\n", __FILE__, __LINE__, #x); \
  245. ggml_print_backtrace(); \
  246. abort(); \
  247. } \
  248. } while (0)
  249. #ifndef NDEBUG
  250. #define GGML_UNREACHABLE() GGML_ASSERT(!"statement should not be reached")
  251. #elif defined(__GNUC__)
  252. #define GGML_UNREACHABLE() __builtin_unreachable()
  253. #elif defined(_MSC_VER)
  254. #define GGML_UNREACHABLE() __assume(0)
  255. #else
  256. #define GGML_UNREACHABLE() ((void) 0)
  257. #endif
  258. // used to copy the number of elements and stride in bytes of tensors into local variables.
  259. // main purpose is to reduce code duplication and improve readability.
  260. //
  261. // example:
  262. //
  263. // GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  264. // GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  265. //
  266. #define GGML_TENSOR_LOCALS_1(type, prefix, pointer, array) \
  267. const type prefix##0 = (pointer)->array[0]; \
  268. GGML_UNUSED(prefix##0);
  269. #define GGML_TENSOR_LOCALS_2(type, prefix, pointer, array) \
  270. GGML_TENSOR_LOCALS_1 (type, prefix, pointer, array) \
  271. const type prefix##1 = (pointer)->array[1]; \
  272. GGML_UNUSED(prefix##1);
  273. #define GGML_TENSOR_LOCALS_3(type, prefix, pointer, array) \
  274. GGML_TENSOR_LOCALS_2 (type, prefix, pointer, array) \
  275. const type prefix##2 = (pointer)->array[2]; \
  276. GGML_UNUSED(prefix##2);
  277. #define GGML_TENSOR_LOCALS(type, prefix, pointer, array) \
  278. GGML_TENSOR_LOCALS_3 (type, prefix, pointer, array) \
  279. const type prefix##3 = (pointer)->array[3]; \
  280. GGML_UNUSED(prefix##3);
  281. #define GGML_TENSOR_UNARY_OP_LOCALS \
  282. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  283. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  284. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  285. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  286. #define GGML_TENSOR_BINARY_OP_LOCALS \
  287. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  288. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  289. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  290. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  291. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  292. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  293. #ifdef __cplusplus
  294. extern "C" {
  295. #endif
  296. #if defined(__ARM_NEON) && defined(__CUDACC__)
  297. typedef half ggml_fp16_t;
  298. #elif defined(__ARM_NEON) && !defined(_MSC_VER)
  299. typedef __fp16 ggml_fp16_t;
  300. #else
  301. typedef uint16_t ggml_fp16_t;
  302. #endif
  303. // convert FP16 <-> FP32
  304. GGML_API float ggml_fp16_to_fp32(ggml_fp16_t x);
  305. GGML_API ggml_fp16_t ggml_fp32_to_fp16(float x);
  306. GGML_API void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n);
  307. GGML_API void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n);
  308. struct ggml_object;
  309. struct ggml_context;
  310. enum ggml_type {
  311. GGML_TYPE_F32 = 0,
  312. GGML_TYPE_F16 = 1,
  313. GGML_TYPE_Q4_0 = 2,
  314. GGML_TYPE_Q4_1 = 3,
  315. // GGML_TYPE_Q4_2 = 4, support has been removed
  316. // GGML_TYPE_Q4_3 (5) support has been removed
  317. GGML_TYPE_Q5_0 = 6,
  318. GGML_TYPE_Q5_1 = 7,
  319. GGML_TYPE_Q8_0 = 8,
  320. GGML_TYPE_Q8_1 = 9,
  321. // k-quantizations
  322. GGML_TYPE_Q2_K = 10,
  323. GGML_TYPE_Q3_K = 11,
  324. GGML_TYPE_Q4_K = 12,
  325. GGML_TYPE_Q5_K = 13,
  326. GGML_TYPE_Q6_K = 14,
  327. GGML_TYPE_Q8_K = 15,
  328. GGML_TYPE_IQ2_XXS = 16,
  329. GGML_TYPE_IQ2_XS = 17,
  330. GGML_TYPE_I8,
  331. GGML_TYPE_I16,
  332. GGML_TYPE_I32,
  333. GGML_TYPE_COUNT,
  334. };
  335. // precision
  336. enum ggml_prec {
  337. GGML_PREC_DEFAULT,
  338. GGML_PREC_F32,
  339. };
  340. enum ggml_backend_type {
  341. GGML_BACKEND_CPU = 0,
  342. GGML_BACKEND_GPU = 10,
  343. GGML_BACKEND_GPU_SPLIT = 20,
  344. };
  345. // model file types
  346. enum ggml_ftype {
  347. GGML_FTYPE_UNKNOWN = -1,
  348. GGML_FTYPE_ALL_F32 = 0,
  349. GGML_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  350. GGML_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  351. GGML_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  352. GGML_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  353. GGML_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  354. GGML_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  355. GGML_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  356. GGML_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  357. GGML_FTYPE_MOSTLY_Q3_K = 11, // except 1d tensors
  358. GGML_FTYPE_MOSTLY_Q4_K = 12, // except 1d tensors
  359. GGML_FTYPE_MOSTLY_Q5_K = 13, // except 1d tensors
  360. GGML_FTYPE_MOSTLY_Q6_K = 14, // except 1d tensors
  361. GGML_FTYPE_MOSTLY_IQ2_XXS = 15, // except 1d tensors
  362. GGML_FTYPE_MOSTLY_IQ2_XS = 16, // except 1d tensors
  363. };
  364. // available tensor operations:
  365. enum ggml_op {
  366. GGML_OP_NONE = 0,
  367. GGML_OP_DUP,
  368. GGML_OP_ADD,
  369. GGML_OP_ADD1,
  370. GGML_OP_ACC,
  371. GGML_OP_SUB,
  372. GGML_OP_MUL,
  373. GGML_OP_DIV,
  374. GGML_OP_SQR,
  375. GGML_OP_SQRT,
  376. GGML_OP_LOG,
  377. GGML_OP_SUM,
  378. GGML_OP_SUM_ROWS,
  379. GGML_OP_MEAN,
  380. GGML_OP_ARGMAX,
  381. GGML_OP_REPEAT,
  382. GGML_OP_REPEAT_BACK,
  383. GGML_OP_CONCAT,
  384. GGML_OP_SILU_BACK,
  385. GGML_OP_NORM, // normalize
  386. GGML_OP_RMS_NORM,
  387. GGML_OP_RMS_NORM_BACK,
  388. GGML_OP_GROUP_NORM,
  389. GGML_OP_MUL_MAT,
  390. GGML_OP_MUL_MAT_ID,
  391. GGML_OP_OUT_PROD,
  392. GGML_OP_SCALE,
  393. GGML_OP_SET,
  394. GGML_OP_CPY,
  395. GGML_OP_CONT,
  396. GGML_OP_RESHAPE,
  397. GGML_OP_VIEW,
  398. GGML_OP_PERMUTE,
  399. GGML_OP_TRANSPOSE,
  400. GGML_OP_GET_ROWS,
  401. GGML_OP_GET_ROWS_BACK,
  402. GGML_OP_DIAG,
  403. GGML_OP_DIAG_MASK_INF,
  404. GGML_OP_DIAG_MASK_ZERO,
  405. GGML_OP_SOFT_MAX,
  406. GGML_OP_SOFT_MAX_BACK,
  407. GGML_OP_ROPE,
  408. GGML_OP_ROPE_BACK,
  409. GGML_OP_ALIBI,
  410. GGML_OP_CLAMP,
  411. GGML_OP_CONV_TRANSPOSE_1D,
  412. GGML_OP_IM2COL,
  413. GGML_OP_CONV_TRANSPOSE_2D,
  414. GGML_OP_POOL_1D,
  415. GGML_OP_POOL_2D,
  416. GGML_OP_UPSCALE, // nearest interpolate
  417. GGML_OP_PAD,
  418. GGML_OP_ARGSORT,
  419. GGML_OP_LEAKY_RELU,
  420. GGML_OP_FLASH_ATTN,
  421. GGML_OP_FLASH_FF,
  422. GGML_OP_FLASH_ATTN_BACK,
  423. GGML_OP_WIN_PART,
  424. GGML_OP_WIN_UNPART,
  425. GGML_OP_GET_REL_POS,
  426. GGML_OP_ADD_REL_POS,
  427. GGML_OP_UNARY,
  428. GGML_OP_MAP_UNARY,
  429. GGML_OP_MAP_BINARY,
  430. GGML_OP_MAP_CUSTOM1_F32,
  431. GGML_OP_MAP_CUSTOM2_F32,
  432. GGML_OP_MAP_CUSTOM3_F32,
  433. GGML_OP_MAP_CUSTOM1,
  434. GGML_OP_MAP_CUSTOM2,
  435. GGML_OP_MAP_CUSTOM3,
  436. GGML_OP_CROSS_ENTROPY_LOSS,
  437. GGML_OP_CROSS_ENTROPY_LOSS_BACK,
  438. GGML_OP_COUNT,
  439. };
  440. enum ggml_unary_op {
  441. GGML_UNARY_OP_ABS,
  442. GGML_UNARY_OP_SGN,
  443. GGML_UNARY_OP_NEG,
  444. GGML_UNARY_OP_STEP,
  445. GGML_UNARY_OP_TANH,
  446. GGML_UNARY_OP_ELU,
  447. GGML_UNARY_OP_RELU,
  448. GGML_UNARY_OP_GELU,
  449. GGML_UNARY_OP_GELU_QUICK,
  450. GGML_UNARY_OP_SILU,
  451. GGML_UNARY_OP_HARDSWISH,
  452. GGML_UNARY_OP_HARDSIGMOID,
  453. GGML_UNARY_OP_COUNT,
  454. };
  455. enum ggml_object_type {
  456. GGML_OBJECT_TENSOR,
  457. GGML_OBJECT_GRAPH,
  458. GGML_OBJECT_WORK_BUFFER
  459. };
  460. enum ggml_log_level {
  461. GGML_LOG_LEVEL_ERROR = 2,
  462. GGML_LOG_LEVEL_WARN = 3,
  463. GGML_LOG_LEVEL_INFO = 4,
  464. GGML_LOG_LEVEL_DEBUG = 5
  465. };
  466. // ggml object
  467. struct ggml_object {
  468. size_t offs;
  469. size_t size;
  470. struct ggml_object * next;
  471. enum ggml_object_type type;
  472. char padding[4];
  473. };
  474. static const size_t GGML_OBJECT_SIZE = sizeof(struct ggml_object);
  475. // n-dimensional tensor
  476. struct ggml_tensor {
  477. enum ggml_type type;
  478. enum ggml_backend_type backend;
  479. struct ggml_backend_buffer * buffer;
  480. int64_t ne[GGML_MAX_DIMS]; // number of elements
  481. size_t nb[GGML_MAX_DIMS]; // stride in bytes:
  482. // nb[0] = ggml_type_size(type)
  483. // nb[1] = nb[0] * (ne[0] / ggml_blck_size(type)) + padding
  484. // nb[i] = nb[i-1] * ne[i-1]
  485. // compute data
  486. enum ggml_op op;
  487. // op params - allocated as int32_t for alignment
  488. int32_t op_params[GGML_MAX_OP_PARAMS / sizeof(int32_t)];
  489. bool is_param;
  490. struct ggml_tensor * grad;
  491. struct ggml_tensor * src[GGML_MAX_SRC];
  492. // performance
  493. int perf_runs;
  494. int64_t perf_cycles;
  495. int64_t perf_time_us;
  496. struct ggml_tensor * view_src;
  497. size_t view_offs;
  498. void * data;
  499. char name[GGML_MAX_NAME];
  500. void * extra; // extra things e.g. for ggml-cuda.cu
  501. char padding[8];
  502. };
  503. static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
  504. // the compute plan that needs to be prepared for ggml_graph_compute()
  505. // since https://github.com/ggerganov/ggml/issues/287
  506. struct ggml_cplan {
  507. size_t work_size; // size of work buffer, calculated by `ggml_graph_plan()`
  508. uint8_t * work_data; // work buffer, to be allocated by caller before calling to `ggml_graph_compute()`
  509. int n_threads;
  510. // abort ggml_graph_compute when true
  511. bool (*abort_callback)(void * data);
  512. void * abort_callback_data;
  513. };
  514. enum ggml_cgraph_eval_order {
  515. GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT = 0,
  516. GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT,
  517. GGML_CGRAPH_EVAL_ORDER_COUNT
  518. };
  519. struct ggml_hash_set {
  520. size_t size;
  521. struct ggml_tensor ** keys;
  522. };
  523. // computation graph
  524. struct ggml_cgraph {
  525. int size;
  526. int n_nodes;
  527. int n_leafs;
  528. struct ggml_tensor ** nodes;
  529. struct ggml_tensor ** grads;
  530. struct ggml_tensor ** leafs;
  531. struct ggml_hash_set visited_hash_table;
  532. enum ggml_cgraph_eval_order order;
  533. // performance
  534. int perf_runs;
  535. int64_t perf_cycles;
  536. int64_t perf_time_us;
  537. };
  538. // scratch buffer
  539. struct ggml_scratch {
  540. size_t offs;
  541. size_t size;
  542. void * data;
  543. };
  544. struct ggml_init_params {
  545. // memory pool
  546. size_t mem_size; // bytes
  547. void * mem_buffer; // if NULL, memory will be allocated internally
  548. bool no_alloc; // don't allocate memory for the tensor data
  549. };
  550. // compute types
  551. // NOTE: the INIT or FINALIZE pass is not scheduled unless explicitly enabled.
  552. // This behavior was changed since https://github.com/ggerganov/llama.cpp/pull/1995.
  553. enum ggml_task_type {
  554. GGML_TASK_INIT = 0,
  555. GGML_TASK_COMPUTE,
  556. GGML_TASK_FINALIZE,
  557. };
  558. struct ggml_compute_params {
  559. enum ggml_task_type type;
  560. // ith = thread index, nth = number of threads
  561. int ith, nth;
  562. // work buffer for all threads
  563. size_t wsize;
  564. void * wdata;
  565. };
  566. // misc
  567. GGML_API void ggml_time_init(void); // call this once at the beginning of the program
  568. GGML_API int64_t ggml_time_ms(void);
  569. GGML_API int64_t ggml_time_us(void);
  570. GGML_API int64_t ggml_cycles(void);
  571. GGML_API int64_t ggml_cycles_per_ms(void);
  572. GGML_API void ggml_print_backtrace(void);
  573. GGML_API void ggml_numa_init(void); // call once for better performance on NUMA systems
  574. GGML_API bool ggml_is_numa(void); // true if init detected that system has >1 NUMA node
  575. GGML_API void ggml_print_object (const struct ggml_object * obj);
  576. GGML_API void ggml_print_objects(const struct ggml_context * ctx);
  577. GGML_API GGML_CALL int64_t ggml_nelements (const struct ggml_tensor * tensor);
  578. GGML_API GGML_CALL int64_t ggml_nrows (const struct ggml_tensor * tensor);
  579. GGML_API GGML_CALL size_t ggml_nbytes (const struct ggml_tensor * tensor);
  580. GGML_API size_t ggml_nbytes_pad (const struct ggml_tensor * tensor); // same as ggml_nbytes() but padded to GGML_MEM_ALIGN
  581. GGML_API GGML_CALL int ggml_blck_size(enum ggml_type type);
  582. GGML_API GGML_CALL size_t ggml_type_size(enum ggml_type type); // size in bytes for all elements in a block
  583. GGML_API GGML_CALL size_t ggml_row_size (enum ggml_type type, int64_t ne); // size in bytes for all elements in a row
  584. GGML_DEPRECATED(
  585. GGML_API double ggml_type_sizef(enum ggml_type type), // ggml_type_size()/ggml_blck_size() as float
  586. "use ggml_row_size() instead");
  587. GGML_API GGML_CALL const char * ggml_type_name(enum ggml_type type);
  588. GGML_API GGML_CALL const char * ggml_op_name (enum ggml_op op);
  589. GGML_API const char * ggml_op_symbol(enum ggml_op op);
  590. GGML_API const char * ggml_unary_op_name(enum ggml_unary_op op);
  591. GGML_API GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t); // unary or op name
  592. GGML_API GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor);
  593. GGML_API GGML_CALL bool ggml_is_quantized(enum ggml_type type);
  594. // TODO: temporary until model loading of ggml examples is refactored
  595. GGML_API enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype);
  596. GGML_API GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor);
  597. GGML_API GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor);
  598. GGML_API GGML_CALL bool ggml_is_permuted (const struct ggml_tensor * tensor);
  599. GGML_API bool ggml_is_scalar (const struct ggml_tensor * tensor);
  600. GGML_API bool ggml_is_vector (const struct ggml_tensor * tensor);
  601. GGML_API bool ggml_is_matrix (const struct ggml_tensor * tensor);
  602. GGML_API bool ggml_is_3d (const struct ggml_tensor * tensor);
  603. GGML_API int ggml_n_dims (const struct ggml_tensor * tensor); // returns 1 for scalars
  604. GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
  605. // use this to compute the memory overhead of a tensor
  606. GGML_API size_t ggml_tensor_overhead(void);
  607. // main
  608. GGML_API struct ggml_context * ggml_init(struct ggml_init_params params);
  609. GGML_API void ggml_free(struct ggml_context * ctx);
  610. GGML_API size_t ggml_used_mem(const struct ggml_context * ctx);
  611. GGML_API size_t ggml_set_scratch (struct ggml_context * ctx, struct ggml_scratch scratch);
  612. GGML_API bool ggml_get_no_alloc(struct ggml_context * ctx);
  613. GGML_API void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc);
  614. GGML_API void * ggml_get_mem_buffer (const struct ggml_context * ctx);
  615. GGML_API size_t ggml_get_mem_size (const struct ggml_context * ctx);
  616. GGML_API size_t ggml_get_max_tensor_size(const struct ggml_context * ctx);
  617. GGML_API struct ggml_tensor * ggml_new_tensor(
  618. struct ggml_context * ctx,
  619. enum ggml_type type,
  620. int n_dims,
  621. const int64_t *ne);
  622. GGML_API struct ggml_tensor * ggml_new_tensor_1d(
  623. struct ggml_context * ctx,
  624. enum ggml_type type,
  625. int64_t ne0);
  626. GGML_API struct ggml_tensor * ggml_new_tensor_2d(
  627. struct ggml_context * ctx,
  628. enum ggml_type type,
  629. int64_t ne0,
  630. int64_t ne1);
  631. GGML_API struct ggml_tensor * ggml_new_tensor_3d(
  632. struct ggml_context * ctx,
  633. enum ggml_type type,
  634. int64_t ne0,
  635. int64_t ne1,
  636. int64_t ne2);
  637. GGML_API struct ggml_tensor * ggml_new_tensor_4d(
  638. struct ggml_context * ctx,
  639. enum ggml_type type,
  640. int64_t ne0,
  641. int64_t ne1,
  642. int64_t ne2,
  643. int64_t ne3);
  644. GGML_API struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value);
  645. GGML_API struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value);
  646. GGML_API struct ggml_tensor * ggml_dup_tensor (struct ggml_context * ctx, const struct ggml_tensor * src);
  647. GGML_API struct ggml_tensor * ggml_view_tensor(struct ggml_context * ctx, struct ggml_tensor * src);
  648. // Context tensor enumeration and lookup
  649. GGML_API struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx);
  650. GGML_API struct ggml_tensor * ggml_get_next_tensor (const struct ggml_context * ctx, struct ggml_tensor * tensor);
  651. GGML_API struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name);
  652. GGML_API struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor);
  653. GGML_API struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value);
  654. GGML_API struct ggml_tensor * ggml_set_f32 (struct ggml_tensor * tensor, float value);
  655. // Converts a flat index into coordinates
  656. GGML_API void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3);
  657. GGML_API int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i);
  658. GGML_API void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value);
  659. GGML_API int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  660. GGML_API void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value);
  661. GGML_API float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i);
  662. GGML_API void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value);
  663. GGML_API float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3);
  664. GGML_API void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value);
  665. GGML_API void * ggml_get_data (const struct ggml_tensor * tensor);
  666. GGML_API float * ggml_get_data_f32(const struct ggml_tensor * tensor);
  667. GGML_API GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor);
  668. GGML_API const char * ggml_get_name (const struct ggml_tensor * tensor);
  669. GGML_API struct ggml_tensor * ggml_set_name ( struct ggml_tensor * tensor, const char * name);
  670. GGML_ATTRIBUTE_FORMAT(2, 3)
  671. GGML_API struct ggml_tensor * ggml_format_name( struct ggml_tensor * tensor, const char * fmt, ...);
  672. //
  673. // operations on tensors with backpropagation
  674. //
  675. GGML_API struct ggml_tensor * ggml_dup(
  676. struct ggml_context * ctx,
  677. struct ggml_tensor * a);
  678. // in-place, returns view(a)
  679. GGML_API struct ggml_tensor * ggml_dup_inplace(
  680. struct ggml_context * ctx,
  681. struct ggml_tensor * a);
  682. GGML_API struct ggml_tensor * ggml_add(
  683. struct ggml_context * ctx,
  684. struct ggml_tensor * a,
  685. struct ggml_tensor * b);
  686. GGML_API struct ggml_tensor * ggml_add_inplace(
  687. struct ggml_context * ctx,
  688. struct ggml_tensor * a,
  689. struct ggml_tensor * b);
  690. GGML_API struct ggml_tensor * ggml_add_cast(
  691. struct ggml_context * ctx,
  692. struct ggml_tensor * a,
  693. struct ggml_tensor * b,
  694. enum ggml_type type);
  695. GGML_API struct ggml_tensor * ggml_add1(
  696. struct ggml_context * ctx,
  697. struct ggml_tensor * a,
  698. struct ggml_tensor * b);
  699. GGML_API struct ggml_tensor * ggml_add1_inplace(
  700. struct ggml_context * ctx,
  701. struct ggml_tensor * a,
  702. struct ggml_tensor * b);
  703. // dst = a
  704. // view(dst, nb1, nb2, nb3, offset) += b
  705. // return dst
  706. GGML_API struct ggml_tensor * ggml_acc(
  707. struct ggml_context * ctx,
  708. struct ggml_tensor * a,
  709. struct ggml_tensor * b,
  710. size_t nb1,
  711. size_t nb2,
  712. size_t nb3,
  713. size_t offset);
  714. GGML_API struct ggml_tensor * ggml_acc_inplace(
  715. struct ggml_context * ctx,
  716. struct ggml_tensor * a,
  717. struct ggml_tensor * b,
  718. size_t nb1,
  719. size_t nb2,
  720. size_t nb3,
  721. size_t offset);
  722. GGML_API struct ggml_tensor * ggml_sub(
  723. struct ggml_context * ctx,
  724. struct ggml_tensor * a,
  725. struct ggml_tensor * b);
  726. GGML_API struct ggml_tensor * ggml_sub_inplace(
  727. struct ggml_context * ctx,
  728. struct ggml_tensor * a,
  729. struct ggml_tensor * b);
  730. GGML_API struct ggml_tensor * ggml_mul(
  731. struct ggml_context * ctx,
  732. struct ggml_tensor * a,
  733. struct ggml_tensor * b);
  734. GGML_API struct ggml_tensor * ggml_mul_inplace(
  735. struct ggml_context * ctx,
  736. struct ggml_tensor * a,
  737. struct ggml_tensor * b);
  738. GGML_API struct ggml_tensor * ggml_div(
  739. struct ggml_context * ctx,
  740. struct ggml_tensor * a,
  741. struct ggml_tensor * b);
  742. GGML_API struct ggml_tensor * ggml_div_inplace(
  743. struct ggml_context * ctx,
  744. struct ggml_tensor * a,
  745. struct ggml_tensor * b);
  746. GGML_API struct ggml_tensor * ggml_sqr(
  747. struct ggml_context * ctx,
  748. struct ggml_tensor * a);
  749. GGML_API struct ggml_tensor * ggml_sqr_inplace(
  750. struct ggml_context * ctx,
  751. struct ggml_tensor * a);
  752. GGML_API struct ggml_tensor * ggml_sqrt(
  753. struct ggml_context * ctx,
  754. struct ggml_tensor * a);
  755. GGML_API struct ggml_tensor * ggml_sqrt_inplace(
  756. struct ggml_context * ctx,
  757. struct ggml_tensor * a);
  758. GGML_API struct ggml_tensor * ggml_log(
  759. struct ggml_context * ctx,
  760. struct ggml_tensor * a);
  761. GGML_API struct ggml_tensor * ggml_log_inplace(
  762. struct ggml_context * ctx,
  763. struct ggml_tensor * a);
  764. // return scalar
  765. GGML_API struct ggml_tensor * ggml_sum(
  766. struct ggml_context * ctx,
  767. struct ggml_tensor * a);
  768. // sums along rows, with input shape [a,b,c,d] return shape [1,b,c,d]
  769. GGML_API struct ggml_tensor * ggml_sum_rows(
  770. struct ggml_context * ctx,
  771. struct ggml_tensor * a);
  772. // mean along rows
  773. GGML_API struct ggml_tensor * ggml_mean(
  774. struct ggml_context * ctx,
  775. struct ggml_tensor * a);
  776. // argmax along rows
  777. GGML_API struct ggml_tensor * ggml_argmax(
  778. struct ggml_context * ctx,
  779. struct ggml_tensor * a);
  780. // if a is the same shape as b, and a is not parameter, return a
  781. // otherwise, return a new tensor: repeat(a) to fit in b
  782. GGML_API struct ggml_tensor * ggml_repeat(
  783. struct ggml_context * ctx,
  784. struct ggml_tensor * a,
  785. struct ggml_tensor * b);
  786. // sums repetitions in a into shape of b
  787. GGML_API struct ggml_tensor * ggml_repeat_back(
  788. struct ggml_context * ctx,
  789. struct ggml_tensor * a,
  790. struct ggml_tensor * b);
  791. // concat a and b on dim 2
  792. // used in stable-diffusion
  793. GGML_API struct ggml_tensor * ggml_concat(
  794. struct ggml_context * ctx,
  795. struct ggml_tensor * a,
  796. struct ggml_tensor * b);
  797. GGML_API struct ggml_tensor * ggml_abs(
  798. struct ggml_context * ctx,
  799. struct ggml_tensor * a);
  800. GGML_API struct ggml_tensor * ggml_abs_inplace(
  801. struct ggml_context * ctx,
  802. struct ggml_tensor * a);
  803. GGML_API struct ggml_tensor * ggml_sgn(
  804. struct ggml_context * ctx,
  805. struct ggml_tensor * a);
  806. GGML_API struct ggml_tensor * ggml_sgn_inplace(
  807. struct ggml_context * ctx,
  808. struct ggml_tensor * a);
  809. GGML_API struct ggml_tensor * ggml_neg(
  810. struct ggml_context * ctx,
  811. struct ggml_tensor * a);
  812. GGML_API struct ggml_tensor * ggml_neg_inplace(
  813. struct ggml_context * ctx,
  814. struct ggml_tensor * a);
  815. GGML_API struct ggml_tensor * ggml_step(
  816. struct ggml_context * ctx,
  817. struct ggml_tensor * a);
  818. GGML_API struct ggml_tensor * ggml_step_inplace(
  819. struct ggml_context * ctx,
  820. struct ggml_tensor * a);
  821. GGML_API struct ggml_tensor * ggml_tanh(
  822. struct ggml_context * ctx,
  823. struct ggml_tensor * a);
  824. GGML_API struct ggml_tensor * ggml_tanh_inplace(
  825. struct ggml_context * ctx,
  826. struct ggml_tensor * a);
  827. GGML_API struct ggml_tensor * ggml_elu(
  828. struct ggml_context * ctx,
  829. struct ggml_tensor * a);
  830. GGML_API struct ggml_tensor * ggml_elu_inplace(
  831. struct ggml_context * ctx,
  832. struct ggml_tensor * a);
  833. GGML_API struct ggml_tensor * ggml_relu(
  834. struct ggml_context * ctx,
  835. struct ggml_tensor * a);
  836. GGML_API struct ggml_tensor * ggml_leaky_relu(
  837. struct ggml_context * ctx,
  838. struct ggml_tensor * a, float negative_slope, bool inplace);
  839. GGML_API struct ggml_tensor * ggml_relu_inplace(
  840. struct ggml_context * ctx,
  841. struct ggml_tensor * a);
  842. GGML_API struct ggml_tensor * ggml_gelu(
  843. struct ggml_context * ctx,
  844. struct ggml_tensor * a);
  845. GGML_API struct ggml_tensor * ggml_gelu_inplace(
  846. struct ggml_context * ctx,
  847. struct ggml_tensor * a);
  848. GGML_API struct ggml_tensor * ggml_gelu_quick(
  849. struct ggml_context * ctx,
  850. struct ggml_tensor * a);
  851. GGML_API struct ggml_tensor * ggml_gelu_quick_inplace(
  852. struct ggml_context * ctx,
  853. struct ggml_tensor * a);
  854. GGML_API struct ggml_tensor * ggml_silu(
  855. struct ggml_context * ctx,
  856. struct ggml_tensor * a);
  857. GGML_API struct ggml_tensor * ggml_silu_inplace(
  858. struct ggml_context * ctx,
  859. struct ggml_tensor * a);
  860. // a - x
  861. // b - dy
  862. GGML_API struct ggml_tensor * ggml_silu_back(
  863. struct ggml_context * ctx,
  864. struct ggml_tensor * a,
  865. struct ggml_tensor * b);
  866. // hardswish(x) = x * relu6(x + 3) / 6
  867. GGML_API struct ggml_tensor * ggml_hardswish(
  868. struct ggml_context * ctx,
  869. struct ggml_tensor * a);
  870. // hardsigmoid(x) = relu6(x + 3) / 6
  871. GGML_API struct ggml_tensor * ggml_hardsigmoid(
  872. struct ggml_context * ctx,
  873. struct ggml_tensor * a);
  874. // normalize along rows
  875. GGML_API struct ggml_tensor * ggml_norm(
  876. struct ggml_context * ctx,
  877. struct ggml_tensor * a,
  878. float eps);
  879. GGML_API struct ggml_tensor * ggml_norm_inplace(
  880. struct ggml_context * ctx,
  881. struct ggml_tensor * a,
  882. float eps);
  883. GGML_API struct ggml_tensor * ggml_rms_norm(
  884. struct ggml_context * ctx,
  885. struct ggml_tensor * a,
  886. float eps);
  887. GGML_API struct ggml_tensor * ggml_rms_norm_inplace(
  888. struct ggml_context * ctx,
  889. struct ggml_tensor * a,
  890. float eps);
  891. // group normalize along ne0*ne1*n_groups
  892. // used in stable-diffusion
  893. // TODO: eps is hardcoded to 1e-6 for now
  894. GGML_API struct ggml_tensor * ggml_group_norm(
  895. struct ggml_context * ctx,
  896. struct ggml_tensor * a,
  897. int n_groups);
  898. GGML_API struct ggml_tensor * ggml_group_norm_inplace(
  899. struct ggml_context * ctx,
  900. struct ggml_tensor * a,
  901. int n_groups);
  902. // a - x
  903. // b - dy
  904. GGML_API struct ggml_tensor * ggml_rms_norm_back(
  905. struct ggml_context * ctx,
  906. struct ggml_tensor * a,
  907. struct ggml_tensor * b,
  908. float eps);
  909. // A: k columns, n rows => [ne03, ne02, n, k]
  910. // B: k columns, m rows (i.e. we transpose it internally) => [ne03 * x, ne02 * y, m, k]
  911. // result is n columns, m rows => [ne03 * x, ne02 * y, m, n]
  912. GGML_API struct ggml_tensor * ggml_mul_mat(
  913. struct ggml_context * ctx,
  914. struct ggml_tensor * a,
  915. struct ggml_tensor * b);
  916. // change the precision of a matrix multiplication
  917. // set to GGML_PREC_F32 for higher precision (useful for phi-2)
  918. GGML_API void ggml_mul_mat_set_prec(
  919. struct ggml_tensor * a,
  920. enum ggml_prec prec);
  921. // indirect matrix multiplication
  922. // ggml_mul_mat_id(ctx, as, ids, id, b) ~= ggml_mul_mat(as[ids[id]], b)
  923. GGML_API struct ggml_tensor * ggml_mul_mat_id(
  924. struct ggml_context * ctx,
  925. struct ggml_tensor * const as[],
  926. int n_as,
  927. struct ggml_tensor * ids,
  928. int id,
  929. struct ggml_tensor * b);
  930. // A: m columns, n rows,
  931. // B: p columns, n rows,
  932. // result is m columns, p rows
  933. GGML_API struct ggml_tensor * ggml_out_prod(
  934. struct ggml_context * ctx,
  935. struct ggml_tensor * a,
  936. struct ggml_tensor * b);
  937. //
  938. // operations on tensors without backpropagation
  939. //
  940. GGML_API struct ggml_tensor * ggml_scale(
  941. struct ggml_context * ctx,
  942. struct ggml_tensor * a,
  943. float s);
  944. // in-place, returns view(a)
  945. GGML_API struct ggml_tensor * ggml_scale_inplace(
  946. struct ggml_context * ctx,
  947. struct ggml_tensor * a,
  948. float s);
  949. // b -> view(a,offset,nb1,nb2,3), return modified a
  950. GGML_API struct ggml_tensor * ggml_set(
  951. struct ggml_context * ctx,
  952. struct ggml_tensor * a,
  953. struct ggml_tensor * b,
  954. size_t nb1,
  955. size_t nb2,
  956. size_t nb3,
  957. size_t offset);
  958. // b -> view(a,offset,nb1,nb2,3), return view(a)
  959. GGML_API struct ggml_tensor * ggml_set_inplace(
  960. struct ggml_context * ctx,
  961. struct ggml_tensor * a,
  962. struct ggml_tensor * b,
  963. size_t nb1,
  964. size_t nb2,
  965. size_t nb3,
  966. size_t offset);
  967. GGML_API struct ggml_tensor * ggml_set_1d(
  968. struct ggml_context * ctx,
  969. struct ggml_tensor * a,
  970. struct ggml_tensor * b,
  971. size_t offset);
  972. GGML_API struct ggml_tensor * ggml_set_1d_inplace(
  973. struct ggml_context * ctx,
  974. struct ggml_tensor * a,
  975. struct ggml_tensor * b,
  976. size_t offset);
  977. // b -> view(a,offset,nb1,nb2,3), return modified a
  978. GGML_API struct ggml_tensor * ggml_set_2d(
  979. struct ggml_context * ctx,
  980. struct ggml_tensor * a,
  981. struct ggml_tensor * b,
  982. size_t nb1,
  983. size_t offset);
  984. // b -> view(a,offset,nb1,nb2,3), return view(a)
  985. GGML_API struct ggml_tensor * ggml_set_2d_inplace(
  986. struct ggml_context * ctx,
  987. struct ggml_tensor * a,
  988. struct ggml_tensor * b,
  989. size_t nb1,
  990. size_t offset);
  991. // a -> b, return view(b)
  992. GGML_API struct ggml_tensor * ggml_cpy(
  993. struct ggml_context * ctx,
  994. struct ggml_tensor * a,
  995. struct ggml_tensor * b);
  996. GGML_API struct ggml_tensor * ggml_cast(
  997. struct ggml_context * ctx,
  998. struct ggml_tensor * a,
  999. enum ggml_type type);
  1000. // make contiguous
  1001. GGML_API struct ggml_tensor * ggml_cont(
  1002. struct ggml_context * ctx,
  1003. struct ggml_tensor * a);
  1004. // make contiguous, with new shape
  1005. GGML_API struct ggml_tensor * ggml_cont_1d(
  1006. struct ggml_context * ctx,
  1007. struct ggml_tensor * a,
  1008. int64_t ne0);
  1009. GGML_API struct ggml_tensor * ggml_cont_2d(
  1010. struct ggml_context * ctx,
  1011. struct ggml_tensor * a,
  1012. int64_t ne0,
  1013. int64_t ne1);
  1014. GGML_API struct ggml_tensor * ggml_cont_3d(
  1015. struct ggml_context * ctx,
  1016. struct ggml_tensor * a,
  1017. int64_t ne0,
  1018. int64_t ne1,
  1019. int64_t ne2);
  1020. GGML_API struct ggml_tensor * ggml_cont_4d(
  1021. struct ggml_context * ctx,
  1022. struct ggml_tensor * a,
  1023. int64_t ne0,
  1024. int64_t ne1,
  1025. int64_t ne2,
  1026. int64_t ne3);
  1027. // return view(a), b specifies the new shape
  1028. // TODO: when we start computing gradient, make a copy instead of view
  1029. GGML_API struct ggml_tensor * ggml_reshape(
  1030. struct ggml_context * ctx,
  1031. struct ggml_tensor * a,
  1032. struct ggml_tensor * b);
  1033. // return view(a)
  1034. // TODO: when we start computing gradient, make a copy instead of view
  1035. GGML_API struct ggml_tensor * ggml_reshape_1d(
  1036. struct ggml_context * ctx,
  1037. struct ggml_tensor * a,
  1038. int64_t ne0);
  1039. GGML_API struct ggml_tensor * ggml_reshape_2d(
  1040. struct ggml_context * ctx,
  1041. struct ggml_tensor * a,
  1042. int64_t ne0,
  1043. int64_t ne1);
  1044. // return view(a)
  1045. // TODO: when we start computing gradient, make a copy instead of view
  1046. GGML_API struct ggml_tensor * ggml_reshape_3d(
  1047. struct ggml_context * ctx,
  1048. struct ggml_tensor * a,
  1049. int64_t ne0,
  1050. int64_t ne1,
  1051. int64_t ne2);
  1052. GGML_API struct ggml_tensor * ggml_reshape_4d(
  1053. struct ggml_context * ctx,
  1054. struct ggml_tensor * a,
  1055. int64_t ne0,
  1056. int64_t ne1,
  1057. int64_t ne2,
  1058. int64_t ne3);
  1059. // offset in bytes
  1060. GGML_API struct ggml_tensor * ggml_view_1d(
  1061. struct ggml_context * ctx,
  1062. struct ggml_tensor * a,
  1063. int64_t ne0,
  1064. size_t offset);
  1065. GGML_API struct ggml_tensor * ggml_view_2d(
  1066. struct ggml_context * ctx,
  1067. struct ggml_tensor * a,
  1068. int64_t ne0,
  1069. int64_t ne1,
  1070. size_t nb1, // row stride in bytes
  1071. size_t offset);
  1072. GGML_API struct ggml_tensor * ggml_view_3d(
  1073. struct ggml_context * ctx,
  1074. struct ggml_tensor * a,
  1075. int64_t ne0,
  1076. int64_t ne1,
  1077. int64_t ne2,
  1078. size_t nb1, // row stride in bytes
  1079. size_t nb2, // slice stride in bytes
  1080. size_t offset);
  1081. GGML_API struct ggml_tensor * ggml_view_4d(
  1082. struct ggml_context * ctx,
  1083. struct ggml_tensor * a,
  1084. int64_t ne0,
  1085. int64_t ne1,
  1086. int64_t ne2,
  1087. int64_t ne3,
  1088. size_t nb1, // row stride in bytes
  1089. size_t nb2, // slice stride in bytes
  1090. size_t nb3,
  1091. size_t offset);
  1092. GGML_API struct ggml_tensor * ggml_permute(
  1093. struct ggml_context * ctx,
  1094. struct ggml_tensor * a,
  1095. int axis0,
  1096. int axis1,
  1097. int axis2,
  1098. int axis3);
  1099. // alias for ggml_permute(ctx, a, 1, 0, 2, 3)
  1100. GGML_API struct ggml_tensor * ggml_transpose(
  1101. struct ggml_context * ctx,
  1102. struct ggml_tensor * a);
  1103. // supports 3D: a->ne[2] == b->ne[1]
  1104. GGML_API struct ggml_tensor * ggml_get_rows(
  1105. struct ggml_context * ctx,
  1106. struct ggml_tensor * a,
  1107. struct ggml_tensor * b);
  1108. GGML_API struct ggml_tensor * ggml_get_rows_back(
  1109. struct ggml_context * ctx,
  1110. struct ggml_tensor * a,
  1111. struct ggml_tensor * b,
  1112. struct ggml_tensor * c);
  1113. GGML_API struct ggml_tensor * ggml_diag(
  1114. struct ggml_context * ctx,
  1115. struct ggml_tensor * a);
  1116. // set elements above the diagonal to -INF
  1117. GGML_API struct ggml_tensor * ggml_diag_mask_inf(
  1118. struct ggml_context * ctx,
  1119. struct ggml_tensor * a,
  1120. int n_past);
  1121. // in-place, returns view(a)
  1122. GGML_API struct ggml_tensor * ggml_diag_mask_inf_inplace(
  1123. struct ggml_context * ctx,
  1124. struct ggml_tensor * a,
  1125. int n_past);
  1126. // set elements above the diagonal to 0
  1127. GGML_API struct ggml_tensor * ggml_diag_mask_zero(
  1128. struct ggml_context * ctx,
  1129. struct ggml_tensor * a,
  1130. int n_past);
  1131. // in-place, returns view(a)
  1132. GGML_API struct ggml_tensor * ggml_diag_mask_zero_inplace(
  1133. struct ggml_context * ctx,
  1134. struct ggml_tensor * a,
  1135. int n_past);
  1136. GGML_API struct ggml_tensor * ggml_soft_max(
  1137. struct ggml_context * ctx,
  1138. struct ggml_tensor * a);
  1139. // in-place, returns view(a)
  1140. GGML_API struct ggml_tensor * ggml_soft_max_inplace(
  1141. struct ggml_context * ctx,
  1142. struct ggml_tensor * a);
  1143. // fused soft_max(a*scale + mask)
  1144. // mask is optional
  1145. GGML_API struct ggml_tensor * ggml_soft_max_ext(
  1146. struct ggml_context * ctx,
  1147. struct ggml_tensor * a,
  1148. struct ggml_tensor * mask,
  1149. float scale);
  1150. GGML_API struct ggml_tensor * ggml_soft_max_back(
  1151. struct ggml_context * ctx,
  1152. struct ggml_tensor * a,
  1153. struct ggml_tensor * b);
  1154. // in-place, returns view(a)
  1155. GGML_API struct ggml_tensor * ggml_soft_max_back_inplace(
  1156. struct ggml_context * ctx,
  1157. struct ggml_tensor * a,
  1158. struct ggml_tensor * b);
  1159. // rotary position embedding
  1160. // if mode & 1 == 1, skip n_past elements (DEPRECATED)
  1161. // if mode & 2 == 1, GPT-NeoX style
  1162. // if mode & 4 == 1, ChatGLM style
  1163. //
  1164. // b is an int32 vector with size a->ne[2], it contains the positions
  1165. GGML_API struct ggml_tensor * ggml_rope(
  1166. struct ggml_context * ctx,
  1167. struct ggml_tensor * a,
  1168. struct ggml_tensor * b,
  1169. int n_dims,
  1170. int mode,
  1171. int n_ctx);
  1172. // in-place, returns view(a)
  1173. GGML_API struct ggml_tensor * ggml_rope_inplace(
  1174. struct ggml_context * ctx,
  1175. struct ggml_tensor * a,
  1176. struct ggml_tensor * b,
  1177. int n_dims,
  1178. int mode,
  1179. int n_ctx);
  1180. // custom RoPE
  1181. GGML_API struct ggml_tensor * ggml_rope_custom(
  1182. struct ggml_context * ctx,
  1183. struct ggml_tensor * a,
  1184. struct ggml_tensor * b,
  1185. int n_dims,
  1186. int mode,
  1187. int n_ctx,
  1188. int n_orig_ctx,
  1189. float freq_base,
  1190. float freq_scale,
  1191. float ext_factor,
  1192. float attn_factor,
  1193. float beta_fast,
  1194. float beta_slow);
  1195. // in-place, returns view(a)
  1196. GGML_API struct ggml_tensor * ggml_rope_custom_inplace(
  1197. struct ggml_context * ctx,
  1198. struct ggml_tensor * a,
  1199. struct ggml_tensor * b,
  1200. int n_dims,
  1201. int mode,
  1202. int n_ctx,
  1203. int n_orig_ctx,
  1204. float freq_base,
  1205. float freq_scale,
  1206. float ext_factor,
  1207. float attn_factor,
  1208. float beta_fast,
  1209. float beta_slow);
  1210. // compute correction dims for YaRN RoPE scaling
  1211. GGML_CALL void ggml_rope_yarn_corr_dims(
  1212. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]);
  1213. // xPos RoPE, in-place, returns view(a)
  1214. GGML_API struct ggml_tensor * ggml_rope_xpos_inplace(
  1215. struct ggml_context * ctx,
  1216. struct ggml_tensor * a,
  1217. struct ggml_tensor * b,
  1218. int n_dims,
  1219. float base,
  1220. bool down);
  1221. // rotary position embedding backward, i.e compute dx from dy
  1222. // a - dy
  1223. GGML_API struct ggml_tensor * ggml_rope_back(
  1224. struct ggml_context * ctx,
  1225. struct ggml_tensor * a,
  1226. struct ggml_tensor * b,
  1227. int n_dims,
  1228. int mode,
  1229. int n_ctx,
  1230. int n_orig_ctx,
  1231. float freq_base,
  1232. float freq_scale,
  1233. float ext_factor,
  1234. float attn_factor,
  1235. float beta_fast,
  1236. float beta_slow,
  1237. float xpos_base,
  1238. bool xpos_down);
  1239. // alibi position embedding
  1240. // in-place, returns view(a)
  1241. GGML_API struct ggml_tensor * ggml_alibi(
  1242. struct ggml_context * ctx,
  1243. struct ggml_tensor * a,
  1244. int n_past,
  1245. int n_head,
  1246. float bias_max);
  1247. // clamp
  1248. // in-place, returns view(a)
  1249. GGML_API struct ggml_tensor * ggml_clamp(
  1250. struct ggml_context * ctx,
  1251. struct ggml_tensor * a,
  1252. float min,
  1253. float max);
  1254. GGML_API struct ggml_tensor * ggml_im2col(
  1255. struct ggml_context * ctx,
  1256. struct ggml_tensor * a,
  1257. struct ggml_tensor * b,
  1258. int s0,
  1259. int s1,
  1260. int p0,
  1261. int p1,
  1262. int d0,
  1263. int d1,
  1264. bool is_2D);
  1265. GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
  1266. struct ggml_context * ctx,
  1267. struct ggml_tensor * a,
  1268. struct ggml_tensor * b,
  1269. int s0,
  1270. int s1,
  1271. int p0,
  1272. int p1,
  1273. int d0,
  1274. int d1);
  1275. GGML_API struct ggml_tensor * ggml_conv_1d(
  1276. struct ggml_context * ctx,
  1277. struct ggml_tensor * a,
  1278. struct ggml_tensor * b,
  1279. int s0, // stride
  1280. int p0, // padding
  1281. int d0); // dilation
  1282. // conv_1d with padding = half
  1283. // alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
  1284. GGML_API struct ggml_tensor* ggml_conv_1d_ph(
  1285. struct ggml_context * ctx,
  1286. struct ggml_tensor * a,
  1287. struct ggml_tensor * b,
  1288. int s,
  1289. int d);
  1290. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  1291. struct ggml_context * ctx,
  1292. struct ggml_tensor * a,
  1293. struct ggml_tensor * b,
  1294. int s0,
  1295. int p0,
  1296. int d0);
  1297. GGML_API struct ggml_tensor * ggml_conv_2d(
  1298. struct ggml_context * ctx,
  1299. struct ggml_tensor * a,
  1300. struct ggml_tensor * b,
  1301. int s0,
  1302. int s1,
  1303. int p0,
  1304. int p1,
  1305. int d0,
  1306. int d1);
  1307. // kernel size is a->ne[0] x a->ne[1]
  1308. // stride is equal to kernel size
  1309. // padding is zero
  1310. // example:
  1311. // a: 16 16 3 768
  1312. // b: 1024 1024 3 1
  1313. // res: 64 64 768 1
  1314. // used in sam
  1315. GGML_API struct ggml_tensor * ggml_conv_2d_sk_p0(
  1316. struct ggml_context * ctx,
  1317. struct ggml_tensor * a,
  1318. struct ggml_tensor * b);
  1319. // kernel size is a->ne[0] x a->ne[1]
  1320. // stride is 1
  1321. // padding is half
  1322. // example:
  1323. // a: 3 3 256 256
  1324. // b: 64 64 256 1
  1325. // res: 64 64 256 1
  1326. // used in sam
  1327. GGML_API struct ggml_tensor * ggml_conv_2d_s1_ph(
  1328. struct ggml_context * ctx,
  1329. struct ggml_tensor * a,
  1330. struct ggml_tensor * b);
  1331. GGML_API struct ggml_tensor * ggml_conv_transpose_2d_p0(
  1332. struct ggml_context * ctx,
  1333. struct ggml_tensor * a,
  1334. struct ggml_tensor * b,
  1335. int stride);
  1336. enum ggml_op_pool {
  1337. GGML_OP_POOL_MAX,
  1338. GGML_OP_POOL_AVG,
  1339. GGML_OP_POOL_COUNT,
  1340. };
  1341. GGML_API struct ggml_tensor * ggml_pool_1d(
  1342. struct ggml_context * ctx,
  1343. struct ggml_tensor * a,
  1344. enum ggml_op_pool op,
  1345. int k0, // kernel size
  1346. int s0, // stride
  1347. int p0); // padding
  1348. // the result will have 2*p0 padding for the first dimension
  1349. // and 2*p1 padding for the second dimension
  1350. GGML_API struct ggml_tensor * ggml_pool_2d(
  1351. struct ggml_context * ctx,
  1352. struct ggml_tensor * a,
  1353. enum ggml_op_pool op,
  1354. int k0,
  1355. int k1,
  1356. int s0,
  1357. int s1,
  1358. float p0,
  1359. float p1);
  1360. // nearest interpolate
  1361. // used in stable-diffusion
  1362. GGML_API struct ggml_tensor * ggml_upscale(
  1363. struct ggml_context * ctx,
  1364. struct ggml_tensor * a,
  1365. int scale_factor);
  1366. // pad each dimension with zeros: [x, ..., x] -> [x, ..., x, 0, ..., 0]
  1367. GGML_API struct ggml_tensor * ggml_pad(
  1368. struct ggml_context * ctx,
  1369. struct ggml_tensor * a,
  1370. int p0,
  1371. int p1,
  1372. int p2,
  1373. int p3);
  1374. // sort rows
  1375. enum ggml_sort_order {
  1376. GGML_SORT_ASC,
  1377. GGML_SORT_DESC,
  1378. };
  1379. GGML_API struct ggml_tensor * ggml_argsort(
  1380. struct ggml_context * ctx,
  1381. struct ggml_tensor * a,
  1382. enum ggml_sort_order order);
  1383. // top k elements per row
  1384. GGML_API struct ggml_tensor * ggml_top_k(
  1385. struct ggml_context * ctx,
  1386. struct ggml_tensor * a,
  1387. int k);
  1388. GGML_API struct ggml_tensor * ggml_flash_attn(
  1389. struct ggml_context * ctx,
  1390. struct ggml_tensor * q,
  1391. struct ggml_tensor * k,
  1392. struct ggml_tensor * v,
  1393. bool masked);
  1394. GGML_API struct ggml_tensor * ggml_flash_attn_back(
  1395. struct ggml_context * ctx,
  1396. struct ggml_tensor * q,
  1397. struct ggml_tensor * k,
  1398. struct ggml_tensor * v,
  1399. struct ggml_tensor * d,
  1400. bool masked);
  1401. GGML_API struct ggml_tensor * ggml_flash_ff(
  1402. struct ggml_context * ctx,
  1403. struct ggml_tensor * a,
  1404. struct ggml_tensor * b0,
  1405. struct ggml_tensor * b1,
  1406. struct ggml_tensor * c0,
  1407. struct ggml_tensor * c1);
  1408. // partition into non-overlapping windows with padding if needed
  1409. // example:
  1410. // a: 768 64 64 1
  1411. // w: 14
  1412. // res: 768 14 14 25
  1413. // used in sam
  1414. GGML_API struct ggml_tensor * ggml_win_part(
  1415. struct ggml_context * ctx,
  1416. struct ggml_tensor * a,
  1417. int w);
  1418. // reverse of ggml_win_part
  1419. // used in sam
  1420. GGML_API struct ggml_tensor * ggml_win_unpart(
  1421. struct ggml_context * ctx,
  1422. struct ggml_tensor * a,
  1423. int w0,
  1424. int h0,
  1425. int w);
  1426. GGML_API struct ggml_tensor * ggml_unary(
  1427. struct ggml_context * ctx,
  1428. struct ggml_tensor * a,
  1429. enum ggml_unary_op op);
  1430. GGML_API struct ggml_tensor * ggml_unary_inplace(
  1431. struct ggml_context * ctx,
  1432. struct ggml_tensor * a,
  1433. enum ggml_unary_op op);
  1434. // used in sam
  1435. GGML_API struct ggml_tensor * ggml_get_rel_pos(
  1436. struct ggml_context * ctx,
  1437. struct ggml_tensor * a,
  1438. int qh,
  1439. int kh);
  1440. // used in sam
  1441. GGML_API struct ggml_tensor * ggml_add_rel_pos(
  1442. struct ggml_context * ctx,
  1443. struct ggml_tensor * a,
  1444. struct ggml_tensor * pw,
  1445. struct ggml_tensor * ph);
  1446. GGML_API struct ggml_tensor * ggml_add_rel_pos_inplace(
  1447. struct ggml_context * ctx,
  1448. struct ggml_tensor * a,
  1449. struct ggml_tensor * pw,
  1450. struct ggml_tensor * ph);
  1451. // custom operators
  1452. typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
  1453. typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
  1454. typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
  1455. typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1456. typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
  1457. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
  1458. struct ggml_context * ctx,
  1459. struct ggml_tensor * a,
  1460. ggml_unary_op_f32_t fun),
  1461. "use ggml_map_custom1 instead");
  1462. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
  1463. struct ggml_context * ctx,
  1464. struct ggml_tensor * a,
  1465. ggml_unary_op_f32_t fun),
  1466. "use ggml_map_custom1_inplace instead");
  1467. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
  1468. struct ggml_context * ctx,
  1469. struct ggml_tensor * a,
  1470. struct ggml_tensor * b,
  1471. ggml_binary_op_f32_t fun),
  1472. "use ggml_map_custom2 instead");
  1473. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
  1474. struct ggml_context * ctx,
  1475. struct ggml_tensor * a,
  1476. struct ggml_tensor * b,
  1477. ggml_binary_op_f32_t fun),
  1478. "use ggml_map_custom2_inplace instead");
  1479. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
  1480. struct ggml_context * ctx,
  1481. struct ggml_tensor * a,
  1482. ggml_custom1_op_f32_t fun),
  1483. "use ggml_map_custom1 instead");
  1484. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
  1485. struct ggml_context * ctx,
  1486. struct ggml_tensor * a,
  1487. ggml_custom1_op_f32_t fun),
  1488. "use ggml_map_custom1_inplace instead");
  1489. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
  1490. struct ggml_context * ctx,
  1491. struct ggml_tensor * a,
  1492. struct ggml_tensor * b,
  1493. ggml_custom2_op_f32_t fun),
  1494. "use ggml_map_custom2 instead");
  1495. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
  1496. struct ggml_context * ctx,
  1497. struct ggml_tensor * a,
  1498. struct ggml_tensor * b,
  1499. ggml_custom2_op_f32_t fun),
  1500. "use ggml_map_custom2_inplace instead");
  1501. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
  1502. struct ggml_context * ctx,
  1503. struct ggml_tensor * a,
  1504. struct ggml_tensor * b,
  1505. struct ggml_tensor * c,
  1506. ggml_custom3_op_f32_t fun),
  1507. "use ggml_map_custom3 instead");
  1508. GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
  1509. struct ggml_context * ctx,
  1510. struct ggml_tensor * a,
  1511. struct ggml_tensor * b,
  1512. struct ggml_tensor * c,
  1513. ggml_custom3_op_f32_t fun),
  1514. "use ggml_map_custom3_inplace instead");
  1515. // custom operators v2
  1516. typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
  1517. typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
  1518. typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
  1519. #define GGML_N_TASKS_MAX -1
  1520. GGML_API struct ggml_tensor * ggml_map_custom1(
  1521. struct ggml_context * ctx,
  1522. struct ggml_tensor * a,
  1523. ggml_custom1_op_t fun,
  1524. int n_tasks,
  1525. void * userdata);
  1526. GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
  1527. struct ggml_context * ctx,
  1528. struct ggml_tensor * a,
  1529. ggml_custom1_op_t fun,
  1530. int n_tasks,
  1531. void * userdata);
  1532. GGML_API struct ggml_tensor * ggml_map_custom2(
  1533. struct ggml_context * ctx,
  1534. struct ggml_tensor * a,
  1535. struct ggml_tensor * b,
  1536. ggml_custom2_op_t fun,
  1537. int n_tasks,
  1538. void * userdata);
  1539. GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
  1540. struct ggml_context * ctx,
  1541. struct ggml_tensor * a,
  1542. struct ggml_tensor * b,
  1543. ggml_custom2_op_t fun,
  1544. int n_tasks,
  1545. void * userdata);
  1546. GGML_API struct ggml_tensor * ggml_map_custom3(
  1547. struct ggml_context * ctx,
  1548. struct ggml_tensor * a,
  1549. struct ggml_tensor * b,
  1550. struct ggml_tensor * c,
  1551. ggml_custom3_op_t fun,
  1552. int n_tasks,
  1553. void * userdata);
  1554. GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
  1555. struct ggml_context * ctx,
  1556. struct ggml_tensor * a,
  1557. struct ggml_tensor * b,
  1558. struct ggml_tensor * c,
  1559. ggml_custom3_op_t fun,
  1560. int n_tasks,
  1561. void * userdata);
  1562. // loss function
  1563. GGML_API struct ggml_tensor * ggml_cross_entropy_loss(
  1564. struct ggml_context * ctx,
  1565. struct ggml_tensor * a,
  1566. struct ggml_tensor * b);
  1567. GGML_API struct ggml_tensor * ggml_cross_entropy_loss_back(
  1568. struct ggml_context * ctx,
  1569. struct ggml_tensor * a,
  1570. struct ggml_tensor * b,
  1571. struct ggml_tensor * c);
  1572. //
  1573. // automatic differentiation
  1574. //
  1575. GGML_API void ggml_set_param(
  1576. struct ggml_context * ctx,
  1577. struct ggml_tensor * tensor);
  1578. GGML_API void ggml_build_forward_expand (struct ggml_cgraph * cgraph, struct ggml_tensor * tensor);
  1579. GGML_API void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep);
  1580. // graph allocation in a context
  1581. GGML_API struct ggml_cgraph * ggml_new_graph (struct ggml_context * ctx); // size = GGML_DEFAULT_GRAPH_SIZE, grads = false
  1582. GGML_API struct ggml_cgraph * ggml_new_graph_custom (struct ggml_context * ctx, size_t size, bool grads);
  1583. GGML_API struct ggml_cgraph * ggml_graph_dup (struct ggml_context * ctx, struct ggml_cgraph * cgraph);
  1584. GGML_API struct ggml_cgraph ggml_graph_view (struct ggml_cgraph * cgraph, int i0, int i1);
  1585. GGML_API void ggml_graph_cpy (struct ggml_cgraph * src, struct ggml_cgraph * dst);
  1586. GGML_API void ggml_graph_reset (struct ggml_cgraph * cgraph); // zero grads
  1587. GGML_API void ggml_graph_clear (struct ggml_cgraph * cgraph);
  1588. GGML_API size_t ggml_graph_overhead(void);
  1589. GGML_API size_t ggml_graph_overhead_custom(size_t size, bool grads);
  1590. // ggml_graph_plan() has to be called before ggml_graph_compute()
  1591. // when plan.work_size > 0, caller must allocate memory for plan.work_data
  1592. GGML_API struct ggml_cplan ggml_graph_plan (const struct ggml_cgraph * cgraph, int n_threads /*= GGML_DEFAULT_N_THREADS*/);
  1593. GGML_API int ggml_graph_compute( struct ggml_cgraph * cgraph, struct ggml_cplan * cplan);
  1594. // same as ggml_graph_compute() but the work data is allocated as a part of the context
  1595. // note: the drawback of this API is that you must have ensured that the context has enough memory for the work data
  1596. GGML_API void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads);
  1597. GGML_API struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name);
  1598. GGML_API void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname);
  1599. GGML_API struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval);
  1600. // print info and performance information for the graph
  1601. GGML_API void ggml_graph_print(const struct ggml_cgraph * cgraph);
  1602. // dump the graph into a file using the dot format
  1603. GGML_API void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename);
  1604. // build gradient checkpointing backward graph gb for gf using provided checkpoints
  1605. // gb_tmp will contain original backward graph with rewritten backward process nodes,
  1606. // but without the second forward pass nodes.
  1607. GGML_API void ggml_build_backward_gradient_checkpointing(
  1608. struct ggml_context * ctx,
  1609. struct ggml_cgraph * gf,
  1610. struct ggml_cgraph * gb,
  1611. struct ggml_cgraph * gb_tmp,
  1612. struct ggml_tensor * * checkpoints,
  1613. int n_checkpoints);
  1614. //
  1615. // optimization
  1616. //
  1617. // optimization methods
  1618. enum ggml_opt_type {
  1619. GGML_OPT_ADAM,
  1620. GGML_OPT_LBFGS,
  1621. };
  1622. // linesearch methods
  1623. enum ggml_linesearch {
  1624. GGML_LINESEARCH_DEFAULT = 1,
  1625. GGML_LINESEARCH_BACKTRACKING_ARMIJO = 0,
  1626. GGML_LINESEARCH_BACKTRACKING_WOLFE = 1,
  1627. GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE = 2,
  1628. };
  1629. // optimization return values
  1630. enum ggml_opt_result {
  1631. GGML_OPT_OK = 0,
  1632. GGML_OPT_DID_NOT_CONVERGE,
  1633. GGML_OPT_NO_CONTEXT,
  1634. GGML_OPT_INVALID_WOLFE,
  1635. GGML_OPT_FAIL,
  1636. GGML_OPT_CANCEL,
  1637. GGML_LINESEARCH_FAIL = -128,
  1638. GGML_LINESEARCH_MINIMUM_STEP,
  1639. GGML_LINESEARCH_MAXIMUM_STEP,
  1640. GGML_LINESEARCH_MAXIMUM_ITERATIONS,
  1641. GGML_LINESEARCH_INVALID_PARAMETERS,
  1642. };
  1643. typedef void (*ggml_opt_callback)(void * data, int accum_step, float * sched, bool * cancel);
  1644. typedef void (*ggml_log_callback)(enum ggml_log_level level, const char * text, void * user_data);
  1645. // optimization parameters
  1646. //
  1647. // see ggml.c (ggml_opt_default_params) for default values
  1648. //
  1649. struct ggml_opt_params {
  1650. enum ggml_opt_type type;
  1651. size_t graph_size;
  1652. int n_threads;
  1653. // delta-based convergence test
  1654. //
  1655. // if past == 0 - disabled
  1656. // if past > 0:
  1657. // stop if |f(x) - f(x_past)| < delta * max(1, |f(x)|)
  1658. //
  1659. int past;
  1660. float delta;
  1661. // maximum number of iterations without improvement
  1662. //
  1663. // if 0 - disabled
  1664. // if > 0:
  1665. // assume convergence if no cost improvement in this number of iterations
  1666. //
  1667. int max_no_improvement;
  1668. bool print_forward_graph;
  1669. bool print_backward_graph;
  1670. int n_gradient_accumulation;
  1671. // ADAM parameters
  1672. struct {
  1673. int n_iter;
  1674. float sched; // schedule multiplier (fixed, decay or warmup)
  1675. float decay; // weight decay for AdamW, use 0.0f to disable
  1676. int decay_min_ndim; // minimum number of tensor dimension to apply weight decay
  1677. float alpha; // learning rate
  1678. float beta1;
  1679. float beta2;
  1680. float eps; // epsilon for numerical stability
  1681. float eps_f; // epsilon for convergence test
  1682. float eps_g; // epsilon for convergence test
  1683. float gclip; // gradient clipping
  1684. } adam;
  1685. // LBFGS parameters
  1686. struct {
  1687. int m; // number of corrections to approximate the inv. Hessian
  1688. int n_iter;
  1689. int max_linesearch;
  1690. float eps; // convergence tolerance
  1691. float ftol; // line search tolerance
  1692. float wolfe;
  1693. float min_step;
  1694. float max_step;
  1695. enum ggml_linesearch linesearch;
  1696. } lbfgs;
  1697. };
  1698. struct ggml_opt_context {
  1699. struct ggml_context * ctx;
  1700. struct ggml_opt_params params;
  1701. int iter;
  1702. int64_t nx; // number of parameter elements
  1703. bool just_initialized;
  1704. float loss_before;
  1705. float loss_after;
  1706. struct {
  1707. struct ggml_tensor * g; // current gradient
  1708. struct ggml_tensor * m; // first moment
  1709. struct ggml_tensor * v; // second moment
  1710. struct ggml_tensor * pf; // past function values
  1711. float fx_best;
  1712. float fx_prev;
  1713. int n_no_improvement;
  1714. } adam;
  1715. struct {
  1716. struct ggml_tensor * x; // current parameters
  1717. struct ggml_tensor * xp; // previous parameters
  1718. struct ggml_tensor * g; // current gradient
  1719. struct ggml_tensor * gp; // previous gradient
  1720. struct ggml_tensor * d; // search direction
  1721. struct ggml_tensor * pf; // past function values
  1722. struct ggml_tensor * lmal; // the L-BFGS memory alpha
  1723. struct ggml_tensor * lmys; // the L-BFGS memory ys
  1724. struct ggml_tensor * lms; // the L-BFGS memory s
  1725. struct ggml_tensor * lmy; // the L-BFGS memory y
  1726. float fx_best;
  1727. float step;
  1728. int j;
  1729. int k;
  1730. int end;
  1731. int n_no_improvement;
  1732. } lbfgs;
  1733. };
  1734. GGML_API struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type);
  1735. // optimize the function defined by the tensor f
  1736. GGML_API enum ggml_opt_result ggml_opt(
  1737. struct ggml_context * ctx,
  1738. struct ggml_opt_params params,
  1739. struct ggml_tensor * f);
  1740. // initialize optimizer context
  1741. GGML_API void ggml_opt_init(
  1742. struct ggml_context * ctx,
  1743. struct ggml_opt_context * opt,
  1744. struct ggml_opt_params params,
  1745. int64_t nx);
  1746. // continue optimizing the function defined by the tensor f
  1747. GGML_API enum ggml_opt_result ggml_opt_resume(
  1748. struct ggml_context * ctx,
  1749. struct ggml_opt_context * opt,
  1750. struct ggml_tensor * f);
  1751. // continue optimizing the function defined by the tensor f
  1752. GGML_API enum ggml_opt_result ggml_opt_resume_g(
  1753. struct ggml_context * ctx,
  1754. struct ggml_opt_context * opt,
  1755. struct ggml_tensor * f,
  1756. struct ggml_cgraph * gf,
  1757. struct ggml_cgraph * gb,
  1758. ggml_opt_callback callback,
  1759. void * callback_data);
  1760. //
  1761. // quantization
  1762. //
  1763. // - ggml_quantize_init can be called multiple times with the same type
  1764. // it will only initialize the quantization tables for the first call or after ggml_quantize_free
  1765. // automatically called by ggml_quantize_chunk for convenience
  1766. //
  1767. // - ggml_quantize_free will free any memory allocated by ggml_quantize_init
  1768. // call this at the end of the program to avoid memory leaks
  1769. //
  1770. // note: these are thread-safe
  1771. //
  1772. GGML_API void ggml_quantize_init(enum ggml_type type);
  1773. GGML_API void ggml_quantize_free(void);
  1774. // TODO: these would probably get removed in favor of the more general ggml_quantize_chunk
  1775. GGML_API size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1776. GGML_API size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1777. GGML_API size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1778. GGML_API size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist);
  1779. GGML_API size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist);
  1780. GGML_API size_t ggml_quantize_q2_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1781. GGML_API size_t ggml_quantize_q3_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1782. GGML_API size_t ggml_quantize_q4_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1783. GGML_API size_t ggml_quantize_q5_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1784. GGML_API size_t ggml_quantize_q6_K(const float * src, void * dst, int n, int k, int64_t * hist);
  1785. // some quantization type cannot be used without an importance matrix
  1786. GGML_API bool ggml_quantize_requires_imatrix(enum ggml_type type);
  1787. // calls ggml_quantize_init internally (i.e. can allocate memory)
  1788. GGML_API size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst,
  1789. int start, int nrows, int n_per_row, int64_t * hist, const float * imatrix);
  1790. //
  1791. // gguf
  1792. //
  1793. enum gguf_type {
  1794. GGUF_TYPE_UINT8 = 0,
  1795. GGUF_TYPE_INT8 = 1,
  1796. GGUF_TYPE_UINT16 = 2,
  1797. GGUF_TYPE_INT16 = 3,
  1798. GGUF_TYPE_UINT32 = 4,
  1799. GGUF_TYPE_INT32 = 5,
  1800. GGUF_TYPE_FLOAT32 = 6,
  1801. GGUF_TYPE_BOOL = 7,
  1802. GGUF_TYPE_STRING = 8,
  1803. GGUF_TYPE_ARRAY = 9,
  1804. GGUF_TYPE_UINT64 = 10,
  1805. GGUF_TYPE_INT64 = 11,
  1806. GGUF_TYPE_FLOAT64 = 12,
  1807. GGUF_TYPE_COUNT, // marks the end of the enum
  1808. };
  1809. struct gguf_context;
  1810. struct gguf_init_params {
  1811. bool no_alloc;
  1812. // if not NULL, create a ggml_context and allocate the tensor data in it
  1813. struct ggml_context ** ctx;
  1814. };
  1815. GGML_API struct gguf_context * gguf_init_empty(void);
  1816. GGML_API struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params);
  1817. //GGML_API struct gguf_context * gguf_init_from_buffer(..);
  1818. GGML_API void gguf_free(struct gguf_context * ctx);
  1819. GGML_API const char * gguf_type_name(enum gguf_type type);
  1820. GGML_API int gguf_get_version (const struct gguf_context * ctx);
  1821. GGML_API size_t gguf_get_alignment (const struct gguf_context * ctx);
  1822. GGML_API size_t gguf_get_data_offset(const struct gguf_context * ctx);
  1823. GGML_API void * gguf_get_data (const struct gguf_context * ctx);
  1824. GGML_API int gguf_get_n_kv(const struct gguf_context * ctx);
  1825. GGML_API int gguf_find_key(const struct gguf_context * ctx, const char * key);
  1826. GGML_API const char * gguf_get_key (const struct gguf_context * ctx, int key_id);
  1827. GGML_API enum gguf_type gguf_get_kv_type (const struct gguf_context * ctx, int key_id);
  1828. GGML_API enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id);
  1829. // will abort if the wrong type is used for the key
  1830. GGML_API uint8_t gguf_get_val_u8 (const struct gguf_context * ctx, int key_id);
  1831. GGML_API int8_t gguf_get_val_i8 (const struct gguf_context * ctx, int key_id);
  1832. GGML_API uint16_t gguf_get_val_u16 (const struct gguf_context * ctx, int key_id);
  1833. GGML_API int16_t gguf_get_val_i16 (const struct gguf_context * ctx, int key_id);
  1834. GGML_API uint32_t gguf_get_val_u32 (const struct gguf_context * ctx, int key_id);
  1835. GGML_API int32_t gguf_get_val_i32 (const struct gguf_context * ctx, int key_id);
  1836. GGML_API float gguf_get_val_f32 (const struct gguf_context * ctx, int key_id);
  1837. GGML_API uint64_t gguf_get_val_u64 (const struct gguf_context * ctx, int key_id);
  1838. GGML_API int64_t gguf_get_val_i64 (const struct gguf_context * ctx, int key_id);
  1839. GGML_API double gguf_get_val_f64 (const struct gguf_context * ctx, int key_id);
  1840. GGML_API bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id);
  1841. GGML_API const char * gguf_get_val_str (const struct gguf_context * ctx, int key_id);
  1842. GGML_API const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id);
  1843. GGML_API int gguf_get_arr_n (const struct gguf_context * ctx, int key_id);
  1844. GGML_API const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id);
  1845. GGML_API const char * gguf_get_arr_str (const struct gguf_context * ctx, int key_id, int i);
  1846. GGML_API int gguf_get_n_tensors (const struct gguf_context * ctx);
  1847. GGML_API int gguf_find_tensor (const struct gguf_context * ctx, const char * name);
  1848. GGML_API size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i);
  1849. GGML_API char * gguf_get_tensor_name (const struct gguf_context * ctx, int i);
  1850. GGML_API enum ggml_type gguf_get_tensor_type (const struct gguf_context * ctx, int i);
  1851. // overrides existing values or adds a new one
  1852. GGML_API void gguf_set_val_u8 (struct gguf_context * ctx, const char * key, uint8_t val);
  1853. GGML_API void gguf_set_val_i8 (struct gguf_context * ctx, const char * key, int8_t val);
  1854. GGML_API void gguf_set_val_u16 (struct gguf_context * ctx, const char * key, uint16_t val);
  1855. GGML_API void gguf_set_val_i16 (struct gguf_context * ctx, const char * key, int16_t val);
  1856. GGML_API void gguf_set_val_u32 (struct gguf_context * ctx, const char * key, uint32_t val);
  1857. GGML_API void gguf_set_val_i32 (struct gguf_context * ctx, const char * key, int32_t val);
  1858. GGML_API void gguf_set_val_f32 (struct gguf_context * ctx, const char * key, float val);
  1859. GGML_API void gguf_set_val_u64 (struct gguf_context * ctx, const char * key, uint64_t val);
  1860. GGML_API void gguf_set_val_i64 (struct gguf_context * ctx, const char * key, int64_t val);
  1861. GGML_API void gguf_set_val_f64 (struct gguf_context * ctx, const char * key, double val);
  1862. GGML_API void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val);
  1863. GGML_API void gguf_set_val_str (struct gguf_context * ctx, const char * key, const char * val);
  1864. GGML_API void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n);
  1865. GGML_API void gguf_set_arr_str (struct gguf_context * ctx, const char * key, const char ** data, int n);
  1866. // set or add KV pairs from another context
  1867. GGML_API void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src);
  1868. // manage tensor info
  1869. GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
  1870. GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
  1871. GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
  1872. // writing gguf files can be done in 2 ways:
  1873. //
  1874. // - write the entire gguf_context to a binary file in a single pass:
  1875. //
  1876. // gguf_write_to_file(ctx, fname);
  1877. //
  1878. // - first prepare a file with a placeholder for the meta data, write the tensor data, then write the meta data:
  1879. //
  1880. // FILE * f = fopen(fname, "wb");
  1881. // fseek(f, gguf_get_meta_size(ctx), SEEK_SET);
  1882. // fwrite(f, ...);
  1883. // void * data = gguf_meta_get_meta_data(ctx);
  1884. // fseek(f, 0, SEEK_SET);
  1885. // fwrite(f, data, gguf_get_meta_size(ctx));
  1886. // free(data);
  1887. // fclose(f);
  1888. //
  1889. // write the entire context to a binary file
  1890. GGML_API void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta);
  1891. // get the size in bytes of the meta data (header, kv pairs, tensor info) including padding
  1892. GGML_API size_t gguf_get_meta_size(const struct gguf_context * ctx);
  1893. GGML_API void gguf_get_meta_data(const struct gguf_context * ctx, void * data);
  1894. //
  1895. // system info
  1896. //
  1897. GGML_API int ggml_cpu_has_avx (void);
  1898. GGML_API int ggml_cpu_has_avx_vnni (void);
  1899. GGML_API int ggml_cpu_has_avx2 (void);
  1900. GGML_API int ggml_cpu_has_avx512 (void);
  1901. GGML_API int ggml_cpu_has_avx512_vbmi(void);
  1902. GGML_API int ggml_cpu_has_avx512_vnni(void);
  1903. GGML_API int ggml_cpu_has_fma (void);
  1904. GGML_API int ggml_cpu_has_neon (void);
  1905. GGML_API int ggml_cpu_has_arm_fma (void);
  1906. GGML_API int ggml_cpu_has_metal (void);
  1907. GGML_API int ggml_cpu_has_f16c (void);
  1908. GGML_API int ggml_cpu_has_fp16_va (void);
  1909. GGML_API int ggml_cpu_has_wasm_simd (void);
  1910. GGML_API int ggml_cpu_has_blas (void);
  1911. GGML_API int ggml_cpu_has_cublas (void);
  1912. GGML_API int ggml_cpu_has_clblast (void);
  1913. GGML_API int ggml_cpu_has_vulkan (void);
  1914. GGML_API int ggml_cpu_has_gpublas (void);
  1915. GGML_API int ggml_cpu_has_sse3 (void);
  1916. GGML_API int ggml_cpu_has_ssse3 (void);
  1917. GGML_API int ggml_cpu_has_sycl (void);
  1918. GGML_API int ggml_cpu_has_vsx (void);
  1919. //
  1920. // Internal types and functions exposed for tests and benchmarks
  1921. //
  1922. #ifdef __cplusplus
  1923. // restrict not standard in C++
  1924. #define GGML_RESTRICT
  1925. #else
  1926. #define GGML_RESTRICT restrict
  1927. #endif
  1928. typedef void (*ggml_to_float_t) (const void * GGML_RESTRICT x, float * GGML_RESTRICT y, int k);
  1929. typedef void (*ggml_from_float_t)(const float * GGML_RESTRICT x, void * GGML_RESTRICT y, int k);
  1930. typedef void (*ggml_vec_dot_t) (const int n, float * GGML_RESTRICT s, const void * GGML_RESTRICT x, const void * GGML_RESTRICT y);
  1931. typedef struct {
  1932. const char * type_name;
  1933. int blck_size;
  1934. size_t type_size;
  1935. bool is_quantized;
  1936. ggml_to_float_t to_float;
  1937. ggml_from_float_t from_float;
  1938. ggml_from_float_t from_float_reference;
  1939. ggml_vec_dot_t vec_dot;
  1940. enum ggml_type vec_dot_type;
  1941. } ggml_type_traits_t;
  1942. GGML_API ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type);
  1943. #ifdef __cplusplus
  1944. }
  1945. #endif