llama.h 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926
  1. #ifndef LLAMA_H
  2. #define LLAMA_H
  3. #include "ggml.h"
  4. #include "ggml-backend.h"
  5. #ifdef GGML_USE_CUBLAS
  6. #include "ggml-cuda.h"
  7. #define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
  8. #elif defined(GGML_USE_SYCL)
  9. #include "ggml-sycl.h"
  10. #define LLAMA_MAX_DEVICES GGML_SYCL_MAX_DEVICES
  11. #else
  12. #define LLAMA_MAX_DEVICES 1
  13. #endif // GGML_USE_CUBLAS
  14. #include <stddef.h>
  15. #include <stdint.h>
  16. #include <stdio.h>
  17. #include <stdbool.h>
  18. #ifdef LLAMA_SHARED
  19. # if defined(_WIN32) && !defined(__MINGW32__)
  20. # ifdef LLAMA_BUILD
  21. # define LLAMA_API __declspec(dllexport)
  22. # else
  23. # define LLAMA_API __declspec(dllimport)
  24. # endif
  25. # else
  26. # define LLAMA_API __attribute__ ((visibility ("default")))
  27. # endif
  28. #else
  29. # define LLAMA_API
  30. #endif
  31. #ifdef __GNUC__
  32. # define DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
  33. #elif defined(_MSC_VER)
  34. # define DEPRECATED(func, hint) __declspec(deprecated(hint)) func
  35. #else
  36. # define DEPRECATED(func, hint) func
  37. #endif
  38. #define LLAMA_DEFAULT_SEED 0xFFFFFFFF
  39. #define LLAMA_MAX_RNG_STATE (64*1024)
  40. #define LLAMA_FILE_MAGIC_GGLA 0x67676c61u // 'ggla'
  41. #define LLAMA_FILE_MAGIC_GGSN 0x6767736eu // 'ggsn'
  42. #define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
  43. #define LLAMA_SESSION_VERSION 4
  44. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  45. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  46. #define LLAMA_SUPPORTS_GPU_OFFLOAD
  47. #endif
  48. #ifdef __cplusplus
  49. extern "C" {
  50. #endif
  51. //
  52. // C interface
  53. //
  54. // TODO: show sample usage
  55. //
  56. struct llama_model;
  57. struct llama_context;
  58. typedef int32_t llama_pos;
  59. typedef int32_t llama_token;
  60. typedef int32_t llama_seq_id;
  61. enum llama_vocab_type {
  62. LLAMA_VOCAB_TYPE_SPM = 0, // SentencePiece
  63. LLAMA_VOCAB_TYPE_BPE = 1, // Byte Pair Encoding
  64. };
  65. enum llama_token_type {
  66. LLAMA_TOKEN_TYPE_UNDEFINED = 0,
  67. LLAMA_TOKEN_TYPE_NORMAL = 1,
  68. LLAMA_TOKEN_TYPE_UNKNOWN = 2,
  69. LLAMA_TOKEN_TYPE_CONTROL = 3,
  70. LLAMA_TOKEN_TYPE_USER_DEFINED = 4,
  71. LLAMA_TOKEN_TYPE_UNUSED = 5,
  72. LLAMA_TOKEN_TYPE_BYTE = 6,
  73. };
  74. // model file types
  75. enum llama_ftype {
  76. LLAMA_FTYPE_ALL_F32 = 0,
  77. LLAMA_FTYPE_MOSTLY_F16 = 1, // except 1d tensors
  78. LLAMA_FTYPE_MOSTLY_Q4_0 = 2, // except 1d tensors
  79. LLAMA_FTYPE_MOSTLY_Q4_1 = 3, // except 1d tensors
  80. LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16 = 4, // tok_embeddings.weight and output.weight are F16
  81. // LLAMA_FTYPE_MOSTLY_Q4_2 = 5, // support has been removed
  82. // LLAMA_FTYPE_MOSTLY_Q4_3 = 6, // support has been removed
  83. LLAMA_FTYPE_MOSTLY_Q8_0 = 7, // except 1d tensors
  84. LLAMA_FTYPE_MOSTLY_Q5_0 = 8, // except 1d tensors
  85. LLAMA_FTYPE_MOSTLY_Q5_1 = 9, // except 1d tensors
  86. LLAMA_FTYPE_MOSTLY_Q2_K = 10, // except 1d tensors
  87. LLAMA_FTYPE_MOSTLY_Q3_K_S = 11, // except 1d tensors
  88. LLAMA_FTYPE_MOSTLY_Q3_K_M = 12, // except 1d tensors
  89. LLAMA_FTYPE_MOSTLY_Q3_K_L = 13, // except 1d tensors
  90. LLAMA_FTYPE_MOSTLY_Q4_K_S = 14, // except 1d tensors
  91. LLAMA_FTYPE_MOSTLY_Q4_K_M = 15, // except 1d tensors
  92. LLAMA_FTYPE_MOSTLY_Q5_K_S = 16, // except 1d tensors
  93. LLAMA_FTYPE_MOSTLY_Q5_K_M = 17, // except 1d tensors
  94. LLAMA_FTYPE_MOSTLY_Q6_K = 18, // except 1d tensors
  95. LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors
  96. LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors
  97. LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors
  98. LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors
  99. LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file
  100. };
  101. enum llama_rope_scaling_type {
  102. LLAMA_ROPE_SCALING_UNSPECIFIED = -1,
  103. LLAMA_ROPE_SCALING_NONE = 0,
  104. LLAMA_ROPE_SCALING_LINEAR = 1,
  105. LLAMA_ROPE_SCALING_YARN = 2,
  106. LLAMA_ROPE_SCALING_MAX_VALUE = LLAMA_ROPE_SCALING_YARN,
  107. };
  108. enum llama_split_mode {
  109. LLAMA_SPLIT_NONE = 0, // single GPU
  110. LLAMA_SPLIT_LAYER = 1, // split layers and KV across GPUs
  111. LLAMA_SPLIT_ROW = 2, // split rows across GPUs
  112. };
  113. typedef struct llama_token_data {
  114. llama_token id; // token id
  115. float logit; // log-odds of the token
  116. float p; // probability of the token
  117. } llama_token_data;
  118. typedef struct llama_token_data_array {
  119. llama_token_data * data;
  120. size_t size;
  121. bool sorted;
  122. } llama_token_data_array;
  123. typedef bool (*llama_progress_callback)(float progress, void *ctx);
  124. // Input data for llama_decode
  125. // A llama_batch object can contain input about one or many sequences
  126. // The provided arrays (i.e. token, embd, pos, etc.) must have size of n_tokens
  127. //
  128. // - token : the token ids of the input (used when embd is NULL)
  129. // - embd : token embeddings (i.e. float vector of size n_embd) (used when token is NULL)
  130. // - pos : the positions of the respective token in the sequence
  131. // - seq_id : the sequence to which the respective token belongs
  132. // - logits : if zero, the logits for the respective token will not be output
  133. //
  134. typedef struct llama_batch {
  135. int32_t n_tokens;
  136. llama_token * token;
  137. float * embd;
  138. llama_pos * pos;
  139. int32_t * n_seq_id;
  140. llama_seq_id ** seq_id;
  141. int8_t * logits;
  142. // NOTE: helpers for smooth API transition - can be deprecated in the future
  143. // for future-proof code, use the above fields instead and ignore everything below
  144. //
  145. // pos[i] = all_pos_0 + i*all_pos_1
  146. //
  147. llama_pos all_pos_0; // used if pos == NULL
  148. llama_pos all_pos_1; // used if pos == NULL
  149. llama_seq_id all_seq_id; // used if seq_id == NULL
  150. } llama_batch;
  151. enum llama_model_kv_override_type {
  152. LLAMA_KV_OVERRIDE_INT,
  153. LLAMA_KV_OVERRIDE_FLOAT,
  154. LLAMA_KV_OVERRIDE_BOOL,
  155. };
  156. struct llama_model_kv_override {
  157. char key[128];
  158. enum llama_model_kv_override_type tag;
  159. union {
  160. int64_t int_value;
  161. double float_value;
  162. bool bool_value;
  163. };
  164. };
  165. struct llama_model_params {
  166. int32_t n_gpu_layers; // number of layers to store in VRAM
  167. enum llama_split_mode split_mode; // how to split the model across multiple GPUs
  168. // main_gpu interpretation depends on split_mode:
  169. // LLAMA_SPLIT_NONE: the GPU that is used for the entire model
  170. // LLAMA_SPLIT_ROW: the GPU that is used for small tensors and intermediate results
  171. // LLAMA_SPLIT_LAYER: ignored
  172. int32_t main_gpu;
  173. // proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
  174. const float * tensor_split;
  175. // Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
  176. // If the provided progress_callback returns true, model loading continues.
  177. // If it returns false, model loading is immediately aborted.
  178. llama_progress_callback progress_callback;
  179. // context pointer passed to the progress callback
  180. void * progress_callback_user_data;
  181. // override key-value pairs of the model meta data
  182. const struct llama_model_kv_override * kv_overrides;
  183. // Keep the booleans together to avoid misalignment during copy-by-value.
  184. bool vocab_only; // only load the vocabulary, no weights
  185. bool use_mmap; // use mmap if possible
  186. bool use_mlock; // force system to keep model in RAM
  187. };
  188. struct llama_context_params {
  189. uint32_t seed; // RNG seed, -1 for random
  190. uint32_t n_ctx; // text context, 0 = from model
  191. uint32_t n_batch; // prompt processing maximum batch size
  192. uint32_t n_threads; // number of threads to use for generation
  193. uint32_t n_threads_batch; // number of threads to use for batch processing
  194. int8_t rope_scaling_type; // RoPE scaling type, from `enum llama_rope_scaling_type`
  195. // ref: https://github.com/ggerganov/llama.cpp/pull/2054
  196. float rope_freq_base; // RoPE base frequency, 0 = from model
  197. float rope_freq_scale; // RoPE frequency scaling factor, 0 = from model
  198. float yarn_ext_factor; // YaRN extrapolation mix factor, negative = from model
  199. float yarn_attn_factor; // YaRN magnitude scaling factor
  200. float yarn_beta_fast; // YaRN low correction dim
  201. float yarn_beta_slow; // YaRN high correction dim
  202. uint32_t yarn_orig_ctx; // YaRN original context size
  203. ggml_backend_sched_eval_callback cb_eval;
  204. void * cb_eval_user_data;
  205. enum ggml_type type_k; // data type for K cache
  206. enum ggml_type type_v; // data type for V cache
  207. // Keep the booleans together to avoid misalignment during copy-by-value.
  208. bool mul_mat_q; // if true, use experimental mul_mat_q kernels (DEPRECATED - always true)
  209. bool logits_all; // the llama_eval() call computes all logits, not just the last one (DEPRECATED - set llama_batch.logits instead)
  210. bool embedding; // embedding mode only
  211. bool offload_kqv; // whether to offload the KQV ops (including the KV cache) to GPU
  212. };
  213. // model quantization parameters
  214. typedef struct llama_model_quantize_params {
  215. int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
  216. enum llama_ftype ftype; // quantize to this llama_ftype
  217. bool allow_requantize; // allow quantizing non-f32/f16 tensors
  218. bool quantize_output_tensor; // quantize output.weight
  219. bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
  220. bool pure; // disable k-quant mixtures and quantize all tensors to the same type
  221. void * imatrix; // pointer to importance matrix data
  222. } llama_model_quantize_params;
  223. // grammar types
  224. struct llama_grammar;
  225. // grammar element type
  226. enum llama_gretype {
  227. // end of rule definition
  228. LLAMA_GRETYPE_END = 0,
  229. // start of alternate definition for rule
  230. LLAMA_GRETYPE_ALT = 1,
  231. // non-terminal element: reference to rule
  232. LLAMA_GRETYPE_RULE_REF = 2,
  233. // terminal element: character (code point)
  234. LLAMA_GRETYPE_CHAR = 3,
  235. // inverse char(s) ([^a], [^a-b] [^abc])
  236. LLAMA_GRETYPE_CHAR_NOT = 4,
  237. // modifies a preceding LLAMA_GRETYPE_CHAR or LLAMA_GRETYPE_CHAR_ALT to
  238. // be an inclusive range ([a-z])
  239. LLAMA_GRETYPE_CHAR_RNG_UPPER = 5,
  240. // modifies a preceding LLAMA_GRETYPE_CHAR or
  241. // LLAMA_GRETYPE_CHAR_RNG_UPPER to add an alternate char to match ([ab], [a-zA])
  242. LLAMA_GRETYPE_CHAR_ALT = 6,
  243. };
  244. typedef struct llama_grammar_element {
  245. enum llama_gretype type;
  246. uint32_t value; // Unicode code point or rule ID
  247. } llama_grammar_element;
  248. // performance timing information
  249. struct llama_timings {
  250. double t_start_ms;
  251. double t_end_ms;
  252. double t_load_ms;
  253. double t_sample_ms;
  254. double t_p_eval_ms;
  255. double t_eval_ms;
  256. int32_t n_sample;
  257. int32_t n_p_eval;
  258. int32_t n_eval;
  259. };
  260. // Helpers for getting default parameters
  261. LLAMA_API struct llama_model_params llama_model_default_params(void);
  262. LLAMA_API struct llama_context_params llama_context_default_params(void);
  263. LLAMA_API struct llama_model_quantize_params llama_model_quantize_default_params(void);
  264. // Initialize the llama + ggml backend
  265. // If numa is true, use NUMA optimizations
  266. // Call once at the start of the program
  267. LLAMA_API void llama_backend_init(bool numa);
  268. // Call once at the end of the program - currently only used for MPI
  269. LLAMA_API void llama_backend_free(void);
  270. LLAMA_API struct llama_model * llama_load_model_from_file(
  271. const char * path_model,
  272. struct llama_model_params params);
  273. LLAMA_API void llama_free_model(struct llama_model * model);
  274. LLAMA_API struct llama_context * llama_new_context_with_model(
  275. struct llama_model * model,
  276. struct llama_context_params params);
  277. // Frees all allocated memory
  278. LLAMA_API void llama_free(struct llama_context * ctx);
  279. LLAMA_API int64_t llama_time_us(void);
  280. LLAMA_API int32_t llama_max_devices(void);
  281. LLAMA_API bool llama_mmap_supported (void);
  282. LLAMA_API bool llama_mlock_supported(void);
  283. LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
  284. LLAMA_API uint32_t llama_n_ctx (const struct llama_context * ctx);
  285. LLAMA_API uint32_t llama_n_batch (const struct llama_context * ctx);
  286. LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_model * model);
  287. LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
  288. LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
  289. LLAMA_API int32_t llama_n_embd (const struct llama_model * model);
  290. // Get the model's RoPE frequency scaling factor
  291. LLAMA_API float llama_rope_freq_scale_train(const struct llama_model * model);
  292. // Functions to access the model's GGUF metadata scalar values
  293. // - The functions return the length of the string on success, or -1 on failure
  294. // - The output string is always null-terminated and cleared on failure
  295. // - GGUF array values are not supported by these functions
  296. // Get metadata value as a string by key name
  297. LLAMA_API int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size);
  298. // Get the number of metadata key/value pairs
  299. LLAMA_API int32_t llama_model_meta_count(const struct llama_model * model);
  300. // Get metadata key name by index
  301. LLAMA_API int32_t llama_model_meta_key_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  302. // Get metadata value as a string by index
  303. LLAMA_API int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size);
  304. // Get a string describing the model type
  305. LLAMA_API int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);
  306. // Returns the total size of all the tensors in the model in bytes
  307. LLAMA_API uint64_t llama_model_size(const struct llama_model * model);
  308. // Returns the total number of parameters in the model
  309. LLAMA_API uint64_t llama_model_n_params(const struct llama_model * model);
  310. // Get a llama model tensor
  311. LLAMA_API struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name);
  312. // Returns 0 on success
  313. LLAMA_API uint32_t llama_model_quantize(
  314. const char * fname_inp,
  315. const char * fname_out,
  316. const llama_model_quantize_params * params);
  317. // Apply a LoRA adapter to a loaded model
  318. // path_base_model is the path to a higher quality model to use as a base for
  319. // the layers modified by the adapter. Can be NULL to use the current loaded model.
  320. // The model needs to be reloaded before applying a new adapter, otherwise the adapter
  321. // will be applied on top of the previous one
  322. // Returns 0 on success
  323. LLAMA_API DEPRECATED(int32_t llama_apply_lora_from_file(
  324. struct llama_context * ctx,
  325. const char * path_lora,
  326. float scale,
  327. const char * path_base_model,
  328. int32_t n_threads),
  329. "use llama_model_apply_lora_from_file instead");
  330. LLAMA_API int32_t llama_model_apply_lora_from_file(
  331. const struct llama_model * model,
  332. const char * path_lora,
  333. float scale,
  334. const char * path_base_model,
  335. int32_t n_threads);
  336. //
  337. // KV cache
  338. //
  339. // Information associated with an individual cell in the KV cache view.
  340. struct llama_kv_cache_view_cell {
  341. // The position for this cell. Takes KV cache shifts into account.
  342. // May be negative if the cell is not populated.
  343. llama_pos pos;
  344. };
  345. // An updateable view of the KV cache.
  346. struct llama_kv_cache_view {
  347. // Number of KV cache cells. This will be the same as the context size.
  348. int32_t n_cells;
  349. // Maximum number of sequences that can exist in a cell. It's not an error
  350. // if there are more sequences in a cell than this value, however they will
  351. // not be visible in the view cells_sequences.
  352. int32_t n_max_seq;
  353. // Number of tokens in the cache. For example, if there are two populated
  354. // cells, the first with 1 sequence id in it and the second with 2 sequence
  355. // ids then you'll have 3 tokens.
  356. int32_t token_count;
  357. // Number of populated cache cells.
  358. int32_t used_cells;
  359. // Maximum contiguous empty slots in the cache.
  360. int32_t max_contiguous;
  361. // Index to the start of the max_contiguous slot range. Can be negative
  362. // when cache is full.
  363. int32_t max_contiguous_idx;
  364. // Information for an individual cell.
  365. struct llama_kv_cache_view_cell * cells;
  366. // The sequences for each cell. There will be n_max_seq items per cell.
  367. llama_seq_id * cells_sequences;
  368. };
  369. // Create an empty KV cache view. (use only for debugging purposes)
  370. LLAMA_API struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_max_seq);
  371. // Free a KV cache view. (use only for debugging purposes)
  372. LLAMA_API void llama_kv_cache_view_free(struct llama_kv_cache_view * view);
  373. // Update the KV cache view structure with the current state of the KV cache. (use only for debugging purposes)
  374. LLAMA_API void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view);
  375. // Returns the number of tokens in the KV cache (slow, use only for debug)
  376. // If a KV cell has multiple sequences assigned to it, it will be counted multiple times
  377. LLAMA_API int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx);
  378. // Returns the number of used KV cells (i.e. have at least one sequence assigned to them)
  379. LLAMA_API int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx);
  380. // Clear the KV cache
  381. LLAMA_API void llama_kv_cache_clear(
  382. struct llama_context * ctx);
  383. // Removes all tokens that belong to the specified sequence and have positions in [p0, p1)
  384. // seq_id < 0 : match any sequence
  385. // p0 < 0 : [0, p1]
  386. // p1 < 0 : [p0, inf)
  387. LLAMA_API void llama_kv_cache_seq_rm(
  388. struct llama_context * ctx,
  389. llama_seq_id seq_id,
  390. llama_pos p0,
  391. llama_pos p1);
  392. // Copy all tokens that belong to the specified sequence to another sequence
  393. // Note that this does not allocate extra KV cache memory - it simply assigns the tokens to the new sequence
  394. // p0 < 0 : [0, p1]
  395. // p1 < 0 : [p0, inf)
  396. LLAMA_API void llama_kv_cache_seq_cp(
  397. struct llama_context * ctx,
  398. llama_seq_id seq_id_src,
  399. llama_seq_id seq_id_dst,
  400. llama_pos p0,
  401. llama_pos p1);
  402. // Removes all tokens that do not belong to the specified sequence
  403. LLAMA_API void llama_kv_cache_seq_keep(
  404. struct llama_context * ctx,
  405. llama_seq_id seq_id);
  406. // Adds relative position "delta" to all tokens that belong to the specified sequence and have positions in [p0, p1)
  407. // If the KV cache is RoPEd, the KV data is updated accordingly
  408. // p0 < 0 : [0, p1]
  409. // p1 < 0 : [p0, inf)
  410. LLAMA_API void llama_kv_cache_seq_shift(
  411. struct llama_context * ctx,
  412. llama_seq_id seq_id,
  413. llama_pos p0,
  414. llama_pos p1,
  415. llama_pos delta);
  416. // Integer division of the positions by factor of `d > 1`
  417. // If the KV cache is RoPEd, the KV data is updated accordingly
  418. // p0 < 0 : [0, p1]
  419. // p1 < 0 : [p0, inf)
  420. LLAMA_API void llama_kv_cache_seq_div(
  421. struct llama_context * ctx,
  422. llama_seq_id seq_id,
  423. llama_pos p0,
  424. llama_pos p1,
  425. int d);
  426. //
  427. // State / sessions
  428. //
  429. // Returns the maximum size in bytes of the state (rng, logits, embedding
  430. // and kv_cache) - will often be smaller after compacting tokens
  431. LLAMA_API size_t llama_get_state_size(const struct llama_context * ctx);
  432. // Copies the state to the specified destination address.
  433. // Destination needs to have allocated enough memory.
  434. // Returns the number of bytes copied
  435. LLAMA_API size_t llama_copy_state_data(
  436. struct llama_context * ctx,
  437. uint8_t * dst);
  438. // Set the state reading from the specified address
  439. // Returns the number of bytes read
  440. LLAMA_API size_t llama_set_state_data(
  441. struct llama_context * ctx,
  442. uint8_t * src);
  443. // Save/load session file
  444. LLAMA_API bool llama_load_session_file(
  445. struct llama_context * ctx,
  446. const char * path_session,
  447. llama_token * tokens_out,
  448. size_t n_token_capacity,
  449. size_t * n_token_count_out);
  450. LLAMA_API bool llama_save_session_file(
  451. struct llama_context * ctx,
  452. const char * path_session,
  453. const llama_token * tokens,
  454. size_t n_token_count);
  455. //
  456. // Decoding
  457. //
  458. // Run the llama inference to obtain the logits and probabilities for the next token(s).
  459. // tokens + n_tokens is the provided batch of new tokens to process
  460. // n_past is the number of tokens to use from previous eval calls
  461. // Returns 0 on success
  462. // DEPRECATED: use llama_decode() instead
  463. LLAMA_API DEPRECATED(int llama_eval(
  464. struct llama_context * ctx,
  465. llama_token * tokens,
  466. int32_t n_tokens,
  467. int32_t n_past),
  468. "use llama_decode() instead");
  469. // Same as llama_eval, but use float matrix input directly.
  470. // DEPRECATED: use llama_decode() instead
  471. LLAMA_API DEPRECATED(int llama_eval_embd(
  472. struct llama_context * ctx,
  473. float * embd,
  474. int32_t n_tokens,
  475. int32_t n_past),
  476. "use llama_decode() instead");
  477. // Return batch for single sequence of tokens starting at pos_0
  478. //
  479. // NOTE: this is a helper function to facilitate transition to the new batch API - avoid using it
  480. //
  481. LLAMA_API struct llama_batch llama_batch_get_one(
  482. llama_token * tokens,
  483. int32_t n_tokens,
  484. llama_pos pos_0,
  485. llama_seq_id seq_id);
  486. // Allocates a batch of tokens on the heap that can hold a maximum of n_tokens
  487. // Each token can be assigned up to n_seq_max sequence ids
  488. // The batch has to be freed with llama_batch_free()
  489. // If embd != 0, llama_batch.embd will be allocated with size of n_tokens * embd * sizeof(float)
  490. // Otherwise, llama_batch.token will be allocated to store n_tokens llama_token
  491. // The rest of the llama_batch members are allocated with size n_tokens
  492. // All members are left uninitialized
  493. LLAMA_API struct llama_batch llama_batch_init(
  494. int32_t n_tokens,
  495. int32_t embd,
  496. int32_t n_seq_max);
  497. // Frees a batch of tokens allocated with llama_batch_init()
  498. LLAMA_API void llama_batch_free(struct llama_batch batch);
  499. // Positive return values does not mean a fatal error, but rather a warning.
  500. // 0 - success
  501. // 1 - could not find a KV slot for the batch (try reducing the size of the batch or increase the context)
  502. // < 0 - error
  503. LLAMA_API int32_t llama_decode(
  504. struct llama_context * ctx,
  505. struct llama_batch batch);
  506. // Set the number of threads used for decoding
  507. // n_threads is the number of threads used for generation (single token)
  508. // n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
  509. LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
  510. // Token logits obtained from the last call to llama_eval()
  511. // The logits for the last token are stored in the last row
  512. // Logits for which llama_batch.logits[i] == 0 are undefined
  513. // Rows: n_tokens provided with llama_batch
  514. // Cols: n_vocab
  515. LLAMA_API float * llama_get_logits(struct llama_context * ctx);
  516. // Logits for the ith token. Equivalent to:
  517. // llama_get_logits(ctx) + i*n_vocab
  518. LLAMA_API float * llama_get_logits_ith(struct llama_context * ctx, int32_t i);
  519. // Get the embeddings for the input
  520. // shape: [n_embd] (1-dimensional)
  521. LLAMA_API float * llama_get_embeddings(struct llama_context * ctx);
  522. //
  523. // Vocab
  524. //
  525. LLAMA_API const char * llama_token_get_text(const struct llama_model * model, llama_token token);
  526. LLAMA_API float llama_token_get_score(const struct llama_model * model, llama_token token);
  527. LLAMA_API enum llama_token_type llama_token_get_type(const struct llama_model * model, llama_token token);
  528. // Special tokens
  529. LLAMA_API llama_token llama_token_bos(const struct llama_model * model); // beginning-of-sentence
  530. LLAMA_API llama_token llama_token_eos(const struct llama_model * model); // end-of-sentence
  531. LLAMA_API llama_token llama_token_nl (const struct llama_model * model); // next-line
  532. // Returns -1 if unknown, 1 for true or 0 for false.
  533. LLAMA_API int32_t llama_add_bos_token(const struct llama_model * model);
  534. // Returns -1 if unknown, 1 for true or 0 for false.
  535. LLAMA_API int32_t llama_add_eos_token(const struct llama_model * model);
  536. // codellama infill tokens
  537. LLAMA_API llama_token llama_token_prefix(const struct llama_model * model); // Beginning of infill prefix
  538. LLAMA_API llama_token llama_token_middle(const struct llama_model * model); // Beginning of infill middle
  539. LLAMA_API llama_token llama_token_suffix(const struct llama_model * model); // Beginning of infill suffix
  540. LLAMA_API llama_token llama_token_eot (const struct llama_model * model); // End of infill middle
  541. //
  542. // Tokenization
  543. //
  544. /// @details Convert the provided text into tokens.
  545. /// @param tokens The tokens pointer must be large enough to hold the resulting tokens.
  546. /// @return Returns the number of tokens on success, no more than n_max_tokens
  547. /// @return Returns a negative number on failure - the number of tokens that would have been returned
  548. /// @param special Allow tokenizing special and/or control tokens which otherwise are not exposed and treated as plaintext.
  549. /// Does not insert a leading space.
  550. LLAMA_API int32_t llama_tokenize(
  551. const struct llama_model * model,
  552. const char * text,
  553. int32_t text_len,
  554. llama_token * tokens,
  555. int32_t n_max_tokens,
  556. bool add_bos,
  557. bool special);
  558. // Token Id -> Piece.
  559. // Uses the vocabulary in the provided context.
  560. // Does not write null terminator to the buffer.
  561. // User code is responsible to remove the leading whitespace of the first non-BOS token when decoding multiple tokens.
  562. LLAMA_API int32_t llama_token_to_piece(
  563. const struct llama_model * model,
  564. llama_token token,
  565. char * buf,
  566. int32_t length);
  567. //
  568. // Grammar
  569. //
  570. LLAMA_API struct llama_grammar * llama_grammar_init(
  571. const llama_grammar_element ** rules,
  572. size_t n_rules,
  573. size_t start_rule_index);
  574. LLAMA_API void llama_grammar_free(struct llama_grammar * grammar);
  575. LLAMA_API struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar);
  576. //
  577. // Sampling functions
  578. //
  579. // Sets the current rng seed.
  580. LLAMA_API void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed);
  581. /// @details Repetition penalty described in CTRL academic paper https://arxiv.org/abs/1909.05858, with negative logit fix.
  582. /// @details Frequency and presence penalties described in OpenAI API https://platform.openai.com/docs/api-reference/parameter-details.
  583. LLAMA_API void llama_sample_repetition_penalties(
  584. struct llama_context * ctx,
  585. llama_token_data_array * candidates,
  586. const llama_token * last_tokens,
  587. size_t penalty_last_n,
  588. float penalty_repeat,
  589. float penalty_freq,
  590. float penalty_present);
  591. /// @details Apply classifier-free guidance to the logits as described in academic paper "Stay on topic with Classifier-Free Guidance" https://arxiv.org/abs/2306.17806
  592. /// @param logits Logits extracted from the original generation context.
  593. /// @param logits_guidance Logits extracted from a separate context from the same model. Other than a negative prompt at the beginning, it should have all generated and user input tokens copied from the main context.
  594. /// @param scale Guidance strength. 1.0f means no guidance. Higher values mean stronger guidance.
  595. LLAMA_API void llama_sample_apply_guidance(
  596. struct llama_context * ctx,
  597. float * logits,
  598. float * logits_guidance,
  599. float scale);
  600. LLAMA_API DEPRECATED(void llama_sample_classifier_free_guidance(
  601. struct llama_context * ctx,
  602. llama_token_data_array * candidates,
  603. struct llama_context * guidance_ctx,
  604. float scale),
  605. "use llama_sample_apply_guidance() instead");
  606. /// @details Sorts candidate tokens by their logits in descending order and calculate probabilities based on logits.
  607. LLAMA_API void llama_sample_softmax(
  608. struct llama_context * ctx,
  609. llama_token_data_array * candidates);
  610. /// @details Top-K sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  611. LLAMA_API void llama_sample_top_k(
  612. struct llama_context * ctx,
  613. llama_token_data_array * candidates,
  614. int32_t k,
  615. size_t min_keep);
  616. /// @details Nucleus sampling described in academic paper "The Curious Case of Neural Text Degeneration" https://arxiv.org/abs/1904.09751
  617. LLAMA_API void llama_sample_top_p(
  618. struct llama_context * ctx,
  619. llama_token_data_array * candidates,
  620. float p,
  621. size_t min_keep);
  622. /// @details Minimum P sampling as described in https://github.com/ggerganov/llama.cpp/pull/3841
  623. LLAMA_API void llama_sample_min_p(
  624. struct llama_context * ctx,
  625. llama_token_data_array * candidates,
  626. float p,
  627. size_t min_keep);
  628. /// @details Tail Free Sampling described in https://www.trentonbricken.com/Tail-Free-Sampling/.
  629. LLAMA_API void llama_sample_tail_free(
  630. struct llama_context * ctx,
  631. llama_token_data_array * candidates,
  632. float z,
  633. size_t min_keep);
  634. /// @details Locally Typical Sampling implementation described in the paper https://arxiv.org/abs/2202.00666.
  635. LLAMA_API void llama_sample_typical(
  636. struct llama_context * ctx,
  637. llama_token_data_array * candidates,
  638. float p,
  639. size_t min_keep);
  640. /// @details Dynamic temperature implementation described in the paper https://arxiv.org/abs/2309.02772.
  641. LLAMA_API void llama_sample_entropy(
  642. struct llama_context * ctx,
  643. llama_token_data_array * candidates_p,
  644. float min_temp,
  645. float max_temp,
  646. float exponent_val);
  647. LLAMA_API void llama_sample_temp(
  648. struct llama_context * ctx,
  649. llama_token_data_array * candidates,
  650. float temp);
  651. LLAMA_API DEPRECATED(void llama_sample_temperature(
  652. struct llama_context * ctx,
  653. llama_token_data_array * candidates,
  654. float temp),
  655. "use llama_sample_temp instead");
  656. /// @details Apply constraints from grammar
  657. LLAMA_API void llama_sample_grammar(
  658. struct llama_context * ctx,
  659. llama_token_data_array * candidates,
  660. const struct llama_grammar * grammar);
  661. /// @details Mirostat 1.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  662. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  663. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  664. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  665. /// @param m The number of tokens considered in the estimation of `s_hat`. This is an arbitrary value that is used to calculate `s_hat`, which in turn helps to calculate the value of `k`. In the paper, they use `m = 100`, but you can experiment with different values to see how it affects the performance of the algorithm.
  666. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  667. LLAMA_API llama_token llama_sample_token_mirostat(
  668. struct llama_context * ctx,
  669. llama_token_data_array * candidates,
  670. float tau,
  671. float eta,
  672. int32_t m,
  673. float * mu);
  674. /// @details Mirostat 2.0 algorithm described in the paper https://arxiv.org/abs/2007.14966. Uses tokens instead of words.
  675. /// @param candidates A vector of `llama_token_data` containing the candidate tokens, their probabilities (p), and log-odds (logit) for the current position in the generated text.
  676. /// @param tau The target cross-entropy (or surprise) value you want to achieve for the generated text. A higher value corresponds to more surprising or less predictable text, while a lower value corresponds to less surprising or more predictable text.
  677. /// @param eta The learning rate used to update `mu` based on the error between the target and observed surprisal of the sampled word. A larger learning rate will cause `mu` to be updated more quickly, while a smaller learning rate will result in slower updates.
  678. /// @param mu Maximum cross-entropy. This value is initialized to be twice the target cross-entropy (`2 * tau`) and is updated in the algorithm based on the error between the target and observed surprisal.
  679. LLAMA_API llama_token llama_sample_token_mirostat_v2(
  680. struct llama_context * ctx,
  681. llama_token_data_array * candidates,
  682. float tau,
  683. float eta,
  684. float * mu);
  685. /// @details Selects the token with the highest probability.
  686. /// Does not compute the token probabilities. Use llama_sample_softmax() instead.
  687. LLAMA_API llama_token llama_sample_token_greedy(
  688. struct llama_context * ctx,
  689. llama_token_data_array * candidates);
  690. /// @details Randomly selects a token from the candidates based on their probabilities.
  691. LLAMA_API llama_token llama_sample_token(
  692. struct llama_context * ctx,
  693. llama_token_data_array * candidates);
  694. /// @details Accepts the sampled token into the grammar
  695. LLAMA_API void llama_grammar_accept_token(
  696. struct llama_context * ctx,
  697. struct llama_grammar * grammar,
  698. llama_token token);
  699. //
  700. // Beam search
  701. //
  702. struct llama_beam_view {
  703. const llama_token * tokens;
  704. size_t n_tokens;
  705. float p; // Cumulative beam probability (renormalized relative to all beams)
  706. bool eob; // Callback should set this to true when a beam is at end-of-beam.
  707. };
  708. // Passed to beam_search_callback function.
  709. // Whenever 0 < common_prefix_length, this number of tokens should be copied from any of the beams
  710. // (e.g. beams[0]) as they will be removed (shifted) from all beams in all subsequent callbacks.
  711. // These pointers are valid only during the synchronous callback, so should not be saved.
  712. struct llama_beams_state {
  713. struct llama_beam_view * beam_views;
  714. size_t n_beams; // Number of elements in beam_views[].
  715. size_t common_prefix_length; // Current max length of prefix tokens shared by all beams.
  716. bool last_call; // True iff this is the last callback invocation.
  717. };
  718. // Type of pointer to the beam_search_callback function.
  719. // void* callback_data is any custom data passed to llama_beam_search, that is subsequently
  720. // passed back to beam_search_callback. This avoids having to use global variables in the callback.
  721. typedef void (*llama_beam_search_callback_fn_t)(void * callback_data, struct llama_beams_state);
  722. /// @details Deterministically returns entire sentence constructed by a beam search.
  723. /// @param ctx Pointer to the llama_context.
  724. /// @param callback Invoked for each iteration of the beam_search loop, passing in beams_state.
  725. /// @param callback_data A pointer that is simply passed back to callback.
  726. /// @param n_beams Number of beams to use.
  727. /// @param n_past Number of tokens already evaluated.
  728. /// @param n_predict Maximum number of tokens to predict. EOS may occur earlier.
  729. LLAMA_API void llama_beam_search(
  730. struct llama_context * ctx,
  731. llama_beam_search_callback_fn_t callback,
  732. void * callback_data,
  733. size_t n_beams,
  734. int32_t n_past,
  735. int32_t n_predict);
  736. // Performance information
  737. LLAMA_API struct llama_timings llama_get_timings(struct llama_context * ctx);
  738. LLAMA_API void llama_print_timings(struct llama_context * ctx);
  739. LLAMA_API void llama_reset_timings(struct llama_context * ctx);
  740. // Print system information
  741. LLAMA_API const char * llama_print_system_info(void);
  742. // Set callback for all future logging events.
  743. // If this is not called, or NULL is supplied, everything is output on stderr.
  744. LLAMA_API void llama_log_set(ggml_log_callback log_callback, void * user_data);
  745. LLAMA_API void llama_dump_timing_info_yaml(FILE * stream, const struct llama_context * ctx);
  746. #ifdef __cplusplus
  747. }
  748. #endif
  749. // Internal API to be implemented by llama.cpp and used by tests/benchmarks only
  750. #ifdef LLAMA_API_INTERNAL
  751. #include <vector>
  752. #include <string>
  753. struct ggml_tensor;
  754. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  755. struct llama_context * ctx
  756. );
  757. #endif // LLAMA_API_INTERNAL
  758. #endif // LLAMA_H