| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105 |
- // Various helper functions and utilities
- #pragma once
- #include <string>
- #include <map>
- #include <vector>
- #include <random>
- #include <thread>
- //
- // CLI argument parsing
- //
- struct gpt_params {
- int32_t seed = -1; // RNG seed
- int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
- int32_t n_predict = 128; // new tokens to predict
- int32_t repeat_last_n = 64; // last n tokens to penalize
- int32_t n_ctx = 512; //context size
-
- // sampling parameters
- int32_t top_k = 40;
- float top_p = 0.95f;
- float temp = 0.80f;
- float repeat_penalty = 1.30f;
- int32_t n_batch = 8; // batch size for prompt processing
- std::string model = "models/lamma-7B/ggml-model.bin"; // model path
- std::string prompt;
- bool use_color = false; // use color to distinguish generations and inputs
- bool interactive = false; // interactive mode
- bool interactive_start = false; // reverse prompt immediately
- std::string antiprompt = ""; // string upon seeing which more user input is prompted
- };
- bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
- void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
- std::string gpt_random_prompt(std::mt19937 & rng);
- //
- // Vocab utils
- //
- struct gpt_vocab {
- using id = int32_t;
- using token = std::string;
- std::map<token, id> token_to_id;
- std::map<id, token> id_to_token;
- };
- void replace(std::string & str, const std::string & needle, const std::string & replacement);
- // poor-man's JSON parsing
- std::map<std::string, int32_t> json_parse(const std::string & fname);
- // split text into tokens
- //
- // ref: https://github.com/openai/gpt-2/blob/a74da5d99abaaba920de8131d64da2862a8f213b/src/encoder.py#L53
- //
- // Regex (Python):
- // r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+"""
- //
- // Regex (C++):
- // R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)"
- //
- std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text);
- // TODO: this is probably wrong, but I cannot figure out how this tokenizer works ..
- // ref: https://github.com/google/sentencepiece
- std::vector<gpt_vocab::id> llama_tokenize(const gpt_vocab & vocab, const std::string & text, bool bos);
- // load the tokens from encoder.json
- bool gpt_vocab_init(const std::string & fname, gpt_vocab & vocab);
- // sample next token given probabilities for each embedding
- //
- // - consider only the top K tokens
- // - from them, consider only the top tokens with cumulative probability > P
- //
- gpt_vocab::id llama_sample_top_p_top_k(
- const gpt_vocab & vocab,
- const float * logits,
- std::vector<gpt_vocab::id> & last_n_tokens,
- double repeat_penalty,
- int top_k,
- double top_p,
- double temp,
- std::mt19937 & rng);
- // filer to top K tokens from list of logits
- void sample_top_k(std::vector<std::pair<double, gpt_vocab::id>> & logits_id, int top_k);
- //
- // Quantization
- //
- size_t ggml_quantize_q4_0(float * src, void * dst, int n, int k, int qk, int64_t * hist);
- size_t ggml_quantize_q4_1(float * src, void * dst, int n, int k, int qk, int64_t * hist);
|