llama-bench.cpp 51 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstring>
  10. #include <ctime>
  11. #include <cstdlib>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <vector>
  19. #include "ggml.h"
  20. #include "llama.h"
  21. #include "common.h"
  22. #include "ggml-cuda.h"
  23. #include "ggml-sycl.h"
  24. #ifdef GGML_USE_CANN
  25. #include "ggml-cann.h"
  26. #endif
  27. // utils
  28. static uint64_t get_time_ns() {
  29. using clock = std::chrono::high_resolution_clock;
  30. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  31. }
  32. template<class T>
  33. static std::string join(const std::vector<T> & values, const std::string & delim) {
  34. std::ostringstream str;
  35. for (size_t i = 0; i < values.size(); i++) {
  36. str << values[i];
  37. if (i < values.size() - 1) {
  38. str << delim;
  39. }
  40. }
  41. return str.str();
  42. }
  43. template<typename T, typename F>
  44. static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  45. std::vector<std::string> str_values;
  46. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  47. return str_values;
  48. }
  49. template<typename T>
  50. static T avg(const std::vector<T> & v) {
  51. if (v.empty()) {
  52. return 0;
  53. }
  54. T sum = std::accumulate(v.begin(), v.end(), T(0));
  55. return sum / (T)v.size();
  56. }
  57. template<typename T>
  58. static T stdev(const std::vector<T> & v) {
  59. if (v.size() <= 1) {
  60. return 0;
  61. }
  62. T mean = avg(v);
  63. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  64. T stdev = std::sqrt(sq_sum / (T)(v.size() - 1) - mean * mean * (T)v.size() / (T)(v.size() - 1));
  65. return stdev;
  66. }
  67. static std::string get_cpu_info() {
  68. std::string id;
  69. #ifdef __linux__
  70. FILE * f = fopen("/proc/cpuinfo", "r");
  71. if (f) {
  72. char buf[1024];
  73. while (fgets(buf, sizeof(buf), f)) {
  74. if (strncmp(buf, "model name", 10) == 0) {
  75. char * p = strchr(buf, ':');
  76. if (p) {
  77. p++;
  78. while (std::isspace(*p)) {
  79. p++;
  80. }
  81. while (std::isspace(p[strlen(p) - 1])) {
  82. p[strlen(p) - 1] = '\0';
  83. }
  84. id = p;
  85. break;
  86. }
  87. }
  88. }
  89. fclose(f);
  90. }
  91. #endif
  92. // TODO: other platforms
  93. return id;
  94. }
  95. static std::string get_gpu_info() {
  96. std::string id;
  97. #ifdef GGML_USE_CUDA
  98. int count = ggml_backend_cuda_get_device_count();
  99. for (int i = 0; i < count; i++) {
  100. char buf[128];
  101. ggml_backend_cuda_get_device_description(i, buf, sizeof(buf));
  102. id += buf;
  103. if (i < count - 1) {
  104. id += "/";
  105. }
  106. }
  107. #endif
  108. #ifdef GGML_USE_SYCL
  109. int count = ggml_backend_sycl_get_device_count();
  110. for (int i = 0; i < count; i++) {
  111. char buf[128];
  112. ggml_sycl_get_device_description(i, buf, sizeof(buf));
  113. id += buf;
  114. if (i < count - 1) {
  115. id += "/";
  116. }
  117. }
  118. #endif
  119. #ifdef GGML_USE_CANN
  120. uint32_t count = ggml_backend_cann_get_device_count();
  121. for (uint32_t i = 0; i < count; i++) {
  122. char buf[128];
  123. ggml_backend_cann_get_device_description(i, buf, sizeof(buf));
  124. id += buf;
  125. if (i < count - 1) {
  126. id += "/";
  127. }
  128. }
  129. #endif
  130. // TODO: other backends
  131. return id;
  132. }
  133. // command line params
  134. enum output_formats {NONE, CSV, JSON, MARKDOWN, SQL};
  135. static const char * output_format_str(output_formats format) {
  136. switch (format) {
  137. case NONE: return "none";
  138. case CSV: return "csv";
  139. case JSON: return "json";
  140. case MARKDOWN: return "md";
  141. case SQL: return "sql";
  142. default: GGML_ABORT("invalid output format");
  143. }
  144. }
  145. static bool output_format_from_str(const std::string & s, output_formats & format) {
  146. if (s == "none") {
  147. format = NONE;
  148. } else if (s == "csv") {
  149. format = CSV;
  150. } else if (s == "json") {
  151. format = JSON;
  152. } else if (s == "md") {
  153. format = MARKDOWN;
  154. } else if (s == "sql") {
  155. format = SQL;
  156. } else {
  157. return false;
  158. }
  159. return true;
  160. }
  161. static const char * split_mode_str(llama_split_mode mode) {
  162. switch (mode) {
  163. case LLAMA_SPLIT_MODE_NONE: return "none";
  164. case LLAMA_SPLIT_MODE_LAYER: return "layer";
  165. case LLAMA_SPLIT_MODE_ROW: return "row";
  166. default: GGML_ABORT("invalid split mode");
  167. }
  168. }
  169. static std::string pair_str(const std::pair<int, int> & p) {
  170. static char buf[32];
  171. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  172. return buf;
  173. }
  174. struct cmd_params {
  175. std::vector<std::string> model;
  176. std::vector<int> n_prompt;
  177. std::vector<int> n_gen;
  178. std::vector<std::pair<int, int>> n_pg;
  179. std::vector<int> n_batch;
  180. std::vector<int> n_ubatch;
  181. std::vector<ggml_type> type_k;
  182. std::vector<ggml_type> type_v;
  183. std::vector<int> n_threads;
  184. std::vector<int> n_gpu_layers;
  185. std::vector<std::string> rpc_servers;
  186. std::vector<llama_split_mode> split_mode;
  187. std::vector<int> main_gpu;
  188. std::vector<bool> no_kv_offload;
  189. std::vector<bool> flash_attn;
  190. std::vector<std::vector<float>> tensor_split;
  191. std::vector<bool> use_mmap;
  192. std::vector<bool> embeddings;
  193. ggml_numa_strategy numa;
  194. int reps;
  195. bool verbose;
  196. output_formats output_format;
  197. output_formats output_format_stderr;
  198. };
  199. static const cmd_params cmd_params_defaults = {
  200. /* model */ {"models/7B/ggml-model-q4_0.gguf"},
  201. /* n_prompt */ {512},
  202. /* n_gen */ {128},
  203. /* n_pg */ {},
  204. /* n_batch */ {2048},
  205. /* n_ubatch */ {512},
  206. /* type_k */ {GGML_TYPE_F16},
  207. /* type_v */ {GGML_TYPE_F16},
  208. /* n_threads */ {cpu_get_num_math()},
  209. /* n_gpu_layers */ {99},
  210. /* rpc_servers */ {""},
  211. /* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
  212. /* main_gpu */ {0},
  213. /* no_kv_offload */ {false},
  214. /* flash_attn */ {false},
  215. /* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
  216. /* use_mmap */ {true},
  217. /* embeddings */ {false},
  218. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  219. /* reps */ 5,
  220. /* verbose */ false,
  221. /* output_format */ MARKDOWN,
  222. /* output_format_stderr */ NONE,
  223. };
  224. static void print_usage(int /* argc */, char ** argv) {
  225. printf("usage: %s [options]\n", argv[0]);
  226. printf("\n");
  227. printf("options:\n");
  228. printf(" -h, --help\n");
  229. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  230. printf(" -p, --n-prompt <n> (default: %s)\n", join(cmd_params_defaults.n_prompt, ",").c_str());
  231. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  232. printf(" -pg <pp,tg> (default: %s)\n", join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  233. printf(" -b, --batch-size <n> (default: %s)\n", join(cmd_params_defaults.n_batch, ",").c_str());
  234. printf(" -ub, --ubatch-size <n> (default: %s)\n", join(cmd_params_defaults.n_ubatch, ",").c_str());
  235. printf(" -ctk, --cache-type-k <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  236. printf(" -ctv, --cache-type-v <t> (default: %s)\n", join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  237. printf(" -t, --threads <n> (default: %s)\n", join(cmd_params_defaults.n_threads, ",").c_str());
  238. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n", join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  239. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n", join(cmd_params_defaults.rpc_servers, ",").c_str());
  240. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n", join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  241. printf(" -mg, --main-gpu <i> (default: %s)\n", join(cmd_params_defaults.main_gpu, ",").c_str());
  242. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n", join(cmd_params_defaults.no_kv_offload, ",").c_str());
  243. printf(" -fa, --flash-attn <0|1> (default: %s)\n", join(cmd_params_defaults.flash_attn, ",").c_str());
  244. printf(" -mmp, --mmap <0|1> (default: %s)\n", join(cmd_params_defaults.use_mmap, ",").c_str());
  245. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  246. printf(" -embd, --embeddings <0|1> (default: %s)\n", join(cmd_params_defaults.embeddings, ",").c_str());
  247. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  248. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  249. printf(" -o, --output <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format));
  250. printf(" -oe, --output-err <csv|json|md|sql> (default: %s)\n", output_format_str(cmd_params_defaults.output_format_stderr));
  251. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  252. printf("\n");
  253. printf("Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter multiple times.\n");
  254. }
  255. static ggml_type ggml_type_from_name(const std::string & s) {
  256. if (s == "f16") {
  257. return GGML_TYPE_F16;
  258. }
  259. if (s == "q8_0") {
  260. return GGML_TYPE_Q8_0;
  261. }
  262. if (s == "q4_0") {
  263. return GGML_TYPE_Q4_0;
  264. }
  265. if (s == "q4_1") {
  266. return GGML_TYPE_Q4_1;
  267. }
  268. if (s == "q5_0") {
  269. return GGML_TYPE_Q5_0;
  270. }
  271. if (s == "q5_1") {
  272. return GGML_TYPE_Q5_1;
  273. }
  274. if (s == "iq4_nl") {
  275. return GGML_TYPE_IQ4_NL;
  276. }
  277. return GGML_TYPE_COUNT;
  278. }
  279. static cmd_params parse_cmd_params(int argc, char ** argv) {
  280. cmd_params params;
  281. std::string arg;
  282. bool invalid_param = false;
  283. const std::string arg_prefix = "--";
  284. const char split_delim = ',';
  285. params.verbose = cmd_params_defaults.verbose;
  286. params.output_format = cmd_params_defaults.output_format;
  287. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  288. params.reps = cmd_params_defaults.reps;
  289. params.numa = cmd_params_defaults.numa;
  290. for (int i = 1; i < argc; i++) {
  291. arg = argv[i];
  292. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  293. std::replace(arg.begin(), arg.end(), '_', '-');
  294. }
  295. if (arg == "-h" || arg == "--help") {
  296. print_usage(argc, argv);
  297. exit(0);
  298. } else if (arg == "-m" || arg == "--model") {
  299. if (++i >= argc) {
  300. invalid_param = true;
  301. break;
  302. }
  303. auto p = string_split<std::string>(argv[i], split_delim);
  304. params.model.insert(params.model.end(), p.begin(), p.end());
  305. } else if (arg == "-p" || arg == "--n-prompt") {
  306. if (++i >= argc) {
  307. invalid_param = true;
  308. break;
  309. }
  310. auto p = string_split<int>(argv[i], split_delim);
  311. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  312. } else if (arg == "-n" || arg == "--n-gen") {
  313. if (++i >= argc) {
  314. invalid_param = true;
  315. break;
  316. }
  317. auto p = string_split<int>(argv[i], split_delim);
  318. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  319. } else if (arg == "-pg") {
  320. if (++i >= argc) {
  321. invalid_param = true;
  322. break;
  323. }
  324. auto p = string_split<std::string>(argv[i], ',');
  325. if (p.size() != 2) {
  326. invalid_param = true;
  327. break;
  328. }
  329. params.n_pg.push_back({std::stoi(p[0]), std::stoi(p[1])});
  330. } else if (arg == "-b" || arg == "--batch-size") {
  331. if (++i >= argc) {
  332. invalid_param = true;
  333. break;
  334. }
  335. auto p = string_split<int>(argv[i], split_delim);
  336. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  337. } else if (arg == "-ub" || arg == "--ubatch-size") {
  338. if (++i >= argc) {
  339. invalid_param = true;
  340. break;
  341. }
  342. auto p = string_split<int>(argv[i], split_delim);
  343. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  344. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  345. if (++i >= argc) {
  346. invalid_param = true;
  347. break;
  348. }
  349. auto p = string_split<std::string>(argv[i], split_delim);
  350. std::vector<ggml_type> types;
  351. for (const auto & t : p) {
  352. ggml_type gt = ggml_type_from_name(t);
  353. if (gt == GGML_TYPE_COUNT) {
  354. invalid_param = true;
  355. break;
  356. }
  357. types.push_back(gt);
  358. }
  359. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  360. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  361. if (++i >= argc) {
  362. invalid_param = true;
  363. break;
  364. }
  365. auto p = string_split<std::string>(argv[i], split_delim);
  366. std::vector<ggml_type> types;
  367. for (const auto & t : p) {
  368. ggml_type gt = ggml_type_from_name(t);
  369. if (gt == GGML_TYPE_COUNT) {
  370. invalid_param = true;
  371. break;
  372. }
  373. types.push_back(gt);
  374. }
  375. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  376. } else if (arg == "-t" || arg == "--threads") {
  377. if (++i >= argc) {
  378. invalid_param = true;
  379. break;
  380. }
  381. auto p = string_split<int>(argv[i], split_delim);
  382. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  383. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  384. if (++i >= argc) {
  385. invalid_param = true;
  386. break;
  387. }
  388. auto p = string_split<int>(argv[i], split_delim);
  389. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  390. } else if (arg == "-rpc" || arg == "--rpc") {
  391. if (++i >= argc) {
  392. invalid_param = true;
  393. break;
  394. }
  395. params.rpc_servers.push_back(argv[i]);
  396. } else if (arg == "-sm" || arg == "--split-mode") {
  397. if (++i >= argc) {
  398. invalid_param = true;
  399. break;
  400. }
  401. auto p = string_split<std::string>(argv[i], split_delim);
  402. std::vector<llama_split_mode> modes;
  403. for (const auto & m : p) {
  404. llama_split_mode mode;
  405. if (m == "none") {
  406. mode = LLAMA_SPLIT_MODE_NONE;
  407. } else if (m == "layer") {
  408. mode = LLAMA_SPLIT_MODE_LAYER;
  409. } else if (m == "row") {
  410. mode = LLAMA_SPLIT_MODE_ROW;
  411. } else {
  412. invalid_param = true;
  413. break;
  414. }
  415. modes.push_back(mode);
  416. }
  417. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  418. } else if (arg == "-mg" || arg == "--main-gpu") {
  419. if (++i >= argc) {
  420. invalid_param = true;
  421. break;
  422. }
  423. params.main_gpu = string_split<int>(argv[i], split_delim);
  424. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  425. if (++i >= argc) {
  426. invalid_param = true;
  427. break;
  428. }
  429. auto p = string_split<bool>(argv[i], split_delim);
  430. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  431. } else if (arg == "--numa") {
  432. if (++i >= argc) {
  433. invalid_param = true;
  434. break;
  435. } else {
  436. std::string value(argv[i]);
  437. /**/ if (value == "distribute" || value == "" ) { params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE; }
  438. else if (value == "isolate") { params.numa = GGML_NUMA_STRATEGY_ISOLATE; }
  439. else if (value == "numactl") { params.numa = GGML_NUMA_STRATEGY_NUMACTL; }
  440. else { invalid_param = true; break; }
  441. }
  442. } else if (arg == "-fa" || arg == "--flash-attn") {
  443. if (++i >= argc) {
  444. invalid_param = true;
  445. break;
  446. }
  447. auto p = string_split<bool>(argv[i], split_delim);
  448. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  449. } else if (arg == "-mmp" || arg == "--mmap") {
  450. if (++i >= argc) {
  451. invalid_param = true;
  452. break;
  453. }
  454. auto p = string_split<bool>(argv[i], split_delim);
  455. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  456. } else if (arg == "-embd" || arg == "--embeddings") {
  457. if (++i >= argc) {
  458. invalid_param = true;
  459. break;
  460. }
  461. auto p = string_split<bool>(argv[i], split_delim);
  462. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  463. } else if (arg == "-ts" || arg == "--tensor-split") {
  464. if (++i >= argc) {
  465. invalid_param = true;
  466. break;
  467. }
  468. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  469. // split string by ; and /
  470. const std::regex regex{R"([;/]+)"};
  471. std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
  472. std::vector<std::string> split_arg{it, {}};
  473. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  474. std::vector<float> tensor_split(llama_max_devices());
  475. for (size_t i = 0; i < llama_max_devices(); ++i) {
  476. if (i < split_arg.size()) {
  477. tensor_split[i] = std::stof(split_arg[i]);
  478. } else {
  479. tensor_split[i] = 0.0f;
  480. }
  481. }
  482. params.tensor_split.push_back(tensor_split);
  483. }
  484. } else if (arg == "-r" || arg == "--repetitions") {
  485. if (++i >= argc) {
  486. invalid_param = true;
  487. break;
  488. }
  489. params.reps = std::stoi(argv[i]);
  490. } else if (arg == "-o" || arg == "--output") {
  491. if (++i >= argc) {
  492. invalid_param = true;
  493. break;
  494. }
  495. invalid_param = !output_format_from_str(argv[i], params.output_format);
  496. } else if (arg == "-oe" || arg == "--output-err") {
  497. if (++i >= argc) {
  498. invalid_param = true;
  499. break;
  500. }
  501. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  502. } else if (arg == "-v" || arg == "--verbose") {
  503. params.verbose = true;
  504. } else {
  505. invalid_param = true;
  506. break;
  507. }
  508. }
  509. if (invalid_param) {
  510. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  511. print_usage(argc, argv);
  512. exit(1);
  513. }
  514. // set defaults
  515. if (params.model.empty()) { params.model = cmd_params_defaults.model; }
  516. if (params.n_prompt.empty()) { params.n_prompt = cmd_params_defaults.n_prompt; }
  517. if (params.n_gen.empty()) { params.n_gen = cmd_params_defaults.n_gen; }
  518. if (params.n_pg.empty()) { params.n_pg = cmd_params_defaults.n_pg; }
  519. if (params.n_batch.empty()) { params.n_batch = cmd_params_defaults.n_batch; }
  520. if (params.n_ubatch.empty()) { params.n_ubatch = cmd_params_defaults.n_ubatch; }
  521. if (params.type_k.empty()) { params.type_k = cmd_params_defaults.type_k; }
  522. if (params.type_v.empty()) { params.type_v = cmd_params_defaults.type_v; }
  523. if (params.n_gpu_layers.empty()) { params.n_gpu_layers = cmd_params_defaults.n_gpu_layers; }
  524. if (params.rpc_servers.empty()) { params.rpc_servers = cmd_params_defaults.rpc_servers; }
  525. if (params.split_mode.empty()) { params.split_mode = cmd_params_defaults.split_mode; }
  526. if (params.main_gpu.empty()) { params.main_gpu = cmd_params_defaults.main_gpu; }
  527. if (params.no_kv_offload.empty()){ params.no_kv_offload = cmd_params_defaults.no_kv_offload; }
  528. if (params.flash_attn.empty()) { params.flash_attn = cmd_params_defaults.flash_attn; }
  529. if (params.tensor_split.empty()) { params.tensor_split = cmd_params_defaults.tensor_split; }
  530. if (params.use_mmap.empty()) { params.use_mmap = cmd_params_defaults.use_mmap; }
  531. if (params.embeddings.empty()) { params.embeddings = cmd_params_defaults.embeddings; }
  532. if (params.n_threads.empty()) { params.n_threads = cmd_params_defaults.n_threads; }
  533. return params;
  534. }
  535. struct cmd_params_instance {
  536. std::string model;
  537. int n_prompt;
  538. int n_gen;
  539. int n_batch;
  540. int n_ubatch;
  541. ggml_type type_k;
  542. ggml_type type_v;
  543. int n_threads;
  544. int n_gpu_layers;
  545. std::string rpc_servers;
  546. llama_split_mode split_mode;
  547. int main_gpu;
  548. bool no_kv_offload;
  549. bool flash_attn;
  550. std::vector<float> tensor_split;
  551. bool use_mmap;
  552. bool embeddings;
  553. llama_model_params to_llama_mparams() const {
  554. llama_model_params mparams = llama_model_default_params();
  555. mparams.n_gpu_layers = n_gpu_layers;
  556. if (!rpc_servers.empty()) {
  557. mparams.rpc_servers = rpc_servers.c_str();
  558. }
  559. mparams.split_mode = split_mode;
  560. mparams.main_gpu = main_gpu;
  561. mparams.tensor_split = tensor_split.data();
  562. mparams.use_mmap = use_mmap;
  563. return mparams;
  564. }
  565. bool equal_mparams(const cmd_params_instance & other) const {
  566. return model == other.model &&
  567. n_gpu_layers == other.n_gpu_layers &&
  568. rpc_servers == other.rpc_servers &&
  569. split_mode == other.split_mode &&
  570. main_gpu == other.main_gpu &&
  571. use_mmap == other.use_mmap &&
  572. tensor_split == other.tensor_split;
  573. }
  574. llama_context_params to_llama_cparams() const {
  575. llama_context_params cparams = llama_context_default_params();
  576. cparams.n_ctx = n_prompt + n_gen;
  577. cparams.n_batch = n_batch;
  578. cparams.n_ubatch = n_ubatch;
  579. cparams.type_k = type_k;
  580. cparams.type_v = type_v;
  581. cparams.offload_kqv = !no_kv_offload;
  582. cparams.flash_attn = flash_attn;
  583. cparams.embeddings = embeddings;
  584. return cparams;
  585. }
  586. };
  587. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  588. std::vector<cmd_params_instance> instances;
  589. // this ordering minimizes the number of times that each model needs to be reloaded
  590. for (const auto & m : params.model)
  591. for (const auto & nl : params.n_gpu_layers)
  592. for (const auto & rpc : params.rpc_servers)
  593. for (const auto & sm : params.split_mode)
  594. for (const auto & mg : params.main_gpu)
  595. for (const auto & ts : params.tensor_split)
  596. for (const auto & mmp : params.use_mmap)
  597. for (const auto & embd : params.embeddings)
  598. for (const auto & nb : params.n_batch)
  599. for (const auto & nub : params.n_ubatch)
  600. for (const auto & tk : params.type_k)
  601. for (const auto & tv : params.type_v)
  602. for (const auto & nkvo : params.no_kv_offload)
  603. for (const auto & fa : params.flash_attn)
  604. for (const auto & nt : params.n_threads) {
  605. for (const auto & n_prompt : params.n_prompt) {
  606. if (n_prompt == 0) {
  607. continue;
  608. }
  609. cmd_params_instance instance = {
  610. /* .model = */ m,
  611. /* .n_prompt = */ n_prompt,
  612. /* .n_gen = */ 0,
  613. /* .n_batch = */ nb,
  614. /* .n_ubatch = */ nub,
  615. /* .type_k = */ tk,
  616. /* .type_v = */ tv,
  617. /* .n_threads = */ nt,
  618. /* .n_gpu_layers = */ nl,
  619. /* .rpc_servers = */ rpc,
  620. /* .split_mode = */ sm,
  621. /* .main_gpu = */ mg,
  622. /* .no_kv_offload= */ nkvo,
  623. /* .flash_attn = */ fa,
  624. /* .tensor_split = */ ts,
  625. /* .use_mmap = */ mmp,
  626. /* .embeddings = */ embd,
  627. };
  628. instances.push_back(instance);
  629. }
  630. for (const auto & n_gen : params.n_gen) {
  631. if (n_gen == 0) {
  632. continue;
  633. }
  634. cmd_params_instance instance = {
  635. /* .model = */ m,
  636. /* .n_prompt = */ 0,
  637. /* .n_gen = */ n_gen,
  638. /* .n_batch = */ nb,
  639. /* .n_ubatch = */ nub,
  640. /* .type_k = */ tk,
  641. /* .type_v = */ tv,
  642. /* .n_threads = */ nt,
  643. /* .n_gpu_layers = */ nl,
  644. /* .rpc_servers = */ rpc,
  645. /* .split_mode = */ sm,
  646. /* .main_gpu = */ mg,
  647. /* .no_kv_offload= */ nkvo,
  648. /* .flash_attn = */ fa,
  649. /* .tensor_split = */ ts,
  650. /* .use_mmap = */ mmp,
  651. /* .embeddings = */ embd,
  652. };
  653. instances.push_back(instance);
  654. }
  655. for (const auto & n_pg : params.n_pg) {
  656. if (n_pg.first == 0 && n_pg.second == 0) {
  657. continue;
  658. }
  659. cmd_params_instance instance = {
  660. /* .model = */ m,
  661. /* .n_prompt = */ n_pg.first,
  662. /* .n_gen = */ n_pg.second,
  663. /* .n_batch = */ nb,
  664. /* .n_ubatch = */ nub,
  665. /* .type_k = */ tk,
  666. /* .type_v = */ tv,
  667. /* .n_threads = */ nt,
  668. /* .n_gpu_layers = */ nl,
  669. /* .rpc_servers = */ rpc,
  670. /* .split_mode = */ sm,
  671. /* .main_gpu = */ mg,
  672. /* .no_kv_offload= */ nkvo,
  673. /* .flash_attn = */ fa,
  674. /* .tensor_split = */ ts,
  675. /* .use_mmap = */ mmp,
  676. /* .embeddings = */ embd,
  677. };
  678. instances.push_back(instance);
  679. }
  680. }
  681. return instances;
  682. }
  683. struct test {
  684. static const std::string build_commit;
  685. static const int build_number;
  686. static const bool cuda;
  687. static const bool vulkan;
  688. static const bool kompute;
  689. static const bool metal;
  690. static const bool sycl;
  691. static const bool gpu_blas;
  692. static const bool blas;
  693. static const std::string cpu_info;
  694. static const std::string gpu_info;
  695. std::string model_filename;
  696. std::string model_type;
  697. uint64_t model_size;
  698. uint64_t model_n_params;
  699. int n_batch;
  700. int n_ubatch;
  701. int n_threads;
  702. bool has_rpc;
  703. ggml_type type_k;
  704. ggml_type type_v;
  705. int n_gpu_layers;
  706. llama_split_mode split_mode;
  707. int main_gpu;
  708. bool no_kv_offload;
  709. bool flash_attn;
  710. std::vector<float> tensor_split;
  711. bool use_mmap;
  712. bool embeddings;
  713. int n_prompt;
  714. int n_gen;
  715. std::string test_time;
  716. std::vector<uint64_t> samples_ns;
  717. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  718. model_filename = inst.model;
  719. char buf[128];
  720. llama_model_desc(lmodel, buf, sizeof(buf));
  721. model_type = buf;
  722. model_size = llama_model_size(lmodel);
  723. model_n_params = llama_model_n_params(lmodel);
  724. n_batch = inst.n_batch;
  725. n_ubatch = inst.n_ubatch;
  726. n_threads = inst.n_threads;
  727. has_rpc = !inst.rpc_servers.empty();
  728. type_k = inst.type_k;
  729. type_v = inst.type_v;
  730. n_gpu_layers = inst.n_gpu_layers;
  731. split_mode = inst.split_mode;
  732. main_gpu = inst.main_gpu;
  733. no_kv_offload = inst.no_kv_offload;
  734. flash_attn = inst.flash_attn;
  735. tensor_split = inst.tensor_split;
  736. use_mmap = inst.use_mmap;
  737. embeddings = inst.embeddings;
  738. n_prompt = inst.n_prompt;
  739. n_gen = inst.n_gen;
  740. // RFC 3339 date-time format
  741. time_t t = time(NULL);
  742. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  743. test_time = buf;
  744. (void) ctx;
  745. }
  746. uint64_t avg_ns() const {
  747. return ::avg(samples_ns);
  748. }
  749. uint64_t stdev_ns() const {
  750. return ::stdev(samples_ns);
  751. }
  752. std::vector<double> get_ts() const {
  753. int n_tokens = n_prompt + n_gen;
  754. std::vector<double> ts;
  755. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts), [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  756. return ts;
  757. }
  758. double avg_ts() const {
  759. return ::avg(get_ts());
  760. }
  761. double stdev_ts() const {
  762. return ::stdev(get_ts());
  763. }
  764. static std::string get_backend() {
  765. if (cuda) {
  766. return GGML_CUDA_NAME;
  767. }
  768. if (vulkan) {
  769. return "Vulkan";
  770. }
  771. if (kompute) {
  772. return "Kompute";
  773. }
  774. if (metal) {
  775. return "Metal";
  776. }
  777. if (sycl) {
  778. return GGML_SYCL_NAME;
  779. }
  780. if (gpu_blas) {
  781. return "GPU BLAS";
  782. }
  783. if (blas) {
  784. return "BLAS";
  785. }
  786. return "CPU";
  787. }
  788. static const std::vector<std::string> & get_fields() {
  789. static const std::vector<std::string> fields = {
  790. "build_commit", "build_number",
  791. "cuda", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas", "blas",
  792. "cpu_info", "gpu_info",
  793. "model_filename", "model_type", "model_size", "model_n_params",
  794. "n_batch", "n_ubatch",
  795. "n_threads", "type_k", "type_v",
  796. "n_gpu_layers", "split_mode",
  797. "main_gpu", "no_kv_offload", "flash_attn",
  798. "tensor_split", "use_mmap", "embeddings",
  799. "n_prompt", "n_gen", "test_time",
  800. "avg_ns", "stddev_ns",
  801. "avg_ts", "stddev_ts"
  802. };
  803. return fields;
  804. }
  805. enum field_type {STRING, BOOL, INT, FLOAT};
  806. static field_type get_field_type(const std::string & field) {
  807. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" ||
  808. field == "n_threads" ||
  809. field == "model_size" || field == "model_n_params" ||
  810. field == "n_gpu_layers" || field == "main_gpu" ||
  811. field == "n_prompt" || field == "n_gen" ||
  812. field == "avg_ns" || field == "stddev_ns") {
  813. return INT;
  814. }
  815. if (field == "cuda" || field == "vulkan" || field == "kompute" || field == "metal" ||
  816. field == "gpu_blas" || field == "blas" || field == "sycl" ||field == "f16_kv" || field == "no_kv_offload" ||
  817. field == "flash_attn" || field == "use_mmap" || field == "embeddings") {
  818. return BOOL;
  819. }
  820. if (field == "avg_ts" || field == "stddev_ts") {
  821. return FLOAT;
  822. }
  823. return STRING;
  824. }
  825. std::vector<std::string> get_values() const {
  826. std::string tensor_split_str;
  827. int max_nonzero = 0;
  828. for (size_t i = 0; i < llama_max_devices(); i++) {
  829. if (tensor_split[i] > 0) {
  830. max_nonzero = i;
  831. }
  832. }
  833. for (int i = 0; i <= max_nonzero; i++) {
  834. char buf[32];
  835. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  836. tensor_split_str += buf;
  837. if (i < max_nonzero) {
  838. tensor_split_str += "/";
  839. }
  840. }
  841. std::vector<std::string> values = {
  842. build_commit, std::to_string(build_number),
  843. std::to_string(cuda), std::to_string(vulkan), std::to_string(vulkan),
  844. std::to_string(metal), std::to_string(sycl), std::to_string(has_rpc), std::to_string(gpu_blas), std::to_string(blas),
  845. cpu_info, gpu_info,
  846. model_filename, model_type, std::to_string(model_size), std::to_string(model_n_params),
  847. std::to_string(n_batch), std::to_string(n_ubatch),
  848. std::to_string(n_threads), ggml_type_name(type_k), ggml_type_name(type_v),
  849. std::to_string(n_gpu_layers), split_mode_str(split_mode),
  850. std::to_string(main_gpu), std::to_string(no_kv_offload), std::to_string(flash_attn),
  851. tensor_split_str, std::to_string(use_mmap), std::to_string(embeddings),
  852. std::to_string(n_prompt), std::to_string(n_gen), test_time,
  853. std::to_string(avg_ns()), std::to_string(stdev_ns()),
  854. std::to_string(avg_ts()), std::to_string(stdev_ts())
  855. };
  856. return values;
  857. }
  858. std::map<std::string, std::string> get_map() const {
  859. std::map<std::string, std::string> map;
  860. auto fields = get_fields();
  861. auto values = get_values();
  862. std::transform(fields.begin(), fields.end(), values.begin(),
  863. std::inserter(map, map.end()), std::make_pair<const std::string &, const std::string &>);
  864. return map;
  865. }
  866. };
  867. const std::string test::build_commit = LLAMA_COMMIT;
  868. const int test::build_number = LLAMA_BUILD_NUMBER;
  869. const bool test::cuda = !!ggml_cpu_has_cuda();
  870. const bool test::vulkan = !!ggml_cpu_has_vulkan();
  871. const bool test::kompute = !!ggml_cpu_has_kompute();
  872. const bool test::metal = !!ggml_cpu_has_metal();
  873. const bool test::gpu_blas = !!ggml_cpu_has_gpublas();
  874. const bool test::blas = !!ggml_cpu_has_blas();
  875. const bool test::sycl = !!ggml_cpu_has_sycl();
  876. const std::string test::cpu_info = get_cpu_info();
  877. const std::string test::gpu_info = get_gpu_info();
  878. struct printer {
  879. virtual ~printer() {}
  880. FILE * fout;
  881. virtual void print_header(const cmd_params & params) { (void) params; }
  882. virtual void print_test(const test & t) = 0;
  883. virtual void print_footer() { }
  884. };
  885. struct csv_printer : public printer {
  886. static std::string escape_csv(const std::string & field) {
  887. std::string escaped = "\"";
  888. for (auto c : field) {
  889. if (c == '"') {
  890. escaped += "\"";
  891. }
  892. escaped += c;
  893. }
  894. escaped += "\"";
  895. return escaped;
  896. }
  897. void print_header(const cmd_params & params) override {
  898. std::vector<std::string> fields = test::get_fields();
  899. fprintf(fout, "%s\n", join(fields, ",").c_str());
  900. (void) params;
  901. }
  902. void print_test(const test & t) override {
  903. std::vector<std::string> values = t.get_values();
  904. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  905. fprintf(fout, "%s\n", join(values, ",").c_str());
  906. }
  907. };
  908. struct json_printer : public printer {
  909. bool first = true;
  910. static std::string escape_json(const std::string & value) {
  911. std::string escaped;
  912. for (auto c : value) {
  913. if (c == '"') {
  914. escaped += "\\\"";
  915. } else if (c == '\\') {
  916. escaped += "\\\\";
  917. } else if (c <= 0x1f) {
  918. char buf[8];
  919. snprintf(buf, sizeof(buf), "\\u%04x", c);
  920. escaped += buf;
  921. } else {
  922. escaped += c;
  923. }
  924. }
  925. return escaped;
  926. }
  927. static std::string format_value(const std::string & field, const std::string & value) {
  928. switch (test::get_field_type(field)) {
  929. case test::STRING:
  930. return "\"" + escape_json(value) + "\"";
  931. case test::BOOL:
  932. return value == "0" ? "false" : "true";
  933. default:
  934. return value;
  935. }
  936. }
  937. void print_header(const cmd_params & params) override {
  938. fprintf(fout, "[\n");
  939. (void) params;
  940. }
  941. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  942. assert(fields.size() == values.size());
  943. for (size_t i = 0; i < fields.size(); i++) {
  944. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(), format_value(fields.at(i), values.at(i)).c_str());
  945. }
  946. }
  947. void print_test(const test & t) override {
  948. if (first) {
  949. first = false;
  950. } else {
  951. fprintf(fout, ",\n");
  952. }
  953. fprintf(fout, " {\n");
  954. print_fields(test::get_fields(), t.get_values());
  955. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  956. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  957. fprintf(fout, " }");
  958. fflush(fout);
  959. }
  960. void print_footer() override {
  961. fprintf(fout, "\n]\n");
  962. }
  963. };
  964. struct markdown_printer : public printer {
  965. std::vector<std::string> fields;
  966. static int get_field_width(const std::string & field) {
  967. if (field == "model") {
  968. return -30;
  969. }
  970. if (field == "t/s") {
  971. return 16;
  972. }
  973. if (field == "size" || field == "params") {
  974. return 10;
  975. }
  976. if (field == "n_gpu_layers") {
  977. return 3;
  978. }
  979. if (field == "n_threads") {
  980. return 7;
  981. }
  982. if (field == "n_batch") {
  983. return 7;
  984. }
  985. if (field == "n_ubatch") {
  986. return 8;
  987. }
  988. if (field == "type_k" || field == "type_v") {
  989. return 6;
  990. }
  991. if (field == "split_mode") {
  992. return 5;
  993. }
  994. if (field == "flash_attn") {
  995. return 2;
  996. }
  997. if (field == "use_mmap") {
  998. return 4;
  999. }
  1000. if (field == "test") {
  1001. return 13;
  1002. }
  1003. int width = std::max((int)field.length(), 10);
  1004. if (test::get_field_type(field) == test::STRING) {
  1005. return -width;
  1006. }
  1007. return width;
  1008. }
  1009. static std::string get_field_display_name(const std::string & field) {
  1010. if (field == "n_gpu_layers") {
  1011. return "ngl";
  1012. }
  1013. if (field == "split_mode") {
  1014. return "sm";
  1015. }
  1016. if (field == "n_threads") {
  1017. return "threads";
  1018. }
  1019. if (field == "no_kv_offload") {
  1020. return "nkvo";
  1021. }
  1022. if (field == "flash_attn") {
  1023. return "fa";
  1024. }
  1025. if (field == "use_mmap") {
  1026. return "mmap";
  1027. }
  1028. if (field == "embeddings") {
  1029. return "embd";
  1030. }
  1031. if (field == "tensor_split") {
  1032. return "ts";
  1033. }
  1034. return field;
  1035. }
  1036. void print_header(const cmd_params & params) override {
  1037. // select fields to print
  1038. fields.emplace_back("model");
  1039. fields.emplace_back("size");
  1040. fields.emplace_back("params");
  1041. fields.emplace_back("backend");
  1042. bool is_cpu_backend = test::get_backend() == "CPU" || test::get_backend() == "BLAS";
  1043. if (!is_cpu_backend) {
  1044. fields.emplace_back("n_gpu_layers");
  1045. }
  1046. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1047. fields.emplace_back("n_threads");
  1048. }
  1049. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1050. fields.emplace_back("n_batch");
  1051. }
  1052. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1053. fields.emplace_back("n_ubatch");
  1054. }
  1055. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1056. fields.emplace_back("type_k");
  1057. }
  1058. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1059. fields.emplace_back("type_v");
  1060. }
  1061. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1062. fields.emplace_back("main_gpu");
  1063. }
  1064. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1065. fields.emplace_back("split_mode");
  1066. }
  1067. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1068. fields.emplace_back("no_kv_offload");
  1069. }
  1070. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1071. fields.emplace_back("flash_attn");
  1072. }
  1073. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1074. fields.emplace_back("tensor_split");
  1075. }
  1076. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1077. fields.emplace_back("use_mmap");
  1078. }
  1079. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1080. fields.emplace_back("embeddings");
  1081. }
  1082. fields.emplace_back("test");
  1083. fields.emplace_back("t/s");
  1084. fprintf(fout, "|");
  1085. for (const auto & field : fields) {
  1086. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1087. }
  1088. fprintf(fout, "\n");
  1089. fprintf(fout, "|");
  1090. for (const auto & field : fields) {
  1091. int width = get_field_width(field);
  1092. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1093. }
  1094. fprintf(fout, "\n");
  1095. }
  1096. void print_test(const test & t) override {
  1097. std::map<std::string, std::string> vmap = t.get_map();
  1098. fprintf(fout, "|");
  1099. for (const auto & field : fields) {
  1100. std::string value;
  1101. char buf[128];
  1102. if (field == "model") {
  1103. value = t.model_type;
  1104. } else if (field == "size") {
  1105. if (t.model_size < 1024*1024*1024) {
  1106. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1107. } else {
  1108. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1109. }
  1110. value = buf;
  1111. } else if (field == "params") {
  1112. if (t.model_n_params < 1000*1000*1000) {
  1113. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1114. } else {
  1115. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1116. }
  1117. value = buf;
  1118. } else if (field == "backend") {
  1119. value = test::get_backend();
  1120. if (t.has_rpc) {
  1121. value += "+RPC";
  1122. }
  1123. } else if (field == "test") {
  1124. if (t.n_prompt > 0 && t.n_gen == 0) {
  1125. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1126. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1127. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1128. } else {
  1129. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1130. }
  1131. value = buf;
  1132. } else if (field == "t/s") {
  1133. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1134. value = buf;
  1135. } else if (vmap.find(field) != vmap.end()) {
  1136. value = vmap.at(field);
  1137. } else {
  1138. assert(false);
  1139. exit(1);
  1140. }
  1141. int width = get_field_width(field);
  1142. if (field == "t/s") {
  1143. // HACK: the utf-8 character is 2 bytes
  1144. width += 1;
  1145. }
  1146. fprintf(fout, " %*s |", width, value.c_str());
  1147. }
  1148. fprintf(fout, "\n");
  1149. }
  1150. void print_footer() override {
  1151. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1152. }
  1153. };
  1154. struct sql_printer : public printer {
  1155. static std::string get_sql_field_type(const std::string & field) {
  1156. switch (test::get_field_type(field)) {
  1157. case test::STRING:
  1158. return "TEXT";
  1159. case test::BOOL:
  1160. case test::INT:
  1161. return "INTEGER";
  1162. case test::FLOAT:
  1163. return "REAL";
  1164. default:
  1165. assert(false);
  1166. exit(1);
  1167. }
  1168. }
  1169. void print_header(const cmd_params & params) override {
  1170. std::vector<std::string> fields = test::get_fields();
  1171. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1172. for (size_t i = 0; i < fields.size(); i++) {
  1173. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(), i < fields.size() - 1 ? "," : "");
  1174. }
  1175. fprintf(fout, ");\n");
  1176. fprintf(fout, "\n");
  1177. (void) params;
  1178. }
  1179. void print_test(const test & t) override {
  1180. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1181. fprintf(fout, "VALUES (");
  1182. std::vector<std::string> values = t.get_values();
  1183. for (size_t i = 0; i < values.size(); i++) {
  1184. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1185. }
  1186. fprintf(fout, ");\n");
  1187. }
  1188. };
  1189. static void test_prompt(llama_context * ctx, int n_prompt, int n_past, int n_batch, int n_threads) {
  1190. llama_set_n_threads(ctx, n_threads, n_threads);
  1191. const llama_model * model = llama_get_model(ctx);
  1192. const int32_t n_vocab = llama_n_vocab(model);
  1193. std::vector<llama_token> tokens(n_batch);
  1194. int n_processed = 0;
  1195. while (n_processed < n_prompt) {
  1196. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1197. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1198. for (int i = 1; i < n_tokens; i++) {
  1199. tokens[i] = std::rand() % n_vocab;
  1200. }
  1201. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens, n_past + n_processed, 0));
  1202. n_processed += n_tokens;
  1203. }
  1204. llama_synchronize(ctx);
  1205. }
  1206. static void test_gen(llama_context * ctx, int n_gen, int n_past, int n_threads) {
  1207. llama_set_n_threads(ctx, n_threads, n_threads);
  1208. const llama_model * model = llama_get_model(ctx);
  1209. const int32_t n_vocab = llama_n_vocab(model);
  1210. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1211. for (int i = 0; i < n_gen; i++) {
  1212. llama_decode(ctx, llama_batch_get_one(&token, 1, n_past + i, 0));
  1213. llama_synchronize(ctx);
  1214. token = std::rand() % n_vocab;
  1215. }
  1216. }
  1217. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1218. (void) level;
  1219. (void) text;
  1220. (void) user_data;
  1221. }
  1222. static std::unique_ptr<printer> create_printer(output_formats format) {
  1223. switch (format) {
  1224. case NONE:
  1225. return nullptr;
  1226. case CSV:
  1227. return std::unique_ptr<printer>(new csv_printer());
  1228. case JSON:
  1229. return std::unique_ptr<printer>(new json_printer());
  1230. case MARKDOWN:
  1231. return std::unique_ptr<printer>(new markdown_printer());
  1232. case SQL:
  1233. return std::unique_ptr<printer>(new sql_printer());
  1234. }
  1235. GGML_ABORT("fatal error");
  1236. }
  1237. int main(int argc, char ** argv) {
  1238. // try to set locale for unicode characters in markdown
  1239. setlocale(LC_CTYPE, ".UTF-8");
  1240. #if !defined(NDEBUG)
  1241. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1242. #endif
  1243. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1244. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1245. #endif
  1246. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1247. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1248. #endif
  1249. cmd_params params = parse_cmd_params(argc, argv);
  1250. // initialize llama.cpp
  1251. if (!params.verbose) {
  1252. llama_log_set(llama_null_log_callback, NULL);
  1253. }
  1254. llama_backend_init();
  1255. llama_numa_init(params.numa);
  1256. // initialize printer
  1257. std::unique_ptr<printer> p = create_printer(params.output_format);
  1258. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1259. if (p) {
  1260. p->fout = stdout;
  1261. p->print_header(params);
  1262. }
  1263. if (p_err) {
  1264. p_err->fout = stderr;
  1265. p_err->print_header(params);
  1266. }
  1267. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1268. llama_model * lmodel = nullptr;
  1269. const cmd_params_instance * prev_inst = nullptr;
  1270. for (const auto & inst : params_instances) {
  1271. // keep the same model between tests when possible
  1272. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1273. if (lmodel) {
  1274. llama_free_model(lmodel);
  1275. }
  1276. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1277. if (lmodel == NULL) {
  1278. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1279. return 1;
  1280. }
  1281. prev_inst = &inst;
  1282. }
  1283. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1284. if (ctx == NULL) {
  1285. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1286. llama_free_model(lmodel);
  1287. return 1;
  1288. }
  1289. test t(inst, lmodel, ctx);
  1290. llama_kv_cache_clear(ctx);
  1291. // warmup run
  1292. if (t.n_prompt > 0) {
  1293. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1294. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1295. }
  1296. if (t.n_gen > 0) {
  1297. test_gen(ctx, 1, 0, t.n_threads);
  1298. }
  1299. for (int i = 0; i < params.reps; i++) {
  1300. llama_kv_cache_clear(ctx);
  1301. uint64_t t_start = get_time_ns();
  1302. if (t.n_prompt > 0) {
  1303. test_prompt(ctx, t.n_prompt, 0, t.n_batch, t.n_threads);
  1304. }
  1305. if (t.n_gen > 0) {
  1306. test_gen(ctx, t.n_gen, t.n_prompt, t.n_threads);
  1307. }
  1308. uint64_t t_ns = get_time_ns() - t_start;
  1309. t.samples_ns.push_back(t_ns);
  1310. }
  1311. if (p) {
  1312. p->print_test(t);
  1313. fflush(p->fout);
  1314. }
  1315. if (p_err) {
  1316. p_err->print_test(t);
  1317. fflush(p_err->fout);
  1318. }
  1319. llama_print_timings(ctx);
  1320. llama_free(ctx);
  1321. }
  1322. llama_free_model(lmodel);
  1323. if (p) {
  1324. p->print_footer();
  1325. }
  1326. if (p_err) {
  1327. p_err->print_footer();
  1328. }
  1329. llama_backend_free();
  1330. return 0;
  1331. }