ggml-impl.h 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755
  1. #pragma once
  2. #include "ggml.h"
  3. // GGML internal header
  4. #include <assert.h>
  5. #include <stdlib.h> // load `stdlib.h` before other headers to work around MinGW bug: https://sourceforge.net/p/mingw-w64/bugs/192/
  6. #include <stddef.h>
  7. #include <stdbool.h>
  8. #include <string.h> // memcpy
  9. #include <math.h> // fabsf
  10. #undef MIN
  11. #undef MAX
  12. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  13. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  14. #if defined(_MSC_VER)
  15. #define m512bh(p) p
  16. #define m512i(p) p
  17. #else
  18. #define m512bh(p) (__m512bh)(p)
  19. #define m512i(p) (__m512i)(p)
  20. #endif
  21. /**
  22. * Converts brain16 to float32.
  23. *
  24. * The bfloat16 floating point format has the following structure:
  25. *
  26. * ┌sign
  27. * │
  28. * │ ┌exponent
  29. * │ │
  30. * │ │ ┌mantissa
  31. * │ │ │
  32. * │┌──┴───┐┌─┴───┐
  33. * 0b0000000000000000 brain16
  34. *
  35. * Since bf16 has the same number of exponent bits as a 32bit float,
  36. * encoding and decoding numbers becomes relatively straightforward.
  37. *
  38. * ┌sign
  39. * │
  40. * │ ┌exponent
  41. * │ │
  42. * │ │ ┌mantissa
  43. * │ │ │
  44. * │┌──┴───┐┌─┴───────────────────┐
  45. * 0b00000000000000000000000000000000 IEEE binary32
  46. *
  47. * For comparison, the standard fp16 format has fewer exponent bits.
  48. *
  49. * ┌sign
  50. * │
  51. * │ ┌exponent
  52. * │ │
  53. * │ │ ┌mantissa
  54. * │ │ │
  55. * │┌─┴─┐┌─┴──────┐
  56. * 0b0000000000000000 IEEE binary16
  57. *
  58. * @see IEEE 754-2008
  59. */
  60. static inline float ggml_compute_bf16_to_fp32(ggml_bf16_t h) {
  61. union {
  62. float f;
  63. uint32_t i;
  64. } u;
  65. u.i = (uint32_t)h.bits << 16;
  66. return u.f;
  67. }
  68. /**
  69. * Converts float32 to brain16.
  70. *
  71. * This function is binary identical to AMD Zen4 VCVTNEPS2BF16.
  72. * Subnormals shall be flushed to zero, and NANs will be quiet.
  73. * This code should vectorize nicely if using modern compilers.
  74. */
  75. static inline ggml_bf16_t ggml_compute_fp32_to_bf16(float s) {
  76. ggml_bf16_t h;
  77. union {
  78. float f;
  79. uint32_t i;
  80. } u;
  81. u.f = s;
  82. if ((u.i & 0x7fffffff) > 0x7f800000) { /* nan */
  83. h.bits = (u.i >> 16) | 64; /* force to quiet */
  84. return h;
  85. }
  86. if (!(u.i & 0x7f800000)) { /* subnormal */
  87. h.bits = (u.i & 0x80000000) >> 16; /* flush to zero */
  88. return h;
  89. }
  90. h.bits = (u.i + (0x7fff + ((u.i >> 16) & 1))) >> 16;
  91. return h;
  92. }
  93. #define GGML_FP32_TO_BF16(x) ggml_compute_fp32_to_bf16(x)
  94. #define GGML_BF16_TO_FP32(x) ggml_compute_bf16_to_fp32(x)
  95. #ifdef __cplusplus
  96. extern "C" {
  97. #endif
  98. // static_assert should be a #define, but if it's not,
  99. // fall back to the _Static_assert C11 keyword.
  100. // if C99 - static_assert is noop
  101. // ref: https://stackoverflow.com/a/53923785/4039976
  102. #ifndef __cplusplus
  103. #ifndef static_assert
  104. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  105. #define static_assert(cond, msg) _Static_assert(cond, msg)
  106. #else
  107. #define static_assert(cond, msg) struct global_scope_noop_trick
  108. #endif
  109. #endif
  110. #endif
  111. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  112. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  113. #ifndef __FMA__
  114. #define __FMA__
  115. #endif
  116. #ifndef __F16C__
  117. #define __F16C__
  118. #endif
  119. #endif
  120. // __SSE3__ and __SSSE3__ are not defined in MSVC, but SSE3/SSSE3 are present when AVX/AVX2/AVX512 are available
  121. #if defined(_MSC_VER) && (defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__))
  122. #ifndef __SSE3__
  123. #define __SSE3__
  124. #endif
  125. #ifndef __SSSE3__
  126. #define __SSSE3__
  127. #endif
  128. #endif
  129. #if defined(__ARM_FEATURE_SVE)
  130. #include <arm_sve.h>
  131. #endif
  132. // 16-bit float
  133. // on Arm, we use __fp16
  134. // on x86, we use uint16_t
  135. #if defined(__ARM_NEON)
  136. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  137. //
  138. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  139. //
  140. #include <arm_neon.h>
  141. #ifdef _MSC_VER
  142. typedef uint16_t ggml_fp16_internal_t;
  143. #define ggml_vld1q_u32(w,x,y,z) { ((w) + ((uint64_t)(x) << 32)), ((y) + ((uint64_t)(z) << 32)) }
  144. #else
  145. typedef __fp16 ggml_fp16_internal_t;
  146. #define ggml_vld1q_u32(w,x,y,z) { (w), (x), (y), (z) }
  147. #endif // _MSC_VER
  148. #if !defined(__aarch64__)
  149. // 32-bit ARM compatibility
  150. // vaddvq_s16
  151. // vpaddq_s16
  152. // vpaddq_s32
  153. // vaddvq_s32
  154. // vaddvq_f32
  155. // vmaxvq_f32
  156. // vcvtnq_s32_f32
  157. // vzip1_u8
  158. // vzip2_u8
  159. inline static int32_t vaddvq_s16(int16x8_t v) {
  160. return
  161. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  162. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  163. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  164. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  165. }
  166. inline static int16x8_t vpaddq_s16(int16x8_t a, int16x8_t b) {
  167. int16x4_t a0 = vpadd_s16(vget_low_s16(a), vget_high_s16(a));
  168. int16x4_t b0 = vpadd_s16(vget_low_s16(b), vget_high_s16(b));
  169. return vcombine_s16(a0, b0);
  170. }
  171. inline static int32x4_t vpaddq_s32(int32x4_t a, int32x4_t b) {
  172. int32x2_t a0 = vpadd_s32(vget_low_s32(a), vget_high_s32(a));
  173. int32x2_t b0 = vpadd_s32(vget_low_s32(b), vget_high_s32(b));
  174. return vcombine_s32(a0, b0);
  175. }
  176. inline static int32_t vaddvq_s32(int32x4_t v) {
  177. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  178. }
  179. inline static float vaddvq_f32(float32x4_t v) {
  180. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  181. }
  182. inline static float vmaxvq_f32(float32x4_t v) {
  183. return
  184. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  185. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  186. }
  187. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  188. int32x4_t res;
  189. res[0] = roundf(vgetq_lane_f32(v, 0));
  190. res[1] = roundf(vgetq_lane_f32(v, 1));
  191. res[2] = roundf(vgetq_lane_f32(v, 2));
  192. res[3] = roundf(vgetq_lane_f32(v, 3));
  193. return res;
  194. }
  195. inline static uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  196. uint8x8_t res;
  197. res[0] = a[0]; res[1] = b[0];
  198. res[2] = a[1]; res[3] = b[1];
  199. res[4] = a[2]; res[5] = b[2];
  200. res[6] = a[3]; res[7] = b[3];
  201. return res;
  202. }
  203. inline static uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  204. uint8x8_t res;
  205. res[0] = a[4]; res[1] = b[4];
  206. res[2] = a[5]; res[3] = b[5];
  207. res[4] = a[6]; res[5] = b[6];
  208. res[6] = a[7]; res[7] = b[7];
  209. return res;
  210. }
  211. // vld1q_s16_x2
  212. // vld1q_u8_x2
  213. // vld1q_u8_x4
  214. // vld1q_s8_x2
  215. // vld1q_s8_x4
  216. // TODO: double-check these work correctly
  217. typedef struct ggml_int16x8x2_t {
  218. int16x8_t val[2];
  219. } ggml_int16x8x2_t;
  220. inline static ggml_int16x8x2_t ggml_vld1q_s16_x2(const int16_t * ptr) {
  221. ggml_int16x8x2_t res;
  222. res.val[0] = vld1q_s16(ptr + 0);
  223. res.val[1] = vld1q_s16(ptr + 8);
  224. return res;
  225. }
  226. typedef struct ggml_uint8x16x2_t {
  227. uint8x16_t val[2];
  228. } ggml_uint8x16x2_t;
  229. inline static ggml_uint8x16x2_t ggml_vld1q_u8_x2(const uint8_t * ptr) {
  230. ggml_uint8x16x2_t res;
  231. res.val[0] = vld1q_u8(ptr + 0);
  232. res.val[1] = vld1q_u8(ptr + 16);
  233. return res;
  234. }
  235. typedef struct ggml_uint8x16x4_t {
  236. uint8x16_t val[4];
  237. } ggml_uint8x16x4_t;
  238. inline static ggml_uint8x16x4_t ggml_vld1q_u8_x4(const uint8_t * ptr) {
  239. ggml_uint8x16x4_t res;
  240. res.val[0] = vld1q_u8(ptr + 0);
  241. res.val[1] = vld1q_u8(ptr + 16);
  242. res.val[2] = vld1q_u8(ptr + 32);
  243. res.val[3] = vld1q_u8(ptr + 48);
  244. return res;
  245. }
  246. typedef struct ggml_int8x16x2_t {
  247. int8x16_t val[2];
  248. } ggml_int8x16x2_t;
  249. inline static ggml_int8x16x2_t ggml_vld1q_s8_x2(const int8_t * ptr) {
  250. ggml_int8x16x2_t res;
  251. res.val[0] = vld1q_s8(ptr + 0);
  252. res.val[1] = vld1q_s8(ptr + 16);
  253. return res;
  254. }
  255. typedef struct ggml_int8x16x4_t {
  256. int8x16_t val[4];
  257. } ggml_int8x16x4_t;
  258. inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
  259. ggml_int8x16x4_t res;
  260. res.val[0] = vld1q_s8(ptr + 0);
  261. res.val[1] = vld1q_s8(ptr + 16);
  262. res.val[2] = vld1q_s8(ptr + 32);
  263. res.val[3] = vld1q_s8(ptr + 48);
  264. return res;
  265. }
  266. // NOTE: not tested
  267. inline static int8x16_t ggml_vqtbl1q_s8(int8x16_t a, uint8x16_t b) {
  268. int8x16_t res;
  269. res[ 0] = a[b[ 0]];
  270. res[ 1] = a[b[ 1]];
  271. res[ 2] = a[b[ 2]];
  272. res[ 3] = a[b[ 3]];
  273. res[ 4] = a[b[ 4]];
  274. res[ 5] = a[b[ 5]];
  275. res[ 6] = a[b[ 6]];
  276. res[ 7] = a[b[ 7]];
  277. res[ 8] = a[b[ 8]];
  278. res[ 9] = a[b[ 9]];
  279. res[10] = a[b[10]];
  280. res[11] = a[b[11]];
  281. res[12] = a[b[12]];
  282. res[13] = a[b[13]];
  283. res[14] = a[b[14]];
  284. res[15] = a[b[15]];
  285. return res;
  286. }
  287. // NOTE: not tested
  288. inline static uint8x16_t ggml_vqtbl1q_u8(uint8x16_t a, uint8x16_t b) {
  289. uint8x16_t res;
  290. res[ 0] = a[b[ 0]];
  291. res[ 1] = a[b[ 1]];
  292. res[ 2] = a[b[ 2]];
  293. res[ 3] = a[b[ 3]];
  294. res[ 4] = a[b[ 4]];
  295. res[ 5] = a[b[ 5]];
  296. res[ 6] = a[b[ 6]];
  297. res[ 7] = a[b[ 7]];
  298. res[ 8] = a[b[ 8]];
  299. res[ 9] = a[b[ 9]];
  300. res[10] = a[b[10]];
  301. res[11] = a[b[11]];
  302. res[12] = a[b[12]];
  303. res[13] = a[b[13]];
  304. res[14] = a[b[14]];
  305. res[15] = a[b[15]];
  306. return res;
  307. }
  308. #else
  309. #define ggml_int16x8x2_t int16x8x2_t
  310. #define ggml_uint8x16x2_t uint8x16x2_t
  311. #define ggml_uint8x16x4_t uint8x16x4_t
  312. #define ggml_int8x16x2_t int8x16x2_t
  313. #define ggml_int8x16x4_t int8x16x4_t
  314. #define ggml_vld1q_s16_x2 vld1q_s16_x2
  315. #define ggml_vld1q_u8_x2 vld1q_u8_x2
  316. #define ggml_vld1q_u8_x4 vld1q_u8_x4
  317. #define ggml_vld1q_s8_x2 vld1q_s8_x2
  318. #define ggml_vld1q_s8_x4 vld1q_s8_x4
  319. #define ggml_vqtbl1q_s8 vqtbl1q_s8
  320. #define ggml_vqtbl1q_u8 vqtbl1q_u8
  321. #endif // !defined(__aarch64__)
  322. #if !defined(__ARM_FEATURE_DOTPROD)
  323. inline static int32x4_t ggml_vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
  324. const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
  325. const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
  326. return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
  327. }
  328. #else
  329. #define ggml_vdotq_s32(a, b, c) vdotq_s32(a, b, c)
  330. #endif // !defined(__ARM_FEATURE_DOTPROD)
  331. #endif // defined(__ARM_NEON)
  332. #if defined(__ARM_NEON) && !defined(_MSC_VER)
  333. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  334. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  335. #define GGML_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  336. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  337. ggml_fp16_internal_t tmp;
  338. memcpy(&tmp, &h, sizeof(ggml_fp16_t));
  339. return (float)tmp;
  340. }
  341. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  342. ggml_fp16_t res;
  343. ggml_fp16_internal_t tmp = f;
  344. memcpy(&res, &tmp, sizeof(ggml_fp16_t));
  345. return res;
  346. }
  347. #else
  348. #ifdef __wasm_simd128__
  349. #include <wasm_simd128.h>
  350. #else
  351. #ifdef __POWER9_VECTOR__
  352. #include <altivec.h>
  353. #undef bool
  354. #define bool _Bool
  355. #else
  356. #if defined(_MSC_VER) || defined(__MINGW32__)
  357. #include <intrin.h>
  358. #else
  359. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__) || defined(__SSE__)
  360. #if !defined(__riscv)
  361. #include <immintrin.h>
  362. #endif
  363. #endif
  364. #endif
  365. #endif
  366. #endif
  367. #ifdef __riscv_v_intrinsic
  368. #include <riscv_vector.h>
  369. #endif
  370. #if defined(__loongarch64)
  371. #if defined(__loongarch_asx)
  372. #include <lasxintrin.h>
  373. #endif
  374. #if defined(__loongarch_sx)
  375. #include <lsxintrin.h>
  376. #endif
  377. #endif
  378. #if defined(__loongarch_asx)
  379. typedef union {
  380. int32_t i;
  381. float f;
  382. } ft_union;
  383. /* float type data load instructions */
  384. static __m128 __lsx_vreplfr2vr_s(float val) {
  385. ft_union fi_tmpval = {.f = val};
  386. return (__m128)__lsx_vreplgr2vr_w(fi_tmpval.i);
  387. }
  388. static __m256 __lasx_xvreplfr2vr_s(float val) {
  389. ft_union fi_tmpval = {.f = val};
  390. return (__m256)__lasx_xvreplgr2vr_w(fi_tmpval.i);
  391. }
  392. #endif
  393. #ifdef __F16C__
  394. #ifdef _MSC_VER
  395. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  396. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  397. #else
  398. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  399. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  400. #endif
  401. #elif defined(__POWER9_VECTOR__)
  402. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  403. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  404. /* the inline asm below is about 12% faster than the lookup method */
  405. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  406. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  407. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  408. register float f;
  409. register double d;
  410. __asm__(
  411. "mtfprd %0,%2\n"
  412. "xscvhpdp %0,%0\n"
  413. "frsp %1,%0\n" :
  414. /* temp */ "=d"(d),
  415. /* out */ "=f"(f):
  416. /* in */ "r"(h));
  417. return f;
  418. }
  419. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  420. register double d;
  421. register ggml_fp16_t r;
  422. __asm__( /* xscvdphp can work on double or single precision */
  423. "xscvdphp %0,%2\n"
  424. "mffprd %1,%0\n" :
  425. /* temp */ "=d"(d),
  426. /* out */ "=r"(r):
  427. /* in */ "f"(f));
  428. return r;
  429. }
  430. #else
  431. // FP16 <-> FP32
  432. // ref: https://github.com/Maratyszcza/FP16
  433. static inline float fp32_from_bits(uint32_t w) {
  434. union {
  435. uint32_t as_bits;
  436. float as_value;
  437. } fp32;
  438. fp32.as_bits = w;
  439. return fp32.as_value;
  440. }
  441. static inline uint32_t fp32_to_bits(float f) {
  442. union {
  443. float as_value;
  444. uint32_t as_bits;
  445. } fp32;
  446. fp32.as_value = f;
  447. return fp32.as_bits;
  448. }
  449. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  450. const uint32_t w = (uint32_t) h << 16;
  451. const uint32_t sign = w & UINT32_C(0x80000000);
  452. const uint32_t two_w = w + w;
  453. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  454. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  455. const float exp_scale = 0x1.0p-112f;
  456. #else
  457. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  458. #endif
  459. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  460. const uint32_t magic_mask = UINT32_C(126) << 23;
  461. const float magic_bias = 0.5f;
  462. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  463. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  464. const uint32_t result = sign |
  465. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  466. return fp32_from_bits(result);
  467. }
  468. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  469. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  470. const float scale_to_inf = 0x1.0p+112f;
  471. const float scale_to_zero = 0x1.0p-110f;
  472. #else
  473. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  474. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  475. #endif
  476. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  477. const uint32_t w = fp32_to_bits(f);
  478. const uint32_t shl1_w = w + w;
  479. const uint32_t sign = w & UINT32_C(0x80000000);
  480. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  481. if (bias < UINT32_C(0x71000000)) {
  482. bias = UINT32_C(0x71000000);
  483. }
  484. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  485. const uint32_t bits = fp32_to_bits(base);
  486. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  487. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  488. const uint32_t nonsign = exp_bits + mantissa_bits;
  489. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  490. }
  491. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  492. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  493. #endif // __F16C__
  494. #endif // defined(__ARM_NEON) && (!defined(__MSC_VER)
  495. #ifdef __ARM_FEATURE_SVE
  496. #include <arm_sve.h>
  497. #endif // __ARM_FEATURE_SVE
  498. // precomputed f32 table for f16 (256 KB)
  499. // defined in ggml.c, initialized in ggml_init()
  500. extern float ggml_table_f32_f16[1 << 16];
  501. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  502. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  503. // This is also true for POWER9.
  504. #if !defined(GGML_FP16_TO_FP32)
  505. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  506. uint16_t s;
  507. memcpy(&s, &f, sizeof(uint16_t));
  508. return ggml_table_f32_f16[s];
  509. }
  510. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  511. #endif
  512. #if !defined(GGML_FP32_TO_FP16)
  513. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  514. #endif
  515. // bitset
  516. static_assert(sizeof(ggml_bitset_t) == 4, "bitset_t constants must be updated");
  517. #define BITSET_SHR 5 // log2(sizeof(ggml_bitset_t)*8)
  518. #define BITSET_MASK (sizeof(ggml_bitset_t)*8 - 1)
  519. static size_t ggml_bitset_size(size_t n) {
  520. return (n + BITSET_MASK) >> BITSET_SHR;
  521. }
  522. static inline bool ggml_bitset_get(const ggml_bitset_t * bitset, size_t i) {
  523. return !!(bitset[i >> BITSET_SHR] & (1u << (i & BITSET_MASK)));
  524. }
  525. static inline void ggml_bitset_set(ggml_bitset_t * bitset, size_t i) {
  526. bitset[i >> BITSET_SHR] |= (1u << (i & BITSET_MASK));
  527. }
  528. static inline void ggml_bitset_clear(ggml_bitset_t * bitset, size_t i) {
  529. bitset[i >> BITSET_SHR] &= ~(1u << (i & BITSET_MASK));
  530. }
  531. // hash set
  532. #define GGML_HASHSET_FULL ((size_t)-1)
  533. #define GGML_HASHSET_ALREADY_EXISTS ((size_t)-2)
  534. struct ggml_hash_set ggml_hash_set_new(size_t size);
  535. void ggml_hash_set_free(struct ggml_hash_set * hash_set);
  536. // returns the minimum size for a hash set that can hold min_sz elements
  537. size_t ggml_hash_size(size_t min_sz);
  538. // remove all elements from the hash set
  539. void ggml_hash_set_reset(struct ggml_hash_set * hash_set);
  540. // returns true if key is in the hash set
  541. static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
  542. // returns GGML_HASHSET_FULL if table is full, otherwise the current index of the key or where it should be inserted
  543. static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key);
  544. // returns GGML_HASHSET_ALREADY_EXISTS if key already exists, index otherwise, asserts if table is full
  545. static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
  546. // return index, asserts if table is full
  547. static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key);
  548. // hash function for ggml_tensor
  549. static inline size_t ggml_hash(const struct ggml_tensor * p) {
  550. // the last 4 bits are always zero due to alignment
  551. return (size_t)(uintptr_t)p >> 4;
  552. }
  553. static size_t ggml_hash_find(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
  554. size_t h = ggml_hash(key) % hash_set->size;
  555. // linear probing
  556. size_t i = h;
  557. while (ggml_bitset_get(hash_set->used, i) && hash_set->keys[i] != key) {
  558. i = (i + 1) % hash_set->size;
  559. if (i == h) {
  560. // visited all hash table entries -> not found
  561. return GGML_HASHSET_FULL;
  562. }
  563. }
  564. return i;
  565. }
  566. static bool ggml_hash_contains(const struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
  567. size_t i = ggml_hash_find(hash_set, key);
  568. return i != GGML_HASHSET_FULL && ggml_bitset_get(hash_set->used, i);
  569. }
  570. static size_t ggml_hash_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
  571. size_t h = ggml_hash(key) % hash_set->size;
  572. // linear probing
  573. size_t i = h;
  574. do {
  575. if (!ggml_bitset_get(hash_set->used, i)) {
  576. ggml_bitset_set(hash_set->used, i);
  577. hash_set->keys[i] = key;
  578. return i;
  579. }
  580. if (hash_set->keys[i] == key) {
  581. return GGML_HASHSET_ALREADY_EXISTS;
  582. }
  583. i = (i + 1) % hash_set->size;
  584. } while (i != h);
  585. // visited all hash table entries -> not found
  586. GGML_ABORT("fatal error");
  587. }
  588. static size_t ggml_hash_find_or_insert(struct ggml_hash_set * hash_set, struct ggml_tensor * key) {
  589. size_t h = ggml_hash(key) % hash_set->size;
  590. // linear probing
  591. size_t i = h;
  592. do {
  593. if (!ggml_bitset_get(hash_set->used, i)) {
  594. ggml_bitset_set(hash_set->used, i);
  595. hash_set->keys[i] = key;
  596. return i;
  597. }
  598. if (hash_set->keys[i] == key) {
  599. return i;
  600. }
  601. i = (i + 1) % hash_set->size;
  602. } while (i != h);
  603. // visited all hash table entries -> not found
  604. GGML_ABORT("fatal error");
  605. }
  606. #ifdef __cplusplus
  607. }
  608. #endif