convert_hf_to_gguf.py 501 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first tensor's dtype
  118. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  119. if self.ftype == gguf.LlamaFileType.GUESSED:
  120. for _, tensor in self.get_tensors():
  121. if tensor.dim() < 2:
  122. continue
  123. if tensor.dtype == torch.bfloat16:
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. logger.info("heuristics detected bfloat16 tensor dtype, setting --outtype bf16")
  126. break
  127. elif tensor.dtype == torch.float16:
  128. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  129. logger.info("heuristics detected float16 tensor dtype, setting --outtype f16")
  130. break
  131. else:
  132. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  133. logger.info("heuristics unable to detect tensor dtype, defaulting to --outtype f16")
  134. self.dequant_model()
  135. # Configure GGUF Writer
  136. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  137. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  138. # Mistral specific
  139. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  140. @classmethod
  141. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  142. stem, suffix = path.stem, path.suffix
  143. new_name = f"{prefix}{stem}{suffix}"
  144. return path.with_name(new_name)
  145. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  146. key = next((k for k in keys if k in self.hparams), None)
  147. if key is not None:
  148. return self.hparams[key]
  149. if optional:
  150. return None
  151. raise KeyError(f"could not find any of: {keys}")
  152. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  153. tensors: dict[str, Callable[[], Tensor]] = {}
  154. if remote_hf_model_id is not None:
  155. is_safetensors = True
  156. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  157. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  158. for name, remote_tensor in remote_tensors.items():
  159. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  160. return tensors
  161. prefix = "model" if not self.is_mistral_format else "consolidated"
  162. part_names: list[str] = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  163. is_safetensors: bool = len(part_names) > 0
  164. if not is_safetensors:
  165. part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  166. tensor_names_from_index: set[str] = set()
  167. if not self.is_mistral_format:
  168. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  169. index_name += ".index.json"
  170. index_file = self.dir_model / index_name
  171. if index_file.is_file():
  172. logger.info(f"gguf: loading model weight map from '{index_name}'")
  173. with open(index_file, "r", encoding="utf-8") as f:
  174. index: dict[str, Any] = json.load(f)
  175. weight_map = index.get("weight_map")
  176. if weight_map is None or not isinstance(weight_map, dict):
  177. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  178. tensor_names_from_index.update(weight_map.keys())
  179. part_dict: dict[str, None] = dict.fromkeys(weight_map.values(), None)
  180. part_names = sorted(part_dict.keys())
  181. else:
  182. weight_map = {}
  183. else:
  184. weight_map = {}
  185. for part_name in part_names:
  186. logger.info(f"gguf: indexing model part '{part_name}'")
  187. ctx: ContextManager[Any]
  188. if is_safetensors:
  189. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  190. else:
  191. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  192. with ctx as model_part:
  193. assert model_part is not None
  194. for name in model_part.keys():
  195. if is_safetensors:
  196. data: gguf.utility.LocalTensor = model_part[name]
  197. if self.lazy:
  198. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  199. else:
  200. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  201. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  202. else:
  203. data_torch: Tensor = model_part[name]
  204. if self.lazy:
  205. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  206. else:
  207. data_gen = lambda data=data_torch: data # noqa: E731
  208. tensors[name] = data_gen
  209. # verify tensor name presence and identify potentially missing files
  210. if len(tensor_names_from_index) > 0:
  211. tensor_names_from_parts = set(tensors.keys())
  212. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  213. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  214. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  215. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  216. if len(extra) == 0 and len(missing_files) > 0:
  217. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  218. f"Missing tensors: {missing}")
  219. else:
  220. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  221. f"Missing tensors: {missing}\n"
  222. f"Extra tensors: {extra}")
  223. return tensors
  224. def dequant_model(self):
  225. tensors_to_remove: list[str] = []
  226. new_tensors: dict[str, Callable[[], Tensor]] = {}
  227. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  228. quant_method = quant_config.get("quant_method")
  229. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  230. weight = weight.view(torch.uint8)
  231. orig_shape = weight.shape
  232. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  233. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  234. data = data & 3
  235. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  236. # The scale is inverted
  237. return data / scale.float()
  238. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  239. scale = scale.float()
  240. if block_size is not None:
  241. for i, size in enumerate(block_size):
  242. scale = scale.repeat_interleave(size, i)
  243. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  244. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  245. return weight.float() * scale
  246. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  247. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  248. bits = quant_config["bits"]
  249. assert bits in (2, 3, 4, 8)
  250. assert qweight.dtype == qzeros.dtype
  251. maxq = (2 ** bits) - 1
  252. weight = None
  253. zeros = None
  254. pack_dtype_bits = qweight.dtype.itemsize * 8
  255. if bits in [2, 4, 8]:
  256. pack_factor = pack_dtype_bits // bits
  257. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  258. if self.lazy:
  259. wf = LazyTorchTensor.from_eager(wf)
  260. zeros = torch.bitwise_right_shift(
  261. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  262. wf.unsqueeze(0)
  263. ).to(torch.int16 if bits == 8 else torch.int8)
  264. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  265. weight = torch.bitwise_and(
  266. torch.bitwise_right_shift(
  267. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  268. wf.unsqueeze(-1)
  269. ).to(torch.int16 if bits == 8 else torch.int8),
  270. maxq
  271. )
  272. elif bits == 3:
  273. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  274. assert weight is not None
  275. assert zeros is not None
  276. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  277. # gptq_v2 doesn't need to offset zeros
  278. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  279. zeros += 1
  280. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  281. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  282. assert w.dtype == torch.int32
  283. shape = tuple(shape_tensor.tolist())
  284. assert len(shape) == 2
  285. mask = (1 << num_bits) - 1
  286. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  287. if self.lazy:
  288. shifts = LazyTorchTensor.from_eager(shifts)
  289. if zero_point is None:
  290. offset = 1 << (num_bits - 1)
  291. else:
  292. assert len(zero_point.shape) == 2
  293. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  294. offset = offset.reshape(-1, zero_point.shape[1])
  295. # trim padding, and prepare for broadcast
  296. # NOTE: the zero-point is packed along dim 0
  297. offset = offset[:shape[0], :].unsqueeze(-1)
  298. # extract values
  299. # NOTE: the weights are packed along dim 1
  300. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  301. unpacked = unpacked.reshape(shape[0], -1)
  302. # trim padding
  303. unpacked = unpacked[:, :shape[1]]
  304. # prepare for broadcast of the scale
  305. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  306. unpacked = unpacked - offset
  307. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  308. if quant_method == "bitnet":
  309. for name in self.model_tensors.keys():
  310. if name.endswith(".weight_scale"):
  311. weight_name = name.removesuffix("_scale")
  312. w = self.model_tensors[weight_name]
  313. s = self.model_tensors[name]
  314. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  315. tensors_to_remove.append(name)
  316. elif quant_method == "fp8":
  317. block_size = quant_config.get("weight_block_size")
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".weight_scale_inv"):
  320. weight_name = name.removesuffix("_scale_inv")
  321. w = self.model_tensors[weight_name]
  322. s = self.model_tensors[name]
  323. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  324. tensors_to_remove.append(name)
  325. if name.endswith(".activation_scale"): # unused
  326. tensors_to_remove.append(name)
  327. # mistral format
  328. if name.endswith(".qscale_weight"):
  329. weight_name = name.removesuffix("qscale_weight") + "weight"
  330. w = self.model_tensors[weight_name]
  331. s = self.model_tensors[name]
  332. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  333. tensors_to_remove.append(name)
  334. if name.endswith(".qscale_act"):
  335. tensors_to_remove.append(name)
  336. elif quant_method == "gptq":
  337. for name in self.model_tensors.keys():
  338. if name.endswith(".qweight"):
  339. base_name = name.removesuffix(".qweight")
  340. g_idx = self.model_tensors[base_name + ".g_idx"]
  341. qweight = self.model_tensors[base_name + ".qweight"]
  342. qzeros = self.model_tensors[base_name + ".qzeros"]
  343. scales = self.model_tensors[base_name + ".scales"]
  344. new_tensors[base_name + ".weight"] = (
  345. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  346. g(), w(), z(), s()
  347. )
  348. )
  349. tensors_to_remove += [
  350. base_name + n
  351. for n in (
  352. ".g_idx",
  353. ".qzeros",
  354. ".qweight",
  355. ".scales",
  356. )
  357. ]
  358. elif quant_method == "compressed-tensors":
  359. quant_format = quant_config["format"]
  360. groups = quant_config["config_groups"]
  361. if len(groups) > 1:
  362. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  363. weight_config = tuple(groups.values())[0]["weights"]
  364. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  365. block_size = weight_config.get("block_structure", None)
  366. strategy = weight_config.get("strategy")
  367. assert strategy == "channel" or strategy == "block"
  368. assert weight_config.get("group_size") is None # didn't find a model using this yet
  369. for name in self.model_tensors.keys():
  370. if name.endswith(".weight_scale"):
  371. weight_name = name.removesuffix("_scale")
  372. w = self.model_tensors[weight_name]
  373. s = self.model_tensors[name]
  374. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  375. tensors_to_remove.append(name)
  376. elif quant_format == "pack-quantized":
  377. assert weight_config.get("strategy") == "group"
  378. assert weight_config.get("type", "int") == "int"
  379. num_bits = weight_config.get("num_bits")
  380. group_size = weight_config.get("group_size")
  381. assert isinstance(num_bits, int)
  382. assert isinstance(group_size, int)
  383. for name in self.model_tensors.keys():
  384. if name.endswith(".weight_packed"):
  385. base_name = name.removesuffix("_packed")
  386. w = self.model_tensors[name]
  387. scale = self.model_tensors[base_name + "_scale"]
  388. shape = self.model_tensors[base_name + "_shape"]
  389. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  390. new_tensors[base_name] = (
  391. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  392. w(), scale(), shape(), zero_point(), num_bits, group_size,
  393. )
  394. )
  395. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  396. if (base_name + "_zero_point") in self.model_tensors:
  397. tensors_to_remove.append(base_name + "_zero_point")
  398. else:
  399. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  400. else:
  401. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  402. for name in tensors_to_remove:
  403. if name in self.model_tensors:
  404. del self.model_tensors[name]
  405. for name, value in new_tensors.items():
  406. self.model_tensors[name] = value
  407. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  408. for name, gen in self.model_tensors.items():
  409. yield name, gen()
  410. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  411. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  412. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  413. name: str = gguf.TENSOR_NAMES[key]
  414. if "{bid}" in name:
  415. assert bid is not None
  416. name = name.format(bid=bid)
  417. return name + suffix
  418. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  419. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  420. return False
  421. key_name: str = gguf.TENSOR_NAMES[key]
  422. if "{bid}" in key_name:
  423. if bid is None:
  424. return False
  425. key_name = key_name.format(bid=bid)
  426. else:
  427. if bid is not None:
  428. return False
  429. return name == (key_name + suffix)
  430. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  431. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  432. if new_name is None:
  433. raise ValueError(f"Can not map tensor {name!r}")
  434. return new_name
  435. def set_gguf_parameters(self):
  436. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  438. del bid # unused
  439. return [(self.map_tensor_name(name), data_torch)]
  440. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  441. del name, new_name, bid, n_dims # unused
  442. return False
  443. # some models need extra generated tensors (like rope_freqs)
  444. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  445. return ()
  446. def prepare_tensors(self):
  447. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  448. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  449. # we don't need these
  450. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  451. continue
  452. old_dtype = data_torch.dtype
  453. # convert any unsupported data types to float32
  454. if data_torch.dtype not in (torch.float16, torch.float32):
  455. data_torch = data_torch.to(torch.float32)
  456. # use the first number-like part of the tensor name as the block id
  457. bid = None
  458. for part in name.split("."):
  459. if part.isdecimal():
  460. bid = int(part)
  461. break
  462. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  463. # TODO: why do we squeeze here?
  464. # data = data_torch.squeeze().numpy()
  465. data = data_torch.numpy()
  466. n_dims = len(data.shape)
  467. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  468. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  469. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  470. data_qtype = gguf.GGMLQuantizationType.F32
  471. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  472. # Some tensor types are always in float32
  473. if data_qtype is False and (
  474. any(
  475. self.match_model_tensor_name(new_name, key, bid)
  476. for key in (
  477. gguf.MODEL_TENSOR.FFN_GATE_INP,
  478. gguf.MODEL_TENSOR.POS_EMBD,
  479. gguf.MODEL_TENSOR.TOKEN_TYPES,
  480. gguf.MODEL_TENSOR.SSM_CONV1D,
  481. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  482. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  483. gguf.MODEL_TENSOR.TIME_MIX_W1,
  484. gguf.MODEL_TENSOR.TIME_MIX_W2,
  485. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  486. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  487. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  488. gguf.MODEL_TENSOR.POSNET_NORM1,
  489. gguf.MODEL_TENSOR.POSNET_NORM2,
  490. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  491. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  492. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  493. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  494. )
  495. )
  496. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  497. ):
  498. data_qtype = gguf.GGMLQuantizationType.F32
  499. if data_qtype is False and any(
  500. self.match_model_tensor_name(new_name, key, bid)
  501. for key in (
  502. gguf.MODEL_TENSOR.TOKEN_EMBD,
  503. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  504. gguf.MODEL_TENSOR.OUTPUT,
  505. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  506. gguf.MODEL_TENSOR.LAUREL_L,
  507. gguf.MODEL_TENSOR.LAUREL_R,
  508. )
  509. ):
  510. if self.ftype in (
  511. gguf.LlamaFileType.MOSTLY_TQ1_0,
  512. gguf.LlamaFileType.MOSTLY_TQ2_0,
  513. ):
  514. # TODO: use Q4_K and Q6_K
  515. data_qtype = gguf.GGMLQuantizationType.F16
  516. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  517. if isinstance(data_qtype, bool):
  518. if self.ftype == gguf.LlamaFileType.ALL_F32:
  519. data_qtype = gguf.GGMLQuantizationType.F32
  520. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  521. data_qtype = gguf.GGMLQuantizationType.F16
  522. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  523. data_qtype = gguf.GGMLQuantizationType.BF16
  524. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  525. data_qtype = gguf.GGMLQuantizationType.Q8_0
  526. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  527. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  528. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  529. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  530. else:
  531. raise ValueError(f"Unknown file type: {self.ftype.name}")
  532. try:
  533. data = gguf.quants.quantize(data, data_qtype)
  534. except gguf.QuantError as e:
  535. logger.warning("%s, %s", e, "falling back to F16")
  536. data_qtype = gguf.GGMLQuantizationType.F16
  537. data = gguf.quants.quantize(data, data_qtype)
  538. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  539. # reverse shape to make it similar to the internal ggml dimension order
  540. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  541. # n_dims is implicit in the shape
  542. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  543. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  544. def set_type(self):
  545. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  546. def prepare_metadata(self, vocab_only: bool):
  547. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  548. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  549. # If we are using HF model id, set the metadata name to the model id
  550. if self.remote_hf_model_id:
  551. self.metadata.name = self.remote_hf_model_id
  552. # Fallback to model directory name if metadata name is still missing
  553. if self.metadata.name is None:
  554. self.metadata.name = self.dir_model.name
  555. # Generate parameter weight class (useful for leader boards) if not yet determined
  556. if self.metadata.size_label is None and total_params > 0:
  557. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  558. self.set_type()
  559. logger.info("Set meta model")
  560. self.metadata.set_gguf_meta_model(self.gguf_writer)
  561. logger.info("Set model parameters")
  562. self.set_gguf_parameters()
  563. logger.info("Set model quantization version")
  564. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  565. def write_vocab(self):
  566. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  567. def write(self):
  568. self.prepare_tensors()
  569. self.prepare_metadata(vocab_only=False)
  570. self.gguf_writer.write_header_to_file(path=self.fname_out)
  571. self.gguf_writer.write_kv_data_to_file()
  572. self.gguf_writer.write_tensors_to_file(progress=True)
  573. self.gguf_writer.close()
  574. @staticmethod
  575. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  576. part_names: list[str] = []
  577. for filename in os.listdir(dir_model):
  578. if filename.startswith(prefix) and filename.endswith(suffix):
  579. part_names.append(filename)
  580. part_names.sort()
  581. return part_names
  582. @staticmethod
  583. def load_hparams(dir_model: Path, is_mistral_format: bool):
  584. if is_mistral_format:
  585. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  586. config = json.load(f)
  587. return config
  588. try:
  589. # for security reason, we don't allow loading remote code by default
  590. # if a model need remote code, we will fallback to config.json
  591. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  592. except Exception as e:
  593. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  594. logger.warning("Trying to load config.json instead")
  595. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  596. config = json.load(f)
  597. if "llm_config" in config:
  598. # rename for InternVL
  599. config["text_config"] = config["llm_config"]
  600. if "lm_config" in config:
  601. # rename for GlmASR
  602. config["text_config"] = config["lm_config"]
  603. if "thinker_config" in config:
  604. # rename for Qwen2.5-Omni
  605. config["text_config"] = config["thinker_config"]["text_config"]
  606. if "lfm" in config:
  607. # rename for LFM2-Audio
  608. config["text_config"] = config["lfm"]
  609. return config
  610. @classmethod
  611. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  612. assert names
  613. def func(modelcls: AnyModel) -> AnyModel:
  614. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  615. for name in names:
  616. cls._model_classes[model_type][name] = modelcls
  617. return modelcls
  618. return func
  619. @classmethod
  620. def print_registered_models(cls):
  621. for model_type, model_classes in cls._model_classes.items():
  622. logger.error(f"{model_type.name} models:")
  623. for name in sorted(model_classes.keys()):
  624. logger.error(f" - {name}")
  625. @classmethod
  626. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  627. try:
  628. return cls._model_classes[model_type][arch]
  629. except KeyError:
  630. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  631. class TextModel(ModelBase):
  632. model_type = ModelType.TEXT
  633. hf_arch: str
  634. def __init__(self, *args, **kwargs):
  635. super().__init__(*args, **kwargs)
  636. if not self.is_mistral_format:
  637. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  638. else:
  639. self.hf_arch = ""
  640. if "text_config" in self.hparams:
  641. # move the text_config to the root level
  642. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  643. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  644. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  645. self.rope_parameters = self.hparams.get("rope_parameters", self.hparams.get("rope_scaling")) or {}
  646. # Ensure "rope_theta" and "rope_type" is mirrored in rope_parameters
  647. if "full_attention" not in self.rope_parameters and "sliding_attention" not in self.rope_parameters:
  648. if "rope_theta" not in self.rope_parameters and (rope_theta := self.find_hparam(["rope_theta", "global_rope_theta", "rotary_emb_base"], optional=True)) is not None:
  649. self.rope_parameters["rope_theta"] = rope_theta
  650. if "rope_type" not in self.rope_parameters and (rope_type := self.rope_parameters.get("type")) is not None:
  651. self.rope_parameters["rope_type"] = rope_type
  652. @classmethod
  653. def __init_subclass__(cls):
  654. # can't use an abstract property, because overriding it without type errors
  655. # would require using decorated functions instead of simply defining the property
  656. if "model_arch" not in cls.__dict__:
  657. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  658. def set_vocab(self):
  659. self._set_vocab_gpt2()
  660. def prepare_metadata(self, vocab_only: bool):
  661. super().prepare_metadata(vocab_only=vocab_only)
  662. total_params = self.gguf_writer.get_total_parameter_count()[0]
  663. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  664. output_type: str = self.ftype.name.partition("_")[2]
  665. # Filename Output
  666. if self.fname_out.is_dir():
  667. # Generate default filename based on model specification and available metadata
  668. if not vocab_only:
  669. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  670. else:
  671. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  672. # Use the default filename
  673. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  674. else:
  675. # Output path is a custom defined templated filename
  676. # Note: `not is_dir()` is used because `.is_file()` will not detect
  677. # file template strings as it doesn't actually exist as a file
  678. # Process templated file name with the output ftype, useful with the "auto" ftype
  679. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  680. logger.info("Set model tokenizer")
  681. self.set_vocab()
  682. def set_gguf_parameters(self):
  683. self.gguf_writer.add_block_count(self.block_count)
  684. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length", "max_sequence_length", "model_max_length"], optional=True)) is not None:
  685. self.gguf_writer.add_context_length(n_ctx)
  686. logger.info(f"gguf: context length = {n_ctx}")
  687. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  688. self.gguf_writer.add_embedding_length(n_embd)
  689. logger.info(f"gguf: embedding length = {n_embd}")
  690. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  691. self.gguf_writer.add_feed_forward_length(n_ff)
  692. logger.info(f"gguf: feed forward length = {n_ff}")
  693. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  694. self.gguf_writer.add_head_count(n_head)
  695. logger.info(f"gguf: head count = {n_head}")
  696. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  697. self.gguf_writer.add_head_count_kv(n_head_kv)
  698. logger.info(f"gguf: key-value head count = {n_head_kv}")
  699. rope_params = self.rope_parameters.get("full_attention", self.rope_parameters)
  700. if (rope_type := rope_params.get("rope_type")) is not None:
  701. rope_factor = rope_params.get("factor")
  702. rope_gguf_type = gguf.RopeScalingType.NONE
  703. if rope_type == "linear" and rope_factor is not None:
  704. rope_gguf_type = gguf.RopeScalingType.LINEAR
  705. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  706. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  707. elif rope_type == "yarn" and rope_factor is not None:
  708. rope_gguf_type = gguf.RopeScalingType.YARN
  709. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  710. self.gguf_writer.add_rope_scaling_factor(rope_factor)
  711. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  712. if (yarn_ext_factor := rope_params.get("extrapolation_factor")) is not None:
  713. self.gguf_writer.add_rope_scaling_yarn_ext_factor(yarn_ext_factor)
  714. if (yarn_attn_factor := rope_params.get("attention_factor", rope_params.get("attn_factor"))) is not None:
  715. self.gguf_writer.add_rope_scaling_yarn_attn_factor(yarn_attn_factor)
  716. if (yarn_beta_fast := rope_params.get("beta_fast")) is not None:
  717. self.gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_beta_fast)
  718. if (yarn_beta_slow := rope_params.get("beta_slow")) is not None:
  719. self.gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_beta_slow)
  720. # self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  721. elif rope_type == "su" or rope_type == "longrope":
  722. rope_gguf_type = gguf.RopeScalingType.LONGROPE
  723. self.gguf_writer.add_rope_scaling_type(rope_gguf_type)
  724. elif rope_type == "dynamic":
  725. # HunYuan, handled in model class
  726. pass
  727. elif rope_type.lower() == "llama3":
  728. # Handled in generate_extra_tensors
  729. pass
  730. else:
  731. logger.warning(f"Unknown RoPE type: {rope_type}")
  732. logger.info(f"gguf: rope scaling type = {rope_gguf_type.name}")
  733. if "mrope_section" in self.rope_parameters:
  734. mrope_section = self.rope_parameters["mrope_section"]
  735. # Pad to 4 dimensions [time, height, width, extra]
  736. while len(mrope_section) < 4:
  737. mrope_section.append(0)
  738. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  739. logger.info(f"gguf: mrope sections: {mrope_section[:4]}")
  740. if (rope_theta := rope_params.get("rope_theta")) is not None:
  741. self.gguf_writer.add_rope_freq_base(rope_theta)
  742. logger.info(f"gguf: rope theta = {rope_theta}")
  743. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  744. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  745. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  746. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  747. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  748. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  749. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  750. self.gguf_writer.add_expert_count(n_experts)
  751. logger.info(f"gguf: expert count = {n_experts}")
  752. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  753. self.gguf_writer.add_expert_used_count(n_experts_used)
  754. logger.info(f"gguf: experts used count = {n_experts_used}")
  755. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  756. self.gguf_writer.add_expert_group_count(n_expert_groups)
  757. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  758. if (n_group_used := self.hparams.get("topk_group")) is not None:
  759. self.gguf_writer.add_expert_group_used_count(n_group_used)
  760. logger.info(f"gguf: expert groups used count = {n_group_used}")
  761. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  762. if score_func == "sigmoid":
  763. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  764. elif score_func == "softmax":
  765. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  766. else:
  767. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  768. logger.info(f"gguf: expert score gating function = {score_func}")
  769. if (head_dim := self.hparams.get("head_dim")) is not None:
  770. self.gguf_writer.add_key_length(head_dim)
  771. self.gguf_writer.add_value_length(head_dim)
  772. self.gguf_writer.add_file_type(self.ftype)
  773. logger.info(f"gguf: file type = {self.ftype}")
  774. def write_vocab(self):
  775. if len(self.gguf_writer.tensors) != 1:
  776. raise ValueError('Splitting the vocabulary is not supported')
  777. self.prepare_metadata(vocab_only=True)
  778. self.gguf_writer.write_header_to_file(path=self.fname_out)
  779. self.gguf_writer.write_kv_data_to_file()
  780. self.gguf_writer.close()
  781. def does_token_look_special(self, token: str | bytes) -> bool:
  782. if isinstance(token, (bytes, bytearray)):
  783. token_text = token.decode(encoding="utf-8")
  784. elif isinstance(token, memoryview):
  785. token_text = token.tobytes().decode(encoding="utf-8")
  786. else:
  787. token_text = token
  788. # Some models mark some added tokens which ought to be control tokens as not special.
  789. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  790. seems_special = token_text in (
  791. "<pad>", # deepseek-coder
  792. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  793. )
  794. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  795. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  796. # TODO: should these be marked as UNUSED instead? (maybe not)
  797. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  798. return seems_special
  799. # used for GPT-2 BPE and WordPiece vocabs
  800. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  801. tokens: list[str] = []
  802. toktypes: list[int] = []
  803. from transformers import AutoTokenizer
  804. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  805. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  806. assert max(tokenizer.vocab.values()) < vocab_size
  807. tokpre = self.get_vocab_base_pre(tokenizer)
  808. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  809. added_vocab = tokenizer.get_added_vocab()
  810. added_tokens_decoder = tokenizer.added_tokens_decoder
  811. for i in range(vocab_size):
  812. if i not in reverse_vocab:
  813. tokens.append(f"[PAD{i}]")
  814. toktypes.append(gguf.TokenType.UNUSED)
  815. else:
  816. token: str = reverse_vocab[i]
  817. if token in added_vocab:
  818. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  819. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  820. if not added_tokens_decoder[i].normalized:
  821. previous_token = token
  822. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  823. if previous_token != token:
  824. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  825. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  826. toktypes.append(gguf.TokenType.CONTROL)
  827. else:
  828. # NOTE: this was added for Gemma.
  829. # Encoding and decoding the tokens above isn't sufficient for this case.
  830. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  831. toktypes.append(gguf.TokenType.USER_DEFINED)
  832. else:
  833. toktypes.append(gguf.TokenType.NORMAL)
  834. tokens.append(token)
  835. return tokens, toktypes, tokpre
  836. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  837. # do not modify it manually!
  838. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  839. # Marker: Start get_vocab_base_pre
  840. def get_vocab_base_pre(self, tokenizer) -> str:
  841. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  842. # is specific for the BPE pre-tokenizer used by the model
  843. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  844. # use in llama.cpp to implement the same pre-tokenizer
  845. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  846. chktok = tokenizer.encode(chktxt)
  847. chkhsh = sha256(str(chktok).encode()).hexdigest()
  848. logger.debug(f"chktok: {chktok}")
  849. logger.debug(f"chkhsh: {chkhsh}")
  850. res = None
  851. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  852. # or pull the latest version of the model from Huggingface
  853. # don't edit the hashes manually!
  854. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  855. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  856. res = "chatglm-bpe"
  857. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  858. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  859. res = "chatglm-bpe"
  860. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  861. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  862. res = "glm4"
  863. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  864. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  865. res = "glm4"
  866. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  867. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  868. res = "minerva-7b"
  869. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  870. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  871. res = "hunyuan"
  872. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  873. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  874. res = "hunyuan-dense"
  875. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  876. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  877. res = "falcon-h1"
  878. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  879. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  880. res = "falcon-h1"
  881. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  882. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  883. res = "falcon-h1"
  884. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  885. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  886. res = "falcon-h1"
  887. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  888. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  889. res = "kimi-k2"
  890. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  891. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  892. res = "qwen2"
  893. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  894. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  895. res = "grok-2"
  896. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  897. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  898. res = "llama-bpe"
  899. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  900. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  901. res = "deepseek-llm"
  902. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  903. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  904. res = "deepseek-coder"
  905. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  906. # ref: https://huggingface.co/tiiuae/falcon-7b
  907. res = "falcon"
  908. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  909. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  910. res = "bert-bge"
  911. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  912. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  913. res = "falcon3"
  914. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  915. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  916. res = "bert-bge-large"
  917. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  918. # ref: https://huggingface.co/mosaicml/mpt-7b
  919. res = "mpt"
  920. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  921. # ref: https://huggingface.co/bigcode/starcoder2-3b
  922. res = "starcoder"
  923. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  924. # ref: https://huggingface.co/openai-community/gpt2
  925. res = "gpt-2"
  926. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  927. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  928. res = "stablelm2"
  929. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  930. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  931. res = "refact"
  932. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  933. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  934. res = "command-r"
  935. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  936. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  937. res = "qwen2"
  938. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  939. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  940. res = "olmo"
  941. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  942. # ref: https://huggingface.co/databricks/dbrx-base
  943. res = "dbrx"
  944. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  945. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  946. res = "jina-v1-en"
  947. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  948. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  949. res = "jina-v2-en"
  950. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  951. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  952. res = "jina-v2-es"
  953. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  954. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  955. res = "jina-v2-de"
  956. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  957. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  958. res = "smaug-bpe"
  959. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  960. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  961. res = "poro-chat"
  962. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  963. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  964. res = "jina-v2-code"
  965. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  966. # ref: https://huggingface.co/LumiOpen/Viking-7B
  967. res = "viking"
  968. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  969. # ref: https://huggingface.co/core42/jais-13b
  970. res = "jais"
  971. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  972. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  973. res = "codeshell"
  974. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  975. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  976. res = "tekken"
  977. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  978. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  979. res = "smollm"
  980. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  981. # ref: https://huggingface.co/bigscience/bloom
  982. res = "bloom"
  983. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  984. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  985. res = "gpt3-finnish"
  986. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  987. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  988. res = "exaone"
  989. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  990. # ref: https://huggingface.co/microsoft/phi-2
  991. res = "phi-2"
  992. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  993. # ref: https://huggingface.co/facebook/chameleon-7b
  994. res = "chameleon"
  995. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  996. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  997. res = "roberta-bpe"
  998. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  999. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  1000. res = "gigachat"
  1001. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  1002. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  1003. res = "megrez"
  1004. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  1005. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  1006. res = "deepseek-v3"
  1007. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  1008. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  1009. res = "deepseek-r1-qwen"
  1010. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  1011. # ref: https://huggingface.co/Xenova/gpt-4o
  1012. res = "gpt-4o"
  1013. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  1014. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  1015. res = "superbpe"
  1016. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  1017. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  1018. res = "trillion"
  1019. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  1020. # ref: https://huggingface.co/inclusionAI/Ling-lite
  1021. res = "bailingmoe"
  1022. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  1023. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  1024. res = "llama4"
  1025. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  1026. # ref: https://huggingface.co/mistral-community/pixtral-12b
  1027. res = "pixtral"
  1028. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  1029. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  1030. res = "seed-coder"
  1031. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  1032. # ref: https://huggingface.co/skt/A.X-4.0
  1033. res = "a.x-4.0"
  1034. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  1035. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  1036. res = "midm-2.0"
  1037. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  1038. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  1039. res = "lfm2"
  1040. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  1041. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  1042. res = "exaone4"
  1043. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  1044. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  1045. res = "mellum"
  1046. if chkhsh == "a0b64b4385f123663873756336c085744376d015ff328bb1d901598f63c44152":
  1047. # ref: https://huggingface.co/answerdotai/ModernBERT-base
  1048. res = "modern-bert"
  1049. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  1050. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  1051. res = "afmoe"
  1052. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  1053. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  1054. res = "bailingmoe2"
  1055. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  1056. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  1057. res = "granite-docling"
  1058. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  1059. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  1060. res = "minimax-m2"
  1061. if chkhsh == "4a2e2abae11ca2b86d570fc5b44be4d5eb5e72cc8f22dd136a94b37da83ab665":
  1062. # ref: https://huggingface.co/KORMo-Team/KORMo-tokenizer
  1063. res = "kormo"
  1064. if chkhsh == "16389f0a1f51ee53e562ffd51c371dc508639ab0e4261502071836e50e223e91":
  1065. # ref: https://huggingface.co/upstage/Solar-Open-100B
  1066. res = "solar-open"
  1067. if res is None:
  1068. logger.warning("\n")
  1069. logger.warning("**************************************************************************************")
  1070. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  1071. logger.warning("** There are 2 possible reasons for this:")
  1072. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  1073. logger.warning("** - the pre-tokenization config has changed upstream")
  1074. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  1075. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  1076. logger.warning("**")
  1077. logger.warning(f"** chkhsh: {chkhsh}")
  1078. logger.warning("**************************************************************************************")
  1079. logger.warning("\n")
  1080. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  1081. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1082. logger.debug(f"chkhsh: {chkhsh}")
  1083. return res
  1084. # Marker: End get_vocab_base_pre
  1085. def _set_vocab_none(self) -> None:
  1086. self.gguf_writer.add_tokenizer_model("none")
  1087. def _set_vocab_gpt2(self) -> None:
  1088. tokens, toktypes, tokpre = self.get_vocab_base()
  1089. self.gguf_writer.add_tokenizer_model("gpt2")
  1090. self.gguf_writer.add_tokenizer_pre(tokpre)
  1091. self.gguf_writer.add_token_list(tokens)
  1092. self.gguf_writer.add_token_types(toktypes)
  1093. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1094. special_vocab.add_to_gguf(self.gguf_writer)
  1095. def _set_vocab_qwen(self):
  1096. dir_model = self.dir_model
  1097. hparams = self.hparams
  1098. tokens: list[str] = []
  1099. toktypes: list[int] = []
  1100. from transformers import AutoTokenizer
  1101. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1102. vocab_size = hparams["vocab_size"]
  1103. assert max(tokenizer.get_vocab().values()) < vocab_size
  1104. tokpre = self.get_vocab_base_pre(tokenizer)
  1105. merges = []
  1106. vocab = {}
  1107. mergeable_ranks = tokenizer.mergeable_ranks
  1108. for token, rank in mergeable_ranks.items():
  1109. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1110. if len(token) == 1:
  1111. continue
  1112. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1113. assert len(merged) == 2
  1114. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1115. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1116. added_vocab = tokenizer.special_tokens
  1117. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1118. for i in range(vocab_size):
  1119. if i not in reverse_vocab:
  1120. tokens.append(f"[PAD{i}]")
  1121. toktypes.append(gguf.TokenType.UNUSED)
  1122. elif reverse_vocab[i] in added_vocab:
  1123. tokens.append(reverse_vocab[i])
  1124. toktypes.append(gguf.TokenType.CONTROL)
  1125. else:
  1126. tokens.append(reverse_vocab[i])
  1127. toktypes.append(gguf.TokenType.NORMAL)
  1128. self.gguf_writer.add_tokenizer_model("gpt2")
  1129. self.gguf_writer.add_tokenizer_pre(tokpre)
  1130. self.gguf_writer.add_token_list(tokens)
  1131. self.gguf_writer.add_token_types(toktypes)
  1132. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1133. special_vocab.merges = merges
  1134. # only add special tokens when they were not already loaded from config.json
  1135. if len(special_vocab.special_token_ids) == 0:
  1136. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1137. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1138. # this one is usually not in config.json anyway
  1139. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1140. special_vocab.add_to_gguf(self.gguf_writer)
  1141. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1142. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1143. self.gguf_writer.add_tokenizer_model("llama")
  1144. self.gguf_writer.add_tokenizer_pre("default")
  1145. self.gguf_writer.add_token_list(tokens)
  1146. self.gguf_writer.add_token_scores(scores)
  1147. self.gguf_writer.add_token_types(toktypes)
  1148. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1149. special_vocab.add_to_gguf(self.gguf_writer)
  1150. def _create_vocab_sentencepiece(self):
  1151. from sentencepiece import SentencePieceProcessor
  1152. tokenizer_path = self.dir_model / 'tokenizer.model'
  1153. if not tokenizer_path.is_file():
  1154. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1155. tokenizer = SentencePieceProcessor()
  1156. tokenizer.LoadFromFile(str(tokenizer_path))
  1157. vocab_size = self.find_hparam([
  1158. "vocab_size_per_layer_input", # gemma3n
  1159. "vocab_size",
  1160. ], optional=True) or tokenizer.vocab_size()
  1161. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1162. scores: list[float] = [-10000.0] * vocab_size
  1163. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1164. for token_id in range(tokenizer.vocab_size()):
  1165. if token_id >= vocab_size:
  1166. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1167. break
  1168. piece = tokenizer.IdToPiece(token_id)
  1169. text = piece.encode("utf-8")
  1170. score = tokenizer.GetScore(token_id)
  1171. toktype = SentencePieceTokenTypes.NORMAL
  1172. if tokenizer.IsUnknown(token_id):
  1173. toktype = SentencePieceTokenTypes.UNKNOWN
  1174. elif tokenizer.IsControl(token_id):
  1175. toktype = SentencePieceTokenTypes.CONTROL
  1176. elif tokenizer.IsUnused(token_id):
  1177. toktype = SentencePieceTokenTypes.UNUSED
  1178. elif tokenizer.IsByte(token_id):
  1179. toktype = SentencePieceTokenTypes.BYTE
  1180. tokens[token_id] = text
  1181. scores[token_id] = score
  1182. toktypes[token_id] = toktype
  1183. added_tokens_file = self.dir_model / 'added_tokens.json'
  1184. if added_tokens_file.is_file():
  1185. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1186. added_tokens_json = json.load(f)
  1187. for key in added_tokens_json:
  1188. token_id = added_tokens_json[key]
  1189. if token_id >= vocab_size:
  1190. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1191. continue
  1192. tokens[token_id] = key.encode("utf-8")
  1193. scores[token_id] = -1000.0
  1194. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1195. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1196. if tokenizer_config_file.is_file():
  1197. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1198. tokenizer_config_json = json.load(f)
  1199. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1200. for token_id, token_data in added_tokens_decoder.items():
  1201. token_id = int(token_id)
  1202. token: str = token_data["content"]
  1203. if token_id >= vocab_size:
  1204. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1205. continue
  1206. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1207. if tokens[token_id] != token.encode("utf-8"):
  1208. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1209. if token_data.get("special") or self.does_token_look_special(token):
  1210. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1211. else:
  1212. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1213. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1214. scores[token_id] = -1000.0
  1215. tokens[token_id] = token.encode("utf-8")
  1216. if vocab_size > len(tokens):
  1217. pad_count = vocab_size - len(tokens)
  1218. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1219. for i in range(1, pad_count + 1):
  1220. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1221. scores.append(-1000.0)
  1222. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1223. return tokens, scores, toktypes
  1224. def _set_vocab_llama_hf(self):
  1225. vocab = gguf.LlamaHfVocab(self.dir_model)
  1226. tokens = []
  1227. scores = []
  1228. toktypes = []
  1229. for text, score, toktype in vocab.all_tokens():
  1230. tokens.append(text)
  1231. scores.append(score)
  1232. toktypes.append(toktype)
  1233. assert len(tokens) == vocab.vocab_size
  1234. self.gguf_writer.add_tokenizer_model("llama")
  1235. self.gguf_writer.add_tokenizer_pre("default")
  1236. self.gguf_writer.add_token_list(tokens)
  1237. self.gguf_writer.add_token_scores(scores)
  1238. self.gguf_writer.add_token_types(toktypes)
  1239. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1240. special_vocab.add_to_gguf(self.gguf_writer)
  1241. def _set_vocab_rwkv_world(self):
  1242. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1243. vocab_size = self.hparams.get("vocab_size", 65536)
  1244. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1245. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1246. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1247. lines = f.readlines()
  1248. for line in lines:
  1249. parts = line.split(' ')
  1250. assert len(parts) >= 3
  1251. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1252. token = token.encode("utf-8") if isinstance(token, str) else token
  1253. assert isinstance(token, bytes)
  1254. assert len(token) == token_len
  1255. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1256. tokens.append(token_text.encode("utf-8"))
  1257. toktypes.append(gguf.TokenType.NORMAL)
  1258. remainder = vocab_size - len(tokens)
  1259. assert remainder >= 0
  1260. for i in range(len(tokens), vocab_size):
  1261. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1262. toktypes.append(gguf.TokenType.UNUSED)
  1263. self.gguf_writer.add_tokenizer_model("rwkv")
  1264. self.gguf_writer.add_token_list(tokens)
  1265. self.gguf_writer.add_token_types(toktypes)
  1266. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1267. if special_vocab.chat_template is None:
  1268. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1269. if template_path.is_file():
  1270. with open(template_path, "r", encoding="utf-8") as f:
  1271. template = f.read()
  1272. else:
  1273. template = "rwkv-world"
  1274. special_vocab.chat_template = template
  1275. # hack: Add '\n\n' as the EOT token to make it chat normally
  1276. special_vocab._set_special_token("eot", 261)
  1277. # hack: Override these as they have already been set (incorrectly)
  1278. special_vocab.special_token_ids["bos"] = 0
  1279. special_vocab.special_token_ids["eos"] = 0
  1280. special_vocab.add_to_gguf(self.gguf_writer)
  1281. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1282. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1283. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1284. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1285. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1286. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1287. assert field # tokenizer model
  1288. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1289. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1290. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1291. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1292. assert field # token list
  1293. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1294. if model_name == "llama-spm":
  1295. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1296. assert field # token scores
  1297. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1298. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1299. assert field # token types
  1300. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1301. if model_name != "llama-spm":
  1302. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1303. assert field # token merges
  1304. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1305. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1306. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1307. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1308. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1309. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1310. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1311. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1312. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1313. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1314. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1315. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1316. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1317. def _try_set_pooling_type(self) -> None:
  1318. # get pooling path
  1319. pooling_path = None
  1320. module_path = self.dir_model / "modules.json"
  1321. if module_path.is_file():
  1322. with open(module_path, encoding="utf-8") as f:
  1323. modules = json.load(f)
  1324. for mod in modules:
  1325. if mod["type"] == "sentence_transformers.models.Pooling":
  1326. pooling_path = mod["path"]
  1327. break
  1328. # get pooling type
  1329. if pooling_path is not None:
  1330. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1331. pooling = json.load(f)
  1332. if pooling["pooling_mode_mean_tokens"]:
  1333. pooling_type = gguf.PoolingType.MEAN
  1334. elif pooling["pooling_mode_cls_token"]:
  1335. pooling_type = gguf.PoolingType.CLS
  1336. elif pooling["pooling_mode_lasttoken"]:
  1337. pooling_type = gguf.PoolingType.LAST
  1338. else:
  1339. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1340. self.gguf_writer.add_pooling_type(pooling_type)
  1341. def _set_vocab_glmedge(self):
  1342. from transformers import AutoTokenizer
  1343. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  1344. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1345. tokens, toktypes, tokpre = self.get_vocab_base()
  1346. self.gguf_writer.add_tokenizer_model("gpt2")
  1347. self.gguf_writer.add_tokenizer_pre(tokpre)
  1348. self.gguf_writer.add_token_list(tokens)
  1349. self.gguf_writer.add_token_types(toktypes)
  1350. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1351. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  1352. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  1353. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  1354. special_vocab.add_to_gguf(self.gguf_writer)
  1355. def _set_vocab_interns1(self):
  1356. tokens: list[str] = []
  1357. toktypes: list[int] = []
  1358. from transformers import AutoTokenizer
  1359. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1360. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1361. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1362. assert max(vocab.values()) < vocab_size
  1363. tokpre = self.get_vocab_base_pre(tokenizer)
  1364. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1365. added_vocab = tokenizer.get_added_vocab()
  1366. added_tokens_decoder = tokenizer.added_tokens_decoder
  1367. for i in range(vocab_size):
  1368. if i not in reverse_vocab:
  1369. tokens.append(f"[PAD{i}]")
  1370. toktypes.append(gguf.TokenType.UNUSED)
  1371. else:
  1372. token: str = reverse_vocab[i]
  1373. if token in added_vocab:
  1374. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1375. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1376. if not added_tokens_decoder[i].normalized:
  1377. previous_token = token
  1378. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1379. if previous_token != token:
  1380. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1381. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1382. toktypes.append(gguf.TokenType.CONTROL)
  1383. else:
  1384. toktypes.append(gguf.TokenType.USER_DEFINED)
  1385. else:
  1386. toktypes.append(gguf.TokenType.NORMAL)
  1387. tokens.append(token)
  1388. self.gguf_writer.add_tokenizer_model("gpt2")
  1389. self.gguf_writer.add_tokenizer_pre(tokpre)
  1390. self.gguf_writer.add_token_list(tokens)
  1391. self.gguf_writer.add_token_types(toktypes)
  1392. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1393. special_vocab._set_special_token("bos", 151643)
  1394. special_vocab.add_to_gguf(self.gguf_writer)
  1395. def _set_vocab_mistral(self):
  1396. if not _mistral_common_installed:
  1397. raise ImportError(_mistral_import_error_msg)
  1398. vocab = MistralVocab(self.dir_model)
  1399. logger.info(
  1400. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1401. )
  1402. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1403. tokens = []
  1404. scores = []
  1405. toktypes = []
  1406. for text, score, toktype in vocab.all_tokens():
  1407. tokens.append(text)
  1408. scores.append(score)
  1409. toktypes.append(toktype)
  1410. assert len(tokens) == vocab.vocab_size, (
  1411. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1412. )
  1413. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1414. self.gguf_writer.add_tokenizer_pre("tekken")
  1415. self.gguf_writer.add_token_merges(
  1416. vocab.extract_vocab_merges_from_model()
  1417. )
  1418. logger.info(
  1419. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1420. )
  1421. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1422. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1423. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1424. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1425. self.gguf_writer.add_token_list(tokens)
  1426. self.gguf_writer.add_token_scores(scores)
  1427. self.gguf_writer.add_token_types(toktypes)
  1428. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1429. self.gguf_writer.add_add_bos_token(True)
  1430. self.gguf_writer.add_add_eos_token(False)
  1431. local_template_file_path = self.dir_model / "chat_template.jinja"
  1432. if self.is_mistral_format and local_template_file_path.is_file():
  1433. # Ministral-3 and other new Mistral models come with chat templates.
  1434. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1435. logger.info("Using an existing Mistral local chat template.")
  1436. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1437. template = f.read()
  1438. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1439. template_dir = Path(__file__).parent / "models/templates/"
  1440. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1441. if self.is_mistral_format:
  1442. logger.info(
  1443. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1444. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1445. )
  1446. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1447. else:
  1448. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1449. template = None
  1450. if template is not None:
  1451. self.gguf_writer.add_chat_template(template)
  1452. def _set_vocab_plamo(self):
  1453. # PLaMo models use a custom tokenizer with a .jsonl file
  1454. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  1455. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  1456. if not tokenizer_jsonl_path.is_file():
  1457. raise FileNotFoundError(f"PLaMo tokenizer file not found: {tokenizer_jsonl_path}")
  1458. # Load tokenizer config
  1459. with open(tokenizer_config_path, "r", encoding="utf-8") as f:
  1460. tokenizer_config = json.load(f)
  1461. # Load tokens from JSONL file (actually a list format)
  1462. tokens = []
  1463. scores = []
  1464. toktypes = []
  1465. with open(tokenizer_jsonl_path, "r", encoding="utf-8") as f:
  1466. for line_num, line in enumerate(f):
  1467. if line.strip():
  1468. token_data = json.loads(line)
  1469. # Format: [token, score, type, ?, ?, ?, ?]
  1470. token = token_data[0].encode("utf-8")
  1471. score = float(token_data[1])
  1472. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  1473. tokens.append(token)
  1474. scores.append(score)
  1475. if token_type_str == "UNKNOWN":
  1476. toktypes.append(gguf.TokenType.UNKNOWN)
  1477. elif token_type_str == "CONTROL":
  1478. toktypes.append(gguf.TokenType.CONTROL)
  1479. elif token_type_str == "BYTE":
  1480. toktypes.append(gguf.TokenType.BYTE)
  1481. else:
  1482. token_str = token_data[0]
  1483. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  1484. toktypes.append(gguf.TokenType.CONTROL)
  1485. else:
  1486. toktypes.append(gguf.TokenType.NORMAL)
  1487. vocab_size = self.hparams["vocab_size"]
  1488. if vocab_size > len(tokens):
  1489. pad_count = vocab_size - len(tokens)
  1490. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1491. for i in range(1, pad_count + 1):
  1492. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1493. scores.append(-1000.0)
  1494. toktypes.append(gguf.TokenType.UNUSED)
  1495. self.gguf_writer.add_tokenizer_model("plamo2")
  1496. self.gguf_writer.add_tokenizer_pre("default")
  1497. self.gguf_writer.add_token_list(tokens)
  1498. self.gguf_writer.add_token_scores(scores)
  1499. self.gguf_writer.add_token_types(toktypes)
  1500. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  1501. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  1502. self.gguf_writer.add_bos_token_id(token_id)
  1503. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  1504. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  1505. self.gguf_writer.add_eos_token_id(token_id)
  1506. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  1507. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  1508. self.gguf_writer.add_pad_token_id(token_id)
  1509. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  1510. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  1511. self.gguf_writer.add_sep_token_id(token_id)
  1512. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  1513. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  1514. self.gguf_writer.add_unk_token_id(token_id)
  1515. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  1516. self.gguf_writer.add_eot_token_id(4)
  1517. self.gguf_writer.add_add_space_prefix(False)
  1518. class MmprojModel(ModelBase):
  1519. model_type = ModelType.MMPROJ
  1520. model_arch = gguf.MODEL_ARCH.MMPROJ
  1521. preprocessor_config: dict[str, Any]
  1522. global_config: dict[str, Any]
  1523. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth", "encoder_layers"]
  1524. has_vision_encoder: bool = True # by default
  1525. has_audio_encoder: bool = False
  1526. # for models having multiple encoders, we need to separate their hparams
  1527. hparams_vision: dict[str, Any] | None = None
  1528. hparams_audio: dict[str, Any] | None = None
  1529. def __init__(self, *args, **kwargs):
  1530. super().__init__(*args, **kwargs)
  1531. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1532. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1533. # get n_embd of the text model
  1534. if not self.is_mistral_format:
  1535. if "text_config" not in self.hparams:
  1536. self.hparams["text_config"] = {}
  1537. if "audio_config" not in self.hparams:
  1538. self.hparams["audio_config"] = {}
  1539. text_config = {**self.hparams, **self.hparams["text_config"]}
  1540. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1541. else:
  1542. text_config = {
  1543. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1544. }
  1545. self.n_embd_text = text_config.get("hidden_dim", 0)
  1546. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1547. # move vision config to the top level, while preserving the original hparams in global_config
  1548. import copy
  1549. self.global_config = copy.deepcopy(self.hparams)
  1550. self.hparams_vision = self.get_vision_config()
  1551. self.hparams_audio = self.get_audio_config()
  1552. if self.hparams_vision is None and self.hparams_audio is None:
  1553. raise ValueError("vision_config / audio_config not found in hparams")
  1554. # for compat with vision-only models
  1555. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1556. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1557. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1558. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1559. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1560. # load preprocessor config
  1561. self.preprocessor_config = {}
  1562. # prefer preprocessor_config.json if possible
  1563. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1564. if preprocessor_config_path.is_file():
  1565. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1566. self.preprocessor_config = json.load(f)
  1567. # prefer processor_config.json if possible
  1568. processor_config_path = self.dir_model / "processor_config.json"
  1569. if processor_config_path.is_file():
  1570. with open(processor_config_path, "r", encoding="utf-8") as f:
  1571. cfg = json.load(f)
  1572. # move image_processor to root level for compat
  1573. if "image_processor" in cfg:
  1574. cfg = {
  1575. **cfg,
  1576. **cfg["image_processor"],
  1577. }
  1578. # merge configs
  1579. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1580. def get_vision_config(self) -> dict[str, Any] | None:
  1581. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1582. return self.global_config.get(config_name)
  1583. def get_audio_config(self) -> dict[str, Any] | None:
  1584. mm_config_key = "whisper_config" if "whisper_config" in self.hparams else "audio_config"
  1585. return self.global_config.get(mm_config_key)
  1586. def set_type(self):
  1587. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1588. def prepare_metadata(self, vocab_only: bool):
  1589. super().prepare_metadata(vocab_only=vocab_only)
  1590. output_type: str = self.ftype.name.partition("_")[2]
  1591. if self.fname_out.is_dir():
  1592. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1593. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1594. else:
  1595. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1596. def set_gguf_parameters(self):
  1597. self.gguf_writer.add_file_type(self.ftype)
  1598. if self.has_vision_encoder:
  1599. self.gguf_writer.add_clip_has_vision_encoder(True)
  1600. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1601. # vision config
  1602. self.image_size = self.find_vparam(["image_size"])
  1603. self.gguf_writer.add_vision_image_size(self.image_size)
  1604. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1605. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1606. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1607. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1608. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1609. # preprocessor config
  1610. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1611. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1612. self.gguf_writer.add_vision_image_mean(image_mean)
  1613. self.gguf_writer.add_vision_image_std(image_std)
  1614. if self.has_audio_encoder:
  1615. self.gguf_writer.add_clip_has_audio_encoder(True)
  1616. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1617. # audio config
  1618. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1619. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1620. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1621. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1622. if not self.has_vision_encoder and not self.has_audio_encoder:
  1623. raise ValueError("MmprojModel must have either vision or audio encoder")
  1624. def write_vocab(self):
  1625. raise ValueError("MmprojModel does not support vocab writing")
  1626. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1627. assert self.hparams_vision is not None
  1628. return self._find_param(self.hparams_vision, keys, optional)
  1629. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1630. assert self.hparams_audio is not None
  1631. return self._find_param(self.hparams_audio, keys, optional)
  1632. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1633. key = next((k for k in keys if k in obj), None)
  1634. if key is not None:
  1635. return obj[key]
  1636. if optional:
  1637. return None
  1638. raise KeyError(f"could not find any of: {keys}")
  1639. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1640. del bid, name, n_dims # unused
  1641. if ".patch_embd.weight" in new_name or ".patch_merger.weight" in new_name:
  1642. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1643. return False
  1644. @ModelBase.register("GPTNeoXForCausalLM")
  1645. class GPTNeoXModel(TextModel):
  1646. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1647. def set_gguf_parameters(self):
  1648. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1649. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1650. self.gguf_writer.add_block_count(self.block_count)
  1651. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1652. self.gguf_writer.add_rope_dimension_count(
  1653. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1654. )
  1655. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1656. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1657. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1659. del bid # unused
  1660. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1661. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1662. tensors: list[tuple[str, Tensor]] = []
  1663. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1664. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1665. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1666. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1667. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1668. data_torch = torch.cat(
  1669. (
  1670. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1671. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1672. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1673. ),
  1674. dim=0,
  1675. )
  1676. logger.info("re-format attention.linear_qkv.weight")
  1677. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1678. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1679. data_torch = torch.cat(
  1680. (
  1681. qkv_bias[:, 0, :].reshape((n_embed,)),
  1682. qkv_bias[:, 1, :].reshape((n_embed,)),
  1683. qkv_bias[:, 2, :].reshape((n_embed,)),
  1684. ),
  1685. dim=0,
  1686. )
  1687. logger.info("re-format attention.linear_qkv.bias")
  1688. tensors.append((self.map_tensor_name(name), data_torch))
  1689. return tensors
  1690. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1691. class BloomModel(TextModel):
  1692. model_arch = gguf.MODEL_ARCH.BLOOM
  1693. def set_gguf_parameters(self):
  1694. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1695. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1696. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1697. self.gguf_writer.add_embedding_length(n_embed)
  1698. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1699. self.gguf_writer.add_block_count(self.block_count)
  1700. self.gguf_writer.add_head_count(n_head)
  1701. self.gguf_writer.add_head_count_kv(n_head)
  1702. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1703. self.gguf_writer.add_file_type(self.ftype)
  1704. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1705. del bid # unused
  1706. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1707. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1708. name = re.sub(r'transformer\.', '', name)
  1709. tensors: list[tuple[str, Tensor]] = []
  1710. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1711. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1712. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1713. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1714. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1715. data_torch = torch.cat(
  1716. (
  1717. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1718. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1719. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1720. ),
  1721. dim=0,
  1722. )
  1723. logger.info("re-format attention.linear_qkv.weight")
  1724. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1725. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1726. data_torch = torch.cat(
  1727. (
  1728. qkv_bias[:, 0, :].reshape((n_embed,)),
  1729. qkv_bias[:, 1, :].reshape((n_embed,)),
  1730. qkv_bias[:, 2, :].reshape((n_embed,)),
  1731. ),
  1732. dim=0,
  1733. )
  1734. logger.info("re-format attention.linear_qkv.bias")
  1735. tensors.append((self.map_tensor_name(name), data_torch))
  1736. return tensors
  1737. @ModelBase.register("MPTForCausalLM")
  1738. class MPTModel(TextModel):
  1739. model_arch = gguf.MODEL_ARCH.MPT
  1740. def set_vocab(self):
  1741. try:
  1742. self._set_vocab_gpt2()
  1743. except Exception:
  1744. # Fallback for SEA-LION model
  1745. self._set_vocab_sentencepiece()
  1746. self.gguf_writer.add_add_bos_token(False)
  1747. self.gguf_writer.add_pad_token_id(3)
  1748. self.gguf_writer.add_eos_token_id(1)
  1749. self.gguf_writer.add_unk_token_id(0)
  1750. def set_gguf_parameters(self):
  1751. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1752. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1753. self.gguf_writer.add_block_count(self.block_count)
  1754. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1755. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1756. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1757. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1758. self.gguf_writer.add_layer_norm_eps(1e-5)
  1759. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1760. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1761. if self.hparams["attn_config"]["alibi"]:
  1762. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1763. else:
  1764. self.gguf_writer.add_max_alibi_bias(0.0)
  1765. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1766. del bid # unused
  1767. if "scales" in name:
  1768. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1769. new_name = new_name.replace("scales", "act.scales")
  1770. else:
  1771. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1772. return [(new_name, data_torch)]
  1773. @ModelBase.register("OrionForCausalLM")
  1774. class OrionModel(TextModel):
  1775. model_arch = gguf.MODEL_ARCH.ORION
  1776. def set_vocab(self):
  1777. self._set_vocab_sentencepiece()
  1778. def set_gguf_parameters(self):
  1779. head_count = self.hparams["num_attention_heads"]
  1780. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1781. ctx_length = 0
  1782. if "max_sequence_length" in self.hparams:
  1783. ctx_length = self.hparams["max_sequence_length"]
  1784. elif "max_position_embeddings" in self.hparams:
  1785. ctx_length = self.hparams["max_position_embeddings"]
  1786. elif "model_max_length" in self.hparams:
  1787. ctx_length = self.hparams["model_max_length"]
  1788. else:
  1789. raise ValueError("gguf: can not find ctx length parameter.")
  1790. self.gguf_writer.add_file_type(self.ftype)
  1791. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1792. self.gguf_writer.add_context_length(ctx_length)
  1793. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1794. self.gguf_writer.add_block_count(self.block_count)
  1795. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1796. self.gguf_writer.add_head_count(head_count)
  1797. self.gguf_writer.add_head_count_kv(head_count_kv)
  1798. # note: config provides rms norm but it is actually layer norm
  1799. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1800. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1801. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1802. class BaichuanModel(TextModel):
  1803. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1804. def set_vocab(self):
  1805. self._set_vocab_sentencepiece()
  1806. def set_gguf_parameters(self):
  1807. super().set_gguf_parameters()
  1808. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1809. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1811. head_count = self.hparams["num_attention_heads"]
  1812. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1813. tensors: list[tuple[str, Tensor]] = []
  1814. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1815. logger.info(f"Unpacking and permuting layer {bid}")
  1816. tensors = [
  1817. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1818. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1819. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1820. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1821. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1822. self._reverse_hf_part(data_torch, 2)),
  1823. ]
  1824. else:
  1825. tensors = [(self.map_tensor_name(name), data_torch)]
  1826. return tensors
  1827. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1828. if n_kv_head is not None and n_head != n_kv_head:
  1829. n_head //= n_kv_head
  1830. return (
  1831. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1832. .swapaxes(1, 2)
  1833. .reshape(weights.shape)
  1834. )
  1835. def _reverse_hf_permute_part(
  1836. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1837. ) -> Tensor:
  1838. r = weights.shape[0] // 3
  1839. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1840. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1841. r = weights.shape[0] // 3
  1842. return weights[r * n_part:r * n_part + r, ...]
  1843. @ModelBase.register("XverseForCausalLM")
  1844. class XverseModel(TextModel):
  1845. model_arch = gguf.MODEL_ARCH.XVERSE
  1846. def set_vocab(self):
  1847. assert (self.dir_model / "tokenizer.json").is_file()
  1848. dir_model = self.dir_model
  1849. hparams = self.hparams
  1850. tokens: list[bytes] = []
  1851. toktypes: list[int] = []
  1852. from transformers import AutoTokenizer
  1853. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1854. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1855. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1856. # because vocab_size is the count of items, and indexes start at 0.
  1857. max_vocab_index = max(tokenizer.get_vocab().values())
  1858. if max_vocab_index >= vocab_size:
  1859. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1860. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1861. added_vocab = tokenizer.get_added_vocab()
  1862. for token_id in range(vocab_size):
  1863. token_text = reverse_vocab[token_id].encode('utf-8')
  1864. # replace "\x00" to string with length > 0
  1865. if token_text == b"\x00":
  1866. toktype = gguf.TokenType.BYTE # special
  1867. token_text = f"<{token_text}>".encode('utf-8')
  1868. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1869. toktype = gguf.TokenType.BYTE # special
  1870. elif reverse_vocab[token_id] in added_vocab:
  1871. if tokenizer.added_tokens_decoder[token_id].special:
  1872. toktype = gguf.TokenType.CONTROL
  1873. else:
  1874. toktype = gguf.TokenType.USER_DEFINED
  1875. else:
  1876. toktype = gguf.TokenType.NORMAL
  1877. tokens.append(token_text)
  1878. toktypes.append(toktype)
  1879. self.gguf_writer.add_tokenizer_model("llama")
  1880. self.gguf_writer.add_tokenizer_pre("default")
  1881. self.gguf_writer.add_token_list(tokens)
  1882. self.gguf_writer.add_token_types(toktypes)
  1883. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1884. special_vocab.add_to_gguf(self.gguf_writer)
  1885. def set_gguf_parameters(self):
  1886. super().set_gguf_parameters()
  1887. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1888. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1889. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1890. del bid # unused
  1891. head_count = self.hparams["num_attention_heads"]
  1892. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1893. # HF models permute some of the tensors, so we need to undo that
  1894. if name.endswith("q_proj.weight"):
  1895. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1896. if name.endswith("k_proj.weight"):
  1897. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1898. return [(self.map_tensor_name(name), data_torch)]
  1899. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1900. if n_kv_head is not None and n_head != n_kv_head:
  1901. n_head //= n_kv_head
  1902. return (
  1903. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1904. .swapaxes(1, 2)
  1905. .reshape(weights.shape)
  1906. )
  1907. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1908. class FalconModel(TextModel):
  1909. model_arch = gguf.MODEL_ARCH.FALCON
  1910. def set_gguf_parameters(self):
  1911. n_head = self.hparams.get("num_attention_heads")
  1912. if n_head is None:
  1913. n_head = self.hparams["n_head"] # old name
  1914. n_head_kv = self.hparams.get("num_kv_heads")
  1915. if n_head_kv is None:
  1916. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1917. self.gguf_writer.add_context_length(2048) # not in config.json
  1918. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1919. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1920. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1921. self.gguf_writer.add_block_count(self.block_count)
  1922. self.gguf_writer.add_head_count(n_head)
  1923. self.gguf_writer.add_head_count_kv(n_head_kv)
  1924. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1925. self.gguf_writer.add_file_type(self.ftype)
  1926. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1927. del bid # unused
  1928. # QKV tensor transform
  1929. # The original query_key_value tensor contains n_head_kv "kv groups",
  1930. # each consisting of n_head/n_head_kv query weights followed by one key
  1931. # and one value weight (shared by all query heads in the kv group).
  1932. # This layout makes it a big pain to work with in GGML.
  1933. # So we rearrange them here,, so that we have n_head query weights
  1934. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1935. # in contiguous fashion.
  1936. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1937. if "query_key_value" in name:
  1938. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1939. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1940. head_dim = self.hparams["hidden_size"] // n_head
  1941. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1942. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1943. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1944. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1945. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1946. return [(self.map_tensor_name(name), data_torch)]
  1947. @ModelBase.register("GPTBigCodeForCausalLM")
  1948. class StarCoderModel(TextModel):
  1949. model_arch = gguf.MODEL_ARCH.STARCODER
  1950. def set_gguf_parameters(self):
  1951. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1952. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1953. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1954. self.gguf_writer.add_block_count(self.block_count)
  1955. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1956. self.gguf_writer.add_head_count_kv(1)
  1957. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1958. self.gguf_writer.add_file_type(self.ftype)
  1959. @ModelBase.register("GPTRefactForCausalLM")
  1960. class RefactModel(TextModel):
  1961. model_arch = gguf.MODEL_ARCH.REFACT
  1962. def set_vocab(self):
  1963. super().set_vocab()
  1964. # TODO: how to determine special FIM tokens automatically?
  1965. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1966. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1967. special_vocab._set_special_token("prefix", 1)
  1968. special_vocab._set_special_token("suffix", 3)
  1969. special_vocab._set_special_token("middle", 2)
  1970. special_vocab.chat_template = None # do not add it twice
  1971. special_vocab.add_to_gguf(self.gguf_writer)
  1972. def set_gguf_parameters(self):
  1973. hidden_dim = self.hparams["n_embd"]
  1974. inner_dim = 4 * hidden_dim
  1975. hidden_dim = int(2 * inner_dim / 3)
  1976. multiple_of = 256
  1977. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1978. # refact uses Alibi. So this is from config.json which might be used by training.
  1979. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1980. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1981. self.gguf_writer.add_feed_forward_length(ff_dim)
  1982. self.gguf_writer.add_block_count(self.block_count)
  1983. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1984. self.gguf_writer.add_head_count_kv(1)
  1985. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1986. self.gguf_writer.add_file_type(self.ftype)
  1987. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1988. hidden_dim = self.hparams["n_embd"]
  1989. inner_dim = 4 * hidden_dim
  1990. hidden_dim = int(2 * inner_dim / 3)
  1991. multiple_of = 256
  1992. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1993. n_head = self.hparams["n_head"]
  1994. n_head_kv = 1
  1995. head_dim = self.hparams["n_embd"] // n_head
  1996. tensors: list[tuple[str, Tensor]] = []
  1997. if bid is not None:
  1998. if name == f"transformer.h.{bid}.attn.kv.weight":
  1999. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  2000. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  2001. elif name == f"transformer.h.{bid}.attn.q.weight":
  2002. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  2003. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  2004. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  2005. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  2006. if len(tensors) == 0:
  2007. tensors.append((self.map_tensor_name(name), data_torch))
  2008. return tensors
  2009. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  2010. class StableLMModel(TextModel):
  2011. model_arch = gguf.MODEL_ARCH.STABLELM
  2012. def set_vocab(self):
  2013. if (self.dir_model / "tokenizer.json").is_file():
  2014. self._set_vocab_gpt2()
  2015. else:
  2016. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  2017. self._set_vocab_qwen()
  2018. def set_gguf_parameters(self):
  2019. hparams = self.hparams
  2020. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2021. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2022. self.gguf_writer.add_block_count(self.block_count)
  2023. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2024. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  2025. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  2026. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2027. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2028. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  2029. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  2030. self.gguf_writer.add_file_type(self.ftype)
  2031. _q_norms: list[dict[str, Tensor]] | None = None
  2032. _k_norms: list[dict[str, Tensor]] | None = None
  2033. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2034. n_head = self.hparams["num_attention_heads"]
  2035. n_kv_head = self.hparams["num_key_value_heads"]
  2036. if name.find("q_layernorm.norms") != -1:
  2037. assert bid is not None
  2038. if self._q_norms is None:
  2039. self._q_norms = [{} for _ in range(self.block_count)]
  2040. self._q_norms[bid][name] = data_torch
  2041. if len(self._q_norms[bid]) >= n_head:
  2042. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  2043. else:
  2044. return []
  2045. if name.find("k_layernorm.norms") != -1:
  2046. assert bid is not None
  2047. if self._k_norms is None:
  2048. self._k_norms = [{} for _ in range(self.block_count)]
  2049. self._k_norms[bid][name] = data_torch
  2050. if len(self._k_norms[bid]) >= n_kv_head:
  2051. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  2052. else:
  2053. return []
  2054. return [(self.map_tensor_name(name), data_torch)]
  2055. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  2056. datas: list[Tensor] = []
  2057. # extract the norms in order
  2058. for xid in range(n_head):
  2059. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  2060. datas.append(norms[ename])
  2061. del norms[ename]
  2062. data_torch = torch.stack(datas, dim=0)
  2063. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  2064. new_name = self.map_tensor_name(merged_name)
  2065. return [(new_name, data_torch)]
  2066. def prepare_tensors(self):
  2067. super().prepare_tensors()
  2068. if self._q_norms is not None or self._k_norms is not None:
  2069. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  2070. norms = (
  2071. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  2072. ) + (
  2073. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  2074. )
  2075. if len(norms) > 0:
  2076. raise ValueError(f"Unprocessed norms: {norms}")
  2077. @ModelBase.register(
  2078. "LLaMAForCausalLM",
  2079. "LlamaForCausalLM",
  2080. "MistralForCausalLM",
  2081. "MixtralForCausalLM",
  2082. "VLlama3ForCausalLM",
  2083. "LlavaForConditionalGeneration",
  2084. "VoxtralForConditionalGeneration",
  2085. "LlamaModel")
  2086. class LlamaModel(TextModel):
  2087. model_arch = gguf.MODEL_ARCH.LLAMA
  2088. undo_permute = True
  2089. def __init__(self, *args, **kwargs):
  2090. super().__init__(*args, **kwargs)
  2091. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  2092. if self.hf_arch == "VLlama3ForCausalLM":
  2093. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  2094. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  2095. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  2096. def set_vocab(self):
  2097. if self.origin_hf_arch == "GlmasrModel":
  2098. return self._set_vocab_glmedge()
  2099. if self.is_mistral_format:
  2100. return self._set_vocab_mistral()
  2101. path_tekken_json = self.dir_model / "tekken.json"
  2102. path_tokenizer_json = self.dir_model / "tokenizer.json"
  2103. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  2104. self._set_vocab_mistral()
  2105. try:
  2106. self._set_vocab_sentencepiece()
  2107. except FileNotFoundError:
  2108. try:
  2109. self._set_vocab_llama_hf()
  2110. except (FileNotFoundError, TypeError):
  2111. # Llama 3
  2112. self._set_vocab_gpt2()
  2113. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  2114. if self.hparams.get("vocab_size", 32000) == 32016:
  2115. special_vocab = gguf.SpecialVocab(
  2116. self.dir_model, load_merges=False,
  2117. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  2118. )
  2119. special_vocab._set_special_token("prefix", 32007)
  2120. special_vocab._set_special_token("suffix", 32008)
  2121. special_vocab._set_special_token("middle", 32009)
  2122. special_vocab._set_special_token("eot", 32010)
  2123. special_vocab.add_to_gguf(self.gguf_writer)
  2124. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2125. if tokenizer_config_file.is_file():
  2126. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2127. tokenizer_config_json = json.load(f)
  2128. if "add_prefix_space" in tokenizer_config_json:
  2129. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2130. # Apply to granite small models only
  2131. if self.hparams.get("vocab_size", 32000) == 49152:
  2132. self.gguf_writer.add_add_bos_token(False)
  2133. def set_gguf_parameters(self):
  2134. super().set_gguf_parameters()
  2135. hparams = self.hparams
  2136. if not self.is_mistral_format:
  2137. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2138. if (rope_dim := hparams.get("head_dim")) is None:
  2139. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2140. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2141. @staticmethod
  2142. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2143. if n_head_kv is not None and n_head != n_head_kv:
  2144. n_head = n_head_kv
  2145. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2146. .swapaxes(1, 2)
  2147. .reshape(weights.shape))
  2148. _experts: list[dict[str, Tensor]] | None = None
  2149. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2150. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2151. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2152. vision_prefixes = [
  2153. "vision_encoder.",
  2154. "vision_language_adapter.",
  2155. "patch_merger.",
  2156. "pre_mm_projector_norm",
  2157. "audio_encoder.",
  2158. ]
  2159. is_multimodal_tensor = "vision_tower" in name \
  2160. or "vision_model" in name \
  2161. or "audio_tower" in name \
  2162. or "model.connector" in name \
  2163. or "multi_modal_projector" in name \
  2164. or any(
  2165. name.startswith(prefix)
  2166. for prefix in vision_prefixes
  2167. )
  2168. if is_multimodal_tensor:
  2169. return [] # skip vision tensors
  2170. elif self.hf_arch == "LlamaModel":
  2171. name = "model." + name
  2172. elif name.startswith("model.text_model"):
  2173. name = name.replace("text_model.", "") # for SmolVLM
  2174. elif name.startswith("language_model."):
  2175. name = name.replace("language_model.", "") # for the rest
  2176. if self.undo_permute:
  2177. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2178. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2179. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2180. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2181. # process the experts separately
  2182. if name.find("block_sparse_moe.experts") != -1:
  2183. n_experts = self.hparams["num_local_experts"]
  2184. assert bid is not None
  2185. if self._experts is None:
  2186. self._experts = [{} for _ in range(self.block_count)]
  2187. self._experts[bid][name] = data_torch
  2188. if len(self._experts[bid]) >= n_experts * 3:
  2189. tensors: list[tuple[str, Tensor]] = []
  2190. # merge the experts into a single 3d tensor
  2191. for wid in ["w1", "w2", "w3"]:
  2192. datas: list[Tensor] = []
  2193. for xid in range(n_experts):
  2194. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2195. datas.append(self._experts[bid][ename])
  2196. del self._experts[bid][ename]
  2197. data_torch = torch.stack(datas, dim=0)
  2198. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2199. new_name = self.map_tensor_name(merged_name)
  2200. tensors.append((new_name, data_torch))
  2201. return tensors
  2202. else:
  2203. return []
  2204. return [(self.map_tensor_name(name), data_torch)]
  2205. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2206. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2207. if rope_params.get("rope_type", '').lower() == "llama3":
  2208. base = rope_params.get("rope_theta", 10000.0)
  2209. if (dim := self.hparams.get("head_dim")) is None:
  2210. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2211. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2212. factor = rope_params.get("factor", 8.0)
  2213. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2214. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2215. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2216. low_freq_wavelen = old_context_len / low_freq_factor
  2217. high_freq_wavelen = old_context_len / high_freq_factor
  2218. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2219. rope_factors = []
  2220. for freq in freqs:
  2221. wavelen = 2 * math.pi / freq
  2222. if wavelen < high_freq_wavelen:
  2223. rope_factors.append(1)
  2224. elif wavelen > low_freq_wavelen:
  2225. rope_factors.append(factor)
  2226. else:
  2227. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2228. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2229. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2230. def prepare_tensors(self):
  2231. super().prepare_tensors()
  2232. if self._experts is not None:
  2233. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2234. experts = [k for d in self._experts for k in d.keys()]
  2235. if len(experts) > 0:
  2236. raise ValueError(f"Unprocessed experts: {experts}")
  2237. @ModelBase.register("ArceeForCausalLM")
  2238. class ArceeModel(LlamaModel):
  2239. model_arch = gguf.MODEL_ARCH.ARCEE
  2240. def set_gguf_parameters(self):
  2241. super().set_gguf_parameters()
  2242. self._try_set_pooling_type()
  2243. @ModelBase.register("AfmoeForCausalLM")
  2244. class AfmoeModel(LlamaModel):
  2245. model_arch = gguf.MODEL_ARCH.AFMOE
  2246. def set_gguf_parameters(self):
  2247. super().set_gguf_parameters()
  2248. # MoE parameters
  2249. if (n_experts := self.hparams.get("num_experts")) is not None:
  2250. self.gguf_writer.add_expert_count(n_experts)
  2251. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2252. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2253. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2254. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2255. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2256. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2257. # Route normalization and scaling
  2258. if (route_norm := self.hparams.get("route_norm")) is not None:
  2259. self.gguf_writer.add_expert_weights_norm(route_norm)
  2260. if (route_scale := self.hparams.get("route_scale")) is not None:
  2261. self.gguf_writer.add_expert_weights_scale(route_scale)
  2262. # Sliding window attention
  2263. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2264. self.gguf_writer.add_sliding_window(sliding_window)
  2265. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2266. # Handle expert weights - they're already merged in the HF format
  2267. # process the experts separately
  2268. if name.find("mlp.experts") != -1:
  2269. n_experts = self.hparams["num_experts"]
  2270. assert bid is not None
  2271. if self._experts is None:
  2272. self._experts = [{} for _ in range(self.block_count)]
  2273. self._experts[bid][name] = data_torch
  2274. if len(self._experts[bid]) >= n_experts * 3:
  2275. tensors: list[tuple[str, Tensor]] = []
  2276. # merge the experts into a single 3d tensor
  2277. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2278. datas: list[Tensor] = []
  2279. for xid in range(n_experts):
  2280. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2281. datas.append(self._experts[bid][ename_to_retrieve])
  2282. del self._experts[bid][ename_to_retrieve]
  2283. data_torch = torch.stack(datas, dim=0)
  2284. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2285. new_name = self.map_tensor_name(merged_name)
  2286. tensors.append((new_name, data_torch))
  2287. return tensors
  2288. else:
  2289. return []
  2290. if name.endswith(".expert_bias"):
  2291. name = name.replace(".expert_bias", ".expert_bias.bias")
  2292. return [(self.map_tensor_name(name), data_torch)]
  2293. @ModelBase.register(
  2294. "LlavaForConditionalGeneration", # pixtral
  2295. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2296. )
  2297. class LlavaVisionModel(MmprojModel):
  2298. img_break_tok_id = -1
  2299. use_break_tok = True
  2300. def __init__(self, *args, **kwargs):
  2301. super().__init__(*args, **kwargs)
  2302. if self.hparams.get("model_type") == "pixtral":
  2303. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2304. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2305. if self.use_break_tok:
  2306. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2307. elif self.is_mistral_format:
  2308. # hparams is already vision config here so norm_eps is only defined in global_config.
  2309. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2310. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2311. if self.use_break_tok:
  2312. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2313. else:
  2314. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2315. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2316. def get_token_id(self, token: str) -> int:
  2317. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2318. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2319. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2320. for id_, token_data in added_tokens_decoder.items():
  2321. if token_data["content"] == token:
  2322. return int(id_)
  2323. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2324. def set_gguf_parameters(self):
  2325. super().set_gguf_parameters()
  2326. hparams = self.hparams
  2327. if hparams.get("model_type") == "pixtral":
  2328. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2329. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2330. # hidden_act
  2331. if hparams["hidden_act"] == "silu":
  2332. self.gguf_writer.add_vision_use_silu(True)
  2333. elif hparams["hidden_act"] == "gelu":
  2334. self.gguf_writer.add_vision_use_gelu(True)
  2335. else:
  2336. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2337. # spatial_merge_size
  2338. if "spatial_merge_size" in self.global_config:
  2339. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2340. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2341. del bid # unused
  2342. n_head = (
  2343. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2344. )
  2345. n_kv_head = n_head
  2346. valid_prefixes = (
  2347. "multi_modal_projector.",
  2348. "vision_tower.",
  2349. "vision_encoder.",
  2350. "vision_language_adapter.",
  2351. "patch_merger.",
  2352. "pre_mm_projector_norm",
  2353. )
  2354. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2355. # process vision tensors
  2356. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2357. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2358. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2359. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2360. return [(self.map_tensor_name(name), data_torch)]
  2361. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2362. if self.img_break_tok_id > 0 and embed_key in name:
  2363. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2364. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2365. img_break_embd = data_torch[self.img_break_tok_id]
  2366. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2367. return [(self.map_tensor_name(name), img_break_embd)]
  2368. return [] # skip other tensors
  2369. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2370. class SmolVLMModel(MmprojModel):
  2371. def __init__(self, *args, **kwargs):
  2372. super().__init__(*args, **kwargs)
  2373. if self.hparams["model_type"] == "smolvlm_vision":
  2374. # fix for SmolVLM2, missing some keys in config.json
  2375. # default values are taken from transformers code
  2376. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2377. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2378. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2379. def set_gguf_parameters(self):
  2380. super().set_gguf_parameters()
  2381. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2382. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2383. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2384. self.gguf_writer.add_vision_use_gelu(True)
  2385. # Add the preprocessor longest edge size
  2386. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2387. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2388. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2389. if ".embeddings." in name:
  2390. return gguf.GGMLQuantizationType.F32
  2391. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2392. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2393. del bid # unused
  2394. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2395. if is_vision_tensor:
  2396. return [(self.map_tensor_name(name), data_torch)]
  2397. return [] # skip other tensors
  2398. @ModelBase.register(
  2399. "Llama4ForConditionalGeneration",
  2400. "Llama4ForCausalLM",
  2401. )
  2402. class Llama4Model(LlamaModel):
  2403. model_arch = gguf.MODEL_ARCH.LLAMA4
  2404. undo_permute = False
  2405. def __init__(self, *args, **kwargs):
  2406. super().__init__(*args, **kwargs)
  2407. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2408. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2409. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2410. def set_vocab(self):
  2411. self._set_vocab_gpt2()
  2412. def set_gguf_parameters(self):
  2413. super().set_gguf_parameters()
  2414. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2415. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2416. if "layer_types" in self.hparams:
  2417. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2418. # all layers are full attention (for MobileLLM), disable swa
  2419. self.gguf_writer.add_sliding_window(0)
  2420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2421. if name.startswith("language_model."):
  2422. name = name.replace("language_model.", "")
  2423. # split the gate_up into gate and up
  2424. if "gate_up_proj" in name:
  2425. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2426. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2427. dim_half = data_torch.shape[-1] // 2
  2428. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2429. return [
  2430. (self.map_tensor_name(name_gate), gate_proj_weight),
  2431. (self.map_tensor_name(name_up), up_proj_weight)
  2432. ]
  2433. if name.endswith("down_proj"):
  2434. name += ".weight"
  2435. data_torch = data_torch.transpose(-1, -2)
  2436. if "multi_modal_projector" in name or "vision_model" in name:
  2437. return []
  2438. return super().modify_tensors(data_torch, name, bid)
  2439. @ModelBase.register("Llama4ForConditionalGeneration")
  2440. class Llama4VisionModel(MmprojModel):
  2441. def set_gguf_parameters(self):
  2442. super().set_gguf_parameters()
  2443. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2444. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2445. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2446. assert self.hparams["hidden_act"] == "gelu"
  2447. self.gguf_writer.add_vision_use_gelu(True)
  2448. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2449. del bid # unused
  2450. if "multi_modal_projector" in name or "vision_model" in name:
  2451. # process vision tensors
  2452. if "positional_embedding_vlm" in name and ".weight" not in name:
  2453. name += ".weight"
  2454. if "multi_modal_projector.linear_1" in name:
  2455. # despite the name with number postfix, this is a single fully connected layer
  2456. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2457. return [(self.map_tensor_name(name), data_torch)]
  2458. return []
  2459. @ModelBase.register("Mistral3ForConditionalGeneration")
  2460. class Mistral3Model(LlamaModel):
  2461. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2462. def __init__(self, *args, **kwargs):
  2463. super().__init__(*args, **kwargs)
  2464. # for compatibility, we use LLAMA arch for older models
  2465. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2466. if self.hparams.get("model_type") != "ministral3":
  2467. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2468. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2469. self.gguf_writer.add_architecture()
  2470. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2471. def set_gguf_parameters(self):
  2472. super().set_gguf_parameters()
  2473. rope_params = self.rope_parameters
  2474. if self.hparams.get("model_type") == "ministral3":
  2475. assert rope_params, "ministral3 must have 'rope_parameters' config"
  2476. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2477. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2478. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2479. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2480. name = name.replace("language_model.", "")
  2481. if "multi_modal_projector" in name or "vision_tower" in name:
  2482. return []
  2483. return super().modify_tensors(data_torch, name, bid)
  2484. @ModelBase.register("DeciLMForCausalLM")
  2485. class DeciModel(TextModel):
  2486. model_arch = gguf.MODEL_ARCH.DECI
  2487. @staticmethod
  2488. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2489. # DeciLM-specific code
  2490. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2491. return DeciModel._find_multiple(intermediate_size, 256)
  2492. @staticmethod
  2493. def _find_multiple(n: int, k: int) -> int:
  2494. # DeciLM-specific code
  2495. if n % k == 0:
  2496. return n
  2497. return n + k - (n % k)
  2498. def __init__(self, *args, **kwargs):
  2499. super().__init__(*args, **kwargs)
  2500. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2501. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2502. assert self.block_count == len(_block_configs)
  2503. self._num_kv_heads = list()
  2504. self._num_heads = list()
  2505. _ffn_multipliers = list()
  2506. # ***linear attention layer***
  2507. # if n_heads_in_group is None and replace_with_linear is True
  2508. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2509. # ***attention-free layer***
  2510. # if n_heads_in_group is None and replace_with_linear is False
  2511. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2512. # ***normal attention-layer***
  2513. # if n_heads_in_group is not None, then
  2514. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2515. # _num_heads[il] is num_attention_head
  2516. # ***dummy layer*** for nemotron 253B
  2517. # if n_heads_in_group is None and ffn_mult is None
  2518. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2519. for il in range(len(_block_configs)):
  2520. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2521. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2522. self._num_kv_heads.append(0)
  2523. self._num_heads.append(self.hparams["num_attention_heads"])
  2524. else:
  2525. self._num_kv_heads.append(0)
  2526. self._num_heads.append(0)
  2527. else:
  2528. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2529. self._num_heads.append(self.hparams["num_attention_heads"])
  2530. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2531. _ffn_multipliers.append(0.0)
  2532. else:
  2533. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2534. assert self.block_count == len(self._num_kv_heads)
  2535. assert self.block_count == len(self._num_heads)
  2536. assert self.block_count == len(_ffn_multipliers)
  2537. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2538. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2539. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2540. self._ffn_dims: list[int] = [
  2541. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2542. for multiplier in _ffn_multipliers
  2543. ]
  2544. def set_vocab(self):
  2545. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2546. # eos_token from '|eot_id|' to '|end_of_text|'
  2547. if self.hparams.get("vocab_size", 128256) == 128256:
  2548. tokens, toktypes, tokpre = self.get_vocab_base()
  2549. self.gguf_writer.add_tokenizer_model("gpt2")
  2550. self.gguf_writer.add_tokenizer_pre(tokpre)
  2551. self.gguf_writer.add_token_list(tokens)
  2552. self.gguf_writer.add_token_types(toktypes)
  2553. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2554. special_vocab.add_to_gguf(self.gguf_writer)
  2555. else:
  2556. # DeciLM-7B
  2557. self._set_vocab_llama_hf()
  2558. def set_gguf_parameters(self):
  2559. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2560. assert self.block_count == len(self._num_kv_heads)
  2561. assert self.block_count == len(self._num_heads)
  2562. assert self.block_count == len(self._ffn_dims)
  2563. if (rope_theta := self.rope_parameters.get("rope_theta")) is not None:
  2564. self.gguf_writer.add_rope_freq_base(rope_theta)
  2565. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2566. self.gguf_writer.add_head_count(self._num_heads)
  2567. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2568. self.gguf_writer.add_block_count(self.block_count)
  2569. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2570. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2571. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2572. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2573. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2574. self.gguf_writer.add_file_type(self.ftype)
  2575. else: # DeciLM-7B
  2576. super().set_gguf_parameters()
  2577. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2578. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2579. assert self.block_count == len(self._num_kv_heads)
  2580. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2581. hparams = self.hparams
  2582. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2583. if (rope_dim := hparams.get("head_dim")) is None:
  2584. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2585. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2586. @staticmethod
  2587. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2588. if n_head_kv is not None and n_head != n_head_kv:
  2589. n_head = n_head_kv
  2590. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2591. .swapaxes(1, 2)
  2592. .reshape(weights.shape))
  2593. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2594. n_head = self.hparams["num_attention_heads"]
  2595. if bid is not None:
  2596. if "num_key_value_heads_per_layer" in self.hparams:
  2597. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2598. elif "block_configs" in self.hparams:
  2599. n_kv_head = self._num_kv_heads[bid]
  2600. n_head = self._num_heads[bid]
  2601. else:
  2602. n_kv_head = self.hparams.get("num_key_value_heads")
  2603. else:
  2604. n_kv_head = self.hparams.get("num_key_value_heads")
  2605. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2606. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2607. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2608. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2609. return [(self.map_tensor_name(name), data_torch)]
  2610. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2611. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  2612. if rope_params.get("rope_type", '').lower() == "llama3":
  2613. base = rope_params.get("rope_theta", 10000.0)
  2614. if (dim := self.hparams.get("head_dim")) is None:
  2615. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2616. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2617. factor = rope_params.get("factor", 8.0)
  2618. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  2619. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  2620. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2621. low_freq_wavelen = old_context_len / low_freq_factor
  2622. high_freq_wavelen = old_context_len / high_freq_factor
  2623. assert low_freq_wavelen != high_freq_wavelen
  2624. rope_factors = []
  2625. for freq in freqs:
  2626. wavelen = 2 * math.pi / freq
  2627. if wavelen < high_freq_wavelen:
  2628. rope_factors.append(1)
  2629. elif wavelen > low_freq_wavelen:
  2630. rope_factors.append(factor)
  2631. else:
  2632. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2633. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2634. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2635. def prepare_tensors(self):
  2636. super().prepare_tensors()
  2637. @ModelBase.register("BitnetForCausalLM")
  2638. class BitnetModel(TextModel):
  2639. model_arch = gguf.MODEL_ARCH.BITNET
  2640. def set_vocab(self):
  2641. self._set_vocab_sentencepiece()
  2642. def set_gguf_parameters(self):
  2643. super().set_gguf_parameters()
  2644. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2645. self.gguf_writer.add_rope_scaling_factor(1.0)
  2646. def weight_quant(self, weight: Tensor) -> Tensor:
  2647. dtype = weight.dtype
  2648. weight = weight.float()
  2649. scale = weight.abs().mean().clamp(min=1e-5)
  2650. iscale = 1 / scale
  2651. # TODO: multiply by the scale directly instead of inverting it twice
  2652. # (this is also unnecessarily doubly inverted upstream)
  2653. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2654. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2655. return result.type(dtype)
  2656. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2657. new_name = self.map_tensor_name(name)
  2658. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2659. gguf.MODEL_TENSOR.ATTN_Q,
  2660. gguf.MODEL_TENSOR.ATTN_K,
  2661. gguf.MODEL_TENSOR.ATTN_V,
  2662. gguf.MODEL_TENSOR.ATTN_OUT,
  2663. gguf.MODEL_TENSOR.FFN_UP,
  2664. gguf.MODEL_TENSOR.FFN_DOWN,
  2665. gguf.MODEL_TENSOR.FFN_GATE,
  2666. ]):
  2667. # transform weight into 1/0/-1 (in fp32)
  2668. data_torch = self.weight_quant(data_torch)
  2669. yield (new_name, data_torch)
  2670. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2671. class GrokModel(TextModel):
  2672. model_arch = gguf.MODEL_ARCH.GROK
  2673. def set_vocab(self):
  2674. if (self.dir_model / 'tokenizer.model').is_file():
  2675. self._set_vocab_sentencepiece()
  2676. return
  2677. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2678. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2679. sys.exit(1)
  2680. self._set_vocab_gpt2()
  2681. def __init__(self, *args, **kwargs):
  2682. super().__init__(*args, **kwargs)
  2683. def set_gguf_parameters(self):
  2684. super().set_gguf_parameters()
  2685. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2686. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2687. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2688. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2689. if (rope_dim := self.hparams.get("head_dim")) is None:
  2690. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2691. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2692. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2693. # Treat "original" as "yarn", seems to have been a mistake
  2694. if self.hparams.get("rope_type") in ("yarn", "original"):
  2695. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2696. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2697. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2698. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2699. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2700. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2701. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2702. if temp_len := self.hparams.get("attn_temperature_len"):
  2703. self.gguf_writer.add_attn_temperature_length(temp_len)
  2704. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2705. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2706. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2707. _experts: list[dict[str, list[Tensor]]] | None = None
  2708. _cur_expert = ""
  2709. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2710. tensors: list[tuple[str, Tensor]] = []
  2711. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2712. if not is_expert:
  2713. tensors.append((self.map_tensor_name(name), data_torch))
  2714. # process the experts separately
  2715. if is_expert or self._cur_expert:
  2716. n_experts = self.hparams["num_local_experts"]
  2717. assert bid is not None
  2718. if self._experts is None:
  2719. self._experts = [{} for _ in range(self.block_count)]
  2720. # concatenate split tensors
  2721. if name in self._experts[bid]:
  2722. self._cur_expert = name
  2723. self._experts[bid][name].append(data_torch)
  2724. return []
  2725. elif is_expert:
  2726. self._cur_expert = name
  2727. self._experts[bid][name] = [data_torch]
  2728. return []
  2729. else:
  2730. self._cur_expert = ""
  2731. for bid in range(self.block_count):
  2732. if len(self._experts[bid]) >= n_experts * 3:
  2733. # merge the experts into a single 3d tensor
  2734. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2735. datas: list[Tensor] = []
  2736. for xid in range(n_experts):
  2737. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2738. if ename not in self._experts[bid]:
  2739. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2740. tensor_list = self._experts[bid][ename]
  2741. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2742. del self._experts[bid][ename]
  2743. data_torch = torch.stack(datas, dim=0)
  2744. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2745. new_name = self.map_tensor_name(merged_name)
  2746. yield (new_name, data_torch)
  2747. yield from tensors
  2748. @ModelBase.register("DbrxForCausalLM")
  2749. class DbrxModel(TextModel):
  2750. model_arch = gguf.MODEL_ARCH.DBRX
  2751. def set_gguf_parameters(self):
  2752. ffn_config = self.hparams["ffn_config"]
  2753. attn_config = self.hparams["attn_config"]
  2754. self.gguf_writer.add_block_count(self.block_count)
  2755. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2756. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2757. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2758. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2759. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2760. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2761. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2762. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2763. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2764. self.gguf_writer.add_layer_norm_eps(1e-5)
  2765. self.gguf_writer.add_file_type(self.ftype)
  2766. logger.info(f"gguf: file type = {self.ftype}")
  2767. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2768. del bid # unused
  2769. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2770. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2771. n_embd = self.hparams["d_model"]
  2772. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2773. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2774. # But llama.cpp moe graph works differently
  2775. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2776. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2777. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2778. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2779. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2780. experts = False
  2781. for exp_tensor_name in exp_tensor_names.keys():
  2782. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2783. experts = True
  2784. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2785. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2786. data_torch = data_torch.permute(*permute_tensor)
  2787. break
  2788. # map tensor names
  2789. # In MoE models the ffn tensors are typically most of the model weights,
  2790. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2791. # Every other model has the weight names ending in .weight,
  2792. # let's assume that is the convention which is not the case for dbrx:
  2793. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2794. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2795. return [(new_name, data_torch)]
  2796. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2797. del name, new_name, bid # unused
  2798. return n_dims > 1
  2799. @ModelBase.register("MiniCPMForCausalLM")
  2800. class MiniCPMModel(TextModel):
  2801. model_arch = gguf.MODEL_ARCH.MINICPM
  2802. def set_gguf_parameters(self):
  2803. super().set_gguf_parameters()
  2804. embedding_scale = float(self.hparams["scale_emb"])
  2805. self.gguf_writer.add_embedding_scale(embedding_scale)
  2806. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2807. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2808. self.gguf_writer.add_residual_scale(residual_scale)
  2809. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2810. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2811. self.gguf_writer.add_logit_scale(logit_scale)
  2812. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2813. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2814. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2815. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2816. if rope_scaling is not None:
  2817. long_factors = rope_scaling.get('long_factor', None)
  2818. short_factors = rope_scaling.get('short_factor', None)
  2819. if long_factors is None or short_factors is None:
  2820. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2821. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2822. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2823. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2824. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2825. def set_vocab(self):
  2826. self._set_vocab_sentencepiece()
  2827. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2828. del bid # unused
  2829. n_head = self.hparams["num_attention_heads"]
  2830. n_kv_head = self.hparams.get("num_key_value_heads")
  2831. # HF models permute some of the tensors, so we need to undo that
  2832. if name.endswith(("q_proj.weight")):
  2833. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2834. if name.endswith(("k_proj.weight")):
  2835. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2836. return [(self.map_tensor_name(name), data_torch)]
  2837. @ModelBase.register("MiniCPM3ForCausalLM")
  2838. class MiniCPM3Model(TextModel):
  2839. model_arch = gguf.MODEL_ARCH.MINICPM3
  2840. def set_gguf_parameters(self):
  2841. hparams = self.hparams
  2842. self.gguf_writer.add_file_type(self.ftype)
  2843. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2844. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2845. self.gguf_writer.add_block_count(self.block_count)
  2846. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2847. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2848. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2849. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2850. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2851. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2852. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2853. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2854. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2855. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2856. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2857. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2858. if rope_scaling is not None:
  2859. rope_dims = self.hparams["qk_rope_head_dim"]
  2860. long_factors = rope_scaling.get('long_factor', None)
  2861. short_factors = rope_scaling.get('short_factor', None)
  2862. if long_factors is None or short_factors is None:
  2863. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2864. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2865. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2866. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2867. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2868. def set_vocab(self):
  2869. self._set_vocab_sentencepiece()
  2870. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2871. if n_kv_head is not None and n_head != n_kv_head:
  2872. n_head //= n_kv_head
  2873. return (
  2874. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2875. .swapaxes(1, 2)
  2876. .reshape(weights.shape)
  2877. )
  2878. @ModelBase.register("QWenLMHeadModel")
  2879. class QwenModel(TextModel):
  2880. model_arch = gguf.MODEL_ARCH.QWEN
  2881. @staticmethod
  2882. def token_bytes_to_string(b):
  2883. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2884. byte_encoder = bytes_to_unicode()
  2885. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2886. @staticmethod
  2887. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2888. parts = [bytes([b]) for b in token]
  2889. while True:
  2890. min_idx = None
  2891. min_rank = None
  2892. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2893. rank = mergeable_ranks.get(pair[0] + pair[1])
  2894. if rank is not None and (min_rank is None or rank < min_rank):
  2895. min_idx = i
  2896. min_rank = rank
  2897. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2898. break
  2899. assert min_idx is not None
  2900. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2901. return parts
  2902. def set_vocab(self):
  2903. self._set_vocab_qwen()
  2904. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration", "KORMoForCausalLM", "AudioFlamingo3ForConditionalGeneration")
  2905. class Qwen2Model(TextModel):
  2906. model_arch = gguf.MODEL_ARCH.QWEN2
  2907. def set_vocab(self):
  2908. try:
  2909. self._set_vocab_sentencepiece()
  2910. except FileNotFoundError:
  2911. self._set_vocab_gpt2()
  2912. def set_gguf_parameters(self):
  2913. super().set_gguf_parameters()
  2914. self._try_set_pooling_type()
  2915. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2916. if self.hf_arch == "Qwen2Model":
  2917. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2918. if "language_model." in name:
  2919. name = name.replace("language_model.", "") # for InternVL
  2920. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2921. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2922. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2923. # skip vision and audio tensors
  2924. return []
  2925. yield from super().modify_tensors(data_torch, name, bid)
  2926. @ModelBase.register("DreamModel")
  2927. class DreamModel(TextModel):
  2928. model_arch = gguf.MODEL_ARCH.DREAM
  2929. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2930. tokens: list[str] = []
  2931. toktypes: list[int] = []
  2932. from transformers import AutoTokenizer
  2933. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2934. vocab_dict = tokenizer.get_vocab()
  2935. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2936. assert max(vocab_dict.values()) < vocab_size
  2937. tokpre = self.get_vocab_base_pre(tokenizer)
  2938. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2939. added_vocab = tokenizer.get_added_vocab()
  2940. for i in range(vocab_size):
  2941. if i not in reverse_vocab:
  2942. tokens.append(f"[PAD{i}]")
  2943. toktypes.append(gguf.TokenType.UNUSED)
  2944. elif reverse_vocab[i] in added_vocab:
  2945. tokens.append(reverse_vocab[i])
  2946. # Check if it's a special token - treat special tokens as CONTROL tokens
  2947. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2948. if tokenizer.added_tokens_decoder[i].special:
  2949. toktypes.append(gguf.TokenType.CONTROL)
  2950. else:
  2951. toktypes.append(gguf.TokenType.USER_DEFINED)
  2952. else:
  2953. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2954. toktypes.append(gguf.TokenType.CONTROL)
  2955. else:
  2956. tokens.append(reverse_vocab[i])
  2957. toktypes.append(gguf.TokenType.NORMAL)
  2958. return tokens, toktypes, tokpre
  2959. def set_vocab(self):
  2960. try:
  2961. self._set_vocab_sentencepiece()
  2962. except FileNotFoundError:
  2963. self._set_vocab_gpt2()
  2964. def set_gguf_parameters(self):
  2965. super().set_gguf_parameters()
  2966. self._try_set_pooling_type()
  2967. # Dream models use non-causal attention for diffusion
  2968. self.gguf_writer.add_causal_attention(False)
  2969. # Add Dream-specific parameters
  2970. mask_token_id = self.hparams.get("mask_token_id")
  2971. if mask_token_id is not None:
  2972. self.gguf_writer.add_mask_token_id(mask_token_id)
  2973. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2974. # Dream model tensors should be mapped directly since it's the base model
  2975. yield from super().modify_tensors(data_torch, name, bid)
  2976. @ModelBase.register("LLaDAModelLM")
  2977. class LLaDAModel(TextModel):
  2978. model_arch = gguf.MODEL_ARCH.LLADA
  2979. undo_permute = True
  2980. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2981. tokens: list[str] = []
  2982. toktypes: list[int] = []
  2983. from transformers import AutoTokenizer
  2984. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2985. vocab_dict = tokenizer.get_vocab()
  2986. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2987. assert max(vocab_dict.values()) < vocab_size
  2988. tokpre = self.get_vocab_base_pre(tokenizer)
  2989. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2990. added_vocab = tokenizer.get_added_vocab()
  2991. for i in range(vocab_size):
  2992. if i not in reverse_vocab:
  2993. tokens.append(f"[PAD{i}]")
  2994. toktypes.append(gguf.TokenType.UNUSED)
  2995. elif reverse_vocab[i] in added_vocab:
  2996. tokens.append(reverse_vocab[i])
  2997. # Check if it's a special token - treat special tokens as CONTROL tokens
  2998. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2999. if tokenizer.added_tokens_decoder[i].special:
  3000. toktypes.append(gguf.TokenType.CONTROL)
  3001. else:
  3002. toktypes.append(gguf.TokenType.USER_DEFINED)
  3003. else:
  3004. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  3005. toktypes.append(gguf.TokenType.CONTROL)
  3006. else:
  3007. tokens.append(reverse_vocab[i])
  3008. toktypes.append(gguf.TokenType.NORMAL)
  3009. return tokens, toktypes, tokpre
  3010. def set_vocab(self):
  3011. self._set_vocab_gpt2()
  3012. # LLaDA specific parameters
  3013. self.gguf_writer.add_add_bos_token(True)
  3014. def set_gguf_parameters(self):
  3015. super().set_gguf_parameters()
  3016. self._try_set_pooling_type()
  3017. # Add parameters similar to LlamaModel
  3018. hparams = self.hparams
  3019. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3020. if (rope_dim := hparams.get("head_dim")) is None:
  3021. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  3022. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  3023. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3024. # Set context length for LLaDA
  3025. context_length = self.hparams.get("max_sequence_length", 4096)
  3026. self.gguf_writer.add_context_length(context_length)
  3027. # Set embedding length (dimension size)
  3028. embedding_length = self.hparams.get("d_model", 4096)
  3029. self.gguf_writer.add_embedding_length(embedding_length)
  3030. # Set feed forward length (MLP hidden size)
  3031. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  3032. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  3033. # LLaDA models use non-causal attention for diffusion, similar to Dream
  3034. self.gguf_writer.add_causal_attention(False)
  3035. # LLaDA models don't shift their logits
  3036. self.gguf_writer.add_diffusion_shift_logits(False)
  3037. @staticmethod
  3038. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3039. if n_head_kv is not None and n_head != n_head_kv:
  3040. n_head = n_head_kv
  3041. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3042. .swapaxes(1, 2)
  3043. .reshape(weights.shape))
  3044. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3045. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  3046. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  3047. if self.undo_permute:
  3048. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3049. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  3050. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3051. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  3052. # LLaDA model tensors should be mapped directly since it's the base model
  3053. yield from super().modify_tensors(data_torch, name, bid)
  3054. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  3055. class Ernie4_5Model(TextModel):
  3056. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  3057. def set_vocab(self):
  3058. self._set_vocab_sentencepiece()
  3059. def set_gguf_parameters(self):
  3060. super().set_gguf_parameters()
  3061. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3062. num_heads = self.hparams["num_attention_heads"]
  3063. num_kv_heads = self.hparams["num_key_value_heads"]
  3064. if (head_dim := self.hparams.get("head_dim")) is None:
  3065. head_dim = self.hparams["hidden_size"] // num_heads
  3066. if "ernie." in name:
  3067. name = name.replace("ernie.", "model.")
  3068. # split the qkv weights
  3069. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  3070. if "qkv_proj" in name:
  3071. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  3072. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  3073. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  3074. total_q_dim = num_heads * head_dim
  3075. total_k_dim = num_kv_heads * head_dim
  3076. total_v_dim = num_kv_heads * head_dim
  3077. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3078. return [
  3079. (self.map_tensor_name(name_q), q_proj_weight),
  3080. (self.map_tensor_name(name_k), k_proj_weight),
  3081. (self.map_tensor_name(name_v), v_proj_weight)
  3082. ]
  3083. # split the up_gate_proj into gate and up
  3084. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3085. if "up_gate_proj" in name:
  3086. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3087. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3088. dim_half = data_torch.shape[0] // 2
  3089. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3090. return [
  3091. (self.map_tensor_name(name_gate), gate_proj_weight),
  3092. (self.map_tensor_name(name_up), up_proj_weight)
  3093. ]
  3094. return [(self.map_tensor_name(name), data_torch)]
  3095. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3096. class Ernie4_5MoeModel(Ernie4_5Model):
  3097. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3098. _experts: list[dict[str, Tensor]] | None = None
  3099. def __init__(self, *args, **kwargs):
  3100. super().__init__(*args, **kwargs)
  3101. self._experts = [{} for _ in range(self.block_count)]
  3102. def set_gguf_parameters(self):
  3103. super().set_gguf_parameters()
  3104. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3105. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3106. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3107. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3108. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3109. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3110. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3111. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3112. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3113. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3114. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3115. # Modify correction bias name as in DeepseekV2
  3116. if name.endswith("e_score_correction_bias"):
  3117. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3118. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3119. match = re.match(r"model.mtp_block.(\d+)", name)
  3120. if match:
  3121. return []
  3122. # skip all other MTP tensors for now
  3123. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3124. if match:
  3125. return []
  3126. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3127. if match:
  3128. return []
  3129. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3130. if match:
  3131. return []
  3132. # process the experts separately
  3133. if name.find("mlp.experts") != -1:
  3134. n_experts = self.hparams["moe_num_experts"]
  3135. assert bid is not None
  3136. if self._experts is None:
  3137. self._experts = [{} for _ in range(self.block_count)]
  3138. self._experts[bid][name] = data_torch
  3139. if len(self._experts[bid]) >= n_experts * 3:
  3140. tensors: list[tuple[str, Tensor]] = []
  3141. # merge the experts into a single 3d tensor
  3142. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3143. datas: list[Tensor] = []
  3144. for xid in range(n_experts):
  3145. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3146. datas.append(self._experts[bid][ename_to_retrieve])
  3147. del self._experts[bid][ename_to_retrieve]
  3148. data_torch = torch.stack(datas, dim=0)
  3149. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3150. new_name = self.map_tensor_name(merged_name)
  3151. tensors.append((new_name, data_torch))
  3152. return tensors
  3153. else:
  3154. return []
  3155. return [(self.map_tensor_name(name), data_torch)]
  3156. def prepare_tensors(self):
  3157. super().prepare_tensors()
  3158. if self._experts is not None:
  3159. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3160. experts = [k for d in self._experts for k in d.keys()]
  3161. if len(experts) > 0:
  3162. raise ValueError(f"Unprocessed experts: {experts}")
  3163. @ModelBase.register(
  3164. "Qwen2VLModel",
  3165. "Qwen2VLForConditionalGeneration",
  3166. "Qwen2_5_VLForConditionalGeneration",
  3167. "Qwen2_5OmniModel",
  3168. )
  3169. class Qwen2VLModel(TextModel):
  3170. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3171. def set_gguf_parameters(self):
  3172. super().set_gguf_parameters()
  3173. def set_vocab(self):
  3174. try:
  3175. self._set_vocab_sentencepiece()
  3176. except FileNotFoundError:
  3177. self._set_vocab_gpt2()
  3178. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3179. del bid # unused
  3180. if name.startswith("thinker."):
  3181. name = name.replace("thinker.", "")
  3182. if name.startswith("visual") or name.startswith("audio") or \
  3183. name.startswith("talker") or name.startswith("token2wav"):
  3184. # skip multimodal tensors
  3185. return []
  3186. return [(self.map_tensor_name(name), data_torch)]
  3187. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3188. class Qwen2VLVisionModel(MmprojModel):
  3189. def __init__(self, *args, **kwargs):
  3190. super().__init__(*args, **kwargs)
  3191. assert self.hparams_vision is not None
  3192. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3193. # rename config.json values
  3194. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3195. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3196. if "embed_dim" in self.hparams_vision: # qwen2vl
  3197. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3198. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3199. def set_gguf_parameters(self):
  3200. super().set_gguf_parameters()
  3201. assert self.hparams_vision is not None
  3202. hparams = self.hparams_vision
  3203. model_type = self.global_config['model_type']
  3204. if model_type == 'qwen2_vl':
  3205. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3206. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3207. if model_type == 'qwen2_5_omni':
  3208. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3209. else:
  3210. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3211. self.gguf_writer.add_vision_use_silu(True)
  3212. # find n_wa_pattern (window attention pattern)
  3213. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3214. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3215. n_wa_pattern = fullatt_block_indexes[0] + 1
  3216. # validate n_wa_pattern
  3217. for i in range(1, len(fullatt_block_indexes)):
  3218. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3219. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3220. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3221. else:
  3222. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3223. # default values below are taken from HF tranformers code
  3224. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3225. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3226. if ".position_embd." in new_name:
  3227. return gguf.GGMLQuantizationType.F32
  3228. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3229. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3230. del bid # unused
  3231. if name.startswith("visual."):
  3232. # process visual tensors
  3233. # split QKV tensors if needed
  3234. if ".qkv." in name:
  3235. if data_torch.ndim == 2: # weight
  3236. c3, _ = data_torch.shape
  3237. else: # bias
  3238. c3 = data_torch.shape[0]
  3239. assert c3 % 3 == 0
  3240. c = c3 // 3
  3241. wq = data_torch[:c]
  3242. wk = data_torch[c: c * 2]
  3243. wv = data_torch[c * 2:]
  3244. return [
  3245. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3246. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3247. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3248. ]
  3249. elif 'patch_embed.proj.weight' in name:
  3250. # split Conv3D into Conv2Ds
  3251. c1, c2, kt, kh, kw = data_torch.shape
  3252. del c1, c2, kh, kw # unused
  3253. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3254. return [
  3255. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3256. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3257. ]
  3258. else:
  3259. return [(self.map_tensor_name(name), data_torch)]
  3260. return [] # skip other tensors
  3261. @ModelBase.register("Qwen2_5OmniModel")
  3262. class Qwen25OmniModel(Qwen2VLVisionModel):
  3263. has_vision_encoder = True
  3264. has_audio_encoder = True
  3265. def __init__(self, *args, **kwargs):
  3266. super().__init__(*args, **kwargs)
  3267. assert self.hparams_audio is not None
  3268. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3269. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3270. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3271. def set_gguf_parameters(self):
  3272. super().set_gguf_parameters()
  3273. assert self.hparams_audio is not None
  3274. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3275. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3276. def get_vision_config(self) -> dict[str, Any] | None:
  3277. return self.global_config["thinker_config"].get("vision_config")
  3278. def get_audio_config(self) -> dict[str, Any] | None:
  3279. return self.global_config["thinker_config"].get("audio_config")
  3280. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3281. # SinusoidsPositionEmbedding
  3282. assert self.hparams_audio is not None
  3283. max_timescale = 10000
  3284. length = 1500
  3285. channels = self.hparams_audio["hidden_size"]
  3286. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3287. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3288. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3289. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3290. yield ("audio_tower.embed_positions.weight", pos_embd)
  3291. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3292. if ".conv" in name and ".weight" in name:
  3293. return gguf.GGMLQuantizationType.F16
  3294. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3295. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3296. if name.startswith("thinker."):
  3297. name = name.replace("thinker.", "")
  3298. if name.startswith("audio_tower"):
  3299. # process audio tensors
  3300. if "conv1.bias" in name or "conv2.bias" in name:
  3301. # transpose conv1 and conv2 bias
  3302. data_torch = data_torch.unsqueeze(-1)
  3303. if "audio_bos_eos_token" in name:
  3304. # this tensor is left unused in transformers code
  3305. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3306. return []
  3307. return [(self.map_tensor_name(name), data_torch)]
  3308. return super().modify_tensors(data_torch, name, bid)
  3309. @ModelBase.register("InternVisionModel")
  3310. class InternVisionModel(MmprojModel):
  3311. def set_gguf_parameters(self):
  3312. assert self.hparams_vision is not None
  3313. if isinstance(self.hparams_vision['image_size'], list):
  3314. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3315. if isinstance(self.hparams_vision['patch_size'], list):
  3316. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3317. super().set_gguf_parameters()
  3318. hparams = self.hparams
  3319. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3320. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3321. # hidden_act
  3322. if hparams["hidden_act"] == "silu":
  3323. self.gguf_writer.add_vision_use_silu(True)
  3324. elif hparams["hidden_act"] == "gelu":
  3325. self.gguf_writer.add_vision_use_gelu(True)
  3326. else:
  3327. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3328. # downsample_ratio
  3329. downsample_ratio = self.global_config.get("downsample_ratio")
  3330. assert downsample_ratio is not None
  3331. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3332. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3333. if ".position_embd." in new_name:
  3334. return gguf.GGMLQuantizationType.F32
  3335. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3336. def _mapping_interns1_name(self, name):
  3337. names_map = {
  3338. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3339. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3340. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3341. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3342. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3343. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3344. }
  3345. if name in names_map:
  3346. name = names_map[name]
  3347. return name
  3348. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3349. del bid # unused
  3350. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3351. # deal with intern-s1 special case
  3352. name = self._mapping_interns1_name(name)
  3353. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3354. # process visual tensors
  3355. # correct name
  3356. if name.startswith("vision_model"):
  3357. name = "vision_tower." + name
  3358. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3359. name += ".weight"
  3360. # split QKV tensors if needed
  3361. if ".qkv." in name:
  3362. if data_torch.ndim == 2: # weight
  3363. c3, _ = data_torch.shape
  3364. else: # bias
  3365. c3 = data_torch.shape[0]
  3366. assert c3 % 3 == 0
  3367. c = c3 // 3
  3368. wq = data_torch[:c]
  3369. wk = data_torch[c: c * 2]
  3370. wv = data_torch[c * 2:]
  3371. return [
  3372. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3373. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3374. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3375. ]
  3376. return [(self.map_tensor_name(name), data_torch)]
  3377. return [] # skip other tensors
  3378. @ModelBase.register("WavTokenizerDec")
  3379. class WavTokenizerDecModel(TextModel):
  3380. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3381. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3382. del bid # unused
  3383. if \
  3384. name.endswith("codebook.cluster_size") or \
  3385. name.endswith("codebook.embed_avg") or \
  3386. name.endswith("codebook.inited"):
  3387. logger.debug(f"Skipping {name!r}")
  3388. return []
  3389. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3390. return [(self.map_tensor_name(name), data_torch)]
  3391. def set_vocab(self):
  3392. self._set_vocab_none()
  3393. def set_gguf_parameters(self):
  3394. super().set_gguf_parameters()
  3395. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3396. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3397. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3398. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3399. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3400. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3401. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3402. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3403. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3404. self.gguf_writer.add_causal_attention(False)
  3405. @ModelBase.register("Qwen2MoeForCausalLM")
  3406. class Qwen2MoeModel(TextModel):
  3407. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3408. def set_gguf_parameters(self):
  3409. super().set_gguf_parameters()
  3410. if (n_experts := self.hparams.get("num_experts")) is not None:
  3411. self.gguf_writer.add_expert_count(n_experts)
  3412. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3413. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3414. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3415. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3416. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3417. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3418. _experts: list[dict[str, Tensor]] | None = None
  3419. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3420. # process the experts separately
  3421. name = name.replace("language_model.", "") # InternVL
  3422. # handle aggregated expert tensors
  3423. # GGUF stores dimensions reversed from PyTorch, so:
  3424. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3425. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3426. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3427. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3428. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3429. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3430. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3431. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3432. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3433. permuted = data_torch.permute(0, 2, 1).contiguous()
  3434. return [(self.map_tensor_name(mapped), permuted)]
  3435. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3436. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3437. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3438. split_dim = data_torch.shape[-1] // 2
  3439. gate = data_torch[..., :split_dim].contiguous()
  3440. up = data_torch[..., split_dim:].contiguous()
  3441. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3442. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3443. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3444. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3445. base_name = name.removesuffix(".weight")
  3446. base = base_name.rsplit('.', 1)[0]
  3447. mapped_gate = f"{base}.gate_proj.weight"
  3448. mapped_up = f"{base}.up_proj.weight"
  3449. perm_gate = gate.permute(0, 2, 1).contiguous()
  3450. perm_up = up.permute(0, 2, 1).contiguous()
  3451. return [
  3452. (self.map_tensor_name(mapped_gate), perm_gate),
  3453. (self.map_tensor_name(mapped_up), perm_up),
  3454. ]
  3455. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3456. # skip visual tensors
  3457. return []
  3458. if name.find("experts") != -1:
  3459. n_experts = self.hparams["num_experts"]
  3460. assert bid is not None
  3461. if self._experts is None:
  3462. self._experts = [{} for _ in range(self.block_count)]
  3463. self._experts[bid][name] = data_torch
  3464. if len(self._experts[bid]) >= n_experts * 3:
  3465. tensors: list[tuple[str, Tensor]] = []
  3466. # merge the experts into a single 3d tensor
  3467. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3468. datas: list[Tensor] = []
  3469. for xid in range(n_experts):
  3470. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3471. datas.append(self._experts[bid][ename])
  3472. del self._experts[bid][ename]
  3473. data_torch = torch.stack(datas, dim=0)
  3474. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3475. new_name = self.map_tensor_name(merged_name)
  3476. tensors.append((new_name, data_torch))
  3477. return tensors
  3478. else:
  3479. return []
  3480. return [(self.map_tensor_name(name), data_torch)]
  3481. def prepare_tensors(self):
  3482. super().prepare_tensors()
  3483. if self._experts is not None:
  3484. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3485. experts = [k for d in self._experts for k in d.keys()]
  3486. if len(experts) > 0:
  3487. raise ValueError(f"Unprocessed experts: {experts}")
  3488. @ModelBase.register("Qwen3ForCausalLM")
  3489. class Qwen3Model(Qwen2Model):
  3490. model_arch = gguf.MODEL_ARCH.QWEN3
  3491. # extra logic for rerank models
  3492. is_rerank: bool = False
  3493. is_tied_embeddings: bool = False
  3494. token_false_id: int | None = None
  3495. token_true_id: int | None = None
  3496. def __init__(self, *args, **kwargs):
  3497. super().__init__(*args, **kwargs)
  3498. # track for intern-s1-mini
  3499. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3500. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3501. # a bit hacky, but currently the only way to detect if this is a rerank model
  3502. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3503. readme_path = self.dir_model / "README.md"
  3504. readme_text = ""
  3505. if readme_path.exists():
  3506. with readme_path.open("r", encoding="utf-8") as f:
  3507. readme_text = f.read()
  3508. if "# Qwen3-Reranker" in readme_text:
  3509. self._find_rerank_config()
  3510. def set_vocab(self):
  3511. # deal with intern-s1-mini
  3512. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3513. self._set_vocab_interns1()
  3514. return
  3515. super().set_vocab()
  3516. def _find_rerank_config(self):
  3517. from transformers import AutoTokenizer
  3518. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3519. self.is_rerank = True
  3520. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3521. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3522. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3523. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3524. assert self.token_false_id is not None and self.token_true_id is not None
  3525. def set_gguf_parameters(self):
  3526. super().set_gguf_parameters()
  3527. if self.is_rerank:
  3528. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3529. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3530. self.gguf_writer.add_chat_template([{
  3531. "name": "rerank",
  3532. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3533. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3534. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3535. }])
  3536. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3537. # extract "yes" and "no" tokens from the output lm_head tensor
  3538. false_row = data_torch[self.token_false_id]
  3539. true_row = data_torch[self.token_true_id]
  3540. return torch.stack([true_row, false_row], dim=0)
  3541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3542. if "model.vision_" in name:
  3543. # skip multimodal tensors
  3544. return []
  3545. if self.is_rerank:
  3546. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3547. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3548. if is_tied_head or is_real_head:
  3549. cls_out_head = (
  3550. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3551. self._get_cls_out_tensor(data_torch),
  3552. )
  3553. if is_tied_head:
  3554. embed = (self.map_tensor_name(name), data_torch)
  3555. return [cls_out_head, embed]
  3556. if is_real_head:
  3557. return [cls_out_head]
  3558. return super().modify_tensors(data_torch, name, bid)
  3559. @ModelBase.register("Qwen3MoeForCausalLM")
  3560. class Qwen3MoeModel(Qwen2MoeModel):
  3561. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3562. def __init__(self, *args, **kwargs):
  3563. super().__init__(*args, **kwargs)
  3564. hparams = ModelBase.load_hparams(self.dir_model, False)
  3565. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3566. def set_vocab(self):
  3567. # deal with intern-s1
  3568. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3569. self._set_vocab_interns1()
  3570. return
  3571. super().set_vocab()
  3572. @ModelBase.register("Qwen3NextForCausalLM")
  3573. class Qwen3NextModel(Qwen2MoeModel):
  3574. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3575. def set_gguf_parameters(self):
  3576. super().set_gguf_parameters()
  3577. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3578. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3579. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3580. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3581. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3582. if (rope_dim := self.hparams.get("head_dim")) is None:
  3583. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3584. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3585. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3586. if name.startswith("mtp"):
  3587. return [] # ignore MTP layers for now
  3588. if name.endswith(".A_log"):
  3589. data_torch = -torch.exp(data_torch)
  3590. elif name.endswith(".dt_bias"):
  3591. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3592. elif "conv1d" in name:
  3593. data_torch = data_torch.squeeze()
  3594. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3595. data_torch = data_torch + 1
  3596. yield from super().modify_tensors(data_torch, name, bid)
  3597. @ModelBase.register("RND1")
  3598. class RND1Model(Qwen2MoeModel):
  3599. model_arch = gguf.MODEL_ARCH.RND1
  3600. def set_gguf_parameters(self):
  3601. super().set_gguf_parameters()
  3602. # RND1 specific parameters
  3603. # RND1 uses bidirectional attention
  3604. self.gguf_writer.add_causal_attention(False)
  3605. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3606. self.gguf_writer.add_mask_token_id(mask_token_id)
  3607. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3608. class Qwen3VLVisionModel(MmprojModel):
  3609. def __init__(self, *args, **kwargs):
  3610. super().__init__(*args, **kwargs)
  3611. assert self.hparams_vision is not None
  3612. # Compute image_size if not present
  3613. if "image_size" not in self.hparams_vision:
  3614. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3615. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3616. patch_size = self.hparams_vision.get("patch_size", 16)
  3617. # num_position_embeddings = (image_size / patch_size) ** 2
  3618. # So image_size = sqrt(num_position_embeddings) * patch_size
  3619. image_size = int(num_pos**0.5 * patch_size)
  3620. self.hparams_vision["image_size"] = image_size
  3621. # Rename config values for compatibility
  3622. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3623. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3624. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3625. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3626. self.is_deepstack_layers[idx] = True
  3627. def set_gguf_parameters(self):
  3628. super().set_gguf_parameters()
  3629. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3630. self.gguf_writer.add_vision_use_gelu(True)
  3631. if self.hparams_vision is not None:
  3632. merge_size = self.hparams_vision.get("spatial_merge_size")
  3633. if merge_size is not None:
  3634. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3635. # Use text config's rms_norm_eps for vision attention layernorm eps
  3636. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3637. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3638. if self.is_deepstack_layers:
  3639. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3640. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3641. assert self.hparams_vision is not None
  3642. # Skip text model tensors - they go in the text model file
  3643. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3644. return []
  3645. if name.startswith("model.visual."):
  3646. name = name.replace("model.visual.", "visual.", 1)
  3647. if name.startswith("visual.deepstack_merger_list."):
  3648. prefix, rest = name.split(".", maxsplit=3)[2:]
  3649. # prefix is the layer index, convert to absolute clip layer index!
  3650. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3651. target = rest
  3652. tensor_type: gguf.MODEL_TENSOR
  3653. if target.startswith("norm."):
  3654. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3655. suffix = target.split(".", 1)[1]
  3656. elif target.startswith("linear_fc1."):
  3657. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3658. suffix = target.split(".", 1)[1]
  3659. elif target.startswith("linear_fc2."):
  3660. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3661. suffix = target.split(".", 1)[1]
  3662. else:
  3663. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3664. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3665. return [(new_name, data_torch)]
  3666. if name.startswith("visual.merger."):
  3667. suffix = name.split(".", 2)[2]
  3668. if suffix.startswith("linear_fc"):
  3669. fc_idx_str, tail = suffix.split(".", 1)
  3670. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3671. # Qwen3VL has linear_fc1 and linear_fc2
  3672. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3673. if fc_num == 1:
  3674. fc_idx = 0
  3675. elif fc_num == 2:
  3676. fc_idx = 2
  3677. else:
  3678. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3679. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3680. elif suffix.startswith("norm."):
  3681. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3682. else:
  3683. raise ValueError(f"Unexpected merger tensor: {name}")
  3684. return [(new_name, data_torch)]
  3685. if name == "visual.patch_embed.proj.weight":
  3686. # split Conv3D into Conv2Ds along temporal dimension
  3687. c1, c2, kt, _, _ = data_torch.shape
  3688. del c1, c2
  3689. if kt != 2:
  3690. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3691. return [
  3692. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3693. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3694. ]
  3695. if name == "visual.patch_embed.proj.bias":
  3696. # Include the bias - it's used by the C++ code
  3697. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3698. if name.startswith("visual."):
  3699. return [(self.map_tensor_name(name), data_torch)]
  3700. # Fall back to parent class for other tensors
  3701. return super().modify_tensors(data_torch, name, bid)
  3702. @ModelBase.register("Glm4vForConditionalGeneration", "Glm4vMoeForConditionalGeneration")
  3703. class Glm4VVisionModel(Qwen3VLVisionModel):
  3704. def set_gguf_parameters(self):
  3705. MmprojModel.set_gguf_parameters(self) # skip Qwen3VLVisionModel parameters
  3706. assert self.hparams_vision is not None
  3707. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLM4V)
  3708. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  3709. if hidden_act == "gelu":
  3710. self.gguf_writer.add_vision_use_gelu(True)
  3711. elif hidden_act == "silu":
  3712. self.gguf_writer.add_vision_use_silu(True)
  3713. rms_norm_eps = self.hparams_vision.get("rms_norm_eps", 1e-5)
  3714. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3715. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3716. if name.startswith("model.visual."):
  3717. name = name.replace("model.visual.", "visual.")
  3718. if name.startswith("visual.merger."):
  3719. return [(self.map_tensor_name(name), data_torch)]
  3720. return super().modify_tensors(data_torch, name, bid)
  3721. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3722. class Qwen3VLTextModel(Qwen3Model):
  3723. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3724. def set_gguf_parameters(self):
  3725. super().set_gguf_parameters()
  3726. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3727. vision_config = self.hparams.get("vision_config", {})
  3728. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3729. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3730. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3731. # Skip vision tensors - they go in the mmproj file
  3732. if name.startswith("model.visual."):
  3733. return []
  3734. return super().modify_tensors(data_torch, name, bid)
  3735. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3736. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3737. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3738. def set_gguf_parameters(self):
  3739. super().set_gguf_parameters()
  3740. vision_config = self.hparams.get("vision_config", {})
  3741. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3742. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3743. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3744. # Skip vision tensors - they go in the mmproj file
  3745. if name.startswith("model.visual."):
  3746. return []
  3747. return super().modify_tensors(data_torch, name, bid)
  3748. @ModelBase.register("GPT2LMHeadModel")
  3749. class GPT2Model(TextModel):
  3750. model_arch = gguf.MODEL_ARCH.GPT2
  3751. def set_gguf_parameters(self):
  3752. self.gguf_writer.add_block_count(self.block_count)
  3753. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3754. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3755. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3756. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3757. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3758. self.gguf_writer.add_file_type(self.ftype)
  3759. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3760. del bid # unused
  3761. tensors: list[tuple[str, Tensor]] = []
  3762. # we don't need these
  3763. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3764. return tensors
  3765. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3766. data_torch = data_torch.transpose(1, 0)
  3767. new_name = self.map_tensor_name(name)
  3768. tensors.append((new_name, data_torch))
  3769. return tensors
  3770. @ModelBase.register("PhiForCausalLM")
  3771. class Phi2Model(TextModel):
  3772. model_arch = gguf.MODEL_ARCH.PHI2
  3773. def set_gguf_parameters(self):
  3774. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3775. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3776. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3777. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3778. self.gguf_writer.add_embedding_length(n_embd)
  3779. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3780. self.gguf_writer.add_block_count(self.block_count)
  3781. self.gguf_writer.add_head_count(n_head)
  3782. self.gguf_writer.add_head_count_kv(n_head)
  3783. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3784. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3785. self.gguf_writer.add_file_type(self.ftype)
  3786. self.gguf_writer.add_add_bos_token(False)
  3787. @ModelBase.register("Phi3ForCausalLM")
  3788. class Phi3MiniModel(TextModel):
  3789. model_arch = gguf.MODEL_ARCH.PHI3
  3790. def set_vocab(self):
  3791. # Phi-4 model uses GPT2Tokenizer
  3792. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3793. if tokenizer_config_file.is_file():
  3794. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3795. tokenizer_config_json = json.load(f)
  3796. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3797. if tokenizer_class == 'GPT2Tokenizer':
  3798. return self._set_vocab_gpt2()
  3799. from sentencepiece import SentencePieceProcessor
  3800. tokenizer_path = self.dir_model / 'tokenizer.model'
  3801. if not tokenizer_path.is_file():
  3802. raise ValueError(f'Error: Missing {tokenizer_path}')
  3803. tokenizer = SentencePieceProcessor()
  3804. tokenizer.LoadFromFile(str(tokenizer_path))
  3805. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3806. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3807. scores: list[float] = [-10000.0] * vocab_size
  3808. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3809. for token_id in range(tokenizer.vocab_size()):
  3810. piece = tokenizer.IdToPiece(token_id)
  3811. text = piece.encode("utf-8")
  3812. score = tokenizer.GetScore(token_id)
  3813. toktype = SentencePieceTokenTypes.NORMAL
  3814. if tokenizer.IsUnknown(token_id):
  3815. toktype = SentencePieceTokenTypes.UNKNOWN
  3816. elif tokenizer.IsControl(token_id):
  3817. toktype = SentencePieceTokenTypes.CONTROL
  3818. elif tokenizer.IsUnused(token_id):
  3819. toktype = SentencePieceTokenTypes.UNUSED
  3820. elif tokenizer.IsByte(token_id):
  3821. toktype = SentencePieceTokenTypes.BYTE
  3822. tokens[token_id] = text
  3823. scores[token_id] = score
  3824. toktypes[token_id] = toktype
  3825. added_tokens_file = self.dir_model / 'added_tokens.json'
  3826. if added_tokens_file.is_file():
  3827. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3828. added_tokens_json = json.load(f)
  3829. for key in added_tokens_json:
  3830. token_id = added_tokens_json[key]
  3831. if token_id >= vocab_size:
  3832. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3833. continue
  3834. tokens[token_id] = key.encode("utf-8")
  3835. scores[token_id] = -1000.0
  3836. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3837. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3838. if tokenizer_config_file.is_file():
  3839. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3840. tokenizer_config_json = json.load(f)
  3841. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3842. for token_id, foken_data in added_tokens_decoder.items():
  3843. token_id = int(token_id)
  3844. token = foken_data["content"].encode("utf-8")
  3845. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3846. if tokens[token_id] != token:
  3847. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3848. tokens[token_id] = token
  3849. scores[token_id] = -1000.0
  3850. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3851. if foken_data.get("special"):
  3852. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3853. tokenizer_file = self.dir_model / 'tokenizer.json'
  3854. if tokenizer_file.is_file():
  3855. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3856. tokenizer_json = json.load(f)
  3857. added_tokens = tokenizer_json.get("added_tokens", [])
  3858. for foken_data in added_tokens:
  3859. token_id = int(foken_data["id"])
  3860. token = foken_data["content"].encode("utf-8")
  3861. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3862. if tokens[token_id] != token:
  3863. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3864. tokens[token_id] = token
  3865. scores[token_id] = -1000.0
  3866. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3867. if foken_data.get("special"):
  3868. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3869. self.gguf_writer.add_tokenizer_model("llama")
  3870. self.gguf_writer.add_tokenizer_pre("default")
  3871. self.gguf_writer.add_token_list(tokens)
  3872. self.gguf_writer.add_token_scores(scores)
  3873. self.gguf_writer.add_token_types(toktypes)
  3874. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3875. special_vocab.add_to_gguf(self.gguf_writer)
  3876. def set_gguf_parameters(self):
  3877. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3878. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3879. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3880. rms_eps = self.find_hparam(["rms_norm_eps"])
  3881. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3882. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3883. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3884. rope_dims = int(rot_pct * n_embd) // n_head
  3885. self.gguf_writer.add_context_length(max_pos_embds)
  3886. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3887. self.gguf_writer.add_embedding_length(n_embd)
  3888. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3889. self.gguf_writer.add_block_count(self.block_count)
  3890. self.gguf_writer.add_head_count(n_head)
  3891. self.gguf_writer.add_head_count_kv(n_head_kv)
  3892. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3893. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3894. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters)["rope_theta"])
  3895. self.gguf_writer.add_file_type(self.ftype)
  3896. sliding_window = self.hparams.get("sliding_window")
  3897. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3898. if sliding_window is None:
  3899. sliding_window = 0
  3900. self.gguf_writer.add_sliding_window(sliding_window)
  3901. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3902. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3903. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3904. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3905. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3906. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3907. rope_dims = int(rot_pct * n_embd) // n_head
  3908. # write rope scaling for long context (128k) model
  3909. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3910. if rope_scaling is None:
  3911. return
  3912. scale = max_pos_embds / orig_max_pos_embds
  3913. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3914. if len(rope_scaling_type) == 0:
  3915. raise KeyError('Missing the required key rope_scaling.type')
  3916. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3917. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3918. elif rope_scaling_type == 'yarn':
  3919. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3920. else:
  3921. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3922. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3923. long_factors = rope_scaling.get('long_factor', None)
  3924. short_factors = rope_scaling.get('short_factor', None)
  3925. if long_factors is None or short_factors is None:
  3926. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3927. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3928. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3929. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3930. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3931. @ModelBase.register("PhiMoEForCausalLM")
  3932. class PhiMoeModel(Phi3MiniModel):
  3933. model_arch = gguf.MODEL_ARCH.PHIMOE
  3934. _experts: list[dict[str, Tensor]] | None = None
  3935. def set_gguf_parameters(self):
  3936. super().set_gguf_parameters()
  3937. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3938. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3939. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3940. # process the experts separately
  3941. if name.find("block_sparse_moe.experts") != -1:
  3942. n_experts = self.hparams["num_local_experts"]
  3943. assert bid is not None
  3944. if self._experts is None:
  3945. self._experts = [{} for _ in range(self.block_count)]
  3946. self._experts[bid][name] = data_torch
  3947. if len(self._experts[bid]) >= n_experts * 3:
  3948. tensors: list[tuple[str, Tensor]] = []
  3949. # merge the experts into a single 3d tensor
  3950. for w_name in ["w1", "w2", "w3"]:
  3951. datas: list[Tensor] = []
  3952. for xid in range(n_experts):
  3953. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3954. datas.append(self._experts[bid][ename])
  3955. del self._experts[bid][ename]
  3956. data_torch = torch.stack(datas, dim=0)
  3957. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3958. new_name = self.map_tensor_name(merged_name)
  3959. tensors.append((new_name, data_torch))
  3960. return tensors
  3961. else:
  3962. return []
  3963. return [(self.map_tensor_name(name), data_torch)]
  3964. def prepare_tensors(self):
  3965. super().prepare_tensors()
  3966. if self._experts is not None:
  3967. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3968. experts = [k for d in self._experts for k in d.keys()]
  3969. if len(experts) > 0:
  3970. raise ValueError(f"Unprocessed experts: {experts}")
  3971. @ModelBase.register("PlamoForCausalLM")
  3972. class PlamoModel(TextModel):
  3973. model_arch = gguf.MODEL_ARCH.PLAMO
  3974. def set_vocab(self):
  3975. self._set_vocab_sentencepiece()
  3976. def set_gguf_parameters(self):
  3977. hparams = self.hparams
  3978. self.gguf_writer.add_context_length(4096) # not in config.json
  3979. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3980. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3981. self.gguf_writer.add_block_count(self.block_count)
  3982. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3983. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3984. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3985. self.gguf_writer.add_file_type(self.ftype)
  3986. def shuffle_attn_q_weight(self, data_torch):
  3987. assert data_torch.size() == (5120, 5120)
  3988. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3989. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3990. data_torch = torch.reshape(data_torch, (5120, 5120))
  3991. return data_torch
  3992. def shuffle_attn_output_weight(self, data_torch):
  3993. assert data_torch.size() == (5120, 5120)
  3994. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3995. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3996. data_torch = torch.reshape(data_torch, (5120, 5120))
  3997. return data_torch
  3998. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3999. del bid # unused
  4000. new_name = self.map_tensor_name(name)
  4001. # shuffle for broadcasting of gqa in ggml_mul_mat
  4002. if new_name.endswith("attn_q.weight"):
  4003. data_torch = self.shuffle_attn_q_weight(data_torch)
  4004. elif new_name.endswith("attn_output.weight"):
  4005. data_torch = self.shuffle_attn_output_weight(data_torch)
  4006. return [(new_name, data_torch)]
  4007. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  4008. class Plamo2Model(TextModel):
  4009. model_arch = gguf.MODEL_ARCH.PLAMO2
  4010. def set_vocab(self):
  4011. self._set_vocab_plamo()
  4012. def set_gguf_parameters(self):
  4013. hparams = self.hparams
  4014. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4015. # Which layers are Mamba layers
  4016. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4017. # This logic matches modeling_plamo.py's is_mamba function
  4018. mamba_step = hparams.get("mamba_step", 2)
  4019. mamba_enabled = hparams.get("mamba_enabled", True)
  4020. num_key_value_heads = []
  4021. num_attention_heads = []
  4022. if mamba_enabled:
  4023. for i in range(self.block_count):
  4024. if self.block_count <= (mamba_step // 2):
  4025. # use attention in last layer
  4026. is_mamba = (i != self.block_count - 1)
  4027. else:
  4028. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4029. if is_mamba:
  4030. num_key_value_heads.append(0)
  4031. num_attention_heads.append(0)
  4032. else:
  4033. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4034. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4035. if num_key_value_heads and num_attention_heads:
  4036. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4037. self.gguf_writer.add_head_count(num_attention_heads)
  4038. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4039. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4040. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4041. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4042. self.gguf_writer.add_block_count(self.block_count)
  4043. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4044. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("rope_theta", 10000))
  4045. # Mamba parameters
  4046. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4047. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4048. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4049. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4050. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4051. self.gguf_writer.add_ssm_group_count(0)
  4052. # MLP feed forward parameters (for attention layers)
  4053. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4054. self.gguf_writer.add_file_type(self.ftype)
  4055. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4056. del bid # unused
  4057. if name.endswith(".A_log"):
  4058. data_torch = -torch.exp(data_torch)
  4059. elif name.endswith(".dt_bias"):
  4060. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4061. elif name.endswith(".dt_norm_weight"):
  4062. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4063. elif name.endswith(".B_norm_weight"):
  4064. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4065. elif name.endswith(".C_norm_weight"):
  4066. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4067. elif name.endswith(".k_weight"):
  4068. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4069. elif name.endswith(".q_weight"):
  4070. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4071. elif name.endswith(".conv1d.weight"):
  4072. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4073. assert data_torch.ndim == 2
  4074. elif name.endswith(".pre_mixer_norm.weight"):
  4075. data_torch += 1.0
  4076. elif name.endswith(".post_mixer_norm.weight"):
  4077. data_torch += 1.0 / 5
  4078. elif name.endswith(".pre_mlp_norm.weight"):
  4079. data_torch += 1.0
  4080. elif name.endswith(".post_mlp_norm.weight"):
  4081. data_torch += 1.0 / (5**1.5)
  4082. elif name.endswith(".norm.weight"):
  4083. data_torch += 1.0
  4084. new_name = self.map_tensor_name(name)
  4085. return [(new_name, data_torch)]
  4086. @ModelBase.register("Plamo3ForCausalLM", "PLaMo3ForCausalLM")
  4087. class Plamo3Model(TextModel):
  4088. model_arch = gguf.MODEL_ARCH.PLAMO3
  4089. def set_vocab(self):
  4090. self._set_vocab_plamo()
  4091. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  4092. tokenizer_config = {}
  4093. if tokenizer_config_path.is_file():
  4094. with open(tokenizer_config_path, encoding="utf-8") as f:
  4095. tokenizer_config = json.load(f)
  4096. chat_template = tokenizer_config.get("chat_template")
  4097. chat_template_jinja = self.dir_model / "chat_template.jinja"
  4098. if chat_template_jinja.is_file():
  4099. with open(chat_template_jinja, encoding="utf-8") as f:
  4100. chat_template = f.read()
  4101. if chat_template:
  4102. self.gguf_writer.add_chat_template(chat_template)
  4103. def set_gguf_parameters(self):
  4104. super().set_gguf_parameters()
  4105. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4106. if (sliding_window := self.find_hparam(["window_size", "sliding_window"], optional=True)) is not None:
  4107. self.gguf_writer.add_sliding_window(sliding_window)
  4108. self.gguf_writer.add_sliding_window_pattern(self.hparams["sliding_window_pattern"])
  4109. self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("rope_local_theta")})["rope_theta"])
  4110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4111. if name.endswith(".pre_mixer_norm.weight"):
  4112. data_torch = data_torch + 1.0
  4113. elif name.endswith(".post_mixer_norm.weight"):
  4114. data_torch = data_torch + 1.0 / 5
  4115. elif name.endswith(".pre_mlp_norm.weight"):
  4116. data_torch = data_torch + 1.0
  4117. elif name.endswith(".post_mlp_norm.weight"):
  4118. data_torch = data_torch + 1.0 / (5**1.5)
  4119. elif name.endswith((".mixer.q_norm.weight", ".mixer.k_norm.weight")):
  4120. data_torch = data_torch + 1.0
  4121. elif name.endswith(".norm.weight"):
  4122. data_torch = data_torch + 1.0
  4123. return [(self.map_tensor_name(name), data_torch)]
  4124. @ModelBase.register("CodeShellForCausalLM")
  4125. class CodeShellModel(TextModel):
  4126. model_arch = gguf.MODEL_ARCH.CODESHELL
  4127. def set_gguf_parameters(self):
  4128. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4129. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4130. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4131. self.gguf_writer.add_block_count(self.block_count)
  4132. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4133. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4134. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4135. self.gguf_writer.add_file_type(self.ftype)
  4136. self.gguf_writer.add_rope_freq_base(10000.0)
  4137. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4138. self.gguf_writer.add_rope_scaling_factor(1.0)
  4139. @ModelBase.register("InternLM2ForCausalLM")
  4140. class InternLM2Model(TextModel):
  4141. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4142. def set_vocab(self):
  4143. # (TODO): Is there a better way?
  4144. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4145. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4146. # recognized as an empty string in C++.
  4147. from sentencepiece import SentencePieceProcessor
  4148. from sentencepiece import sentencepiece_model_pb2 as model
  4149. tokenizer_path = self.dir_model / 'tokenizer.model'
  4150. tokens: list[bytes] = []
  4151. scores: list[float] = []
  4152. toktypes: list[int] = []
  4153. if not tokenizer_path.is_file():
  4154. logger.error(f'Error: Missing {tokenizer_path}')
  4155. sys.exit(1)
  4156. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4157. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4158. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4159. tokenizer = SentencePieceProcessor()
  4160. tokenizer.LoadFromFile(str(tokenizer_path))
  4161. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4162. for token_id in range(vocab_size):
  4163. piece = tokenizer.IdToPiece(token_id)
  4164. text = piece.encode("utf-8")
  4165. score = tokenizer.GetScore(token_id)
  4166. if text == b"\x00":
  4167. # (TODO): fixme
  4168. # Hack here and replace the \x00 characters.
  4169. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4170. text = "🐉".encode("utf-8")
  4171. toktype = SentencePieceTokenTypes.NORMAL
  4172. if tokenizer.IsUnknown(token_id):
  4173. toktype = SentencePieceTokenTypes.UNKNOWN
  4174. elif tokenizer.IsControl(token_id):
  4175. toktype = SentencePieceTokenTypes.CONTROL
  4176. elif tokenizer.IsUnused(token_id):
  4177. toktype = SentencePieceTokenTypes.UNUSED
  4178. elif tokenizer.IsByte(token_id):
  4179. toktype = SentencePieceTokenTypes.BYTE
  4180. # take care of ununsed raw token
  4181. if piece.startswith('[UNUSED'):
  4182. toktype = SentencePieceTokenTypes.UNUSED
  4183. tokens.append(text)
  4184. scores.append(score)
  4185. toktypes.append(toktype)
  4186. added_tokens_file = self.dir_model / 'added_tokens.json'
  4187. if added_tokens_file.is_file():
  4188. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4189. added_tokens_json = json.load(f)
  4190. for key in added_tokens_json:
  4191. tokens.append(key.encode("utf-8"))
  4192. scores.append(-1000.0)
  4193. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4194. chat_eos_token = '<|im_end|>'
  4195. chat_eos_token_id = None
  4196. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4197. if tokenizer_config_file.is_file():
  4198. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4199. tokenizer_config_json = json.load(f)
  4200. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4201. for token_id, foken_data in added_tokens_decoder.items():
  4202. token_id = int(token_id)
  4203. token = foken_data["content"]
  4204. if token == chat_eos_token:
  4205. chat_eos_token_id = token_id
  4206. token = token.encode("utf-8")
  4207. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4208. if tokens[token_id] != token:
  4209. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4210. tokens[token_id] = token
  4211. scores[token_id] = -1000.0
  4212. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4213. if foken_data.get("special"):
  4214. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4215. tokenizer_file = self.dir_model / 'tokenizer.json'
  4216. if tokenizer_file.is_file():
  4217. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4218. tokenizer_json = json.load(f)
  4219. added_tokens = tokenizer_json.get("added_tokens", [])
  4220. for foken_data in added_tokens:
  4221. token_id = int(foken_data["id"])
  4222. token = foken_data["content"]
  4223. if token == chat_eos_token:
  4224. chat_eos_token_id = token_id
  4225. token = token.encode("utf-8")
  4226. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4227. if tokens[token_id] != token:
  4228. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4229. tokens[token_id] = token
  4230. scores[token_id] = -1000.0
  4231. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4232. if foken_data.get("special"):
  4233. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4234. self.gguf_writer.add_tokenizer_model("llama")
  4235. self.gguf_writer.add_tokenizer_pre("default")
  4236. self.gguf_writer.add_token_list(tokens)
  4237. self.gguf_writer.add_token_scores(scores)
  4238. self.gguf_writer.add_token_types(toktypes)
  4239. self.gguf_writer.add_add_space_prefix(add_prefix)
  4240. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4241. old_eos = special_vocab.special_token_ids["eos"]
  4242. if chat_eos_token_id is not None:
  4243. # For the chat model, we replace the eos with '<|im_end|>'.
  4244. # TODO: this is a hack, should be fixed
  4245. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4246. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4247. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4248. " in chat mode so that the conversation can end normally.")
  4249. special_vocab.add_to_gguf(self.gguf_writer)
  4250. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4251. num_heads = self.hparams["num_attention_heads"]
  4252. num_kv_heads = self.hparams["num_key_value_heads"]
  4253. n_embd = self.hparams["hidden_size"]
  4254. q_per_kv = num_heads // num_kv_heads
  4255. head_dim = n_embd // num_heads
  4256. num_groups = num_heads // q_per_kv
  4257. name = name.replace("language_model.", "") # InternVL
  4258. if name.startswith("mlp") or name.startswith("vision_model"):
  4259. # skip visual tensors
  4260. return []
  4261. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4262. qkv = data_torch
  4263. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4264. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4265. # The model weights of q and k equire additional reshape.
  4266. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4267. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4268. v = v.reshape((-1, v.shape[-1]))
  4269. return [
  4270. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4271. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4272. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4273. ]
  4274. else:
  4275. return [(self.map_tensor_name(name), data_torch)]
  4276. @ModelBase.register("InternLM3ForCausalLM")
  4277. class InternLM3Model(TextModel):
  4278. model_arch = gguf.MODEL_ARCH.LLAMA
  4279. def set_vocab(self):
  4280. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4281. self.gguf_writer.add_tokenizer_model("llama")
  4282. self.gguf_writer.add_tokenizer_pre("default")
  4283. self.gguf_writer.add_token_list(tokens)
  4284. self.gguf_writer.add_token_scores(scores)
  4285. self.gguf_writer.add_token_types(toktypes)
  4286. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4287. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4288. if tokenizer_config_file.is_file():
  4289. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4290. tokenizer_config_json = json.load(f)
  4291. if "add_prefix_space" in tokenizer_config_json:
  4292. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4293. if "added_tokens_decoder" in tokenizer_config_json:
  4294. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4295. if token_data.get("special"):
  4296. token_id = int(token_id)
  4297. token = token_data["content"]
  4298. special_vocab._set_special_token(token, token_id)
  4299. # update eos token
  4300. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4301. special_vocab.special_token_ids["eos"] = token_id
  4302. special_vocab.add_to_gguf(self.gguf_writer)
  4303. def set_gguf_parameters(self):
  4304. super().set_gguf_parameters()
  4305. hparams = self.hparams
  4306. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4307. if (rope_dim := hparams.get("head_dim")) is None:
  4308. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4309. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4311. n_head = self.hparams["num_attention_heads"]
  4312. n_kv_head = self.hparams.get("num_key_value_heads")
  4313. name = name.replace("language_model.", "") # InternVL
  4314. if name.startswith("mlp") or name.startswith("vision_model"):
  4315. # skip visual tensors
  4316. return []
  4317. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4318. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4319. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4320. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4321. return [(self.map_tensor_name(name), data_torch)]
  4322. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4323. class BertModel(TextModel):
  4324. model_arch = gguf.MODEL_ARCH.BERT
  4325. def __init__(self, *args, **kwargs):
  4326. super().__init__(*args, **kwargs)
  4327. self.vocab_size = None
  4328. if cls_out_labels := self.hparams.get("id2label"):
  4329. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4330. # Remove dummy labels added by AutoConfig
  4331. cls_out_labels = None
  4332. self.cls_out_labels = cls_out_labels
  4333. def set_gguf_parameters(self):
  4334. super().set_gguf_parameters()
  4335. self.gguf_writer.add_causal_attention(False)
  4336. self._try_set_pooling_type()
  4337. if self.cls_out_labels:
  4338. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4339. def set_vocab(self):
  4340. tokens, toktypes, tokpre = self.get_vocab_base()
  4341. self.vocab_size = len(tokens)
  4342. # we need this to validate the size of the token_type embeddings
  4343. # though currently we are passing all zeros to the token_type embeddings
  4344. # "Sequence A" or "Sequence B"
  4345. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4346. # convert to phantom space vocab
  4347. def phantom(tok, toktype):
  4348. if toktype == gguf.TokenType.CONTROL:
  4349. return tok
  4350. if tok.startswith("##"):
  4351. return tok[2:]
  4352. return "\u2581" + tok
  4353. assert len(tokens) == len(toktypes)
  4354. tokens = list(map(phantom, tokens, toktypes))
  4355. # add vocab to gguf
  4356. self.gguf_writer.add_tokenizer_model("bert")
  4357. self.gguf_writer.add_tokenizer_pre(tokpre)
  4358. self.gguf_writer.add_token_list(tokens)
  4359. self.gguf_writer.add_token_types(toktypes)
  4360. # handle special tokens
  4361. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4362. special_vocab.add_to_gguf(self.gguf_writer)
  4363. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4364. del bid # unused
  4365. if name.startswith("bert."):
  4366. name = name[5:]
  4367. if name.endswith(".gamma"):
  4368. name = name[:-6] + ".weight"
  4369. if name.endswith(".beta"):
  4370. name = name[:-5] + ".bias"
  4371. # we are only using BERT for embeddings so we don't need the pooling layer
  4372. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4373. return [] # we don't need these
  4374. if name.startswith("cls.predictions"):
  4375. return []
  4376. if name.startswith("cls.seq_relationship"):
  4377. return []
  4378. if self.cls_out_labels:
  4379. # For BertForSequenceClassification (direct projection layer)
  4380. if name == "classifier.weight":
  4381. name = "classifier.out_proj.weight"
  4382. if name == "classifier.bias":
  4383. name = "classifier.out_proj.bias"
  4384. return [(self.map_tensor_name(name), data_torch)]
  4385. def _xlmroberta_tokenizer_init(self) -> None:
  4386. # we need the pad_token_id to know how to chop down position_embd matrix
  4387. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4388. self._position_offset = 1 + pad_token_id
  4389. if "max_position_embeddings" in self.hparams:
  4390. self.hparams["max_position_embeddings"] -= self._position_offset
  4391. else:
  4392. self._position_offset = None
  4393. def _xlmroberta_set_vocab(self) -> None:
  4394. # to avoid TypeError: Descriptors cannot be created directly
  4395. # exception when importing sentencepiece_model_pb2
  4396. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4397. from sentencepiece import SentencePieceProcessor
  4398. from sentencepiece import sentencepiece_model_pb2 as model
  4399. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4400. tokenizer_json = {}
  4401. tokenizer_config_json = {}
  4402. if not tokenizer_path.is_file():
  4403. tokenizer_path = self.dir_model / 'tokenizer.json'
  4404. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4405. if not tokenizer_path.is_file():
  4406. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4407. from base64 import b64decode
  4408. from transformers import AutoTokenizer
  4409. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4410. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4411. tokenizer_json = json.load(fp)
  4412. if tokenizer_config_path.is_file():
  4413. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4414. tokenizer_config_json = json.load(fp)
  4415. add_prefix = tokenizer.add_prefix_space
  4416. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4417. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4418. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4419. else:
  4420. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4421. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4422. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4423. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4424. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4425. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4426. tokenizer = SentencePieceProcessor()
  4427. tokenizer.LoadFromFile(str(tokenizer_path))
  4428. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4429. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4430. scores: list[float] = [-10000.0] * vocab_size
  4431. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4432. if isinstance(tokenizer, SentencePieceProcessor):
  4433. for token_id in range(tokenizer.vocab_size()):
  4434. piece = tokenizer.IdToPiece(token_id)
  4435. text = piece.encode("utf-8")
  4436. score = tokenizer.GetScore(token_id)
  4437. toktype = SentencePieceTokenTypes.NORMAL
  4438. if tokenizer.IsUnknown(token_id):
  4439. toktype = SentencePieceTokenTypes.UNKNOWN
  4440. elif tokenizer.IsControl(token_id):
  4441. toktype = SentencePieceTokenTypes.CONTROL
  4442. elif tokenizer.IsUnused(token_id):
  4443. toktype = SentencePieceTokenTypes.UNUSED
  4444. elif tokenizer.IsByte(token_id):
  4445. toktype = SentencePieceTokenTypes.BYTE
  4446. tokens[token_id] = text
  4447. scores[token_id] = score
  4448. toktypes[token_id] = toktype
  4449. else:
  4450. added_vocab = tokenizer.get_added_vocab()
  4451. unk_token = tokenizer_config_json.get("unk_token")
  4452. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4453. for token_id in range(tokenizer.vocab_size):
  4454. piece = tokenizer._convert_id_to_token(token_id)
  4455. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4456. text = piece.encode("utf-8")
  4457. score = tokenizer_json["model"]["vocab"][token_id][1]
  4458. toktype = SentencePieceTokenTypes.NORMAL
  4459. if token_id == unk_token_id:
  4460. toktype = SentencePieceTokenTypes.UNKNOWN
  4461. elif token_id in tokenizer.all_special_ids:
  4462. toktype = SentencePieceTokenTypes.CONTROL
  4463. elif token_id in added_vocab.values():
  4464. toktype = SentencePieceTokenTypes.USER_DEFINED
  4465. # No reliable way to detect this, but jina doesn't have any
  4466. # elif tokenizer.IsByte(token_id):
  4467. # toktype = SentencePieceTokenTypes.BYTE
  4468. tokens[token_id] = text
  4469. scores[token_id] = score
  4470. toktypes[token_id] = toktype
  4471. if isinstance(tokenizer, SentencePieceProcessor):
  4472. # realign tokens (see HF tokenizer code)
  4473. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4474. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4475. toktypes = [
  4476. SentencePieceTokenTypes.CONTROL,
  4477. SentencePieceTokenTypes.CONTROL,
  4478. SentencePieceTokenTypes.CONTROL,
  4479. SentencePieceTokenTypes.UNKNOWN,
  4480. ] + toktypes[3:-1]
  4481. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4482. # Add mask token missing from sentencepiece.bpe.model
  4483. tokens[250001] = b'<mask>'
  4484. scores[250001] = 0.0
  4485. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4486. self.gguf_writer.add_tokenizer_model("t5")
  4487. self.gguf_writer.add_tokenizer_pre("default")
  4488. self.gguf_writer.add_token_list(tokens)
  4489. self.gguf_writer.add_token_scores(scores)
  4490. self.gguf_writer.add_token_types(toktypes)
  4491. self.gguf_writer.add_add_space_prefix(add_prefix)
  4492. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4493. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4494. if precompiled_charsmap:
  4495. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4496. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4497. special_vocab.add_to_gguf(self.gguf_writer)
  4498. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4499. class DistilBertModel(BertModel):
  4500. model_arch = gguf.MODEL_ARCH.BERT
  4501. def set_gguf_parameters(self):
  4502. self.gguf_writer.add_layer_norm_eps(1e-12)
  4503. logger.info("gguf: layer norm epsilon = 1e-12")
  4504. super().set_gguf_parameters()
  4505. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4506. if name.startswith("distilbert."):
  4507. name = name[11:]
  4508. # These layers act as MLM head, so we don't need them
  4509. if name.startswith("vocab_"):
  4510. return []
  4511. return super().modify_tensors(data_torch, name, bid)
  4512. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4513. class RobertaModel(BertModel):
  4514. model_arch = gguf.MODEL_ARCH.BERT
  4515. def __init__(self, *args, **kwargs):
  4516. super().__init__(*args, **kwargs)
  4517. # we need the pad_token_id to know how to chop down position_embd matrix
  4518. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4519. self._position_offset = 1 + pad_token_id
  4520. if "max_position_embeddings" in self.hparams:
  4521. self.hparams["max_position_embeddings"] -= self._position_offset
  4522. else:
  4523. self._position_offset = None
  4524. def set_vocab(self):
  4525. """Support BPE tokenizers for roberta models"""
  4526. bpe_tok_path = self.dir_model / "tokenizer.json"
  4527. if bpe_tok_path.exists():
  4528. self._set_vocab_gpt2()
  4529. # we need this to validate the size of the token_type embeddings
  4530. # though currently we are passing all zeros to the token_type embeddings
  4531. # "Sequence A" or "Sequence B"
  4532. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4533. else:
  4534. return super().set_vocab()
  4535. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4536. # if name starts with "roberta.", remove the prefix
  4537. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4538. if name.startswith("roberta."):
  4539. name = name[8:]
  4540. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4541. if name == "embeddings.position_embeddings.weight":
  4542. if self._position_offset is not None:
  4543. data_torch = data_torch[self._position_offset:,:]
  4544. return super().modify_tensors(data_torch, name, bid)
  4545. @ModelBase.register("NomicBertModel")
  4546. class NomicBertModel(BertModel):
  4547. model_arch = gguf.MODEL_ARCH.BERT
  4548. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4549. hparams = kwargs.pop("hparams", None)
  4550. if hparams is None:
  4551. hparams = ModelBase.load_hparams(dir_model, False)
  4552. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4553. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4554. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4555. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4556. if self._tokenizer_is_xlmroberta:
  4557. self._xlmroberta_tokenizer_init()
  4558. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4559. if npos == 8192 and mtp == 2048:
  4560. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4561. elif npos == 2048 and mtp == 2048:
  4562. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4563. else:
  4564. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4565. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4566. # this doesn't do anything in the HF version
  4567. assert self.hparams["causal"] is False
  4568. # no bias tensors unless MoE
  4569. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4570. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4571. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4572. # norm at end of layer
  4573. assert self.hparams["prenorm"] is False
  4574. # standard RoPE
  4575. assert self.hparams["rotary_emb_fraction"] == 1.0
  4576. assert self.hparams["rotary_emb_interleaved"] is False
  4577. assert self.hparams["rotary_emb_scale_base"] is None
  4578. def set_vocab(self) -> None:
  4579. if self._tokenizer_is_xlmroberta:
  4580. return self._xlmroberta_set_vocab()
  4581. return super().set_vocab()
  4582. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4583. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4584. if "mlp.experts.bias" in name:
  4585. return [] # Explicitly return an empty list.
  4586. if "mlp.experts.mlp.w1" in name:
  4587. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4588. name += ".weight"
  4589. if "mlp.experts.mlp.w2" in name:
  4590. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4591. data_torch = data_torch.transpose(1, 2)
  4592. name += ".weight"
  4593. return [(self.map_tensor_name(name), data_torch)]
  4594. def set_gguf_parameters(self):
  4595. super().set_gguf_parameters()
  4596. if self.is_moe:
  4597. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4598. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4599. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4600. def _is_tokenizer_xlmroberta(self) -> bool:
  4601. with open(self.dir_model / "tokenizer.json") as f:
  4602. tokenizer_json = json.load(f)
  4603. toktyp = tokenizer_json["model"]["type"]
  4604. if toktyp == "Unigram":
  4605. return True
  4606. if toktyp == "WordPiece":
  4607. return False
  4608. raise ValueError(f"unknown tokenizer: {toktyp}")
  4609. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4610. class NeoBert(BertModel):
  4611. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4612. def set_gguf_parameters(self):
  4613. super().set_gguf_parameters()
  4614. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4615. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4616. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4617. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4618. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4619. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4620. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4621. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4622. def modify_tensors(self, data_torch, name, bid):
  4623. if name.startswith("decoder."):
  4624. return []
  4625. if name.startswith("model."):
  4626. name = name[6:]
  4627. return super().modify_tensors(data_torch, name, bid)
  4628. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4629. class XLMRobertaModel(BertModel):
  4630. model_arch = gguf.MODEL_ARCH.BERT
  4631. _lora_files = {}
  4632. _lora_names = []
  4633. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4634. hparams = kwargs.pop("hparams", None)
  4635. if hparams is None:
  4636. hparams = ModelBase.load_hparams(dir_model, False)
  4637. if lora_names := hparams.get("lora_adaptations"):
  4638. self._lora_names = lora_names
  4639. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4640. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4641. self._xlmroberta_tokenizer_init()
  4642. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4643. if self._lora_names:
  4644. for name in self._lora_names:
  4645. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4646. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4647. return super().generate_extra_tensors()
  4648. def set_type(self):
  4649. for lora_writer in self._lora_files.values():
  4650. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4651. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4652. super().set_type()
  4653. def set_vocab(self):
  4654. self._xlmroberta_set_vocab()
  4655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4656. # if name starts with "roberta.", remove the prefix
  4657. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4658. if name.startswith("roberta."):
  4659. name = name[8:]
  4660. # jina-embeddings-v3
  4661. if ".parametrizations." in name:
  4662. name = name.replace(".parametrizations.", ".")
  4663. if name.endswith(".original"):
  4664. name = name[:-9]
  4665. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4666. if name == "embeddings.position_embeddings.weight":
  4667. if self._position_offset is not None:
  4668. data_torch = data_torch[self._position_offset:,:]
  4669. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4670. if name.startswith("pooler.dense"):
  4671. return []
  4672. num_loras = data_torch.size(0)
  4673. assert num_loras == len(self._lora_names)
  4674. # Split out each LoRA in their own GGUF
  4675. for i, lora_writer in enumerate(self._lora_files.values()):
  4676. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4677. data = data_torch[i, :, :]
  4678. # Transpose/flip token_embd/types into correct shape
  4679. if new_name == "token_embd.weight.lora_b":
  4680. data = data.T
  4681. elif new_name.startswith("token_types.weight."):
  4682. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4683. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4684. return []
  4685. return super().modify_tensors(data_torch, name, bid)
  4686. def set_gguf_parameters(self):
  4687. super().set_gguf_parameters()
  4688. # jina-embeddings-v3
  4689. lora_alpha = self.hparams.get("lora_alpha")
  4690. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4691. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4692. for lora_name, lora_writer in self._lora_files.items():
  4693. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4694. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4695. if lora_prompt_prefixes:
  4696. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4697. def write(self):
  4698. super().write()
  4699. for lora_writer in self._lora_files.values():
  4700. lora_writer.write_header_to_file()
  4701. lora_writer.write_kv_data_to_file()
  4702. lora_writer.write_tensors_to_file(progress=True)
  4703. lora_writer.close()
  4704. @ModelBase.register("GemmaForCausalLM")
  4705. class GemmaModel(TextModel):
  4706. model_arch = gguf.MODEL_ARCH.GEMMA
  4707. def set_vocab(self):
  4708. self._set_vocab_sentencepiece()
  4709. # TODO: these special tokens should be exported only for the CodeGemma family
  4710. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4711. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4712. special_vocab._set_special_token("prefix", 67)
  4713. special_vocab._set_special_token("suffix", 69)
  4714. special_vocab._set_special_token("middle", 68)
  4715. special_vocab._set_special_token("fsep", 70)
  4716. special_vocab._set_special_token("eot", 107)
  4717. special_vocab.chat_template = None # do not add it twice
  4718. special_vocab.add_to_gguf(self.gguf_writer)
  4719. self.gguf_writer.add_add_space_prefix(False)
  4720. def set_gguf_parameters(self):
  4721. hparams = self.hparams
  4722. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4723. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4724. self.gguf_writer.add_block_count(self.block_count)
  4725. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4726. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4727. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4728. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4729. self.gguf_writer.add_key_length(hparams["head_dim"])
  4730. self.gguf_writer.add_value_length(hparams["head_dim"])
  4731. self.gguf_writer.add_file_type(self.ftype)
  4732. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4733. del bid # unused
  4734. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4735. # To prevent errors, skip loading lm_head.weight.
  4736. if name == "lm_head.weight":
  4737. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4738. return []
  4739. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4740. if name.endswith("norm.weight"):
  4741. data_torch = data_torch + 1
  4742. return [(self.map_tensor_name(name), data_torch)]
  4743. @ModelBase.register("Gemma2ForCausalLM")
  4744. class Gemma2Model(TextModel):
  4745. model_arch = gguf.MODEL_ARCH.GEMMA2
  4746. def set_vocab(self):
  4747. self._set_vocab_sentencepiece()
  4748. self.gguf_writer.add_add_space_prefix(False)
  4749. def set_gguf_parameters(self):
  4750. hparams = self.hparams
  4751. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4752. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4753. self.gguf_writer.add_block_count(self.block_count)
  4754. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4755. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4756. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4757. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4758. self.gguf_writer.add_key_length(hparams["head_dim"])
  4759. self.gguf_writer.add_value_length(hparams["head_dim"])
  4760. self.gguf_writer.add_file_type(self.ftype)
  4761. self.gguf_writer.add_attn_logit_softcapping(
  4762. self.hparams["attn_logit_softcapping"]
  4763. )
  4764. self.gguf_writer.add_final_logit_softcapping(
  4765. self.hparams["final_logit_softcapping"]
  4766. )
  4767. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4768. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4769. del bid # unused
  4770. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4771. # To prevent errors, skip loading lm_head.weight.
  4772. if name == "lm_head.weight":
  4773. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4774. return []
  4775. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4776. if name.endswith("norm.weight"):
  4777. data_torch = data_torch + 1
  4778. return [(self.map_tensor_name(name), data_torch)]
  4779. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4780. class Gemma3Model(TextModel):
  4781. model_arch = gguf.MODEL_ARCH.GEMMA3
  4782. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4783. def set_vocab(self):
  4784. if (self.dir_model / "tokenizer.model").is_file():
  4785. self._set_vocab_sentencepiece()
  4786. self.gguf_writer.add_add_space_prefix(False)
  4787. else:
  4788. self._set_vocab_gpt2()
  4789. def set_gguf_parameters(self):
  4790. super().set_gguf_parameters()
  4791. hparams = self.hparams
  4792. # some default values are not specified in the hparams
  4793. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4794. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4795. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4796. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4797. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4798. self.gguf_writer.add_rope_freq_base(self.rope_parameters.get("full_attention", self.rope_parameters).get("rope_theta", 1_000_000.0)) # for global layers
  4799. # attn_logit_softcapping is removed in Gemma3
  4800. assert hparams.get("attn_logit_softcapping") is None
  4801. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4802. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4803. if hparams.get("sliding_window_pattern") != 1:
  4804. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4805. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4806. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4807. del bid # unused
  4808. if "language_model." in name:
  4809. name = name.replace("language_model.", "")
  4810. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4811. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4812. return [] # skip vision tensors
  4813. # remove OOV (out-of-vocabulary) rows in token_embd
  4814. if "embed_tokens.weight" in name:
  4815. if (self.dir_model / "tokenizer.model").is_file():
  4816. tokens = self._create_vocab_sentencepiece()[0]
  4817. else:
  4818. tokens = self.get_vocab_base()[0]
  4819. data_torch = data_torch[:len(tokens)]
  4820. # ref code in Gemma3RMSNorm
  4821. # output = output * (1.0 + self.weight.float())
  4822. # note: this is not the case on gemma3n
  4823. if name.endswith("norm.weight"):
  4824. data_torch = data_torch + self.norm_shift
  4825. return [(self.map_tensor_name(name), data_torch)]
  4826. @ModelBase.register("Gemma3TextModel")
  4827. class EmbeddingGemma(Gemma3Model):
  4828. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4829. module_paths = []
  4830. dense_features_dims = {}
  4831. def __init__(self, *args, **kwargs):
  4832. super().__init__(*args, **kwargs)
  4833. if self.sentence_transformers_dense_modules:
  4834. # read modules.json to determine if model has Dense layers
  4835. modules_file = self.dir_model / "modules.json"
  4836. if modules_file.is_file():
  4837. with open(modules_file, encoding="utf-8") as modules_json_file:
  4838. mods = json.load(modules_json_file)
  4839. for mod in mods:
  4840. if mod["type"] == "sentence_transformers.models.Dense":
  4841. mod_path = mod["path"]
  4842. # check if model.safetensors file for Dense layer exists
  4843. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4844. if model_tensors_file.is_file():
  4845. self.module_paths.append(mod_path)
  4846. # read config.json of the Dense layer to get in/out features
  4847. mod_conf_file = self.dir_model / mod_path / "config.json"
  4848. if mod_conf_file.is_file():
  4849. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4850. mod_conf = json.load(mod_conf_json_file)
  4851. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4852. prefix = self._get_dense_prefix(mod_path)
  4853. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4854. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4855. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4856. from safetensors.torch import load_file
  4857. module_paths = list(self.module_paths)
  4858. for i, module_path in enumerate(module_paths):
  4859. tensors_file = self.dir_model / module_path / "model.safetensors"
  4860. local_tensors = load_file(tensors_file)
  4861. tensor_name = self._get_dense_prefix(module_path)
  4862. for name, local_tensor in local_tensors.items():
  4863. if not name.endswith(".weight"):
  4864. continue
  4865. orig_name = name.replace("linear", tensor_name)
  4866. name = self.map_tensor_name(orig_name)
  4867. yield name, local_tensor.clone()
  4868. @staticmethod
  4869. def _get_dense_prefix(module_path) -> str:
  4870. """Get the tensor name prefix for the Dense layer from module path."""
  4871. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4872. return tensor_name
  4873. def set_gguf_parameters(self):
  4874. super().set_gguf_parameters()
  4875. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4876. # constructor. We want to use the value from the original model's config.json.
  4877. # ref: https://github.com/huggingface/transformers/pull/40700
  4878. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4879. config = json.load(f)
  4880. orig_sliding_window = config.get("sliding_window")
  4881. if orig_sliding_window is None:
  4882. raise ValueError("sliding_window not found in model config - this is required for the model")
  4883. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4884. f"instead of {self.hparams['sliding_window']}")
  4885. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4886. if self.sentence_transformers_dense_modules:
  4887. for dense, dims in self.dense_features_dims.items():
  4888. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4889. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4890. self._try_set_pooling_type()
  4891. @ModelBase.register("Gemma3ForConditionalGeneration")
  4892. class Gemma3VisionModel(MmprojModel):
  4893. def set_gguf_parameters(self):
  4894. super().set_gguf_parameters()
  4895. hparams = self.hparams
  4896. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4897. # default values below are taken from HF tranformers code
  4898. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4899. self.gguf_writer.add_vision_use_gelu(True)
  4900. # calculate proj_scale_factor (used by tinygemma3 test model)
  4901. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4902. n_per_side = int(image_seq_length ** 0.5)
  4903. image_size = self.hparams["image_size"]
  4904. patch_size = self.hparams["patch_size"]
  4905. proj_scale_factor = (image_size // patch_size) // n_per_side
  4906. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4907. # we only need to write this if it's not the default value
  4908. # in this case, we are converting a test model
  4909. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4910. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4911. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4912. if "input_projection" in name:
  4913. return gguf.GGMLQuantizationType.F16
  4914. if ".embeddings." in name:
  4915. return gguf.GGMLQuantizationType.F32
  4916. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4917. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4918. del bid # unused
  4919. if "vision_model.head." in name:
  4920. return [] # skip redundant tensors for tinygemma3
  4921. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4922. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4923. # process vision tensors
  4924. name = name.replace("_weight", ".weight")
  4925. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4926. # the other norm values are part of SigLIP model, and they are already correct
  4927. # ref code: Gemma3RMSNorm
  4928. if "soft_emb_norm.weight" in name:
  4929. logger.info(f"Correcting norm value for '{name}'")
  4930. data_torch = data_torch + 1
  4931. return [(self.map_tensor_name(name), data_torch)]
  4932. return [] # skip other tensors
  4933. @ModelBase.register("Gemma3nForConditionalGeneration")
  4934. class Gemma3NModel(Gemma3Model):
  4935. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4936. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4937. _altup_proj: list[Tensor] = []
  4938. _altup_unembd: list[Tensor] = []
  4939. def __init__(self, *args, **kwargs):
  4940. super().__init__(*args, **kwargs)
  4941. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4942. self._altup_proj = [
  4943. torch.Tensor(), # to be replaced
  4944. torch.Tensor(), # to be replaced
  4945. torch.Tensor(), # to be replaced
  4946. ]
  4947. self._altup_unembd = [
  4948. torch.Tensor(), # to be replaced
  4949. torch.Tensor(), # to be replaced
  4950. torch.Tensor(), # to be replaced
  4951. ]
  4952. def set_vocab(self):
  4953. super().set_vocab()
  4954. def set_gguf_parameters(self):
  4955. super().set_gguf_parameters()
  4956. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4957. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4958. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4959. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4960. activation_sparsity_scale = []
  4961. for s in self.hparams["activation_sparsity_pattern"]:
  4962. normal_dist = torch.distributions.normal.Normal(0, 1)
  4963. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4964. activation_sparsity_scale.append(std_multiplier.item())
  4965. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4966. sliding_window_pattern = []
  4967. for t in self.hparams["layer_types"]:
  4968. sliding_window_pattern.append(t == "sliding_attention")
  4969. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4970. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4971. has_all = all(m.numel() > 0 for m in matrices)
  4972. if not has_all:
  4973. return None
  4974. else:
  4975. return torch.stack(matrices, dim=0)
  4976. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4977. if name.endswith("_scale"):
  4978. name = name + ".weight"
  4979. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4980. if "language_model." not in name:
  4981. return [] # skip non-language model tensors
  4982. if "altup_unembed_projections" in name:
  4983. data_torch = data_torch.to(device="cpu")
  4984. if ".0." in name:
  4985. self._altup_unembd[0] = data_torch
  4986. elif ".1." in name:
  4987. self._altup_unembd[1] = data_torch
  4988. elif ".2." in name:
  4989. self._altup_unembd[2] = data_torch
  4990. else:
  4991. raise ValueError(f"Unknown name: {name}")
  4992. out = self._stack_matrices(self._altup_unembd)
  4993. if out is not None:
  4994. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4995. else:
  4996. return []
  4997. if "altup_projections" in name:
  4998. data_torch = data_torch.to(device="cpu")
  4999. if ".0." in name:
  5000. self._altup_proj[0] = data_torch
  5001. elif ".1." in name:
  5002. self._altup_proj[1] = data_torch
  5003. elif ".2." in name:
  5004. self._altup_proj[2] = data_torch
  5005. else:
  5006. raise ValueError(f"Unknown name: {name}")
  5007. out = self._stack_matrices(self._altup_proj)
  5008. if out is not None:
  5009. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5010. else:
  5011. return []
  5012. return super().modify_tensors(data_torch, name, bid)
  5013. @ModelBase.register("Starcoder2ForCausalLM")
  5014. class StarCoder2Model(TextModel):
  5015. model_arch = gguf.MODEL_ARCH.STARCODER2
  5016. @ModelBase.register("Rwkv6ForCausalLM")
  5017. class Rwkv6Model(TextModel):
  5018. model_arch = gguf.MODEL_ARCH.RWKV6
  5019. def set_vocab(self):
  5020. self._set_vocab_rwkv_world()
  5021. def set_gguf_parameters(self):
  5022. head_size = self.hparams["head_size"]
  5023. hidden_size = self.hparams["hidden_size"]
  5024. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5025. rescale_every_n_layers = self.hparams["rescale_every"]
  5026. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5027. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5028. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5029. # RWKV isn't context limited
  5030. self.gguf_writer.add_context_length(1048576)
  5031. self.gguf_writer.add_embedding_length(hidden_size)
  5032. self.gguf_writer.add_block_count(self.block_count)
  5033. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5034. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5035. self.gguf_writer.add_wkv_head_size(head_size)
  5036. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5037. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5038. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5039. self.gguf_writer.add_file_type(self.ftype)
  5040. # required by llama.cpp, unused
  5041. self.gguf_writer.add_head_count(0)
  5042. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5043. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5044. new_name = self.map_tensor_name(name)
  5045. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5046. new_name += ".weight"
  5047. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5048. data_torch = data_torch.transpose(0, 1)
  5049. if new_name.endswith("time_mix_w2.weight"):
  5050. data_torch = data_torch.permute(0, 2, 1)
  5051. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5052. data_torch = data_torch.squeeze()
  5053. try:
  5054. rescale_every_n_layers = self.hparams["rescale_every"]
  5055. if rescale_every_n_layers > 0:
  5056. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5057. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5058. except KeyError:
  5059. pass
  5060. # concat time_mix_lerp weights to reduce some cpu overhead
  5061. # also reduces the number of tensors in the model
  5062. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5063. try:
  5064. self.lerp_weights[bid][new_name] = data_torch
  5065. except KeyError:
  5066. self.lerp_weights[bid] = {new_name: data_torch}
  5067. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5068. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5069. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5070. yield (new_name, data)
  5071. return
  5072. yield (new_name, data_torch)
  5073. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5074. class RWKV6Qwen2Model(Rwkv6Model):
  5075. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5076. def set_vocab(self):
  5077. try:
  5078. self._set_vocab_sentencepiece()
  5079. except FileNotFoundError:
  5080. self._set_vocab_gpt2()
  5081. def set_gguf_parameters(self):
  5082. num_attention_heads = self.hparams["num_attention_heads"]
  5083. num_key_value_heads = self.hparams["num_key_value_heads"]
  5084. hidden_size = self.hparams["hidden_size"]
  5085. head_size = hidden_size // num_attention_heads
  5086. rms_norm_eps = self.hparams["rms_norm_eps"]
  5087. intermediate_size = self.hparams["intermediate_size"]
  5088. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5089. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5090. # RWKV isn't context limited
  5091. self.gguf_writer.add_context_length(1048576)
  5092. self.gguf_writer.add_embedding_length(hidden_size)
  5093. self.gguf_writer.add_block_count(self.block_count)
  5094. self.gguf_writer.add_wkv_head_size(head_size)
  5095. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5096. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5097. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5098. self.gguf_writer.add_file_type(self.ftype)
  5099. # special parameters for time_mixing in RWKV6QWEN2
  5100. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5101. self.gguf_writer.add_token_shift_count(1)
  5102. # RWKV6QWEN2 use grouped key/value like GQA
  5103. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5104. # required by llama.cpp, unused
  5105. self.gguf_writer.add_head_count(0)
  5106. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5107. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5108. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5109. data = data.view(5, -1, data.shape[-1])
  5110. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5111. # permute them here to avoid code changes
  5112. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5113. if "w2" in new_name:
  5114. data = data.view(5, -1, data.shape[-1])
  5115. yield (new_name, data)
  5116. continue
  5117. yield (new_name, data)
  5118. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5119. class Rwkv7Model(TextModel):
  5120. model_arch = gguf.MODEL_ARCH.RWKV7
  5121. def set_vocab(self):
  5122. self._set_vocab_rwkv_world()
  5123. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5124. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5125. def set_gguf_parameters(self):
  5126. try:
  5127. head_size = self.hparams["head_size"]
  5128. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5129. except KeyError:
  5130. head_size = self.hparams["head_dim"]
  5131. layer_norm_eps = self.hparams["norm_eps"]
  5132. hidden_size = self.hparams["hidden_size"]
  5133. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5134. # ICLR: In-Context-Learning-Rate
  5135. try:
  5136. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5137. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5138. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5139. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5140. except KeyError:
  5141. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5142. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5143. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5144. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5145. # RWKV isn't context limited
  5146. self.gguf_writer.add_context_length(1048576)
  5147. self.gguf_writer.add_embedding_length(hidden_size)
  5148. self.gguf_writer.add_block_count(self.block_count)
  5149. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5150. self.gguf_writer.add_wkv_head_size(head_size)
  5151. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5152. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5153. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5154. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5155. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5156. self.gguf_writer.add_file_type(self.ftype)
  5157. # required by llama.cpp, unused
  5158. self.gguf_writer.add_head_count(0)
  5159. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5160. lora_needs_transpose: bool = True
  5161. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5162. # unify tensor names here to make life easier
  5163. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5164. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5165. name = name.replace("time_mixer.", "")
  5166. # lora layer names in fla-hub's impl
  5167. if "_lora.lora" in name:
  5168. self.lora_needs_transpose = False
  5169. name = name.replace("_lora.lora.0.weight", "1.weight")
  5170. name = name.replace("_lora.lora.2.weight", "2.weight")
  5171. name = name.replace("_lora.lora.2.bias", "0.weight")
  5172. name = name.replace("feed_forward_norm", "ln2")
  5173. name = name.replace("g_norm", "ln_x")
  5174. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5175. # some models have dummy v0/v1/v2 on first layer while others don't
  5176. # ignore them all since they are not used
  5177. return
  5178. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5179. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5180. if bid is not None and "attention.x_" in name:
  5181. if "attention.x_x" in name:
  5182. # already concatenated
  5183. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5184. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5185. yield (new_name, data)
  5186. else:
  5187. try:
  5188. self.lerp_weights[bid][name] = data_torch
  5189. except KeyError:
  5190. self.lerp_weights[bid] = {name: data_torch}
  5191. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5192. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5193. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5194. yield (new_name, data)
  5195. return
  5196. else:
  5197. data_torch = data_torch.squeeze()
  5198. new_name = self.map_tensor_name(name)
  5199. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5200. new_name += ".weight"
  5201. if self.lora_needs_transpose and any(
  5202. new_name.endswith(t) for t in [
  5203. "time_mix_w1.weight", "time_mix_w2.weight",
  5204. "time_mix_a1.weight", "time_mix_a2.weight",
  5205. "time_mix_v1.weight", "time_mix_v2.weight",
  5206. "time_mix_g1.weight", "time_mix_g2.weight",
  5207. ]
  5208. ):
  5209. data_torch = data_torch.transpose(0, 1)
  5210. if 'r_k' in new_name:
  5211. data_torch = data_torch.flatten()
  5212. if bid == 0 and "time_mix_a" in new_name:
  5213. # dummy v0/v1/v2 on first layer
  5214. # easist way to make llama happy
  5215. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5216. yield (new_name, data_torch)
  5217. @ModelBase.register("RwkvHybridForCausalLM")
  5218. class ARwkv7Model(Rwkv7Model):
  5219. model_arch = gguf.MODEL_ARCH.ARWKV7
  5220. def set_vocab(self):
  5221. try:
  5222. self._set_vocab_sentencepiece()
  5223. except FileNotFoundError:
  5224. self._set_vocab_gpt2()
  5225. def set_gguf_parameters(self):
  5226. hidden_size = self.hparams["hidden_size"]
  5227. head_size = self.hparams["head_size"]
  5228. rms_norm_eps = self.hparams["rms_norm_eps"]
  5229. intermediate_size = self.hparams["intermediate_size"]
  5230. wkv_has_gate = self.hparams["wkv_has_gate"]
  5231. assert self.hparams["wkv_version"] == 7
  5232. # ICLR: In-Context-Learning-Rate
  5233. lora_rank_decay = 64
  5234. lora_rank_iclr = 64
  5235. lora_rank_value_residual_mix = 32
  5236. lora_rank_gate = 128 if wkv_has_gate else 0
  5237. # RWKV isn't context limited
  5238. self.gguf_writer.add_context_length(1048576)
  5239. self.gguf_writer.add_embedding_length(hidden_size)
  5240. self.gguf_writer.add_block_count(self.block_count)
  5241. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5242. self.gguf_writer.add_wkv_head_size(head_size)
  5243. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5244. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5245. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5246. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5247. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5248. self.gguf_writer.add_file_type(self.ftype)
  5249. self.gguf_writer.add_token_shift_count(1)
  5250. # required by llama.cpp, unused
  5251. self.gguf_writer.add_head_count(0)
  5252. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5253. class MambaModel(TextModel):
  5254. model_arch = gguf.MODEL_ARCH.MAMBA
  5255. def __init__(self, dir_model: Path, *args, **kwargs):
  5256. # Avoid using AutoConfig for hparams
  5257. hparams = kwargs.pop("hparams", None)
  5258. if hparams is None:
  5259. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5260. hparams = json.load(f)
  5261. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5262. def set_vocab(self):
  5263. vocab_size = self.hparams["vocab_size"]
  5264. # Round vocab size to next multiple of 8
  5265. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5266. # pad using ceiling division
  5267. # ref: https://stackoverflow.com/a/17511341/22827863
  5268. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5269. self.hparams["vocab_size"] = vocab_size
  5270. if (self.dir_model / "tokenizer.json").is_file():
  5271. self._set_vocab_gpt2()
  5272. elif (self.dir_model / "tokenizer.model").is_file():
  5273. self._set_vocab_sentencepiece()
  5274. else:
  5275. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5276. self._set_vocab_builtin("gpt-neox", vocab_size)
  5277. def set_gguf_parameters(self):
  5278. d_model = self.find_hparam(["hidden_size", "d_model"])
  5279. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5280. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5281. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5282. # ceiling division
  5283. # ref: https://stackoverflow.com/a/17511341/22827863
  5284. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5285. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5286. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5287. use_dt_b_c_norm = False
  5288. # For falconmamba we do apply RMS norm on B / DT and C layers
  5289. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5290. use_dt_b_c_norm = True
  5291. # Fail early for models which don't have a block expansion factor of 2
  5292. assert d_inner == 2 * d_model
  5293. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5294. self.gguf_writer.add_embedding_length(d_model)
  5295. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5296. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5297. self.gguf_writer.add_block_count(self.block_count)
  5298. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5299. self.gguf_writer.add_ssm_inner_size(d_inner)
  5300. self.gguf_writer.add_ssm_state_size(d_state)
  5301. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5302. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5303. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5304. self.gguf_writer.add_file_type(self.ftype)
  5305. _tok_embd = None
  5306. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5307. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5308. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5309. new_name = self.map_tensor_name(name)
  5310. if name.endswith(".A_log"):
  5311. logger.debug("A_log --> A ==> " + new_name)
  5312. data_torch = -torch.exp(data_torch)
  5313. # [4 1 8192 1] -> [4 8192 1 1]
  5314. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5315. data_torch = data_torch.squeeze()
  5316. # assuming token_embd.weight is seen before output.weight
  5317. if self._tok_embd is not None and new_name == output_name:
  5318. if torch.equal(self._tok_embd, data_torch):
  5319. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5320. return []
  5321. elif new_name == tok_embd_name:
  5322. self._tok_embd = data_torch
  5323. return [(new_name, data_torch)]
  5324. @ModelBase.register("Mamba2ForCausalLM")
  5325. class Mamba2Model(TextModel):
  5326. model_arch = gguf.MODEL_ARCH.MAMBA2
  5327. def __init__(self, dir_model: Path, *args, **kwargs):
  5328. # Avoid using AutoConfig for hparams
  5329. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5330. hparams = kwargs.pop("hparams", None)
  5331. if hparams is None:
  5332. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5333. hparams = json.load(f)
  5334. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5335. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5336. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5337. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5338. def set_vocab(self):
  5339. vocab_size = self.hparams["vocab_size"]
  5340. # Round vocab size to next multiple of 16
  5341. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5342. # pad using ceiling division
  5343. # ref: https://stackoverflow.com/a/17511341/22827863
  5344. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5345. self.hparams["vocab_size"] = vocab_size
  5346. if (self.dir_model / "tokenizer.model").is_file():
  5347. self._set_vocab_sentencepiece()
  5348. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5349. # mamba-codestral
  5350. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5351. elif (self.dir_model / "tokenizer.json").is_file():
  5352. self._set_vocab_gpt2()
  5353. else:
  5354. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5355. self._set_vocab_builtin("gpt-neox", vocab_size)
  5356. def set_gguf_parameters(self):
  5357. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5358. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5359. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5360. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5361. # Fail early for models which don't have a block expansion factor of 2
  5362. # TODO: does this really matter?
  5363. # skip the assertion for FalconH1 Model
  5364. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5365. assert self.d_inner == 2 * self.d_model
  5366. assert self.d_inner % head_dim == 0
  5367. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5368. self.gguf_writer.add_embedding_length(self.d_model)
  5369. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5370. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5371. self.gguf_writer.add_block_count(self.block_count)
  5372. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5373. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5374. self.gguf_writer.add_ssm_state_size(d_state)
  5375. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5376. self.gguf_writer.add_ssm_group_count(self.n_group)
  5377. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5378. self.gguf_writer.add_file_type(self.ftype)
  5379. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5380. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5381. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5382. name = name.removeprefix("model.")
  5383. if name.endswith(".dt_bias"):
  5384. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5385. new_name = self.map_tensor_name(name)
  5386. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5387. data_torch = data_torch.squeeze()
  5388. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5389. gguf.MODEL_TENSOR.SSM_A,
  5390. gguf.MODEL_TENSOR.SSM_D,
  5391. ]):
  5392. # unsqueeze A to use similar shape semantics as Mamba-1
  5393. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5394. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5395. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5396. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5397. if name.endswith(".A_log"):
  5398. logger.debug("A_log --> A ==> " + new_name)
  5399. data_torch = -torch.exp(data_torch)
  5400. yield (new_name, data_torch)
  5401. @ModelBase.register("JambaForCausalLM")
  5402. class JambaModel(TextModel):
  5403. model_arch = gguf.MODEL_ARCH.JAMBA
  5404. def set_vocab(self):
  5405. if (self.dir_model / "tokenizer.model").is_file():
  5406. self._set_vocab_sentencepiece()
  5407. else:
  5408. self._set_vocab_llama_hf()
  5409. self.gguf_writer.add_add_space_prefix(False)
  5410. def set_gguf_parameters(self):
  5411. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5412. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5413. d_inner = self.hparams["mamba_expand"] * d_model
  5414. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5415. # ceiling division
  5416. # ref: https://stackoverflow.com/a/17511341/22827863
  5417. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5418. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5419. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5420. n_kv_head = self.hparams["num_key_value_heads"]
  5421. attn_offset = self.hparams["attn_layer_offset"]
  5422. attn_period = self.hparams["attn_layer_period"]
  5423. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5424. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5425. ]
  5426. self.gguf_writer.add_block_count(self.block_count)
  5427. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5428. self.gguf_writer.add_embedding_length(d_model)
  5429. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5430. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5431. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5432. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5433. self.gguf_writer.add_ssm_inner_size(d_inner)
  5434. self.gguf_writer.add_ssm_state_size(d_state)
  5435. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5436. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5437. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5438. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5439. self.gguf_writer.add_file_type(self.ftype)
  5440. _experts: list[dict[str, Tensor]] | None = None
  5441. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5442. # Mini-Jamba
  5443. name = name.replace(".moe.", ".feed_forward.")
  5444. if bid is not None:
  5445. moe_offset = self.hparams["expert_layer_offset"]
  5446. moe_period = self.hparams["expert_layer_period"]
  5447. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5448. name = name.replace(".experts.0.", ".")
  5449. # process the experts separately
  5450. if ".feed_forward.experts." in name:
  5451. n_experts = self.hparams["num_experts"]
  5452. assert bid is not None
  5453. if self._experts is None:
  5454. self._experts = [{} for _ in range(self.block_count)]
  5455. self._experts[bid][name] = data_torch
  5456. if len(self._experts[bid]) >= n_experts * 3:
  5457. # merge the experts into a single 3d tensor
  5458. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5459. datas: list[Tensor] = []
  5460. for xid in range(n_experts):
  5461. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5462. datas.append(self._experts[bid][ename])
  5463. del self._experts[bid][ename]
  5464. data_torch = torch.stack(datas, dim=0)
  5465. # using the same merged name as qwen2moe
  5466. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5467. new_name = self.map_tensor_name(merged_name)
  5468. yield new_name, data_torch
  5469. return
  5470. new_name = self.map_tensor_name(name)
  5471. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5472. data_torch = data_torch.squeeze()
  5473. if name.endswith(".A_log"):
  5474. logger.debug("A_log --> A ==> " + new_name)
  5475. data_torch = -torch.exp(data_torch)
  5476. yield (new_name, data_torch)
  5477. def prepare_tensors(self):
  5478. super().prepare_tensors()
  5479. if self._experts is not None:
  5480. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5481. experts = [k for d in self._experts for k in d.keys()]
  5482. if len(experts) > 0:
  5483. raise ValueError(f"Unprocessed experts: {experts}")
  5484. @ModelBase.register("CohereForCausalLM")
  5485. class CommandR2Model(TextModel):
  5486. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5487. def __init__(self, *args, **kwargs):
  5488. super().__init__(*args, **kwargs)
  5489. # max_position_embeddings = 8192 in config.json but model was actually
  5490. # trained on 128k context length
  5491. # aya-23 models don't have model_max_length specified
  5492. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5493. def set_gguf_parameters(self):
  5494. super().set_gguf_parameters()
  5495. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5496. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5497. @ModelBase.register("Cohere2ForCausalLM")
  5498. class Cohere2Model(TextModel):
  5499. model_arch = gguf.MODEL_ARCH.COHERE2
  5500. def set_gguf_parameters(self):
  5501. super().set_gguf_parameters()
  5502. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5503. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5504. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5505. rotary_pct = self.hparams["rotary_pct"]
  5506. hidden_size = self.hparams["hidden_size"]
  5507. num_attention_heads = self.hparams["num_attention_heads"]
  5508. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5509. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5510. @ModelBase.register("OlmoForCausalLM")
  5511. @ModelBase.register("OLMoForCausalLM")
  5512. class OlmoModel(TextModel):
  5513. model_arch = gguf.MODEL_ARCH.OLMO
  5514. def set_gguf_parameters(self):
  5515. super().set_gguf_parameters()
  5516. self.gguf_writer.add_layer_norm_eps(1e-5)
  5517. clip_qkv = self.hparams.get("clip_qkv")
  5518. if clip_qkv is not None:
  5519. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5520. # Same as super class, but permuting q_proj, k_proj
  5521. # Copied from: LlamaModel
  5522. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5523. del bid # unused
  5524. n_head = self.hparams["num_attention_heads"]
  5525. n_kv_head = self.hparams.get("num_key_value_heads")
  5526. if name.endswith("q_proj.weight"):
  5527. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5528. if name.endswith("k_proj.weight"):
  5529. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5530. return [(self.map_tensor_name(name), data_torch)]
  5531. @ModelBase.register("SeedOssForCausalLM")
  5532. class SeedOssModel(TextModel):
  5533. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5534. @ModelBase.register("Olmo2ForCausalLM")
  5535. @ModelBase.register("Olmo3ForCausalLM")
  5536. class Olmo2Model(TextModel):
  5537. model_arch = gguf.MODEL_ARCH.OLMO2
  5538. def set_gguf_parameters(self):
  5539. super().set_gguf_parameters()
  5540. if "sliding_window" in self.hparams:
  5541. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5542. sliding_window_pattern = []
  5543. if "layer_types" in self.hparams:
  5544. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5545. else:
  5546. # Olmo2 does not use sliding window attention.
  5547. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5548. for i in range(self.hparams["num_hidden_layers"]):
  5549. sliding_window_pattern.append((i + 1) % 4 != 0)
  5550. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5551. @ModelBase.register("OlmoeForCausalLM")
  5552. class OlmoeModel(TextModel):
  5553. model_arch = gguf.MODEL_ARCH.OLMOE
  5554. def set_gguf_parameters(self):
  5555. super().set_gguf_parameters()
  5556. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5557. if (n_experts := self.hparams.get("num_experts")) is not None:
  5558. self.gguf_writer.add_expert_count(n_experts)
  5559. _experts: list[dict[str, Tensor]] | None = None
  5560. # Copied from: Qwen2MoeModel
  5561. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5562. # process the experts separately
  5563. if name.find("experts") != -1:
  5564. n_experts = self.hparams["num_experts"]
  5565. assert bid is not None
  5566. if self._experts is None:
  5567. self._experts = [{} for _ in range(self.block_count)]
  5568. self._experts[bid][name] = data_torch
  5569. if len(self._experts[bid]) >= n_experts * 3:
  5570. tensors: list[tuple[str, Tensor]] = []
  5571. # merge the experts into a single 3d tensor
  5572. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5573. datas: list[Tensor] = []
  5574. for xid in range(n_experts):
  5575. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5576. datas.append(self._experts[bid][ename])
  5577. del self._experts[bid][ename]
  5578. data_torch = torch.stack(datas, dim=0)
  5579. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5580. new_name = self.map_tensor_name(merged_name)
  5581. tensors.append((new_name, data_torch))
  5582. return tensors
  5583. else:
  5584. return []
  5585. return [(self.map_tensor_name(name), data_torch)]
  5586. # Copied from: Qwen2MoeModel
  5587. def prepare_tensors(self):
  5588. super().prepare_tensors()
  5589. if self._experts is not None:
  5590. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5591. experts = [k for d in self._experts for k in d.keys()]
  5592. if len(experts) > 0:
  5593. raise ValueError(f"Unprocessed experts: {experts}")
  5594. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5595. class JinaBertV2Model(BertModel):
  5596. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5597. def set_vocab(self):
  5598. tokenizer_class = 'BertTokenizer'
  5599. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5600. tokenizer_class = json.load(f)['tokenizer_class']
  5601. if tokenizer_class == 'BertTokenizer':
  5602. super().set_vocab()
  5603. elif tokenizer_class == 'RobertaTokenizer':
  5604. self._set_vocab_gpt2()
  5605. self.gguf_writer.add_token_type_count(2)
  5606. else:
  5607. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5608. @ModelBase.register("OpenELMForCausalLM")
  5609. class OpenELMModel(TextModel):
  5610. model_arch = gguf.MODEL_ARCH.OPENELM
  5611. @staticmethod
  5612. def _make_divisible(v: float | int, divisor: int) -> int:
  5613. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5614. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5615. # Make sure that round down does not go down by more than 10%.
  5616. if new_v < 0.9 * v:
  5617. new_v += divisor
  5618. return new_v
  5619. def __init__(self, *args, **kwargs):
  5620. super().__init__(*args, **kwargs)
  5621. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5622. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5623. self._n_embd: int = self.hparams["model_dim"]
  5624. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5625. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5626. self._ffn_dims: list[int] = [
  5627. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5628. for multiplier in ffn_multipliers
  5629. ]
  5630. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5631. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5632. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5633. def set_vocab(self):
  5634. try:
  5635. self._set_vocab_sentencepiece()
  5636. except FileNotFoundError:
  5637. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5638. def set_gguf_parameters(self):
  5639. n_embd = self._n_embd
  5640. head_dim = self.hparams["head_dim"]
  5641. rot_pct = 1.0
  5642. assert self.block_count == len(self._num_kv_heads)
  5643. assert self.block_count == len(self._num_query_heads)
  5644. assert self.block_count == len(self._ffn_dims)
  5645. self.gguf_writer.add_block_count(self.block_count)
  5646. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5647. self.gguf_writer.add_embedding_length(n_embd)
  5648. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5649. self.gguf_writer.add_head_count(self._num_query_heads)
  5650. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5651. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5652. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5653. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5654. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5655. self.gguf_writer.add_key_length(head_dim)
  5656. self.gguf_writer.add_value_length(head_dim)
  5657. self.gguf_writer.add_file_type(self.ftype)
  5658. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5659. if "n_layers" in keys:
  5660. return self.hparams["num_transformer_layers"]
  5661. return super().find_hparam(keys, optional)
  5662. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5663. # split ff
  5664. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5665. ff_dim = self._ffn_dims[bid]
  5666. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5667. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5668. return
  5669. yield (self.map_tensor_name(name), data_torch)
  5670. @ModelBase.register("ArcticForCausalLM")
  5671. class ArcticModel(TextModel):
  5672. model_arch = gguf.MODEL_ARCH.ARCTIC
  5673. def set_vocab(self):
  5674. # The reason for using a custom implementation here is that the
  5675. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5676. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5677. from sentencepiece import SentencePieceProcessor
  5678. tokenizer_path = self.dir_model / 'tokenizer.model'
  5679. if not tokenizer_path.is_file():
  5680. logger.error(f'Error: Missing {tokenizer_path}')
  5681. sys.exit(1)
  5682. # Read the whole vocabulary from the tokenizer.model file
  5683. tokenizer = SentencePieceProcessor()
  5684. tokenizer.LoadFromFile(str(tokenizer_path))
  5685. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5686. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5687. scores: list[float] = [-10000.0] * vocab_size
  5688. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5689. for token_id in range(tokenizer.vocab_size()):
  5690. piece = tokenizer.IdToPiece(token_id)
  5691. text = piece.encode("utf-8")
  5692. score = tokenizer.GetScore(token_id)
  5693. toktype = SentencePieceTokenTypes.NORMAL
  5694. if tokenizer.IsUnknown(token_id):
  5695. toktype = SentencePieceTokenTypes.UNKNOWN
  5696. elif tokenizer.IsControl(token_id):
  5697. toktype = SentencePieceTokenTypes.CONTROL
  5698. elif tokenizer.IsUnused(token_id):
  5699. toktype = SentencePieceTokenTypes.UNUSED
  5700. elif tokenizer.IsByte(token_id):
  5701. toktype = SentencePieceTokenTypes.BYTE
  5702. tokens[token_id] = text
  5703. scores[token_id] = score
  5704. toktypes[token_id] = toktype
  5705. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5706. # of information about added/redefined tokens and modify them accordingly.
  5707. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5708. if tokenizer_config_file.is_file():
  5709. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5710. tokenizer_config_json = json.load(f)
  5711. if "added_tokens_decoder" in tokenizer_config_json:
  5712. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5713. for token_id, token_json in added_tokens_decoder.items():
  5714. token_id = int(token_id)
  5715. if token_id >= vocab_size:
  5716. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5717. continue
  5718. token_content = token_json["content"]
  5719. token_type = SentencePieceTokenTypes.USER_DEFINED
  5720. token_score = -10000.0
  5721. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5722. # Set the score to 0.0 as in the original tokenizer.model
  5723. if ("special" in token_json) and token_json["special"]:
  5724. if token_content == tokenizer_config_json["unk_token"]:
  5725. token_type = SentencePieceTokenTypes.UNKNOWN
  5726. else:
  5727. token_type = SentencePieceTokenTypes.CONTROL
  5728. token_score = 0.0
  5729. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5730. tokens[token_id] = token_content.encode("utf-8")
  5731. toktypes[token_id] = token_type
  5732. scores[token_id] = token_score
  5733. self.gguf_writer.add_tokenizer_model("llama")
  5734. self.gguf_writer.add_tokenizer_pre("default")
  5735. self.gguf_writer.add_token_list(tokens)
  5736. self.gguf_writer.add_token_scores(scores)
  5737. self.gguf_writer.add_token_types(toktypes)
  5738. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5739. special_vocab.add_to_gguf(self.gguf_writer)
  5740. def set_gguf_parameters(self):
  5741. super().set_gguf_parameters()
  5742. hparams = self.hparams
  5743. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5744. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5745. _experts: list[dict[str, Tensor]] | None = None
  5746. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5747. n_head = self.hparams["num_attention_heads"]
  5748. n_kv_head = self.hparams.get("num_key_value_heads")
  5749. if name.endswith("q_proj.weight"):
  5750. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5751. if name.endswith("k_proj.weight"):
  5752. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5753. # process the experts separately
  5754. if name.find("block_sparse_moe.experts") != -1:
  5755. n_experts = self.hparams["num_local_experts"]
  5756. assert bid is not None
  5757. if self._experts is None:
  5758. self._experts = [{} for _ in range(self.block_count)]
  5759. self._experts[bid][name] = data_torch
  5760. if len(self._experts[bid]) >= n_experts * 3:
  5761. tensors: list[tuple[str, Tensor]] = []
  5762. # merge the experts into a single 3d tensor
  5763. for wid in ["w1", "w2", "w3"]:
  5764. datas: list[Tensor] = []
  5765. for xid in range(n_experts):
  5766. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5767. datas.append(self._experts[bid][ename])
  5768. del self._experts[bid][ename]
  5769. data_torch = torch.stack(datas, dim=0)
  5770. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5771. new_name = self.map_tensor_name(merged_name)
  5772. tensors.append((new_name, data_torch))
  5773. return tensors
  5774. else:
  5775. return []
  5776. return [(self.map_tensor_name(name), data_torch)]
  5777. def prepare_tensors(self):
  5778. super().prepare_tensors()
  5779. if self._experts is not None:
  5780. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5781. experts = [k for d in self._experts for k in d.keys()]
  5782. if len(experts) > 0:
  5783. raise ValueError(f"Unprocessed experts: {experts}")
  5784. @ModelBase.register("DeepseekForCausalLM")
  5785. class DeepseekModel(TextModel):
  5786. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5787. def set_vocab(self):
  5788. try:
  5789. self._set_vocab_sentencepiece()
  5790. except FileNotFoundError:
  5791. self._set_vocab_gpt2()
  5792. def set_gguf_parameters(self):
  5793. super().set_gguf_parameters()
  5794. hparams = self.hparams
  5795. if (rope_dim := hparams.get("head_dim")) is None:
  5796. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5797. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5798. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5799. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5800. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5801. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5802. self.gguf_writer.add_expert_weights_scale(1.0)
  5803. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5804. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5805. _experts: list[dict[str, Tensor]] | None = None
  5806. @staticmethod
  5807. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5808. if n_head_kv is not None and n_head != n_head_kv:
  5809. n_head = n_head_kv
  5810. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5811. .swapaxes(1, 2)
  5812. .reshape(weights.shape))
  5813. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5814. n_head = self.hparams["num_attention_heads"]
  5815. n_kv_head = self.hparams.get("num_key_value_heads")
  5816. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5817. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5818. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5819. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5820. # process the experts separately
  5821. if name.find("mlp.experts") != -1:
  5822. n_experts = self.hparams["n_routed_experts"]
  5823. assert bid is not None
  5824. if self._experts is None:
  5825. self._experts = [{} for _ in range(self.block_count)]
  5826. self._experts[bid][name] = data_torch
  5827. if len(self._experts[bid]) >= n_experts * 3:
  5828. tensors: list[tuple[str, Tensor]] = []
  5829. # merge the experts into a single 3d tensor
  5830. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5831. datas: list[Tensor] = []
  5832. for xid in range(n_experts):
  5833. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5834. datas.append(self._experts[bid][ename])
  5835. del self._experts[bid][ename]
  5836. data_torch = torch.stack(datas, dim=0)
  5837. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5838. new_name = self.map_tensor_name(merged_name)
  5839. tensors.append((new_name, data_torch))
  5840. return tensors
  5841. else:
  5842. return []
  5843. return [(self.map_tensor_name(name), data_torch)]
  5844. def prepare_tensors(self):
  5845. super().prepare_tensors()
  5846. if self._experts is not None:
  5847. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5848. experts = [k for d in self._experts for k in d.keys()]
  5849. if len(experts) > 0:
  5850. raise ValueError(f"Unprocessed experts: {experts}")
  5851. @ModelBase.register(
  5852. "DeepseekV2ForCausalLM",
  5853. "DeepseekV3ForCausalLM",
  5854. "KimiVLForConditionalGeneration",
  5855. )
  5856. class DeepseekV2Model(TextModel):
  5857. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5858. def set_vocab(self):
  5859. try:
  5860. self._set_vocab_gpt2()
  5861. return
  5862. except Exception:
  5863. pass
  5864. from transformers import AutoTokenizer
  5865. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5866. tokpre = self.get_vocab_base_pre(tokenizer)
  5867. if tokpre == "kimi-k2":
  5868. # Build merges list using the approach similar to HunYuanMoE
  5869. merges = []
  5870. vocab = {}
  5871. mergeable_ranks = tokenizer.model._mergeable_ranks
  5872. for token, rank in mergeable_ranks.items():
  5873. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5874. if len(token) == 1:
  5875. continue
  5876. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5877. if len(merged) == 2:
  5878. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5879. # Build token list
  5880. vocab_size = self.hparams["vocab_size"]
  5881. special_tokens = tokenizer.special_tokens
  5882. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5883. tokens: list[str] = []
  5884. toktypes: list[int] = []
  5885. for i in range(vocab_size):
  5886. if i not in reverse_vocab:
  5887. tokens.append(f"[PAD{i}]")
  5888. toktypes.append(gguf.TokenType.UNUSED)
  5889. else:
  5890. token = reverse_vocab[i]
  5891. tokens.append(token)
  5892. if i in special_tokens.values():
  5893. toktypes.append(gguf.TokenType.CONTROL)
  5894. else:
  5895. toktypes.append(gguf.TokenType.NORMAL)
  5896. self.gguf_writer.add_tokenizer_model("gpt2")
  5897. self.gguf_writer.add_tokenizer_pre(tokpre)
  5898. self.gguf_writer.add_token_list(tokens)
  5899. self.gguf_writer.add_token_types(toktypes)
  5900. self.gguf_writer.add_token_merges(merges)
  5901. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5902. special_vocab.add_to_gguf(self.gguf_writer)
  5903. else:
  5904. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5905. def set_gguf_parameters(self):
  5906. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5907. self.hparams["num_key_value_heads"] = 1
  5908. super().set_gguf_parameters()
  5909. hparams = self.hparams
  5910. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5911. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5912. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5913. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5914. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5915. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5916. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5917. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5918. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5919. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5920. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5921. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5922. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5923. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5924. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5925. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5926. if (rope_mscale_all := self.rope_parameters.get("mscale_all_dim")) is not None:
  5927. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  5928. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  5929. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  5930. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_mscale_all)
  5931. _experts: list[dict[str, Tensor]] | None = None
  5932. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5933. # skip vision tensors and remove "language_model." for Kimi-VL
  5934. if "vision_tower" in name or "multi_modal_projector" in name:
  5935. return []
  5936. if name.startswith("language_model."):
  5937. name = name.replace("language_model.", "")
  5938. # rename e_score_correction_bias tensors
  5939. if name.endswith("e_score_correction_bias"):
  5940. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5941. # skip Multi-Token Prediction (MTP) layers
  5942. block_count = self.hparams["num_hidden_layers"]
  5943. match = re.match(r"model.layers.(\d+)", name)
  5944. if match and int(match.group(1)) >= block_count:
  5945. return []
  5946. # process the experts separately
  5947. if name.find("mlp.experts") != -1:
  5948. n_experts = self.hparams["n_routed_experts"]
  5949. assert bid is not None
  5950. if self._experts is None:
  5951. self._experts = [{} for _ in range(self.block_count)]
  5952. self._experts[bid][name] = data_torch
  5953. if len(self._experts[bid]) >= n_experts * 3:
  5954. tensors: list[tuple[str, Tensor]] = []
  5955. # merge the experts into a single 3d tensor
  5956. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5957. datas: list[Tensor] = []
  5958. for xid in range(n_experts):
  5959. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5960. datas.append(self._experts[bid][ename])
  5961. del self._experts[bid][ename]
  5962. data_torch = torch.stack(datas, dim=0)
  5963. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5964. new_name = self.map_tensor_name(merged_name)
  5965. tensors.append((new_name, data_torch))
  5966. return tensors
  5967. else:
  5968. return []
  5969. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5970. if name.endswith("kv_b_proj.weight"):
  5971. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5972. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5973. n_head_kv = self.hparams["num_key_value_heads"]
  5974. v_head_dim = self.hparams["v_head_dim"]
  5975. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5976. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5977. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5978. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5979. k_b = k_b.transpose(1, 2)
  5980. return [
  5981. (self.map_tensor_name(name_kb), k_b),
  5982. (self.map_tensor_name(name_vb), v_b)
  5983. ]
  5984. return [(self.map_tensor_name(name), data_torch)]
  5985. def prepare_tensors(self):
  5986. super().prepare_tensors()
  5987. if self._experts is not None:
  5988. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5989. experts = [k for d in self._experts for k in d.keys()]
  5990. if len(experts) > 0:
  5991. raise ValueError(f"Unprocessed experts: {experts}")
  5992. @ModelBase.register("MiniMaxM2ForCausalLM")
  5993. class MiniMaxM2Model(TextModel):
  5994. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  5995. _experts_cache: dict[int, dict[str, Tensor]] = {}
  5996. def __init__(self, *args, **kwargs):
  5997. super().__init__(*args, **kwargs)
  5998. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  5999. def set_gguf_parameters(self):
  6000. super().set_gguf_parameters()
  6001. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6002. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6003. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6004. if name.endswith("e_score_correction_bias"):
  6005. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6006. # merge expert weights
  6007. if 'experts' in name:
  6008. n_experts = self.hparams["num_experts"]
  6009. assert bid is not None
  6010. expert_cache = self._experts_cache.setdefault(bid, {})
  6011. expert_cache[name] = data_torch
  6012. expert_weights = ["w1", "w2", "w3"]
  6013. # not enough expert weights to merge
  6014. if len(expert_cache) < n_experts * len(expert_weights):
  6015. return []
  6016. tensors: list[tuple[str, Tensor]] = []
  6017. for w_name in expert_weights:
  6018. datas: list[Tensor] = []
  6019. for xid in range(n_experts):
  6020. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6021. datas.append(expert_cache[ename])
  6022. del expert_cache[ename]
  6023. data_torch = torch.stack(datas, dim=0)
  6024. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6025. new_name = self.map_tensor_name(merged_name)
  6026. tensors.append((new_name, data_torch))
  6027. del self._experts_cache[bid]
  6028. return tensors
  6029. return super().modify_tensors(data_torch, name, bid)
  6030. @ModelBase.register("MiMoV2FlashForCausalLM")
  6031. class MimoV2Model(TextModel):
  6032. model_arch = gguf.MODEL_ARCH.MIMO2
  6033. def set_gguf_parameters(self):
  6034. super().set_gguf_parameters()
  6035. assert self.hparams["swa_head_dim"] == self.hparams["head_dim"]
  6036. assert self.hparams["swa_num_attention_heads"] == self.hparams["num_attention_heads"]
  6037. assert self.hparams["swa_v_head_dim"] == self.hparams["v_head_dim"]
  6038. assert self.hparams["topk_method"] == "noaux_tc"
  6039. n_head_kv = self.hparams["num_key_value_heads"]
  6040. n_head_kv_swa = self.hparams["swa_num_key_value_heads"]
  6041. n_head_kv_arr = [n_head_kv_swa if use_swa == 1 else n_head_kv for use_swa in self.hparams["hybrid_layer_pattern"]]
  6042. self.gguf_writer.add_head_count_kv(n_head_kv_arr)
  6043. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  6044. self.gguf_writer.add_sliding_window_pattern(self.hparams["hybrid_layer_pattern"])
  6045. self.gguf_writer.add_rope_freq_base_swa(self.hparams["swa_rope_theta"])
  6046. self.gguf_writer.add_value_length(self.hparams["v_head_dim"])
  6047. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  6048. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  6049. rope_dim = int(self.hparams["head_dim"] * self.hparams["partial_rotary_factor"])
  6050. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6051. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon", 1e-5))
  6052. _experts: list[dict[str, Tensor]] | None = None
  6053. def modify_tensors(self, data_torch, name, bid):
  6054. if name.endswith("e_score_correction_bias"):
  6055. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6056. if "attention_sink" in name and not name.endswith(".weight"):
  6057. name += ".weight"
  6058. # TODO: mimo v2 does not indicate the number of next-token-prediction layers, therefore we cannot do the same way as GLM4_MOE
  6059. if "model.mtp." in name:
  6060. return []
  6061. # process the experts separately
  6062. if name.find("mlp.experts") != -1:
  6063. n_experts = self.hparams["n_routed_experts"]
  6064. assert bid is not None
  6065. if self._experts is None:
  6066. self._experts = [{} for _ in range(self.block_count)]
  6067. self._experts[bid][name] = data_torch
  6068. if len(self._experts[bid]) >= n_experts * 3:
  6069. tensors: list[tuple[str, Tensor]] = []
  6070. # merge the experts into a single 3d tensor
  6071. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  6072. datas: list[Tensor] = []
  6073. for xid in range(n_experts):
  6074. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6075. datas.append(self._experts[bid][ename_to_retrieve])
  6076. del self._experts[bid][ename_to_retrieve]
  6077. data_torch = torch.stack(datas, dim=0)
  6078. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6079. new_name = self.map_tensor_name(merged_name)
  6080. tensors.append((new_name, data_torch))
  6081. return tensors
  6082. else:
  6083. return []
  6084. return [(self.map_tensor_name(name), data_torch)]
  6085. def prepare_tensors(self):
  6086. super().prepare_tensors()
  6087. if self._experts is not None:
  6088. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6089. experts = [k for d in self._experts for k in d.keys()]
  6090. if len(experts) > 0:
  6091. raise ValueError(f"Unprocessed experts: {experts}")
  6092. @ModelBase.register("PanguEmbeddedForCausalLM")
  6093. class PanguEmbeddedModel(TextModel):
  6094. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6095. def set_vocab(self):
  6096. self._set_vocab_sentencepiece()
  6097. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6098. if tokenizer_config_file.is_file():
  6099. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6100. tokenizer_config_json = json.load(f)
  6101. if "add_prefix_space" in tokenizer_config_json:
  6102. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6103. def set_gguf_parameters(self):
  6104. super().set_gguf_parameters()
  6105. hparams = self.hparams
  6106. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6107. # PanguEmbedded's hparam loaded from config.json without head_dim
  6108. if (rope_dim := hparams.get("head_dim")) is None:
  6109. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6110. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6111. if hparams.get("head_dim") is None:
  6112. self.gguf_writer.add_key_length(rope_dim)
  6113. self.gguf_writer.add_value_length(rope_dim)
  6114. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6115. if name == "lm_head.weight":
  6116. if self.hparams.get("tie_word_embeddings", False):
  6117. logger.info("Skipping tied output layer 'lm_head.weight'")
  6118. return []
  6119. return [(self.map_tensor_name(name), data_torch)]
  6120. @ModelBase.register("Dots1ForCausalLM")
  6121. class Dots1Model(Qwen2MoeModel):
  6122. model_arch = gguf.MODEL_ARCH.DOTS1
  6123. def __init__(self, *args, **kwargs):
  6124. super().__init__(*args, **kwargs)
  6125. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6126. def set_gguf_parameters(self):
  6127. super().set_gguf_parameters()
  6128. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6129. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6130. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6131. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6132. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6133. if name.endswith("e_score_correction_bias"):
  6134. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6135. if "shared_experts" in name:
  6136. return [(self.map_tensor_name(name), data_torch)]
  6137. return super().modify_tensors(data_torch, name, bid)
  6138. @ModelBase.register("PLMForCausalLM")
  6139. class PLMModel(TextModel):
  6140. model_arch = gguf.MODEL_ARCH.PLM
  6141. def set_vocab(self):
  6142. self._set_vocab_gpt2()
  6143. def set_gguf_parameters(self):
  6144. super().set_gguf_parameters()
  6145. hparams = self.hparams
  6146. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6147. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6148. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6149. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6150. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6151. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6152. return [(self.map_tensor_name(name), data_torch)]
  6153. def prepare_tensors(self):
  6154. super().prepare_tensors()
  6155. @ModelBase.register("T5WithLMHeadModel")
  6156. @ModelBase.register("T5ForConditionalGeneration")
  6157. @ModelBase.register("MT5ForConditionalGeneration")
  6158. @ModelBase.register("UMT5ForConditionalGeneration")
  6159. @ModelBase.register("UMT5Model")
  6160. class T5Model(TextModel):
  6161. model_arch = gguf.MODEL_ARCH.T5
  6162. def __init__(self, *args, **kwargs):
  6163. super().__init__(*args, **kwargs)
  6164. self.shared_token_embeddings_found = False
  6165. def set_vocab(self):
  6166. # to avoid TypeError: Descriptors cannot be created directly
  6167. # exception when importing sentencepiece_model_pb2
  6168. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6169. from sentencepiece import SentencePieceProcessor
  6170. from sentencepiece import sentencepiece_model_pb2 as model
  6171. tokenizer_path = self.dir_model / 'tokenizer.model'
  6172. # many older models use spiece.model tokenizer model filename
  6173. if not tokenizer_path.is_file():
  6174. tokenizer_path = self.dir_model / 'spiece.model'
  6175. if not tokenizer_path.is_file():
  6176. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6177. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6178. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6179. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6180. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6181. # assure the tokenizer model file name is correct
  6182. assert tokenizer_path.name == 'tokenizer.model'
  6183. return self._set_vocab_sentencepiece()
  6184. else:
  6185. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6186. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6187. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6188. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6189. tokenizer = SentencePieceProcessor()
  6190. tokenizer.LoadFromFile(str(tokenizer_path))
  6191. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6192. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6193. scores: list[float] = [-10000.0] * vocab_size
  6194. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6195. for token_id in range(tokenizer.vocab_size()):
  6196. piece = tokenizer.IdToPiece(token_id)
  6197. text = piece.encode("utf-8")
  6198. score = tokenizer.GetScore(token_id)
  6199. toktype = SentencePieceTokenTypes.NORMAL
  6200. if tokenizer.IsUnknown(token_id):
  6201. toktype = SentencePieceTokenTypes.UNKNOWN
  6202. elif tokenizer.IsControl(token_id):
  6203. toktype = SentencePieceTokenTypes.CONTROL
  6204. elif tokenizer.IsUnused(token_id):
  6205. toktype = SentencePieceTokenTypes.UNUSED
  6206. elif tokenizer.IsByte(token_id):
  6207. toktype = SentencePieceTokenTypes.BYTE
  6208. tokens[token_id] = text
  6209. scores[token_id] = score
  6210. toktypes[token_id] = toktype
  6211. added_tokens_file = self.dir_model / 'added_tokens.json'
  6212. if added_tokens_file.is_file():
  6213. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6214. added_tokens_json = json.load(f)
  6215. for key in added_tokens_json:
  6216. token_id = added_tokens_json[key]
  6217. if token_id >= vocab_size:
  6218. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6219. continue
  6220. tokens[token_id] = key.encode("utf-8")
  6221. scores[token_id] = -1000.0
  6222. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6223. if vocab_size > len(tokens):
  6224. pad_count = vocab_size - len(tokens)
  6225. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6226. for i in range(1, pad_count + 1):
  6227. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6228. scores.append(-1000.0)
  6229. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6230. self.gguf_writer.add_tokenizer_model("t5")
  6231. self.gguf_writer.add_tokenizer_pre("default")
  6232. self.gguf_writer.add_token_list(tokens)
  6233. self.gguf_writer.add_token_scores(scores)
  6234. self.gguf_writer.add_token_types(toktypes)
  6235. self.gguf_writer.add_add_space_prefix(add_prefix)
  6236. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6237. if precompiled_charsmap:
  6238. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6239. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6240. special_vocab.add_to_gguf(self.gguf_writer)
  6241. def set_gguf_parameters(self):
  6242. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6243. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6244. n_ctx = 512
  6245. self.gguf_writer.add_context_length(n_ctx)
  6246. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6247. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6248. self.gguf_writer.add_block_count(self.block_count)
  6249. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6250. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6251. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6252. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6253. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6254. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6255. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6256. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6257. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6258. self.gguf_writer.add_file_type(self.ftype)
  6259. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6260. del bid # unused
  6261. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6262. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6263. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6264. # and decoder and ignore the remaining ones.
  6265. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6266. if not self.shared_token_embeddings_found:
  6267. name = "shared.weight"
  6268. self.shared_token_embeddings_found = True
  6269. else:
  6270. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6271. return []
  6272. return [(self.map_tensor_name(name), data_torch)]
  6273. @ModelBase.register("T5EncoderModel")
  6274. class T5EncoderModel(TextModel):
  6275. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6276. def __init__(self, *args, **kwargs):
  6277. super().__init__(*args, **kwargs)
  6278. self.shared_token_embeddings_found = False
  6279. def set_vocab(self):
  6280. # to avoid TypeError: Descriptors cannot be created directly
  6281. # exception when importing sentencepiece_model_pb2
  6282. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6283. from sentencepiece import SentencePieceProcessor
  6284. from sentencepiece import sentencepiece_model_pb2 as model
  6285. tokenizer_path = self.dir_model / 'tokenizer.model'
  6286. # many older models use spiece.model tokenizer model filename
  6287. if not tokenizer_path.is_file():
  6288. tokenizer_path = self.dir_model / 'spiece.model'
  6289. if not tokenizer_path.is_file():
  6290. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6291. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6292. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6293. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6294. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6295. # assure the tokenizer model file name is correct
  6296. assert tokenizer_path.name == 'tokenizer.model'
  6297. return self._set_vocab_sentencepiece()
  6298. else:
  6299. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6300. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6301. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6302. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6303. tokenizer = SentencePieceProcessor()
  6304. tokenizer.LoadFromFile(str(tokenizer_path))
  6305. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6306. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6307. scores: list[float] = [-10000.0] * vocab_size
  6308. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6309. for token_id in range(tokenizer.vocab_size()):
  6310. piece = tokenizer.IdToPiece(token_id)
  6311. text = piece.encode("utf-8")
  6312. score = tokenizer.GetScore(token_id)
  6313. toktype = SentencePieceTokenTypes.NORMAL
  6314. if tokenizer.IsUnknown(token_id):
  6315. toktype = SentencePieceTokenTypes.UNKNOWN
  6316. elif tokenizer.IsControl(token_id):
  6317. toktype = SentencePieceTokenTypes.CONTROL
  6318. elif tokenizer.IsUnused(token_id):
  6319. toktype = SentencePieceTokenTypes.UNUSED
  6320. elif tokenizer.IsByte(token_id):
  6321. toktype = SentencePieceTokenTypes.BYTE
  6322. tokens[token_id] = text
  6323. scores[token_id] = score
  6324. toktypes[token_id] = toktype
  6325. added_tokens_file = self.dir_model / 'added_tokens.json'
  6326. if added_tokens_file.is_file():
  6327. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6328. added_tokens_json = json.load(f)
  6329. for key in added_tokens_json:
  6330. token_id = added_tokens_json[key]
  6331. if token_id >= vocab_size:
  6332. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6333. continue
  6334. tokens[token_id] = key.encode("utf-8")
  6335. scores[token_id] = -1000.0
  6336. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6337. if vocab_size > len(tokens):
  6338. pad_count = vocab_size - len(tokens)
  6339. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6340. for i in range(1, pad_count + 1):
  6341. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6342. scores.append(-1000.0)
  6343. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6344. self.gguf_writer.add_tokenizer_model("t5")
  6345. self.gguf_writer.add_tokenizer_pre("default")
  6346. self.gguf_writer.add_token_list(tokens)
  6347. self.gguf_writer.add_token_scores(scores)
  6348. self.gguf_writer.add_token_types(toktypes)
  6349. self.gguf_writer.add_add_space_prefix(add_prefix)
  6350. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6351. if precompiled_charsmap:
  6352. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6353. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6354. special_vocab.add_to_gguf(self.gguf_writer)
  6355. def set_gguf_parameters(self):
  6356. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6357. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6358. n_ctx = 512
  6359. self.gguf_writer.add_context_length(n_ctx)
  6360. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6361. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6362. self.gguf_writer.add_block_count(self.block_count)
  6363. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6364. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6365. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6366. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6367. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6368. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6369. self.gguf_writer.add_file_type(self.ftype)
  6370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6371. del bid # unused
  6372. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6373. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6374. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6375. # and decoder and ignore the remaining ones.
  6376. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6377. if not self.shared_token_embeddings_found:
  6378. name = "shared.weight"
  6379. self.shared_token_embeddings_found = True
  6380. else:
  6381. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6382. return []
  6383. return [(self.map_tensor_name(name), data_torch)]
  6384. @ModelBase.register("JAISLMHeadModel")
  6385. class JaisModel(TextModel):
  6386. model_arch = gguf.MODEL_ARCH.JAIS
  6387. def __init__(self, *args, **kwargs):
  6388. super().__init__(*args, **kwargs)
  6389. # SwigLU activation
  6390. assert self.hparams["activation_function"] == "swiglu"
  6391. # ALiBi position embedding
  6392. assert self.hparams["position_embedding_type"] == "alibi"
  6393. # Embeddings scale
  6394. self.embeddings_scale = 1.0
  6395. if 'mup_embeddings_scale' in self.hparams:
  6396. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6397. elif 'embeddings_scale' in self.hparams:
  6398. self.embeddings_scale = self.hparams['embeddings_scale']
  6399. else:
  6400. assert False
  6401. self.width_scale = 1.0
  6402. if 'mup_output_alpha' in self.hparams:
  6403. assert 'mup_width_scale' in self.hparams
  6404. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6405. elif 'width_scale' in self.hparams:
  6406. self.width_scale = self.hparams['width_scale']
  6407. else:
  6408. assert False
  6409. self.max_alibi_bias = 8.0
  6410. def set_vocab(self):
  6411. self._set_vocab_gpt2()
  6412. def set_gguf_parameters(self):
  6413. self.gguf_writer.add_block_count(self.block_count)
  6414. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6415. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6416. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6417. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6418. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6419. self.gguf_writer.add_file_type(self.ftype)
  6420. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6421. del bid # unused
  6422. tensors: list[tuple[str, Tensor]] = []
  6423. # we don't need these
  6424. if name.endswith((".attn.bias")):
  6425. return tensors
  6426. if name.endswith(("relative_pe.slopes")):
  6427. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6428. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6429. # but Jais's PyTorch model simply precalculates the slope values and places them
  6430. # in relative_pes.slopes
  6431. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6432. first_val = float(data_torch[0].item())
  6433. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6434. return tensors
  6435. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6436. data_torch = data_torch.transpose(1, 0)
  6437. new_name = self.map_tensor_name(name)
  6438. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6439. tensors.append((new_name, data_torch * self.embeddings_scale))
  6440. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6441. tensors.append((new_name, data_torch * self.width_scale))
  6442. else:
  6443. tensors.append((new_name, data_torch))
  6444. return tensors
  6445. def prepare_tensors(self):
  6446. super().prepare_tensors()
  6447. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6448. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6449. class Glm4Model(TextModel):
  6450. model_arch = gguf.MODEL_ARCH.GLM4
  6451. use_mrope = False
  6452. partial_rotary_factor = 0.5
  6453. def __init__(self, *args, **kwargs):
  6454. super().__init__(*args, **kwargs)
  6455. self.partial_rotary_factor = self.rope_parameters.get("partial_rotary_factor", 0.5)
  6456. if "mrope_section" in self.rope_parameters:
  6457. self.use_mrope = True
  6458. logger.info("Q/K weight will need to be permuted for M-RoPE")
  6459. def set_vocab(self):
  6460. from transformers import AutoTokenizer
  6461. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6462. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6463. tokens, toktypes, tokpre = self.get_vocab_base()
  6464. self.gguf_writer.add_tokenizer_model("gpt2")
  6465. self.gguf_writer.add_tokenizer_pre(tokpre)
  6466. self.gguf_writer.add_token_list(tokens)
  6467. self.gguf_writer.add_token_types(toktypes)
  6468. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6469. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6470. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6471. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6472. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6473. special_vocab.add_to_gguf(self.gguf_writer)
  6474. def set_gguf_parameters(self):
  6475. super().set_gguf_parameters()
  6476. if (rope_dim := self.hparams.get("head_dim")) is None:
  6477. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6478. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.partial_rotary_factor))
  6479. @staticmethod
  6480. def normal_to_neox(weights: Tensor, n_head: int, n_head_kv: int, head_dim: int, partial_rotary_factor: float) -> Tensor:
  6481. orig_shape = weights.shape
  6482. if len(orig_shape) == 1:
  6483. weights = weights.unsqueeze(1) # [out_dim, 1]
  6484. if len(weights.shape) != 2:
  6485. raise ValueError("Only 1D and 2D tensors are supported.")
  6486. n_effective_heads = weights.shape[0] // head_dim
  6487. if n_head_kv is not None and n_effective_heads != n_head:
  6488. if n_effective_heads != n_head_kv:
  6489. raise AssertionError(f"Mismatch in effective heads: computed {n_effective_heads}, expected {n_head} or {n_head_kv}")
  6490. rotary_dim = int(head_dim * partial_rotary_factor)
  6491. if rotary_dim % 2 != 0:
  6492. raise ValueError("rotary_dim must be even.")
  6493. reshaped = weights.reshape(n_effective_heads, head_dim, -1)
  6494. rot_part = reshaped[:, :rotary_dim, :]
  6495. non_rot_part = reshaped[:, rotary_dim:, :]
  6496. permuted_rot = torch.cat((rot_part[:, ::2, :], rot_part[:, 1::2, :]), dim=1)
  6497. combined = torch.cat((permuted_rot, non_rot_part), dim=1)
  6498. result = combined.reshape(weights.shape)
  6499. return result if len(orig_shape) != 1 else result.squeeze(1)
  6500. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6501. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6502. return []
  6503. elif name.startswith("model.language_model."):
  6504. name = name.replace("language_model.", "") # for Glm4v
  6505. if self.use_mrope:
  6506. n_head = self.hparams["num_attention_heads"]
  6507. n_kv_head = self.hparams["num_key_value_heads"]
  6508. n_embd = self.hparams["hidden_size"]
  6509. head_dim = n_embd // n_head
  6510. # because llama.cpp M-RoPE kernel only supports Neox ordering, we have to permute the weights here
  6511. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6512. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_head, head_dim, self.partial_rotary_factor)
  6513. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6514. data_torch = Glm4Model.normal_to_neox(data_torch, n_head, n_kv_head, head_dim, self.partial_rotary_factor)
  6515. return super().modify_tensors(data_torch, name, bid)
  6516. @ModelBase.register("Glm4MoeForCausalLM", "Glm4vMoeForConditionalGeneration")
  6517. class Glm4MoeModel(TextModel):
  6518. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6519. def __init__(self, *args, **kwargs):
  6520. super().__init__(*args, **kwargs)
  6521. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6522. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6523. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6524. def set_vocab(self):
  6525. from transformers import AutoTokenizer
  6526. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6527. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6528. tokens, toktypes, tokpre = self.get_vocab_base()
  6529. self.gguf_writer.add_tokenizer_model("gpt2")
  6530. self.gguf_writer.add_tokenizer_pre(tokpre)
  6531. self.gguf_writer.add_token_list(tokens)
  6532. self.gguf_writer.add_token_types(toktypes)
  6533. # Special tokens
  6534. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6535. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6536. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6537. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6538. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6539. special_vocab.add_to_gguf(self.gguf_writer)
  6540. def set_gguf_parameters(self):
  6541. super().set_gguf_parameters()
  6542. if (rope_dim := self.hparams.get("head_dim")) is None:
  6543. rope_dim = (
  6544. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6545. )
  6546. self.gguf_writer.add_rope_dimension_count(
  6547. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6548. )
  6549. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6550. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6551. self.gguf_writer.add_expert_count(n_routed_experts)
  6552. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6553. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6554. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6555. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6556. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6557. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6558. # Expert gating function (sigmoid for GLM4_MOE)
  6559. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6560. # Routed scaling factor
  6561. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6562. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6563. # Normalise topk probabilities
  6564. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6565. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6566. # NextN/MTP prediction layers
  6567. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6568. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6569. _experts: list[dict[str, Tensor]] | None = None
  6570. # note: unlike GLM4V non-MoE, we don't need to permute Q/K here since GLM4V_MOE uses Neox ordering already
  6571. def modify_tensors(
  6572. self, data_torch: Tensor, name: str, bid: int | None
  6573. ) -> Iterable[tuple[str, Tensor]]:
  6574. if name.startswith("model.visual."): # ignore visual part
  6575. return []
  6576. elif name.startswith("model.language_model."):
  6577. name = name.replace("language_model.", "") # for multimodal variants
  6578. # Handle main token embedding (but not layer-specific NextN embeddings)
  6579. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6580. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6581. # Handle routed experts
  6582. if name.find("mlp.experts") != -1:
  6583. n_experts = self.hparams["n_routed_experts"]
  6584. assert bid is not None
  6585. if self._experts is None:
  6586. self._experts = [{} for _ in range(self.block_count)]
  6587. self._experts[bid][name] = data_torch
  6588. if len(self._experts[bid]) >= n_experts * 3:
  6589. tensors: list[tuple[str, Tensor]] = []
  6590. # merge the experts into a single 3d tensor
  6591. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6592. datas: list[Tensor] = []
  6593. for xid in range(n_experts):
  6594. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6595. datas.append(self._experts[bid][ename])
  6596. del self._experts[bid][ename]
  6597. data_torch = torch.stack(datas, dim=0)
  6598. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6599. new_name = self.map_tensor_name(merged_name)
  6600. tensors.append((new_name, data_torch))
  6601. return tensors
  6602. else:
  6603. return []
  6604. if name.endswith("e_score_correction_bias"):
  6605. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6606. new_name = self.map_tensor_name(name)
  6607. return [(new_name, data_torch)]
  6608. def prepare_tensors(self):
  6609. super().prepare_tensors()
  6610. if self._experts is not None:
  6611. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6612. experts = [k for d in self._experts for k in d.keys()]
  6613. if len(experts) > 0:
  6614. raise ValueError(f"Unprocessed experts: {experts}")
  6615. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6616. class ChatGLMModel(TextModel):
  6617. model_arch = gguf.MODEL_ARCH.CHATGLM
  6618. def set_vocab_chatglm3(self):
  6619. dir_model = self.dir_model
  6620. hparams = self.hparams
  6621. tokens: list[bytes] = []
  6622. toktypes: list[int] = []
  6623. scores: list[float] = []
  6624. from transformers import AutoTokenizer
  6625. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6626. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6627. assert max(tokenizer.get_vocab().values()) < vocab_size
  6628. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6629. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6630. for token_id in range(vocab_size):
  6631. piece = tokenizer._convert_id_to_token(token_id)
  6632. if token_id == 0:
  6633. piece = "<unk>"
  6634. elif token_id == 1:
  6635. piece = "<bos>"
  6636. elif token_id == 2:
  6637. piece = "<eos>"
  6638. text = piece.encode("utf-8")
  6639. score = 0.0
  6640. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6641. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6642. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6643. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6644. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6645. if piece in special_tokens:
  6646. toktype = SentencePieceTokenTypes.CONTROL
  6647. elif len(piece) == 0:
  6648. text = f"[PAD{token_id}]".encode("utf-8")
  6649. toktype = SentencePieceTokenTypes.UNUSED
  6650. else:
  6651. toktype = SentencePieceTokenTypes.USER_DEFINED
  6652. tokens.append(text)
  6653. scores.append(score)
  6654. toktypes.append(toktype)
  6655. continue
  6656. toktype = SentencePieceTokenTypes.NORMAL
  6657. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6658. toktype = SentencePieceTokenTypes.UNKNOWN
  6659. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6660. toktype = SentencePieceTokenTypes.CONTROL
  6661. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6662. toktype = SentencePieceTokenTypes.UNUSED
  6663. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6664. toktype = SentencePieceTokenTypes.BYTE
  6665. tokens.append(text)
  6666. scores.append(score)
  6667. toktypes.append(toktype)
  6668. self.gguf_writer.add_tokenizer_model("llama")
  6669. # glm3 needs prefix and suffix formatted as:
  6670. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6671. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6672. self.gguf_writer.add_token_list(tokens)
  6673. self.gguf_writer.add_token_scores(scores)
  6674. self.gguf_writer.add_token_types(toktypes)
  6675. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6676. special_vocab.add_to_gguf(self.gguf_writer)
  6677. @staticmethod
  6678. def token_bytes_to_string(b):
  6679. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6680. byte_encoder = bytes_to_unicode()
  6681. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6682. @staticmethod
  6683. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6684. parts = [bytes([b]) for b in token]
  6685. while True:
  6686. min_idx = None
  6687. min_rank = None
  6688. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6689. rank = mergeable_ranks.get(pair[0] + pair[1])
  6690. if rank is not None and (min_rank is None or rank < min_rank):
  6691. min_idx = i
  6692. min_rank = rank
  6693. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6694. break
  6695. assert min_idx is not None
  6696. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6697. return parts
  6698. def set_vocab(self):
  6699. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6700. self.set_vocab_chatglm3()
  6701. return
  6702. dir_model = self.dir_model
  6703. hparams = self.hparams
  6704. tokens: list[str] = []
  6705. toktypes: list[int] = []
  6706. from transformers import AutoTokenizer
  6707. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6708. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6709. assert max(tokenizer.get_vocab().values()) < vocab_size
  6710. tokens, toktypes, tokpre = self.get_vocab_base()
  6711. self.gguf_writer.add_tokenizer_model("gpt2")
  6712. self.gguf_writer.add_tokenizer_pre(tokpre)
  6713. self.gguf_writer.add_token_list(tokens)
  6714. self.gguf_writer.add_token_types(toktypes)
  6715. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6716. # only add special tokens when they were not already loaded from config.json
  6717. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6718. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6719. # this one is usually not in config.json anyway
  6720. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6721. special_vocab.add_to_gguf(self.gguf_writer)
  6722. def set_gguf_parameters(self):
  6723. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6724. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6725. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6726. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6727. self.gguf_writer.add_embedding_length(n_embed)
  6728. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6729. self.gguf_writer.add_block_count(self.block_count)
  6730. self.gguf_writer.add_head_count(n_head)
  6731. self.gguf_writer.add_head_count_kv(n_head_kv)
  6732. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6733. self.gguf_writer.add_file_type(self.ftype)
  6734. if "attention_dim" in self.hparams:
  6735. rope_dim = self.hparams["attention_dim"]
  6736. else:
  6737. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6738. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6739. self.gguf_writer.add_add_bos_token(False)
  6740. rope_freq = 10000
  6741. if "rope_ratio" in self.hparams:
  6742. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6743. self.gguf_writer.add_rope_freq_base(rope_freq)
  6744. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6745. del bid # unused
  6746. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6747. return []
  6748. name = name.removeprefix("transformer.")
  6749. return [(self.map_tensor_name(name), data_torch)]
  6750. @ModelBase.register("NemotronForCausalLM")
  6751. class NemotronModel(TextModel):
  6752. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6753. def set_vocab(self):
  6754. self._set_vocab_sentencepiece()
  6755. self.gguf_writer.add_pad_token_id(0)
  6756. self.gguf_writer.add_unk_token_id(1)
  6757. def set_gguf_parameters(self):
  6758. super().set_gguf_parameters()
  6759. hparams = self.hparams
  6760. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6761. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6762. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6763. # * Partial RoPE
  6764. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6765. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6766. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6767. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6768. # * RopeScaling for Nemotron
  6769. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6770. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6771. else:
  6772. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6773. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6774. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6775. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6776. # model.layers.{l}.input_layernorm.weight
  6777. # model.layers.{l}.post_attention_layernorm.weight
  6778. # model.norm.weight
  6779. if name.endswith("norm.weight"):
  6780. data_torch = data_torch + 1
  6781. return [(self.map_tensor_name(name), data_torch)]
  6782. @ModelBase.register("ExaoneForCausalLM")
  6783. class ExaoneModel(TextModel):
  6784. model_arch = gguf.MODEL_ARCH.EXAONE
  6785. def set_gguf_parameters(self):
  6786. super().set_gguf_parameters()
  6787. hparams = self.hparams
  6788. assert (hparams["activation_function"] == "silu")
  6789. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6790. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6791. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6792. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6793. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6794. if rope_params.get("rope_type", '').lower() == "llama3":
  6795. base = self.rope_parameters.get("rope_theta", 10000.0)
  6796. if (dim := self.hparams.get("head_dim")) is None:
  6797. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6798. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6799. factor = rope_params.get("factor", 8.0)
  6800. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6801. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6802. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6803. low_freq_wavelen = old_context_len / low_freq_factor
  6804. high_freq_wavelen = old_context_len / high_freq_factor
  6805. assert low_freq_wavelen != high_freq_wavelen
  6806. rope_factors = []
  6807. for freq in freqs:
  6808. wavelen = 2 * math.pi / freq
  6809. if wavelen < high_freq_wavelen:
  6810. rope_factors.append(1)
  6811. elif wavelen > low_freq_wavelen:
  6812. rope_factors.append(factor)
  6813. else:
  6814. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6815. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6816. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6817. @ModelBase.register("Exaone4ForCausalLM")
  6818. class Exaone4Model(TextModel):
  6819. model_arch = gguf.MODEL_ARCH.EXAONE4
  6820. def set_vocab(self):
  6821. tokens, toktypes, tokpre = self.get_vocab_base()
  6822. self.gguf_writer.add_tokenizer_model("gpt2")
  6823. self.gguf_writer.add_tokenizer_pre(tokpre)
  6824. self.gguf_writer.add_token_list(tokens)
  6825. self.gguf_writer.add_token_types(toktypes)
  6826. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6827. special_vocab.add_to_gguf(self.gguf_writer)
  6828. def set_gguf_parameters(self):
  6829. super().set_gguf_parameters()
  6830. hparams = self.hparams
  6831. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6832. if hparams.get("sliding_window") is not None:
  6833. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6834. if "layer_types" in hparams:
  6835. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6836. elif "sliding_window_pattern" in hparams:
  6837. sliding_window_pattern = []
  6838. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6839. for i in range(hparams["num_hidden_layers"]):
  6840. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6841. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6842. for i in range(hparams["num_hidden_layers"]):
  6843. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6844. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6845. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6846. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6847. if rope_params := self.rope_parameters.get("full_attention", self.rope_parameters):
  6848. if rope_params.get("rope_type", '').lower() == "llama3":
  6849. base = rope_params.get("rope_theta", 10_000.0)
  6850. if (dim := self.hparams.get("head_dim")) is None:
  6851. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6852. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6853. factor = rope_params.get("factor", 16.0)
  6854. low_freq_factor = rope_params.get("low_freq_factor", 1.0)
  6855. high_freq_factor = rope_params.get("high_freq_factor", 4.0)
  6856. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6857. low_freq_wavelen = old_context_len / low_freq_factor
  6858. high_freq_wavelen = old_context_len / high_freq_factor
  6859. rope_factors = []
  6860. for freq in freqs:
  6861. wavelen = 2 * math.pi / freq
  6862. if wavelen < high_freq_wavelen:
  6863. rope_factors.append(1)
  6864. elif wavelen > low_freq_wavelen:
  6865. rope_factors.append(factor)
  6866. else:
  6867. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6868. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6869. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6870. @ModelBase.register("GraniteForCausalLM")
  6871. class GraniteModel(LlamaModel):
  6872. """Conversion for IBM's GraniteForCausalLM"""
  6873. model_arch = gguf.MODEL_ARCH.GRANITE
  6874. def set_gguf_parameters(self):
  6875. """Granite uses standard llama parameters with the following differences:
  6876. - No head_dim support
  6877. - New multiplier params:
  6878. - attention_scale
  6879. - embedding_scale
  6880. - residual_scale
  6881. - logits_scaling
  6882. """
  6883. if head_dim := self.hparams.pop("head_dim", None):
  6884. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6885. super().set_gguf_parameters()
  6886. # NOTE: Convert _multiplier params to _scale params for naming
  6887. # consistency
  6888. if attention_scale := self.hparams.get("attention_multiplier"):
  6889. self.gguf_writer.add_attention_scale(attention_scale)
  6890. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6891. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6892. self.gguf_writer.add_embedding_scale(embedding_scale)
  6893. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6894. if residual_scale := self.hparams.get("residual_multiplier"):
  6895. self.gguf_writer.add_residual_scale(residual_scale)
  6896. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6897. if logits_scale := self.hparams.get("logits_scaling"):
  6898. self.gguf_writer.add_logit_scale(logits_scale)
  6899. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6900. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6901. class GraniteMoeModel(GraniteModel):
  6902. """Conversion for IBM's GraniteMoeForCausalLM"""
  6903. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6904. def set_gguf_parameters(self):
  6905. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6906. - shared_intermediate_size
  6907. """
  6908. super().set_gguf_parameters()
  6909. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6910. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6911. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6912. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6913. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6914. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6915. the hidden size that is then split during forward. To keep compatibility
  6916. with existing mixtral support, we pull them apart here.
  6917. """
  6918. if name.endswith("block_sparse_moe.input_linear.weight"):
  6919. ffn_dim = self.hparams["intermediate_size"]
  6920. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6921. gate, up = data_torch.split(ffn_dim, dim=-2)
  6922. return [
  6923. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6924. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6925. ]
  6926. has_experts = bool(self.hparams.get('num_local_experts'))
  6927. if name.endswith("shared_mlp.input_linear.weight"):
  6928. ffn_dim = self.hparams["shared_intermediate_size"]
  6929. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6930. gate, up = data_torch.split(ffn_dim, dim=-2)
  6931. if has_experts:
  6932. return [
  6933. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6934. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6935. ]
  6936. return [
  6937. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6938. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6939. ]
  6940. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6941. return [
  6942. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6943. ]
  6944. return super().modify_tensors(data_torch, name, bid)
  6945. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6946. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6947. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6948. layers and optionally uses MoE w/ a shared expert"""
  6949. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6950. undo_permute = True
  6951. def __init__(self, *args, **kwargs):
  6952. # Hybrid mamba models use a prefix for the mamba-specific params.
  6953. # TODO: Extend this if the prefix(es) need to be configurable
  6954. self.hparam_prefixes = ["mamba"]
  6955. super().__init__(*args, **kwargs)
  6956. # Lists of which layers use ssm vs attention
  6957. self._attn_layers = self.get_attn_layers()
  6958. self._ssm_layers = [
  6959. i for i in range(self.block_count)
  6960. if i not in self._attn_layers
  6961. ]
  6962. # There are some models in this family that are non-hybrid, but keep the
  6963. # same parent class by setting all layers to "attention." If this is the
  6964. # case, the model architecture needs to be updated to a standard
  6965. # "granite" or "granitemoe" model
  6966. if not self._ssm_layers:
  6967. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6968. new_arch = (
  6969. gguf.MODEL_ARCH.GRANITE_MOE
  6970. if has_experts else
  6971. gguf.MODEL_ARCH.GRANITE
  6972. )
  6973. self.model_arch = new_arch
  6974. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6975. self.gguf_writer.add_architecture()
  6976. # n_group and d_inner are used during reshape_tensors for mamba2
  6977. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6978. # disambiguate with top-level head_dim
  6979. # NOTE 2: If needed for future models, this can be isolated in a method
  6980. # to separate the prefix setting and teh keys used
  6981. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6982. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6983. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6984. def get_attn_layers(self):
  6985. # Explicit list of layer type names
  6986. if layer_types := self.hparams.get("layer_types"):
  6987. return [
  6988. i for i, typ in enumerate(layer_types)
  6989. if typ == "attention"
  6990. ]
  6991. # Layer types indicated by index or period
  6992. attn_layers = self.hparams.get("attn_layer_indices", [])
  6993. if not attn_layers:
  6994. attn_period = self.hparams.get("attn_layer_period")
  6995. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6996. attn_offset = self.hparams.get("attn_layer_offset")
  6997. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6998. attn_layers = [
  6999. i for i in range(self.block_count)
  7000. if i % attn_period == attn_offset
  7001. ]
  7002. return attn_layers
  7003. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7004. prefixed = []
  7005. for pfx in self.hparam_prefixes:
  7006. prefixed.extend(
  7007. "_".join([pfx, k])
  7008. for k in keys
  7009. )
  7010. keys = list(keys) + prefixed
  7011. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  7012. def modify_tensors(
  7013. self, data_torch: Tensor, name: str, bid: int | None
  7014. ) -> Iterable[tuple[str, Tensor]]:
  7015. if (
  7016. name.endswith("block_sparse_moe.input_linear.weight")
  7017. or "shared_mlp" in name
  7018. ):
  7019. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7020. # Determine whether this is a mamba layer or an attention layer
  7021. if bid in self._ssm_layers:
  7022. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  7023. elif bid in self._attn_layers:
  7024. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  7025. return [(self.map_tensor_name(name), data_torch)]
  7026. def set_gguf_parameters(self):
  7027. """This method merges params from both parents and some that are
  7028. specific to this model. The result is some duplication of how the params
  7029. get set. The following warnings are expected during conversion:
  7030. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  7031. WARNING:Duplicated key name 'granitehybrid.context_length'
  7032. """
  7033. GraniteMoeModel.set_gguf_parameters(self)
  7034. ## Mamba mixer params ##
  7035. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  7036. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  7037. self.gguf_writer.add_ssm_group_count(self.n_group)
  7038. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  7039. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  7040. # in llama.cpp
  7041. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  7042. ## Attention params ##
  7043. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  7044. head_count_kv_vec = [
  7045. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  7046. ]
  7047. if rope_dim := self.hparams.get("attn_rotary_emb"):
  7048. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7049. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  7050. ## If Bamba or non-hybrid, use rope, otherwise don't
  7051. use_rope = (
  7052. "BambaForCausalLM" in self.hparams["architectures"]
  7053. or not self._ssm_layers
  7054. )
  7055. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  7056. if not use_rope:
  7057. self.gguf_writer.add_context_length(2**20)
  7058. ## Validation ##
  7059. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7060. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7061. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7062. def set_vocab(self):
  7063. self.hparams["pad_vocab_size_multiple"] = 8
  7064. Mamba2Model.set_vocab(self)
  7065. @ModelBase.register("NemotronHForCausalLM")
  7066. class NemotronHModel(GraniteHybridModel):
  7067. """Hybrid mamba2/attention model from NVIDIA"""
  7068. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7069. is_moe: bool = False
  7070. def __init__(self, *args, **kwargs):
  7071. # We have to determine the correct model architecture (MoE vs non-MoE) before
  7072. # calling the parent __init__. This is because the parent constructor
  7073. # uses self.model_arch to build the tensor name map, and all MoE-specific
  7074. # mappings would be missed if it were called with the default non-MoE arch.
  7075. hparams = ModelBase.load_hparams(args[0], self.is_mistral_format)
  7076. if "num_experts_per_tok" in hparams:
  7077. self.model_arch = gguf.MODEL_ARCH.NEMOTRON_H_MOE
  7078. self.is_moe = True
  7079. super().__init__(*args, **kwargs)
  7080. # Save the top-level head_dim for later
  7081. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7082. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7083. # Don't use expand to calculate d_inner
  7084. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7085. # Update the ssm / attn / mlp layers
  7086. # M: Mamba2, *: Attention, -: MLP
  7087. # MoE:
  7088. # M: Mamba2, *: Attention, E: Expert
  7089. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7090. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7091. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == ("E" if self.is_moe else "-")]
  7092. def get_attn_layers(self):
  7093. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7094. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7095. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7096. def set_gguf_parameters(self):
  7097. super().set_gguf_parameters()
  7098. self.gguf_writer.add_key_length(self.head_dim)
  7099. self.gguf_writer.add_value_length(self.head_dim)
  7100. # Set feed_forward_length
  7101. # NOTE: This will trigger an override warning. This is preferrable to
  7102. # duplicating all the parent logic
  7103. if not self.is_moe:
  7104. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7105. self.gguf_writer.add_feed_forward_length([
  7106. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7107. ])
  7108. else:
  7109. moe_intermediate_size = self.hparams["moe_intermediate_size"]
  7110. self.gguf_writer.add_feed_forward_length([
  7111. moe_intermediate_size if i in self._mlp_layers else 0 for i in range(self.block_count)
  7112. ])
  7113. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  7114. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7115. self.gguf_writer.add_expert_shared_feed_forward_length(self.hparams["moe_shared_expert_intermediate_size"])
  7116. self.gguf_writer.add_expert_count(self.hparams["n_routed_experts"])
  7117. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  7118. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  7119. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  7120. self.gguf_writer.add_expert_group_count(self.hparams["n_group"])
  7121. # number of experts used per token (top-k)
  7122. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7123. self.gguf_writer.add_expert_used_count(n_experts_used)
  7124. def set_vocab(self):
  7125. super().set_vocab()
  7126. # The tokenizer _does_ add a BOS token (via post_processor type
  7127. # TemplateProcessing) but does not set add_bos_token to true in the
  7128. # config, so we need to explicitly override it here.
  7129. if not self.is_moe:
  7130. self.gguf_writer.add_add_bos_token(True)
  7131. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7132. if self.is_moe and bid is not None:
  7133. if name.endswith("mixer.gate.e_score_correction_bias"):
  7134. new_name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  7135. mapped_name = self.map_tensor_name(new_name)
  7136. return [(mapped_name, data_torch)]
  7137. if name.endswith("mixer.dt_bias"):
  7138. new_name = name.replace("dt_bias", "dt.bias")
  7139. mapped_name = self.map_tensor_name(new_name)
  7140. return [(mapped_name, data_torch)]
  7141. if name.endswith("mixer.conv1d.weight"):
  7142. squeezed_data = data_torch.squeeze()
  7143. mapped_name = self.map_tensor_name(name)
  7144. return [(mapped_name, squeezed_data)]
  7145. if name.endswith("mixer.A_log"):
  7146. transformed_data = -torch.exp(data_torch)
  7147. reshaped_data = transformed_data.squeeze().reshape(-1, 1)
  7148. mapped_name = self.map_tensor_name(name)
  7149. return [(mapped_name, reshaped_data)]
  7150. if name.endswith("mixer.D"):
  7151. reshaped_data = data_torch.squeeze().reshape(-1, 1)
  7152. mapped_name = self.map_tensor_name(name)
  7153. return [(mapped_name, reshaped_data)]
  7154. if name.endswith("mixer.norm.weight"):
  7155. reshaped_data = data_torch.reshape(8, 512)
  7156. mapped_name = self.map_tensor_name(name)
  7157. return [(mapped_name, reshaped_data)]
  7158. if name.find("mixer.experts") != -1:
  7159. n_experts = self.hparams["n_routed_experts"]
  7160. assert bid is not None
  7161. if self._experts is None:
  7162. self._experts = [{} for _ in range(self.block_count)]
  7163. self._experts[bid][name] = data_torch
  7164. if len(self._experts[bid]) >= n_experts * 2:
  7165. # merge the experts into a single tensor
  7166. tensors: list[tuple[str, Tensor]] = []
  7167. for w_name in ["down_proj", "up_proj"]:
  7168. datas: list[Tensor] = []
  7169. for xid in range(n_experts):
  7170. ename = f"backbone.layers.{bid}.mixer.experts.{xid}.{w_name}.weight"
  7171. datas.append(self._experts[bid][ename])
  7172. del self._experts[bid][ename]
  7173. data_torch = torch.stack(datas, dim=0)
  7174. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7175. new_name = self.map_tensor_name(merged_name)
  7176. tensors.append((new_name, data_torch))
  7177. return tensors
  7178. else:
  7179. return []
  7180. return super().modify_tensors(data_torch, name, bid)
  7181. def prepare_tensors(self):
  7182. super().prepare_tensors()
  7183. if self._experts is not None:
  7184. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7185. experts = [k for d in self._experts for k in d.keys()]
  7186. if len(experts) > 0:
  7187. raise ValueError(f"Unprocessed experts: {experts}")
  7188. @ModelBase.register("LlamaBidirectionalModel")
  7189. class LlamaEmbedNemotronModel(LlamaModel):
  7190. model_arch = gguf.MODEL_ARCH.LLAMA_EMBED
  7191. @ModelBase.register("BailingMoeForCausalLM")
  7192. class BailingMoeModel(TextModel):
  7193. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7194. def set_vocab(self):
  7195. self._set_vocab_gpt2()
  7196. def set_gguf_parameters(self):
  7197. super().set_gguf_parameters()
  7198. hparams = self.hparams
  7199. if (rope_dim := hparams.get("head_dim")) is None:
  7200. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7201. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7202. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7203. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7204. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7205. self.gguf_writer.add_expert_weights_scale(1.0)
  7206. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7207. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7208. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7209. _experts: list[dict[str, Tensor]] | None = None
  7210. @staticmethod
  7211. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7212. if n_head_kv is not None and n_head != n_head_kv:
  7213. n_head = n_head_kv
  7214. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7215. .swapaxes(1, 2)
  7216. .reshape(weights.shape))
  7217. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7218. n_head = self.hparams["num_attention_heads"]
  7219. n_kv_head = self.hparams.get("num_key_value_heads")
  7220. n_embd = self.hparams["hidden_size"]
  7221. if (head_dim := self.hparams.get("head_dim")) is None:
  7222. head_dim = n_embd // n_head
  7223. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7224. if name.endswith("attention.dense.weight"):
  7225. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7226. elif name.endswith("query_key_value.weight"):
  7227. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7228. return [
  7229. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7230. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7231. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7232. ]
  7233. elif name.find("mlp.experts") != -1:
  7234. n_experts = self.hparams["num_experts"]
  7235. assert bid is not None
  7236. tensors: list[tuple[str, Tensor]] = []
  7237. if self._experts is None:
  7238. self._experts = [{} for _ in range(self.block_count)]
  7239. self._experts[bid][name] = data_torch
  7240. if len(self._experts[bid]) >= n_experts * 3:
  7241. # merge the experts into a single 3d tensor
  7242. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7243. datas: list[Tensor] = []
  7244. for xid in range(n_experts):
  7245. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7246. datas.append(self._experts[bid][ename])
  7247. del self._experts[bid][ename]
  7248. data_torch = torch.stack(datas, dim=0)
  7249. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7250. new_name = self.map_tensor_name(merged_name)
  7251. tensors.append((new_name, data_torch))
  7252. return tensors
  7253. new_name = self.map_tensor_name(name)
  7254. if new_name == output_name and self.hparams.get("norm_head"):
  7255. data_torch = data_torch.float()
  7256. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7257. return [(new_name, data_torch)]
  7258. def prepare_tensors(self):
  7259. super().prepare_tensors()
  7260. if self._experts is not None:
  7261. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7262. experts = [k for d in self._experts for k in d.keys()]
  7263. if len(experts) > 0:
  7264. raise ValueError(f"Unprocessed experts: {experts}")
  7265. @ModelBase.register("BailingMoeV2ForCausalLM")
  7266. class BailingMoeV2Model(TextModel):
  7267. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7268. def __init__(self, *args, **kwargs):
  7269. super().__init__(*args, **kwargs)
  7270. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7271. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7272. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7273. def set_vocab(self):
  7274. self._set_vocab_gpt2()
  7275. def set_gguf_parameters(self):
  7276. super().set_gguf_parameters()
  7277. hparams = self.hparams
  7278. if (rope_dim := hparams.get("head_dim")) is None:
  7279. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7280. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7281. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7282. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7283. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7284. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7285. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7286. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7287. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7288. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7289. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7290. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7291. _experts: list[dict[str, Tensor]] | None = None
  7292. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7293. if "mlp.experts" in name:
  7294. n_experts = self.hparams["num_experts"]
  7295. assert bid is not None
  7296. tensors: list[tuple[str, Tensor]] = []
  7297. if self._experts is None:
  7298. self._experts = [{} for _ in range(self.block_count)]
  7299. self._experts[bid][name] = data_torch
  7300. if len(self._experts[bid]) >= n_experts * 3:
  7301. # merge the experts into a single 3d tensor
  7302. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7303. datas: list[Tensor] = []
  7304. for xid in range(n_experts):
  7305. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7306. datas.append(self._experts[bid][ename])
  7307. del self._experts[bid][ename]
  7308. data_torch = torch.stack(datas, dim=0)
  7309. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7310. new_name = self.map_tensor_name(merged_name)
  7311. tensors.append((new_name, data_torch))
  7312. return tensors
  7313. if name.endswith(".expert_bias"):
  7314. name = name.replace(".expert_bias", ".expert_bias.bias")
  7315. return [(self.map_tensor_name(name), data_torch)]
  7316. def prepare_tensors(self):
  7317. super().prepare_tensors()
  7318. if self._experts is not None:
  7319. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7320. experts = [k for d in self._experts for k in d.keys()]
  7321. if len(experts) > 0:
  7322. raise ValueError(f"Unprocessed experts: {experts}")
  7323. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7324. class GroveMoeModel(TextModel):
  7325. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7326. def set_gguf_parameters(self):
  7327. super().set_gguf_parameters()
  7328. if (n_experts := self.hparams.get("num_experts")) is not None:
  7329. self.gguf_writer.add_expert_count(n_experts)
  7330. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7331. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7332. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7333. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7334. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7335. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7336. self.gguf_writer.add_experts_per_group(2)
  7337. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7338. self.gguf_writer.add_expert_group_scale(0.05)
  7339. _experts: list[dict[str, Tensor]] | None = None
  7340. _chunk_experts: list[dict[str, Tensor]] | None = None
  7341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7342. if name.endswith(".expert_bias"):
  7343. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7344. return []
  7345. # process the experts separately
  7346. if name.find("chunk_experts") != -1:
  7347. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7348. assert bid is not None
  7349. if self._chunk_experts is None:
  7350. self._chunk_experts = [{} for _ in range(self.block_count)]
  7351. self._chunk_experts[bid][name] = data_torch
  7352. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7353. tensors: list[tuple[str, Tensor]] = []
  7354. # merge the experts into a single 3d tensor
  7355. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7356. datas: list[Tensor] = []
  7357. for xid in range(n_experts):
  7358. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7359. datas.append(self._chunk_experts[bid][ename])
  7360. del self._chunk_experts[bid][ename]
  7361. data_torch = torch.stack(datas, dim=0)
  7362. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7363. new_name = self.map_tensor_name(merged_name)
  7364. tensors.append((new_name, data_torch))
  7365. return tensors
  7366. else:
  7367. return []
  7368. elif name.find("experts") != -1:
  7369. n_experts = self.hparams["num_experts"]
  7370. assert bid is not None
  7371. if self._experts is None:
  7372. self._experts = [{} for _ in range(self.block_count)]
  7373. self._experts[bid][name] = data_torch
  7374. if len(self._experts[bid]) >= n_experts * 3:
  7375. tensors: list[tuple[str, Tensor]] = []
  7376. # merge the experts into a single 3d tensor
  7377. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7378. datas: list[Tensor] = []
  7379. for xid in range(n_experts):
  7380. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7381. datas.append(self._experts[bid][ename])
  7382. del self._experts[bid][ename]
  7383. data_torch = torch.stack(datas, dim=0)
  7384. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7385. new_name = self.map_tensor_name(merged_name)
  7386. tensors.append((new_name, data_torch))
  7387. return tensors
  7388. else:
  7389. return []
  7390. return [(self.map_tensor_name(name), data_torch)]
  7391. def prepare_tensors(self):
  7392. super().prepare_tensors()
  7393. if self._chunk_experts is not None:
  7394. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7395. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7396. if len(chunk_experts) > 0:
  7397. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7398. if self._experts is not None:
  7399. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7400. experts = [k for d in self._experts for k in d.keys()]
  7401. if len(experts) > 0:
  7402. raise ValueError(f"Unprocessed experts: {experts}")
  7403. @ModelBase.register("ChameleonForConditionalGeneration")
  7404. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7405. class ChameleonModel(TextModel):
  7406. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7407. def set_gguf_parameters(self):
  7408. super().set_gguf_parameters()
  7409. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7410. def set_vocab(self):
  7411. self._set_vocab_gpt2()
  7412. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7413. # ignore image tokenizer for now
  7414. # TODO: remove this once image support is implemented for Chameleon
  7415. if name.startswith("model.vqmodel"):
  7416. return []
  7417. n_head = self.hparams["num_attention_heads"]
  7418. n_kv_head = self.hparams.get("num_key_value_heads")
  7419. hidden_dim = self.hparams.get("hidden_size")
  7420. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7421. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7422. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7423. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7424. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7425. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7426. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7427. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7428. return [(self.map_tensor_name(name), data_torch)]
  7429. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7430. @staticmethod
  7431. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7432. head_dim = hidden_dim // n_heads
  7433. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7434. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7435. return data_torch
  7436. @ModelBase.register("UltravoxModel")
  7437. class UltravoxModel(TextModel):
  7438. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7439. def __init__(self, *args, **kwargs):
  7440. super().__init__(*args, **kwargs)
  7441. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7442. @ModelBase.register("GlmasrModel")
  7443. class GlmASRWhisperEncoderModel(MmprojModel):
  7444. has_vision_encoder = False
  7445. has_audio_encoder = True
  7446. def __init__(self, *args, **kwargs):
  7447. super().__init__(*args, **kwargs)
  7448. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7449. self.hparams["hidden_size"] = self.hparams["d_model"]
  7450. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7451. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7452. def set_gguf_parameters(self):
  7453. super().set_gguf_parameters()
  7454. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GLMA)
  7455. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7456. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7457. self.gguf_writer.add_audio_stack_factor(self.global_config["merge_factor"])
  7458. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7459. if ".conv" in name and ".weight" in name:
  7460. return gguf.GGMLQuantizationType.F16
  7461. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7463. del bid # unused
  7464. if name.startswith("model.") or name.startswith("lm_head."):
  7465. # skip language model tensors
  7466. return []
  7467. if name.startswith("audio_encoder.whisper."):
  7468. name = name.replace("audio_encoder.whisper.","audio_tower.")
  7469. if "audio_encoder.layer_norm." in name or "audio_encoder.proj." in name:
  7470. name = name.replace("audio_encoder.", "audio_encoder.adapting.")
  7471. if name.startswith("audio_encoder.audio_bos_eos_token."):
  7472. return [(self.map_tensor_name("model.vision.boi"), data_torch[0]), (self.map_tensor_name("model.vision.eoi"), data_torch[1])]
  7473. if name.startswith("audio_encoder.adapting."):
  7474. name = name.replace("audio_encoder.adapting.","audio.multi_modal_projector.")
  7475. if ".layer_norm." in name:
  7476. name = name.replace(".layer_norm.", ".ln_pre.")
  7477. if ".0." in name:
  7478. name = name.replace(".0.", ".linear_1.")
  7479. if ".2." in name:
  7480. name = name.replace(".2.", ".linear_2.")
  7481. if ".proj." in name:
  7482. return []
  7483. if "conv1.bias" in name or "conv2.bias" in name:
  7484. # transpose conv1 and conv2 bias
  7485. data_torch = data_torch.unsqueeze(-1)
  7486. return [(self.map_tensor_name(name), data_torch)]
  7487. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7488. class WhisperEncoderModel(MmprojModel):
  7489. has_vision_encoder = False # no vision encoder
  7490. has_audio_encoder = True
  7491. def __init__(self, *args, **kwargs):
  7492. super().__init__(*args, **kwargs)
  7493. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7494. self.hparams["hidden_size"] = self.hparams["d_model"]
  7495. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7496. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7497. def set_gguf_parameters(self):
  7498. super().set_gguf_parameters()
  7499. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7500. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7501. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7502. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7503. if ".conv" in name and ".weight" in name:
  7504. return gguf.GGMLQuantizationType.F16
  7505. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7507. del bid # unused
  7508. if name.startswith("language_model."):
  7509. # skip language model tensors
  7510. return []
  7511. # prevent clash naming with vision tensors
  7512. if name.startswith("multi_modal_projector"):
  7513. name = "audio." + name
  7514. if "conv1.bias" in name or "conv2.bias" in name:
  7515. # transpose conv1 and conv2 bias
  7516. data_torch = data_torch.unsqueeze(-1)
  7517. return [(self.map_tensor_name(name), data_torch)]
  7518. @ModelBase.register("UltravoxModel")
  7519. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7520. has_vision_encoder = False # no vision encoder
  7521. has_audio_encoder = True
  7522. def set_gguf_parameters(self):
  7523. super().set_gguf_parameters()
  7524. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7525. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7526. @ModelBase.register("VoxtralForConditionalGeneration")
  7527. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7528. has_vision_encoder = False # no vision encoder
  7529. has_audio_encoder = True
  7530. def set_gguf_parameters(self):
  7531. super().set_gguf_parameters()
  7532. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7533. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7534. @ModelBase.register("AudioFlamingo3ForConditionalGeneration")
  7535. class AudioFlamingo3WhisperEncoderModel(WhisperEncoderModel):
  7536. def set_gguf_parameters(self):
  7537. super().set_gguf_parameters()
  7538. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.MUSIC_FLAMINGO)
  7539. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7540. if ".conv" in name and ".weight" in name:
  7541. # Was trained in BF16, being safe, avoiding quantizing to FP16
  7542. return gguf.GGMLQuantizationType.F32
  7543. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7544. @ModelBase.register("FalconH1ForCausalLM")
  7545. class FalconH1Model(Mamba2Model):
  7546. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7547. def __init__(self, *args, **kwargs):
  7548. # Set the hparam prefixes for Falcon Mamba2
  7549. self.hparam_prefixes = ["mamba"]
  7550. # Initialize the base Mamba2Model
  7551. super().__init__(*args, **kwargs)
  7552. # Use Llama conversion for attention
  7553. self._transformer_model_class = LlamaModel
  7554. # n_group and d_inner are used during reshape_tensors for mamba2
  7555. self.n_group = self.find_hparam(["n_groups"])
  7556. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7557. self.d_head = self.find_hparam(["d_head"])
  7558. # Initialize any Falcon Mamba2 specific attributes
  7559. self.has_attention = True # Falcon Mamba2 has attention components
  7560. # Load Falcon-H1 multipliers from hyperparameters
  7561. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7562. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7563. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7564. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7565. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7566. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7567. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7568. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7569. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7570. prefixed = []
  7571. for pfx in self.hparam_prefixes:
  7572. prefixed.extend(
  7573. "_".join([pfx, k])
  7574. for k in keys
  7575. )
  7576. keys = list(keys) + prefixed
  7577. return super().find_hparam(keys, *args, **kwargs)
  7578. def set_vocab(self):
  7579. self._set_vocab_gpt2()
  7580. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7581. tensors = list(super().modify_tensors(data_torch, name, bid))
  7582. tensor = tensors[0][1]
  7583. if "down_proj" in name:
  7584. tensor = tensor * self.mlp_multipliers[1]
  7585. elif "gate_proj" in name:
  7586. tensor = tensor * self.mlp_multipliers[0]
  7587. elif "k_proj" in name:
  7588. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7589. elif "q_proj" in name:
  7590. tensor = tensor * self.attention_in_multiplier
  7591. elif "v_proj" in name:
  7592. tensor = tensor * self.attention_in_multiplier
  7593. elif "o_proj" in name:
  7594. tensor = tensor * self.attention_out_multiplier
  7595. elif "out_proj" in name:
  7596. tensor = tensor * self.ssm_out_multiplier
  7597. elif "in_proj" in name:
  7598. tensor = tensor * self.ssm_in_multiplier
  7599. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7600. intermediate_size = self.hparams["mamba_d_ssm"]
  7601. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7602. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7603. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7604. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7605. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7606. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7607. elif "lm_head" in name:
  7608. tensor = tensor * self.hparams["lm_head_multiplier"]
  7609. elif "embed_tokens" in name:
  7610. tensor = tensor * self.hparams["embedding_multiplier"]
  7611. elif "mamba.norm" in name:
  7612. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7613. tensors = [(tensors[0][0], tensor)]
  7614. return tensors
  7615. def set_gguf_parameters(self):
  7616. super().set_gguf_parameters()
  7617. ## General Params ##
  7618. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7619. # Override some Mamba2 defaults
  7620. self.gguf_writer.add_block_count(self.block_count)
  7621. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7622. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7623. ## Attention params ##
  7624. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7625. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7626. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7627. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7628. ## Validation ##
  7629. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7630. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7631. # Add any other Falcon Mamba2 specific configuration
  7632. self.gguf_writer.add_rope_freq_base(self.rope_parameters["rope_theta"])
  7633. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7634. class HunYuanMoEModel(TextModel):
  7635. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7636. def set_vocab(self):
  7637. from transformers import AutoTokenizer
  7638. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7639. # 1. Get the pre-tokenizer identifier hash
  7640. tokpre = self.get_vocab_base_pre(tokenizer)
  7641. # 2. Reverse-engineer the merges list from mergeable_ranks
  7642. merges = []
  7643. vocab = {}
  7644. mergeable_ranks = tokenizer.mergeable_ranks
  7645. for token, rank in mergeable_ranks.items():
  7646. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7647. if len(token) == 1:
  7648. continue
  7649. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7650. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7651. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7652. # 3. Generate the tokens and toktypes lists
  7653. vocab_size = self.hparams["vocab_size"]
  7654. assert tokenizer.vocab_size == vocab_size
  7655. special_tokens = tokenizer.special_tokens
  7656. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7657. tokens: list[str] = []
  7658. toktypes: list[int] = []
  7659. for i in range(vocab_size):
  7660. if i not in reverse_vocab:
  7661. tokens.append(f"[PAD{i}]")
  7662. toktypes.append(gguf.TokenType.UNUSED)
  7663. else:
  7664. token = reverse_vocab[i]
  7665. tokens.append(token)
  7666. if i in special_tokens.values():
  7667. toktypes.append(gguf.TokenType.CONTROL)
  7668. else:
  7669. toktypes.append(gguf.TokenType.NORMAL)
  7670. # 4. Write all vocab-related fields to the GGUF writer
  7671. self.gguf_writer.add_tokenizer_model("gpt2")
  7672. self.gguf_writer.add_tokenizer_pre(tokpre)
  7673. self.gguf_writer.add_token_list(tokens)
  7674. self.gguf_writer.add_token_types(toktypes)
  7675. self.gguf_writer.add_token_merges(merges)
  7676. # 5. Add special tokens and chat templates
  7677. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7678. special_vocab.add_to_gguf(self.gguf_writer)
  7679. # FIX for BOS token: Overwrite incorrect id read from config.json
  7680. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7681. def set_gguf_parameters(self):
  7682. super().set_gguf_parameters()
  7683. hparams = self.hparams
  7684. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7685. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7686. moe_intermediate_size = hparams["moe_intermediate_size"]
  7687. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7688. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7689. moe_topk = hparams["moe_topk"]
  7690. assert all(topk == moe_topk[0] for topk in moe_topk)
  7691. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7692. moe_shared_expert = hparams["num_shared_expert"]
  7693. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7694. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7695. # Rope
  7696. if self.rope_parameters.get("rope_type") == "dynamic":
  7697. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7698. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7699. alpha = self.rope_parameters.get("alpha", 1000)
  7700. base = self.rope_parameters.get("rope_theta", 10000.0)
  7701. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7702. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7703. self.gguf_writer.add_rope_freq_base(scaled_base)
  7704. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7705. self.gguf_writer.add_rope_scaling_factor(1)
  7706. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7707. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7708. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7709. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7710. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7711. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7712. _experts: list[dict[str, Tensor]] | None = None
  7713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7714. if name == "lm_head.weight":
  7715. if self.hparams.get("tie_word_embeddings", False):
  7716. logger.info("Skipping tied output layer 'lm_head.weight'")
  7717. return []
  7718. if name.find("mlp.experts") != -1:
  7719. n_experts = self.hparams["num_experts"]
  7720. assert bid is not None
  7721. if self._experts is None:
  7722. self._experts = [{} for _ in range(self.block_count)]
  7723. self._experts[bid][name] = data_torch
  7724. if len(self._experts[bid]) >= n_experts * 3:
  7725. # merge the experts into a single 3d tensor
  7726. tensors: list[tuple[str, Tensor]] = []
  7727. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7728. datas: list[Tensor] = []
  7729. for xid in range(n_experts):
  7730. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7731. datas.append(self._experts[bid][ename])
  7732. del self._experts[bid][ename]
  7733. data_torch = torch.stack(datas, dim=0)
  7734. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7735. new_name = self.map_tensor_name(merged_name)
  7736. tensors.append((new_name, data_torch))
  7737. return tensors
  7738. else:
  7739. return []
  7740. return [(self.map_tensor_name(name), data_torch)]
  7741. def prepare_tensors(self):
  7742. super().prepare_tensors()
  7743. if self._experts is not None:
  7744. experts = [k for d in self._experts for k in d.keys()]
  7745. if len(experts) > 0:
  7746. raise ValueError(f"Unprocessed experts: {experts}")
  7747. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7748. class LLaDAMoEModel(TextModel):
  7749. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7750. def set_gguf_parameters(self):
  7751. super().set_gguf_parameters()
  7752. if (n_experts := self.hparams.get("num_experts")) is not None:
  7753. self.gguf_writer.add_expert_count(n_experts)
  7754. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7755. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7756. # number of experts used per token (top-k)
  7757. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7758. self.gguf_writer.add_expert_used_count(n_experts_used)
  7759. self.gguf_writer.add_mask_token_id(156895)
  7760. self.gguf_writer.add_causal_attention(False)
  7761. self.gguf_writer.add_diffusion_shift_logits(False)
  7762. _experts: list[dict[str, Tensor]] | None = None
  7763. # Copied from: Qwen2MoeModel
  7764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7765. # process the experts separately
  7766. if name.find("experts") != -1:
  7767. n_experts = self.hparams["num_experts"]
  7768. assert bid is not None
  7769. if self._experts is None:
  7770. self._experts = [{} for _ in range(self.block_count)]
  7771. self._experts[bid][name] = data_torch
  7772. if len(self._experts[bid]) >= n_experts * 3:
  7773. tensors: list[tuple[str, Tensor]] = []
  7774. # merge the experts into a single 3d tensor
  7775. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7776. datas: list[Tensor] = []
  7777. for xid in range(n_experts):
  7778. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7779. datas.append(self._experts[bid][ename])
  7780. del self._experts[bid][ename]
  7781. data_torch = torch.stack(datas, dim=0)
  7782. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7783. new_name = self.map_tensor_name(merged_name)
  7784. tensors.append((new_name, data_torch))
  7785. return tensors
  7786. else:
  7787. return []
  7788. return [(self.map_tensor_name(name), data_torch)]
  7789. # Copied from: Qwen2MoeModel
  7790. def prepare_tensors(self):
  7791. super().prepare_tensors()
  7792. if self._experts is not None:
  7793. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7794. experts = [k for d in self._experts for k in d.keys()]
  7795. if len(experts) > 0:
  7796. raise ValueError(f"Unprocessed experts: {experts}")
  7797. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7798. class HunYuanModel(TextModel):
  7799. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7800. def set_vocab(self):
  7801. if (self.dir_model / "tokenizer.json").is_file():
  7802. self._set_vocab_gpt2()
  7803. else:
  7804. from transformers import AutoTokenizer
  7805. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7806. # 1. Get the pre-tokenizer identifier hash
  7807. tokpre = self.get_vocab_base_pre(tokenizer)
  7808. # 2. Reverse-engineer the merges list from mergeable_ranks
  7809. merges = []
  7810. vocab = {}
  7811. mergeable_ranks = tokenizer.mergeable_ranks
  7812. for token, rank in mergeable_ranks.items():
  7813. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7814. if len(token) == 1:
  7815. continue
  7816. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7817. if len(merged) == 2:
  7818. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7819. # 3. Generate the tokens and toktypes lists
  7820. vocab_size = self.hparams["vocab_size"]
  7821. assert tokenizer.vocab_size == vocab_size
  7822. special_tokens = tokenizer.special_tokens
  7823. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7824. tokens: list[str] = []
  7825. toktypes: list[int] = []
  7826. for i in range(vocab_size):
  7827. if i not in reverse_vocab:
  7828. tokens.append(f"[PAD{i}]")
  7829. toktypes.append(gguf.TokenType.UNUSED)
  7830. else:
  7831. token = reverse_vocab[i]
  7832. tokens.append(token)
  7833. if i in special_tokens.values():
  7834. toktypes.append(gguf.TokenType.CONTROL)
  7835. else:
  7836. toktypes.append(gguf.TokenType.NORMAL)
  7837. # 4. Write all vocab-related fields to the GGUF writer
  7838. self.gguf_writer.add_tokenizer_model("gpt2")
  7839. self.gguf_writer.add_tokenizer_pre(tokpre)
  7840. self.gguf_writer.add_token_list(tokens)
  7841. self.gguf_writer.add_token_types(toktypes)
  7842. self.gguf_writer.add_token_merges(merges)
  7843. # 5. Add special tokens and chat templates
  7844. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7845. special_vocab.add_to_gguf(self.gguf_writer)
  7846. # FIX for BOS token: Overwrite incorrect id read from config.json
  7847. if self.hparams['hidden_size'] == 4096:
  7848. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7849. def set_gguf_parameters(self):
  7850. super().set_gguf_parameters()
  7851. hparams = self.hparams
  7852. # Rope
  7853. if self.rope_parameters.get("rope_type") == "dynamic":
  7854. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7855. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7856. alpha = self.rope_parameters.get("alpha", 50)
  7857. base = self.rope_parameters.get("rope_theta", 10000.0)
  7858. dim = hparams["head_dim"]
  7859. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7860. self.gguf_writer.add_rope_freq_base(scaled_base)
  7861. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7862. self.gguf_writer.add_rope_scaling_factor(1)
  7863. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7864. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7865. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7866. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7867. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7868. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7869. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7870. if name == "lm_head.weight":
  7871. if self.hparams.get("tie_word_embeddings", False):
  7872. logger.info("Skipping tied output layer 'lm_head.weight'")
  7873. return []
  7874. return [(self.map_tensor_name(name), data_torch)]
  7875. @ModelBase.register("SmolLM3ForCausalLM")
  7876. class SmolLM3Model(LlamaModel):
  7877. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7878. @ModelBase.register("GptOssForCausalLM")
  7879. class GptOssModel(TextModel):
  7880. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7881. # TODO: remove once MXFP4 is supported more generally
  7882. def dequant_model(self):
  7883. quant_config = self.hparams.get("quantization_config")
  7884. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7885. return
  7886. return super().dequant_model()
  7887. def transform_nibble_layout(self, tensor):
  7888. assert tensor.dtype == torch.uint8
  7889. assert tensor.shape[-1] == 16
  7890. # swap nibbles
  7891. t_lo = tensor & 0x0F
  7892. t_hi = tensor & 0xF0
  7893. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7894. tensor = t_swapped
  7895. # transform aaaa...bbbb... to abababab...
  7896. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7897. # get a_
  7898. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7899. blk_a1 = (blk_a << 4).view(-1, 1)
  7900. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7901. # get _b
  7902. blk_b0 = (blk_b >> 4).view(-1, 1)
  7903. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7904. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7905. # swap once more
  7906. out = blk_a | blk_b
  7907. out_h = out & 0xF0
  7908. out_l = out & 0x0F
  7909. out = (out_h >> 4) | (out_l << 4)
  7910. return out
  7911. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7912. assert blocks.dtype == torch.uint8
  7913. assert scales.dtype == torch.uint8
  7914. scales = scales.unsqueeze(-1)
  7915. assert len(blocks.shape) == 4
  7916. assert len(scales.shape) == 4
  7917. blocks = self.transform_nibble_layout(blocks)
  7918. new_data = torch.concat((scales, blocks), dim=-1)
  7919. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7920. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7921. # flatten last dim
  7922. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7923. new_data = new_data.numpy()
  7924. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7925. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7926. blocks0: Tensor = torch.zeros(1)
  7927. blocks1: Tensor = torch.zeros(1)
  7928. # we assume that tensors are loaded in the correct order
  7929. for name, data_torch in self.get_tensors():
  7930. if "mlp.experts.down_proj_blocks" in name:
  7931. blocks0 = data_torch
  7932. elif "mlp.experts.down_proj_scales" in name:
  7933. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7934. self.repack_mxfp4(new_name, blocks0, data_torch)
  7935. elif "mlp.experts.gate_up_proj_blocks" in name:
  7936. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7937. elif "mlp.experts.gate_up_proj_scales" in name:
  7938. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7939. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7940. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7941. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7942. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7943. return []
  7944. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7945. del bid # unused
  7946. if "sinks" in name:
  7947. name += ".weight"
  7948. # correct naming for down_proj
  7949. if "down_proj" in name:
  7950. if name.endswith("_bias"):
  7951. name = name.replace("down_proj_bias", "down_proj.bias")
  7952. elif "_blocks" not in name and "_scales" not in name:
  7953. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7954. name = name.replace("down_proj", "down_proj.weight")
  7955. data_torch = data_torch.transpose(-1, -2)
  7956. else:
  7957. # otherwise, it should already be repacked to ggml MXFP4 format
  7958. return []
  7959. # split the gate_up into gate and up
  7960. if "gate_up_proj" in name:
  7961. if name.endswith("_bias"):
  7962. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7963. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7964. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7965. return [
  7966. (self.map_tensor_name(name_gate), gate_proj_bias),
  7967. (self.map_tensor_name(name_up), up_proj_bias)
  7968. ]
  7969. elif "_blocks" not in name and "_scales" not in name:
  7970. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7971. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7972. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7973. data_torch = data_torch.transpose(-1, -2)
  7974. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7975. return [
  7976. (self.map_tensor_name(name_gate), gate_proj_weight),
  7977. (self.map_tensor_name(name_up), up_proj_weight)
  7978. ]
  7979. else:
  7980. # otherwise, it should already be repacked to ggml MXFP4 format
  7981. return []
  7982. return [(self.map_tensor_name(name), data_torch)]
  7983. def set_vocab(self):
  7984. self._set_vocab_gpt2()
  7985. def set_gguf_parameters(self):
  7986. super().set_gguf_parameters()
  7987. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7988. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7989. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7990. class LFM2Model(TextModel):
  7991. model_arch = gguf.MODEL_ARCH.LFM2
  7992. def _add_feed_forward_length(self):
  7993. ff_dim = self.hparams["block_ff_dim"]
  7994. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7995. ff_dim = self.hparams["block_ff_dim"]
  7996. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7997. multiple_of = self.hparams["block_multiple_of"]
  7998. if auto_adjust_ff_dim:
  7999. ff_dim = int(2 * ff_dim / 3)
  8000. # custom dim factor multiplier
  8001. if ffn_dim_multiplier is not None:
  8002. ff_dim = int(ffn_dim_multiplier * ff_dim)
  8003. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  8004. self.gguf_writer.add_feed_forward_length(ff_dim)
  8005. def set_gguf_parameters(self):
  8006. # set num_key_value_heads only for attention layers
  8007. self.hparams["num_key_value_heads"] = [
  8008. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8009. for layer_type in self.hparams["layer_types"]
  8010. ]
  8011. super().set_gguf_parameters()
  8012. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8013. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8014. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  8015. self._add_feed_forward_length()
  8016. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8017. if self._is_vision_tensor(name) or self._is_audio_tensor(name):
  8018. # skip multimodal tensors
  8019. return []
  8020. name = name.replace("language_model.", "") # vision
  8021. name = name.replace("lfm.", "model.") # audio
  8022. # conv op requires 2d tensor
  8023. if 'conv.conv' in name:
  8024. data_torch = data_torch.squeeze(1)
  8025. return [(self.map_tensor_name(name), data_torch)]
  8026. def _is_vision_tensor(self, name: str) -> bool:
  8027. return "vision_tower" in name or "multi_modal_projector" in name
  8028. def _is_audio_tensor(self, name: str):
  8029. return any(p in name for p in ["audio", "codebook", "conformer", "depth_embedding", "depthformer", "depth_linear"])
  8030. @ModelBase.register("Lfm2MoeForCausalLM")
  8031. class LFM2MoeModel(TextModel):
  8032. model_arch = gguf.MODEL_ARCH.LFM2MOE
  8033. def set_gguf_parameters(self):
  8034. # set num_key_value_heads only for attention layers
  8035. self.hparams["num_key_value_heads"] = [
  8036. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  8037. for layer_type in self.hparams["layer_types"]
  8038. ]
  8039. super().set_gguf_parameters()
  8040. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  8041. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  8042. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  8043. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8044. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8045. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  8046. # cache for experts weights for merging
  8047. _experts_cache: dict[int, dict[str, Tensor]] = {}
  8048. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8049. # conv op requires 2d tensor
  8050. if 'conv.conv' in name:
  8051. data_torch = data_torch.squeeze(1)
  8052. if name.endswith(".expert_bias"):
  8053. name = name.replace(".expert_bias", ".expert_bias.bias")
  8054. # merge expert weights
  8055. if 'experts' in name:
  8056. n_experts = self.hparams["num_experts"]
  8057. assert bid is not None
  8058. expert_cache = self._experts_cache.setdefault(bid, {})
  8059. expert_cache[name] = data_torch
  8060. expert_weights = ["w1", "w2", "w3"]
  8061. # not enough expert weights to merge
  8062. if len(expert_cache) < n_experts * len(expert_weights):
  8063. return []
  8064. tensors: list[tuple[str, Tensor]] = []
  8065. for w_name in expert_weights:
  8066. datas: list[Tensor] = []
  8067. for xid in range(n_experts):
  8068. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  8069. datas.append(expert_cache[ename])
  8070. del expert_cache[ename]
  8071. data_torch = torch.stack(datas, dim=0)
  8072. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  8073. new_name = self.map_tensor_name(merged_name)
  8074. tensors.append((new_name, data_torch))
  8075. del self._experts_cache[bid]
  8076. return tensors
  8077. return [(self.map_tensor_name(name), data_torch)]
  8078. def prepare_tensors(self):
  8079. super().prepare_tensors()
  8080. assert not self._experts_cache
  8081. @ModelBase.register("Lfm2VlForConditionalGeneration")
  8082. class LFM2VLModel(MmprojModel):
  8083. def __init__(self, *args, **kwargs):
  8084. super().__init__(*args, **kwargs)
  8085. assert self.hparams_vision is not None
  8086. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  8087. self.hparams_vision["image_size"] = 256
  8088. def set_gguf_parameters(self):
  8089. super().set_gguf_parameters()
  8090. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  8091. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  8092. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  8093. self.gguf_writer.add_vision_use_gelu(True)
  8094. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  8095. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  8096. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  8097. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8098. del bid # unused
  8099. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8100. if is_vision_tensor:
  8101. # remove "model." prefix
  8102. name = name.replace("model.vision_tower.", "vision_tower.")
  8103. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  8104. if "patch_embedding.weight" in name:
  8105. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  8106. return [(self.map_tensor_name(name), data_torch)]
  8107. return [] # skip other tensors
  8108. @ModelBase.register("Lfm2AudioForConditionalGeneration")
  8109. class LFM2AudioModel(MmprojModel):
  8110. has_vision_encoder = False
  8111. has_audio_encoder = True
  8112. model_name = "Lfm2AudioEncoder"
  8113. _batch_norm_tensors: list[dict[str, Tensor]] | None = None
  8114. def get_audio_config(self) -> dict[str, Any] | None:
  8115. return self.global_config.get("encoder")
  8116. def set_gguf_parameters(self):
  8117. assert self.hparams_audio is not None
  8118. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  8119. self.hparams_audio["intermediate_size"] = self.hparams_audio["d_model"]
  8120. self.hparams_audio["num_attention_heads"] = self.hparams_audio["n_heads"]
  8121. super().set_gguf_parameters()
  8122. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2A)
  8123. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["feat_in"])
  8124. self.gguf_writer.add_audio_attention_layernorm_eps(1e-5)
  8125. def tensor_force_quant(self, name, new_name, bid, n_dims):
  8126. if ".conv" in name and ".weight" in name:
  8127. return gguf.GGMLQuantizationType.F32
  8128. return super().tensor_force_quant(name, new_name, bid, n_dims)
  8129. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8130. # skip language model tensors
  8131. if name.startswith("lfm."):
  8132. return []
  8133. # for training only
  8134. if any(p in name for p in ["audio_loss_weight"]):
  8135. return []
  8136. # for audio output
  8137. if any(p in name for p in ["codebook_offsets", "depth_embeddings", "depth_linear", "depthformer"]):
  8138. return []
  8139. # fold running_mean, running_var and eps into weight and bias for batch_norm
  8140. if "batch_norm" in name:
  8141. if self._batch_norm_tensors is None:
  8142. self._batch_norm_tensors = [{} for _ in range(self.block_count)]
  8143. assert bid is not None
  8144. self._batch_norm_tensors[bid][name] = data_torch
  8145. if len(self._batch_norm_tensors[bid]) < 5:
  8146. return []
  8147. weight = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.weight"]
  8148. bias = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.bias"]
  8149. running_mean = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_mean"]
  8150. running_var = self._batch_norm_tensors[bid][f"conformer.layers.{bid}.conv.batch_norm.running_var"]
  8151. eps = 1e-5 # default value
  8152. a = weight / torch.sqrt(running_var + eps)
  8153. b = bias - running_mean * a
  8154. return [
  8155. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.weight"), a),
  8156. (self.map_tensor_name(f"conformer.layers.{bid}.conv.batch_norm.bias"), b),
  8157. ]
  8158. # reshape conv weights
  8159. if name.startswith("conformer.pre_encode.conv.") and name.endswith(".bias"):
  8160. data_torch = data_torch[:, None, None]
  8161. if "conv.depthwise_conv" in name and name.endswith(".weight"):
  8162. assert data_torch.shape[1] == 1
  8163. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[2])
  8164. if "conv.pointwise_conv" in name and name.endswith(".weight"):
  8165. assert data_torch.shape[2] == 1
  8166. data_torch = data_torch.reshape(data_torch.shape[0], data_torch.shape[1])
  8167. return [(self.map_tensor_name(name), data_torch)]
  8168. @ModelBase.register("SmallThinkerForCausalLM")
  8169. class SmallThinkerModel(TextModel):
  8170. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  8171. def set_gguf_parameters(self):
  8172. super().set_gguf_parameters()
  8173. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  8174. self.gguf_writer.add_expert_count(n_experts)
  8175. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  8176. self.gguf_writer.add_expert_used_count(n_experts_used)
  8177. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  8178. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  8179. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  8180. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  8181. if (self.hparams.get('moe_primary_router_apply_softmax')):
  8182. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  8183. else:
  8184. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  8185. sliding_window_layout = self.hparams.get("sliding_window_layout")
  8186. if sliding_window_layout:
  8187. for i in sliding_window_layout:
  8188. if i != 0:
  8189. sliding_window = self.hparams.get("sliding_window_size")
  8190. if sliding_window:
  8191. self.gguf_writer.add_sliding_window(sliding_window)
  8192. break
  8193. _experts: list[dict[str, Tensor]] | None = None
  8194. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8195. # process the experts separately
  8196. if name.find("experts") != -1:
  8197. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  8198. assert bid is not None
  8199. if self._experts is None:
  8200. self._experts = [{} for _ in range(self.block_count)]
  8201. self._experts[bid][name] = data_torch
  8202. if len(self._experts[bid]) >= n_experts * 3:
  8203. tensors: list[tuple[str, Tensor]] = []
  8204. # merge the experts into a single 3d tensor
  8205. for w_name in ["down", "gate", "up"]:
  8206. datas: list[Tensor] = []
  8207. for xid in range(n_experts):
  8208. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  8209. datas.append(self._experts[bid][ename])
  8210. del self._experts[bid][ename]
  8211. data_torch = torch.stack(datas, dim=0)
  8212. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  8213. new_name = self.map_tensor_name(merged_name)
  8214. tensors.append((new_name, data_torch))
  8215. return tensors
  8216. else:
  8217. return []
  8218. return [(self.map_tensor_name(name), data_torch)]
  8219. def prepare_tensors(self):
  8220. super().prepare_tensors()
  8221. if self._experts is not None:
  8222. # flatten `list[dict[str, Tensor]]` into `list[str]`
  8223. experts = [k for d in self._experts for k in d.keys()]
  8224. if len(experts) > 0:
  8225. raise ValueError(f"Unprocessed experts: {experts}")
  8226. @ModelBase.register("ModernBertModel", "ModernBertForMaskedLM", "ModernBertForSequenceClassification")
  8227. class ModernBertModel(BertModel):
  8228. model_arch = gguf.MODEL_ARCH.MODERN_BERT
  8229. def set_vocab(self):
  8230. self.gguf_writer.add_add_bos_token(True)
  8231. self.gguf_writer.add_add_eos_token(True)
  8232. self.gguf_writer.add_add_sep_token(True)
  8233. self._set_vocab_gpt2()
  8234. def set_gguf_parameters(self):
  8235. super().set_gguf_parameters()
  8236. self.gguf_writer.add_sliding_window(self.hparams["local_attention"])
  8237. if (sliding_window_pattern := self.hparams.get("global_attn_every_n_layers")) is not None:
  8238. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  8239. self.gguf_writer.add_rope_freq_base_swa(self.rope_parameters.get("sliding_attention", {"rope_theta": self.hparams.get("local_rope_theta")})["rope_theta"])
  8240. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  8241. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  8242. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8243. # these layers act as MLM head, so we don't need them
  8244. if name.startswith("decoder."):
  8245. return []
  8246. if name.startswith("model."):
  8247. name = name[6:]
  8248. return super().modify_tensors(data_torch, name, bid)
  8249. @ModelBase.register("ApertusForCausalLM")
  8250. class ApertusModel(LlamaModel):
  8251. model_arch = gguf.MODEL_ARCH.APERTUS
  8252. undo_permute = False
  8253. _alpha_n = {}
  8254. _alpha_p = {}
  8255. _beta = {}
  8256. _eps = {}
  8257. def modify_tensors(self, data_torch, name, bid):
  8258. # Handle xIELU activation parameters
  8259. n_layers = self.hparams["num_hidden_layers"]
  8260. if name.endswith(".act_fn.alpha_n"):
  8261. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8262. if (len(self._alpha_n) == n_layers):
  8263. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8264. return []
  8265. if name.endswith(".act_fn.alpha_p"):
  8266. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8267. if (len(self._alpha_p) == n_layers):
  8268. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8269. return []
  8270. if name.endswith(".act_fn.beta"):
  8271. self._beta[bid] = data_torch.to("cpu").float().item()
  8272. if (len(self._beta) == n_layers):
  8273. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8274. return []
  8275. if name.endswith(".act_fn.eps"):
  8276. self._eps[bid] = data_torch.to("cpu").float().item()
  8277. if (len(self._eps) == n_layers):
  8278. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8279. return []
  8280. return super().modify_tensors(data_torch, name, bid)
  8281. class MistralModel(LlamaModel):
  8282. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8283. model_name = "Mistral"
  8284. hf_arch = ""
  8285. is_mistral_format = True
  8286. undo_permute = False
  8287. def __init__(self, *args, **kwargs):
  8288. super().__init__(*args, **kwargs)
  8289. # for compatibility, we use LLAMA arch for older models
  8290. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8291. if "llama_4_scaling" not in self.hparams:
  8292. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8293. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8294. self.gguf_writer.add_architecture()
  8295. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8296. def dequant_model(self):
  8297. # transform quantization config into HF format
  8298. quant_config = self.hparams.get("quantization")
  8299. if quant_config is not None:
  8300. assert quant_config["qformat_weight"] == "fp8_e4m3"
  8301. self.hparams["quantization_config"] = {
  8302. "activation_scheme": "static",
  8303. "quant_method": "fp8",
  8304. "weight_block_size": None,
  8305. }
  8306. return super().dequant_model()
  8307. @staticmethod
  8308. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8309. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8310. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8311. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8312. )
  8313. if vocab.tokenizer.version == TokenizerVersion.v1:
  8314. return "mistral-v1"
  8315. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8316. return "mistral-v3"
  8317. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8318. return "mistral-v3-tekken"
  8319. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8320. return "mistral-v7"
  8321. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8322. return "mistral-v7-tekken"
  8323. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8324. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8325. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8326. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8327. else:
  8328. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8329. if is_mistral_format:
  8330. err_message += (
  8331. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8332. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8333. )
  8334. raise ValueError(err_message)
  8335. template_path = templates_dir / template_file
  8336. if not template_path.exists():
  8337. raise FileNotFoundError(f"Template file not found: {template_path}")
  8338. with open(template_path, "r", encoding="utf-8") as f:
  8339. template = f.read()
  8340. return template
  8341. def set_gguf_parameters(self):
  8342. super().set_gguf_parameters()
  8343. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8344. @staticmethod
  8345. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8346. if "yarn" in hparams:
  8347. yarn_params = hparams["yarn"]
  8348. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8349. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8350. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8351. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8352. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8353. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8354. if "llama_4_scaling" in hparams:
  8355. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8356. class MistralMoeModel(DeepseekV2Model):
  8357. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8358. model_name = "Mistral"
  8359. hf_arch = ""
  8360. is_mistral_format = True
  8361. def __init__(self, *args, **kwargs):
  8362. super().__init__(*args, **kwargs)
  8363. logger.info("Using MistralMoeModel")
  8364. # remap hparams from Mistral MoE format to DeepseekV2 format
  8365. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8366. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8367. config = self.hparams
  8368. # Mistral key -> HF key
  8369. config_mapping = {
  8370. "dim": "hidden_size",
  8371. "norm_eps": "rms_norm_eps",
  8372. "n_kv_heads": "num_key_value_heads",
  8373. "n_layers": "num_hidden_layers",
  8374. "n_heads": "num_attention_heads",
  8375. "hidden_dim": "intermediate_size",
  8376. }
  8377. # HF key -> (Mistral key, default value)
  8378. top_level_mapping_with_default = {
  8379. "model_type": ("model_type", "transformer"),
  8380. "hidden_act": ("activation", "silu"),
  8381. "tie_word_embeddings": ("tied_embeddings", False),
  8382. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8383. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8384. }
  8385. # mapping top-level keys
  8386. for key, new_key in config_mapping.items():
  8387. if key in config:
  8388. config[new_key] = config[key]
  8389. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8390. config[new_key] = config.get(key, default_value)
  8391. # mapping MoE-specific keys
  8392. moe_config_map = {
  8393. "route_every_n": "moe_layer_freq",
  8394. "first_k_dense_replace": "first_k_dense_replace",
  8395. "num_experts_per_tok": "num_experts_per_tok",
  8396. "num_experts": "n_routed_experts",
  8397. "expert_hidden_dim": "moe_intermediate_size",
  8398. "routed_scale": "routed_scaling_factor",
  8399. "num_shared_experts": "n_shared_experts",
  8400. "num_expert_groups": "n_group",
  8401. "num_expert_groups_per_tok": "topk_group",
  8402. }
  8403. moe = config["moe"]
  8404. for key, new_key in moe_config_map.items():
  8405. if key in moe:
  8406. config[new_key] = moe[key]
  8407. # provide missing values
  8408. config["topk_method"] = None
  8409. config["norm_topk_prob"] = True
  8410. config["scoring_func"] = "softmax"
  8411. def set_vocab(self):
  8412. self._set_vocab_mistral()
  8413. def set_gguf_parameters(self):
  8414. super().set_gguf_parameters()
  8415. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8416. yarn_params = self.hparams["yarn"]
  8417. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8418. # [TAG_DEEPSEEK2_YARN_LOG_MUL_FIX]
  8419. # note: for legacy reasons, this is not consistent with the other usages of self.gguf_writer.add_rope_scaling_yarn_log_mul
  8420. # ref https://github.com/ggml-org/llama.cpp/pull/17945
  8421. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8422. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8423. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8424. return []
  8425. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8426. if name.endswith(".qscale_act"):
  8427. name = name.replace(".qscale_act", ".input_scale")
  8428. if name.endswith(".qscale_weight"):
  8429. name = name.replace(".qscale_weight", ".weight_scale")
  8430. if ".wkv_b." in name:
  8431. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8432. if ".experts." in name:
  8433. name = name.replace(".experts.", ".mlp.experts.")
  8434. name = name.replace(".w1.", ".gate_proj.")
  8435. name = name.replace(".w2.", ".down_proj.")
  8436. name = name.replace(".w3.", ".up_proj.")
  8437. name = "model." + name
  8438. return super().modify_tensors(data_torch, name, bid)
  8439. class PixtralModel(LlavaVisionModel):
  8440. model_name = "Pixtral"
  8441. hf_arch = ""
  8442. is_mistral_format = True
  8443. def set_gguf_parameters(self):
  8444. super().set_gguf_parameters()
  8445. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8446. self.gguf_writer.add_vision_attention_layernorm_eps(
  8447. self.find_hparam(["norm_eps"])
  8448. )
  8449. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8450. self.gguf_writer.add_vision_use_silu(True)
  8451. # spatial_merge_size
  8452. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8453. self.gguf_writer.add_vision_spatial_merge_size(
  8454. self.find_vparam(["spatial_merge_size"])
  8455. )
  8456. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8457. if name == "vision_language_adapter.w_in.weight":
  8458. return "mm.1.weight"
  8459. elif name == "vision_language_adapter.w_out.weight":
  8460. return "mm.2.weight"
  8461. return super().map_tensor_name(name, try_suffixes)
  8462. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8463. class LightOnOCRVisionModel(LlavaVisionModel):
  8464. is_mistral_format = False
  8465. use_break_tok = False
  8466. def set_gguf_parameters(self):
  8467. super().set_gguf_parameters()
  8468. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8469. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8470. name = name.replace("model.vision_encoder.", "vision_tower.")
  8471. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8472. return super().modify_tensors(data_torch, name, bid)
  8473. @ModelBase.register("KimiVLForConditionalGeneration")
  8474. class KimiVLModel(MmprojModel):
  8475. def __init__(self, *args, **kwargs):
  8476. super().__init__(*args, **kwargs)
  8477. assert self.hparams_vision is not None
  8478. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8479. def set_gguf_parameters(self):
  8480. super().set_gguf_parameters()
  8481. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8482. self.gguf_writer.add_vision_use_gelu(True)
  8483. self.gguf_writer.add_vision_projector_scale_factor(2)
  8484. # eps is the same as pytorch's default value
  8485. assert self.hparams_vision is not None
  8486. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8487. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8488. del bid # unused
  8489. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8490. if is_vision_tensor:
  8491. if "pos_emb.weight" in name:
  8492. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8493. elif "wqkv" in name:
  8494. split_dim = 0 if "weight" in name else -1
  8495. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8496. return [
  8497. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8498. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8499. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8500. ]
  8501. return [(self.map_tensor_name(name), data_torch)]
  8502. return [] # skip other tensors
  8503. @ModelBase.register("CogVLMForCausalLM")
  8504. class CogVLMVisionModel(MmprojModel):
  8505. def set_gguf_parameters(self):
  8506. super().set_gguf_parameters()
  8507. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8508. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8509. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8510. del bid # unused
  8511. if not name.startswith("model.vision."):
  8512. return []
  8513. return [(self.map_tensor_name(name), data_torch)]
  8514. @ModelBase.register("CogVLMForCausalLM")
  8515. class CogVLMModel(LlamaModel):
  8516. model_arch = gguf.MODEL_ARCH.COGVLM
  8517. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8518. del bid # unused
  8519. # block vision tensors
  8520. if name.startswith("model.vision."):
  8521. return []
  8522. return [(self.map_tensor_name(name), data_torch)]
  8523. @ModelBase.register("JanusForConditionalGeneration")
  8524. class JanusProModel(LlamaModel):
  8525. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8527. # Skip vision, aligner, and generation tensors
  8528. skip_prefixes = (
  8529. 'model.vision_model.',
  8530. 'model.aligner.',
  8531. 'model.vqmodel.',
  8532. 'model.generation_embeddings.',
  8533. 'model.generation_aligner.',
  8534. 'model.generation_head.',
  8535. )
  8536. if name.startswith(skip_prefixes):
  8537. return []
  8538. if name.startswith('model.language_model.'):
  8539. name = name.replace('model.language_model.', 'model.')
  8540. elif name.startswith('language_model.'):
  8541. name = name.replace('language_model.', '')
  8542. return super().modify_tensors(data_torch, name, bid)
  8543. @ModelBase.register("JanusForConditionalGeneration")
  8544. class JanusProVisionModel(MmprojModel):
  8545. def __init__(self, *args, **kwargs):
  8546. super().__init__(*args, **kwargs)
  8547. assert self.hparams_vision is not None
  8548. if "intermediate_size" not in self.hparams_vision:
  8549. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8550. hidden_size = self.hparams_vision.get("hidden_size")
  8551. if mlp_ratio is not None and hidden_size is not None:
  8552. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8553. def set_gguf_parameters(self):
  8554. super().set_gguf_parameters()
  8555. assert self.hparams_vision is not None
  8556. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8557. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8558. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8559. if hidden_act == "gelu":
  8560. self.gguf_writer.add_vision_use_gelu(True)
  8561. elif hidden_act == "silu":
  8562. self.gguf_writer.add_vision_use_silu(True)
  8563. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8564. """Map aligner tensors to projector format"""
  8565. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8566. if name.startswith("model.aligner."):
  8567. local_name = name[len("model.aligner."):]
  8568. elif name.startswith("aligner."):
  8569. local_name = name[len("aligner."):]
  8570. else:
  8571. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8572. if local_name.startswith("fc1."):
  8573. mm_index = 0
  8574. elif local_name.startswith("hidden_layers."):
  8575. parts = local_name.split(".", 2)
  8576. if len(parts) < 3:
  8577. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8578. mm_index = int(parts[1]) + 1
  8579. else:
  8580. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8581. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8582. return [(tensor_name, data_torch)]
  8583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8584. del bid # unused
  8585. # Skip language model tensors as they will be handled by `JanusProModel`
  8586. if name.startswith(('model.language_model.', 'language_model.')):
  8587. return []
  8588. # Skip generation-related components
  8589. skip_generation_prefixes = (
  8590. 'model.vqmodel.',
  8591. 'vqmodel.',
  8592. 'model.generation_embeddings.',
  8593. 'generation_embeddings.',
  8594. 'model.generation_aligner.',
  8595. 'generation_aligner.',
  8596. 'model.generation_head.',
  8597. 'generation_head.',
  8598. )
  8599. if name.startswith(skip_generation_prefixes):
  8600. return []
  8601. # Handle aligner tensors
  8602. if name.startswith(('model.aligner.', 'aligner.')):
  8603. return list(self._map_aligner_tensor(data_torch, name))
  8604. # Handle vision tensors
  8605. if name.startswith(('model.vision_model.', 'vision_model.')):
  8606. return [(self.map_tensor_name(name), data_torch)]
  8607. return []
  8608. @ModelBase.register("SolarOpenForCausalLM")
  8609. class SolarOpenModel(Glm4MoeModel):
  8610. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  8611. def set_vocab(self):
  8612. from transformers import AutoTokenizer
  8613. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  8614. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  8615. tokens, toktypes, tokpre = self.get_vocab_base()
  8616. self.gguf_writer.add_tokenizer_model("gpt2")
  8617. self.gguf_writer.add_tokenizer_pre(tokpre)
  8618. self.gguf_writer.add_token_list(tokens)
  8619. self.gguf_writer.add_token_types(toktypes)
  8620. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  8621. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|endoftext|>"])
  8622. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<unk>"])
  8623. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|startoftext|>"])
  8624. special_vocab.add_to_gguf(self.gguf_writer)
  8625. ###### CONVERSION LOGIC ######
  8626. # tree of lazy tensors
  8627. class LazyTorchTensor(gguf.LazyBase):
  8628. _tensor_type = torch.Tensor
  8629. # to keep the type-checker happy
  8630. dtype: torch.dtype
  8631. shape: torch.Size
  8632. # only used when converting a torch.Tensor to a np.ndarray
  8633. _dtype_map: dict[torch.dtype, type] = {
  8634. torch.float16: np.float16,
  8635. torch.float32: np.float32,
  8636. torch.uint8: np.uint8,
  8637. }
  8638. # only used when byteswapping data. Only correct size is needed
  8639. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8640. torch.float64: np.float64,
  8641. torch.float32: np.float32,
  8642. torch.bfloat16: np.float16,
  8643. torch.float16: np.float16,
  8644. torch.int64: np.int64,
  8645. torch.uint64: np.uint64,
  8646. torch.int32: np.int32,
  8647. torch.uint32: np.uint32,
  8648. torch.int16: np.int16,
  8649. torch.uint16: np.uint16,
  8650. torch.int8: np.int8,
  8651. torch.uint8: np.uint8,
  8652. torch.bool: np.uint8,
  8653. torch.float8_e4m3fn: np.uint8,
  8654. torch.float8_e5m2: np.uint8,
  8655. }
  8656. # used for safetensors slices
  8657. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8658. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8659. _dtype_str_map: dict[str, torch.dtype] = {
  8660. "F64": torch.float64,
  8661. "F32": torch.float32,
  8662. "BF16": torch.bfloat16,
  8663. "F16": torch.float16,
  8664. # "U64": torch.uint64,
  8665. "I64": torch.int64,
  8666. # "U32": torch.uint32,
  8667. "I32": torch.int32,
  8668. # "U16": torch.uint16,
  8669. "I16": torch.int16,
  8670. "U8": torch.uint8,
  8671. "I8": torch.int8,
  8672. "BOOL": torch.bool,
  8673. "F8_E4M3": torch.float8_e4m3fn,
  8674. "F8_E5M2": torch.float8_e5m2,
  8675. }
  8676. def numpy(self) -> gguf.LazyNumpyTensor:
  8677. dtype = self._dtype_map[self.dtype]
  8678. return gguf.LazyNumpyTensor(
  8679. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8680. args=(self,),
  8681. func=(lambda s: s.numpy())
  8682. )
  8683. @classmethod
  8684. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8685. return torch.empty(size=shape, dtype=dtype, device="meta")
  8686. @classmethod
  8687. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8688. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8689. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8690. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8691. return cast(torch.Tensor, lazy)
  8692. @classmethod
  8693. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8694. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8695. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8696. if sys.byteorder == 'big':
  8697. # switch data back to big endian
  8698. tensor = tensor.view(dtype).byteswap(inplace=False)
  8699. return tensor
  8700. dtype = cls._dtype_str_map[tensor.dtype]
  8701. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8702. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8703. dtype = cls._dtype_str_map[t.dtype]
  8704. shape = t.shape
  8705. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8706. return cast(torch.Tensor, lazy)
  8707. @classmethod
  8708. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8709. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8710. if sys.byteorder == 'big':
  8711. # switch data back to big endian
  8712. tensor = tensor.view(dtype).byteswap(inplace=False)
  8713. return tensor
  8714. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8715. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8716. shape = remote_tensor.shape
  8717. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8718. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8719. return cast(torch.Tensor, lazy)
  8720. @classmethod
  8721. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8722. del types # unused
  8723. if kwargs is None:
  8724. kwargs = {}
  8725. if func is torch.Tensor.numpy:
  8726. return args[0].numpy()
  8727. return cls._wrap_fn(func)(*args, **kwargs)
  8728. def parse_args() -> argparse.Namespace:
  8729. parser = argparse.ArgumentParser(
  8730. description="Convert a huggingface model to a GGML compatible file")
  8731. parser.add_argument(
  8732. "--vocab-only", action="store_true",
  8733. help="extract only the vocab",
  8734. )
  8735. parser.add_argument(
  8736. "--outfile", type=Path,
  8737. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8738. )
  8739. parser.add_argument(
  8740. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="auto",
  8741. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type",
  8742. )
  8743. parser.add_argument(
  8744. "--bigendian", action="store_true",
  8745. help="model is executed on big endian machine",
  8746. )
  8747. parser.add_argument(
  8748. "model", type=str,
  8749. help="directory containing model file or huggingface repository ID (if --remote)",
  8750. nargs="?",
  8751. )
  8752. parser.add_argument(
  8753. "--use-temp-file", action="store_true",
  8754. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8755. )
  8756. parser.add_argument(
  8757. "--no-lazy", action="store_true",
  8758. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8759. )
  8760. parser.add_argument(
  8761. "--model-name", type=str, default=None,
  8762. help="name of the model",
  8763. )
  8764. parser.add_argument(
  8765. "--verbose", action="store_true",
  8766. help="increase output verbosity",
  8767. )
  8768. parser.add_argument(
  8769. "--split-max-tensors", type=int, default=0,
  8770. help="max tensors in each split",
  8771. )
  8772. parser.add_argument(
  8773. "--split-max-size", type=str, default="0",
  8774. help="max size per split N(M|G)",
  8775. )
  8776. parser.add_argument(
  8777. "--dry-run", action="store_true",
  8778. help="only print out a split plan and exit, without writing any new files",
  8779. )
  8780. parser.add_argument(
  8781. "--no-tensor-first-split", action="store_true",
  8782. help="do not add tensors to the first split (disabled by default)"
  8783. )
  8784. parser.add_argument(
  8785. "--metadata", type=Path,
  8786. help="Specify the path for an authorship metadata override file"
  8787. )
  8788. parser.add_argument(
  8789. "--print-supported-models", action="store_true",
  8790. help="Print the supported models"
  8791. )
  8792. parser.add_argument(
  8793. "--remote", action="store_true",
  8794. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8795. )
  8796. parser.add_argument(
  8797. "--mmproj", action="store_true",
  8798. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8799. )
  8800. parser.add_argument(
  8801. "--mistral-format", action="store_true",
  8802. help="Whether the model is stored following the Mistral format.",
  8803. )
  8804. parser.add_argument(
  8805. "--disable-mistral-community-chat-template", action="store_true",
  8806. help=(
  8807. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8808. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8809. )
  8810. )
  8811. parser.add_argument(
  8812. "--sentence-transformers-dense-modules", action="store_true",
  8813. help=("Whether to include sentence-transformers dense modules."
  8814. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8815. "Default these modules are not included.")
  8816. )
  8817. args = parser.parse_args()
  8818. if not args.print_supported_models and args.model is None:
  8819. parser.error("the following arguments are required: model")
  8820. return args
  8821. def split_str_to_n_bytes(split_str: str) -> int:
  8822. if split_str.endswith("K"):
  8823. n = int(split_str[:-1]) * 1000
  8824. elif split_str.endswith("M"):
  8825. n = int(split_str[:-1]) * 1000 * 1000
  8826. elif split_str.endswith("G"):
  8827. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8828. elif split_str.isnumeric():
  8829. n = int(split_str)
  8830. else:
  8831. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8832. if n < 0:
  8833. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8834. return n
  8835. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8836. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8837. # maybe we should fallback to text model's arch in that case, since not many models have both
  8838. text_config = hparams.get("text_config", {})
  8839. vision_config = hparams.get("vision_config", {})
  8840. arch = None
  8841. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8842. arch = arches[0]
  8843. elif "ssm_cfg" in hparams:
  8844. # For non-hf Mamba and Mamba2 models
  8845. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8846. # if "architectures" is found in the sub-config, use that instead
  8847. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8848. arch = text_config["architectures"][0]
  8849. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8850. arch = vision_config["architectures"][0]
  8851. if arch is None:
  8852. raise ValueError("Failed to detect model architecture")
  8853. return arch
  8854. def main() -> None:
  8855. args = parse_args()
  8856. if args.print_supported_models:
  8857. logger.error("Supported models:")
  8858. ModelBase.print_registered_models()
  8859. sys.exit(0)
  8860. if args.verbose:
  8861. logging.basicConfig(level=logging.DEBUG)
  8862. else:
  8863. logging.basicConfig(level=logging.INFO)
  8864. if args.remote:
  8865. hf_repo_id = args.model
  8866. from huggingface_hub import snapshot_download
  8867. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8868. if args.sentence_transformers_dense_modules:
  8869. # include sentence-transformers dense modules safetensors files
  8870. allowed_patterns.append("*.safetensors")
  8871. local_dir = snapshot_download(
  8872. repo_id=hf_repo_id,
  8873. allow_patterns=allowed_patterns)
  8874. dir_model = Path(local_dir)
  8875. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8876. else:
  8877. hf_repo_id = None
  8878. dir_model = Path(args.model)
  8879. if not dir_model.is_dir():
  8880. logger.error(f'Error: {dir_model} is not a directory')
  8881. sys.exit(1)
  8882. ftype_map: dict[str, gguf.LlamaFileType] = {
  8883. "f32": gguf.LlamaFileType.ALL_F32,
  8884. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8885. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8886. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8887. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8888. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8889. "auto": gguf.LlamaFileType.GUESSED,
  8890. }
  8891. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8892. if args.use_temp_file and is_split:
  8893. logger.error("Error: Cannot use temp file when splitting")
  8894. sys.exit(1)
  8895. if args.outfile is not None:
  8896. fname_out = args.outfile
  8897. elif hf_repo_id:
  8898. # if remote, use the model ID as the output file name
  8899. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8900. else:
  8901. fname_out = dir_model
  8902. logger.info(f"Loading model: {dir_model.name}")
  8903. is_mistral_format = args.mistral_format
  8904. if is_mistral_format and not _mistral_common_installed:
  8905. raise ImportError(_mistral_import_error_msg)
  8906. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8907. with torch.inference_mode():
  8908. output_type = ftype_map[args.outtype]
  8909. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8910. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8911. if not is_mistral_format:
  8912. model_architecture = get_model_architecture(hparams, model_type)
  8913. logger.info(f"Model architecture: {model_architecture}")
  8914. try:
  8915. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8916. except NotImplementedError:
  8917. logger.error(f"Model {model_architecture} is not supported")
  8918. sys.exit(1)
  8919. elif args.mmproj:
  8920. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8921. model_class = PixtralModel
  8922. elif "moe" in hparams:
  8923. model_class = MistralMoeModel
  8924. else:
  8925. model_class = MistralModel
  8926. model_instance = model_class(dir_model, output_type, fname_out,
  8927. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8928. eager=args.no_lazy,
  8929. metadata_override=args.metadata, model_name=args.model_name,
  8930. split_max_tensors=args.split_max_tensors,
  8931. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8932. small_first_shard=args.no_tensor_first_split,
  8933. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8934. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8935. )
  8936. if args.vocab_only:
  8937. logger.info("Exporting model vocab...")
  8938. model_instance.write_vocab()
  8939. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8940. else:
  8941. logger.info("Exporting model...")
  8942. model_instance.write()
  8943. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8944. logger.info(f"Model successfully exported to {out_path}")
  8945. if __name__ == '__main__':
  8946. main()