llama.cpp 753 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636
  1. #define LLAMA_API_INTERNAL
  2. #include "llama.h"
  3. #include "unicode.h"
  4. #include "ggml.h"
  5. #include "ggml-alloc.h"
  6. #include "ggml-backend.h"
  7. #ifdef GGML_USE_RPC
  8. # include "ggml-rpc.h"
  9. #endif
  10. #ifdef GGML_USE_CUDA
  11. # include "ggml-cuda.h"
  12. #elif defined(GGML_USE_VULKAN)
  13. # include "ggml-vulkan.h"
  14. #elif defined(GGML_USE_SYCL)
  15. # include "ggml-sycl.h"
  16. #elif defined(GGML_USE_KOMPUTE)
  17. # include "ggml-kompute.h"
  18. #endif
  19. #ifdef GGML_USE_METAL
  20. # include "ggml-metal.h"
  21. #endif
  22. // TODO: replace with ggml API call
  23. #define QK_K 256
  24. #ifdef __has_include
  25. #if __has_include(<unistd.h>)
  26. #include <unistd.h>
  27. #if defined(_POSIX_MAPPED_FILES)
  28. #include <sys/mman.h>
  29. #include <fcntl.h>
  30. #endif
  31. #if defined(_POSIX_MEMLOCK_RANGE)
  32. #include <sys/resource.h>
  33. #endif
  34. #endif
  35. #endif
  36. #if defined(_WIN32)
  37. #define WIN32_LEAN_AND_MEAN
  38. #ifndef NOMINMAX
  39. #define NOMINMAX
  40. #endif
  41. #include <windows.h>
  42. #ifndef PATH_MAX
  43. #define PATH_MAX MAX_PATH
  44. #endif
  45. #include <io.h>
  46. #endif
  47. #include <algorithm>
  48. #include <array>
  49. #include <cassert>
  50. #include <cctype>
  51. #include <cfloat>
  52. #include <cinttypes>
  53. #include <climits>
  54. #include <cmath>
  55. #include <cstdarg>
  56. #include <cstddef>
  57. #include <cstdint>
  58. #include <cstdio>
  59. #include <cstring>
  60. #include <ctime>
  61. #include <forward_list>
  62. #include <fstream>
  63. #include <functional>
  64. #include <future>
  65. #include <initializer_list>
  66. #include <locale>
  67. #include <map>
  68. #include <memory>
  69. #include <mutex>
  70. #include <numeric>
  71. #include <queue>
  72. #include <random>
  73. #include <regex>
  74. #include <set>
  75. #include <sstream>
  76. #include <thread>
  77. #include <type_traits>
  78. #include <unordered_map>
  79. #if defined(_MSC_VER)
  80. #pragma warning(disable: 4244 4267) // possible loss of data
  81. #endif
  82. #ifdef __GNUC__
  83. #ifdef __MINGW32__
  84. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(gnu_printf, __VA_ARGS__)))
  85. #else
  86. #define LLAMA_ATTRIBUTE_FORMAT(...) __attribute__((format(printf, __VA_ARGS__)))
  87. #endif
  88. #else
  89. #define LLAMA_ATTRIBUTE_FORMAT(...)
  90. #endif
  91. #define LLAMA_MAX_NODES 8192
  92. #define LLAMA_MAX_EXPERTS 160
  93. //
  94. // logging
  95. //
  96. LLAMA_ATTRIBUTE_FORMAT(2, 3)
  97. static void llama_log_internal (ggml_log_level level, const char * format, ...);
  98. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data);
  99. #define LLAMA_LOG_INFO(...) llama_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
  100. #define LLAMA_LOG_WARN(...) llama_log_internal(GGML_LOG_LEVEL_WARN , __VA_ARGS__)
  101. #define LLAMA_LOG_ERROR(...) llama_log_internal(GGML_LOG_LEVEL_ERROR, __VA_ARGS__)
  102. //
  103. // helpers
  104. //
  105. static size_t utf8_len(char src) {
  106. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  107. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  108. return lookup[highbits];
  109. }
  110. static void replace_all(std::string & s, const std::string & search, const std::string & replace) {
  111. std::string result;
  112. for (size_t pos = 0; ; pos += search.length()) {
  113. auto new_pos = s.find(search, pos);
  114. if (new_pos == std::string::npos) {
  115. result += s.substr(pos, s.size() - pos);
  116. break;
  117. }
  118. result += s.substr(pos, new_pos - pos) + replace;
  119. pos = new_pos;
  120. }
  121. s = std::move(result);
  122. }
  123. static bool is_float_close(float a, float b, float abs_tol) {
  124. // Check for non-negative tolerance
  125. if (abs_tol < 0.0) {
  126. throw std::invalid_argument("Tolerance must be non-negative");
  127. }
  128. // Exact equality check
  129. if (a == b) {
  130. return true;
  131. }
  132. // Check for infinities
  133. if (std::isinf(a) || std::isinf(b)) {
  134. return false;
  135. }
  136. // Regular comparison using the provided absolute tolerance
  137. return std::fabs(b - a) <= abs_tol;
  138. }
  139. static void zeros(std::ofstream & file, size_t n) {
  140. char zero = 0;
  141. for (size_t i = 0; i < n; ++i) {
  142. file.write(&zero, 1);
  143. }
  144. }
  145. LLAMA_ATTRIBUTE_FORMAT(1, 2)
  146. static std::string format(const char * fmt, ...) {
  147. va_list ap;
  148. va_list ap2;
  149. va_start(ap, fmt);
  150. va_copy(ap2, ap);
  151. int size = vsnprintf(NULL, 0, fmt, ap);
  152. GGML_ASSERT(size >= 0 && size < INT_MAX); // NOLINT
  153. std::vector<char> buf(size + 1);
  154. int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
  155. GGML_ASSERT(size2 == size);
  156. va_end(ap2);
  157. va_end(ap);
  158. return std::string(buf.data(), size);
  159. }
  160. //
  161. // gguf constants (sync with gguf.py)
  162. //
  163. enum llm_arch {
  164. LLM_ARCH_LLAMA,
  165. LLM_ARCH_FALCON,
  166. LLM_ARCH_BAICHUAN,
  167. LLM_ARCH_GROK,
  168. LLM_ARCH_GPT2,
  169. LLM_ARCH_GPTJ,
  170. LLM_ARCH_GPTNEOX,
  171. LLM_ARCH_MPT,
  172. LLM_ARCH_STARCODER,
  173. LLM_ARCH_REFACT,
  174. LLM_ARCH_BERT,
  175. LLM_ARCH_NOMIC_BERT,
  176. LLM_ARCH_JINA_BERT_V2,
  177. LLM_ARCH_BLOOM,
  178. LLM_ARCH_STABLELM,
  179. LLM_ARCH_QWEN,
  180. LLM_ARCH_QWEN2,
  181. LLM_ARCH_QWEN2MOE,
  182. LLM_ARCH_PHI2,
  183. LLM_ARCH_PHI3,
  184. LLM_ARCH_PLAMO,
  185. LLM_ARCH_CODESHELL,
  186. LLM_ARCH_ORION,
  187. LLM_ARCH_INTERNLM2,
  188. LLM_ARCH_MINICPM,
  189. LLM_ARCH_GEMMA,
  190. LLM_ARCH_STARCODER2,
  191. LLM_ARCH_MAMBA,
  192. LLM_ARCH_XVERSE,
  193. LLM_ARCH_COMMAND_R,
  194. LLM_ARCH_DBRX,
  195. LLM_ARCH_OLMO,
  196. LLM_ARCH_ARCTIC,
  197. LLM_ARCH_DEEPSEEK2,
  198. LLM_ARCH_UNKNOWN,
  199. };
  200. static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
  201. { LLM_ARCH_LLAMA, "llama" },
  202. { LLM_ARCH_FALCON, "falcon" },
  203. { LLM_ARCH_GROK, "grok" },
  204. { LLM_ARCH_GPT2, "gpt2" },
  205. { LLM_ARCH_GPTJ, "gptj" },
  206. { LLM_ARCH_GPTNEOX, "gptneox" },
  207. { LLM_ARCH_MPT, "mpt" },
  208. { LLM_ARCH_BAICHUAN, "baichuan" },
  209. { LLM_ARCH_STARCODER, "starcoder" },
  210. { LLM_ARCH_REFACT, "refact" },
  211. { LLM_ARCH_BERT, "bert" },
  212. { LLM_ARCH_NOMIC_BERT, "nomic-bert" },
  213. { LLM_ARCH_JINA_BERT_V2, "jina-bert-v2" },
  214. { LLM_ARCH_BLOOM, "bloom" },
  215. { LLM_ARCH_STABLELM, "stablelm" },
  216. { LLM_ARCH_QWEN, "qwen" },
  217. { LLM_ARCH_QWEN2, "qwen2" },
  218. { LLM_ARCH_QWEN2MOE, "qwen2moe" },
  219. { LLM_ARCH_PHI2, "phi2" },
  220. { LLM_ARCH_PHI3, "phi3" },
  221. { LLM_ARCH_PLAMO, "plamo" },
  222. { LLM_ARCH_CODESHELL, "codeshell" },
  223. { LLM_ARCH_ORION, "orion" },
  224. { LLM_ARCH_INTERNLM2, "internlm2" },
  225. { LLM_ARCH_MINICPM, "minicpm" },
  226. { LLM_ARCH_GEMMA, "gemma" },
  227. { LLM_ARCH_STARCODER2, "starcoder2" },
  228. { LLM_ARCH_MAMBA, "mamba" },
  229. { LLM_ARCH_XVERSE, "xverse" },
  230. { LLM_ARCH_COMMAND_R, "command-r" },
  231. { LLM_ARCH_DBRX, "dbrx" },
  232. { LLM_ARCH_OLMO, "olmo" },
  233. { LLM_ARCH_ARCTIC, "arctic" },
  234. { LLM_ARCH_DEEPSEEK2, "deepseek2" },
  235. { LLM_ARCH_UNKNOWN, "(unknown)" },
  236. };
  237. enum llm_kv {
  238. LLM_KV_GENERAL_ARCHITECTURE,
  239. LLM_KV_GENERAL_QUANTIZATION_VERSION,
  240. LLM_KV_GENERAL_ALIGNMENT,
  241. LLM_KV_GENERAL_NAME,
  242. LLM_KV_GENERAL_AUTHOR,
  243. LLM_KV_GENERAL_VERSION,
  244. LLM_KV_GENERAL_URL,
  245. LLM_KV_GENERAL_DESCRIPTION,
  246. LLM_KV_GENERAL_LICENSE,
  247. LLM_KV_GENERAL_SOURCE_URL,
  248. LLM_KV_GENERAL_SOURCE_HF_REPO,
  249. LLM_KV_VOCAB_SIZE,
  250. LLM_KV_CONTEXT_LENGTH,
  251. LLM_KV_EMBEDDING_LENGTH,
  252. LLM_KV_BLOCK_COUNT,
  253. LLM_KV_LEADING_DENSE_BLOCK_COUNT,
  254. LLM_KV_FEED_FORWARD_LENGTH,
  255. LLM_KV_EXPERT_FEED_FORWARD_LENGTH,
  256. LLM_KV_USE_PARALLEL_RESIDUAL,
  257. LLM_KV_TENSOR_DATA_LAYOUT,
  258. LLM_KV_EXPERT_COUNT,
  259. LLM_KV_EXPERT_USED_COUNT,
  260. LLM_KV_EXPERT_SHARED_COUNT,
  261. LLM_KV_EXPERT_WEIGHTS_SCALE,
  262. LLM_KV_POOLING_TYPE,
  263. LLM_KV_LOGIT_SCALE,
  264. LLM_KV_ATTENTION_HEAD_COUNT,
  265. LLM_KV_ATTENTION_HEAD_COUNT_KV,
  266. LLM_KV_ATTENTION_MAX_ALIBI_BIAS,
  267. LLM_KV_ATTENTION_CLAMP_KQV,
  268. LLM_KV_ATTENTION_KEY_LENGTH,
  269. LLM_KV_ATTENTION_VALUE_LENGTH,
  270. LLM_KV_ATTENTION_LAYERNORM_EPS,
  271. LLM_KV_ATTENTION_LAYERNORM_RMS_EPS,
  272. LLM_KV_ATTENTION_CAUSAL,
  273. LLM_KV_ATTENTION_Q_LORA_RANK,
  274. LLM_KV_ATTENTION_KV_LORA_RANK,
  275. LLM_KV_ROPE_DIMENSION_COUNT,
  276. LLM_KV_ROPE_FREQ_BASE,
  277. LLM_KV_ROPE_SCALE_LINEAR,
  278. LLM_KV_ROPE_SCALING_TYPE,
  279. LLM_KV_ROPE_SCALING_FACTOR,
  280. LLM_KV_ROPE_SCALING_ATTN_FACTOR,
  281. LLM_KV_ROPE_SCALING_ORIG_CTX_LEN,
  282. LLM_KV_ROPE_SCALING_FINETUNED,
  283. LLM_KV_ROPE_SCALING_YARN_LOG_MUL,
  284. LLM_KV_SPLIT_NO,
  285. LLM_KV_SPLIT_COUNT,
  286. LLM_KV_SPLIT_TENSORS_COUNT,
  287. LLM_KV_SSM_INNER_SIZE,
  288. LLM_KV_SSM_CONV_KERNEL,
  289. LLM_KV_SSM_STATE_SIZE,
  290. LLM_KV_SSM_TIME_STEP_RANK,
  291. LLM_KV_TOKENIZER_MODEL,
  292. LLM_KV_TOKENIZER_PRE,
  293. LLM_KV_TOKENIZER_LIST,
  294. LLM_KV_TOKENIZER_TOKEN_TYPE,
  295. LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT,
  296. LLM_KV_TOKENIZER_SCORES,
  297. LLM_KV_TOKENIZER_MERGES,
  298. LLM_KV_TOKENIZER_BOS_ID,
  299. LLM_KV_TOKENIZER_EOS_ID,
  300. LLM_KV_TOKENIZER_UNK_ID,
  301. LLM_KV_TOKENIZER_SEP_ID,
  302. LLM_KV_TOKENIZER_PAD_ID,
  303. LLM_KV_TOKENIZER_CLS_ID,
  304. LLM_KV_TOKENIZER_MASK_ID,
  305. LLM_KV_TOKENIZER_ADD_BOS,
  306. LLM_KV_TOKENIZER_ADD_EOS,
  307. LLM_KV_TOKENIZER_ADD_PREFIX,
  308. LLM_KV_TOKENIZER_HF_JSON,
  309. LLM_KV_TOKENIZER_RWKV,
  310. LLM_KV_TOKENIZER_PREFIX_ID,
  311. LLM_KV_TOKENIZER_SUFFIX_ID,
  312. LLM_KV_TOKENIZER_MIDDLE_ID,
  313. LLM_KV_TOKENIZER_EOT_ID,
  314. };
  315. static const std::map<llm_kv, const char *> LLM_KV_NAMES = {
  316. { LLM_KV_GENERAL_ARCHITECTURE, "general.architecture" },
  317. { LLM_KV_GENERAL_QUANTIZATION_VERSION, "general.quantization_version" },
  318. { LLM_KV_GENERAL_ALIGNMENT, "general.alignment" },
  319. { LLM_KV_GENERAL_NAME, "general.name" },
  320. { LLM_KV_GENERAL_AUTHOR, "general.author" },
  321. { LLM_KV_GENERAL_VERSION, "general.version" },
  322. { LLM_KV_GENERAL_URL, "general.url" },
  323. { LLM_KV_GENERAL_DESCRIPTION, "general.description" },
  324. { LLM_KV_GENERAL_LICENSE, "general.license" },
  325. { LLM_KV_GENERAL_SOURCE_URL, "general.source.url" },
  326. { LLM_KV_GENERAL_SOURCE_HF_REPO, "general.source.huggingface.repository" },
  327. { LLM_KV_VOCAB_SIZE, "%s.vocab_size" },
  328. { LLM_KV_CONTEXT_LENGTH, "%s.context_length" },
  329. { LLM_KV_EMBEDDING_LENGTH, "%s.embedding_length" },
  330. { LLM_KV_BLOCK_COUNT, "%s.block_count" },
  331. { LLM_KV_LEADING_DENSE_BLOCK_COUNT, "%s.leading_dense_block_count" },
  332. { LLM_KV_FEED_FORWARD_LENGTH, "%s.feed_forward_length" },
  333. { LLM_KV_EXPERT_FEED_FORWARD_LENGTH, "%s.expert_feed_forward_length" },
  334. { LLM_KV_USE_PARALLEL_RESIDUAL, "%s.use_parallel_residual" },
  335. { LLM_KV_TENSOR_DATA_LAYOUT, "%s.tensor_data_layout" },
  336. { LLM_KV_EXPERT_COUNT, "%s.expert_count" },
  337. { LLM_KV_EXPERT_USED_COUNT, "%s.expert_used_count" },
  338. { LLM_KV_EXPERT_SHARED_COUNT, "%s.expert_shared_count" },
  339. { LLM_KV_EXPERT_WEIGHTS_SCALE, "%s.expert_weights_scale" },
  340. { LLM_KV_POOLING_TYPE , "%s.pooling_type" },
  341. { LLM_KV_LOGIT_SCALE, "%s.logit_scale" },
  342. { LLM_KV_ATTENTION_HEAD_COUNT, "%s.attention.head_count" },
  343. { LLM_KV_ATTENTION_HEAD_COUNT_KV, "%s.attention.head_count_kv" },
  344. { LLM_KV_ATTENTION_MAX_ALIBI_BIAS, "%s.attention.max_alibi_bias" },
  345. { LLM_KV_ATTENTION_CLAMP_KQV, "%s.attention.clamp_kqv" },
  346. { LLM_KV_ATTENTION_KEY_LENGTH, "%s.attention.key_length" },
  347. { LLM_KV_ATTENTION_VALUE_LENGTH, "%s.attention.value_length" },
  348. { LLM_KV_ATTENTION_LAYERNORM_EPS, "%s.attention.layer_norm_epsilon" },
  349. { LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, "%s.attention.layer_norm_rms_epsilon" },
  350. { LLM_KV_ATTENTION_CAUSAL, "%s.attention.causal" },
  351. { LLM_KV_ATTENTION_Q_LORA_RANK, "%s.attention.q_lora_rank" },
  352. { LLM_KV_ATTENTION_KV_LORA_RANK, "%s.attention.kv_lora_rank" },
  353. { LLM_KV_ROPE_DIMENSION_COUNT, "%s.rope.dimension_count" },
  354. { LLM_KV_ROPE_FREQ_BASE, "%s.rope.freq_base" },
  355. { LLM_KV_ROPE_SCALE_LINEAR, "%s.rope.scale_linear" },
  356. { LLM_KV_ROPE_SCALING_TYPE, "%s.rope.scaling.type" },
  357. { LLM_KV_ROPE_SCALING_FACTOR, "%s.rope.scaling.factor" },
  358. { LLM_KV_ROPE_SCALING_ATTN_FACTOR, "%s.rope.scaling.attn_factor" },
  359. { LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, "%s.rope.scaling.original_context_length" },
  360. { LLM_KV_ROPE_SCALING_FINETUNED, "%s.rope.scaling.finetuned" },
  361. { LLM_KV_ROPE_SCALING_YARN_LOG_MUL, "%s.rope.scaling.yarn_log_multiplier" },
  362. { LLM_KV_SPLIT_NO, "split.no" },
  363. { LLM_KV_SPLIT_COUNT, "split.count" },
  364. { LLM_KV_SPLIT_TENSORS_COUNT, "split.tensors.count" },
  365. { LLM_KV_SSM_CONV_KERNEL, "%s.ssm.conv_kernel" },
  366. { LLM_KV_SSM_INNER_SIZE, "%s.ssm.inner_size" },
  367. { LLM_KV_SSM_STATE_SIZE, "%s.ssm.state_size" },
  368. { LLM_KV_SSM_TIME_STEP_RANK, "%s.ssm.time_step_rank" },
  369. { LLM_KV_TOKENIZER_MODEL, "tokenizer.ggml.model" },
  370. { LLM_KV_TOKENIZER_PRE, "tokenizer.ggml.pre" },
  371. { LLM_KV_TOKENIZER_LIST, "tokenizer.ggml.tokens" },
  372. { LLM_KV_TOKENIZER_TOKEN_TYPE, "tokenizer.ggml.token_type" },
  373. { LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, "tokenizer.ggml.token_type_count" },
  374. { LLM_KV_TOKENIZER_SCORES, "tokenizer.ggml.scores" },
  375. { LLM_KV_TOKENIZER_MERGES, "tokenizer.ggml.merges" },
  376. { LLM_KV_TOKENIZER_BOS_ID, "tokenizer.ggml.bos_token_id" },
  377. { LLM_KV_TOKENIZER_EOS_ID, "tokenizer.ggml.eos_token_id" },
  378. { LLM_KV_TOKENIZER_UNK_ID, "tokenizer.ggml.unknown_token_id" },
  379. { LLM_KV_TOKENIZER_SEP_ID, "tokenizer.ggml.seperator_token_id" },
  380. { LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
  381. { LLM_KV_TOKENIZER_CLS_ID, "tokenizer.ggml.cls_token_id" },
  382. { LLM_KV_TOKENIZER_MASK_ID, "tokenizer.ggml.mask_token_id" },
  383. { LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
  384. { LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
  385. { LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
  386. { LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
  387. { LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
  388. { LLM_KV_TOKENIZER_PREFIX_ID, "tokenizer.ggml.prefix_token_id" },
  389. { LLM_KV_TOKENIZER_SUFFIX_ID, "tokenizer.ggml.suffix_token_id" },
  390. { LLM_KV_TOKENIZER_MIDDLE_ID, "tokenizer.ggml.middle_token_id" },
  391. { LLM_KV_TOKENIZER_EOT_ID, "tokenizer.ggml.eot_token_id" },
  392. };
  393. struct LLM_KV {
  394. LLM_KV(llm_arch arch) : arch(arch) {}
  395. llm_arch arch;
  396. std::string operator()(llm_kv kv) const {
  397. return ::format(LLM_KV_NAMES.at(kv), LLM_ARCH_NAMES.at(arch));
  398. }
  399. };
  400. enum llm_tensor {
  401. LLM_TENSOR_TOKEN_EMBD,
  402. LLM_TENSOR_TOKEN_EMBD_NORM,
  403. LLM_TENSOR_TOKEN_TYPES,
  404. LLM_TENSOR_POS_EMBD,
  405. LLM_TENSOR_OUTPUT,
  406. LLM_TENSOR_OUTPUT_NORM,
  407. LLM_TENSOR_ROPE_FREQS,
  408. LLM_TENSOR_ROPE_FACTORS_LONG,
  409. LLM_TENSOR_ROPE_FACTORS_SHORT,
  410. LLM_TENSOR_ATTN_Q,
  411. LLM_TENSOR_ATTN_K,
  412. LLM_TENSOR_ATTN_V,
  413. LLM_TENSOR_ATTN_QKV,
  414. LLM_TENSOR_ATTN_OUT,
  415. LLM_TENSOR_ATTN_NORM,
  416. LLM_TENSOR_ATTN_NORM_2,
  417. LLM_TENSOR_ATTN_OUT_NORM,
  418. LLM_TENSOR_ATTN_ROT_EMBD,
  419. LLM_TENSOR_FFN_GATE_INP,
  420. LLM_TENSOR_FFN_GATE_INP_SHEXP,
  421. LLM_TENSOR_FFN_NORM,
  422. LLM_TENSOR_FFN_GATE,
  423. LLM_TENSOR_FFN_DOWN,
  424. LLM_TENSOR_FFN_UP,
  425. LLM_TENSOR_FFN_ACT,
  426. LLM_TENSOR_FFN_DOWN_EXP, // split experts for backward compatibility
  427. LLM_TENSOR_FFN_GATE_EXP,
  428. LLM_TENSOR_FFN_UP_EXP,
  429. LLM_TENSOR_FFN_NORM_EXPS,
  430. LLM_TENSOR_FFN_DOWN_EXPS, // merged experts
  431. LLM_TENSOR_FFN_GATE_EXPS,
  432. LLM_TENSOR_FFN_UP_EXPS,
  433. LLM_TENSOR_FFN_DOWN_SHEXP,
  434. LLM_TENSOR_FFN_GATE_SHEXP,
  435. LLM_TENSOR_FFN_UP_SHEXP,
  436. LLM_TENSOR_ATTN_Q_NORM,
  437. LLM_TENSOR_ATTN_K_NORM,
  438. LLM_TENSOR_LAYER_OUT_NORM,
  439. LLM_TENSOR_SSM_IN,
  440. LLM_TENSOR_SSM_CONV1D,
  441. LLM_TENSOR_SSM_X,
  442. LLM_TENSOR_SSM_DT,
  443. LLM_TENSOR_SSM_A,
  444. LLM_TENSOR_SSM_D,
  445. LLM_TENSOR_SSM_OUT,
  446. LLM_TENSOR_ATTN_Q_A,
  447. LLM_TENSOR_ATTN_Q_B,
  448. LLM_TENSOR_ATTN_KV_A_MQA,
  449. LLM_TENSOR_ATTN_KV_B,
  450. LLM_TENSOR_ATTN_Q_A_NORM,
  451. LLM_TENSOR_ATTN_KV_A_NORM,
  452. };
  453. static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES = {
  454. {
  455. LLM_ARCH_LLAMA,
  456. {
  457. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  458. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  459. { LLM_TENSOR_OUTPUT, "output" },
  460. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  461. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  462. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  463. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  464. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  465. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  466. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  467. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  468. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  469. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  470. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  471. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  472. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  473. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  474. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  475. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  476. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  477. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  478. },
  479. },
  480. {
  481. LLM_ARCH_BAICHUAN,
  482. {
  483. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  484. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  485. { LLM_TENSOR_OUTPUT, "output" },
  486. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  487. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  488. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  489. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  490. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  491. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  492. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  493. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  494. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  495. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  496. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  497. },
  498. },
  499. {
  500. LLM_ARCH_FALCON,
  501. {
  502. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  503. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  504. { LLM_TENSOR_OUTPUT, "output" },
  505. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  506. { LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
  507. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  508. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  509. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  510. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  511. },
  512. },
  513. {
  514. LLM_ARCH_GROK,
  515. {
  516. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  517. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  518. { LLM_TENSOR_OUTPUT, "output" },
  519. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  520. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  521. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  522. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  523. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  524. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  525. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  526. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  527. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  528. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  529. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  530. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  531. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  532. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  533. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  534. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  535. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  536. },
  537. },
  538. {
  539. LLM_ARCH_GPT2,
  540. {
  541. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  542. { LLM_TENSOR_POS_EMBD, "position_embd" },
  543. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  544. { LLM_TENSOR_OUTPUT, "output" },
  545. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  546. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  547. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  548. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  549. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  550. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  551. },
  552. },
  553. {
  554. LLM_ARCH_GPTJ,
  555. {
  556. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  557. },
  558. },
  559. {
  560. LLM_ARCH_GPTNEOX,
  561. {
  562. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  563. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  564. { LLM_TENSOR_OUTPUT, "output" },
  565. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  566. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  567. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  568. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  569. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  570. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  571. },
  572. },
  573. {
  574. LLM_ARCH_MPT,
  575. {
  576. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  577. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  578. { LLM_TENSOR_OUTPUT, "output"},
  579. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  580. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  581. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  582. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  583. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  584. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  585. { LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
  586. { LLM_TENSOR_POS_EMBD, "position_embd" },
  587. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm"},
  588. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm"},
  589. },
  590. },
  591. {
  592. LLM_ARCH_STARCODER,
  593. {
  594. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  595. { LLM_TENSOR_POS_EMBD, "position_embd" },
  596. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  597. { LLM_TENSOR_OUTPUT, "output" },
  598. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  599. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  600. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  601. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  602. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  603. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  604. },
  605. },
  606. {
  607. LLM_ARCH_REFACT,
  608. {
  609. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  610. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  611. { LLM_TENSOR_OUTPUT, "output" },
  612. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  613. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  614. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  615. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  616. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  617. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  618. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  619. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  620. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  621. },
  622. },
  623. {
  624. LLM_ARCH_BERT,
  625. {
  626. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  627. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  628. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  629. { LLM_TENSOR_POS_EMBD, "position_embd" },
  630. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  631. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  632. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  633. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  634. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  635. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  636. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  637. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  638. },
  639. },
  640. {
  641. LLM_ARCH_NOMIC_BERT,
  642. {
  643. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  644. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  645. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  646. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  647. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  648. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  649. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  650. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  651. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  652. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  653. },
  654. },
  655. {
  656. LLM_ARCH_JINA_BERT_V2,
  657. {
  658. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  659. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  660. { LLM_TENSOR_TOKEN_TYPES, "token_types" },
  661. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  662. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  663. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  664. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  665. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  666. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  667. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  668. { LLM_TENSOR_LAYER_OUT_NORM, "blk.%d.layer_output_norm" },
  669. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  670. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  671. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  672. },
  673. },
  674. {
  675. LLM_ARCH_BLOOM,
  676. {
  677. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  678. { LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
  679. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  680. { LLM_TENSOR_OUTPUT, "output" },
  681. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  682. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  683. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  684. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  685. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  686. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  687. },
  688. },
  689. {
  690. LLM_ARCH_STABLELM,
  691. {
  692. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  693. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  694. { LLM_TENSOR_OUTPUT, "output" },
  695. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  696. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  697. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  698. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  699. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  700. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  701. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  702. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  703. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  704. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  705. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  706. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  707. },
  708. },
  709. {
  710. LLM_ARCH_QWEN,
  711. {
  712. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  713. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  714. { LLM_TENSOR_OUTPUT, "output" },
  715. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  716. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  717. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  718. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  719. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  720. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  721. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  722. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  723. },
  724. },
  725. {
  726. LLM_ARCH_QWEN2,
  727. {
  728. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  729. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  730. { LLM_TENSOR_OUTPUT, "output" },
  731. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  732. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  733. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  734. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  735. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  736. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  737. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  738. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  739. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  740. },
  741. },
  742. {
  743. LLM_ARCH_QWEN2MOE,
  744. {
  745. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  746. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  747. { LLM_TENSOR_OUTPUT, "output" },
  748. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  749. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  750. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  751. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  752. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  753. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  754. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  755. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  756. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  757. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  758. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  759. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  760. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  761. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  762. },
  763. },
  764. {
  765. LLM_ARCH_PHI2,
  766. {
  767. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  768. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  769. { LLM_TENSOR_OUTPUT, "output" },
  770. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  771. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  772. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  773. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  774. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  775. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  776. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  777. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  778. },
  779. },
  780. {
  781. LLM_ARCH_PHI3,
  782. {
  783. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  784. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  785. { LLM_TENSOR_OUTPUT, "output" },
  786. { LLM_TENSOR_ROPE_FACTORS_LONG, "rope_factors_long" },
  787. { LLM_TENSOR_ROPE_FACTORS_SHORT, "rope_factors_short" },
  788. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  789. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  790. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  791. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  792. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  793. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  794. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  795. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  796. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  797. },
  798. },
  799. {
  800. LLM_ARCH_PLAMO,
  801. {
  802. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  803. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  804. { LLM_TENSOR_OUTPUT, "output" },
  805. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  806. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  807. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  808. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  809. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  810. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  811. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  812. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  813. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  814. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  815. },
  816. },
  817. {
  818. LLM_ARCH_CODESHELL,
  819. {
  820. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  821. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  822. { LLM_TENSOR_OUTPUT, "output" },
  823. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  824. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  825. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  826. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  827. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  828. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  829. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  830. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  831. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  832. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  833. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  834. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  835. },
  836. },
  837. {
  838. LLM_ARCH_ORION,
  839. {
  840. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  841. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  842. { LLM_TENSOR_OUTPUT, "output" },
  843. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  844. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  845. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  846. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  847. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  848. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  849. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  850. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  851. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  852. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  853. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  854. },
  855. },
  856. {
  857. LLM_ARCH_INTERNLM2,
  858. {
  859. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  860. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  861. { LLM_TENSOR_OUTPUT, "output" },
  862. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  863. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  864. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  865. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  866. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  867. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  868. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  869. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  870. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  871. },
  872. },
  873. {
  874. LLM_ARCH_MINICPM,
  875. {
  876. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  877. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  878. { LLM_TENSOR_OUTPUT, "output" },
  879. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  880. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  881. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  882. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  883. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  884. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  885. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  886. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  887. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  888. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  889. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  890. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  891. { LLM_TENSOR_FFN_GATE_EXP, "blk.%d.ffn_gate.%d" },
  892. { LLM_TENSOR_FFN_DOWN_EXP, "blk.%d.ffn_down.%d" },
  893. { LLM_TENSOR_FFN_UP_EXP, "blk.%d.ffn_up.%d" },
  894. },
  895. },
  896. {
  897. LLM_ARCH_GEMMA,
  898. {
  899. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  900. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  901. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  902. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  903. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  904. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  905. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  906. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  907. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  908. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  909. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  910. },
  911. },
  912. {
  913. LLM_ARCH_STARCODER2,
  914. {
  915. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  916. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  917. { LLM_TENSOR_OUTPUT, "output" },
  918. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  919. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  920. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  921. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  922. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  923. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  924. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  925. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  926. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  927. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  928. },
  929. },
  930. {
  931. LLM_ARCH_MAMBA,
  932. {
  933. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  934. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  935. { LLM_TENSOR_OUTPUT, "output" },
  936. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  937. { LLM_TENSOR_SSM_IN, "blk.%d.ssm_in" },
  938. { LLM_TENSOR_SSM_CONV1D, "blk.%d.ssm_conv1d" },
  939. { LLM_TENSOR_SSM_X, "blk.%d.ssm_x" },
  940. { LLM_TENSOR_SSM_DT, "blk.%d.ssm_dt" },
  941. { LLM_TENSOR_SSM_A, "blk.%d.ssm_a" },
  942. { LLM_TENSOR_SSM_D, "blk.%d.ssm_d" },
  943. { LLM_TENSOR_SSM_OUT, "blk.%d.ssm_out" },
  944. },
  945. },
  946. {
  947. LLM_ARCH_XVERSE,
  948. {
  949. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  950. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  951. { LLM_TENSOR_OUTPUT, "output" },
  952. { LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
  953. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  954. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  955. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  956. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  957. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  958. { LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
  959. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  960. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  961. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  962. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  963. },
  964. },
  965. {
  966. LLM_ARCH_COMMAND_R,
  967. {
  968. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  969. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  970. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  971. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  972. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  973. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  974. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  975. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  976. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  977. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  978. { LLM_TENSOR_ATTN_Q_NORM, "blk.%d.attn_q_norm" },
  979. { LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
  980. },
  981. },
  982. {
  983. LLM_ARCH_DBRX,
  984. {
  985. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  986. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  987. { LLM_TENSOR_OUTPUT, "output" },
  988. { LLM_TENSOR_ATTN_QKV, "blk.%d.attn_qkv" },
  989. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  990. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  991. { LLM_TENSOR_ATTN_OUT_NORM, "blk.%d.attn_output_norm" },
  992. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  993. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  994. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  995. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  996. },
  997. },
  998. {
  999. LLM_ARCH_OLMO,
  1000. {
  1001. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1002. { LLM_TENSOR_OUTPUT, "output" },
  1003. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1004. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1005. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1006. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1007. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1008. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1009. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1010. },
  1011. },
  1012. {
  1013. LLM_ARCH_ARCTIC,
  1014. {
  1015. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1016. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1017. { LLM_TENSOR_OUTPUT, "output" },
  1018. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1019. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1020. { LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
  1021. { LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
  1022. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1023. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1024. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1025. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1026. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1027. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1028. { LLM_TENSOR_FFN_NORM_EXPS, "blk.%d.ffn_norm_exps" },
  1029. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1030. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1031. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1032. },
  1033. },
  1034. {
  1035. LLM_ARCH_DEEPSEEK2,
  1036. {
  1037. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1038. { LLM_TENSOR_OUTPUT_NORM, "output_norm" },
  1039. { LLM_TENSOR_OUTPUT, "output" },
  1040. { LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
  1041. { LLM_TENSOR_ATTN_Q_A_NORM, "blk.%d.attn_q_a_norm" },
  1042. { LLM_TENSOR_ATTN_KV_A_NORM, "blk.%d.attn_kv_a_norm" },
  1043. { LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
  1044. { LLM_TENSOR_ATTN_Q_A, "blk.%d.attn_q_a" },
  1045. { LLM_TENSOR_ATTN_Q_B, "blk.%d.attn_q_b" },
  1046. { LLM_TENSOR_ATTN_KV_A_MQA, "blk.%d.attn_kv_a_mqa" },
  1047. { LLM_TENSOR_ATTN_KV_B, "blk.%d.attn_kv_b" },
  1048. { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
  1049. { LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
  1050. { LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
  1051. { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
  1052. { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
  1053. { LLM_TENSOR_FFN_GATE_INP, "blk.%d.ffn_gate_inp" },
  1054. { LLM_TENSOR_FFN_GATE_EXPS, "blk.%d.ffn_gate_exps" },
  1055. { LLM_TENSOR_FFN_DOWN_EXPS, "blk.%d.ffn_down_exps" },
  1056. { LLM_TENSOR_FFN_UP_EXPS, "blk.%d.ffn_up_exps" },
  1057. { LLM_TENSOR_FFN_GATE_INP_SHEXP, "blk.%d.ffn_gate_inp_shexp" },
  1058. { LLM_TENSOR_FFN_GATE_SHEXP, "blk.%d.ffn_gate_shexp" },
  1059. { LLM_TENSOR_FFN_DOWN_SHEXP, "blk.%d.ffn_down_shexp" },
  1060. { LLM_TENSOR_FFN_UP_SHEXP, "blk.%d.ffn_up_shexp" },
  1061. },
  1062. },
  1063. {
  1064. LLM_ARCH_UNKNOWN,
  1065. {
  1066. { LLM_TENSOR_TOKEN_EMBD, "token_embd" },
  1067. },
  1068. },
  1069. };
  1070. static llm_arch llm_arch_from_string(const std::string & name) {
  1071. for (const auto & kv : LLM_ARCH_NAMES) { // NOLINT
  1072. if (kv.second == name) {
  1073. return kv.first;
  1074. }
  1075. }
  1076. return LLM_ARCH_UNKNOWN;
  1077. }
  1078. // helper to handle gguf constants
  1079. // usage:
  1080. //
  1081. // const auto tn = LLM_TN(LLM_ARCH_LLAMA);
  1082. //
  1083. // std::string name = tn(LLM_TENSOR_OUTPUT); -> "output"
  1084. // std::string name = tn(LLM_TENSOR_TOKEN_EMBD, "bias"); -> "token_embd.bias"
  1085. // std::string name = tn(LLM_TENSOR_ATTN_NORM, "weight", 3); -> "blk.3.attn_norm.weight"
  1086. //
  1087. struct LLM_TN {
  1088. LLM_TN(llm_arch arch) : arch(arch) {}
  1089. llm_arch arch;
  1090. std::string operator()(llm_tensor tensor) const {
  1091. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1092. return "__missing__";
  1093. }
  1094. return LLM_TENSOR_NAMES.at(arch).at(tensor);
  1095. }
  1096. std::string operator()(llm_tensor tensor, const std::string & suffix) const {
  1097. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1098. return "__missing__";
  1099. }
  1100. return LLM_TENSOR_NAMES.at(arch).at(tensor) + "." + suffix;
  1101. }
  1102. std::string operator()(llm_tensor tensor, int bid) const {
  1103. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1104. return "__missing__";
  1105. }
  1106. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid);
  1107. }
  1108. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid) const {
  1109. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1110. return "__missing__";
  1111. }
  1112. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid) + "." + suffix;
  1113. }
  1114. std::string operator()(llm_tensor tensor, const std::string & suffix, int bid, int xid) const {
  1115. if (LLM_TENSOR_NAMES.at(arch).find(tensor) == LLM_TENSOR_NAMES.at(arch).end()) {
  1116. return "__missing__";
  1117. }
  1118. return ::format(LLM_TENSOR_NAMES.at(arch).at(tensor).c_str(), bid, xid) + "." + suffix;
  1119. }
  1120. };
  1121. //
  1122. // gguf helpers
  1123. //
  1124. static const std::map<llama_rope_scaling_type, const char *> LLAMA_ROPE_SCALING_TYPES = {
  1125. { LLAMA_ROPE_SCALING_TYPE_NONE, "none" },
  1126. { LLAMA_ROPE_SCALING_TYPE_LINEAR, "linear" },
  1127. { LLAMA_ROPE_SCALING_TYPE_YARN, "yarn" },
  1128. };
  1129. static llama_rope_scaling_type llama_rope_scaling_type_from_string(const std::string & name) {
  1130. for (const auto & kv : LLAMA_ROPE_SCALING_TYPES) {
  1131. if (kv.second == name) {
  1132. return (llama_rope_scaling_type) kv.first;
  1133. }
  1134. }
  1135. return LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED;
  1136. }
  1137. static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) {
  1138. switch (type) {
  1139. case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]);
  1140. case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]);
  1141. case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]);
  1142. case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]);
  1143. case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]);
  1144. case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]);
  1145. case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]);
  1146. case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]);
  1147. case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]);
  1148. case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]);
  1149. case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false";
  1150. default: return format("unknown type %d", type);
  1151. }
  1152. }
  1153. static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) {
  1154. const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i);
  1155. switch (type) {
  1156. case GGUF_TYPE_STRING:
  1157. return gguf_get_val_str(ctx_gguf, i);
  1158. case GGUF_TYPE_ARRAY:
  1159. {
  1160. const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i);
  1161. int arr_n = gguf_get_arr_n(ctx_gguf, i);
  1162. const void * data = gguf_get_arr_data(ctx_gguf, i);
  1163. std::stringstream ss;
  1164. ss << "[";
  1165. for (int j = 0; j < arr_n; j++) {
  1166. if (arr_type == GGUF_TYPE_STRING) {
  1167. std::string val = gguf_get_arr_str(ctx_gguf, i, j);
  1168. // escape quotes
  1169. replace_all(val, "\\", "\\\\");
  1170. replace_all(val, "\"", "\\\"");
  1171. ss << '"' << val << '"';
  1172. } else if (arr_type == GGUF_TYPE_ARRAY) {
  1173. ss << "???";
  1174. } else {
  1175. ss << gguf_data_to_str(arr_type, data, j);
  1176. }
  1177. if (j < arr_n - 1) {
  1178. ss << ", ";
  1179. }
  1180. }
  1181. ss << "]";
  1182. return ss.str();
  1183. }
  1184. default:
  1185. return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0);
  1186. }
  1187. }
  1188. //
  1189. // llama helpers
  1190. //
  1191. #if defined(_WIN32)
  1192. static std::string llama_format_win_err(DWORD err) {
  1193. LPSTR buf;
  1194. size_t size = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
  1195. NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&buf, 0, NULL);
  1196. if (!size) {
  1197. return "FormatMessageA failed";
  1198. }
  1199. std::string ret(buf, size);
  1200. LocalFree(buf);
  1201. return ret;
  1202. }
  1203. #endif
  1204. template <typename T>
  1205. struct no_init {
  1206. T value;
  1207. no_init() { /* do nothing */ }
  1208. };
  1209. struct llama_file {
  1210. // use FILE * so we don't have to re-open the file to mmap
  1211. FILE * fp;
  1212. size_t size;
  1213. llama_file(const char * fname, const char * mode) {
  1214. fp = ggml_fopen(fname, mode);
  1215. if (fp == NULL) {
  1216. throw std::runtime_error(format("failed to open %s: %s", fname, strerror(errno)));
  1217. }
  1218. seek(0, SEEK_END);
  1219. size = tell();
  1220. seek(0, SEEK_SET);
  1221. }
  1222. size_t tell() const {
  1223. #ifdef _WIN32
  1224. __int64 ret = _ftelli64(fp);
  1225. #else
  1226. long ret = std::ftell(fp);
  1227. #endif
  1228. GGML_ASSERT(ret != -1); // this really shouldn't fail
  1229. return (size_t) ret;
  1230. }
  1231. void seek(size_t offset, int whence) const {
  1232. #ifdef _WIN32
  1233. int ret = _fseeki64(fp, (__int64) offset, whence);
  1234. #else
  1235. int ret = std::fseek(fp, (long) offset, whence);
  1236. #endif
  1237. GGML_ASSERT(ret == 0); // same
  1238. }
  1239. void read_raw(void * ptr, size_t len) const {
  1240. if (len == 0) {
  1241. return;
  1242. }
  1243. errno = 0;
  1244. std::size_t ret = std::fread(ptr, len, 1, fp);
  1245. if (ferror(fp)) {
  1246. throw std::runtime_error(format("read error: %s", strerror(errno)));
  1247. }
  1248. if (ret != 1) {
  1249. throw std::runtime_error("unexpectedly reached end of file");
  1250. }
  1251. }
  1252. uint32_t read_u32() const {
  1253. uint32_t ret;
  1254. read_raw(&ret, sizeof(ret));
  1255. return ret;
  1256. }
  1257. void write_raw(const void * ptr, size_t len) const {
  1258. if (len == 0) {
  1259. return;
  1260. }
  1261. errno = 0;
  1262. size_t ret = std::fwrite(ptr, len, 1, fp);
  1263. if (ret != 1) {
  1264. throw std::runtime_error(format("write error: %s", strerror(errno)));
  1265. }
  1266. }
  1267. void write_u32(std::uint32_t val) const {
  1268. write_raw(&val, sizeof(val));
  1269. }
  1270. ~llama_file() {
  1271. if (fp) {
  1272. std::fclose(fp);
  1273. }
  1274. }
  1275. };
  1276. using llama_files = std::vector<std::unique_ptr<llama_file>>;
  1277. struct llama_mmap {
  1278. void * addr;
  1279. size_t size;
  1280. llama_mmap(const llama_mmap &) = delete;
  1281. #ifdef _POSIX_MAPPED_FILES
  1282. static constexpr bool SUPPORTED = true;
  1283. // list of mapped fragments (first_offset, last_offset)
  1284. std::vector<std::pair<size_t, size_t>> mapped_fragments;
  1285. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1 /* -1 = max value */, bool numa = false) {
  1286. size = file->size;
  1287. int fd = fileno(file->fp);
  1288. int flags = MAP_SHARED;
  1289. // prefetch/readahead impairs performance on NUMA systems
  1290. if (numa) { prefetch = 0; }
  1291. #ifdef __linux__
  1292. // advise the kernel to read the file sequentially (increases readahead)
  1293. if (posix_fadvise(fd, 0, 0, POSIX_FADV_SEQUENTIAL)) {
  1294. LLAMA_LOG_WARN("warning: posix_fadvise(.., POSIX_FADV_SEQUENTIAL) failed: %s\n",
  1295. strerror(errno));
  1296. }
  1297. if (prefetch) { flags |= MAP_POPULATE; }
  1298. #endif
  1299. addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
  1300. if (addr == MAP_FAILED) { // NOLINT
  1301. throw std::runtime_error(format("mmap failed: %s", strerror(errno)));
  1302. }
  1303. if (prefetch > 0) {
  1304. // advise the kernel to preload the mapped memory
  1305. if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
  1306. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
  1307. strerror(errno));
  1308. }
  1309. }
  1310. if (numa) {
  1311. // advise the kernel not to use readahead
  1312. // (because the next page might not belong on the same node)
  1313. if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
  1314. LLAMA_LOG_WARN("warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
  1315. strerror(errno));
  1316. }
  1317. }
  1318. // initialize list of mapped_fragments
  1319. mapped_fragments.emplace_back(0, file->size);
  1320. }
  1321. static void align_range(size_t * first, size_t * last, size_t page_size) {
  1322. // align first to the next page
  1323. size_t offset_in_page = *first & (page_size - 1);
  1324. size_t offset_to_page = offset_in_page == 0 ? 0 : page_size - offset_in_page;
  1325. *first += offset_to_page;
  1326. // align last to the previous page
  1327. *last = *last & ~(page_size - 1);
  1328. if (*last <= *first) {
  1329. *last = *first;
  1330. }
  1331. }
  1332. // partially unmap the file in the range [first, last)
  1333. void unmap_fragment(size_t first, size_t last) {
  1334. // note: this function must not be called multiple times with overlapping ranges
  1335. // otherwise, there is a risk of invalidating addresses that have been repurposed for other mappings
  1336. int page_size = sysconf(_SC_PAGESIZE);
  1337. align_range(&first, &last, page_size);
  1338. size_t len = last - first;
  1339. if (len == 0) {
  1340. return;
  1341. }
  1342. GGML_ASSERT(first % page_size == 0);
  1343. GGML_ASSERT(last % page_size == 0);
  1344. GGML_ASSERT(last > first);
  1345. void * next_page_start = (uint8_t *) addr + first;
  1346. // unmap the range
  1347. if (munmap(next_page_start, len)) {
  1348. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1349. }
  1350. // update the list of mapped fragments to avoid unmapping the same range again in the destructor
  1351. std::vector<std::pair<size_t, size_t>> new_mapped_fragments;
  1352. for (const auto & frag : mapped_fragments) {
  1353. if (frag.first < first && frag.second > last) {
  1354. // the range is in the middle of the fragment, split it
  1355. new_mapped_fragments.emplace_back(frag.first, first);
  1356. new_mapped_fragments.emplace_back(last, frag.second);
  1357. } else if (frag.first < first && frag.second > first) {
  1358. // the range starts in the middle of the fragment
  1359. new_mapped_fragments.emplace_back(frag.first, first);
  1360. } else if (frag.first < last && frag.second > last) {
  1361. // the range ends in the middle of the fragment
  1362. new_mapped_fragments.emplace_back(last, frag.second);
  1363. } else if (frag.first >= first && frag.second <= last) {
  1364. // the range covers the entire fragment
  1365. } else {
  1366. // the range is outside the fragment
  1367. new_mapped_fragments.push_back(frag);
  1368. }
  1369. }
  1370. mapped_fragments = std::move(new_mapped_fragments);
  1371. }
  1372. ~llama_mmap() {
  1373. for (const auto & frag : mapped_fragments) {
  1374. if (munmap((char *) addr + frag.first, frag.second - frag.first)) {
  1375. LLAMA_LOG_WARN("warning: munmap failed: %s\n", strerror(errno));
  1376. }
  1377. }
  1378. }
  1379. #elif defined(_WIN32)
  1380. static constexpr bool SUPPORTED = true;
  1381. llama_mmap(struct llama_file * file, size_t prefetch = (size_t) -1, bool numa = false) {
  1382. GGML_UNUSED(numa);
  1383. size = file->size;
  1384. HANDLE hFile = (HANDLE) _get_osfhandle(_fileno(file->fp));
  1385. HANDLE hMapping = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, NULL);
  1386. if (hMapping == NULL) {
  1387. DWORD error = GetLastError();
  1388. throw std::runtime_error(format("CreateFileMappingA failed: %s", llama_format_win_err(error).c_str()));
  1389. }
  1390. addr = MapViewOfFile(hMapping, FILE_MAP_READ, 0, 0, 0);
  1391. DWORD error = GetLastError();
  1392. CloseHandle(hMapping);
  1393. if (addr == NULL) {
  1394. throw std::runtime_error(format("MapViewOfFile failed: %s", llama_format_win_err(error).c_str()));
  1395. }
  1396. if (prefetch > 0) {
  1397. #if _WIN32_WINNT >= 0x602
  1398. // PrefetchVirtualMemory is only present on Windows 8 and above, so we dynamically load it
  1399. BOOL (WINAPI *pPrefetchVirtualMemory) (HANDLE, ULONG_PTR, PWIN32_MEMORY_RANGE_ENTRY, ULONG);
  1400. HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
  1401. // may fail on pre-Windows 8 systems
  1402. pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
  1403. if (pPrefetchVirtualMemory) {
  1404. // advise the kernel to preload the mapped memory
  1405. WIN32_MEMORY_RANGE_ENTRY range;
  1406. range.VirtualAddress = addr;
  1407. range.NumberOfBytes = (SIZE_T) std::min(size, prefetch);
  1408. if (!pPrefetchVirtualMemory(GetCurrentProcess(), 1, &range, 0)) {
  1409. LLAMA_LOG_WARN("warning: PrefetchVirtualMemory failed: %s\n",
  1410. llama_format_win_err(GetLastError()).c_str());
  1411. }
  1412. }
  1413. #else
  1414. throw std::runtime_error("PrefetchVirtualMemory unavailable");
  1415. #endif
  1416. }
  1417. }
  1418. void unmap_fragment(size_t first, size_t last) {
  1419. // not supported
  1420. GGML_UNUSED(first);
  1421. GGML_UNUSED(last);
  1422. }
  1423. ~llama_mmap() {
  1424. if (!UnmapViewOfFile(addr)) {
  1425. LLAMA_LOG_WARN("warning: UnmapViewOfFile failed: %s\n",
  1426. llama_format_win_err(GetLastError()).c_str());
  1427. }
  1428. }
  1429. #else
  1430. static constexpr bool SUPPORTED = false;
  1431. llama_mmap(struct llama_file * file, size_t prefetch = -1, bool numa = false) {
  1432. GGML_UNUSED(file);
  1433. GGML_UNUSED(prefetch);
  1434. GGML_UNUSED(numa);
  1435. throw std::runtime_error("mmap not supported");
  1436. }
  1437. void unmap_fragment(size_t first, size_t last) {
  1438. GGML_UNUSED(first);
  1439. GGML_UNUSED(last);
  1440. throw std::runtime_error("mmap not supported");
  1441. }
  1442. #endif
  1443. };
  1444. using llama_mmaps = std::vector<std::unique_ptr<llama_mmap>>;
  1445. // Represents some region of memory being locked using mlock or VirtualLock;
  1446. // will automatically unlock on destruction.
  1447. struct llama_mlock {
  1448. void * addr = NULL;
  1449. size_t size = 0;
  1450. bool failed_already = false;
  1451. llama_mlock() {}
  1452. llama_mlock(const llama_mlock &) = delete;
  1453. ~llama_mlock() {
  1454. if (size) {
  1455. raw_unlock(addr, size);
  1456. }
  1457. }
  1458. void init(void * ptr) {
  1459. GGML_ASSERT(addr == NULL && size == 0); // NOLINT
  1460. addr = ptr;
  1461. }
  1462. void grow_to(size_t target_size) {
  1463. GGML_ASSERT(addr);
  1464. if (failed_already) {
  1465. return;
  1466. }
  1467. size_t granularity = lock_granularity();
  1468. target_size = (target_size + granularity - 1) & ~(granularity - 1);
  1469. if (target_size > size) {
  1470. if (raw_lock((uint8_t *) addr + size, target_size - size)) {
  1471. size = target_size;
  1472. } else {
  1473. failed_already = true;
  1474. }
  1475. }
  1476. }
  1477. #ifdef _POSIX_MEMLOCK_RANGE
  1478. static constexpr bool SUPPORTED = true;
  1479. static size_t lock_granularity() {
  1480. return (size_t) sysconf(_SC_PAGESIZE);
  1481. }
  1482. #ifdef __APPLE__
  1483. #define MLOCK_SUGGESTION \
  1484. "Try increasing the sysctl values 'vm.user_wire_limit' and 'vm.global_user_wire_limit' and/or " \
  1485. "decreasing 'vm.global_no_user_wire_amount'. Also try increasing RLIMIT_MEMLOCK (ulimit -l).\n"
  1486. #else
  1487. #define MLOCK_SUGGESTION \
  1488. "Try increasing RLIMIT_MEMLOCK ('ulimit -l' as root).\n"
  1489. #endif
  1490. bool raw_lock(const void * addr, size_t size) const {
  1491. if (!mlock(addr, size)) {
  1492. return true;
  1493. }
  1494. char* errmsg = std::strerror(errno);
  1495. bool suggest = (errno == ENOMEM);
  1496. // Check if the resource limit is fine after all
  1497. struct rlimit lock_limit;
  1498. if (suggest && getrlimit(RLIMIT_MEMLOCK, &lock_limit)) {
  1499. suggest = false;
  1500. }
  1501. if (suggest && (lock_limit.rlim_max > lock_limit.rlim_cur + size)) {
  1502. suggest = false;
  1503. }
  1504. LLAMA_LOG_WARN("warning: failed to mlock %zu-byte buffer (after previously locking %zu bytes): %s\n%s",
  1505. size, this->size, errmsg, suggest ? MLOCK_SUGGESTION : "");
  1506. return false;
  1507. }
  1508. #undef MLOCK_SUGGESTION
  1509. static void raw_unlock(void * addr, size_t size) {
  1510. if (munlock(addr, size)) {
  1511. LLAMA_LOG_WARN("warning: failed to munlock buffer: %s\n", std::strerror(errno));
  1512. }
  1513. }
  1514. #elif defined(_WIN32)
  1515. static constexpr bool SUPPORTED = true;
  1516. static size_t lock_granularity() {
  1517. SYSTEM_INFO si;
  1518. GetSystemInfo(&si);
  1519. return (size_t) si.dwPageSize;
  1520. }
  1521. bool raw_lock(void * ptr, size_t len) const {
  1522. for (int tries = 1; ; tries++) {
  1523. if (VirtualLock(ptr, len)) {
  1524. return true;
  1525. }
  1526. if (tries == 2) {
  1527. LLAMA_LOG_WARN("warning: failed to VirtualLock %zu-byte buffer (after previously locking %zu bytes): %s\n",
  1528. len, size, llama_format_win_err(GetLastError()).c_str());
  1529. return false;
  1530. }
  1531. // It failed but this was only the first try; increase the working
  1532. // set size and try again.
  1533. SIZE_T min_ws_size, max_ws_size;
  1534. if (!GetProcessWorkingSetSize(GetCurrentProcess(), &min_ws_size, &max_ws_size)) {
  1535. LLAMA_LOG_WARN("warning: GetProcessWorkingSetSize failed: %s\n",
  1536. llama_format_win_err(GetLastError()).c_str());
  1537. return false;
  1538. }
  1539. // Per MSDN: "The maximum number of pages that a process can lock
  1540. // is equal to the number of pages in its minimum working set minus
  1541. // a small overhead."
  1542. // Hopefully a megabyte is enough overhead:
  1543. size_t increment = len + 1048576;
  1544. // The minimum must be <= the maximum, so we need to increase both:
  1545. min_ws_size += increment;
  1546. max_ws_size += increment;
  1547. if (!SetProcessWorkingSetSize(GetCurrentProcess(), min_ws_size, max_ws_size)) {
  1548. LLAMA_LOG_WARN("warning: SetProcessWorkingSetSize failed: %s\n",
  1549. llama_format_win_err(GetLastError()).c_str());
  1550. return false;
  1551. }
  1552. }
  1553. }
  1554. static void raw_unlock(void * ptr, size_t len) {
  1555. if (!VirtualUnlock(ptr, len)) {
  1556. LLAMA_LOG_WARN("warning: failed to VirtualUnlock buffer: %s\n",
  1557. llama_format_win_err(GetLastError()).c_str());
  1558. }
  1559. }
  1560. #else
  1561. static constexpr bool SUPPORTED = false;
  1562. static size_t lock_granularity() {
  1563. return (size_t) 65536;
  1564. }
  1565. bool raw_lock(const void * addr, size_t len) const {
  1566. LLAMA_LOG_WARN("warning: mlock not supported on this system\n");
  1567. return false;
  1568. }
  1569. static void raw_unlock(const void * addr, size_t len) {}
  1570. #endif
  1571. };
  1572. using llama_mlocks = std::vector<std::unique_ptr<llama_mlock>>;
  1573. // NOTE: avoid ever using this except for building the token_to_piece caches
  1574. static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
  1575. std::vector<char> result(8, 0);
  1576. const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1577. if (n_tokens < 0) {
  1578. result.resize(-n_tokens);
  1579. int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
  1580. GGML_ASSERT(check == -n_tokens);
  1581. }
  1582. else {
  1583. result.resize(n_tokens);
  1584. }
  1585. return std::string(result.data(), result.size());
  1586. }
  1587. static ggml_backend_buffer_type_t llama_default_buffer_type_cpu(bool host_buffer) {
  1588. ggml_backend_buffer_type_t buft = nullptr;
  1589. #if defined(GGML_USE_CUDA)
  1590. // host buffers should only be used when data is expected to be copied to/from the GPU
  1591. if (host_buffer) {
  1592. buft = ggml_backend_cuda_host_buffer_type();
  1593. }
  1594. #elif defined(GGML_USE_SYCL)
  1595. if (host_buffer) {
  1596. buft = ggml_backend_sycl_host_buffer_type();
  1597. }
  1598. #elif defined(GGML_USE_CPU_HBM)
  1599. buft = ggml_backend_cpu_hbm_buffer_type();
  1600. #elif defined(GGML_USE_VULKAN)
  1601. if (host_buffer) {
  1602. buft = ggml_backend_vk_host_buffer_type();
  1603. }
  1604. #endif
  1605. if (buft == nullptr) {
  1606. buft = ggml_backend_cpu_buffer_type();
  1607. }
  1608. return buft;
  1609. GGML_UNUSED(host_buffer);
  1610. }
  1611. //
  1612. // globals
  1613. //
  1614. struct llama_state {
  1615. llama_state() {
  1616. #ifdef GGML_USE_METAL
  1617. ggml_backend_metal_log_set_callback(log_callback, log_callback_user_data);
  1618. #elif defined(GGML_USE_CUDA)
  1619. ggml_backend_cuda_log_set_callback(log_callback, log_callback_user_data);
  1620. #endif
  1621. }
  1622. // We save the log callback globally
  1623. ggml_log_callback log_callback = llama_log_callback_default;
  1624. void * log_callback_user_data = nullptr;
  1625. };
  1626. static llama_state g_state;
  1627. // available llama models
  1628. enum e_model {
  1629. MODEL_UNKNOWN,
  1630. MODEL_14M,
  1631. MODEL_17M,
  1632. MODEL_22M,
  1633. MODEL_33M,
  1634. MODEL_70M,
  1635. MODEL_109M,
  1636. MODEL_137M,
  1637. MODEL_160M,
  1638. MODEL_335M,
  1639. MODEL_410M,
  1640. MODEL_0_5B,
  1641. MODEL_1B,
  1642. MODEL_1_4B,
  1643. MODEL_2B,
  1644. MODEL_2_8B,
  1645. MODEL_3B,
  1646. MODEL_4B,
  1647. MODEL_6_9B,
  1648. MODEL_7B,
  1649. MODEL_8B,
  1650. MODEL_12B,
  1651. MODEL_13B,
  1652. MODEL_14B,
  1653. MODEL_15B,
  1654. MODEL_16B,
  1655. MODEL_20B,
  1656. MODEL_30B,
  1657. MODEL_34B,
  1658. MODEL_35B,
  1659. MODEL_40B,
  1660. MODEL_65B,
  1661. MODEL_70B,
  1662. MODEL_236B,
  1663. MODEL_314B,
  1664. MODEL_SMALL,
  1665. MODEL_MEDIUM,
  1666. MODEL_LARGE,
  1667. MODEL_XL,
  1668. MODEL_A2_7B,
  1669. MODEL_8x7B,
  1670. MODEL_8x22B,
  1671. MODEL_16x12B,
  1672. MODEL_10B_128x3_66B,
  1673. };
  1674. static const size_t kiB = 1024;
  1675. static const size_t MiB = 1024*kiB;
  1676. static const size_t GiB = 1024*MiB;
  1677. struct llama_hparams {
  1678. bool vocab_only;
  1679. bool rope_finetuned;
  1680. bool use_par_res;
  1681. uint32_t n_vocab;
  1682. uint32_t n_ctx_train; // context size the model was trained on
  1683. uint32_t n_embd;
  1684. uint32_t n_head;
  1685. uint32_t n_head_kv;
  1686. uint32_t n_layer;
  1687. uint32_t n_rot;
  1688. uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
  1689. uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
  1690. uint32_t n_ff;
  1691. uint32_t n_expert = 0;
  1692. uint32_t n_expert_used = 0;
  1693. uint32_t n_vocab_type = 0; // for BERT-style token types
  1694. uint32_t n_layer_dense_lead = 0;
  1695. uint32_t n_lora_q = 0;
  1696. uint32_t n_lora_kv = 0;
  1697. uint32_t n_ff_exp = 0;
  1698. uint32_t n_expert_shared = 0;
  1699. float expert_weights_scale = 0.0;
  1700. float f_norm_eps;
  1701. float f_norm_rms_eps;
  1702. float rope_attn_factor = 1.0f;
  1703. float rope_freq_base_train;
  1704. float rope_freq_scale_train;
  1705. uint32_t n_ctx_orig_yarn;
  1706. float rope_yarn_log_mul;
  1707. // for State Space Models
  1708. uint32_t ssm_d_conv = 0;
  1709. uint32_t ssm_d_inner = 0;
  1710. uint32_t ssm_d_state = 0;
  1711. uint32_t ssm_dt_rank = 0;
  1712. float f_clamp_kqv = 0.0f;
  1713. float f_max_alibi_bias = 0.0f;
  1714. float f_logit_scale = 0.0f;
  1715. bool causal_attn = true;
  1716. bool use_alibi = false;
  1717. enum llama_pooling_type pooling_type = LLAMA_POOLING_TYPE_NONE;
  1718. enum llama_rope_type rope_type = LLAMA_ROPE_TYPE_NONE;
  1719. enum llama_rope_scaling_type rope_scaling_type_train = LLAMA_ROPE_SCALING_TYPE_NONE;
  1720. bool operator!=(const llama_hparams & other) const {
  1721. if (this->vocab_only != other.vocab_only) return true;
  1722. if (this->n_vocab != other.n_vocab) return true;
  1723. if (this->n_ctx_train != other.n_ctx_train) return true;
  1724. if (this->n_embd != other.n_embd) return true;
  1725. if (this->n_head != other.n_head) return true;
  1726. if (this->n_head_kv != other.n_head_kv) return true;
  1727. if (this->n_layer != other.n_layer) return true;
  1728. if (this->n_rot != other.n_rot) return true;
  1729. if (this->n_embd_head_k != other.n_embd_head_k) return true;
  1730. if (this->n_embd_head_v != other.n_embd_head_v) return true;
  1731. if (this->n_ff != other.n_ff) return true;
  1732. if (this->n_expert != other.n_expert) return true;
  1733. if (this->n_expert_used != other.n_expert_used) return true;
  1734. if (this->n_layer_dense_lead != other.n_layer_dense_lead) return true;
  1735. if (this->n_lora_q != other.n_lora_q) return true;
  1736. if (this->n_lora_kv != other.n_lora_kv) return true;
  1737. if (this->n_ff_exp != other.n_ff_exp) return true;
  1738. if (this->n_expert_shared != other.n_expert_shared) return true;
  1739. if (this->rope_finetuned != other.rope_finetuned) return true;
  1740. if (this->n_ctx_orig_yarn != other.n_ctx_orig_yarn) return true;
  1741. if (this->ssm_d_conv != other.ssm_d_conv) return true;
  1742. if (this->ssm_d_inner != other.ssm_d_inner) return true;
  1743. if (this->ssm_d_state != other.ssm_d_state) return true;
  1744. if (this->ssm_dt_rank != other.ssm_dt_rank) return true;
  1745. const float EPSILON = 1e-9f;
  1746. if (!is_float_close(this->f_norm_eps, other.f_norm_eps, EPSILON)) return true;
  1747. if (!is_float_close(this->f_norm_rms_eps, other.f_norm_rms_eps, EPSILON)) return true;
  1748. if (!is_float_close(this->rope_attn_factor, other.rope_attn_factor, EPSILON)) return true;
  1749. if (!is_float_close(this->rope_freq_base_train, other.rope_freq_base_train, EPSILON)) return true;
  1750. if (!is_float_close(this->rope_freq_scale_train, other.rope_freq_scale_train, EPSILON)) return true;
  1751. if (!is_float_close(this->expert_weights_scale, other.expert_weights_scale, EPSILON)) return true;
  1752. if (!is_float_close(this->rope_yarn_log_mul, other.rope_yarn_log_mul, EPSILON)) return true;
  1753. return false;
  1754. }
  1755. uint32_t n_gqa() const {
  1756. if (n_head_kv == 0) {
  1757. return 0;
  1758. }
  1759. return n_head/n_head_kv;
  1760. }
  1761. uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
  1762. return n_embd_head_k * n_head_kv;
  1763. }
  1764. uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
  1765. return n_embd_head_v * n_head_kv;
  1766. }
  1767. uint32_t n_embd_k_s() const { // dimension of the rolling state embeddings
  1768. // corresponds to Mamba's conv_states size
  1769. // TODO: maybe support other convolution strides than 1
  1770. // NOTE: since the first column of the conv_state is shifted out each time, it's not actually needed
  1771. return (ssm_d_conv > 0 ? ssm_d_conv - 1 : 0) * ssm_d_inner;
  1772. }
  1773. uint32_t n_embd_v_s() const { // dimension of the recurrent state embeddings
  1774. // corresponds to Mamba's ssm_states size
  1775. return ssm_d_state * ssm_d_inner;
  1776. }
  1777. };
  1778. struct llama_cparams {
  1779. uint32_t n_ctx; // context size used during inference
  1780. uint32_t n_batch;
  1781. uint32_t n_ubatch;
  1782. uint32_t n_seq_max;
  1783. uint32_t n_threads; // number of threads to use for generation
  1784. uint32_t n_threads_batch; // number of threads to use for batch processing
  1785. float rope_freq_base;
  1786. float rope_freq_scale;
  1787. uint32_t n_ctx_orig_yarn;
  1788. // These hyperparameters are not exposed in GGUF, because all
  1789. // existing YaRN models use the same values for them.
  1790. float yarn_ext_factor;
  1791. float yarn_attn_factor;
  1792. float yarn_beta_fast;
  1793. float yarn_beta_slow;
  1794. float defrag_thold;
  1795. bool embeddings;
  1796. bool causal_attn;
  1797. bool offload_kqv;
  1798. bool flash_attn;
  1799. enum llama_pooling_type pooling_type;
  1800. ggml_backend_sched_eval_callback cb_eval;
  1801. void * cb_eval_user_data;
  1802. };
  1803. struct llama_layer {
  1804. // normalization
  1805. struct ggml_tensor * attn_norm;
  1806. struct ggml_tensor * attn_norm_b;
  1807. struct ggml_tensor * attn_norm_2;
  1808. struct ggml_tensor * attn_norm_2_b;
  1809. struct ggml_tensor * attn_q_norm;
  1810. struct ggml_tensor * attn_q_norm_b;
  1811. struct ggml_tensor * attn_k_norm;
  1812. struct ggml_tensor * attn_k_norm_b;
  1813. struct ggml_tensor * attn_out_norm;
  1814. struct ggml_tensor * attn_out_norm_b;
  1815. struct ggml_tensor * attn_q_a_norm;
  1816. struct ggml_tensor * attn_kv_a_norm;
  1817. // attention
  1818. struct ggml_tensor * wq;
  1819. struct ggml_tensor * wk;
  1820. struct ggml_tensor * wv;
  1821. struct ggml_tensor * wo;
  1822. struct ggml_tensor * wqkv;
  1823. struct ggml_tensor * wq_a;
  1824. struct ggml_tensor * wq_b;
  1825. struct ggml_tensor * wkv_a_mqa;
  1826. struct ggml_tensor * wkv_b;
  1827. // attention bias
  1828. struct ggml_tensor * bq;
  1829. struct ggml_tensor * bk;
  1830. struct ggml_tensor * bv;
  1831. struct ggml_tensor * bo;
  1832. struct ggml_tensor * bqkv;
  1833. // normalization
  1834. struct ggml_tensor * ffn_norm;
  1835. struct ggml_tensor * ffn_norm_b;
  1836. struct ggml_tensor * layer_out_norm;
  1837. struct ggml_tensor * layer_out_norm_b;
  1838. struct ggml_tensor * ffn_norm_exps;
  1839. // ff
  1840. struct ggml_tensor * ffn_gate; // w1
  1841. struct ggml_tensor * ffn_down; // w2
  1842. struct ggml_tensor * ffn_up; // w3
  1843. // ff MoE
  1844. struct ggml_tensor * ffn_gate_inp;
  1845. struct ggml_tensor * ffn_gate_exps;
  1846. struct ggml_tensor * ffn_down_exps;
  1847. struct ggml_tensor * ffn_up_exps ;
  1848. // ff shared expert (shexp)
  1849. struct ggml_tensor * ffn_gate_inp_shexp;
  1850. struct ggml_tensor * ffn_gate_shexp;
  1851. struct ggml_tensor * ffn_down_shexp;
  1852. struct ggml_tensor * ffn_up_shexp;
  1853. // ff bias
  1854. struct ggml_tensor * ffn_gate_b = nullptr;
  1855. struct ggml_tensor * ffn_down_b = nullptr; // b2
  1856. struct ggml_tensor * ffn_up_b = nullptr; // b3
  1857. struct ggml_tensor * ffn_act;
  1858. // mamba proj
  1859. struct ggml_tensor * ssm_in;
  1860. struct ggml_tensor * ssm_x;
  1861. struct ggml_tensor * ssm_dt;
  1862. struct ggml_tensor * ssm_out;
  1863. // mamba
  1864. struct ggml_tensor * ssm_conv1d;
  1865. struct ggml_tensor * ssm_a;
  1866. struct ggml_tensor * ssm_d;
  1867. // mamba bias
  1868. struct ggml_tensor * ssm_conv1d_b;
  1869. struct ggml_tensor * ssm_dt_b;
  1870. // long rope factors
  1871. struct ggml_tensor * rope_long = nullptr;
  1872. struct ggml_tensor * rope_short = nullptr;
  1873. };
  1874. struct llama_kv_cell {
  1875. llama_pos pos = -1;
  1876. llama_pos delta = 0;
  1877. int32_t src = 0; // used by recurrent state models to copy states
  1878. std::set<llama_seq_id> seq_id;
  1879. bool has_seq_id(const llama_seq_id & id) const {
  1880. return seq_id.find(id) != seq_id.end();
  1881. }
  1882. bool is_empty() const {
  1883. return seq_id.empty();
  1884. }
  1885. bool is_same_seq(const llama_kv_cell & other) const {
  1886. return seq_id == other.seq_id;
  1887. }
  1888. };
  1889. // ring-buffer of cached KV data
  1890. struct llama_kv_cache {
  1891. bool has_shift = false;
  1892. bool do_defrag = false;
  1893. bool do_copy = false;
  1894. bool recurrent = false; // with recurrent state models, a cell can hold the state for more than one past token
  1895. bool v_trans = true; // the value tensor is transposed
  1896. // Note: The value of head isn't only used to optimize searching
  1897. // for a free KV slot. llama_decode_internal also uses it, so it
  1898. // cannot be freely changed after a slot has been allocated.
  1899. uint32_t head = 0;
  1900. uint32_t size = 0;
  1901. uint32_t used = 0; // used cells (i.e. at least one seq_id)
  1902. // computed before each graph build
  1903. uint32_t n = 0;
  1904. ggml_type type_k = GGML_TYPE_F16;
  1905. ggml_type type_v = GGML_TYPE_F16;
  1906. std::vector<llama_kv_cell> cells;
  1907. std::vector<struct ggml_tensor *> k_l; // per layer
  1908. std::vector<struct ggml_tensor *> v_l;
  1909. std::vector<struct ggml_context *> ctxs;
  1910. std::vector<ggml_backend_buffer_t> bufs;
  1911. size_t total_size() const {
  1912. size_t size = 0;
  1913. for (ggml_backend_buffer_t buf : bufs) {
  1914. size += ggml_backend_buffer_get_size(buf);
  1915. }
  1916. return size;
  1917. }
  1918. ~llama_kv_cache() {
  1919. for (struct ggml_context * ctx : ctxs) {
  1920. ggml_free(ctx);
  1921. }
  1922. for (ggml_backend_buffer_t buf : bufs) {
  1923. ggml_backend_buffer_free(buf);
  1924. }
  1925. }
  1926. };
  1927. struct llama_control_vector {
  1928. std::vector<struct ggml_tensor *> tensors; // per layer
  1929. std::vector<struct ggml_context *> ctxs;
  1930. std::vector<ggml_backend_buffer_t> bufs;
  1931. int32_t layer_start = -1;
  1932. int32_t layer_end = -1;
  1933. ggml_tensor * tensor_for(int il) const {
  1934. if (il < 0 || il < layer_start || il > layer_end || (size_t) il >= tensors.size()) {
  1935. return nullptr;
  1936. }
  1937. return tensors[il];
  1938. }
  1939. ~llama_control_vector() {
  1940. for (struct ggml_context * ctx : ctxs) {
  1941. ggml_free(ctx);
  1942. }
  1943. for (ggml_backend_buffer_t buf : bufs) {
  1944. ggml_backend_buffer_free(buf);
  1945. }
  1946. }
  1947. };
  1948. struct llama_vocab {
  1949. using id = int32_t;
  1950. using token = std::string;
  1951. using tattr = llama_token_attr;
  1952. struct token_data {
  1953. token text;
  1954. float score;
  1955. tattr attr;
  1956. };
  1957. enum llama_vocab_type type = LLAMA_VOCAB_TYPE_SPM;
  1958. enum llama_vocab_pre_type type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  1959. std::unordered_map<token, id> token_to_id;
  1960. std::vector<token_data> id_to_token;
  1961. std::vector<id> cache_special_tokens;
  1962. std::vector<token> cache_token_to_piece; // llama_token_to_piece(special = true);
  1963. std::map<std::pair<std::string, std::string>, int> bpe_ranks;
  1964. // default LLaMA special tokens
  1965. id special_bos_id = 1;
  1966. id special_eos_id = 2;
  1967. id special_unk_id = 0;
  1968. id special_sep_id = -1;
  1969. id special_pad_id = -1;
  1970. id special_cls_id = -1;
  1971. id special_mask_id = -1;
  1972. int special_add_bos = -1; // -1 unknown, 1 add, 0 don't add.
  1973. int special_add_eos = -1; // -1 unknown, 1 add, 0 don't add.
  1974. id linefeed_id = 13;
  1975. id special_prefix_id = -1;
  1976. id special_suffix_id = -1;
  1977. id special_middle_id = -1;
  1978. id special_eot_id = -1; // TODO: move above after "eos_id", and here add "file separator" token
  1979. bool add_space_prefix = true;
  1980. int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
  1981. GGML_ASSERT(token_left.find(' ') == std::string::npos);
  1982. GGML_ASSERT(token_left.find('\n') == std::string::npos);
  1983. GGML_ASSERT(token_right.find(' ') == std::string::npos);
  1984. GGML_ASSERT(token_right.find('\n') == std::string::npos);
  1985. auto it = bpe_ranks.find(std::make_pair(token_left, token_right));
  1986. if (it == bpe_ranks.end()) {
  1987. return -1;
  1988. }
  1989. return it->second;
  1990. }
  1991. };
  1992. struct llama_model {
  1993. e_model type = MODEL_UNKNOWN;
  1994. llm_arch arch = LLM_ARCH_UNKNOWN;
  1995. llama_ftype ftype = LLAMA_FTYPE_ALL_F32;
  1996. std::string name = "n/a";
  1997. llama_hparams hparams = {};
  1998. llama_vocab vocab;
  1999. struct ggml_tensor * tok_embd;
  2000. struct ggml_tensor * type_embd;
  2001. struct ggml_tensor * pos_embd;
  2002. struct ggml_tensor * tok_norm;
  2003. struct ggml_tensor * tok_norm_b;
  2004. struct ggml_tensor * output_norm;
  2005. struct ggml_tensor * output_norm_b;
  2006. struct ggml_tensor * output;
  2007. struct ggml_tensor * output_b;
  2008. std::vector<llama_layer> layers;
  2009. llama_split_mode split_mode;
  2010. int main_gpu;
  2011. int n_gpu_layers;
  2012. std::vector<std::string> rpc_servers;
  2013. // gguf metadata
  2014. std::unordered_map<std::string, std::string> gguf_kv;
  2015. // layer -> buffer type mapping
  2016. struct layer_buft {
  2017. layer_buft() : buft_matrix(nullptr), buft(nullptr) {}
  2018. layer_buft(ggml_backend_buffer_type_t matrix) : buft_matrix(matrix), buft(matrix) {}
  2019. layer_buft(ggml_backend_buffer_type_t matrix, ggml_backend_buffer_type_t other) : buft_matrix(matrix), buft(other) {}
  2020. ggml_backend_buffer_type_t buft_matrix; // matrices only - used by split buffers and backends that support only matrix multiplication
  2021. ggml_backend_buffer_type_t buft; // everything else
  2022. };
  2023. layer_buft buft_input;
  2024. layer_buft buft_output;
  2025. std::vector<layer_buft> buft_layer;
  2026. // contexts where the model tensors metadata is stored
  2027. std::vector<struct ggml_context *> ctxs;
  2028. // the model memory buffers for the tensor data
  2029. std::vector<ggml_backend_buffer_t> bufs;
  2030. // model memory mapped files
  2031. llama_mmaps mappings;
  2032. // objects representing data potentially being locked in memory
  2033. llama_mlocks mlock_bufs;
  2034. llama_mlocks mlock_mmaps;
  2035. // for quantize-stats only
  2036. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  2037. int64_t t_load_us = 0;
  2038. int64_t t_start_us = 0;
  2039. ~llama_model() {
  2040. for (struct ggml_context * ctx : ctxs) {
  2041. ggml_free(ctx);
  2042. }
  2043. for (ggml_backend_buffer_t buf : bufs) {
  2044. #ifdef GGML_USE_CUDA
  2045. if (ggml_backend_buffer_get_type(buf) == ggml_backend_cpu_buffer_type()) {
  2046. ggml_backend_cuda_unregister_host_buffer(ggml_backend_buffer_get_base(buf));
  2047. }
  2048. #endif
  2049. ggml_backend_buffer_free(buf);
  2050. }
  2051. }
  2052. };
  2053. struct llama_context {
  2054. llama_context(const llama_model & model) : model(model), t_start_us(model.t_start_us), t_load_us(model.t_load_us) {}
  2055. ~llama_context() {
  2056. ggml_backend_sched_free(sched);
  2057. for (ggml_backend_t backend : backends) {
  2058. ggml_backend_free(backend);
  2059. }
  2060. ggml_backend_buffer_free(buf_output);
  2061. }
  2062. llama_cparams cparams;
  2063. std::vector<ggml_backend_t> backends;
  2064. #ifdef GGML_USE_METAL
  2065. ggml_backend_t backend_metal = nullptr;
  2066. #endif
  2067. ggml_backend_t backend_cpu = nullptr;
  2068. const llama_model & model;
  2069. // key + value cache for the self attention
  2070. struct llama_kv_cache kv_self;
  2071. std::mt19937 rng;
  2072. bool has_evaluated_once = false;
  2073. int64_t t_start_us;
  2074. int64_t t_load_us;
  2075. int64_t t_sample_us = 0;
  2076. int64_t t_p_eval_us = 0;
  2077. int64_t t_eval_us = 0;
  2078. int64_t t_compute_start_us = 0;
  2079. int64_t n_queued_tokens = 0;
  2080. int32_t n_sample = 0; // number of tokens sampled
  2081. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  2082. int32_t n_eval = 0; // number of eval calls
  2083. // host buffer for the model output (logits and embeddings)
  2084. ggml_backend_buffer_t buf_output = nullptr;
  2085. // decode output (2-dimensional array: [n_outputs][n_vocab])
  2086. size_t logits_size = 0; // capacity (of floats) for logits
  2087. float * logits = nullptr;
  2088. std::vector<int32_t> output_ids; // map batch token positions to ids of the logits and embd buffers
  2089. size_t output_size = 0; // capacity (of tokens positions) for the output buffers
  2090. int32_t n_outputs = 0; // number of actually-used outputs in the current ubatch or last logical batch
  2091. bool logits_all = false;
  2092. // embeddings output (2-dimensional array: [n_outputs][n_embd])
  2093. // populated only when pooling_type == LLAMA_POOLING_TYPE_NONE
  2094. size_t embd_size = 0; // capacity (of floats) for embeddings
  2095. float * embd = nullptr;
  2096. // sequence embeddings output (map of [n_embd] vectors)
  2097. // populated only when pooling_type != LLAMA_POOLING_TYPE_NONE
  2098. std::map<llama_seq_id, std::vector<float>> embd_seq;
  2099. // memory buffers used to evaluate the model
  2100. std::vector<uint8_t> buf_compute_meta;
  2101. ggml_backend_sched_t sched = nullptr;
  2102. ggml_abort_callback abort_callback = nullptr;
  2103. void * abort_callback_data = nullptr;
  2104. // input tensors
  2105. struct ggml_tensor * inp_tokens; // I32 [n_batch]
  2106. struct ggml_tensor * inp_embd; // F32 [n_embd, n_batch]
  2107. struct ggml_tensor * inp_pos; // I32 [n_batch]
  2108. struct ggml_tensor * inp_out_ids; // I32 [n_outputs]
  2109. struct ggml_tensor * inp_KQ_mask; // F32 [kv_size, n_batch]
  2110. struct ggml_tensor * inp_K_shift; // I32 [kv_size]
  2111. struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
  2112. struct ggml_tensor * inp_cls; // I32 [n_batch]
  2113. struct ggml_tensor * inp_s_copy; // I32 [kv_size]
  2114. struct ggml_tensor * inp_s_mask; // F32 [1, n_kv]
  2115. struct ggml_tensor * inp_s_seq; // I32 [n_kv, n_batch]
  2116. // control vectors
  2117. struct llama_control_vector cvec;
  2118. };
  2119. static size_t llama_get_device_count(const llama_model & model) {
  2120. size_t count = 1;
  2121. #if defined(GGML_USE_CUDA)
  2122. count = ggml_backend_cuda_get_device_count();
  2123. #elif defined(GGML_USE_SYCL)
  2124. count = ggml_backend_sycl_get_device_count();
  2125. #elif defined(GGML_USE_VULKAN)
  2126. count = ggml_backend_vk_get_device_count();
  2127. #endif
  2128. #if defined(GGML_USE_RPC)
  2129. count += model.rpc_servers.size();
  2130. #endif
  2131. return count;
  2132. GGML_UNUSED(model);
  2133. }
  2134. static ggml_backend_buffer_type_t llama_default_buffer_type_offload(const llama_model & model, int gpu) {
  2135. ggml_backend_buffer_type_t buft = nullptr;
  2136. #if defined(GGML_USE_RPC)
  2137. int dev_count = (int)llama_get_device_count(model);
  2138. int rpc_count = (int)model.rpc_servers.size();
  2139. if (gpu >= dev_count - rpc_count) {
  2140. const char * endpoint = model.rpc_servers[gpu - dev_count + rpc_count].c_str();
  2141. return ggml_backend_rpc_buffer_type(endpoint);
  2142. }
  2143. #endif
  2144. #if defined(GGML_USE_METAL)
  2145. buft = ggml_backend_metal_buffer_type();
  2146. #elif defined(GGML_USE_CUDA)
  2147. buft = ggml_backend_cuda_buffer_type(gpu);
  2148. #elif defined(GGML_USE_VULKAN)
  2149. buft = ggml_backend_vk_buffer_type(gpu);
  2150. #elif defined(GGML_USE_SYCL)
  2151. buft = ggml_backend_sycl_buffer_type(gpu);
  2152. #elif defined(GGML_USE_KOMPUTE)
  2153. buft = ggml_backend_kompute_buffer_type(gpu);
  2154. if (buft == nullptr) {
  2155. LLAMA_LOG_WARN("%s: cannot use GPU %d, check `vulkaninfo --summary`\n", __func__, gpu);
  2156. }
  2157. #endif
  2158. if (buft == nullptr) {
  2159. buft = llama_default_buffer_type_cpu(true);
  2160. }
  2161. return buft;
  2162. GGML_UNUSED(model);
  2163. GGML_UNUSED(gpu);
  2164. }
  2165. static ggml_backend_buffer_type_t llama_default_buffer_type_split(const llama_model & model, int fallback_gpu, const float * tensor_split) {
  2166. ggml_backend_buffer_type_t buft = nullptr;
  2167. #ifdef GGML_USE_CUDA
  2168. if (ggml_backend_cuda_get_device_count() > 1) {
  2169. buft = ggml_backend_cuda_split_buffer_type(tensor_split);
  2170. }
  2171. #endif
  2172. #ifdef GGML_USE_SYCL
  2173. if (ggml_backend_sycl_get_device_count() > 1) {
  2174. buft = ggml_backend_sycl_split_buffer_type(tensor_split);
  2175. }
  2176. #endif
  2177. if (buft == nullptr) {
  2178. buft = llama_default_buffer_type_offload(model, fallback_gpu);
  2179. }
  2180. return buft;
  2181. GGML_UNUSED(tensor_split);
  2182. }
  2183. static size_t llama_get_device_memory(const llama_model & model, int device) {
  2184. #if defined(GGML_USE_RPC)
  2185. int dev_count = (int)llama_get_device_count(model);
  2186. int rpc_count = (int)model.rpc_servers.size();
  2187. if (device >= dev_count - rpc_count) {
  2188. size_t total;
  2189. size_t free;
  2190. const char * endpoint = model.rpc_servers[device - dev_count + rpc_count].c_str();
  2191. ggml_backend_rpc_get_device_memory(endpoint, &free, &total);
  2192. return free;
  2193. }
  2194. #endif
  2195. #if defined(GGML_USE_CUDA)
  2196. size_t total;
  2197. size_t free;
  2198. ggml_backend_cuda_get_device_memory(device, &free, &total);
  2199. return free;
  2200. #elif defined(GGML_USE_SYCL)
  2201. size_t total;
  2202. size_t free;
  2203. ggml_backend_sycl_get_device_memory(device, &free, &total);
  2204. return free;
  2205. #elif defined(GGML_USE_VULKAN)
  2206. size_t total;
  2207. size_t free;
  2208. ggml_backend_vk_get_device_memory(device, &free, &total);
  2209. return free;
  2210. #else
  2211. return 1;
  2212. #endif
  2213. GGML_UNUSED(model);
  2214. GGML_UNUSED(device);
  2215. }
  2216. //
  2217. // kv cache helpers
  2218. //
  2219. static bool llama_kv_cache_init(
  2220. struct llama_kv_cache & cache,
  2221. const llama_context * ctx,
  2222. ggml_type type_k,
  2223. ggml_type type_v,
  2224. uint32_t kv_size,
  2225. bool offload) {
  2226. const llama_model & model = ctx->model;
  2227. const llama_cparams & cparams = ctx->cparams;
  2228. const struct llama_hparams & hparams = model.hparams;
  2229. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  2230. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  2231. const int64_t n_layer = hparams.n_layer;
  2232. cache.has_shift = false;
  2233. // TODO: find a nicer way to add other recurrent model architectures
  2234. cache.recurrent = model.arch == LLM_ARCH_MAMBA;
  2235. cache.v_trans = !cparams.flash_attn;
  2236. // TODO: support mixed recurrent Transformer architectures
  2237. // NOTE: (!a || b) is a logical implication (a -> b)
  2238. GGML_ASSERT(!cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_s());
  2239. GGML_ASSERT(!cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_s());
  2240. GGML_ASSERT( cache.recurrent || n_embd_k_gqa == hparams.n_embd_k_gqa());
  2241. GGML_ASSERT( cache.recurrent || n_embd_v_gqa == hparams.n_embd_v_gqa());
  2242. cache.head = 0;
  2243. cache.size = kv_size;
  2244. cache.used = 0;
  2245. cache.type_k = type_k;
  2246. cache.type_v = type_v;
  2247. cache.cells.clear();
  2248. cache.cells.resize(kv_size);
  2249. if (cache.recurrent) {
  2250. // init state copy sources
  2251. for (uint32_t i = 0; i < cache.size; ++i) {
  2252. cache.cells[i].src = i;
  2253. }
  2254. }
  2255. // count used buffer types
  2256. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  2257. if (offload) {
  2258. for (int64_t i = 0; i < n_layer; ++i) {
  2259. buft_layer_count[model.buft_layer[i].buft]++;
  2260. }
  2261. } else {
  2262. buft_layer_count[llama_default_buffer_type_cpu(true)] = n_layer;
  2263. }
  2264. // create a context for each buffer type
  2265. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  2266. for (auto & it : buft_layer_count) {
  2267. int n_layers = it.second;
  2268. struct ggml_init_params params = {
  2269. /*.mem_size =*/ 2u*n_layers*ggml_tensor_overhead(),
  2270. /*.mem_buffer =*/ NULL,
  2271. /*.no_alloc =*/ true,
  2272. };
  2273. ggml_context * ctx = ggml_init(params);
  2274. if (!ctx) {
  2275. LLAMA_LOG_ERROR("%s: failed to allocate context for kv cache\n", __func__);
  2276. return false;
  2277. }
  2278. ctx_map[it.first] = ctx;
  2279. cache.ctxs.push_back(ctx);
  2280. }
  2281. cache.k_l.reserve(n_layer);
  2282. cache.v_l.reserve(n_layer);
  2283. for (int i = 0; i < (int) n_layer; i++) {
  2284. struct ggml_context * ctx = offload ? ctx_map.at(model.buft_layer[i].buft) : cache.ctxs.front();
  2285. ggml_tensor * k = ggml_new_tensor_1d(ctx, type_k, n_embd_k_gqa*kv_size);
  2286. ggml_tensor * v = ggml_new_tensor_1d(ctx, type_v, n_embd_v_gqa*kv_size);
  2287. ggml_format_name(k, "cache_k_l%d", i);
  2288. ggml_format_name(v, "cache_v_l%d", i);
  2289. cache.k_l.push_back(k);
  2290. cache.v_l.push_back(v);
  2291. }
  2292. // allocate tensors and initialize the buffers to avoid NaNs in the padding
  2293. for (auto it : ctx_map) {
  2294. ggml_backend_buffer_type_t buft = it.first;
  2295. ggml_context * ctx = it.second;
  2296. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  2297. if (!buf) {
  2298. LLAMA_LOG_ERROR("%s: failed to allocate buffer for kv cache\n", __func__);
  2299. return false;
  2300. }
  2301. ggml_backend_buffer_clear(buf, 0);
  2302. LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
  2303. cache.bufs.push_back(buf);
  2304. }
  2305. return true;
  2306. }
  2307. // find an empty slot of size "n_tokens" in the cache
  2308. // updates the cache head
  2309. // Note: On success, it's important that cache.head points
  2310. // to the first cell of the slot.
  2311. static bool llama_kv_cache_find_slot(
  2312. struct llama_kv_cache & cache,
  2313. const struct llama_batch & batch) {
  2314. const uint32_t n_tokens = batch.n_tokens;
  2315. if (cache.recurrent) {
  2316. // For recurrent state architectures (like Mamba),
  2317. // each KV cache cell can store the state for a whole sequence.
  2318. llama_seq_id min = cache.size - 1;
  2319. llama_seq_id max = 0;
  2320. for (uint32_t i = 0; i < n_tokens; ++i) {
  2321. for (int32_t j = 0; j < batch.n_seq_id[i]; ++j) {
  2322. llama_seq_id seq_id = batch.seq_id[i][j];
  2323. // make sure it's a valid seq_id
  2324. if ((uint32_t) seq_id < cache.size) {
  2325. if (seq_id > max) {
  2326. max = seq_id;
  2327. }
  2328. if (seq_id < min) {
  2329. min = seq_id;
  2330. }
  2331. // Assuming the tokens are in-order
  2332. if (batch.pos[i] != cache.cells[seq_id].pos + 1) {
  2333. // What should happen when the pos backtracks or skips a value?
  2334. // Clearing the state mid-batch would require special-casing which isn't done.
  2335. LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d\n",
  2336. __func__, batch.pos[i], cache.cells[seq_id].pos, seq_id);
  2337. }
  2338. if (cache.cells[seq_id].pos < 0 && 0 <= batch.pos[i]) {
  2339. cache.used += 1;
  2340. }
  2341. cache.cells[seq_id].pos = batch.pos[i];
  2342. // NOTE: seq_ids are not inserted here; they are handled when the input tensors are set
  2343. } else {
  2344. // too big seq_id
  2345. // TODO: would it be possible to resize the KV cache size instead?
  2346. LLAMA_LOG_ERROR("%s: seq_id=%d >= kv_size=%d Try using a bigger --parallel value\n", __func__, seq_id, cache.size);
  2347. return false;
  2348. }
  2349. }
  2350. }
  2351. // allow getting the range of used cells, from head to head + n
  2352. cache.head = min;
  2353. cache.n = max - min + 1;
  2354. // sanity check
  2355. return max >= min;
  2356. }
  2357. // otherwise, one cell per token.
  2358. if (n_tokens > cache.size) {
  2359. LLAMA_LOG_ERROR("%s: n_tokens=%d > cache.size=%d\n", __func__, n_tokens, cache.size);
  2360. return false;
  2361. }
  2362. uint32_t n_tested = 0;
  2363. while (true) {
  2364. if (cache.head + n_tokens > cache.size) {
  2365. n_tested += cache.size - cache.head;
  2366. cache.head = 0;
  2367. continue;
  2368. }
  2369. bool found = true;
  2370. for (uint32_t i = 0; i < n_tokens; i++) {
  2371. if (cache.cells[cache.head + i].pos >= 0) {
  2372. found = false;
  2373. cache.head += i + 1;
  2374. n_tested += i + 1;
  2375. break;
  2376. }
  2377. }
  2378. if (found) {
  2379. break;
  2380. }
  2381. if (n_tested >= cache.size) {
  2382. //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens);
  2383. return false;
  2384. }
  2385. }
  2386. for (uint32_t i = 0; i < n_tokens; i++) {
  2387. cache.cells[cache.head + i].pos = batch.pos[i];
  2388. for (int32_t j = 0; j < batch.n_seq_id[i]; j++) {
  2389. cache.cells[cache.head + i].seq_id.insert(batch.seq_id[i][j]);
  2390. }
  2391. }
  2392. cache.used += n_tokens;
  2393. return true;
  2394. }
  2395. // find how many cells are currently in use
  2396. static uint32_t llama_kv_cache_cell_max(const struct llama_kv_cache & cache) {
  2397. for (uint32_t i = cache.size; i > 0; --i) {
  2398. const llama_kv_cell & cell = cache.cells[i - 1];
  2399. if (cell.pos >= 0 && !cell.is_empty()) {
  2400. return i;
  2401. }
  2402. }
  2403. return 0;
  2404. }
  2405. static void llama_kv_cache_clear(struct llama_kv_cache & cache) {
  2406. for (int32_t i = 0; i < (int32_t) cache.size; ++i) {
  2407. cache.cells[i].pos = -1;
  2408. cache.cells[i].seq_id.clear();
  2409. }
  2410. cache.head = 0;
  2411. cache.used = 0;
  2412. for (auto & buf : cache.bufs) {
  2413. ggml_backend_buffer_clear(buf, 0);
  2414. }
  2415. }
  2416. static bool llama_kv_cache_seq_rm(
  2417. struct llama_kv_cache & cache,
  2418. llama_seq_id seq_id,
  2419. llama_pos p0,
  2420. llama_pos p1) {
  2421. uint32_t new_head = cache.size;
  2422. if (p0 < 0) p0 = 0;
  2423. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2424. // models like Mamba can't have a state partially erased
  2425. if (cache.recurrent) {
  2426. if (seq_id >= (int64_t) cache.size) {
  2427. // could be fatal
  2428. return false;
  2429. }
  2430. if (0 <= seq_id) {
  2431. // partial intersection is invalid
  2432. if ((0 < p0 && p0 <= cache.cells[seq_id].pos) || (0 < p1 && p1 <= cache.cells[seq_id].pos)) {
  2433. return false;
  2434. }
  2435. } else {
  2436. // seq_id is negative, then the range should include everything or nothing
  2437. if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
  2438. return false;
  2439. }
  2440. }
  2441. }
  2442. for (uint32_t i = 0; i < cache.size; ++i) {
  2443. if (cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2444. if (seq_id < 0) {
  2445. cache.cells[i].seq_id.clear();
  2446. } else if (cache.cells[i].has_seq_id(seq_id)) {
  2447. cache.cells[i].seq_id.erase(seq_id);
  2448. } else {
  2449. continue;
  2450. }
  2451. if (cache.cells[i].is_empty()) {
  2452. // keep count of the number of used cells
  2453. if (cache.cells[i].pos >= 0) cache.used--;
  2454. cache.cells[i].pos = -1;
  2455. if (new_head == cache.size) new_head = i;
  2456. }
  2457. }
  2458. }
  2459. // If we freed up a slot, set head to it so searching can start there.
  2460. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2461. return true;
  2462. }
  2463. static void llama_kv_cache_seq_cp(
  2464. struct llama_kv_cache & cache,
  2465. llama_seq_id seq_id_src,
  2466. llama_seq_id seq_id_dst,
  2467. llama_pos p0,
  2468. llama_pos p1) {
  2469. if (p0 < 0) p0 = 0;
  2470. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2471. if (cache.recurrent) {
  2472. if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
  2473. seq_id_src = cache.cells[seq_id_src].src;
  2474. GGML_ASSERT((uint32_t) seq_id_src < cache.size);
  2475. // intent to "copy from"
  2476. // supports copy chains thanks to taking the source of the source
  2477. cache.cells[seq_id_dst].src = seq_id_src;
  2478. // preserve the "keep or clear" status of the copied sequence
  2479. if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
  2480. cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
  2481. } else {
  2482. cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
  2483. }
  2484. cache.do_copy = true;
  2485. cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
  2486. }
  2487. return;
  2488. }
  2489. // otherwise, this is the KV cache of a Transformer-like model
  2490. cache.head = 0;
  2491. for (uint32_t i = 0; i < cache.size; ++i) {
  2492. if (cache.cells[i].has_seq_id(seq_id_src) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2493. cache.cells[i].seq_id.insert(seq_id_dst);
  2494. }
  2495. }
  2496. }
  2497. static void llama_kv_cache_seq_keep(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2498. uint32_t new_head = cache.size;
  2499. for (uint32_t i = 0; i < cache.size; ++i) {
  2500. if (!cache.cells[i].has_seq_id(seq_id)) {
  2501. if (cache.cells[i].pos >= 0) cache.used--;
  2502. cache.cells[i].pos = -1;
  2503. cache.cells[i].seq_id.clear();
  2504. if (new_head == cache.size) new_head = i;
  2505. } else {
  2506. cache.cells[i].seq_id.clear();
  2507. cache.cells[i].seq_id.insert(seq_id);
  2508. }
  2509. }
  2510. // If we freed up a slot, set head to it so searching can start there.
  2511. if (new_head != cache.size && new_head < cache.head) cache.head = new_head;
  2512. }
  2513. static void llama_kv_cache_seq_add(
  2514. struct llama_kv_cache & cache,
  2515. llama_seq_id seq_id,
  2516. llama_pos p0,
  2517. llama_pos p1,
  2518. llama_pos delta) {
  2519. uint32_t new_head = cache.size;
  2520. if (p0 < 0) p0 = 0;
  2521. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2522. if (cache.recurrent) {
  2523. // for Mamba-like models, only the pos needs to be shifted
  2524. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2525. llama_kv_cell & cell = cache.cells[seq_id];
  2526. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2527. cell.pos += delta;
  2528. }
  2529. }
  2530. return;
  2531. }
  2532. for (uint32_t i = 0; i < cache.size; ++i) {
  2533. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2534. cache.has_shift = true;
  2535. cache.cells[i].pos += delta;
  2536. cache.cells[i].delta += delta;
  2537. if (cache.cells[i].pos < 0) {
  2538. if (!cache.cells[i].is_empty()) {
  2539. cache.used--;
  2540. }
  2541. cache.cells[i].pos = -1;
  2542. cache.cells[i].seq_id.clear();
  2543. if (new_head == cache.size) {
  2544. new_head = i;
  2545. }
  2546. }
  2547. }
  2548. }
  2549. // If we freed up a slot, set head to it so searching can start there.
  2550. // Otherwise we just start the next search from the beginning.
  2551. cache.head = new_head != cache.size ? new_head : 0;
  2552. }
  2553. static void llama_kv_cache_seq_div(
  2554. struct llama_kv_cache & cache,
  2555. llama_seq_id seq_id,
  2556. llama_pos p0,
  2557. llama_pos p1,
  2558. int d) {
  2559. if (p0 < 0) p0 = 0;
  2560. if (p1 < 0) p1 = std::numeric_limits<llama_pos>::max();
  2561. if (cache.recurrent) {
  2562. // for Mamba-like models, only the pos needs to be changed
  2563. if (0 <= seq_id && seq_id < (int64_t) cache.size) {
  2564. llama_kv_cell & cell = cache.cells[seq_id];
  2565. if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
  2566. cell.pos /= d;
  2567. }
  2568. }
  2569. return;
  2570. }
  2571. for (uint32_t i = 0; i < cache.size; ++i) {
  2572. if (cache.cells[i].has_seq_id(seq_id) && cache.cells[i].pos >= p0 && cache.cells[i].pos < p1) {
  2573. cache.has_shift = true;
  2574. {
  2575. llama_pos p_old = cache.cells[i].pos;
  2576. cache.cells[i].pos /= d;
  2577. cache.cells[i].delta += cache.cells[i].pos - p_old;
  2578. }
  2579. }
  2580. }
  2581. }
  2582. static llama_pos llama_kv_cache_seq_pos_max(struct llama_kv_cache & cache, llama_seq_id seq_id) {
  2583. llama_pos result = 0;
  2584. for (uint32_t i = 0; i < cache.size; ++i) {
  2585. if (cache.cells[i].has_seq_id(seq_id)) {
  2586. result = std::max(result, cache.cells[i].pos);
  2587. }
  2588. }
  2589. return result;
  2590. }
  2591. static void llama_kv_cache_defrag(struct llama_kv_cache & cache) {
  2592. cache.do_defrag = true;
  2593. }
  2594. static uint32_t llama_kv_cache_get_padding(const struct llama_cparams & cparams) {
  2595. // the FA kernels require padding to avoid extra runtime boundary checks
  2596. return cparams.flash_attn ? 256u : 32u;
  2597. }
  2598. //
  2599. // model loading and saving
  2600. //
  2601. enum llama_fver {
  2602. GGUF_FILE_VERSION_V1 = 1,
  2603. GGUF_FILE_VERSION_V2 = 2,
  2604. GGUF_FILE_VERSION_V3 = 3,
  2605. };
  2606. static const char * llama_file_version_name(llama_fver version) {
  2607. switch (version) {
  2608. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  2609. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  2610. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  2611. }
  2612. return "unknown";
  2613. }
  2614. static std::string llama_format_tensor_shape(const std::vector<int64_t> & ne) {
  2615. char buf[256];
  2616. snprintf(buf, sizeof(buf), "%5" PRId64, ne.at(0));
  2617. for (size_t i = 1; i < ne.size(); i++) {
  2618. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, ne.at(i));
  2619. }
  2620. return buf;
  2621. }
  2622. static std::string llama_format_tensor_shape(const struct ggml_tensor * t) {
  2623. char buf[256];
  2624. snprintf(buf, sizeof(buf), "%5" PRId64, t->ne[0]);
  2625. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2626. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), ", %5" PRId64, t->ne[i]);
  2627. }
  2628. return buf;
  2629. }
  2630. namespace GGUFMeta {
  2631. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int)>
  2632. struct GKV_Base_Type {
  2633. static constexpr gguf_type gt = gt_;
  2634. static T getter(const gguf_context * ctx, const int kid) {
  2635. return gfun(ctx, kid);
  2636. }
  2637. };
  2638. template<typename T> struct GKV_Base;
  2639. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  2640. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  2641. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  2642. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  2643. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  2644. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  2645. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  2646. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  2647. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  2648. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  2649. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  2650. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  2651. template<> struct GKV_Base<std::string> {
  2652. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  2653. static std::string getter(const gguf_context * ctx, const int kid) {
  2654. return gguf_get_val_str(ctx, kid);
  2655. }
  2656. };
  2657. struct ArrayInfo {
  2658. const gguf_type gt;
  2659. const size_t length;
  2660. const void * data;
  2661. };
  2662. template<> struct GKV_Base<ArrayInfo> {
  2663. public:
  2664. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  2665. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  2666. return ArrayInfo {
  2667. gguf_get_arr_type(ctx, k),
  2668. size_t(gguf_get_arr_n(ctx, k)),
  2669. gguf_get_arr_data(ctx, k),
  2670. };
  2671. }
  2672. };
  2673. template<typename T>
  2674. class GKV : public GKV_Base<T> {
  2675. GKV() = delete;
  2676. public:
  2677. static T get_kv(const gguf_context * ctx, const int k) {
  2678. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  2679. if (kt != GKV::gt) {
  2680. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  2681. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  2682. }
  2683. return GKV::getter(ctx, k);
  2684. }
  2685. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  2686. switch (ty) {
  2687. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  2688. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  2689. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  2690. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  2691. }
  2692. return "unknown";
  2693. }
  2694. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  2695. if (!ovrd) { return false; }
  2696. if (ovrd->tag == expected_type) {
  2697. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  2698. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  2699. switch (ovrd->tag) {
  2700. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  2701. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  2702. } break;
  2703. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  2704. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  2705. } break;
  2706. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  2707. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  2708. } break;
  2709. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  2710. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  2711. } break;
  2712. default:
  2713. // Shouldn't be possible to end up here, but just in case...
  2714. throw std::runtime_error(
  2715. format("Unsupported attempt to override %s type for metadata key %s\n",
  2716. override_type_to_str(ovrd->tag), ovrd->key));
  2717. }
  2718. return true;
  2719. }
  2720. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  2721. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  2722. return false;
  2723. }
  2724. template<typename OT>
  2725. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  2726. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2727. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  2728. target = ovrd->val_bool;
  2729. return true;
  2730. }
  2731. return false;
  2732. }
  2733. template<typename OT>
  2734. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  2735. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  2736. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  2737. target = ovrd->val_i64;
  2738. return true;
  2739. }
  2740. return false;
  2741. }
  2742. template<typename OT>
  2743. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  2744. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2745. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  2746. target = ovrd->val_f64;
  2747. return true;
  2748. }
  2749. return false;
  2750. }
  2751. template<typename OT>
  2752. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  2753. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  2754. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  2755. target = ovrd->val_str;
  2756. return true;
  2757. }
  2758. return false;
  2759. }
  2760. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2761. if (try_override<T>(target, ovrd)) {
  2762. return true;
  2763. }
  2764. if (k < 0) { return false; }
  2765. target = get_kv(ctx, k);
  2766. return true;
  2767. }
  2768. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2769. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  2770. }
  2771. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  2772. return set(ctx, key.c_str(), target, ovrd);
  2773. }
  2774. };
  2775. }
  2776. using llama_buf_map = std::unordered_map<uint32_t, ggml_backend_buffer_t>;
  2777. struct llama_model_loader {
  2778. int n_kv = 0;
  2779. int n_tensors = 0;
  2780. int n_created = 0;
  2781. int64_t n_elements = 0;
  2782. size_t n_bytes = 0;
  2783. bool use_mmap = false;
  2784. bool check_tensors;
  2785. llama_files files;
  2786. llama_ftype ftype;
  2787. llama_fver fver;
  2788. llama_mmaps mappings;
  2789. // Holds information on a model weight
  2790. struct llama_tensor_weight {
  2791. uint16_t idx; // source file index
  2792. size_t offs; // tensor data offset in the original file
  2793. ggml_tensor * tensor;
  2794. llama_tensor_weight(const llama_file * file, uint16_t idx, const char * name, const struct gguf_context * gguf_ctx, ggml_tensor * tensor) : idx(idx), tensor(tensor) {
  2795. const int tensor_idx = gguf_find_tensor(gguf_ctx, name);
  2796. offs = gguf_get_data_offset(gguf_ctx) + gguf_get_tensor_offset(gguf_ctx, tensor_idx);
  2797. if (offs + ggml_nbytes(tensor) < offs || offs + ggml_nbytes(tensor) > file->size) {
  2798. throw std::runtime_error(format("tensor '%s' data is not within the file bounds, model is corrupted or incomplete", name));
  2799. }
  2800. }
  2801. };
  2802. std::vector<llama_tensor_weight> weights;
  2803. std::unordered_map<std::string, struct llama_model_kv_override> kv_overrides;
  2804. struct gguf_context * meta = NULL;
  2805. std::vector<ggml_context *> contexts;
  2806. std::string arch_name;
  2807. LLM_KV llm_kv = LLM_KV(LLM_ARCH_UNKNOWN);
  2808. llama_model_loader(const std::string & fname, bool use_mmap, bool check_tensors, const struct llama_model_kv_override * param_overrides_p) {
  2809. int trace = 0;
  2810. if (getenv("LLAMA_TRACE")) {
  2811. trace = atoi(getenv("LLAMA_TRACE"));
  2812. }
  2813. if (param_overrides_p != nullptr) {
  2814. for (const struct llama_model_kv_override *p = param_overrides_p; p->key[0] != 0; p++) {
  2815. kv_overrides.insert({std::string(p->key), *p});
  2816. }
  2817. }
  2818. struct ggml_context * ctx = NULL;
  2819. struct gguf_init_params params = {
  2820. /*.no_alloc = */ true,
  2821. /*.ctx = */ &ctx,
  2822. };
  2823. meta = gguf_init_from_file(fname.c_str(), params);
  2824. if (!meta) {
  2825. throw std::runtime_error(format("%s: failed to load model from %s\n", __func__, fname.c_str()));
  2826. }
  2827. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  2828. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  2829. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  2830. contexts.emplace_back(ctx);
  2831. // Save tensors data offset of the main file.
  2832. // For subsidiary files, `meta` tensor data offset must not be used,
  2833. // so we build a unified tensors index for weights.
  2834. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2835. weights.emplace_back(files.back().get(), 0, cur->name, meta, cur);
  2836. }
  2837. uint16_t n_split = 0;
  2838. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  2839. // Load additional GGML contexts
  2840. if (n_split > 1) {
  2841. uint16_t idx = 0;
  2842. get_key(llm_kv(LLM_KV_SPLIT_NO), idx);
  2843. if (idx != 0) {
  2844. throw std::runtime_error(format("illegal split file: %d, model must be loaded with the first split", idx));
  2845. }
  2846. char split_prefix[PATH_MAX] = {0};
  2847. if (!llama_split_prefix(split_prefix, sizeof(split_prefix), fname.c_str(), idx, n_split)) {
  2848. throw std::runtime_error(format("invalid split file: %s", fname.c_str()));
  2849. }
  2850. if (trace > 0) {
  2851. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  2852. }
  2853. char split_path[PATH_MAX] = {0};
  2854. for (idx = 1; idx < n_split; idx++) {
  2855. llama_split_path(split_path, sizeof(split_path), split_prefix, idx, n_split);
  2856. struct gguf_init_params split_params = {
  2857. /*.no_alloc = */ true,
  2858. /*.ctx = */ &ctx,
  2859. };
  2860. struct gguf_context * ctx_gguf = gguf_init_from_file(split_path, split_params);
  2861. if (!ctx_gguf) {
  2862. throw std::runtime_error(format("%s: failed to load GGUF split from %s\n", __func__, split_path));
  2863. }
  2864. files.emplace_back(new llama_file(split_path, "rb"));
  2865. contexts.emplace_back(ctx);
  2866. // Save tensors data offset info of the shard.
  2867. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  2868. weights.emplace_back(files.back().get(), idx, cur->name, ctx_gguf, cur);
  2869. }
  2870. gguf_free(ctx_gguf);
  2871. }
  2872. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  2873. // sanity check
  2874. {
  2875. const int n_tensors_loaded = (int) weights.size();
  2876. if (n_tensors != n_tensors_loaded) {
  2877. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  2878. }
  2879. }
  2880. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  2881. }
  2882. n_kv = gguf_get_n_kv(meta);
  2883. n_tensors = weights.size();
  2884. fver = (enum llama_fver) gguf_get_version(meta);
  2885. std::set<std::string> tensor_names;
  2886. for (auto & w : weights) {
  2887. n_elements += ggml_nelements(w.tensor);
  2888. n_bytes += ggml_nbytes(w.tensor);
  2889. // make sure there is no duplicated tensor names
  2890. const std::string name(w.tensor->name);
  2891. auto found = tensor_names.find(name);
  2892. if (found != tensor_names.end()) {
  2893. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", w.tensor->name));
  2894. }
  2895. tensor_names.insert(name);
  2896. }
  2897. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  2898. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  2899. // determine file type based on the number of tensors for each quantization and print meta data
  2900. // TODO: make optional
  2901. {
  2902. std::map<enum ggml_type, uint32_t> n_type;
  2903. uint32_t n_type_max = 0;
  2904. enum ggml_type type_max = GGML_TYPE_F32;
  2905. for (int i = 0; i < n_tensors; i++) {
  2906. const ggml_tensor * tensor = weights.at(i).tensor;
  2907. enum ggml_type type = tensor->type;
  2908. n_type[type]++;
  2909. if (n_type_max < n_type[type]) {
  2910. n_type_max = n_type[type];
  2911. type_max = type;
  2912. }
  2913. if (trace > 0) {
  2914. const uint16_t sid = weights.at(i).idx;
  2915. LLAMA_LOG_INFO("%s: - tensor %4d, split %2d: %32s %-8s [ %s ]\n", __func__, i, sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str());
  2916. }
  2917. }
  2918. switch (type_max) {
  2919. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  2920. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  2921. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  2922. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  2923. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  2924. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  2925. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  2926. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  2927. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  2928. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  2929. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  2930. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  2931. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  2932. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  2933. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  2934. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  2935. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  2936. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  2937. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  2938. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  2939. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  2940. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  2941. default:
  2942. {
  2943. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  2944. ftype = LLAMA_FTYPE_ALL_F32;
  2945. } break;
  2946. }
  2947. // this is a way to mark that we have "guessed" the file type
  2948. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  2949. {
  2950. const int kid = gguf_find_key(meta, "general.file_type");
  2951. if (kid >= 0) {
  2952. ftype = (llama_ftype) gguf_get_val_u32(meta, kid);
  2953. }
  2954. }
  2955. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  2956. for (int i = 0; i < n_kv; i++) {
  2957. const char * name = gguf_get_key(meta, i);
  2958. const enum gguf_type type = gguf_get_kv_type(meta, i);
  2959. const std::string type_name =
  2960. type == GGUF_TYPE_ARRAY
  2961. ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta, i)), gguf_get_arr_n(meta, i))
  2962. : gguf_type_name(type);
  2963. std::string value = gguf_kv_to_str(meta, i);
  2964. const size_t MAX_VALUE_LEN = 40;
  2965. if (value.size() > MAX_VALUE_LEN) {
  2966. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  2967. }
  2968. replace_all(value, "\n", "\\n");
  2969. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  2970. }
  2971. // print type counts
  2972. for (auto & kv : n_type) {
  2973. if (kv.second == 0) {
  2974. continue;
  2975. }
  2976. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  2977. }
  2978. }
  2979. if (!llama_mmap::SUPPORTED) {
  2980. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  2981. use_mmap = false;
  2982. }
  2983. this->use_mmap = use_mmap;
  2984. this->check_tensors = check_tensors;
  2985. }
  2986. ~llama_model_loader() {
  2987. if (meta) {
  2988. gguf_free(meta);
  2989. }
  2990. for (auto * ctx : contexts) {
  2991. ggml_free(ctx);
  2992. }
  2993. }
  2994. template<typename T>
  2995. typename std::enable_if<std::is_integral<T>::value, bool>::type
  2996. get_arr_n(const std::string & key, T & result, const bool required = true) {
  2997. const int kid = gguf_find_key(meta, key.c_str());
  2998. if (kid < 0) {
  2999. if (required) {
  3000. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3001. }
  3002. return false;
  3003. }
  3004. struct GGUFMeta::ArrayInfo arr_info =
  3005. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3006. result = arr_info.length;
  3007. return true;
  3008. }
  3009. template<typename T>
  3010. typename std::enable_if<std::is_integral<T>::value, bool>::type
  3011. get_arr_n(const enum llm_kv kid, T & result, const bool required = true) {
  3012. return get_arr_n(llm_kv(kid), result, required);
  3013. }
  3014. template<typename T>
  3015. bool get_arr(const std::string & key, std::vector<T> & result, const bool required = true) {
  3016. const int kid = gguf_find_key(meta, key.c_str());
  3017. if (kid < 0) {
  3018. if (required) {
  3019. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3020. }
  3021. return false;
  3022. }
  3023. struct GGUFMeta::ArrayInfo arr_info =
  3024. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta, kid);
  3025. if (arr_info.gt != GGUF_TYPE_FLOAT32 && arr_info.gt != GGUF_TYPE_INT32) {
  3026. throw std::runtime_error(format("%s is not a float32 or int32 array", key.c_str()));
  3027. }
  3028. // GGML_ASSERT(gguf_type_size(arr_info.gt) == sizeof(T));
  3029. GGML_ASSERT((arr_info.gt != GGUF_TYPE_FLOAT32 || std::is_same<T, float>::value));
  3030. GGML_ASSERT((arr_info.gt != GGUF_TYPE_INT32 || std::is_same<T, int>::value));
  3031. result.resize(arr_info.length);
  3032. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  3033. return true;
  3034. }
  3035. template<typename T>
  3036. bool get_arr(const enum llm_kv kid, T& result, const bool required = true) {
  3037. return get_arr(llm_kv(kid), result, required);
  3038. }
  3039. template<typename T>
  3040. bool get_key(const std::string & key, T & result, const bool required = true) {
  3041. auto it = kv_overrides.find(key);
  3042. const struct llama_model_kv_override * override =
  3043. it != kv_overrides.end() ? &it->second : nullptr;
  3044. const bool found = GGUFMeta::GKV<T>::set(meta, key, result, override);
  3045. if (required && !found) {
  3046. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  3047. }
  3048. return found;
  3049. }
  3050. template<typename T>
  3051. bool get_key(const enum llm_kv kid, T & result, const bool required = true) {
  3052. return get_key(llm_kv(kid), result, required);
  3053. }
  3054. std::string get_arch_name() const {
  3055. return arch_name;
  3056. }
  3057. enum llm_arch get_arch() const {
  3058. return llm_kv.arch;
  3059. }
  3060. const char * get_tensor_name(int i) const {
  3061. return weights.at(i).tensor->name;
  3062. }
  3063. const llama_tensor_weight * get_weight(const char * name) const {
  3064. for (const auto & weight : weights) {
  3065. if (strcmp(name, weight.tensor->name) == 0) {
  3066. return &weight;
  3067. }
  3068. }
  3069. return nullptr;
  3070. }
  3071. const llama_tensor_weight * get_weight(int i) const {
  3072. return get_weight(get_tensor_name(i));
  3073. }
  3074. const llama_tensor_weight & require_weight(const char * name) const {
  3075. const llama_tensor_weight * weight = get_weight(name);
  3076. if (!weight) {
  3077. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3078. }
  3079. return *weight;
  3080. }
  3081. struct ggml_tensor * get_tensor_meta(const char * name) const {
  3082. const auto * weight = get_weight(name);
  3083. if (!weight) {
  3084. return nullptr;
  3085. }
  3086. return weight->tensor;
  3087. }
  3088. struct ggml_tensor * require_tensor_meta(const char * name) const {
  3089. struct ggml_tensor * tensor = get_tensor_meta(name);
  3090. if (!tensor) {
  3091. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  3092. }
  3093. return tensor;
  3094. }
  3095. struct ggml_tensor * get_tensor_meta(int i) const {
  3096. return get_tensor_meta(get_tensor_name(i));
  3097. }
  3098. struct ggml_tensor * create_tensor_for(struct ggml_context * ctx, const struct ggml_tensor * cur, bool duplicated) {
  3099. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  3100. ggml_set_name(tensor, ggml_get_name(cur));
  3101. if (duplicated) {
  3102. size_data += ggml_nbytes(cur);
  3103. } else {
  3104. n_created++;
  3105. }
  3106. return tensor;
  3107. }
  3108. const struct ggml_tensor * check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  3109. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  3110. if (cur == NULL) {
  3111. if (!required) {
  3112. return NULL;
  3113. }
  3114. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  3115. }
  3116. {
  3117. bool is_ok = true;
  3118. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3119. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  3120. is_ok = false;
  3121. break;
  3122. }
  3123. }
  3124. if (!is_ok) {
  3125. throw std::runtime_error(
  3126. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  3127. __func__, name.c_str(),
  3128. llama_format_tensor_shape(ne).c_str(),
  3129. llama_format_tensor_shape(cur).c_str()));
  3130. }
  3131. }
  3132. return cur;
  3133. }
  3134. static const int TENSOR_NOT_REQUIRED = 1;
  3135. static const int TENSOR_DUPLICATED = 2;
  3136. struct ggml_tensor * create_tensor(struct ggml_context * ctx, const std::string & name, const std::vector<int64_t> & ne, int flags = 0) {
  3137. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  3138. if (cur == NULL) {
  3139. return NULL;
  3140. }
  3141. return create_tensor_for(ctx, cur, flags & TENSOR_DUPLICATED);
  3142. }
  3143. struct ggml_tensor * create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::vector<int64_t> & ne, size_t offset, bool required = true) {
  3144. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  3145. if (cur == NULL) {
  3146. return NULL;
  3147. }
  3148. if (cur->type != base->type) {
  3149. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  3150. }
  3151. std::array<int64_t, GGML_MAX_DIMS> dims;
  3152. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  3153. dims[i] = i < ne.size() ? ne[i] : 1;
  3154. }
  3155. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  3156. dims[0], dims[1], dims[2], dims[3],
  3157. cur->nb[1], cur->nb[2], cur->nb[3],
  3158. offset);
  3159. ggml_set_name(tensor, name.c_str());
  3160. n_created++;
  3161. return tensor;
  3162. }
  3163. void done_getting_tensors() const {
  3164. if (n_created != n_tensors) {
  3165. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  3166. }
  3167. }
  3168. void init_mappings(bool prefetch = true, llama_mlocks * mlock_mmaps = nullptr) {
  3169. if (use_mmap) {
  3170. mappings.reserve(files.size());
  3171. mmaps_used.reserve(files.size());
  3172. for (const auto & file : files) {
  3173. std::unique_ptr<llama_mmap> mapping(new llama_mmap(file.get(), prefetch ? -1 : 0, ggml_is_numa()));
  3174. mmaps_used.emplace_back(mapping->size, 0);
  3175. if (mlock_mmaps) {
  3176. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  3177. mlock_mmap->init(mapping->addr);
  3178. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  3179. }
  3180. mappings.emplace_back(std::move(mapping));
  3181. }
  3182. }
  3183. // compute the total size of all tensors for progress reporting
  3184. for (auto & w : weights) {
  3185. size_data += ggml_nbytes(w.tensor);
  3186. }
  3187. }
  3188. void get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  3189. GGML_ASSERT(!mappings.empty());
  3190. const auto & mapping = mappings.at(idx);
  3191. *first = mapping->size;
  3192. *last = 0;
  3193. *addr = mapping->addr;
  3194. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3195. try {
  3196. const auto * weight = get_weight(ggml_get_name(tensor));
  3197. if (!weight) {
  3198. continue;
  3199. }
  3200. if (weight->idx != idx) {
  3201. continue;
  3202. }
  3203. *first = std::min(*first, weight->offs);
  3204. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  3205. } catch(...) {
  3206. // the tensor is not in the model
  3207. }
  3208. }
  3209. }
  3210. // for backwards compatibility, does not support ggml-backend
  3211. void load_data_for(struct ggml_tensor * cur) const {
  3212. const auto & w = require_weight(ggml_get_name(cur));
  3213. if (use_mmap) {
  3214. const auto & mapping = mappings.at(w.idx);
  3215. if (cur->data == nullptr) {
  3216. cur->data = (uint8_t *)mapping->addr + w.offs;
  3217. } else {
  3218. memcpy(cur->data, (uint8_t *)mapping->addr + w.offs, ggml_nbytes(cur));
  3219. }
  3220. } else {
  3221. GGML_ASSERT(cur->data != nullptr);
  3222. GGML_ASSERT(w.idx < files.size());
  3223. const auto & file = files.at(w.idx);
  3224. file->seek(w.offs, SEEK_SET);
  3225. file->read_raw(cur->data, ggml_nbytes(cur));
  3226. }
  3227. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  3228. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3229. }
  3230. }
  3231. size_t size_done = 0;
  3232. size_t size_data = 0;
  3233. std::vector<std::pair<size_t, size_t>> mmaps_used;
  3234. // Returns false if cancelled by progress_callback
  3235. bool load_all_data(
  3236. struct ggml_context * ctx,
  3237. llama_buf_map & bufs_mmap,
  3238. llama_mlocks * lmlocks,
  3239. llama_progress_callback progress_callback,
  3240. void * progress_callback_user_data) {
  3241. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  3242. std::vector<no_init<uint8_t>> read_buf;
  3243. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  3244. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  3245. const auto * weight = get_weight(ggml_get_name(cur));
  3246. if (weight == nullptr) {
  3247. // this can happen with split experts models
  3248. continue;
  3249. }
  3250. if (progress_callback) {
  3251. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  3252. return false;
  3253. }
  3254. }
  3255. size_t n_size = ggml_nbytes(cur);
  3256. if (use_mmap) {
  3257. const auto & mapping = mappings.at(weight->idx);
  3258. ggml_backend_buffer_t buf_mmap = nullptr;
  3259. if (bufs_mmap.count(weight->idx)) {
  3260. buf_mmap = bufs_mmap.at(weight->idx);
  3261. }
  3262. uint8_t * data = (uint8_t *) mapping->addr + weight->offs;
  3263. if (check_tensors) {
  3264. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  3265. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  3266. }));
  3267. }
  3268. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  3269. if (buf_mmap && cur->data == nullptr) {
  3270. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  3271. if (lmlocks) {
  3272. const auto & lmlock = lmlocks->at(weight->idx);
  3273. lmlock->grow_to(weight->offs + n_size);
  3274. }
  3275. auto & mmap_used = mmaps_used[weight->idx];
  3276. mmap_used.first = std::min(mmap_used.first, weight->offs);
  3277. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  3278. } else {
  3279. ggml_backend_tensor_set(cur, data, 0, n_size);
  3280. }
  3281. } else {
  3282. GGML_ASSERT(weight->idx < files.size());
  3283. const auto & file = files.at(weight->idx);
  3284. if (ggml_backend_buffer_is_host(cur->buffer)) {
  3285. file->seek(weight->offs, SEEK_SET);
  3286. file->read_raw(cur->data, n_size);
  3287. if (check_tensors) {
  3288. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  3289. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  3290. }));
  3291. }
  3292. } else {
  3293. read_buf.resize(n_size);
  3294. file->seek(weight->offs, SEEK_SET);
  3295. file->read_raw(read_buf.data(), n_size);
  3296. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  3297. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  3298. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  3299. }
  3300. }
  3301. }
  3302. size_done += n_size;
  3303. }
  3304. // check validation results
  3305. bool validation_failed = false;
  3306. for (auto & future : validation_result) {
  3307. auto result = future.get();
  3308. if (!result.second) {
  3309. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  3310. validation_failed = true;
  3311. }
  3312. }
  3313. if (validation_failed) {
  3314. throw std::runtime_error("found tensors with invalid data");
  3315. }
  3316. // check if this is the last call and do final cleanup
  3317. if (size_done >= size_data) {
  3318. // unmap offloaded tensors and metadata
  3319. if (use_mmap) {
  3320. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  3321. const auto & mmap_used = mmaps_used.at(idx);
  3322. auto & mapping = mappings.at(idx);
  3323. mapping->unmap_fragment(0, mmap_used.first);
  3324. if (mmap_used.second != 0) {
  3325. mapping->unmap_fragment(mmap_used.second, mapping->size);
  3326. }
  3327. }
  3328. }
  3329. if (progress_callback) {
  3330. // Even though the model is done loading, we still honor
  3331. // cancellation since we need to free allocations.
  3332. return progress_callback(1.0f, progress_callback_user_data);
  3333. }
  3334. }
  3335. return true;
  3336. }
  3337. };
  3338. template<>
  3339. bool llama_model_loader::get_key(const enum llm_kv kid, enum llama_pooling_type & result, const bool required) {
  3340. uint32_t tmp;
  3341. const bool found = get_key(kid, tmp, required);
  3342. if (found) {
  3343. result = (enum llama_pooling_type) tmp;
  3344. } else {
  3345. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  3346. }
  3347. return found;
  3348. }
  3349. //
  3350. // load LLaMA models
  3351. //
  3352. static const char * llama_model_arch_name(llm_arch arch) {
  3353. auto it = LLM_ARCH_NAMES.find(arch);
  3354. if (it == LLM_ARCH_NAMES.end()) {
  3355. return "unknown";
  3356. }
  3357. return it->second;
  3358. }
  3359. static std::string llama_model_ftype_name(llama_ftype ftype) {
  3360. if (ftype & LLAMA_FTYPE_GUESSED) {
  3361. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  3362. }
  3363. switch (ftype) {
  3364. case LLAMA_FTYPE_ALL_F32: return "all F32";
  3365. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  3366. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  3367. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  3368. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  3369. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  3370. return "Q4_1, some F16";
  3371. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  3372. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  3373. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  3374. // K-quants
  3375. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  3376. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  3377. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  3378. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  3379. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  3380. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  3381. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  3382. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  3383. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  3384. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  3385. case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XXS - 2.0625 bpw";
  3386. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  3387. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  3388. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  3389. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  3390. case LLAMA_FTYPE_MOSTLY_IQ3_XXS:return "IQ3_XXS - 3.0625 bpw";
  3391. case LLAMA_FTYPE_MOSTLY_IQ1_S :return "IQ1_S - 1.5625 bpw";
  3392. case LLAMA_FTYPE_MOSTLY_IQ1_M :return "IQ1_M - 1.75 bpw";
  3393. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  3394. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  3395. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  3396. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  3397. default: return "unknown, may not work";
  3398. }
  3399. }
  3400. static const char * llama_model_type_name(e_model type) {
  3401. switch (type) {
  3402. case MODEL_14M: return "14M";
  3403. case MODEL_17M: return "17M";
  3404. case MODEL_22M: return "22M";
  3405. case MODEL_33M: return "33M";
  3406. case MODEL_70M: return "70M";
  3407. case MODEL_109M: return "109M";
  3408. case MODEL_137M: return "137M";
  3409. case MODEL_160M: return "160M";
  3410. case MODEL_335M: return "335M";
  3411. case MODEL_410M: return "410M";
  3412. case MODEL_0_5B: return "0.5B";
  3413. case MODEL_1B: return "1B";
  3414. case MODEL_1_4B: return "1.4B";
  3415. case MODEL_2B: return "2B";
  3416. case MODEL_2_8B: return "2.8B";
  3417. case MODEL_3B: return "3B";
  3418. case MODEL_4B: return "4B";
  3419. case MODEL_6_9B: return "6.9B";
  3420. case MODEL_7B: return "7B";
  3421. case MODEL_8B: return "8B";
  3422. case MODEL_12B: return "12B";
  3423. case MODEL_13B: return "13B";
  3424. case MODEL_14B: return "14B";
  3425. case MODEL_15B: return "15B";
  3426. case MODEL_16B: return "16B";
  3427. case MODEL_20B: return "20B";
  3428. case MODEL_30B: return "30B";
  3429. case MODEL_34B: return "34B";
  3430. case MODEL_35B: return "35B";
  3431. case MODEL_40B: return "40B";
  3432. case MODEL_65B: return "65B";
  3433. case MODEL_70B: return "70B";
  3434. case MODEL_236B: return "236B";
  3435. case MODEL_314B: return "314B";
  3436. case MODEL_SMALL: return "0.1B";
  3437. case MODEL_MEDIUM: return "0.4B";
  3438. case MODEL_LARGE: return "0.8B";
  3439. case MODEL_XL: return "1.5B";
  3440. case MODEL_A2_7B: return "A2.7B";
  3441. case MODEL_8x7B: return "8x7B";
  3442. case MODEL_8x22B: return "8x22B";
  3443. case MODEL_16x12B: return "16x12B";
  3444. case MODEL_10B_128x3_66B: return "10B+128x3.66B";
  3445. default: return "?B";
  3446. }
  3447. }
  3448. static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
  3449. switch (type) {
  3450. case LLAMA_VOCAB_TYPE_NONE: return "no vocab";
  3451. case LLAMA_VOCAB_TYPE_SPM: return "SPM";
  3452. case LLAMA_VOCAB_TYPE_BPE: return "BPE";
  3453. case LLAMA_VOCAB_TYPE_WPM: return "WPM";
  3454. default: return "unknown";
  3455. }
  3456. }
  3457. static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
  3458. model.arch = ml.get_arch();
  3459. if (model.arch == LLM_ARCH_UNKNOWN) {
  3460. throw std::runtime_error("unknown model architecture: '" + ml.get_arch_name() + "'");
  3461. }
  3462. }
  3463. static void llm_load_hparams(
  3464. llama_model_loader & ml,
  3465. llama_model & model) {
  3466. auto & hparams = model.hparams;
  3467. const gguf_context * ctx = ml.meta;
  3468. // get metadata as string
  3469. for (int i = 0; i < gguf_get_n_kv(ctx); i++) {
  3470. enum gguf_type type = gguf_get_kv_type(ctx, i);
  3471. if (type == GGUF_TYPE_ARRAY) {
  3472. continue;
  3473. }
  3474. const char * name = gguf_get_key(ctx, i);
  3475. const std::string value = gguf_kv_to_str(ctx, i);
  3476. model.gguf_kv.emplace(name, value);
  3477. }
  3478. // get general kv
  3479. ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
  3480. // get hparams kv
  3481. ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
  3482. // everything past this point is not vocab-related
  3483. if (hparams.vocab_only) {
  3484. return;
  3485. }
  3486. ml.get_key(LLM_KV_CONTEXT_LENGTH, hparams.n_ctx_train);
  3487. ml.get_key(LLM_KV_EMBEDDING_LENGTH, hparams.n_embd);
  3488. ml.get_key(LLM_KV_FEED_FORWARD_LENGTH, hparams.n_ff);
  3489. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT, hparams.n_head);
  3490. ml.get_key(LLM_KV_BLOCK_COUNT, hparams.n_layer);
  3491. ml.get_key(LLM_KV_EXPERT_COUNT, hparams.n_expert, false);
  3492. ml.get_key(LLM_KV_EXPERT_USED_COUNT, hparams.n_expert_used, false);
  3493. GGML_ASSERT(hparams.n_expert <= LLAMA_MAX_EXPERTS);
  3494. GGML_ASSERT(hparams.n_expert_used <= hparams.n_expert);
  3495. if (hparams.n_expert > 0) {
  3496. GGML_ASSERT(hparams.n_expert_used > 0);
  3497. } else {
  3498. GGML_ASSERT(hparams.n_expert_used == 0);
  3499. }
  3500. // n_head_kv is optional, default to n_head
  3501. hparams.n_head_kv = hparams.n_head;
  3502. ml.get_key(LLM_KV_ATTENTION_HEAD_COUNT_KV, hparams.n_head_kv, false);
  3503. bool rope_finetuned = false;
  3504. ml.get_key(LLM_KV_ROPE_SCALING_FINETUNED, rope_finetuned, false);
  3505. hparams.rope_finetuned = rope_finetuned;
  3506. hparams.n_ctx_orig_yarn = hparams.n_ctx_train;
  3507. ml.get_key(LLM_KV_ROPE_SCALING_ORIG_CTX_LEN, hparams.n_ctx_orig_yarn, false);
  3508. // rope_freq_base (optional)
  3509. hparams.rope_freq_base_train = 10000.0f;
  3510. ml.get_key(LLM_KV_ROPE_FREQ_BASE, hparams.rope_freq_base_train, false);
  3511. std::string rope_scaling("linear");
  3512. ml.get_key(LLM_KV_ROPE_SCALING_TYPE, rope_scaling, false);
  3513. hparams.rope_scaling_type_train = llama_rope_scaling_type_from_string(rope_scaling);
  3514. GGML_ASSERT(hparams.rope_scaling_type_train != LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED);
  3515. // rope_freq_scale (inverse of the kv) is optional
  3516. float ropescale = 0.0f;
  3517. if (!ml.get_key(LLM_KV_ROPE_SCALING_FACTOR, ropescale, false)) {
  3518. // try the old key name
  3519. ml.get_key(LLM_KV_ROPE_SCALE_LINEAR, ropescale, false);
  3520. }
  3521. hparams.rope_freq_scale_train = ropescale == 0.0f ? 1.0f : 1.0f/ropescale;
  3522. ml.get_key(LLM_KV_ROPE_SCALING_ATTN_FACTOR, hparams.rope_attn_factor, false);
  3523. // sanity check for n_rot (optional)
  3524. {
  3525. hparams.n_rot = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3526. ml.get_key(LLM_KV_ROPE_DIMENSION_COUNT, hparams.n_rot, false);
  3527. if (model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON) {
  3528. if (hparams.n_rot != hparams.n_embd / hparams.n_head) {
  3529. throw std::runtime_error(format("invalid n_rot: %u, expected %u", hparams.n_rot, hparams.n_embd / hparams.n_head));
  3530. }
  3531. }
  3532. // gpt-neox n_rot = rotary_pct * (n_embd / n_head)
  3533. // gpt-j n_rot = rotary_dim
  3534. }
  3535. hparams.n_embd_head_k = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3536. ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
  3537. hparams.n_embd_head_v = (hparams.n_head == 0) ? 0 : hparams.n_embd / hparams.n_head;
  3538. ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
  3539. // arch-specific KVs
  3540. switch (model.arch) {
  3541. case LLM_ARCH_LLAMA:
  3542. {
  3543. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3544. if (hparams.n_expert == 8) {
  3545. switch (hparams.n_layer) {
  3546. case 32: model.type = e_model::MODEL_8x7B; break;
  3547. case 56: model.type = e_model::MODEL_8x22B; break;
  3548. default: model.type = e_model::MODEL_UNKNOWN;
  3549. }
  3550. } else {
  3551. switch (hparams.n_layer) {
  3552. case 22: model.type = e_model::MODEL_1B; break;
  3553. case 26: model.type = e_model::MODEL_3B; break;
  3554. // granite uses a vocab with len 49152
  3555. case 32: model.type = hparams.n_vocab == 49152 ? e_model::MODEL_3B : (hparams.n_vocab < 40000 ? e_model::MODEL_7B : e_model::MODEL_8B); break;
  3556. case 36: model.type = e_model::MODEL_8B; break; // granite
  3557. case 40: model.type = e_model::MODEL_13B; break;
  3558. case 48: model.type = e_model::MODEL_34B; break;
  3559. case 60: model.type = e_model::MODEL_30B; break;
  3560. case 80: model.type = hparams.n_head == hparams.n_head_kv ? e_model::MODEL_65B : e_model::MODEL_70B; break;
  3561. default: model.type = e_model::MODEL_UNKNOWN;
  3562. }
  3563. }
  3564. } break;
  3565. case LLM_ARCH_MINICPM:
  3566. {
  3567. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3568. switch (hparams.n_layer) {
  3569. case 40: model.type = e_model::MODEL_2B; break;
  3570. default: model.type = e_model::MODEL_UNKNOWN;
  3571. }
  3572. } break;
  3573. case LLM_ARCH_GROK:
  3574. {
  3575. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3576. switch (hparams.n_layer) {
  3577. case 64: model.type = e_model::MODEL_314B; break;
  3578. default: model.type = e_model::MODEL_UNKNOWN;
  3579. }
  3580. } break;
  3581. case LLM_ARCH_FALCON:
  3582. {
  3583. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3584. switch (hparams.n_layer) {
  3585. case 32: model.type = e_model::MODEL_7B; break;
  3586. case 60: model.type = e_model::MODEL_40B; break;
  3587. default: model.type = e_model::MODEL_UNKNOWN;
  3588. }
  3589. } break;
  3590. case LLM_ARCH_BAICHUAN:
  3591. {
  3592. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3593. switch (hparams.n_layer) {
  3594. case 32: model.type = e_model::MODEL_7B; break;
  3595. case 40: model.type = e_model::MODEL_13B; break;
  3596. default: model.type = e_model::MODEL_UNKNOWN;
  3597. }
  3598. if (model.type == e_model::MODEL_13B) {
  3599. // TODO: become GGUF KV parameter
  3600. hparams.f_max_alibi_bias = 8.0f;
  3601. }
  3602. } break;
  3603. case LLM_ARCH_STARCODER:
  3604. {
  3605. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3606. switch (hparams.n_layer) {
  3607. case 24: model.type = e_model::MODEL_1B; break;
  3608. case 36: model.type = e_model::MODEL_3B; break;
  3609. case 42: model.type = e_model::MODEL_7B; break;
  3610. case 40: model.type = e_model::MODEL_15B; break;
  3611. default: model.type = e_model::MODEL_UNKNOWN;
  3612. }
  3613. } break;
  3614. case LLM_ARCH_REFACT:
  3615. {
  3616. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3617. switch (hparams.n_layer) {
  3618. case 32: model.type = e_model::MODEL_1B; break;
  3619. default: model.type = e_model::MODEL_UNKNOWN;
  3620. }
  3621. // TODO: become GGUF KV parameter
  3622. hparams.f_max_alibi_bias = 8.0f;
  3623. } break;
  3624. case LLM_ARCH_BERT:
  3625. {
  3626. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3627. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3628. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3629. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type, false);
  3630. switch (hparams.n_layer) {
  3631. case 3:
  3632. model.type = e_model::MODEL_17M; break; // bge-micro
  3633. case 6:
  3634. model.type = e_model::MODEL_22M; break; // MiniLM-L6
  3635. case 12:
  3636. switch (hparams.n_embd) {
  3637. case 384: model.type = e_model::MODEL_33M; break; // MiniLM-L12, bge-small
  3638. case 768: model.type = e_model::MODEL_109M; break; // bge-base
  3639. } break;
  3640. case 24:
  3641. model.type = e_model::MODEL_335M; break; // bge-large
  3642. }
  3643. } break;
  3644. case LLM_ARCH_JINA_BERT_V2:
  3645. {
  3646. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3647. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3648. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3649. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3650. hparams.f_max_alibi_bias = 8.0f;
  3651. switch (hparams.n_layer) {
  3652. case 4: model.type = e_model::MODEL_33M; break; // jina-embeddings-small
  3653. case 12: model.type = e_model::MODEL_137M; break; // jina-embeddings-base
  3654. }
  3655. } break;
  3656. case LLM_ARCH_NOMIC_BERT:
  3657. {
  3658. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3659. ml.get_key(LLM_KV_ATTENTION_CAUSAL, hparams.causal_attn);
  3660. ml.get_key(LLM_KV_TOKENIZER_TOKEN_TYPE_COUNT, hparams.n_vocab_type);
  3661. ml.get_key(LLM_KV_POOLING_TYPE, hparams.pooling_type);
  3662. if (hparams.n_layer == 12 && hparams.n_embd == 768) {
  3663. model.type = e_model::MODEL_137M;
  3664. }
  3665. } break;
  3666. case LLM_ARCH_BLOOM:
  3667. {
  3668. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3669. switch (hparams.n_layer) {
  3670. case 24: model.type = e_model::MODEL_1B; break;
  3671. case 30:
  3672. switch (hparams.n_embd) {
  3673. case 2560: model.type = e_model::MODEL_3B; break;
  3674. case 4096: model.type = e_model::MODEL_7B; break;
  3675. } break;
  3676. }
  3677. // TODO: become GGUF KV parameter
  3678. hparams.f_max_alibi_bias = 8.0f;
  3679. } break;
  3680. case LLM_ARCH_MPT:
  3681. {
  3682. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3683. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3684. ml.get_key(LLM_KV_ATTENTION_MAX_ALIBI_BIAS, hparams.f_max_alibi_bias);
  3685. switch (hparams.n_layer) {
  3686. case 32: model.type = e_model::MODEL_7B; break;
  3687. case 48: model.type = e_model::MODEL_30B; break;
  3688. default: model.type = e_model::MODEL_UNKNOWN;
  3689. }
  3690. } break;
  3691. case LLM_ARCH_STABLELM:
  3692. {
  3693. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3694. switch (hparams.n_layer) {
  3695. case 24: model.type = e_model::MODEL_1B; break;
  3696. case 32: model.type = e_model::MODEL_3B; break;
  3697. case 40: model.type = e_model::MODEL_12B; break;
  3698. default: model.type = e_model::MODEL_UNKNOWN;
  3699. }
  3700. } break;
  3701. case LLM_ARCH_QWEN:
  3702. {
  3703. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3704. switch (hparams.n_layer) {
  3705. case 32: model.type = e_model::MODEL_7B; break;
  3706. case 40: model.type = e_model::MODEL_13B; break;
  3707. default: model.type = e_model::MODEL_UNKNOWN;
  3708. }
  3709. } break;
  3710. case LLM_ARCH_QWEN2:
  3711. {
  3712. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3713. switch (hparams.n_layer) {
  3714. case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break;
  3715. case 32: model.type = e_model::MODEL_7B; break;
  3716. case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break;
  3717. case 80: model.type = e_model::MODEL_70B; break;
  3718. default: model.type = e_model::MODEL_UNKNOWN;
  3719. }
  3720. } break;
  3721. case LLM_ARCH_QWEN2MOE:
  3722. {
  3723. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3724. switch (hparams.n_layer) {
  3725. case 24: model.type = e_model::MODEL_A2_7B; break;
  3726. default: model.type = e_model::MODEL_UNKNOWN;
  3727. }
  3728. } break;
  3729. case LLM_ARCH_PHI2:
  3730. {
  3731. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3732. switch (hparams.n_layer) {
  3733. case 24: model.type = e_model::MODEL_1B; break;
  3734. case 32: model.type = e_model::MODEL_3B; break;
  3735. default: model.type = e_model::MODEL_UNKNOWN;
  3736. }
  3737. } break;
  3738. case LLM_ARCH_PHI3:
  3739. {
  3740. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3741. switch (hparams.n_layer) {
  3742. case 24: model.type = e_model::MODEL_1B; break;
  3743. case 32: model.type = e_model::MODEL_3B; break;
  3744. case 40: model.type = e_model::MODEL_14B; break;
  3745. default: model.type = e_model::MODEL_UNKNOWN;
  3746. }
  3747. } break;
  3748. case LLM_ARCH_PLAMO:
  3749. {
  3750. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3751. switch (hparams.n_layer) {
  3752. case 40: model.type = e_model::MODEL_13B; break;
  3753. default: model.type = e_model::MODEL_UNKNOWN;
  3754. }
  3755. } break;
  3756. case LLM_ARCH_GPT2:
  3757. {
  3758. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3759. switch (hparams.n_layer) {
  3760. case 12: model.type = e_model::MODEL_SMALL; break;
  3761. case 24: model.type = e_model::MODEL_MEDIUM; break;
  3762. case 36: model.type = e_model::MODEL_LARGE; break;
  3763. case 48: model.type = e_model::MODEL_XL; break;
  3764. default: model.type = e_model::MODEL_UNKNOWN;
  3765. }
  3766. } break;
  3767. case LLM_ARCH_CODESHELL:
  3768. {
  3769. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3770. switch (hparams.n_layer) {
  3771. case 42: model.type = e_model::MODEL_SMALL; break;
  3772. default: model.type = e_model::MODEL_UNKNOWN;
  3773. }
  3774. } break;
  3775. case LLM_ARCH_ORION:
  3776. {
  3777. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3778. switch (hparams.n_layer) {
  3779. case 40: model.type = e_model::MODEL_14B; break;
  3780. default: model.type = e_model::MODEL_UNKNOWN;
  3781. }
  3782. } break;
  3783. case LLM_ARCH_INTERNLM2:
  3784. {
  3785. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3786. switch (hparams.n_layer) {
  3787. case 32: model.type = e_model::MODEL_7B; break;
  3788. case 48: model.type = e_model::MODEL_20B; break;
  3789. default: model.type = e_model::MODEL_UNKNOWN;
  3790. }
  3791. } break;
  3792. case LLM_ARCH_GEMMA:
  3793. {
  3794. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3795. switch (hparams.n_layer) {
  3796. case 18: model.type = e_model::MODEL_2B; break;
  3797. case 28: model.type = e_model::MODEL_7B; break;
  3798. default: model.type = e_model::MODEL_UNKNOWN;
  3799. }
  3800. } break;
  3801. case LLM_ARCH_STARCODER2:
  3802. {
  3803. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3804. switch (hparams.n_layer) {
  3805. case 30: model.type = e_model::MODEL_3B; break;
  3806. case 32: model.type = e_model::MODEL_7B; break;
  3807. case 40: model.type = e_model::MODEL_15B; break;
  3808. case 52: model.type = e_model::MODEL_20B; break; // granite
  3809. case 88: model.type = e_model::MODEL_34B; break; // granite
  3810. default: model.type = e_model::MODEL_UNKNOWN;
  3811. }
  3812. } break;
  3813. case LLM_ARCH_MAMBA:
  3814. {
  3815. ml.get_key(LLM_KV_SSM_CONV_KERNEL, hparams.ssm_d_conv);
  3816. ml.get_key(LLM_KV_SSM_INNER_SIZE, hparams.ssm_d_inner);
  3817. ml.get_key(LLM_KV_SSM_STATE_SIZE, hparams.ssm_d_state);
  3818. ml.get_key(LLM_KV_SSM_TIME_STEP_RANK, hparams.ssm_dt_rank);
  3819. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3820. switch (hparams.n_layer) {
  3821. case 24:
  3822. switch (hparams.n_embd) {
  3823. case 768: model.type = e_model::MODEL_SMALL; break;
  3824. default: model.type = e_model::MODEL_UNKNOWN;
  3825. } break;
  3826. case 48:
  3827. switch (hparams.n_embd) {
  3828. case 1024: model.type = e_model::MODEL_MEDIUM; break;
  3829. case 1536: model.type = e_model::MODEL_LARGE; break;
  3830. case 2048: model.type = e_model::MODEL_XL; break;
  3831. default: model.type = e_model::MODEL_UNKNOWN;
  3832. } break;
  3833. case 64:
  3834. switch (hparams.n_embd) {
  3835. case 2560: model.type = e_model::MODEL_3B; break;
  3836. default: model.type = e_model::MODEL_UNKNOWN;
  3837. } break;
  3838. default: model.type = e_model::MODEL_UNKNOWN;
  3839. }
  3840. } break;
  3841. case LLM_ARCH_XVERSE:
  3842. {
  3843. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3844. switch (hparams.n_layer) {
  3845. case 32: model.type = e_model::MODEL_7B; break;
  3846. case 40: model.type = e_model::MODEL_13B; break;
  3847. case 80: model.type = e_model::MODEL_65B; break;
  3848. default: model.type = e_model::MODEL_UNKNOWN;
  3849. }
  3850. } break;
  3851. case LLM_ARCH_COMMAND_R:
  3852. {
  3853. ml.get_key(LLM_KV_LOGIT_SCALE, hparams.f_logit_scale);
  3854. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3855. switch (hparams.n_layer) {
  3856. case 40: model.type = e_model::MODEL_35B; break;
  3857. default: model.type = e_model::MODEL_UNKNOWN;
  3858. }
  3859. } break;
  3860. case LLM_ARCH_DBRX:
  3861. {
  3862. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3863. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv);
  3864. switch (hparams.n_layer) {
  3865. case 40: model.type = e_model::MODEL_16x12B; break;
  3866. default: model.type = e_model::MODEL_UNKNOWN;
  3867. }
  3868. } break;
  3869. case LLM_ARCH_OLMO:
  3870. {
  3871. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3872. ml.get_key(LLM_KV_ATTENTION_CLAMP_KQV, hparams.f_clamp_kqv, false);
  3873. switch (hparams.n_layer) {
  3874. case 22: model.type = e_model::MODEL_1B; break;
  3875. case 32: model.type = e_model::MODEL_7B; break;
  3876. case 80: model.type = e_model::MODEL_70B; break;
  3877. default: model.type = e_model::MODEL_UNKNOWN;
  3878. }
  3879. } break;
  3880. case LLM_ARCH_GPTNEOX:
  3881. {
  3882. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps);
  3883. ml.get_key(LLM_KV_USE_PARALLEL_RESIDUAL, hparams.use_par_res);
  3884. switch (hparams.n_layer) {
  3885. case 6:
  3886. switch (hparams.n_ff) {
  3887. case 512: model.type = e_model::MODEL_14M; break;
  3888. case 2048: model.type = e_model::MODEL_70M; break;
  3889. default: model.type = e_model::MODEL_UNKNOWN;
  3890. } break;
  3891. case 12:
  3892. switch (hparams.n_ff) {
  3893. case 3072: model.type = e_model::MODEL_160M; break;
  3894. default: model.type = e_model::MODEL_UNKNOWN;
  3895. } break;
  3896. case 16:
  3897. switch (hparams.n_ff) {
  3898. case 8192: model.type = e_model::MODEL_1B; break;
  3899. default: model.type = e_model::MODEL_UNKNOWN;
  3900. } break;
  3901. case 24:
  3902. switch (hparams.n_ff) {
  3903. case 4096: model.type = e_model::MODEL_410M; break;
  3904. case 8192: model.type = e_model::MODEL_1_4B; break;
  3905. default: model.type = e_model::MODEL_UNKNOWN;
  3906. } break;
  3907. case 32:
  3908. switch (hparams.n_ff) {
  3909. case 10240: model.type = e_model::MODEL_2_8B; break;
  3910. case 16384: model.type = e_model::MODEL_6_9B; break;
  3911. default: model.type = e_model::MODEL_UNKNOWN;
  3912. } break;
  3913. case 36:
  3914. switch (hparams.n_ff) {
  3915. case 20480: model.type = e_model::MODEL_12B; break;
  3916. default: model.type = e_model::MODEL_UNKNOWN;
  3917. } break;
  3918. case 44:
  3919. switch (hparams.n_ff) {
  3920. case 24576: model.type = e_model::MODEL_20B; break;
  3921. default: model.type = e_model::MODEL_UNKNOWN;
  3922. } break;
  3923. default: model.type = e_model::MODEL_UNKNOWN;
  3924. }
  3925. } break;
  3926. case LLM_ARCH_ARCTIC:
  3927. {
  3928. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3929. if (hparams.n_expert == 128) {
  3930. switch (hparams.n_layer) {
  3931. case 35: model.type = e_model::MODEL_10B_128x3_66B; break;
  3932. default: model.type = e_model::MODEL_UNKNOWN;
  3933. }
  3934. } else {
  3935. model.type = e_model::MODEL_UNKNOWN;
  3936. }
  3937. } break;
  3938. case LLM_ARCH_DEEPSEEK2:
  3939. {
  3940. bool is_lite = (hparams.n_layer == 27);
  3941. ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
  3942. ml.get_key(LLM_KV_LEADING_DENSE_BLOCK_COUNT, hparams.n_layer_dense_lead);
  3943. if (!is_lite) {
  3944. ml.get_key(LLM_KV_ATTENTION_Q_LORA_RANK, hparams.n_lora_q);
  3945. }
  3946. ml.get_key(LLM_KV_ATTENTION_KV_LORA_RANK, hparams.n_lora_kv);
  3947. ml.get_key(LLM_KV_EXPERT_FEED_FORWARD_LENGTH, hparams.n_ff_exp);
  3948. ml.get_key(LLM_KV_EXPERT_SHARED_COUNT, hparams.n_expert_shared);
  3949. ml.get_key(LLM_KV_EXPERT_WEIGHTS_SCALE, hparams.expert_weights_scale);
  3950. ml.get_key(LLM_KV_ROPE_SCALING_YARN_LOG_MUL, hparams.rope_yarn_log_mul);
  3951. switch (hparams.n_layer) {
  3952. case 27: model.type = e_model::MODEL_16B; break;
  3953. case 60: model.type = e_model::MODEL_236B; break;
  3954. default: model.type = e_model::MODEL_UNKNOWN;
  3955. }
  3956. } break;
  3957. default: (void)0;
  3958. }
  3959. model.ftype = ml.ftype;
  3960. if (hparams.f_max_alibi_bias > 0.0f) {
  3961. hparams.use_alibi = true;
  3962. }
  3963. hparams.rope_type = llama_rope_type(&model);
  3964. }
  3965. // TODO: This should probably be in llama.h
  3966. static std::vector<llama_vocab::id> llama_tokenize_internal(
  3967. const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special = false
  3968. );
  3969. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch);
  3970. static void llm_load_vocab(
  3971. llama_model_loader & ml,
  3972. llama_model & model) {
  3973. auto & vocab = model.vocab;
  3974. struct gguf_context * ctx = ml.meta;
  3975. const auto kv = LLM_KV(model.arch);
  3976. // determine vocab type
  3977. {
  3978. std::string tokenizer_model;
  3979. std::string tokenizer_pre;
  3980. ml.get_key(LLM_KV_TOKENIZER_MODEL, tokenizer_model);
  3981. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  3982. if (tokenizer_model == "no_vocab") {
  3983. vocab.type = LLAMA_VOCAB_TYPE_NONE;
  3984. // default special tokens
  3985. vocab.special_bos_id = -1;
  3986. vocab.special_eos_id = -1;
  3987. vocab.special_unk_id = -1;
  3988. vocab.special_sep_id = -1;
  3989. vocab.special_pad_id = -1;
  3990. vocab.special_cls_id = -1;
  3991. vocab.special_mask_id = -1;
  3992. vocab.linefeed_id = -1;
  3993. return;
  3994. } else if (tokenizer_model == "llama") {
  3995. vocab.type = LLAMA_VOCAB_TYPE_SPM;
  3996. // default special tokens
  3997. vocab.special_bos_id = 1;
  3998. vocab.special_eos_id = 2;
  3999. vocab.special_unk_id = 0;
  4000. vocab.special_sep_id = -1;
  4001. vocab.special_pad_id = -1;
  4002. vocab.special_cls_id = -1;
  4003. vocab.special_mask_id = -1;
  4004. // For Fill-In-the-Middle (FIM)/infill models which where converted
  4005. // prior to support of FIM special tokens in GGUF, the following
  4006. // will allow those models to continue to work. The general names
  4007. // of the known models are currently CodeLlama (LLM_ARCH_LLAMA) and
  4008. // CodeGemma (LLM_ARCH_GEMMA). This can potentially be removed once
  4009. // new versions of these models have been published.
  4010. std::string gen_name;
  4011. ml.get_key(LLM_KV_GENERAL_NAME, gen_name, false);
  4012. std::transform(gen_name.begin(), gen_name.end(), gen_name.begin(),
  4013. [](unsigned char c){ return std::tolower(c); });
  4014. if (gen_name.find("code") != std::string::npos) {
  4015. if (model.arch == LLM_ARCH_LLAMA) {
  4016. vocab.special_prefix_id = 32007;
  4017. vocab.special_suffix_id = 32008;
  4018. vocab.special_middle_id = 32009;
  4019. vocab.special_eot_id = 32010;
  4020. } else if (model.arch == LLM_ARCH_GEMMA) {
  4021. vocab.special_prefix_id = 67;
  4022. vocab.special_suffix_id = 69;
  4023. vocab.special_middle_id = 68;
  4024. // TODO: this is not EOT, it is "file separator" token, needs fix
  4025. // https://huggingface.co/google/codegemma-7b-it/blob/9b1d9231388358c04d90bd003458f5070d97db44/tokenizer_config.json#L565-L572
  4026. //vocab.special_eot_id = 70;
  4027. vocab.special_eot_id = 107;
  4028. }
  4029. }
  4030. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4031. if (add_space_prefix_keyidx != -1) {
  4032. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4033. } // The default value of add_space_prefix is true.
  4034. } else if (tokenizer_model == "bert") {
  4035. vocab.type = LLAMA_VOCAB_TYPE_WPM;
  4036. // default special tokens
  4037. vocab.special_bos_id = -1;
  4038. vocab.special_eos_id = -1;
  4039. vocab.special_unk_id = 100;
  4040. vocab.special_sep_id = 102;
  4041. vocab.special_pad_id = 0;
  4042. vocab.special_cls_id = 101;
  4043. vocab.special_mask_id = 103;
  4044. vocab.add_space_prefix = false;
  4045. } else if (tokenizer_model == "gpt2") {
  4046. vocab.type = LLAMA_VOCAB_TYPE_BPE;
  4047. const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
  4048. if (add_space_prefix_keyidx != -1) {
  4049. vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
  4050. }
  4051. // read bpe merges and populate bpe ranks
  4052. const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
  4053. if (merges_keyidx == -1) {
  4054. throw std::runtime_error("cannot find tokenizer merges in model file\n");
  4055. }
  4056. const int n_merges = gguf_get_arr_n(ctx, merges_keyidx);
  4057. for (int i = 0; i < n_merges; i++) {
  4058. const std::string word = gguf_get_arr_str(ctx, merges_keyidx, i);
  4059. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4060. std::string first;
  4061. std::string second;
  4062. const size_t pos = word.find(' ', 1);
  4063. if (pos != std::string::npos) {
  4064. first = word.substr(0, pos);
  4065. second = word.substr(pos + 1);
  4066. }
  4067. vocab.bpe_ranks.emplace(std::make_pair(first, second), i);
  4068. }
  4069. // default special tokens
  4070. vocab.special_bos_id = 11;
  4071. vocab.special_eos_id = 11;
  4072. vocab.special_unk_id = -1;
  4073. vocab.special_sep_id = -1;
  4074. vocab.special_pad_id = -1;
  4075. vocab.special_cls_id = -1;
  4076. vocab.special_mask_id = -1;
  4077. } else {
  4078. throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
  4079. }
  4080. // for now, only BPE models have pre-tokenizers
  4081. if (vocab.type == LLAMA_VOCAB_TYPE_BPE) {
  4082. if (tokenizer_pre.empty()) {
  4083. LLAMA_LOG_WARN("%s: missing pre-tokenizer type, using: 'default'\n", __func__);
  4084. LLAMA_LOG_WARN("%s: \n", __func__);
  4085. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4086. LLAMA_LOG_WARN("%s: GENERATION QUALITY WILL BE DEGRADED! \n", __func__);
  4087. LLAMA_LOG_WARN("%s: CONSIDER REGENERATING THE MODEL \n", __func__);
  4088. LLAMA_LOG_WARN("%s: ************************************ \n", __func__);
  4089. LLAMA_LOG_WARN("%s: \n", __func__);
  4090. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4091. } else if (
  4092. tokenizer_pre == "default") {
  4093. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4094. } else if (
  4095. tokenizer_pre == "llama3" ||
  4096. tokenizer_pre == "llama-v3" ||
  4097. tokenizer_pre == "llama-bpe") {
  4098. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_LLAMA3;
  4099. } else if (
  4100. tokenizer_pre == "deepseek-llm") {
  4101. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM;
  4102. } else if (
  4103. tokenizer_pre == "deepseek-coder") {
  4104. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER;
  4105. } else if (
  4106. tokenizer_pre == "falcon") {
  4107. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_FALCON;
  4108. } else if (
  4109. tokenizer_pre == "mpt") {
  4110. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_MPT;
  4111. } else if (
  4112. tokenizer_pre == "starcoder") {
  4113. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STARCODER;
  4114. } else if (
  4115. tokenizer_pre == "gpt-2" ||
  4116. tokenizer_pre == "jina-es" ||
  4117. tokenizer_pre == "jina-de" ||
  4118. tokenizer_pre == "jina-v2-es" ||
  4119. tokenizer_pre == "jina-v2-de") {
  4120. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_GPT2;
  4121. } else if (
  4122. tokenizer_pre == "refact") {
  4123. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_REFACT;
  4124. } else if (
  4125. tokenizer_pre == "command-r") {
  4126. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_COMMAND_R;
  4127. } else if (
  4128. tokenizer_pre == "qwen2") {
  4129. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_QWEN2;
  4130. } else if (
  4131. tokenizer_pre == "stablelm2") {
  4132. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_STABLELM2;
  4133. } else if (
  4134. tokenizer_pre == "olmo") {
  4135. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_OLMO;
  4136. } else if (
  4137. tokenizer_pre == "dbrx") {
  4138. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DBRX;
  4139. } else if (
  4140. tokenizer_pre == "smaug-bpe") {
  4141. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_SMAUG;
  4142. } else {
  4143. throw std::runtime_error(format("unknown pre-tokenizer type: '%s'", tokenizer_pre.c_str()));
  4144. }
  4145. } else {
  4146. vocab.type_pre = LLAMA_VOCAB_PRE_TYPE_DEFAULT;
  4147. }
  4148. }
  4149. const int token_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_LIST).c_str());
  4150. if (token_idx == -1) {
  4151. throw std::runtime_error("cannot find tokenizer vocab in model file\n");
  4152. }
  4153. const float * scores = nullptr;
  4154. const int score_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_SCORES).c_str());
  4155. if (score_idx != -1) {
  4156. scores = (const float * ) gguf_get_arr_data(ctx, score_idx);
  4157. }
  4158. const int * toktypes = nullptr;
  4159. const int toktype_idx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE).c_str());
  4160. if (toktype_idx != -1) {
  4161. toktypes = (const int * ) gguf_get_arr_data(ctx, toktype_idx);
  4162. }
  4163. const uint32_t n_vocab = gguf_get_arr_n(ctx, token_idx);
  4164. vocab.id_to_token.resize(n_vocab);
  4165. for (uint32_t i = 0; i < n_vocab; i++) {
  4166. std::string word = gguf_get_arr_str(ctx, token_idx, i);
  4167. GGML_ASSERT(unicode_cpts_from_utf8(word).size() > 0);
  4168. vocab.token_to_id[word] = i;
  4169. auto & token_data = vocab.id_to_token[i];
  4170. token_data.text = std::move(word);
  4171. token_data.score = scores ? scores[i] : 0.0f;
  4172. token_data.attr = LLAMA_TOKEN_ATTR_NORMAL;
  4173. if (toktypes) { //TODO: remove, required until per token attributes are available from GGUF file
  4174. switch(toktypes[i]) {
  4175. case LLAMA_TOKEN_TYPE_UNKNOWN: token_data.attr = LLAMA_TOKEN_ATTR_UNKNOWN; break;
  4176. case LLAMA_TOKEN_TYPE_UNUSED: token_data.attr = LLAMA_TOKEN_ATTR_UNUSED; break;
  4177. case LLAMA_TOKEN_TYPE_NORMAL: token_data.attr = LLAMA_TOKEN_ATTR_NORMAL; break;
  4178. case LLAMA_TOKEN_TYPE_CONTROL: token_data.attr = LLAMA_TOKEN_ATTR_CONTROL; break;
  4179. case LLAMA_TOKEN_TYPE_USER_DEFINED: token_data.attr = LLAMA_TOKEN_ATTR_USER_DEFINED; break;
  4180. case LLAMA_TOKEN_TYPE_BYTE: token_data.attr = LLAMA_TOKEN_ATTR_BYTE; break;
  4181. case LLAMA_TOKEN_TYPE_UNDEFINED: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4182. default: token_data.attr = LLAMA_TOKEN_ATTR_UNDEFINED; break;
  4183. }
  4184. }
  4185. }
  4186. GGML_ASSERT(vocab.id_to_token.size() == vocab.token_to_id.size());
  4187. // determine the newline token: LLaMA "<0x0A>" == 10 == '\n', Falcon 193 == '\n'
  4188. if (vocab.type == LLAMA_VOCAB_TYPE_SPM) {
  4189. try {
  4190. vocab.linefeed_id = llama_byte_to_token(vocab, '\n');
  4191. } catch (const std::exception & e) {
  4192. LLAMA_LOG_WARN("%s: SPM vocabulary, but newline token not found: %s! Using special_pad_id instead.", __func__, e.what());
  4193. vocab.linefeed_id = vocab.special_pad_id;
  4194. }
  4195. } else if (vocab.type == LLAMA_VOCAB_TYPE_WPM) {
  4196. vocab.linefeed_id = vocab.special_pad_id;
  4197. } else {
  4198. const std::vector<int> ids = llama_tokenize_internal(vocab, "\xC4\x8A", false); // U+010A
  4199. GGML_ASSERT(!ids.empty() && "model vocab missing newline token");
  4200. vocab.linefeed_id = ids[0];
  4201. }
  4202. // special tokens
  4203. {
  4204. const std::vector<std::pair<enum llm_kv, int32_t &>> special_token_types = {
  4205. { LLM_KV_TOKENIZER_BOS_ID, vocab.special_bos_id },
  4206. { LLM_KV_TOKENIZER_EOS_ID, vocab.special_eos_id },
  4207. { LLM_KV_TOKENIZER_UNK_ID, vocab.special_unk_id },
  4208. { LLM_KV_TOKENIZER_SEP_ID, vocab.special_sep_id },
  4209. { LLM_KV_TOKENIZER_PAD_ID, vocab.special_pad_id },
  4210. { LLM_KV_TOKENIZER_CLS_ID, vocab.special_cls_id },
  4211. { LLM_KV_TOKENIZER_MASK_ID, vocab.special_mask_id },
  4212. { LLM_KV_TOKENIZER_PREFIX_ID, vocab.special_prefix_id },
  4213. { LLM_KV_TOKENIZER_SUFFIX_ID, vocab.special_suffix_id },
  4214. { LLM_KV_TOKENIZER_MIDDLE_ID, vocab.special_middle_id },
  4215. { LLM_KV_TOKENIZER_EOT_ID, vocab.special_eot_id },
  4216. };
  4217. for (const auto & it : special_token_types) {
  4218. const std::string & key = kv(std::get<0>(it));
  4219. int32_t & id = std::get<1>(it);
  4220. uint32_t new_id;
  4221. if (!ml.get_key(std::get<0>(it), new_id, false)) {
  4222. continue;
  4223. }
  4224. if (new_id >= vocab.id_to_token.size()) {
  4225. LLAMA_LOG_WARN("%s: bad special token: '%s' = %ud, using default id %d\n",
  4226. __func__, key.c_str(), new_id, id);
  4227. } else {
  4228. id = new_id;
  4229. }
  4230. }
  4231. // Handle add_bos_token and add_eos_token
  4232. {
  4233. bool temp = true;
  4234. if (ml.get_key(LLM_KV_TOKENIZER_ADD_BOS, temp, false)) {
  4235. vocab.special_add_bos = int(temp);
  4236. }
  4237. if (ml.get_key(LLM_KV_TOKENIZER_ADD_EOS, temp, false)) {
  4238. vocab.special_add_eos = int(temp);
  4239. }
  4240. }
  4241. // find EOT token: "<|eot_id|>", "<|im_end|>", "<end_of_turn>", etc.
  4242. //
  4243. // TODO: convert scripts should provide this token through the KV metadata LLAMA_KV_TOKENIZER_EOT_ID
  4244. // for now, we apply this workaround to find the EOT token based on its text
  4245. if (vocab.special_eot_id == -1) {
  4246. for (const auto & t : vocab.token_to_id) {
  4247. if (
  4248. // TODO: gemma "<end_of_turn>" is exported as a normal token, so the following check does not work
  4249. // need to fix convert script
  4250. //vocab.id_to_token[t.second].type == LLAMA_TOKEN_TYPE_CONTROL &&
  4251. (t.first == "<|eot_id|>" ||
  4252. t.first == "<|im_end|>" ||
  4253. t.first == "<|end|>" ||
  4254. t.first == "<end_of_turn>" ||
  4255. t.first == "<|endoftext|>"
  4256. )
  4257. ) {
  4258. vocab.special_eot_id = t.second;
  4259. break;
  4260. }
  4261. }
  4262. }
  4263. }
  4264. // build special tokens cache
  4265. {
  4266. for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
  4267. if (!(vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL)) {
  4268. vocab.cache_special_tokens.push_back(id);
  4269. }
  4270. }
  4271. std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
  4272. [&] (const llama_vocab::id a, const llama_vocab::id b) {
  4273. return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
  4274. }
  4275. );
  4276. LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
  4277. }
  4278. // build token to piece cache
  4279. {
  4280. size_t size_cache = 0;
  4281. std::vector<llama_vocab::token> cache_token_to_piece(n_vocab);
  4282. for (uint32_t id = 0; id < n_vocab; ++id) {
  4283. cache_token_to_piece[id] = llama_token_to_piece(&model, id, true);
  4284. size_cache += cache_token_to_piece[id].size();
  4285. }
  4286. std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
  4287. LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
  4288. }
  4289. // Handle per token attributes
  4290. //NOTE: Each model customizes per token attributes.
  4291. //NOTE: Per token attributes are missing from the GGUF file.
  4292. //TODO: Extract attributes from GGUF file.
  4293. {
  4294. auto _contains_any = [] (const std::string &str, const std::vector<std::string> &substrs) -> bool {
  4295. for (auto substr : substrs) {
  4296. if (str.find(substr) < std::string::npos) {
  4297. return true;
  4298. }
  4299. }
  4300. return false;
  4301. };
  4302. auto _set_tokenid_attr = [&] (const llama_vocab::id id, llama_token_attr attr, bool value) {
  4303. uint32_t current = vocab.id_to_token.at(id).attr;
  4304. current = value ? (current | attr) : (current & ~attr);
  4305. vocab.id_to_token[id].attr = (llama_token_attr) current;
  4306. };
  4307. auto _set_token_attr = [&] (const std::string & token, llama_token_attr attr, bool value) {
  4308. _set_tokenid_attr(vocab.token_to_id.at(token), attr, value);
  4309. };
  4310. std::string model_name;
  4311. std::string tokenizer_pre;
  4312. ml.get_key(LLM_KV_GENERAL_NAME, model_name, false);
  4313. ml.get_key(LLM_KV_TOKENIZER_PRE, tokenizer_pre, false);
  4314. // model name to lowercase
  4315. std::transform(model_name.begin(), model_name.end(), model_name.begin(),
  4316. [] (const std::string::value_type x) {
  4317. return std::tolower(x);
  4318. }
  4319. );
  4320. // set attributes by model/tokenizer name
  4321. if (_contains_any(tokenizer_pre, {"jina-v2-es", "jina-v2-de"})) {
  4322. _set_token_attr("<mask>", LLAMA_TOKEN_ATTR_LSTRIP, true);
  4323. } else if (_contains_any(model_name, {"phi-3", "phi3"})) {
  4324. for (auto id : vocab.cache_special_tokens) {
  4325. _set_tokenid_attr(id, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4326. }
  4327. for (auto token : {"</s>"}) {
  4328. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, true);
  4329. }
  4330. for (auto token : {"<unk>", "<s>", "<|endoftext|>"}) {
  4331. _set_token_attr(token, LLAMA_TOKEN_ATTR_RSTRIP, false);
  4332. }
  4333. }
  4334. }
  4335. }
  4336. static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
  4337. const auto & hparams = model.hparams;
  4338. const auto & vocab = model.vocab;
  4339. const char * rope_scaling_type = LLAMA_ROPE_SCALING_TYPES.at(hparams.rope_scaling_type_train);
  4340. // hparams
  4341. LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
  4342. LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch));
  4343. LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
  4344. LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  4345. LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
  4346. LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
  4347. LLAMA_LOG_INFO("%s: n_embd = %u\n", __func__, hparams.n_embd);
  4348. LLAMA_LOG_INFO("%s: n_head = %u\n", __func__, hparams.n_head);
  4349. LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
  4350. LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
  4351. LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
  4352. LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
  4353. LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
  4354. LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
  4355. LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
  4356. LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
  4357. LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
  4358. LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
  4359. LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
  4360. LLAMA_LOG_INFO("%s: f_max_alibi_bias = %.1e\n", __func__, hparams.f_max_alibi_bias);
  4361. LLAMA_LOG_INFO("%s: f_logit_scale = %.1e\n", __func__, hparams.f_logit_scale);
  4362. LLAMA_LOG_INFO("%s: n_ff = %u\n", __func__, hparams.n_ff);
  4363. LLAMA_LOG_INFO("%s: n_expert = %u\n", __func__, hparams.n_expert);
  4364. LLAMA_LOG_INFO("%s: n_expert_used = %u\n", __func__, hparams.n_expert_used);
  4365. LLAMA_LOG_INFO("%s: causal attn = %d\n", __func__, hparams.causal_attn);
  4366. LLAMA_LOG_INFO("%s: pooling type = %d\n", __func__, hparams.pooling_type);
  4367. LLAMA_LOG_INFO("%s: rope type = %d\n", __func__, hparams.rope_type);
  4368. LLAMA_LOG_INFO("%s: rope scaling = %s\n", __func__, rope_scaling_type);
  4369. LLAMA_LOG_INFO("%s: freq_base_train = %.1f\n", __func__, hparams.rope_freq_base_train);
  4370. LLAMA_LOG_INFO("%s: freq_scale_train = %g\n", __func__, hparams.rope_freq_scale_train);
  4371. LLAMA_LOG_INFO("%s: n_ctx_orig_yarn = %u\n", __func__, hparams.n_ctx_orig_yarn);
  4372. LLAMA_LOG_INFO("%s: rope_finetuned = %s\n", __func__, hparams.rope_finetuned ? "yes" : "unknown");
  4373. LLAMA_LOG_INFO("%s: ssm_d_conv = %u\n", __func__, hparams.ssm_d_conv);
  4374. LLAMA_LOG_INFO("%s: ssm_d_inner = %u\n", __func__, hparams.ssm_d_inner);
  4375. LLAMA_LOG_INFO("%s: ssm_d_state = %u\n", __func__, hparams.ssm_d_state);
  4376. LLAMA_LOG_INFO("%s: ssm_dt_rank = %u\n", __func__, hparams.ssm_dt_rank);
  4377. LLAMA_LOG_INFO("%s: model type = %s\n", __func__, llama_model_type_name(model.type));
  4378. LLAMA_LOG_INFO("%s: model ftype = %s\n", __func__, llama_model_ftype_name(model.ftype).c_str());
  4379. if (ml.n_elements >= 1e12) {
  4380. LLAMA_LOG_INFO("%s: model params = %.2f T\n", __func__, ml.n_elements*1e-12);
  4381. } else if (ml.n_elements >= 1e9) {
  4382. LLAMA_LOG_INFO("%s: model params = %.2f B\n", __func__, ml.n_elements*1e-9);
  4383. } else if (ml.n_elements >= 1e6) {
  4384. LLAMA_LOG_INFO("%s: model params = %.2f M\n", __func__, ml.n_elements*1e-6);
  4385. } else {
  4386. LLAMA_LOG_INFO("%s: model params = %.2f K\n", __func__, ml.n_elements*1e-3);
  4387. }
  4388. if (ml.n_bytes < GiB) {
  4389. LLAMA_LOG_INFO("%s: model size = %.2f MiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4390. } else {
  4391. LLAMA_LOG_INFO("%s: model size = %.2f GiB (%.2f BPW) \n", __func__, ml.n_bytes/1024.0/1024.0/1024.0, ml.n_bytes*8.0/ml.n_elements);
  4392. }
  4393. // general kv
  4394. LLAMA_LOG_INFO("%s: general.name = %s\n", __func__, model.name.c_str());
  4395. // special tokens
  4396. if (vocab.special_bos_id != -1) { LLAMA_LOG_INFO( "%s: BOS token = %d '%s'\n", __func__, vocab.special_bos_id, vocab.id_to_token[vocab.special_bos_id].text.c_str() ); }
  4397. if (vocab.special_eos_id != -1) { LLAMA_LOG_INFO( "%s: EOS token = %d '%s'\n", __func__, vocab.special_eos_id, vocab.id_to_token[vocab.special_eos_id].text.c_str() ); }
  4398. if (vocab.special_unk_id != -1) { LLAMA_LOG_INFO( "%s: UNK token = %d '%s'\n", __func__, vocab.special_unk_id, vocab.id_to_token[vocab.special_unk_id].text.c_str() ); }
  4399. if (vocab.special_sep_id != -1) { LLAMA_LOG_INFO( "%s: SEP token = %d '%s'\n", __func__, vocab.special_sep_id, vocab.id_to_token[vocab.special_sep_id].text.c_str() ); }
  4400. if (vocab.special_pad_id != -1) { LLAMA_LOG_INFO( "%s: PAD token = %d '%s'\n", __func__, vocab.special_pad_id, vocab.id_to_token[vocab.special_pad_id].text.c_str() ); }
  4401. if (vocab.special_cls_id != -1) { LLAMA_LOG_INFO( "%s: CLS token = %d '%s'\n", __func__, vocab.special_cls_id, vocab.id_to_token[vocab.special_cls_id].text.c_str() ); }
  4402. if (vocab.special_mask_id != -1) { LLAMA_LOG_INFO( "%s: MASK token = %d '%s'\n", __func__, vocab.special_mask_id, vocab.id_to_token[vocab.special_mask_id].text.c_str() ); }
  4403. if (vocab.linefeed_id != -1) { LLAMA_LOG_INFO( "%s: LF token = %d '%s'\n", __func__, vocab.linefeed_id, vocab.id_to_token[vocab.linefeed_id].text.c_str() ); }
  4404. if (vocab.special_prefix_id != -1) { LLAMA_LOG_INFO( "%s: PRE token = %d '%s'\n", __func__, vocab.special_prefix_id, vocab.id_to_token[vocab.special_prefix_id].text.c_str() ); }
  4405. if (vocab.special_suffix_id != -1) { LLAMA_LOG_INFO( "%s: SUF token = %d '%s'\n", __func__, vocab.special_suffix_id, vocab.id_to_token[vocab.special_suffix_id].text.c_str() ); }
  4406. if (vocab.special_middle_id != -1) { LLAMA_LOG_INFO( "%s: MID token = %d '%s'\n", __func__, vocab.special_middle_id, vocab.id_to_token[vocab.special_middle_id].text.c_str() ); }
  4407. if (vocab.special_eot_id != -1) { LLAMA_LOG_INFO( "%s: EOT token = %d '%s'\n", __func__, vocab.special_eot_id, vocab.id_to_token[vocab.special_eot_id].text.c_str() ); }
  4408. if (model.arch == LLM_ARCH_DEEPSEEK2) {
  4409. LLAMA_LOG_INFO("%s: n_layer_dense_lead = %d\n", __func__, hparams.n_layer_dense_lead);
  4410. LLAMA_LOG_INFO("%s: n_lora_q = %d\n", __func__, hparams.n_lora_q);
  4411. LLAMA_LOG_INFO("%s: n_lora_kv = %d\n", __func__, hparams.n_lora_kv);
  4412. LLAMA_LOG_INFO("%s: n_ff_exp = %d\n", __func__, hparams.n_ff_exp);
  4413. LLAMA_LOG_INFO("%s: n_expert_shared = %d\n", __func__, hparams.n_expert_shared);
  4414. LLAMA_LOG_INFO("%s: expert_weights_scale = %.1f\n", __func__, hparams.expert_weights_scale);
  4415. LLAMA_LOG_INFO("%s: rope_yarn_log_mul = %.4f\n", __func__, hparams.rope_yarn_log_mul);
  4416. }
  4417. }
  4418. // Returns false if cancelled by progress_callback
  4419. static bool llm_load_tensors(
  4420. llama_model_loader & ml,
  4421. llama_model & model,
  4422. int n_gpu_layers,
  4423. enum llama_split_mode split_mode,
  4424. int main_gpu,
  4425. const float * tensor_split,
  4426. bool use_mlock,
  4427. llama_progress_callback progress_callback,
  4428. void * progress_callback_user_data) {
  4429. model.t_start_us = ggml_time_us();
  4430. auto & hparams = model.hparams;
  4431. #ifdef GGML_USE_SYCL
  4432. // disable MoE with SYCL until mul_mat_id is updated
  4433. if (hparams.n_expert > 0) {
  4434. n_gpu_layers = 0;
  4435. }
  4436. #endif
  4437. model.split_mode = split_mode;
  4438. model.main_gpu = main_gpu;
  4439. model.n_gpu_layers = n_gpu_layers;
  4440. const int64_t n_layer = hparams.n_layer;
  4441. const int64_t i_gpu_start = std::max((int64_t) hparams.n_layer - n_gpu_layers, (int64_t) 0);
  4442. bool use_mmap_buffer = true;
  4443. // there is very little benefit to offloading the input layer, so always keep it on the CPU
  4444. model.buft_input = llama_default_buffer_type_cpu(true);
  4445. //model.buft_input = llama_default_buffer_type_offload(main_gpu);
  4446. model.buft_layer.resize(n_layer);
  4447. // assign cpu layers
  4448. for (int64_t i = 0; i < i_gpu_start; ++i) {
  4449. model.buft_layer[i] = llama_default_buffer_type_cpu(true);
  4450. }
  4451. if (split_mode == LLAMA_SPLIT_MODE_LAYER) {
  4452. // calculate the split points
  4453. int device_count = llama_get_device_count(model);
  4454. bool all_zero = tensor_split == nullptr || std::all_of(tensor_split, tensor_split + device_count, [](float x) { return x == 0.0f; });
  4455. std::vector<float> splits(device_count);
  4456. if (all_zero) {
  4457. // default split, by free memory
  4458. for (int i = 0; i < device_count; ++i) {
  4459. splits[i] = llama_get_device_memory(model, i);
  4460. }
  4461. } else {
  4462. std::copy(tensor_split, tensor_split + device_count, splits.begin());
  4463. }
  4464. // sum and normalize the splits to get the split points
  4465. float split_sum = 0.0f;
  4466. for (int i = 0; i < device_count; ++i) {
  4467. split_sum += splits[i];
  4468. splits[i] = split_sum;
  4469. }
  4470. for (int i = 0; i < device_count; ++i) {
  4471. splits[i] /= split_sum;
  4472. }
  4473. // assign the repeating layers to the devices according to the splits
  4474. int act_gpu_layers = std::min(n_gpu_layers, (int)n_layer + 1);
  4475. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4476. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(i - i_gpu_start)/act_gpu_layers) - splits.begin();
  4477. model.buft_layer[i] = llama_default_buffer_type_offload(model, layer_gpu);
  4478. }
  4479. // assign the output layer
  4480. if (n_gpu_layers > n_layer) {
  4481. int layer_gpu = std::upper_bound(splits.begin(), splits.begin() + device_count, float(act_gpu_layers - 1)/act_gpu_layers) - splits.begin();
  4482. model.buft_output = llama_default_buffer_type_offload(model, layer_gpu);
  4483. } else {
  4484. model.buft_output = llama_default_buffer_type_cpu(true);
  4485. }
  4486. } else {
  4487. ggml_backend_buffer_type_t split_buft;
  4488. if (split_mode == LLAMA_SPLIT_MODE_ROW) {
  4489. split_buft = llama_default_buffer_type_split(model, main_gpu, tensor_split);
  4490. } else {
  4491. // LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_LAYER in backends where it is not supported
  4492. split_buft = llama_default_buffer_type_offload(model, main_gpu);
  4493. }
  4494. // assign the repeating layers
  4495. for (int64_t i = i_gpu_start; i < n_layer; ++i) {
  4496. model.buft_layer[i] = {
  4497. split_buft,
  4498. llama_default_buffer_type_offload(model, main_gpu)
  4499. };
  4500. }
  4501. // assign the output layer
  4502. if (n_gpu_layers > n_layer) {
  4503. model.buft_output = {
  4504. split_buft,
  4505. llama_default_buffer_type_offload(model, main_gpu)
  4506. };
  4507. } else {
  4508. model.buft_output = llama_default_buffer_type_cpu(true);
  4509. }
  4510. }
  4511. // count used buffer types
  4512. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  4513. buft_layer_count[model.buft_input.buft]++;
  4514. buft_layer_count[model.buft_input.buft_matrix]++;
  4515. buft_layer_count[model.buft_output.buft]++;
  4516. buft_layer_count[model.buft_output.buft_matrix]++;
  4517. for (int64_t i = 0; i < n_layer; ++i) {
  4518. buft_layer_count[model.buft_layer[i].buft]++;
  4519. buft_layer_count[model.buft_layer[i].buft_matrix]++;
  4520. }
  4521. // create one context per buffer type
  4522. size_t ctx_size = ggml_tensor_overhead()*(ml.n_tensors + 1); // +1 for models where tok_embd is duplicated as output
  4523. // for moe merged tensors
  4524. ctx_size += ggml_tensor_overhead()*n_layer*3;
  4525. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  4526. for (auto & it : buft_layer_count) {
  4527. struct ggml_init_params params = {
  4528. /*.mem_size =*/ ctx_size,
  4529. /*.mem_buffer =*/ NULL,
  4530. /*.no_alloc =*/ true,
  4531. };
  4532. ggml_context * ctx = ggml_init(params);
  4533. if (!ctx) {
  4534. throw std::runtime_error(format("failed to create context"));
  4535. }
  4536. ctx_map[it.first] = ctx;
  4537. model.ctxs.push_back(ctx);
  4538. }
  4539. LLAMA_LOG_INFO("%s: ggml ctx size = %7.2f MiB\n", __func__, model.ctxs.size()*ctx_size/1024.0/1024.0);
  4540. // create tensors for the weights
  4541. {
  4542. const int64_t n_embd = hparams.n_embd;
  4543. const int64_t n_embd_head = n_embd / hparams.n_head;
  4544. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  4545. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  4546. const int64_t n_embd_gqa = n_embd_v_gqa;
  4547. const int64_t n_vocab = hparams.n_vocab;
  4548. const int64_t n_vocab_type = hparams.n_vocab_type;
  4549. const int64_t n_ff = hparams.n_ff;
  4550. const int64_t n_expert = hparams.n_expert;
  4551. if (n_expert > 0 && hparams.n_expert_used == 0) {
  4552. throw std::runtime_error("model has expert layers but no expert layers are used");
  4553. }
  4554. ggml_context * ctx_input = ctx_map.at(model.buft_input.buft);
  4555. ggml_context * ctx_output = ctx_map.at(model.buft_output.buft);
  4556. ggml_context * ctx_output_split = ctx_map.at(model.buft_output.buft_matrix);
  4557. auto ctx_for_layer = [&](int i) { return ctx_map.at(model.buft_layer[i].buft); };
  4558. auto ctx_for_layer_split = [&](int i) { return ctx_map.at(model.buft_layer[i].buft_matrix); };
  4559. model.layers.resize(n_layer);
  4560. const auto tn = LLM_TN(model.arch);
  4561. switch (model.arch) {
  4562. case LLM_ARCH_LLAMA:
  4563. case LLM_ARCH_REFACT:
  4564. case LLM_ARCH_MINICPM:
  4565. {
  4566. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4567. // output
  4568. {
  4569. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4570. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4571. // if output is NULL, init from the input tok embed
  4572. if (model.output == NULL) {
  4573. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4574. }
  4575. }
  4576. for (int i = 0; i < n_layer; ++i) {
  4577. ggml_context * ctx_layer = ctx_for_layer(i);
  4578. ggml_context * ctx_split = ctx_for_layer_split(i);
  4579. auto & layer = model.layers[i];
  4580. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4581. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4582. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4583. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4584. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4585. // optional bias tensors
  4586. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4587. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4588. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4589. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4590. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4591. if (n_expert == 0) {
  4592. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4593. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4594. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4595. // optional MLP bias
  4596. layer.ffn_gate_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4597. layer.ffn_down_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4598. layer.ffn_up_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4599. } else {
  4600. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4601. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4602. if (layer.ffn_gate_exps) {
  4603. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4604. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4605. } else {
  4606. // merge split expert into a single tensor for compatibility with older models
  4607. // requires disabling mmap
  4608. use_mmap_buffer = false;
  4609. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4610. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4611. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4612. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4613. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4614. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4615. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4616. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4617. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4618. for (uint32_t x = 0; x < n_expert; ++x) {
  4619. // the individual experts are loaded into a view of the merged tensor
  4620. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4621. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4622. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4623. }
  4624. }
  4625. }
  4626. }
  4627. } break;
  4628. case LLM_ARCH_GROK:
  4629. {
  4630. if (n_expert == 0) {
  4631. throw std::runtime_error("Grok model cannot have zero experts");
  4632. }
  4633. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4634. // output
  4635. {
  4636. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4637. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4638. // if output is NULL, init from the input tok embed
  4639. if (model.output == NULL) {
  4640. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4641. }
  4642. }
  4643. for (int i = 0; i < n_layer; ++i) {
  4644. ggml_context * ctx_layer = ctx_for_layer(i);
  4645. ggml_context * ctx_split = ctx_for_layer_split(i);
  4646. auto & layer = model.layers[i];
  4647. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4648. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4649. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4650. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4651. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4652. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4653. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4654. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4655. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4656. if (layer.ffn_gate_exps) {
  4657. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  4658. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4659. } else {
  4660. // merge split expert into a single tensor for compatibility with older models
  4661. // requires disabling mmap
  4662. use_mmap_buffer = false;
  4663. ggml_type type_gate = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, 0).c_str())->type;
  4664. ggml_type type_down = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, 0).c_str())->type;
  4665. ggml_type type_up = ml.require_tensor_meta(tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, 0).c_str())->type;
  4666. layer.ffn_gate_exps = ggml_new_tensor_3d(ctx_split, type_gate, n_embd, n_ff, n_expert);
  4667. layer.ffn_down_exps = ggml_new_tensor_3d(ctx_split, type_down, n_ff, n_embd, n_expert);
  4668. layer.ffn_up_exps = ggml_new_tensor_3d(ctx_split, type_up, n_embd, n_ff, n_expert);
  4669. ggml_set_name(layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i).c_str());
  4670. ggml_set_name(layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i).c_str());
  4671. ggml_set_name(layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i).c_str());
  4672. for (uint32_t x = 0; x < n_expert; ++x) {
  4673. // the individual experts are loaded into a view of the merged tensor
  4674. ml.create_tensor_as_view(ctx_split, layer.ffn_gate_exps, tn(LLM_TENSOR_FFN_GATE_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_gate_exps->nb[2]*x);
  4675. ml.create_tensor_as_view(ctx_split, layer.ffn_down_exps, tn(LLM_TENSOR_FFN_DOWN_EXP, "weight", i, x), { n_ff, n_embd }, layer.ffn_down_exps->nb[2]*x);
  4676. ml.create_tensor_as_view(ctx_split, layer.ffn_up_exps, tn(LLM_TENSOR_FFN_UP_EXP, "weight", i, x), { n_embd, n_ff }, layer.ffn_up_exps->nb[2]*x);
  4677. }
  4678. }
  4679. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4680. }
  4681. } break;
  4682. case LLM_ARCH_DBRX:
  4683. {
  4684. if (n_expert == 0) {
  4685. throw std::runtime_error("DBRX model cannot have zero experts");
  4686. }
  4687. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4688. // output
  4689. {
  4690. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4691. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4692. }
  4693. for (int i = 0; i < n_layer; ++i) {
  4694. ggml_context * ctx_layer = ctx_for_layer(i);
  4695. ggml_context * ctx_split = ctx_for_layer_split(i);
  4696. auto & layer = model.layers[i];
  4697. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4698. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4699. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4700. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4701. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  4702. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4703. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff, n_embd, n_expert});
  4704. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  4705. }
  4706. } break;
  4707. case LLM_ARCH_BAICHUAN:
  4708. {
  4709. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4710. {
  4711. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4712. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4713. }
  4714. for (int i = 0; i < n_layer; ++i) {
  4715. ggml_context * ctx_layer = ctx_for_layer(i);
  4716. ggml_context * ctx_split = ctx_for_layer_split(i);
  4717. auto & layer = model.layers[i];
  4718. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4719. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4720. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4721. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4722. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4723. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4724. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4725. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4726. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4727. }
  4728. } break;
  4729. case LLM_ARCH_FALCON:
  4730. {
  4731. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4732. // output
  4733. {
  4734. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4735. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4736. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4737. if (!model.output) {
  4738. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4739. }
  4740. }
  4741. for (int i = 0; i < n_layer; ++i) {
  4742. ggml_context * ctx_layer = ctx_for_layer(i);
  4743. ggml_context * ctx_split = ctx_for_layer_split(i);
  4744. auto & layer = model.layers[i];
  4745. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4746. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4747. layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4748. layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4749. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4750. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4751. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4752. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4753. }
  4754. } break;
  4755. case LLM_ARCH_STARCODER:
  4756. {
  4757. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4758. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4759. // output
  4760. {
  4761. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4762. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4763. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4764. if (!model.output) {
  4765. // needs to be on GPU
  4766. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4767. }
  4768. }
  4769. for (int i = 0; i < n_layer; ++i) {
  4770. ggml_context * ctx_layer = ctx_for_layer(i);
  4771. ggml_context * ctx_split = ctx_for_layer_split(i);
  4772. auto & layer = model.layers[i];
  4773. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4774. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4775. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4776. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4777. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4778. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4779. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4780. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4781. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4782. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4783. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4784. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4785. }
  4786. } break;
  4787. case LLM_ARCH_BERT:
  4788. case LLM_ARCH_NOMIC_BERT:
  4789. {
  4790. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4791. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type});
  4792. if (model.arch == LLM_ARCH_BERT) {
  4793. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  4794. }
  4795. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4796. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4797. for (int i = 0; i < n_layer; ++i) {
  4798. ggml_context * ctx_layer = ctx_for_layer(i);
  4799. ggml_context * ctx_split = ctx_for_layer_split(i);
  4800. auto & layer = model.layers[i];
  4801. if (model.arch == LLM_ARCH_BERT) {
  4802. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4803. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4804. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4805. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4806. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4807. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4808. } else {
  4809. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4810. }
  4811. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4812. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd});
  4813. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4814. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4815. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4816. if (model.arch == LLM_ARCH_BERT) {
  4817. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4818. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4819. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4820. } else {
  4821. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4822. }
  4823. layer.layer_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4824. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4825. }
  4826. } break;
  4827. case LLM_ARCH_JINA_BERT_V2:
  4828. {
  4829. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); // word_embeddings
  4830. model.type_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_TYPES, "weight"), {n_embd, n_vocab_type}); //token_type_embeddings
  4831. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd}); // LayerNorm
  4832. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd}); //LayerNorm bias
  4833. for (int i = 0; i < n_layer; ++i) {
  4834. ggml_context * ctx_layer = ctx_for_layer(i);
  4835. ggml_context * ctx_split = ctx_for_layer_split(i);
  4836. auto & layer = model.layers[i]; // JinaBertLayer
  4837. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4838. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  4839. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4840. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4841. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4842. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  4843. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4844. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4845. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4846. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  4847. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); //output_dens
  4848. layer.bo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}); //output_dens
  4849. layer.attn_out_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "weight", i), {n_embd}); //output_norm
  4850. layer.attn_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT_NORM, "bias", i), {n_embd});
  4851. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4852. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4853. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4854. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4855. layer.layer_out_norm = ml.create_tensor(ctx_split, tn(LLM_TENSOR_LAYER_OUT_NORM, "weight", i), {n_embd});
  4856. layer.layer_out_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_LAYER_OUT_NORM, "bias", i), {n_embd});
  4857. }
  4858. } break;
  4859. case LLM_ARCH_BLOOM:
  4860. {
  4861. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4862. model.tok_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
  4863. model.tok_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "bias"), {n_embd});
  4864. // output
  4865. {
  4866. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4867. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4868. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4869. }
  4870. for (int i = 0; i < n_layer; ++i) {
  4871. ggml_context * ctx_layer = ctx_for_layer(i);
  4872. ggml_context * ctx_split = ctx_for_layer_split(i);
  4873. auto & layer = model.layers[i];
  4874. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4875. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4876. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4877. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  4878. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4879. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  4880. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4881. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  4882. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4883. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  4884. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4885. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  4886. }
  4887. } break;
  4888. case LLM_ARCH_MPT:
  4889. {
  4890. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4891. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4892. // output
  4893. {
  4894. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4895. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4896. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4897. if (!model.output) {
  4898. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // needs to be on GPU
  4899. }
  4900. }
  4901. for (int i = 0; i < n_layer; ++i) {
  4902. ggml_context * ctx_layer = ctx_for_layer(i);
  4903. ggml_context * ctx_split = ctx_for_layer_split(i);
  4904. auto & layer = model.layers[i];
  4905. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4906. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4907. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  4908. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4909. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4910. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4911. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4912. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4913. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  4914. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4915. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4916. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4917. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4918. layer.attn_q_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4919. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4920. layer.attn_k_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4921. // AWQ ScaleActivation layer
  4922. layer.ffn_act = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4923. }
  4924. } break;
  4925. case LLM_ARCH_STABLELM:
  4926. {
  4927. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4928. // output
  4929. {
  4930. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  4931. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4932. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4933. }
  4934. for (int i = 0; i < n_layer; ++i) {
  4935. ggml_context * ctx_layer = ctx_for_layer(i);
  4936. ggml_context * ctx_split = ctx_for_layer_split(i);
  4937. auto & layer = model.layers[i];
  4938. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4939. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  4940. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4941. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  4942. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  4943. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4944. // optional bias tensors, present in Stable LM 2 1.6B
  4945. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4946. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4947. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4948. // optional q and k layernorms, present in StableLM 2 12B
  4949. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4950. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4951. // optional FFN norm, not present in StableLM 2 12B which uses parallel residual
  4952. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4953. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4954. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  4955. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  4956. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  4957. }
  4958. } break;
  4959. case LLM_ARCH_QWEN:
  4960. {
  4961. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4962. // output
  4963. {
  4964. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4965. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  4966. }
  4967. for (int i = 0; i < n_layer; ++i) {
  4968. ggml_context * ctx_layer = ctx_for_layer(i);
  4969. ggml_context * ctx_split = ctx_for_layer_split(i);
  4970. auto & layer = model.layers[i];
  4971. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4972. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd*3});
  4973. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd*3});
  4974. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  4975. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  4976. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff/2});
  4977. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff/2, n_embd});
  4978. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff/2});
  4979. }
  4980. } break;
  4981. case LLM_ARCH_QWEN2:
  4982. {
  4983. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  4984. // output
  4985. {
  4986. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  4987. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  4988. // if output is NULL, init from the input tok embed
  4989. if (model.output == NULL) {
  4990. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  4991. }
  4992. }
  4993. for (int i = 0; i < n_layer; ++i) {
  4994. ggml_context * ctx_layer = ctx_for_layer(i);
  4995. ggml_context * ctx_split = ctx_for_layer_split(i);
  4996. auto & layer = model.layers[i];
  4997. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  4998. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  4999. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5000. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5001. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5002. // optional bias tensors
  5003. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5004. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5005. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5006. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5007. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5008. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5009. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5010. }
  5011. } break;
  5012. case LLM_ARCH_QWEN2MOE:
  5013. {
  5014. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5015. // output
  5016. {
  5017. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5018. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5019. }
  5020. for (int i = 0; i < n_layer; ++i) {
  5021. ggml_context * ctx_layer = ctx_for_layer(i);
  5022. ggml_context * ctx_split = ctx_for_layer_split(i);
  5023. auto & layer = model.layers[i];
  5024. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5025. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5026. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5027. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5028. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5029. // optional bias tensors
  5030. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5031. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5032. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5033. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5034. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5035. GGML_ASSERT(hparams.n_expert > 0);
  5036. GGML_ASSERT(hparams.n_expert_used > 0);
  5037. // MoE branch
  5038. auto n_ff_exp = n_ff / hparams.n_expert_used;
  5039. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5040. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5041. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5042. // Shared expert branch
  5043. layer.ffn_gate_inp_shexp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP_SHEXP, "weight", i), {n_embd});
  5044. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff});
  5045. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff, n_embd});
  5046. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff});
  5047. }
  5048. } break;
  5049. case LLM_ARCH_PHI2:
  5050. {
  5051. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5052. // output
  5053. {
  5054. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5055. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5056. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5057. model.output_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT, "bias"), {n_vocab});
  5058. }
  5059. for (int i = 0; i < n_layer; ++i) {
  5060. ggml_context * ctx_layer = ctx_for_layer(i);
  5061. ggml_context * ctx_split = ctx_for_layer_split(i);
  5062. auto & layer = model.layers[i];
  5063. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5064. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5065. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5066. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5067. if (layer.wqkv == nullptr) {
  5068. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5069. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5070. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5071. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5072. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5073. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5074. }
  5075. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5076. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5077. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5078. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5079. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5080. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5081. }
  5082. } break;
  5083. case LLM_ARCH_PHI3:
  5084. {
  5085. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), { n_embd, n_vocab });
  5086. // output
  5087. {
  5088. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), { n_embd });
  5089. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), { n_embd, n_vocab });
  5090. }
  5091. for (int i = 0; i < n_layer; ++i) {
  5092. ggml_context* ctx_layer = ctx_for_layer(i);
  5093. ggml_context* ctx_split = ctx_for_layer_split(i);
  5094. auto & layer = model.layers[i];
  5095. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), { n_embd });
  5096. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), { n_embd, n_embd + 2 * n_embd_gqa }, llama_model_loader::TENSOR_NOT_REQUIRED);
  5097. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), { n_embd, n_embd });
  5098. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), { n_embd });
  5099. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd });
  5100. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), { n_embd, 2 * n_ff });
  5101. layer.rope_long = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_LONG, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5102. layer.rope_short = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ROPE_FACTORS_SHORT, "weight"), { n_embd_head/2 }, llama_model_loader::TENSOR_NOT_REQUIRED | (i != 0 ? llama_model_loader::TENSOR_DUPLICATED : 0));
  5103. }
  5104. } break;
  5105. case LLM_ARCH_PLAMO:
  5106. {
  5107. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5108. // output
  5109. {
  5110. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5111. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5112. }
  5113. for (int i = 0; i < n_layer; ++i) {
  5114. ggml_context * ctx_layer = ctx_for_layer(i);
  5115. ggml_context * ctx_split = ctx_for_layer_split(i);
  5116. auto & layer = model.layers[i];
  5117. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5118. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5119. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5120. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5121. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5122. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5123. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5124. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5125. }
  5126. } break;
  5127. case LLM_ARCH_GPT2:
  5128. {
  5129. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5130. model.pos_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_POS_EMBD, "weight"), {n_embd, hparams.n_ctx_train});
  5131. // output
  5132. {
  5133. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5134. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5135. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5136. }
  5137. for (int i = 0; i < n_layer; ++i) {
  5138. ggml_context * ctx_layer = ctx_for_layer(i);
  5139. ggml_context * ctx_split = ctx_for_layer_split(i);
  5140. auto & layer = model.layers[i];
  5141. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5142. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5143. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5144. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5145. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5146. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5147. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5148. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5149. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5150. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5151. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5152. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5153. }
  5154. } break;
  5155. case LLM_ARCH_CODESHELL:
  5156. {
  5157. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5158. // output
  5159. {
  5160. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5161. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5162. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5163. }
  5164. for (int i = 0; i < n_layer; ++i) {
  5165. ggml_context * ctx_layer = ctx_for_layer(i);
  5166. ggml_context * ctx_split = ctx_for_layer_split(i);
  5167. auto & layer = model.layers[i];
  5168. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5169. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5170. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5171. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5172. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5173. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5174. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5175. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5176. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5177. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5178. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5179. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5180. }
  5181. } break;
  5182. case LLM_ARCH_ORION:
  5183. {
  5184. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5185. {
  5186. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5187. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5188. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5189. }
  5190. for (int i = 0; i < n_layer; ++i) {
  5191. ggml_context * ctx_layer = ctx_for_layer(i);
  5192. ggml_context * ctx_split = ctx_for_layer_split(i);
  5193. auto & layer = model.layers[i];
  5194. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5195. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5196. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5197. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5198. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5199. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5200. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5201. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5202. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5203. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5204. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5205. }
  5206. } break;
  5207. case LLM_ARCH_INTERNLM2:
  5208. {
  5209. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5210. // output
  5211. {
  5212. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5213. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5214. }
  5215. for (int i = 0; i < n_layer; ++i) {
  5216. ggml_context * ctx_layer = ctx_for_layer(i);
  5217. ggml_context * ctx_split = ctx_for_layer_split(i);
  5218. auto & layer = model.layers[i];
  5219. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5220. // layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5221. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5222. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5223. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5224. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5225. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5226. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5227. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5228. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5229. }
  5230. } break;
  5231. case LLM_ARCH_GEMMA:
  5232. {
  5233. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5234. // output
  5235. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5236. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED); // same as tok_embd, duplicated to allow offloading
  5237. const int64_t n_ff = hparams.n_ff;
  5238. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5239. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5240. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5241. for (uint32_t i = 0; i < n_layer; ++i) {
  5242. ggml_context * ctx_layer = ctx_for_layer(i);
  5243. ggml_context * ctx_split = ctx_for_layer_split(i);
  5244. auto & layer = model.layers[i];
  5245. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5246. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_head_k * hparams.n_head});
  5247. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_k_gqa});
  5248. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_v_gqa});
  5249. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd_head_k * hparams.n_head, n_embd});
  5250. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5251. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5252. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5253. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5254. }
  5255. } break;
  5256. case LLM_ARCH_STARCODER2:
  5257. {
  5258. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5259. // output
  5260. {
  5261. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5262. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5263. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5264. // if output is NULL, init from the input tok embed
  5265. if (model.output == NULL) {
  5266. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5267. }
  5268. }
  5269. for (int i = 0; i < n_layer; ++i) {
  5270. ggml_context * ctx_layer = ctx_for_layer(i);
  5271. ggml_context * ctx_split = ctx_for_layer_split(i);
  5272. auto & layer = model.layers[i];
  5273. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5274. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5275. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5276. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5277. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5278. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5279. // optional bias tensors
  5280. layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd});
  5281. layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa});
  5282. layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa});
  5283. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5284. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5285. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5286. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5287. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5288. // optional bias tensors
  5289. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5290. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP , "bias", i), { n_ff});
  5291. }
  5292. } break;
  5293. case LLM_ARCH_MAMBA:
  5294. {
  5295. const int64_t d_conv = hparams.ssm_d_conv;
  5296. const int64_t d_inner = hparams.ssm_d_inner;
  5297. const int64_t d_state = hparams.ssm_d_state;
  5298. const int64_t dt_rank = hparams.ssm_dt_rank;
  5299. // only an expansion factor of 2 is supported for now
  5300. GGML_ASSERT(2 * n_embd == d_inner);
  5301. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5302. // output
  5303. {
  5304. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5305. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5306. // if output is NULL, init from the input tok embed, duplicated to allow offloading
  5307. if (model.output == NULL) {
  5308. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5309. }
  5310. }
  5311. for (int i = 0; i < n_layer; ++i) {
  5312. ggml_context * ctx_layer = ctx_for_layer(i);
  5313. ggml_context * ctx_split = ctx_for_layer_split(i);
  5314. auto & layer = model.layers[i];
  5315. // norm
  5316. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5317. layer.ssm_in = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_IN, "weight", i), {n_embd, 2*d_inner});
  5318. layer.ssm_conv1d = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_CONV1D, "weight", i), {d_conv, d_inner});
  5319. layer.ssm_conv1d_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_CONV1D, "bias", i), {d_inner});
  5320. layer.ssm_x = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_X, "weight", i), {d_inner, dt_rank + 2*d_state});
  5321. layer.ssm_dt = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_DT, "weight", i), {dt_rank, d_inner});
  5322. layer.ssm_dt_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_DT, "bias", i), {d_inner});
  5323. // no "weight" suffix for these
  5324. layer.ssm_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_A, i), {d_state, d_inner});
  5325. layer.ssm_d = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_SSM_D, i), {d_inner});
  5326. // out_proj
  5327. layer.ssm_out = ml.create_tensor(ctx_split, tn(LLM_TENSOR_SSM_OUT, "weight", i), {d_inner, n_embd});
  5328. }
  5329. } break;
  5330. case LLM_ARCH_XVERSE:
  5331. {
  5332. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5333. {
  5334. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5335. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5336. }
  5337. for (int i = 0; i < n_layer; ++i) {
  5338. ggml_context * ctx_layer = ctx_for_layer(i);
  5339. ggml_context * ctx_split = ctx_for_layer_split(i);
  5340. auto & layer = model.layers[i];
  5341. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5342. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5343. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5344. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5345. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5346. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5347. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5348. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5349. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5350. }
  5351. } break;
  5352. case LLM_ARCH_COMMAND_R:
  5353. {
  5354. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5355. // output
  5356. {
  5357. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5358. // init output from the input tok embed
  5359. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5360. }
  5361. for (int i = 0; i < n_layer; ++i) {
  5362. ggml_context * ctx_layer = ctx_for_layer(i);
  5363. ggml_context * ctx_split = ctx_for_layer_split(i);
  5364. auto & layer = model.layers[i];
  5365. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5366. if (n_layer >= 64){
  5367. layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
  5368. layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
  5369. }
  5370. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5371. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5372. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5373. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5374. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5375. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5376. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5377. }
  5378. } break;
  5379. case LLM_ARCH_OLMO: // adapted from LLM_ARCH_LLAMA with norm params removed
  5380. {
  5381. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5382. // output
  5383. {
  5384. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5385. // if output is NULL, init from the input tok embed
  5386. if (model.output == NULL) {
  5387. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5388. }
  5389. }
  5390. for (int i = 0; i < n_layer; ++i) {
  5391. ggml_context * ctx_split = ctx_for_layer_split(i);
  5392. auto & layer = model.layers[i];
  5393. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5394. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5395. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5396. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5397. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5398. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5399. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5400. }
  5401. } break;
  5402. case LLM_ARCH_GPTNEOX:
  5403. {
  5404. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5405. // output
  5406. {
  5407. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5408. model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd});
  5409. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5410. }
  5411. for (int i = 0; i < n_layer; ++i) {
  5412. ggml_context * ctx_layer = ctx_for_layer(i);
  5413. ggml_context * ctx_split = ctx_for_layer_split(i);
  5414. auto & layer = model.layers[i];
  5415. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5416. layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
  5417. layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
  5418. layer.bqkv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_QKV, "bias", i), {n_embd + 2*n_embd_gqa});
  5419. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5420. layer.bo = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_OUT, "bias", i), {n_embd});
  5421. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5422. layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd});
  5423. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_ff, n_embd});
  5424. layer.ffn_down_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_DOWN, "bias", i), {n_embd});
  5425. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5426. layer.ffn_up_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_UP, "bias", i), {n_ff});
  5427. }
  5428. } break;
  5429. case LLM_ARCH_ARCTIC:
  5430. {
  5431. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5432. // output
  5433. {
  5434. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5435. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_NOT_REQUIRED);
  5436. // if output is NULL, init from the input tok embed
  5437. if (model.output == NULL) {
  5438. model.output = ml.create_tensor(ctx_output, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, llama_model_loader::TENSOR_DUPLICATED);
  5439. }
  5440. }
  5441. for (int i = 0; i < n_layer; ++i) {
  5442. ggml_context * ctx_layer = ctx_for_layer(i);
  5443. ggml_context * ctx_split = ctx_for_layer_split(i);
  5444. auto & layer = model.layers[i];
  5445. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5446. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
  5447. layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
  5448. layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
  5449. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
  5450. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5451. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_embd});
  5452. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), {n_embd, n_embd});
  5453. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_embd});
  5454. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5455. layer.ffn_norm_exps = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM_EXPS, "weight", i), {n_embd});
  5456. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), {n_embd, n_ff, n_expert}, false);
  5457. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), { n_ff, n_embd, n_expert});
  5458. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), {n_embd, n_ff, n_expert});
  5459. }
  5460. } break;
  5461. case LLM_ARCH_DEEPSEEK2:
  5462. {
  5463. bool is_lite = (hparams.n_layer == 27);
  5464. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  5465. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  5466. const uint32_t q_lora_rank = hparams.n_lora_q;
  5467. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  5468. const uint32_t n_ff_exp = hparams.n_ff_exp;
  5469. model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
  5470. // output
  5471. {
  5472. model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
  5473. model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
  5474. }
  5475. for (int i = 0; i < n_layer; ++i) {
  5476. ggml_context * ctx_layer = ctx_for_layer(i);
  5477. ggml_context * ctx_split = ctx_for_layer_split(i);
  5478. auto & layer = model.layers[i];
  5479. layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
  5480. if (!is_lite) {
  5481. layer.attn_q_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_A_NORM, "weight", i), {q_lora_rank});
  5482. }
  5483. layer.attn_kv_a_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_KV_A_NORM, "weight", i), {kv_lora_rank});
  5484. if (!is_lite) {
  5485. layer.wq_a = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_A, "weight", i), {n_embd, q_lora_rank});
  5486. layer.wq_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q_B, "weight", i), {q_lora_rank, hparams.n_head * hparams.n_embd_head_k});
  5487. } else {
  5488. layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd_k_gqa});
  5489. }
  5490. layer.wkv_a_mqa = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_A_MQA, "weight", i), {n_embd, kv_lora_rank + n_embd_head_qk_rope});
  5491. layer.wkv_b = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_KV_B, "weight", i), {kv_lora_rank, hparams.n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)});
  5492. layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {hparams.n_head * hparams.n_embd_head_v, n_embd});
  5493. layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
  5494. if ((uint32_t) i < hparams.n_layer_dense_lead) {
  5495. layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
  5496. layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
  5497. layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
  5498. } else {
  5499. layer.ffn_gate_inp = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_GATE_INP, "weight", i), {n_embd, n_expert});
  5500. GGML_ASSERT(hparams.n_expert > 0);
  5501. GGML_ASSERT(hparams.n_expert_used > 0);
  5502. // MoE branch
  5503. layer.ffn_gate_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5504. layer.ffn_down_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_EXPS, "weight", i), {n_ff_exp, n_embd, n_expert});
  5505. layer.ffn_up_exps = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_EXPS, "weight", i), { n_embd, n_ff_exp, n_expert});
  5506. // Shared expert branch
  5507. layer.ffn_gate_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5508. layer.ffn_down_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN_SHEXP, "weight", i), { n_ff_exp * hparams.n_expert_shared, n_embd});
  5509. layer.ffn_up_shexp = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP_SHEXP, "weight", i), {n_embd, n_ff_exp * hparams.n_expert_shared});
  5510. }
  5511. }
  5512. } break;
  5513. default:
  5514. throw std::runtime_error("unknown architecture");
  5515. }
  5516. }
  5517. ml.done_getting_tensors();
  5518. ml.init_mappings(true, use_mlock ? &model.mlock_mmaps : nullptr);
  5519. model.mappings.reserve(ml.mappings.size());
  5520. // create the backend buffers
  5521. std::vector<std::pair<ggml_context *, llama_buf_map>> ctx_bufs;
  5522. ctx_bufs.reserve(ctx_map.size());
  5523. // Ensure we have enough capacity for the maximum backend buffer we will potentially create
  5524. size_t n_max_backend_buffer = ctx_map.size() * ml.files.size();
  5525. model.bufs.reserve(n_max_backend_buffer);
  5526. for (auto & it : ctx_map) {
  5527. ggml_backend_buffer_type_t buft = it.first;
  5528. ggml_context * ctx = it.second;
  5529. llama_buf_map bufs;
  5530. bufs.reserve(n_max_backend_buffer);
  5531. // only the mmap region containing the tensors in the model is mapped to the backend buffer
  5532. // this is important for metal with apple silicon: if the entire model could be mapped to a metal buffer, then we could just use metal for all layers
  5533. // this allows using partial offloading when the model size exceeds the metal buffer size, but not the RAM size
  5534. if (ml.use_mmap && use_mmap_buffer && buft == llama_default_buffer_type_cpu(true)) {
  5535. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5536. void * addr = nullptr;
  5537. size_t first, last;
  5538. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5539. if (first >= last) {
  5540. continue;
  5541. }
  5542. ggml_backend_buffer_t buf = ggml_backend_cpu_buffer_from_ptr((char *) addr + first, last - first);
  5543. if (buf == nullptr) {
  5544. throw std::runtime_error("unable to allocate backend CPU buffer");
  5545. }
  5546. model.bufs.push_back(buf);
  5547. bufs.emplace(idx, buf);
  5548. #ifdef GGML_USE_CUDA
  5549. if (n_layer >= n_gpu_layers) {
  5550. ggml_backend_cuda_register_host_buffer(
  5551. ggml_backend_buffer_get_base(buf),
  5552. ggml_backend_buffer_get_size(buf));
  5553. }
  5554. #endif
  5555. }
  5556. }
  5557. #ifdef GGML_USE_METAL
  5558. else if (ml.use_mmap && use_mmap_buffer && buft == ggml_backend_metal_buffer_type()) {
  5559. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5560. const size_t max_size = ggml_get_max_tensor_size(ctx);
  5561. void * addr = nullptr;
  5562. size_t first, last;
  5563. ml.get_mapping_range(&first, &last, &addr, idx, ctx);
  5564. if (first >= last) {
  5565. continue;
  5566. }
  5567. ggml_backend_buffer_t buf = ggml_backend_metal_buffer_from_ptr((char *) addr + first, last - first, max_size);
  5568. if (buf == nullptr) {
  5569. throw std::runtime_error("unable to allocate backend metal buffer");
  5570. }
  5571. model.bufs.push_back(buf);
  5572. bufs.emplace(idx, buf);
  5573. }
  5574. }
  5575. #endif
  5576. else {
  5577. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  5578. if (buf == nullptr) {
  5579. throw std::runtime_error("unable to allocate backend buffer");
  5580. }
  5581. model.bufs.push_back(buf);
  5582. if (use_mlock && ggml_backend_buffer_is_host(buf)) {
  5583. model.mlock_bufs.emplace_back(new llama_mlock);
  5584. auto & mlock_buf = model.mlock_bufs.back();
  5585. mlock_buf->init (ggml_backend_buffer_get_base(buf));
  5586. mlock_buf->grow_to(ggml_backend_buffer_get_size(buf));
  5587. }
  5588. for (uint32_t idx = 0; idx < ml.files.size(); idx++) {
  5589. bufs.emplace(idx, buf);
  5590. }
  5591. }
  5592. if (bufs.empty()) {
  5593. throw std::runtime_error("failed to allocate buffer");
  5594. }
  5595. for (auto & buf : bufs) {
  5596. // indicate that this buffer contains weights
  5597. // this is used by ggml_backend_sched to improve op scheduling -> ops that use a weight are preferably scheduled to the backend that contains the weight
  5598. ggml_backend_buffer_set_usage(buf.second, GGML_BACKEND_BUFFER_USAGE_WEIGHTS);
  5599. }
  5600. ctx_bufs.emplace_back(ctx, bufs);
  5601. }
  5602. if (llama_supports_gpu_offload()) {
  5603. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  5604. LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
  5605. if (n_gpu_layers > (int) hparams.n_layer) {
  5606. LLAMA_LOG_INFO("%s: offloading non-repeating layers to GPU\n", __func__);
  5607. }
  5608. const int max_backend_supported_layers = hparams.n_layer + 1;
  5609. const int max_offloadable_layers = hparams.n_layer + 1;
  5610. LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
  5611. }
  5612. // print memory requirements
  5613. for (ggml_backend_buffer_t buf : model.bufs) {
  5614. LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
  5615. }
  5616. // populate tensors_by_name
  5617. for (ggml_context * ctx : model.ctxs) {
  5618. for (auto * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  5619. model.tensors_by_name.emplace_back(ggml_get_name(cur), cur);
  5620. }
  5621. }
  5622. // load tensor data
  5623. for (auto & it : ctx_bufs) {
  5624. ggml_context * ctx = it.first;
  5625. auto & bufs = it.second;
  5626. if (!ml.load_all_data(ctx, bufs, use_mlock ? &model.mlock_mmaps : NULL, progress_callback, progress_callback_user_data)) {
  5627. return false;
  5628. }
  5629. }
  5630. if (use_mmap_buffer) {
  5631. for (auto & mapping : ml.mappings) {
  5632. model.mappings.emplace_back(std::move(mapping));
  5633. }
  5634. }
  5635. // loading time will be recalculate after the first eval, so
  5636. // we take page faults deferred by mmap() into consideration
  5637. model.t_load_us = ggml_time_us() - model.t_start_us;
  5638. return true;
  5639. }
  5640. // Returns 0 on success, -1 on error, and -2 on cancellation via llama_progress_callback
  5641. static int llama_model_load(const std::string & fname, llama_model & model, llama_model_params & params) {
  5642. try {
  5643. llama_model_loader ml(fname, params.use_mmap, params.check_tensors, params.kv_overrides);
  5644. model.hparams.vocab_only = params.vocab_only;
  5645. try {
  5646. llm_load_arch(ml, model);
  5647. } catch(const std::exception & e) {
  5648. throw std::runtime_error("error loading model architecture: " + std::string(e.what()));
  5649. }
  5650. try {
  5651. llm_load_hparams(ml, model);
  5652. } catch(const std::exception & e) {
  5653. throw std::runtime_error("error loading model hyperparameters: " + std::string(e.what()));
  5654. }
  5655. try {
  5656. llm_load_vocab(ml, model);
  5657. } catch(const std::exception & e) {
  5658. throw std::runtime_error("error loading model vocabulary: " + std::string(e.what()));
  5659. }
  5660. llm_load_print_meta(ml, model);
  5661. if (model.vocab.type != LLAMA_VOCAB_TYPE_NONE &&
  5662. model.hparams.n_vocab != model.vocab.id_to_token.size()) {
  5663. throw std::runtime_error("vocab size mismatch");
  5664. }
  5665. if (params.vocab_only) {
  5666. LLAMA_LOG_INFO("%s: vocab only - skipping tensors\n", __func__);
  5667. return 0;
  5668. }
  5669. #ifdef GGML_USE_KOMPUTE
  5670. if (params.n_gpu_layers > 0 && (
  5671. !(model.arch == LLM_ARCH_LLAMA || model.arch == LLM_ARCH_FALCON)
  5672. || !(
  5673. model.ftype == LLAMA_FTYPE_ALL_F32 ||
  5674. model.ftype == LLAMA_FTYPE_MOSTLY_F16 ||
  5675. model.ftype == LLAMA_FTYPE_MOSTLY_BF16 ||
  5676. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  5677. model.ftype == LLAMA_FTYPE_MOSTLY_Q4_1
  5678. )
  5679. )) {
  5680. // TODO(cebtenzzre): propagate this error outside of llama_load_model_from_file
  5681. LLAMA_LOG_WARN("%s: disabling Kompute due to unsupported model arch or quantization\n", __func__);
  5682. params.n_gpu_layers = 0;
  5683. }
  5684. #endif
  5685. #ifdef GGML_USE_SYCL
  5686. if (params.split_mode == LLAMA_SPLIT_MODE_NONE) {
  5687. ggml_backend_sycl_set_single_device_mode(params.main_gpu);
  5688. //SYCL use device index (0, 1, 2) directly, uer input device id, then convert to device index.
  5689. params.main_gpu = ggml_backend_sycl_get_device_index(params.main_gpu);
  5690. } else {
  5691. ggml_backend_sycl_set_mul_device_mode();
  5692. }
  5693. #endif
  5694. if (!llm_load_tensors(
  5695. ml, model, params.n_gpu_layers, params.split_mode, params.main_gpu, params.tensor_split, params.use_mlock,
  5696. params.progress_callback, params.progress_callback_user_data
  5697. )) {
  5698. return -2;
  5699. }
  5700. } catch (const std::exception & err) {
  5701. LLAMA_LOG_ERROR("%s: error loading model: %s\n", __func__, err.what());
  5702. return -1;
  5703. }
  5704. return 0;
  5705. }
  5706. //
  5707. // llm_build
  5708. //
  5709. using llm_build_cb = std::function<void(struct ggml_tensor * cur, const char * name, int nl)>;
  5710. enum llm_ffn_op_type {
  5711. LLM_FFN_SILU,
  5712. LLM_FFN_GELU,
  5713. LLM_FFN_RELU,
  5714. LLM_FFN_RELU_SQR,
  5715. };
  5716. enum llm_ffn_gate_type {
  5717. LLM_FFN_SEQ,
  5718. LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
  5719. };
  5720. enum llm_norm_type {
  5721. LLM_NORM,
  5722. LLM_NORM_RMS,
  5723. };
  5724. static struct ggml_tensor * llm_build_inp_embd(
  5725. struct ggml_context * ctx,
  5726. struct llama_context & lctx,
  5727. const llama_hparams & hparams,
  5728. const llama_batch & batch,
  5729. struct ggml_tensor * tok_embd,
  5730. const llm_build_cb & cb) {
  5731. const int64_t n_embd = hparams.n_embd;
  5732. struct ggml_tensor * inpL;
  5733. if (batch.token) {
  5734. lctx.inp_tokens = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, batch.n_tokens);
  5735. cb(lctx.inp_tokens, "inp_tokens", -1);
  5736. ggml_set_input(lctx.inp_tokens);
  5737. inpL = ggml_get_rows(ctx, tok_embd, lctx.inp_tokens);
  5738. } else {
  5739. lctx.inp_embd = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, batch.n_tokens);
  5740. inpL = lctx.inp_embd;
  5741. ggml_set_input(lctx.inp_embd);
  5742. }
  5743. cb(inpL, "inp_embd", -1);
  5744. return inpL;
  5745. }
  5746. static void llm_build_kv_store(
  5747. struct ggml_context * ctx,
  5748. const llama_hparams & hparams,
  5749. const llama_cparams & cparams,
  5750. const llama_kv_cache & kv,
  5751. struct ggml_cgraph * graph,
  5752. struct ggml_tensor * k_cur,
  5753. struct ggml_tensor * v_cur,
  5754. int32_t n_tokens,
  5755. int32_t kv_head,
  5756. const llm_build_cb & cb,
  5757. int64_t il) {
  5758. const int64_t n_ctx = cparams.n_ctx;
  5759. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5760. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5761. GGML_ASSERT(kv.size == n_ctx);
  5762. struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
  5763. (ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
  5764. cb(k_cache_view, "k_cache_view", il);
  5765. // note: storing RoPE-ed version of K in the KV cache
  5766. ggml_build_forward_expand(graph, ggml_cpy(ctx, k_cur, k_cache_view));
  5767. assert(v_cur->ne[0] == n_embd_v_gqa && v_cur->ne[1] == n_tokens);
  5768. struct ggml_tensor * v_cache_view = nullptr;
  5769. if (cparams.flash_attn) {
  5770. v_cache_view = ggml_view_1d(ctx, kv.v_l[il], n_tokens*n_embd_v_gqa,
  5771. (kv_head)*ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa));
  5772. } else {
  5773. // note: the V cache is transposed when not using flash attention
  5774. v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
  5775. ( n_ctx)*ggml_element_size(kv.v_l[il]),
  5776. (kv_head)*ggml_element_size(kv.v_l[il]));
  5777. v_cur = ggml_transpose(ctx, v_cur);
  5778. }
  5779. cb(v_cache_view, "v_cache_view", il);
  5780. ggml_build_forward_expand(graph, ggml_cpy(ctx, v_cur, v_cache_view));
  5781. }
  5782. static struct ggml_tensor * llm_build_norm(
  5783. struct ggml_context * ctx,
  5784. struct ggml_tensor * cur,
  5785. const llama_hparams & hparams,
  5786. struct ggml_tensor * mw,
  5787. struct ggml_tensor * mb,
  5788. llm_norm_type type,
  5789. const llm_build_cb & cb,
  5790. int il) {
  5791. switch (type) {
  5792. case LLM_NORM: cur = ggml_norm (ctx, cur, hparams.f_norm_eps); break;
  5793. case LLM_NORM_RMS: cur = ggml_rms_norm(ctx, cur, hparams.f_norm_rms_eps); break;
  5794. }
  5795. if (mw || mb) {
  5796. cb(cur, "norm", il);
  5797. }
  5798. if (mw) {
  5799. cur = ggml_mul(ctx, cur, mw);
  5800. if (mb) {
  5801. cb(cur, "norm_w", il);
  5802. }
  5803. }
  5804. if (mb) {
  5805. cur = ggml_add(ctx, cur, mb);
  5806. }
  5807. return cur;
  5808. }
  5809. static struct ggml_tensor * llm_build_ffn(
  5810. struct ggml_context * ctx,
  5811. struct ggml_tensor * cur,
  5812. struct ggml_tensor * up,
  5813. struct ggml_tensor * up_b,
  5814. struct ggml_tensor * gate,
  5815. struct ggml_tensor * gate_b,
  5816. struct ggml_tensor * down,
  5817. struct ggml_tensor * down_b,
  5818. struct ggml_tensor * act_scales,
  5819. llm_ffn_op_type type_op,
  5820. llm_ffn_gate_type type_gate,
  5821. const llm_build_cb & cb,
  5822. int il) {
  5823. struct ggml_tensor * tmp = up ? ggml_mul_mat(ctx, up, cur) : cur;
  5824. cb(tmp, "ffn_up", il);
  5825. if (up_b) {
  5826. tmp = ggml_add(ctx, tmp, up_b);
  5827. cb(tmp, "ffn_up_b", il);
  5828. }
  5829. if (gate) {
  5830. switch (type_gate) {
  5831. case LLM_FFN_SEQ:
  5832. {
  5833. cur = ggml_mul_mat(ctx, gate, tmp);
  5834. cb(cur, "ffn_gate", il);
  5835. } break;
  5836. case LLM_FFN_PAR:
  5837. {
  5838. cur = ggml_mul_mat(ctx, gate, cur);
  5839. cb(cur, "ffn_gate", il);
  5840. } break;
  5841. }
  5842. if (gate_b) {
  5843. cur = ggml_add(ctx, cur, gate_b);
  5844. cb(cur, "ffn_gate_b", il);
  5845. }
  5846. } else {
  5847. cur = tmp;
  5848. }
  5849. switch (type_op) {
  5850. case LLM_FFN_SILU:
  5851. {
  5852. cur = ggml_silu(ctx, cur);
  5853. cb(cur, "ffn_silu", il);
  5854. } break;
  5855. case LLM_FFN_GELU:
  5856. {
  5857. cur = ggml_gelu(ctx, cur);
  5858. cb(cur, "ffn_gelu", il);
  5859. if (act_scales != NULL) {
  5860. cur = ggml_div(ctx, cur, act_scales);
  5861. cb(cur, "ffn_act", il);
  5862. }
  5863. } break;
  5864. case LLM_FFN_RELU:
  5865. {
  5866. cur = ggml_relu(ctx, cur);
  5867. cb(cur, "ffn_relu", il);
  5868. } break;
  5869. case LLM_FFN_RELU_SQR:
  5870. {
  5871. cur = ggml_relu(ctx, cur);
  5872. cb(cur, "ffn_relu", il);
  5873. cur = ggml_sqr(ctx, cur);
  5874. cb(cur, "ffn_sqr(relu)", il);
  5875. } break;
  5876. }
  5877. if (type_gate == LLM_FFN_PAR) {
  5878. cur = ggml_mul(ctx, cur, tmp);
  5879. cb(cur, "ffn_gate_par", il);
  5880. }
  5881. cur = ggml_mul_mat(ctx, down, cur);
  5882. if (down_b) {
  5883. cb(cur, "ffn_down", il);
  5884. }
  5885. if (down_b) {
  5886. cur = ggml_add(ctx, cur, down_b);
  5887. }
  5888. return cur;
  5889. }
  5890. static struct ggml_tensor * llm_build_moe_ffn(
  5891. struct ggml_context * ctx,
  5892. struct ggml_tensor * cur,
  5893. struct ggml_tensor * gate_inp,
  5894. struct ggml_tensor * up_exps,
  5895. struct ggml_tensor * gate_exps,
  5896. struct ggml_tensor * down_exps,
  5897. int64_t n_expert,
  5898. int64_t n_expert_used,
  5899. llm_ffn_op_type type_op,
  5900. bool norm_w,
  5901. bool scale_w,
  5902. float w_scale,
  5903. const llm_build_cb & cb,
  5904. int il) {
  5905. int64_t n_embd = cur->ne[0];
  5906. int64_t n_tokens = cur->ne[1];
  5907. ggml_tensor * logits = ggml_mul_mat(ctx, gate_inp, cur); // [n_expert, n_tokens]
  5908. cb(logits, "ffn_moe_logits", il);
  5909. ggml_tensor * probs = ggml_soft_max(ctx, logits); // [n_expert, n_tokens]
  5910. cb(probs, "ffn_moe_probs", il);
  5911. // select experts
  5912. ggml_tensor * selected_experts = ggml_top_k(ctx, probs, n_expert_used); // [n_expert_used, n_tokens]
  5913. cb(selected_experts->src[0], "ffn_moe_argsort", il);
  5914. cb(selected_experts, "ffn_moe_topk", il);
  5915. ggml_tensor * weights = ggml_get_rows(ctx,
  5916. ggml_reshape_3d(ctx, probs, 1, n_expert, n_tokens), selected_experts); // [1, n_expert_used, n_tokens]
  5917. cb(weights, "ffn_moe_weights", il);
  5918. if (norm_w) {
  5919. weights = ggml_reshape_2d(ctx, weights, n_expert_used, n_tokens);
  5920. ggml_tensor * weights_sum = ggml_sum_rows(ctx, weights); // [1, n_tokens]
  5921. cb(weights_sum, "ffn_moe_weights_sum", il);
  5922. weights = ggml_div(ctx, weights, weights_sum); // [n_expert_used, n_tokens]
  5923. cb(weights, "ffn_moe_weights_norm", il);
  5924. weights = ggml_reshape_3d(ctx, weights, 1, n_expert_used, n_tokens);
  5925. }
  5926. if (scale_w) {
  5927. weights = ggml_scale(ctx, weights, w_scale);
  5928. cb(weights, "ffn_moe_weights_scaled", il);
  5929. }
  5930. cur = ggml_reshape_3d(ctx, cur, n_embd, 1, n_tokens);
  5931. ggml_tensor * up = ggml_mul_mat_id(ctx, up_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5932. cb(up, "ffn_moe_up", il);
  5933. ggml_tensor * gate = ggml_mul_mat_id(ctx, gate_exps, cur, selected_experts); // [n_ff, n_expert_used, n_tokens]
  5934. cb(gate, "ffn_moe_gate", il);
  5935. switch (type_op) {
  5936. case LLM_FFN_SILU:
  5937. {
  5938. gate = ggml_silu(ctx, gate);
  5939. cb(gate, "ffn_moe_silu", il);
  5940. } break;
  5941. case LLM_FFN_GELU:
  5942. {
  5943. gate = ggml_gelu(ctx, gate);
  5944. cb(gate, "ffn_moe_gelu", il);
  5945. } break;
  5946. default:
  5947. GGML_ASSERT(false);
  5948. }
  5949. ggml_tensor * par = ggml_mul(ctx, up, gate); // [n_ff, n_expert_used, n_tokens]
  5950. cb(par, "ffn_moe_gate_par", il);
  5951. ggml_tensor * experts = ggml_mul_mat_id(ctx, down_exps, par, selected_experts); // [n_embd, n_expert_used, n_tokens]
  5952. cb(experts, "ffn_moe_down", il);
  5953. experts = ggml_mul(ctx, experts, weights);
  5954. // aggregate experts
  5955. ggml_tensor * moe_out = nullptr;
  5956. for (int i = 0; i < n_expert_used; ++i) {
  5957. ggml_tensor * cur_expert = ggml_view_2d(ctx, experts, n_embd, n_tokens,
  5958. experts->nb[2], i*experts->nb[1]);
  5959. if (i == 0) {
  5960. moe_out = cur_expert;
  5961. } else {
  5962. moe_out = ggml_add(ctx, moe_out, cur_expert);
  5963. }
  5964. }
  5965. if (n_expert_used == 1) {
  5966. // avoid returning a non-contiguous tensor
  5967. moe_out = ggml_cont(ctx, moe_out);
  5968. }
  5969. return moe_out;
  5970. }
  5971. static struct ggml_tensor * llm_build_kqv(
  5972. struct ggml_context * ctx,
  5973. const llama_model & model,
  5974. const llama_hparams & hparams,
  5975. const llama_cparams & cparams,
  5976. const llama_kv_cache & kv,
  5977. struct ggml_cgraph * graph,
  5978. struct ggml_tensor * wo,
  5979. struct ggml_tensor * wo_b,
  5980. struct ggml_tensor * q_cur,
  5981. struct ggml_tensor * kq_mask,
  5982. int32_t n_tokens,
  5983. int32_t n_kv,
  5984. float kq_scale,
  5985. const llm_build_cb & cb,
  5986. int il) {
  5987. const int64_t n_ctx = cparams.n_ctx;
  5988. const int64_t n_head = hparams.n_head;
  5989. const int64_t n_head_kv = hparams.n_head_kv;
  5990. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  5991. const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  5992. const int64_t n_embd_head_v = hparams.n_embd_head_v;
  5993. const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  5994. struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
  5995. cb(q, "q", il);
  5996. struct ggml_tensor * k =
  5997. ggml_view_3d(ctx, kv.k_l[il],
  5998. n_embd_head_k, n_kv, n_head_kv,
  5999. ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
  6000. ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
  6001. 0);
  6002. cb(k, "k", il);
  6003. struct ggml_tensor * cur;
  6004. if (cparams.flash_attn) {
  6005. GGML_UNUSED(model);
  6006. GGML_UNUSED(n_ctx);
  6007. // split cached v into n_head heads (not transposed)
  6008. struct ggml_tensor * v =
  6009. ggml_view_3d(ctx, kv.v_l[il],
  6010. n_embd_head_v, n_kv, n_head_kv,
  6011. ggml_row_size(kv.v_l[il]->type, n_embd_v_gqa),
  6012. ggml_row_size(kv.v_l[il]->type, n_embd_head_v),
  6013. 0);
  6014. cb(v, "v", il);
  6015. cur = ggml_flash_attn_ext(ctx, q, k, v, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6016. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6017. ggml_flash_attn_ext_set_prec(cur, GGML_PREC_F32);
  6018. }
  6019. cur = ggml_reshape_2d(ctx, cur, n_embd_head_v*n_head, n_tokens);
  6020. } else {
  6021. struct ggml_tensor * kq = ggml_mul_mat(ctx, k, q);
  6022. cb(kq, "kq", il);
  6023. if (model.arch == LLM_ARCH_PHI2 || model.arch == LLM_ARCH_PHI3 || model.arch == LLM_ARCH_GPTNEOX) {
  6024. // for this arch, we need to perform the KQ multiplication with F32 precision, otherwise we get NaNs
  6025. // ref: https://github.com/ggerganov/llama.cpp/pull/4490#issuecomment-1859055847
  6026. ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6027. }
  6028. if (model.arch == LLM_ARCH_GROK) {
  6029. // need to do the following:
  6030. // multiply by attn_output_multiplyer of 0.08838834764831845
  6031. // and then :
  6032. // kq = 30 * tanh(kq / 30)
  6033. // before the softmax below
  6034. //try from phi2
  6035. //ggml_mul_mat_set_prec(kq, GGML_PREC_F32);
  6036. kq = ggml_tanh(ctx, ggml_scale(ctx, kq, 0.08838834764831845f/30.0f));
  6037. kq = ggml_scale(ctx, kq, 30);
  6038. }
  6039. kq = ggml_soft_max_ext(ctx, kq, kq_mask, kq_scale, hparams.f_max_alibi_bias);
  6040. cb(kq, "kq_soft_max_ext", il);
  6041. GGML_ASSERT(kv.size == n_ctx);
  6042. // split cached v into n_head heads
  6043. struct ggml_tensor * v =
  6044. ggml_view_3d(ctx, kv.v_l[il],
  6045. n_kv, n_embd_head_v, n_head_kv,
  6046. ggml_element_size(kv.v_l[il])*n_ctx,
  6047. ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
  6048. 0);
  6049. cb(v, "v", il);
  6050. struct ggml_tensor * kqv = ggml_mul_mat(ctx, v, kq);
  6051. cb(kqv, "kqv", il);
  6052. struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
  6053. cb(kqv_merged, "kqv_merged", il);
  6054. cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_v*n_head, n_tokens);
  6055. cb(cur, "kqv_merged_cont", il);
  6056. }
  6057. ggml_build_forward_expand(graph, cur);
  6058. cur = ggml_mul_mat(ctx, wo, cur);
  6059. if (wo_b) {
  6060. cb(cur, "kqv_wo", il);
  6061. }
  6062. if (wo_b) {
  6063. cur = ggml_add(ctx, cur, wo_b);
  6064. }
  6065. return cur;
  6066. }
  6067. static struct ggml_tensor * llm_build_kv(
  6068. struct ggml_context * ctx,
  6069. const llama_model & model,
  6070. const llama_hparams & hparams,
  6071. const llama_cparams & cparams,
  6072. const llama_kv_cache & kv,
  6073. struct ggml_cgraph * graph,
  6074. struct ggml_tensor * wo,
  6075. struct ggml_tensor * wo_b,
  6076. struct ggml_tensor * k_cur,
  6077. struct ggml_tensor * v_cur,
  6078. struct ggml_tensor * q_cur,
  6079. struct ggml_tensor * kq_mask,
  6080. int32_t n_tokens,
  6081. int32_t kv_head,
  6082. int32_t n_kv,
  6083. float kq_scale,
  6084. const llm_build_cb & cb,
  6085. int il) {
  6086. // these nodes are added to the graph together so that they are not reordered
  6087. // by doing so, the number of splits in the graph is reduced
  6088. ggml_build_forward_expand(graph, q_cur);
  6089. ggml_build_forward_expand(graph, k_cur);
  6090. ggml_build_forward_expand(graph, v_cur);
  6091. llm_build_kv_store(ctx, hparams, cparams, kv, graph, k_cur, v_cur, n_tokens, kv_head, cb, il);
  6092. struct ggml_tensor * cur;
  6093. cur = llm_build_kqv(ctx, model, hparams, cparams, kv, graph, wo, wo_b,
  6094. q_cur, kq_mask, n_tokens, n_kv, kq_scale, cb, il);
  6095. cb(cur, "kqv_out", il);
  6096. return cur;
  6097. }
  6098. struct llm_build_context {
  6099. const llama_model & model;
  6100. llama_context & lctx;
  6101. const llama_hparams & hparams;
  6102. const llama_cparams & cparams;
  6103. const llama_batch & batch;
  6104. const llama_kv_cache & kv_self;
  6105. const int64_t n_embd;
  6106. const int64_t n_layer;
  6107. const int64_t n_rot;
  6108. const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
  6109. const int64_t n_head;
  6110. const int64_t n_head_kv;
  6111. const int64_t n_embd_head_k;
  6112. const int64_t n_embd_k_gqa;
  6113. const int64_t n_embd_head_v;
  6114. const int64_t n_embd_v_gqa;
  6115. const int64_t n_expert;
  6116. const int64_t n_expert_used;
  6117. const float freq_base;
  6118. const float freq_scale;
  6119. const float ext_factor;
  6120. const float attn_factor;
  6121. const float beta_fast;
  6122. const float beta_slow;
  6123. const float norm_eps;
  6124. const float norm_rms_eps;
  6125. const int32_t n_tokens;
  6126. const int32_t n_kv; // size of KV cache to consider (n_kv <= kv_self.size)
  6127. const int32_t n_outputs;
  6128. const int32_t kv_head; // index of where we store new KV data in the cache
  6129. const int32_t n_ctx_orig;
  6130. const bool flash_attn;
  6131. const enum llama_pooling_type pooling_type;
  6132. const enum llama_rope_type rope_type;
  6133. const llm_build_cb & cb;
  6134. std::vector<uint8_t> & buf_compute_meta;
  6135. struct ggml_context * ctx0 = nullptr;
  6136. // TODO: consider making the entire interface noexcept
  6137. llm_build_context(
  6138. llama_context & lctx,
  6139. const llama_batch & batch,
  6140. const llm_build_cb & cb,
  6141. bool worst_case) :
  6142. model (lctx.model),
  6143. lctx (lctx),
  6144. hparams (model.hparams),
  6145. cparams (lctx.cparams),
  6146. batch (batch),
  6147. kv_self (lctx.kv_self),
  6148. n_embd (hparams.n_embd),
  6149. n_layer (hparams.n_layer),
  6150. n_rot (hparams.n_rot),
  6151. n_ctx (cparams.n_ctx),
  6152. n_head (hparams.n_head),
  6153. n_head_kv (hparams.n_head_kv),
  6154. n_embd_head_k (hparams.n_embd_head_k),
  6155. n_embd_k_gqa (hparams.n_embd_k_gqa()),
  6156. n_embd_head_v (hparams.n_embd_head_v),
  6157. n_embd_v_gqa (hparams.n_embd_v_gqa()),
  6158. n_expert (hparams.n_expert),
  6159. n_expert_used (hparams.n_expert_used),
  6160. freq_base (cparams.rope_freq_base),
  6161. freq_scale (cparams.rope_freq_scale),
  6162. ext_factor (cparams.yarn_ext_factor),
  6163. attn_factor (cparams.yarn_attn_factor),
  6164. beta_fast (cparams.yarn_beta_fast),
  6165. beta_slow (cparams.yarn_beta_slow),
  6166. norm_eps (hparams.f_norm_eps),
  6167. norm_rms_eps (hparams.f_norm_rms_eps),
  6168. n_tokens (batch.n_tokens),
  6169. n_kv (worst_case ? kv_self.size : kv_self.n),
  6170. n_outputs (worst_case ? n_tokens : lctx.n_outputs),
  6171. kv_head (worst_case ? (kv_self.recurrent ? 0 : kv_self.size - n_tokens) : kv_self.head),
  6172. n_ctx_orig (cparams.n_ctx_orig_yarn),
  6173. flash_attn (cparams.flash_attn),
  6174. pooling_type (cparams.pooling_type),
  6175. rope_type (hparams.rope_type),
  6176. cb (cb),
  6177. buf_compute_meta (lctx.buf_compute_meta) {
  6178. // all initializations should be done in init()
  6179. }
  6180. void init() {
  6181. struct ggml_init_params params = {
  6182. /*.mem_size =*/ buf_compute_meta.size(),
  6183. /*.mem_buffer =*/ buf_compute_meta.data(),
  6184. /*.no_alloc =*/ true,
  6185. };
  6186. ctx0 = ggml_init(params);
  6187. lctx.inp_tokens = nullptr;
  6188. lctx.inp_embd = nullptr;
  6189. lctx.inp_pos = nullptr;
  6190. lctx.inp_out_ids = nullptr;
  6191. lctx.inp_KQ_mask = nullptr;
  6192. lctx.inp_K_shift = nullptr;
  6193. lctx.inp_mean = nullptr;
  6194. lctx.inp_cls = nullptr;
  6195. lctx.inp_s_copy = nullptr;
  6196. lctx.inp_s_mask = nullptr;
  6197. lctx.inp_s_seq = nullptr;
  6198. }
  6199. void free() {
  6200. if (ctx0) {
  6201. ggml_free(ctx0);
  6202. ctx0 = nullptr;
  6203. }
  6204. }
  6205. struct ggml_cgraph * build_k_shift() {
  6206. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6207. GGML_ASSERT(kv_self.size == n_ctx);
  6208. lctx.inp_K_shift = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_ctx);
  6209. cb(lctx.inp_K_shift, "K_shift", -1);
  6210. ggml_set_input(lctx.inp_K_shift);
  6211. for (int il = 0; il < n_layer; ++il) {
  6212. struct ggml_tensor * rope_factors = build_rope_factors(il);
  6213. struct ggml_tensor * tmp =
  6214. // we rotate only the first n_rot dimensions
  6215. ggml_rope_ext_inplace(ctx0,
  6216. ggml_view_3d(ctx0, kv_self.k_l[il],
  6217. n_embd_head_k, n_head_kv, n_ctx,
  6218. ggml_row_size(kv_self.k_l[il]->type, n_embd_head_k),
  6219. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6220. 0),
  6221. lctx.inp_K_shift, rope_factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6222. ext_factor, attn_factor, beta_fast, beta_slow);
  6223. cb(tmp, "K_shifted", il);
  6224. ggml_build_forward_expand(gf, tmp);
  6225. }
  6226. return gf;
  6227. }
  6228. struct ggml_cgraph * build_s_copy() {
  6229. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6230. GGML_ASSERT(kv_self.recurrent);
  6231. struct ggml_tensor * state_copy = build_inp_s_copy();
  6232. for (int il = 0; il < n_layer; ++il) {
  6233. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  6234. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  6235. conv_states = ggml_get_rows(ctx0, conv_states, state_copy);
  6236. ssm_states = ggml_get_rows(ctx0, ssm_states, state_copy);
  6237. // TODO: name the intermediate tensors with cb()
  6238. ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
  6239. ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
  6240. }
  6241. return gf;
  6242. }
  6243. struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
  6244. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6245. for (uint32_t i = 0; i < ids.size(); ++i) {
  6246. const uint32_t id = ids[i];
  6247. if (i == id || id == ids.size()) {
  6248. continue;
  6249. }
  6250. uint32_t nm = 1;
  6251. while (i + nm < ids.size() && ids[i + nm] == id + nm) {
  6252. nm++;
  6253. }
  6254. for (int il = 0; il < n_layer; ++il) {
  6255. ggml_tensor * view_k_src = ggml_view_2d(ctx0, kv_self.k_l[il],
  6256. n_embd_k_gqa, nm,
  6257. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6258. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*i));
  6259. ggml_tensor * view_k_dst = ggml_view_2d(ctx0, kv_self.k_l[il],
  6260. n_embd_k_gqa, nm,
  6261. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa),
  6262. ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*id));
  6263. ggml_tensor * view_v_src;
  6264. ggml_tensor * view_v_dst;
  6265. if (flash_attn) {
  6266. // NOTE: the V cache is not transposed when using flash attention
  6267. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6268. n_embd_v_gqa, nm,
  6269. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6270. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*i));
  6271. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6272. n_embd_v_gqa, nm,
  6273. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa),
  6274. ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*id));
  6275. } else {
  6276. view_v_src = ggml_view_2d(ctx0, kv_self.v_l[il],
  6277. nm, n_embd_v_gqa,
  6278. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6279. ggml_row_size(kv_self.v_l[il]->type, i));
  6280. view_v_dst = ggml_view_2d(ctx0, kv_self.v_l[il],
  6281. nm, n_embd_v_gqa,
  6282. ggml_row_size(kv_self.v_l[il]->type, kv_self.size),
  6283. ggml_row_size(kv_self.v_l[il]->type, id));
  6284. }
  6285. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_k_src, view_k_dst));
  6286. ggml_build_forward_expand(gf, ggml_cpy(ctx0, view_v_src, view_v_dst));
  6287. }
  6288. i += nm - 1;
  6289. }
  6290. //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes);
  6291. return gf;
  6292. }
  6293. struct ggml_tensor * build_inp_pos() {
  6294. lctx.inp_pos = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6295. cb(lctx.inp_pos, "inp_pos", -1);
  6296. ggml_set_input(lctx.inp_pos);
  6297. return lctx.inp_pos;
  6298. }
  6299. struct ggml_tensor * build_rope_factors(int il) {
  6300. // choose long/short freq factors based on the context size
  6301. const auto n_ctx_pre_seq = cparams.n_ctx / cparams.n_seq_max;
  6302. if (n_ctx_pre_seq > hparams.n_ctx_orig_yarn) {
  6303. return model.layers[il].rope_long;
  6304. }
  6305. return model.layers[il].rope_short;
  6306. }
  6307. struct ggml_tensor * build_inp_out_ids() {
  6308. lctx.inp_out_ids = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_outputs);
  6309. cb(lctx.inp_out_ids, "inp_out_ids", -1);
  6310. ggml_set_input(lctx.inp_out_ids);
  6311. return lctx.inp_out_ids;
  6312. }
  6313. struct ggml_tensor * build_inp_KQ_mask(bool causal = true) {
  6314. if (causal) {
  6315. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_kv, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6316. } else {
  6317. lctx.inp_KQ_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, GGML_PAD(n_tokens, GGML_KQ_MASK_PAD));
  6318. }
  6319. cb(lctx.inp_KQ_mask, "KQ_mask", -1);
  6320. ggml_set_input(lctx.inp_KQ_mask);
  6321. return flash_attn ? ggml_cast(ctx0, lctx.inp_KQ_mask, GGML_TYPE_F16) : lctx.inp_KQ_mask;
  6322. }
  6323. struct ggml_tensor * build_inp_mean() {
  6324. lctx.inp_mean = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_tokens, n_tokens);
  6325. cb(lctx.inp_mean, "inp_mean", -1);
  6326. ggml_set_input(lctx.inp_mean);
  6327. return lctx.inp_mean;
  6328. }
  6329. struct ggml_tensor * build_inp_cls() {
  6330. lctx.inp_cls = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, n_tokens);
  6331. cb(lctx.inp_cls, "inp_cls", -1);
  6332. ggml_set_input(lctx.inp_cls);
  6333. return lctx.inp_cls;
  6334. }
  6335. struct ggml_tensor * build_inp_s_copy() {
  6336. lctx.inp_s_copy = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, kv_self.size);
  6337. cb(lctx.inp_s_copy, "inp_s_copy", -1);
  6338. ggml_set_input(lctx.inp_s_copy);
  6339. return lctx.inp_s_copy;
  6340. }
  6341. struct ggml_tensor * build_inp_s_mask() {
  6342. lctx.inp_s_mask = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 1, n_kv);
  6343. cb(lctx.inp_s_mask, "inp_s_mask", -1);
  6344. ggml_set_input(lctx.inp_s_mask);
  6345. return lctx.inp_s_mask;
  6346. }
  6347. struct ggml_tensor * build_inp_s_seq() {
  6348. lctx.inp_s_seq = ggml_new_tensor_2d(ctx0, GGML_TYPE_I32, n_kv, n_tokens);
  6349. cb(lctx.inp_s_seq, "inp_s_seq", -1);
  6350. ggml_set_input(lctx.inp_s_seq);
  6351. return lctx.inp_s_seq;
  6352. }
  6353. struct ggml_cgraph * build_llama() {
  6354. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6355. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6356. int32_t n_tokens = this->n_tokens;
  6357. const int64_t n_embd_head = hparams.n_embd_head_v;
  6358. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6359. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6360. struct ggml_tensor * cur;
  6361. struct ggml_tensor * inpL;
  6362. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6363. // inp_pos - contains the positions
  6364. struct ggml_tensor * inp_pos = build_inp_pos();
  6365. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6366. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6367. for (int il = 0; il < n_layer; ++il) {
  6368. struct ggml_tensor * inpSA = inpL;
  6369. // norm
  6370. cur = llm_build_norm(ctx0, inpL, hparams,
  6371. model.layers[il].attn_norm, NULL,
  6372. LLM_NORM_RMS, cb, il);
  6373. cb(cur, "attn_norm", il);
  6374. // self-attention
  6375. {
  6376. // compute Q and K and RoPE them
  6377. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6378. cb(Qcur, "Qcur", il);
  6379. if (model.layers[il].bq) {
  6380. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6381. cb(Qcur, "Qcur", il);
  6382. }
  6383. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6384. cb(Kcur, "Kcur", il);
  6385. if (model.layers[il].bk) {
  6386. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6387. cb(Kcur, "Kcur", il);
  6388. }
  6389. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6390. cb(Vcur, "Vcur", il);
  6391. if (model.layers[il].bv) {
  6392. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6393. cb(Vcur, "Vcur", il);
  6394. }
  6395. Qcur = ggml_rope_ext(
  6396. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6397. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6398. ext_factor, attn_factor, beta_fast, beta_slow
  6399. );
  6400. cb(Qcur, "Qcur", il);
  6401. Kcur = ggml_rope_ext(
  6402. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6403. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6404. ext_factor, attn_factor, beta_fast, beta_slow
  6405. );
  6406. cb(Kcur, "Kcur", il);
  6407. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6408. model.layers[il].wo, model.layers[il].bo,
  6409. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6410. }
  6411. if (il == n_layer - 1) {
  6412. // skip computing output for unused tokens
  6413. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6414. n_tokens = n_outputs;
  6415. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6416. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6417. }
  6418. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6419. cb(ffn_inp, "ffn_inp", il);
  6420. // feed-forward network
  6421. if (model.layers[il].ffn_gate_inp == nullptr) {
  6422. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6423. model.layers[il].ffn_norm, NULL,
  6424. LLM_NORM_RMS, cb, il);
  6425. cb(cur, "ffn_norm", il);
  6426. cur = llm_build_ffn(ctx0, cur,
  6427. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  6428. model.layers[il].ffn_gate, model.layers[il].ffn_gate_b,
  6429. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  6430. NULL,
  6431. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6432. cb(cur, "ffn_out", il);
  6433. } else {
  6434. // MoE branch
  6435. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6436. model.layers[il].ffn_norm, NULL,
  6437. LLM_NORM_RMS, cb, il);
  6438. cb(cur, "ffn_norm", il);
  6439. cur = llm_build_moe_ffn(ctx0, cur,
  6440. model.layers[il].ffn_gate_inp,
  6441. model.layers[il].ffn_up_exps,
  6442. model.layers[il].ffn_gate_exps,
  6443. model.layers[il].ffn_down_exps,
  6444. n_expert, n_expert_used,
  6445. LLM_FFN_SILU, true,
  6446. false, 0.0,
  6447. cb, il);
  6448. cb(cur, "ffn_moe_out", il);
  6449. }
  6450. cur = ggml_add(ctx0, cur, ffn_inp);
  6451. cb(cur, "ffn_out", il);
  6452. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6453. if (layer_dir != nullptr) {
  6454. cur = ggml_add(ctx0, cur, layer_dir);
  6455. }
  6456. cb(cur, "l_out", il);
  6457. // input for next layer
  6458. inpL = cur;
  6459. }
  6460. cur = inpL;
  6461. cur = llm_build_norm(ctx0, cur, hparams,
  6462. model.output_norm, NULL,
  6463. LLM_NORM_RMS, cb, -1);
  6464. cb(cur, "result_norm", -1);
  6465. // lm_head
  6466. cur = ggml_mul_mat(ctx0, model.output, cur);
  6467. cb(cur, "result_output", -1);
  6468. ggml_build_forward_expand(gf, cur);
  6469. return gf;
  6470. }
  6471. struct ggml_cgraph * build_baichuan() {
  6472. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6473. const int64_t n_embd_head = hparams.n_embd_head_v;
  6474. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6475. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6476. struct ggml_tensor * cur;
  6477. struct ggml_tensor * inpL;
  6478. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6479. // inp_pos - contains the positions
  6480. struct ggml_tensor * inp_pos = model.type == MODEL_7B ? build_inp_pos() : nullptr;
  6481. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6482. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6483. for (int il = 0; il < n_layer; ++il) {
  6484. struct ggml_tensor * inpSA = inpL;
  6485. cur = llm_build_norm(ctx0, inpL, hparams,
  6486. model.layers[il].attn_norm, NULL,
  6487. LLM_NORM_RMS, cb, il);
  6488. cb(cur, "attn_norm", il);
  6489. // self-attention
  6490. {
  6491. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6492. cb(Qcur, "Qcur", il);
  6493. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6494. cb(Kcur, "Kcur", il);
  6495. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6496. cb(Vcur, "Vcur", il);
  6497. switch (model.type) {
  6498. case MODEL_7B:
  6499. Qcur = ggml_rope_ext(
  6500. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6501. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6502. ext_factor, attn_factor, beta_fast, beta_slow
  6503. );
  6504. Kcur = ggml_rope_ext(
  6505. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6506. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6507. ext_factor, attn_factor, beta_fast, beta_slow
  6508. );
  6509. break;
  6510. case MODEL_13B:
  6511. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd/n_head, n_head, n_tokens);
  6512. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd/n_head, n_head, n_tokens);
  6513. break;
  6514. default:
  6515. GGML_ASSERT(false);
  6516. }
  6517. cb(Qcur, "Qcur", il);
  6518. cb(Kcur, "Kcur", il);
  6519. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6520. model.layers[il].wo, NULL,
  6521. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6522. }
  6523. if (il == n_layer - 1) {
  6524. // skip computing output for unused tokens
  6525. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6526. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6527. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6528. }
  6529. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6530. cb(ffn_inp, "ffn_inp", il);
  6531. // feed-forward network
  6532. {
  6533. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6534. model.layers[il].ffn_norm, NULL,
  6535. LLM_NORM_RMS, cb, il);
  6536. cb(cur, "ffn_norm", il);
  6537. cur = llm_build_ffn(ctx0, cur,
  6538. model.layers[il].ffn_up, NULL,
  6539. model.layers[il].ffn_gate, NULL,
  6540. model.layers[il].ffn_down, NULL,
  6541. NULL,
  6542. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6543. cb(cur, "ffn_out", il);
  6544. }
  6545. cur = ggml_add(ctx0, cur, ffn_inp);
  6546. cb(cur, "l_out", il);
  6547. // input for next layer
  6548. inpL = cur;
  6549. }
  6550. cur = inpL;
  6551. cur = llm_build_norm(ctx0, cur, hparams,
  6552. model.output_norm, NULL,
  6553. LLM_NORM_RMS, cb, -1);
  6554. cb(cur, "result_norm", -1);
  6555. // lm_head
  6556. cur = ggml_mul_mat(ctx0, model.output, cur);
  6557. cb(cur, "result_output", -1);
  6558. ggml_build_forward_expand(gf, cur);
  6559. return gf;
  6560. }
  6561. struct ggml_cgraph * build_xverse() {
  6562. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6563. const int64_t n_embd_head = hparams.n_embd_head_v;
  6564. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6565. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6566. struct ggml_tensor * cur;
  6567. struct ggml_tensor * inpL;
  6568. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6569. // inp_pos - contains the positions
  6570. struct ggml_tensor * inp_pos = build_inp_pos();
  6571. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6572. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6573. for (int il = 0; il < n_layer; ++il) {
  6574. struct ggml_tensor * inpSA = inpL;
  6575. cur = llm_build_norm(ctx0, inpL, hparams,
  6576. model.layers[il].attn_norm, NULL,
  6577. LLM_NORM_RMS, cb, il);
  6578. cb(cur, "attn_norm", il);
  6579. // self-attention
  6580. {
  6581. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6582. cb(Qcur, "Qcur", il);
  6583. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6584. cb(Kcur, "Kcur", il);
  6585. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6586. cb(Vcur, "Vcur", il);
  6587. Qcur = ggml_rope_ext(
  6588. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6589. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6590. ext_factor, attn_factor, beta_fast, beta_slow
  6591. );
  6592. cb(Qcur, "Qcur", il);
  6593. Kcur = ggml_rope_ext(
  6594. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6595. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6596. ext_factor, attn_factor, beta_fast, beta_slow
  6597. );
  6598. cb(Kcur, "Kcur", il);
  6599. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6600. model.layers[il].wo, NULL,
  6601. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6602. }
  6603. if (il == n_layer - 1) {
  6604. // skip computing output for unused tokens
  6605. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6606. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6607. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6608. }
  6609. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6610. cb(ffn_inp, "ffn_inp", il);
  6611. // feed-forward network
  6612. {
  6613. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6614. model.layers[il].ffn_norm, NULL,
  6615. LLM_NORM_RMS, cb, il);
  6616. cb(cur, "ffn_norm", il);
  6617. cur = llm_build_ffn(ctx0, cur,
  6618. model.layers[il].ffn_up, NULL,
  6619. model.layers[il].ffn_gate, NULL,
  6620. model.layers[il].ffn_down, NULL,
  6621. NULL,
  6622. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  6623. cb(cur, "ffn_out", il);
  6624. }
  6625. cur = ggml_add(ctx0, cur, ffn_inp);
  6626. cb(cur, "l_out", il);
  6627. // input for next layer
  6628. inpL = cur;
  6629. }
  6630. cur = inpL;
  6631. cur = llm_build_norm(ctx0, cur, hparams, model.output_norm, NULL, LLM_NORM_RMS, cb, -1);
  6632. cb(cur, "result_norm", -1);
  6633. // lm_head
  6634. cur = ggml_mul_mat(ctx0, model.output, cur);
  6635. cb(cur, "result_output", -1);
  6636. ggml_build_forward_expand(gf, cur);
  6637. return gf;
  6638. }
  6639. struct ggml_cgraph * build_falcon() {
  6640. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6641. const int64_t n_embd_head = hparams.n_embd_head_v;
  6642. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6643. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6644. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6645. struct ggml_tensor * cur;
  6646. struct ggml_tensor * inpL;
  6647. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6648. // inp_pos - contains the positions
  6649. struct ggml_tensor * inp_pos = build_inp_pos();
  6650. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6651. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6652. for (int il = 0; il < n_layer; ++il) {
  6653. struct ggml_tensor * attn_norm;
  6654. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  6655. model.layers[il].attn_norm,
  6656. model.layers[il].attn_norm_b,
  6657. LLM_NORM, cb, il);
  6658. cb(attn_norm, "attn_norm", il);
  6659. // self-attention
  6660. {
  6661. if (model.layers[il].attn_norm_2) {
  6662. // Falcon-40B
  6663. cur = llm_build_norm(ctx0, inpL, hparams,
  6664. model.layers[il].attn_norm_2,
  6665. model.layers[il].attn_norm_2_b,
  6666. LLM_NORM, cb, il);
  6667. cb(cur, "attn_norm_2", il);
  6668. } else {
  6669. cur = attn_norm;
  6670. }
  6671. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6672. cb(cur, "wqkv", il);
  6673. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6674. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6675. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6676. cb(Qcur, "Qcur", il);
  6677. cb(Kcur, "Kcur", il);
  6678. cb(Vcur, "Vcur", il);
  6679. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6680. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  6681. // using mode = 2 for neox mode
  6682. Qcur = ggml_rope_ext(
  6683. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6684. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6685. );
  6686. cb(Qcur, "Qcur", il);
  6687. Kcur = ggml_rope_ext(
  6688. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  6689. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  6690. );
  6691. cb(Kcur, "Kcur", il);
  6692. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6693. model.layers[il].wo, NULL,
  6694. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6695. }
  6696. if (il == n_layer - 1) {
  6697. // skip computing output for unused tokens
  6698. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6699. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6700. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  6701. attn_norm = ggml_get_rows(ctx0, attn_norm, inp_out_ids);
  6702. }
  6703. struct ggml_tensor * ffn_inp = cur;
  6704. // feed forward
  6705. {
  6706. cur = llm_build_ffn(ctx0, attn_norm, // !! use the attn norm, not the result
  6707. model.layers[il].ffn_up, NULL,
  6708. NULL, NULL,
  6709. model.layers[il].ffn_down, NULL,
  6710. NULL,
  6711. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  6712. cb(cur, "ffn_out", il);
  6713. }
  6714. cur = ggml_add(ctx0, cur, ffn_inp);
  6715. cb(cur, "l_out", il);
  6716. cur = ggml_add(ctx0, cur, inpL);
  6717. cb(cur, "l_out", il);
  6718. // input for next layer
  6719. inpL = cur;
  6720. }
  6721. cur = inpL;
  6722. // norm
  6723. cur = llm_build_norm(ctx0, cur, hparams,
  6724. model.output_norm,
  6725. model.output_norm_b,
  6726. LLM_NORM, cb, -1);
  6727. cb(cur, "result_norm", -1);
  6728. cur = ggml_mul_mat(ctx0, model.output, cur);
  6729. cb(cur, "result_output", -1);
  6730. ggml_build_forward_expand(gf, cur);
  6731. return gf;
  6732. }
  6733. struct ggml_cgraph * build_grok() {
  6734. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6735. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6736. int32_t n_tokens = this->n_tokens;
  6737. const int64_t n_embd_head = hparams.n_embd_head_v;
  6738. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6739. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6740. struct ggml_tensor * cur;
  6741. struct ggml_tensor * inpL;
  6742. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6743. // multiply by embedding_multiplier_scale of 78.38367176906169
  6744. inpL = ggml_scale(ctx0, inpL, 78.38367176906169f);
  6745. // inp_pos - contains the positions
  6746. struct ggml_tensor * inp_pos = build_inp_pos();
  6747. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6748. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6749. for (int il = 0; il < n_layer; ++il) {
  6750. struct ggml_tensor * inpSA = inpL;
  6751. // norm
  6752. cur = llm_build_norm(ctx0, inpL, hparams,
  6753. model.layers[il].attn_norm, NULL,
  6754. LLM_NORM_RMS, cb, il);
  6755. cb(cur, "attn_norm", il);
  6756. // self-attention
  6757. {
  6758. // compute Q and K and RoPE them
  6759. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  6760. cb(Qcur, "Qcur", il);
  6761. if (model.layers[il].bq) {
  6762. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  6763. cb(Qcur, "Qcur", il);
  6764. }
  6765. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  6766. cb(Kcur, "Kcur", il);
  6767. if (model.layers[il].bk) {
  6768. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  6769. cb(Kcur, "Kcur", il);
  6770. }
  6771. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  6772. cb(Vcur, "Vcur", il);
  6773. if (model.layers[il].bv) {
  6774. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  6775. cb(Vcur, "Vcur", il);
  6776. }
  6777. Qcur = ggml_rope_ext(
  6778. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6779. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6780. ext_factor, attn_factor, beta_fast, beta_slow
  6781. );
  6782. cb(Qcur, "Qcur", il);
  6783. Kcur = ggml_rope_ext(
  6784. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6785. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6786. ext_factor, attn_factor, beta_fast, beta_slow
  6787. );
  6788. cb(Kcur, "Kcur", il);
  6789. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6790. model.layers[il].wo, model.layers[il].bo,
  6791. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  6792. }
  6793. if (il == n_layer - 1) {
  6794. // skip computing output for unused tokens
  6795. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6796. n_tokens = n_outputs;
  6797. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6798. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6799. }
  6800. // Grok
  6801. // if attn_out_norm is present then apply it before adding the input
  6802. if (model.layers[il].attn_out_norm) {
  6803. cur = llm_build_norm(ctx0, cur, hparams,
  6804. model.layers[il].attn_out_norm, NULL,
  6805. LLM_NORM_RMS, cb, il);
  6806. cb(cur, "attn_out_norm", il);
  6807. }
  6808. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6809. cb(ffn_inp, "ffn_inp", il);
  6810. // feed-forward network
  6811. // MoE branch
  6812. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6813. model.layers[il].ffn_norm, NULL,
  6814. LLM_NORM_RMS, cb, il);
  6815. cb(cur, "ffn_norm", il);
  6816. cur = llm_build_moe_ffn(ctx0, cur,
  6817. model.layers[il].ffn_gate_inp,
  6818. model.layers[il].ffn_up_exps,
  6819. model.layers[il].ffn_gate_exps,
  6820. model.layers[il].ffn_down_exps,
  6821. n_expert, n_expert_used,
  6822. LLM_FFN_GELU, true,
  6823. false, 0.0,
  6824. cb, il);
  6825. cb(cur, "ffn_moe_out", il);
  6826. // Grok
  6827. // if layer_out_norm is present then apply it before adding the input
  6828. // Idea: maybe ffn_out_norm is a better name
  6829. if (model.layers[il].layer_out_norm) {
  6830. cur = llm_build_norm(ctx0, cur, hparams,
  6831. model.layers[il].layer_out_norm, NULL,
  6832. LLM_NORM_RMS, cb, il);
  6833. cb(cur, "layer_out_norm", il);
  6834. }
  6835. cur = ggml_add(ctx0, cur, ffn_inp);
  6836. cb(cur, "ffn_out", il);
  6837. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6838. if (layer_dir != nullptr) {
  6839. cur = ggml_add(ctx0, cur, layer_dir);
  6840. }
  6841. cb(cur, "l_out", il);
  6842. // input for next layer
  6843. inpL = cur;
  6844. }
  6845. cur = inpL;
  6846. cur = llm_build_norm(ctx0, cur, hparams,
  6847. model.output_norm, NULL,
  6848. LLM_NORM_RMS, cb, -1);
  6849. cb(cur, "result_norm", -1);
  6850. // lm_head
  6851. cur = ggml_mul_mat(ctx0, model.output, cur);
  6852. // Grok
  6853. // multiply logits by output_multiplier_scale of 0.5773502691896257
  6854. cur = ggml_scale(ctx0, cur, 0.5773502691896257f);
  6855. cb(cur, "result_output", -1);
  6856. ggml_build_forward_expand(gf, cur);
  6857. return gf;
  6858. }
  6859. struct ggml_cgraph * build_dbrx() {
  6860. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6861. // mutable variable, needed during the last layer of the computation to skip unused tokens
  6862. int32_t n_tokens = this->n_tokens;
  6863. const int64_t n_embd_head = hparams.n_embd_head_v;
  6864. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6865. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6866. GGML_ASSERT(n_embd_head == hparams.n_rot);
  6867. struct ggml_tensor * cur;
  6868. struct ggml_tensor * inpL;
  6869. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6870. // inp_pos - contains the positions
  6871. struct ggml_tensor * inp_pos = build_inp_pos();
  6872. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6873. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6874. for (int il = 0; il < n_layer; ++il) {
  6875. struct ggml_tensor * inpSA = inpL;
  6876. // norm
  6877. cur = llm_build_norm(ctx0, inpL, hparams,
  6878. model.layers[il].attn_norm, NULL,
  6879. LLM_NORM, cb, il);
  6880. cb(cur, "attn_norm", il);
  6881. // self-attention
  6882. {
  6883. struct ggml_tensor * Qcur = nullptr;
  6884. struct ggml_tensor * Kcur = nullptr;
  6885. struct ggml_tensor * Vcur = nullptr;
  6886. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6887. cb(cur, "wqkv", il);
  6888. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  6889. cb(cur, "wqkv_clamped", il);
  6890. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6891. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6892. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6893. cb(Qcur, "Qcur", il);
  6894. cb(Kcur, "Kcur", il);
  6895. cb(Vcur, "Vcur", il);
  6896. Qcur = ggml_rope_ext(
  6897. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  6898. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6899. ext_factor, attn_factor, beta_fast, beta_slow
  6900. );
  6901. cb(Qcur, "Qcur", il);
  6902. Kcur = ggml_rope_ext(
  6903. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  6904. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  6905. ext_factor, attn_factor, beta_fast, beta_slow
  6906. );
  6907. cb(Kcur, "Kcur", il);
  6908. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6909. model.layers[il].wo, NULL,
  6910. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6911. }
  6912. if (il == n_layer - 1) {
  6913. // skip computing output for unused tokens
  6914. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  6915. n_tokens = n_outputs;
  6916. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  6917. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  6918. }
  6919. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  6920. cb(ffn_inp, "ffn_inp", il);
  6921. // feed-forward network
  6922. // MoE branch
  6923. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  6924. model.layers[il].attn_out_norm, NULL,
  6925. LLM_NORM, cb, il);
  6926. cb(cur, "attn_out_norm", il);
  6927. cur = llm_build_moe_ffn(ctx0, cur,
  6928. model.layers[il].ffn_gate_inp,
  6929. model.layers[il].ffn_up_exps,
  6930. model.layers[il].ffn_gate_exps,
  6931. model.layers[il].ffn_down_exps,
  6932. n_expert, n_expert_used,
  6933. LLM_FFN_SILU, true,
  6934. false, 0.0,
  6935. cb, il);
  6936. cb(cur, "ffn_moe_out", il);
  6937. cur = ggml_add(ctx0, cur, ffn_inp);
  6938. cb(cur, "ffn_out", il);
  6939. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  6940. if (layer_dir != nullptr) {
  6941. cur = ggml_add(ctx0, cur, layer_dir);
  6942. }
  6943. cb(cur, "l_out", il);
  6944. // input for next layer
  6945. inpL = cur;
  6946. }
  6947. cur = inpL;
  6948. cur = llm_build_norm(ctx0, cur, hparams,
  6949. model.output_norm, NULL,
  6950. LLM_NORM, cb, -1);
  6951. cb(cur, "result_norm", -1);
  6952. // lm_head
  6953. cur = ggml_mul_mat(ctx0, model.output, cur);
  6954. cb(cur, "result_output", -1);
  6955. ggml_build_forward_expand(gf, cur);
  6956. return gf;
  6957. }
  6958. struct ggml_cgraph * build_starcoder() {
  6959. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  6960. const int64_t n_embd_head = hparams.n_embd_head_v;
  6961. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  6962. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  6963. struct ggml_tensor * cur;
  6964. struct ggml_tensor * inpL;
  6965. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  6966. // inp_pos - contains the positions
  6967. struct ggml_tensor * inp_pos = build_inp_pos();
  6968. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  6969. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  6970. struct ggml_tensor * pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  6971. cb(pos, "pos_embd", -1);
  6972. inpL = ggml_add(ctx0, inpL, pos);
  6973. cb(inpL, "inpL", -1);
  6974. for (int il = 0; il < n_layer; ++il) {
  6975. cur = llm_build_norm(ctx0, inpL, hparams,
  6976. model.layers[il].attn_norm,
  6977. model.layers[il].attn_norm_b,
  6978. LLM_NORM, cb, il);
  6979. cb(cur, "attn_norm", il);
  6980. // self-attention
  6981. {
  6982. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  6983. cb(cur, "wqkv", il);
  6984. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  6985. cb(cur, "bqkv", il);
  6986. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  6987. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  6988. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  6989. cb(Qcur, "Qcur", il);
  6990. cb(Kcur, "Kcur", il);
  6991. cb(Vcur, "Vcur", il);
  6992. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  6993. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  6994. model.layers[il].wo, model.layers[il].bo,
  6995. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  6996. }
  6997. if (il == n_layer - 1) {
  6998. // skip computing output for unused tokens
  6999. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7000. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7001. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7002. }
  7003. // add the input
  7004. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7005. cb(ffn_inp, "ffn_inp", il);
  7006. // FF
  7007. {
  7008. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7009. model.layers[il].ffn_norm,
  7010. model.layers[il].ffn_norm_b,
  7011. LLM_NORM, cb, il);
  7012. cb(cur, "ffn_norm", il);
  7013. cur = llm_build_ffn(ctx0, cur,
  7014. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7015. NULL, NULL,
  7016. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7017. NULL,
  7018. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7019. cb(cur, "ffn_out", il);
  7020. }
  7021. inpL = ggml_add(ctx0, cur, ffn_inp);
  7022. cb(inpL, "l_out", il);
  7023. }
  7024. cur = llm_build_norm(ctx0, inpL, hparams,
  7025. model.output_norm,
  7026. model.output_norm_b,
  7027. LLM_NORM, cb, -1);
  7028. cb(cur, "result_norm", -1);
  7029. cur = ggml_mul_mat(ctx0, model.output, cur);
  7030. cb(cur, "result_output", -1);
  7031. ggml_build_forward_expand(gf, cur);
  7032. return gf;
  7033. }
  7034. struct ggml_cgraph * build_refact() {
  7035. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7036. const int64_t n_embd_head = hparams.n_embd_head_v;
  7037. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7038. struct ggml_tensor * cur;
  7039. struct ggml_tensor * inpL;
  7040. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7041. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7042. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7043. for (int il = 0; il < n_layer; ++il) {
  7044. struct ggml_tensor * inpSA = inpL;
  7045. cur = llm_build_norm(ctx0, inpL, hparams,
  7046. model.layers[il].attn_norm, NULL,
  7047. LLM_NORM_RMS, cb, il);
  7048. cb(cur, "attn_norm", il);
  7049. // self-attention
  7050. {
  7051. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7052. cb(Qcur, "Qcur", il);
  7053. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7054. cb(Kcur, "Kcur", il);
  7055. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7056. cb(Vcur, "Vcur", il);
  7057. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7058. cb(Kcur, "Kcur", il);
  7059. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7060. cb(Qcur, "Qcur", il);
  7061. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7062. model.layers[il].wo, NULL,
  7063. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7064. }
  7065. if (il == n_layer - 1) {
  7066. // skip computing output for unused tokens
  7067. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7068. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7069. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7070. }
  7071. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7072. cb(ffn_inp, "ffn_inp", il);
  7073. // feed-forward network
  7074. {
  7075. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7076. model.layers[il].ffn_norm, NULL,
  7077. LLM_NORM_RMS, cb, il);
  7078. cb(cur, "ffn_norm", il);
  7079. cur = llm_build_ffn(ctx0, cur,
  7080. model.layers[il].ffn_up, NULL,
  7081. model.layers[il].ffn_gate, NULL,
  7082. model.layers[il].ffn_down, NULL,
  7083. NULL,
  7084. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7085. cb(cur, "ffn_out", il);
  7086. }
  7087. cur = ggml_add(ctx0, cur, ffn_inp);
  7088. cb(cur, "l_out", il);
  7089. // input for next layer
  7090. inpL = cur;
  7091. }
  7092. cur = inpL;
  7093. cur = llm_build_norm(ctx0, cur, hparams,
  7094. model.output_norm, NULL,
  7095. LLM_NORM_RMS, cb, -1);
  7096. cb(cur, "result_norm", -1);
  7097. // lm_head
  7098. cur = ggml_mul_mat(ctx0, model.output, cur);
  7099. cb(cur, "result_output", -1);
  7100. ggml_build_forward_expand(gf, cur);
  7101. return gf;
  7102. }
  7103. struct ggml_cgraph * build_bert() {
  7104. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7105. const int64_t n_embd_head = hparams.n_embd_head_v;
  7106. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7107. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7108. struct ggml_tensor * cur;
  7109. struct ggml_tensor * inpL;
  7110. struct ggml_tensor * inp_pos = nullptr;
  7111. if (model.arch != LLM_ARCH_JINA_BERT_V2) {
  7112. inp_pos = build_inp_pos();
  7113. }
  7114. struct ggml_tensor * inp_mean = build_inp_mean();
  7115. struct ggml_tensor * inp_cls = build_inp_cls();
  7116. // construct input embeddings (token, type, position)
  7117. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7118. // token types are hardcoded to zero ("Sentence A")
  7119. struct ggml_tensor * type_row0 = ggml_view_1d(ctx0, model.type_embd, n_embd, 0);
  7120. inpL = ggml_add(ctx0, inpL, type_row0);
  7121. if (model.arch == LLM_ARCH_BERT) {
  7122. inpL = ggml_add(ctx0, ggml_get_rows(ctx0, model.pos_embd, inp_pos), inpL);
  7123. }
  7124. cb(inpL, "inp_embd", -1);
  7125. // embed layer norm
  7126. inpL = llm_build_norm(ctx0, inpL, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
  7127. cb(inpL, "inp_norm", -1);
  7128. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7129. struct ggml_tensor * KQ_mask = build_inp_KQ_mask(false);
  7130. // iterate layers
  7131. for (int il = 0; il < n_layer; ++il) {
  7132. struct ggml_tensor * cur = inpL;
  7133. struct ggml_tensor * Qcur;
  7134. struct ggml_tensor * Kcur;
  7135. struct ggml_tensor * Vcur;
  7136. // self-attention
  7137. if (model.arch == LLM_ARCH_BERT || model.arch == LLM_ARCH_JINA_BERT_V2) {
  7138. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), model.layers[il].bq);
  7139. cb(Qcur, "Qcur", il);
  7140. if (model.layers[il].attn_q_norm) {
  7141. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7142. model.layers[il].attn_q_norm,
  7143. model.layers[il].attn_q_norm_b,
  7144. LLM_NORM, cb, il);
  7145. }
  7146. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), model.layers[il].bk);
  7147. cb(Kcur, "Kcur", il);
  7148. if (model.layers[il].attn_k_norm) {
  7149. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7150. model.layers[il].attn_k_norm,
  7151. model.layers[il].attn_k_norm_b,
  7152. LLM_NORM, cb, il);
  7153. }
  7154. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), model.layers[il].bv);
  7155. cb(Vcur, "Vcur", il);
  7156. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7157. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7158. } else {
  7159. // compute Q and K and RoPE them
  7160. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7161. cb(cur, "wqkv", il);
  7162. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7163. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7164. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7165. cb(Qcur, "Qcur", il);
  7166. cb(Kcur, "Kcur", il);
  7167. cb(Vcur, "Vcur", il);
  7168. Qcur = ggml_rope_ext(
  7169. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7170. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7171. ext_factor, attn_factor, beta_fast, beta_slow
  7172. );
  7173. cb(Qcur, "Qcur", il);
  7174. Kcur = ggml_rope_ext(
  7175. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7176. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7177. ext_factor, attn_factor, beta_fast, beta_slow
  7178. );
  7179. cb(Kcur, "Kcur", il);
  7180. }
  7181. struct ggml_tensor * q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
  7182. struct ggml_tensor * k = ggml_cont(ctx0, ggml_permute(ctx0, Kcur, 0, 2, 1, 3));
  7183. struct ggml_tensor * kq = ggml_mul_mat(ctx0, k, q);
  7184. cb(kq, "kq", il);
  7185. kq = ggml_soft_max_ext(ctx0, kq, KQ_mask, 1.0f/sqrtf(float(n_embd_head)), hparams.f_max_alibi_bias);
  7186. cb(kq, "kq_soft_max_ext", il);
  7187. struct ggml_tensor * v = ggml_cont(ctx0, ggml_transpose(ctx0, ggml_reshape_2d(ctx0, Vcur, n_embd_gqa, n_tokens)));
  7188. cb(v, "v", il);
  7189. struct ggml_tensor * kqv = ggml_mul_mat(ctx0, ggml_reshape_3d(ctx0, v, n_tokens, n_embd_head, n_head_kv), kq);
  7190. cb(kqv, "kqv", il);
  7191. struct ggml_tensor * kqv_merged = ggml_permute(ctx0, kqv, 0, 2, 1, 3);
  7192. cb(kqv_merged, "kqv_merged", il);
  7193. cur = ggml_cont_2d(ctx0, kqv_merged, n_embd_gqa, n_tokens);
  7194. cb(cur, "kqv_merged_cont", il);
  7195. ggml_build_forward_expand(gf, cur);
  7196. cur = ggml_mul_mat(ctx0, model.layers[il].wo, cur);
  7197. if (model.layers[il].bo) {
  7198. cb(cur, "kqv_wo", il);
  7199. }
  7200. if (model.layers[il].bo) {
  7201. cur = ggml_add(ctx0, cur, model.layers[il].bo);
  7202. }
  7203. cb(cur, "kqv_out", il);
  7204. if (il == n_layer - 1 && pooling_type == LLAMA_POOLING_TYPE_NONE) {
  7205. // skip computing output for unused tokens
  7206. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7207. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7208. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7209. }
  7210. // re-add the layer input
  7211. cur = ggml_add(ctx0, cur, inpL);
  7212. // attention layer norm
  7213. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].attn_out_norm, model.layers[il].attn_out_norm_b, LLM_NORM, cb, il);
  7214. struct ggml_tensor * ffn_inp = cur;
  7215. cb(ffn_inp, "ffn_inp", il);
  7216. // feed-forward network
  7217. if (model.arch == LLM_ARCH_BERT) {
  7218. cur = llm_build_ffn(ctx0, cur,
  7219. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7220. NULL, NULL,
  7221. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7222. NULL,
  7223. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7224. } else if (model.arch == LLM_ARCH_JINA_BERT_V2) {
  7225. cur = llm_build_ffn(ctx0, cur,
  7226. model.layers[il].ffn_up, NULL,
  7227. model.layers[il].ffn_gate, NULL,
  7228. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7229. NULL,
  7230. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  7231. } else {
  7232. cur = llm_build_ffn(ctx0, cur,
  7233. model.layers[il].ffn_up, NULL,
  7234. model.layers[il].ffn_gate, NULL,
  7235. model.layers[il].ffn_down, NULL,
  7236. NULL,
  7237. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7238. }
  7239. cb(cur, "ffn_out", il);
  7240. // attentions bypass the intermediate layer
  7241. cur = ggml_add(ctx0, cur, ffn_inp);
  7242. // output layer norm
  7243. cur = llm_build_norm(ctx0, cur, hparams, model.layers[il].layer_out_norm, model.layers[il].layer_out_norm_b, LLM_NORM, cb, il);
  7244. // input for next layer
  7245. inpL = cur;
  7246. }
  7247. // final output
  7248. cur = inpL;
  7249. cb(cur, "result_embd", -1);
  7250. // pooling layer
  7251. switch (pooling_type) {
  7252. case LLAMA_POOLING_TYPE_NONE:
  7253. {
  7254. // nop
  7255. } break;
  7256. case LLAMA_POOLING_TYPE_MEAN:
  7257. {
  7258. cur = ggml_mul_mat(ctx0, ggml_cont(ctx0, ggml_transpose(ctx0, cur)), inp_mean);
  7259. cb(cur, "result_embd_pooled", -1);
  7260. } break;
  7261. case LLAMA_POOLING_TYPE_CLS:
  7262. {
  7263. cur = ggml_get_rows(ctx0, cur, inp_cls);
  7264. cb(cur, "result_embd_pooled", -1);
  7265. } break;
  7266. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  7267. {
  7268. GGML_ASSERT(false && "Invalid pooling type");
  7269. } break;
  7270. }
  7271. ggml_build_forward_expand(gf, cur);
  7272. return gf;
  7273. }
  7274. struct ggml_cgraph * build_bloom() {
  7275. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7276. const int64_t n_embd_head = hparams.n_embd_head_v;
  7277. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7278. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7279. struct ggml_tensor * cur;
  7280. struct ggml_tensor * inpL;
  7281. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7282. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7283. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7284. inpL = llm_build_norm(ctx0, inpL, hparams,
  7285. model.tok_norm,
  7286. model.tok_norm_b,
  7287. LLM_NORM, cb, -1);
  7288. cb(inpL, "inp_norm", -1);
  7289. for (int il = 0; il < n_layer; ++il) {
  7290. cur = llm_build_norm(ctx0, inpL, hparams,
  7291. model.layers[il].attn_norm,
  7292. model.layers[il].attn_norm_b,
  7293. LLM_NORM, cb, il);
  7294. cb(cur, "attn_norm", il);
  7295. // self-attention
  7296. {
  7297. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7298. cb(cur, "wqkv", il);
  7299. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7300. cb(cur, "bqkv", il);
  7301. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7302. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7303. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7304. cb(Qcur, "Qcur", il);
  7305. cb(Kcur, "Kcur", il);
  7306. cb(Vcur, "Vcur", il);
  7307. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7308. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7309. model.layers[il].wo, model.layers[il].bo,
  7310. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7311. }
  7312. if (il == n_layer - 1) {
  7313. // skip computing output for unused tokens
  7314. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7315. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7316. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7317. }
  7318. // Add the input
  7319. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7320. cb(ffn_inp, "ffn_inp", il);
  7321. // FF
  7322. {
  7323. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7324. model.layers[il].ffn_norm,
  7325. model.layers[il].ffn_norm_b,
  7326. LLM_NORM, cb, il);
  7327. cb(cur, "ffn_norm", il);
  7328. cur = llm_build_ffn(ctx0, cur,
  7329. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7330. NULL, NULL,
  7331. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7332. NULL,
  7333. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7334. cb(cur, "ffn_out", il);
  7335. }
  7336. inpL = ggml_add(ctx0, cur, ffn_inp);
  7337. cb(inpL, "l_out", il);
  7338. }
  7339. cur = llm_build_norm(ctx0, inpL, hparams,
  7340. model.output_norm,
  7341. model.output_norm_b,
  7342. LLM_NORM, cb, -1);
  7343. cb(cur, "result_norm", -1);
  7344. cur = ggml_mul_mat(ctx0, model.output, cur);
  7345. cb(cur, "result_output", -1);
  7346. ggml_build_forward_expand(gf, cur);
  7347. return gf;
  7348. }
  7349. struct ggml_cgraph * build_mpt() {
  7350. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7351. const int64_t n_embd_head = hparams.n_embd_head_v;
  7352. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7353. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7354. struct ggml_tensor * cur;
  7355. struct ggml_tensor * pos;
  7356. struct ggml_tensor * inpL;
  7357. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7358. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7359. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7360. if (model.pos_embd) {
  7361. // inp_pos - contains the positions
  7362. struct ggml_tensor * inp_pos = build_inp_pos();
  7363. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  7364. cb(pos, "pos_embd", -1);
  7365. inpL = ggml_add(ctx0, inpL, pos);
  7366. cb(inpL, "inpL", -1);
  7367. }
  7368. for (int il = 0; il < n_layer; ++il) {
  7369. struct ggml_tensor * attn_norm;
  7370. attn_norm = llm_build_norm(ctx0, inpL, hparams,
  7371. model.layers[il].attn_norm,
  7372. model.layers[il].attn_norm_b,
  7373. LLM_NORM, cb, il);
  7374. cb(attn_norm, "attn_norm", il);
  7375. // self-attention
  7376. {
  7377. cur = attn_norm;
  7378. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7379. cb(cur, "wqkv", il);
  7380. if (model.layers[il].bqkv){
  7381. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7382. cb(cur, "bqkv", il);
  7383. }
  7384. if (hparams.f_clamp_kqv > 0.0f) {
  7385. cur = ggml_clamp(ctx0, cur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  7386. cb(cur, "wqkv_clamped", il);
  7387. }
  7388. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7389. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7390. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7391. cb(Qcur, "Qcur", il);
  7392. cb(Kcur, "Kcur", il);
  7393. cb(Vcur, "Vcur", il);
  7394. // Q/K Layernorm
  7395. if (model.layers[il].attn_q_norm) {
  7396. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7397. model.layers[il].attn_q_norm,
  7398. model.layers[il].attn_q_norm_b,
  7399. LLM_NORM, cb, il);
  7400. cb(Qcur, "Qcur", il);
  7401. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7402. model.layers[il].attn_k_norm,
  7403. model.layers[il].attn_k_norm_b,
  7404. LLM_NORM, cb, il);
  7405. cb(Kcur, "Kcur", il);
  7406. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7407. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7408. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7409. model.layers[il].wo, model.layers[il].bo,
  7410. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7411. } else {
  7412. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7413. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7414. model.layers[il].wo, model.layers[il].bo,
  7415. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7416. }
  7417. }
  7418. if (il == n_layer - 1) {
  7419. // skip computing output for unused tokens
  7420. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7421. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7422. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7423. }
  7424. // Add the input
  7425. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7426. cb(ffn_inp, "ffn_inp", il);
  7427. // feed forward
  7428. {
  7429. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7430. model.layers[il].ffn_norm,
  7431. model.layers[il].ffn_norm_b,
  7432. LLM_NORM, cb, il);
  7433. cb(cur, "ffn_norm", il);
  7434. cur = llm_build_ffn(ctx0, cur,
  7435. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7436. NULL, NULL,
  7437. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7438. model.layers[il].ffn_act,
  7439. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7440. cb(cur, "ffn_out", il);
  7441. }
  7442. cur = ggml_add(ctx0, cur, ffn_inp);
  7443. cb(cur, "l_out", il);
  7444. // input for next layer
  7445. inpL = cur;
  7446. }
  7447. cur = inpL;
  7448. cur = llm_build_norm(ctx0, cur, hparams,
  7449. model.output_norm,
  7450. model.output_norm_b,
  7451. LLM_NORM, cb, -1);
  7452. cb(cur, "result_norm", -1);
  7453. cur = ggml_mul_mat(ctx0, model.output, cur);
  7454. cb(cur, "result_output", -1);
  7455. ggml_build_forward_expand(gf, cur);
  7456. return gf;
  7457. }
  7458. struct ggml_cgraph * build_stablelm() {
  7459. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  7460. const int64_t n_embd_head = hparams.n_embd_head_v;
  7461. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7462. struct ggml_tensor * cur;
  7463. struct ggml_tensor * inpL;
  7464. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7465. // inp_pos - contains the positions
  7466. struct ggml_tensor * inp_pos = build_inp_pos();
  7467. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7468. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7469. for (int il = 0; il < n_layer; ++il) {
  7470. // norm
  7471. cur = llm_build_norm(ctx0, inpL, hparams,
  7472. model.layers[il].attn_norm,
  7473. model.layers[il].attn_norm_b,
  7474. LLM_NORM, cb, il);
  7475. cb(cur, "attn_norm", il);
  7476. struct ggml_tensor * inpSA = cur;
  7477. // self-attention
  7478. {
  7479. // compute Q and K and RoPE them
  7480. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7481. cb(Qcur, "Qcur", il);
  7482. if (model.layers[il].bq) {
  7483. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7484. cb(Qcur, "Qcur", il);
  7485. }
  7486. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7487. cb(Kcur, "Kcur", il);
  7488. if (model.layers[il].bk) {
  7489. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7490. cb(Kcur, "Kcur", il);
  7491. }
  7492. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7493. cb(Vcur, "Vcur", il);
  7494. if (model.layers[il].bv) {
  7495. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7496. cb(Vcur, "Vcur", il);
  7497. }
  7498. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7499. cb(Qcur, "Qcur", il);
  7500. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7501. cb(Kcur, "Kcur", il);
  7502. if (model.layers[il].attn_q_norm) {
  7503. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  7504. model.layers[il].attn_q_norm,
  7505. NULL,
  7506. LLM_NORM, cb, il);
  7507. cb(Qcur, "Qcur", il);
  7508. }
  7509. if (model.layers[il].attn_k_norm) {
  7510. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  7511. model.layers[il].attn_k_norm,
  7512. NULL,
  7513. LLM_NORM, cb, il);
  7514. cb(Kcur, "Kcur", il);
  7515. }
  7516. Qcur = ggml_rope_ext(
  7517. ctx0, Qcur, inp_pos, nullptr,
  7518. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7519. ext_factor, attn_factor, beta_fast, beta_slow
  7520. );
  7521. cb(Qcur, "Qcur", il);
  7522. Kcur = ggml_rope_ext(
  7523. ctx0, Kcur, inp_pos, nullptr,
  7524. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7525. ext_factor, attn_factor, beta_fast, beta_slow
  7526. );
  7527. cb(Kcur, "Kcur", il);
  7528. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7529. model.layers[il].wo, NULL,
  7530. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7531. }
  7532. if (il == n_layer - 1) {
  7533. // skip computing output for unused tokens
  7534. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7535. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7536. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7537. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7538. }
  7539. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  7540. cb(ffn_inp, "ffn_inp", il);
  7541. // feed-forward network
  7542. {
  7543. if (model.layers[il].ffn_norm) {
  7544. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7545. model.layers[il].ffn_norm,
  7546. model.layers[il].ffn_norm_b,
  7547. LLM_NORM, cb, il);
  7548. cb(cur, "ffn_norm", il);
  7549. } else {
  7550. // parallel residual
  7551. cur = inpSA;
  7552. }
  7553. cur = llm_build_ffn(ctx0, cur,
  7554. model.layers[il].ffn_up, NULL,
  7555. model.layers[il].ffn_gate, NULL,
  7556. model.layers[il].ffn_down, NULL,
  7557. NULL,
  7558. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7559. cb(cur, "ffn_out", il);
  7560. }
  7561. cur = ggml_add(ctx0, cur, ffn_inp);
  7562. cb(cur, "l_out", il);
  7563. // input for next layer
  7564. inpL = cur;
  7565. }
  7566. cur = inpL;
  7567. cur = llm_build_norm(ctx0, cur, hparams,
  7568. model.output_norm,
  7569. model.output_norm_b,
  7570. LLM_NORM, cb, -1);
  7571. cb(cur, "result_norm", -1);
  7572. // lm_head
  7573. cur = ggml_mul_mat(ctx0, model.output, cur);
  7574. cb(cur, "result_output", -1);
  7575. ggml_build_forward_expand(gf, cur);
  7576. return gf;
  7577. }
  7578. struct ggml_cgraph * build_qwen() {
  7579. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7580. const int64_t n_embd_head = hparams.n_embd_head_v;
  7581. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7582. struct ggml_tensor * cur;
  7583. struct ggml_tensor * inpL;
  7584. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7585. // inp_pos - contains the positions
  7586. struct ggml_tensor * inp_pos = build_inp_pos();
  7587. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7588. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7589. for (int il = 0; il < n_layer; ++il) {
  7590. struct ggml_tensor * inpSA = inpL;
  7591. cur = llm_build_norm(ctx0, inpL, hparams,
  7592. model.layers[il].attn_norm, NULL,
  7593. LLM_NORM_RMS, cb, il);
  7594. cb(cur, "attn_norm", il);
  7595. // self-attention
  7596. {
  7597. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  7598. cb(cur, "wqkv", il);
  7599. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7600. cb(cur, "bqkv", il);
  7601. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7602. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7603. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 2*sizeof(float)*(n_embd)));
  7604. cb(Qcur, "Qcur", il);
  7605. cb(Kcur, "Kcur", il);
  7606. cb(Vcur, "Vcur", il);
  7607. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7608. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7609. // using mode = 2 for neox mode
  7610. Qcur = ggml_rope_ext(
  7611. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7612. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7613. );
  7614. cb(Qcur, "Qcur", il);
  7615. Kcur = ggml_rope_ext(
  7616. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7617. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7618. );
  7619. cb(Kcur, "Kcur", il);
  7620. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7621. model.layers[il].wo, NULL,
  7622. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7623. }
  7624. if (il == n_layer - 1) {
  7625. // skip computing output for unused tokens
  7626. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7627. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7628. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7629. }
  7630. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7631. cb(ffn_inp, "ffn_inp", il);
  7632. // feed-forward forward
  7633. {
  7634. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7635. model.layers[il].ffn_norm, NULL,
  7636. LLM_NORM_RMS, cb, il);
  7637. cb(cur, "ffn_norm", il);
  7638. cur = llm_build_ffn(ctx0, cur,
  7639. model.layers[il].ffn_up, NULL,
  7640. model.layers[il].ffn_gate, NULL,
  7641. model.layers[il].ffn_down, NULL,
  7642. NULL,
  7643. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7644. cb(cur, "ffn_out", il);
  7645. }
  7646. cur = ggml_add(ctx0, cur, ffn_inp);
  7647. cb(cur, "l_out", il);
  7648. // input for next layer
  7649. inpL = cur;
  7650. }
  7651. cur = inpL;
  7652. cur = llm_build_norm(ctx0, cur, hparams,
  7653. model.output_norm, NULL,
  7654. LLM_NORM_RMS, cb, -1);
  7655. cb(cur, "result_norm", -1);
  7656. // lm_head
  7657. cur = ggml_mul_mat(ctx0, model.output, cur);
  7658. cb(cur, "result_output", -1);
  7659. ggml_build_forward_expand(gf, cur);
  7660. return gf;
  7661. }
  7662. struct ggml_cgraph * build_qwen2() {
  7663. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7664. const int64_t n_embd_head = hparams.n_embd_head_v;
  7665. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7666. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7667. struct ggml_tensor * cur;
  7668. struct ggml_tensor * inpL;
  7669. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7670. // inp_pos - contains the positions
  7671. struct ggml_tensor * inp_pos = build_inp_pos();
  7672. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7673. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7674. for (int il = 0; il < n_layer; ++il) {
  7675. struct ggml_tensor * inpSA = inpL;
  7676. // norm
  7677. cur = llm_build_norm(ctx0, inpL, hparams,
  7678. model.layers[il].attn_norm, NULL,
  7679. LLM_NORM_RMS, cb, il);
  7680. cb(cur, "attn_norm", il);
  7681. // self-attention
  7682. {
  7683. // compute Q and K and RoPE them
  7684. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7685. cb(Qcur, "Qcur", il);
  7686. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7687. cb(Qcur, "Qcur", il);
  7688. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7689. cb(Kcur, "Kcur", il);
  7690. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7691. cb(Kcur, "Kcur", il);
  7692. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7693. cb(Vcur, "Vcur", il);
  7694. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7695. cb(Vcur, "Vcur", il);
  7696. Qcur = ggml_rope_ext(
  7697. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7698. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7699. ext_factor, attn_factor, beta_fast, beta_slow
  7700. );
  7701. cb(Qcur, "Qcur", il);
  7702. Kcur = ggml_rope_ext(
  7703. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7704. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7705. ext_factor, attn_factor, beta_fast, beta_slow
  7706. );
  7707. cb(Kcur, "Kcur", il);
  7708. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7709. model.layers[il].wo, model.layers[il].bo,
  7710. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7711. }
  7712. if (il == n_layer - 1) {
  7713. // skip computing output for unused tokens
  7714. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7715. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7716. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7717. }
  7718. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7719. cb(ffn_inp, "ffn_inp", il);
  7720. // feed-forward network
  7721. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7722. model.layers[il].ffn_norm, NULL,
  7723. LLM_NORM_RMS, cb, il);
  7724. cb(cur, "ffn_norm", il);
  7725. cur = llm_build_ffn(ctx0, cur,
  7726. model.layers[il].ffn_up, NULL,
  7727. model.layers[il].ffn_gate, NULL,
  7728. model.layers[il].ffn_down, NULL,
  7729. NULL,
  7730. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7731. cb(cur, "ffn_out", il);
  7732. cur = ggml_add(ctx0, cur, ffn_inp);
  7733. cb(cur, "l_out", il);
  7734. // input for next layer
  7735. inpL = cur;
  7736. }
  7737. cur = inpL;
  7738. cur = llm_build_norm(ctx0, cur, hparams,
  7739. model.output_norm, NULL,
  7740. LLM_NORM_RMS, cb, -1);
  7741. cb(cur, "result_norm", -1);
  7742. // lm_head
  7743. cur = ggml_mul_mat(ctx0, model.output, cur);
  7744. cb(cur, "result_output", -1);
  7745. ggml_build_forward_expand(gf, cur);
  7746. return gf;
  7747. }
  7748. struct ggml_cgraph * build_qwen2moe() {
  7749. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7750. // mutable variable, needed during the last layer of the computation to skip unused tokens
  7751. int32_t n_tokens = this->n_tokens;
  7752. const int64_t n_embd_head = hparams.n_embd_head_v;
  7753. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7754. GGML_ASSERT(n_embd_head == hparams.n_rot);
  7755. struct ggml_tensor * cur;
  7756. struct ggml_tensor * inpL;
  7757. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7758. // inp_pos - contains the positions
  7759. struct ggml_tensor * inp_pos = build_inp_pos();
  7760. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7761. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7762. for (int il = 0; il < n_layer; ++il) {
  7763. struct ggml_tensor * inpSA = inpL;
  7764. // norm
  7765. cur = llm_build_norm(ctx0, inpL, hparams,
  7766. model.layers[il].attn_norm, NULL,
  7767. LLM_NORM_RMS, cb, il);
  7768. cb(cur, "attn_norm", il);
  7769. // self_attention
  7770. {
  7771. // compute Q and K and RoPE them
  7772. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  7773. cb(Qcur, "Qcur", il);
  7774. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  7775. cb(Qcur, "Qcur", il);
  7776. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  7777. cb(Kcur, "Kcur", il);
  7778. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  7779. cb(Kcur, "Kcur", il);
  7780. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  7781. cb(Vcur, "Vcur", il);
  7782. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  7783. cb(Vcur, "Vcur", il);
  7784. Qcur = ggml_rope_ext(
  7785. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  7786. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7787. ext_factor, attn_factor, beta_fast, beta_slow
  7788. );
  7789. cb(Qcur, "Qcur", il);
  7790. Kcur = ggml_rope_ext(
  7791. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  7792. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  7793. ext_factor, attn_factor, beta_fast, beta_slow
  7794. );
  7795. cb(Kcur, "Kcur", il);
  7796. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7797. model.layers[il].wo, model.layers[il].bo,
  7798. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  7799. }
  7800. if (il == n_layer - 1) {
  7801. // skip computing output for unused tokens
  7802. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7803. n_tokens = n_outputs;
  7804. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7805. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  7806. }
  7807. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  7808. cb(ffn_inp, "ffn_inp", il);
  7809. // MoE branch
  7810. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  7811. model.layers[il].ffn_norm, NULL,
  7812. LLM_NORM_RMS, cb, il);
  7813. cb(cur, "ffn_norm", il);
  7814. ggml_tensor * moe_out =
  7815. llm_build_moe_ffn(ctx0, cur,
  7816. model.layers[il].ffn_gate_inp,
  7817. model.layers[il].ffn_up_exps,
  7818. model.layers[il].ffn_gate_exps,
  7819. model.layers[il].ffn_down_exps,
  7820. n_expert, n_expert_used,
  7821. LLM_FFN_SILU, false,
  7822. false, 0.0,
  7823. cb, il);
  7824. cb(cur, "ffn_moe_out", il);
  7825. // FFN shared expert
  7826. {
  7827. ggml_tensor * cur_gate_inp = ggml_mul_mat(ctx0, model.layers[il].ffn_gate_inp_shexp, cur);
  7828. cb(cur_gate_inp, "ffn_shexp_gate_inp", il);
  7829. // sigmoid
  7830. ggml_tensor * cur_gate = ggml_div(ctx0, ggml_silu(ctx0, cur_gate_inp), cur_gate_inp);
  7831. cb(cur_gate, "ffn_shexp_gate", il);
  7832. ggml_tensor * cur_ffn = llm_build_ffn(ctx0, cur,
  7833. model.layers[il].ffn_up_shexp, NULL,
  7834. model.layers[il].ffn_gate_shexp, NULL,
  7835. model.layers[il].ffn_down_shexp, NULL,
  7836. NULL,
  7837. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  7838. cb(cur_ffn, "ffn_shexp", il);
  7839. ggml_tensor * ffn_shexp_out = ggml_mul(ctx0, cur_ffn, cur_gate);
  7840. cb(ffn_shexp_out, "ffn_shexp_out", il);
  7841. moe_out = ggml_add(ctx0, moe_out, ffn_shexp_out);
  7842. cb(moe_out, "ffn_out", il);
  7843. cur = moe_out;
  7844. }
  7845. cur = ggml_add(ctx0, cur, ffn_inp);
  7846. cb(cur, "l_out", il);
  7847. // input for next layer
  7848. inpL = cur;
  7849. }
  7850. cur = inpL;
  7851. cur = llm_build_norm(ctx0, cur, hparams,
  7852. model.output_norm, NULL,
  7853. LLM_NORM_RMS, cb, -1);
  7854. cb(cur, "result_norm", -1);
  7855. // lm_head
  7856. cur = ggml_mul_mat(ctx0, model.output, cur);
  7857. cb(cur, "result_output", -1);
  7858. ggml_build_forward_expand(gf, cur);
  7859. return gf;
  7860. }
  7861. struct ggml_cgraph * build_phi2() {
  7862. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7863. const int64_t n_embd_head = hparams.n_embd_head_v;
  7864. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7865. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7866. struct ggml_tensor * cur;
  7867. struct ggml_tensor * attn_norm_output;
  7868. struct ggml_tensor * ffn_output;
  7869. struct ggml_tensor * inpL;
  7870. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7871. // inp_pos - contains the positions
  7872. struct ggml_tensor * inp_pos = build_inp_pos();
  7873. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7874. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7875. for (int il = 0; il < n_layer; ++il) {
  7876. attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7877. model.layers[il].attn_norm,
  7878. model.layers[il].attn_norm_b,
  7879. LLM_NORM, cb, il);
  7880. cb(attn_norm_output, "attn_norm", il);
  7881. // self-attention
  7882. {
  7883. struct ggml_tensor * Qcur = nullptr;
  7884. struct ggml_tensor * Kcur = nullptr;
  7885. struct ggml_tensor * Vcur = nullptr;
  7886. if (model.layers[il].wqkv) {
  7887. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7888. cb(cur, "wqkv", il);
  7889. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  7890. cb(cur, "bqkv", il);
  7891. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  7892. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  7893. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  7894. } else {
  7895. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7896. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7897. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7898. }
  7899. cb(Qcur, "Qcur", il);
  7900. cb(Kcur, "Kcur", il);
  7901. cb(Vcur, "Vcur", il);
  7902. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7903. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  7904. Qcur = ggml_rope_ext(
  7905. ctx0, Qcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7906. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7907. );
  7908. cb(Qcur, "Qcur", il);
  7909. // with phi2, we scale the Q to avoid precision issues
  7910. // ref: https://github.com/ml-explore/mlx-examples/blob/08e862336ade809bc37d1035f94b359e7d1a5152/phi2/phi2.py#L64-L66
  7911. Qcur = ggml_scale(ctx0, Qcur, 1.0f/sqrtf(float(n_embd_head)));
  7912. cb(Qcur, "Qcur", il);
  7913. Kcur = ggml_rope_ext(
  7914. ctx0, Kcur, inp_pos, nullptr, n_rot, rope_type, n_ctx_orig,
  7915. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  7916. );
  7917. cb(Kcur, "Kcur", il);
  7918. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  7919. model.layers[il].wo, model.layers[il].bo,
  7920. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  7921. }
  7922. if (il == n_layer - 1) {
  7923. // skip computing output for unused tokens
  7924. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  7925. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  7926. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  7927. attn_norm_output = ggml_get_rows(ctx0, attn_norm_output, inp_out_ids);
  7928. }
  7929. // FF
  7930. {
  7931. ffn_output = llm_build_ffn(ctx0, attn_norm_output,
  7932. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  7933. NULL, NULL,
  7934. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  7935. NULL,
  7936. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  7937. cb(ffn_output, "ffn_out", il);
  7938. }
  7939. cur = ggml_add(ctx0, cur, ffn_output);
  7940. cb(cur, "l_out", il);
  7941. cur = ggml_add(ctx0, cur, inpL);
  7942. cb(cur, "l_out", il);
  7943. inpL = cur;
  7944. }
  7945. cur = llm_build_norm(ctx0, inpL, hparams,
  7946. model.output_norm,
  7947. model.output_norm_b,
  7948. LLM_NORM, cb, -1);
  7949. cb(cur, "result_norm", -1);
  7950. cur = ggml_mul_mat(ctx0, model.output, cur);
  7951. cb(cur, "result_output_no_bias", -1);
  7952. cur = ggml_add(ctx0, cur, model.output_b);
  7953. cb(cur, "result_output", -1);
  7954. ggml_build_forward_expand(gf, cur);
  7955. return gf;
  7956. }
  7957. struct ggml_cgraph * build_phi3() {
  7958. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  7959. const int64_t n_embd_head = hparams.n_embd_head_v;
  7960. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  7961. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  7962. struct ggml_tensor * cur;
  7963. struct ggml_tensor * inpL;
  7964. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  7965. // inp_pos - contains the positions
  7966. struct ggml_tensor * inp_pos = build_inp_pos();
  7967. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  7968. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  7969. for (int il = 0; il < n_layer; ++il) {
  7970. auto residual = inpL;
  7971. // self-attention
  7972. {
  7973. // rope freq factors for 128k context
  7974. struct ggml_tensor * rope_factors = build_rope_factors(il);
  7975. struct ggml_tensor* attn_norm_output = llm_build_norm(ctx0, inpL, hparams,
  7976. model.layers[il].attn_norm,
  7977. NULL,
  7978. LLM_NORM_RMS, cb, il);
  7979. cb(attn_norm_output, "attn_norm", il);
  7980. struct ggml_tensor * Qcur = nullptr;
  7981. struct ggml_tensor * Kcur = nullptr;
  7982. struct ggml_tensor * Vcur = nullptr;
  7983. if (model.layers[il].wqkv) {
  7984. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, attn_norm_output);
  7985. cb(cur, "wqkv", il);
  7986. Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0 * sizeof(float) * (n_embd)));
  7987. Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd)));
  7988. Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1 * sizeof(float) * (n_embd + n_embd_gqa)));
  7989. }
  7990. else {
  7991. Qcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, attn_norm_output), model.layers[il].bq);
  7992. Kcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, attn_norm_output), model.layers[il].bk);
  7993. Vcur = ggml_add(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, attn_norm_output), model.layers[il].bv);
  7994. }
  7995. cb(Qcur, "Qcur", il);
  7996. cb(Kcur, "Kcur", il);
  7997. cb(Vcur, "Vcur", il);
  7998. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  7999. Kcur = ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens);
  8000. Qcur = ggml_rope_ext(
  8001. ctx0, Qcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8002. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8003. );
  8004. cb(Qcur, "Qcur", il);
  8005. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head)));
  8006. cb(Qcur, "Qcur", il);
  8007. Kcur = ggml_rope_ext(
  8008. ctx0, Kcur, inp_pos, rope_factors, n_rot, rope_type, n_ctx_orig,
  8009. freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow
  8010. );
  8011. cb(Kcur, "Kcur", il);
  8012. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8013. model.layers[il].wo, model.layers[il].bo,
  8014. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8015. }
  8016. if (il == n_layer - 1) {
  8017. // skip computing output for unused tokens
  8018. struct ggml_tensor* inp_out_ids = build_inp_out_ids();
  8019. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8020. residual = ggml_get_rows(ctx0, residual, inp_out_ids);
  8021. }
  8022. cur = ggml_add(ctx0, cur, residual);
  8023. residual = cur;
  8024. cur = llm_build_norm(ctx0, cur, hparams,
  8025. model.layers[il].ffn_norm, NULL,
  8026. LLM_NORM_RMS, cb, il);
  8027. cb(cur, "ffn_norm", il);
  8028. // FF
  8029. // special-case: the up and gate tensors are merged into a single tensor
  8030. // TOOD: support into llm_build_ffn
  8031. {
  8032. struct ggml_tensor* up = ggml_mul_mat(ctx0, model.layers[il].ffn_up, cur);
  8033. cb(up, "ffn_up", il);
  8034. auto g = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), 0));
  8035. auto y = ggml_cont(ctx0, ggml_view_2d(ctx0, up, up->ne[0] / 2, up->ne[1], ggml_row_size(up->type, up->ne[0]), up->nb[1] / 2));
  8036. y = ggml_mul(ctx0, y, ggml_silu(ctx0, g));
  8037. cb(y, "ffn_gate", il);
  8038. auto down = ggml_mul_mat(ctx0, model.layers[il].ffn_down, y);
  8039. cb(down, "ffn_down", il);
  8040. cur = down;
  8041. cb(cur, "ffn_out", il);
  8042. }
  8043. cur = ggml_add(ctx0, residual, cur);
  8044. cb(cur, "l_out", il);
  8045. inpL = cur;
  8046. }
  8047. cur = llm_build_norm(ctx0, inpL, hparams,
  8048. model.output_norm,
  8049. NULL,
  8050. LLM_NORM_RMS, cb, -1);
  8051. cb(cur, "result_norm", -1);
  8052. cur = ggml_mul_mat(ctx0, model.output, cur);
  8053. cb(cur, "result_output", -1);
  8054. ggml_build_forward_expand(gf, cur);
  8055. return gf;
  8056. }
  8057. struct ggml_cgraph * build_plamo() {
  8058. struct ggml_cgraph * gf = ggml_new_graph(ctx0);
  8059. const int64_t n_embd_head = hparams.n_embd_head_v;
  8060. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8061. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8062. struct ggml_tensor * cur;
  8063. struct ggml_tensor * inpL;
  8064. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8065. // inp_pos - contains the positions
  8066. struct ggml_tensor * inp_pos = build_inp_pos();
  8067. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8068. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8069. for (int il = 0; il < n_layer; ++il) {
  8070. // norm
  8071. cur = llm_build_norm(ctx0, inpL, hparams,
  8072. model.layers[il].attn_norm, NULL,
  8073. LLM_NORM_RMS, cb, il);
  8074. cb(cur, "attn_norm", il);
  8075. struct ggml_tensor * attention_norm = cur;
  8076. // self-attention
  8077. {
  8078. // compute Q and K and RoPE them
  8079. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8080. cb(Qcur, "Qcur", il);
  8081. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8082. cb(Kcur, "Kcur", il);
  8083. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8084. cb(Vcur, "Vcur", il);
  8085. Qcur = ggml_rope_ext(
  8086. ctx0, ggml_reshape_3d(ctx0, Qcur, n_rot, n_head, n_tokens), inp_pos, nullptr,
  8087. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8088. ext_factor, attn_factor, beta_fast, beta_slow);
  8089. cb(Qcur, "Qcur", il);
  8090. Kcur = ggml_rope_ext(
  8091. ctx0, ggml_reshape_3d(ctx0, Kcur, n_rot, n_head_kv, n_tokens), inp_pos, nullptr,
  8092. n_embd_head, rope_type, n_ctx_orig, freq_base, freq_scale,
  8093. ext_factor, attn_factor, beta_fast, beta_slow);
  8094. cb(Kcur, "Kcur", il);
  8095. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8096. model.layers[il].wo, NULL,
  8097. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8098. }
  8099. struct ggml_tensor * sa_out = cur;
  8100. cur = attention_norm;
  8101. if (il == n_layer - 1) {
  8102. // skip computing output for unused tokens
  8103. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8104. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8105. sa_out = ggml_get_rows(ctx0, sa_out, inp_out_ids);
  8106. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8107. }
  8108. // feed-forward network
  8109. {
  8110. cur = llm_build_ffn(ctx0, cur,
  8111. model.layers[il].ffn_up, NULL,
  8112. model.layers[il].ffn_gate, NULL,
  8113. model.layers[il].ffn_down, NULL,
  8114. NULL,
  8115. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8116. cb(cur, "ffn_out", il);
  8117. }
  8118. cur = ggml_add(ctx0, cur, sa_out);
  8119. cb(cur, "l_out", il);
  8120. cur = ggml_add(ctx0, cur, inpL);
  8121. cb(cur, "l_out", il);
  8122. // input for next layer
  8123. inpL = cur;
  8124. }
  8125. cur = inpL;
  8126. cur = llm_build_norm(ctx0, cur, hparams,
  8127. model.output_norm, NULL,
  8128. LLM_NORM_RMS, cb, -1);
  8129. cb(cur, "result_norm", -1);
  8130. // lm_head
  8131. cur = ggml_mul_mat(ctx0, model.output, cur);
  8132. cb(cur, "result_output", -1);
  8133. ggml_build_forward_expand(gf, cur);
  8134. return gf;
  8135. }
  8136. struct ggml_cgraph * build_gpt2() {
  8137. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8138. const int64_t n_embd_head = hparams.n_embd_head_v;
  8139. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8140. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8141. struct ggml_tensor * cur;
  8142. struct ggml_tensor * pos;
  8143. struct ggml_tensor * inpL;
  8144. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8145. // inp_pos - contains the positions
  8146. struct ggml_tensor * inp_pos = build_inp_pos();
  8147. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8148. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8149. pos = ggml_get_rows(ctx0, model.pos_embd, inp_pos);
  8150. cb(pos, "pos_embd", -1);
  8151. inpL = ggml_add(ctx0, inpL, pos);
  8152. cb(inpL, "inpL", -1);
  8153. for (int il = 0; il < n_layer; ++il) {
  8154. cur = llm_build_norm(ctx0, inpL, hparams,
  8155. model.layers[il].attn_norm,
  8156. model.layers[il].attn_norm_b,
  8157. LLM_NORM, cb, il);
  8158. cb(cur, "attn_norm", il);
  8159. // self-attention
  8160. {
  8161. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8162. cb(cur, "wqkv", il);
  8163. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8164. cb(cur, "bqkv", il);
  8165. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8166. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8167. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8168. cb(Qcur, "Qcur", il);
  8169. cb(Kcur, "Kcur", il);
  8170. cb(Vcur, "Vcur", il);
  8171. Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens);
  8172. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8173. model.layers[il].wo, model.layers[il].bo,
  8174. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8175. }
  8176. if (il == n_layer - 1) {
  8177. // skip computing output for unused tokens
  8178. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8179. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8180. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8181. }
  8182. // add the input
  8183. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8184. cb(ffn_inp, "ffn_inp", il);
  8185. // FF
  8186. {
  8187. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8188. model.layers[il].ffn_norm,
  8189. model.layers[il].ffn_norm_b,
  8190. LLM_NORM, cb, il);
  8191. cb(cur, "ffn_norm", il);
  8192. cur = llm_build_ffn(ctx0, cur,
  8193. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8194. NULL, NULL,
  8195. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8196. NULL,
  8197. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8198. cb(cur, "ffn_out", il);
  8199. }
  8200. inpL = ggml_add(ctx0, cur, ffn_inp);
  8201. cb(inpL, "l_out", il);
  8202. }
  8203. cur = llm_build_norm(ctx0, inpL, hparams,
  8204. model.output_norm,
  8205. model.output_norm_b,
  8206. LLM_NORM, cb, -1);
  8207. cb(cur, "result_norm", -1);
  8208. cur = ggml_mul_mat(ctx0, model.output, cur);
  8209. cb(cur, "result_output", -1);
  8210. ggml_build_forward_expand(gf, cur);
  8211. return gf;
  8212. }
  8213. struct ggml_cgraph * build_codeshell() {
  8214. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8215. const int64_t n_embd_head = hparams.n_embd_head_v;
  8216. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  8217. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8218. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8219. struct ggml_tensor * cur;
  8220. struct ggml_tensor * inpL;
  8221. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8222. // inp_pos - contains the positions
  8223. struct ggml_tensor * inp_pos = build_inp_pos();
  8224. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8225. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8226. for (int il = 0; il < n_layer; ++il) {
  8227. cur = llm_build_norm(ctx0, inpL, hparams,
  8228. model.layers[il].attn_norm,
  8229. model.layers[il].attn_norm_b,
  8230. LLM_NORM, cb, il);
  8231. cb(cur, "attn_norm", il);
  8232. // self-attention
  8233. {
  8234. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  8235. cb(cur, "wqkv", il);
  8236. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  8237. cb(cur, "bqkv", il);
  8238. struct ggml_tensor * tmpq = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  8239. struct ggml_tensor * tmpk = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  8240. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  8241. cb(tmpq, "tmpq", il);
  8242. cb(tmpk, "tmpk", il);
  8243. cb(Vcur, "Vcur", il);
  8244. struct ggml_tensor * Qcur = ggml_rope_ext(
  8245. ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8246. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8247. ext_factor, attn_factor, beta_fast, beta_slow
  8248. );
  8249. cb(Qcur, "Qcur", il);
  8250. struct ggml_tensor * Kcur = ggml_rope_ext(
  8251. ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8252. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8253. ext_factor, attn_factor, beta_fast, beta_slow
  8254. );
  8255. cb(Kcur, "Kcur", il);
  8256. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8257. model.layers[il].wo, model.layers[il].bo,
  8258. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8259. }
  8260. if (il == n_layer - 1) {
  8261. // skip computing output for unused tokens
  8262. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8263. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8264. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8265. }
  8266. // add the input
  8267. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  8268. cb(ffn_inp, "ffn_inp", il);
  8269. // FF
  8270. {
  8271. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8272. model.layers[il].ffn_norm,
  8273. model.layers[il].ffn_norm_b,
  8274. LLM_NORM, cb, il);
  8275. cb(cur, "ffn_norm", il);
  8276. cur = llm_build_ffn(ctx0, cur,
  8277. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8278. NULL, NULL,
  8279. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8280. NULL,
  8281. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8282. cb(cur, "ffn_out", il);
  8283. }
  8284. inpL = ggml_add(ctx0, cur, ffn_inp);
  8285. cb(inpL, "l_out", il);
  8286. }
  8287. cur = llm_build_norm(ctx0, inpL, hparams,
  8288. model.output_norm,
  8289. model.output_norm_b,
  8290. LLM_NORM, cb, -1);
  8291. cb(cur, "result_norm", -1);
  8292. cur = ggml_mul_mat(ctx0, model.output, cur);
  8293. cb(cur, "result_output", -1);
  8294. ggml_build_forward_expand(gf, cur);
  8295. return gf;
  8296. }
  8297. struct ggml_cgraph * build_orion() {
  8298. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8299. const int64_t n_embd_head = hparams.n_embd_head_v;
  8300. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8301. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8302. struct ggml_tensor * cur;
  8303. struct ggml_tensor * inpL;
  8304. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8305. // inp_pos - contains the positions
  8306. struct ggml_tensor * inp_pos = build_inp_pos();
  8307. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8308. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8309. for (int il = 0; il < n_layer; ++il) {
  8310. struct ggml_tensor * inpSA = inpL;
  8311. // norm
  8312. cur = llm_build_norm(ctx0, inpL, hparams,
  8313. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8314. LLM_NORM, cb, il);
  8315. cb(cur, "attn_norm", il);
  8316. // self-attention
  8317. {
  8318. // compute Q and K and RoPE them
  8319. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8320. cb(Qcur, "Qcur", il);
  8321. // if (model.layers[il].bq) {
  8322. // Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8323. // cb(Qcur, "Qcur", il);
  8324. // }
  8325. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8326. cb(Kcur, "Kcur", il);
  8327. // if (model.layers[il].bk) {
  8328. // Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8329. // cb(Kcur, "Kcur", il);
  8330. // }
  8331. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8332. cb(Vcur, "Vcur", il);
  8333. // if (model.layers[il].bv) {
  8334. // Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8335. // cb(Vcur, "Vcur", il);
  8336. // }
  8337. Qcur = ggml_rope_ext(
  8338. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8339. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8340. ext_factor, attn_factor, beta_fast, beta_slow
  8341. );
  8342. cb(Qcur, "Qcur", il);
  8343. Kcur = ggml_rope_ext(
  8344. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8345. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8346. ext_factor, attn_factor, beta_fast, beta_slow
  8347. );
  8348. cb(Kcur, "Kcur", il);
  8349. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8350. model.layers[il].wo, NULL,
  8351. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8352. }
  8353. if (il == n_layer - 1) {
  8354. // skip computing output for unused tokens
  8355. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8356. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8357. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8358. }
  8359. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8360. cb(ffn_inp, "ffn_inp", il);
  8361. // feed-forward network
  8362. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8363. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8364. LLM_NORM, cb, il);
  8365. cb(cur, "ffn_norm", il);
  8366. cur = llm_build_ffn(ctx0, cur,
  8367. model.layers[il].ffn_up, NULL,
  8368. model.layers[il].ffn_gate, NULL,
  8369. model.layers[il].ffn_down, NULL,
  8370. NULL,
  8371. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8372. cb(cur, "ffn_out", il);
  8373. cur = ggml_add(ctx0, cur, ffn_inp);
  8374. cb(cur, "l_out", il);
  8375. // input for next layer
  8376. inpL = cur;
  8377. }
  8378. cur = inpL;
  8379. cur = llm_build_norm(ctx0, cur, hparams,
  8380. model.output_norm, model.output_norm_b,
  8381. LLM_NORM, cb, -1);
  8382. cb(cur, "result_norm", -1);
  8383. // lm_head
  8384. cur = ggml_mul_mat(ctx0, model.output, cur);
  8385. cb(cur, "result_output", -1);
  8386. ggml_build_forward_expand(gf, cur);
  8387. return gf;
  8388. }
  8389. struct ggml_cgraph * build_internlm2() {
  8390. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8391. const int64_t n_embd_head = hparams.n_embd_head_v;
  8392. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8393. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8394. struct ggml_tensor * cur;
  8395. struct ggml_tensor * inpL;
  8396. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8397. // inp_pos - contains the positions
  8398. struct ggml_tensor * inp_pos = build_inp_pos();
  8399. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8400. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8401. for (int il = 0; il < n_layer; ++il) {
  8402. struct ggml_tensor * inpSA = inpL;
  8403. // norm
  8404. cur = llm_build_norm(ctx0, inpL, hparams,
  8405. model.layers[il].attn_norm, NULL,
  8406. LLM_NORM_RMS, cb, il);
  8407. cb(cur, "attn_norm", il);
  8408. // self-attention
  8409. {
  8410. // compute Q and K and RoPE them
  8411. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8412. cb(Qcur, "Qcur", il);
  8413. if (model.layers[il].bq) {
  8414. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8415. cb(Qcur, "Qcur", il);
  8416. }
  8417. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8418. cb(Kcur, "Kcur", il);
  8419. if (model.layers[il].bk) {
  8420. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8421. cb(Kcur, "Kcur", il);
  8422. }
  8423. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8424. cb(Vcur, "Vcur", il);
  8425. if (model.layers[il].bv) {
  8426. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8427. cb(Vcur, "Vcur", il);
  8428. }
  8429. Qcur = ggml_rope_ext(
  8430. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8431. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8432. ext_factor, attn_factor, beta_fast, beta_slow
  8433. );
  8434. cb(Qcur, "Qcur", il);
  8435. Kcur = ggml_rope_ext(
  8436. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8437. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8438. ext_factor, attn_factor, beta_fast, beta_slow
  8439. );
  8440. cb(Kcur, "Kcur", il);
  8441. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8442. model.layers[il].wo, model.layers[il].bo,
  8443. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8444. }
  8445. if (il == n_layer - 1) {
  8446. // skip computing output for unused tokens
  8447. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8448. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8449. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8450. }
  8451. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8452. cb(ffn_inp, "ffn_inp", il);
  8453. // feed-forward network
  8454. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8455. model.layers[il].ffn_norm, NULL,
  8456. LLM_NORM_RMS, cb, il);
  8457. cb(cur, "ffn_norm", il);
  8458. cur = llm_build_ffn(ctx0, cur,
  8459. model.layers[il].ffn_up, NULL,
  8460. model.layers[il].ffn_gate, NULL,
  8461. model.layers[il].ffn_down, NULL,
  8462. NULL,
  8463. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8464. cb(cur, "ffn_out", il);
  8465. cur = ggml_add(ctx0, cur, ffn_inp);
  8466. cb(cur, "l_out", il);
  8467. // input for next layer
  8468. inpL = cur;
  8469. }
  8470. cur = inpL;
  8471. cur = llm_build_norm(ctx0, cur, hparams,
  8472. model.output_norm, NULL,
  8473. LLM_NORM_RMS, cb, -1);
  8474. cb(cur, "result_norm", -1);
  8475. // lm_head
  8476. cur = ggml_mul_mat(ctx0, model.output, cur);
  8477. cb(cur, "result_output", -1);
  8478. ggml_build_forward_expand(gf, cur);
  8479. return gf;
  8480. }
  8481. // ref: https://arxiv.org/abs/2203.03466
  8482. // https://github.com/ggerganov/llama.cpp/issues/5276#issuecomment-1925774738
  8483. // based on the original build_llama() function
  8484. struct ggml_cgraph * build_minicpm() {
  8485. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8486. const int64_t n_embd_head = hparams.n_embd_head_v;
  8487. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8488. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8489. const int64_t n_embd = hparams.n_embd;
  8490. //TODO: if the model varies, these parameters need to be read from the model
  8491. const int64_t n_embd_base = 256;
  8492. const float scale_embd = 12.0f;
  8493. const float scale_depth = 1.4f;
  8494. struct ggml_tensor * cur;
  8495. struct ggml_tensor * inpL;
  8496. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8497. // scale the input embeddings
  8498. inpL = ggml_scale(ctx0, inpL, scale_embd);
  8499. cb(inpL, "inp_scaled", -1);
  8500. // inp_pos - contains the positions
  8501. struct ggml_tensor * inp_pos = build_inp_pos();
  8502. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8503. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8504. for (int il = 0; il < n_layer; ++il) {
  8505. struct ggml_tensor * inpSA = inpL;
  8506. // norm
  8507. cur = llm_build_norm(ctx0, inpL, hparams,
  8508. model.layers[il].attn_norm, NULL,
  8509. LLM_NORM_RMS, cb, il);
  8510. cb(cur, "attn_norm", il);
  8511. // self-attention
  8512. {
  8513. // compute Q and K and RoPE them
  8514. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8515. cb(Qcur, "Qcur", il);
  8516. if (model.layers[il].bq) {
  8517. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8518. cb(Qcur, "Qcur", il);
  8519. }
  8520. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8521. cb(Kcur, "Kcur", il);
  8522. if (model.layers[il].bk) {
  8523. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8524. cb(Kcur, "Kcur", il);
  8525. }
  8526. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8527. cb(Vcur, "Vcur", il);
  8528. if (model.layers[il].bv) {
  8529. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8530. cb(Vcur, "Vcur", il);
  8531. }
  8532. Qcur = ggml_rope_ext(
  8533. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8534. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8535. ext_factor, attn_factor, beta_fast, beta_slow
  8536. );
  8537. cb(Qcur, "Qcur", il);
  8538. Kcur = ggml_rope_ext(
  8539. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8540. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8541. ext_factor, attn_factor, beta_fast, beta_slow
  8542. );
  8543. cb(Kcur, "Kcur", il);
  8544. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8545. model.layers[il].wo, model.layers[il].bo,
  8546. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8547. }
  8548. if (il == n_layer - 1) {
  8549. // skip computing output for unused tokens
  8550. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8551. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8552. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8553. }
  8554. // scale_res - scale the hidden states for residual connection
  8555. const float scale_res = scale_depth/sqrtf(float(n_layer));
  8556. cur = ggml_scale(ctx0, cur, scale_res);
  8557. cb(cur, "hidden_scaled", -1);
  8558. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8559. cb(ffn_inp, "ffn_inp", il);
  8560. // feed-forward network
  8561. {
  8562. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8563. model.layers[il].ffn_norm, NULL,
  8564. LLM_NORM_RMS, cb, il);
  8565. cb(cur, "ffn_norm", il);
  8566. cur = llm_build_ffn(ctx0, cur,
  8567. model.layers[il].ffn_up, NULL,
  8568. model.layers[il].ffn_gate, NULL,
  8569. model.layers[il].ffn_down, NULL,
  8570. NULL,
  8571. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8572. cb(cur, "ffn_out", il);
  8573. }
  8574. // scale the hidden states for residual connection
  8575. cur = ggml_scale(ctx0, cur, scale_res);
  8576. cb(cur, "hidden_scaled_ffn", -1);
  8577. cur = ggml_add(ctx0, cur, ffn_inp);
  8578. cb(cur, "l_out", il);
  8579. // input for next layer
  8580. inpL = cur;
  8581. }
  8582. cur = inpL;
  8583. cur = llm_build_norm(ctx0, cur, hparams,
  8584. model.output_norm, NULL,
  8585. LLM_NORM_RMS, cb, -1);
  8586. cb(cur, "result_norm", -1);
  8587. // lm_head scaling
  8588. const float scale_lmhead = float(n_embd_base)/float(n_embd);
  8589. cur = ggml_scale(ctx0, cur, scale_lmhead);
  8590. cb(cur, "lmhead_scaling", -1);
  8591. // lm_head
  8592. cur = ggml_mul_mat(ctx0, model.output, cur);
  8593. cb(cur, "result_output", -1);
  8594. ggml_build_forward_expand(gf, cur);
  8595. return gf;
  8596. }
  8597. struct ggml_cgraph * build_gemma() {
  8598. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8599. const int64_t n_embd_head_k = hparams.n_embd_head_k;
  8600. struct ggml_tensor * cur;
  8601. struct ggml_tensor * inpL;
  8602. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8603. inpL = ggml_scale(ctx0, inpL, sqrtf(n_embd));
  8604. cb(inpL, "inp_scaled", -1);
  8605. // inp_pos - contains the positions
  8606. struct ggml_tensor * inp_pos = build_inp_pos();
  8607. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8608. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8609. for (int il = 0; il < n_layer; ++il) {
  8610. // norm
  8611. cur = llm_build_norm(ctx0, inpL, hparams,
  8612. model.layers[il].attn_norm, NULL,
  8613. LLM_NORM_RMS, cb, il);
  8614. cb(cur, "attn_norm", il);
  8615. // self-attention
  8616. {
  8617. // compute Q and K and RoPE them
  8618. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8619. cb(Qcur, "Qcur", il);
  8620. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8621. cb(Kcur, "Kcur", il);
  8622. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8623. cb(Vcur, "Vcur", il);
  8624. Qcur = ggml_rope_ext(
  8625. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head_k, n_head, n_tokens), inp_pos, nullptr,
  8626. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8627. ext_factor, attn_factor, beta_fast, beta_slow);
  8628. cb(Qcur, "Qcur", il);
  8629. Qcur = ggml_scale(ctx0, Qcur, 1.0f / sqrtf(float(n_embd_head_k)));
  8630. cb(Qcur, "Qcur_scaled", il);
  8631. Kcur = ggml_rope_ext(
  8632. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head_k, n_head_kv, n_tokens), inp_pos, nullptr,
  8633. n_embd_head_k, rope_type, n_ctx_orig, freq_base, freq_scale,
  8634. ext_factor, attn_factor, beta_fast, beta_slow);
  8635. cb(Kcur, "Kcur", il);
  8636. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8637. model.layers[il].wo, NULL,
  8638. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f, cb, il);
  8639. }
  8640. if (il == n_layer - 1) {
  8641. // skip computing output for unused tokens
  8642. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8643. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8644. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8645. }
  8646. struct ggml_tensor * sa_out = ggml_add(ctx0, cur, inpL);
  8647. cb(sa_out, "sa_out", il);
  8648. cur = llm_build_norm(ctx0, sa_out, hparams,
  8649. model.layers[il].ffn_norm, NULL,
  8650. LLM_NORM_RMS, cb, il);
  8651. cb(cur, "ffn_norm", il);
  8652. // feed-forward network
  8653. {
  8654. cur = llm_build_ffn(ctx0, cur,
  8655. model.layers[il].ffn_up, NULL,
  8656. model.layers[il].ffn_gate, NULL,
  8657. model.layers[il].ffn_down, NULL,
  8658. NULL,
  8659. LLM_FFN_GELU, LLM_FFN_PAR, cb, il);
  8660. cb(cur, "ffn_out", il);
  8661. }
  8662. cur = ggml_add(ctx0, cur, sa_out);
  8663. cb(cur, "l_out", il);
  8664. // input for next layer
  8665. inpL = cur;
  8666. }
  8667. cur = inpL;
  8668. cur = llm_build_norm(ctx0, cur, hparams,
  8669. model.output_norm, NULL,
  8670. LLM_NORM_RMS, cb, -1);
  8671. cb(cur, "result_norm", -1);
  8672. // lm_head
  8673. cur = ggml_mul_mat(ctx0, model.output, cur);
  8674. cb(cur, "result_output", -1);
  8675. ggml_build_forward_expand(gf, cur);
  8676. return gf;
  8677. }
  8678. struct ggml_cgraph * build_starcoder2() {
  8679. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8680. const int64_t n_embd_head = hparams.n_embd_head_v;
  8681. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8682. GGML_ASSERT(n_embd_head == hparams.n_rot);
  8683. struct ggml_tensor * cur;
  8684. struct ggml_tensor * inpL;
  8685. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8686. // inp_pos - contains the positions
  8687. struct ggml_tensor * inp_pos = build_inp_pos();
  8688. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8689. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8690. for (int il = 0; il < n_layer; ++il) {
  8691. struct ggml_tensor * inpSA = inpL;
  8692. // norm
  8693. cur = llm_build_norm(ctx0, inpL, hparams,
  8694. model.layers[il].attn_norm, model.layers[il].attn_norm_b,
  8695. LLM_NORM, cb, il);
  8696. cb(cur, "attn_norm", il);
  8697. // self-attention
  8698. {
  8699. // compute Q and K and RoPE them
  8700. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8701. cb(Qcur, "Qcur", il);
  8702. if (model.layers[il].bq) {
  8703. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8704. cb(Qcur, "Qcur", il);
  8705. }
  8706. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8707. cb(Kcur, "Kcur", il);
  8708. if (model.layers[il].bk) {
  8709. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8710. cb(Kcur, "Kcur", il);
  8711. }
  8712. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8713. cb(Vcur, "Vcur", il);
  8714. if (model.layers[il].bv) {
  8715. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8716. cb(Vcur, "Vcur", il);
  8717. }
  8718. Qcur = ggml_rope_ext(
  8719. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8720. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8721. ext_factor, attn_factor, beta_fast, beta_slow
  8722. );
  8723. cb(Qcur, "Qcur", il);
  8724. Kcur = ggml_rope_ext(
  8725. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8726. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8727. ext_factor, attn_factor, beta_fast, beta_slow
  8728. );
  8729. cb(Kcur, "Kcur", il);
  8730. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8731. model.layers[il].wo, model.layers[il].bo,
  8732. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8733. }
  8734. if (il == n_layer - 1) {
  8735. // skip computing output for unused tokens
  8736. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8737. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8738. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  8739. }
  8740. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  8741. cb(ffn_inp, "ffn_inp", il);
  8742. // feed-forward network
  8743. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  8744. model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
  8745. LLM_NORM, cb, il);
  8746. cb(cur, "ffn_norm", il);
  8747. cur = llm_build_ffn(ctx0, cur,
  8748. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  8749. NULL, NULL,
  8750. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  8751. NULL,
  8752. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  8753. cb(cur, "ffn_out", il);
  8754. cur = ggml_add(ctx0, cur, ffn_inp);
  8755. cb(cur, "l_out", il);
  8756. // input for next layer
  8757. inpL = cur;
  8758. }
  8759. cur = inpL;
  8760. cur = llm_build_norm(ctx0, cur, hparams,
  8761. model.output_norm, model.output_norm_b,
  8762. LLM_NORM, cb, -1);
  8763. cb(cur, "result_norm", -1);
  8764. // lm_head
  8765. cur = ggml_mul_mat(ctx0, model.output, cur);
  8766. cb(cur, "result_output", -1);
  8767. ggml_build_forward_expand(gf, cur);
  8768. return gf;
  8769. }
  8770. struct ggml_cgraph * build_mamba() {
  8771. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8772. const int64_t d_model = n_embd;
  8773. const int64_t d_conv = hparams.ssm_d_conv;
  8774. const int64_t d_inner = hparams.ssm_d_inner;
  8775. GGML_ASSERT(2 * d_model == d_inner);
  8776. const int64_t d_state = hparams.ssm_d_state;
  8777. const int64_t dt_rank = hparams.ssm_dt_rank;
  8778. struct ggml_tensor * cur;
  8779. struct ggml_tensor * inpL;
  8780. // {n_embd, n_tokens}
  8781. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8782. struct ggml_tensor * state_mask = build_inp_s_mask();
  8783. struct ggml_tensor * state_seq = build_inp_s_seq();
  8784. for (int il = 0; il < n_layer; ++il) {
  8785. // (ab)using the KV cache to store the states
  8786. struct ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], hparams.n_embd_k_s(), kv_self.size);
  8787. struct ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], hparams.n_embd_v_s(), kv_self.size);
  8788. // clear states of sequences which are starting at the beginning of this batch
  8789. {
  8790. conv_states = ggml_mul(ctx0,
  8791. ggml_view_2d(ctx0, conv_states, conv_states->ne[0], n_kv, conv_states->nb[1], kv_head*conv_states->nb[1]),
  8792. state_mask);
  8793. ssm_states = ggml_mul(ctx0,
  8794. ggml_view_2d(ctx0, ssm_states, ssm_states->ne[0], n_kv, ssm_states->nb[1], kv_head*ssm_states->nb[1]),
  8795. state_mask);
  8796. }
  8797. conv_states = ggml_reshape_3d(ctx0, conv_states, d_conv - 1, d_inner, n_kv);
  8798. ssm_states = ggml_reshape_3d(ctx0, ssm_states, d_state, d_inner, n_kv);
  8799. // norm
  8800. cur = llm_build_norm(ctx0, inpL, hparams,
  8801. model.layers[il].attn_norm, NULL,
  8802. LLM_NORM_RMS, cb, il);
  8803. cb(cur, "attn_norm", il);
  8804. // {n_embd, 2*d_inner} * {n_embd, n_tokens} => {2*d_inner, n_tokens}
  8805. struct ggml_tensor * xz = ggml_mul_mat(ctx0, model.layers[il].ssm_in, cur);
  8806. // split the above in two
  8807. // => {d_inner, n_tokens}
  8808. struct ggml_tensor * x = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], 0);
  8809. struct ggml_tensor * z = ggml_view_2d(ctx0, xz, d_inner, xz->ne[1], xz->nb[1], ggml_element_size(xz)*d_inner);
  8810. // conv
  8811. {
  8812. // Custom operator which is needed only to ease simultaneous sequence processing.
  8813. // For a single sequence, the equivalent is to concatenate the columns of conv_states and x,
  8814. // then make a self-overlapping view of that over d_conv columns at each stride in the 3rd dimension,
  8815. // then element-wise multiply that with the conv1d weigth,
  8816. // then sum the elements of each row,
  8817. // (the last two steps are a dot product over rows (also doable with mul_mat))
  8818. // then permute away the ne[0] dimension,
  8819. // and then you're left with the resulting x tensor.
  8820. // The new conv_states is the last (d_conv - 1) columns
  8821. // of the last 3rd dimensional "layer" of the self-overlapping view.
  8822. // For simultaneous sequences, it's more complicated.
  8823. struct ggml_tensor * x_conv = ggml_ssm_conv(ctx0, conv_states, x, model.layers[il].ssm_conv1d, state_seq);
  8824. // store last (d_conv - 1) columns of the conv_state part of x_conv back into the KV cache
  8825. ggml_build_forward_expand(gf,
  8826. ggml_cpy(ctx0,
  8827. ggml_view_2d(ctx0, x_conv, d_conv - 1, d_inner*n_kv, d_conv*ggml_element_size(x_conv), (1+d_inner*n_tokens)*ggml_element_size(x_conv)),
  8828. ggml_view_1d(ctx0, kv_self.k_l[il], (d_conv - 1)*(d_inner)*(n_kv), kv_head*(d_conv - 1)*(d_inner)*ggml_element_size(x_conv))));
  8829. // extract x from x_conv
  8830. x = ggml_view_2d(ctx0, x_conv, d_inner, n_tokens, d_inner*ggml_element_size(x_conv), 0);
  8831. // bias
  8832. x = ggml_add(ctx0, x, model.layers[il].ssm_conv1d_b);
  8833. x = ggml_silu(ctx0, x);
  8834. }
  8835. // ssm
  8836. {
  8837. // {d_inner, dt_rank + 2*d_state} * {d_inner, n_tokens} => {dt_rank + 2*d_state, n_tokens}
  8838. struct ggml_tensor * x_db = ggml_mul_mat(ctx0, model.layers[il].ssm_x, x);
  8839. // split
  8840. struct ggml_tensor * dt = ggml_view_2d(ctx0, x_db, dt_rank, n_tokens, x_db->nb[1], 0);
  8841. struct ggml_tensor * B = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*dt_rank);
  8842. struct ggml_tensor * C = ggml_view_2d(ctx0, x_db, d_state, n_tokens, x_db->nb[1], ggml_element_size(x_db)*(dt_rank+d_state));
  8843. // {dt_rank, d_inner} * {dt_rank, n_tokens} => {d_inner, n_tokens}
  8844. dt = ggml_mul_mat(ctx0, model.layers[il].ssm_dt, dt);
  8845. dt = ggml_add(ctx0, dt, model.layers[il].ssm_dt_b);
  8846. // Custom operator to optimize the parallel associative scan
  8847. // as described in the Annex D of the Mamba paper.
  8848. // => {d_inner, n_tokens} and {d_state, d_inner, n_kv} combined,
  8849. // because only a single tensor can be returned.
  8850. struct ggml_tensor * y_ssm_states = ggml_ssm_scan(ctx0, ssm_states, x, dt, model.layers[il].ssm_a, B, C, state_seq);
  8851. // store last states (the second part of y_ssm_states)
  8852. ggml_build_forward_expand(gf,
  8853. ggml_cpy(ctx0,
  8854. ggml_view_1d(ctx0, y_ssm_states, d_state*d_inner*n_kv, d_inner*n_tokens*ggml_element_size(y_ssm_states)),
  8855. ggml_view_1d(ctx0, kv_self.v_l[il], d_state*d_inner*n_kv, kv_head*d_state*d_inner*ggml_element_size(ssm_states))));
  8856. struct ggml_tensor * y = ggml_view_2d(ctx0, y_ssm_states, d_inner, n_tokens, d_inner*ggml_element_size(y_ssm_states), 0);
  8857. if (il == n_layer - 1) {
  8858. // skip computing output for unused tokens
  8859. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8860. x = ggml_get_rows(ctx0, x, inp_out_ids);
  8861. y = ggml_get_rows(ctx0, y, inp_out_ids);
  8862. z = ggml_get_rows(ctx0, z, inp_out_ids);
  8863. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8864. }
  8865. // {d_inner, n_tokens} * {d_inner} => {d_inner, n_tokens}
  8866. y = ggml_add(ctx0, y, ggml_mul(ctx0, x, model.layers[il].ssm_d));
  8867. y = ggml_mul(ctx0, y, ggml_silu(ctx0, z));
  8868. // {d_inner, n_embd} * {d_inner, n_tokens} => {n_embd, n_tokens}
  8869. cur = ggml_mul_mat(ctx0, model.layers[il].ssm_out, y);
  8870. }
  8871. // residual
  8872. cur = ggml_add(ctx0, cur, inpL);
  8873. cb(cur, "l_out", il);
  8874. // input for next layer
  8875. inpL = cur;
  8876. }
  8877. // final rmsnorm
  8878. cur = llm_build_norm(ctx0, inpL, hparams,
  8879. model.output_norm, NULL,
  8880. LLM_NORM_RMS, cb, -1);
  8881. cb(cur, "result_norm", -1);
  8882. // lm_head
  8883. cur = ggml_mul_mat(ctx0, model.output, cur);
  8884. cb(cur, "result_output", -1);
  8885. ggml_build_forward_expand(gf, cur);
  8886. return gf;
  8887. }
  8888. struct ggml_cgraph * build_command_r() {
  8889. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  8890. const int64_t n_embd_head = hparams.n_embd_head_v;
  8891. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  8892. const float f_logit_scale = hparams.f_logit_scale;
  8893. struct ggml_tensor * cur;
  8894. struct ggml_tensor * inpL;
  8895. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  8896. // inp_pos - contains the positions
  8897. struct ggml_tensor * inp_pos = build_inp_pos();
  8898. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  8899. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  8900. for (int il = 0; il < n_layer; ++il) {
  8901. // norm
  8902. cur = llm_build_norm(ctx0, inpL, hparams,
  8903. model.layers[il].attn_norm, NULL,
  8904. LLM_NORM, cb, il);
  8905. cb(cur, "attn_norm", il);
  8906. struct ggml_tensor * ffn_inp = cur;
  8907. // self-attention
  8908. {
  8909. // compute Q and K and RoPE them
  8910. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  8911. cb(Qcur, "Qcur", il);
  8912. if (model.layers[il].bq) {
  8913. Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
  8914. cb(Qcur, "Qcur", il);
  8915. }
  8916. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  8917. cb(Kcur, "Kcur", il);
  8918. if (model.layers[il].bk) {
  8919. Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
  8920. cb(Kcur, "Kcur", il);
  8921. }
  8922. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  8923. cb(Vcur, "Vcur", il);
  8924. if (model.layers[il].bv) {
  8925. Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
  8926. cb(Vcur, "Vcur", il);
  8927. }
  8928. if (model.layers[il].attn_q_norm) {
  8929. Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
  8930. ggml_element_size(Qcur) * n_embd_head,
  8931. ggml_element_size(Qcur) * n_embd_head * n_head,
  8932. 0);
  8933. cb(Qcur, "Qcur", il);
  8934. Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
  8935. ggml_element_size(Kcur) * n_embd_head,
  8936. ggml_element_size(Kcur) * n_embd_head * n_head_kv,
  8937. 0);
  8938. cb(Kcur, "Kcur", il);
  8939. Qcur = llm_build_norm(ctx0, Qcur, hparams,
  8940. model.layers[il].attn_q_norm,
  8941. NULL,
  8942. LLM_NORM, cb, il);
  8943. cb(Qcur, "Qcur", il);
  8944. Kcur = llm_build_norm(ctx0, Kcur, hparams,
  8945. model.layers[il].attn_k_norm,
  8946. NULL,
  8947. LLM_NORM, cb, il);
  8948. cb(Kcur, "Kcur", il);
  8949. }
  8950. Qcur = ggml_rope_ext(
  8951. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  8952. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8953. ext_factor, attn_factor, beta_fast, beta_slow
  8954. );
  8955. cb(Qcur, "Qcur", il);
  8956. Kcur = ggml_rope_ext(
  8957. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  8958. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  8959. ext_factor, attn_factor, beta_fast, beta_slow
  8960. );
  8961. cb(Kcur, "Kcur", il);
  8962. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  8963. model.layers[il].wo, model.layers[il].bo,
  8964. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  8965. }
  8966. if (il == n_layer - 1) {
  8967. // skip computing output for unused tokens
  8968. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  8969. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  8970. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  8971. ffn_inp = ggml_get_rows(ctx0, ffn_inp, inp_out_ids);
  8972. }
  8973. struct ggml_tensor * attn_out = cur;
  8974. // feed-forward network
  8975. {
  8976. cur = llm_build_ffn(ctx0, ffn_inp,
  8977. model.layers[il].ffn_up, NULL,
  8978. model.layers[il].ffn_gate, NULL,
  8979. model.layers[il].ffn_down, NULL,
  8980. NULL,
  8981. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  8982. cb(cur, "ffn_out", il);
  8983. }
  8984. // add together residual + FFN + self-attention
  8985. cur = ggml_add(ctx0, cur, inpL);
  8986. cur = ggml_add(ctx0, cur, attn_out);
  8987. cb(cur, "l_out", il);
  8988. // input for next layer
  8989. inpL = cur;
  8990. }
  8991. cur = inpL;
  8992. cur = llm_build_norm(ctx0, cur, hparams,
  8993. model.output_norm, NULL,
  8994. LLM_NORM, cb, -1);
  8995. cb(cur, "result_norm", -1);
  8996. // lm_head
  8997. cur = ggml_mul_mat(ctx0, model.output, cur);
  8998. if (f_logit_scale) {
  8999. cur = ggml_scale(ctx0, cur, f_logit_scale);
  9000. }
  9001. cb(cur, "result_output", -1);
  9002. ggml_build_forward_expand(gf, cur);
  9003. return gf;
  9004. }
  9005. // ref: https://allenai.org/olmo
  9006. // based on the original build_llama() function, changes:
  9007. // * non-parametric layer norm
  9008. // * clamp qkv
  9009. // * removed bias
  9010. // * removed MoE
  9011. struct ggml_cgraph * build_olmo() {
  9012. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9013. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9014. int32_t n_tokens = this->n_tokens;
  9015. const int64_t n_embd_head = hparams.n_embd_head_v;
  9016. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9017. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9018. struct ggml_tensor * cur;
  9019. struct ggml_tensor * inpL;
  9020. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9021. // inp_pos - contains the positions
  9022. struct ggml_tensor * inp_pos = build_inp_pos();
  9023. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9024. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9025. for (int il = 0; il < n_layer; ++il) {
  9026. struct ggml_tensor * inpSA = inpL;
  9027. // norm
  9028. cur = llm_build_norm(ctx0, inpL, hparams,
  9029. NULL, NULL,
  9030. LLM_NORM, cb, il);
  9031. cb(cur, "attn_norm", il);
  9032. // self-attention
  9033. {
  9034. // compute Q and K and RoPE them
  9035. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9036. cb(Qcur, "Qcur", il);
  9037. if (hparams.f_clamp_kqv > 0.0f) {
  9038. Qcur = ggml_clamp(ctx0, Qcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9039. cb(Qcur, "Qcur", il);
  9040. }
  9041. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9042. cb(Kcur, "Kcur", il);
  9043. if (hparams.f_clamp_kqv > 0.0f) {
  9044. Kcur = ggml_clamp(ctx0, Kcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9045. cb(Kcur, "Kcur", il);
  9046. }
  9047. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9048. cb(Vcur, "Vcur", il);
  9049. if (hparams.f_clamp_kqv > 0.0f) {
  9050. Vcur = ggml_clamp(ctx0, Vcur, -hparams.f_clamp_kqv, hparams.f_clamp_kqv);
  9051. cb(Vcur, "Vcur", il);
  9052. }
  9053. Qcur = ggml_rope_ext(
  9054. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9055. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9056. ext_factor, attn_factor, beta_fast, beta_slow
  9057. );
  9058. cb(Qcur, "Qcur", il);
  9059. Kcur = ggml_rope_ext(
  9060. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9061. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9062. ext_factor, attn_factor, beta_fast, beta_slow
  9063. );
  9064. cb(Kcur, "Kcur", il);
  9065. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9066. model.layers[il].wo, nullptr,
  9067. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9068. }
  9069. if (il == n_layer - 1) {
  9070. // skip computing output for unused tokens
  9071. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9072. n_tokens = n_outputs;
  9073. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9074. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9075. }
  9076. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9077. cb(ffn_inp, "ffn_inp", il);
  9078. // feed-forward network
  9079. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9080. NULL, NULL,
  9081. LLM_NORM, cb, il);
  9082. cb(cur, "ffn_norm", il);
  9083. cur = llm_build_ffn(ctx0, cur,
  9084. model.layers[il].ffn_up, NULL,
  9085. model.layers[il].ffn_gate, NULL,
  9086. model.layers[il].ffn_down, NULL,
  9087. NULL,
  9088. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9089. cb(cur, "ffn_out", il);
  9090. cur = ggml_add(ctx0, cur, ffn_inp);
  9091. cb(cur, "ffn_out", il);
  9092. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9093. if (layer_dir != nullptr) {
  9094. cur = ggml_add(ctx0, cur, layer_dir);
  9095. }
  9096. cb(cur, "l_out", il);
  9097. // input for next layer
  9098. inpL = cur;
  9099. }
  9100. cur = inpL;
  9101. cur = llm_build_norm(ctx0, cur, hparams,
  9102. NULL, NULL,
  9103. LLM_NORM, cb, -1);
  9104. cb(cur, "result_norm", -1);
  9105. // lm_head
  9106. cur = ggml_mul_mat(ctx0, model.output, cur);
  9107. cb(cur, "result_output", -1);
  9108. ggml_build_forward_expand(gf, cur);
  9109. return gf;
  9110. }
  9111. struct ggml_cgraph * build_gptneox() {
  9112. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9113. const int64_t n_embd_head = hparams.n_embd_head_v;
  9114. const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
  9115. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9116. struct ggml_tensor * cur;
  9117. struct ggml_tensor * inpL;
  9118. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9119. // inp_pos - contains the positions
  9120. struct ggml_tensor * inp_pos = build_inp_pos();
  9121. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9122. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9123. for (int il = 0; il < n_layer; ++il) {
  9124. cur = llm_build_norm(ctx0, inpL, hparams,
  9125. model.layers[il].attn_norm,
  9126. model.layers[il].attn_norm_b,
  9127. LLM_NORM, cb, il);
  9128. cb(cur, "attn_norm", il);
  9129. // self-attention
  9130. {
  9131. cur = ggml_mul_mat(ctx0, model.layers[il].wqkv, cur);
  9132. cb(cur, "wqkv", il);
  9133. cur = ggml_add(ctx0, cur, model.layers[il].bqkv);
  9134. cb(cur, "bqkv", il);
  9135. struct ggml_tensor * Qcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd, n_tokens, cur->nb[1], 0*sizeof(float)*(n_embd)));
  9136. struct ggml_tensor * Kcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd)));
  9137. struct ggml_tensor * Vcur = ggml_cont(ctx0, ggml_view_2d(ctx0, cur, n_embd_gqa, n_tokens, cur->nb[1], 1*sizeof(float)*(n_embd + n_embd_gqa)));
  9138. cb(Qcur, "Qcur", il);
  9139. cb(Kcur, "Kcur", il);
  9140. cb(Vcur, "Vcur", il);
  9141. Qcur = ggml_rope_ext(
  9142. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9143. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9144. ext_factor, attn_factor, beta_fast, beta_slow
  9145. );
  9146. cb(Qcur, "Qcur", il);
  9147. Kcur = ggml_rope_ext(
  9148. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9149. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9150. ext_factor, attn_factor, beta_fast, beta_slow
  9151. );
  9152. cb(Kcur, "Kcur", il);
  9153. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9154. model.layers[il].wo, model.layers[il].bo,
  9155. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9156. }
  9157. if (il == n_layer - 1) {
  9158. // skip computing output for unused tokens
  9159. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9160. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9161. inpL = ggml_get_rows(ctx0, inpL, inp_out_ids);
  9162. }
  9163. // ffn
  9164. if (hparams.use_par_res) {
  9165. // attention and ffn are computed in parallel
  9166. // x = x + attn(ln1(x)) + ffn(ln2(x))
  9167. struct ggml_tensor * attn_out = cur;
  9168. cur = llm_build_norm(ctx0, inpL, hparams,
  9169. model.layers[il].ffn_norm,
  9170. model.layers[il].ffn_norm_b,
  9171. LLM_NORM, cb, il);
  9172. cb(cur, "ffn_norm", il);
  9173. cur = llm_build_ffn(ctx0, cur,
  9174. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9175. NULL, NULL,
  9176. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9177. NULL,
  9178. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9179. cb(cur, "ffn_out", il);
  9180. cur = ggml_add(ctx0, cur, inpL);
  9181. cb(cur, "ffn_out", il);
  9182. inpL = ggml_add(ctx0, cur, attn_out);
  9183. cb(inpL, "l_out", il);
  9184. } else {
  9185. // attention and ffn are computed sequentially
  9186. // x = x + attn(ln1(x))
  9187. // x = x + ffn(ln2(x))
  9188. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpL);
  9189. cb(ffn_inp, "ffn_inp", il);
  9190. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9191. model.layers[il].ffn_norm,
  9192. model.layers[il].ffn_norm_b,
  9193. LLM_NORM, cb, il);
  9194. cb(cur, "ffn_norm", il);
  9195. cur = llm_build_ffn(ctx0, cur,
  9196. model.layers[il].ffn_up, model.layers[il].ffn_up_b,
  9197. NULL, NULL,
  9198. model.layers[il].ffn_down, model.layers[il].ffn_down_b,
  9199. NULL,
  9200. LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
  9201. cb(cur, "ffn_out", il);
  9202. inpL = ggml_add(ctx0, cur, ffn_inp);
  9203. cb(inpL, "l_out", il);
  9204. }
  9205. }
  9206. cur = llm_build_norm(ctx0, inpL, hparams,
  9207. model.output_norm,
  9208. model.output_norm_b,
  9209. LLM_NORM, cb, -1);
  9210. cb(cur, "result_norm", -1);
  9211. cur = ggml_mul_mat(ctx0, model.output, cur);
  9212. cb(cur, "result_output", -1);
  9213. ggml_build_forward_expand(gf, cur);
  9214. return gf;
  9215. }
  9216. struct ggml_cgraph * build_arctic() {
  9217. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9218. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9219. int32_t n_tokens = this->n_tokens;
  9220. const int64_t n_embd_head = hparams.n_embd_head_v;
  9221. GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
  9222. GGML_ASSERT(n_embd_head == hparams.n_rot);
  9223. struct ggml_tensor * cur;
  9224. struct ggml_tensor * inpL;
  9225. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9226. // inp_pos - contains the positions
  9227. struct ggml_tensor * inp_pos = build_inp_pos();
  9228. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9229. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9230. for (int il = 0; il < n_layer; ++il) {
  9231. struct ggml_tensor * inpSA = inpL;
  9232. // norm
  9233. cur = llm_build_norm(ctx0, inpL, hparams,
  9234. model.layers[il].attn_norm, NULL,
  9235. LLM_NORM_RMS, cb, il);
  9236. cb(cur, "attn_norm", il);
  9237. // self-attention
  9238. {
  9239. // compute Q and K and RoPE them
  9240. struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9241. cb(Qcur, "Qcur", il);
  9242. struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
  9243. cb(Kcur, "Kcur", il);
  9244. struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
  9245. cb(Vcur, "Vcur", il);
  9246. Qcur = ggml_rope_ext(
  9247. ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, nullptr,
  9248. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9249. ext_factor, attn_factor, beta_fast, beta_slow
  9250. );
  9251. cb(Qcur, "Qcur", il);
  9252. Kcur = ggml_rope_ext(
  9253. ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos, nullptr,
  9254. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9255. ext_factor, attn_factor, beta_fast, beta_slow
  9256. );
  9257. cb(Kcur, "Kcur", il);
  9258. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9259. model.layers[il].wo, NULL,
  9260. Kcur, Vcur, Qcur, KQ_mask, n_tokens, kv_head, n_kv, 1.0f/sqrtf(float(n_embd_head)), cb, il);
  9261. }
  9262. if (il == n_layer - 1) {
  9263. // skip computing output for unused tokens
  9264. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9265. n_tokens = n_outputs;
  9266. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9267. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9268. }
  9269. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9270. cb(ffn_inp, "ffn_inp", il);
  9271. // feed-forward network
  9272. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9273. model.layers[il].ffn_norm, NULL,
  9274. LLM_NORM_RMS, cb, il);
  9275. cb(cur, "ffn_norm", il);
  9276. cur = llm_build_ffn(ctx0, cur,
  9277. model.layers[il].ffn_up, NULL,
  9278. model.layers[il].ffn_gate, NULL,
  9279. model.layers[il].ffn_down, NULL,
  9280. NULL,
  9281. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9282. cb(cur, "ffn_out", il);
  9283. struct ggml_tensor * ffn_out = ggml_add(ctx0, cur, ffn_inp);
  9284. cb(ffn_out, "ffn_out", il);
  9285. // MoE
  9286. cur = llm_build_norm(ctx0, inpSA, hparams,
  9287. model.layers[il].ffn_norm_exps, NULL,
  9288. LLM_NORM_RMS, cb, il);
  9289. cb(cur, "ffn_norm_exps", il);
  9290. cur = llm_build_moe_ffn(ctx0, cur,
  9291. model.layers[il].ffn_gate_inp,
  9292. model.layers[il].ffn_up_exps,
  9293. model.layers[il].ffn_gate_exps,
  9294. model.layers[il].ffn_down_exps,
  9295. n_expert, n_expert_used,
  9296. LLM_FFN_SILU, true,
  9297. false, 0.0,
  9298. cb, il);
  9299. cb(cur, "ffn_moe_out", il);
  9300. cur = ggml_add(ctx0, cur, ffn_out);
  9301. cb(cur, "ffn_out", il);
  9302. ggml_tensor * layer_dir = lctx.cvec.tensor_for(il);
  9303. if (layer_dir != nullptr) {
  9304. cur = ggml_add(ctx0, cur, layer_dir);
  9305. }
  9306. cb(cur, "l_out", il);
  9307. // input for next layer
  9308. inpL = cur;
  9309. }
  9310. cur = inpL;
  9311. cur = llm_build_norm(ctx0, cur, hparams,
  9312. model.output_norm, NULL,
  9313. LLM_NORM_RMS, cb, -1);
  9314. cb(cur, "result_norm", -1);
  9315. // lm_head
  9316. cur = ggml_mul_mat(ctx0, model.output, cur);
  9317. cb(cur, "result_output", -1);
  9318. ggml_build_forward_expand(gf, cur);
  9319. return gf;
  9320. }
  9321. struct ggml_cgraph * build_deepseek2() {
  9322. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
  9323. // mutable variable, needed during the last layer of the computation to skip unused tokens
  9324. int32_t n_tokens = this->n_tokens;
  9325. bool is_lite = (hparams.n_layer == 27);
  9326. // We have to pre-scale kq_scale and attn_factor to make the YaRN RoPE work correctly.
  9327. // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation.
  9328. const float mscale = attn_factor * (1.0f + hparams.rope_yarn_log_mul * logf(1.0f / freq_scale));
  9329. const float kq_scale = 1.0f*mscale*mscale/sqrtf(float(hparams.n_embd_head_k));
  9330. const float attn_factor_scaled = 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale));
  9331. const uint32_t n_embd_head_qk_rope = hparams.n_rot;
  9332. const uint32_t n_embd_head_qk_nope = hparams.n_embd_head_k - hparams.n_rot;
  9333. const uint32_t kv_lora_rank = hparams.n_lora_kv;
  9334. struct ggml_tensor * cur;
  9335. struct ggml_tensor * inpL;
  9336. // {n_embd, n_tokens}
  9337. inpL = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
  9338. // inp_pos - contains the positions
  9339. struct ggml_tensor * inp_pos = build_inp_pos();
  9340. // KQ_mask (mask for 1 head, it will be broadcasted to all heads)
  9341. struct ggml_tensor * KQ_mask = build_inp_KQ_mask();
  9342. for (int il = 0; il < n_layer; ++il) {
  9343. struct ggml_tensor * inpSA = inpL;
  9344. // norm
  9345. cur = llm_build_norm(ctx0, inpL, hparams,
  9346. model.layers[il].attn_norm, NULL,
  9347. LLM_NORM_RMS, cb, il);
  9348. cb(cur, "attn_norm", il);
  9349. // self_attention
  9350. {
  9351. struct ggml_tensor * q = NULL;
  9352. if (!is_lite) {
  9353. // {n_embd, q_lora_rank} * {n_embd, n_tokens} -> {q_lora_rank, n_tokens}
  9354. q = ggml_mul_mat(ctx0, model.layers[il].wq_a, cur);
  9355. cb(q, "q", il);
  9356. q = llm_build_norm(ctx0, q, hparams,
  9357. model.layers[il].attn_q_a_norm, NULL,
  9358. LLM_NORM_RMS, cb, il);
  9359. cb(q, "q", il);
  9360. // {q_lora_rank, n_head * hparams.n_embd_head_k} * {q_lora_rank, n_tokens} -> {n_head * hparams.n_embd_head_k, n_tokens}
  9361. q = ggml_mul_mat(ctx0, model.layers[il].wq_b, q);
  9362. cb(q, "q", il);
  9363. } else {
  9364. q = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
  9365. cb(q, "q", il);
  9366. }
  9367. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9368. struct ggml_tensor * q_nope = ggml_view_3d(ctx0, q, n_embd_head_qk_nope, n_head, n_tokens,
  9369. ggml_row_size(q->type, hparams.n_embd_head_k),
  9370. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9371. 0);
  9372. cb(q_nope, "q_nope", il);
  9373. // and {n_head * n_embd_head_qk_rope, n_tokens}
  9374. struct ggml_tensor * q_pe = ggml_view_3d(ctx0, q, n_embd_head_qk_rope, n_head, n_tokens,
  9375. ggml_row_size(q->type, hparams.n_embd_head_k),
  9376. ggml_row_size(q->type, hparams.n_embd_head_k * n_head),
  9377. ggml_row_size(q->type, n_embd_head_qk_nope));
  9378. cb(q_pe, "q_pe", il);
  9379. // {n_embd, kv_lora_rank + n_embd_head_qk_rope} * {n_embd, n_tokens} -> {kv_lora_rank + n_embd_head_qk_rope, n_tokens}
  9380. struct ggml_tensor * kv_pe_compresseed = ggml_mul_mat(ctx0, model.layers[il].wkv_a_mqa, cur);
  9381. cb(kv_pe_compresseed, "kv_pe_compresseed", il);
  9382. // split into {kv_lora_rank, n_tokens}
  9383. struct ggml_tensor * kv_compressed = ggml_view_2d(ctx0, kv_pe_compresseed, kv_lora_rank, n_tokens,
  9384. kv_pe_compresseed->nb[1],
  9385. 0);
  9386. cb(kv_compressed, "kv_compressed", il);
  9387. // and {n_embd_head_qk_rope, n_tokens}
  9388. struct ggml_tensor * k_pe = ggml_view_3d(ctx0, kv_pe_compresseed, n_embd_head_qk_rope, 1, n_tokens,
  9389. kv_pe_compresseed->nb[1],
  9390. kv_pe_compresseed->nb[1],
  9391. ggml_row_size(kv_pe_compresseed->type, kv_lora_rank));
  9392. cb(k_pe, "k_pe", il);
  9393. kv_compressed = ggml_cont(ctx0, kv_compressed); // TODO: the CUDA backend does not support non-contiguous norm
  9394. kv_compressed = llm_build_norm(ctx0, kv_compressed, hparams,
  9395. model.layers[il].attn_kv_a_norm, NULL,
  9396. LLM_NORM_RMS, cb, il);
  9397. cb(kv_compressed, "kv_compressed", il);
  9398. // {kv_lora_rank, n_head * (n_embd_head_qk_nope + n_embd_head_v)} * {kv_lora_rank, n_tokens} -> {n_head * (n_embd_head_qk_nope + n_embd_head_v), n_tokens}
  9399. struct ggml_tensor * kv = ggml_mul_mat(ctx0, model.layers[il].wkv_b, kv_compressed);
  9400. cb(kv, "kv", il);
  9401. // split into {n_head * n_embd_head_qk_nope, n_tokens}
  9402. struct ggml_tensor * k_nope = ggml_view_3d(ctx0, kv, n_embd_head_qk_nope, n_head, n_tokens,
  9403. ggml_row_size(kv->type, n_embd_head_qk_nope + hparams.n_embd_head_v),
  9404. ggml_row_size(kv->type, n_head * (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9405. 0);
  9406. cb(k_nope, "k_nope", il);
  9407. // and {n_head * n_embd_head_v, n_tokens}
  9408. struct ggml_tensor * v_states = ggml_view_3d(ctx0, kv, hparams.n_embd_head_v, n_head, n_tokens,
  9409. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)),
  9410. ggml_row_size(kv->type, (n_embd_head_qk_nope + hparams.n_embd_head_v)*n_head),
  9411. ggml_row_size(kv->type, (n_embd_head_qk_nope)));
  9412. cb(v_states, "v_states", il);
  9413. v_states = ggml_cont(ctx0, v_states);
  9414. cb(v_states, "v_states", il);
  9415. v_states = ggml_view_2d(ctx0, v_states, hparams.n_embd_head_v * n_head, n_tokens,
  9416. ggml_row_size(kv->type, hparams.n_embd_head_v * n_head),
  9417. 0);
  9418. cb(v_states, "v_states", il);
  9419. q_pe = ggml_cont(ctx0, q_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9420. q_pe = ggml_rope_ext(
  9421. ctx0, q_pe, inp_pos, nullptr,
  9422. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9423. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9424. );
  9425. cb(q_pe, "q_pe", il);
  9426. // shared RoPE key
  9427. k_pe = ggml_cont(ctx0, k_pe); // TODO: the CUDA backend does not support non-contiguous RoPE
  9428. k_pe = ggml_rope_ext(
  9429. ctx0, k_pe, inp_pos, nullptr,
  9430. n_rot, rope_type, n_ctx_orig, freq_base, freq_scale,
  9431. ext_factor, attn_factor_scaled, beta_fast, beta_slow
  9432. );
  9433. cb(k_pe, "k_pe", il);
  9434. struct ggml_tensor * q_states = ggml_concat(ctx0, q_nope, q_pe, 0);
  9435. cb(q_states, "q_states", il);
  9436. struct ggml_tensor * k_states = ggml_concat(ctx0, k_nope, ggml_repeat(ctx0, k_pe, q_pe), 0);
  9437. cb(k_states, "k_states", il);
  9438. cur = llm_build_kv(ctx0, model, hparams, cparams, kv_self, gf,
  9439. model.layers[il].wo, NULL,
  9440. k_states, v_states, q_states, KQ_mask, n_tokens, kv_head, n_kv, kq_scale, cb, il);
  9441. }
  9442. if (il == n_layer - 1) {
  9443. // skip computing output for unused tokens
  9444. struct ggml_tensor * inp_out_ids = build_inp_out_ids();
  9445. n_tokens = n_outputs;
  9446. cur = ggml_get_rows(ctx0, cur, inp_out_ids);
  9447. inpSA = ggml_get_rows(ctx0, inpSA, inp_out_ids);
  9448. }
  9449. struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
  9450. cb(ffn_inp, "ffn_inp", il);
  9451. if ((uint32_t) il < hparams.n_layer_dense_lead) {
  9452. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9453. model.layers[il].ffn_norm, NULL,
  9454. LLM_NORM_RMS, cb, il);
  9455. cb(cur, "ffn_norm", il);
  9456. cur = llm_build_ffn(ctx0, cur,
  9457. model.layers[il].ffn_up, NULL,
  9458. model.layers[il].ffn_gate, NULL,
  9459. model.layers[il].ffn_down, NULL,
  9460. NULL,
  9461. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9462. cb(cur, "ffn_out", il);
  9463. } else {
  9464. // MoE branch
  9465. cur = llm_build_norm(ctx0, ffn_inp, hparams,
  9466. model.layers[il].ffn_norm, NULL,
  9467. LLM_NORM_RMS, cb, il);
  9468. cb(cur, "ffn_norm", il);
  9469. ggml_tensor * moe_out =
  9470. llm_build_moe_ffn(ctx0, cur,
  9471. model.layers[il].ffn_gate_inp,
  9472. model.layers[il].ffn_up_exps,
  9473. model.layers[il].ffn_gate_exps,
  9474. model.layers[il].ffn_down_exps,
  9475. n_expert, n_expert_used,
  9476. LLM_FFN_SILU, false,
  9477. true, hparams.expert_weights_scale,
  9478. cb, il);
  9479. cb(moe_out, "ffn_moe_out", il);
  9480. // FFN shared expert
  9481. {
  9482. ggml_tensor * ffn_shexp = llm_build_ffn(ctx0, cur,
  9483. model.layers[il].ffn_up_shexp, NULL,
  9484. model.layers[il].ffn_gate_shexp, NULL,
  9485. model.layers[il].ffn_down_shexp, NULL,
  9486. NULL,
  9487. LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
  9488. cb(ffn_shexp, "ffn_shexp", il);
  9489. cur = ggml_add(ctx0, moe_out, ffn_shexp);
  9490. cb(cur, "ffn_out", il);
  9491. }
  9492. }
  9493. cur = ggml_add(ctx0, cur, ffn_inp);
  9494. cb(cur, "l_out", il);
  9495. // input for next layer
  9496. inpL = cur;
  9497. }
  9498. cur = inpL;
  9499. cur = llm_build_norm(ctx0, cur, hparams,
  9500. model.output_norm, NULL,
  9501. LLM_NORM_RMS, cb, -1);
  9502. cb(cur, "result_norm", -1);
  9503. // lm_head
  9504. cur = ggml_mul_mat(ctx0, model.output, cur);
  9505. cb(cur, "result_output", -1);
  9506. ggml_build_forward_expand(gf, cur);
  9507. return gf;
  9508. }
  9509. };
  9510. static struct ggml_cgraph * llama_build_graph_defrag(llama_context & lctx, const std::vector<uint32_t> & ids) {
  9511. llama_batch dummy;
  9512. dummy.n_tokens = 0;
  9513. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9514. struct llm_build_context llm(lctx, dummy, cb, false);
  9515. llm.init();
  9516. struct ggml_cgraph * result = llm.build_defrag(ids);
  9517. llm.free();
  9518. return result;
  9519. }
  9520. static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
  9521. llama_batch dummy;
  9522. dummy.n_tokens = 0;
  9523. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9524. struct llm_build_context llm(lctx, dummy, cb, false);
  9525. llm.init();
  9526. struct ggml_cgraph * result = llm.build_k_shift();
  9527. llm.free();
  9528. return result;
  9529. }
  9530. static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
  9531. llama_batch dummy;
  9532. dummy.n_tokens = 0;
  9533. llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
  9534. struct llm_build_context llm(lctx, dummy, cb, false);
  9535. llm.init();
  9536. struct ggml_cgraph * result = llm.build_s_copy();
  9537. llm.free();
  9538. return result;
  9539. }
  9540. static struct ggml_cgraph * llama_build_graph(
  9541. llama_context & lctx,
  9542. const llama_batch & batch,
  9543. bool worst_case) {
  9544. const auto & model = lctx.model;
  9545. // this callback allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
  9546. llm_build_cb cb = [&](struct ggml_tensor * cur, const char * name, int il) {
  9547. if (il >= 0) {
  9548. ggml_format_name(cur, "%s-%d", name, il);
  9549. } else {
  9550. ggml_set_name(cur, name);
  9551. }
  9552. if (!lctx.cparams.offload_kqv) {
  9553. if (strcmp(name, "kqv_merged_cont") == 0) {
  9554. // all nodes between the KV store and the attention output are run on the CPU
  9555. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, lctx.backend_cpu);
  9556. }
  9557. }
  9558. // norm may be automatically assigned to the backend of the previous layer, increasing data transfer between backends
  9559. // FIXME: fix in ggml_backend_sched
  9560. const bool full_offload = lctx.model.n_gpu_layers > (int)lctx.model.hparams.n_layer;
  9561. if (batch.n_tokens < 32 || full_offload) {
  9562. if (il != -1 && strcmp(name, "norm") == 0) {
  9563. for (auto * backend : lctx.backends) {
  9564. if (ggml_backend_buft_supports_backend(lctx.model.buft_layer[il].buft, backend)) {
  9565. ggml_backend_sched_set_tensor_backend(lctx.sched, cur, backend);
  9566. break;
  9567. }
  9568. }
  9569. }
  9570. }
  9571. };
  9572. struct ggml_cgraph * result = NULL;
  9573. struct llm_build_context llm(lctx, batch, cb, worst_case);
  9574. llm.init();
  9575. switch (model.arch) {
  9576. case LLM_ARCH_LLAMA:
  9577. {
  9578. result = llm.build_llama();
  9579. } break;
  9580. case LLM_ARCH_BAICHUAN:
  9581. {
  9582. result = llm.build_baichuan();
  9583. } break;
  9584. case LLM_ARCH_FALCON:
  9585. {
  9586. result = llm.build_falcon();
  9587. } break;
  9588. case LLM_ARCH_GROK:
  9589. {
  9590. result = llm.build_grok();
  9591. } break;
  9592. case LLM_ARCH_STARCODER:
  9593. {
  9594. result = llm.build_starcoder();
  9595. } break;
  9596. case LLM_ARCH_REFACT:
  9597. {
  9598. result = llm.build_refact();
  9599. } break;
  9600. case LLM_ARCH_BERT:
  9601. case LLM_ARCH_JINA_BERT_V2:
  9602. case LLM_ARCH_NOMIC_BERT:
  9603. {
  9604. result = llm.build_bert();
  9605. } break;
  9606. case LLM_ARCH_BLOOM:
  9607. {
  9608. result = llm.build_bloom();
  9609. } break;
  9610. case LLM_ARCH_MPT:
  9611. {
  9612. result = llm.build_mpt();
  9613. } break;
  9614. case LLM_ARCH_STABLELM:
  9615. {
  9616. result = llm.build_stablelm();
  9617. } break;
  9618. case LLM_ARCH_QWEN:
  9619. {
  9620. result = llm.build_qwen();
  9621. } break;
  9622. case LLM_ARCH_QWEN2:
  9623. {
  9624. result = llm.build_qwen2();
  9625. } break;
  9626. case LLM_ARCH_QWEN2MOE:
  9627. {
  9628. result = llm.build_qwen2moe();
  9629. } break;
  9630. case LLM_ARCH_PHI2:
  9631. {
  9632. result = llm.build_phi2();
  9633. } break;
  9634. case LLM_ARCH_PHI3:
  9635. {
  9636. result = llm.build_phi3();
  9637. } break;
  9638. case LLM_ARCH_PLAMO:
  9639. {
  9640. result = llm.build_plamo();
  9641. } break;
  9642. case LLM_ARCH_GPT2:
  9643. {
  9644. result = llm.build_gpt2();
  9645. } break;
  9646. case LLM_ARCH_CODESHELL:
  9647. {
  9648. result = llm.build_codeshell();
  9649. } break;
  9650. case LLM_ARCH_ORION:
  9651. {
  9652. result = llm.build_orion();
  9653. } break;
  9654. case LLM_ARCH_INTERNLM2:
  9655. {
  9656. result = llm.build_internlm2();
  9657. } break;
  9658. case LLM_ARCH_MINICPM:
  9659. {
  9660. result = llm.build_minicpm();
  9661. } break;
  9662. case LLM_ARCH_GEMMA:
  9663. {
  9664. result = llm.build_gemma();
  9665. } break;
  9666. case LLM_ARCH_STARCODER2:
  9667. {
  9668. result = llm.build_starcoder2();
  9669. } break;
  9670. case LLM_ARCH_MAMBA:
  9671. {
  9672. result = llm.build_mamba();
  9673. } break;
  9674. case LLM_ARCH_XVERSE:
  9675. {
  9676. result = llm.build_xverse();
  9677. } break;
  9678. case LLM_ARCH_COMMAND_R:
  9679. {
  9680. result = llm.build_command_r();
  9681. } break;
  9682. case LLM_ARCH_DBRX:
  9683. {
  9684. result = llm.build_dbrx();
  9685. } break;
  9686. case LLM_ARCH_OLMO:
  9687. {
  9688. result = llm.build_olmo();
  9689. } break;
  9690. case LLM_ARCH_GPTNEOX:
  9691. {
  9692. result = llm.build_gptneox();
  9693. } break;
  9694. case LLM_ARCH_ARCTIC:
  9695. {
  9696. result = llm.build_arctic();
  9697. } break;
  9698. case LLM_ARCH_DEEPSEEK2:
  9699. {
  9700. result = llm.build_deepseek2();
  9701. } break;
  9702. default:
  9703. GGML_ASSERT(false);
  9704. }
  9705. llm.free();
  9706. return result;
  9707. }
  9708. static void llama_set_k_shift(llama_context & lctx) {
  9709. const int64_t kv_size = lctx.kv_self.size;
  9710. assert(ggml_backend_buffer_is_host(lctx.inp_K_shift->buffer));
  9711. int32_t * data = (int32_t *) lctx.inp_K_shift->data;
  9712. for (int i = 0; i < kv_size; ++i) {
  9713. data[i] = lctx.kv_self.cells[i].delta;
  9714. }
  9715. }
  9716. static void llama_set_s_copy(llama_context & lctx) {
  9717. const int64_t kv_size = lctx.kv_self.size;
  9718. assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
  9719. int32_t * data = (int32_t *) lctx.inp_s_copy->data;
  9720. for (int i = 0; i < kv_size; ++i) {
  9721. data[i] = lctx.kv_self.cells[i].src;
  9722. }
  9723. }
  9724. static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
  9725. //
  9726. // set input data
  9727. //
  9728. const auto & hparams = lctx.model.hparams;
  9729. const auto & cparams = lctx.cparams;
  9730. const auto & kv_self = lctx.kv_self;
  9731. if (batch.token) {
  9732. const int64_t n_tokens = batch.n_tokens;
  9733. ggml_backend_tensor_set(lctx.inp_tokens, batch.token, 0, n_tokens*ggml_element_size(lctx.inp_tokens));
  9734. }
  9735. if (batch.embd) {
  9736. const int64_t n_embd = hparams.n_embd;
  9737. const int64_t n_tokens = batch.n_tokens;
  9738. ggml_backend_tensor_set(lctx.inp_embd, batch.embd, 0, n_tokens*n_embd*ggml_element_size(lctx.inp_embd));
  9739. }
  9740. if (batch.pos && lctx.inp_pos) {
  9741. const int64_t n_tokens = batch.n_tokens;
  9742. ggml_backend_tensor_set(lctx.inp_pos, batch.pos, 0, n_tokens*ggml_element_size(lctx.inp_pos));
  9743. }
  9744. if (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE) {
  9745. GGML_ASSERT(lctx.inp_out_ids && "every model that can must skip unused outputs");
  9746. const int64_t n_tokens = batch.n_tokens;
  9747. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_out_ids->buffer));
  9748. int32_t * data = (int32_t *) lctx.inp_out_ids->data;
  9749. if (lctx.n_outputs == n_tokens) {
  9750. for (int i = 0; i < n_tokens; ++i) {
  9751. data[i] = i;
  9752. }
  9753. } else if (batch.logits) {
  9754. int32_t n_outputs = 0;
  9755. for (int i = 0; i < n_tokens; ++i) {
  9756. if (batch.logits[i]) {
  9757. data[n_outputs++] = i;
  9758. }
  9759. }
  9760. // the graph needs to have been passed the correct number of outputs
  9761. GGML_ASSERT(lctx.n_outputs == n_outputs);
  9762. } else if (lctx.n_outputs == 1) {
  9763. // only keep last output
  9764. data[0] = n_tokens - 1;
  9765. } else {
  9766. GGML_ASSERT(lctx.n_outputs == 0);
  9767. }
  9768. }
  9769. GGML_ASSERT(
  9770. // (!a || b) is a logical implication (a -> b)
  9771. // !hparams.causal_attn -> !cparams.causal_attn
  9772. (hparams.causal_attn || !cparams.causal_attn) &&
  9773. "causal attention with embedding models is not supported"
  9774. );
  9775. if (lctx.inp_KQ_mask) {
  9776. // NOTE: hparams.causal_attn indicates the model is capable of generation and uses the kv cache.
  9777. if (cparams.causal_attn) {
  9778. const int64_t n_kv = kv_self.n;
  9779. const int64_t n_tokens = batch.n_tokens;
  9780. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9781. float * data = (float *) lctx.inp_KQ_mask->data;
  9782. // For causal attention, use only the previous KV cells
  9783. // of the correct sequence for each token of the batch.
  9784. // It's assumed that if a token in the batch has multiple sequences, they are equivalent.
  9785. for (int h = 0; h < 1; ++h) {
  9786. for (int j = 0; j < n_tokens; ++j) {
  9787. const llama_pos pos = batch.pos[j];
  9788. const llama_seq_id seq_id = batch.seq_id[j][0];
  9789. for (int i = 0; i < n_kv; ++i) {
  9790. float f;
  9791. if (!lctx.kv_self.cells[i].has_seq_id(seq_id) || lctx.kv_self.cells[i].pos > pos) {
  9792. f = -INFINITY;
  9793. } else {
  9794. if (hparams.use_alibi) {
  9795. f = -fabs(lctx.kv_self.cells[i].pos - pos);
  9796. } else {
  9797. f = 0.0f;
  9798. }
  9799. }
  9800. data[h*(n_kv*n_tokens) + j*n_kv + i] = f;
  9801. }
  9802. }
  9803. for (int i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) {
  9804. for (int j = 0; j < n_kv; ++j) {
  9805. data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY;
  9806. }
  9807. }
  9808. }
  9809. } else {
  9810. // when using kv cache, the mask needs to match the kv cache size
  9811. const int64_t n_tokens = batch.n_tokens;
  9812. const int64_t n_stride = hparams.causal_attn ? kv_self.n : n_tokens;
  9813. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_KQ_mask->buffer));
  9814. float * data = (float *) lctx.inp_KQ_mask->data;
  9815. for (int h = 0; h < 1; ++h) {
  9816. for (int j = 0; j < n_tokens; ++j) {
  9817. const llama_seq_id seq_id = batch.seq_id[j][0];
  9818. for (int i = 0; i < n_tokens; ++i) {
  9819. float f = -INFINITY;
  9820. for (int s = 0; s < batch.n_seq_id[i]; ++s) {
  9821. if (batch.seq_id[i][s] == seq_id) {
  9822. if (hparams.use_alibi) {
  9823. f = -fabs(batch.pos[i] - batch.pos[j]);
  9824. } else {
  9825. f = 0.0f;
  9826. }
  9827. break;
  9828. }
  9829. }
  9830. data[h*(n_tokens*n_tokens) + j*n_stride + i] = f;
  9831. }
  9832. for (int i = n_tokens; i < n_stride; ++i) {
  9833. data[h*(n_tokens*n_tokens) + j*n_stride + i] = -INFINITY;
  9834. }
  9835. }
  9836. }
  9837. }
  9838. }
  9839. if (cparams.pooling_type == LLAMA_POOLING_TYPE_MEAN) {
  9840. const int64_t n_tokens = batch.n_tokens;
  9841. GGML_ASSERT(lctx.inp_mean);
  9842. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_mean->buffer));
  9843. float * data = (float *) lctx.inp_mean->data;
  9844. memset(lctx.inp_mean->data, 0, n_tokens * n_tokens * ggml_element_size(lctx.inp_mean));
  9845. std::vector<uint64_t> sum(n_tokens, 0);
  9846. for (int i = 0; i < n_tokens; ++i) {
  9847. const llama_seq_id seq_id = batch.seq_id[i][0];
  9848. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == MEAN");
  9849. sum[seq_id] += 1;
  9850. }
  9851. std::vector<float> div(n_tokens, 0.0f);
  9852. for (int i = 0; i < n_tokens; ++i) {
  9853. const uint64_t s = sum[i];
  9854. if (s > 0) {
  9855. div[i] = 1.0f/float(s);
  9856. }
  9857. }
  9858. for (int i = 0; i < n_tokens; ++i) {
  9859. const llama_seq_id seq_id = batch.seq_id[i][0];
  9860. data[seq_id*n_tokens + i] = div[seq_id];
  9861. }
  9862. }
  9863. if (cparams.pooling_type == LLAMA_POOLING_TYPE_CLS) {
  9864. const int64_t n_tokens = batch.n_tokens;
  9865. GGML_ASSERT(lctx.inp_cls);
  9866. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_cls->buffer));
  9867. uint32_t * data = (uint32_t *) lctx.inp_cls->data;
  9868. memset(lctx.inp_cls->data, 0, n_tokens * ggml_element_size(lctx.inp_cls));
  9869. for (int i = 0; i < n_tokens; ++i) {
  9870. const llama_seq_id seq_id = batch.seq_id[i][0];
  9871. const llama_pos pos = batch.pos[i];
  9872. GGML_ASSERT(seq_id < n_tokens && "seq_id cannot be larger than n_tokens with pooling_type == CLS");
  9873. if (pos == 0) {
  9874. data[seq_id] = i;
  9875. }
  9876. }
  9877. }
  9878. if (kv_self.recurrent) {
  9879. const int64_t n_kv = kv_self.n;
  9880. if (lctx.inp_s_mask) {
  9881. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
  9882. float * data = (float *) lctx.inp_s_mask->data;
  9883. // states which are not affected by the current batch are left untouched
  9884. for (int i = 0; i < n_kv; ++i) {
  9885. llama_seq_id seq_id = i + lctx.kv_self.head;
  9886. llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
  9887. bool has_self_seq = kv_cell.has_seq_id(seq_id);
  9888. data[i] = (float) has_self_seq;
  9889. // ensure current sequences will be kept
  9890. if (!has_self_seq && kv_cell.pos >= 0) {
  9891. kv_cell.seq_id.insert(seq_id);
  9892. }
  9893. }
  9894. }
  9895. // For Mamba (and other recurrent architectures),
  9896. // update the correct state(s)/sequence(s) for each token of the batch.
  9897. // Like with the KQ_mask, if a token in the batch has multiple sequences,
  9898. // they are assumed to be equivalent (not here, but in ggml_ssm_scan and ggml_ssm_conv).
  9899. if (lctx.inp_s_seq) {
  9900. const int64_t n_tokens = batch.n_tokens;
  9901. GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_seq->buffer));
  9902. int32_t * data = (int32_t *) lctx.inp_s_seq->data;
  9903. for (int j = 0; j < n_tokens; ++j) {
  9904. const int32_t n_seq = batch.n_seq_id[j];
  9905. GGML_ASSERT(0 < n_seq); // a token should be part of at least 1 sequence
  9906. for (int i = 0; i < n_kv; ++i) {
  9907. if (i < n_seq) {
  9908. // for this type of model, the head is the minimum seq_id of the batch
  9909. data[j*n_kv + i] = batch.seq_id[j][i] - kv_self.head;
  9910. } else {
  9911. data[j*n_kv + i] = -1;
  9912. }
  9913. }
  9914. }
  9915. }
  9916. }
  9917. }
  9918. // Make sure enough space is available for outputs.
  9919. // Returns max number of outputs for which space was reserved.
  9920. static size_t llama_output_reserve(llama_context & lctx, size_t n_outputs) {
  9921. const auto & cparams = lctx.cparams;
  9922. const auto & hparams = lctx.model.hparams;
  9923. const size_t n_outputs_max = std::max(n_outputs, (size_t) cparams.n_seq_max);
  9924. const auto n_batch = cparams.n_batch;
  9925. const auto n_vocab = hparams.n_vocab;
  9926. const auto n_embd = hparams.n_embd;
  9927. // TODO: use a per-batch flag for logits presence instead
  9928. const bool has_logits = cparams.causal_attn;
  9929. const bool has_embd = cparams.embeddings && (hparams.causal_attn || cparams.pooling_type == LLAMA_POOLING_TYPE_NONE);
  9930. const size_t logits_size = has_logits ? n_vocab*n_outputs_max : 0;
  9931. const size_t embd_size = has_embd ? n_embd*n_outputs_max : 0;
  9932. if (lctx.output_ids.empty()) {
  9933. // init, never resized afterwards
  9934. lctx.output_ids.resize(n_batch);
  9935. }
  9936. const size_t prev_size = lctx.buf_output ? ggml_backend_buffer_get_size(lctx.buf_output) : 0;
  9937. const size_t new_size = (logits_size + embd_size) * sizeof(float);
  9938. // alloc only when more than the current capacity is required
  9939. // TODO: also consider shrinking the buffer
  9940. if (!lctx.buf_output || prev_size < new_size) {
  9941. if (lctx.buf_output) {
  9942. #ifndef NDEBUG
  9943. // This doesn't happen often, but may be annoying in some cases (like the HellaSwag benchmark)
  9944. LLAMA_LOG_INFO("%s: reallocating output buffer from size %.02f MiB to %.02f MiB\n", __func__, prev_size / 1024.0 / 1024.0, new_size / 1024.0 / 1024.0);
  9945. #endif
  9946. ggml_backend_buffer_free(lctx.buf_output);
  9947. lctx.buf_output = nullptr;
  9948. lctx.logits = nullptr;
  9949. lctx.embd = nullptr;
  9950. }
  9951. lctx.buf_output = ggml_backend_buft_alloc_buffer(llama_default_buffer_type_cpu(true), new_size);
  9952. if (lctx.buf_output == nullptr) {
  9953. LLAMA_LOG_ERROR("%s: failed to allocate output buffer of size %.2f MiB\n", __func__, new_size / (1024.0 * 1024.0));
  9954. return 0;
  9955. }
  9956. }
  9957. float * output_base = (float *) ggml_backend_buffer_get_base(lctx.buf_output);
  9958. lctx.logits = has_logits ? output_base : nullptr;
  9959. lctx.embd = has_embd ? output_base + logits_size : nullptr;
  9960. lctx.output_size = n_outputs_max;
  9961. lctx.logits_size = logits_size;
  9962. lctx.embd_size = embd_size;
  9963. // set all ids as invalid (negative)
  9964. std::fill(lctx.output_ids.begin(), lctx.output_ids.end(), -1);
  9965. ggml_backend_buffer_clear(lctx.buf_output, 0);
  9966. lctx.n_outputs = 0;
  9967. return n_outputs_max;
  9968. }
  9969. static void llama_graph_compute(
  9970. llama_context & lctx,
  9971. ggml_cgraph * gf,
  9972. int n_threads) {
  9973. #ifdef GGML_USE_METAL
  9974. if (ggml_backend_is_metal(lctx.backend_metal)) {
  9975. ggml_backend_metal_set_n_cb(lctx.backend_metal, n_threads);
  9976. }
  9977. #endif
  9978. if (lctx.backend_cpu != nullptr) {
  9979. ggml_backend_cpu_set_n_threads(lctx.backend_cpu, n_threads);
  9980. ggml_backend_cpu_set_abort_callback(lctx.backend_cpu, lctx.abort_callback, lctx.abort_callback_data);
  9981. }
  9982. ggml_backend_sched_graph_compute_async(lctx.sched, gf);
  9983. // fprintf(stderr, "splits: %d\n", ggml_backend_sched_get_n_splits(lctx.sched));
  9984. }
  9985. // decode a batch of tokens by evaluating the transformer
  9986. //
  9987. // - lctx: llama context
  9988. // - batch: batch to evaluate
  9989. //
  9990. // return 0 on success
  9991. // return positive int on warning
  9992. // return negative int on error
  9993. //
  9994. static int llama_decode_internal(
  9995. llama_context & lctx,
  9996. llama_batch batch_all) { // TODO: rename back to batch
  9997. const uint32_t n_tokens_all = batch_all.n_tokens;
  9998. if (n_tokens_all == 0) {
  9999. LLAMA_LOG_ERROR("%s: n_tokens == 0", __func__);
  10000. return -1;
  10001. }
  10002. const auto & model = lctx.model;
  10003. const auto & hparams = model.hparams;
  10004. const auto & cparams = lctx.cparams;
  10005. GGML_ASSERT((!batch_all.token && batch_all.embd) || (batch_all.token && !batch_all.embd)); // NOLINT
  10006. GGML_ASSERT(n_tokens_all <= cparams.n_batch);
  10007. GGML_ASSERT((cparams.causal_attn || cparams.n_ubatch >= n_tokens_all) && "non-causal attention requires n_ubatch >= n_tokens");
  10008. if (lctx.t_compute_start_us == 0) {
  10009. lctx.t_compute_start_us = ggml_time_us();
  10010. }
  10011. lctx.n_queued_tokens += n_tokens_all;
  10012. auto & kv_self = lctx.kv_self;
  10013. const int64_t n_embd = hparams.n_embd;
  10014. const int64_t n_vocab = hparams.n_vocab;
  10015. uint32_t n_outputs = 0;
  10016. uint32_t n_outputs_prev = 0;
  10017. const auto n_ubatch = cparams.n_ubatch;
  10018. std::vector<llama_pos> pos;
  10019. std::vector<int32_t> n_seq_id;
  10020. std::vector<llama_seq_id *> seq_id_arr;
  10021. std::vector<std::vector<llama_seq_id>> seq_id;
  10022. // count outputs
  10023. if (batch_all.logits) {
  10024. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10025. n_outputs += batch_all.logits[i] != 0;
  10026. }
  10027. } else if (lctx.logits_all || (cparams.embeddings && cparams.pooling_type != LLAMA_POOLING_TYPE_NONE)) {
  10028. n_outputs = n_tokens_all;
  10029. } else {
  10030. // keep last output only
  10031. n_outputs = 1;
  10032. }
  10033. // reserve output buffer
  10034. if (llama_output_reserve(lctx, n_outputs) < n_outputs) {
  10035. LLAMA_LOG_ERROR("%s: could not reserve space for batch with %u outputs\n", __func__, n_outputs);
  10036. return -2;
  10037. };
  10038. // set output mappings
  10039. if (batch_all.logits) {
  10040. int32_t i_logits = 0;
  10041. for (uint32_t i = 0; i < n_tokens_all; ++i) {
  10042. if (batch_all.logits[i]) {
  10043. lctx.output_ids[i] = i_logits++;
  10044. }
  10045. }
  10046. } else {
  10047. for (uint32_t i = 0; i < n_outputs; ++i) {
  10048. lctx.output_ids[i] = i;
  10049. }
  10050. }
  10051. for (uint32_t cur_token = 0; cur_token < n_tokens_all; cur_token += n_ubatch) {
  10052. const uint32_t n_tokens = std::min(n_ubatch, n_tokens_all - cur_token);
  10053. llama_batch u_batch = {
  10054. /* .n_tokens = */ (int32_t) n_tokens,
  10055. /* .token = */ batch_all.token ? batch_all.token + cur_token : nullptr,
  10056. /* .embd = */ batch_all.embd ? batch_all.embd + cur_token*n_embd : nullptr,
  10057. /* .pos = */ batch_all.pos ? batch_all.pos + cur_token : nullptr,
  10058. /* .n_seq_id = */ batch_all.n_seq_id ? batch_all.n_seq_id + cur_token : nullptr,
  10059. /* .seq_id = */ batch_all.seq_id ? batch_all.seq_id + cur_token : nullptr,
  10060. /* .logits = */ batch_all.logits ? batch_all.logits + cur_token : nullptr,
  10061. /* .all_pos_0 = */ batch_all.all_pos_0 + (llama_pos) cur_token*batch_all.all_pos_1,
  10062. /* .all_pos_1 = */ batch_all.all_pos_1,
  10063. /* .all_seq_id = */ batch_all.all_seq_id,
  10064. };
  10065. // count the outputs in this u_batch
  10066. {
  10067. int32_t n_outputs_new = 0;
  10068. if (u_batch.logits) {
  10069. for (uint32_t i = 0; i < n_tokens; i++) {
  10070. n_outputs_new += u_batch.logits[i] != 0;
  10071. }
  10072. } else if (n_outputs == n_tokens_all) {
  10073. n_outputs_new = n_tokens;
  10074. } else {
  10075. // keep last output only
  10076. if (cur_token + n_tokens >= n_tokens_all) {
  10077. n_outputs_new = 1;
  10078. }
  10079. }
  10080. // needs to happen before the graph is built
  10081. lctx.n_outputs = n_outputs_new;
  10082. }
  10083. int n_threads = n_tokens == 1 ? cparams.n_threads : cparams.n_threads_batch;
  10084. GGML_ASSERT(n_threads > 0);
  10085. // helpers for smoother batch API transition
  10086. // after deprecating the llama_eval calls, these will be removed
  10087. if (u_batch.pos == nullptr) {
  10088. pos.resize(n_tokens);
  10089. for (uint32_t i = 0; i < n_tokens; i++) {
  10090. pos[i] = u_batch.all_pos_0 + i*u_batch.all_pos_1;
  10091. }
  10092. u_batch.pos = pos.data();
  10093. }
  10094. if (u_batch.seq_id == nullptr) {
  10095. n_seq_id.resize(n_tokens);
  10096. seq_id.resize(n_tokens);
  10097. seq_id_arr.resize(n_tokens);
  10098. for (uint32_t i = 0; i < n_tokens; i++) {
  10099. n_seq_id[i] = 1;
  10100. seq_id[i].resize(1);
  10101. seq_id[i][0] = u_batch.all_seq_id;
  10102. seq_id_arr[i] = seq_id[i].data();
  10103. }
  10104. u_batch.n_seq_id = n_seq_id.data();
  10105. u_batch.seq_id = seq_id_arr.data();
  10106. }
  10107. // non-causal masks do not use the KV cache
  10108. if (hparams.causal_attn) {
  10109. llama_kv_cache_update(&lctx);
  10110. // if we have enough unused cells before the current head ->
  10111. // better to start searching from the beginning of the cache, hoping to fill it
  10112. if (kv_self.head > kv_self.used + 2*n_tokens) {
  10113. kv_self.head = 0;
  10114. }
  10115. if (!llama_kv_cache_find_slot(kv_self, u_batch)) {
  10116. return 1;
  10117. }
  10118. if (!kv_self.recurrent) {
  10119. // a heuristic, to avoid attending the full cache if it is not yet utilized
  10120. // after enough generations, the benefit from this heuristic disappears
  10121. // if we start defragmenting the cache, the benefit from this will be more important
  10122. const uint32_t pad = llama_kv_cache_get_padding(cparams);
  10123. kv_self.n = std::min(kv_self.size, std::max(pad, GGML_PAD(llama_kv_cache_cell_max(kv_self), pad)));
  10124. //kv_self.n = llama_kv_cache_cell_max(kv_self);
  10125. }
  10126. }
  10127. //printf("kv_self.n = %5d, kv_self.used = %5d, kv_self.head = %5d\n", kv_self.n, kv_self.used, kv_self.head);
  10128. ggml_backend_sched_reset(lctx.sched);
  10129. ggml_backend_sched_set_eval_callback(lctx.sched, lctx.cparams.cb_eval, lctx.cparams.cb_eval_user_data);
  10130. ggml_cgraph * gf = llama_build_graph(lctx, u_batch, false);
  10131. // the output is always the last tensor in the graph
  10132. struct ggml_tensor * res = gf->nodes[gf->n_nodes - 1];
  10133. struct ggml_tensor * embd = gf->nodes[gf->n_nodes - 2];
  10134. if (lctx.n_outputs == 0) {
  10135. // no output
  10136. res = nullptr;
  10137. embd = nullptr;
  10138. } else if (!hparams.causal_attn) {
  10139. res = nullptr; // do not extract logits for embedding models such as BERT
  10140. // token or sequence embeddings
  10141. embd = gf->nodes[gf->n_nodes - 1];
  10142. GGML_ASSERT(strcmp(embd->name, "result_embd") == 0 || strcmp(embd->name, "result_embd_pooled") == 0);
  10143. } else if (cparams.embeddings) {
  10144. // the embeddings could be in the second to last tensor, or any of the previous tensors
  10145. int i_embd = gf->n_nodes - 2;
  10146. for (int i = 3; strcmp(embd->name, "result_norm") != 0; ++i) {
  10147. i_embd = gf->n_nodes - i;
  10148. if (i_embd < 0) { break; }
  10149. embd = gf->nodes[i_embd];
  10150. }
  10151. GGML_ASSERT(i_embd >= 0 && "missing result_norm tensor");
  10152. // TODO: use a per-batch flag to know when to skip logits while keeping embeddings
  10153. if (!cparams.causal_attn) {
  10154. res = nullptr; // do not extract logits when not needed
  10155. // skip computing logits
  10156. // TODO: is this safe?
  10157. gf->n_nodes = i_embd + 1;
  10158. }
  10159. } else {
  10160. embd = nullptr; // do not extract embeddings when not needed
  10161. GGML_ASSERT(strcmp(res->name, "result_output") == 0 && "missing result_output tensor");
  10162. }
  10163. // LLAMA_LOG_INFO("graph build time: %.3f ms (%d nodes, %d leafs)\n", (ggml_time_us() - t_start_us)/1000.0, gf->n_nodes, gf->n_leafs);
  10164. // for big prompts, if BLAS is enabled, it is better to use only one thread
  10165. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  10166. // TODO: this is mostly important for Apple Silicon where CBLAS is still performing very well
  10167. // we still need some threads to process all non-mul_mat ops, but not too much to avoid interfering
  10168. // with the BLAS calls. need a better solution
  10169. // MoE Special Case: This logic applies when hparams.n_expert == 0, i.e. the model is NOT an MoE model. When an MoE is
  10170. // being processed then Accelerate/BLAS will not be involved, so capping would limit performance.
  10171. if (n_tokens >= 32 && hparams.n_expert == 0 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas()) {
  10172. n_threads = std::min(4, n_threads);
  10173. }
  10174. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10175. llama_set_inputs(lctx, u_batch);
  10176. llama_graph_compute(lctx, gf, n_threads);
  10177. // update the kv ring buffer
  10178. {
  10179. kv_self.head += n_tokens;
  10180. // Ensure kv cache head points to a valid index.
  10181. if (kv_self.head >= kv_self.size) {
  10182. kv_self.head = 0;
  10183. }
  10184. }
  10185. #ifdef GGML_PERF
  10186. // print timing information per ggml operation (for debugging purposes)
  10187. // requires GGML_PERF to be defined
  10188. ggml_graph_print(gf);
  10189. #endif
  10190. // plot the computation graph in dot format (for debugging purposes)
  10191. //if (n_past%100 == 0) {
  10192. // ggml_graph_dump_dot(gf, NULL, "llama.dot");
  10193. //}
  10194. // extract logits
  10195. if (res) {
  10196. ggml_backend_t backend_res = ggml_backend_sched_get_tensor_backend(lctx.sched, res);
  10197. GGML_ASSERT(backend_res != nullptr);
  10198. GGML_ASSERT(lctx.logits != nullptr);
  10199. float * logits_out = lctx.logits + n_outputs_prev*n_vocab;
  10200. const int32_t n_outputs_new = lctx.n_outputs;
  10201. if (n_outputs_new) {
  10202. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10203. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_vocab <= (int64_t) lctx.logits_size);
  10204. ggml_backend_tensor_get_async(backend_res, res, logits_out, 0, n_outputs_new*n_vocab*sizeof(float));
  10205. }
  10206. }
  10207. // extract embeddings
  10208. if (embd) {
  10209. ggml_backend_t backend_embd = ggml_backend_sched_get_tensor_backend(lctx.sched, embd);
  10210. GGML_ASSERT(backend_embd != nullptr);
  10211. switch (cparams.pooling_type) {
  10212. case LLAMA_POOLING_TYPE_NONE:
  10213. {
  10214. // extract token embeddings
  10215. GGML_ASSERT(lctx.embd != nullptr);
  10216. float * embd_out = lctx.embd + n_outputs_prev*n_embd;
  10217. const int32_t n_outputs_new = lctx.n_outputs;
  10218. if (n_outputs_new) {
  10219. GGML_ASSERT( n_outputs_prev + n_outputs_new <= n_outputs);
  10220. GGML_ASSERT((n_outputs_prev + n_outputs_new)*n_embd <= (int64_t) lctx.embd_size);
  10221. ggml_backend_tensor_get_async(backend_embd, embd, embd_out, 0, n_outputs_new*n_embd*sizeof(float));
  10222. }
  10223. } break;
  10224. case LLAMA_POOLING_TYPE_CLS:
  10225. case LLAMA_POOLING_TYPE_MEAN:
  10226. {
  10227. GGML_ASSERT(strcmp(embd->name, "result_embd_pooled") == 0);
  10228. // extract sequence embeddings
  10229. auto & embd_seq_out = lctx.embd_seq;
  10230. embd_seq_out.clear();
  10231. for (uint32_t i = 0; i < n_tokens; i++) {
  10232. const llama_seq_id seq_id = u_batch.seq_id[i][0];
  10233. if (embd_seq_out.find(seq_id) != embd_seq_out.end()) {
  10234. continue;
  10235. }
  10236. embd_seq_out[seq_id].resize(n_embd);
  10237. ggml_backend_tensor_get_async(backend_embd, embd, embd_seq_out[seq_id].data(), (n_embd*seq_id)*sizeof(float), n_embd*sizeof(float));
  10238. }
  10239. } break;
  10240. case LLAMA_POOLING_TYPE_UNSPECIFIED:
  10241. {
  10242. GGML_ASSERT(false && "unknown pooling type");
  10243. } break;
  10244. }
  10245. }
  10246. n_outputs_prev += lctx.n_outputs;
  10247. }
  10248. // set to total number of outputs in the batch, for use in llama_get_logits_ith
  10249. lctx.n_outputs = n_outputs;
  10250. // wait for the computation to finish (automatically done when obtaining the model output)
  10251. //llama_synchronize(&lctx);
  10252. // decide if we need to defrag the kv cache
  10253. if (cparams.causal_attn && cparams.defrag_thold >= 0.0f) {
  10254. const float fragmentation = kv_self.n >= 128 ? 1.0f - float(kv_self.used)/float(kv_self.n) : 0.0f;
  10255. // queue defragmentation for next llama_kv_cache_update
  10256. if (fragmentation > cparams.defrag_thold) {
  10257. //LLAMA_LOG_INFO("fragmentation: %.2f\n", fragmentation);
  10258. llama_kv_cache_defrag(kv_self);
  10259. }
  10260. }
  10261. // Reset state for the next token before backend sync, to allow the CPU activities in the reset to
  10262. // overlap with device computation.
  10263. ggml_backend_sched_reset(lctx.sched);
  10264. return 0;
  10265. }
  10266. // find holes from the beginning of the KV cache and fill them by moving data from the end of the cache
  10267. static void llama_kv_cache_defrag_internal(struct llama_context & lctx) {
  10268. auto & kv_self = lctx.kv_self;
  10269. const auto & hparams = lctx.model.hparams;
  10270. const uint32_t n_layer = hparams.n_layer;
  10271. const uint32_t n_kv = llama_kv_cache_cell_max(kv_self);
  10272. const uint32_t n_used = kv_self.used;
  10273. assert(n_used <= n_kv);
  10274. //const int64_t t_start = ggml_time_us();
  10275. // number of cells moved
  10276. uint32_t n_moves = 0;
  10277. // each move requires 6*n_layer tensors (see build_defrag)
  10278. // - source view, destination view, copy operation
  10279. // - x2 for keys and values
  10280. //const uint32_t max_moves = LLAMA_MAX_NODES/(6*n_layer);
  10281. // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516
  10282. const uint32_t max_moves = (LLAMA_MAX_NODES - 2*n_layer)/(6*n_layer);
  10283. // determine which KV cells to move where
  10284. //
  10285. // cell i moves to ids[i]
  10286. //
  10287. // if ids[i] == i || ids[i] == n_kv, then cell i is not moved
  10288. //
  10289. std::vector<uint32_t> ids(n_kv, n_kv);
  10290. for (uint32_t i0 = 0; i0 < n_used; ++i0) {
  10291. const auto & cell0 = kv_self.cells[i0];
  10292. if (!cell0.is_empty()) {
  10293. ids[i0] = i0;
  10294. continue;
  10295. }
  10296. // found a hole - fill it with data from the end of the cache
  10297. uint32_t nh = 1;
  10298. // determine the size of the hole
  10299. while (i0 + nh < n_used && kv_self.cells[i0 + nh].is_empty()) {
  10300. nh++;
  10301. }
  10302. uint32_t nf = 0;
  10303. uint32_t is = n_kv - 1;
  10304. // starting from the end, find nh non-empty cells
  10305. for (; is > i0; --is) {
  10306. const auto & cell1 = kv_self.cells[is];
  10307. if (cell1.is_empty() || ids[is] != n_kv) {
  10308. continue;
  10309. }
  10310. // non-empty cell which is not yet moved
  10311. nf++;
  10312. if (nf == nh) {
  10313. break;
  10314. }
  10315. }
  10316. // this can only happen if `n_used` is not accurate, which would be a bug
  10317. GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh");
  10318. nf = 0;
  10319. uint32_t i1 = is;
  10320. // are we moving a continuous block of memory?
  10321. bool cont = false;
  10322. // should we stop searching for the next move?
  10323. bool stop = false;
  10324. // go back and move the nf cells to the hole
  10325. for (; i1 < n_kv; ++i1) {
  10326. auto & cell1 = kv_self.cells[i1];
  10327. if (cell1.is_empty() || ids[i1] != n_kv) {
  10328. if (n_moves == max_moves) {
  10329. stop = true;
  10330. break;
  10331. }
  10332. cont = false;
  10333. continue;
  10334. }
  10335. // this cell goes to (i0 + nf)
  10336. ids[i1] = i0 + nf;
  10337. // move the cell meta data
  10338. kv_self.cells[i0 + nf] = cell1;
  10339. // clear the old cell and move the head there
  10340. cell1 = llama_kv_cell();
  10341. kv_self.head = n_used;
  10342. if (!cont) {
  10343. n_moves++;
  10344. cont = true;
  10345. }
  10346. nf++;
  10347. if (nf == nh) {
  10348. break;
  10349. }
  10350. }
  10351. if (stop || n_moves == max_moves) {
  10352. break;
  10353. }
  10354. //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh);
  10355. i0 += nh - 1;
  10356. }
  10357. if (n_moves == 0) {
  10358. return;
  10359. }
  10360. //LLAMA_LOG_INFO("(tmp log) KV defrag cell moves: %u\n", n_moves);
  10361. //LLAMA_LOG_INFO("expected gf nodes: %u\n", 6*n_moves*n_layer);
  10362. #if 0
  10363. // CPU defrag
  10364. //
  10365. // TODO: optimizations are possible:
  10366. // - multiple threads
  10367. // - avoid copying to the host memory when already there
  10368. //
  10369. // likely not worth the effort, as we have ggml_graph based defrag
  10370. //
  10371. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
  10372. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
  10373. const uint32_t kv_size = kv_self.size;
  10374. std::vector<uint8_t> buf_k;
  10375. std::vector<uint8_t> buf_v;
  10376. for (uint32_t il = 0; il < n_layer; ++il) {
  10377. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  10378. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_size);
  10379. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  10380. const size_t v_size = ggml_row_size (kv_self.v_l[il]->type, n_embd_v_gqa*kv_size);
  10381. buf_k.resize(k_size);
  10382. buf_v.resize(v_size);
  10383. ggml_backend_tensor_get(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10384. ggml_backend_tensor_get(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10385. // batch move [i, i+nm) to [id, id+nm)
  10386. // note: cells can move only to a lower index
  10387. for (uint32_t i = 0; i < n_kv; ++i) {
  10388. const uint32_t id = ids[i];
  10389. if (i == id || id == n_kv) {
  10390. continue;
  10391. }
  10392. uint32_t nm = 1;
  10393. while (i + nm < n_kv && ids[i + nm] == id + nm) {
  10394. nm++;
  10395. }
  10396. // move keys
  10397. {
  10398. const int64_t os = i*k_size_row;
  10399. const int64_t od = id*k_size_row;
  10400. memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row);
  10401. }
  10402. // move values (note: they are transposed)
  10403. {
  10404. const int64_t os = i;
  10405. const int64_t od = id;
  10406. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  10407. memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el);
  10408. }
  10409. }
  10410. i += nm - 1;
  10411. }
  10412. ggml_backend_tensor_set(kv_self.k_l[il], buf_k.data(), 0, buf_k.size());
  10413. ggml_backend_tensor_set(kv_self.v_l[il], buf_v.data(), 0, buf_v.size());
  10414. }
  10415. #else
  10416. // ggml_graph defrag
  10417. ggml_backend_sched_reset(lctx.sched);
  10418. ggml_cgraph * gf = llama_build_graph_defrag(lctx, ids);
  10419. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10420. #endif
  10421. //const int64_t t_end = ggml_time_us();
  10422. //LLAMA_LOG_INFO("(tmp log) KV defrag time: %.3f ms\n", (t_end - t_start)/1000.0);
  10423. }
  10424. static void llama_kv_cache_update_internal(struct llama_context & lctx) {
  10425. bool need_reserve = false;
  10426. // apply K-shift if needed
  10427. if (lctx.model.hparams.rope_type != LLAMA_ROPE_TYPE_NONE && lctx.kv_self.has_shift) {
  10428. {
  10429. ggml_backend_sched_reset(lctx.sched);
  10430. ggml_cgraph * gf = llama_build_graph_k_shift(lctx);
  10431. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10432. llama_set_k_shift(lctx);
  10433. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10434. need_reserve = true;
  10435. }
  10436. {
  10437. auto & kv_self = lctx.kv_self;
  10438. kv_self.has_shift = false;
  10439. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10440. kv_self.cells[i].delta = 0;
  10441. }
  10442. }
  10443. }
  10444. if (lctx.kv_self.recurrent && lctx.kv_self.do_copy) {
  10445. {
  10446. ggml_backend_sched_reset(lctx.sched);
  10447. ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
  10448. ggml_backend_sched_alloc_graph(lctx.sched, gf);
  10449. llama_set_s_copy(lctx);
  10450. llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
  10451. need_reserve = true;
  10452. }
  10453. {
  10454. auto & kv_self = lctx.kv_self;
  10455. kv_self.do_copy = false;
  10456. for (uint32_t i = 0; i < kv_self.size; ++i) {
  10457. kv_self.cells[i].src = i;
  10458. }
  10459. }
  10460. }
  10461. // defragment the KV cache if needed
  10462. if (lctx.kv_self.do_defrag) {
  10463. llama_kv_cache_defrag_internal(lctx);
  10464. need_reserve = true;
  10465. lctx.kv_self.do_defrag = false;
  10466. }
  10467. // reserve a worst case graph again
  10468. if (need_reserve) {
  10469. // TODO: extract to a function
  10470. // build worst-case graph
  10471. int n_tokens = (int)std::min(lctx.cparams.n_ctx, lctx.cparams.n_ubatch);
  10472. int n_past = lctx.cparams.n_ctx - n_tokens;
  10473. llama_token token = llama_token_bos(&lctx.model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  10474. ggml_cgraph * gf = llama_build_graph(lctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  10475. // initialize scheduler with the worst-case graph
  10476. ggml_backend_sched_reset(lctx.sched);
  10477. if (!ggml_backend_sched_reserve(lctx.sched, gf)) {
  10478. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  10479. }
  10480. }
  10481. }
  10482. //
  10483. // tokenizer
  10484. //
  10485. static enum llama_vocab_type llama_vocab_get_type(const llama_vocab & vocab) {
  10486. return vocab.type;
  10487. }
  10488. static bool llama_is_normal_token(const llama_vocab & vocab, llama_token id) {
  10489. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10490. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_NORMAL;
  10491. }
  10492. static bool llama_is_unknown_token(const llama_vocab & vocab, llama_token id) {
  10493. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10494. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_UNKNOWN;
  10495. }
  10496. static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
  10497. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10498. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_CONTROL;
  10499. }
  10500. static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
  10501. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10502. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_BYTE;
  10503. }
  10504. static bool llama_is_user_defined_token(const llama_vocab& vocab, llama_token id) {
  10505. GGML_ASSERT(vocab.type != LLAMA_VOCAB_TYPE_NONE);
  10506. return vocab.id_to_token[id].attr & LLAMA_TOKEN_ATTR_USER_DEFINED;
  10507. }
  10508. static uint8_t llama_token_to_byte(const llama_vocab& vocab, llama_token id) {
  10509. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10510. GGML_ASSERT(llama_is_byte_token(vocab, id));
  10511. const auto & token_data = vocab.id_to_token.at(id);
  10512. switch (llama_vocab_get_type(vocab)) {
  10513. case LLAMA_VOCAB_TYPE_SPM: {
  10514. auto buf = token_data.text.substr(3, 2);
  10515. return strtol(buf.c_str(), NULL, 16);
  10516. }
  10517. case LLAMA_VOCAB_TYPE_BPE: {
  10518. GGML_ASSERT(false);
  10519. return unicode_utf8_to_byte(token_data.text); // TODO: why is this here after GGML_ASSERT?
  10520. }
  10521. case LLAMA_VOCAB_TYPE_WPM: {
  10522. GGML_ASSERT(false);
  10523. }
  10524. default:
  10525. GGML_ASSERT(false);
  10526. }
  10527. }
  10528. static llama_token llama_byte_to_token(const llama_vocab & vocab, uint8_t ch) {
  10529. GGML_ASSERT(llama_vocab_get_type(vocab) != LLAMA_VOCAB_TYPE_NONE);
  10530. static const char * hex = "0123456789ABCDEF";
  10531. switch (llama_vocab_get_type(vocab)) {
  10532. case LLAMA_VOCAB_TYPE_SPM: {
  10533. const char buf[7] = { '<', '0', 'x', hex[ch >> 4], hex[ch & 15], '>', 0 };
  10534. auto token = vocab.token_to_id.find(buf);
  10535. if (token != vocab.token_to_id.end()) {
  10536. return (*token).second;
  10537. }
  10538. // Try to fall back to just the byte as a string
  10539. const char buf2[2] = { (char)ch, 0 };
  10540. return vocab.token_to_id.at(buf2);
  10541. }
  10542. case LLAMA_VOCAB_TYPE_WPM:
  10543. case LLAMA_VOCAB_TYPE_BPE: {
  10544. return vocab.token_to_id.at(unicode_byte_to_utf8(ch));
  10545. }
  10546. default:
  10547. GGML_ASSERT(false);
  10548. }
  10549. }
  10550. static void llama_escape_whitespace(std::string & text) {
  10551. replace_all(text, " ", "\xe2\x96\x81");
  10552. }
  10553. static void llama_unescape_whitespace(std::string & word) {
  10554. replace_all(word, "\xe2\x96\x81", " ");
  10555. }
  10556. struct llm_symbol {
  10557. using index = int;
  10558. index prev;
  10559. index next;
  10560. const char * text;
  10561. size_t n;
  10562. };
  10563. static_assert(std::is_trivially_copyable<llm_symbol>::value, "llm_symbol is not trivially copyable");
  10564. // SPM tokenizer
  10565. // original implementation:
  10566. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  10567. struct llm_bigram_spm {
  10568. struct comparator {
  10569. bool operator()(llm_bigram_spm & l, llm_bigram_spm & r) {
  10570. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  10571. }
  10572. };
  10573. using queue_storage = std::vector<llm_bigram_spm>;
  10574. using queue = std::priority_queue<llm_bigram_spm, queue_storage, comparator>;
  10575. llm_symbol::index left;
  10576. llm_symbol::index right;
  10577. float score;
  10578. size_t size;
  10579. };
  10580. struct llm_tokenizer_spm {
  10581. llm_tokenizer_spm(const llama_vocab & vocab) : vocab(vocab) {}
  10582. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10583. // split string into utf8 chars
  10584. int index = 0;
  10585. size_t offs = 0;
  10586. while (offs < text.size()) {
  10587. llm_symbol sym;
  10588. size_t len = utf8_len(text[offs]);
  10589. sym.text = text.c_str() + offs;
  10590. sym.n = std::min(len, text.size() - offs);
  10591. offs += sym.n;
  10592. sym.prev = index - 1;
  10593. sym.next = offs == text.size() ? -1 : index + 1;
  10594. index++;
  10595. symbols.emplace_back(sym);
  10596. }
  10597. // seed the work queue with all possible 2-character tokens.
  10598. for (size_t i = 1; i < symbols.size(); ++i) {
  10599. try_add_bigram(i - 1, i);
  10600. }
  10601. // keep substituting the highest frequency pairs for as long as we can.
  10602. while (!work_queue.empty()) {
  10603. auto bigram = work_queue.top();
  10604. work_queue.pop();
  10605. auto & left_sym = symbols[bigram.left];
  10606. auto & right_sym = symbols[bigram.right];
  10607. // if one of the symbols already got merged, skip it.
  10608. if (left_sym.n == 0 || right_sym.n == 0 ||
  10609. left_sym.n + right_sym.n != bigram.size) {
  10610. continue;
  10611. }
  10612. // merge the right sym into the left one
  10613. left_sym.n += right_sym.n;
  10614. right_sym.n = 0;
  10615. //LLAMA_LOG_INFO("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  10616. // remove the right sym from the chain
  10617. left_sym.next = right_sym.next;
  10618. if (right_sym.next >= 0) {
  10619. symbols[right_sym.next].prev = bigram.left;
  10620. }
  10621. // find more substitutions
  10622. try_add_bigram(left_sym.prev, bigram.left);
  10623. try_add_bigram(bigram.left, left_sym.next);
  10624. }
  10625. for (int i = 0; i != -1; i = symbols[i].next) {
  10626. auto & symbol = symbols[i];
  10627. resegment(symbol, output);
  10628. }
  10629. }
  10630. private:
  10631. void resegment(llm_symbol & symbol, std::vector<llama_vocab::id> & output) {
  10632. auto text = std::string(symbol.text, symbol.n);
  10633. auto token = vocab.token_to_id.find(text);
  10634. // Do we need to support is_unused?
  10635. if (token != vocab.token_to_id.end()) {
  10636. output.push_back((*token).second);
  10637. return;
  10638. }
  10639. const auto p = rev_merge.find(text);
  10640. if (p == rev_merge.end()) {
  10641. // output any symbols that did not form tokens as bytes.
  10642. output.reserve(output.size() + symbol.n);
  10643. for (int j = 0; j < (int)symbol.n; ++j) {
  10644. llama_vocab::id token_id = llama_byte_to_token(vocab, symbol.text[j]);
  10645. output.push_back(token_id);
  10646. }
  10647. return;
  10648. }
  10649. resegment(symbols[p->second.first], output);
  10650. resegment(symbols[p->second.second], output);
  10651. }
  10652. void try_add_bigram(int left, int right) {
  10653. if (left == -1 || right == -1) {
  10654. return;
  10655. }
  10656. const std::string text = std::string(symbols[left].text, symbols[left].n + symbols[right].n);
  10657. auto token = vocab.token_to_id.find(text);
  10658. if (token == vocab.token_to_id.end()) {
  10659. return;
  10660. }
  10661. if (static_cast<size_t>((*token).second) >= vocab.id_to_token.size()) {
  10662. return;
  10663. }
  10664. const auto & tok_data = vocab.id_to_token[(*token).second];
  10665. llm_bigram_spm bigram;
  10666. bigram.left = left;
  10667. bigram.right = right;
  10668. bigram.score = tok_data.score;
  10669. bigram.size = text.size();
  10670. work_queue.push(bigram);
  10671. // Do we need to support is_unused?
  10672. rev_merge[text] = std::make_pair(left, right);
  10673. }
  10674. const llama_vocab & vocab;
  10675. std::vector<llm_symbol> symbols;
  10676. llm_bigram_spm::queue work_queue;
  10677. std::map<std::string, std::pair<int, int>> rev_merge;
  10678. };
  10679. // BPE tokenizer
  10680. // adapted from https://github.com/cmp-nct/ggllm.cpp [MIT License]
  10681. // tried to simplify unicode stuff, so most likely does not work 100% correctly!
  10682. // TODO: there are a lot of common parts between spm and bpe tokenizers, should be refactored and reused
  10683. struct llm_bigram_bpe {
  10684. struct comparator {
  10685. bool operator()(const llm_bigram_bpe & l, const llm_bigram_bpe & r) const {
  10686. return l.rank > r.rank || (l.rank == r.rank && l.left > r.left);
  10687. }
  10688. };
  10689. using queue_storage = std::vector<llm_bigram_bpe>;
  10690. using queue = std::priority_queue<llm_bigram_bpe, queue_storage, comparator>;
  10691. llm_symbol::index left;
  10692. llm_symbol::index right;
  10693. std::string text;
  10694. int rank;
  10695. size_t size;
  10696. };
  10697. struct llm_tokenizer_bpe {
  10698. llm_tokenizer_bpe(const llama_vocab & vocab): vocab(vocab) {}
  10699. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10700. int final_prev_index = -1;
  10701. bool ignore_merges = false;
  10702. std::vector<std::string> word_collection;
  10703. switch (vocab.type) {
  10704. case LLAMA_VOCAB_TYPE_BPE:
  10705. switch (vocab.type_pre) {
  10706. case LLAMA_VOCAB_PRE_TYPE_LLAMA3:
  10707. ignore_merges = true;
  10708. word_collection = unicode_regex_split(text, {
  10709. // original regex from tokenizer.json
  10710. //"(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10711. // adapted: https://github.com/ggerganov/llama.cpp/pull/6920#issuecomment-2080233989
  10712. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10713. });
  10714. break;
  10715. case LLAMA_VOCAB_PRE_TYPE_DBRX:
  10716. case LLAMA_VOCAB_PRE_TYPE_SMAUG:
  10717. word_collection = unicode_regex_split(text, {
  10718. // same as llama3
  10719. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}{1,3}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10720. });
  10721. break;
  10722. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_LLM:
  10723. word_collection = unicode_regex_split(text, {
  10724. "[\r\n]",
  10725. "\\s?[A-Za-zµÀ-ÖØ-öø-ƺƼ-ƿDŽ-ʓʕ-ʯͰ-ͳͶͷͻ-ͽͿΆΈ-ΊΌΎ-ΡΣ-ϵϷ-ҁҊ-ԯԱ-ՖႠ-ჅᎠ-Ᏽᏸ-ᏽᲐ-ᲺᲽ-Ჿᴀ-ᴫᵫ-ᵷᵹ-ᶚḀ-ἕἘ-Ἕἠ-ὅὈ-Ὅὐ-ὗὙὛὝὟ-ώᾀ-ᾴᾶ-ᾼιῂ-ῄῆ-ῌῐ-ΐῖ-Ίῠ-Ῥῲ-ῴῶ-ῼℂℇℊ-ℓℕℙ-ℝℤΩℨK-ℭℯ-ℴℹℼ-ℿⅅ-ⅉⅎↃↄⰀ-ⱻⱾ-ⳤⳫ-ⳮⳲⳳꙀ-ꙭꚀ-ꚛꜢ-ꝯꝱ-ꞇꞋ-ꞎꭰ-ꮿff-stﬓ-ﬗA-Za-z𐐀-𐑏𐒰-𐓓𐓘-𐓻𐲀-𐲲𐳀-𐳲𑢠-𑣟𞤀-𞥃]+",
  10726. "\\s?[!-/:-~!-/:-~‘-‟ -。]+",
  10727. "\\s+$",
  10728. "[一-龥ࠀ-一가-퟿]+",
  10729. "\\p{N}+",
  10730. });
  10731. break;
  10732. case LLAMA_VOCAB_PRE_TYPE_DEEPSEEK_CODER:
  10733. word_collection = unicode_regex_split(text, {
  10734. "[\r\n]",
  10735. "\\s?\\p{L}+",
  10736. "\\s?\\p{P}+",
  10737. "[一-龥ࠀ-一가-퟿]+",
  10738. "\\p{N}",
  10739. });
  10740. break;
  10741. case LLAMA_VOCAB_PRE_TYPE_FALCON:
  10742. word_collection = unicode_regex_split(text, {
  10743. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10744. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10745. "[0-9][0-9][0-9]",
  10746. });
  10747. break;
  10748. case LLAMA_VOCAB_PRE_TYPE_MPT:
  10749. // TODO: MPT pre-tokenization regexes are unknown
  10750. // the following are close, but not exact. run the following:
  10751. // ./bin/test-tokenizer-0 ../models/ggml-vocab-mpt.gguf
  10752. GGML_ASSERT("MPT pre-tokenization regexes are unknown - fixes needed");
  10753. word_collection = unicode_regex_split(text, {
  10754. "\\s?\\p{L}+",
  10755. "\\s?\\p{P}+",
  10756. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10757. });
  10758. break;
  10759. case LLAMA_VOCAB_PRE_TYPE_STARCODER:
  10760. case LLAMA_VOCAB_PRE_TYPE_REFACT:
  10761. case LLAMA_VOCAB_PRE_TYPE_COMMAND_R:
  10762. word_collection = unicode_regex_split(text, {
  10763. "\\p{N}",
  10764. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10765. });
  10766. break;
  10767. case LLAMA_VOCAB_PRE_TYPE_GPT2:
  10768. case LLAMA_VOCAB_PRE_TYPE_OLMO:
  10769. word_collection = unicode_regex_split(text, {
  10770. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10771. });
  10772. break;
  10773. case LLAMA_VOCAB_PRE_TYPE_STABLELM2:
  10774. case LLAMA_VOCAB_PRE_TYPE_QWEN2:
  10775. word_collection = unicode_regex_split(text, {
  10776. // original regex from tokenizer.json
  10777. // "(?i:'s|'t|'re|'ve|'m|'ll|'d)|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+"
  10778. "(?:'[sS]|'[tT]|'[rR][eE]|'[vV][eE]|'[mM]|'[lL][lL]|'[dD])|[^\\r\\n\\p{L}\\p{N}]?\\p{L}+|\\p{N}| ?[^\\s\\p{L}\\p{N}]+[\\r\\n]*|\\s*[\\r\\n]+|\\s+(?!\\S)|\\s+",
  10779. });
  10780. break;
  10781. default:
  10782. // default regex for BPE tokenization pre-processing
  10783. word_collection = unicode_regex_split(text, {
  10784. "[\\p{P}\\$\\+<=>\\^~\\|]+",
  10785. "'s|'t|'re|'ve|'m|'ll|'d| ?\\p{L}+| ?\\p{N}+| ?[^\\s\\p{L}\\p{N}]+|\\s+(?!\\S)",
  10786. "\\p{N}+",
  10787. "[0-9][0-9][0-9]",
  10788. });
  10789. break;
  10790. }
  10791. break;
  10792. default:
  10793. GGML_ASSERT(false);
  10794. break;
  10795. }
  10796. symbols_final.clear();
  10797. for (auto & word : word_collection) {
  10798. work_queue = llm_bigram_bpe::queue();
  10799. symbols.clear();
  10800. int index = 0;
  10801. size_t offset = 0;
  10802. if (ignore_merges && vocab.token_to_id.find(word) != vocab.token_to_id.end()) {
  10803. symbols.emplace_back(llm_symbol{-1, -1, word.c_str(), word.size()});
  10804. offset = word.size();
  10805. }
  10806. while (offset < word.size()) {
  10807. llm_symbol sym;
  10808. size_t char_len = std::min(word.size() - offset, (size_t) ::utf8_len(word[offset]));
  10809. sym.text = word.c_str() + offset;
  10810. sym.n = char_len;
  10811. offset += sym.n;
  10812. sym.prev = index - 1;
  10813. sym.next = offset == word.size() ? -1 : index + 1;
  10814. index++;
  10815. symbols.emplace_back(sym);
  10816. }
  10817. for (size_t i = 1; i < symbols.size(); ++i) {
  10818. add_new_bigram(i - 1, i);
  10819. }
  10820. // build token(s)
  10821. while (!work_queue.empty()) {
  10822. auto bigram = work_queue.top();
  10823. work_queue.pop();
  10824. auto & left_symbol = symbols[bigram.left];
  10825. auto & right_symbol = symbols[bigram.right];
  10826. if (left_symbol.n == 0 || right_symbol.n == 0) {
  10827. continue;
  10828. }
  10829. std::string left_token = std::string(left_symbol.text, left_symbol.n);
  10830. std::string right_token = std::string(right_symbol.text, right_symbol.n);
  10831. if (left_token + right_token != bigram.text) {
  10832. continue; // Skip this bigram if it's outdated
  10833. }
  10834. // merge the right sym into the left one
  10835. left_symbol.n += right_symbol.n;
  10836. right_symbol.n = 0;
  10837. // remove the right sym from the chain
  10838. left_symbol.next = right_symbol.next;
  10839. if (right_symbol.next >= 0) {
  10840. symbols[right_symbol.next].prev = bigram.left;
  10841. }
  10842. add_new_bigram(left_symbol.prev, bigram.left); // left side of current symbol
  10843. add_new_bigram(bigram.left, left_symbol.next); // right side of current symbol
  10844. }
  10845. // add the finished tokens to the final list keeping correct order for next and prev
  10846. for (auto & sym : symbols) {
  10847. if (sym.n > 0) {
  10848. sym.prev = final_prev_index;
  10849. sym.next = -1;
  10850. if (final_prev_index != -1) {
  10851. symbols_final[final_prev_index].next = symbols_final.size();
  10852. }
  10853. symbols_final.emplace_back(sym);
  10854. final_prev_index = symbols_final.size() - 1;
  10855. }
  10856. }
  10857. }
  10858. symbols = symbols_final;
  10859. if (!symbols.empty()) {
  10860. for (int i = 0; i != -1; i = symbols[i].next) {
  10861. auto & symbol = symbols[i];
  10862. if (symbol.n == 0) {
  10863. continue;
  10864. }
  10865. const std::string str = std::string(symbol.text, symbol.n);
  10866. const auto token = vocab.token_to_id.find(str);
  10867. if (token == vocab.token_to_id.end()) {
  10868. for (auto j = str.begin(); j != str.end(); ++j) {
  10869. std::string byte_str(1, *j);
  10870. auto token_multibyte = vocab.token_to_id.find(byte_str);
  10871. if (token_multibyte == vocab.token_to_id.end()) {
  10872. throw std::runtime_error("ERROR: byte not found in vocab");
  10873. }
  10874. output.push_back((*token_multibyte).second);
  10875. }
  10876. } else {
  10877. output.push_back((*token).second);
  10878. }
  10879. }
  10880. }
  10881. }
  10882. private:
  10883. void add_new_bigram(int left, int right) {
  10884. if (left == -1 || right == -1) {
  10885. return;
  10886. }
  10887. std::string left_token = std::string(symbols[left].text, symbols[left].n);
  10888. std::string right_token = std::string(symbols[right].text, symbols[right].n);
  10889. int rank_found = -1;
  10890. rank_found = vocab.find_bpe_rank(left_token, right_token);
  10891. if (rank_found < 0) {
  10892. return;
  10893. }
  10894. llm_bigram_bpe bigram;
  10895. bigram.left = left;
  10896. bigram.right = right;
  10897. bigram.text = left_token + right_token;
  10898. bigram.size = left_token.size() + right_token.size();
  10899. bigram.rank = rank_found;
  10900. work_queue.push(bigram);
  10901. }
  10902. const llama_vocab & vocab;
  10903. std::vector<llm_symbol> symbols;
  10904. std::vector<llm_symbol> symbols_final;
  10905. llm_bigram_bpe::queue work_queue;
  10906. };
  10907. struct llm_tokenizer_wpm {
  10908. llm_tokenizer_wpm(const llama_vocab & vocab): vocab(vocab) {}
  10909. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  10910. const auto & token_map = vocab.token_to_id;
  10911. // normalize and split by whitespace
  10912. std::vector<std::string> words = preprocess(text);
  10913. // bos token prepended already
  10914. // find the longest tokens that form the words
  10915. for (const std::string &word : words) {
  10916. // skip empty words
  10917. if (word.size() == 0) {
  10918. continue;
  10919. }
  10920. // prepend phantom space
  10921. const std::string word1 = "\xe2\x96\x81" + word;
  10922. const int n = word1.size();
  10923. const size_t current_tokens = output.size();
  10924. // we're at the start of a new word
  10925. // move through character position in word
  10926. for (int i = 0; i < n; ++i) {
  10927. // loop through possible match length
  10928. bool match = false;
  10929. for (int j = n; j > i; j--) {
  10930. auto it = token_map.find(word1.substr(i, j - i));
  10931. if (it != token_map.end()) {
  10932. output.push_back(it->second);
  10933. match = true;
  10934. i = j - 1;
  10935. break;
  10936. }
  10937. }
  10938. if (!match) { // discard all
  10939. output.resize(current_tokens);
  10940. break; // and discard next tokens
  10941. }
  10942. }
  10943. // we didn't find any matches for this word
  10944. if (current_tokens == output.size()) {
  10945. output.push_back(vocab.special_unk_id);
  10946. }
  10947. }
  10948. }
  10949. std::vector<std::string> preprocess(const std::string & text) {
  10950. const std::vector<uint32_t> cpts_nfd = unicode_cpts_normalize_nfd(unicode_cpts_from_utf8(text));
  10951. std::vector<std::string> words(1, "");
  10952. for (const char32_t cpt : cpts_nfd) {
  10953. const auto flags = unicode_cpt_flags(cpt);
  10954. if (flags.is_whitespace) {
  10955. if (words.back().size()) { // finish previous word if any
  10956. words.emplace_back();
  10957. }
  10958. continue;
  10959. }
  10960. assert (!flags.is_separator);
  10961. if (cpt == 0 || cpt == 0xFFFD || flags.is_control) {
  10962. continue;
  10963. }
  10964. const std::string s = unicode_cpt_to_utf8(unicode_tolower(cpt));
  10965. if (flags.is_punctuation || ( cpt < 0x7F && flags.is_symbol ) || is_chinese_char(cpt)) {
  10966. if (words.back().size()) { // finish previous word if any
  10967. words.emplace_back();
  10968. }
  10969. words.back() = s; // single char word
  10970. words.emplace_back(); // start a new word
  10971. } else {
  10972. words.back() += s; // append char to word
  10973. }
  10974. }
  10975. if (!words.back().size()) {
  10976. words.pop_back();
  10977. }
  10978. return words;
  10979. }
  10980. static bool is_chinese_char(uint32_t cpt) {
  10981. return
  10982. (cpt >= 0x04E00 && cpt <= 0x09FFF) ||
  10983. (cpt >= 0x03400 && cpt <= 0x04DBF) ||
  10984. (cpt >= 0x20000 && cpt <= 0x2A6DF) ||
  10985. (cpt >= 0x2A700 && cpt <= 0x2B73F) ||
  10986. (cpt >= 0x2B740 && cpt <= 0x2B81F) ||
  10987. (cpt >= 0x2B920 && cpt <= 0x2CEAF) || // this should be 0x2B820 but in hf rust code it is 0x2B920
  10988. (cpt >= 0x0F900 && cpt <= 0x0FAFF) ||
  10989. (cpt >= 0x2F800 && cpt <= 0x2FA1F);
  10990. //(cpt >= 0x3000 && cpt <= 0x303F) ||
  10991. //(cpt >= 0xFF00 && cpt <= 0xFFEF);
  10992. }
  10993. const llama_vocab & vocab;
  10994. };
  10995. typedef enum FRAGMENT_BUFFER_VARIANT_TYPE {
  10996. FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN,
  10997. FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT
  10998. } FRAGMENT_BUFFER_VARIANT_TYPE;
  10999. struct fragment_buffer_variant {
  11000. fragment_buffer_variant(llama_vocab::id _token)
  11001. :
  11002. type(FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN),
  11003. token(_token),
  11004. raw_text(_dummy),
  11005. offset(0),
  11006. length(0) {}
  11007. fragment_buffer_variant(const std::string & _raw_text, int64_t _offset, int64_t _length)
  11008. :
  11009. type(FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT),
  11010. token((llama_vocab::id) - 1),
  11011. raw_text(_raw_text),
  11012. offset(_offset),
  11013. length(_length){
  11014. GGML_ASSERT(_offset >= 0);
  11015. GGML_ASSERT(_length >= 1);
  11016. GGML_ASSERT(offset + length <= raw_text.length());
  11017. }
  11018. const FRAGMENT_BUFFER_VARIANT_TYPE type;
  11019. const llama_vocab::id token;
  11020. const std::string _dummy;
  11021. const std::string & raw_text;
  11022. const uint64_t offset;
  11023. const uint64_t length;
  11024. };
  11025. // #define PRETOKENIZERDEBUG
  11026. static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list<fragment_buffer_variant> & buffer) {
  11027. // for each special token
  11028. for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
  11029. const auto & data = vocab.id_to_token[special_id];
  11030. const auto & special_token = data.text;
  11031. // for each text fragment
  11032. std::forward_list<fragment_buffer_variant>::iterator it = buffer.begin();
  11033. while (it != buffer.end()) {
  11034. auto & fragment = (*it);
  11035. // if a fragment is text ( not yet processed )
  11036. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11037. auto & raw_text = fragment.raw_text;
  11038. auto raw_text_base_offset = fragment.offset;
  11039. auto raw_text_base_length = fragment.length;
  11040. // loop over the text
  11041. while (true) {
  11042. // find the first occurrence of a given special token in this fragment
  11043. // passing offset argument only limit the "search area" but match coordinates
  11044. // are still relative to the source full raw_text
  11045. auto match = raw_text.find(special_token, raw_text_base_offset);
  11046. // no occurrences found, stop processing this fragment for a given special token
  11047. if (match == std::string::npos) break;
  11048. // check if match is within bounds of offset <-> length
  11049. if (match + special_token.length() > raw_text_base_offset + raw_text_base_length) break;
  11050. #ifdef PRETOKENIZERDEBUG
  11051. LLAMA_LOG_WARN("FF: (%ld %ld %ld) '%s'\n", raw_text->length(), raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11052. #endif
  11053. auto source = std::distance(buffer.begin(), it);
  11054. // if match is further than base offset
  11055. // then we have some text to the left of it
  11056. if (match > raw_text_base_offset) {
  11057. // left
  11058. const int64_t left_reminder_offset = raw_text_base_offset + 0;
  11059. int64_t left_reminder_length = match - raw_text_base_offset;
  11060. if (data.attr & LLAMA_TOKEN_ATTR_LSTRIP) {
  11061. while (left_reminder_length > 0 && isspace(raw_text[left_reminder_offset + left_reminder_length - 1])) {
  11062. left_reminder_length--;
  11063. }
  11064. }
  11065. if (left_reminder_length > 0) {
  11066. buffer.emplace_after(it, raw_text, left_reminder_offset, left_reminder_length);
  11067. it++;
  11068. }
  11069. #ifdef PRETOKENIZERDEBUG
  11070. LLAMA_LOG_WARN("FL: (%ld %ld) '%s'\n", left_reminder_offset, left_reminder_length, raw_text->substr(left_reminder_offset, left_reminder_length).c_str());
  11071. #endif
  11072. }
  11073. // special token
  11074. buffer.emplace_after(it, special_id);
  11075. it++;
  11076. // right
  11077. if (match + special_token.length() < raw_text_base_offset + raw_text_base_length) {
  11078. int64_t right_reminder_offset = match + special_token.length();
  11079. int64_t right_reminder_length = raw_text_base_length - ((match - raw_text_base_offset) + special_token.length());
  11080. if (data.attr & LLAMA_TOKEN_ATTR_RSTRIP) {
  11081. while (right_reminder_length > 0 && isspace(raw_text[right_reminder_offset])) {
  11082. right_reminder_offset++;
  11083. right_reminder_length--;
  11084. }
  11085. }
  11086. if (right_reminder_length > 0) {
  11087. buffer.emplace_after(it, raw_text, right_reminder_offset, right_reminder_length);
  11088. it++;
  11089. }
  11090. #ifdef PRETOKENIZERDEBUG
  11091. LLAMA_LOG_WARN("FR: (%ld %ld) '%s'\n", right_reminder_offset, right_reminder_length, raw_text->substr(right_reminder_offset, right_reminder_length).c_str());
  11092. #endif
  11093. if (source == 0) {
  11094. buffer.erase_after(buffer.before_begin());
  11095. } else {
  11096. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11097. }
  11098. // repeat for the right side
  11099. raw_text_base_offset = right_reminder_offset;
  11100. raw_text_base_length = right_reminder_length;
  11101. #ifdef PRETOKENIZERDEBUG
  11102. LLAMA_LOG_WARN("RR: (%ld %ld) '%s'\n", raw_text_base_offset, raw_text_base_length, raw_text->substr(raw_text_base_offset, raw_text_base_length).c_str());
  11103. #endif
  11104. } else {
  11105. if (source == 0) {
  11106. buffer.erase_after(buffer.before_begin());
  11107. } else {
  11108. buffer.erase_after(std::next(buffer.begin(), (source-1)));
  11109. }
  11110. break;
  11111. }
  11112. }
  11113. }
  11114. it++;
  11115. }
  11116. }
  11117. }
  11118. static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab & vocab, std::string raw_text, bool add_special, bool parse_special) {
  11119. std::vector<llama_vocab::id> output;
  11120. std::forward_list<fragment_buffer_variant> fragment_buffer;
  11121. if (!raw_text.empty()) {
  11122. fragment_buffer.emplace_front(raw_text, 0, raw_text.length());
  11123. if (parse_special) tokenizer_st_partition(vocab, fragment_buffer);
  11124. }
  11125. switch (vocab.type) {
  11126. case LLAMA_VOCAB_TYPE_SPM:
  11127. {
  11128. // OG tokenizer behavior:
  11129. //
  11130. // tokenizer.encode('', add_special_tokens=True) returns [1]
  11131. // tokenizer.encode('', add_special_tokens=False) returns []
  11132. bool is_prev_special = false;
  11133. if (add_special && vocab.special_add_bos != 0) {
  11134. GGML_ASSERT(vocab.special_bos_id != -1);
  11135. output.push_back(vocab.special_bos_id);
  11136. is_prev_special = true;
  11137. }
  11138. for (const auto & fragment : fragment_buffer) {
  11139. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11140. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11141. if (vocab.add_space_prefix) {
  11142. if (!output.size() || is_prev_special) { // prefix with space if first token
  11143. raw_text = " " + raw_text;
  11144. }
  11145. }
  11146. #ifdef PRETOKENIZERDEBUG
  11147. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11148. #endif
  11149. llm_tokenizer_spm tokenizer(vocab);
  11150. llama_escape_whitespace(raw_text);
  11151. tokenizer.tokenize(raw_text, output);
  11152. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11153. output.push_back(fragment.token);
  11154. is_prev_special = true;
  11155. }
  11156. }
  11157. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11158. LLAMA_LOG_WARN(
  11159. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11160. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11161. "Are you sure this is what you want?\n", __FUNCTION__);
  11162. }
  11163. if (add_special && vocab.special_add_eos == 1) {
  11164. GGML_ASSERT(vocab.special_eos_id != -1);
  11165. output.push_back(vocab.special_eos_id);
  11166. }
  11167. } break;
  11168. case LLAMA_VOCAB_TYPE_BPE:
  11169. {
  11170. if (add_special && vocab.special_add_bos != 0) {
  11171. GGML_ASSERT(vocab.special_bos_id != -1);
  11172. output.push_back(vocab.special_bos_id);
  11173. }
  11174. for (const auto & fragment : fragment_buffer) {
  11175. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11176. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11177. #ifdef PRETOKENIZERDEBUG
  11178. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11179. #endif
  11180. llm_tokenizer_bpe tokenizer(vocab);
  11181. tokenizer.tokenize(raw_text, output);
  11182. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11183. output.push_back(fragment.token);
  11184. }
  11185. }
  11186. if (add_special && vocab.special_add_bos != 0 && output.size() >= 2 && output[1] == vocab.special_bos_id) {
  11187. LLAMA_LOG_WARN(
  11188. "%s: Added a BOS token to the prompt as specified by the model but the prompt "
  11189. "also starts with a BOS token. So now the final prompt starts with 2 BOS tokens. "
  11190. "Are you sure this is what you want?\n", __FUNCTION__);
  11191. }
  11192. if (add_special && vocab.special_add_eos == 1) {
  11193. GGML_ASSERT(vocab.special_add_eos != -1);
  11194. output.push_back(vocab.special_eos_id);
  11195. }
  11196. } break;
  11197. case LLAMA_VOCAB_TYPE_WPM:
  11198. {
  11199. if (add_special) {
  11200. GGML_ASSERT(vocab.special_cls_id != -1);
  11201. output.push_back(vocab.special_cls_id);
  11202. }
  11203. for (const auto & fragment : fragment_buffer) {
  11204. if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_RAW_TEXT) {
  11205. auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
  11206. #ifdef PRETOKENIZERDEBUG
  11207. LLAMA_LOG_WARN("TT: (%ld %ld %ld) '%s'\n", raw_text.length(), fragment.offset, fragment.length, raw_text.c_str());
  11208. #endif
  11209. llm_tokenizer_wpm tokenizer(vocab);
  11210. tokenizer.tokenize(raw_text, output);
  11211. } else { // if (fragment.type == FRAGMENT_BUFFER_VARIANT_TYPE_TOKEN)
  11212. output.push_back(fragment.token);
  11213. }
  11214. }
  11215. if (add_special) {
  11216. GGML_ASSERT(vocab.special_sep_id != -1);
  11217. output.push_back(vocab.special_sep_id);
  11218. }
  11219. } break;
  11220. case LLAMA_VOCAB_TYPE_NONE:
  11221. GGML_ASSERT(false);
  11222. }
  11223. return output;
  11224. }
  11225. //
  11226. // grammar - internal
  11227. //
  11228. // Decodes a UTF-8 string which may end in an incomplete sequence. Adds a terminating 0 for use as
  11229. // pointer. If an invalid sequence is encountered, returns `llama_partial_utf8.n_remain == -1`.
  11230. std::pair<std::vector<uint32_t>, llama_partial_utf8> decode_utf8(
  11231. const std::string & src,
  11232. llama_partial_utf8 partial_start) {
  11233. static const int lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 3, 4 };
  11234. const char * pos = src.c_str();
  11235. std::vector<uint32_t> code_points;
  11236. // common english strings have the same number of codepoints and bytes. `+ 1` for the terminating 0.
  11237. code_points.reserve(src.size() + 1);
  11238. uint32_t value = partial_start.value;
  11239. int n_remain = partial_start.n_remain;
  11240. // continue previous decode, if applicable
  11241. while (*pos != 0 && n_remain > 0) {
  11242. uint8_t next_byte = static_cast<uint8_t>(*pos);
  11243. if ((next_byte >> 6) != 2) {
  11244. // invalid sequence, abort
  11245. code_points.push_back(0);
  11246. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, -1 });
  11247. }
  11248. value = (value << 6) + (next_byte & 0x3F);
  11249. ++pos;
  11250. --n_remain;
  11251. }
  11252. if (partial_start.n_remain > 0 && n_remain == 0) {
  11253. code_points.push_back(value);
  11254. }
  11255. // decode any subsequent utf-8 sequences, which may end in an incomplete one
  11256. while (*pos != 0) {
  11257. uint8_t first_byte = static_cast<uint8_t>(*pos);
  11258. uint8_t highbits = first_byte >> 4;
  11259. n_remain = lookup[highbits] - 1;
  11260. if (n_remain < 0) {
  11261. // invalid sequence, abort
  11262. code_points.clear();
  11263. code_points.push_back(0);
  11264. return std::make_pair(std::move(code_points), llama_partial_utf8{ 0, n_remain });
  11265. }
  11266. uint8_t mask = (1 << (7 - n_remain)) - 1;
  11267. value = first_byte & mask;
  11268. ++pos;
  11269. while (*pos != 0 && n_remain > 0) {
  11270. value = (value << 6) + (static_cast<uint8_t>(*pos) & 0x3F);
  11271. ++pos;
  11272. --n_remain;
  11273. }
  11274. if (n_remain == 0) {
  11275. code_points.push_back(value);
  11276. }
  11277. }
  11278. code_points.push_back(0);
  11279. return std::make_pair(std::move(code_points), llama_partial_utf8{ value, n_remain });
  11280. }
  11281. // returns true iff pos points to the end of one of the definitions of a rule
  11282. static bool llama_grammar_is_end_of_sequence(const llama_grammar_element * pos) {
  11283. switch (pos->type) {
  11284. case LLAMA_GRETYPE_END: return true; // NOLINT
  11285. case LLAMA_GRETYPE_ALT: return true; // NOLINT
  11286. default: return false;
  11287. }
  11288. }
  11289. // returns true iff chr satisfies the char range at pos (regular or inverse range)
  11290. // asserts that pos is pointing to a char range element
  11291. static std::pair<bool, const llama_grammar_element *> llama_grammar_match_char(
  11292. const llama_grammar_element * pos,
  11293. const uint32_t chr) {
  11294. bool found = false;
  11295. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  11296. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT); // NOLINT
  11297. do {
  11298. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11299. // inclusive range, e.g. [a-z]
  11300. found = found || (pos->value <= chr && chr <= pos[1].value);
  11301. pos += 2;
  11302. } else {
  11303. // exact char match, e.g. [a] or "a"
  11304. found = found || pos->value == chr;
  11305. pos += 1;
  11306. }
  11307. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11308. return std::make_pair(found == is_positive_char, pos);
  11309. }
  11310. // returns true iff some continuation of the given partial UTF-8 sequence could satisfy the char
  11311. // range at pos (regular or inverse range)
  11312. // asserts that pos is pointing to a char range element
  11313. static bool llama_grammar_match_partial_char(
  11314. const llama_grammar_element * pos,
  11315. const llama_partial_utf8 partial_utf8) {
  11316. bool is_positive_char = pos->type == LLAMA_GRETYPE_CHAR;
  11317. GGML_ASSERT(is_positive_char || pos->type == LLAMA_GRETYPE_CHAR_NOT);
  11318. uint32_t partial_value = partial_utf8.value;
  11319. int n_remain = partial_utf8.n_remain;
  11320. // invalid sequence or 7-bit char split across 2 bytes (overlong)
  11321. if (n_remain < 0 || (n_remain == 1 && partial_value < 2)) {
  11322. return false;
  11323. }
  11324. // range of possible code points this partial UTF-8 sequence could complete to
  11325. uint32_t low = partial_value << (n_remain * 6);
  11326. uint32_t high = low | ((1 << (n_remain * 6)) - 1);
  11327. if (low == 0) {
  11328. if (n_remain == 2) {
  11329. low = 1 << 11;
  11330. } else if (n_remain == 3) {
  11331. low = 1 << 16;
  11332. }
  11333. }
  11334. do {
  11335. if (pos[1].type == LLAMA_GRETYPE_CHAR_RNG_UPPER) {
  11336. // inclusive range, e.g. [a-z]
  11337. if (pos->value <= high && low <= pos[1].value) {
  11338. return is_positive_char;
  11339. }
  11340. pos += 2;
  11341. } else {
  11342. // exact char match, e.g. [a] or "a"
  11343. if (low <= pos->value && pos->value <= high) {
  11344. return is_positive_char;
  11345. }
  11346. pos += 1;
  11347. }
  11348. } while (pos->type == LLAMA_GRETYPE_CHAR_ALT);
  11349. return !is_positive_char;
  11350. }
  11351. // transforms a grammar pushdown stack into N possible stacks, all ending
  11352. // at a character range (terminal element)
  11353. static void llama_grammar_advance_stack(
  11354. const std::vector<std::vector<llama_grammar_element>> & rules,
  11355. const std::vector<const llama_grammar_element *> & stack,
  11356. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11357. if (stack.empty()) {
  11358. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11359. new_stacks.emplace_back(stack);
  11360. }
  11361. return;
  11362. }
  11363. const llama_grammar_element * pos = stack.back();
  11364. switch (pos->type) {
  11365. case LLAMA_GRETYPE_RULE_REF: {
  11366. const size_t rule_id = static_cast<size_t>(pos->value);
  11367. const llama_grammar_element * subpos = rules[rule_id].data();
  11368. do {
  11369. // init new stack without the top (pos)
  11370. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11371. if (!llama_grammar_is_end_of_sequence(pos + 1)) {
  11372. // if this rule ref is followed by another element, add that to stack
  11373. new_stack.push_back(pos + 1);
  11374. }
  11375. if (!llama_grammar_is_end_of_sequence(subpos)) {
  11376. // if alternate is nonempty, add to stack
  11377. new_stack.push_back(subpos);
  11378. }
  11379. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11380. while (!llama_grammar_is_end_of_sequence(subpos)) {
  11381. // scan to end of alternate def
  11382. subpos++;
  11383. }
  11384. if (subpos->type == LLAMA_GRETYPE_ALT) {
  11385. // there's another alternate def of this rule to process
  11386. subpos++;
  11387. } else {
  11388. break;
  11389. }
  11390. } while (true);
  11391. break;
  11392. }
  11393. case LLAMA_GRETYPE_CHAR:
  11394. case LLAMA_GRETYPE_CHAR_NOT:
  11395. if (std::find(new_stacks.begin(), new_stacks.end(), stack) == new_stacks.end()) {
  11396. // only add the stack if it's not a duplicate of one we already have
  11397. new_stacks.emplace_back(stack);
  11398. }
  11399. break;
  11400. default:
  11401. // end of alternate (LLAMA_GRETYPE_END, LLAMA_GRETYPE_ALT) or middle of char range
  11402. // (LLAMA_GRETYPE_CHAR_ALT, LLAMA_GRETYPE_CHAR_RNG_UPPER); stack should never be left on
  11403. // those
  11404. GGML_ASSERT(false);
  11405. }
  11406. }
  11407. // takes a set of possible pushdown stacks on a grammar, which are required to
  11408. // be positioned at a character range (see `llama_grammar_advance_stack`), and
  11409. // produces the N possible stacks if the given char is accepted at those
  11410. // positions
  11411. void llama_grammar_accept(
  11412. const std::vector<std::vector<llama_grammar_element>> & rules,
  11413. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11414. const uint32_t chr,
  11415. std::vector<std::vector<const llama_grammar_element *>> & new_stacks) {
  11416. new_stacks.clear();
  11417. for (const auto & stack : stacks) {
  11418. if (stack.empty()) {
  11419. continue;
  11420. }
  11421. auto match = llama_grammar_match_char(stack.back(), chr);
  11422. if (match.first) {
  11423. const llama_grammar_element * pos = match.second;
  11424. // update top of stack to next element, if any
  11425. std::vector<const llama_grammar_element *> new_stack(stack.begin(), stack.end() - 1);
  11426. if (!llama_grammar_is_end_of_sequence(pos)) {
  11427. new_stack.push_back(pos);
  11428. }
  11429. llama_grammar_advance_stack(rules, new_stack, new_stacks);
  11430. }
  11431. }
  11432. }
  11433. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11434. const std::vector<std::vector<llama_grammar_element>> & rules,
  11435. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11436. const std::vector<llama_grammar_candidate> & candidates);
  11437. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates_for_stack(
  11438. const std::vector<std::vector<llama_grammar_element>> & rules,
  11439. const std::vector<const llama_grammar_element *> & stack,
  11440. const std::vector<llama_grammar_candidate> & candidates) {
  11441. std::vector<llama_grammar_candidate> rejects;
  11442. rejects.reserve(candidates.size());
  11443. if (stack.empty()) {
  11444. for (const auto & tok : candidates) {
  11445. if (*tok.code_points != 0 || tok.partial_utf8.n_remain != 0) {
  11446. rejects.push_back(tok);
  11447. }
  11448. }
  11449. return rejects;
  11450. }
  11451. const llama_grammar_element * stack_pos = stack.back();
  11452. std::vector<llama_grammar_candidate> next_candidates;
  11453. next_candidates.reserve(candidates.size());
  11454. for (const auto & tok : candidates) {
  11455. if (*tok.code_points == 0) {
  11456. // reached end of full codepoints in token, reject iff it ended in a partial sequence
  11457. // that cannot satisfy this position in grammar
  11458. if (tok.partial_utf8.n_remain != 0 &&
  11459. !llama_grammar_match_partial_char(stack_pos, tok.partial_utf8)) {
  11460. rejects.push_back(tok);
  11461. }
  11462. } else if (llama_grammar_match_char(stack_pos, *tok.code_points).first) {
  11463. next_candidates.push_back({ tok.index, tok.code_points + 1, tok.partial_utf8 });
  11464. } else {
  11465. rejects.push_back(tok);
  11466. }
  11467. }
  11468. const auto * stack_pos_after = llama_grammar_match_char(stack_pos, 0).second;
  11469. // update top of stack to next element, if any
  11470. std::vector<const llama_grammar_element *> stack_after(stack.begin(), stack.end() - 1);
  11471. if (!llama_grammar_is_end_of_sequence(stack_pos_after)) {
  11472. stack_after.push_back(stack_pos_after);
  11473. }
  11474. std::vector<std::vector<const llama_grammar_element *>> next_stacks;
  11475. llama_grammar_advance_stack(rules, stack_after, next_stacks);
  11476. auto next_rejects = llama_grammar_reject_candidates(rules, next_stacks, next_candidates);
  11477. for (const auto & tok : next_rejects) {
  11478. rejects.push_back({ tok.index, tok.code_points - 1, tok.partial_utf8 });
  11479. }
  11480. return rejects;
  11481. }
  11482. static std::vector<llama_grammar_candidate> llama_grammar_reject_candidates(
  11483. const std::vector<std::vector<llama_grammar_element>> & rules,
  11484. const std::vector<std::vector<const llama_grammar_element *>> & stacks,
  11485. const std::vector<llama_grammar_candidate> & candidates) {
  11486. GGML_ASSERT(!stacks.empty()); // REVIEW
  11487. if (candidates.empty()) {
  11488. return std::vector<llama_grammar_candidate>();
  11489. }
  11490. auto rejects = llama_grammar_reject_candidates_for_stack(rules, stacks.front(), candidates);
  11491. for (size_t i = 1, size = stacks.size(); i < size; ++i) {
  11492. rejects = llama_grammar_reject_candidates_for_stack(rules, stacks[i], rejects);
  11493. }
  11494. return rejects;
  11495. }
  11496. static bool llama_grammar_detect_left_recursion(
  11497. const std::vector<std::vector<llama_grammar_element>> & rules,
  11498. size_t rule_index,
  11499. std::vector<bool> * rules_visited,
  11500. std::vector<bool> * rules_in_progress,
  11501. std::vector<bool> * rules_may_be_empty) {
  11502. if ((*rules_in_progress)[rule_index]) {
  11503. return true;
  11504. }
  11505. (*rules_in_progress)[rule_index] = true;
  11506. const std::vector<llama_grammar_element> & rule = rules[rule_index];
  11507. // First check if the rule might produce the empty string. This could be done combined with the second
  11508. // step but it's more readable as two steps.
  11509. bool at_rule_start = true;
  11510. for (size_t i = 0; i < rule.size(); i++) {
  11511. if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11512. if (at_rule_start) {
  11513. (*rules_may_be_empty)[rule_index] = true;
  11514. break;
  11515. }
  11516. at_rule_start = true;
  11517. } else {
  11518. at_rule_start = false;
  11519. }
  11520. }
  11521. // Second, recurse into leftmost nonterminals (or next-leftmost as long as the previous nonterminal may
  11522. // be empty)
  11523. bool recurse_into_nonterminal = true;
  11524. for (size_t i = 0; i < rule.size(); i++) {
  11525. if (rule[i].type == LLAMA_GRETYPE_RULE_REF && recurse_into_nonterminal) {
  11526. if (llama_grammar_detect_left_recursion(rules, (size_t)rule[i].value, rules_visited, rules_in_progress, rules_may_be_empty)) {
  11527. return true;
  11528. }
  11529. if (!((*rules_may_be_empty)[(size_t)rule[i].value])) {
  11530. recurse_into_nonterminal = false;
  11531. }
  11532. } else if (llama_grammar_is_end_of_sequence(&rule[i])) {
  11533. recurse_into_nonterminal = true;
  11534. } else {
  11535. recurse_into_nonterminal = false;
  11536. }
  11537. }
  11538. (*rules_in_progress)[rule_index] = false;
  11539. (*rules_visited)[rule_index] = true;
  11540. return false;
  11541. }
  11542. //
  11543. // grammar - external
  11544. //
  11545. struct llama_grammar * llama_grammar_init(
  11546. const llama_grammar_element ** rules,
  11547. size_t n_rules,
  11548. size_t start_rule_index) {
  11549. const llama_grammar_element * pos;
  11550. // copy rule definitions into vectors
  11551. std::vector<std::vector<llama_grammar_element>> vec_rules(n_rules);
  11552. for (size_t i = 0; i < n_rules; i++) {
  11553. for (pos = rules[i]; pos->type != LLAMA_GRETYPE_END; pos++) {
  11554. vec_rules[i].push_back(*pos);
  11555. }
  11556. vec_rules[i].push_back({LLAMA_GRETYPE_END, 0});
  11557. }
  11558. // Check for left recursion
  11559. std::vector<bool> rules_visited(n_rules);
  11560. std::vector<bool> rules_in_progress(n_rules);
  11561. std::vector<bool> rules_may_be_empty(n_rules);
  11562. for (size_t i = 0; i < n_rules; i++) {
  11563. if (rules_visited[i]) {
  11564. continue;
  11565. }
  11566. if (llama_grammar_detect_left_recursion(vec_rules, i, &rules_visited, &rules_in_progress, &rules_may_be_empty)) {
  11567. throw std::runtime_error(format("unsupported grammar, left recursion detected for nonterminal at index %zu", i));
  11568. }
  11569. }
  11570. // loop over alternates of start rule to build initial stacks
  11571. std::vector<std::vector<const llama_grammar_element *>> stacks;
  11572. pos = vec_rules[start_rule_index].data();
  11573. do {
  11574. std::vector<const llama_grammar_element *> stack;
  11575. if (!llama_grammar_is_end_of_sequence(pos)) {
  11576. // if alternate is nonempty, add to stack
  11577. stack.push_back(pos);
  11578. }
  11579. llama_grammar_advance_stack(vec_rules, stack, stacks);
  11580. while (!llama_grammar_is_end_of_sequence(pos)) {
  11581. // scan to end of alternate def
  11582. pos++;
  11583. }
  11584. if (pos->type == LLAMA_GRETYPE_ALT) {
  11585. // there's another alternate def of this rule to process
  11586. pos++;
  11587. } else {
  11588. break;
  11589. }
  11590. } while (true);
  11591. // Important: vec_rules has to be moved here, not copied, because stacks contains
  11592. // pointers to elements of vec_rules. If vec_rules were copied into llama_grammar
  11593. // then the pointers would be invalidated when the local vec_rules goes out of scope.
  11594. return new llama_grammar{ std::move(vec_rules), std::move(stacks), {} };
  11595. }
  11596. void llama_grammar_free(struct llama_grammar * grammar) {
  11597. delete grammar;
  11598. }
  11599. struct llama_grammar * llama_grammar_copy(const struct llama_grammar * grammar) {
  11600. llama_grammar * result = new llama_grammar{ grammar->rules, grammar->stacks, grammar->partial_utf8 };
  11601. // redirect elements in stacks to point to new rules
  11602. for (size_t is = 0; is < result->stacks.size(); is++) {
  11603. for (size_t ie = 0; ie < result->stacks[is].size(); ie++) {
  11604. for (size_t ir0 = 0; ir0 < grammar->rules.size(); ir0++) {
  11605. for (size_t ir1 = 0; ir1 < grammar->rules[ir0].size(); ir1++) {
  11606. if (grammar->stacks[is][ie] == &grammar->rules[ir0][ir1]) {
  11607. result->stacks[is][ie] = &result->rules[ir0][ir1];
  11608. }
  11609. }
  11610. }
  11611. }
  11612. }
  11613. return result;
  11614. }
  11615. //
  11616. // sampling
  11617. //
  11618. void llama_set_rng_seed(struct llama_context * ctx, uint32_t seed) {
  11619. if (seed == LLAMA_DEFAULT_SEED) {
  11620. seed = time(NULL);
  11621. }
  11622. ctx->rng.seed(seed);
  11623. }
  11624. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  11625. GGML_ASSERT(candidates->size > 0);
  11626. const int64_t t_start_sample_us = ggml_time_us();
  11627. // Sort the logits in descending order
  11628. if (!candidates->sorted) {
  11629. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11630. return a.logit > b.logit;
  11631. });
  11632. candidates->sorted = true;
  11633. }
  11634. float max_l = candidates->data[0].logit;
  11635. float cum_sum = 0.0f;
  11636. for (size_t i = 0; i < candidates->size; ++i) {
  11637. float p = expf(candidates->data[i].logit - max_l);
  11638. candidates->data[i].p = p;
  11639. cum_sum += p;
  11640. }
  11641. for (size_t i = 0; i < candidates->size; ++i) {
  11642. candidates->data[i].p /= cum_sum;
  11643. }
  11644. if (ctx) {
  11645. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11646. }
  11647. }
  11648. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int32_t k, size_t min_keep) {
  11649. // TODO: move bucket sort to separate function so that top_p/tail_free/typical/softmax first is equally fast
  11650. // if (k >= (int32_t)candidates->size) {
  11651. // return;
  11652. // }
  11653. const int64_t t_start_sample_us = ggml_time_us();
  11654. if (k <= 0) {
  11655. k = candidates->size;
  11656. }
  11657. k = std::max(k, (int) min_keep);
  11658. k = std::min(k, (int) candidates->size);
  11659. // Sort scores in descending order
  11660. if (!candidates->sorted) {
  11661. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  11662. return a.logit > b.logit;
  11663. };
  11664. if (k <= 128) {
  11665. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  11666. } else {
  11667. constexpr int nbuckets = 128;
  11668. constexpr float bucket_low = -10.0f;
  11669. constexpr float bucket_high = 10.0f;
  11670. constexpr float bucket_scale = nbuckets/(bucket_high - bucket_low);
  11671. constexpr float bucker_inter = -bucket_low * bucket_scale;
  11672. std::vector<int> bucket_idx(candidates->size);
  11673. std::vector<int> histo(nbuckets, 0);
  11674. for (int i = 0; i < (int)candidates->size; ++i) {
  11675. const float val = candidates->data[i].logit;
  11676. int ib = int(bucket_scale * val + bucker_inter); //nbuckets * (val - bucket_low) / (bucket_high - bucket_low);
  11677. ib = std::max(0, std::min(nbuckets-1, ib));
  11678. bucket_idx[i] = ib;
  11679. ++histo[ib];
  11680. }
  11681. int nhave = 0;
  11682. int ib = nbuckets - 1;
  11683. for ( ; ib >= 0; --ib) {
  11684. nhave += histo[ib];
  11685. if (nhave >= k) break;
  11686. }
  11687. std::vector<llama_token_data> tmp_tokens(nhave);
  11688. auto ptr = tmp_tokens.data();
  11689. std::vector<llama_token_data*> bucket_ptrs;
  11690. bucket_ptrs.reserve(nbuckets - ib);
  11691. for (int j = nbuckets - 1; j >= ib; --j) {
  11692. bucket_ptrs.push_back(ptr);
  11693. ptr += histo[j];
  11694. }
  11695. for (int i = 0; i < (int)candidates->size; ++i) {
  11696. int j = bucket_idx[i];
  11697. if (j >= ib) {
  11698. *bucket_ptrs[nbuckets-1-j]++ = candidates->data[i];
  11699. }
  11700. }
  11701. ptr = tmp_tokens.data();
  11702. int ndone = 0;
  11703. for (int j = nbuckets-1; j > ib; --j) {
  11704. std::sort(ptr, ptr + histo[j], comp);
  11705. ptr += histo[j];
  11706. ndone += histo[j];
  11707. }
  11708. std::partial_sort(ptr, ptr + k - ndone, ptr + histo[ib], comp);
  11709. std::memcpy(candidates->data, tmp_tokens.data(), k*sizeof(llama_token_data));
  11710. }
  11711. candidates->sorted = true;
  11712. }
  11713. candidates->size = k;
  11714. if (ctx) {
  11715. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11716. }
  11717. }
  11718. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11719. if (p >= 1.0f) {
  11720. return;
  11721. }
  11722. llama_sample_softmax(ctx, candidates);
  11723. const int64_t t_start_sample_us = ggml_time_us();
  11724. // Compute the cumulative probabilities
  11725. float cum_sum = 0.0f;
  11726. size_t last_idx = candidates->size;
  11727. for (size_t i = 0; i < candidates->size; ++i) {
  11728. cum_sum += candidates->data[i].p;
  11729. // Check if the running sum is at least p or if we have kept at least min_keep tokens
  11730. // we set the last index to i+1 to indicate that the current iterate should be included in the set
  11731. if (cum_sum >= p && i + 1 >= min_keep) {
  11732. last_idx = i + 1;
  11733. break;
  11734. }
  11735. }
  11736. // Resize the output vector to keep only the top-p tokens
  11737. candidates->size = last_idx;
  11738. if (ctx) {
  11739. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11740. }
  11741. }
  11742. void llama_sample_min_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11743. if (p <= 0.0f || !candidates->size) {
  11744. return;
  11745. }
  11746. const int64_t t_start_sample_us = ggml_time_us();
  11747. bool min_p_applied = false;
  11748. // if the candidates aren't sorted, try the unsorted implementation first
  11749. if (!candidates->sorted) {
  11750. std::vector<llama_token_data> filtered_tokens;
  11751. float max_logit = -FLT_MAX;
  11752. for (size_t i = 0; i < candidates->size; ++i) {
  11753. max_logit = std::max(max_logit, candidates->data[i].logit);
  11754. }
  11755. const float min_logit = max_logit + logf(p); // min logit for p_i >= p * p_max
  11756. for (size_t i = 0; i < candidates->size; ++i) {
  11757. if (candidates->data[i].logit >= min_logit) {
  11758. filtered_tokens.push_back(candidates->data[i]);
  11759. }
  11760. }
  11761. // if we have enough values the operation was a success
  11762. if (filtered_tokens.size() >= min_keep) {
  11763. memcpy(candidates->data, filtered_tokens.data(), filtered_tokens.size()*sizeof(llama_token_data));
  11764. candidates->size = filtered_tokens.size();
  11765. min_p_applied = true;
  11766. }
  11767. }
  11768. // if the candidates are sorted or the unsorted implementation failed, use this implementation
  11769. if (!min_p_applied) {
  11770. // Sort the logits in descending order
  11771. if (!candidates->sorted) {
  11772. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  11773. return a.logit > b.logit;
  11774. });
  11775. candidates->sorted = true;
  11776. }
  11777. const float min_logit = candidates->data[0].logit + logf(p); // min logit for p_i >= p * p_max
  11778. size_t i = 1; // first token always matches
  11779. for (; i < candidates->size; ++i) {
  11780. if (candidates->data[i].logit < min_logit && i >= min_keep) {
  11781. break; // prob too small
  11782. }
  11783. }
  11784. // Resize the output vector to keep only the matching tokens
  11785. candidates->size = i;
  11786. }
  11787. if (ctx) {
  11788. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11789. }
  11790. }
  11791. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  11792. if (z >= 1.0f || candidates->size <= 2) {
  11793. return;
  11794. }
  11795. llama_sample_softmax(nullptr, candidates);
  11796. const int64_t t_start_sample_us = ggml_time_us();
  11797. // Compute the first and second derivatives
  11798. std::vector<float> first_derivatives(candidates->size - 1);
  11799. std::vector<float> second_derivatives(candidates->size - 2);
  11800. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  11801. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  11802. }
  11803. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11804. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  11805. }
  11806. // Calculate absolute value of second derivatives
  11807. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11808. second_derivatives[i] = std::abs(second_derivatives[i]);
  11809. }
  11810. // Normalize the second derivatives
  11811. {
  11812. const float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  11813. if (second_derivatives_sum > 1e-6f) {
  11814. for (float & value : second_derivatives) {
  11815. value /= second_derivatives_sum;
  11816. }
  11817. } else {
  11818. for (float & value : second_derivatives) {
  11819. value = 1.0f / second_derivatives.size();
  11820. }
  11821. }
  11822. }
  11823. float cum_sum = 0.0f;
  11824. size_t last_idx = candidates->size;
  11825. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  11826. cum_sum += second_derivatives[i];
  11827. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  11828. if (cum_sum > z && i >= min_keep) {
  11829. last_idx = i;
  11830. break;
  11831. }
  11832. }
  11833. // Resize the output vector to keep only the tokens above the tail location
  11834. candidates->size = last_idx;
  11835. if (ctx) {
  11836. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11837. }
  11838. }
  11839. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  11840. // Reference implementation:
  11841. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  11842. if (p >= 1.0f) {
  11843. return;
  11844. }
  11845. // Compute the softmax of logits and calculate entropy
  11846. llama_sample_softmax(nullptr, candidates);
  11847. const int64_t t_start_sample_us = ggml_time_us();
  11848. float entropy = 0.0f;
  11849. for (size_t i = 0; i < candidates->size; ++i) {
  11850. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  11851. }
  11852. // Compute the absolute difference between negative log probability and entropy for each candidate
  11853. std::vector<float> shifted_scores;
  11854. for (size_t i = 0; i < candidates->size; ++i) {
  11855. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  11856. shifted_scores.push_back(shifted_score);
  11857. }
  11858. // Sort tokens based on the shifted_scores and their corresponding indices
  11859. std::vector<size_t> indices(candidates->size);
  11860. std::iota(indices.begin(), indices.end(), 0);
  11861. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  11862. return shifted_scores[a] < shifted_scores[b];
  11863. });
  11864. // Compute the cumulative probabilities
  11865. float cum_sum = 0.0f;
  11866. size_t last_idx = indices.size();
  11867. for (size_t i = 0; i < indices.size(); ++i) {
  11868. size_t idx = indices[i];
  11869. cum_sum += candidates->data[idx].p;
  11870. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  11871. if (cum_sum > p && i >= min_keep - 1) {
  11872. last_idx = i + 1;
  11873. break;
  11874. }
  11875. }
  11876. // Resize the output vector to keep only the locally typical tokens
  11877. std::vector<llama_token_data> new_candidates;
  11878. for (size_t i = 0; i < last_idx; ++i) {
  11879. size_t idx = indices[i];
  11880. new_candidates.push_back(candidates->data[idx]);
  11881. }
  11882. // Replace the data in candidates with the new_candidates data
  11883. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  11884. candidates->size = new_candidates.size();
  11885. candidates->sorted = false;
  11886. if (ctx) {
  11887. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11888. }
  11889. }
  11890. void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
  11891. const int64_t t_start_sample_us = ggml_time_us();
  11892. // no need to do anything if there is only one (or zero) candidates
  11893. if(candidates_p->size <= 1) {
  11894. return;
  11895. }
  11896. // Calculate maximum possible entropy
  11897. float max_entropy = -logf(1.0f / candidates_p->size);
  11898. llama_sample_softmax(nullptr, candidates_p);
  11899. // Calculate entropy of the softmax probabilities
  11900. float entropy = 0.0f;
  11901. for (size_t i = 0; i < candidates_p->size; ++i) {
  11902. float prob = candidates_p->data[i].p;
  11903. if (prob > 0.0f) { // Ensure no log(0)
  11904. entropy -= prob * logf(prob);
  11905. }
  11906. }
  11907. // Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
  11908. float normalized_entropy = entropy / max_entropy;
  11909. // Map the normalized entropy to the desired temperature range using the power function
  11910. float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
  11911. #ifdef DEBUG
  11912. LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
  11913. LLAMA_LOG_INFO("Entropy: %f\n", entropy);
  11914. LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
  11915. LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
  11916. LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
  11917. LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
  11918. #endif
  11919. // Apply the dynamically calculated temperature scaling
  11920. for (size_t i = 0; i < candidates_p->size; ++i) {
  11921. candidates_p->data[i].logit /= dyn_temp;
  11922. }
  11923. // Re-compute softmax probabilities after scaling logits with dynamic temperature
  11924. double max_l_double = candidates_p->data[0].logit;
  11925. double cum_sum_double = 0.0;
  11926. for (size_t i = 0; i < candidates_p->size; ++i) {
  11927. double p = exp(candidates_p->data[i].logit - max_l_double);
  11928. candidates_p->data[i].p = p; // Store the scaled probability
  11929. cum_sum_double += p;
  11930. }
  11931. for (size_t i = 0; i < candidates_p->size; ++i) {
  11932. candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
  11933. }
  11934. #ifdef DEBUG
  11935. // Print the updated top 25 probabilities after temperature scaling
  11936. LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
  11937. for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
  11938. LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
  11939. }
  11940. #endif
  11941. if (ctx) {
  11942. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11943. }
  11944. }
  11945. void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  11946. const int64_t t_start_sample_us = ggml_time_us();
  11947. for (size_t i = 0; i < candidates_p->size; ++i) {
  11948. candidates_p->data[i].logit /= temp;
  11949. }
  11950. if (ctx) {
  11951. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11952. }
  11953. }
  11954. void llama_sample_repetition_penalties(
  11955. struct llama_context * ctx,
  11956. llama_token_data_array * candidates,
  11957. const llama_token * last_tokens,
  11958. size_t penalty_last_n,
  11959. float penalty_repeat,
  11960. float penalty_freq,
  11961. float penalty_present) {
  11962. if (penalty_last_n == 0 || (penalty_repeat == 1.0f && penalty_freq == 0.0f && penalty_present == 0.0f)) {
  11963. return;
  11964. }
  11965. const int64_t t_start_sample_us = ggml_time_us();
  11966. // Create a frequency map to count occurrences of each token in last_tokens
  11967. std::unordered_map<llama_token, int> token_count;
  11968. for (size_t i = 0; i < penalty_last_n; ++i) {
  11969. token_count[last_tokens[i]]++;
  11970. }
  11971. // Apply frequency and presence penalties to the candidates
  11972. for (size_t i = 0; i < candidates->size; ++i) {
  11973. const auto token_iter = token_count.find(candidates->data[i].id);
  11974. if (token_iter == token_count.end()) {
  11975. continue;
  11976. }
  11977. const int count = token_iter->second;
  11978. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  11979. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  11980. if (candidates->data[i].logit <= 0) {
  11981. candidates->data[i].logit *= penalty_repeat;
  11982. } else {
  11983. candidates->data[i].logit /= penalty_repeat;
  11984. }
  11985. candidates->data[i].logit -= float(count) * penalty_freq + float(count > 0) * penalty_present;
  11986. }
  11987. candidates->sorted = false;
  11988. if (ctx) {
  11989. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  11990. }
  11991. }
  11992. void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
  11993. GGML_ASSERT(ctx);
  11994. int64_t t_start_sample_us = ggml_time_us();
  11995. bool allow_eog = false;
  11996. for (const auto & stack : grammar->stacks) {
  11997. if (stack.empty()) {
  11998. allow_eog = true;
  11999. break;
  12000. }
  12001. }
  12002. std::vector<std::pair<std::vector<uint32_t>, llama_partial_utf8>> candidates_decoded;
  12003. candidates_decoded.reserve(candidates->size);
  12004. std::vector<llama_grammar_candidate> candidates_grammar;
  12005. candidates_grammar.reserve(candidates->size);
  12006. for (size_t i = 0; i < candidates->size; ++i) {
  12007. const llama_token id = candidates->data[i].id;
  12008. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
  12009. if (llama_token_is_eog(&ctx->model, id)) {
  12010. if (!allow_eog) {
  12011. candidates->data[i].logit = -INFINITY;
  12012. }
  12013. } else if (piece.empty() || piece[0] == 0) {
  12014. candidates->data[i].logit = -INFINITY;
  12015. } else {
  12016. candidates_decoded.push_back(decode_utf8(piece, grammar->partial_utf8));
  12017. candidates_grammar.push_back({ i, candidates_decoded.back().first.data(), candidates_decoded.back().second });
  12018. }
  12019. }
  12020. const auto rejects = llama_grammar_reject_candidates(grammar->rules, grammar->stacks, candidates_grammar);
  12021. for (const auto & reject : rejects) {
  12022. candidates->data[reject.index].logit = -INFINITY;
  12023. }
  12024. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12025. }
  12026. static void llama_log_softmax(float * array, size_t size) {
  12027. float max_l = *std::max_element(array, array + size);
  12028. float sum = 0.f;
  12029. for (size_t i = 0; i < size; ++i) {
  12030. float p = expf(array[i] - max_l);
  12031. sum += p;
  12032. array[i] = p;
  12033. }
  12034. for (size_t i = 0; i < size; ++i) {
  12035. array[i] = logf(array[i] / sum);
  12036. }
  12037. }
  12038. void llama_sample_apply_guidance(
  12039. struct llama_context * ctx,
  12040. float * logits,
  12041. float * logits_guidance,
  12042. float scale) {
  12043. GGML_ASSERT(ctx);
  12044. const auto t_start_sample_us = ggml_time_us();
  12045. const auto n_vocab = llama_n_vocab(llama_get_model(ctx));
  12046. llama_log_softmax(logits, n_vocab);
  12047. llama_log_softmax(logits_guidance, n_vocab);
  12048. for (int i = 0; i < n_vocab; ++i) {
  12049. auto & l = logits[i];
  12050. const auto & g = logits_guidance[i];
  12051. l = scale * (l - g) + g;
  12052. }
  12053. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12054. }
  12055. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int32_t m, float * mu) {
  12056. GGML_ASSERT(ctx);
  12057. auto N = float(llama_n_vocab(llama_get_model(ctx)));
  12058. int64_t t_start_sample_us;
  12059. t_start_sample_us = ggml_time_us();
  12060. llama_sample_softmax(nullptr, candidates);
  12061. // Estimate s_hat using the most probable m tokens
  12062. float s_hat = 0.0;
  12063. float sum_ti_bi = 0.0;
  12064. float sum_ti_sq = 0.0;
  12065. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  12066. float t_i = logf(float(i + 2) / float(i + 1));
  12067. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  12068. sum_ti_bi += t_i * b_i;
  12069. sum_ti_sq += t_i * t_i;
  12070. }
  12071. s_hat = sum_ti_bi / sum_ti_sq;
  12072. // Compute k from the estimated s_hat and target surprise value
  12073. float epsilon_hat = s_hat - 1;
  12074. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  12075. // Sample the next word X using top-k sampling
  12076. llama_sample_top_k(nullptr, candidates, int(k), 1);
  12077. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12078. llama_token X = llama_sample_token(ctx, candidates);
  12079. t_start_sample_us = ggml_time_us();
  12080. // Compute error as the difference between observed surprise and target surprise value
  12081. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12082. return candidate.id == X;
  12083. }));
  12084. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12085. float e = observed_surprise - tau;
  12086. // Update mu using the learning rate and error
  12087. *mu = *mu - eta * e;
  12088. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12089. return X;
  12090. }
  12091. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  12092. int64_t t_start_sample_us;
  12093. t_start_sample_us = ggml_time_us();
  12094. llama_sample_softmax(ctx, candidates);
  12095. // Truncate the words with surprise values greater than mu
  12096. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12097. return -log2f(candidate.p) > *mu;
  12098. }));
  12099. if (candidates->size == 0) {
  12100. candidates->size = 1;
  12101. }
  12102. if (ctx) {
  12103. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12104. }
  12105. // Normalize the probabilities of the remaining words
  12106. llama_sample_softmax(ctx, candidates);
  12107. // Sample the next word X from the remaining words
  12108. llama_token X = llama_sample_token(ctx, candidates);
  12109. t_start_sample_us = ggml_time_us();
  12110. // Compute error as the difference between observed surprise and target surprise value
  12111. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  12112. return candidate.id == X;
  12113. }));
  12114. float observed_surprise = -log2f(candidates->data[X_idx].p);
  12115. float e = observed_surprise - tau;
  12116. // Update mu using the learning rate and error
  12117. *mu = *mu - eta * e;
  12118. if (ctx) {
  12119. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12120. }
  12121. return X;
  12122. }
  12123. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  12124. const int64_t t_start_sample_us = ggml_time_us();
  12125. // Find max element
  12126. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  12127. return a.logit < b.logit;
  12128. });
  12129. llama_token result = max_iter->id;
  12130. if (ctx) {
  12131. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12132. ctx->n_sample++;
  12133. }
  12134. return result;
  12135. }
  12136. llama_token llama_sample_token_with_rng(struct llama_context * ctx, llama_token_data_array * candidates, std::mt19937 & rng) {
  12137. GGML_ASSERT(ctx);
  12138. const int64_t t_start_sample_us = ggml_time_us();
  12139. llama_sample_softmax(nullptr, candidates);
  12140. std::vector<float> probs;
  12141. probs.reserve(candidates->size);
  12142. for (size_t i = 0; i < candidates->size; ++i) {
  12143. probs.push_back(candidates->data[i].p);
  12144. }
  12145. std::discrete_distribution<> dist(probs.begin(), probs.end());
  12146. int idx = dist(rng);
  12147. llama_token result = candidates->data[idx].id;
  12148. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12149. ctx->n_sample++;
  12150. return result;
  12151. }
  12152. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  12153. return llama_sample_token_with_rng(ctx, candidates, ctx->rng);
  12154. }
  12155. void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar * grammar, llama_token token) {
  12156. const int64_t t_start_sample_us = ggml_time_us();
  12157. if (llama_token_is_eog(&ctx->model, token)) {
  12158. for (const auto & stack : grammar->stacks) {
  12159. if (stack.empty()) {
  12160. return;
  12161. }
  12162. }
  12163. GGML_ASSERT(false);
  12164. }
  12165. const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
  12166. // Note terminating 0 in decoded string
  12167. const auto decoded = decode_utf8(piece, grammar->partial_utf8);
  12168. const auto & code_points = decoded.first;
  12169. std::vector<std::vector<const llama_grammar_element *>> tmp_new_stacks;
  12170. for (auto it = code_points.begin(), end = code_points.end() - 1; it != end; ++it) {
  12171. llama_grammar_accept(grammar->rules, grammar->stacks, *it, tmp_new_stacks);
  12172. grammar->stacks = tmp_new_stacks;
  12173. }
  12174. grammar->partial_utf8 = decoded.second;
  12175. GGML_ASSERT(!grammar->stacks.empty());
  12176. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  12177. }
  12178. //
  12179. // quantization
  12180. //
  12181. struct quantize_state_internal {
  12182. const llama_model & model;
  12183. const llama_model_quantize_params * params;
  12184. int n_attention_wv = 0;
  12185. int n_ffn_down = 0;
  12186. int n_ffn_gate = 0;
  12187. int n_ffn_up = 0;
  12188. int i_attention_wv = 0;
  12189. int i_ffn_down = 0;
  12190. int i_ffn_gate = 0;
  12191. int i_ffn_up = 0;
  12192. int n_k_quantized = 0;
  12193. int n_fallback = 0;
  12194. bool has_imatrix = false;
  12195. // used to figure out if a model shares tok_embd with the output weight
  12196. bool has_output = false;
  12197. quantize_state_internal(const llama_model & model, const llama_model_quantize_params * params)
  12198. : model(model)
  12199. , params(params)
  12200. {}
  12201. };
  12202. static void llama_tensor_dequantize_internal(
  12203. struct ggml_tensor * tensor, std::vector<no_init<float>> & output, std::vector<std::thread> & workers,
  12204. const size_t nelements, const int nthread
  12205. ) {
  12206. if (output.size() < nelements) {
  12207. output.resize(nelements);
  12208. }
  12209. float * f32_output = (float *) output.data();
  12210. ggml_type_traits_t qtype;
  12211. if (ggml_is_quantized(tensor->type)) {
  12212. qtype = ggml_internal_get_type_traits(tensor->type);
  12213. if (qtype.to_float == NULL) {
  12214. throw std::runtime_error(format("type %s unsupported for integer quantization: no dequantization available", ggml_type_name(tensor->type)));
  12215. }
  12216. } else if (tensor->type != GGML_TYPE_F16 &&
  12217. tensor->type != GGML_TYPE_BF16) {
  12218. throw std::runtime_error(format("cannot dequantize/convert tensor type %s", ggml_type_name(tensor->type)));
  12219. }
  12220. if (nthread < 2) {
  12221. if (tensor->type == GGML_TYPE_F16) {
  12222. ggml_fp16_to_fp32_row((ggml_fp16_t *)tensor->data, f32_output, nelements);
  12223. } else if (tensor->type == GGML_TYPE_BF16) {
  12224. ggml_bf16_to_fp32_row((ggml_bf16_t *)tensor->data, f32_output, nelements);
  12225. } else if (ggml_is_quantized(tensor->type)) {
  12226. qtype.to_float(tensor->data, f32_output, nelements);
  12227. } else {
  12228. GGML_ASSERT(false); // unreachable
  12229. }
  12230. return;
  12231. }
  12232. size_t block_size;
  12233. if (tensor->type == GGML_TYPE_F16 ||
  12234. tensor->type == GGML_TYPE_BF16) {
  12235. block_size = 1;
  12236. } else {
  12237. block_size = (size_t)ggml_blck_size(tensor->type);
  12238. }
  12239. size_t block_size_bytes = ggml_type_size(tensor->type);
  12240. GGML_ASSERT(nelements % block_size == 0);
  12241. size_t nblocks = nelements / block_size;
  12242. size_t blocks_per_thread = nblocks / nthread;
  12243. size_t spare_blocks = nblocks - (blocks_per_thread * nthread); // if blocks aren't divisible by thread count
  12244. size_t in_buff_offs = 0;
  12245. size_t out_buff_offs = 0;
  12246. for (int tnum = 0; tnum < nthread; tnum++) {
  12247. size_t thr_blocks = blocks_per_thread + (tnum == nthread - 1 ? spare_blocks : 0); // num blocks for this thread
  12248. size_t thr_elems = thr_blocks * block_size; // number of elements for this thread
  12249. size_t thr_block_bytes = thr_blocks * block_size_bytes; // number of input bytes for this thread
  12250. auto compute = [qtype] (ggml_type typ, uint8_t * inbuf, float * outbuf, int nels) {
  12251. if (typ == GGML_TYPE_F16) {
  12252. ggml_fp16_to_fp32_row((ggml_fp16_t *)inbuf, outbuf, nels);
  12253. } else if (typ == GGML_TYPE_BF16) {
  12254. ggml_bf16_to_fp32_row((ggml_bf16_t *)inbuf, outbuf, nels);
  12255. } else {
  12256. qtype.to_float(inbuf, outbuf, nels);
  12257. }
  12258. };
  12259. workers.emplace_back(compute, tensor->type, (uint8_t *) tensor->data + in_buff_offs, f32_output + out_buff_offs, thr_elems);
  12260. in_buff_offs += thr_block_bytes;
  12261. out_buff_offs += thr_elems;
  12262. }
  12263. for (auto & w : workers) { w.join(); }
  12264. workers.clear();
  12265. }
  12266. static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
  12267. const std::string name = ggml_get_name(tensor);
  12268. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12269. const llm_arch arch = qs.model.arch;
  12270. const auto tn = LLM_TN(arch);
  12271. auto use_more_bits = [](int i_layer, int num_layers) -> bool {
  12272. return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
  12273. };
  12274. const int n_expert = std::max(1, (int)qs.model.hparams.n_expert);
  12275. auto layer_info = [n_expert] (int i_layer, int n_layer, const char * name) {
  12276. if (n_expert > 1) {
  12277. // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly
  12278. // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work
  12279. // for getting the current layer as I initially thought, and we need to resort to parsing the
  12280. // tensor name.
  12281. if (sscanf(name, "blk.%d.", &i_layer) != 1) {
  12282. throw std::runtime_error(format("Failed to determine layer for tensor %s", name));
  12283. }
  12284. if (i_layer < 0 || i_layer >= n_layer) {
  12285. throw std::runtime_error(format("Bad layer %d for tensor %s. Must be in [0, %d)", i_layer, name, n_layer));
  12286. }
  12287. }
  12288. return std::make_pair(i_layer, n_layer);
  12289. };
  12290. // for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
  12291. // with the quantization of the output tensor
  12292. if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
  12293. if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
  12294. new_type = qs.params->output_tensor_type;
  12295. } else {
  12296. int nx = tensor->ne[0];
  12297. if (arch == LLM_ARCH_FALCON || nx % QK_K != 0) {
  12298. new_type = GGML_TYPE_Q8_0;
  12299. }
  12300. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12301. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
  12302. ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12303. new_type = GGML_TYPE_Q5_K;
  12304. }
  12305. else if (new_type != GGML_TYPE_Q8_0) {
  12306. new_type = GGML_TYPE_Q6_K;
  12307. }
  12308. }
  12309. } else if (name == "token_embd.weight") {
  12310. if (qs.params->token_embedding_type < GGML_TYPE_COUNT) {
  12311. new_type = qs.params->token_embedding_type;
  12312. } else {
  12313. if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
  12314. ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12315. new_type = GGML_TYPE_Q2_K;
  12316. }
  12317. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) {
  12318. new_type = GGML_TYPE_IQ3_S;
  12319. }
  12320. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12321. new_type = GGML_TYPE_IQ3_S;
  12322. }
  12323. }
  12324. } else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
  12325. ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
  12326. if (name.find("attn_v.weight") != std::string::npos) {
  12327. if (qs.model.hparams.n_gqa() >= 4 || qs.model.hparams.n_expert >= 4) new_type = GGML_TYPE_Q4_K;
  12328. else new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12329. ++qs.i_attention_wv;
  12330. }
  12331. else if (qs.model.hparams.n_expert == 8 && name.find("attn_k.weight") != std::string::npos) {
  12332. new_type = GGML_TYPE_Q4_K;
  12333. }
  12334. else if (name.find("ffn_down") != std::string::npos) {
  12335. if (qs.i_ffn_down < qs.n_ffn_down/8) {
  12336. new_type = ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ? GGML_TYPE_IQ3_S : GGML_TYPE_Q2_K;
  12337. }
  12338. ++qs.i_ffn_down;
  12339. }
  12340. else if (name.find("attn_output.weight") != std::string::npos) {
  12341. if (qs.model.hparams.n_expert == 8) {
  12342. new_type = GGML_TYPE_Q5_K;
  12343. } else {
  12344. if (ftype == LLAMA_FTYPE_MOSTLY_IQ1_S || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) new_type = GGML_TYPE_IQ2_XXS;
  12345. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M) new_type = GGML_TYPE_IQ3_S;
  12346. }
  12347. }
  12348. } else if (name.find("attn_v.weight") != std::string::npos) {
  12349. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
  12350. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12351. }
  12352. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
  12353. new_type = GGML_TYPE_Q4_K;
  12354. }
  12355. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12356. new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
  12357. }
  12358. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
  12359. new_type = GGML_TYPE_Q4_K;
  12360. }
  12361. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12362. new_type = GGML_TYPE_Q4_K;
  12363. }
  12364. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12365. new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12366. }
  12367. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
  12368. else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
  12369. new_type = GGML_TYPE_Q5_K;
  12370. }
  12371. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
  12372. use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
  12373. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
  12374. if (qs.model.type == MODEL_70B) {
  12375. // In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
  12376. // 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
  12377. // nearly negligible increase in model size by quantizing this tensor with more bits:
  12378. if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
  12379. }
  12380. if (qs.model.hparams.n_expert == 8) {
  12381. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12382. // TODO: explore better strategies
  12383. new_type = GGML_TYPE_Q8_0;
  12384. }
  12385. ++qs.i_attention_wv;
  12386. } else if (name.find("attn_k.weight") != std::string::npos) {
  12387. if (qs.model.hparams.n_expert == 8) {
  12388. // for the 8-expert model, bumping this to Q8_0 trades just ~128MB
  12389. // TODO: explore better strategies
  12390. new_type = GGML_TYPE_Q8_0;
  12391. }
  12392. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12393. new_type = GGML_TYPE_IQ3_XXS;
  12394. }
  12395. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12396. new_type = GGML_TYPE_IQ2_S;
  12397. }
  12398. } else if (name.find("attn_q.weight") != std::string::npos) {
  12399. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
  12400. new_type = GGML_TYPE_IQ3_XXS;
  12401. }
  12402. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
  12403. new_type = GGML_TYPE_IQ2_S;
  12404. }
  12405. } else if (name.find("ffn_down") != std::string::npos) {
  12406. auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
  12407. int i_layer = info.first, n_layer = info.second;
  12408. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12409. else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
  12410. if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
  12411. }
  12412. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
  12413. new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
  12414. }
  12415. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
  12416. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
  12417. : arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
  12418. : GGML_TYPE_Q3_K;
  12419. }
  12420. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
  12421. (qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
  12422. new_type = GGML_TYPE_Q4_K;
  12423. }
  12424. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
  12425. new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
  12426. }
  12427. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
  12428. if (arch == LLM_ARCH_FALCON) {
  12429. new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
  12430. use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
  12431. } else {
  12432. if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12433. }
  12434. }
  12435. else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
  12436. new_type = GGML_TYPE_Q5_K;
  12437. }
  12438. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
  12439. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
  12440. new_type = GGML_TYPE_Q5_K;
  12441. }
  12442. else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
  12443. && qs.has_imatrix && i_layer < n_layer/8) {
  12444. // Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
  12445. // We only do it when an imatrix is provided because a) we want to make sure that one can always get the
  12446. // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
  12447. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
  12448. }
  12449. ++qs.i_ffn_down;
  12450. } else if (name.find("attn_output.weight") != std::string::npos) {
  12451. if (arch != LLM_ARCH_FALCON) {
  12452. if (qs.model.hparams.n_expert == 8) {
  12453. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
  12454. ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
  12455. ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
  12456. ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
  12457. new_type = GGML_TYPE_Q5_K;
  12458. }
  12459. } else {
  12460. if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
  12461. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
  12462. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
  12463. else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
  12464. else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
  12465. }
  12466. } else {
  12467. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
  12468. }
  12469. }
  12470. else if (name.find("attn_qkv.weight") != std::string::npos) {
  12471. if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
  12472. new_type = GGML_TYPE_Q4_K;
  12473. }
  12474. else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
  12475. else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
  12476. }
  12477. else if (name.find("ffn_gate") != std::string::npos) {
  12478. auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
  12479. int i_layer = info.first, n_layer = info.second;
  12480. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12481. new_type = GGML_TYPE_IQ3_XXS;
  12482. }
  12483. ++qs.i_ffn_gate;
  12484. }
  12485. else if (name.find("ffn_up") != std::string::npos) {
  12486. auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
  12487. int i_layer = info.first, n_layer = info.second;
  12488. if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
  12489. new_type = GGML_TYPE_IQ3_XXS;
  12490. }
  12491. ++qs.i_ffn_up;
  12492. }
  12493. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12494. //}
  12495. // IK: let's remove this, else Q2_K is almost the same as Q3_K_S
  12496. //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) {
  12497. // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
  12498. //}
  12499. // This can be used to reduce the size of the Q5_K_S model.
  12500. // The associated PPL increase is fully in line with the size reduction
  12501. //else {
  12502. // if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_S) new_type = GGML_TYPE_Q4_K;
  12503. //}
  12504. bool convert_incompatible_tensor = false;
  12505. if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
  12506. new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K || new_type == GGML_TYPE_IQ4_XS ||
  12507. new_type == GGML_TYPE_IQ2_XS || new_type == GGML_TYPE_IQ2_XXS || new_type == GGML_TYPE_IQ2_S ||
  12508. new_type == GGML_TYPE_IQ3_XXS || new_type == GGML_TYPE_IQ1_S || new_type == GGML_TYPE_IQ3_S ||
  12509. new_type == GGML_TYPE_IQ1_M) {
  12510. int nx = tensor->ne[0];
  12511. int ny = tensor->ne[1];
  12512. if (nx % QK_K != 0) {
  12513. LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
  12514. convert_incompatible_tensor = true;
  12515. } else {
  12516. ++qs.n_k_quantized;
  12517. }
  12518. }
  12519. if (convert_incompatible_tensor) {
  12520. switch (new_type) {
  12521. case GGML_TYPE_IQ2_XXS:
  12522. case GGML_TYPE_IQ2_XS:
  12523. case GGML_TYPE_IQ2_S:
  12524. case GGML_TYPE_IQ3_XXS:
  12525. case GGML_TYPE_IQ3_S:
  12526. case GGML_TYPE_IQ1_S:
  12527. case GGML_TYPE_IQ1_M:
  12528. case GGML_TYPE_Q2_K:
  12529. case GGML_TYPE_Q3_K:
  12530. case GGML_TYPE_IQ4_XS: new_type = GGML_TYPE_IQ4_NL; break;
  12531. case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
  12532. case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
  12533. case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
  12534. default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
  12535. }
  12536. LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
  12537. ++qs.n_fallback;
  12538. }
  12539. return new_type;
  12540. }
  12541. static size_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int64_t chunk_size, int64_t nrows, int64_t n_per_row, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
  12542. if (nthread < 2) {
  12543. // single-thread
  12544. size_t new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, imatrix);
  12545. if (!ggml_validate_row_data(new_type, new_data, new_size)) {
  12546. throw std::runtime_error("quantized data validation failed");
  12547. }
  12548. return new_size;
  12549. }
  12550. std::mutex mutex;
  12551. int64_t counter = 0;
  12552. size_t new_size = 0;
  12553. bool valid = true;
  12554. auto compute = [&mutex, &counter, &new_size, &valid, new_type, f32_data, new_data, chunk_size,
  12555. nrows, n_per_row, imatrix]() {
  12556. const int64_t nrows_per_chunk = chunk_size / n_per_row;
  12557. size_t local_size = 0;
  12558. while (true) {
  12559. std::unique_lock<std::mutex> lock(mutex);
  12560. int64_t first_row = counter; counter += nrows_per_chunk;
  12561. if (first_row >= nrows) {
  12562. if (local_size > 0) {
  12563. new_size += local_size;
  12564. }
  12565. break;
  12566. }
  12567. lock.unlock();
  12568. const int64_t this_nrow = std::min(nrows - first_row, nrows_per_chunk);
  12569. size_t this_size = ggml_quantize_chunk(new_type, f32_data, new_data, first_row * n_per_row, this_nrow, n_per_row, imatrix);
  12570. local_size += this_size;
  12571. // validate the quantized data
  12572. const size_t row_size = ggml_row_size(new_type, n_per_row);
  12573. void * this_data = (char *) new_data + first_row * row_size;
  12574. if (!ggml_validate_row_data(new_type, this_data, this_size)) {
  12575. std::unique_lock<std::mutex> lock(mutex);
  12576. valid = false;
  12577. break;
  12578. }
  12579. }
  12580. };
  12581. for (int it = 0; it < nthread - 1; ++it) {
  12582. workers.emplace_back(compute);
  12583. }
  12584. compute();
  12585. for (auto & w : workers) { w.join(); }
  12586. workers.clear();
  12587. if (!valid) {
  12588. throw std::runtime_error("quantized data validation failed");
  12589. }
  12590. return new_size;
  12591. }
  12592. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, const llama_model_quantize_params * params) {
  12593. ggml_type default_type;
  12594. llama_ftype ftype = params->ftype;
  12595. switch (params->ftype) {
  12596. case LLAMA_FTYPE_MOSTLY_Q4_0: default_type = GGML_TYPE_Q4_0; break;
  12597. case LLAMA_FTYPE_MOSTLY_Q4_1: default_type = GGML_TYPE_Q4_1; break;
  12598. case LLAMA_FTYPE_MOSTLY_Q5_0: default_type = GGML_TYPE_Q5_0; break;
  12599. case LLAMA_FTYPE_MOSTLY_Q5_1: default_type = GGML_TYPE_Q5_1; break;
  12600. case LLAMA_FTYPE_MOSTLY_Q8_0: default_type = GGML_TYPE_Q8_0; break;
  12601. case LLAMA_FTYPE_MOSTLY_F16: default_type = GGML_TYPE_F16; break;
  12602. case LLAMA_FTYPE_MOSTLY_BF16: default_type = GGML_TYPE_BF16; break;
  12603. case LLAMA_FTYPE_ALL_F32: default_type = GGML_TYPE_F32; break;
  12604. // K-quants
  12605. case LLAMA_FTYPE_MOSTLY_Q2_K_S:
  12606. case LLAMA_FTYPE_MOSTLY_Q2_K: default_type = GGML_TYPE_Q2_K; break;
  12607. case LLAMA_FTYPE_MOSTLY_IQ3_XS: default_type = GGML_TYPE_IQ3_S; break;
  12608. case LLAMA_FTYPE_MOSTLY_Q3_K_S:
  12609. case LLAMA_FTYPE_MOSTLY_Q3_K_M:
  12610. case LLAMA_FTYPE_MOSTLY_Q3_K_L: default_type = GGML_TYPE_Q3_K; break;
  12611. case LLAMA_FTYPE_MOSTLY_Q4_K_S:
  12612. case LLAMA_FTYPE_MOSTLY_Q4_K_M: default_type = GGML_TYPE_Q4_K; break;
  12613. case LLAMA_FTYPE_MOSTLY_Q5_K_S:
  12614. case LLAMA_FTYPE_MOSTLY_Q5_K_M: default_type = GGML_TYPE_Q5_K; break;
  12615. case LLAMA_FTYPE_MOSTLY_Q6_K: default_type = GGML_TYPE_Q6_K; break;
  12616. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: default_type = GGML_TYPE_IQ2_XXS; break;
  12617. case LLAMA_FTYPE_MOSTLY_IQ2_XS: default_type = GGML_TYPE_IQ2_XS; break;
  12618. case LLAMA_FTYPE_MOSTLY_IQ2_S: default_type = GGML_TYPE_IQ2_XS; break;
  12619. case LLAMA_FTYPE_MOSTLY_IQ2_M: default_type = GGML_TYPE_IQ2_S; break;
  12620. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: default_type = GGML_TYPE_IQ3_XXS; break;
  12621. case LLAMA_FTYPE_MOSTLY_IQ1_S: default_type = GGML_TYPE_IQ1_S; break;
  12622. case LLAMA_FTYPE_MOSTLY_IQ1_M: default_type = GGML_TYPE_IQ1_M; break;
  12623. case LLAMA_FTYPE_MOSTLY_IQ4_NL: default_type = GGML_TYPE_IQ4_NL; break;
  12624. case LLAMA_FTYPE_MOSTLY_IQ4_XS: default_type = GGML_TYPE_IQ4_XS; break;
  12625. case LLAMA_FTYPE_MOSTLY_IQ3_S: default_type = GGML_TYPE_IQ3_S; break;
  12626. case LLAMA_FTYPE_MOSTLY_IQ3_M: default_type = GGML_TYPE_IQ3_S; break;
  12627. default: throw std::runtime_error(format("invalid output file type %d\n", ftype));
  12628. }
  12629. int nthread = params->nthread;
  12630. if (nthread <= 0) {
  12631. nthread = std::thread::hardware_concurrency();
  12632. }
  12633. // mmap consistently increases speed Linux, and also increases speed on Windows with
  12634. // hot cache. It may cause a slowdown on macOS, possibly related to free memory.
  12635. #if defined(__linux__) || defined(_WIN32)
  12636. constexpr bool use_mmap = true;
  12637. #else
  12638. constexpr bool use_mmap = false;
  12639. #endif
  12640. llama_model_kv_override * kv_overrides = nullptr;
  12641. if (params->kv_overrides) {
  12642. auto v = (std::vector<llama_model_kv_override>*)params->kv_overrides;
  12643. kv_overrides = v->data();
  12644. }
  12645. llama_model_loader ml(fname_inp, use_mmap, /*check_tensors*/ true, kv_overrides);
  12646. ml.init_mappings(false); // no prefetching
  12647. llama_model model;
  12648. llm_load_arch(ml, model);
  12649. llm_load_hparams(ml, model);
  12650. struct quantize_state_internal qs(model, params);
  12651. if (params->only_copy) {
  12652. ftype = model.ftype;
  12653. }
  12654. const std::unordered_map<std::string, std::vector<float>> * imatrix_data = nullptr;
  12655. if (params->imatrix) {
  12656. imatrix_data = static_cast<const std::unordered_map<std::string, std::vector<float>>*>(params->imatrix);
  12657. if (imatrix_data) {
  12658. LLAMA_LOG_INFO("================================ Have weights data with %d entries\n",int(imatrix_data->size()));
  12659. qs.has_imatrix = true;
  12660. }
  12661. }
  12662. const size_t align = GGUF_DEFAULT_ALIGNMENT;
  12663. struct gguf_context * ctx_out = gguf_init_empty();
  12664. // copy the KV pairs from the input file
  12665. gguf_set_kv (ctx_out, ml.meta);
  12666. gguf_set_val_u32(ctx_out, "general.quantization_version", GGML_QNT_VERSION);
  12667. gguf_set_val_u32(ctx_out, "general.file_type", ftype);
  12668. // Remove split metadata
  12669. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_NO).c_str());
  12670. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str());
  12671. gguf_remove_key(ctx_out, ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str());
  12672. if (params->kv_overrides) {
  12673. const std::vector<llama_model_kv_override> & overrides = *(const std::vector<llama_model_kv_override> *)params->kv_overrides;
  12674. for (auto & o : overrides) {
  12675. if (o.key[0] == 0) break;
  12676. if (o.tag == LLAMA_KV_OVERRIDE_TYPE_FLOAT) {
  12677. gguf_set_val_f32(ctx_out, o.key, o.val_f64);
  12678. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_INT) {
  12679. gguf_set_val_i32(ctx_out, o.key, o.val_i64);
  12680. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_BOOL) {
  12681. gguf_set_val_bool(ctx_out, o.key, o.val_bool);
  12682. } else if (o.tag == LLAMA_KV_OVERRIDE_TYPE_STR) {
  12683. gguf_set_val_str(ctx_out, o.key, o.val_str);
  12684. } else {
  12685. LLAMA_LOG_WARN("%s: unknown KV override type for key %s\n", __func__, o.key);
  12686. }
  12687. }
  12688. }
  12689. for (int i = 0; i < ml.n_tensors; ++i) {
  12690. const struct ggml_tensor * meta = ml.get_tensor_meta(i);
  12691. const std::string name = ggml_get_name(meta);
  12692. // TODO: avoid hardcoded tensor names - use the TN_* constants
  12693. if (name.find("attn_v.weight") != std::string::npos ||
  12694. name.find("attn_qkv.weight") != std::string::npos) {
  12695. ++qs.n_attention_wv;
  12696. } else if (name == LLM_TN(model.arch)(LLM_TENSOR_OUTPUT, "weight")) {
  12697. qs.has_output = true;
  12698. }
  12699. }
  12700. qs.n_ffn_down = qs.n_ffn_gate = qs.n_ffn_up = (int)model.hparams.n_layer;
  12701. // sanity checks
  12702. //
  12703. // - qs.n_attention_wv == 0 for Mamba models
  12704. // - qs.n_attention_wv == model.hparams.n_layer for Transformer models
  12705. //
  12706. GGML_ASSERT((qs.n_attention_wv == 0 || qs.n_attention_wv == (int)model.hparams.n_layer) && "n_attention_wv is unexpected");
  12707. size_t total_size_org = 0;
  12708. size_t total_size_new = 0;
  12709. std::vector<std::thread> workers;
  12710. workers.reserve(nthread);
  12711. int idx = 0;
  12712. std::vector<no_init<uint8_t>> read_data;
  12713. std::vector<no_init<uint8_t>> work;
  12714. std::vector<no_init<float>> f32_conv_buf;
  12715. uint16_t n_split = 1;
  12716. // Assume split index is continuous
  12717. if (params->keep_split) {
  12718. for (int i = 0; i < ml.n_tensors; ++i) {
  12719. n_split = std::max(uint16_t(ml.get_weight(i)->idx+1), n_split);
  12720. }
  12721. }
  12722. std::vector<gguf_context*> ctx_outs(n_split, NULL);
  12723. ctx_outs[0] = ctx_out;
  12724. // populate the original tensors so we get an initial meta data
  12725. for (int i = 0; i < ml.n_tensors; ++i) {
  12726. auto weight = ml.get_weight(i);
  12727. uint16_t i_split = params->keep_split ? weight->idx : 0;
  12728. struct ggml_tensor * tensor = weight->tensor;
  12729. if (ctx_outs[i_split] == NULL) {
  12730. ctx_outs[i_split] = gguf_init_empty();
  12731. }
  12732. gguf_add_tensor(ctx_outs[i_split], tensor);
  12733. }
  12734. // Set split info if needed
  12735. if (n_split > 1) {
  12736. for (size_t i = 0; i < ctx_outs.size(); ++i) {
  12737. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_NO).c_str(), i);
  12738. gguf_set_val_u16(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_COUNT).c_str(), n_split);
  12739. gguf_set_val_i32(ctx_outs[i], ml.llm_kv(LLM_KV_SPLIT_TENSORS_COUNT).c_str(), ml.n_tensors);
  12740. }
  12741. }
  12742. int cur_split = -1;
  12743. std::ofstream fout;
  12744. auto close_ofstream = [&]() {
  12745. // Write metadata and close file handler
  12746. if (fout.is_open()) {
  12747. fout.seekp(0);
  12748. std::vector<uint8_t> data(gguf_get_meta_size(ctx_outs[cur_split]));
  12749. gguf_get_meta_data(ctx_outs[cur_split], data.data());
  12750. fout.write((const char *) data.data(), data.size());
  12751. fout.close();
  12752. }
  12753. };
  12754. auto new_ofstream = [&](int index) {
  12755. cur_split = index;
  12756. GGML_ASSERT(ctx_outs[cur_split] && "Find uninitialized gguf_context");
  12757. std::string fname = fname_out;
  12758. if (params->keep_split) {
  12759. char split_path[PATH_MAX] = {0};
  12760. llama_split_path(split_path, sizeof(split_path), fname_out.c_str(), cur_split, n_split);
  12761. fname = std::string(split_path);
  12762. }
  12763. fout = std::ofstream(fname, std::ios::binary);
  12764. fout.exceptions(std::ofstream::failbit); // fail fast on write errors
  12765. const size_t meta_size = gguf_get_meta_size(ctx_outs[cur_split]);
  12766. // placeholder for the meta data
  12767. ::zeros(fout, meta_size);
  12768. };
  12769. const auto tn = LLM_TN(model.arch);
  12770. new_ofstream(0);
  12771. for (int i = 0; i < ml.n_tensors; ++i) {
  12772. auto weight = ml.get_weight(i);
  12773. struct ggml_tensor * tensor = weight->tensor;
  12774. if (weight->idx != cur_split && params->keep_split) {
  12775. close_ofstream();
  12776. new_ofstream(weight->idx);
  12777. }
  12778. const std::string name = ggml_get_name(tensor);
  12779. if (!ml.use_mmap) {
  12780. if (read_data.size() < ggml_nbytes(tensor)) {
  12781. read_data.resize(ggml_nbytes(tensor));
  12782. }
  12783. tensor->data = read_data.data();
  12784. }
  12785. ml.load_data_for(tensor);
  12786. LLAMA_LOG_INFO("[%4d/%4d] %36s - [%s], type = %6s, ",
  12787. ++idx, ml.n_tensors,
  12788. ggml_get_name(tensor),
  12789. llama_format_tensor_shape(tensor).c_str(),
  12790. ggml_type_name(tensor->type));
  12791. // This used to be a regex, but <regex> has an extreme cost to compile times.
  12792. bool quantize = name.rfind("weight") == name.size() - 6; // ends with 'weight'?
  12793. // quantize only 2D and 3D tensors (experts)
  12794. quantize &= (ggml_n_dims(tensor) >= 2);
  12795. // do not quantize norm tensors
  12796. quantize &= name.find("_norm.weight") == std::string::npos;
  12797. quantize &= params->quantize_output_tensor || name != "output.weight";
  12798. quantize &= !params->only_copy;
  12799. // do not quantize expert gating tensors
  12800. // NOTE: can't use LLM_TN here because the layer number is not known
  12801. quantize &= name.find("ffn_gate_inp.weight") == std::string::npos;
  12802. // do not quantize positional embeddings and token types (BERT)
  12803. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_POS_EMBD, "weight");
  12804. quantize &= name != LLM_TN(model.arch)(LLM_TENSOR_TOKEN_TYPES, "weight");
  12805. // do not quantize Mamba's small yet 2D weights
  12806. // NOTE: can't use LLM_TN here because the layer number is not known
  12807. quantize &= name.find("ssm_conv1d.weight") == std::string::npos;
  12808. quantize &= name.find("ssm_x.weight") == std::string::npos;
  12809. quantize &= name.find("ssm_dt.weight") == std::string::npos;
  12810. enum ggml_type new_type;
  12811. void * new_data;
  12812. size_t new_size;
  12813. if (quantize) {
  12814. new_type = default_type;
  12815. // get more optimal quantization type based on the tensor shape, layer, etc.
  12816. if (!params->pure && ggml_is_quantized(default_type)) {
  12817. new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
  12818. }
  12819. if (params->token_embedding_type < GGML_TYPE_COUNT && strcmp(tensor->name, "token_embd.weight") == 0) {
  12820. new_type = params->token_embedding_type;
  12821. }
  12822. if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
  12823. new_type = params->output_tensor_type;
  12824. }
  12825. // If we've decided to quantize to the same type the tensor is already
  12826. // in then there's nothing to do.
  12827. quantize = tensor->type != new_type;
  12828. }
  12829. if (!quantize) {
  12830. new_type = tensor->type;
  12831. new_data = tensor->data;
  12832. new_size = ggml_nbytes(tensor);
  12833. LLAMA_LOG_INFO("size = %8.3f MB\n", ggml_nbytes(tensor)/1024.0/1024.0);
  12834. } else {
  12835. const int64_t nelements = ggml_nelements(tensor);
  12836. const float * imatrix = nullptr;
  12837. if (imatrix_data) {
  12838. auto it = imatrix_data->find(tensor->name);
  12839. if (it == imatrix_data->end()) {
  12840. LLAMA_LOG_INFO("\n====== %s: did not find weights for %s\n", __func__, tensor->name);
  12841. } else {
  12842. if (it->second.size() == (size_t)tensor->ne[0]*tensor->ne[2]) {
  12843. imatrix = it->second.data();
  12844. } else {
  12845. LLAMA_LOG_INFO("\n====== %s: imatrix size %d is different from tensor size %d for %s\n", __func__,
  12846. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name);
  12847. // this can happen when quantizing an old mixtral model with split tensors with a new incompatible imatrix
  12848. // this is a significant error and it may be good idea to abort the process if this happens,
  12849. // since many people will miss the error and not realize that most of the model is being quantized without an imatrix
  12850. // tok_embd should be ignored in this case, since it always causes this warning
  12851. if (name != tn(LLM_TENSOR_TOKEN_EMBD, "weight")) {
  12852. throw std::runtime_error(format("imatrix size %d is different from tensor size %d for %s",
  12853. int(it->second.size()), int(tensor->ne[0]*tensor->ne[2]), tensor->name));
  12854. }
  12855. }
  12856. }
  12857. }
  12858. if ((new_type == GGML_TYPE_IQ2_XXS ||
  12859. new_type == GGML_TYPE_IQ2_XS ||
  12860. new_type == GGML_TYPE_IQ2_S ||
  12861. new_type == GGML_TYPE_IQ1_S ||
  12862. (new_type == GGML_TYPE_IQ1_M && strcmp(tensor->name, "token_embd.weight") && strcmp(tensor->name, "output.weight")) ||
  12863. (new_type == GGML_TYPE_Q2_K && params->ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && strcmp(tensor->name, "token_embd.weight") != 0)) && !imatrix) {
  12864. LLAMA_LOG_ERROR("\n\n============================================================\n");
  12865. LLAMA_LOG_ERROR("Missing importance matrix for tensor %s in a very low-bit quantization\n", tensor->name);
  12866. LLAMA_LOG_ERROR("The result will be garbage, so bailing out\n");
  12867. LLAMA_LOG_ERROR("============================================================\n\n");
  12868. throw std::runtime_error(format("Missing importance matrix for tensor %s in a very low-bit quantization", tensor->name));
  12869. }
  12870. float * f32_data;
  12871. if (tensor->type == GGML_TYPE_F32) {
  12872. f32_data = (float *) tensor->data;
  12873. } else if (ggml_is_quantized(tensor->type) && !params->allow_requantize) {
  12874. throw std::runtime_error(format("requantizing from type %s is disabled", ggml_type_name(tensor->type)));
  12875. } else {
  12876. llama_tensor_dequantize_internal(tensor, f32_conv_buf, workers, nelements, nthread);
  12877. f32_data = (float *) f32_conv_buf.data();
  12878. }
  12879. LLAMA_LOG_INFO("converting to %s .. ", ggml_type_name(new_type));
  12880. fflush(stdout);
  12881. if (work.size() < (size_t)nelements * 4) {
  12882. work.resize(nelements * 4); // upper bound on size
  12883. }
  12884. new_data = work.data();
  12885. const int64_t n_per_row = tensor->ne[0];
  12886. const int64_t nrows = tensor->ne[1];
  12887. static const int64_t min_chunk_size = 32 * 512;
  12888. const int64_t chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
  12889. const int64_t nelements_matrix = tensor->ne[0] * tensor->ne[1];
  12890. const int64_t nchunk = (nelements_matrix + chunk_size - 1)/chunk_size;
  12891. const int64_t nthread_use = nthread > 1 ? std::max((int64_t)1, std::min((int64_t)nthread, nchunk)) : 1;
  12892. // quantize each expert separately since they have different importance matrices
  12893. new_size = 0;
  12894. for (int64_t i03 = 0; i03 < tensor->ne[2]; ++i03) {
  12895. const float * f32_data_03 = f32_data + i03 * nelements_matrix;
  12896. void * new_data_03 = (char *)new_data + ggml_row_size(new_type, n_per_row) * i03 * nrows;
  12897. const float * imatrix_03 = imatrix ? imatrix + i03 * n_per_row : nullptr;
  12898. new_size += llama_tensor_quantize_internal(new_type, f32_data_03, new_data_03, chunk_size, nrows, n_per_row, imatrix_03, workers, nthread_use);
  12899. }
  12900. LLAMA_LOG_INFO("size = %8.2f MiB -> %8.2f MiB\n", ggml_nbytes(tensor)/1024.0/1024.0, new_size/1024.0/1024.0);
  12901. }
  12902. total_size_org += ggml_nbytes(tensor);
  12903. total_size_new += new_size;
  12904. // update the gguf meta data as we go
  12905. gguf_set_tensor_type(ctx_outs[cur_split], name.c_str(), new_type);
  12906. gguf_set_tensor_data(ctx_outs[cur_split], name.c_str(), new_data, new_size);
  12907. // write tensor data + padding
  12908. fout.write((const char *) new_data, new_size);
  12909. zeros(fout, GGML_PAD(new_size, align) - new_size);
  12910. }
  12911. close_ofstream();
  12912. for (auto & c:ctx_outs) {
  12913. gguf_free(c);
  12914. }
  12915. LLAMA_LOG_INFO("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  12916. LLAMA_LOG_INFO("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  12917. if (qs.n_fallback > 0) {
  12918. LLAMA_LOG_WARN("%s: WARNING: %d of %d tensor(s) required fallback quantization\n",
  12919. __func__, qs.n_fallback, qs.n_k_quantized + qs.n_fallback);
  12920. }
  12921. }
  12922. static int llama_apply_lora_from_file_internal(
  12923. const struct llama_model & model, const char * path_lora, float scale, const char * path_base_model, int n_threads
  12924. ) {
  12925. LLAMA_LOG_INFO("%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  12926. const int64_t t_start_lora_us = ggml_time_us();
  12927. llama_file fin(path_lora, "rb");
  12928. // verify magic and version
  12929. {
  12930. uint32_t magic = fin.read_u32();
  12931. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  12932. LLAMA_LOG_ERROR("%s: bad file magic\n", __func__);
  12933. return 1;
  12934. }
  12935. uint32_t format_version = fin.read_u32();
  12936. if (format_version != 1) {
  12937. LLAMA_LOG_ERROR("%s: unsupported file version\n", __func__ );
  12938. return 1;
  12939. }
  12940. }
  12941. int32_t lora_r = fin.read_u32();
  12942. int32_t lora_alpha = fin.read_u32();
  12943. float scaling = scale * (float)lora_alpha / (float)lora_r;
  12944. LLAMA_LOG_INFO("%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  12945. // load base model
  12946. std::unique_ptr<llama_model_loader> ml;
  12947. if (path_base_model) {
  12948. LLAMA_LOG_INFO("%s: loading base model from '%s'\n", __func__, path_base_model);
  12949. ml.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*check_tensors*/ false, /*kv_overrides*/ nullptr));
  12950. ml->init_mappings(/*prefetch*/ false); // no prefetching
  12951. }
  12952. struct tensor_meta {
  12953. std::string name;
  12954. ggml_type type;
  12955. int32_t ne[2];
  12956. size_t offset;
  12957. };
  12958. std::map<std::string, tensor_meta> tensor_meta_map;
  12959. // load all tensor meta
  12960. while (true) {
  12961. if (fin.tell() == fin.size) {
  12962. // eof
  12963. break;
  12964. }
  12965. int32_t n_dims;
  12966. int32_t name_len;
  12967. int32_t ftype;
  12968. fin.read_raw(&n_dims, sizeof(n_dims));
  12969. fin.read_raw(&name_len, sizeof(name_len));
  12970. fin.read_raw(&ftype, sizeof(ftype));
  12971. if (n_dims != 1 && n_dims != 2) {
  12972. LLAMA_LOG_ERROR("%s: unsupported tensor dimension %d\n", __func__, n_dims);
  12973. return 1;
  12974. }
  12975. int32_t ne[2] = { 1, 1 };
  12976. for (int i = 0; i < n_dims; ++i) {
  12977. fin.read_raw(&ne[i], sizeof(ne[i]));
  12978. }
  12979. std::string name;
  12980. {
  12981. GGML_ASSERT(name_len < GGML_MAX_NAME);
  12982. char buf[GGML_MAX_NAME];
  12983. fin.read_raw(buf, name_len);
  12984. name = std::string(buf, name_len);
  12985. }
  12986. // check for lora suffix
  12987. std::string lora_suffix;
  12988. if (name.length() > 6) {
  12989. lora_suffix = name.substr(name.length() - 6);
  12990. }
  12991. if (lora_suffix != ".loraA" && lora_suffix != ".loraB") {
  12992. LLAMA_LOG_ERROR("%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  12993. return 1;
  12994. }
  12995. // tensor type
  12996. ggml_type wtype;
  12997. switch (ftype) {
  12998. case 0: wtype = GGML_TYPE_F32; break;
  12999. case 1: wtype = GGML_TYPE_F16; break;
  13000. default:
  13001. {
  13002. LLAMA_LOG_ERROR("%s: invalid tensor data type '%d'\n",
  13003. __func__, ftype);
  13004. return 1;
  13005. }
  13006. }
  13007. // data offset
  13008. size_t offset = fin.tell();
  13009. offset = (offset + 31) & -32;
  13010. // skip tensor data
  13011. fin.seek(offset + ggml_row_size(wtype, ne[0]) * ne[1], SEEK_SET);
  13012. tensor_meta_map.emplace(name, tensor_meta{ name, wtype, { ne[0], ne[1] }, offset });
  13013. }
  13014. bool warned = false;
  13015. int n_tensors = 0;
  13016. // apply
  13017. ggml_backend_t backend_cpu = ggml_backend_cpu_init();
  13018. if (backend_cpu == nullptr) {
  13019. LLAMA_LOG_ERROR("%s: error: failed to initialize cpu backend\n", __func__);
  13020. return 1;
  13021. }
  13022. ggml_backend_cpu_set_n_threads(backend_cpu, n_threads);
  13023. std::vector<no_init<uint8_t>> read_buf;
  13024. for (const auto & it : model.tensors_by_name) {
  13025. const std::string & base_name = it.first;
  13026. ggml_tensor * model_t = it.second;
  13027. if (tensor_meta_map.find(base_name + ".loraA") == tensor_meta_map.end() ||
  13028. tensor_meta_map.find(base_name + ".loraB") == tensor_meta_map.end()) {
  13029. continue;
  13030. }
  13031. tensor_meta & metaA = tensor_meta_map.at(base_name + ".loraA");
  13032. tensor_meta & metaB = tensor_meta_map.at(base_name + ".loraB");
  13033. ggml_init_params lora_init_params = {
  13034. /* .mem_size */ ggml_tensor_overhead()*128 + ggml_graph_overhead(),
  13035. /* .mem_buffer */ nullptr,
  13036. /* .no_alloc */ true,
  13037. };
  13038. ggml_context * lora_ctx = ggml_init(lora_init_params);
  13039. if (lora_ctx == nullptr) {
  13040. LLAMA_LOG_ERROR("%s: error: failed to initialize lora context\n", __func__);
  13041. ggml_backend_free(backend_cpu);
  13042. return 1;
  13043. }
  13044. // create tensors
  13045. ggml_tensor * loraA = ggml_new_tensor_2d(lora_ctx, metaA.type, metaA.ne[0], metaA.ne[1]);
  13046. ggml_tensor * loraB = ggml_new_tensor_2d(lora_ctx, metaB.type, metaB.ne[0], metaB.ne[1]);
  13047. ggml_set_name(loraA, metaA.name.c_str());
  13048. ggml_set_name(loraB, metaB.name.c_str());
  13049. ggml_tensor * base_t;
  13050. if (ml) {
  13051. if (!ml->get_tensor_meta(base_name.c_str())) {
  13052. LLAMA_LOG_ERROR("%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  13053. return 1;
  13054. }
  13055. base_t = ggml_dup_tensor(lora_ctx, ml->get_tensor_meta(base_name.c_str()));
  13056. } else {
  13057. base_t = ggml_dup_tensor(lora_ctx, model_t);
  13058. }
  13059. ggml_set_name(base_t, base_name.c_str());
  13060. // allocate in backend buffer
  13061. ggml_backend_buffer_t lora_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13062. if (lora_buf == nullptr) {
  13063. LLAMA_LOG_ERROR("%s: error: failed to allocate lora tensors\n", __func__);
  13064. return 1;
  13065. }
  13066. // load tensor data
  13067. auto load_tensor = [&read_buf, &fin](const tensor_meta & tensor_meta, ggml_tensor * tensor) {
  13068. read_buf.resize(ggml_nbytes(tensor));
  13069. fin.seek(tensor_meta.offset, SEEK_SET);
  13070. fin.read_raw(read_buf.data(), ggml_nbytes(tensor));
  13071. ggml_backend_tensor_set(tensor, read_buf.data(), 0, read_buf.size());
  13072. };
  13073. load_tensor(metaA, loraA);
  13074. load_tensor(metaB, loraB);
  13075. // load base model tensor data
  13076. if (ml) {
  13077. ml->load_data_for(base_t);
  13078. } else {
  13079. ggml_backend_tensor_copy(model_t, base_t);
  13080. }
  13081. if (ggml_is_quantized(base_t->type) && !warned) {
  13082. LLAMA_LOG_WARN("%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  13083. "use a f16 or f32 base model with --lora-base\n", __func__);
  13084. warned = true;
  13085. }
  13086. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  13087. LLAMA_LOG_ERROR("%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  13088. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  13089. ggml_free(lora_ctx);
  13090. ggml_backend_buffer_free(lora_buf);
  13091. ggml_backend_free(backend_cpu);
  13092. return 1;
  13093. }
  13094. auto build_lora_graph = [&]() {
  13095. // w = w + BA*s
  13096. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  13097. ggml_set_name(BA, "BA");
  13098. if (scaling != 1.0f) {
  13099. BA = ggml_scale(lora_ctx, BA, scaling);
  13100. ggml_set_name(BA, "BA_scaled");
  13101. }
  13102. ggml_tensor * r;
  13103. r = ggml_add_inplace(lora_ctx, base_t, BA);
  13104. ggml_set_name(r, "r_add");
  13105. if (base_t->type != model_t->type) {
  13106. // convert the result to the model type
  13107. r = ggml_cast(lora_ctx, r, model_t->type);
  13108. ggml_set_name(r, "r_cast");
  13109. }
  13110. return r;
  13111. };
  13112. ggml_cgraph * gf = ggml_new_graph(lora_ctx);
  13113. ggml_tensor * r = build_lora_graph();
  13114. ggml_build_forward_expand(gf, r);
  13115. ggml_backend_buffer_t graph_buf = ggml_backend_alloc_ctx_tensors_from_buft(lora_ctx, ggml_backend_cpu_buffer_type());
  13116. if (graph_buf == nullptr) {
  13117. LLAMA_LOG_ERROR("%s: error: failed to allocate graph tensors\n", __func__);
  13118. ggml_free(lora_ctx);
  13119. ggml_backend_buffer_free(lora_buf);
  13120. ggml_backend_free(backend_cpu);
  13121. return 1;
  13122. }
  13123. ggml_backend_graph_compute(backend_cpu, gf);
  13124. ggml_backend_tensor_set(model_t, r->data, 0, ggml_nbytes(r));
  13125. #if 0
  13126. // TODO: use scheduler with fallback to CPU for less copies between CPU and GPU
  13127. //ggml_backend_sched_t sched = ggml_backend_sched_new(backends.data(), backends.size(), GGML_DEFAULT_GRAPH_SIZE);
  13128. // sched compute
  13129. ggml_build_forward_expand(gf, build_graph());
  13130. ggml_backend_sched_init_measure(sched, gf);
  13131. // create the graph again, since the previous one was destroyed by the measure
  13132. ggml_graph_clear(gf);
  13133. ggml_build_forward_expand(gf, build_graph());
  13134. ggml_backend_sched_graph_compute(sched, gf);
  13135. ggml_backend_sched_free(sched);
  13136. #endif
  13137. ggml_backend_buffer_free(lora_buf);
  13138. ggml_backend_buffer_free(graph_buf);
  13139. ggml_free(lora_ctx);
  13140. n_tensors++;
  13141. if (n_tensors % 4 == 0) {
  13142. LLAMA_LOG_INFO(".");
  13143. }
  13144. }
  13145. ggml_backend_free(backend_cpu);
  13146. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  13147. LLAMA_LOG_INFO(" done (%.2f ms)\n", t_lora_us / 1000.0);
  13148. return 0;
  13149. }
  13150. //
  13151. // interface implementation
  13152. //
  13153. struct llama_model_params llama_model_default_params() {
  13154. struct llama_model_params result = {
  13155. /*.n_gpu_layers =*/ 0,
  13156. /*.split_mode =*/ LLAMA_SPLIT_MODE_LAYER,
  13157. /*.main_gpu =*/ 0,
  13158. /*.tensor_split =*/ nullptr,
  13159. /*.rpc_servers =*/ nullptr,
  13160. /*.progress_callback =*/ nullptr,
  13161. /*.progress_callback_user_data =*/ nullptr,
  13162. /*.kv_overrides =*/ nullptr,
  13163. /*.vocab_only =*/ false,
  13164. /*.use_mmap =*/ true,
  13165. /*.use_mlock =*/ false,
  13166. /*.check_tensors =*/ false,
  13167. };
  13168. #ifdef GGML_USE_METAL
  13169. // note: we usually have plenty of VRAM, so by default offload all layers to the GPU
  13170. result.n_gpu_layers = 999;
  13171. #endif
  13172. return result;
  13173. }
  13174. struct llama_context_params llama_context_default_params() {
  13175. struct llama_context_params result = {
  13176. /*.seed =*/ LLAMA_DEFAULT_SEED,
  13177. /*.n_ctx =*/ 512,
  13178. /*.n_batch =*/ 2048,
  13179. /*.n_ubatch =*/ 512,
  13180. /*.n_seq_max =*/ 1,
  13181. /*.n_threads =*/ GGML_DEFAULT_N_THREADS, // TODO: better default
  13182. /*.n_threads_batch =*/ GGML_DEFAULT_N_THREADS,
  13183. /*.rope_scaling_type =*/ LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED,
  13184. /*.pooling_type =*/ LLAMA_POOLING_TYPE_UNSPECIFIED,
  13185. /*.rope_freq_base =*/ 0.0f,
  13186. /*.rope_freq_scale =*/ 0.0f,
  13187. /*.yarn_ext_factor =*/ -1.0f,
  13188. /*.yarn_attn_factor =*/ 1.0f,
  13189. /*.yarn_beta_fast =*/ 32.0f,
  13190. /*.yarn_beta_slow =*/ 1.0f,
  13191. /*.yarn_orig_ctx =*/ 0,
  13192. /*.defrag_thold =*/ -1.0f,
  13193. /*.cb_eval =*/ nullptr,
  13194. /*.cb_eval_user_data =*/ nullptr,
  13195. /*.type_k =*/ GGML_TYPE_F16,
  13196. /*.type_v =*/ GGML_TYPE_F16,
  13197. /*.logits_all =*/ false,
  13198. /*.embeddings =*/ false,
  13199. /*.offload_kqv =*/ true,
  13200. /*.flash_attn =*/ false,
  13201. /*.abort_callback =*/ nullptr,
  13202. /*.abort_callback_data =*/ nullptr,
  13203. };
  13204. return result;
  13205. }
  13206. struct llama_model_quantize_params llama_model_quantize_default_params() {
  13207. struct llama_model_quantize_params result = {
  13208. /*.nthread =*/ 0,
  13209. /*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
  13210. /*.output_tensor_type =*/ GGML_TYPE_COUNT,
  13211. /*.token_embedding_type =*/ GGML_TYPE_COUNT,
  13212. /*.allow_requantize =*/ false,
  13213. /*.quantize_output_tensor =*/ true,
  13214. /*.only_copy =*/ false,
  13215. /*.pure =*/ false,
  13216. /*.keep_split =*/ false,
  13217. /*.imatrix =*/ nullptr,
  13218. /*.kv_overrides =*/ nullptr,
  13219. };
  13220. return result;
  13221. }
  13222. size_t llama_max_devices(void) {
  13223. #if defined(GGML_USE_RPC)
  13224. return GGML_RPC_MAX_SERVERS;
  13225. #elif defined(GGML_USE_METAL)
  13226. return 1;
  13227. #elif defined(GGML_USE_CUDA)
  13228. return GGML_CUDA_MAX_DEVICES;
  13229. #elif defined(GGML_USE_SYCL)
  13230. return GGML_SYCL_MAX_DEVICES;
  13231. #elif defined(GGML_USE_VULKAN)
  13232. return GGML_VK_MAX_DEVICES;
  13233. #else
  13234. return 1;
  13235. #endif
  13236. }
  13237. bool llama_supports_mmap(void) {
  13238. return llama_mmap::SUPPORTED;
  13239. }
  13240. bool llama_supports_mlock(void) {
  13241. return llama_mlock::SUPPORTED;
  13242. }
  13243. bool llama_supports_gpu_offload(void) {
  13244. #if defined(GGML_USE_CUDA) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
  13245. defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE) || defined(GGML_USE_RPC)
  13246. // Defined when llama.cpp is compiled with support for offloading model layers to GPU.
  13247. return true;
  13248. #else
  13249. return false;
  13250. #endif
  13251. }
  13252. void llama_backend_init(void) {
  13253. ggml_time_init();
  13254. // needed to initialize f16 tables
  13255. {
  13256. struct ggml_init_params params = { 0, NULL, false };
  13257. struct ggml_context * ctx = ggml_init(params);
  13258. ggml_free(ctx);
  13259. }
  13260. }
  13261. void llama_numa_init(enum ggml_numa_strategy numa) {
  13262. if (numa != GGML_NUMA_STRATEGY_DISABLED) {
  13263. ggml_numa_init(numa);
  13264. }
  13265. }
  13266. void llama_backend_free(void) {
  13267. ggml_quantize_free();
  13268. }
  13269. int64_t llama_time_us(void) {
  13270. return ggml_time_us();
  13271. }
  13272. struct llama_model * llama_load_model_from_file(
  13273. const char * path_model,
  13274. struct llama_model_params params) {
  13275. ggml_time_init();
  13276. llama_model * model = new llama_model;
  13277. unsigned cur_percentage = 0;
  13278. if (params.progress_callback == NULL) {
  13279. params.progress_callback_user_data = &cur_percentage;
  13280. params.progress_callback = [](float progress, void * ctx) {
  13281. unsigned * cur_percentage_p = (unsigned *) ctx;
  13282. unsigned percentage = (unsigned) (100 * progress);
  13283. while (percentage > *cur_percentage_p) {
  13284. *cur_percentage_p = percentage;
  13285. LLAMA_LOG_INFO(".");
  13286. if (percentage >= 100) {
  13287. LLAMA_LOG_INFO("\n");
  13288. }
  13289. }
  13290. return true;
  13291. };
  13292. }
  13293. if (params.rpc_servers != nullptr && params.rpc_servers[0] != '\0') {
  13294. // split the servers set them into model->rpc_servers
  13295. std::string servers(params.rpc_servers);
  13296. size_t pos = 0;
  13297. while ((pos = servers.find(",")) != std::string::npos) {
  13298. std::string server = servers.substr(0, pos);
  13299. model->rpc_servers.push_back(server);
  13300. servers.erase(0, pos + 1);
  13301. }
  13302. model->rpc_servers.push_back(servers);
  13303. }
  13304. int status = llama_model_load(path_model, *model, params);
  13305. GGML_ASSERT(status <= 0);
  13306. if (status < 0) {
  13307. if (status == -1) {
  13308. LLAMA_LOG_ERROR("%s: failed to load model\n", __func__);
  13309. } else if (status == -2) {
  13310. LLAMA_LOG_INFO("%s: cancelled model load\n", __func__);
  13311. }
  13312. delete model;
  13313. return nullptr;
  13314. }
  13315. return model;
  13316. }
  13317. void llama_free_model(struct llama_model * model) {
  13318. delete model;
  13319. }
  13320. struct llama_context * llama_new_context_with_model(
  13321. struct llama_model * model,
  13322. struct llama_context_params params) {
  13323. if (!model) {
  13324. LLAMA_LOG_ERROR("%s: model cannot be NULL\n", __func__);
  13325. return nullptr;
  13326. }
  13327. if (params.n_batch == 0 && params.n_ubatch == 0) {
  13328. LLAMA_LOG_ERROR("%s: n_batch and n_ubatch cannot both be zero\n", __func__);
  13329. return nullptr;
  13330. }
  13331. if (params.n_ctx == 0 && model->hparams.n_ctx_train == 0) {
  13332. LLAMA_LOG_ERROR("%s: n_ctx and model->hparams.n_ctx_train cannot both be zero\n", __func__);
  13333. return nullptr;
  13334. }
  13335. if (params.flash_attn && model->arch == LLM_ARCH_GROK) {
  13336. LLAMA_LOG_WARN("%s: flash_attn is not compatible with Grok - forcing off\n", __func__);
  13337. params.flash_attn = false;
  13338. }
  13339. if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
  13340. LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
  13341. return nullptr;
  13342. }
  13343. llama_context * ctx = new llama_context(*model);
  13344. const auto & hparams = model->hparams;
  13345. auto & cparams = ctx->cparams;
  13346. cparams.n_seq_max = std::max(1u, params.n_seq_max);
  13347. cparams.n_threads = params.n_threads;
  13348. cparams.n_threads_batch = params.n_threads_batch;
  13349. cparams.yarn_ext_factor = params.yarn_ext_factor;
  13350. cparams.yarn_attn_factor = params.yarn_attn_factor;
  13351. cparams.yarn_beta_fast = params.yarn_beta_fast;
  13352. cparams.yarn_beta_slow = params.yarn_beta_slow;
  13353. cparams.defrag_thold = params.defrag_thold;
  13354. cparams.embeddings = params.embeddings;
  13355. cparams.offload_kqv = params.offload_kqv;
  13356. cparams.flash_attn = params.flash_attn;
  13357. cparams.pooling_type = params.pooling_type;
  13358. cparams.n_ctx = params.n_ctx == 0 ? hparams.n_ctx_train : params.n_ctx;
  13359. cparams.rope_freq_base = params.rope_freq_base == 0.0f ? hparams.rope_freq_base_train : params.rope_freq_base;
  13360. cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale;
  13361. // this is necessary due to kv_self.n being padded later during inference
  13362. cparams.n_ctx = GGML_PAD(cparams.n_ctx, llama_kv_cache_get_padding(cparams));
  13363. // with causal attention, the batch size is limited by the context size
  13364. cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch;
  13365. // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask
  13366. // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext)
  13367. // ref: https://github.com/ggerganov/llama.cpp/pull/5021
  13368. if (cparams.n_batch < GGML_KQ_MASK_PAD) {
  13369. LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD);
  13370. cparams.n_batch = GGML_KQ_MASK_PAD;
  13371. }
  13372. cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch);
  13373. cparams.n_ctx_orig_yarn = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx :
  13374. hparams.n_ctx_orig_yarn != 0 ? hparams.n_ctx_orig_yarn :
  13375. hparams.n_ctx_train;
  13376. cparams.cb_eval = params.cb_eval;
  13377. cparams.cb_eval_user_data = params.cb_eval_user_data;
  13378. auto rope_scaling_type = params.rope_scaling_type;
  13379. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_UNSPECIFIED) {
  13380. rope_scaling_type = hparams.rope_scaling_type_train;
  13381. }
  13382. if (rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_NONE) {
  13383. cparams.rope_freq_scale = 1.0f; // never scale if scaling type is none
  13384. }
  13385. if (cparams.yarn_ext_factor < 0.0f) { // negative indicates 'not set'
  13386. cparams.yarn_ext_factor = rope_scaling_type == LLAMA_ROPE_SCALING_TYPE_YARN ? 1.0f : 0.0f;
  13387. }
  13388. cparams.yarn_attn_factor *= hparams.rope_attn_factor;
  13389. cparams.causal_attn = hparams.causal_attn;
  13390. if (cparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13391. if (hparams.pooling_type == LLAMA_POOLING_TYPE_UNSPECIFIED) {
  13392. cparams.pooling_type = LLAMA_POOLING_TYPE_NONE;
  13393. } else {
  13394. cparams.pooling_type = hparams.pooling_type;
  13395. }
  13396. }
  13397. if (params.seed == LLAMA_DEFAULT_SEED) {
  13398. params.seed = time(NULL);
  13399. }
  13400. LLAMA_LOG_INFO("%s: n_ctx = %u\n", __func__, cparams.n_ctx);
  13401. LLAMA_LOG_INFO("%s: n_batch = %u\n", __func__, cparams.n_batch);
  13402. LLAMA_LOG_INFO("%s: n_ubatch = %u\n", __func__, cparams.n_ubatch);
  13403. LLAMA_LOG_INFO("%s: flash_attn = %d\n", __func__, cparams.flash_attn);
  13404. LLAMA_LOG_INFO("%s: freq_base = %.1f\n", __func__, cparams.rope_freq_base);
  13405. LLAMA_LOG_INFO("%s: freq_scale = %g\n", __func__, cparams.rope_freq_scale);
  13406. ctx->abort_callback = params.abort_callback;
  13407. ctx->abort_callback_data = params.abort_callback_data;
  13408. ctx->rng = std::mt19937(params.seed);
  13409. ctx->logits_all = params.logits_all;
  13410. uint32_t kv_size = cparams.n_ctx;
  13411. ggml_type type_k = params.type_k;
  13412. ggml_type type_v = params.type_v;
  13413. // Mamba only needs a constant number of KV cache cells per sequence
  13414. if (model->arch == LLM_ARCH_MAMBA) {
  13415. // Mamba needs at least as many KV cells as there are sequences kept at any time
  13416. kv_size = std::max((uint32_t) 1, params.n_seq_max);
  13417. // it's probably best to keep as much precision as possible for the states
  13418. type_k = GGML_TYPE_F32; // required by ggml_ssm_conv for Mamba's conv_states
  13419. type_v = GGML_TYPE_F32; // required by ggml_ssm_scan for Mamba's ssm_states
  13420. }
  13421. GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
  13422. GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
  13423. if (!hparams.vocab_only) {
  13424. // initialize backends
  13425. #if defined(GGML_USE_METAL)
  13426. if (model->n_gpu_layers > 0) {
  13427. ctx->backend_metal = ggml_backend_metal_init();
  13428. if (ctx->backend_metal == nullptr) {
  13429. LLAMA_LOG_ERROR("%s: failed to initialize Metal backend\n", __func__);
  13430. llama_free(ctx);
  13431. return nullptr;
  13432. }
  13433. ctx->backends.push_back(ctx->backend_metal);
  13434. }
  13435. #elif defined(GGML_USE_CUDA)
  13436. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13437. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13438. ggml_backend_t backend = ggml_backend_cuda_init(model->main_gpu);
  13439. if (backend == nullptr) {
  13440. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, model->main_gpu);
  13441. llama_free(ctx);
  13442. return nullptr;
  13443. }
  13444. ctx->backends.push_back(backend);
  13445. } else {
  13446. // LLAMA_SPLIT_MODE_LAYER requires a backend for each GPU
  13447. for (int device = 0; device < ggml_backend_cuda_get_device_count(); ++device) {
  13448. ggml_backend_t backend = ggml_backend_cuda_init(device);
  13449. if (backend == nullptr) {
  13450. LLAMA_LOG_ERROR("%s: failed to initialize CUDA%d backend\n", __func__, device);
  13451. llama_free(ctx);
  13452. return nullptr;
  13453. }
  13454. ctx->backends.push_back(backend);
  13455. }
  13456. }
  13457. #elif defined(GGML_USE_VULKAN)
  13458. if (model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13459. LLAMA_LOG_ERROR("%s: Row split not supported. Failed to initialize Vulkan backend\n", __func__);
  13460. llama_free(ctx);
  13461. return nullptr;
  13462. }
  13463. if (model->split_mode == LLAMA_SPLIT_MODE_NONE) {
  13464. ggml_backend_t backend = ggml_backend_vk_init(model->main_gpu);
  13465. if (backend == nullptr) {
  13466. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan backend\n", __func__);
  13467. llama_free(ctx);
  13468. return nullptr;
  13469. }
  13470. ctx->backends.push_back(backend);
  13471. } else {
  13472. for (int device = 0; device < ggml_backend_vk_get_device_count(); ++device) {
  13473. ggml_backend_t backend = ggml_backend_vk_init(device);
  13474. if (backend == nullptr) {
  13475. LLAMA_LOG_ERROR("%s: failed to initialize Vulkan%d backend\n", __func__, device);
  13476. llama_free(ctx);
  13477. return nullptr;
  13478. }
  13479. ctx->backends.push_back(backend);
  13480. }
  13481. }
  13482. #elif defined(GGML_USE_SYCL)
  13483. // with split_mode LLAMA_SPLIT_MODE_NONE or LLAMA_SPLIT_MODE_ROW, only the main GPU backend is used
  13484. if (model->split_mode == LLAMA_SPLIT_MODE_NONE || model->split_mode == LLAMA_SPLIT_MODE_ROW) {
  13485. ggml_backend_t backend = ggml_backend_sycl_init(model->main_gpu);
  13486. if (backend == nullptr) {
  13487. int main_gpu_id = ggml_backend_sycl_get_device_id(model->main_gpu);
  13488. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, main_gpu_id, model->main_gpu);
  13489. llama_free(ctx);
  13490. return nullptr;
  13491. }
  13492. ctx->backends.push_back(backend);
  13493. } else {
  13494. // LLAMA_SPLIT_LAYER requires a backend for each GPU
  13495. for (int i = 0; i < ggml_backend_sycl_get_device_count(); ++i) {
  13496. ggml_backend_t backend = ggml_backend_sycl_init(i);
  13497. if (backend == nullptr) {
  13498. int id_list[GGML_SYCL_MAX_DEVICES];
  13499. ggml_sycl_get_gpu_list(id_list, GGML_SYCL_MAX_DEVICES);
  13500. LLAMA_LOG_ERROR("%s: failed to initialize SYCL%d (index %d) backend\n", __func__, id_list[i], i);
  13501. llama_free(ctx);
  13502. return nullptr;
  13503. }
  13504. ctx->backends.push_back(backend);
  13505. }
  13506. }
  13507. #elif defined(GGML_USE_KOMPUTE)
  13508. if (model->n_gpu_layers > 0) {
  13509. auto * backend = ggml_backend_kompute_init(model->main_gpu);
  13510. if (backend == nullptr) {
  13511. LLAMA_LOG_ERROR("%s: failed to initialize Kompute backend\n", __func__);
  13512. llama_free(ctx);
  13513. return nullptr;
  13514. }
  13515. ctx->backends.push_back(backend);
  13516. }
  13517. #endif
  13518. #if defined(GGML_USE_RPC)
  13519. if (model->n_gpu_layers > 0) {
  13520. for (const auto & endpoint : model->rpc_servers) {
  13521. ggml_backend_t backend = ggml_backend_rpc_init(endpoint.c_str());
  13522. if (backend == nullptr) {
  13523. LLAMA_LOG_ERROR("%s: failed to initialize RPC to '%s'\n", __func__, endpoint.c_str());
  13524. llama_free(ctx);
  13525. return nullptr;
  13526. }
  13527. ctx->backends.push_back(backend);
  13528. }
  13529. }
  13530. #endif
  13531. ctx->backend_cpu = ggml_backend_cpu_init();
  13532. if (ctx->backend_cpu == nullptr) {
  13533. LLAMA_LOG_ERROR("%s: failed to initialize CPU backend\n", __func__);
  13534. llama_free(ctx);
  13535. return nullptr;
  13536. }
  13537. ctx->backends.push_back(ctx->backend_cpu);
  13538. if (!llama_kv_cache_init(ctx->kv_self, ctx, type_k, type_v, kv_size, cparams.offload_kqv)) {
  13539. LLAMA_LOG_ERROR("%s: llama_kv_cache_init() failed for self-attention cache\n", __func__);
  13540. llama_free(ctx);
  13541. return nullptr;
  13542. }
  13543. {
  13544. size_t memory_size_k = 0;
  13545. size_t memory_size_v = 0;
  13546. for (auto & k : ctx->kv_self.k_l) {
  13547. memory_size_k += ggml_nbytes(k);
  13548. }
  13549. for (auto & v : ctx->kv_self.v_l) {
  13550. memory_size_v += ggml_nbytes(v);
  13551. }
  13552. LLAMA_LOG_INFO("%s: KV self size = %7.2f MiB, K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__,
  13553. (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f),
  13554. ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f),
  13555. ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f));
  13556. }
  13557. // graph outputs buffer
  13558. {
  13559. // resized during inference when a batch uses more outputs
  13560. if (llama_output_reserve(*ctx, params.n_seq_max) < params.n_seq_max) {
  13561. LLAMA_LOG_ERROR("%s: failed to reserve initial output buffer\n", __func__);
  13562. llama_free(ctx);
  13563. return nullptr;
  13564. }
  13565. LLAMA_LOG_INFO("%s: %10s output buffer size = %8.2f MiB\n", __func__,
  13566. ggml_backend_buffer_name(ctx->buf_output),
  13567. ggml_backend_buffer_get_size(ctx->buf_output) / 1024.0 / 1024.0);
  13568. }
  13569. // scheduler and compute buffers
  13570. {
  13571. // buffer types used for the compute buffer of each backend
  13572. std::vector<ggml_backend_buffer_type_t> backend_buft;
  13573. for (auto * backend : ctx->backends) {
  13574. if (ggml_backend_is_cpu(backend)) {
  13575. // use host buffers for the CPU backend compute buffer
  13576. backend_buft.push_back(llama_default_buffer_type_cpu(true));
  13577. } else {
  13578. backend_buft.push_back(ggml_backend_get_default_buffer_type(backend));
  13579. }
  13580. }
  13581. // buffer used to store the computation graph and the tensor meta data
  13582. ctx->buf_compute_meta.resize(ggml_tensor_overhead()*LLAMA_MAX_NODES + ggml_graph_overhead_custom(LLAMA_MAX_NODES, false));
  13583. // enabling pipeline parallelism in the scheduler increases memory usage, so it is only done when necessary
  13584. bool pipeline_parallel =
  13585. llama_get_device_count(*model) > 1 &&
  13586. model->n_gpu_layers > (int)model->hparams.n_layer &&
  13587. model->split_mode == LLAMA_SPLIT_MODE_LAYER &&
  13588. params.offload_kqv;
  13589. #ifndef GGML_USE_CUDA
  13590. // pipeline parallelism requires support for async compute and events
  13591. // currently this is only implemented in the CUDA backend
  13592. pipeline_parallel = false;
  13593. #endif
  13594. ctx->sched = ggml_backend_sched_new(ctx->backends.data(), backend_buft.data(), ctx->backends.size(), LLAMA_MAX_NODES, pipeline_parallel);
  13595. if (pipeline_parallel) {
  13596. LLAMA_LOG_INFO("%s: pipeline parallelism enabled (n_copies=%d)\n", __func__, ggml_backend_sched_get_n_copies(ctx->sched));
  13597. }
  13598. // build worst-case graph
  13599. int n_tokens = (int)std::min(cparams.n_ctx, cparams.n_ubatch);
  13600. int n_past = cparams.n_ctx - n_tokens;
  13601. llama_token token = llama_token_bos(&ctx->model); // not actually used by llama_build_graph, but required to choose between token and embedding inputs graph
  13602. ggml_cgraph * gf = llama_build_graph(*ctx, llama_batch_get_one(&token, n_tokens, n_past, 0), true);
  13603. // initialize scheduler with the worst-case graph
  13604. if (!ggml_backend_sched_reserve(ctx->sched, gf)) {
  13605. LLAMA_LOG_ERROR("%s: failed to allocate compute buffers\n", __func__);
  13606. llama_free(ctx);
  13607. return nullptr;
  13608. }
  13609. for (size_t i = 0; i < ctx->backends.size(); i++) {
  13610. ggml_backend_t backend = ctx->backends[i];
  13611. ggml_backend_buffer_type_t buft = backend_buft[i];
  13612. size_t size = ggml_backend_sched_get_buffer_size(ctx->sched, backend);
  13613. if (size > 1) {
  13614. LLAMA_LOG_INFO("%s: %10s compute buffer size = %8.2f MiB\n", __func__,
  13615. ggml_backend_buft_name(buft),
  13616. size / 1024.0 / 1024.0);
  13617. }
  13618. }
  13619. // note: the number of splits during measure is higher than during inference due to the kv shift
  13620. int n_splits = ggml_backend_sched_get_n_splits(ctx->sched);
  13621. LLAMA_LOG_INFO("%s: graph nodes = %d\n", __func__, gf->n_nodes);
  13622. LLAMA_LOG_INFO("%s: graph splits = %d\n", __func__, n_splits);
  13623. }
  13624. }
  13625. return ctx;
  13626. }
  13627. void llama_free(struct llama_context * ctx) {
  13628. delete ctx;
  13629. }
  13630. const llama_model * llama_get_model(const struct llama_context * ctx) {
  13631. return &ctx->model;
  13632. }
  13633. uint32_t llama_n_ctx(const struct llama_context * ctx) {
  13634. return ctx->cparams.n_ctx;
  13635. }
  13636. uint32_t llama_n_batch(const struct llama_context * ctx) {
  13637. return ctx->cparams.n_batch;
  13638. }
  13639. uint32_t llama_n_ubatch(const struct llama_context * ctx) {
  13640. return ctx->cparams.n_ubatch;
  13641. }
  13642. uint32_t llama_n_seq_max(const struct llama_context * ctx) {
  13643. return ctx->kv_self.size;
  13644. }
  13645. enum llama_vocab_type llama_vocab_type(const struct llama_model * model) {
  13646. return model->vocab.type;
  13647. }
  13648. enum llama_rope_type llama_rope_type(const struct llama_model * model) {
  13649. switch (model->arch) {
  13650. // these models do not use RoPE
  13651. case LLM_ARCH_GPT2:
  13652. case LLM_ARCH_GPTJ:
  13653. case LLM_ARCH_MPT:
  13654. case LLM_ARCH_REFACT:
  13655. case LLM_ARCH_BLOOM:
  13656. case LLM_ARCH_MAMBA:
  13657. case LLM_ARCH_JINA_BERT_V2:
  13658. return LLAMA_ROPE_TYPE_NONE;
  13659. // use what we call a normal RoPE, operating on pairs of consecutive head values
  13660. case LLM_ARCH_LLAMA:
  13661. case LLM_ARCH_BAICHUAN:
  13662. case LLM_ARCH_STARCODER:
  13663. case LLM_ARCH_PLAMO:
  13664. case LLM_ARCH_CODESHELL:
  13665. case LLM_ARCH_ORION:
  13666. case LLM_ARCH_INTERNLM2:
  13667. case LLM_ARCH_MINICPM:
  13668. case LLM_ARCH_XVERSE:
  13669. case LLM_ARCH_COMMAND_R:
  13670. case LLM_ARCH_OLMO:
  13671. case LLM_ARCH_ARCTIC:
  13672. case LLM_ARCH_DEEPSEEK2:
  13673. return LLAMA_ROPE_TYPE_NORM;
  13674. // the pairs of head values are offset by n_rot/2
  13675. case LLM_ARCH_FALCON:
  13676. case LLM_ARCH_GROK:
  13677. case LLM_ARCH_DBRX:
  13678. case LLM_ARCH_BERT:
  13679. case LLM_ARCH_NOMIC_BERT:
  13680. case LLM_ARCH_STABLELM:
  13681. case LLM_ARCH_QWEN:
  13682. case LLM_ARCH_QWEN2:
  13683. case LLM_ARCH_QWEN2MOE:
  13684. case LLM_ARCH_PHI2:
  13685. case LLM_ARCH_PHI3:
  13686. case LLM_ARCH_GEMMA:
  13687. case LLM_ARCH_STARCODER2:
  13688. case LLM_ARCH_GPTNEOX:
  13689. return LLAMA_ROPE_TYPE_NEOX;
  13690. // all model arches should be listed explicitly here
  13691. case LLM_ARCH_UNKNOWN:
  13692. GGML_ASSERT(false && "unknown architecture");
  13693. break;
  13694. }
  13695. return LLAMA_ROPE_TYPE_NONE;
  13696. }
  13697. enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx) {
  13698. return ctx->cparams.pooling_type;
  13699. }
  13700. int32_t llama_n_vocab(const struct llama_model * model) {
  13701. return model->hparams.n_vocab;
  13702. }
  13703. int32_t llama_n_ctx_train(const struct llama_model * model) {
  13704. return model->hparams.n_ctx_train;
  13705. }
  13706. int32_t llama_n_embd(const struct llama_model * model) {
  13707. return model->hparams.n_embd;
  13708. }
  13709. int32_t llama_n_layer(const struct llama_model * model) {
  13710. return model->hparams.n_layer;
  13711. }
  13712. float llama_rope_freq_scale_train(const struct llama_model * model) {
  13713. return model->hparams.rope_freq_scale_train;
  13714. }
  13715. int32_t llama_model_meta_val_str(const struct llama_model * model, const char * key, char * buf, size_t buf_size) {
  13716. const auto & it = model->gguf_kv.find(key);
  13717. if (it == model->gguf_kv.end()) {
  13718. if (buf_size > 0) {
  13719. buf[0] = '\0';
  13720. }
  13721. return -1;
  13722. }
  13723. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13724. }
  13725. int32_t llama_model_meta_count(const struct llama_model * model) {
  13726. return (int)model->gguf_kv.size();
  13727. }
  13728. int32_t llama_model_meta_key_by_index(const struct llama_model * model, int i, char * buf, size_t buf_size) {
  13729. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13730. if (buf_size > 0) {
  13731. buf[0] = '\0';
  13732. }
  13733. return -1;
  13734. }
  13735. auto it = model->gguf_kv.begin();
  13736. std::advance(it, i);
  13737. return snprintf(buf, buf_size, "%s", it->first.c_str());
  13738. }
  13739. int32_t llama_model_meta_val_str_by_index(const struct llama_model * model, int32_t i, char * buf, size_t buf_size) {
  13740. if (i < 0 || i >= (int)model->gguf_kv.size()) {
  13741. if (buf_size > 0) {
  13742. buf[0] = '\0';
  13743. }
  13744. return -1;
  13745. }
  13746. auto it = model->gguf_kv.begin();
  13747. std::advance(it, i);
  13748. return snprintf(buf, buf_size, "%s", it->second.c_str());
  13749. }
  13750. int32_t llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size) {
  13751. return snprintf(buf, buf_size, "%s %s %s",
  13752. llama_model_arch_name(model->arch),
  13753. llama_model_type_name(model->type),
  13754. llama_model_ftype_name(model->ftype).c_str());
  13755. }
  13756. uint64_t llama_model_size(const struct llama_model * model) {
  13757. uint64_t size = 0;
  13758. for (const auto & it : model->tensors_by_name) {
  13759. size += ggml_nbytes(it.second);
  13760. }
  13761. return size;
  13762. }
  13763. uint64_t llama_model_n_params(const struct llama_model * model) {
  13764. uint64_t nparams = 0;
  13765. for (const auto & it : model->tensors_by_name) {
  13766. nparams += ggml_nelements(it.second);
  13767. }
  13768. return nparams;
  13769. }
  13770. struct ggml_tensor * llama_get_model_tensor(struct llama_model * model, const char * name) {
  13771. auto it = std::find_if(model->tensors_by_name.begin(), model->tensors_by_name.end(),
  13772. [name](const std::pair<std::string, struct ggml_tensor *> & it) {
  13773. return it.first == name;
  13774. });
  13775. if (it == model->tensors_by_name.end()) {
  13776. return nullptr;
  13777. }
  13778. return it->second;
  13779. }
  13780. uint32_t llama_model_quantize(
  13781. const char * fname_inp,
  13782. const char * fname_out,
  13783. const llama_model_quantize_params * params) {
  13784. try {
  13785. llama_model_quantize_internal(fname_inp, fname_out, params);
  13786. return 0;
  13787. } catch (const std::exception & err) {
  13788. LLAMA_LOG_ERROR("%s: failed to quantize: %s\n", __func__, err.what());
  13789. return 1;
  13790. }
  13791. }
  13792. int32_t llama_model_apply_lora_from_file(const struct llama_model * model, const char * path_lora, float scale, const char * path_base_model, int32_t n_threads) {
  13793. try {
  13794. return llama_apply_lora_from_file_internal(*model, path_lora, scale, path_base_model, n_threads);
  13795. } catch (const std::exception & err) {
  13796. LLAMA_LOG_ERROR("%s: failed to apply lora adapter: %s\n", __func__, err.what());
  13797. return 1;
  13798. }
  13799. }
  13800. static bool llama_control_vector_init(struct llama_control_vector & cvec, const llama_model & model) {
  13801. GGML_ASSERT(cvec.tensors.empty());
  13802. GGML_ASSERT(cvec.ctxs.empty());
  13803. GGML_ASSERT(cvec.bufs.empty());
  13804. // count layer buffer types
  13805. std::map<ggml_backend_buffer_type_t, int> buft_layer_count;
  13806. for (int64_t i = 0; i < model.hparams.n_layer; i++) {
  13807. buft_layer_count[model.buft_layer[i].buft]++;
  13808. }
  13809. // allocate contexts
  13810. std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
  13811. for (auto & it : buft_layer_count) {
  13812. int n_layers = it.second;
  13813. struct ggml_init_params params = {
  13814. /*.mem_size =*/ n_layers * ggml_tensor_overhead(),
  13815. /*.mem_buffer =*/ NULL,
  13816. /*.no_alloc =*/ true,
  13817. };
  13818. ggml_context * ctx = ggml_init(params);
  13819. if (!ctx) {
  13820. LLAMA_LOG_ERROR("%s: failed to allocate context for control vector\n", __func__);
  13821. return 1;
  13822. }
  13823. ctx_map[it.first] = ctx;
  13824. }
  13825. // make tensors
  13826. cvec.tensors.reserve(model.hparams.n_layer);
  13827. cvec.tensors.push_back(nullptr); // there's never a tensor for layer 0
  13828. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13829. struct ggml_context * ctx = ctx_map.at(model.buft_layer[il].buft);
  13830. ggml_tensor * tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, model.hparams.n_embd);
  13831. cvec.tensors.push_back(tensor);
  13832. }
  13833. // allocate tensors / buffers and zero
  13834. cvec.ctxs.reserve(ctx_map.size());
  13835. cvec.bufs.reserve(ctx_map.size());
  13836. for (auto it : ctx_map) {
  13837. ggml_backend_buffer_type_t buft = it.first;
  13838. ggml_context * ctx = it.second;
  13839. ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
  13840. if (!buf) {
  13841. LLAMA_LOG_ERROR("%s: failed to allocate buffer for control vector\n", __func__);
  13842. return false;
  13843. }
  13844. ggml_backend_buffer_clear(buf, 0);
  13845. cvec.ctxs.push_back(ctx);
  13846. cvec.bufs.push_back(buf);
  13847. }
  13848. return true;
  13849. }
  13850. int32_t llama_control_vector_apply(struct llama_context * lctx, const float * data, size_t len, int32_t n_embd, int32_t il_start, int32_t il_end) {
  13851. const llama_model & model = lctx->model;
  13852. llama_control_vector & cvec = lctx->cvec;
  13853. if (data == nullptr) {
  13854. // disable the current control vector (but leave allocated for later)
  13855. cvec.layer_start = -1;
  13856. cvec.layer_end = -1;
  13857. return 0;
  13858. }
  13859. if (n_embd != (int) model.hparams.n_embd) {
  13860. LLAMA_LOG_ERROR("%s: control vector n_embd does not match model\n", __func__);
  13861. return 1;
  13862. }
  13863. if (cvec.tensors.empty()) {
  13864. if (!llama_control_vector_init(cvec, model)) {
  13865. return 1;
  13866. }
  13867. }
  13868. cvec.layer_start = il_start;
  13869. cvec.layer_end = il_end;
  13870. for (size_t il = 1; il < model.hparams.n_layer; il++) {
  13871. assert(cvec.tensors[il] != nullptr);
  13872. const size_t off = n_embd * (il - 1); // buffer doesn't have data for layer 0, since it's never present
  13873. if (off + n_embd <= len) {
  13874. ggml_backend_tensor_set(cvec.tensors[il], data + off, 0, n_embd * ggml_element_size(cvec.tensors[il]));
  13875. }
  13876. }
  13877. return 0;
  13878. }
  13879. struct llama_kv_cache_view llama_kv_cache_view_init(const struct llama_context * ctx, int32_t n_seq_max) {
  13880. struct llama_kv_cache_view result = {
  13881. /*.n_cells = */ 0,
  13882. /*.n_seq_max = */ n_seq_max,
  13883. /*.token_count = */ 0,
  13884. /*.used_cells = */ llama_get_kv_cache_used_cells(ctx),
  13885. /*.max_contiguous = */ 0,
  13886. /*.max_contiguous_idx = */ -1,
  13887. /*.cells = */ nullptr,
  13888. /*.cells_sequences = */ nullptr,
  13889. };
  13890. return result;
  13891. }
  13892. void llama_kv_cache_view_free(struct llama_kv_cache_view * view) {
  13893. if (view->cells != nullptr) {
  13894. free(view->cells);
  13895. view->cells = nullptr;
  13896. }
  13897. if (view->cells_sequences != nullptr) {
  13898. free(view->cells_sequences);
  13899. view->cells_sequences = nullptr;
  13900. }
  13901. }
  13902. void llama_kv_cache_view_update(const struct llama_context * ctx, struct llama_kv_cache_view * view) {
  13903. if (uint32_t(view->n_cells) < ctx->kv_self.size || view->cells == nullptr) {
  13904. view->n_cells = int32_t(ctx->kv_self.size);
  13905. void * p = realloc(view->cells, sizeof(struct llama_kv_cache_view_cell) * view->n_cells);
  13906. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells");
  13907. view->cells = (struct llama_kv_cache_view_cell *)p;
  13908. p = realloc(view->cells_sequences, sizeof(llama_seq_id) * view->n_seq_max * view->n_cells);
  13909. GGML_ASSERT(p != nullptr && "Failed to alloc kv_cache_view cells sequences");
  13910. view->cells_sequences = (llama_seq_id *)p;
  13911. }
  13912. const std::vector<llama_kv_cell> & kv_cells = ctx->kv_self.cells;
  13913. llama_kv_cache_view_cell * c_curr = view->cells;
  13914. llama_seq_id * cs_curr = view->cells_sequences;
  13915. int32_t used_cells = 0;
  13916. int32_t token_count = 0;
  13917. int32_t curr_contig_idx = -1;
  13918. uint32_t max_contig = 0;
  13919. int32_t max_contig_idx = -1;
  13920. for (int32_t i = 0; i < int32_t(ctx->kv_self.size); i++, c_curr++, cs_curr += view->n_seq_max) {
  13921. const size_t curr_size = kv_cells[i].seq_id.size();
  13922. token_count += curr_size;
  13923. c_curr->pos = kv_cells[i].pos + kv_cells[i].delta;
  13924. if (curr_size > 0) {
  13925. if (curr_contig_idx >= 0 && uint32_t(i - curr_contig_idx) > max_contig) {
  13926. max_contig = i - curr_contig_idx;
  13927. max_contig_idx = curr_contig_idx;
  13928. }
  13929. curr_contig_idx = -1;
  13930. } else if (curr_contig_idx < 0) {
  13931. curr_contig_idx = i;
  13932. }
  13933. int seq_idx = 0;
  13934. for (const llama_seq_id it : kv_cells[i].seq_id) {
  13935. if (seq_idx >= view->n_seq_max) {
  13936. break;
  13937. }
  13938. cs_curr[seq_idx] = it;
  13939. seq_idx++;
  13940. }
  13941. if (seq_idx != 0) {
  13942. used_cells++;
  13943. }
  13944. for (; seq_idx < view->n_seq_max; seq_idx++) {
  13945. cs_curr[seq_idx] = -1;
  13946. }
  13947. }
  13948. if (curr_contig_idx >= 0 && kv_cells.size() - curr_contig_idx > max_contig) {
  13949. max_contig_idx = curr_contig_idx;
  13950. max_contig = kv_cells.size() - curr_contig_idx;
  13951. }
  13952. view->max_contiguous = max_contig;
  13953. view->max_contiguous_idx = max_contig_idx;
  13954. view->token_count = token_count;
  13955. view->used_cells = used_cells;
  13956. if (uint32_t(used_cells) != ctx->kv_self.used) {
  13957. LLAMA_LOG_ERROR("%s: used cells mismatch. kv_cache says %d but we calculated %d\n",
  13958. __func__, ctx->kv_self.used, used_cells);
  13959. }
  13960. }
  13961. int32_t llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  13962. int result = 0;
  13963. for (uint32_t i = 0; i < ctx->kv_self.size; i++) {
  13964. result += ctx->kv_self.cells[i].seq_id.size();
  13965. }
  13966. return result;
  13967. }
  13968. int32_t llama_get_kv_cache_used_cells(const struct llama_context * ctx) {
  13969. return ctx->kv_self.used;
  13970. }
  13971. void llama_kv_cache_clear(struct llama_context * ctx) {
  13972. llama_kv_cache_clear(ctx->kv_self);
  13973. }
  13974. bool llama_kv_cache_seq_rm(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
  13975. return llama_kv_cache_seq_rm(ctx->kv_self, seq_id, p0, p1);
  13976. }
  13977. void llama_kv_cache_seq_cp(struct llama_context * ctx, llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
  13978. if (seq_id_src == seq_id_dst) {
  13979. return;
  13980. }
  13981. llama_kv_cache_seq_cp(ctx->kv_self, seq_id_src, seq_id_dst, p0, p1);
  13982. }
  13983. void llama_kv_cache_seq_keep(struct llama_context * ctx, llama_seq_id seq_id) {
  13984. llama_kv_cache_seq_keep(ctx->kv_self, seq_id);
  13985. }
  13986. void llama_kv_cache_seq_add(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos delta) {
  13987. if (delta == 0) {
  13988. return;
  13989. }
  13990. llama_kv_cache_seq_add(ctx->kv_self, seq_id, p0, p1, delta);
  13991. }
  13992. void llama_kv_cache_seq_div(struct llama_context * ctx, llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
  13993. if (d == 1) {
  13994. return;
  13995. }
  13996. llama_kv_cache_seq_div(ctx->kv_self, seq_id, p0, p1, d);
  13997. }
  13998. llama_pos llama_kv_cache_seq_pos_max(struct llama_context * ctx, llama_seq_id seq_id) {
  13999. return llama_kv_cache_seq_pos_max(ctx->kv_self, seq_id);
  14000. }
  14001. void llama_kv_cache_defrag(struct llama_context * ctx) {
  14002. llama_kv_cache_defrag(ctx->kv_self);
  14003. }
  14004. void llama_kv_cache_update(struct llama_context * ctx) {
  14005. llama_kv_cache_update_internal(*ctx);
  14006. }
  14007. // deprecated
  14008. size_t llama_get_state_size(const struct llama_context * ctx) {
  14009. return llama_state_get_size(ctx);
  14010. }
  14011. // deprecated
  14012. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  14013. return llama_state_get_data(ctx, dst);
  14014. }
  14015. // deprecated
  14016. size_t llama_set_state_data(struct llama_context * ctx, const uint8_t * src) {
  14017. return llama_state_set_data(ctx, src);
  14018. }
  14019. // deprecated
  14020. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14021. return llama_state_load_file(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14022. }
  14023. // deprecated
  14024. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14025. return llama_state_save_file(ctx, path_session, tokens, n_token_count);
  14026. }
  14027. // Returns the *maximum* size of the state
  14028. size_t llama_state_get_size(const struct llama_context * ctx) {
  14029. const auto & cparams = ctx->cparams;
  14030. const auto & hparams = ctx->model.hparams;
  14031. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  14032. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  14033. const size_t s_rng_size = sizeof(size_t);
  14034. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  14035. const size_t s_n_outputs = sizeof(size_t);
  14036. // assume worst case for outputs although only currently set ones are serialized
  14037. const size_t s_output_pos = ctx->cparams.n_batch * sizeof(int32_t);
  14038. const size_t s_logits_size = sizeof(size_t);
  14039. const size_t s_logits = ctx->logits_size ? cparams.n_batch * hparams.n_vocab * sizeof(float) : 0;
  14040. const size_t s_embedding_size = sizeof(size_t);
  14041. const size_t s_embedding = ctx->embd_size ? cparams.n_batch * hparams.n_embd * sizeof(float) : 0;
  14042. const size_t s_kv_buf_size = sizeof(size_t);
  14043. const size_t s_kv_head = sizeof(uint32_t);
  14044. const size_t s_kv_size = sizeof(uint32_t);
  14045. const size_t s_kv_used = sizeof(uint32_t);
  14046. const size_t s_v_trans = sizeof(uint32_t);
  14047. const size_t s_kv = ctx->kv_self.total_size();
  14048. const size_t s_kv_cell = sizeof(llama_pos) + sizeof(size_t) + cparams.n_seq_max*sizeof(llama_seq_id);
  14049. const size_t s_kv_cells = ctx->kv_self.size * s_kv_cell;
  14050. const size_t s_total = (
  14051. + s_rng_size
  14052. + s_rng
  14053. + s_n_outputs
  14054. + s_output_pos
  14055. + s_logits_size
  14056. + s_logits
  14057. + s_embedding_size
  14058. + s_embedding
  14059. + s_kv_buf_size
  14060. + s_kv_head
  14061. + s_kv_size
  14062. + s_kv_used
  14063. + s_v_trans
  14064. + s_kv
  14065. + s_kv_cells
  14066. );
  14067. // on session change it is very likely that the state size has changed - so we need to update this function
  14068. static_assert(LLAMA_SESSION_VERSION == 6, "So you just bumped the session version - good. But did you remember to update llama_state_get_size?");
  14069. return s_total;
  14070. }
  14071. // llama_context_data
  14072. struct llama_data_context {
  14073. virtual void write(const void * src, size_t size) = 0;
  14074. virtual size_t get_size_written() = 0;
  14075. virtual ~llama_data_context() = default;
  14076. };
  14077. struct llama_data_buffer_context : llama_data_context {
  14078. uint8_t * ptr;
  14079. size_t size_written = 0;
  14080. llama_data_buffer_context(uint8_t * p) : ptr(p) {}
  14081. void write(const void * src, size_t size) override {
  14082. memcpy(ptr, src, size);
  14083. ptr += size;
  14084. size_written += size;
  14085. }
  14086. size_t get_size_written() override {
  14087. return size_written;
  14088. }
  14089. };
  14090. struct llama_data_file_context : llama_data_context {
  14091. llama_file * file;
  14092. size_t size_written = 0;
  14093. llama_data_file_context(llama_file * f) : file(f) {}
  14094. void write(const void * src, size_t size) override {
  14095. file->write_raw(src, size);
  14096. size_written += size;
  14097. }
  14098. size_t get_size_written() override {
  14099. return size_written;
  14100. }
  14101. };
  14102. /** copy state data into either a buffer or file depending on the passed in context
  14103. *
  14104. * file context:
  14105. * llama_file file("/path", "wb");
  14106. * llama_data_file_context data_ctx(&file);
  14107. * llama_state_get_data(ctx, &data_ctx);
  14108. *
  14109. * buffer context:
  14110. * std::vector<uint8_t> buf(max_size, 0);
  14111. * llama_data_buffer_context data_ctx(&buf.data());
  14112. * llama_state_get_data(ctx, &data_ctx);
  14113. *
  14114. */
  14115. static void llama_state_get_data_internal(struct llama_context * ctx, llama_data_context * data_ctx) {
  14116. llama_synchronize(ctx);
  14117. // copy rng
  14118. {
  14119. std::ostringstream rng_ss;
  14120. rng_ss << ctx->rng;
  14121. const std::string & rng_str = rng_ss.str();
  14122. const size_t rng_size = rng_str.size();
  14123. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14124. data_ctx->write(&rng_size, sizeof(rng_size));
  14125. data_ctx->write(rng_str.data(), rng_size);
  14126. }
  14127. // copy outputs
  14128. {
  14129. // Can't use ctx->n_outputs because it's not for the
  14130. // entire last batch when n_ubatch is smaller than n_batch
  14131. size_t n_outputs = 0;
  14132. // copy output ids
  14133. {
  14134. std::vector<int32_t> output_pos;
  14135. const size_t n_batch = ctx->cparams.n_batch;
  14136. const auto & output_ids = ctx->output_ids;
  14137. output_pos.resize(ctx->output_size);
  14138. // build a more compact representation of the output ids
  14139. for (size_t i = 0; i < n_batch; ++i) {
  14140. // map an output id to a position in the batch
  14141. int32_t pos = output_ids[i];
  14142. if (pos >= 0) {
  14143. if ((size_t) pos >= n_outputs) {
  14144. n_outputs = pos + 1;
  14145. }
  14146. GGML_ASSERT((size_t) pos < ctx->output_size);
  14147. output_pos[pos] = i;
  14148. }
  14149. }
  14150. data_ctx->write(&n_outputs, sizeof(n_outputs));
  14151. if (n_outputs) {
  14152. data_ctx->write(output_pos.data(), n_outputs * sizeof(int32_t));
  14153. }
  14154. }
  14155. // copy logits
  14156. {
  14157. const size_t logits_size = std::min(ctx->logits_size, n_outputs * ctx->model.hparams.n_vocab);
  14158. data_ctx->write(&logits_size, sizeof(logits_size));
  14159. if (logits_size) {
  14160. data_ctx->write(ctx->logits, logits_size * sizeof(float));
  14161. }
  14162. }
  14163. // copy embeddings
  14164. {
  14165. const size_t embeddings_size = std::min(ctx->embd_size, n_outputs * ctx->model.hparams.n_embd);
  14166. data_ctx->write(&embeddings_size, sizeof(embeddings_size));
  14167. if (embeddings_size) {
  14168. data_ctx->write(ctx->embd, embeddings_size * sizeof(float));
  14169. }
  14170. }
  14171. }
  14172. // copy kv cache
  14173. {
  14174. const auto & kv_self = ctx->kv_self;
  14175. const auto & hparams = ctx->model.hparams;
  14176. const uint32_t n_layer = hparams.n_layer;
  14177. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14178. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14179. // NOTE: kv_size and kv_buf_size are mostly used for sanity checks
  14180. const uint32_t kv_head = llama_kv_cache_cell_max(kv_self);
  14181. const uint32_t kv_size = kv_self.size;
  14182. const size_t kv_buf_size = kv_self.total_size() / (kv_size ? kv_size : 1) * kv_head;
  14183. const uint32_t kv_used = kv_self.used;
  14184. const uint32_t v_trans = kv_self.v_trans ? 1 : 0;
  14185. data_ctx->write(&kv_buf_size, sizeof(kv_buf_size));
  14186. data_ctx->write(&kv_head, sizeof(kv_head));
  14187. data_ctx->write(&kv_size, sizeof(kv_size));
  14188. data_ctx->write(&kv_used, sizeof(kv_used));
  14189. data_ctx->write(&v_trans, sizeof(v_trans));
  14190. if (kv_buf_size) {
  14191. const size_t pre_kv_buf_size = data_ctx->get_size_written();
  14192. std::vector<uint8_t> tmp_buf;
  14193. for (int il = 0; il < (int) n_layer; ++il) {
  14194. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14195. tmp_buf.resize(k_size);
  14196. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14197. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14198. if (kv_self.recurrent || !kv_self.v_trans) {
  14199. // v is contiguous for recurrent models
  14200. // TODO: use other tensors for state models than k and v
  14201. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14202. tmp_buf.resize(v_size);
  14203. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), 0, tmp_buf.size());
  14204. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14205. continue;
  14206. }
  14207. // v is not contiguous, copy row by row
  14208. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14209. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_size);
  14210. tmp_buf.resize(v_row_size);
  14211. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14212. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), ir*v_row_stride, tmp_buf.size());
  14213. data_ctx->write(tmp_buf.data(), tmp_buf.size());
  14214. }
  14215. }
  14216. GGML_ASSERT(kv_buf_size == data_ctx->get_size_written() - pre_kv_buf_size);
  14217. }
  14218. for (uint32_t i = 0; i < kv_head; ++i) {
  14219. const auto & cell = kv_self.cells[i];
  14220. const llama_pos pos = cell.pos;
  14221. const size_t seq_id_size = cell.seq_id.size();
  14222. data_ctx->write(&pos, sizeof(pos));
  14223. data_ctx->write(&seq_id_size, sizeof(seq_id_size));
  14224. for (auto seq_id : cell.seq_id) {
  14225. data_ctx->write(&seq_id, sizeof(seq_id));
  14226. }
  14227. }
  14228. }
  14229. }
  14230. size_t llama_state_get_data(struct llama_context * ctx, uint8_t * dst) {
  14231. llama_data_buffer_context data_ctx(dst);
  14232. llama_state_get_data_internal(ctx, &data_ctx);
  14233. return data_ctx.get_size_written();
  14234. }
  14235. // Sets the state reading from the specified source address
  14236. size_t llama_state_set_data(struct llama_context * ctx, const uint8_t * src) {
  14237. llama_synchronize(ctx);
  14238. const uint8_t * inp = src;
  14239. // set rng
  14240. {
  14241. size_t rng_size;
  14242. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  14243. GGML_ASSERT(rng_size <= LLAMA_MAX_RNG_STATE);
  14244. std::string rng_str((const char *)inp, rng_size); inp += rng_size;
  14245. std::istringstream rng_ss(rng_str);
  14246. rng_ss >> ctx->rng;
  14247. GGML_ASSERT(!rng_ss.fail());
  14248. }
  14249. // set output ids
  14250. {
  14251. size_t n_outputs;
  14252. std::vector<int32_t> output_pos;
  14253. memcpy(&n_outputs, inp, sizeof(n_outputs)); inp += sizeof(n_outputs);
  14254. GGML_ASSERT(n_outputs <= llama_output_reserve(*ctx, n_outputs));
  14255. if (n_outputs) {
  14256. output_pos.resize(n_outputs);
  14257. memcpy(output_pos.data(), inp, n_outputs * sizeof(int32_t));
  14258. inp += n_outputs * sizeof(int32_t);
  14259. for (int32_t i = 0; i < (int32_t) output_pos.size(); ++i) {
  14260. int32_t id = output_pos[i];
  14261. GGML_ASSERT((uint32_t) id < ctx->cparams.n_batch);
  14262. ctx->output_ids[id] = i;
  14263. }
  14264. ctx->n_outputs = n_outputs;
  14265. }
  14266. }
  14267. // set logits
  14268. {
  14269. size_t logits_size;
  14270. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  14271. GGML_ASSERT(ctx->logits_size >= logits_size);
  14272. if (logits_size) {
  14273. memcpy(ctx->logits, inp, logits_size * sizeof(float));
  14274. inp += logits_size * sizeof(float);
  14275. }
  14276. }
  14277. // set embeddings
  14278. {
  14279. size_t embeddings_size;
  14280. memcpy(&embeddings_size, inp, sizeof(embeddings_size)); inp += sizeof(embeddings_size);
  14281. GGML_ASSERT(ctx->embd_size >= embeddings_size);
  14282. if (embeddings_size) {
  14283. memcpy(ctx->embd, inp, embeddings_size * sizeof(float));
  14284. inp += embeddings_size * sizeof(float);
  14285. }
  14286. }
  14287. // set kv cache
  14288. {
  14289. const auto & kv_self = ctx->kv_self;
  14290. const auto & hparams = ctx->model.hparams;
  14291. const uint32_t n_layer = hparams.n_layer;
  14292. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14293. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14294. size_t kv_buf_size;
  14295. uint32_t kv_head;
  14296. uint32_t kv_size;
  14297. uint32_t kv_used;
  14298. uint32_t v_trans;
  14299. memcpy(&kv_buf_size, inp, sizeof(kv_buf_size)); inp += sizeof(kv_buf_size);
  14300. memcpy(&kv_head, inp, sizeof(kv_head)); inp += sizeof(kv_head);
  14301. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  14302. memcpy(&kv_used, inp, sizeof(kv_used)); inp += sizeof(kv_used);
  14303. memcpy(&v_trans, inp, sizeof(v_trans)); inp += sizeof(v_trans);
  14304. GGML_ASSERT(kv_self.v_trans == (bool) v_trans); // incompatible V transposition
  14305. if (kv_self.size != kv_size) {
  14306. // the KV cache needs to be big enough to load all the KV cells from the saved state
  14307. GGML_ASSERT(kv_self.size >= kv_head);
  14308. LLAMA_LOG_INFO("%s: state contains %d KV cells, was saved with kv_size=%d, but is loaded with kv_size=%d (fine, but different)\n",
  14309. __func__, kv_head, kv_size, kv_self.size);
  14310. }
  14311. llama_kv_cache_clear(ctx);
  14312. if (kv_buf_size) {
  14313. const size_t pre_kv_buf_size = inp - src;
  14314. GGML_ASSERT(kv_self.total_size() >= kv_buf_size);
  14315. for (int il = 0; il < (int) n_layer; ++il) {
  14316. const size_t k_size = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa*kv_head);
  14317. ggml_backend_tensor_set(kv_self.k_l[il], inp, 0, k_size);
  14318. inp += k_size;
  14319. if (kv_self.recurrent || !kv_self.v_trans) {
  14320. // v is contiguous for recurrent models
  14321. // TODO: use other tensors for state models than k and v
  14322. const size_t v_size = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa*kv_head);
  14323. ggml_backend_tensor_set(kv_self.v_l[il], inp, 0, v_size);
  14324. inp += v_size;
  14325. continue;
  14326. }
  14327. // v is not contiguous, copy row by row
  14328. const size_t v_row_size = ggml_row_size(kv_self.v_l[il]->type, kv_head);
  14329. const size_t v_row_stride = ggml_row_size(kv_self.v_l[il]->type, kv_self.size);
  14330. for (int ir = 0; ir < (int) n_embd_v_gqa; ++ir) {
  14331. ggml_backend_tensor_set(kv_self.v_l[il], inp, ir*v_row_stride, v_row_size);
  14332. inp += v_row_size;
  14333. }
  14334. }
  14335. GGML_ASSERT(kv_buf_size == inp - src - pre_kv_buf_size);
  14336. }
  14337. ctx->kv_self.head = kv_head;
  14338. ctx->kv_self.used = kv_used;
  14339. for (uint32_t i = 0; i < kv_head; ++i) {
  14340. llama_pos pos;
  14341. size_t seq_id_size;
  14342. memcpy(&pos, inp, sizeof(pos)); inp += sizeof(pos);
  14343. memcpy(&seq_id_size, inp, sizeof(seq_id_size)); inp += sizeof(seq_id_size);
  14344. ctx->kv_self.cells[i].pos = pos;
  14345. llama_seq_id seq_id;
  14346. for (size_t j = 0; j < seq_id_size; ++j) {
  14347. memcpy(&seq_id, inp, sizeof(seq_id)); inp += sizeof(seq_id);
  14348. ctx->kv_self.cells[i].seq_id.insert(seq_id);
  14349. }
  14350. }
  14351. }
  14352. const size_t nread = inp - src;
  14353. const size_t max_size = llama_state_get_size(ctx);
  14354. GGML_ASSERT(nread <= max_size);
  14355. return nread;
  14356. }
  14357. static bool llama_state_load_file_internal(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14358. llama_file file(path_session, "rb");
  14359. // sanity checks
  14360. {
  14361. const uint32_t magic = file.read_u32();
  14362. const uint32_t version = file.read_u32();
  14363. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  14364. LLAMA_LOG_ERROR("%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  14365. return false;
  14366. }
  14367. llama_hparams session_hparams;
  14368. file.read_raw(&session_hparams, sizeof(llama_hparams));
  14369. if (session_hparams != ctx->model.hparams) {
  14370. LLAMA_LOG_INFO("%s : model hparams didn't match from session file!\n", __func__);
  14371. return false;
  14372. }
  14373. }
  14374. // load the prompt
  14375. {
  14376. const uint32_t n_token_count = file.read_u32();
  14377. if (n_token_count > n_token_capacity) {
  14378. LLAMA_LOG_ERROR("%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14379. return false;
  14380. }
  14381. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14382. *n_token_count_out = n_token_count;
  14383. }
  14384. // restore the context state
  14385. {
  14386. const size_t n_state_size_cur = file.size - file.tell();
  14387. const size_t n_state_size_max = llama_state_get_size(ctx);
  14388. if (n_state_size_cur > n_state_size_max) {
  14389. LLAMA_LOG_ERROR("%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  14390. return false;
  14391. }
  14392. std::vector<uint8_t> state_data(n_state_size_max);
  14393. file.read_raw(state_data.data(), n_state_size_cur);
  14394. llama_state_set_data(ctx, state_data.data());
  14395. }
  14396. return true;
  14397. }
  14398. bool llama_state_load_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14399. try {
  14400. return llama_state_load_file_internal(ctx, path_session, tokens_out, n_token_capacity, n_token_count_out);
  14401. } catch (const std::exception & err) {
  14402. LLAMA_LOG_ERROR("error loading session file: %s\n", err.what());
  14403. return false;
  14404. }
  14405. }
  14406. static bool llama_state_save_file_internal(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14407. llama_file file(path_session, "wb");
  14408. file.write_u32(LLAMA_SESSION_MAGIC);
  14409. file.write_u32(LLAMA_SESSION_VERSION);
  14410. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  14411. // save the prompt
  14412. file.write_u32((uint32_t) n_token_count);
  14413. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14414. // save the context state using stream saving
  14415. llama_data_file_context data_ctx(&file);
  14416. llama_state_get_data_internal(ctx, &data_ctx);
  14417. return true;
  14418. }
  14419. bool llama_state_save_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  14420. try {
  14421. return llama_state_save_file_internal(ctx, path_session, tokens, n_token_count);
  14422. } catch (const std::exception & err) {
  14423. LLAMA_LOG_ERROR("error saving session file: %s\n", err.what());
  14424. return false;
  14425. }
  14426. }
  14427. size_t llama_state_seq_get_size(struct llama_context* ctx, llama_seq_id seq_id) {
  14428. // save the size of size_t as a uint32_t for safety check
  14429. const size_t size_t_size_size = sizeof(uint32_t);
  14430. // other values
  14431. const size_t s_cell_count_size = sizeof(uint32_t);
  14432. const size_t s_layer_count_size = sizeof(uint32_t);
  14433. const size_t n_embd_v_gqa_size = sizeof(uint32_t);
  14434. size_t s_cell_count = 0;
  14435. size_t s_cell_data_size = 0;
  14436. const auto & kv_self = ctx->kv_self;
  14437. const auto & hparams = ctx->model.hparams;
  14438. const uint32_t n_layer = hparams.n_layer;
  14439. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14440. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14441. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14442. const auto & cell = kv_self.cells[i];
  14443. if (cell.seq_id.count(seq_id) > 0) {
  14444. ++s_cell_count;
  14445. s_cell_data_size += sizeof(llama_pos);
  14446. }
  14447. }
  14448. for (int il = 0; il < (int)n_layer; ++il) {
  14449. // types of keys and values
  14450. s_cell_data_size += sizeof(int32_t) * 2;
  14451. // k_size_row and v_size_el values of layer
  14452. s_cell_data_size += sizeof(size_t) * 2;
  14453. // keys
  14454. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14455. s_cell_data_size += k_size_row * s_cell_count;
  14456. // values (transposed)
  14457. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14458. s_cell_data_size += v_size_el * s_cell_count * n_embd_v_gqa;
  14459. }
  14460. const size_t s_total = (
  14461. size_t_size_size +
  14462. s_cell_count_size +
  14463. s_layer_count_size +
  14464. n_embd_v_gqa_size +
  14465. s_cell_data_size
  14466. );
  14467. return s_total;
  14468. }
  14469. static size_t llama_state_seq_get_data_internal(struct llama_context * ctx, llama_data_context & data_ctx, llama_seq_id seq_id) {
  14470. llama_synchronize(ctx);
  14471. const auto & kv_self = ctx->kv_self;
  14472. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14473. // Save the size of size_t as a uint32_t for safety check
  14474. const uint32_t size_t_size = sizeof(size_t);
  14475. data_ctx.write(&size_t_size, sizeof(size_t_size));
  14476. std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
  14477. uint32_t cell_count = 0;
  14478. // Count the number of cells with the specified seq_id
  14479. // Find all the ranges of cells with this seq id
  14480. {
  14481. uint32_t cell_range_begin = kv_self.size;
  14482. for (uint32_t i = 0; i < kv_self.size; ++i) {
  14483. const auto & cell = kv_self.cells[i];
  14484. if (cell.has_seq_id(seq_id)) {
  14485. ++cell_count;
  14486. if (cell_range_begin == kv_self.size) {
  14487. cell_range_begin = i;
  14488. }
  14489. }
  14490. else {
  14491. if (cell_range_begin != kv_self.size) {
  14492. cell_ranges.emplace_back(cell_range_begin, i);
  14493. cell_range_begin = kv_self.size;
  14494. }
  14495. }
  14496. }
  14497. if (cell_range_begin != kv_self.size) {
  14498. cell_ranges.emplace_back(cell_range_begin, kv_self.size);
  14499. }
  14500. // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
  14501. uint32_t cell_count_check = 0;
  14502. for (const auto & range : cell_ranges) {
  14503. cell_count_check += range.second - range.first;
  14504. }
  14505. GGML_ASSERT(cell_count == cell_count_check);
  14506. }
  14507. // Write the cell count
  14508. data_ctx.write(&cell_count, sizeof(cell_count));
  14509. const auto & hparams = ctx->model.hparams;
  14510. const uint32_t n_layer = hparams.n_layer;
  14511. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14512. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14513. // Write the layer count
  14514. data_ctx.write(&n_layer, sizeof(n_layer));
  14515. // Write n_embd_v_gqa
  14516. data_ctx.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa));
  14517. // Iterate the ranges and write all the pos (this is the token position in the prompt)
  14518. for (const auto & range : cell_ranges) {
  14519. for (uint32_t i = range.first; i < range.second; ++i) {
  14520. const auto & cell = kv_self.cells[i];
  14521. data_ctx.write(&cell.pos, sizeof(cell.pos));
  14522. }
  14523. }
  14524. // Iterate and write all the keys first, each row is a cell
  14525. // Get whole range at a time
  14526. std::vector<uint8_t> tmp_buf;
  14527. for (int il = 0; il < (int)n_layer; ++il) {
  14528. // Write key type
  14529. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14530. data_ctx.write(&k_type_i, sizeof(k_type_i));
  14531. // Write row size of key
  14532. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14533. data_ctx.write(&k_size_row, sizeof(k_size_row));
  14534. // Read each range of cells of k_size length each into tmp_buf and write out
  14535. for (const auto & range : cell_ranges) {
  14536. const size_t range_size = range.second - range.first;
  14537. tmp_buf.resize(range_size * k_size_row);
  14538. ggml_backend_tensor_get(kv_self.k_l[il], tmp_buf.data(), range.first * k_size_row, range_size * k_size_row);
  14539. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14540. }
  14541. }
  14542. // TODO: simplify, reduce copy-paste
  14543. if (!kv_self.v_trans) {
  14544. for (int il = 0; il < (int)n_layer; ++il) {
  14545. // Write value type
  14546. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14547. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14548. // Write row size of value
  14549. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14550. data_ctx.write(&v_size_row, sizeof(v_size_row));
  14551. // Read each range of cells of v_size length each into tmp_buf and write out
  14552. for (const auto & range : cell_ranges) {
  14553. const size_t range_size = range.second - range.first;
  14554. tmp_buf.resize(range_size * v_size_row);
  14555. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), range.first * v_size_row, range_size * v_size_row);
  14556. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14557. }
  14558. }
  14559. } else {
  14560. // For the values, they are transposed, so we also need the element size and get the element ranges from each row
  14561. const uint32_t kv_size = kv_self.size;
  14562. for (int il = 0; il < (int)n_layer; ++il) {
  14563. // Write value type
  14564. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14565. data_ctx.write(&v_type_i, sizeof(v_type_i));
  14566. // Write element size
  14567. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14568. data_ctx.write(&v_size_el, sizeof(v_size_el));
  14569. // For each row, we get the element values of each cell
  14570. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14571. // Read each range of cells of v_size_el length each into tmp_buf and write out
  14572. for (const auto & range : cell_ranges) {
  14573. const size_t range_size = range.second - range.first;
  14574. const size_t src_offset = (range.first + j * kv_size) * v_size_el;
  14575. tmp_buf.resize(range_size * v_size_el);
  14576. ggml_backend_tensor_get(kv_self.v_l[il], tmp_buf.data(), src_offset, tmp_buf.size());
  14577. data_ctx.write(tmp_buf.data(), tmp_buf.size());
  14578. }
  14579. }
  14580. }
  14581. }
  14582. return data_ctx.get_size_written();
  14583. }
  14584. size_t llama_state_seq_get_data(struct llama_context* ctx, uint8_t* dst, llama_seq_id seq_id) {
  14585. llama_data_buffer_context data_ctx(dst);
  14586. return llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14587. }
  14588. size_t llama_state_seq_set_data(struct llama_context * ctx, const uint8_t * src, llama_seq_id dest_seq_id) {
  14589. llama_synchronize(ctx);
  14590. auto & kv_self = ctx->kv_self;
  14591. GGML_ASSERT(!kv_self.recurrent); // not implemented
  14592. // Wipe the slot
  14593. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14594. const uint8_t * inp = src;
  14595. // Read size of size_t
  14596. uint32_t size_t_size;
  14597. memcpy(&size_t_size, inp, sizeof(size_t_size));
  14598. inp += sizeof(size_t_size);
  14599. if (size_t_size != sizeof(size_t)) {
  14600. LLAMA_LOG_ERROR("%s: size_t size mismatch\n", __func__);
  14601. return 0;
  14602. }
  14603. // Read the cell count
  14604. uint32_t cell_count;
  14605. memcpy(&cell_count, inp, sizeof(cell_count));
  14606. inp += sizeof(cell_count);
  14607. // Read the layer count
  14608. uint32_t n_layer_ref;
  14609. memcpy(&n_layer_ref, inp, sizeof(n_layer_ref));
  14610. inp += sizeof(n_layer_ref);
  14611. // Read n_embd_v_gqa
  14612. uint32_t n_embd_v_gqa_ref;
  14613. memcpy(&n_embd_v_gqa_ref, inp, sizeof(n_embd_v_gqa_ref));
  14614. inp += sizeof(n_embd_v_gqa_ref);
  14615. // Sanity check model compatibility
  14616. const auto & hparams = ctx->model.hparams;
  14617. const uint32_t n_layer = hparams.n_layer;
  14618. const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa() + hparams.n_embd_k_s();
  14619. const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa() + hparams.n_embd_v_s();
  14620. if (n_layer != n_layer_ref) {
  14621. LLAMA_LOG_ERROR("%s: mismatched n_layer (%d != %d)\n", __func__, n_layer, n_layer_ref);
  14622. return 0;
  14623. }
  14624. if (n_embd_v_gqa != n_embd_v_gqa_ref) {
  14625. LLAMA_LOG_ERROR("%s: mismatched n_embd_v_gqa (%d != %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref);
  14626. return 0;
  14627. }
  14628. // Allocate the new cells for the slot
  14629. if (cell_count) {
  14630. llama_batch batch = llama_batch_init(cell_count, 0, 1);
  14631. batch.n_tokens = cell_count;
  14632. for (uint32_t i = 0; i < cell_count; ++i) {
  14633. llama_pos pos;
  14634. memcpy(&pos, inp, sizeof(pos));
  14635. inp += sizeof(pos);
  14636. batch.pos[i] = pos;
  14637. batch.n_seq_id[i] = 1;
  14638. batch.seq_id[i][0] = dest_seq_id;
  14639. }
  14640. if (!llama_kv_cache_find_slot(kv_self, batch)) {
  14641. llama_batch_free(batch);
  14642. LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
  14643. return 0;
  14644. }
  14645. // DEBUG CHECK: kv_self.head should be our first cell, kv_self.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
  14646. // Assume that this is one contiguous block of cells
  14647. GGML_ASSERT(kv_self.head + cell_count <= kv_self.size);
  14648. GGML_ASSERT(kv_self.cells[kv_self.head].pos == batch.pos[0]);
  14649. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].pos == batch.pos[cell_count - 1]);
  14650. GGML_ASSERT(kv_self.cells[kv_self.head].has_seq_id(dest_seq_id));
  14651. GGML_ASSERT(kv_self.cells[kv_self.head + cell_count - 1].has_seq_id(dest_seq_id));
  14652. // Cleanup
  14653. llama_batch_free(batch);
  14654. }
  14655. const uint32_t kv_size = kv_self.size;
  14656. const uint32_t kv_head = kv_self.head;
  14657. // For each layer, read the keys for each cell, one row is one cell, read as one contiguous blo
  14658. for (int il = 0; il < (int)n_layer; ++il) {
  14659. // Read type of key
  14660. int32_t k_type_i_ref;
  14661. memcpy(&k_type_i_ref, inp, sizeof(k_type_i_ref));
  14662. inp += sizeof(k_type_i_ref);
  14663. const int32_t k_type_i = (int32_t)kv_self.k_l[il]->type;
  14664. if (k_type_i != k_type_i_ref) {
  14665. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14666. LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il);
  14667. return 0;
  14668. }
  14669. // Read row size of key
  14670. size_t k_size_row_ref;
  14671. memcpy(&k_size_row_ref, inp, sizeof(k_size_row_ref));
  14672. inp += sizeof(k_size_row_ref);
  14673. const size_t k_size_row = ggml_row_size(kv_self.k_l[il]->type, n_embd_k_gqa);
  14674. if (k_size_row != k_size_row_ref) {
  14675. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14676. LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, k_size_row_ref, il);
  14677. return 0;
  14678. }
  14679. if (cell_count) {
  14680. // Read and set the keys for the whole cell range
  14681. ggml_backend_tensor_set(kv_self.k_l[il], inp, kv_head * k_size_row, cell_count * k_size_row);
  14682. inp += cell_count * k_size_row;
  14683. }
  14684. }
  14685. // TODO: simplify, reduce copy-paste
  14686. if (!kv_self.v_trans) {
  14687. for (int il = 0; il < (int)n_layer; ++il) {
  14688. // Read type of value
  14689. int32_t v_type_i_ref;
  14690. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14691. inp += sizeof(v_type_i_ref);
  14692. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14693. if (v_type_i != v_type_i_ref) {
  14694. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14695. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14696. return 0;
  14697. }
  14698. // Read row size of value
  14699. size_t v_size_row_ref;
  14700. memcpy(&v_size_row_ref, inp, sizeof(v_size_row_ref));
  14701. inp += sizeof(v_size_row_ref);
  14702. const size_t v_size_row = ggml_row_size(kv_self.v_l[il]->type, n_embd_v_gqa);
  14703. if (v_size_row != v_size_row_ref) {
  14704. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14705. LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, v_size_row_ref, il);
  14706. return 0;
  14707. }
  14708. if (cell_count) {
  14709. // Read and set the values for the whole cell range
  14710. ggml_backend_tensor_set(kv_self.v_l[il], inp, kv_head * v_size_row, cell_count * v_size_row);
  14711. inp += cell_count * v_size_row;
  14712. }
  14713. }
  14714. } else {
  14715. // For each layer, read the values for each cell (transposed)
  14716. for (int il = 0; il < (int)n_layer; ++il) {
  14717. // Read type of value
  14718. int32_t v_type_i_ref;
  14719. memcpy(&v_type_i_ref, inp, sizeof(v_type_i_ref));
  14720. inp += sizeof(v_type_i_ref);
  14721. const int32_t v_type_i = (int32_t)kv_self.v_l[il]->type;
  14722. if (v_type_i != v_type_i_ref) {
  14723. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14724. LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il);
  14725. return 0;
  14726. }
  14727. // Read element size of value
  14728. size_t v_size_el_ref;
  14729. memcpy(&v_size_el_ref, inp, sizeof(v_size_el_ref));
  14730. inp += sizeof(v_size_el_ref);
  14731. const size_t v_size_el = ggml_type_size(kv_self.v_l[il]->type);
  14732. if (v_size_el != v_size_el_ref) {
  14733. llama_kv_cache_seq_rm(kv_self, dest_seq_id, -1, -1);
  14734. LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, v_size_el_ref, il);
  14735. return 0;
  14736. }
  14737. if (cell_count) {
  14738. // For each row in the transposed matrix, read the values for the whole cell range
  14739. for (uint32_t j = 0; j < n_embd_v_gqa; ++j) {
  14740. const size_t dst_offset = (kv_head + j * kv_size) * v_size_el;
  14741. ggml_backend_tensor_set(kv_self.v_l[il], inp, dst_offset, cell_count * v_size_el);
  14742. inp += cell_count * v_size_el;
  14743. }
  14744. }
  14745. }
  14746. }
  14747. const size_t nread = inp - src;
  14748. return nread;
  14749. }
  14750. static size_t llama_state_seq_save_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14751. llama_file file(filepath, "wb");
  14752. file.write_u32(LLAMA_STATE_SEQ_MAGIC);
  14753. file.write_u32(LLAMA_STATE_SEQ_VERSION);
  14754. // save the prompt
  14755. file.write_u32((uint32_t)n_token_count);
  14756. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  14757. // save the context state using stream saving
  14758. llama_data_file_context data_ctx(&file);
  14759. llama_state_seq_get_data_internal(ctx, data_ctx, seq_id);
  14760. const size_t res = file.tell();
  14761. GGML_ASSERT(res == sizeof(uint32_t) * 3 + sizeof(llama_token) * n_token_count + data_ctx.get_size_written());
  14762. return res;
  14763. }
  14764. static size_t llama_state_seq_load_file_internal(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14765. llama_file file(filepath, "rb");
  14766. // version checks
  14767. {
  14768. const uint32_t magic = file.read_u32();
  14769. const uint32_t version = file.read_u32();
  14770. if (magic != LLAMA_STATE_SEQ_MAGIC || version != LLAMA_STATE_SEQ_VERSION) {
  14771. LLAMA_LOG_ERROR("%s: unknown (magic, version) for sequence state file: %08x, %08x\n", __func__, magic, version);
  14772. return 0;
  14773. }
  14774. }
  14775. // load the prompt
  14776. {
  14777. const uint32_t n_token_count = file.read_u32();
  14778. if (n_token_count > n_token_capacity) {
  14779. LLAMA_LOG_ERROR("%s: token count in sequence state file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  14780. return 0;
  14781. }
  14782. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  14783. *n_token_count_out = n_token_count;
  14784. }
  14785. // restore the context state
  14786. {
  14787. const size_t state_size = file.size - file.tell();
  14788. std::vector<uint8_t> state_data(state_size);
  14789. file.read_raw(state_data.data(), state_size);
  14790. const size_t nread = llama_state_seq_set_data(ctx, state_data.data(), dest_seq_id);
  14791. if (!nread) {
  14792. LLAMA_LOG_ERROR("%s: failed to restore sequence state\n", __func__);
  14793. return 0;
  14794. }
  14795. GGML_ASSERT(nread <= state_size);
  14796. GGML_ASSERT(nread + sizeof(uint32_t) * 3 + sizeof(llama_token) * *n_token_count_out == file.tell());
  14797. }
  14798. return file.tell();
  14799. }
  14800. size_t llama_state_seq_save_file(struct llama_context * ctx, const char * filepath, llama_seq_id seq_id, const llama_token * tokens, size_t n_token_count) {
  14801. try {
  14802. return llama_state_seq_save_file_internal(ctx, filepath, seq_id, tokens, n_token_count);
  14803. } catch (const std::exception & err) {
  14804. LLAMA_LOG_ERROR("error saving sequence state file: %s\n", err.what());
  14805. return 0;
  14806. }
  14807. }
  14808. size_t llama_state_seq_load_file(struct llama_context * ctx, const char * filepath, llama_seq_id dest_seq_id, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  14809. try {
  14810. return llama_state_seq_load_file_internal(ctx, filepath, dest_seq_id, tokens_out, n_token_capacity, n_token_count_out);
  14811. } catch (const std::exception & err) {
  14812. LLAMA_LOG_ERROR("error loading sequence state file: %s\n", err.what());
  14813. return 0;
  14814. }
  14815. }
  14816. void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch) {
  14817. ctx->cparams.n_threads = n_threads;
  14818. ctx->cparams.n_threads_batch = n_threads_batch;
  14819. }
  14820. uint32_t llama_n_threads(struct llama_context * ctx) {
  14821. return ctx->cparams.n_threads;
  14822. }
  14823. uint32_t llama_n_threads_batch(struct llama_context * ctx) {
  14824. return ctx->cparams.n_threads_batch;
  14825. }
  14826. void llama_set_abort_callback(struct llama_context * ctx, bool (*abort_callback)(void * data), void * abort_callback_data) {
  14827. ctx->abort_callback = abort_callback;
  14828. ctx->abort_callback_data = abort_callback_data;
  14829. }
  14830. void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn) {
  14831. ctx->cparams.causal_attn = causal_attn;
  14832. }
  14833. struct llama_batch llama_batch_get_one(
  14834. llama_token * tokens,
  14835. int32_t n_tokens,
  14836. llama_pos pos_0,
  14837. llama_seq_id seq_id) {
  14838. return {
  14839. /*n_tokens =*/ n_tokens,
  14840. /*tokens =*/ tokens,
  14841. /*embd =*/ nullptr,
  14842. /*pos =*/ nullptr,
  14843. /*n_seq_id =*/ nullptr,
  14844. /*seq_id =*/ nullptr,
  14845. /*logits =*/ nullptr,
  14846. /*all_pos_0 =*/ pos_0,
  14847. /*all_pos_1 =*/ 1,
  14848. /*all_seq_id =*/ seq_id,
  14849. };
  14850. }
  14851. struct llama_batch llama_batch_init(int32_t n_tokens_alloc, int32_t embd, int32_t n_seq_max) {
  14852. llama_batch batch = { 0, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, 0, 0, 0, };
  14853. if (embd) {
  14854. batch.embd = (float *) malloc(sizeof(float) * n_tokens_alloc * embd);
  14855. } else {
  14856. batch.token = (llama_token *) malloc(sizeof(llama_token) * n_tokens_alloc);
  14857. }
  14858. batch.pos = (llama_pos *) malloc(sizeof(llama_pos) * n_tokens_alloc);
  14859. batch.n_seq_id = (int32_t *) malloc(sizeof(int32_t) * n_tokens_alloc);
  14860. batch.seq_id = (llama_seq_id **) malloc(sizeof(llama_seq_id *) * (n_tokens_alloc + 1));
  14861. for (int i = 0; i < n_tokens_alloc; ++i) {
  14862. batch.seq_id[i] = (llama_seq_id *) malloc(sizeof(llama_seq_id) * n_seq_max);
  14863. }
  14864. batch.seq_id[n_tokens_alloc] = nullptr;
  14865. batch.logits = (int8_t *) malloc(sizeof(int8_t) * n_tokens_alloc);
  14866. return batch;
  14867. }
  14868. void llama_batch_free(struct llama_batch batch) {
  14869. if (batch.token) free(batch.token);
  14870. if (batch.embd) free(batch.embd);
  14871. if (batch.pos) free(batch.pos);
  14872. if (batch.n_seq_id) free(batch.n_seq_id);
  14873. if (batch.seq_id) {
  14874. for (int i = 0; batch.seq_id[i] != nullptr; ++i) {
  14875. free(batch.seq_id[i]);
  14876. }
  14877. free(batch.seq_id);
  14878. }
  14879. if (batch.logits) free(batch.logits);
  14880. }
  14881. int32_t llama_decode(
  14882. struct llama_context * ctx,
  14883. struct llama_batch batch) {
  14884. const int ret = llama_decode_internal(*ctx, batch);
  14885. if (ret < 0) {
  14886. LLAMA_LOG_ERROR("%s: failed to decode, ret = %d\n", __func__, ret);
  14887. }
  14888. return ret;
  14889. }
  14890. void llama_synchronize(struct llama_context * ctx) {
  14891. ggml_backend_sched_synchronize(ctx->sched);
  14892. // FIXME: if multiple single tokens are evaluated without a synchronization,
  14893. // the stats will be added to the prompt evaluation stats
  14894. // this should only happen when using batch size 1 to evaluate a batch
  14895. // add the evaluation to the stats
  14896. if (ctx->n_queued_tokens == 1) {
  14897. ctx->t_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14898. ctx->n_eval++;
  14899. } else if (ctx->n_queued_tokens > 1) {
  14900. ctx->t_p_eval_us += ggml_time_us() - ctx->t_compute_start_us;
  14901. ctx->n_p_eval += ctx->n_queued_tokens;
  14902. }
  14903. // get a more accurate load time, upon first eval
  14904. if (ctx->n_queued_tokens > 0 && !ctx->has_evaluated_once) {
  14905. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  14906. ctx->has_evaluated_once = true;
  14907. }
  14908. ctx->n_queued_tokens = 0;
  14909. ctx->t_compute_start_us = 0;
  14910. }
  14911. float * llama_get_logits(struct llama_context * ctx) {
  14912. llama_synchronize(ctx);
  14913. return ctx->logits;
  14914. }
  14915. float * llama_get_logits_ith(struct llama_context * ctx, int32_t i) {
  14916. int32_t j = -1;
  14917. llama_synchronize(ctx);
  14918. try {
  14919. if (ctx->logits == nullptr) {
  14920. throw std::runtime_error("no logits");
  14921. }
  14922. if (i < 0) {
  14923. j = ctx->n_outputs + i;
  14924. if (j < 0) {
  14925. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14926. }
  14927. } else if ((size_t) i >= ctx->output_ids.size()) {
  14928. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14929. } else {
  14930. j = ctx->output_ids[i];
  14931. }
  14932. if (j < 0) {
  14933. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14934. }
  14935. if (j >= ctx->n_outputs) {
  14936. // This should not happen
  14937. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14938. }
  14939. return ctx->logits + j*ctx->model.hparams.n_vocab;
  14940. } catch (const std::exception & err) {
  14941. LLAMA_LOG_ERROR("%s: invalid logits id %d, reason: %s\n", __func__, i, err.what());
  14942. #ifndef NDEBUG
  14943. GGML_ASSERT(false);
  14944. #endif
  14945. return nullptr;
  14946. }
  14947. }
  14948. float * llama_get_embeddings(struct llama_context * ctx) {
  14949. llama_synchronize(ctx);
  14950. return ctx->embd;
  14951. }
  14952. float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
  14953. int32_t j = -1;
  14954. llama_synchronize(ctx);
  14955. try {
  14956. if (ctx->embd == nullptr) {
  14957. throw std::runtime_error("no embeddings");
  14958. }
  14959. if (i < 0) {
  14960. j = ctx->n_outputs + i;
  14961. if (j < 0) {
  14962. throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
  14963. }
  14964. } else if ((size_t) i >= ctx->output_ids.size()) {
  14965. throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
  14966. } else {
  14967. j = ctx->output_ids[i];
  14968. }
  14969. if (j < 0) {
  14970. throw std::runtime_error(format("batch.logits[%d] != true", i));
  14971. }
  14972. if (j >= ctx->n_outputs) {
  14973. // This should not happen
  14974. throw std::runtime_error(format("corrupt output buffer (j=%d, n_outputs=%d)", j, ctx->n_outputs));
  14975. }
  14976. return ctx->embd + j*ctx->model.hparams.n_embd;
  14977. } catch (const std::exception & err) {
  14978. LLAMA_LOG_ERROR("%s: invalid embeddings id %d, reason: %s\n", __func__, i, err.what());
  14979. #ifndef NDEBUG
  14980. GGML_ASSERT(false);
  14981. #endif
  14982. return nullptr;
  14983. }
  14984. }
  14985. float * llama_get_embeddings_seq(struct llama_context * ctx, llama_seq_id seq_id) {
  14986. llama_synchronize(ctx);
  14987. auto it = ctx->embd_seq.find(seq_id);
  14988. if (it == ctx->embd_seq.end()) {
  14989. return nullptr;
  14990. }
  14991. return it->second.data();
  14992. }
  14993. const char * llama_token_get_text(const struct llama_model * model, llama_token token) {
  14994. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14995. return model->vocab.id_to_token[token].text.c_str();
  14996. }
  14997. float llama_token_get_score(const struct llama_model * model, llama_token token) {
  14998. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  14999. return model->vocab.id_to_token[token].score;
  15000. }
  15001. llama_token_attr llama_token_get_attr(const struct llama_model * model, llama_token token) {
  15002. GGML_ASSERT(model->vocab.type != LLAMA_VOCAB_TYPE_NONE);
  15003. return model->vocab.id_to_token[token].attr;
  15004. }
  15005. bool llama_token_is_eog(const struct llama_model * model, llama_token token) {
  15006. return token != -1 && (
  15007. token == llama_token_eos(model) ||
  15008. token == llama_token_eot(model)
  15009. );
  15010. }
  15011. bool llama_token_is_control(const struct llama_model * model, llama_token token) {
  15012. return llama_is_control_token(model->vocab, token);
  15013. }
  15014. llama_token llama_token_bos(const struct llama_model * model) {
  15015. return model->vocab.special_bos_id;
  15016. }
  15017. llama_token llama_token_eos(const struct llama_model * model) {
  15018. return model->vocab.special_eos_id;
  15019. }
  15020. llama_token llama_token_cls(const struct llama_model * model) {
  15021. return model->vocab.special_cls_id;
  15022. }
  15023. llama_token llama_token_sep(const struct llama_model * model) {
  15024. return model->vocab.special_sep_id;
  15025. }
  15026. llama_token llama_token_nl(const struct llama_model * model) {
  15027. return model->vocab.linefeed_id;
  15028. }
  15029. int32_t llama_add_bos_token(const struct llama_model * model) {
  15030. return model->vocab.special_add_bos;
  15031. }
  15032. int32_t llama_add_eos_token(const struct llama_model * model) {
  15033. return model->vocab.special_add_eos;
  15034. }
  15035. llama_token llama_token_prefix(const struct llama_model * model) {
  15036. return model->vocab.special_prefix_id;
  15037. }
  15038. llama_token llama_token_middle(const struct llama_model * model) {
  15039. return model->vocab.special_middle_id;
  15040. }
  15041. llama_token llama_token_suffix(const struct llama_model * model) {
  15042. return model->vocab.special_suffix_id;
  15043. }
  15044. llama_token llama_token_eot(const struct llama_model * model) {
  15045. return model->vocab.special_eot_id;
  15046. }
  15047. int32_t llama_tokenize(
  15048. const struct llama_model * model,
  15049. const char * text,
  15050. int32_t text_len,
  15051. llama_token * tokens,
  15052. int32_t n_tokens_max,
  15053. bool add_special,
  15054. bool parse_special) {
  15055. auto res = llama_tokenize_internal(model->vocab, std::string(text, text_len), add_special, parse_special);
  15056. if (n_tokens_max < (int) res.size()) {
  15057. // LLAMA_LOG_ERROR("%s: too many tokens\n", __func__);
  15058. return -((int) res.size());
  15059. }
  15060. for (size_t i = 0; i < res.size(); i++) {
  15061. tokens[i] = res[i];
  15062. }
  15063. return res.size();
  15064. }
  15065. static std::string llama_decode_text(const std::string & text) {
  15066. std::string decoded_text;
  15067. const auto cpts = unicode_cpts_from_utf8(text);
  15068. for (const auto cpt : cpts) {
  15069. const auto utf8 = unicode_cpt_to_utf8(cpt);
  15070. try {
  15071. decoded_text += unicode_utf8_to_byte(utf8);
  15072. } catch (const std::out_of_range & e) {
  15073. decoded_text += "[UNK_BYTE_0x";
  15074. for (const auto c : utf8) {
  15075. decoded_text += format("%02x", (uint8_t) c);
  15076. }
  15077. decoded_text += text + "]";
  15078. }
  15079. }
  15080. return decoded_text;
  15081. }
  15082. // does not write null-terminator to buf
  15083. int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
  15084. // ref: https://github.com/ggerganov/llama.cpp/pull/7587#discussion_r1620983843
  15085. if (!special && llama_is_control_token(model->vocab, token)) {
  15086. return 0;
  15087. }
  15088. // if we have a cache - use it
  15089. {
  15090. const auto & cache = model->vocab.cache_token_to_piece;
  15091. if (!cache.empty()) {
  15092. const auto & res = cache.at(token);
  15093. if (length < (int) res.size()) {
  15094. return -(int) res.size();
  15095. }
  15096. memcpy(buf, res.c_str(), res.size());
  15097. return res.size();
  15098. }
  15099. }
  15100. if (0 <= token && token < llama_n_vocab(model)) {
  15101. switch (llama_vocab_get_type(model->vocab)) {
  15102. case LLAMA_VOCAB_TYPE_WPM:
  15103. case LLAMA_VOCAB_TYPE_SPM: {
  15104. // NOTE: we accept all unsupported token types,
  15105. // suppressing them like CONTROL tokens.
  15106. if (llama_is_normal_token(model->vocab, token)) {
  15107. std::string result = model->vocab.id_to_token[token].text;
  15108. llama_unescape_whitespace(result);
  15109. if (length < (int) result.length()) {
  15110. return -(int) result.length();
  15111. }
  15112. memcpy(buf, result.c_str(), result.length());
  15113. return result.length();
  15114. } else if (
  15115. (llama_is_user_defined_token(model->vocab, token)) ||
  15116. (llama_is_control_token (model->vocab, token) && special)) {
  15117. std::string result = model->vocab.id_to_token[token].text;
  15118. if (length < (int) result.length()) {
  15119. return -(int) result.length();
  15120. }
  15121. memcpy(buf, result.c_str(), result.length());
  15122. return result.length();
  15123. } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
  15124. if (length < 3) {
  15125. return -3;
  15126. }
  15127. memcpy(buf, "\xe2\x96\x85", 3);
  15128. return 3;
  15129. } else if (llama_is_byte_token(model->vocab, token)) {
  15130. if (length < 1) {
  15131. return -1;
  15132. }
  15133. buf[0] = llama_token_to_byte(model->vocab, token);
  15134. return 1;
  15135. }
  15136. break;
  15137. }
  15138. case LLAMA_VOCAB_TYPE_BPE: {
  15139. // NOTE: we accept all unsupported token types,
  15140. // suppressing them like CONTROL tokens.
  15141. if (llama_is_normal_token(model->vocab, token)) {
  15142. std::string result = model->vocab.id_to_token[token].text;
  15143. result = llama_decode_text(result);
  15144. if (length < (int) result.length()) {
  15145. return -(int) result.length();
  15146. }
  15147. memcpy(buf, result.c_str(), result.length());
  15148. return result.length();
  15149. } else if (
  15150. (llama_is_user_defined_token(model->vocab, token)) ||
  15151. (llama_is_control_token (model->vocab, token) && special)) {
  15152. std::string result = model->vocab.id_to_token[token].text;
  15153. if (length < (int) result.length()) {
  15154. return -(int) result.length();
  15155. }
  15156. memcpy(buf, result.c_str(), result.length());
  15157. return result.length();
  15158. }
  15159. break;
  15160. }
  15161. default:
  15162. GGML_ASSERT(false);
  15163. }
  15164. }
  15165. return 0;
  15166. }
  15167. // trim whitespace from the beginning and end of a string
  15168. static std::string trim(const std::string & str) {
  15169. size_t start = 0;
  15170. size_t end = str.size();
  15171. while (start < end && isspace(str[start])) {
  15172. start += 1;
  15173. }
  15174. while (end > start && isspace(str[end - 1])) {
  15175. end -= 1;
  15176. }
  15177. return str.substr(start, end - start);
  15178. }
  15179. // Simple version of "llama_apply_chat_template" that only works with strings
  15180. // This function uses heuristic checks to determine commonly used template. It is not a jinja parser.
  15181. static int32_t llama_chat_apply_template_internal(
  15182. const std::string & tmpl,
  15183. const std::vector<const llama_chat_message *> & chat,
  15184. std::string & dest, bool add_ass) {
  15185. // Taken from the research: https://github.com/ggerganov/llama.cpp/issues/5527
  15186. std::stringstream ss;
  15187. if (tmpl == "chatml" || tmpl.find("<|im_start|>") != std::string::npos) {
  15188. // chatml template
  15189. for (auto message : chat) {
  15190. ss << "<|im_start|>" << message->role << "\n" << message->content << "<|im_end|>\n";
  15191. }
  15192. if (add_ass) {
  15193. ss << "<|im_start|>assistant\n";
  15194. }
  15195. } else if (tmpl == "llama2" || tmpl.find("[INST]") != std::string::npos) {
  15196. // llama2 template and its variants
  15197. // [variant] support system message
  15198. bool support_system_message = tmpl.find("<<SYS>>") != std::string::npos;
  15199. // [variant] space before + after response
  15200. bool space_around_response = tmpl.find("' ' + eos_token") != std::string::npos;
  15201. // [variant] add BOS inside history
  15202. bool add_bos_inside_history = tmpl.find("bos_token + '[INST]") != std::string::npos;
  15203. // [variant] trim spaces from the input message
  15204. bool strip_message = tmpl.find("content.strip()") != std::string::npos;
  15205. // construct the prompt
  15206. bool is_inside_turn = true; // skip BOS at the beginning
  15207. ss << "[INST] ";
  15208. for (auto message : chat) {
  15209. std::string content = strip_message ? trim(message->content) : message->content;
  15210. std::string role(message->role);
  15211. if (!is_inside_turn) {
  15212. is_inside_turn = true;
  15213. ss << (add_bos_inside_history ? "<s>[INST] " : "[INST] ");
  15214. }
  15215. if (role == "system") {
  15216. if (support_system_message) {
  15217. ss << "<<SYS>>\n" << content << "\n<</SYS>>\n\n";
  15218. } else {
  15219. // if the model does not support system message, we still include it in the first message, but without <<SYS>>
  15220. ss << content << "\n";
  15221. }
  15222. } else if (role == "user") {
  15223. ss << content << " [/INST]";
  15224. } else {
  15225. ss << (space_around_response ? " " : "") << content << (space_around_response ? " " : "") << "</s>";
  15226. is_inside_turn = false;
  15227. }
  15228. }
  15229. // llama2 templates seem to not care about "add_generation_prompt"
  15230. } else if (tmpl == "phi3" || (tmpl.find("<|assistant|>") != std::string::npos && tmpl.find("<|end|>") != std::string::npos)) {
  15231. // Phi 3
  15232. for (auto message : chat) {
  15233. std::string role(message->role);
  15234. ss << "<|" << role << "|>\n" << message->content << "<|end|>\n";
  15235. }
  15236. if (add_ass) {
  15237. ss << "<|assistant|>\n";
  15238. }
  15239. } else if (tmpl == "zephyr" || tmpl.find("<|user|>") != std::string::npos) {
  15240. // zephyr template
  15241. for (auto message : chat) {
  15242. ss << "<|" << message->role << "|>" << "\n" << message->content << "<|endoftext|>\n";
  15243. }
  15244. if (add_ass) {
  15245. ss << "<|assistant|>\n";
  15246. }
  15247. } else if (tmpl == "monarch" || tmpl.find("bos_token + message['role']") != std::string::npos) {
  15248. // mlabonne/AlphaMonarch-7B template (the <s> is included inside history)
  15249. for (auto message : chat) {
  15250. std::string bos = (message == chat.front()) ? "" : "<s>"; // skip BOS for first message
  15251. ss << bos << message->role << "\n" << message->content << "</s>\n";
  15252. }
  15253. if (add_ass) {
  15254. ss << "<s>assistant\n";
  15255. }
  15256. } else if (tmpl == "gemma" || tmpl.find("<start_of_turn>") != std::string::npos) {
  15257. // google/gemma-7b-it
  15258. std::string system_prompt = "";
  15259. for (auto message : chat) {
  15260. std::string role(message->role);
  15261. if (role == "system") {
  15262. // there is no system message for gemma, but we will merge it with user prompt, so nothing is broken
  15263. system_prompt = trim(message->content);
  15264. continue;
  15265. }
  15266. // in gemma, "assistant" is "model"
  15267. role = role == "assistant" ? "model" : message->role;
  15268. ss << "<start_of_turn>" << role << "\n";
  15269. if (!system_prompt.empty() && role != "model") {
  15270. ss << system_prompt << "\n\n";
  15271. system_prompt = "";
  15272. }
  15273. ss << trim(message->content) << "<end_of_turn>\n";
  15274. }
  15275. if (add_ass) {
  15276. ss << "<start_of_turn>model\n";
  15277. }
  15278. } else if (tmpl == "orion" || tmpl.find("'\\n\\nAssistant: ' + eos_token") != std::string::npos) {
  15279. // OrionStarAI/Orion-14B-Chat
  15280. std::string system_prompt = "";
  15281. for (auto message : chat) {
  15282. std::string role(message->role);
  15283. if (role == "system") {
  15284. // there is no system message support, we will merge it with user prompt
  15285. system_prompt = message->content;
  15286. continue;
  15287. } else if (role == "user") {
  15288. ss << "Human: ";
  15289. if (!system_prompt.empty()) {
  15290. ss << system_prompt << "\n\n";
  15291. system_prompt = "";
  15292. }
  15293. ss << message->content << "\n\nAssistant: </s>";
  15294. } else {
  15295. ss << message->content << "</s>";
  15296. }
  15297. }
  15298. } else if (tmpl == "openchat" || tmpl.find("GPT4 Correct ") != std::string::npos) {
  15299. // openchat/openchat-3.5-0106,
  15300. for (auto message : chat) {
  15301. std::string role(message->role);
  15302. if (role == "system") {
  15303. ss << message->content << "<|end_of_turn|>";
  15304. } else {
  15305. role[0] = toupper(role[0]);
  15306. ss << "GPT4 Correct " << role << ": " << message->content << "<|end_of_turn|>";
  15307. }
  15308. }
  15309. if (add_ass) {
  15310. ss << "GPT4 Correct Assistant:";
  15311. }
  15312. } else if (tmpl == "vicuna" || tmpl == "vicuna-orca" || (tmpl.find("USER: ") != std::string::npos && tmpl.find("ASSISTANT: ") != std::string::npos)) {
  15313. // eachadea/vicuna-13b-1.1 (and Orca variant)
  15314. for (auto message : chat) {
  15315. std::string role(message->role);
  15316. if (role == "system") {
  15317. // Orca-Vicuna variant uses a system prefix
  15318. if (tmpl == "vicuna-orca" || tmpl.find("SYSTEM: ") != std::string::npos) {
  15319. ss << "SYSTEM: " << message->content << "\n";
  15320. } else {
  15321. ss << message->content << "\n\n";
  15322. }
  15323. } else if (role == "user") {
  15324. ss << "USER: " << message->content << "\n";
  15325. } else if (role == "assistant") {
  15326. ss << "ASSISTANT: " << message->content << "</s>\n";
  15327. }
  15328. }
  15329. if (add_ass) {
  15330. ss << "ASSISTANT:";
  15331. }
  15332. } else if (tmpl == "deepseek" || (tmpl.find("### Instruction:") != std::string::npos && tmpl.find("<|EOT|>") != std::string::npos)) {
  15333. // deepseek-ai/deepseek-coder-33b-instruct
  15334. for (auto message : chat) {
  15335. std::string role(message->role);
  15336. if (role == "system") {
  15337. ss << message->content;
  15338. } else if (role == "user") {
  15339. ss << "### Instruction:\n" << message->content << "\n";
  15340. } else if (role == "assistant") {
  15341. ss << "### Response:\n" << message->content << "\n<|EOT|>\n";
  15342. }
  15343. }
  15344. if (add_ass) {
  15345. ss << "### Response:\n";
  15346. }
  15347. } else if (tmpl == "command-r" || (tmpl.find("<|START_OF_TURN_TOKEN|>") != std::string::npos && tmpl.find("<|USER_TOKEN|>") != std::string::npos)) {
  15348. // CohereForAI/c4ai-command-r-plus
  15349. for (auto message : chat) {
  15350. std::string role(message->role);
  15351. if (role == "system") {
  15352. ss << "<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15353. } else if (role == "user") {
  15354. ss << "<|START_OF_TURN_TOKEN|><|USER_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15355. } else if (role == "assistant") {
  15356. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>" << trim(message->content) << "<|END_OF_TURN_TOKEN|>";
  15357. }
  15358. }
  15359. if (add_ass) {
  15360. ss << "<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>";
  15361. }
  15362. } else if (tmpl == "llama3" || (tmpl.find("<|start_header_id|>") != std::string::npos && tmpl.find("<|end_header_id|>") != std::string::npos)) {
  15363. // Llama 3
  15364. for (auto message : chat) {
  15365. std::string role(message->role);
  15366. ss << "<|start_header_id|>" << role << "<|end_header_id|>\n\n" << trim(message->content) << "<|eot_id|>";
  15367. }
  15368. if (add_ass) {
  15369. ss << "<|start_header_id|>assistant<|end_header_id|>\n\n";
  15370. }
  15371. } else {
  15372. // template not supported
  15373. return -1;
  15374. }
  15375. dest = ss.str();
  15376. return dest.size();
  15377. }
  15378. LLAMA_API int32_t llama_chat_apply_template(
  15379. const struct llama_model * model,
  15380. const char * tmpl,
  15381. const struct llama_chat_message * chat,
  15382. size_t n_msg,
  15383. bool add_ass,
  15384. char * buf,
  15385. int32_t length) {
  15386. std::string curr_tmpl(tmpl == nullptr ? "" : tmpl);
  15387. if (tmpl == nullptr) {
  15388. GGML_ASSERT(model != nullptr);
  15389. // load template from model
  15390. std::vector<char> model_template(2048, 0); // longest known template is about 1200 bytes
  15391. std::string template_key = "tokenizer.chat_template";
  15392. int32_t res = llama_model_meta_val_str(model, template_key.c_str(), model_template.data(), model_template.size());
  15393. if (res < 0) {
  15394. // worst case: there is no information about template, we will use chatml by default
  15395. curr_tmpl = "chatml"; // see llama_chat_apply_template_internal
  15396. } else {
  15397. curr_tmpl = std::string(model_template.data(), model_template.size());
  15398. }
  15399. }
  15400. // format the chat to string
  15401. std::vector<const llama_chat_message *> chat_vec;
  15402. chat_vec.resize(n_msg);
  15403. for (size_t i = 0; i < n_msg; i++) {
  15404. chat_vec[i] = &chat[i];
  15405. }
  15406. std::string formatted_chat;
  15407. int32_t res = llama_chat_apply_template_internal(curr_tmpl, chat_vec, formatted_chat, add_ass);
  15408. if (res < 0) {
  15409. return res;
  15410. }
  15411. if (buf && length > 0) {
  15412. strncpy(buf, formatted_chat.c_str(), length);
  15413. }
  15414. return res;
  15415. }
  15416. LLAMA_API int llama_split_path(char * split_path, size_t maxlen, const char * path_prefix, int split_no, int split_count) {
  15417. static const char * const SPLIT_PATH_FORMAT = "%s-%05d-of-%05d.gguf";
  15418. if (snprintf(split_path, maxlen, SPLIT_PATH_FORMAT, path_prefix, split_no + 1, split_count)) {
  15419. return strlen(split_path);
  15420. }
  15421. return 0;
  15422. }
  15423. int llama_split_prefix(char * dest, size_t maxlen, const char * split_path, int split_no, int split_count) {
  15424. std::string str_split_path(split_path);
  15425. char postfix[32];
  15426. snprintf(postfix, 32, "-%05d-of-%05d.gguf", split_no + 1, split_count);
  15427. std::string str_postfix(postfix);
  15428. // check if dest ends with postfix
  15429. int size_prefix = str_split_path.size() - str_postfix.size();
  15430. if (size_prefix > 0 && str_split_path.find(str_postfix, size_prefix) != std::string::npos) {
  15431. snprintf(dest, std::min((size_t) size_prefix + 1, maxlen), "%s", split_path);
  15432. return size_prefix;
  15433. }
  15434. return 0;
  15435. }
  15436. struct llama_timings llama_get_timings(struct llama_context * ctx) {
  15437. struct llama_timings result = {
  15438. /*.t_start_ms =*/ 1e-3 * ctx->t_start_us,
  15439. /*.t_end_ms =*/ 1.00 * ggml_time_ms(),
  15440. /*.t_load_ms =*/ 1e-3 * ctx->t_load_us,
  15441. /*.t_sample_ms =*/ 1e-3 * ctx->t_sample_us,
  15442. /*.t_p_eval_ms =*/ 1e-3 * ctx->t_p_eval_us,
  15443. /*.t_eval_ms =*/ 1e-3 * ctx->t_eval_us,
  15444. /*.n_sample =*/ std::max(1, ctx->n_sample),
  15445. /*.n_p_eval =*/ std::max(0, ctx->n_p_eval),
  15446. /*.n_eval =*/ std::max(1, ctx->n_eval),
  15447. };
  15448. return result;
  15449. }
  15450. void llama_print_timings(struct llama_context * ctx) {
  15451. const llama_timings timings = llama_get_timings(ctx);
  15452. LLAMA_LOG_INFO("\n");
  15453. LLAMA_LOG_INFO("%s: load time = %10.2f ms\n", __func__, timings.t_load_ms);
  15454. LLAMA_LOG_INFO("%s: sample time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15455. __func__, timings.t_sample_ms, timings.n_sample, timings.t_sample_ms / timings.n_sample, 1e3 / timings.t_sample_ms * timings.n_sample);
  15456. LLAMA_LOG_INFO("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  15457. __func__, timings.t_p_eval_ms, timings.n_p_eval, timings.t_p_eval_ms / timings.n_p_eval, 1e3 / timings.t_p_eval_ms * timings.n_p_eval);
  15458. LLAMA_LOG_INFO("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  15459. __func__, timings.t_eval_ms, timings.n_eval, timings.t_eval_ms / timings.n_eval, 1e3 / timings.t_eval_ms * timings.n_eval);
  15460. LLAMA_LOG_INFO("%s: total time = %10.2f ms / %5d tokens\n", __func__, (timings.t_end_ms - timings.t_start_ms), (timings.n_p_eval + timings.n_eval));
  15461. }
  15462. void llama_reset_timings(struct llama_context * ctx) {
  15463. ctx->t_start_us = ggml_time_us();
  15464. ctx->t_sample_us = ctx->n_sample = 0;
  15465. ctx->t_eval_us = ctx->n_eval = 0;
  15466. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  15467. }
  15468. const char * llama_print_system_info(void) {
  15469. static std::string s;
  15470. s = "";
  15471. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  15472. s += "AVX_VNNI = " + std::to_string(ggml_cpu_has_avx_vnni()) + " | ";
  15473. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  15474. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  15475. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  15476. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  15477. s += "AVX512_BF16 = " + std::to_string(ggml_cpu_has_avx512_bf16()) + " | ";
  15478. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  15479. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  15480. s += "SVE = " + std::to_string(ggml_cpu_has_sve()) + " | ";
  15481. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  15482. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  15483. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  15484. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  15485. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  15486. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  15487. s += "SSSE3 = " + std::to_string(ggml_cpu_has_ssse3()) + " | ";
  15488. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  15489. s += "MATMUL_INT8 = " + std::to_string(ggml_cpu_has_matmul_int8()) + " | ";
  15490. #ifdef GGML_USE_LLAMAFILE
  15491. s += "LLAMAFILE = 1 | ";
  15492. #else
  15493. s += "LLAMAFILE = 0 | ";
  15494. #endif
  15495. return s.c_str();
  15496. }
  15497. void llama_dump_timing_info_yaml(FILE * stream, const llama_context * ctx) {
  15498. fprintf(stream, "\n");
  15499. fprintf(stream, "###########\n");
  15500. fprintf(stream, "# Timings #\n");
  15501. fprintf(stream, "###########\n");
  15502. fprintf(stream, "\n");
  15503. fprintf(stream, "mst_eval: %.2f # ms / token during generation\n",
  15504. 1.0e-3 * ctx->t_eval_us / ctx->n_eval);
  15505. fprintf(stream, "mst_p_eval: %.2f # ms / token during prompt processing\n",
  15506. 1.0e-3 * ctx->t_p_eval_us / ctx->n_p_eval);
  15507. fprintf(stream, "mst_sample: %.2f # ms / token during sampling\n",
  15508. 1.0e-3 * ctx->t_sample_us / ctx->n_sample);
  15509. fprintf(stream, "n_eval: %d # number of tokens generated (excluding the first one)\n", ctx->n_eval);
  15510. fprintf(stream, "n_p_eval: %d # number of tokens processed in batches at the beginning\n", ctx->n_p_eval);
  15511. fprintf(stream, "n_sample: %d # number of sampled tokens\n", ctx->n_sample);
  15512. fprintf(stream, "t_eval_us: %" PRId64 " # total microseconds spent generating tokens\n", ctx->t_eval_us);
  15513. fprintf(stream, "t_load_us: %" PRId64 " # total microseconds spent loading the model\n", ctx->t_load_us);
  15514. fprintf(stream, "t_p_eval_us: %" PRId64 " # total microseconds spent prompt processing\n", ctx->t_p_eval_us);
  15515. fprintf(stream, "t_sample_us: %" PRId64 " # total microseconds spent sampling\n", ctx->t_sample_us);
  15516. fprintf(stream, "ts_eval: %.2f # tokens / second during generation\n",
  15517. 1.0e6 * ctx->n_eval / ctx->t_eval_us);
  15518. fprintf(stream, "ts_p_eval: %.2f # tokens / second during prompt processing\n",
  15519. 1.0e6 * ctx->n_p_eval / ctx->t_p_eval_us);
  15520. fprintf(stream, "ts_sample: %.2f # tokens / second during sampling\n",
  15521. 1.0e6 * ctx->n_sample / ctx->t_sample_us);
  15522. }
  15523. // For internal test use
  15524. const std::vector<std::pair<std::string, struct ggml_tensor *>> & llama_internal_get_tensor_map(
  15525. struct llama_context * ctx
  15526. ) {
  15527. return ctx->model.tensors_by_name;
  15528. }
  15529. void llama_log_set(ggml_log_callback log_callback, void * user_data) {
  15530. g_state.log_callback = log_callback ? log_callback : llama_log_callback_default;
  15531. g_state.log_callback_user_data = user_data;
  15532. #ifdef GGML_USE_METAL
  15533. ggml_backend_metal_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15534. #elif defined(GGML_USE_CUDA)
  15535. ggml_backend_cuda_log_set_callback(g_state.log_callback, g_state.log_callback_user_data);
  15536. #endif
  15537. }
  15538. static void llama_log_internal_v(ggml_log_level level, const char * format, va_list args) {
  15539. va_list args_copy;
  15540. va_copy(args_copy, args);
  15541. char buffer[128];
  15542. int len = vsnprintf(buffer, 128, format, args);
  15543. if (len < 128) {
  15544. g_state.log_callback(level, buffer, g_state.log_callback_user_data);
  15545. } else {
  15546. char* buffer2 = new char[len+1];
  15547. vsnprintf(buffer2, len+1, format, args_copy);
  15548. buffer2[len] = 0;
  15549. g_state.log_callback(level, buffer2, g_state.log_callback_user_data);
  15550. delete[] buffer2;
  15551. }
  15552. va_end(args_copy);
  15553. }
  15554. static void llama_log_internal(ggml_log_level level, const char * format, ...) {
  15555. va_list args;
  15556. va_start(args, format);
  15557. llama_log_internal_v(level, format, args);
  15558. va_end(args);
  15559. }
  15560. static void llama_log_callback_default(ggml_log_level level, const char * text, void * user_data) {
  15561. (void) level;
  15562. (void) user_data;
  15563. fputs(text, stderr);
  15564. fflush(stderr);
  15565. }