ggml.c 711 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223192241922519226192271922819229192301923119232192331923419235192361923719238192391924019241192421924319244192451924619247192481924919250192511925219253192541925519256192571925819259192601926119262192631926419265192661926719268192691927019271192721927319274192751927619277192781927919280192811928219283192841928519286192871928819289192901929119292192931929419295192961929719298192991930019301193021930319304193051930619307193081930919310193111931219313193141931519316193171931819319193201932119322193231932419325193261932719328193291933019331193321933319334193351933619337193381933919340193411934219343193441934519346193471934819349193501935119352193531935419355193561935719358193591936019361193621936319364193651936619367193681936919370193711937219373193741937519376193771937819379193801938119382193831938419385193861938719388193891939019391193921939319394193951939619397193981939919400194011940219403194041940519406194071940819409194101941119412194131941419415194161941719418194191942019421194221942319424194251942619427194281942919430194311943219433194341943519436194371943819439194401944119442194431944419445194461944719448194491945019451194521945319454194551945619457194581945919460194611946219463194641946519466194671946819469194701947119472194731947419475194761947719478194791948019481194821948319484194851948619487194881948919490194911949219493194941949519496194971949819499195001950119502195031950419505195061950719508195091951019511195121951319514195151951619517195181951919520195211952219523195241952519526195271952819529195301953119532195331953419535195361953719538195391954019541195421954319544195451954619547195481954919550195511955219553195541955519556195571955819559195601956119562195631956419565195661956719568195691957019571195721957319574195751957619577195781957919580195811958219583195841958519586195871958819589195901959119592195931959419595195961959719598195991960019601196021960319604196051960619607196081960919610196111961219613196141961519616196171961819619196201962119622196231962419625196261962719628196291963019631196321963319634196351963619637196381963919640196411964219643196441964519646196471964819649196501965119652196531965419655196561965719658196591966019661196621966319664196651966619667196681966919670196711967219673196741967519676196771967819679196801968119682196831968419685196861968719688196891969019691196921969319694196951969619697196981969919700197011970219703197041970519706197071970819709197101971119712197131971419715197161971719718197191972019721197221972319724197251972619727197281972919730197311973219733197341973519736197371973819739197401974119742197431974419745197461974719748197491975019751197521975319754197551975619757197581975919760197611976219763197641976519766197671976819769197701977119772197731977419775197761977719778197791978019781197821978319784197851978619787197881978919790197911979219793197941979519796197971979819799198001980119802198031980419805198061980719808198091981019811198121981319814198151981619817198181981919820198211982219823198241982519826198271982819829198301983119832198331983419835198361983719838198391984019841198421984319844198451984619847198481984919850198511985219853198541985519856198571985819859198601986119862198631986419865198661986719868198691987019871198721987319874198751987619877198781987919880198811988219883198841988519886198871988819889198901989119892198931989419895198961989719898198991990019901199021990319904199051990619907199081990919910199111991219913199141991519916199171991819919199201992119922199231992419925199261992719928199291993019931199321993319934199351993619937199381993919940199411994219943199441994519946199471994819949199501995119952199531995419955199561995719958199591996019961199621996319964199651996619967199681996919970199711997219973199741997519976199771997819979199801998119982199831998419985199861998719988199891999019991199921999319994199951999619997199981999920000200012000220003200042000520006200072000820009200102001120012200132001420015200162001720018200192002020021200222002320024200252002620027200282002920030200312003220033200342003520036200372003820039200402004120042200432004420045200462004720048200492005020051200522005320054200552005620057200582005920060200612006220063200642006520066200672006820069200702007120072200732007420075200762007720078200792008020081200822008320084200852008620087200882008920090200912009220093200942009520096200972009820099201002010120102201032010420105201062010720108201092011020111201122011320114201152011620117201182011920120201212012220123201242012520126201272012820129201302013120132201332013420135201362013720138201392014020141201422014320144201452014620147201482014920150201512015220153201542015520156201572015820159201602016120162201632016420165201662016720168201692017020171201722017320174201752017620177201782017920180201812018220183201842018520186201872018820189201902019120192201932019420195201962019720198201992020020201202022020320204202052020620207202082020920210202112021220213202142021520216202172021820219202202022120222202232022420225202262022720228202292023020231202322023320234202352023620237202382023920240202412024220243202442024520246202472024820249202502025120252202532025420255202562025720258202592026020261202622026320264202652026620267202682026920270202712027220273202742027520276202772027820279202802028120282202832028420285202862028720288202892029020291202922029320294202952029620297202982029920300203012030220303203042030520306203072030820309203102031120312203132031420315203162031720318203192032020321203222032320324203252032620327203282032920330203312033220333203342033520336203372033820339203402034120342203432034420345203462034720348203492035020351203522035320354203552035620357203582035920360203612036220363203642036520366203672036820369203702037120372203732037420375203762037720378203792038020381203822038320384203852038620387203882038920390203912039220393203942039520396203972039820399204002040120402204032040420405204062040720408204092041020411204122041320414204152041620417204182041920420204212042220423204242042520426204272042820429204302043120432204332043420435204362043720438204392044020441204422044320444204452044620447204482044920450204512045220453204542045520456204572045820459204602046120462204632046420465204662046720468204692047020471204722047320474204752047620477204782047920480204812048220483204842048520486204872048820489204902049120492204932049420495204962049720498204992050020501205022050320504205052050620507205082050920510205112051220513205142051520516205172051820519205202052120522205232052420525205262052720528205292053020531205322053320534205352053620537205382053920540205412054220543205442054520546205472054820549205502055120552205532055420555205562055720558205592056020561205622056320564205652056620567205682056920570205712057220573205742057520576205772057820579205802058120582205832058420585205862058720588205892059020591205922059320594205952059620597205982059920600206012060220603206042060520606206072060820609206102061120612206132061420615206162061720618206192062020621206222062320624206252062620627206282062920630206312063220633206342063520636206372063820639206402064120642206432064420645206462064720648206492065020651206522065320654206552065620657206582065920660206612066220663206642066520666206672066820669206702067120672206732067420675206762067720678206792068020681206822068320684206852068620687206882068920690206912069220693206942069520696206972069820699207002070120702207032070420705207062070720708207092071020711207122071320714207152071620717207182071920720207212072220723207242072520726207272072820729207302073120732207332073420735207362073720738207392074020741207422074320744207452074620747207482074920750207512075220753207542075520756207572075820759207602076120762207632076420765207662076720768207692077020771207722077320774207752077620777207782077920780207812078220783207842078520786207872078820789207902079120792207932079420795207962079720798207992080020801208022080320804208052080620807208082080920810208112081220813208142081520816208172081820819208202082120822208232082420825208262082720828208292083020831208322083320834208352083620837208382083920840208412084220843208442084520846208472084820849208502085120852208532085420855208562085720858208592086020861208622086320864208652086620867208682086920870208712087220873208742087520876208772087820879208802088120882208832088420885208862088720888208892089020891208922089320894208952089620897208982089920900209012090220903209042090520906209072090820909209102091120912209132091420915209162091720918209192092020921209222092320924209252092620927209282092920930209312093220933209342093520936209372093820939209402094120942209432094420945209462094720948209492095020951209522095320954209552095620957209582095920960209612096220963209642096520966209672096820969209702097120972209732097420975209762097720978209792098020981209822098320984209852098620987209882098920990209912099220993209942099520996209972099820999210002100121002210032100421005210062100721008210092101021011210122101321014210152101621017210182101921020210212102221023210242102521026210272102821029210302103121032210332103421035210362103721038210392104021041210422104321044210452104621047210482104921050210512105221053210542105521056210572105821059210602106121062210632106421065210662106721068210692107021071210722107321074210752107621077210782107921080210812108221083210842108521086210872108821089210902109121092210932109421095210962109721098210992110021101211022110321104211052110621107211082110921110211112111221113211142111521116211172111821119211202112121122211232112421125211262112721128211292113021131211322113321134211352113621137211382113921140211412114221143211442114521146211472114821149211502115121152211532115421155211562115721158211592116021161211622116321164211652116621167211682116921170211712117221173211742117521176211772117821179211802118121182211832118421185211862118721188211892119021191211922119321194211952119621197211982119921200212012120221203212042120521206212072120821209212102121121212212132121421215212162121721218212192122021221212222122321224212252122621227212282122921230212312123221233212342123521236212372123821239212402124121242212432124421245212462124721248212492125021251212522125321254212552125621257212582125921260212612126221263212642126521266212672126821269212702127121272212732127421275212762127721278212792128021281212822128321284212852128621287212882128921290212912129221293212942129521296212972129821299213002130121302213032130421305213062130721308213092131021311213122131321314213152131621317213182131921320213212132221323213242132521326213272132821329213302133121332213332133421335213362133721338213392134021341213422134321344213452134621347213482134921350213512135221353213542135521356213572135821359213602136121362213632136421365213662136721368213692137021371213722137321374213752137621377213782137921380213812138221383213842138521386213872138821389213902139121392213932139421395213962139721398213992140021401214022140321404214052140621407214082140921410214112141221413214142141521416214172141821419214202142121422214232142421425214262142721428214292143021431214322143321434214352143621437214382143921440214412144221443214442144521446214472144821449214502145121452214532145421455214562145721458214592146021461214622146321464214652146621467214682146921470214712147221473214742147521476214772147821479214802148121482214832148421485214862148721488214892149021491214922149321494214952149621497214982149921500215012150221503215042150521506215072150821509215102151121512215132151421515215162151721518215192152021521215222152321524215252152621527215282152921530215312153221533215342153521536215372153821539215402154121542215432154421545215462154721548215492155021551215522155321554215552155621557215582155921560215612156221563215642156521566215672156821569215702157121572215732157421575215762157721578215792158021581215822158321584215852158621587215882158921590215912159221593215942159521596215972159821599216002160121602216032160421605216062160721608216092161021611216122161321614216152161621617216182161921620216212162221623216242162521626216272162821629216302163121632216332163421635216362163721638216392164021641216422164321644216452164621647216482164921650216512165221653216542165521656216572165821659216602166121662216632166421665216662166721668216692167021671216722167321674216752167621677216782167921680216812168221683216842168521686216872168821689216902169121692216932169421695216962169721698216992170021701217022170321704217052170621707217082170921710217112171221713217142171521716217172171821719217202172121722217232172421725217262172721728217292173021731217322173321734217352173621737217382173921740217412174221743217442174521746217472174821749217502175121752217532175421755217562175721758217592176021761217622176321764217652176621767217682176921770217712177221773217742177521776217772177821779217802178121782217832178421785217862178721788217892179021791217922179321794217952179621797217982179921800218012180221803218042180521806218072180821809218102181121812218132181421815218162181721818218192182021821218222182321824218252182621827218282182921830218312183221833218342183521836218372183821839218402184121842218432184421845218462184721848218492185021851218522185321854218552185621857218582185921860218612186221863218642186521866218672186821869218702187121872218732187421875218762187721878218792188021881218822188321884218852188621887218882188921890218912189221893218942189521896218972189821899219002190121902219032190421905219062190721908219092191021911219122191321914219152191621917219182191921920219212192221923219242192521926219272192821929219302193121932219332193421935219362193721938219392194021941219422194321944219452194621947219482194921950219512195221953219542195521956219572195821959219602196121962219632196421965219662196721968219692197021971219722197321974219752197621977219782197921980219812198221983219842198521986219872198821989219902199121992219932199421995219962199721998219992200022001220022200322004220052200622007220082200922010220112201222013220142201522016220172201822019220202202122022220232202422025220262202722028220292203022031220322203322034220352203622037220382203922040220412204222043220442204522046220472204822049
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  2. #include "ggml.h"
  3. #ifdef GGML_USE_K_QUANTS
  4. #include "k_quants.h"
  5. #endif
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // static_assert should be a #define, but if it's not,
  28. // fall back to the _Static_assert C11 keyword.
  29. // if C99 - static_assert is noop
  30. // ref: https://stackoverflow.com/a/53923785/4039976
  31. #ifndef static_assert
  32. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 201100L)
  33. #define static_assert(cond, msg) _Static_assert(cond, msg)
  34. #else
  35. #define static_assert(cond, msg) struct global_scope_noop_trick
  36. #endif
  37. #endif
  38. #if defined(_MSC_VER)
  39. // disable "possible loss of data" to avoid hundreds of casts
  40. // we should just be careful :)
  41. #pragma warning(disable: 4244 4267)
  42. // disable POSIX deprecation warnigns
  43. // these functions are never going away, anyway
  44. #pragma warning(disable: 4996)
  45. #endif
  46. #if defined(_WIN32)
  47. #include <windows.h>
  48. typedef volatile LONG atomic_int;
  49. typedef atomic_int atomic_bool;
  50. static void atomic_store(atomic_int * ptr, LONG val) {
  51. InterlockedExchange(ptr, val);
  52. }
  53. static LONG atomic_load(atomic_int * ptr) {
  54. return InterlockedCompareExchange(ptr, 0, 0);
  55. }
  56. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  57. return InterlockedExchangeAdd(ptr, inc);
  58. }
  59. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  60. return atomic_fetch_add(ptr, -(dec));
  61. }
  62. typedef HANDLE pthread_t;
  63. typedef DWORD thread_ret_t;
  64. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  65. (void) unused;
  66. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  67. if (handle == NULL)
  68. {
  69. return EAGAIN;
  70. }
  71. *out = handle;
  72. return 0;
  73. }
  74. static int pthread_join(pthread_t thread, void * unused) {
  75. (void) unused;
  76. int ret = (int) WaitForSingleObject(thread, INFINITE);
  77. CloseHandle(thread);
  78. return ret;
  79. }
  80. static int sched_yield (void) {
  81. Sleep (0);
  82. return 0;
  83. }
  84. #else
  85. #include <pthread.h>
  86. #include <stdatomic.h>
  87. typedef void * thread_ret_t;
  88. #include <sys/types.h>
  89. #include <sys/stat.h>
  90. #include <unistd.h>
  91. #endif
  92. #ifdef GGML_USE_CPU_HBM
  93. #include <hbwmalloc.h>
  94. #endif
  95. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  96. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  97. #ifndef __FMA__
  98. #define __FMA__
  99. #endif
  100. #ifndef __F16C__
  101. #define __F16C__
  102. #endif
  103. #ifndef __SSE3__
  104. #define __SSE3__
  105. #endif
  106. #endif
  107. /*#define GGML_PERF*/
  108. #define GGML_DEBUG 0
  109. #define GGML_GELU_FP16
  110. #define GGML_GELU_QUICK_FP16
  111. #define GGML_SILU_FP16
  112. // #define GGML_CROSS_ENTROPY_EXP_FP16
  113. // #define GGML_FLASH_ATTN_EXP_FP16
  114. #define GGML_SOFT_MAX_UNROLL 4
  115. #define GGML_VEC_DOT_UNROLL 2
  116. #define GGML_VEC_MAD_UNROLL 32
  117. //
  118. // logging
  119. //
  120. #if (GGML_DEBUG >= 1)
  121. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  122. #else
  123. #define GGML_PRINT_DEBUG(...)
  124. #endif
  125. #if (GGML_DEBUG >= 5)
  126. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  127. #else
  128. #define GGML_PRINT_DEBUG_5(...)
  129. #endif
  130. #if (GGML_DEBUG >= 10)
  131. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  132. #else
  133. #define GGML_PRINT_DEBUG_10(...)
  134. #endif
  135. #define GGML_PRINT(...) printf(__VA_ARGS__)
  136. //
  137. // end of logging block
  138. //
  139. #ifdef GGML_USE_ACCELERATE
  140. // uncomment to use vDSP for soft max computation
  141. // note: not sure if it is actually faster
  142. //#define GGML_SOFT_MAX_ACCELERATE
  143. #endif
  144. #if defined(_MSC_VER) || defined(__MINGW32__)
  145. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  146. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  147. #else
  148. inline static void * ggml_aligned_malloc(size_t size) {
  149. if (size == 0) {
  150. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  151. return NULL;
  152. }
  153. void * aligned_memory = NULL;
  154. #ifdef GGML_USE_CPU_HBM
  155. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  156. #elif GGML_USE_METAL
  157. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  158. #else
  159. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  160. #endif
  161. if (result != 0) {
  162. // Handle allocation failure
  163. const char *error_desc = "unknown allocation error";
  164. switch (result) {
  165. case EINVAL:
  166. error_desc = "invalid alignment value";
  167. break;
  168. case ENOMEM:
  169. error_desc = "insufficient memory";
  170. break;
  171. }
  172. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  173. return NULL;
  174. }
  175. return aligned_memory;
  176. }
  177. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  178. #ifdef GGML_USE_CPU_HBM
  179. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  180. #else
  181. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  182. #endif
  183. #endif
  184. #define UNUSED GGML_UNUSED
  185. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  186. //
  187. // tensor access macros
  188. //
  189. #define GGML_TENSOR_UNARY_OP_LOCALS \
  190. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  191. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  192. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  193. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  194. #define GGML_TENSOR_BINARY_OP_LOCALS \
  195. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne) \
  196. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb) \
  197. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne) \
  198. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb) \
  199. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne) \
  200. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  201. #if defined(GGML_USE_ACCELERATE)
  202. #include <Accelerate/Accelerate.h>
  203. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  204. #include "ggml-opencl.h"
  205. #endif
  206. #elif defined(GGML_USE_OPENBLAS)
  207. #if defined(GGML_BLAS_USE_MKL)
  208. #include <mkl.h>
  209. #else
  210. #include <cblas.h>
  211. #endif
  212. #elif defined(GGML_USE_CUBLAS)
  213. #include "ggml-cuda.h"
  214. #elif defined(GGML_USE_CLBLAST)
  215. #include "ggml-opencl.h"
  216. #endif
  217. #undef MIN
  218. #undef MAX
  219. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  220. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  221. // floating point type used to accumulate sums
  222. typedef double ggml_float;
  223. // 16-bit float
  224. // on Arm, we use __fp16
  225. // on x86, we use uint16_t
  226. #if defined(__ARM_NEON) && !defined(_MSC_VER)
  227. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  228. //
  229. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  230. //
  231. #include <arm_neon.h>
  232. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  233. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  234. #define GGML_FP16_TO_FP32(x) ((float) (x))
  235. #define GGML_FP32_TO_FP16(x) (x)
  236. #else
  237. #ifdef __wasm_simd128__
  238. #include <wasm_simd128.h>
  239. #else
  240. #ifdef __POWER9_VECTOR__
  241. #include <altivec.h>
  242. #undef bool
  243. #define bool _Bool
  244. #else
  245. #if defined(_MSC_VER) || defined(__MINGW32__)
  246. #include <intrin.h>
  247. #else
  248. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
  249. #if !defined(__riscv)
  250. #include <immintrin.h>
  251. #endif
  252. #endif
  253. #endif
  254. #endif
  255. #endif
  256. #ifdef __riscv_v_intrinsic
  257. #include <riscv_vector.h>
  258. #endif
  259. #ifdef __F16C__
  260. #ifdef _MSC_VER
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  263. #else
  264. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  265. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  266. #endif
  267. #elif defined(__POWER9_VECTOR__)
  268. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  269. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  270. /* the inline asm below is about 12% faster than the lookup method */
  271. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  272. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  273. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  274. register float f;
  275. register double d;
  276. __asm__(
  277. "mtfprd %0,%2\n"
  278. "xscvhpdp %0,%0\n"
  279. "frsp %1,%0\n" :
  280. /* temp */ "=d"(d),
  281. /* out */ "=f"(f):
  282. /* in */ "r"(h));
  283. return f;
  284. }
  285. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  286. register double d;
  287. register ggml_fp16_t r;
  288. __asm__( /* xscvdphp can work on double or single precision */
  289. "xscvdphp %0,%2\n"
  290. "mffprd %1,%0\n" :
  291. /* temp */ "=d"(d),
  292. /* out */ "=r"(r):
  293. /* in */ "f"(f));
  294. return r;
  295. }
  296. #else
  297. // FP16 <-> FP32
  298. // ref: https://github.com/Maratyszcza/FP16
  299. static inline float fp32_from_bits(uint32_t w) {
  300. union {
  301. uint32_t as_bits;
  302. float as_value;
  303. } fp32;
  304. fp32.as_bits = w;
  305. return fp32.as_value;
  306. }
  307. static inline uint32_t fp32_to_bits(float f) {
  308. union {
  309. float as_value;
  310. uint32_t as_bits;
  311. } fp32;
  312. fp32.as_value = f;
  313. return fp32.as_bits;
  314. }
  315. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  316. const uint32_t w = (uint32_t) h << 16;
  317. const uint32_t sign = w & UINT32_C(0x80000000);
  318. const uint32_t two_w = w + w;
  319. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  320. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  321. const float exp_scale = 0x1.0p-112f;
  322. #else
  323. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  324. #endif
  325. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  326. const uint32_t magic_mask = UINT32_C(126) << 23;
  327. const float magic_bias = 0.5f;
  328. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  329. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  330. const uint32_t result = sign |
  331. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  332. return fp32_from_bits(result);
  333. }
  334. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  335. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  336. const float scale_to_inf = 0x1.0p+112f;
  337. const float scale_to_zero = 0x1.0p-110f;
  338. #else
  339. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  340. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  341. #endif
  342. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  343. const uint32_t w = fp32_to_bits(f);
  344. const uint32_t shl1_w = w + w;
  345. const uint32_t sign = w & UINT32_C(0x80000000);
  346. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  347. if (bias < UINT32_C(0x71000000)) {
  348. bias = UINT32_C(0x71000000);
  349. }
  350. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  351. const uint32_t bits = fp32_to_bits(base);
  352. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  353. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  354. const uint32_t nonsign = exp_bits + mantissa_bits;
  355. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  356. }
  357. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  358. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  359. #endif // __F16C__
  360. #endif // __ARM_NEON
  361. //
  362. // global data
  363. //
  364. // precomputed gelu table for f16 (128 KB)
  365. static ggml_fp16_t table_gelu_f16[1 << 16];
  366. // precomputed quick gelu table for f16 (128 KB)
  367. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  368. // precomputed silu table for f16 (128 KB)
  369. static ggml_fp16_t table_silu_f16[1 << 16];
  370. // precomputed exp table for f16 (128 KB)
  371. static ggml_fp16_t table_exp_f16[1 << 16];
  372. // precomputed f32 table for f16 (256 KB)
  373. static float table_f32_f16[1 << 16];
  374. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  375. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  376. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  377. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  378. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  379. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  380. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  381. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  382. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  383. // precomputed tables for expanding 8bits to 8 bytes:
  384. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  385. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  386. #endif
  387. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  388. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  389. // This is also true for POWER9.
  390. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  391. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  392. uint16_t s;
  393. memcpy(&s, &f, sizeof(uint16_t));
  394. return table_f32_f16[s];
  395. }
  396. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  397. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  398. #endif
  399. // note: do not use these inside ggml.c
  400. // these are meant to be used via the ggml.h API
  401. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  402. return (float) GGML_FP16_TO_FP32(x);
  403. }
  404. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  405. return GGML_FP32_TO_FP16(x);
  406. }
  407. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  408. for (int i = 0; i < n; i++) {
  409. y[i] = GGML_FP16_TO_FP32(x[i]);
  410. }
  411. }
  412. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  413. int i = 0;
  414. #if defined(__F16C__)
  415. for (; i + 7 < n; i += 8) {
  416. __m256 x_vec = _mm256_loadu_ps(x + i);
  417. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  418. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  419. }
  420. for(; i + 3 < n; i += 4) {
  421. __m128 x_vec = _mm_loadu_ps(x + i);
  422. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  423. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  424. }
  425. #endif
  426. for (; i < n; i++) {
  427. y[i] = GGML_FP32_TO_FP16(x[i]);
  428. }
  429. }
  430. //
  431. // timing
  432. //
  433. #if defined(_MSC_VER) || defined(__MINGW32__)
  434. static int64_t timer_freq, timer_start;
  435. void ggml_time_init(void) {
  436. LARGE_INTEGER t;
  437. QueryPerformanceFrequency(&t);
  438. timer_freq = t.QuadPart;
  439. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  440. // and the uptime is high enough.
  441. // We subtract the program start time to reduce the likelihood of that happening.
  442. QueryPerformanceCounter(&t);
  443. timer_start = t.QuadPart;
  444. }
  445. int64_t ggml_time_ms(void) {
  446. LARGE_INTEGER t;
  447. QueryPerformanceCounter(&t);
  448. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  449. }
  450. int64_t ggml_time_us(void) {
  451. LARGE_INTEGER t;
  452. QueryPerformanceCounter(&t);
  453. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  454. }
  455. #else
  456. void ggml_time_init(void) {}
  457. int64_t ggml_time_ms(void) {
  458. struct timespec ts;
  459. clock_gettime(CLOCK_MONOTONIC, &ts);
  460. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  461. }
  462. int64_t ggml_time_us(void) {
  463. struct timespec ts;
  464. clock_gettime(CLOCK_MONOTONIC, &ts);
  465. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  466. }
  467. #endif
  468. int64_t ggml_cycles(void) {
  469. return clock();
  470. }
  471. int64_t ggml_cycles_per_ms(void) {
  472. return CLOCKS_PER_SEC/1000;
  473. }
  474. #ifdef GGML_PERF
  475. #define ggml_perf_time_ms() ggml_time_ms()
  476. #define ggml_perf_time_us() ggml_time_us()
  477. #define ggml_perf_cycles() ggml_cycles()
  478. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  479. #else
  480. #define ggml_perf_time_ms() 0
  481. #define ggml_perf_time_us() 0
  482. #define ggml_perf_cycles() 0
  483. #define ggml_perf_cycles_per_ms() 0
  484. #endif
  485. //
  486. // cache line
  487. //
  488. #if defined(__cpp_lib_hardware_interference_size)
  489. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  490. #else
  491. #if defined(__POWER9_VECTOR__)
  492. #define CACHE_LINE_SIZE 128
  493. #else
  494. #define CACHE_LINE_SIZE 64
  495. #endif
  496. #endif
  497. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  498. //
  499. // quantization
  500. //
  501. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  502. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  503. // multiply int8_t, add results pairwise twice
  504. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  505. // Get absolute values of x vectors
  506. const __m128i ax = _mm_sign_epi8(x, x);
  507. // Sign the values of the y vectors
  508. const __m128i sy = _mm_sign_epi8(y, x);
  509. // Perform multiplication and create 16-bit values
  510. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  511. const __m128i ones = _mm_set1_epi16(1);
  512. return _mm_madd_epi16(ones, dot);
  513. }
  514. #if __AVX__ || __AVX2__ || __AVX512F__
  515. // horizontally add 8 floats
  516. static inline float hsum_float_8(const __m256 x) {
  517. __m128 res = _mm256_extractf128_ps(x, 1);
  518. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  519. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  520. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  521. return _mm_cvtss_f32(res);
  522. }
  523. // horizontally add 8 int32_t
  524. static inline int hsum_i32_8(const __m256i a) {
  525. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  526. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  527. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  528. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  529. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  530. }
  531. // horizontally add 4 int32_t
  532. static inline int hsum_i32_4(const __m128i a) {
  533. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  534. const __m128i sum64 = _mm_add_epi32(hi64, a);
  535. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  536. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  537. }
  538. #if defined(__AVX2__) || defined(__AVX512F__)
  539. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  540. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  541. uint32_t x32;
  542. memcpy(&x32, x, sizeof(uint32_t));
  543. const __m256i shuf_mask = _mm256_set_epi64x(
  544. 0x0303030303030303, 0x0202020202020202,
  545. 0x0101010101010101, 0x0000000000000000);
  546. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  547. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  548. bytes = _mm256_or_si256(bytes, bit_mask);
  549. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  550. }
  551. // Unpack 32 4-bit fields into 32 bytes
  552. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  553. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  554. {
  555. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  556. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  557. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  558. return _mm256_and_si256(lowMask, bytes);
  559. }
  560. // add int16_t pairwise and return as float vector
  561. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  562. const __m256i ones = _mm256_set1_epi16(1);
  563. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  564. return _mm256_cvtepi32_ps(summed_pairs);
  565. }
  566. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  567. #if __AVXVNNI__
  568. const __m256i zero = _mm256_setzero_si256();
  569. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  570. return _mm256_cvtepi32_ps(summed_pairs);
  571. #else
  572. // Perform multiplication and create 16-bit values
  573. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  574. return sum_i16_pairs_float(dot);
  575. #endif
  576. }
  577. // multiply int8_t, add results pairwise twice and return as float vector
  578. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  579. #if __AVXVNNIINT8__
  580. const __m256i zero = _mm256_setzero_si256();
  581. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  582. return _mm256_cvtepi32_ps(summed_pairs);
  583. #else
  584. // Get absolute values of x vectors
  585. const __m256i ax = _mm256_sign_epi8(x, x);
  586. // Sign the values of the y vectors
  587. const __m256i sy = _mm256_sign_epi8(y, x);
  588. return mul_sum_us8_pairs_float(ax, sy);
  589. #endif
  590. }
  591. static inline __m128i packNibbles( __m256i bytes )
  592. {
  593. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  594. #if __AVX512F__
  595. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  596. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  597. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  598. #else
  599. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  600. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  601. __m256i low = _mm256_and_si256( lowByte, bytes );
  602. high = _mm256_srli_epi16( high, 4 );
  603. bytes = _mm256_or_si256( low, high );
  604. // Compress uint16_t lanes into bytes
  605. __m128i r0 = _mm256_castsi256_si128( bytes );
  606. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  607. return _mm_packus_epi16( r0, r1 );
  608. #endif
  609. }
  610. #elif defined(__AVX__)
  611. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  612. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  613. uint32_t x32;
  614. memcpy(&x32, x, sizeof(uint32_t));
  615. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  616. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  617. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  618. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  619. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  620. bytesl = _mm_or_si128(bytesl, bit_mask);
  621. bytesh = _mm_or_si128(bytesh, bit_mask);
  622. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  623. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  624. return MM256_SET_M128I(bytesh, bytesl);
  625. }
  626. // Unpack 32 4-bit fields into 32 bytes
  627. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  628. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  629. {
  630. // Load 16 bytes from memory
  631. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  632. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  633. const __m128i lowMask = _mm_set1_epi8(0xF);
  634. tmpl = _mm_and_si128(lowMask, tmpl);
  635. tmph = _mm_and_si128(lowMask, tmph);
  636. return MM256_SET_M128I(tmph, tmpl);
  637. }
  638. // add int16_t pairwise and return as float vector
  639. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  640. const __m128i ones = _mm_set1_epi16(1);
  641. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  642. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  643. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  644. return _mm256_cvtepi32_ps(summed_pairs);
  645. }
  646. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  647. const __m128i axl = _mm256_castsi256_si128(ax);
  648. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  649. const __m128i syl = _mm256_castsi256_si128(sy);
  650. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  651. // Perform multiplication and create 16-bit values
  652. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  653. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  654. return sum_i16_pairs_float(doth, dotl);
  655. }
  656. // multiply int8_t, add results pairwise twice and return as float vector
  657. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  658. const __m128i xl = _mm256_castsi256_si128(x);
  659. const __m128i xh = _mm256_extractf128_si256(x, 1);
  660. const __m128i yl = _mm256_castsi256_si128(y);
  661. const __m128i yh = _mm256_extractf128_si256(y, 1);
  662. // Get absolute values of x vectors
  663. const __m128i axl = _mm_sign_epi8(xl, xl);
  664. const __m128i axh = _mm_sign_epi8(xh, xh);
  665. // Sign the values of the y vectors
  666. const __m128i syl = _mm_sign_epi8(yl, xl);
  667. const __m128i syh = _mm_sign_epi8(yh, xh);
  668. // Perform multiplication and create 16-bit values
  669. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  670. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  671. return sum_i16_pairs_float(doth, dotl);
  672. }
  673. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  674. {
  675. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  676. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  677. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  678. __m128i low = _mm_and_si128( lowByte, bytes1 );
  679. high = _mm_srli_epi16( high, 4 );
  680. bytes1 = _mm_or_si128( low, high );
  681. high = _mm_andnot_si128( lowByte, bytes2 );
  682. low = _mm_and_si128( lowByte, bytes2 );
  683. high = _mm_srli_epi16( high, 4 );
  684. bytes2 = _mm_or_si128( low, high );
  685. return _mm_packus_epi16( bytes1, bytes2);
  686. }
  687. #endif
  688. #elif defined(__SSSE3__)
  689. // horizontally add 4x4 floats
  690. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  691. __m128 res_0 =_mm_hadd_ps(a, b);
  692. __m128 res_1 =_mm_hadd_ps(c, d);
  693. __m128 res =_mm_hadd_ps(res_0, res_1);
  694. res =_mm_hadd_ps(res, res);
  695. res =_mm_hadd_ps(res, res);
  696. return _mm_cvtss_f32(res);
  697. }
  698. #endif // __AVX__ || __AVX2__ || __AVX512F__
  699. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  700. #if defined(__ARM_NEON)
  701. #if !defined(__aarch64__)
  702. inline static int32_t vaddvq_s32(int32x4_t v) {
  703. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  704. }
  705. inline static float vaddvq_f32(float32x4_t v) {
  706. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  707. }
  708. inline static float vmaxvq_f32(float32x4_t v) {
  709. return
  710. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  711. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  712. }
  713. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  714. int32x4_t res;
  715. res[0] = roundf(vgetq_lane_f32(v, 0));
  716. res[1] = roundf(vgetq_lane_f32(v, 1));
  717. res[2] = roundf(vgetq_lane_f32(v, 2));
  718. res[3] = roundf(vgetq_lane_f32(v, 3));
  719. return res;
  720. }
  721. #endif
  722. #endif
  723. #define QK4_0 32
  724. typedef struct {
  725. ggml_fp16_t d; // delta
  726. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  727. } block_q4_0;
  728. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  729. #define QK4_1 32
  730. typedef struct {
  731. ggml_fp16_t d; // delta
  732. ggml_fp16_t m; // min
  733. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  734. } block_q4_1;
  735. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  736. #define QK5_0 32
  737. typedef struct {
  738. ggml_fp16_t d; // delta
  739. uint8_t qh[4]; // 5-th bit of quants
  740. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  741. } block_q5_0;
  742. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  743. #define QK5_1 32
  744. typedef struct {
  745. ggml_fp16_t d; // delta
  746. ggml_fp16_t m; // min
  747. uint8_t qh[4]; // 5-th bit of quants
  748. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  749. } block_q5_1;
  750. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  751. #define QK8_0 32
  752. typedef struct {
  753. ggml_fp16_t d; // delta
  754. int8_t qs[QK8_0]; // quants
  755. } block_q8_0;
  756. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  757. #define QK8_1 32
  758. typedef struct {
  759. float d; // delta
  760. float s; // d * sum(qs[i])
  761. int8_t qs[QK8_1]; // quants
  762. } block_q8_1;
  763. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  764. // reference implementation for deterministic creation of model files
  765. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  766. static const int qk = QK4_0;
  767. assert(k % qk == 0);
  768. const int nb = k / qk;
  769. for (int i = 0; i < nb; i++) {
  770. float amax = 0.0f; // absolute max
  771. float max = 0.0f;
  772. for (int j = 0; j < qk; j++) {
  773. const float v = x[i*qk + j];
  774. if (amax < fabsf(v)) {
  775. amax = fabsf(v);
  776. max = v;
  777. }
  778. }
  779. const float d = max / -8;
  780. const float id = d ? 1.0f/d : 0.0f;
  781. y[i].d = GGML_FP32_TO_FP16(d);
  782. for (int j = 0; j < qk/2; ++j) {
  783. const float x0 = x[i*qk + 0 + j]*id;
  784. const float x1 = x[i*qk + qk/2 + j]*id;
  785. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  786. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  787. y[i].qs[j] = xi0;
  788. y[i].qs[j] |= xi1 << 4;
  789. }
  790. }
  791. }
  792. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  793. quantize_row_q4_0_reference(x, y, k);
  794. }
  795. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  796. const int qk = QK4_1;
  797. assert(k % qk == 0);
  798. const int nb = k / qk;
  799. for (int i = 0; i < nb; i++) {
  800. float min = FLT_MAX;
  801. float max = -FLT_MAX;
  802. for (int j = 0; j < qk; j++) {
  803. const float v = x[i*qk + j];
  804. if (v < min) min = v;
  805. if (v > max) max = v;
  806. }
  807. const float d = (max - min) / ((1 << 4) - 1);
  808. const float id = d ? 1.0f/d : 0.0f;
  809. y[i].d = GGML_FP32_TO_FP16(d);
  810. y[i].m = GGML_FP32_TO_FP16(min);
  811. for (int j = 0; j < qk/2; ++j) {
  812. const float x0 = (x[i*qk + 0 + j] - min)*id;
  813. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  814. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  815. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  816. y[i].qs[j] = xi0;
  817. y[i].qs[j] |= xi1 << 4;
  818. }
  819. }
  820. }
  821. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  822. quantize_row_q4_1_reference(x, y, k);
  823. }
  824. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  825. static const int qk = QK5_0;
  826. assert(k % qk == 0);
  827. const int nb = k / qk;
  828. for (int i = 0; i < nb; i++) {
  829. float amax = 0.0f; // absolute max
  830. float max = 0.0f;
  831. for (int j = 0; j < qk; j++) {
  832. const float v = x[i*qk + j];
  833. if (amax < fabsf(v)) {
  834. amax = fabsf(v);
  835. max = v;
  836. }
  837. }
  838. const float d = max / -16;
  839. const float id = d ? 1.0f/d : 0.0f;
  840. y[i].d = GGML_FP32_TO_FP16(d);
  841. uint32_t qh = 0;
  842. for (int j = 0; j < qk/2; ++j) {
  843. const float x0 = x[i*qk + 0 + j]*id;
  844. const float x1 = x[i*qk + qk/2 + j]*id;
  845. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  846. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  847. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  848. // get the 5-th bit and store it in qh at the right position
  849. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  850. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  851. }
  852. memcpy(&y[i].qh, &qh, sizeof(qh));
  853. }
  854. }
  855. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  856. quantize_row_q5_0_reference(x, y, k);
  857. }
  858. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  859. const int qk = QK5_1;
  860. assert(k % qk == 0);
  861. const int nb = k / qk;
  862. for (int i = 0; i < nb; i++) {
  863. float min = FLT_MAX;
  864. float max = -FLT_MAX;
  865. for (int j = 0; j < qk; j++) {
  866. const float v = x[i*qk + j];
  867. if (v < min) min = v;
  868. if (v > max) max = v;
  869. }
  870. const float d = (max - min) / ((1 << 5) - 1);
  871. const float id = d ? 1.0f/d : 0.0f;
  872. y[i].d = GGML_FP32_TO_FP16(d);
  873. y[i].m = GGML_FP32_TO_FP16(min);
  874. uint32_t qh = 0;
  875. for (int j = 0; j < qk/2; ++j) {
  876. const float x0 = (x[i*qk + 0 + j] - min)*id;
  877. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  878. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  879. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  880. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  881. // get the 5-th bit and store it in qh at the right position
  882. qh |= ((xi0 & 0x10u) >> 4) << (j + 0);
  883. qh |= ((xi1 & 0x10u) >> 4) << (j + qk/2);
  884. }
  885. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  886. }
  887. }
  888. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  889. quantize_row_q5_1_reference(x, y, k);
  890. }
  891. // reference implementation for deterministic creation of model files
  892. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  893. assert(k % QK8_0 == 0);
  894. const int nb = k / QK8_0;
  895. for (int i = 0; i < nb; i++) {
  896. float amax = 0.0f; // absolute max
  897. for (int j = 0; j < QK8_0; j++) {
  898. const float v = x[i*QK8_0 + j];
  899. amax = MAX(amax, fabsf(v));
  900. }
  901. const float d = amax / ((1 << 7) - 1);
  902. const float id = d ? 1.0f/d : 0.0f;
  903. y[i].d = GGML_FP32_TO_FP16(d);
  904. for (int j = 0; j < QK8_0; ++j) {
  905. const float x0 = x[i*QK8_0 + j]*id;
  906. y[i].qs[j] = roundf(x0);
  907. }
  908. }
  909. }
  910. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  911. assert(QK8_0 == 32);
  912. assert(k % QK8_0 == 0);
  913. const int nb = k / QK8_0;
  914. block_q8_0 * restrict y = vy;
  915. #if defined(__ARM_NEON)
  916. for (int i = 0; i < nb; i++) {
  917. float32x4_t srcv [8];
  918. float32x4_t asrcv[8];
  919. float32x4_t amaxv[8];
  920. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  921. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  922. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  923. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  924. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  925. const float amax = vmaxvq_f32(amaxv[0]);
  926. const float d = amax / ((1 << 7) - 1);
  927. const float id = d ? 1.0f/d : 0.0f;
  928. y[i].d = GGML_FP32_TO_FP16(d);
  929. for (int j = 0; j < 8; j++) {
  930. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  931. const int32x4_t vi = vcvtnq_s32_f32(v);
  932. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  933. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  934. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  935. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  936. }
  937. }
  938. #elif defined(__wasm_simd128__)
  939. for (int i = 0; i < nb; i++) {
  940. v128_t srcv [8];
  941. v128_t asrcv[8];
  942. v128_t amaxv[8];
  943. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  944. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  945. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  946. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  947. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  948. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  949. wasm_f32x4_extract_lane(amaxv[0], 1)),
  950. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  951. wasm_f32x4_extract_lane(amaxv[0], 3)));
  952. const float d = amax / ((1 << 7) - 1);
  953. const float id = d ? 1.0f/d : 0.0f;
  954. y[i].d = GGML_FP32_TO_FP16(d);
  955. for (int j = 0; j < 8; j++) {
  956. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  957. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  958. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  959. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  960. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  961. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  962. }
  963. }
  964. #elif defined(__AVX2__) || defined(__AVX__)
  965. for (int i = 0; i < nb; i++) {
  966. // Load elements into 4 AVX vectors
  967. __m256 v0 = _mm256_loadu_ps( x );
  968. __m256 v1 = _mm256_loadu_ps( x + 8 );
  969. __m256 v2 = _mm256_loadu_ps( x + 16 );
  970. __m256 v3 = _mm256_loadu_ps( x + 24 );
  971. x += 32;
  972. // Compute max(abs(e)) for the block
  973. const __m256 signBit = _mm256_set1_ps( -0.0f );
  974. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  975. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  976. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  977. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  978. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  979. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  980. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  981. const float maxScalar = _mm_cvtss_f32( max4 );
  982. // Quantize these floats
  983. const float d = maxScalar / 127.f;
  984. y[i].d = GGML_FP32_TO_FP16(d);
  985. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  986. const __m256 mul = _mm256_set1_ps( id );
  987. // Apply the multiplier
  988. v0 = _mm256_mul_ps( v0, mul );
  989. v1 = _mm256_mul_ps( v1, mul );
  990. v2 = _mm256_mul_ps( v2, mul );
  991. v3 = _mm256_mul_ps( v3, mul );
  992. // Round to nearest integer
  993. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  994. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  995. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  996. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  997. // Convert floats to integers
  998. __m256i i0 = _mm256_cvtps_epi32( v0 );
  999. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1000. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1001. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1002. #if defined(__AVX2__)
  1003. // Convert int32 to int16
  1004. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1005. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1006. // Convert int16 to int8
  1007. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1008. // We got our precious signed bytes, but the order is now wrong
  1009. // These AVX2 pack instructions process 16-byte pieces independently
  1010. // The following instruction is fixing the order
  1011. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1012. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1013. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1014. #else
  1015. // Since we don't have in AVX some necessary functions,
  1016. // we split the registers in half and call AVX2 analogs from SSE
  1017. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1018. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1019. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1020. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1021. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1022. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1023. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1024. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1025. // Convert int32 to int16
  1026. ni0 = _mm_packs_epi32( ni0, ni1 );
  1027. ni2 = _mm_packs_epi32( ni2, ni3 );
  1028. ni4 = _mm_packs_epi32( ni4, ni5 );
  1029. ni6 = _mm_packs_epi32( ni6, ni7 );
  1030. // Convert int16 to int8
  1031. ni0 = _mm_packs_epi16( ni0, ni2 );
  1032. ni4 = _mm_packs_epi16( ni4, ni6 );
  1033. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1034. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1035. #endif
  1036. }
  1037. #elif defined(__riscv_v_intrinsic)
  1038. size_t vl = __riscv_vsetvl_e32m4(QK8_0);
  1039. for (int i = 0; i < nb; i++) {
  1040. // load elements
  1041. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_0, vl);
  1042. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1043. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0f, vl);
  1044. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1045. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1046. const float d = amax / ((1 << 7) - 1);
  1047. const float id = d ? 1.0f/d : 0.0f;
  1048. y[i].d = GGML_FP32_TO_FP16(d);
  1049. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1050. // convert to integer
  1051. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1052. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1053. // store result
  1054. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1055. }
  1056. #else
  1057. // scalar
  1058. quantize_row_q8_0_reference(x, y, k);
  1059. #endif
  1060. }
  1061. // reference implementation for deterministic creation of model files
  1062. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1063. assert(QK8_1 == 32);
  1064. assert(k % QK8_1 == 0);
  1065. const int nb = k / QK8_1;
  1066. for (int i = 0; i < nb; i++) {
  1067. float amax = 0.0f; // absolute max
  1068. for (int j = 0; j < QK8_1; j++) {
  1069. const float v = x[i*QK8_1 + j];
  1070. amax = MAX(amax, fabsf(v));
  1071. }
  1072. const float d = amax / ((1 << 7) - 1);
  1073. const float id = d ? 1.0f/d : 0.0f;
  1074. y[i].d = d;
  1075. int sum = 0;
  1076. for (int j = 0; j < QK8_1/2; ++j) {
  1077. const float v0 = x[i*QK8_1 + j]*id;
  1078. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1079. y[i].qs[ j] = roundf(v0);
  1080. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1081. sum += y[i].qs[ j];
  1082. sum += y[i].qs[QK8_1/2 + j];
  1083. }
  1084. y[i].s = sum*d;
  1085. }
  1086. }
  1087. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1088. assert(k % QK8_1 == 0);
  1089. const int nb = k / QK8_1;
  1090. block_q8_1 * restrict y = vy;
  1091. #if defined(__ARM_NEON)
  1092. for (int i = 0; i < nb; i++) {
  1093. float32x4_t srcv [8];
  1094. float32x4_t asrcv[8];
  1095. float32x4_t amaxv[8];
  1096. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1097. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1098. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1099. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1100. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1101. const float amax = vmaxvq_f32(amaxv[0]);
  1102. const float d = amax / ((1 << 7) - 1);
  1103. const float id = d ? 1.0f/d : 0.0f;
  1104. y[i].d = d;
  1105. int32x4_t accv = vdupq_n_s32(0);
  1106. for (int j = 0; j < 8; j++) {
  1107. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1108. const int32x4_t vi = vcvtnq_s32_f32(v);
  1109. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1110. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1111. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1112. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1113. accv = vaddq_s32(accv, vi);
  1114. }
  1115. y[i].s = d * vaddvq_s32(accv);
  1116. }
  1117. #elif defined(__wasm_simd128__)
  1118. for (int i = 0; i < nb; i++) {
  1119. v128_t srcv [8];
  1120. v128_t asrcv[8];
  1121. v128_t amaxv[8];
  1122. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1123. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1124. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1125. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1126. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1127. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1128. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1129. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1130. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1131. const float d = amax / ((1 << 7) - 1);
  1132. const float id = d ? 1.0f/d : 0.0f;
  1133. y[i].d = d;
  1134. v128_t accv = wasm_i32x4_splat(0);
  1135. for (int j = 0; j < 8; j++) {
  1136. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1137. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1138. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1139. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1140. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1141. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1142. accv = wasm_i32x4_add(accv, vi);
  1143. }
  1144. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1145. wasm_i32x4_extract_lane(accv, 1) +
  1146. wasm_i32x4_extract_lane(accv, 2) +
  1147. wasm_i32x4_extract_lane(accv, 3));
  1148. }
  1149. #elif defined(__AVX2__) || defined(__AVX__)
  1150. for (int i = 0; i < nb; i++) {
  1151. // Load elements into 4 AVX vectors
  1152. __m256 v0 = _mm256_loadu_ps( x );
  1153. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1154. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1155. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1156. x += 32;
  1157. // Compute max(abs(e)) for the block
  1158. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1159. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1160. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1161. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1162. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1163. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1164. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1165. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1166. const float maxScalar = _mm_cvtss_f32( max4 );
  1167. // Quantize these floats
  1168. const float d = maxScalar / 127.f;
  1169. y[i].d = d;
  1170. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1171. const __m256 mul = _mm256_set1_ps( id );
  1172. // Apply the multiplier
  1173. v0 = _mm256_mul_ps( v0, mul );
  1174. v1 = _mm256_mul_ps( v1, mul );
  1175. v2 = _mm256_mul_ps( v2, mul );
  1176. v3 = _mm256_mul_ps( v3, mul );
  1177. // Round to nearest integer
  1178. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1179. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1180. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1181. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1182. // Convert floats to integers
  1183. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1184. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1185. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1186. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1187. #if defined(__AVX2__)
  1188. // Compute the sum of the quants and set y[i].s
  1189. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1190. // Convert int32 to int16
  1191. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1192. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1193. // Convert int16 to int8
  1194. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1195. // We got our precious signed bytes, but the order is now wrong
  1196. // These AVX2 pack instructions process 16-byte pieces independently
  1197. // The following instruction is fixing the order
  1198. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1199. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1200. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1201. #else
  1202. // Since we don't have in AVX some necessary functions,
  1203. // we split the registers in half and call AVX2 analogs from SSE
  1204. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1205. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1206. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1207. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1208. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1209. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1210. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1211. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1212. // Compute the sum of the quants and set y[i].s
  1213. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1214. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1215. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1216. // Convert int32 to int16
  1217. ni0 = _mm_packs_epi32( ni0, ni1 );
  1218. ni2 = _mm_packs_epi32( ni2, ni3 );
  1219. ni4 = _mm_packs_epi32( ni4, ni5 );
  1220. ni6 = _mm_packs_epi32( ni6, ni7 );
  1221. // Convert int16 to int8
  1222. ni0 = _mm_packs_epi16( ni0, ni2 );
  1223. ni4 = _mm_packs_epi16( ni4, ni6 );
  1224. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1225. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1226. #endif
  1227. }
  1228. #elif defined(__riscv_v_intrinsic)
  1229. size_t vl = __riscv_vsetvl_e32m4(QK8_1);
  1230. for (int i = 0; i < nb; i++) {
  1231. // load elements
  1232. vfloat32m4_t v_x = __riscv_vle32_v_f32m4(x+i*QK8_1, vl);
  1233. vfloat32m4_t vfabs = __riscv_vfabs_v_f32m4(v_x, vl);
  1234. vfloat32m1_t tmp = __riscv_vfmv_v_f_f32m1(0.0, vl);
  1235. vfloat32m1_t vmax = __riscv_vfredmax_vs_f32m4_f32m1(vfabs, tmp, vl);
  1236. float amax = __riscv_vfmv_f_s_f32m1_f32(vmax);
  1237. const float d = amax / ((1 << 7) - 1);
  1238. const float id = d ? 1.0f/d : 0.0f;
  1239. y[i].d = d;
  1240. vfloat32m4_t x0 = __riscv_vfmul_vf_f32m4(v_x, id, vl);
  1241. // convert to integer
  1242. vint16m2_t vi = __riscv_vfncvt_x_f_w_i16m2(x0, vl);
  1243. vint8m1_t vs = __riscv_vncvt_x_x_w_i8m1(vi, vl);
  1244. // store result
  1245. __riscv_vse8_v_i8m1(y[i].qs , vs, vl);
  1246. // compute sum for y[i].s
  1247. vint16m1_t tmp2 = __riscv_vmv_v_x_i16m1(0, vl);
  1248. vint16m1_t vwrs = __riscv_vwredsum_vs_i8m1_i16m1(vs, tmp2, vl);
  1249. // set y[i].s
  1250. int sum = __riscv_vmv_x_s_i16m1_i16(vwrs);
  1251. y[i].s = sum*d;
  1252. }
  1253. #else
  1254. // scalar
  1255. quantize_row_q8_1_reference(x, y, k);
  1256. #endif
  1257. }
  1258. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1259. static const int qk = QK4_0;
  1260. assert(k % qk == 0);
  1261. const int nb = k / qk;
  1262. for (int i = 0; i < nb; i++) {
  1263. const float d = GGML_FP16_TO_FP32(x[i].d);
  1264. for (int j = 0; j < qk/2; ++j) {
  1265. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1266. const int x1 = (x[i].qs[j] >> 4) - 8;
  1267. y[i*qk + j + 0 ] = x0*d;
  1268. y[i*qk + j + qk/2] = x1*d;
  1269. }
  1270. }
  1271. }
  1272. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1273. static const int qk = QK4_1;
  1274. assert(k % qk == 0);
  1275. const int nb = k / qk;
  1276. for (int i = 0; i < nb; i++) {
  1277. const float d = GGML_FP16_TO_FP32(x[i].d);
  1278. const float m = GGML_FP16_TO_FP32(x[i].m);
  1279. for (int j = 0; j < qk/2; ++j) {
  1280. const int x0 = (x[i].qs[j] & 0x0F);
  1281. const int x1 = (x[i].qs[j] >> 4);
  1282. y[i*qk + j + 0 ] = x0*d + m;
  1283. y[i*qk + j + qk/2] = x1*d + m;
  1284. }
  1285. }
  1286. }
  1287. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1288. static const int qk = QK5_0;
  1289. assert(k % qk == 0);
  1290. const int nb = k / qk;
  1291. for (int i = 0; i < nb; i++) {
  1292. const float d = GGML_FP16_TO_FP32(x[i].d);
  1293. uint32_t qh;
  1294. memcpy(&qh, x[i].qh, sizeof(qh));
  1295. for (int j = 0; j < qk/2; ++j) {
  1296. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1297. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1298. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1299. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1300. y[i*qk + j + 0 ] = x0*d;
  1301. y[i*qk + j + qk/2] = x1*d;
  1302. }
  1303. }
  1304. }
  1305. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1306. static const int qk = QK5_1;
  1307. assert(k % qk == 0);
  1308. const int nb = k / qk;
  1309. for (int i = 0; i < nb; i++) {
  1310. const float d = GGML_FP16_TO_FP32(x[i].d);
  1311. const float m = GGML_FP16_TO_FP32(x[i].m);
  1312. uint32_t qh;
  1313. memcpy(&qh, x[i].qh, sizeof(qh));
  1314. for (int j = 0; j < qk/2; ++j) {
  1315. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1316. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1317. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1318. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1319. y[i*qk + j + 0 ] = x0*d + m;
  1320. y[i*qk + j + qk/2] = x1*d + m;
  1321. }
  1322. }
  1323. }
  1324. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1325. static const int qk = QK8_0;
  1326. assert(k % qk == 0);
  1327. const int nb = k / qk;
  1328. const block_q8_0 * restrict x = vx;
  1329. for (int i = 0; i < nb; i++) {
  1330. const float d = GGML_FP16_TO_FP32(x[i].d);
  1331. for (int j = 0; j < qk; ++j) {
  1332. y[i*qk + j] = x[i].qs[j]*d;
  1333. }
  1334. }
  1335. }
  1336. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1337. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1338. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1339. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1340. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1341. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1342. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1343. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1344. [GGML_TYPE_I8] = {
  1345. .type_name = "i8",
  1346. .blck_size = 1,
  1347. .type_size = sizeof(int8_t),
  1348. .is_quantized = false,
  1349. },
  1350. [GGML_TYPE_I16] = {
  1351. .type_name = "i16",
  1352. .blck_size = 1,
  1353. .type_size = sizeof(int16_t),
  1354. .is_quantized = false,
  1355. },
  1356. [GGML_TYPE_I32] = {
  1357. .type_name = "i32",
  1358. .blck_size = 1,
  1359. .type_size = sizeof(int32_t),
  1360. .is_quantized = false,
  1361. },
  1362. [GGML_TYPE_F32] = {
  1363. .type_name = "f32",
  1364. .blck_size = 1,
  1365. .type_size = sizeof(float),
  1366. .is_quantized = false,
  1367. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1368. .vec_dot_type = GGML_TYPE_F32,
  1369. },
  1370. [GGML_TYPE_F16] = {
  1371. .type_name = "f16",
  1372. .blck_size = 1,
  1373. .type_size = sizeof(ggml_fp16_t),
  1374. .is_quantized = false,
  1375. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1376. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1377. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1378. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1379. .vec_dot_type = GGML_TYPE_F16,
  1380. },
  1381. [GGML_TYPE_Q4_0] = {
  1382. .type_name = "q4_0",
  1383. .blck_size = QK4_0,
  1384. .type_size = sizeof(block_q4_0),
  1385. .is_quantized = true,
  1386. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1387. .from_float = quantize_row_q4_0,
  1388. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1389. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1390. .vec_dot_type = GGML_TYPE_Q8_0,
  1391. },
  1392. [GGML_TYPE_Q4_1] = {
  1393. .type_name = "q4_1",
  1394. .blck_size = QK4_1,
  1395. .type_size = sizeof(block_q4_1),
  1396. .is_quantized = true,
  1397. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1398. .from_float = quantize_row_q4_1,
  1399. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1400. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1401. .vec_dot_type = GGML_TYPE_Q8_1,
  1402. },
  1403. [GGML_TYPE_Q5_0] = {
  1404. .type_name = "q5_0",
  1405. .blck_size = QK5_0,
  1406. .type_size = sizeof(block_q5_0),
  1407. .is_quantized = true,
  1408. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1409. .from_float = quantize_row_q5_0,
  1410. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1411. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1412. .vec_dot_type = GGML_TYPE_Q8_0,
  1413. },
  1414. [GGML_TYPE_Q5_1] = {
  1415. .type_name = "q5_1",
  1416. .blck_size = QK5_1,
  1417. .type_size = sizeof(block_q5_1),
  1418. .is_quantized = true,
  1419. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1420. .from_float = quantize_row_q5_1,
  1421. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1422. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1423. .vec_dot_type = GGML_TYPE_Q8_1,
  1424. },
  1425. [GGML_TYPE_Q8_0] = {
  1426. .type_name = "q8_0",
  1427. .blck_size = QK8_0,
  1428. .type_size = sizeof(block_q8_0),
  1429. .is_quantized = true,
  1430. .to_float = dequantize_row_q8_0,
  1431. .from_float = quantize_row_q8_0,
  1432. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1433. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1434. .vec_dot_type = GGML_TYPE_Q8_0,
  1435. },
  1436. [GGML_TYPE_Q8_1] = {
  1437. .type_name = "q8_1",
  1438. .blck_size = QK8_1,
  1439. .type_size = sizeof(block_q8_1),
  1440. .is_quantized = true,
  1441. .from_float = quantize_row_q8_1,
  1442. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1443. .vec_dot_type = GGML_TYPE_Q8_1,
  1444. },
  1445. #ifdef GGML_USE_K_QUANTS
  1446. [GGML_TYPE_Q2_K] = {
  1447. .type_name = "q2_K",
  1448. .blck_size = QK_K,
  1449. .type_size = sizeof(block_q2_K),
  1450. .is_quantized = true,
  1451. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1452. .from_float = quantize_row_q2_K,
  1453. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1454. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1455. .vec_dot_type = GGML_TYPE_Q8_K,
  1456. },
  1457. [GGML_TYPE_Q3_K] = {
  1458. .type_name = "q3_K",
  1459. .blck_size = QK_K,
  1460. .type_size = sizeof(block_q3_K),
  1461. .is_quantized = true,
  1462. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1463. .from_float = quantize_row_q3_K,
  1464. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1465. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1466. .vec_dot_type = GGML_TYPE_Q8_K,
  1467. },
  1468. [GGML_TYPE_Q4_K] = {
  1469. .type_name = "q4_K",
  1470. .blck_size = QK_K,
  1471. .type_size = sizeof(block_q4_K),
  1472. .is_quantized = true,
  1473. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1474. .from_float = quantize_row_q4_K,
  1475. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1476. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1477. .vec_dot_type = GGML_TYPE_Q8_K,
  1478. },
  1479. [GGML_TYPE_Q5_K] = {
  1480. .type_name = "q5_K",
  1481. .blck_size = QK_K,
  1482. .type_size = sizeof(block_q5_K),
  1483. .is_quantized = true,
  1484. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1485. .from_float = quantize_row_q5_K,
  1486. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1487. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1488. .vec_dot_type = GGML_TYPE_Q8_K,
  1489. },
  1490. [GGML_TYPE_Q6_K] = {
  1491. .type_name = "q6_K",
  1492. .blck_size = QK_K,
  1493. .type_size = sizeof(block_q6_K),
  1494. .is_quantized = true,
  1495. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1496. .from_float = quantize_row_q6_K,
  1497. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1498. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1499. .vec_dot_type = GGML_TYPE_Q8_K,
  1500. },
  1501. [GGML_TYPE_Q8_K] = {
  1502. .type_name = "q8_K",
  1503. .blck_size = QK_K,
  1504. .type_size = sizeof(block_q8_K),
  1505. .is_quantized = true,
  1506. .from_float = quantize_row_q8_K,
  1507. }
  1508. #endif
  1509. };
  1510. // For internal test use
  1511. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  1512. GGML_ASSERT(type < GGML_TYPE_COUNT);
  1513. return type_traits[type];
  1514. }
  1515. //
  1516. // simd mappings
  1517. //
  1518. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1519. // we then implement the fundamental computation operations below using only these macros
  1520. // adding support for new architectures requires to define the corresponding SIMD macros
  1521. //
  1522. // GGML_F32_STEP / GGML_F16_STEP
  1523. // number of elements to process in a single step
  1524. //
  1525. // GGML_F32_EPR / GGML_F16_EPR
  1526. // number of elements to fit in a single register
  1527. //
  1528. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1529. #define GGML_SIMD
  1530. // F32 NEON
  1531. #define GGML_F32_STEP 16
  1532. #define GGML_F32_EPR 4
  1533. #define GGML_F32x4 float32x4_t
  1534. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1535. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1536. #define GGML_F32x4_LOAD vld1q_f32
  1537. #define GGML_F32x4_STORE vst1q_f32
  1538. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1539. #define GGML_F32x4_ADD vaddq_f32
  1540. #define GGML_F32x4_MUL vmulq_f32
  1541. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1542. #define GGML_F32x4_REDUCE(res, x) \
  1543. { \
  1544. int offset = GGML_F32_ARR >> 1; \
  1545. for (int i = 0; i < offset; ++i) { \
  1546. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1547. } \
  1548. offset >>= 1; \
  1549. for (int i = 0; i < offset; ++i) { \
  1550. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1551. } \
  1552. offset >>= 1; \
  1553. for (int i = 0; i < offset; ++i) { \
  1554. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1555. } \
  1556. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1557. }
  1558. #define GGML_F32_VEC GGML_F32x4
  1559. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1560. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1561. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1562. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1563. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1564. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1565. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1566. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1567. // F16 NEON
  1568. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1569. #define GGML_F16_STEP 32
  1570. #define GGML_F16_EPR 8
  1571. #define GGML_F16x8 float16x8_t
  1572. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1573. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1574. #define GGML_F16x8_LOAD vld1q_f16
  1575. #define GGML_F16x8_STORE vst1q_f16
  1576. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1577. #define GGML_F16x8_ADD vaddq_f16
  1578. #define GGML_F16x8_MUL vmulq_f16
  1579. #define GGML_F16x8_REDUCE(res, x) \
  1580. do { \
  1581. int offset = GGML_F16_ARR >> 1; \
  1582. for (int i = 0; i < offset; ++i) { \
  1583. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1584. } \
  1585. offset >>= 1; \
  1586. for (int i = 0; i < offset; ++i) { \
  1587. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1588. } \
  1589. offset >>= 1; \
  1590. for (int i = 0; i < offset; ++i) { \
  1591. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1592. } \
  1593. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1594. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1595. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1596. } while (0)
  1597. #define GGML_F16_VEC GGML_F16x8
  1598. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1599. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1600. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1601. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1602. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1603. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1604. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1605. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1606. #else
  1607. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1608. // and take advantage of the vcvt_ functions to convert to/from FP16
  1609. #define GGML_F16_STEP 16
  1610. #define GGML_F16_EPR 4
  1611. #define GGML_F32Cx4 float32x4_t
  1612. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1613. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1614. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1615. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1616. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1617. #define GGML_F32Cx4_ADD vaddq_f32
  1618. #define GGML_F32Cx4_MUL vmulq_f32
  1619. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1620. #define GGML_F16_VEC GGML_F32Cx4
  1621. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1622. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1623. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1624. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1625. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1626. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1627. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1628. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1629. #endif
  1630. #elif defined(__AVX__)
  1631. #define GGML_SIMD
  1632. // F32 AVX
  1633. #define GGML_F32_STEP 32
  1634. #define GGML_F32_EPR 8
  1635. #define GGML_F32x8 __m256
  1636. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1637. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1638. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1639. #define GGML_F32x8_STORE _mm256_storeu_ps
  1640. #if defined(__FMA__)
  1641. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1642. #else
  1643. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1644. #endif
  1645. #define GGML_F32x8_ADD _mm256_add_ps
  1646. #define GGML_F32x8_MUL _mm256_mul_ps
  1647. #define GGML_F32x8_REDUCE(res, x) \
  1648. do { \
  1649. int offset = GGML_F32_ARR >> 1; \
  1650. for (int i = 0; i < offset; ++i) { \
  1651. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1652. } \
  1653. offset >>= 1; \
  1654. for (int i = 0; i < offset; ++i) { \
  1655. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1656. } \
  1657. offset >>= 1; \
  1658. for (int i = 0; i < offset; ++i) { \
  1659. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1660. } \
  1661. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1662. _mm256_extractf128_ps(x[0], 1)); \
  1663. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1664. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1665. } while (0)
  1666. // TODO: is this optimal ?
  1667. #define GGML_F32_VEC GGML_F32x8
  1668. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1669. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1670. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1671. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1672. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1673. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1674. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1675. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1676. // F16 AVX
  1677. #define GGML_F16_STEP 32
  1678. #define GGML_F16_EPR 8
  1679. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1680. #define GGML_F32Cx8 __m256
  1681. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1682. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1683. #if defined(__F16C__)
  1684. // the _mm256_cvt intrinsics require F16C
  1685. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1686. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1687. #else
  1688. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1689. float tmp[8];
  1690. for (int i = 0; i < 8; i++) {
  1691. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1692. }
  1693. return _mm256_loadu_ps(tmp);
  1694. }
  1695. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1696. float arr[8];
  1697. _mm256_storeu_ps(arr, y);
  1698. for (int i = 0; i < 8; i++)
  1699. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1700. }
  1701. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1702. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1703. #endif
  1704. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1705. #define GGML_F32Cx8_ADD _mm256_add_ps
  1706. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1707. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1708. #define GGML_F16_VEC GGML_F32Cx8
  1709. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1710. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1711. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1712. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1713. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1714. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1715. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1716. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1717. #elif defined(__POWER9_VECTOR__)
  1718. #define GGML_SIMD
  1719. // F32 POWER9
  1720. #define GGML_F32_STEP 32
  1721. #define GGML_F32_EPR 4
  1722. #define GGML_F32x4 vector float
  1723. #define GGML_F32x4_ZERO 0.0f
  1724. #define GGML_F32x4_SET1 vec_splats
  1725. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1726. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1727. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1728. #define GGML_F32x4_ADD vec_add
  1729. #define GGML_F32x4_MUL vec_mul
  1730. #define GGML_F32x4_REDUCE(res, x) \
  1731. { \
  1732. int offset = GGML_F32_ARR >> 1; \
  1733. for (int i = 0; i < offset; ++i) { \
  1734. x[i] = vec_add(x[i], x[offset+i]); \
  1735. } \
  1736. offset >>= 1; \
  1737. for (int i = 0; i < offset; ++i) { \
  1738. x[i] = vec_add(x[i], x[offset+i]); \
  1739. } \
  1740. offset >>= 1; \
  1741. for (int i = 0; i < offset; ++i) { \
  1742. x[i] = vec_add(x[i], x[offset+i]); \
  1743. } \
  1744. res = vec_extract(x[0], 0) + \
  1745. vec_extract(x[0], 1) + \
  1746. vec_extract(x[0], 2) + \
  1747. vec_extract(x[0], 3); \
  1748. }
  1749. #define GGML_F32_VEC GGML_F32x4
  1750. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1751. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1752. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1753. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1754. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1755. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1756. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1757. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1758. // F16 POWER9
  1759. #define GGML_F16_STEP GGML_F32_STEP
  1760. #define GGML_F16_EPR GGML_F32_EPR
  1761. #define GGML_F16_VEC GGML_F32x4
  1762. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1763. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1764. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1765. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1766. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1767. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1768. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1769. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1770. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1771. #define GGML_F16_VEC_STORE(p, r, i) \
  1772. if (i & 0x1) \
  1773. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1774. r[i - GGML_ENDIAN_BYTE(0)]), \
  1775. 0, p - GGML_F16_EPR)
  1776. #elif defined(__wasm_simd128__)
  1777. #define GGML_SIMD
  1778. // F32 WASM
  1779. #define GGML_F32_STEP 16
  1780. #define GGML_F32_EPR 4
  1781. #define GGML_F32x4 v128_t
  1782. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1783. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1784. #define GGML_F32x4_LOAD wasm_v128_load
  1785. #define GGML_F32x4_STORE wasm_v128_store
  1786. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1787. #define GGML_F32x4_ADD wasm_f32x4_add
  1788. #define GGML_F32x4_MUL wasm_f32x4_mul
  1789. #define GGML_F32x4_REDUCE(res, x) \
  1790. { \
  1791. int offset = GGML_F32_ARR >> 1; \
  1792. for (int i = 0; i < offset; ++i) { \
  1793. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1794. } \
  1795. offset >>= 1; \
  1796. for (int i = 0; i < offset; ++i) { \
  1797. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1798. } \
  1799. offset >>= 1; \
  1800. for (int i = 0; i < offset; ++i) { \
  1801. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1802. } \
  1803. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1804. wasm_f32x4_extract_lane(x[0], 1) + \
  1805. wasm_f32x4_extract_lane(x[0], 2) + \
  1806. wasm_f32x4_extract_lane(x[0], 3); \
  1807. }
  1808. #define GGML_F32_VEC GGML_F32x4
  1809. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1810. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1811. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1812. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1813. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1814. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1815. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1816. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1817. // F16 WASM
  1818. #define GGML_F16_STEP 16
  1819. #define GGML_F16_EPR 4
  1820. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1821. float tmp[4];
  1822. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1823. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1824. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1825. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1826. return wasm_v128_load(tmp);
  1827. }
  1828. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1829. float tmp[4];
  1830. wasm_v128_store(tmp, x);
  1831. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1832. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1833. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1834. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1835. }
  1836. #define GGML_F16x4 v128_t
  1837. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1838. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1839. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1840. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1841. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1842. #define GGML_F16x4_ADD wasm_f32x4_add
  1843. #define GGML_F16x4_MUL wasm_f32x4_mul
  1844. #define GGML_F16x4_REDUCE(res, x) \
  1845. { \
  1846. int offset = GGML_F16_ARR >> 1; \
  1847. for (int i = 0; i < offset; ++i) { \
  1848. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1849. } \
  1850. offset >>= 1; \
  1851. for (int i = 0; i < offset; ++i) { \
  1852. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1853. } \
  1854. offset >>= 1; \
  1855. for (int i = 0; i < offset; ++i) { \
  1856. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1857. } \
  1858. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1859. wasm_f32x4_extract_lane(x[0], 1) + \
  1860. wasm_f32x4_extract_lane(x[0], 2) + \
  1861. wasm_f32x4_extract_lane(x[0], 3); \
  1862. }
  1863. #define GGML_F16_VEC GGML_F16x4
  1864. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1865. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1866. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1867. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1868. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1869. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1870. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1871. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1872. #elif defined(__SSE3__)
  1873. #define GGML_SIMD
  1874. // F32 SSE
  1875. #define GGML_F32_STEP 32
  1876. #define GGML_F32_EPR 4
  1877. #define GGML_F32x4 __m128
  1878. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1879. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1880. #define GGML_F32x4_LOAD _mm_loadu_ps
  1881. #define GGML_F32x4_STORE _mm_storeu_ps
  1882. #if defined(__FMA__)
  1883. // TODO: Does this work?
  1884. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1885. #else
  1886. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1887. #endif
  1888. #define GGML_F32x4_ADD _mm_add_ps
  1889. #define GGML_F32x4_MUL _mm_mul_ps
  1890. #define GGML_F32x4_REDUCE(res, x) \
  1891. { \
  1892. int offset = GGML_F32_ARR >> 1; \
  1893. for (int i = 0; i < offset; ++i) { \
  1894. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1895. } \
  1896. offset >>= 1; \
  1897. for (int i = 0; i < offset; ++i) { \
  1898. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1899. } \
  1900. offset >>= 1; \
  1901. for (int i = 0; i < offset; ++i) { \
  1902. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1903. } \
  1904. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1905. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1906. }
  1907. // TODO: is this optimal ?
  1908. #define GGML_F32_VEC GGML_F32x4
  1909. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1910. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1911. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1912. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1913. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1914. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1915. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1916. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1917. // F16 SSE
  1918. #define GGML_F16_STEP 32
  1919. #define GGML_F16_EPR 4
  1920. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1921. float tmp[4];
  1922. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1923. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1924. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1925. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1926. return _mm_loadu_ps(tmp);
  1927. }
  1928. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1929. float arr[4];
  1930. _mm_storeu_ps(arr, y);
  1931. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1932. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1933. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1934. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1935. }
  1936. #define GGML_F32Cx4 __m128
  1937. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1938. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1939. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1940. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1941. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1942. #define GGML_F32Cx4_ADD _mm_add_ps
  1943. #define GGML_F32Cx4_MUL _mm_mul_ps
  1944. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1945. #define GGML_F16_VEC GGML_F32Cx4
  1946. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1947. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1948. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1949. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1950. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1951. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1952. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1953. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1954. #endif
  1955. // GGML_F32_ARR / GGML_F16_ARR
  1956. // number of registers to use per step
  1957. #ifdef GGML_SIMD
  1958. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1959. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1960. #endif
  1961. //
  1962. // fundamental operations
  1963. //
  1964. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1965. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1966. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1967. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1968. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1969. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1970. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1971. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1972. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1973. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1974. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1975. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1976. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1977. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1978. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1979. #ifdef GGML_SIMD
  1980. float sumf = 0.0f;
  1981. const int np = (n & ~(GGML_F32_STEP - 1));
  1982. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1983. GGML_F32_VEC ax[GGML_F32_ARR];
  1984. GGML_F32_VEC ay[GGML_F32_ARR];
  1985. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1986. for (int j = 0; j < GGML_F32_ARR; j++) {
  1987. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1988. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1989. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1990. }
  1991. }
  1992. // reduce sum0..sum3 to sum0
  1993. GGML_F32_VEC_REDUCE(sumf, sum);
  1994. // leftovers
  1995. for (int i = np; i < n; ++i) {
  1996. sumf += x[i]*y[i];
  1997. }
  1998. #else
  1999. // scalar
  2000. ggml_float sumf = 0.0;
  2001. for (int i = 0; i < n; ++i) {
  2002. sumf += (ggml_float)(x[i]*y[i]);
  2003. }
  2004. #endif
  2005. *s = sumf;
  2006. }
  2007. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2008. ggml_float sumf = 0.0;
  2009. #if defined(GGML_SIMD)
  2010. const int np = (n & ~(GGML_F16_STEP - 1));
  2011. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2012. GGML_F16_VEC ax[GGML_F16_ARR];
  2013. GGML_F16_VEC ay[GGML_F16_ARR];
  2014. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2015. for (int j = 0; j < GGML_F16_ARR; j++) {
  2016. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2017. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2018. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2019. }
  2020. }
  2021. // reduce sum0..sum3 to sum0
  2022. GGML_F16_VEC_REDUCE(sumf, sum);
  2023. // leftovers
  2024. for (int i = np; i < n; ++i) {
  2025. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2026. }
  2027. #else
  2028. for (int i = 0; i < n; ++i) {
  2029. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2030. }
  2031. #endif
  2032. *s = sumf;
  2033. }
  2034. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2035. const int qk = QK8_0;
  2036. const int nb = n / qk;
  2037. assert(n % qk == 0);
  2038. const block_q4_0 * restrict x = vx;
  2039. const block_q8_0 * restrict y = vy;
  2040. #if defined(__ARM_NEON)
  2041. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2042. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2043. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2044. for (int i = 0; i < nb; i += 2) {
  2045. const block_q4_0 * restrict x0 = &x[i + 0];
  2046. const block_q4_0 * restrict x1 = &x[i + 1];
  2047. const block_q8_0 * restrict y0 = &y[i + 0];
  2048. const block_q8_0 * restrict y1 = &y[i + 1];
  2049. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2050. const int8x16_t s8b = vdupq_n_s8(0x8);
  2051. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2052. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2053. // 4-bit -> 8-bit
  2054. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2055. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2056. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2057. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2058. // sub 8
  2059. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2060. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2061. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2062. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2063. // load y
  2064. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2065. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2066. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2067. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2068. #if defined(__ARM_FEATURE_DOTPROD)
  2069. // dot product into int32x4_t
  2070. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  2071. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  2072. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2073. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2074. #else
  2075. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  2076. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  2077. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  2078. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  2079. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2080. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2081. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2082. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2083. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2084. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2085. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2086. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2087. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2088. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2089. #endif
  2090. }
  2091. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2092. #elif defined(__AVX2__)
  2093. // Initialize accumulator with zeros
  2094. __m256 acc = _mm256_setzero_ps();
  2095. // Main loop
  2096. for (int i = 0; i < nb; ++i) {
  2097. /* Compute combined scale for the block */
  2098. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2099. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2100. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2101. const __m256i off = _mm256_set1_epi8( 8 );
  2102. bx = _mm256_sub_epi8( bx, off );
  2103. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2104. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2105. /* Multiply q with scale and accumulate */
  2106. acc = _mm256_fmadd_ps( d, q, acc );
  2107. }
  2108. *s = hsum_float_8(acc);
  2109. #elif defined(__AVX__)
  2110. // Initialize accumulator with zeros
  2111. __m256 acc = _mm256_setzero_ps();
  2112. // Main loop
  2113. for (int i = 0; i < nb; ++i) {
  2114. // Compute combined scale for the block
  2115. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2116. const __m128i lowMask = _mm_set1_epi8(0xF);
  2117. const __m128i off = _mm_set1_epi8(8);
  2118. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2119. __m128i bx = _mm_and_si128(lowMask, tmp);
  2120. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2121. bx = _mm_sub_epi8(bx, off);
  2122. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2123. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2124. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2125. bx = _mm_sub_epi8(bx, off);
  2126. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2127. // Convert int32_t to float
  2128. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2129. // Apply the scale, and accumulate
  2130. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2131. }
  2132. *s = hsum_float_8(acc);
  2133. #elif defined(__SSSE3__)
  2134. // set constants
  2135. const __m128i lowMask = _mm_set1_epi8(0xF);
  2136. const __m128i off = _mm_set1_epi8(8);
  2137. // Initialize accumulator with zeros
  2138. __m128 acc_0 = _mm_setzero_ps();
  2139. __m128 acc_1 = _mm_setzero_ps();
  2140. __m128 acc_2 = _mm_setzero_ps();
  2141. __m128 acc_3 = _mm_setzero_ps();
  2142. // First round without accumulation
  2143. {
  2144. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2145. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2146. // Compute combined scale for the block 0 and 1
  2147. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2148. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2149. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2150. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2151. bx_0 = _mm_sub_epi8(bx_0, off);
  2152. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2153. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2154. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2155. bx_1 = _mm_sub_epi8(bx_1, off);
  2156. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2157. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2158. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2159. // Compute combined scale for the block 2 and 3
  2160. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2161. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2162. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2163. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2164. bx_2 = _mm_sub_epi8(bx_2, off);
  2165. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2166. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2167. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2168. bx_3 = _mm_sub_epi8(bx_3, off);
  2169. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2170. // Convert int32_t to float
  2171. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2172. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2173. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2174. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2175. // Apply the scale
  2176. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2177. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2178. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2179. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2180. }
  2181. // Main loop
  2182. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2183. for (int i = 2; i < nb; i+=2) {
  2184. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2185. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2186. // Compute combined scale for the block 0 and 1
  2187. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2188. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2189. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2190. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2191. bx_0 = _mm_sub_epi8(bx_0, off);
  2192. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2193. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2194. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2195. bx_1 = _mm_sub_epi8(bx_1, off);
  2196. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2197. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2198. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2199. // Compute combined scale for the block 2 and 3
  2200. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2201. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2202. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2203. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2204. bx_2 = _mm_sub_epi8(bx_2, off);
  2205. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2206. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2207. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2208. bx_3 = _mm_sub_epi8(bx_3, off);
  2209. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2210. // Convert int32_t to float
  2211. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2212. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2213. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2214. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2215. // Apply the scale
  2216. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2217. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2218. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2219. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2220. // Acummulate
  2221. acc_0 = _mm_add_ps(p0_d, acc_0);
  2222. acc_1 = _mm_add_ps(p1_d, acc_1);
  2223. acc_2 = _mm_add_ps(p2_d, acc_2);
  2224. acc_3 = _mm_add_ps(p3_d, acc_3);
  2225. }
  2226. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2227. #elif defined(__riscv_v_intrinsic)
  2228. float sumf = 0.0;
  2229. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2230. for (int i = 0; i < nb; i++) {
  2231. // load elements
  2232. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  2233. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  2234. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  2235. // mask and store lower part of x, and then upper part
  2236. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2237. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2238. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2239. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2240. // subtract offset
  2241. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 8, vl);
  2242. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 8, vl);
  2243. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2244. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2245. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2246. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2247. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2248. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2249. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2250. }
  2251. *s = sumf;
  2252. #else
  2253. // scalar
  2254. float sumf = 0.0;
  2255. for (int i = 0; i < nb; i++) {
  2256. int sumi = 0;
  2257. for (int j = 0; j < qk/2; ++j) {
  2258. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2259. const int v1 = (x[i].qs[j] >> 4) - 8;
  2260. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2261. }
  2262. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2263. }
  2264. *s = sumf;
  2265. #endif
  2266. }
  2267. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2268. const int qk = QK8_1;
  2269. const int nb = n / qk;
  2270. assert(n % qk == 0);
  2271. const block_q4_1 * restrict x = vx;
  2272. const block_q8_1 * restrict y = vy;
  2273. // TODO: add WASM SIMD
  2274. #if defined(__ARM_NEON)
  2275. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2276. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2277. float summs = 0;
  2278. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2279. for (int i = 0; i < nb; i += 2) {
  2280. const block_q4_1 * restrict x0 = &x[i + 0];
  2281. const block_q4_1 * restrict x1 = &x[i + 1];
  2282. const block_q8_1 * restrict y0 = &y[i + 0];
  2283. const block_q8_1 * restrict y1 = &y[i + 1];
  2284. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2285. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2286. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2287. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2288. // 4-bit -> 8-bit
  2289. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2290. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2291. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2292. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2293. // load y
  2294. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2295. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2296. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2297. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2298. #if defined(__ARM_FEATURE_DOTPROD)
  2299. // dot product into int32x4_t
  2300. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2301. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2302. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2303. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2304. #else
  2305. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2306. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2307. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2308. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2309. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2310. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2311. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2312. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2313. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2314. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2315. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2316. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2317. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2318. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2319. #endif
  2320. }
  2321. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2322. #elif defined(__AVX2__) || defined(__AVX__)
  2323. // Initialize accumulator with zeros
  2324. __m256 acc = _mm256_setzero_ps();
  2325. float summs = 0;
  2326. // Main loop
  2327. for (int i = 0; i < nb; ++i) {
  2328. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2329. const float d1 = y[i].d;
  2330. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2331. const __m256 d0v = _mm256_set1_ps( d0 );
  2332. const __m256 d1v = _mm256_set1_ps( d1 );
  2333. // Compute combined scales
  2334. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2335. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2336. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2337. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2338. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2339. // Accumulate d0*d1*x*y
  2340. #if defined(__AVX2__)
  2341. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2342. #else
  2343. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2344. #endif
  2345. }
  2346. *s = hsum_float_8(acc) + summs;
  2347. #elif defined(__riscv_v_intrinsic)
  2348. float sumf = 0.0;
  2349. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2350. for (int i = 0; i < nb; i++) {
  2351. // load elements
  2352. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  2353. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  2354. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  2355. // mask and store lower part of x, and then upper part
  2356. vuint8mf2_t x_a = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2357. vuint8mf2_t x_l = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2358. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2359. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2360. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2361. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2362. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2363. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2364. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2365. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2366. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2367. }
  2368. *s = sumf;
  2369. #else
  2370. // scalar
  2371. float sumf = 0.0;
  2372. for (int i = 0; i < nb; i++) {
  2373. int sumi = 0;
  2374. for (int j = 0; j < qk/2; ++j) {
  2375. const int v0 = (x[i].qs[j] & 0x0F);
  2376. const int v1 = (x[i].qs[j] >> 4);
  2377. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2378. }
  2379. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2380. }
  2381. *s = sumf;
  2382. #endif
  2383. }
  2384. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2385. const int qk = QK8_0;
  2386. const int nb = n / qk;
  2387. assert(n % qk == 0);
  2388. assert(qk == QK5_0);
  2389. const block_q5_0 * restrict x = vx;
  2390. const block_q8_0 * restrict y = vy;
  2391. #if defined(__ARM_NEON)
  2392. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2393. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2394. uint32_t qh0;
  2395. uint32_t qh1;
  2396. uint64_t tmp0[4];
  2397. uint64_t tmp1[4];
  2398. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2399. for (int i = 0; i < nb; i += 2) {
  2400. const block_q5_0 * restrict x0 = &x[i];
  2401. const block_q5_0 * restrict x1 = &x[i + 1];
  2402. const block_q8_0 * restrict y0 = &y[i];
  2403. const block_q8_0 * restrict y1 = &y[i + 1];
  2404. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2405. // extract the 5th bit via lookup table ((!b) << 4)
  2406. memcpy(&qh0, x0->qh, sizeof(qh0));
  2407. memcpy(&qh1, x1->qh, sizeof(qh1));
  2408. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2409. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2410. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2411. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2412. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2413. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2414. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2415. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2416. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2417. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2418. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2419. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2420. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2421. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2422. // 4-bit -> 8-bit
  2423. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2424. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2425. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2426. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2427. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2428. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2429. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2430. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2431. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2432. // load y
  2433. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2434. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2435. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2436. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2437. #if defined(__ARM_FEATURE_DOTPROD)
  2438. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2439. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2440. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2441. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2442. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2443. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2444. #else
  2445. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2446. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2447. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2448. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2449. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2450. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2451. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2452. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2453. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2454. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2455. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2456. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2457. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2458. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2459. #endif
  2460. }
  2461. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2462. #elif defined(__wasm_simd128__)
  2463. v128_t sumv = wasm_f32x4_splat(0.0f);
  2464. uint32_t qh;
  2465. uint64_t tmp[4];
  2466. // TODO: check if unrolling this is better
  2467. for (int i = 0; i < nb; ++i) {
  2468. const block_q5_0 * restrict x0 = &x[i];
  2469. const block_q8_0 * restrict y0 = &y[i];
  2470. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2471. // extract the 5th bit
  2472. memcpy(&qh, x0->qh, sizeof(qh));
  2473. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2474. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2475. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2476. tmp[3] = table_b2b_1[(qh >> 24) ];
  2477. const v128_t qhl = wasm_v128_load(tmp + 0);
  2478. const v128_t qhh = wasm_v128_load(tmp + 2);
  2479. const v128_t v0 = wasm_v128_load(x0->qs);
  2480. // 4-bit -> 8-bit
  2481. const v128_t v0l = wasm_v128_and (v0, m4b);
  2482. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2483. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2484. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2485. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2486. // load y
  2487. const v128_t v1l = wasm_v128_load(y0->qs);
  2488. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2489. // int8x16 -> int16x8
  2490. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2491. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2492. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2493. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2494. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2495. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2496. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2497. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2498. // dot product
  2499. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2500. wasm_i32x4_add(
  2501. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2502. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2503. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2504. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2505. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2506. }
  2507. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2508. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2509. #elif defined(__AVX2__)
  2510. // Initialize accumulator with zeros
  2511. __m256 acc = _mm256_setzero_ps();
  2512. // Main loop
  2513. for (int i = 0; i < nb; i++) {
  2514. /* Compute combined scale for the block */
  2515. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2516. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2517. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2518. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2519. bx = _mm256_or_si256(bx, bxhi);
  2520. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2521. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2522. /* Multiply q with scale and accumulate */
  2523. acc = _mm256_fmadd_ps(d, q, acc);
  2524. }
  2525. *s = hsum_float_8(acc);
  2526. #elif defined(__AVX__)
  2527. // Initialize accumulator with zeros
  2528. __m256 acc = _mm256_setzero_ps();
  2529. __m128i mask = _mm_set1_epi8((char)0xF0);
  2530. // Main loop
  2531. for (int i = 0; i < nb; i++) {
  2532. /* Compute combined scale for the block */
  2533. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2534. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2535. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2536. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2537. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2538. bxhil = _mm_andnot_si128(bxhil, mask);
  2539. bxhih = _mm_andnot_si128(bxhih, mask);
  2540. __m128i bxl = _mm256_castsi256_si128(bx);
  2541. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2542. bxl = _mm_or_si128(bxl, bxhil);
  2543. bxh = _mm_or_si128(bxh, bxhih);
  2544. bx = MM256_SET_M128I(bxh, bxl);
  2545. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2546. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2547. /* Multiply q with scale and accumulate */
  2548. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2549. }
  2550. *s = hsum_float_8(acc);
  2551. #elif defined(__riscv_v_intrinsic)
  2552. float sumf = 0.0;
  2553. uint32_t qh;
  2554. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2555. // These tempory registers are for masking and shift operations
  2556. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2557. vuint32m2_t vt_2 = __riscv_vsll_vv_u32m2(__riscv_vmv_v_x_u32m2(1, vl), vt_1, vl);
  2558. vuint32m2_t vt_3 = __riscv_vsll_vx_u32m2(vt_2, 16, vl);
  2559. vuint32m2_t vt_4 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2560. for (int i = 0; i < nb; i++) {
  2561. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2562. // ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2563. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(vt_2, qh, vl);
  2564. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(xha_0, vt_1, vl);
  2565. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2566. // ((qh & (1u << (j + 16))) >> (j + 12));
  2567. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(vt_3, qh, vl);
  2568. vuint32m2_t xhl_1 = __riscv_vsrl_vv_u32m2(xha_1, vt_4, vl);
  2569. // narrowing
  2570. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xhl_0, vl);
  2571. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2572. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xhl_1, vl);
  2573. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2574. // load
  2575. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  2576. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  2577. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  2578. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2579. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2580. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2581. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2582. vint8mf2_t x_ai = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2583. vint8mf2_t x_li = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2584. vint8mf2_t v0 = __riscv_vsub_vx_i8mf2(x_ai, 16, vl);
  2585. vint8mf2_t v1 = __riscv_vsub_vx_i8mf2(x_li, 16, vl);
  2586. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2587. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2588. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2589. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2590. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2591. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2592. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2593. }
  2594. *s = sumf;
  2595. #else
  2596. // scalar
  2597. float sumf = 0.0;
  2598. for (int i = 0; i < nb; i++) {
  2599. uint32_t qh;
  2600. memcpy(&qh, x[i].qh, sizeof(qh));
  2601. int sumi = 0;
  2602. for (int j = 0; j < qk/2; ++j) {
  2603. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2604. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2605. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2606. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2607. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2608. }
  2609. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2610. }
  2611. *s = sumf;
  2612. #endif
  2613. }
  2614. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2615. const int qk = QK8_1;
  2616. const int nb = n / qk;
  2617. assert(n % qk == 0);
  2618. assert(qk == QK5_1);
  2619. const block_q5_1 * restrict x = vx;
  2620. const block_q8_1 * restrict y = vy;
  2621. #if defined(__ARM_NEON)
  2622. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2623. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2624. float summs0 = 0.0f;
  2625. float summs1 = 0.0f;
  2626. uint32_t qh0;
  2627. uint32_t qh1;
  2628. uint64_t tmp0[4];
  2629. uint64_t tmp1[4];
  2630. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2631. for (int i = 0; i < nb; i += 2) {
  2632. const block_q5_1 * restrict x0 = &x[i];
  2633. const block_q5_1 * restrict x1 = &x[i + 1];
  2634. const block_q8_1 * restrict y0 = &y[i];
  2635. const block_q8_1 * restrict y1 = &y[i + 1];
  2636. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2637. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2638. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2639. // extract the 5th bit via lookup table ((b) << 4)
  2640. memcpy(&qh0, x0->qh, sizeof(qh0));
  2641. memcpy(&qh1, x1->qh, sizeof(qh1));
  2642. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2643. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2644. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2645. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2646. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2647. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2648. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2649. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2650. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2651. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2652. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2653. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2654. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2655. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2656. // 4-bit -> 8-bit
  2657. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2658. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2659. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2660. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2661. // add high bit
  2662. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2663. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2664. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2665. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2666. // load y
  2667. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2668. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2669. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2670. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2671. #if defined(__ARM_FEATURE_DOTPROD)
  2672. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2673. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2674. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2675. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2676. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2677. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2678. #else
  2679. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2680. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2681. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2682. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2683. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2684. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2685. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2686. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2687. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2688. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2689. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2690. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2691. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2692. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2693. #endif
  2694. }
  2695. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2696. #elif defined(__wasm_simd128__)
  2697. v128_t sumv = wasm_f32x4_splat(0.0f);
  2698. float summs = 0.0f;
  2699. uint32_t qh;
  2700. uint64_t tmp[4];
  2701. // TODO: check if unrolling this is better
  2702. for (int i = 0; i < nb; ++i) {
  2703. const block_q5_1 * restrict x0 = &x[i];
  2704. const block_q8_1 * restrict y0 = &y[i];
  2705. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2706. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2707. // extract the 5th bit
  2708. memcpy(&qh, x0->qh, sizeof(qh));
  2709. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2710. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2711. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2712. tmp[3] = table_b2b_0[(qh >> 24) ];
  2713. const v128_t qhl = wasm_v128_load(tmp + 0);
  2714. const v128_t qhh = wasm_v128_load(tmp + 2);
  2715. const v128_t v0 = wasm_v128_load(x0->qs);
  2716. // 4-bit -> 8-bit
  2717. const v128_t v0l = wasm_v128_and (v0, m4b);
  2718. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2719. // add high bit
  2720. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2721. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2722. // load y
  2723. const v128_t v1l = wasm_v128_load(y0->qs);
  2724. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2725. // int8x16 -> int16x8
  2726. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2727. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2728. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2729. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2730. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2731. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2732. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2733. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2734. // dot product
  2735. sumv = wasm_f32x4_add(sumv,
  2736. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2737. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2738. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2739. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2740. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2741. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2742. }
  2743. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2744. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2745. #elif defined(__AVX2__)
  2746. // Initialize accumulator with zeros
  2747. __m256 acc = _mm256_setzero_ps();
  2748. float summs = 0.0f;
  2749. // Main loop
  2750. for (int i = 0; i < nb; i++) {
  2751. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2752. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2753. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2754. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2755. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2756. bx = _mm256_or_si256(bx, bxhi);
  2757. const __m256 dy = _mm256_set1_ps(y[i].d);
  2758. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2759. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2760. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2761. }
  2762. *s = hsum_float_8(acc) + summs;
  2763. #elif defined(__AVX__)
  2764. // Initialize accumulator with zeros
  2765. __m256 acc = _mm256_setzero_ps();
  2766. __m128i mask = _mm_set1_epi8(0x10);
  2767. float summs = 0.0f;
  2768. // Main loop
  2769. for (int i = 0; i < nb; i++) {
  2770. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2771. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2772. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2773. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2774. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2775. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2776. bxhil = _mm_and_si128(bxhil, mask);
  2777. bxhih = _mm_and_si128(bxhih, mask);
  2778. __m128i bxl = _mm256_castsi256_si128(bx);
  2779. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2780. bxl = _mm_or_si128(bxl, bxhil);
  2781. bxh = _mm_or_si128(bxh, bxhih);
  2782. bx = MM256_SET_M128I(bxh, bxl);
  2783. const __m256 dy = _mm256_set1_ps(y[i].d);
  2784. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2785. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2786. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2787. }
  2788. *s = hsum_float_8(acc) + summs;
  2789. #elif defined(__riscv_v_intrinsic)
  2790. float sumf = 0.0;
  2791. uint32_t qh;
  2792. size_t vl = __riscv_vsetvl_e8m1(qk/2);
  2793. // temporary registers for shift operations
  2794. vuint32m2_t vt_1 = __riscv_vid_v_u32m2(vl);
  2795. vuint32m2_t vt_2 = __riscv_vadd_vx_u32m2(vt_1, 12, vl);
  2796. for (int i = 0; i < nb; i++) {
  2797. memcpy(&qh, x[i].qh, sizeof(uint32_t));
  2798. // load qh
  2799. vuint32m2_t vqh = __riscv_vmv_v_x_u32m2(qh, vl);
  2800. // ((qh >> (j + 0)) << 4) & 0x10;
  2801. vuint32m2_t xhr_0 = __riscv_vsrl_vv_u32m2(vqh, vt_1, vl);
  2802. vuint32m2_t xhl_0 = __riscv_vsll_vx_u32m2(xhr_0, 4, vl);
  2803. vuint32m2_t xha_0 = __riscv_vand_vx_u32m2(xhl_0, 0x10, vl);
  2804. // ((qh >> (j + 12)) ) & 0x10;
  2805. vuint32m2_t xhr_1 = __riscv_vsrl_vv_u32m2(vqh, vt_2, vl);
  2806. vuint32m2_t xha_1 = __riscv_vand_vx_u32m2(xhr_1, 0x10, vl);
  2807. // narrowing
  2808. vuint16m1_t xhc_0 = __riscv_vncvt_x_x_w_u16m1(xha_0, vl);
  2809. vuint8mf2_t xh_0 = __riscv_vncvt_x_x_w_u8mf2(xhc_0, vl);
  2810. vuint16m1_t xhc_1 = __riscv_vncvt_x_x_w_u16m1(xha_1, vl);
  2811. vuint8mf2_t xh_1 = __riscv_vncvt_x_x_w_u8mf2(xhc_1, vl);
  2812. // load
  2813. vuint8mf2_t tx = __riscv_vle8_v_u8mf2(x[i].qs, vl);
  2814. vint8mf2_t y0 = __riscv_vle8_v_i8mf2(y[i].qs, vl);
  2815. vint8mf2_t y1 = __riscv_vle8_v_i8mf2(y[i].qs+16, vl);
  2816. vuint8mf2_t x_at = __riscv_vand_vx_u8mf2(tx, 0x0F, vl);
  2817. vuint8mf2_t x_lt = __riscv_vsrl_vx_u8mf2(tx, 0x04, vl);
  2818. vuint8mf2_t x_a = __riscv_vor_vv_u8mf2(x_at, xh_0, vl);
  2819. vuint8mf2_t x_l = __riscv_vor_vv_u8mf2(x_lt, xh_1, vl);
  2820. vint8mf2_t v0 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_a);
  2821. vint8mf2_t v1 = __riscv_vreinterpret_v_u8mf2_i8mf2(x_l);
  2822. vint16m1_t vec_mul1 = __riscv_vwmul_vv_i16m1(v0, y0, vl);
  2823. vint16m1_t vec_mul2 = __riscv_vwmul_vv_i16m1(v1, y1, vl);
  2824. vint32m1_t vec_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2825. vint32m1_t vs1 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul1, vec_zero, vl);
  2826. vint32m1_t vs2 = __riscv_vwredsum_vs_i16m1_i32m1(vec_mul2, vs1, vl);
  2827. int sumi = __riscv_vmv_x_s_i32m1_i32(vs2);
  2828. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2829. }
  2830. *s = sumf;
  2831. #else
  2832. // scalar
  2833. float sumf = 0.0;
  2834. for (int i = 0; i < nb; i++) {
  2835. uint32_t qh;
  2836. memcpy(&qh, x[i].qh, sizeof(qh));
  2837. int sumi = 0;
  2838. for (int j = 0; j < qk/2; ++j) {
  2839. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2840. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2841. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2842. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2843. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2844. }
  2845. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2846. }
  2847. *s = sumf;
  2848. #endif
  2849. }
  2850. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2851. const int qk = QK8_0;
  2852. const int nb = n / qk;
  2853. assert(n % qk == 0);
  2854. const block_q8_0 * restrict x = vx;
  2855. const block_q8_0 * restrict y = vy;
  2856. #if defined(__ARM_NEON)
  2857. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2858. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2859. GGML_ASSERT(nb % 2 == 0); // TODO: handle odd nb
  2860. for (int i = 0; i < nb; i += 2) {
  2861. const block_q8_0 * restrict x0 = &x[i + 0];
  2862. const block_q8_0 * restrict x1 = &x[i + 1];
  2863. const block_q8_0 * restrict y0 = &y[i + 0];
  2864. const block_q8_0 * restrict y1 = &y[i + 1];
  2865. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2866. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2867. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2868. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2869. // load y
  2870. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2871. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2872. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2873. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2874. #if defined(__ARM_FEATURE_DOTPROD)
  2875. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2876. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2877. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2878. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2879. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2880. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2881. #else
  2882. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2883. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2884. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2885. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2886. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2887. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2888. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2889. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2890. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2891. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2892. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2893. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2894. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2895. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2896. #endif
  2897. }
  2898. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2899. #elif defined(__AVX2__) || defined(__AVX__)
  2900. // Initialize accumulator with zeros
  2901. __m256 acc = _mm256_setzero_ps();
  2902. // Main loop
  2903. for (int i = 0; i < nb; ++i) {
  2904. // Compute combined scale for the block
  2905. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2906. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2907. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2908. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2909. // Multiply q with scale and accumulate
  2910. #if defined(__AVX2__)
  2911. acc = _mm256_fmadd_ps( d, q, acc );
  2912. #else
  2913. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2914. #endif
  2915. }
  2916. *s = hsum_float_8(acc);
  2917. #elif defined(__riscv_v_intrinsic)
  2918. float sumf = 0.0;
  2919. size_t vl = __riscv_vsetvl_e8m1(qk);
  2920. for (int i = 0; i < nb; i++) {
  2921. // load elements
  2922. vint8m1_t bx = __riscv_vle8_v_i8m1(x[i].qs, vl);
  2923. vint8m1_t by = __riscv_vle8_v_i8m1(y[i].qs, vl);
  2924. vint16m2_t vw_mul = __riscv_vwmul_vv_i16m2(bx, by, vl);
  2925. vint32m1_t v_zero = __riscv_vmv_v_x_i32m1(0, vl);
  2926. vint32m1_t v_sum = __riscv_vwredsum_vs_i16m2_i32m1(vw_mul, v_zero, vl);
  2927. int sumi = __riscv_vmv_x_s_i32m1_i32(v_sum);
  2928. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2929. }
  2930. *s = sumf;
  2931. #else
  2932. // scalar
  2933. float sumf = 0.0;
  2934. for (int i = 0; i < nb; i++) {
  2935. int sumi = 0;
  2936. for (int j = 0; j < qk; j++) {
  2937. sumi += x[i].qs[j]*y[i].qs[j];
  2938. }
  2939. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2940. }
  2941. *s = sumf;
  2942. #endif
  2943. }
  2944. // compute GGML_VEC_DOT_UNROLL dot products at once
  2945. // xs - x row stride in bytes
  2946. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2947. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2948. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2949. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2950. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2951. }
  2952. #if defined(GGML_SIMD)
  2953. const int np = (n & ~(GGML_F16_STEP - 1));
  2954. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2955. GGML_F16_VEC ax[GGML_F16_ARR];
  2956. GGML_F16_VEC ay[GGML_F16_ARR];
  2957. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2958. for (int j = 0; j < GGML_F16_ARR; j++) {
  2959. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2960. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2961. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2962. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2963. }
  2964. }
  2965. }
  2966. // reduce sum0..sum3 to sum0
  2967. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2968. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2969. }
  2970. // leftovers
  2971. for (int i = np; i < n; ++i) {
  2972. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2973. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2974. }
  2975. }
  2976. #else
  2977. for (int i = 0; i < n; ++i) {
  2978. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2979. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2980. }
  2981. }
  2982. #endif
  2983. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2984. s[i] = sumf[i];
  2985. }
  2986. }
  2987. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2988. #if defined(GGML_SIMD)
  2989. const int np = (n & ~(GGML_F32_STEP - 1));
  2990. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2991. GGML_F32_VEC ax[GGML_F32_ARR];
  2992. GGML_F32_VEC ay[GGML_F32_ARR];
  2993. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2994. for (int j = 0; j < GGML_F32_ARR; j++) {
  2995. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2996. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2997. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2998. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2999. }
  3000. }
  3001. // leftovers
  3002. for (int i = np; i < n; ++i) {
  3003. y[i] += x[i]*v;
  3004. }
  3005. #else
  3006. // scalar
  3007. for (int i = 0; i < n; ++i) {
  3008. y[i] += x[i]*v;
  3009. }
  3010. #endif
  3011. }
  3012. // xs and vs are byte strides of x and v
  3013. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  3014. const float * restrict x[GGML_VEC_MAD_UNROLL];
  3015. const float * restrict v[GGML_VEC_MAD_UNROLL];
  3016. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  3017. x[i] = (const float *) ((const char *) xv + i*xs);
  3018. v[i] = (const float *) ((const char *) vv + i*vs);
  3019. }
  3020. #if defined(GGML_SIMD)
  3021. const int np = (n & ~(GGML_F32_STEP - 1));
  3022. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  3023. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3024. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  3025. }
  3026. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  3027. GGML_F32_VEC ay[GGML_F32_ARR];
  3028. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3029. for (int j = 0; j < GGML_F32_ARR; j++) {
  3030. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3031. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3032. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  3033. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  3034. }
  3035. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3036. }
  3037. }
  3038. // leftovers
  3039. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3040. for (int i = np; i < n; ++i) {
  3041. y[i] += x[k][i]*v[k][0];
  3042. }
  3043. }
  3044. #else
  3045. // scalar
  3046. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  3047. for (int i = 0; i < n; ++i) {
  3048. y[i] += x[k][i]*v[k][0];
  3049. }
  3050. }
  3051. #endif
  3052. }
  3053. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  3054. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  3055. #if defined(GGML_USE_ACCELERATE)
  3056. vDSP_vsmul(y, 1, &v, y, 1, n);
  3057. #elif defined(GGML_SIMD)
  3058. const int np = (n & ~(GGML_F32_STEP - 1));
  3059. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  3060. GGML_F32_VEC ay[GGML_F32_ARR];
  3061. for (int i = 0; i < np; i += GGML_F32_STEP) {
  3062. for (int j = 0; j < GGML_F32_ARR; j++) {
  3063. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  3064. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  3065. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  3066. }
  3067. }
  3068. // leftovers
  3069. for (int i = np; i < n; ++i) {
  3070. y[i] *= v;
  3071. }
  3072. #else
  3073. // scalar
  3074. for (int i = 0; i < n; ++i) {
  3075. y[i] *= v;
  3076. }
  3077. #endif
  3078. }
  3079. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  3080. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  3081. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  3082. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  3083. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  3084. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  3085. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  3086. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  3087. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  3088. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  3089. static const float GELU_COEF_A = 0.044715f;
  3090. static const float GELU_QUICK_COEF = -1.702f;
  3091. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  3092. inline static float ggml_gelu_f32(float x) {
  3093. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  3094. }
  3095. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3096. const uint16_t * i16 = (const uint16_t *) x;
  3097. for (int i = 0; i < n; ++i) {
  3098. y[i] = table_gelu_f16[i16[i]];
  3099. }
  3100. }
  3101. #ifdef GGML_GELU_FP16
  3102. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3103. uint16_t t;
  3104. for (int i = 0; i < n; ++i) {
  3105. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3106. memcpy(&t, &fp16, sizeof(uint16_t));
  3107. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3108. }
  3109. }
  3110. #else
  3111. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3112. for (int i = 0; i < n; ++i) {
  3113. y[i] = ggml_gelu_f32(x[i]);
  3114. }
  3115. }
  3116. #endif
  3117. inline static float ggml_gelu_quick_f32(float x) {
  3118. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  3119. }
  3120. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3121. // const uint16_t * i16 = (const uint16_t *) x;
  3122. // for (int i = 0; i < n; ++i) {
  3123. // y[i] = table_gelu_quick_f16[i16[i]];
  3124. // }
  3125. //}
  3126. #ifdef GGML_GELU_QUICK_FP16
  3127. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3128. uint16_t t;
  3129. for (int i = 0; i < n; ++i) {
  3130. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3131. memcpy(&t, &fp16, sizeof(uint16_t));
  3132. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  3133. }
  3134. }
  3135. #else
  3136. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  3137. for (int i = 0; i < n; ++i) {
  3138. y[i] = ggml_gelu_quick_f32(x[i]);
  3139. }
  3140. }
  3141. #endif
  3142. // Sigmoid Linear Unit (SiLU) function
  3143. inline static float ggml_silu_f32(float x) {
  3144. return x/(1.0f + expf(-x));
  3145. }
  3146. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3147. // const uint16_t * i16 = (const uint16_t *) x;
  3148. // for (int i = 0; i < n; ++i) {
  3149. // y[i] = table_silu_f16[i16[i]];
  3150. // }
  3151. //}
  3152. #ifdef GGML_SILU_FP16
  3153. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3154. uint16_t t;
  3155. for (int i = 0; i < n; ++i) {
  3156. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3157. memcpy(&t, &fp16, sizeof(uint16_t));
  3158. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3159. }
  3160. }
  3161. #else
  3162. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3163. for (int i = 0; i < n; ++i) {
  3164. y[i] = ggml_silu_f32(x[i]);
  3165. }
  3166. }
  3167. #endif
  3168. inline static float ggml_silu_backward_f32(float x, float dy) {
  3169. const float s = 1.0f/(1.0f + expf(-x));
  3170. return dy*s*(1.0f + x*(1.0f - s));
  3171. }
  3172. #ifdef GGML_SILU_FP16
  3173. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3174. for (int i = 0; i < n; ++i) {
  3175. // we did not use x[i] to compute forward silu but its f16 equivalent
  3176. // take derivative at f16 of x[i]:
  3177. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3178. float usedx = GGML_FP16_TO_FP32(fp16);
  3179. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  3180. }
  3181. }
  3182. #else
  3183. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  3184. for (int i = 0; i < n; ++i) {
  3185. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  3186. }
  3187. }
  3188. #endif
  3189. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3190. #ifndef GGML_USE_ACCELERATE
  3191. ggml_float sum = 0.0;
  3192. for (int i = 0; i < n; ++i) {
  3193. sum += (ggml_float)x[i];
  3194. }
  3195. *s = sum;
  3196. #else
  3197. vDSP_sve(x, 1, s, n);
  3198. #endif
  3199. }
  3200. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  3201. ggml_float sum = 0.0;
  3202. for (int i = 0; i < n; ++i) {
  3203. sum += (ggml_float)x[i];
  3204. }
  3205. *s = sum;
  3206. }
  3207. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  3208. float sum = 0.0f;
  3209. for (int i = 0; i < n; ++i) {
  3210. sum += GGML_FP16_TO_FP32(x[i]);
  3211. }
  3212. *s = sum;
  3213. }
  3214. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3215. #ifndef GGML_USE_ACCELERATE
  3216. float max = -INFINITY;
  3217. for (int i = 0; i < n; ++i) {
  3218. max = MAX(max, x[i]);
  3219. }
  3220. *s = max;
  3221. #else
  3222. vDSP_maxv(x, 1, s, n);
  3223. #endif
  3224. }
  3225. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3226. ggml_vec_norm_f32(n, s, x);
  3227. *s = 1.f/(*s);
  3228. }
  3229. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  3230. float max = -INFINITY;
  3231. int idx = 0;
  3232. for (int i = 0; i < n; ++i) {
  3233. max = MAX(max, x[i]);
  3234. if (max == x[i]) { idx = i; }
  3235. }
  3236. *s = idx;
  3237. }
  3238. //
  3239. // data types
  3240. //
  3241. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3242. "NONE",
  3243. "DUP",
  3244. "ADD",
  3245. "ADD1",
  3246. "ACC",
  3247. "SUB",
  3248. "MUL",
  3249. "DIV",
  3250. "SQR",
  3251. "SQRT",
  3252. "LOG",
  3253. "SUM",
  3254. "SUM_ROWS",
  3255. "MEAN",
  3256. "ARGMAX",
  3257. "REPEAT",
  3258. "REPEAT_BACK",
  3259. "CONCAT",
  3260. "SILU_BACK",
  3261. "NORM",
  3262. "RMS_NORM",
  3263. "RMS_NORM_BACK",
  3264. "GROUP_NORM",
  3265. "MUL_MAT",
  3266. "OUT_PROD",
  3267. "SCALE",
  3268. "SET",
  3269. "CPY",
  3270. "CONT",
  3271. "RESHAPE",
  3272. "VIEW",
  3273. "PERMUTE",
  3274. "TRANSPOSE",
  3275. "GET_ROWS",
  3276. "GET_ROWS_BACK",
  3277. "DIAG",
  3278. "DIAG_MASK_INF",
  3279. "DIAG_MASK_ZERO",
  3280. "SOFT_MAX",
  3281. "SOFT_MAX_BACK",
  3282. "ROPE",
  3283. "ROPE_BACK",
  3284. "ALIBI",
  3285. "CLAMP",
  3286. "CONV_1D",
  3287. "CONV_TRANSPOSE_1D",
  3288. "CONV_2D",
  3289. "CONV_TRANSPOSE_2D",
  3290. "POOL_1D",
  3291. "POOL_2D",
  3292. "UPSCALE",
  3293. "CONV_1D_STAGE_0",
  3294. "CONV_1D_STAGE_1",
  3295. "FLASH_ATTN",
  3296. "FLASH_FF",
  3297. "FLASH_ATTN_BACK",
  3298. "WIN_PART",
  3299. "WIN_UNPART",
  3300. "GET_REL_POS",
  3301. "ADD_REL_POS",
  3302. "UNARY",
  3303. "MAP_UNARY",
  3304. "MAP_BINARY",
  3305. "MAP_CUSTOM1_F32",
  3306. "MAP_CUSTOM2_F32",
  3307. "MAP_CUSTOM3_F32",
  3308. "MAP_CUSTOM1",
  3309. "MAP_CUSTOM2",
  3310. "MAP_CUSTOM3",
  3311. "CROSS_ENTROPY_LOSS",
  3312. "CROSS_ENTROPY_LOSS_BACK",
  3313. };
  3314. static_assert(GGML_OP_COUNT == 71, "GGML_OP_COUNT != 71");
  3315. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3316. "none",
  3317. "x",
  3318. "x+y",
  3319. "x+y",
  3320. "view(x,nb,offset)+=y->x",
  3321. "x-y",
  3322. "x*y",
  3323. "x/y",
  3324. "x^2",
  3325. "√x",
  3326. "log(x)",
  3327. "Σx",
  3328. "Σx_k",
  3329. "Σx/n",
  3330. "argmax(x)",
  3331. "repeat(x)",
  3332. "repeat_back(x)",
  3333. "concat(x, y)",
  3334. "silu_back(x)",
  3335. "norm(x)",
  3336. "rms_norm(x)",
  3337. "rms_norm_back(x)",
  3338. "group_norm(x)",
  3339. "X*Y",
  3340. "X*Y",
  3341. "x*v",
  3342. "y-\\>view(x)",
  3343. "x-\\>y",
  3344. "cont(x)",
  3345. "reshape(x)",
  3346. "view(x)",
  3347. "permute(x)",
  3348. "transpose(x)",
  3349. "get_rows(x)",
  3350. "get_rows_back(x)",
  3351. "diag(x)",
  3352. "diag_mask_inf(x)",
  3353. "diag_mask_zero(x)",
  3354. "soft_max(x)",
  3355. "soft_max_back(x)",
  3356. "rope(x)",
  3357. "rope_back(x)",
  3358. "alibi(x)",
  3359. "clamp(x)",
  3360. "conv_1d(x)",
  3361. "conv_transpose_1d(x)",
  3362. "conv_2d(x)",
  3363. "conv_transpose_2d(x)",
  3364. "pool_1d(x)",
  3365. "pool_2d(x)",
  3366. "upscale(x)",
  3367. "conv_1d_stage_0(x)",
  3368. "conv_1d_stage_1(x)",
  3369. "flash_attn(x)",
  3370. "flash_ff(x)",
  3371. "flash_attn_back(x)",
  3372. "win_part(x)",
  3373. "win_unpart(x)",
  3374. "get_rel_pos(x)",
  3375. "add_rel_pos(x)",
  3376. "unary(x)",
  3377. "f(x)",
  3378. "f(x,y)",
  3379. "custom_f32(x)",
  3380. "custom_f32(x,y)",
  3381. "custom_f32(x,y,z)",
  3382. "custom(x)",
  3383. "custom(x,y)",
  3384. "custom(x,y,z)",
  3385. "cross_entropy_loss(x,y)",
  3386. "cross_entropy_loss_back(x,y)",
  3387. };
  3388. static_assert(GGML_OP_COUNT == 71, "GGML_OP_COUNT != 71");
  3389. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  3390. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3391. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3392. // WARN:
  3393. // Mis-confguration can lead to problem that's hard to reason about:
  3394. // * At best it crash or talks nosense.
  3395. // * At worst it talks slightly difference but hard to perceive.
  3396. //
  3397. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3398. // Take care about compile options (e.g., GGML_USE_xxx).
  3399. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3400. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3401. static void ggml_setup_op_has_task_pass(void) {
  3402. { // INIT
  3403. bool * p = GGML_OP_HAS_INIT;
  3404. p[GGML_OP_ACC ] = true;
  3405. p[GGML_OP_MUL_MAT ] = true;
  3406. p[GGML_OP_OUT_PROD ] = true;
  3407. p[GGML_OP_SET ] = true;
  3408. p[GGML_OP_GET_ROWS_BACK ] = true;
  3409. p[GGML_OP_DIAG_MASK_INF ] = true;
  3410. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3411. p[GGML_OP_CONV_1D ] = true;
  3412. p[GGML_OP_CONV_1D_STAGE_0 ] = true;
  3413. p[GGML_OP_CONV_1D_STAGE_1 ] = true;
  3414. p[GGML_OP_CONV_2D ] = true;
  3415. p[GGML_OP_CONV_TRANSPOSE_1D ] = true;
  3416. p[GGML_OP_CONV_TRANSPOSE_2D ] = true;
  3417. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3418. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3419. p[GGML_OP_ADD_REL_POS ] = true;
  3420. }
  3421. { // FINALIZE
  3422. bool * p = GGML_OP_HAS_FINALIZE;
  3423. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3424. }
  3425. }
  3426. //
  3427. // ggml context
  3428. //
  3429. struct ggml_context {
  3430. size_t mem_size;
  3431. void * mem_buffer;
  3432. bool mem_buffer_owned;
  3433. bool no_alloc;
  3434. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3435. int n_objects;
  3436. struct ggml_object * objects_begin;
  3437. struct ggml_object * objects_end;
  3438. struct ggml_scratch scratch;
  3439. struct ggml_scratch scratch_save;
  3440. };
  3441. struct ggml_context_container {
  3442. bool used;
  3443. struct ggml_context context;
  3444. };
  3445. //
  3446. // NUMA support
  3447. //
  3448. #define GGML_NUMA_MAX_NODES 8
  3449. #define GGML_NUMA_MAX_CPUS 512
  3450. struct ggml_numa_node {
  3451. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3452. uint32_t n_cpus;
  3453. };
  3454. struct ggml_numa_nodes {
  3455. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3456. uint32_t n_nodes;
  3457. uint32_t total_cpus; // hardware threads on system
  3458. };
  3459. //
  3460. // ggml state
  3461. //
  3462. struct ggml_state {
  3463. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3464. struct ggml_numa_nodes numa;
  3465. };
  3466. // global state
  3467. static struct ggml_state g_state;
  3468. static atomic_int g_state_barrier = 0;
  3469. // barrier via spin lock
  3470. inline static void ggml_critical_section_start(void) {
  3471. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3472. while (processing > 0) {
  3473. // wait for other threads to finish
  3474. atomic_fetch_sub(&g_state_barrier, 1);
  3475. sched_yield(); // TODO: reconsider this
  3476. processing = atomic_fetch_add(&g_state_barrier, 1);
  3477. }
  3478. }
  3479. // TODO: make this somehow automatically executed
  3480. // some sort of "sentry" mechanism
  3481. inline static void ggml_critical_section_end(void) {
  3482. atomic_fetch_sub(&g_state_barrier, 1);
  3483. }
  3484. void ggml_numa_init(void) {
  3485. if (g_state.numa.n_nodes > 0) {
  3486. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3487. return;
  3488. }
  3489. #ifdef __linux__
  3490. struct stat st;
  3491. char path[256];
  3492. int rv;
  3493. // enumerate nodes
  3494. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3495. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3496. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3497. if (stat(path, &st) != 0) { break; }
  3498. ++g_state.numa.n_nodes;
  3499. }
  3500. // enumerate CPUs
  3501. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3502. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3503. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3504. if (stat(path, &st) != 0) { break; }
  3505. ++g_state.numa.total_cpus;
  3506. }
  3507. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3508. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3509. g_state.numa.n_nodes = 0;
  3510. return;
  3511. }
  3512. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3513. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3514. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3515. node->n_cpus = 0;
  3516. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3517. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3518. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3519. if (stat(path, &st) == 0) {
  3520. node->cpus[node->n_cpus++] = c;
  3521. GGML_PRINT_DEBUG(" %u", c);
  3522. }
  3523. }
  3524. GGML_PRINT_DEBUG("\n");
  3525. }
  3526. if (ggml_is_numa()) {
  3527. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3528. if (fptr != NULL) {
  3529. char buf[42];
  3530. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3531. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3532. }
  3533. fclose(fptr);
  3534. }
  3535. }
  3536. #else
  3537. // TODO
  3538. #endif
  3539. }
  3540. bool ggml_is_numa(void) {
  3541. return g_state.numa.n_nodes > 1;
  3542. }
  3543. ////////////////////////////////////////////////////////////////////////////////
  3544. void ggml_print_object(const struct ggml_object * obj) {
  3545. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  3546. obj->type, obj->offs, obj->size, (const void *) obj->next);
  3547. }
  3548. void ggml_print_objects(const struct ggml_context * ctx) {
  3549. struct ggml_object * obj = ctx->objects_begin;
  3550. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3551. while (obj != NULL) {
  3552. ggml_print_object(obj);
  3553. obj = obj->next;
  3554. }
  3555. GGML_PRINT("%s: --- end ---\n", __func__);
  3556. }
  3557. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3558. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3559. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3560. }
  3561. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3562. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3563. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3564. }
  3565. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3566. size_t nbytes;
  3567. size_t blck_size = ggml_blck_size(tensor->type);
  3568. if (blck_size == 1) {
  3569. nbytes = ggml_type_size(tensor->type);
  3570. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  3571. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3572. }
  3573. }
  3574. else {
  3575. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  3576. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  3577. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  3578. }
  3579. }
  3580. return nbytes;
  3581. }
  3582. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  3583. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  3584. }
  3585. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3586. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3587. return (nrows_split*tensor->ne[0]*ggml_type_size(tensor->type))/ggml_blck_size(tensor->type);
  3588. }
  3589. int ggml_blck_size(enum ggml_type type) {
  3590. return type_traits[type].blck_size;
  3591. }
  3592. size_t ggml_type_size(enum ggml_type type) {
  3593. return type_traits[type].type_size;
  3594. }
  3595. float ggml_type_sizef(enum ggml_type type) {
  3596. return ((float)(type_traits[type].type_size))/type_traits[type].blck_size;
  3597. }
  3598. const char * ggml_type_name(enum ggml_type type) {
  3599. return type_traits[type].type_name;
  3600. }
  3601. bool ggml_is_quantized(enum ggml_type type) {
  3602. return type_traits[type].is_quantized;
  3603. }
  3604. const char * ggml_op_name(enum ggml_op op) {
  3605. return GGML_OP_NAME[op];
  3606. }
  3607. const char * ggml_op_symbol(enum ggml_op op) {
  3608. return GGML_OP_SYMBOL[op];
  3609. }
  3610. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3611. return ggml_type_size(tensor->type);
  3612. }
  3613. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3614. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3615. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3616. }
  3617. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3618. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3619. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3620. }
  3621. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3622. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3623. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3624. }
  3625. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3626. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3627. return (t0->ne[0] == t1->ne[0]) &&
  3628. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3629. (t1->ne[3]%t0->ne[3] == 0);
  3630. }
  3631. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3632. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3633. return (t0->ne[1] == t1->ne[1]) &&
  3634. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  3635. (t1->ne[3]%t0->ne[3] == 0);
  3636. }
  3637. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3638. enum ggml_type wtype = GGML_TYPE_COUNT;
  3639. switch (ftype) {
  3640. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3641. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3642. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3643. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3644. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3645. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3646. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3647. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3648. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3649. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3650. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3651. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3652. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3653. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3654. }
  3655. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3656. return wtype;
  3657. }
  3658. size_t ggml_tensor_overhead(void) {
  3659. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  3660. }
  3661. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3662. return tensor->nb[0] > tensor->nb[1];
  3663. }
  3664. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3665. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3666. return
  3667. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3668. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/ggml_blck_size(tensor->type) &&
  3669. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3670. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3671. }
  3672. static inline bool ggml_is_contiguous_except_dim_1(const struct ggml_tensor * tensor) {
  3673. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3674. return
  3675. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3676. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3677. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3678. }
  3679. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3680. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3681. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3682. }
  3683. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3684. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3685. return
  3686. tensor->nb[0] == ggml_type_size(tensor->type) &&
  3687. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3688. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3689. }
  3690. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3691. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3692. return
  3693. (t0->ne[0] == t1->ne[0] ) &&
  3694. (t0->ne[1] == t1->ne[1] ) &&
  3695. (t0->ne[2] == t1->ne[2] ) &&
  3696. (t0->ne[3] == t1->ne[3] );
  3697. }
  3698. // check if t1 can be represented as a repeatition of t0
  3699. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3700. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3701. return
  3702. (t1->ne[0]%t0->ne[0] == 0) &&
  3703. (t1->ne[1]%t0->ne[1] == 0) &&
  3704. (t1->ne[2]%t0->ne[2] == 0) &&
  3705. (t1->ne[3]%t0->ne[3] == 0);
  3706. }
  3707. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3708. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3709. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3710. }
  3711. static inline int ggml_up32(int n) {
  3712. return (n + 31) & ~31;
  3713. }
  3714. //static inline int ggml_up64(int n) {
  3715. // return (n + 63) & ~63;
  3716. //}
  3717. static inline int ggml_up(int n, int m) {
  3718. // assert m is a power of 2
  3719. GGML_ASSERT((m & (m - 1)) == 0);
  3720. return (n + m - 1) & ~(m - 1);
  3721. }
  3722. // assert that pointer is aligned to GGML_MEM_ALIGN
  3723. #define ggml_assert_aligned(ptr) \
  3724. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3725. ////////////////////////////////////////////////////////////////////////////////
  3726. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3727. // make this function thread safe
  3728. ggml_critical_section_start();
  3729. static bool is_first_call = true;
  3730. if (is_first_call) {
  3731. // initialize time system (required on Windows)
  3732. ggml_time_init();
  3733. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3734. {
  3735. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3736. ggml_fp16_t ii;
  3737. for (int i = 0; i < (1 << 16); ++i) {
  3738. uint16_t ui = i;
  3739. memcpy(&ii, &ui, sizeof(ii));
  3740. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3741. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3742. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3743. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3744. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3745. }
  3746. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3747. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3748. }
  3749. // initialize g_state
  3750. {
  3751. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3752. g_state = (struct ggml_state) {
  3753. /*.contexts =*/ { { 0 } },
  3754. /*.numa =*/ {
  3755. .n_nodes = 0,
  3756. .total_cpus = 0,
  3757. },
  3758. };
  3759. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3760. g_state.contexts[i].used = false;
  3761. }
  3762. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3763. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3764. }
  3765. #if defined(GGML_USE_CUBLAS)
  3766. ggml_init_cublas();
  3767. #elif defined(GGML_USE_CLBLAST)
  3768. ggml_cl_init();
  3769. #endif
  3770. ggml_setup_op_has_task_pass();
  3771. is_first_call = false;
  3772. }
  3773. // find non-used context in g_state
  3774. struct ggml_context * ctx = NULL;
  3775. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3776. if (!g_state.contexts[i].used) {
  3777. g_state.contexts[i].used = true;
  3778. ctx = &g_state.contexts[i].context;
  3779. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3780. break;
  3781. }
  3782. }
  3783. if (ctx == NULL) {
  3784. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3785. ggml_critical_section_end();
  3786. return NULL;
  3787. }
  3788. // allow to call ggml_init with 0 size
  3789. if (params.mem_size == 0) {
  3790. params.mem_size = GGML_MEM_ALIGN;
  3791. }
  3792. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3793. *ctx = (struct ggml_context) {
  3794. /*.mem_size =*/ mem_size,
  3795. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3796. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3797. /*.no_alloc =*/ params.no_alloc,
  3798. /*.no_alloc_save =*/ params.no_alloc,
  3799. /*.n_objects =*/ 0,
  3800. /*.objects_begin =*/ NULL,
  3801. /*.objects_end =*/ NULL,
  3802. /*.scratch =*/ { 0, 0, NULL, },
  3803. /*.scratch_save =*/ { 0, 0, NULL, },
  3804. };
  3805. GGML_ASSERT(ctx->mem_buffer != NULL);
  3806. ggml_assert_aligned(ctx->mem_buffer);
  3807. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3808. ggml_critical_section_end();
  3809. return ctx;
  3810. }
  3811. void ggml_free(struct ggml_context * ctx) {
  3812. // make this function thread safe
  3813. ggml_critical_section_start();
  3814. bool found = false;
  3815. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3816. if (&g_state.contexts[i].context == ctx) {
  3817. g_state.contexts[i].used = false;
  3818. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3819. __func__, i, ggml_used_mem(ctx));
  3820. if (ctx->mem_buffer_owned) {
  3821. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3822. }
  3823. found = true;
  3824. break;
  3825. }
  3826. }
  3827. if (!found) {
  3828. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3829. }
  3830. ggml_critical_section_end();
  3831. }
  3832. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3833. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3834. }
  3835. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3836. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3837. ctx->scratch = scratch;
  3838. return result;
  3839. }
  3840. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3841. return ctx->no_alloc;
  3842. }
  3843. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3844. ctx->no_alloc = no_alloc;
  3845. }
  3846. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3847. return ctx->mem_buffer;
  3848. }
  3849. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3850. return ctx->mem_size;
  3851. }
  3852. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3853. size_t max_size = 0;
  3854. struct ggml_object * obj = ctx->objects_begin;
  3855. while (obj != NULL) {
  3856. if (obj->type == GGML_OBJECT_TENSOR) {
  3857. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3858. const size_t size = ggml_nbytes(tensor);
  3859. if (max_size < size) {
  3860. max_size = size;
  3861. }
  3862. }
  3863. obj = obj->next;
  3864. }
  3865. return max_size;
  3866. }
  3867. // IMPORTANT:
  3868. // when creating "opt" tensors, always save and load the scratch buffer
  3869. // this is an error prone process, but it is necessary to support inplace
  3870. // operators when using scratch buffers
  3871. // TODO: implement a better way
  3872. static void ggml_scratch_save(struct ggml_context * ctx) {
  3873. // this is needed to allow opt tensors to store their data
  3874. // TODO: again, need to find a better way
  3875. ctx->no_alloc_save = ctx->no_alloc;
  3876. ctx->no_alloc = false;
  3877. ctx->scratch_save = ctx->scratch;
  3878. ctx->scratch.data = NULL;
  3879. }
  3880. static void ggml_scratch_load(struct ggml_context * ctx) {
  3881. ctx->no_alloc = ctx->no_alloc_save;
  3882. ctx->scratch = ctx->scratch_save;
  3883. }
  3884. ////////////////////////////////////////////////////////////////////////////////
  3885. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3886. // always insert objects at the end of the context's memory pool
  3887. struct ggml_object * obj_cur = ctx->objects_end;
  3888. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3889. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3890. const size_t cur_end = cur_offs + cur_size;
  3891. // align to GGML_MEM_ALIGN
  3892. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3893. char * const mem_buffer = ctx->mem_buffer;
  3894. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3895. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3896. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3897. __func__, cur_end + size_needed, ctx->mem_size);
  3898. assert(false);
  3899. return NULL;
  3900. }
  3901. *obj_new = (struct ggml_object) {
  3902. .offs = cur_end + GGML_OBJECT_SIZE,
  3903. .size = size_needed,
  3904. .next = NULL,
  3905. .type = type,
  3906. };
  3907. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3908. if (obj_cur != NULL) {
  3909. obj_cur->next = obj_new;
  3910. } else {
  3911. // this is the first object in this context
  3912. ctx->objects_begin = obj_new;
  3913. }
  3914. ctx->objects_end = obj_new;
  3915. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3916. return obj_new;
  3917. }
  3918. static struct ggml_tensor * ggml_new_tensor_impl(
  3919. struct ggml_context * ctx,
  3920. enum ggml_type type,
  3921. int n_dims,
  3922. const int64_t * ne,
  3923. struct ggml_tensor * view_src,
  3924. size_t view_offs) {
  3925. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3926. // find the base tensor and absolute offset
  3927. if (view_src != NULL && view_src->view_src != NULL) {
  3928. view_offs += view_src->view_offs;
  3929. view_src = view_src->view_src;
  3930. }
  3931. size_t data_size = ggml_type_size(type)*(ne[0]/ggml_blck_size(type));
  3932. for (int i = 1; i < n_dims; i++) {
  3933. data_size *= ne[i];
  3934. }
  3935. GGML_ASSERT(view_src == NULL || data_size + view_offs <= ggml_nbytes(view_src));
  3936. void * data = view_src != NULL ? view_src->data : NULL;
  3937. if (data != NULL) {
  3938. data = (char *) data + view_offs;
  3939. }
  3940. size_t obj_alloc_size = 0;
  3941. if (view_src == NULL && !ctx->no_alloc) {
  3942. if (ctx->scratch.data != NULL) {
  3943. // allocate tensor data in the scratch buffer
  3944. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3945. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3946. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3947. assert(false);
  3948. return NULL;
  3949. }
  3950. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3951. ctx->scratch.offs += data_size;
  3952. } else {
  3953. // allocate tensor data in the context's memory pool
  3954. obj_alloc_size = data_size;
  3955. }
  3956. }
  3957. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3958. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3959. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3960. *result = (struct ggml_tensor) {
  3961. /*.type =*/ type,
  3962. /*.backend =*/ GGML_BACKEND_CPU,
  3963. /*.buffer =*/ NULL,
  3964. /*.n_dims =*/ n_dims,
  3965. /*.ne =*/ { 1, 1, 1, 1 },
  3966. /*.nb =*/ { 0, 0, 0, 0 },
  3967. /*.op =*/ GGML_OP_NONE,
  3968. /*.op_params =*/ { 0 },
  3969. /*.is_param =*/ false,
  3970. /*.grad =*/ NULL,
  3971. /*.src =*/ { NULL },
  3972. /*.perf_runs =*/ 0,
  3973. /*.perf_cycles =*/ 0,
  3974. /*.perf_time_us =*/ 0,
  3975. /*.view_src =*/ view_src,
  3976. /*.view_offs =*/ view_offs,
  3977. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3978. /*.name =*/ { 0 },
  3979. /*.extra =*/ NULL,
  3980. /*.padding =*/ { 0 },
  3981. };
  3982. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3983. //ggml_assert_aligned(result->data);
  3984. for (int i = 0; i < n_dims; i++) {
  3985. result->ne[i] = ne[i];
  3986. }
  3987. result->nb[0] = ggml_type_size(type);
  3988. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3989. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3990. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3991. }
  3992. ctx->n_objects++;
  3993. return result;
  3994. }
  3995. struct ggml_tensor * ggml_new_tensor(
  3996. struct ggml_context * ctx,
  3997. enum ggml_type type,
  3998. int n_dims,
  3999. const int64_t * ne) {
  4000. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  4001. }
  4002. struct ggml_tensor * ggml_new_tensor_1d(
  4003. struct ggml_context * ctx,
  4004. enum ggml_type type,
  4005. int64_t ne0) {
  4006. return ggml_new_tensor(ctx, type, 1, &ne0);
  4007. }
  4008. struct ggml_tensor * ggml_new_tensor_2d(
  4009. struct ggml_context * ctx,
  4010. enum ggml_type type,
  4011. int64_t ne0,
  4012. int64_t ne1) {
  4013. const int64_t ne[2] = { ne0, ne1 };
  4014. return ggml_new_tensor(ctx, type, 2, ne);
  4015. }
  4016. struct ggml_tensor * ggml_new_tensor_3d(
  4017. struct ggml_context * ctx,
  4018. enum ggml_type type,
  4019. int64_t ne0,
  4020. int64_t ne1,
  4021. int64_t ne2) {
  4022. const int64_t ne[3] = { ne0, ne1, ne2 };
  4023. return ggml_new_tensor(ctx, type, 3, ne);
  4024. }
  4025. struct ggml_tensor * ggml_new_tensor_4d(
  4026. struct ggml_context * ctx,
  4027. enum ggml_type type,
  4028. int64_t ne0,
  4029. int64_t ne1,
  4030. int64_t ne2,
  4031. int64_t ne3) {
  4032. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4033. return ggml_new_tensor(ctx, type, 4, ne);
  4034. }
  4035. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  4036. ggml_scratch_save(ctx);
  4037. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  4038. ggml_scratch_load(ctx);
  4039. ggml_set_i32(result, value);
  4040. return result;
  4041. }
  4042. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  4043. ggml_scratch_save(ctx);
  4044. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  4045. ggml_scratch_load(ctx);
  4046. ggml_set_f32(result, value);
  4047. return result;
  4048. }
  4049. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  4050. return ggml_new_tensor(ctx, src->type, src->n_dims, src->ne);
  4051. }
  4052. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  4053. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  4054. assert(params_size <= GGML_MAX_OP_PARAMS);
  4055. memcpy(tensor->op_params, params, params_size);
  4056. }
  4057. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  4058. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4059. return ((const int32_t *)(tensor->op_params))[i];
  4060. }
  4061. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  4062. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  4063. ((int32_t *)(tensor->op_params))[i] = value;
  4064. }
  4065. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  4066. memset(tensor->data, 0, ggml_nbytes(tensor));
  4067. return tensor;
  4068. }
  4069. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  4070. const int n = ggml_nrows(tensor);
  4071. const int nc = tensor->ne[0];
  4072. const size_t n1 = tensor->nb[1];
  4073. char * const data = tensor->data;
  4074. switch (tensor->type) {
  4075. case GGML_TYPE_I8:
  4076. {
  4077. assert(tensor->nb[0] == sizeof(int8_t));
  4078. for (int i = 0; i < n; i++) {
  4079. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4080. }
  4081. } break;
  4082. case GGML_TYPE_I16:
  4083. {
  4084. assert(tensor->nb[0] == sizeof(int16_t));
  4085. for (int i = 0; i < n; i++) {
  4086. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4087. }
  4088. } break;
  4089. case GGML_TYPE_I32:
  4090. {
  4091. assert(tensor->nb[0] == sizeof(int32_t));
  4092. for (int i = 0; i < n; i++) {
  4093. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4094. }
  4095. } break;
  4096. case GGML_TYPE_F16:
  4097. {
  4098. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4099. for (int i = 0; i < n; i++) {
  4100. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4101. }
  4102. } break;
  4103. case GGML_TYPE_F32:
  4104. {
  4105. assert(tensor->nb[0] == sizeof(float));
  4106. for (int i = 0; i < n; i++) {
  4107. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4108. }
  4109. } break;
  4110. default:
  4111. {
  4112. GGML_ASSERT(false);
  4113. } break;
  4114. }
  4115. return tensor;
  4116. }
  4117. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  4118. const int n = ggml_nrows(tensor);
  4119. const int nc = tensor->ne[0];
  4120. const size_t n1 = tensor->nb[1];
  4121. char * const data = tensor->data;
  4122. switch (tensor->type) {
  4123. case GGML_TYPE_I8:
  4124. {
  4125. assert(tensor->nb[0] == sizeof(int8_t));
  4126. for (int i = 0; i < n; i++) {
  4127. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  4128. }
  4129. } break;
  4130. case GGML_TYPE_I16:
  4131. {
  4132. assert(tensor->nb[0] == sizeof(int16_t));
  4133. for (int i = 0; i < n; i++) {
  4134. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  4135. }
  4136. } break;
  4137. case GGML_TYPE_I32:
  4138. {
  4139. assert(tensor->nb[0] == sizeof(int32_t));
  4140. for (int i = 0; i < n; i++) {
  4141. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  4142. }
  4143. } break;
  4144. case GGML_TYPE_F16:
  4145. {
  4146. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  4147. for (int i = 0; i < n; i++) {
  4148. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  4149. }
  4150. } break;
  4151. case GGML_TYPE_F32:
  4152. {
  4153. assert(tensor->nb[0] == sizeof(float));
  4154. for (int i = 0; i < n; i++) {
  4155. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  4156. }
  4157. } break;
  4158. default:
  4159. {
  4160. GGML_ASSERT(false);
  4161. } break;
  4162. }
  4163. return tensor;
  4164. }
  4165. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  4166. const int64_t ne2 = tensor->ne[2];
  4167. const int64_t ne1 = tensor->ne[1];
  4168. const int64_t ne0 = tensor->ne[0];
  4169. const int64_t i3_ = (i/(ne2*ne1*ne0));
  4170. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  4171. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  4172. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  4173. if (i0) {
  4174. * i0 = i0_;
  4175. }
  4176. if (i1) {
  4177. * i1 = i1_;
  4178. }
  4179. if (i2) {
  4180. * i2 = i2_;
  4181. }
  4182. if (i3) {
  4183. * i3 = i3_;
  4184. }
  4185. }
  4186. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  4187. if (!ggml_is_contiguous(tensor)) {
  4188. int64_t id[4] = { 0, 0, 0, 0 };
  4189. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4190. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  4191. }
  4192. switch (tensor->type) {
  4193. case GGML_TYPE_I8:
  4194. {
  4195. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4196. return ((int8_t *)(tensor->data))[i];
  4197. }
  4198. case GGML_TYPE_I16:
  4199. {
  4200. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4201. return ((int16_t *)(tensor->data))[i];
  4202. }
  4203. case GGML_TYPE_I32:
  4204. {
  4205. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4206. return ((int32_t *)(tensor->data))[i];
  4207. }
  4208. case GGML_TYPE_F16:
  4209. {
  4210. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4211. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4212. }
  4213. case GGML_TYPE_F32:
  4214. {
  4215. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4216. return ((float *)(tensor->data))[i];
  4217. }
  4218. default:
  4219. {
  4220. GGML_ASSERT(false);
  4221. }
  4222. }
  4223. return 0.0f;
  4224. }
  4225. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  4226. if (!ggml_is_contiguous(tensor)) {
  4227. int64_t id[4] = { 0, 0, 0, 0 };
  4228. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4229. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  4230. return;
  4231. }
  4232. switch (tensor->type) {
  4233. case GGML_TYPE_I8:
  4234. {
  4235. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4236. ((int8_t *)(tensor->data))[i] = value;
  4237. } break;
  4238. case GGML_TYPE_I16:
  4239. {
  4240. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4241. ((int16_t *)(tensor->data))[i] = value;
  4242. } break;
  4243. case GGML_TYPE_I32:
  4244. {
  4245. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4246. ((int32_t *)(tensor->data))[i] = value;
  4247. } break;
  4248. case GGML_TYPE_F16:
  4249. {
  4250. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4251. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4252. } break;
  4253. case GGML_TYPE_F32:
  4254. {
  4255. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4256. ((float *)(tensor->data))[i] = value;
  4257. } break;
  4258. default:
  4259. {
  4260. GGML_ASSERT(false);
  4261. } break;
  4262. }
  4263. }
  4264. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  4265. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4266. switch (tensor->type) {
  4267. case GGML_TYPE_I8:
  4268. return ((int8_t *) data)[0];
  4269. case GGML_TYPE_I16:
  4270. return ((int16_t *) data)[0];
  4271. case GGML_TYPE_I32:
  4272. return ((int32_t *) data)[0];
  4273. case GGML_TYPE_F16:
  4274. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4275. case GGML_TYPE_F32:
  4276. return ((float *) data)[0];
  4277. default:
  4278. GGML_ASSERT(false);
  4279. }
  4280. return 0.0f;
  4281. }
  4282. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  4283. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4284. switch (tensor->type) {
  4285. case GGML_TYPE_I8:
  4286. {
  4287. ((int8_t *)(data))[0] = value;
  4288. } break;
  4289. case GGML_TYPE_I16:
  4290. {
  4291. ((int16_t *)(data))[0] = value;
  4292. } break;
  4293. case GGML_TYPE_I32:
  4294. {
  4295. ((int32_t *)(data))[0] = value;
  4296. } break;
  4297. case GGML_TYPE_F16:
  4298. {
  4299. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4300. } break;
  4301. case GGML_TYPE_F32:
  4302. {
  4303. ((float *)(data))[0] = value;
  4304. } break;
  4305. default:
  4306. {
  4307. GGML_ASSERT(false);
  4308. } break;
  4309. }
  4310. }
  4311. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  4312. if (!ggml_is_contiguous(tensor)) {
  4313. int64_t id[4] = { 0, 0, 0, 0 };
  4314. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4315. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  4316. }
  4317. switch (tensor->type) {
  4318. case GGML_TYPE_I8:
  4319. {
  4320. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4321. return ((int8_t *)(tensor->data))[i];
  4322. }
  4323. case GGML_TYPE_I16:
  4324. {
  4325. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4326. return ((int16_t *)(tensor->data))[i];
  4327. }
  4328. case GGML_TYPE_I32:
  4329. {
  4330. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4331. return ((int32_t *)(tensor->data))[i];
  4332. }
  4333. case GGML_TYPE_F16:
  4334. {
  4335. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4336. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  4337. }
  4338. case GGML_TYPE_F32:
  4339. {
  4340. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4341. return ((float *)(tensor->data))[i];
  4342. }
  4343. default:
  4344. {
  4345. GGML_ASSERT(false);
  4346. }
  4347. }
  4348. return 0.0f;
  4349. }
  4350. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4351. if (!ggml_is_contiguous(tensor)) {
  4352. int64_t id[4] = { 0, 0, 0, 0 };
  4353. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  4354. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  4355. return;
  4356. }
  4357. switch (tensor->type) {
  4358. case GGML_TYPE_I8:
  4359. {
  4360. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4361. ((int8_t *)(tensor->data))[i] = value;
  4362. } break;
  4363. case GGML_TYPE_I16:
  4364. {
  4365. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4366. ((int16_t *)(tensor->data))[i] = value;
  4367. } break;
  4368. case GGML_TYPE_I32:
  4369. {
  4370. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4371. ((int32_t *)(tensor->data))[i] = value;
  4372. } break;
  4373. case GGML_TYPE_F16:
  4374. {
  4375. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4376. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4377. } break;
  4378. case GGML_TYPE_F32:
  4379. {
  4380. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4381. ((float *)(tensor->data))[i] = value;
  4382. } break;
  4383. default:
  4384. {
  4385. GGML_ASSERT(false);
  4386. } break;
  4387. }
  4388. }
  4389. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  4390. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4391. switch (tensor->type) {
  4392. case GGML_TYPE_I8:
  4393. return ((int8_t *) data)[0];
  4394. case GGML_TYPE_I16:
  4395. return ((int16_t *) data)[0];
  4396. case GGML_TYPE_I32:
  4397. return ((int32_t *) data)[0];
  4398. case GGML_TYPE_F16:
  4399. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  4400. case GGML_TYPE_F32:
  4401. return ((float *) data)[0];
  4402. default:
  4403. GGML_ASSERT(false);
  4404. }
  4405. return 0.0f;
  4406. }
  4407. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  4408. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  4409. switch (tensor->type) {
  4410. case GGML_TYPE_I8:
  4411. {
  4412. ((int8_t *)(data))[0] = value;
  4413. } break;
  4414. case GGML_TYPE_I16:
  4415. {
  4416. ((int16_t *)(data))[0] = value;
  4417. } break;
  4418. case GGML_TYPE_I32:
  4419. {
  4420. ((int32_t *)(data))[0] = value;
  4421. } break;
  4422. case GGML_TYPE_F16:
  4423. {
  4424. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  4425. } break;
  4426. case GGML_TYPE_F32:
  4427. {
  4428. ((float *)(data))[0] = value;
  4429. } break;
  4430. default:
  4431. {
  4432. GGML_ASSERT(false);
  4433. } break;
  4434. }
  4435. }
  4436. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4437. return tensor->data;
  4438. }
  4439. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4440. assert(tensor->type == GGML_TYPE_F32);
  4441. return (float *)(tensor->data);
  4442. }
  4443. enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  4444. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  4445. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  4446. }
  4447. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4448. return tensor->name;
  4449. }
  4450. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4451. strncpy(tensor->name, name, sizeof(tensor->name));
  4452. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4453. return tensor;
  4454. }
  4455. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4456. va_list args;
  4457. va_start(args, fmt);
  4458. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4459. va_end(args);
  4460. return tensor;
  4461. }
  4462. struct ggml_tensor * ggml_view_tensor(
  4463. struct ggml_context * ctx,
  4464. struct ggml_tensor * src) {
  4465. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src, 0);
  4466. ggml_format_name(result, "%s (view)", src->name);
  4467. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  4468. result->nb[i] = src->nb[i];
  4469. }
  4470. return result;
  4471. }
  4472. struct ggml_tensor * ggml_get_first_tensor(struct ggml_context * ctx) {
  4473. struct ggml_object * obj = ctx->objects_begin;
  4474. char * const mem_buffer = ctx->mem_buffer;
  4475. while (obj != NULL) {
  4476. if (obj->type == GGML_OBJECT_TENSOR) {
  4477. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  4478. }
  4479. obj = obj->next;
  4480. }
  4481. return NULL;
  4482. }
  4483. struct ggml_tensor * ggml_get_next_tensor(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  4484. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  4485. obj = obj->next;
  4486. char * const mem_buffer = ctx->mem_buffer;
  4487. while (obj != NULL) {
  4488. if (obj->type == GGML_OBJECT_TENSOR) {
  4489. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  4490. }
  4491. obj = obj->next;
  4492. }
  4493. return NULL;
  4494. }
  4495. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4496. struct ggml_object * obj = ctx->objects_begin;
  4497. char * const mem_buffer = ctx->mem_buffer;
  4498. while (obj != NULL) {
  4499. if (obj->type == GGML_OBJECT_TENSOR) {
  4500. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4501. if (strcmp(cur->name, name) == 0) {
  4502. return cur;
  4503. }
  4504. }
  4505. obj = obj->next;
  4506. }
  4507. return NULL;
  4508. }
  4509. ////////////////////////////////////////////////////////////////////////////////
  4510. // ggml_dup
  4511. static struct ggml_tensor * ggml_dup_impl(
  4512. struct ggml_context * ctx,
  4513. struct ggml_tensor * a,
  4514. bool inplace) {
  4515. bool is_node = false;
  4516. if (!inplace && (a->grad)) {
  4517. is_node = true;
  4518. }
  4519. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4520. result->op = GGML_OP_DUP;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. return result;
  4524. }
  4525. struct ggml_tensor * ggml_dup(
  4526. struct ggml_context * ctx,
  4527. struct ggml_tensor * a) {
  4528. return ggml_dup_impl(ctx, a, false);
  4529. }
  4530. struct ggml_tensor * ggml_dup_inplace(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a) {
  4533. return ggml_dup_impl(ctx, a, true);
  4534. }
  4535. // ggml_add
  4536. static struct ggml_tensor * ggml_add_impl(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a,
  4539. struct ggml_tensor * b,
  4540. bool inplace) {
  4541. // TODO: support less-strict constraint
  4542. // GGML_ASSERT(ggml_can_repeat(b, a));
  4543. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4544. bool is_node = false;
  4545. if (!inplace && (a->grad || b->grad)) {
  4546. // TODO: support backward pass for broadcasting
  4547. GGML_ASSERT(ggml_are_same_shape(a, b));
  4548. is_node = true;
  4549. }
  4550. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4551. result->op = GGML_OP_ADD;
  4552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4553. result->src[0] = a;
  4554. result->src[1] = b;
  4555. return result;
  4556. }
  4557. struct ggml_tensor * ggml_add(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a,
  4560. struct ggml_tensor * b) {
  4561. return ggml_add_impl(ctx, a, b, false);
  4562. }
  4563. struct ggml_tensor * ggml_add_inplace(
  4564. struct ggml_context * ctx,
  4565. struct ggml_tensor * a,
  4566. struct ggml_tensor * b) {
  4567. return ggml_add_impl(ctx, a, b, true);
  4568. }
  4569. // ggml_add_cast
  4570. static struct ggml_tensor * ggml_add_cast_impl(
  4571. struct ggml_context * ctx,
  4572. struct ggml_tensor * a,
  4573. struct ggml_tensor * b,
  4574. enum ggml_type type) {
  4575. // TODO: support less-strict constraint
  4576. // GGML_ASSERT(ggml_can_repeat(b, a));
  4577. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4578. GGML_ASSERT(ggml_is_quantized(a->type)); // currently only supported for quantized input
  4579. bool is_node = false;
  4580. if (a->grad || b->grad) {
  4581. // TODO: support backward pass for broadcasting
  4582. GGML_ASSERT(ggml_are_same_shape(a, b));
  4583. is_node = true;
  4584. }
  4585. struct ggml_tensor * result = ggml_new_tensor(ctx, type, a->n_dims, a->ne);
  4586. result->op = GGML_OP_ADD;
  4587. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne) : NULL;
  4588. result->src[0] = a;
  4589. result->src[1] = b;
  4590. return result;
  4591. }
  4592. struct ggml_tensor * ggml_add_cast(
  4593. struct ggml_context * ctx,
  4594. struct ggml_tensor * a,
  4595. struct ggml_tensor * b,
  4596. enum ggml_type type) {
  4597. return ggml_add_cast_impl(ctx, a, b, type);
  4598. }
  4599. // ggml_add1
  4600. static struct ggml_tensor * ggml_add1_impl(
  4601. struct ggml_context * ctx,
  4602. struct ggml_tensor * a,
  4603. struct ggml_tensor * b,
  4604. bool inplace) {
  4605. GGML_ASSERT(ggml_is_scalar(b));
  4606. GGML_ASSERT(ggml_is_padded_1d(a));
  4607. bool is_node = false;
  4608. if (a->grad || b->grad) {
  4609. is_node = true;
  4610. }
  4611. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4612. result->op = GGML_OP_ADD1;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src[0] = a;
  4615. result->src[1] = b;
  4616. return result;
  4617. }
  4618. struct ggml_tensor * ggml_add1(
  4619. struct ggml_context * ctx,
  4620. struct ggml_tensor * a,
  4621. struct ggml_tensor * b) {
  4622. return ggml_add1_impl(ctx, a, b, false);
  4623. }
  4624. struct ggml_tensor * ggml_add1_inplace(
  4625. struct ggml_context * ctx,
  4626. struct ggml_tensor * a,
  4627. struct ggml_tensor * b) {
  4628. return ggml_add1_impl(ctx, a, b, true);
  4629. }
  4630. // ggml_acc
  4631. static struct ggml_tensor * ggml_acc_impl(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a,
  4634. struct ggml_tensor * b,
  4635. size_t nb1,
  4636. size_t nb2,
  4637. size_t nb3,
  4638. size_t offset,
  4639. bool inplace) {
  4640. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4641. GGML_ASSERT(ggml_is_contiguous(a));
  4642. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4643. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4644. bool is_node = false;
  4645. if (!inplace && (a->grad || b->grad)) {
  4646. is_node = true;
  4647. }
  4648. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4649. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4650. ggml_set_op_params(result, params, sizeof(params));
  4651. result->op = GGML_OP_ACC;
  4652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4653. result->src[0] = a;
  4654. result->src[1] = b;
  4655. return result;
  4656. }
  4657. struct ggml_tensor * ggml_acc(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. struct ggml_tensor * b,
  4661. size_t nb1,
  4662. size_t nb2,
  4663. size_t nb3,
  4664. size_t offset) {
  4665. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4666. }
  4667. struct ggml_tensor * ggml_acc_inplace(
  4668. struct ggml_context * ctx,
  4669. struct ggml_tensor * a,
  4670. struct ggml_tensor * b,
  4671. size_t nb1,
  4672. size_t nb2,
  4673. size_t nb3,
  4674. size_t offset) {
  4675. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4676. }
  4677. // ggml_sub
  4678. static struct ggml_tensor * ggml_sub_impl(
  4679. struct ggml_context * ctx,
  4680. struct ggml_tensor * a,
  4681. struct ggml_tensor * b,
  4682. bool inplace) {
  4683. GGML_ASSERT(ggml_are_same_shape(a, b));
  4684. bool is_node = false;
  4685. if (!inplace && (a->grad || b->grad)) {
  4686. is_node = true;
  4687. }
  4688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4689. result->op = GGML_OP_SUB;
  4690. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4691. result->src[0] = a;
  4692. result->src[1] = b;
  4693. return result;
  4694. }
  4695. struct ggml_tensor * ggml_sub(
  4696. struct ggml_context * ctx,
  4697. struct ggml_tensor * a,
  4698. struct ggml_tensor * b) {
  4699. return ggml_sub_impl(ctx, a, b, false);
  4700. }
  4701. struct ggml_tensor * ggml_sub_inplace(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a,
  4704. struct ggml_tensor * b) {
  4705. return ggml_sub_impl(ctx, a, b, true);
  4706. }
  4707. // ggml_mul
  4708. static struct ggml_tensor * ggml_mul_impl(
  4709. struct ggml_context * ctx,
  4710. struct ggml_tensor * a,
  4711. struct ggml_tensor * b,
  4712. bool inplace) {
  4713. // TODO: support less-strict constraint
  4714. // GGML_ASSERT(ggml_can_repeat(b, a));
  4715. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4716. bool is_node = false;
  4717. if (!inplace && (a->grad || b->grad)) {
  4718. // TODO: support backward pass for broadcasting
  4719. GGML_ASSERT(ggml_are_same_shape(a, b));
  4720. is_node = true;
  4721. }
  4722. if (inplace) {
  4723. GGML_ASSERT(!is_node);
  4724. }
  4725. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4726. result->op = GGML_OP_MUL;
  4727. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4728. result->src[0] = a;
  4729. result->src[1] = b;
  4730. return result;
  4731. }
  4732. struct ggml_tensor * ggml_mul(
  4733. struct ggml_context * ctx,
  4734. struct ggml_tensor * a,
  4735. struct ggml_tensor * b) {
  4736. return ggml_mul_impl(ctx, a, b, false);
  4737. }
  4738. struct ggml_tensor * ggml_mul_inplace(
  4739. struct ggml_context * ctx,
  4740. struct ggml_tensor * a,
  4741. struct ggml_tensor * b) {
  4742. return ggml_mul_impl(ctx, a, b, true);
  4743. }
  4744. // ggml_div
  4745. static struct ggml_tensor * ggml_div_impl(
  4746. struct ggml_context * ctx,
  4747. struct ggml_tensor * a,
  4748. struct ggml_tensor * b,
  4749. bool inplace) {
  4750. GGML_ASSERT(ggml_are_same_shape(a, b));
  4751. bool is_node = false;
  4752. if (!inplace && (a->grad || b->grad)) {
  4753. is_node = true;
  4754. }
  4755. if (inplace) {
  4756. GGML_ASSERT(!is_node);
  4757. }
  4758. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4759. result->op = GGML_OP_DIV;
  4760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4761. result->src[0] = a;
  4762. result->src[1] = b;
  4763. return result;
  4764. }
  4765. struct ggml_tensor * ggml_div(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a,
  4768. struct ggml_tensor * b) {
  4769. return ggml_div_impl(ctx, a, b, false);
  4770. }
  4771. struct ggml_tensor * ggml_div_inplace(
  4772. struct ggml_context * ctx,
  4773. struct ggml_tensor * a,
  4774. struct ggml_tensor * b) {
  4775. return ggml_div_impl(ctx, a, b, true);
  4776. }
  4777. // ggml_sqr
  4778. static struct ggml_tensor * ggml_sqr_impl(
  4779. struct ggml_context * ctx,
  4780. struct ggml_tensor * a,
  4781. bool inplace) {
  4782. bool is_node = false;
  4783. if (!inplace && (a->grad)) {
  4784. is_node = true;
  4785. }
  4786. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4787. result->op = GGML_OP_SQR;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. return result;
  4791. }
  4792. struct ggml_tensor * ggml_sqr(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * a) {
  4795. return ggml_sqr_impl(ctx, a, false);
  4796. }
  4797. struct ggml_tensor * ggml_sqr_inplace(
  4798. struct ggml_context * ctx,
  4799. struct ggml_tensor * a) {
  4800. return ggml_sqr_impl(ctx, a, true);
  4801. }
  4802. // ggml_sqrt
  4803. static struct ggml_tensor * ggml_sqrt_impl(
  4804. struct ggml_context * ctx,
  4805. struct ggml_tensor * a,
  4806. bool inplace) {
  4807. bool is_node = false;
  4808. if (!inplace && (a->grad)) {
  4809. is_node = true;
  4810. }
  4811. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4812. result->op = GGML_OP_SQRT;
  4813. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4814. result->src[0] = a;
  4815. return result;
  4816. }
  4817. struct ggml_tensor * ggml_sqrt(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a) {
  4820. return ggml_sqrt_impl(ctx, a, false);
  4821. }
  4822. struct ggml_tensor * ggml_sqrt_inplace(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a) {
  4825. return ggml_sqrt_impl(ctx, a, true);
  4826. }
  4827. // ggml_log
  4828. static struct ggml_tensor * ggml_log_impl(
  4829. struct ggml_context * ctx,
  4830. struct ggml_tensor * a,
  4831. bool inplace) {
  4832. bool is_node = false;
  4833. if (!inplace && (a->grad)) {
  4834. is_node = true;
  4835. }
  4836. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4837. result->op = GGML_OP_LOG;
  4838. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4839. result->src[0] = a;
  4840. return result;
  4841. }
  4842. struct ggml_tensor * ggml_log(
  4843. struct ggml_context * ctx,
  4844. struct ggml_tensor * a) {
  4845. return ggml_log_impl(ctx, a, false);
  4846. }
  4847. struct ggml_tensor * ggml_log_inplace(
  4848. struct ggml_context * ctx,
  4849. struct ggml_tensor * a) {
  4850. return ggml_log_impl(ctx, a, true);
  4851. }
  4852. // ggml_sum
  4853. struct ggml_tensor * ggml_sum(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a) {
  4856. bool is_node = false;
  4857. if (a->grad) {
  4858. is_node = true;
  4859. }
  4860. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4861. result->op = GGML_OP_SUM;
  4862. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4863. result->src[0] = a;
  4864. return result;
  4865. }
  4866. // ggml_sum_rows
  4867. struct ggml_tensor * ggml_sum_rows(
  4868. struct ggml_context * ctx,
  4869. struct ggml_tensor * a) {
  4870. bool is_node = false;
  4871. if (a->grad) {
  4872. is_node = true;
  4873. }
  4874. int64_t ne[4] = {1,1,1,1};
  4875. for (int i=1; i<a->n_dims; ++i) {
  4876. ne[i] = a->ne[i];
  4877. }
  4878. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4879. result->op = GGML_OP_SUM_ROWS;
  4880. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4881. result->src[0] = a;
  4882. return result;
  4883. }
  4884. // ggml_mean
  4885. struct ggml_tensor * ggml_mean(
  4886. struct ggml_context * ctx,
  4887. struct ggml_tensor * a) {
  4888. bool is_node = false;
  4889. if (a->grad) {
  4890. GGML_ASSERT(false); // TODO: implement
  4891. is_node = true;
  4892. }
  4893. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4894. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4895. result->op = GGML_OP_MEAN;
  4896. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4897. result->src[0] = a;
  4898. return result;
  4899. }
  4900. // ggml_argmax
  4901. struct ggml_tensor * ggml_argmax(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * a) {
  4904. GGML_ASSERT(ggml_is_matrix(a));
  4905. bool is_node = false;
  4906. if (a->grad) {
  4907. GGML_ASSERT(false);
  4908. is_node = true;
  4909. }
  4910. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4911. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4912. result->op = GGML_OP_ARGMAX;
  4913. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4914. result->src[0] = a;
  4915. return result;
  4916. }
  4917. // ggml_repeat
  4918. struct ggml_tensor * ggml_repeat(
  4919. struct ggml_context * ctx,
  4920. struct ggml_tensor * a,
  4921. struct ggml_tensor * b) {
  4922. GGML_ASSERT(ggml_can_repeat(a, b));
  4923. bool is_node = false;
  4924. if (a->grad) {
  4925. is_node = true;
  4926. }
  4927. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4928. result->op = GGML_OP_REPEAT;
  4929. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4930. result->src[0] = a;
  4931. return result;
  4932. }
  4933. // ggml_repeat_back
  4934. struct ggml_tensor * ggml_repeat_back(
  4935. struct ggml_context * ctx,
  4936. struct ggml_tensor * a,
  4937. struct ggml_tensor * b) {
  4938. GGML_ASSERT(ggml_can_repeat(b, a));
  4939. bool is_node = false;
  4940. if (a->grad) {
  4941. is_node = true;
  4942. }
  4943. if (ggml_are_same_shape(a, b) && !is_node) {
  4944. return a;
  4945. }
  4946. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4947. result->op = GGML_OP_REPEAT_BACK;
  4948. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4949. result->src[0] = a;
  4950. return result;
  4951. }
  4952. // ggml_concat
  4953. struct ggml_tensor * ggml_concat(
  4954. struct ggml_context* ctx,
  4955. struct ggml_tensor* a,
  4956. struct ggml_tensor* b) {
  4957. GGML_ASSERT(a->ne[0] == b->ne[0] && a->ne[1] == b->ne[1] && a->ne[3] == b->ne[3]);
  4958. bool is_node = false;
  4959. if (a->grad || b->grad) {
  4960. is_node = true;
  4961. }
  4962. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, a->ne[0], a->ne[1], a->ne[2] + b->ne[2], a->ne[3]);
  4963. result->op = GGML_OP_CONCAT;
  4964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4965. result->src[0] = a;
  4966. result->src[1] = b;
  4967. return result;
  4968. }
  4969. // ggml_abs
  4970. struct ggml_tensor * ggml_abs(
  4971. struct ggml_context * ctx,
  4972. struct ggml_tensor * a) {
  4973. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4974. }
  4975. struct ggml_tensor * ggml_abs_inplace(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a) {
  4978. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4979. }
  4980. // ggml_sgn
  4981. struct ggml_tensor * ggml_sgn(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a) {
  4984. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4985. }
  4986. struct ggml_tensor * ggml_sgn_inplace(
  4987. struct ggml_context * ctx,
  4988. struct ggml_tensor * a) {
  4989. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4990. }
  4991. // ggml_neg
  4992. struct ggml_tensor * ggml_neg(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a) {
  4995. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4996. }
  4997. struct ggml_tensor * ggml_neg_inplace(
  4998. struct ggml_context * ctx,
  4999. struct ggml_tensor * a) {
  5000. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  5001. }
  5002. // ggml_step
  5003. struct ggml_tensor * ggml_step(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a) {
  5006. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  5007. }
  5008. struct ggml_tensor * ggml_step_inplace(
  5009. struct ggml_context * ctx,
  5010. struct ggml_tensor * a) {
  5011. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  5012. }
  5013. // ggml_tanh
  5014. struct ggml_tensor * ggml_tanh(
  5015. struct ggml_context * ctx,
  5016. struct ggml_tensor * a) {
  5017. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  5018. }
  5019. struct ggml_tensor * ggml_tanh_inplace(
  5020. struct ggml_context * ctx,
  5021. struct ggml_tensor * a) {
  5022. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  5023. }
  5024. // ggml_elu
  5025. struct ggml_tensor * ggml_elu(
  5026. struct ggml_context * ctx,
  5027. struct ggml_tensor * a) {
  5028. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  5029. }
  5030. struct ggml_tensor * ggml_elu_inplace(
  5031. struct ggml_context * ctx,
  5032. struct ggml_tensor * a) {
  5033. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  5034. }
  5035. // ggml_relu
  5036. struct ggml_tensor * ggml_relu(
  5037. struct ggml_context * ctx,
  5038. struct ggml_tensor * a) {
  5039. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  5040. }
  5041. struct ggml_tensor * ggml_relu_inplace(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * a) {
  5044. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  5045. }
  5046. // ggml_gelu
  5047. struct ggml_tensor * ggml_gelu(
  5048. struct ggml_context * ctx,
  5049. struct ggml_tensor * a) {
  5050. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  5051. }
  5052. struct ggml_tensor * ggml_gelu_inplace(
  5053. struct ggml_context * ctx,
  5054. struct ggml_tensor * a) {
  5055. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  5056. }
  5057. // ggml_gelu_quick
  5058. struct ggml_tensor * ggml_gelu_quick(
  5059. struct ggml_context * ctx,
  5060. struct ggml_tensor * a) {
  5061. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  5062. }
  5063. struct ggml_tensor * ggml_gelu_quick_inplace(
  5064. struct ggml_context * ctx,
  5065. struct ggml_tensor * a) {
  5066. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  5067. }
  5068. // ggml_silu
  5069. struct ggml_tensor * ggml_silu(
  5070. struct ggml_context * ctx,
  5071. struct ggml_tensor * a) {
  5072. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  5073. }
  5074. struct ggml_tensor * ggml_silu_inplace(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a) {
  5077. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  5078. }
  5079. // ggml_silu_back
  5080. struct ggml_tensor * ggml_silu_back(
  5081. struct ggml_context * ctx,
  5082. struct ggml_tensor * a,
  5083. struct ggml_tensor * b) {
  5084. bool is_node = false;
  5085. if (a->grad || b->grad) {
  5086. // TODO: implement backward
  5087. is_node = true;
  5088. }
  5089. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5090. result->op = GGML_OP_SILU_BACK;
  5091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5092. result->src[0] = a;
  5093. result->src[1] = b;
  5094. return result;
  5095. }
  5096. // ggml_norm
  5097. static struct ggml_tensor * ggml_norm_impl(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. float eps,
  5101. bool inplace) {
  5102. bool is_node = false;
  5103. if (!inplace && (a->grad)) {
  5104. GGML_ASSERT(false); // TODO: implement backward
  5105. is_node = true;
  5106. }
  5107. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5108. ggml_set_op_params(result, &eps, sizeof(eps));
  5109. result->op = GGML_OP_NORM;
  5110. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5111. result->src[0] = a;
  5112. return result;
  5113. }
  5114. struct ggml_tensor * ggml_norm(
  5115. struct ggml_context * ctx,
  5116. struct ggml_tensor * a,
  5117. float eps) {
  5118. return ggml_norm_impl(ctx, a, eps, false);
  5119. }
  5120. struct ggml_tensor * ggml_norm_inplace(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a,
  5123. float eps) {
  5124. return ggml_norm_impl(ctx, a, eps, true);
  5125. }
  5126. // ggml_rms_norm
  5127. static struct ggml_tensor * ggml_rms_norm_impl(
  5128. struct ggml_context * ctx,
  5129. struct ggml_tensor * a,
  5130. float eps,
  5131. bool inplace) {
  5132. bool is_node = false;
  5133. if (!inplace && (a->grad)) {
  5134. is_node = true;
  5135. }
  5136. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5137. ggml_set_op_params(result, &eps, sizeof(eps));
  5138. result->op = GGML_OP_RMS_NORM;
  5139. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5140. result->src[0] = a;
  5141. return result;
  5142. }
  5143. struct ggml_tensor * ggml_rms_norm(
  5144. struct ggml_context * ctx,
  5145. struct ggml_tensor * a,
  5146. float eps) {
  5147. return ggml_rms_norm_impl(ctx, a, eps, false);
  5148. }
  5149. struct ggml_tensor * ggml_rms_norm_inplace(
  5150. struct ggml_context * ctx,
  5151. struct ggml_tensor * a,
  5152. float eps) {
  5153. return ggml_rms_norm_impl(ctx, a, eps, true);
  5154. }
  5155. // ggml_rms_norm_back
  5156. struct ggml_tensor * ggml_rms_norm_back(
  5157. struct ggml_context * ctx,
  5158. struct ggml_tensor * a,
  5159. struct ggml_tensor * b,
  5160. float eps) {
  5161. bool is_node = false;
  5162. if (a->grad) {
  5163. // TODO: implement backward
  5164. is_node = true;
  5165. }
  5166. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5167. ggml_set_op_params(result, &eps, sizeof(eps));
  5168. result->op = GGML_OP_RMS_NORM_BACK;
  5169. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5170. result->src[0] = a;
  5171. result->src[1] = b;
  5172. return result;
  5173. }
  5174. // ggml_group_norm
  5175. static struct ggml_tensor * ggml_group_norm_impl(
  5176. struct ggml_context * ctx,
  5177. struct ggml_tensor * a,
  5178. int n_groups,
  5179. bool inplace) {
  5180. bool is_node = false;
  5181. if (!inplace && (a->grad)) {
  5182. GGML_ASSERT(false); // TODO: implement backward
  5183. is_node = true;
  5184. }
  5185. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5186. result->op = GGML_OP_GROUP_NORM;
  5187. result->op_params[0] = n_groups;
  5188. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5189. result->src[0] = a;
  5190. result->src[1] = NULL; // TODO: maybe store epsilon here?
  5191. return result;
  5192. }
  5193. struct ggml_tensor * ggml_group_norm(
  5194. struct ggml_context * ctx,
  5195. struct ggml_tensor * a,
  5196. int n_groups) {
  5197. return ggml_group_norm_impl(ctx, a, n_groups, false);
  5198. }
  5199. struct ggml_tensor * ggml_group_norm_inplace(
  5200. struct ggml_context * ctx,
  5201. struct ggml_tensor * a,
  5202. int n_groups) {
  5203. return ggml_group_norm_impl(ctx, a, n_groups, true);
  5204. }
  5205. // ggml_mul_mat
  5206. struct ggml_tensor * ggml_mul_mat(
  5207. struct ggml_context * ctx,
  5208. struct ggml_tensor * a,
  5209. struct ggml_tensor * b) {
  5210. GGML_ASSERT(ggml_can_mul_mat(a, b));
  5211. GGML_ASSERT(!ggml_is_transposed(a));
  5212. bool is_node = false;
  5213. if (a->grad || b->grad) {
  5214. is_node = true;
  5215. }
  5216. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  5217. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  5218. result->op = GGML_OP_MUL_MAT;
  5219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5220. result->src[0] = a;
  5221. result->src[1] = b;
  5222. return result;
  5223. }
  5224. // ggml_out_prod
  5225. struct ggml_tensor * ggml_out_prod(
  5226. struct ggml_context * ctx,
  5227. struct ggml_tensor * a,
  5228. struct ggml_tensor * b) {
  5229. GGML_ASSERT(ggml_can_out_prod(a, b));
  5230. GGML_ASSERT(!ggml_is_transposed(a));
  5231. bool is_node = false;
  5232. if (a->grad || b->grad) {
  5233. is_node = true;
  5234. }
  5235. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  5236. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  5237. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MAX(a->n_dims, b->n_dims), ne);
  5238. result->op = GGML_OP_OUT_PROD;
  5239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5240. result->src[0] = a;
  5241. result->src[1] = b;
  5242. return result;
  5243. }
  5244. // ggml_scale
  5245. static struct ggml_tensor * ggml_scale_impl(
  5246. struct ggml_context * ctx,
  5247. struct ggml_tensor * a,
  5248. struct ggml_tensor * b,
  5249. bool inplace) {
  5250. GGML_ASSERT(ggml_is_scalar(b));
  5251. GGML_ASSERT(ggml_is_padded_1d(a));
  5252. bool is_node = false;
  5253. if (a->grad || b->grad) {
  5254. is_node = true;
  5255. }
  5256. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5257. result->op = GGML_OP_SCALE;
  5258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5259. result->src[0] = a;
  5260. result->src[1] = b;
  5261. return result;
  5262. }
  5263. struct ggml_tensor * ggml_scale(
  5264. struct ggml_context * ctx,
  5265. struct ggml_tensor * a,
  5266. struct ggml_tensor * b) {
  5267. return ggml_scale_impl(ctx, a, b, false);
  5268. }
  5269. struct ggml_tensor * ggml_scale_inplace(
  5270. struct ggml_context * ctx,
  5271. struct ggml_tensor * a,
  5272. struct ggml_tensor * b) {
  5273. return ggml_scale_impl(ctx, a, b, true);
  5274. }
  5275. // ggml_set
  5276. static struct ggml_tensor * ggml_set_impl(
  5277. struct ggml_context * ctx,
  5278. struct ggml_tensor * a,
  5279. struct ggml_tensor * b,
  5280. size_t nb1,
  5281. size_t nb2,
  5282. size_t nb3,
  5283. size_t offset,
  5284. bool inplace) {
  5285. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  5286. bool is_node = false;
  5287. if (a->grad || b->grad) {
  5288. is_node = true;
  5289. }
  5290. // make a view of the destination
  5291. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5292. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  5293. ggml_set_op_params(result, params, sizeof(params));
  5294. result->op = GGML_OP_SET;
  5295. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5296. result->src[0] = a;
  5297. result->src[1] = b;
  5298. return result;
  5299. }
  5300. struct ggml_tensor * ggml_set(
  5301. struct ggml_context * ctx,
  5302. struct ggml_tensor * a,
  5303. struct ggml_tensor * b,
  5304. size_t nb1,
  5305. size_t nb2,
  5306. size_t nb3,
  5307. size_t offset) {
  5308. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  5309. }
  5310. struct ggml_tensor * ggml_set_inplace(
  5311. struct ggml_context * ctx,
  5312. struct ggml_tensor * a,
  5313. struct ggml_tensor * b,
  5314. size_t nb1,
  5315. size_t nb2,
  5316. size_t nb3,
  5317. size_t offset) {
  5318. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  5319. }
  5320. struct ggml_tensor * ggml_set_1d(
  5321. struct ggml_context * ctx,
  5322. struct ggml_tensor * a,
  5323. struct ggml_tensor * b,
  5324. size_t offset) {
  5325. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  5326. }
  5327. struct ggml_tensor * ggml_set_1d_inplace(
  5328. struct ggml_context * ctx,
  5329. struct ggml_tensor * a,
  5330. struct ggml_tensor * b,
  5331. size_t offset) {
  5332. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  5333. }
  5334. struct ggml_tensor * ggml_set_2d(
  5335. struct ggml_context * ctx,
  5336. struct ggml_tensor * a,
  5337. struct ggml_tensor * b,
  5338. size_t nb1,
  5339. size_t offset) {
  5340. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5341. }
  5342. struct ggml_tensor * ggml_set_2d_inplace(
  5343. struct ggml_context * ctx,
  5344. struct ggml_tensor * a,
  5345. struct ggml_tensor * b,
  5346. size_t nb1,
  5347. size_t offset) {
  5348. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5349. }
  5350. // ggml_cpy
  5351. static struct ggml_tensor * ggml_cpy_impl(
  5352. struct ggml_context * ctx,
  5353. struct ggml_tensor * a,
  5354. struct ggml_tensor * b,
  5355. bool inplace) {
  5356. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5357. bool is_node = false;
  5358. if (!inplace && (a->grad || b->grad)) {
  5359. is_node = true;
  5360. }
  5361. // make a view of the destination
  5362. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5363. if (strlen(b->name) > 0) {
  5364. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5365. } else {
  5366. ggml_format_name(result, "%s (copy)", a->name);
  5367. }
  5368. result->op = GGML_OP_CPY;
  5369. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5370. result->src[0] = a;
  5371. result->src[1] = b;
  5372. return result;
  5373. }
  5374. struct ggml_tensor * ggml_cpy(
  5375. struct ggml_context * ctx,
  5376. struct ggml_tensor * a,
  5377. struct ggml_tensor * b) {
  5378. return ggml_cpy_impl(ctx, a, b, false);
  5379. }
  5380. struct ggml_tensor * ggml_cpy_inplace(
  5381. struct ggml_context * ctx,
  5382. struct ggml_tensor * a,
  5383. struct ggml_tensor * b) {
  5384. return ggml_cpy_impl(ctx, a, b, true);
  5385. }
  5386. // ggml_cont
  5387. static struct ggml_tensor * ggml_cont_impl(
  5388. struct ggml_context * ctx,
  5389. struct ggml_tensor * a,
  5390. bool inplace) {
  5391. bool is_node = false;
  5392. if (!inplace && a->grad) {
  5393. is_node = true;
  5394. }
  5395. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5396. ggml_format_name(result, "%s (cont)", a->name);
  5397. result->op = GGML_OP_CONT;
  5398. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5399. result->src[0] = a;
  5400. return result;
  5401. }
  5402. struct ggml_tensor * ggml_cont(
  5403. struct ggml_context * ctx,
  5404. struct ggml_tensor * a) {
  5405. return ggml_cont_impl(ctx, a, false);
  5406. }
  5407. struct ggml_tensor * ggml_cont_inplace(
  5408. struct ggml_context * ctx,
  5409. struct ggml_tensor * a) {
  5410. return ggml_cont_impl(ctx, a, true);
  5411. }
  5412. // make contiguous, with new shape
  5413. GGML_API struct ggml_tensor * ggml_cont_1d(
  5414. struct ggml_context * ctx,
  5415. struct ggml_tensor * a,
  5416. int64_t ne0) {
  5417. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  5418. }
  5419. GGML_API struct ggml_tensor * ggml_cont_2d(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. int64_t ne0,
  5423. int64_t ne1) {
  5424. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  5425. }
  5426. GGML_API struct ggml_tensor * ggml_cont_3d(
  5427. struct ggml_context * ctx,
  5428. struct ggml_tensor * a,
  5429. int64_t ne0,
  5430. int64_t ne1,
  5431. int64_t ne2) {
  5432. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  5433. }
  5434. struct ggml_tensor * ggml_cont_4d(
  5435. struct ggml_context * ctx,
  5436. struct ggml_tensor * a,
  5437. int64_t ne0,
  5438. int64_t ne1,
  5439. int64_t ne2,
  5440. int64_t ne3) {
  5441. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  5442. bool is_node = false;
  5443. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  5444. ggml_format_name(result, "%s (cont)", a->name);
  5445. result->op = GGML_OP_CONT;
  5446. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5447. result->src[0] = a;
  5448. return result;
  5449. }
  5450. // ggml_reshape
  5451. struct ggml_tensor * ggml_reshape(
  5452. struct ggml_context * ctx,
  5453. struct ggml_tensor * a,
  5454. struct ggml_tensor * b) {
  5455. GGML_ASSERT(ggml_is_contiguous(a));
  5456. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  5457. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5458. bool is_node = false;
  5459. if (a->grad) {
  5460. is_node = true;
  5461. }
  5462. if (b->grad) {
  5463. // gradient propagation is not supported
  5464. //GGML_ASSERT(false);
  5465. }
  5466. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a, 0);
  5467. ggml_format_name(result, "%s (reshaped)", a->name);
  5468. result->op = GGML_OP_RESHAPE;
  5469. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5470. result->src[0] = a;
  5471. return result;
  5472. }
  5473. struct ggml_tensor * ggml_reshape_1d(
  5474. struct ggml_context * ctx,
  5475. struct ggml_tensor * a,
  5476. int64_t ne0) {
  5477. GGML_ASSERT(ggml_is_contiguous(a));
  5478. GGML_ASSERT(ggml_nelements(a) == ne0);
  5479. bool is_node = false;
  5480. if (a->grad) {
  5481. is_node = true;
  5482. }
  5483. const int64_t ne[1] = { ne0 };
  5484. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  5485. ggml_format_name(result, "%s (reshaped)", a->name);
  5486. result->op = GGML_OP_RESHAPE;
  5487. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5488. result->src[0] = a;
  5489. return result;
  5490. }
  5491. struct ggml_tensor * ggml_reshape_2d(
  5492. struct ggml_context * ctx,
  5493. struct ggml_tensor * a,
  5494. int64_t ne0,
  5495. int64_t ne1) {
  5496. GGML_ASSERT(ggml_is_contiguous(a));
  5497. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5498. bool is_node = false;
  5499. if (a->grad) {
  5500. is_node = true;
  5501. }
  5502. const int64_t ne[2] = { ne0, ne1 };
  5503. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  5504. ggml_format_name(result, "%s (reshaped)", a->name);
  5505. result->op = GGML_OP_RESHAPE;
  5506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5507. result->src[0] = a;
  5508. return result;
  5509. }
  5510. struct ggml_tensor * ggml_reshape_3d(
  5511. struct ggml_context * ctx,
  5512. struct ggml_tensor * a,
  5513. int64_t ne0,
  5514. int64_t ne1,
  5515. int64_t ne2) {
  5516. GGML_ASSERT(ggml_is_contiguous(a));
  5517. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5518. bool is_node = false;
  5519. if (a->grad) {
  5520. is_node = true;
  5521. }
  5522. const int64_t ne[3] = { ne0, ne1, ne2 };
  5523. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  5524. ggml_format_name(result, "%s (reshaped)", a->name);
  5525. result->op = GGML_OP_RESHAPE;
  5526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5527. result->src[0] = a;
  5528. return result;
  5529. }
  5530. struct ggml_tensor * ggml_reshape_4d(
  5531. struct ggml_context * ctx,
  5532. struct ggml_tensor * a,
  5533. int64_t ne0,
  5534. int64_t ne1,
  5535. int64_t ne2,
  5536. int64_t ne3) {
  5537. GGML_ASSERT(ggml_is_contiguous(a));
  5538. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5539. bool is_node = false;
  5540. if (a->grad) {
  5541. is_node = true;
  5542. }
  5543. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5544. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  5545. ggml_format_name(result, "%s (reshaped)", a->name);
  5546. result->op = GGML_OP_RESHAPE;
  5547. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5548. result->src[0] = a;
  5549. return result;
  5550. }
  5551. static struct ggml_tensor * ggml_view_impl(
  5552. struct ggml_context * ctx,
  5553. struct ggml_tensor * a,
  5554. int n_dims,
  5555. const int64_t * ne,
  5556. size_t offset) {
  5557. bool is_node = false;
  5558. if (a->grad) {
  5559. is_node = true;
  5560. }
  5561. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  5562. ggml_format_name(result, "%s (view)", a->name);
  5563. ggml_set_op_params(result, &offset, sizeof(offset));
  5564. result->op = GGML_OP_VIEW;
  5565. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5566. result->src[0] = a;
  5567. return result;
  5568. }
  5569. // ggml_view_1d
  5570. struct ggml_tensor * ggml_view_1d(
  5571. struct ggml_context * ctx,
  5572. struct ggml_tensor * a,
  5573. int64_t ne0,
  5574. size_t offset) {
  5575. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  5576. return result;
  5577. }
  5578. // ggml_view_2d
  5579. struct ggml_tensor * ggml_view_2d(
  5580. struct ggml_context * ctx,
  5581. struct ggml_tensor * a,
  5582. int64_t ne0,
  5583. int64_t ne1,
  5584. size_t nb1,
  5585. size_t offset) {
  5586. const int64_t ne[2] = { ne0, ne1 };
  5587. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  5588. result->nb[1] = nb1;
  5589. result->nb[2] = result->nb[1]*ne1;
  5590. result->nb[3] = result->nb[2];
  5591. return result;
  5592. }
  5593. // ggml_view_3d
  5594. struct ggml_tensor * ggml_view_3d(
  5595. struct ggml_context * ctx,
  5596. struct ggml_tensor * a,
  5597. int64_t ne0,
  5598. int64_t ne1,
  5599. int64_t ne2,
  5600. size_t nb1,
  5601. size_t nb2,
  5602. size_t offset) {
  5603. const int64_t ne[3] = { ne0, ne1, ne2 };
  5604. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5605. result->nb[1] = nb1;
  5606. result->nb[2] = nb2;
  5607. result->nb[3] = result->nb[2]*ne2;
  5608. return result;
  5609. }
  5610. // ggml_view_4d
  5611. struct ggml_tensor * ggml_view_4d(
  5612. struct ggml_context * ctx,
  5613. struct ggml_tensor * a,
  5614. int64_t ne0,
  5615. int64_t ne1,
  5616. int64_t ne2,
  5617. int64_t ne3,
  5618. size_t nb1,
  5619. size_t nb2,
  5620. size_t nb3,
  5621. size_t offset) {
  5622. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5623. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5624. result->nb[1] = nb1;
  5625. result->nb[2] = nb2;
  5626. result->nb[3] = nb3;
  5627. return result;
  5628. }
  5629. // ggml_permute
  5630. struct ggml_tensor * ggml_permute(
  5631. struct ggml_context * ctx,
  5632. struct ggml_tensor * a,
  5633. int axis0,
  5634. int axis1,
  5635. int axis2,
  5636. int axis3) {
  5637. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5638. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5639. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5640. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5641. GGML_ASSERT(axis0 != axis1);
  5642. GGML_ASSERT(axis0 != axis2);
  5643. GGML_ASSERT(axis0 != axis3);
  5644. GGML_ASSERT(axis1 != axis2);
  5645. GGML_ASSERT(axis1 != axis3);
  5646. GGML_ASSERT(axis2 != axis3);
  5647. bool is_node = false;
  5648. if (a->grad) {
  5649. is_node = true;
  5650. }
  5651. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5652. ggml_format_name(result, "%s (permuted)", a->name);
  5653. int ne[GGML_MAX_DIMS];
  5654. int nb[GGML_MAX_DIMS];
  5655. ne[axis0] = a->ne[0];
  5656. ne[axis1] = a->ne[1];
  5657. ne[axis2] = a->ne[2];
  5658. ne[axis3] = a->ne[3];
  5659. nb[axis0] = a->nb[0];
  5660. nb[axis1] = a->nb[1];
  5661. nb[axis2] = a->nb[2];
  5662. nb[axis3] = a->nb[3];
  5663. result->ne[0] = ne[0];
  5664. result->ne[1] = ne[1];
  5665. result->ne[2] = ne[2];
  5666. result->ne[3] = ne[3];
  5667. result->nb[0] = nb[0];
  5668. result->nb[1] = nb[1];
  5669. result->nb[2] = nb[2];
  5670. result->nb[3] = nb[3];
  5671. result->op = GGML_OP_PERMUTE;
  5672. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5673. result->src[0] = a;
  5674. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5675. ggml_set_op_params(result, params, sizeof(params));
  5676. return result;
  5677. }
  5678. // ggml_transpose
  5679. struct ggml_tensor * ggml_transpose(
  5680. struct ggml_context * ctx,
  5681. struct ggml_tensor * a) {
  5682. bool is_node = false;
  5683. if (a->grad) {
  5684. is_node = true;
  5685. }
  5686. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5687. ggml_format_name(result, "%s (transposed)", a->name);
  5688. result->ne[0] = a->ne[1];
  5689. result->ne[1] = a->ne[0];
  5690. result->nb[0] = a->nb[1];
  5691. result->nb[1] = a->nb[0];
  5692. result->op = GGML_OP_TRANSPOSE;
  5693. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5694. result->src[0] = a;
  5695. return result;
  5696. }
  5697. // ggml_get_rows
  5698. struct ggml_tensor * ggml_get_rows(
  5699. struct ggml_context * ctx,
  5700. struct ggml_tensor * a,
  5701. struct ggml_tensor * b) {
  5702. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5703. bool is_node = false;
  5704. if (a->grad || b->grad) {
  5705. is_node = true;
  5706. }
  5707. // TODO: implement non F32 return
  5708. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5709. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5710. result->op = GGML_OP_GET_ROWS;
  5711. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5712. result->src[0] = a;
  5713. result->src[1] = b;
  5714. return result;
  5715. }
  5716. // ggml_get_rows_back
  5717. struct ggml_tensor * ggml_get_rows_back(
  5718. struct ggml_context * ctx,
  5719. struct ggml_tensor * a,
  5720. struct ggml_tensor * b,
  5721. struct ggml_tensor * c) {
  5722. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5723. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5724. bool is_node = false;
  5725. if (a->grad || b->grad) {
  5726. is_node = true;
  5727. }
  5728. // TODO: implement non F32 return
  5729. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5730. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5731. result->op = GGML_OP_GET_ROWS_BACK;
  5732. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5733. result->src[0] = a;
  5734. result->src[1] = b;
  5735. return result;
  5736. }
  5737. // ggml_diag
  5738. struct ggml_tensor * ggml_diag(
  5739. struct ggml_context * ctx,
  5740. struct ggml_tensor * a) {
  5741. GGML_ASSERT(a->ne[1] == 1);
  5742. bool is_node = false;
  5743. if (a->grad) {
  5744. is_node = true;
  5745. }
  5746. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5747. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5748. result->op = GGML_OP_DIAG;
  5749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5750. result->src[0] = a;
  5751. return result;
  5752. }
  5753. // ggml_diag_mask_inf
  5754. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5755. struct ggml_context * ctx,
  5756. struct ggml_tensor * a,
  5757. int n_past,
  5758. bool inplace) {
  5759. bool is_node = false;
  5760. if (a->grad) {
  5761. is_node = true;
  5762. }
  5763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5764. int32_t params[] = { n_past };
  5765. ggml_set_op_params(result, params, sizeof(params));
  5766. result->op = GGML_OP_DIAG_MASK_INF;
  5767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5768. result->src[0] = a;
  5769. return result;
  5770. }
  5771. struct ggml_tensor * ggml_diag_mask_inf(
  5772. struct ggml_context * ctx,
  5773. struct ggml_tensor * a,
  5774. int n_past) {
  5775. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5776. }
  5777. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5778. struct ggml_context * ctx,
  5779. struct ggml_tensor * a,
  5780. int n_past) {
  5781. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5782. }
  5783. // ggml_diag_mask_zero
  5784. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5785. struct ggml_context * ctx,
  5786. struct ggml_tensor * a,
  5787. int n_past,
  5788. bool inplace) {
  5789. bool is_node = false;
  5790. if (a->grad) {
  5791. is_node = true;
  5792. }
  5793. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5794. int32_t params[] = { n_past };
  5795. ggml_set_op_params(result, params, sizeof(params));
  5796. result->op = GGML_OP_DIAG_MASK_ZERO;
  5797. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5798. result->src[0] = a;
  5799. return result;
  5800. }
  5801. struct ggml_tensor * ggml_diag_mask_zero(
  5802. struct ggml_context * ctx,
  5803. struct ggml_tensor * a,
  5804. int n_past) {
  5805. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5806. }
  5807. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5808. struct ggml_context * ctx,
  5809. struct ggml_tensor * a,
  5810. int n_past) {
  5811. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5812. }
  5813. // ggml_soft_max
  5814. static struct ggml_tensor * ggml_soft_max_impl(
  5815. struct ggml_context * ctx,
  5816. struct ggml_tensor * a,
  5817. bool inplace) {
  5818. bool is_node = false;
  5819. if (a->grad) {
  5820. is_node = true;
  5821. }
  5822. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5823. result->op = GGML_OP_SOFT_MAX;
  5824. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5825. result->src[0] = a;
  5826. return result;
  5827. }
  5828. struct ggml_tensor * ggml_soft_max(
  5829. struct ggml_context * ctx,
  5830. struct ggml_tensor * a) {
  5831. return ggml_soft_max_impl(ctx, a, false);
  5832. }
  5833. struct ggml_tensor * ggml_soft_max_inplace(
  5834. struct ggml_context * ctx,
  5835. struct ggml_tensor * a) {
  5836. return ggml_soft_max_impl(ctx, a, true);
  5837. }
  5838. // ggml_soft_max_back
  5839. static struct ggml_tensor * ggml_soft_max_back_impl(
  5840. struct ggml_context * ctx,
  5841. struct ggml_tensor * a,
  5842. struct ggml_tensor * b,
  5843. bool inplace) {
  5844. bool is_node = false;
  5845. if (a->grad || b->grad) {
  5846. is_node = true; // TODO : implement backward pass
  5847. }
  5848. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5849. result->op = GGML_OP_SOFT_MAX_BACK;
  5850. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5851. result->src[0] = a;
  5852. result->src[1] = b;
  5853. return result;
  5854. }
  5855. struct ggml_tensor * ggml_soft_max_back(
  5856. struct ggml_context * ctx,
  5857. struct ggml_tensor * a,
  5858. struct ggml_tensor * b) {
  5859. return ggml_soft_max_back_impl(ctx, a, b, false);
  5860. }
  5861. struct ggml_tensor * ggml_soft_max_back_inplace(
  5862. struct ggml_context * ctx,
  5863. struct ggml_tensor * a,
  5864. struct ggml_tensor * b) {
  5865. return ggml_soft_max_back_impl(ctx, a, b, true);
  5866. }
  5867. // ggml_rope
  5868. static struct ggml_tensor * ggml_rope_impl(
  5869. struct ggml_context * ctx,
  5870. struct ggml_tensor * a,
  5871. struct ggml_tensor * b,
  5872. int n_dims,
  5873. int mode,
  5874. int n_ctx,
  5875. float freq_base,
  5876. float freq_scale,
  5877. float xpos_base,
  5878. bool xpos_down,
  5879. bool inplace) {
  5880. GGML_ASSERT(ggml_is_vector(b));
  5881. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5882. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5883. bool is_node = false;
  5884. if (a->grad) {
  5885. is_node = true;
  5886. }
  5887. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5888. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5889. memcpy(params + 4, &freq_base, sizeof(float));
  5890. memcpy(params + 5, &freq_scale, sizeof(float));
  5891. memcpy(params + 6, &xpos_base, sizeof(float));
  5892. memcpy(params + 7, &xpos_down, sizeof(bool));
  5893. ggml_set_op_params(result, params, sizeof(params));
  5894. result->op = GGML_OP_ROPE;
  5895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5896. result->src[0] = a;
  5897. result->src[1] = b;
  5898. return result;
  5899. }
  5900. struct ggml_tensor * ggml_rope(
  5901. struct ggml_context * ctx,
  5902. struct ggml_tensor * a,
  5903. struct ggml_tensor * b,
  5904. int n_dims,
  5905. int mode,
  5906. int n_ctx) {
  5907. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, false);
  5908. }
  5909. struct ggml_tensor * ggml_rope_inplace(
  5910. struct ggml_context * ctx,
  5911. struct ggml_tensor * a,
  5912. struct ggml_tensor * b,
  5913. int n_dims,
  5914. int mode,
  5915. int n_ctx) {
  5916. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, 10000.0f, 1.0f, 0.0f, false, true);
  5917. }
  5918. struct ggml_tensor * ggml_rope_custom(
  5919. struct ggml_context * ctx,
  5920. struct ggml_tensor * a,
  5921. struct ggml_tensor * b,
  5922. int n_dims,
  5923. int mode,
  5924. int n_ctx,
  5925. float freq_base,
  5926. float freq_scale) {
  5927. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, false);
  5928. }
  5929. struct ggml_tensor * ggml_rope_custom_inplace(
  5930. struct ggml_context * ctx,
  5931. struct ggml_tensor * a,
  5932. struct ggml_tensor * b,
  5933. int n_dims,
  5934. int mode,
  5935. int n_ctx,
  5936. float freq_base,
  5937. float freq_scale) {
  5938. return ggml_rope_impl(ctx, a, b, n_dims, mode, n_ctx, freq_base, freq_scale, 0.0f, false, true);
  5939. }
  5940. struct ggml_tensor * ggml_rope_xpos_inplace(
  5941. struct ggml_context * ctx,
  5942. struct ggml_tensor * a,
  5943. struct ggml_tensor * b,
  5944. int n_dims,
  5945. float base,
  5946. bool down) {
  5947. return ggml_rope_impl(ctx, a, b, n_dims, 0, 0, 10000.0f, 1.0f, base, down, true);
  5948. }
  5949. // ggml_rope_back
  5950. struct ggml_tensor * ggml_rope_back(
  5951. struct ggml_context * ctx,
  5952. struct ggml_tensor * a,
  5953. struct ggml_tensor * b,
  5954. int n_dims,
  5955. int mode,
  5956. int n_ctx,
  5957. float freq_base,
  5958. float freq_scale,
  5959. float xpos_base,
  5960. bool xpos_down) {
  5961. GGML_ASSERT(ggml_is_vector(b));
  5962. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5963. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5964. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5965. bool is_node = false;
  5966. if (a->grad) {
  5967. is_node = false; // TODO: implement backward
  5968. }
  5969. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5970. int32_t params[8] = { /*n_past*/ 0, n_dims, mode, n_ctx };
  5971. memcpy(params + 4, &freq_base, sizeof(float));
  5972. memcpy(params + 5, &freq_scale, sizeof(float));
  5973. memcpy(params + 6, &xpos_base, sizeof(float));
  5974. memcpy(params + 7, &xpos_down, sizeof(bool));
  5975. ggml_set_op_params(result, params, sizeof(params));
  5976. result->op = GGML_OP_ROPE_BACK;
  5977. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5978. result->src[0] = a;
  5979. result->src[1] = b;
  5980. return result;
  5981. }
  5982. // ggml_alibi
  5983. struct ggml_tensor * ggml_alibi(
  5984. struct ggml_context * ctx,
  5985. struct ggml_tensor * a,
  5986. int n_past,
  5987. int n_head,
  5988. float bias_max) {
  5989. GGML_ASSERT(n_past >= 0);
  5990. bool is_node = false;
  5991. if (a->grad) {
  5992. GGML_ASSERT(false); // TODO: implement backward
  5993. is_node = true;
  5994. }
  5995. // TODO: when implement backward, fix this:
  5996. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5997. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5998. int32_t op_params[3] = { n_past, n_head };
  5999. memcpy(op_params + 2, &bias_max, sizeof(float));
  6000. ggml_set_op_params(result, op_params, sizeof(op_params));
  6001. result->op = GGML_OP_ALIBI;
  6002. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6003. result->src[0] = a;
  6004. return result;
  6005. }
  6006. // ggml_clamp
  6007. struct ggml_tensor * ggml_clamp(
  6008. struct ggml_context * ctx,
  6009. struct ggml_tensor * a,
  6010. float min,
  6011. float max) {
  6012. bool is_node = false;
  6013. if (a->grad) {
  6014. GGML_ASSERT(false); // TODO: implement backward
  6015. is_node = true;
  6016. }
  6017. // TODO: when implement backward, fix this:
  6018. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  6019. float params[] = { min, max };
  6020. ggml_set_op_params(result, params, sizeof(params));
  6021. result->op = GGML_OP_CLAMP;
  6022. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6023. result->src[0] = a;
  6024. return result;
  6025. }
  6026. // ggml_conv_1d
  6027. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  6028. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  6029. }
  6030. // im2col: [N, IC, IL] => [N, OL, IC*K]
  6031. // a: [OC,IC, K]
  6032. // b: [N, IC, IL]
  6033. // result: [N, OL, IC*K]
  6034. static struct ggml_tensor * ggml_conv_1d_stage_0(
  6035. struct ggml_context * ctx,
  6036. struct ggml_tensor * a,
  6037. struct ggml_tensor * b,
  6038. int s0,
  6039. int p0,
  6040. int d0) {
  6041. GGML_ASSERT(a->ne[1] == b->ne[1]);
  6042. bool is_node = false;
  6043. if (a->grad || b->grad) {
  6044. GGML_ASSERT(false); // TODO: implement backward
  6045. is_node = true;
  6046. }
  6047. const int64_t OL = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  6048. const int64_t ne[4] = {
  6049. a->ne[1] * a->ne[0],
  6050. OL,
  6051. b->ne[2],
  6052. 1,
  6053. };
  6054. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
  6055. int32_t params[] = { s0, p0, d0 };
  6056. ggml_set_op_params(result, params, sizeof(params));
  6057. result->op = GGML_OP_CONV_1D_STAGE_0;
  6058. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6059. result->src[0] = a;
  6060. result->src[1] = b;
  6061. return result;
  6062. }
  6063. // ggml_conv_1d_stage_1
  6064. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  6065. // a: [OC, IC, K]
  6066. // b: [N, OL, IC * K]
  6067. // result: [N, OC, OL]
  6068. static struct ggml_tensor * ggml_conv_1d_stage_1(
  6069. struct ggml_context * ctx,
  6070. struct ggml_tensor * a,
  6071. struct ggml_tensor * b) {
  6072. bool is_node = false;
  6073. if (a->grad || b->grad) {
  6074. GGML_ASSERT(false); // TODO: implement backward
  6075. is_node = true;
  6076. }
  6077. const int64_t ne[4] = {
  6078. b->ne[1],
  6079. a->ne[2],
  6080. b->ne[2],
  6081. 1,
  6082. };
  6083. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6084. result->op = GGML_OP_CONV_1D_STAGE_1;
  6085. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6086. result->src[0] = a;
  6087. result->src[1] = b;
  6088. return result;
  6089. }
  6090. // ggml_conv_1d
  6091. GGML_API struct ggml_tensor * ggml_conv_1d(
  6092. struct ggml_context * ctx,
  6093. struct ggml_tensor * a,
  6094. struct ggml_tensor * b,
  6095. int s0,
  6096. int p0,
  6097. int d0) {
  6098. struct ggml_tensor * result = ggml_conv_1d_stage_0(ctx, a, b, s0, p0, d0);
  6099. result = ggml_conv_1d_stage_1(ctx, a, result);
  6100. return result;
  6101. }
  6102. // GGML_API struct ggml_tensor * ggml_conv_1d(
  6103. // struct ggml_context * ctx,
  6104. // struct ggml_tensor * a,
  6105. // struct ggml_tensor * b,
  6106. // int s0,
  6107. // int p0,
  6108. // int d0) {
  6109. // GGML_ASSERT(ggml_is_matrix(b));
  6110. // GGML_ASSERT(a->ne[1] == b->ne[1]);
  6111. // bool is_node = false;
  6112. // if (a->grad || b->grad) {
  6113. // GGML_ASSERT(false); // TODO: implement backward
  6114. // is_node = true;
  6115. // }
  6116. // const int64_t ne[4] = {
  6117. // ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  6118. // a->ne[2], 1, 1,
  6119. // };
  6120. // struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  6121. // int32_t params[] = { s0, p0, d0 };
  6122. // ggml_set_op_params(result, params, sizeof(params));
  6123. // result->op = GGML_OP_CONV_1D;
  6124. // result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6125. // result->src[0] = a;
  6126. // result->src[1] = b;
  6127. // return result;
  6128. // }
  6129. // ggml_conv_1d_ph
  6130. struct ggml_tensor* ggml_conv_1d_ph(
  6131. struct ggml_context * ctx,
  6132. struct ggml_tensor * a,
  6133. struct ggml_tensor * b,
  6134. int s,
  6135. int d) {
  6136. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  6137. }
  6138. // ggml_conv_transpose_1d
  6139. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  6140. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  6141. }
  6142. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  6143. struct ggml_context * ctx,
  6144. struct ggml_tensor * a,
  6145. struct ggml_tensor * b,
  6146. int s0,
  6147. int p0,
  6148. int d0) {
  6149. GGML_ASSERT(ggml_is_matrix(b));
  6150. GGML_ASSERT(a->ne[2] == b->ne[1]);
  6151. GGML_ASSERT(a->ne[3] == 1);
  6152. GGML_ASSERT(p0 == 0);
  6153. GGML_ASSERT(d0 == 1);
  6154. bool is_node = false;
  6155. if (a->grad || b->grad) {
  6156. GGML_ASSERT(false); // TODO: implement backward
  6157. is_node = true;
  6158. }
  6159. const int64_t ne[4] = {
  6160. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  6161. a->ne[1], b->ne[2], 1,
  6162. };
  6163. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6164. int32_t params[] = { s0, p0, d0 };
  6165. ggml_set_op_params(result, params, sizeof(params));
  6166. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  6167. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6168. result->src[0] = a;
  6169. result->src[1] = b;
  6170. return result;
  6171. }
  6172. // ggml_conv_2d
  6173. struct ggml_tensor * ggml_conv_2d(
  6174. struct ggml_context * ctx,
  6175. struct ggml_tensor * a,
  6176. struct ggml_tensor * b,
  6177. int s0,
  6178. int s1,
  6179. int p0,
  6180. int p1,
  6181. int d0,
  6182. int d1) {
  6183. GGML_ASSERT(a->ne[2] == b->ne[2]);
  6184. bool is_node = false;
  6185. if (a->grad || b->grad) {
  6186. GGML_ASSERT(false); // TODO: implement backward
  6187. is_node = true;
  6188. }
  6189. const int64_t ne[4] = {
  6190. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  6191. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  6192. a->ne[3], b->ne[3],
  6193. };
  6194. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6195. int32_t params[] = { s0, s1, p0, p1, d0, d1 };
  6196. ggml_set_op_params(result, params, sizeof(params));
  6197. result->op = GGML_OP_CONV_2D;
  6198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6199. result->src[0] = a;
  6200. result->src[1] = b;
  6201. return result;
  6202. }
  6203. // ggml_conv_2d_sk_p0
  6204. struct ggml_tensor * ggml_conv_2d_sk_p0(
  6205. struct ggml_context * ctx,
  6206. struct ggml_tensor * a,
  6207. struct ggml_tensor * b) {
  6208. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  6209. }
  6210. // ggml_conv_2d_s1_ph
  6211. struct ggml_tensor * ggml_conv_2d_s1_ph(
  6212. struct ggml_context * ctx,
  6213. struct ggml_tensor * a,
  6214. struct ggml_tensor * b) {
  6215. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  6216. }
  6217. // ggml_conv_transpose_2d_p0
  6218. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  6219. return (ins - 1) * s - 2 * p + ks;
  6220. }
  6221. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  6222. struct ggml_context * ctx,
  6223. struct ggml_tensor * a,
  6224. struct ggml_tensor * b,
  6225. int stride) {
  6226. GGML_ASSERT(a->ne[3] == b->ne[2]);
  6227. bool is_node = false;
  6228. if (a->grad || b->grad) {
  6229. GGML_ASSERT(false); // TODO: implement backward
  6230. is_node = true;
  6231. }
  6232. const int64_t ne[4] = {
  6233. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  6234. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  6235. a->ne[2], b->ne[3],
  6236. };
  6237. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6238. ggml_set_op_params_i32(result, 0, stride);
  6239. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  6240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6241. result->src[0] = a;
  6242. result->src[1] = b;
  6243. return result;
  6244. }
  6245. // ggml_pool_*
  6246. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
  6247. return (ins + 2 * p - ks) / s + 1;
  6248. }
  6249. // ggml_pool_1d
  6250. struct ggml_tensor * ggml_pool_1d(
  6251. struct ggml_context * ctx,
  6252. struct ggml_tensor * a,
  6253. enum ggml_op_pool op,
  6254. int k0,
  6255. int s0,
  6256. int p0) {
  6257. bool is_node = false;
  6258. if (a->grad) {
  6259. GGML_ASSERT(false); // TODO: implement backward
  6260. is_node = true;
  6261. }
  6262. const int64_t ne[3] = {
  6263. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6264. a->ne[1],
  6265. };
  6266. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  6267. int32_t params[] = { op, k0, s0, p0 };
  6268. ggml_set_op_params(result, params, sizeof(params));
  6269. result->op = GGML_OP_POOL_1D;
  6270. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6271. result->src[0] = a;
  6272. return result;
  6273. }
  6274. // ggml_pool_2d
  6275. struct ggml_tensor * ggml_pool_2d(
  6276. struct ggml_context * ctx,
  6277. struct ggml_tensor * a,
  6278. enum ggml_op_pool op,
  6279. int k0,
  6280. int k1,
  6281. int s0,
  6282. int s1,
  6283. int p0,
  6284. int p1) {
  6285. bool is_node = false;
  6286. if (a->grad) {
  6287. GGML_ASSERT(false); // TODO: implement backward
  6288. is_node = true;
  6289. }
  6290. const int64_t ne[3] = {
  6291. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  6292. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  6293. a->ne[2],
  6294. };
  6295. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6296. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  6297. ggml_set_op_params(result, params, sizeof(params));
  6298. result->op = GGML_OP_POOL_2D;
  6299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6300. result->src[0] = a;
  6301. return result;
  6302. }
  6303. // ggml_upscale
  6304. static struct ggml_tensor * ggml_upscale_impl(
  6305. struct ggml_context * ctx,
  6306. struct ggml_tensor * a,
  6307. int scale_factor) {
  6308. bool is_node = false;
  6309. if (a->grad) {
  6310. GGML_ASSERT(false); // TODO: implement backward
  6311. is_node = true;
  6312. }
  6313. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  6314. a->ne[0] * scale_factor,
  6315. a->ne[1] * scale_factor,
  6316. a->ne[2], a->ne[3]);
  6317. result->op = GGML_OP_UPSCALE;
  6318. result->op_params[0] = scale_factor;
  6319. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6320. result->src[0] = a;
  6321. result->src[1] = NULL;
  6322. return result;
  6323. }
  6324. struct ggml_tensor * ggml_upscale(
  6325. struct ggml_context * ctx,
  6326. struct ggml_tensor * a,
  6327. int scale_factor) {
  6328. return ggml_upscale_impl(ctx, a, scale_factor);
  6329. }
  6330. // ggml_flash_attn
  6331. struct ggml_tensor * ggml_flash_attn(
  6332. struct ggml_context * ctx,
  6333. struct ggml_tensor * q,
  6334. struct ggml_tensor * k,
  6335. struct ggml_tensor * v,
  6336. bool masked) {
  6337. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6338. // TODO: check if vT can be multiplied by (k*qT)
  6339. bool is_node = false;
  6340. if (q->grad || k->grad || v->grad) {
  6341. is_node = true;
  6342. }
  6343. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  6344. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, q->n_dims, q->ne);
  6345. int32_t t = masked ? 1 : 0;
  6346. ggml_set_op_params(result, &t, sizeof(t));
  6347. result->op = GGML_OP_FLASH_ATTN;
  6348. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6349. result->src[0] = q;
  6350. result->src[1] = k;
  6351. result->src[2] = v;
  6352. return result;
  6353. }
  6354. // ggml_flash_ff
  6355. struct ggml_tensor * ggml_flash_ff(
  6356. struct ggml_context * ctx,
  6357. struct ggml_tensor * a,
  6358. struct ggml_tensor * b0,
  6359. struct ggml_tensor * b1,
  6360. struct ggml_tensor * c0,
  6361. struct ggml_tensor * c1) {
  6362. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  6363. // TODO: more checks
  6364. bool is_node = false;
  6365. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  6366. is_node = true;
  6367. }
  6368. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6369. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, a->ne);
  6370. result->op = GGML_OP_FLASH_FF;
  6371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6372. result->src[0] = a;
  6373. result->src[1] = b0;
  6374. result->src[2] = b1;
  6375. result->src[3] = c0;
  6376. result->src[4] = c1;
  6377. return result;
  6378. }
  6379. // ggml_flash_attn_back
  6380. struct ggml_tensor * ggml_flash_attn_back(
  6381. struct ggml_context * ctx,
  6382. struct ggml_tensor * q,
  6383. struct ggml_tensor * k,
  6384. struct ggml_tensor * v,
  6385. struct ggml_tensor * d,
  6386. bool masked) {
  6387. GGML_ASSERT(ggml_can_mul_mat(k, q));
  6388. // TODO: check if vT can be multiplied by (k*qT)
  6389. // d shape [D,N,ne2,ne3]
  6390. // q shape [D,N,ne2,ne3]
  6391. // k shape [D,M,kvne2,ne3]
  6392. // v shape [M,D,kvne2,ne3]
  6393. const int64_t D = q->ne[0];
  6394. const int64_t N = q->ne[1];
  6395. const int64_t M = k->ne[1];
  6396. const int64_t ne2 = q->ne[2];
  6397. const int64_t ne3 = q->ne[3];
  6398. const int64_t kvne2 = k->ne[2];
  6399. GGML_ASSERT(k->ne[0] == D);
  6400. GGML_ASSERT(v->ne[0] == M);
  6401. GGML_ASSERT(v->ne[1] == D);
  6402. GGML_ASSERT(d->ne[0] == D);
  6403. GGML_ASSERT(d->ne[1] == N);
  6404. GGML_ASSERT(k->ne[2] == kvne2);
  6405. GGML_ASSERT(k->ne[3] == ne3);
  6406. GGML_ASSERT(v->ne[2] == kvne2);
  6407. GGML_ASSERT(v->ne[3] == ne3);
  6408. GGML_ASSERT(d->ne[2] == ne2);
  6409. GGML_ASSERT(d->ne[3] == ne3);
  6410. GGML_ASSERT(ne2 % kvne2 == 0);
  6411. bool is_node = false;
  6412. if (q->grad || k->grad || v->grad) {
  6413. // when using this operation (in backwards pass) these grads are set.
  6414. // we don't want to create (big) grad of our result, so is_node is false.
  6415. is_node = false;
  6416. }
  6417. // store gradients of q, k and v as continuous tensors concatenated in result.
  6418. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  6419. const int64_t elem_q = ggml_nelements(q);
  6420. const int64_t elem_k = ggml_nelements(k);
  6421. const int64_t elem_v = ggml_nelements(v);
  6422. enum ggml_type result_type = GGML_TYPE_F32;
  6423. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  6424. const size_t tsize = ggml_type_size(result_type);
  6425. const size_t offs_q = 0;
  6426. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  6427. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  6428. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  6429. const size_t nelements = (end + tsize - 1)/tsize;
  6430. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  6431. int32_t masked_i = masked ? 1 : 0;
  6432. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  6433. result->op = GGML_OP_FLASH_ATTN_BACK;
  6434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6435. result->src[0] = q;
  6436. result->src[1] = k;
  6437. result->src[2] = v;
  6438. result->src[3] = d;
  6439. return result;
  6440. }
  6441. // ggml_win_part
  6442. struct ggml_tensor * ggml_win_part(
  6443. struct ggml_context * ctx,
  6444. struct ggml_tensor * a,
  6445. int w) {
  6446. GGML_ASSERT(a->ne[3] == 1);
  6447. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6448. bool is_node = false;
  6449. if (a->grad) {
  6450. GGML_ASSERT(false); // TODO: implement backward
  6451. is_node = true;
  6452. }
  6453. // padding
  6454. const int px = (w - a->ne[1]%w)%w;
  6455. const int py = (w - a->ne[2]%w)%w;
  6456. const int npx = (px + a->ne[1])/w;
  6457. const int npy = (py + a->ne[2])/w;
  6458. const int np = npx*npy;
  6459. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6460. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6461. int32_t params[] = { npx, npy, w };
  6462. ggml_set_op_params(result, params, sizeof(params));
  6463. result->op = GGML_OP_WIN_PART;
  6464. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6465. result->src[0] = a;
  6466. return result;
  6467. }
  6468. // ggml_win_unpart
  6469. struct ggml_tensor * ggml_win_unpart(
  6470. struct ggml_context * ctx,
  6471. struct ggml_tensor * a,
  6472. int w0,
  6473. int h0,
  6474. int w) {
  6475. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6476. bool is_node = false;
  6477. if (a->grad) {
  6478. GGML_ASSERT(false); // TODO: implement backward
  6479. is_node = true;
  6480. }
  6481. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6482. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6483. int32_t params[] = { w };
  6484. ggml_set_op_params(result, params, sizeof(params));
  6485. result->op = GGML_OP_WIN_UNPART;
  6486. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6487. result->src[0] = a;
  6488. return result;
  6489. }
  6490. // ggml_get_rel_pos
  6491. struct ggml_tensor * ggml_get_rel_pos(
  6492. struct ggml_context * ctx,
  6493. struct ggml_tensor * a,
  6494. int qh,
  6495. int kh) {
  6496. GGML_ASSERT(qh == kh);
  6497. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6498. bool is_node = false;
  6499. if (a->grad) {
  6500. GGML_ASSERT(false); // TODO: implement backward
  6501. is_node = true;
  6502. }
  6503. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6504. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6505. result->op = GGML_OP_GET_REL_POS;
  6506. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6507. result->src[0] = a;
  6508. result->src[1] = NULL;
  6509. return result;
  6510. }
  6511. // ggml_add_rel_pos
  6512. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6513. struct ggml_context * ctx,
  6514. struct ggml_tensor * a,
  6515. struct ggml_tensor * pw,
  6516. struct ggml_tensor * ph,
  6517. bool inplace) {
  6518. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6519. GGML_ASSERT(ggml_is_contiguous(a));
  6520. GGML_ASSERT(ggml_is_contiguous(pw));
  6521. GGML_ASSERT(ggml_is_contiguous(ph));
  6522. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6523. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6524. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6525. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6526. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6527. bool is_node = false;
  6528. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6529. is_node = true;
  6530. }
  6531. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6532. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6533. result->op = GGML_OP_ADD_REL_POS;
  6534. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6535. result->src[0] = a;
  6536. result->src[1] = pw;
  6537. result->src[2] = ph;
  6538. return result;
  6539. }
  6540. struct ggml_tensor * ggml_add_rel_pos(
  6541. struct ggml_context * ctx,
  6542. struct ggml_tensor * a,
  6543. struct ggml_tensor * pw,
  6544. struct ggml_tensor * ph) {
  6545. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6546. }
  6547. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6548. struct ggml_context * ctx,
  6549. struct ggml_tensor * a,
  6550. struct ggml_tensor * pw,
  6551. struct ggml_tensor * ph) {
  6552. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6553. }
  6554. // gmml_unary
  6555. static struct ggml_tensor * ggml_unary_impl(
  6556. struct ggml_context * ctx,
  6557. struct ggml_tensor * a,
  6558. enum ggml_unary_op op,
  6559. bool inplace) {
  6560. bool is_node = false;
  6561. if (!inplace && (a->grad)) {
  6562. is_node = true;
  6563. }
  6564. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6565. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6566. result->op = GGML_OP_UNARY;
  6567. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6568. result->src[0] = a;
  6569. return result;
  6570. }
  6571. struct ggml_tensor * ggml_unary(
  6572. struct ggml_context * ctx,
  6573. struct ggml_tensor * a,
  6574. enum ggml_unary_op op) {
  6575. return ggml_unary_impl(ctx, a, op, false);
  6576. }
  6577. struct ggml_tensor * ggml_unary_inplace(
  6578. struct ggml_context * ctx,
  6579. struct ggml_tensor * a,
  6580. enum ggml_unary_op op) {
  6581. return ggml_unary_impl(ctx, a, op, true);
  6582. }
  6583. // ggml_map_unary
  6584. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6585. struct ggml_context * ctx,
  6586. struct ggml_tensor * a,
  6587. const ggml_unary_op_f32_t fun,
  6588. bool inplace) {
  6589. bool is_node = false;
  6590. if (!inplace && a->grad) {
  6591. is_node = true;
  6592. }
  6593. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6594. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6595. result->op = GGML_OP_MAP_UNARY;
  6596. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6597. result->src[0] = a;
  6598. return result;
  6599. }
  6600. struct ggml_tensor * ggml_map_unary_f32(
  6601. struct ggml_context * ctx,
  6602. struct ggml_tensor * a,
  6603. const ggml_unary_op_f32_t fun) {
  6604. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6605. }
  6606. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6607. struct ggml_context * ctx,
  6608. struct ggml_tensor * a,
  6609. const ggml_unary_op_f32_t fun) {
  6610. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6611. }
  6612. // ggml_map_binary
  6613. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6614. struct ggml_context * ctx,
  6615. struct ggml_tensor * a,
  6616. struct ggml_tensor * b,
  6617. const ggml_binary_op_f32_t fun,
  6618. bool inplace) {
  6619. GGML_ASSERT(ggml_are_same_shape(a, b));
  6620. bool is_node = false;
  6621. if (!inplace && (a->grad || b->grad)) {
  6622. is_node = true;
  6623. }
  6624. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6625. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6626. result->op = GGML_OP_MAP_BINARY;
  6627. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6628. result->src[0] = a;
  6629. result->src[1] = b;
  6630. return result;
  6631. }
  6632. struct ggml_tensor * ggml_map_binary_f32(
  6633. struct ggml_context * ctx,
  6634. struct ggml_tensor * a,
  6635. struct ggml_tensor * b,
  6636. const ggml_binary_op_f32_t fun) {
  6637. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6638. }
  6639. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6640. struct ggml_context * ctx,
  6641. struct ggml_tensor * a,
  6642. struct ggml_tensor * b,
  6643. const ggml_binary_op_f32_t fun) {
  6644. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6645. }
  6646. // ggml_map_custom1_f32
  6647. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6648. struct ggml_context * ctx,
  6649. struct ggml_tensor * a,
  6650. const ggml_custom1_op_f32_t fun,
  6651. bool inplace) {
  6652. bool is_node = false;
  6653. if (!inplace && a->grad) {
  6654. is_node = true;
  6655. }
  6656. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6657. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6658. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6659. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6660. result->src[0] = a;
  6661. return result;
  6662. }
  6663. struct ggml_tensor * ggml_map_custom1_f32(
  6664. struct ggml_context * ctx,
  6665. struct ggml_tensor * a,
  6666. const ggml_custom1_op_f32_t fun) {
  6667. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6668. }
  6669. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6670. struct ggml_context * ctx,
  6671. struct ggml_tensor * a,
  6672. const ggml_custom1_op_f32_t fun) {
  6673. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6674. }
  6675. // ggml_map_custom2_f32
  6676. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6677. struct ggml_context * ctx,
  6678. struct ggml_tensor * a,
  6679. struct ggml_tensor * b,
  6680. const ggml_custom2_op_f32_t fun,
  6681. bool inplace) {
  6682. bool is_node = false;
  6683. if (!inplace && (a->grad || b->grad)) {
  6684. is_node = true;
  6685. }
  6686. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6687. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6688. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6689. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6690. result->src[0] = a;
  6691. result->src[1] = b;
  6692. return result;
  6693. }
  6694. struct ggml_tensor * ggml_map_custom2_f32(
  6695. struct ggml_context * ctx,
  6696. struct ggml_tensor * a,
  6697. struct ggml_tensor * b,
  6698. const ggml_custom2_op_f32_t fun) {
  6699. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6700. }
  6701. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6702. struct ggml_context * ctx,
  6703. struct ggml_tensor * a,
  6704. struct ggml_tensor * b,
  6705. const ggml_custom2_op_f32_t fun) {
  6706. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6707. }
  6708. // ggml_map_custom3_f32
  6709. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6710. struct ggml_context * ctx,
  6711. struct ggml_tensor * a,
  6712. struct ggml_tensor * b,
  6713. struct ggml_tensor * c,
  6714. const ggml_custom3_op_f32_t fun,
  6715. bool inplace) {
  6716. bool is_node = false;
  6717. if (!inplace && (a->grad || b->grad || c->grad)) {
  6718. is_node = true;
  6719. }
  6720. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6721. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6722. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6724. result->src[0] = a;
  6725. result->src[1] = b;
  6726. result->src[2] = c;
  6727. return result;
  6728. }
  6729. struct ggml_tensor * ggml_map_custom3_f32(
  6730. struct ggml_context * ctx,
  6731. struct ggml_tensor * a,
  6732. struct ggml_tensor * b,
  6733. struct ggml_tensor * c,
  6734. const ggml_custom3_op_f32_t fun) {
  6735. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6736. }
  6737. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6738. struct ggml_context * ctx,
  6739. struct ggml_tensor * a,
  6740. struct ggml_tensor * b,
  6741. struct ggml_tensor * c,
  6742. const ggml_custom3_op_f32_t fun) {
  6743. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6744. }
  6745. // ggml_map_custom1
  6746. struct ggml_map_custom1_op_params {
  6747. ggml_custom1_op_t fun;
  6748. int n_tasks;
  6749. void * userdata;
  6750. };
  6751. static struct ggml_tensor * ggml_map_custom1_impl(
  6752. struct ggml_context * ctx,
  6753. struct ggml_tensor * a,
  6754. const ggml_custom1_op_t fun,
  6755. int n_tasks,
  6756. void * userdata,
  6757. bool inplace) {
  6758. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6759. bool is_node = false;
  6760. if (!inplace && a->grad) {
  6761. is_node = true;
  6762. }
  6763. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6764. struct ggml_map_custom1_op_params params = {
  6765. /*.fun =*/ fun,
  6766. /*.n_tasks =*/ n_tasks,
  6767. /*.userdata =*/ userdata
  6768. };
  6769. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6770. result->op = GGML_OP_MAP_CUSTOM1;
  6771. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6772. result->src[0] = a;
  6773. return result;
  6774. }
  6775. struct ggml_tensor * ggml_map_custom1(
  6776. struct ggml_context * ctx,
  6777. struct ggml_tensor * a,
  6778. const ggml_custom1_op_t fun,
  6779. int n_tasks,
  6780. void * userdata) {
  6781. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6782. }
  6783. struct ggml_tensor * ggml_map_custom1_inplace(
  6784. struct ggml_context * ctx,
  6785. struct ggml_tensor * a,
  6786. const ggml_custom1_op_t fun,
  6787. int n_tasks,
  6788. void * userdata) {
  6789. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6790. }
  6791. // ggml_map_custom2
  6792. struct ggml_map_custom2_op_params {
  6793. ggml_custom2_op_t fun;
  6794. int n_tasks;
  6795. void * userdata;
  6796. };
  6797. static struct ggml_tensor * ggml_map_custom2_impl(
  6798. struct ggml_context * ctx,
  6799. struct ggml_tensor * a,
  6800. struct ggml_tensor * b,
  6801. const ggml_custom2_op_t fun,
  6802. int n_tasks,
  6803. void * userdata,
  6804. bool inplace) {
  6805. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6806. bool is_node = false;
  6807. if (!inplace && (a->grad || b->grad)) {
  6808. is_node = true;
  6809. }
  6810. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6811. struct ggml_map_custom2_op_params params = {
  6812. /*.fun =*/ fun,
  6813. /*.n_tasks =*/ n_tasks,
  6814. /*.userdata =*/ userdata
  6815. };
  6816. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6817. result->op = GGML_OP_MAP_CUSTOM2;
  6818. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6819. result->src[0] = a;
  6820. result->src[1] = b;
  6821. return result;
  6822. }
  6823. struct ggml_tensor * ggml_map_custom2(
  6824. struct ggml_context * ctx,
  6825. struct ggml_tensor * a,
  6826. struct ggml_tensor * b,
  6827. const ggml_custom2_op_t fun,
  6828. int n_tasks,
  6829. void * userdata) {
  6830. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6831. }
  6832. struct ggml_tensor * ggml_map_custom2_inplace(
  6833. struct ggml_context * ctx,
  6834. struct ggml_tensor * a,
  6835. struct ggml_tensor * b,
  6836. const ggml_custom2_op_t fun,
  6837. int n_tasks,
  6838. void * userdata) {
  6839. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6840. }
  6841. // ggml_map_custom3
  6842. struct ggml_map_custom3_op_params {
  6843. ggml_custom3_op_t fun;
  6844. int n_tasks;
  6845. void * userdata;
  6846. };
  6847. static struct ggml_tensor * ggml_map_custom3_impl(
  6848. struct ggml_context * ctx,
  6849. struct ggml_tensor * a,
  6850. struct ggml_tensor * b,
  6851. struct ggml_tensor * c,
  6852. const ggml_custom3_op_t fun,
  6853. int n_tasks,
  6854. void * userdata,
  6855. bool inplace) {
  6856. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6857. bool is_node = false;
  6858. if (!inplace && (a->grad || b->grad || c->grad)) {
  6859. is_node = true;
  6860. }
  6861. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6862. struct ggml_map_custom3_op_params params = {
  6863. /*.fun =*/ fun,
  6864. /*.n_tasks =*/ n_tasks,
  6865. /*.userdata =*/ userdata
  6866. };
  6867. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6868. result->op = GGML_OP_MAP_CUSTOM3;
  6869. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6870. result->src[0] = a;
  6871. result->src[1] = b;
  6872. result->src[2] = c;
  6873. return result;
  6874. }
  6875. struct ggml_tensor * ggml_map_custom3(
  6876. struct ggml_context * ctx,
  6877. struct ggml_tensor * a,
  6878. struct ggml_tensor * b,
  6879. struct ggml_tensor * c,
  6880. const ggml_custom3_op_t fun,
  6881. int n_tasks,
  6882. void * userdata) {
  6883. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6884. }
  6885. struct ggml_tensor * ggml_map_custom3_inplace(
  6886. struct ggml_context * ctx,
  6887. struct ggml_tensor * a,
  6888. struct ggml_tensor * b,
  6889. struct ggml_tensor * c,
  6890. const ggml_custom3_op_t fun,
  6891. int n_tasks,
  6892. void * userdata) {
  6893. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6894. }
  6895. // ggml_cross_entropy_loss
  6896. struct ggml_tensor * ggml_cross_entropy_loss(
  6897. struct ggml_context * ctx,
  6898. struct ggml_tensor * a,
  6899. struct ggml_tensor * b) {
  6900. GGML_ASSERT(ggml_are_same_shape(a, b));
  6901. bool is_node = false;
  6902. if (a->grad || b->grad) {
  6903. is_node = true;
  6904. }
  6905. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6906. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6907. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6908. result->src[0] = a;
  6909. result->src[1] = b;
  6910. return result;
  6911. }
  6912. // ggml_cross_entropy_loss_back
  6913. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6914. struct ggml_context * ctx,
  6915. struct ggml_tensor * a,
  6916. struct ggml_tensor * b,
  6917. struct ggml_tensor * c) {
  6918. GGML_ASSERT(ggml_are_same_shape(a, b));
  6919. GGML_ASSERT(ggml_is_scalar(c));
  6920. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6921. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6922. result->grad = NULL;
  6923. result->src[0] = a;
  6924. result->src[1] = b;
  6925. result->src[2] = c;
  6926. return result;
  6927. }
  6928. ////////////////////////////////////////////////////////////////////////////////
  6929. void ggml_set_param(
  6930. struct ggml_context * ctx,
  6931. struct ggml_tensor * tensor) {
  6932. tensor->is_param = true;
  6933. GGML_ASSERT(tensor->grad == NULL);
  6934. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6935. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6936. }
  6937. // ggml_compute_forward_dup
  6938. static void ggml_compute_forward_dup_same_cont(
  6939. const struct ggml_compute_params * params,
  6940. const struct ggml_tensor * src0,
  6941. struct ggml_tensor * dst) {
  6942. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6943. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6944. GGML_ASSERT(src0->type == dst->type);
  6945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6946. return;
  6947. }
  6948. const size_t nb00 = src0->nb[0];
  6949. const size_t nb0 = dst->nb[0];
  6950. const int ith = params->ith; // thread index
  6951. const int nth = params->nth; // number of threads
  6952. // parallelize by elements
  6953. const int ne = ggml_nelements(dst);
  6954. const int dr = (ne + nth - 1) / nth;
  6955. const int ie0 = dr * ith;
  6956. const int ie1 = MIN(ie0 + dr, ne);
  6957. if (ie0 < ie1) {
  6958. memcpy(
  6959. ((char *) dst->data + ie0*nb0),
  6960. ((char *) src0->data + ie0*nb00),
  6961. (ie1 - ie0) * ggml_type_size(src0->type));
  6962. }
  6963. }
  6964. static void ggml_compute_forward_dup_f16(
  6965. const struct ggml_compute_params * params,
  6966. const struct ggml_tensor * src0,
  6967. struct ggml_tensor * dst) {
  6968. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6969. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6970. return;
  6971. }
  6972. GGML_TENSOR_UNARY_OP_LOCALS
  6973. const int ith = params->ith; // thread index
  6974. const int nth = params->nth; // number of threads
  6975. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6976. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6977. return;
  6978. }
  6979. // parallelize by rows
  6980. const int nr = ne01;
  6981. // number of rows per thread
  6982. const int dr = (nr + nth - 1) / nth;
  6983. // row range for this thread
  6984. const int ir0 = dr * ith;
  6985. const int ir1 = MIN(ir0 + dr, nr);
  6986. if (src0->type == dst->type &&
  6987. ne00 == ne0 &&
  6988. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6989. // copy by rows
  6990. const size_t rs = ne00*nb00;
  6991. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6992. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6993. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6994. memcpy(
  6995. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6996. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6997. rs);
  6998. }
  6999. }
  7000. }
  7001. return;
  7002. }
  7003. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  7004. if (ggml_is_contiguous(dst)) {
  7005. if (nb00 == sizeof(ggml_fp16_t)) {
  7006. if (dst->type == GGML_TYPE_F16) {
  7007. size_t id = 0;
  7008. const size_t rs = ne00 * nb00;
  7009. char * dst_ptr = (char *) dst->data;
  7010. for (int i03 = 0; i03 < ne03; i03++) {
  7011. for (int i02 = 0; i02 < ne02; i02++) {
  7012. id += rs * ir0;
  7013. for (int i01 = ir0; i01 < ir1; i01++) {
  7014. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7015. memcpy(dst_ptr + id, src0_ptr, rs);
  7016. id += rs;
  7017. }
  7018. id += rs * (ne01 - ir1);
  7019. }
  7020. }
  7021. } else if (dst->type == GGML_TYPE_F32) {
  7022. size_t id = 0;
  7023. float * dst_ptr = (float *) dst->data;
  7024. for (int i03 = 0; i03 < ne03; i03++) {
  7025. for (int i02 = 0; i02 < ne02; i02++) {
  7026. id += ne00 * ir0;
  7027. for (int i01 = ir0; i01 < ir1; i01++) {
  7028. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7029. for (int i00 = 0; i00 < ne00; i00++) {
  7030. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  7031. id++;
  7032. }
  7033. }
  7034. id += ne00 * (ne01 - ir1);
  7035. }
  7036. }
  7037. } else if (type_traits[dst->type].from_float) {
  7038. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7039. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7040. size_t id = 0;
  7041. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7042. char * dst_ptr = (char *) dst->data;
  7043. for (int i03 = 0; i03 < ne03; i03++) {
  7044. for (int i02 = 0; i02 < ne02; i02++) {
  7045. id += rs * ir0;
  7046. for (int i01 = ir0; i01 < ir1; i01++) {
  7047. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7048. for (int i00 = 0; i00 < ne00; i00++) {
  7049. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  7050. }
  7051. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  7052. id += rs;
  7053. }
  7054. id += rs * (ne01 - ir1);
  7055. }
  7056. }
  7057. } else {
  7058. GGML_ASSERT(false); // TODO: implement
  7059. }
  7060. } else {
  7061. //printf("%s: this is not optimal - fix me\n", __func__);
  7062. if (dst->type == GGML_TYPE_F32) {
  7063. size_t id = 0;
  7064. float * dst_ptr = (float *) dst->data;
  7065. for (int i03 = 0; i03 < ne03; i03++) {
  7066. for (int i02 = 0; i02 < ne02; i02++) {
  7067. id += ne00 * ir0;
  7068. for (int i01 = ir0; i01 < ir1; i01++) {
  7069. for (int i00 = 0; i00 < ne00; i00++) {
  7070. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7071. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  7072. id++;
  7073. }
  7074. }
  7075. id += ne00 * (ne01 - ir1);
  7076. }
  7077. }
  7078. } else if (dst->type == GGML_TYPE_F16) {
  7079. size_t id = 0;
  7080. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7081. for (int i03 = 0; i03 < ne03; i03++) {
  7082. for (int i02 = 0; i02 < ne02; i02++) {
  7083. id += ne00 * ir0;
  7084. for (int i01 = ir0; i01 < ir1; i01++) {
  7085. for (int i00 = 0; i00 < ne00; i00++) {
  7086. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7087. dst_ptr[id] = *src0_ptr;
  7088. id++;
  7089. }
  7090. }
  7091. id += ne00 * (ne01 - ir1);
  7092. }
  7093. }
  7094. } else {
  7095. GGML_ASSERT(false); // TODO: implement
  7096. }
  7097. }
  7098. return;
  7099. }
  7100. // dst counters
  7101. int64_t i10 = 0;
  7102. int64_t i11 = 0;
  7103. int64_t i12 = 0;
  7104. int64_t i13 = 0;
  7105. if (dst->type == GGML_TYPE_F16) {
  7106. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7107. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7108. i10 += ne00 * ir0;
  7109. while (i10 >= ne0) {
  7110. i10 -= ne0;
  7111. if (++i11 == ne1) {
  7112. i11 = 0;
  7113. if (++i12 == ne2) {
  7114. i12 = 0;
  7115. if (++i13 == ne3) {
  7116. i13 = 0;
  7117. }
  7118. }
  7119. }
  7120. }
  7121. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7122. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7123. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7124. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7125. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  7126. if (++i10 == ne00) {
  7127. i10 = 0;
  7128. if (++i11 == ne01) {
  7129. i11 = 0;
  7130. if (++i12 == ne02) {
  7131. i12 = 0;
  7132. if (++i13 == ne03) {
  7133. i13 = 0;
  7134. }
  7135. }
  7136. }
  7137. }
  7138. }
  7139. }
  7140. i10 += ne00 * (ne01 - ir1);
  7141. while (i10 >= ne0) {
  7142. i10 -= ne0;
  7143. if (++i11 == ne1) {
  7144. i11 = 0;
  7145. if (++i12 == ne2) {
  7146. i12 = 0;
  7147. if (++i13 == ne3) {
  7148. i13 = 0;
  7149. }
  7150. }
  7151. }
  7152. }
  7153. }
  7154. }
  7155. } else if (dst->type == GGML_TYPE_F32) {
  7156. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7157. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7158. i10 += ne00 * ir0;
  7159. while (i10 >= ne0) {
  7160. i10 -= ne0;
  7161. if (++i11 == ne1) {
  7162. i11 = 0;
  7163. if (++i12 == ne2) {
  7164. i12 = 0;
  7165. if (++i13 == ne3) {
  7166. i13 = 0;
  7167. }
  7168. }
  7169. }
  7170. }
  7171. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7172. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7173. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7174. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7175. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  7176. if (++i10 == ne0) {
  7177. i10 = 0;
  7178. if (++i11 == ne1) {
  7179. i11 = 0;
  7180. if (++i12 == ne2) {
  7181. i12 = 0;
  7182. if (++i13 == ne3) {
  7183. i13 = 0;
  7184. }
  7185. }
  7186. }
  7187. }
  7188. }
  7189. }
  7190. i10 += ne00 * (ne01 - ir1);
  7191. while (i10 >= ne0) {
  7192. i10 -= ne0;
  7193. if (++i11 == ne1) {
  7194. i11 = 0;
  7195. if (++i12 == ne2) {
  7196. i12 = 0;
  7197. if (++i13 == ne3) {
  7198. i13 = 0;
  7199. }
  7200. }
  7201. }
  7202. }
  7203. }
  7204. }
  7205. } else {
  7206. GGML_ASSERT(false); // TODO: implement
  7207. }
  7208. }
  7209. static void ggml_compute_forward_dup_f32(
  7210. const struct ggml_compute_params * params,
  7211. const struct ggml_tensor * src0,
  7212. struct ggml_tensor * dst) {
  7213. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7214. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7215. return;
  7216. }
  7217. GGML_TENSOR_UNARY_OP_LOCALS
  7218. const int ith = params->ith; // thread index
  7219. const int nth = params->nth; // number of threads
  7220. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7221. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7222. return;
  7223. }
  7224. // parallelize by rows
  7225. const int nr = ne01;
  7226. // number of rows per thread
  7227. const int dr = (nr + nth - 1) / nth;
  7228. // row range for this thread
  7229. const int ir0 = dr * ith;
  7230. const int ir1 = MIN(ir0 + dr, nr);
  7231. if (src0->type == dst->type &&
  7232. ne00 == ne0 &&
  7233. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7234. // copy by rows
  7235. const size_t rs = ne00*nb00;
  7236. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7237. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7238. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7239. memcpy(
  7240. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7241. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7242. rs);
  7243. }
  7244. }
  7245. }
  7246. return;
  7247. }
  7248. if (ggml_is_contiguous(dst)) {
  7249. // TODO: simplify
  7250. if (nb00 == sizeof(float)) {
  7251. if (dst->type == GGML_TYPE_F32) {
  7252. size_t id = 0;
  7253. const size_t rs = ne00 * nb00;
  7254. char * dst_ptr = (char *) dst->data;
  7255. for (int i03 = 0; i03 < ne03; i03++) {
  7256. for (int i02 = 0; i02 < ne02; i02++) {
  7257. id += rs * ir0;
  7258. for (int i01 = ir0; i01 < ir1; i01++) {
  7259. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7260. memcpy(dst_ptr + id, src0_ptr, rs);
  7261. id += rs;
  7262. }
  7263. id += rs * (ne01 - ir1);
  7264. }
  7265. }
  7266. } else if (type_traits[dst->type].from_float) {
  7267. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7268. size_t id = 0;
  7269. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7270. char * dst_ptr = (char *) dst->data;
  7271. for (int i03 = 0; i03 < ne03; i03++) {
  7272. for (int i02 = 0; i02 < ne02; i02++) {
  7273. id += rs * ir0;
  7274. for (int i01 = ir0; i01 < ir1; i01++) {
  7275. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7276. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7277. id += rs;
  7278. }
  7279. id += rs * (ne01 - ir1);
  7280. }
  7281. }
  7282. } else {
  7283. GGML_ASSERT(false); // TODO: implement
  7284. }
  7285. } else {
  7286. //printf("%s: this is not optimal - fix me\n", __func__);
  7287. if (dst->type == GGML_TYPE_F32) {
  7288. size_t id = 0;
  7289. float * dst_ptr = (float *) dst->data;
  7290. for (int i03 = 0; i03 < ne03; i03++) {
  7291. for (int i02 = 0; i02 < ne02; i02++) {
  7292. id += ne00 * ir0;
  7293. for (int i01 = ir0; i01 < ir1; i01++) {
  7294. for (int i00 = 0; i00 < ne00; i00++) {
  7295. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7296. dst_ptr[id] = *src0_ptr;
  7297. id++;
  7298. }
  7299. }
  7300. id += ne00 * (ne01 - ir1);
  7301. }
  7302. }
  7303. } else if (dst->type == GGML_TYPE_F16) {
  7304. size_t id = 0;
  7305. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7306. for (int i03 = 0; i03 < ne03; i03++) {
  7307. for (int i02 = 0; i02 < ne02; i02++) {
  7308. id += ne00 * ir0;
  7309. for (int i01 = ir0; i01 < ir1; i01++) {
  7310. for (int i00 = 0; i00 < ne00; i00++) {
  7311. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7312. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7313. id++;
  7314. }
  7315. }
  7316. id += ne00 * (ne01 - ir1);
  7317. }
  7318. }
  7319. } else {
  7320. GGML_ASSERT(false); // TODO: implement
  7321. }
  7322. }
  7323. return;
  7324. }
  7325. // dst counters
  7326. int64_t i10 = 0;
  7327. int64_t i11 = 0;
  7328. int64_t i12 = 0;
  7329. int64_t i13 = 0;
  7330. if (dst->type == GGML_TYPE_F32) {
  7331. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7332. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7333. i10 += ne00 * ir0;
  7334. while (i10 >= ne0) {
  7335. i10 -= ne0;
  7336. if (++i11 == ne1) {
  7337. i11 = 0;
  7338. if (++i12 == ne2) {
  7339. i12 = 0;
  7340. if (++i13 == ne3) {
  7341. i13 = 0;
  7342. }
  7343. }
  7344. }
  7345. }
  7346. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7347. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7348. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7349. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7350. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7351. if (++i10 == ne0) {
  7352. i10 = 0;
  7353. if (++i11 == ne1) {
  7354. i11 = 0;
  7355. if (++i12 == ne2) {
  7356. i12 = 0;
  7357. if (++i13 == ne3) {
  7358. i13 = 0;
  7359. }
  7360. }
  7361. }
  7362. }
  7363. }
  7364. }
  7365. i10 += ne00 * (ne01 - ir1);
  7366. while (i10 >= ne0) {
  7367. i10 -= ne0;
  7368. if (++i11 == ne1) {
  7369. i11 = 0;
  7370. if (++i12 == ne2) {
  7371. i12 = 0;
  7372. if (++i13 == ne3) {
  7373. i13 = 0;
  7374. }
  7375. }
  7376. }
  7377. }
  7378. }
  7379. }
  7380. } else if (dst->type == GGML_TYPE_F16) {
  7381. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7382. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7383. i10 += ne00 * ir0;
  7384. while (i10 >= ne0) {
  7385. i10 -= ne0;
  7386. if (++i11 == ne1) {
  7387. i11 = 0;
  7388. if (++i12 == ne2) {
  7389. i12 = 0;
  7390. if (++i13 == ne3) {
  7391. i13 = 0;
  7392. }
  7393. }
  7394. }
  7395. }
  7396. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7397. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7398. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7399. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7400. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7401. if (++i10 == ne0) {
  7402. i10 = 0;
  7403. if (++i11 == ne1) {
  7404. i11 = 0;
  7405. if (++i12 == ne2) {
  7406. i12 = 0;
  7407. if (++i13 == ne3) {
  7408. i13 = 0;
  7409. }
  7410. }
  7411. }
  7412. }
  7413. }
  7414. }
  7415. i10 += ne00 * (ne01 - ir1);
  7416. while (i10 >= ne0) {
  7417. i10 -= ne0;
  7418. if (++i11 == ne1) {
  7419. i11 = 0;
  7420. if (++i12 == ne2) {
  7421. i12 = 0;
  7422. if (++i13 == ne3) {
  7423. i13 = 0;
  7424. }
  7425. }
  7426. }
  7427. }
  7428. }
  7429. }
  7430. } else {
  7431. GGML_ASSERT(false); // TODO: implement
  7432. }
  7433. }
  7434. static void ggml_compute_forward_dup(
  7435. const struct ggml_compute_params * params,
  7436. const struct ggml_tensor * src0,
  7437. struct ggml_tensor * dst) {
  7438. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7439. ggml_compute_forward_dup_same_cont(params, src0, dst);
  7440. return;
  7441. }
  7442. switch (src0->type) {
  7443. case GGML_TYPE_F16:
  7444. {
  7445. ggml_compute_forward_dup_f16(params, src0, dst);
  7446. } break;
  7447. case GGML_TYPE_F32:
  7448. {
  7449. ggml_compute_forward_dup_f32(params, src0, dst);
  7450. } break;
  7451. default:
  7452. {
  7453. GGML_ASSERT(false);
  7454. } break;
  7455. }
  7456. }
  7457. // ggml_compute_forward_add
  7458. static void ggml_compute_forward_add_f32(
  7459. const struct ggml_compute_params * params,
  7460. const struct ggml_tensor * src0,
  7461. const struct ggml_tensor * src1,
  7462. struct ggml_tensor * dst) {
  7463. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7464. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7465. return;
  7466. }
  7467. const int ith = params->ith;
  7468. const int nth = params->nth;
  7469. const int nr = ggml_nrows(src0);
  7470. GGML_TENSOR_BINARY_OP_LOCALS
  7471. GGML_ASSERT( nb0 == sizeof(float));
  7472. GGML_ASSERT(nb00 == sizeof(float));
  7473. // rows per thread
  7474. const int dr = (nr + nth - 1)/nth;
  7475. // row range for this thread
  7476. const int ir0 = dr*ith;
  7477. const int ir1 = MIN(ir0 + dr, nr);
  7478. if (nb10 == sizeof(float)) {
  7479. for (int ir = ir0; ir < ir1; ++ir) {
  7480. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7481. const int64_t i03 = ir/(ne02*ne01);
  7482. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7483. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7484. const int64_t i13 = i03 % ne13;
  7485. const int64_t i12 = i02 % ne12;
  7486. const int64_t i11 = i01 % ne11;
  7487. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7488. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7489. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7490. #ifdef GGML_USE_ACCELERATE
  7491. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7492. #else
  7493. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7494. #endif
  7495. }
  7496. } else {
  7497. // src1 is not contiguous
  7498. for (int ir = ir0; ir < ir1; ++ir) {
  7499. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7500. const int64_t i03 = ir/(ne02*ne01);
  7501. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7502. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7503. const int64_t i13 = i03 % ne13;
  7504. const int64_t i12 = i02 % ne12;
  7505. const int64_t i11 = i01 % ne11;
  7506. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7507. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7508. for (int i0 = 0; i0 < ne0; i0++) {
  7509. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7510. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7511. }
  7512. }
  7513. }
  7514. }
  7515. static void ggml_compute_forward_add_f16_f32(
  7516. const struct ggml_compute_params * params,
  7517. const struct ggml_tensor * src0,
  7518. const struct ggml_tensor * src1,
  7519. struct ggml_tensor * dst) {
  7520. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7521. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7522. return;
  7523. }
  7524. const int ith = params->ith;
  7525. const int nth = params->nth;
  7526. const int nr = ggml_nrows(src0);
  7527. GGML_TENSOR_BINARY_OP_LOCALS
  7528. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7529. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7530. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7531. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7532. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7533. // rows per thread
  7534. const int dr = (nr + nth - 1)/nth;
  7535. // row range for this thread
  7536. const int ir0 = dr*ith;
  7537. const int ir1 = MIN(ir0 + dr, nr);
  7538. if (nb10 == sizeof(float)) {
  7539. for (int ir = ir0; ir < ir1; ++ir) {
  7540. // src0, src1 and dst are same shape => same indices
  7541. const int i3 = ir/(ne2*ne1);
  7542. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7543. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7544. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7545. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7546. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7547. for (int i = 0; i < ne0; i++) {
  7548. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7549. }
  7550. }
  7551. }
  7552. else {
  7553. // src1 is not contiguous
  7554. GGML_ASSERT(false);
  7555. }
  7556. }
  7557. static void ggml_compute_forward_add_f16_f16(
  7558. const struct ggml_compute_params * params,
  7559. const struct ggml_tensor * src0,
  7560. const struct ggml_tensor * src1,
  7561. struct ggml_tensor * dst) {
  7562. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7563. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7564. return;
  7565. }
  7566. const int ith = params->ith;
  7567. const int nth = params->nth;
  7568. const int nr = ggml_nrows(src0);
  7569. GGML_TENSOR_BINARY_OP_LOCALS
  7570. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7571. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7572. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7573. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7574. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7575. // rows per thread
  7576. const int dr = (nr + nth - 1)/nth;
  7577. // row range for this thread
  7578. const int ir0 = dr*ith;
  7579. const int ir1 = MIN(ir0 + dr, nr);
  7580. if (nb10 == sizeof(ggml_fp16_t)) {
  7581. for (int ir = ir0; ir < ir1; ++ir) {
  7582. // src0, src1 and dst are same shape => same indices
  7583. const int i3 = ir/(ne2*ne1);
  7584. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7585. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7586. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7587. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7588. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7589. for (int i = 0; i < ne0; i++) {
  7590. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7591. }
  7592. }
  7593. }
  7594. else {
  7595. // src1 is not contiguous
  7596. GGML_ASSERT(false);
  7597. }
  7598. }
  7599. static void ggml_compute_forward_add_q_f32(
  7600. const struct ggml_compute_params * params,
  7601. const struct ggml_tensor * src0,
  7602. const struct ggml_tensor * src1,
  7603. struct ggml_tensor * dst) {
  7604. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7605. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7606. return;
  7607. }
  7608. const int nr = ggml_nrows(src0);
  7609. GGML_TENSOR_BINARY_OP_LOCALS
  7610. const int ith = params->ith;
  7611. const int nth = params->nth;
  7612. const enum ggml_type type = src0->type;
  7613. const enum ggml_type dtype = dst->type;
  7614. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7615. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7616. // we don't support permuted src0 or src1
  7617. GGML_ASSERT(nb00 == ggml_type_size(type));
  7618. GGML_ASSERT(nb10 == sizeof(float));
  7619. // dst cannot be transposed or permuted
  7620. GGML_ASSERT(nb0 <= nb1);
  7621. GGML_ASSERT(nb1 <= nb2);
  7622. GGML_ASSERT(nb2 <= nb3);
  7623. GGML_ASSERT(ggml_is_quantized(src0->type));
  7624. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7625. // rows per thread
  7626. const int dr = (nr + nth - 1)/nth;
  7627. // row range for this thread
  7628. const int ir0 = dr*ith;
  7629. const int ir1 = MIN(ir0 + dr, nr);
  7630. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7631. for (int ir = ir0; ir < ir1; ++ir) {
  7632. // src0 indices
  7633. const int i03 = ir/(ne02*ne01);
  7634. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7635. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7636. // src1 and dst are same shape as src0 => same indices
  7637. const int i13 = i03;
  7638. const int i12 = i02;
  7639. const int i11 = i01;
  7640. const int i3 = i03;
  7641. const int i2 = i02;
  7642. const int i1 = i01;
  7643. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7644. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7645. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7646. assert(ne00 % 32 == 0);
  7647. // unquantize row from src0 to temp buffer
  7648. dequantize_row_q(src0_row, wdata, ne00);
  7649. // add src1
  7650. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7651. // quantize row to dst
  7652. if (quantize_row_q != NULL) {
  7653. quantize_row_q(wdata, dst_row, ne00);
  7654. } else {
  7655. memcpy(dst_row, wdata, ne0*nb0);
  7656. }
  7657. }
  7658. }
  7659. static void ggml_compute_forward_add(
  7660. const struct ggml_compute_params * params,
  7661. const struct ggml_tensor * src0,
  7662. const struct ggml_tensor * src1,
  7663. struct ggml_tensor * dst) {
  7664. switch (src0->type) {
  7665. case GGML_TYPE_F32:
  7666. {
  7667. ggml_compute_forward_add_f32(params, src0, src1, dst);
  7668. } break;
  7669. case GGML_TYPE_F16:
  7670. {
  7671. if (src1->type == GGML_TYPE_F16) {
  7672. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  7673. }
  7674. else if (src1->type == GGML_TYPE_F32) {
  7675. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  7676. }
  7677. else {
  7678. GGML_ASSERT(false);
  7679. }
  7680. } break;
  7681. case GGML_TYPE_Q4_0:
  7682. case GGML_TYPE_Q4_1:
  7683. case GGML_TYPE_Q5_0:
  7684. case GGML_TYPE_Q5_1:
  7685. case GGML_TYPE_Q8_0:
  7686. case GGML_TYPE_Q2_K:
  7687. case GGML_TYPE_Q3_K:
  7688. case GGML_TYPE_Q4_K:
  7689. case GGML_TYPE_Q5_K:
  7690. case GGML_TYPE_Q6_K:
  7691. {
  7692. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  7693. } break;
  7694. default:
  7695. {
  7696. GGML_ASSERT(false);
  7697. } break;
  7698. }
  7699. }
  7700. // ggml_compute_forward_add1
  7701. static void ggml_compute_forward_add1_f32(
  7702. const struct ggml_compute_params * params,
  7703. const struct ggml_tensor * src0,
  7704. const struct ggml_tensor * src1,
  7705. struct ggml_tensor * dst) {
  7706. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7707. GGML_ASSERT(ggml_is_scalar(src1));
  7708. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7709. return;
  7710. }
  7711. const int ith = params->ith;
  7712. const int nth = params->nth;
  7713. const int nr = ggml_nrows(src0);
  7714. GGML_TENSOR_UNARY_OP_LOCALS
  7715. GGML_ASSERT( nb0 == sizeof(float));
  7716. GGML_ASSERT(nb00 == sizeof(float));
  7717. // rows per thread
  7718. const int dr = (nr + nth - 1)/nth;
  7719. // row range for this thread
  7720. const int ir0 = dr*ith;
  7721. const int ir1 = MIN(ir0 + dr, nr);
  7722. for (int ir = ir0; ir < ir1; ++ir) {
  7723. // src0 and dst are same shape => same indices
  7724. const int i3 = ir/(ne2*ne1);
  7725. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7726. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7727. #ifdef GGML_USE_ACCELERATE
  7728. UNUSED(ggml_vec_add1_f32);
  7729. vDSP_vadd(
  7730. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7731. (float *) ((char *) src1->data), 0,
  7732. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7733. ne0);
  7734. #else
  7735. ggml_vec_add1_f32(ne0,
  7736. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7737. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7738. *(float *) src1->data);
  7739. #endif
  7740. }
  7741. }
  7742. static void ggml_compute_forward_add1_f16_f32(
  7743. const struct ggml_compute_params * params,
  7744. const struct ggml_tensor * src0,
  7745. const struct ggml_tensor * src1,
  7746. struct ggml_tensor * dst) {
  7747. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7748. GGML_ASSERT(ggml_is_scalar(src1));
  7749. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7750. return;
  7751. }
  7752. // scalar to add
  7753. const float v = *(float *) src1->data;
  7754. const int ith = params->ith;
  7755. const int nth = params->nth;
  7756. const int nr = ggml_nrows(src0);
  7757. GGML_TENSOR_UNARY_OP_LOCALS
  7758. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7759. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7760. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7761. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7762. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7763. // rows per thread
  7764. const int dr = (nr + nth - 1)/nth;
  7765. // row range for this thread
  7766. const int ir0 = dr*ith;
  7767. const int ir1 = MIN(ir0 + dr, nr);
  7768. for (int ir = ir0; ir < ir1; ++ir) {
  7769. // src0 and dst are same shape => same indices
  7770. const int i3 = ir/(ne2*ne1);
  7771. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7772. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7773. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7774. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7775. for (int i = 0; i < ne0; i++) {
  7776. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7777. }
  7778. }
  7779. }
  7780. static void ggml_compute_forward_add1_f16_f16(
  7781. const struct ggml_compute_params * params,
  7782. const struct ggml_tensor * src0,
  7783. const struct ggml_tensor * src1,
  7784. struct ggml_tensor * dst) {
  7785. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7786. GGML_ASSERT(ggml_is_scalar(src1));
  7787. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7788. return;
  7789. }
  7790. // scalar to add
  7791. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7792. const int ith = params->ith;
  7793. const int nth = params->nth;
  7794. const int nr = ggml_nrows(src0);
  7795. GGML_TENSOR_UNARY_OP_LOCALS
  7796. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7797. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7798. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7799. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7800. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7801. // rows per thread
  7802. const int dr = (nr + nth - 1)/nth;
  7803. // row range for this thread
  7804. const int ir0 = dr*ith;
  7805. const int ir1 = MIN(ir0 + dr, nr);
  7806. for (int ir = ir0; ir < ir1; ++ir) {
  7807. // src0 and dst are same shape => same indices
  7808. const int i3 = ir/(ne2*ne1);
  7809. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7810. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7811. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7812. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7813. for (int i = 0; i < ne0; i++) {
  7814. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7815. }
  7816. }
  7817. }
  7818. static void ggml_compute_forward_add1_q_f32(
  7819. const struct ggml_compute_params * params,
  7820. const struct ggml_tensor * src0,
  7821. const struct ggml_tensor * src1,
  7822. struct ggml_tensor * dst) {
  7823. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7824. GGML_ASSERT(ggml_is_scalar(src1));
  7825. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7826. return;
  7827. }
  7828. // scalar to add
  7829. const float v = *(float *) src1->data;
  7830. const int ith = params->ith;
  7831. const int nth = params->nth;
  7832. const int nr = ggml_nrows(src0);
  7833. GGML_TENSOR_UNARY_OP_LOCALS
  7834. const enum ggml_type type = src0->type;
  7835. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7836. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7837. // we don't support permuted src0
  7838. GGML_ASSERT(nb00 == ggml_type_size(type));
  7839. // dst cannot be transposed or permuted
  7840. GGML_ASSERT(nb0 <= nb1);
  7841. GGML_ASSERT(nb1 <= nb2);
  7842. GGML_ASSERT(nb2 <= nb3);
  7843. GGML_ASSERT(ggml_is_quantized(src0->type));
  7844. GGML_ASSERT(dst->type == src0->type);
  7845. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7846. // rows per thread
  7847. const int dr = (nr + nth - 1)/nth;
  7848. // row range for this thread
  7849. const int ir0 = dr*ith;
  7850. const int ir1 = MIN(ir0 + dr, nr);
  7851. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7852. for (int ir = ir0; ir < ir1; ++ir) {
  7853. // src0 and dst are same shape => same indices
  7854. const int i3 = ir/(ne2*ne1);
  7855. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7856. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7857. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7858. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7859. assert(ne0 % 32 == 0);
  7860. // unquantize row from src0 to temp buffer
  7861. dequantize_row_q(src0_row, wdata, ne0);
  7862. // add src1
  7863. ggml_vec_acc1_f32(ne0, wdata, v);
  7864. // quantize row to dst
  7865. quantize_row_q(wdata, dst_row, ne0);
  7866. }
  7867. }
  7868. static void ggml_compute_forward_add1(
  7869. const struct ggml_compute_params * params,
  7870. const struct ggml_tensor * src0,
  7871. const struct ggml_tensor * src1,
  7872. struct ggml_tensor * dst) {
  7873. switch (src0->type) {
  7874. case GGML_TYPE_F32:
  7875. {
  7876. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7877. } break;
  7878. case GGML_TYPE_F16:
  7879. {
  7880. if (src1->type == GGML_TYPE_F16) {
  7881. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7882. }
  7883. else if (src1->type == GGML_TYPE_F32) {
  7884. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7885. }
  7886. else {
  7887. GGML_ASSERT(false);
  7888. }
  7889. } break;
  7890. case GGML_TYPE_Q4_0:
  7891. case GGML_TYPE_Q4_1:
  7892. case GGML_TYPE_Q5_0:
  7893. case GGML_TYPE_Q5_1:
  7894. case GGML_TYPE_Q8_0:
  7895. case GGML_TYPE_Q8_1:
  7896. case GGML_TYPE_Q2_K:
  7897. case GGML_TYPE_Q3_K:
  7898. case GGML_TYPE_Q4_K:
  7899. case GGML_TYPE_Q5_K:
  7900. case GGML_TYPE_Q6_K:
  7901. {
  7902. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7903. } break;
  7904. default:
  7905. {
  7906. GGML_ASSERT(false);
  7907. } break;
  7908. }
  7909. }
  7910. // ggml_compute_forward_acc
  7911. static void ggml_compute_forward_acc_f32(
  7912. const struct ggml_compute_params * params,
  7913. const struct ggml_tensor * src0,
  7914. const struct ggml_tensor * src1,
  7915. struct ggml_tensor * dst) {
  7916. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7917. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7918. // view src0 and dst with these strides and data offset inbytes during acc
  7919. // nb0 is implicitely element_size because src0 and dst are contiguous
  7920. size_t nb1 = ((int32_t *) dst->op_params)[0];
  7921. size_t nb2 = ((int32_t *) dst->op_params)[1];
  7922. size_t nb3 = ((int32_t *) dst->op_params)[2];
  7923. size_t offset = ((int32_t *) dst->op_params)[3];
  7924. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  7925. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7926. // memcpy needs to be synchronized across threads to avoid race conditions.
  7927. // => do it in INIT phase
  7928. memcpy(
  7929. ((char *) dst->data),
  7930. ((char *) src0->data),
  7931. ggml_nbytes(dst));
  7932. }
  7933. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7934. return;
  7935. }
  7936. const int ith = params->ith;
  7937. const int nth = params->nth;
  7938. const int nr = ggml_nrows(src1);
  7939. const int nc = src1->ne[0];
  7940. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  7941. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  7942. // src0 and dst as viewed during acc
  7943. const size_t nb0 = ggml_element_size(src0);
  7944. const size_t nb00 = nb0;
  7945. const size_t nb01 = nb1;
  7946. const size_t nb02 = nb2;
  7947. const size_t nb03 = nb3;
  7948. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7949. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7950. GGML_ASSERT(nb10 == sizeof(float));
  7951. // rows per thread
  7952. const int dr = (nr + nth - 1)/nth;
  7953. // row range for this thread
  7954. const int ir0 = dr*ith;
  7955. const int ir1 = MIN(ir0 + dr, nr);
  7956. for (int ir = ir0; ir < ir1; ++ir) {
  7957. // src0 and dst are viewed with shape of src1 and offset
  7958. // => same indices
  7959. const int i3 = ir/(ne12*ne11);
  7960. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7961. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7962. #ifdef GGML_USE_ACCELERATE
  7963. vDSP_vadd(
  7964. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7965. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7966. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7967. #else
  7968. ggml_vec_add_f32(nc,
  7969. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7970. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7971. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7972. #endif
  7973. }
  7974. }
  7975. static void ggml_compute_forward_acc(
  7976. const struct ggml_compute_params * params,
  7977. const struct ggml_tensor * src0,
  7978. const struct ggml_tensor * src1,
  7979. struct ggml_tensor * dst) {
  7980. switch (src0->type) {
  7981. case GGML_TYPE_F32:
  7982. {
  7983. ggml_compute_forward_acc_f32(params, src0, src1, dst);
  7984. } break;
  7985. case GGML_TYPE_F16:
  7986. case GGML_TYPE_Q4_0:
  7987. case GGML_TYPE_Q4_1:
  7988. case GGML_TYPE_Q5_0:
  7989. case GGML_TYPE_Q5_1:
  7990. case GGML_TYPE_Q8_0:
  7991. case GGML_TYPE_Q8_1:
  7992. case GGML_TYPE_Q2_K:
  7993. case GGML_TYPE_Q3_K:
  7994. case GGML_TYPE_Q4_K:
  7995. case GGML_TYPE_Q5_K:
  7996. case GGML_TYPE_Q6_K:
  7997. default:
  7998. {
  7999. GGML_ASSERT(false);
  8000. } break;
  8001. }
  8002. }
  8003. // ggml_compute_forward_sub
  8004. static void ggml_compute_forward_sub_f32(
  8005. const struct ggml_compute_params * params,
  8006. const struct ggml_tensor * src0,
  8007. const struct ggml_tensor * src1,
  8008. struct ggml_tensor * dst) {
  8009. assert(params->ith == 0);
  8010. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8011. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8012. return;
  8013. }
  8014. const int nr = ggml_nrows(src0);
  8015. GGML_TENSOR_BINARY_OP_LOCALS
  8016. GGML_ASSERT( nb0 == sizeof(float));
  8017. GGML_ASSERT(nb00 == sizeof(float));
  8018. if (nb10 == sizeof(float)) {
  8019. for (int ir = 0; ir < nr; ++ir) {
  8020. // src0, src1 and dst are same shape => same indices
  8021. const int i3 = ir/(ne2*ne1);
  8022. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8023. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8024. #ifdef GGML_USE_ACCELERATE
  8025. vDSP_vsub(
  8026. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8027. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8028. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8029. ne0);
  8030. #else
  8031. ggml_vec_sub_f32(ne0,
  8032. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8033. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8034. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8035. #endif
  8036. // }
  8037. // }
  8038. }
  8039. } else {
  8040. // src1 is not contiguous
  8041. for (int ir = 0; ir < nr; ++ir) {
  8042. // src0, src1 and dst are same shape => same indices
  8043. const int i3 = ir/(ne2*ne1);
  8044. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8045. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8046. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8047. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8048. for (int i0 = 0; i0 < ne0; i0++) {
  8049. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8050. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8051. }
  8052. }
  8053. }
  8054. }
  8055. static void ggml_compute_forward_sub(
  8056. const struct ggml_compute_params * params,
  8057. const struct ggml_tensor * src0,
  8058. const struct ggml_tensor * src1,
  8059. struct ggml_tensor * dst) {
  8060. switch (src0->type) {
  8061. case GGML_TYPE_F32:
  8062. {
  8063. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  8064. } break;
  8065. default:
  8066. {
  8067. GGML_ASSERT(false);
  8068. } break;
  8069. }
  8070. }
  8071. // ggml_compute_forward_mul
  8072. static void ggml_compute_forward_mul_f32(
  8073. const struct ggml_compute_params * params,
  8074. const struct ggml_tensor * src0,
  8075. const struct ggml_tensor * src1,
  8076. struct ggml_tensor * dst) {
  8077. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  8078. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8079. return;
  8080. }
  8081. const int ith = params->ith;
  8082. const int nth = params->nth;
  8083. #ifdef GGML_USE_CLBLAST
  8084. if (src1->backend == GGML_BACKEND_GPU) {
  8085. if (ith == 0) {
  8086. ggml_cl_mul(src0, src1, dst);
  8087. }
  8088. return;
  8089. }
  8090. #endif
  8091. const int64_t nr = ggml_nrows(src0);
  8092. GGML_TENSOR_BINARY_OP_LOCALS
  8093. GGML_ASSERT( nb0 == sizeof(float));
  8094. GGML_ASSERT(nb00 == sizeof(float));
  8095. GGML_ASSERT(ne00 == ne10);
  8096. if (nb10 == sizeof(float)) {
  8097. for (int64_t ir = ith; ir < nr; ir += nth) {
  8098. // src0 and dst are same shape => same indices
  8099. const int64_t i03 = ir/(ne02*ne01);
  8100. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8101. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8102. const int64_t i13 = i03 % ne13;
  8103. const int64_t i12 = i02 % ne12;
  8104. const int64_t i11 = i01 % ne11;
  8105. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8106. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8107. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8108. #ifdef GGML_USE_ACCELERATE
  8109. UNUSED(ggml_vec_mul_f32);
  8110. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  8111. #else
  8112. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  8113. #endif
  8114. // }
  8115. // }
  8116. }
  8117. } else {
  8118. // src1 is not contiguous
  8119. for (int64_t ir = ith; ir < nr; ir += nth) {
  8120. // src0 and dst are same shape => same indices
  8121. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8122. const int64_t i03 = ir/(ne02*ne01);
  8123. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8124. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8125. const int64_t i13 = i03 % ne13;
  8126. const int64_t i12 = i02 % ne12;
  8127. const int64_t i11 = i01 % ne11;
  8128. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8129. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8130. for (int64_t i0 = 0; i0 < ne00; i0++) {
  8131. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  8132. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8133. }
  8134. }
  8135. }
  8136. }
  8137. static void ggml_compute_forward_mul(
  8138. const struct ggml_compute_params * params,
  8139. const struct ggml_tensor * src0,
  8140. const struct ggml_tensor * src1,
  8141. struct ggml_tensor * dst) {
  8142. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8143. switch (src0->type) {
  8144. case GGML_TYPE_F32:
  8145. {
  8146. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  8147. } break;
  8148. default:
  8149. {
  8150. GGML_ASSERT(false);
  8151. } break;
  8152. }
  8153. }
  8154. // ggml_compute_forward_div
  8155. static void ggml_compute_forward_div_f32(
  8156. const struct ggml_compute_params * params,
  8157. const struct ggml_tensor * src0,
  8158. const struct ggml_tensor * src1,
  8159. struct ggml_tensor * dst) {
  8160. assert(params->ith == 0);
  8161. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8163. return;
  8164. }
  8165. const int nr = ggml_nrows(src0);
  8166. GGML_TENSOR_BINARY_OP_LOCALS
  8167. GGML_ASSERT( nb0 == sizeof(float));
  8168. GGML_ASSERT(nb00 == sizeof(float));
  8169. if (nb10 == sizeof(float)) {
  8170. for (int ir = 0; ir < nr; ++ir) {
  8171. // src0, src1 and dst are same shape => same indices
  8172. const int i3 = ir/(ne2*ne1);
  8173. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8174. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8175. #ifdef GGML_USE_ACCELERATE
  8176. UNUSED(ggml_vec_div_f32);
  8177. vDSP_vdiv(
  8178. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8179. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8180. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8181. ne0);
  8182. #else
  8183. ggml_vec_div_f32(ne0,
  8184. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8185. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8186. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8187. #endif
  8188. // }
  8189. // }
  8190. }
  8191. } else {
  8192. // src1 is not contiguous
  8193. for (int ir = 0; ir < nr; ++ir) {
  8194. // src0, src1 and dst are same shape => same indices
  8195. const int i3 = ir/(ne2*ne1);
  8196. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8197. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8198. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8199. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8200. for (int i0 = 0; i0 < ne0; i0++) {
  8201. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8202. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8203. }
  8204. }
  8205. }
  8206. }
  8207. static void ggml_compute_forward_div(
  8208. const struct ggml_compute_params * params,
  8209. const struct ggml_tensor * src0,
  8210. const struct ggml_tensor * src1,
  8211. struct ggml_tensor * dst) {
  8212. switch (src0->type) {
  8213. case GGML_TYPE_F32:
  8214. {
  8215. ggml_compute_forward_div_f32(params, src0, src1, dst);
  8216. } break;
  8217. default:
  8218. {
  8219. GGML_ASSERT(false);
  8220. } break;
  8221. }
  8222. }
  8223. // ggml_compute_forward_sqr
  8224. static void ggml_compute_forward_sqr_f32(
  8225. const struct ggml_compute_params * params,
  8226. const struct ggml_tensor * src0,
  8227. struct ggml_tensor * dst) {
  8228. assert(params->ith == 0);
  8229. assert(ggml_are_same_shape(src0, dst));
  8230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8231. return;
  8232. }
  8233. const int n = ggml_nrows(src0);
  8234. const int nc = src0->ne[0];
  8235. assert( dst->nb[0] == sizeof(float));
  8236. assert(src0->nb[0] == sizeof(float));
  8237. for (int i = 0; i < n; i++) {
  8238. ggml_vec_sqr_f32(nc,
  8239. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8240. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8241. }
  8242. }
  8243. static void ggml_compute_forward_sqr(
  8244. const struct ggml_compute_params * params,
  8245. const struct ggml_tensor * src0,
  8246. struct ggml_tensor * dst) {
  8247. switch (src0->type) {
  8248. case GGML_TYPE_F32:
  8249. {
  8250. ggml_compute_forward_sqr_f32(params, src0, dst);
  8251. } break;
  8252. default:
  8253. {
  8254. GGML_ASSERT(false);
  8255. } break;
  8256. }
  8257. }
  8258. // ggml_compute_forward_sqrt
  8259. static void ggml_compute_forward_sqrt_f32(
  8260. const struct ggml_compute_params * params,
  8261. const struct ggml_tensor * src0,
  8262. struct ggml_tensor * dst) {
  8263. assert(params->ith == 0);
  8264. assert(ggml_are_same_shape(src0, dst));
  8265. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8266. return;
  8267. }
  8268. const int n = ggml_nrows(src0);
  8269. const int nc = src0->ne[0];
  8270. assert( dst->nb[0] == sizeof(float));
  8271. assert(src0->nb[0] == sizeof(float));
  8272. for (int i = 0; i < n; i++) {
  8273. ggml_vec_sqrt_f32(nc,
  8274. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8275. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8276. }
  8277. }
  8278. static void ggml_compute_forward_sqrt(
  8279. const struct ggml_compute_params * params,
  8280. const struct ggml_tensor * src0,
  8281. struct ggml_tensor * dst) {
  8282. switch (src0->type) {
  8283. case GGML_TYPE_F32:
  8284. {
  8285. ggml_compute_forward_sqrt_f32(params, src0, dst);
  8286. } break;
  8287. default:
  8288. {
  8289. GGML_ASSERT(false);
  8290. } break;
  8291. }
  8292. }
  8293. // ggml_compute_forward_log
  8294. static void ggml_compute_forward_log_f32(
  8295. const struct ggml_compute_params * params,
  8296. const struct ggml_tensor * src0,
  8297. struct ggml_tensor * dst) {
  8298. GGML_ASSERT(params->ith == 0);
  8299. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8300. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8301. return;
  8302. }
  8303. const int n = ggml_nrows(src0);
  8304. const int nc = src0->ne[0];
  8305. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8306. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8307. for (int i = 0; i < n; i++) {
  8308. ggml_vec_log_f32(nc,
  8309. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8310. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8311. }
  8312. }
  8313. static void ggml_compute_forward_log(
  8314. const struct ggml_compute_params * params,
  8315. const struct ggml_tensor * src0,
  8316. struct ggml_tensor * dst) {
  8317. switch (src0->type) {
  8318. case GGML_TYPE_F32:
  8319. {
  8320. ggml_compute_forward_log_f32(params, src0, dst);
  8321. } break;
  8322. default:
  8323. {
  8324. GGML_ASSERT(false);
  8325. } break;
  8326. }
  8327. }
  8328. // ggml_compute_forward_sum
  8329. static void ggml_compute_forward_sum_f32(
  8330. const struct ggml_compute_params * params,
  8331. const struct ggml_tensor * src0,
  8332. struct ggml_tensor * dst) {
  8333. assert(params->ith == 0);
  8334. assert(ggml_is_scalar(dst));
  8335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8336. return;
  8337. }
  8338. assert(ggml_is_scalar(dst));
  8339. assert(src0->nb[0] == sizeof(float));
  8340. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8341. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8342. ggml_float sum = 0;
  8343. ggml_float row_sum = 0;
  8344. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8346. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8347. ggml_vec_sum_f32_ggf(ne00,
  8348. &row_sum,
  8349. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8350. sum += row_sum;
  8351. }
  8352. }
  8353. }
  8354. ((float *) dst->data)[0] = sum;
  8355. }
  8356. static void ggml_compute_forward_sum_f16(
  8357. const struct ggml_compute_params * params,
  8358. const struct ggml_tensor * src0,
  8359. struct ggml_tensor * dst) {
  8360. assert(params->ith == 0);
  8361. assert(ggml_is_scalar(dst));
  8362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8363. return;
  8364. }
  8365. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8366. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8367. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8368. float sum = 0;
  8369. float row_sum = 0;
  8370. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8371. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8372. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8373. ggml_vec_sum_f16_ggf(ne00,
  8374. &row_sum,
  8375. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8376. sum += row_sum;
  8377. }
  8378. }
  8379. }
  8380. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8381. }
  8382. static void ggml_compute_forward_sum(
  8383. const struct ggml_compute_params * params,
  8384. const struct ggml_tensor * src0,
  8385. struct ggml_tensor * dst) {
  8386. switch (src0->type) {
  8387. case GGML_TYPE_F32:
  8388. {
  8389. ggml_compute_forward_sum_f32(params, src0, dst);
  8390. } break;
  8391. case GGML_TYPE_F16:
  8392. {
  8393. ggml_compute_forward_sum_f16(params, src0, dst);
  8394. } break;
  8395. default:
  8396. {
  8397. GGML_ASSERT(false);
  8398. } break;
  8399. }
  8400. }
  8401. // ggml_compute_forward_sum_rows
  8402. static void ggml_compute_forward_sum_rows_f32(
  8403. const struct ggml_compute_params * params,
  8404. const struct ggml_tensor * src0,
  8405. struct ggml_tensor * dst) {
  8406. GGML_ASSERT(params->ith == 0);
  8407. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8408. return;
  8409. }
  8410. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8411. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8412. GGML_TENSOR_UNARY_OP_LOCALS
  8413. GGML_ASSERT(ne0 == 1);
  8414. GGML_ASSERT(ne1 == ne01);
  8415. GGML_ASSERT(ne2 == ne02);
  8416. GGML_ASSERT(ne3 == ne03);
  8417. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8418. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8419. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8420. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8421. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8422. float row_sum = 0;
  8423. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8424. dst_row[0] = row_sum;
  8425. }
  8426. }
  8427. }
  8428. }
  8429. static void ggml_compute_forward_sum_rows(
  8430. const struct ggml_compute_params * params,
  8431. const struct ggml_tensor * src0,
  8432. struct ggml_tensor * dst) {
  8433. switch (src0->type) {
  8434. case GGML_TYPE_F32:
  8435. {
  8436. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  8437. } break;
  8438. default:
  8439. {
  8440. GGML_ASSERT(false);
  8441. } break;
  8442. }
  8443. }
  8444. // ggml_compute_forward_mean
  8445. static void ggml_compute_forward_mean_f32(
  8446. const struct ggml_compute_params * params,
  8447. const struct ggml_tensor * src0,
  8448. struct ggml_tensor * dst) {
  8449. assert(params->ith == 0);
  8450. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8451. return;
  8452. }
  8453. assert(src0->nb[0] == sizeof(float));
  8454. GGML_TENSOR_UNARY_OP_LOCALS
  8455. assert(ne0 == 1);
  8456. assert(ne1 == ne01);
  8457. assert(ne2 == ne02);
  8458. assert(ne3 == ne03);
  8459. UNUSED(ne0);
  8460. UNUSED(ne1);
  8461. UNUSED(ne2);
  8462. UNUSED(ne3);
  8463. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8464. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8465. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8466. ggml_vec_sum_f32(ne00,
  8467. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8468. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8469. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8470. }
  8471. }
  8472. }
  8473. }
  8474. static void ggml_compute_forward_mean(
  8475. const struct ggml_compute_params * params,
  8476. const struct ggml_tensor * src0,
  8477. struct ggml_tensor * dst) {
  8478. switch (src0->type) {
  8479. case GGML_TYPE_F32:
  8480. {
  8481. ggml_compute_forward_mean_f32(params, src0, dst);
  8482. } break;
  8483. default:
  8484. {
  8485. GGML_ASSERT(false);
  8486. } break;
  8487. }
  8488. }
  8489. // ggml_compute_forward_argmax
  8490. static void ggml_compute_forward_argmax_f32(
  8491. const struct ggml_compute_params * params,
  8492. const struct ggml_tensor * src0,
  8493. struct ggml_tensor * dst) {
  8494. assert(params->ith == 0);
  8495. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8496. return;
  8497. }
  8498. assert(src0->nb[0] == sizeof(float));
  8499. assert(dst->nb[0] == sizeof(float));
  8500. const int64_t ne00 = src0->ne[0];
  8501. const int64_t ne01 = src0->ne[1];
  8502. const size_t nb01 = src0->nb[1];
  8503. const size_t nb0 = dst->nb[0];
  8504. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8505. float * src = (float *) ((char *) src0->data + i1*nb01);
  8506. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8507. int v = 0;
  8508. ggml_vec_argmax_f32(ne00, &v, src);
  8509. dst_[0] = v;
  8510. }
  8511. }
  8512. static void ggml_compute_forward_argmax(
  8513. const struct ggml_compute_params * params,
  8514. const struct ggml_tensor * src0,
  8515. struct ggml_tensor * dst) {
  8516. switch (src0->type) {
  8517. case GGML_TYPE_F32:
  8518. {
  8519. ggml_compute_forward_argmax_f32(params, src0, dst);
  8520. } break;
  8521. default:
  8522. {
  8523. GGML_ASSERT(false);
  8524. } break;
  8525. }
  8526. }
  8527. // ggml_compute_forward_repeat
  8528. static void ggml_compute_forward_repeat_f32(
  8529. const struct ggml_compute_params * params,
  8530. const struct ggml_tensor * src0,
  8531. struct ggml_tensor * dst) {
  8532. GGML_ASSERT(params->ith == 0);
  8533. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8534. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8535. return;
  8536. }
  8537. GGML_TENSOR_UNARY_OP_LOCALS
  8538. // guaranteed to be an integer due to the check in ggml_can_repeat
  8539. const int nr0 = (int)(ne0/ne00);
  8540. const int nr1 = (int)(ne1/ne01);
  8541. const int nr2 = (int)(ne2/ne02);
  8542. const int nr3 = (int)(ne3/ne03);
  8543. // TODO: support for transposed / permuted tensors
  8544. GGML_ASSERT(nb0 == sizeof(float));
  8545. GGML_ASSERT(nb00 == sizeof(float));
  8546. // TODO: maybe this is not optimal?
  8547. for (int i3 = 0; i3 < nr3; i3++) {
  8548. for (int k3 = 0; k3 < ne03; k3++) {
  8549. for (int i2 = 0; i2 < nr2; i2++) {
  8550. for (int k2 = 0; k2 < ne02; k2++) {
  8551. for (int i1 = 0; i1 < nr1; i1++) {
  8552. for (int k1 = 0; k1 < ne01; k1++) {
  8553. for (int i0 = 0; i0 < nr0; i0++) {
  8554. ggml_vec_cpy_f32(ne00,
  8555. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8556. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8557. }
  8558. }
  8559. }
  8560. }
  8561. }
  8562. }
  8563. }
  8564. }
  8565. static void ggml_compute_forward_repeat_f16(
  8566. const struct ggml_compute_params * params,
  8567. const struct ggml_tensor * src0,
  8568. struct ggml_tensor * dst) {
  8569. GGML_ASSERT(params->ith == 0);
  8570. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8571. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8572. return;
  8573. }
  8574. GGML_TENSOR_UNARY_OP_LOCALS;
  8575. // guaranteed to be an integer due to the check in ggml_can_repeat
  8576. const int nr0 = (int)(ne0/ne00);
  8577. const int nr1 = (int)(ne1/ne01);
  8578. const int nr2 = (int)(ne2/ne02);
  8579. const int nr3 = (int)(ne3/ne03);
  8580. // TODO: support for transposed / permuted tensors
  8581. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8582. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8583. // TODO: maybe this is not optimal?
  8584. for (int i3 = 0; i3 < nr3; i3++) {
  8585. for (int k3 = 0; k3 < ne03; k3++) {
  8586. for (int i2 = 0; i2 < nr2; i2++) {
  8587. for (int k2 = 0; k2 < ne02; k2++) {
  8588. for (int i1 = 0; i1 < nr1; i1++) {
  8589. for (int k1 = 0; k1 < ne01; k1++) {
  8590. for (int i0 = 0; i0 < nr0; i0++) {
  8591. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8592. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8593. // ggml_vec_cpy_f16(ne00, y, x)
  8594. for (int i = 0; i < ne00; ++i) {
  8595. y[i] = x[i];
  8596. }
  8597. }
  8598. }
  8599. }
  8600. }
  8601. }
  8602. }
  8603. }
  8604. }
  8605. static void ggml_compute_forward_repeat(
  8606. const struct ggml_compute_params * params,
  8607. const struct ggml_tensor * src0,
  8608. struct ggml_tensor * dst) {
  8609. switch (src0->type) {
  8610. case GGML_TYPE_F16:
  8611. {
  8612. ggml_compute_forward_repeat_f16(params, src0, dst);
  8613. } break;
  8614. case GGML_TYPE_F32:
  8615. {
  8616. ggml_compute_forward_repeat_f32(params, src0, dst);
  8617. } break;
  8618. default:
  8619. {
  8620. GGML_ASSERT(false);
  8621. } break;
  8622. }
  8623. }
  8624. // ggml_compute_forward_repeat_back
  8625. static void ggml_compute_forward_repeat_back_f32(
  8626. const struct ggml_compute_params * params,
  8627. const struct ggml_tensor * src0,
  8628. struct ggml_tensor * dst) {
  8629. GGML_ASSERT(params->ith == 0);
  8630. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8632. return;
  8633. }
  8634. GGML_TENSOR_UNARY_OP_LOCALS
  8635. // guaranteed to be an integer due to the check in ggml_can_repeat
  8636. const int nr0 = (int)(ne00/ne0);
  8637. const int nr1 = (int)(ne01/ne1);
  8638. const int nr2 = (int)(ne02/ne2);
  8639. const int nr3 = (int)(ne03/ne3);
  8640. // TODO: support for transposed / permuted tensors
  8641. GGML_ASSERT(nb0 == sizeof(float));
  8642. GGML_ASSERT(nb00 == sizeof(float));
  8643. if (ggml_is_contiguous(dst)) {
  8644. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8645. } else {
  8646. for (int k3 = 0; k3 < ne3; k3++) {
  8647. for (int k2 = 0; k2 < ne2; k2++) {
  8648. for (int k1 = 0; k1 < ne1; k1++) {
  8649. ggml_vec_set_f32(ne0,
  8650. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8651. 0);
  8652. }
  8653. }
  8654. }
  8655. }
  8656. // TODO: maybe this is not optimal?
  8657. for (int i3 = 0; i3 < nr3; i3++) {
  8658. for (int k3 = 0; k3 < ne3; k3++) {
  8659. for (int i2 = 0; i2 < nr2; i2++) {
  8660. for (int k2 = 0; k2 < ne2; k2++) {
  8661. for (int i1 = 0; i1 < nr1; i1++) {
  8662. for (int k1 = 0; k1 < ne1; k1++) {
  8663. for (int i0 = 0; i0 < nr0; i0++) {
  8664. ggml_vec_acc_f32(ne0,
  8665. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8666. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8667. }
  8668. }
  8669. }
  8670. }
  8671. }
  8672. }
  8673. }
  8674. }
  8675. static void ggml_compute_forward_repeat_back(
  8676. const struct ggml_compute_params * params,
  8677. const struct ggml_tensor * src0,
  8678. struct ggml_tensor * dst) {
  8679. switch (src0->type) {
  8680. case GGML_TYPE_F32:
  8681. {
  8682. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  8683. } break;
  8684. default:
  8685. {
  8686. GGML_ASSERT(false);
  8687. } break;
  8688. }
  8689. }
  8690. // ggml_compute_forward_concat
  8691. static void ggml_compute_forward_concat_f32(
  8692. const struct ggml_compute_params * params,
  8693. const struct ggml_tensor * src0,
  8694. const struct ggml_tensor * src1,
  8695. struct ggml_tensor * dst) {
  8696. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8697. return;
  8698. }
  8699. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8700. const int ith = params->ith;
  8701. GGML_TENSOR_BINARY_OP_LOCALS
  8702. // TODO: support for transposed / permuted tensors
  8703. GGML_ASSERT(nb0 == sizeof(float));
  8704. GGML_ASSERT(nb00 == sizeof(float));
  8705. GGML_ASSERT(nb10 == sizeof(float));
  8706. for (int i3 = 0; i3 < ne3; i3++) {
  8707. for (int i2 = ith; i2 < ne2; i2++) {
  8708. if (i2 < ne02) { // src0
  8709. for (int i1 = 0; i1 < ne1; i1++) {
  8710. for (int i0 = 0; i0 < ne0; i0++) {
  8711. const float * x = (float *)((char *) src0->data + i0 * nb00 + i1 * nb01 + i2 * nb02 + i3 * nb03);
  8712. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8713. *y = *x;
  8714. }
  8715. }
  8716. } // src1
  8717. else {
  8718. for (int i1 = 0; i1 < ne1; i1++) {
  8719. for (int i0 = 0; i0 < ne0; i0++) {
  8720. const float * x = (float *)((char *) src1->data + i0 * nb10 + i1 * nb11 + (i2 - ne02) * nb12 + i3 * nb13);
  8721. float * y = (float *)((char *)dst->data + i0 * nb0 + i1 * nb1 + i2 * nb2 + i3 * nb3);
  8722. *y = *x;
  8723. }
  8724. }
  8725. }
  8726. }
  8727. }
  8728. }
  8729. static void ggml_compute_forward_concat(
  8730. const struct ggml_compute_params* params,
  8731. const struct ggml_tensor* src0,
  8732. const struct ggml_tensor* src1,
  8733. struct ggml_tensor* dst) {
  8734. switch (src0->type) {
  8735. case GGML_TYPE_F32:
  8736. {
  8737. ggml_compute_forward_concat_f32(params, src0, src1, dst);
  8738. } break;
  8739. default:
  8740. {
  8741. GGML_ASSERT(false);
  8742. } break;
  8743. }
  8744. }
  8745. // ggml_compute_forward_abs
  8746. static void ggml_compute_forward_abs_f32(
  8747. const struct ggml_compute_params * params,
  8748. const struct ggml_tensor * src0,
  8749. struct ggml_tensor * dst) {
  8750. assert(params->ith == 0);
  8751. assert(ggml_are_same_shape(src0, dst));
  8752. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8753. return;
  8754. }
  8755. const int n = ggml_nrows(src0);
  8756. const int nc = src0->ne[0];
  8757. assert(dst->nb[0] == sizeof(float));
  8758. assert(src0->nb[0] == sizeof(float));
  8759. for (int i = 0; i < n; i++) {
  8760. ggml_vec_abs_f32(nc,
  8761. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8762. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8763. }
  8764. }
  8765. static void ggml_compute_forward_abs(
  8766. const struct ggml_compute_params * params,
  8767. const struct ggml_tensor * src0,
  8768. struct ggml_tensor * dst) {
  8769. switch (src0->type) {
  8770. case GGML_TYPE_F32:
  8771. {
  8772. ggml_compute_forward_abs_f32(params, src0, dst);
  8773. } break;
  8774. default:
  8775. {
  8776. GGML_ASSERT(false);
  8777. } break;
  8778. }
  8779. }
  8780. // ggml_compute_forward_sgn
  8781. static void ggml_compute_forward_sgn_f32(
  8782. const struct ggml_compute_params * params,
  8783. const struct ggml_tensor * src0,
  8784. struct ggml_tensor * dst) {
  8785. assert(params->ith == 0);
  8786. assert(ggml_are_same_shape(src0, dst));
  8787. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8788. return;
  8789. }
  8790. const int n = ggml_nrows(src0);
  8791. const int nc = src0->ne[0];
  8792. assert(dst->nb[0] == sizeof(float));
  8793. assert(src0->nb[0] == sizeof(float));
  8794. for (int i = 0; i < n; i++) {
  8795. ggml_vec_sgn_f32(nc,
  8796. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8797. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8798. }
  8799. }
  8800. static void ggml_compute_forward_sgn(
  8801. const struct ggml_compute_params * params,
  8802. const struct ggml_tensor * src0,
  8803. struct ggml_tensor * dst) {
  8804. switch (src0->type) {
  8805. case GGML_TYPE_F32:
  8806. {
  8807. ggml_compute_forward_sgn_f32(params, src0, dst);
  8808. } break;
  8809. default:
  8810. {
  8811. GGML_ASSERT(false);
  8812. } break;
  8813. }
  8814. }
  8815. // ggml_compute_forward_neg
  8816. static void ggml_compute_forward_neg_f32(
  8817. const struct ggml_compute_params * params,
  8818. const struct ggml_tensor * src0,
  8819. struct ggml_tensor * dst) {
  8820. assert(params->ith == 0);
  8821. assert(ggml_are_same_shape(src0, dst));
  8822. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8823. return;
  8824. }
  8825. const int n = ggml_nrows(src0);
  8826. const int nc = src0->ne[0];
  8827. assert(dst->nb[0] == sizeof(float));
  8828. assert(src0->nb[0] == sizeof(float));
  8829. for (int i = 0; i < n; i++) {
  8830. ggml_vec_neg_f32(nc,
  8831. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8832. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8833. }
  8834. }
  8835. static void ggml_compute_forward_neg(
  8836. const struct ggml_compute_params * params,
  8837. const struct ggml_tensor * src0,
  8838. struct ggml_tensor * dst) {
  8839. switch (src0->type) {
  8840. case GGML_TYPE_F32:
  8841. {
  8842. ggml_compute_forward_neg_f32(params, src0, dst);
  8843. } break;
  8844. default:
  8845. {
  8846. GGML_ASSERT(false);
  8847. } break;
  8848. }
  8849. }
  8850. // ggml_compute_forward_step
  8851. static void ggml_compute_forward_step_f32(
  8852. const struct ggml_compute_params * params,
  8853. const struct ggml_tensor * src0,
  8854. struct ggml_tensor * dst) {
  8855. assert(params->ith == 0);
  8856. assert(ggml_are_same_shape(src0, dst));
  8857. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8858. return;
  8859. }
  8860. const int n = ggml_nrows(src0);
  8861. const int nc = src0->ne[0];
  8862. assert(dst->nb[0] == sizeof(float));
  8863. assert(src0->nb[0] == sizeof(float));
  8864. for (int i = 0; i < n; i++) {
  8865. ggml_vec_step_f32(nc,
  8866. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8867. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8868. }
  8869. }
  8870. static void ggml_compute_forward_step(
  8871. const struct ggml_compute_params * params,
  8872. const struct ggml_tensor * src0,
  8873. struct ggml_tensor * dst) {
  8874. switch (src0->type) {
  8875. case GGML_TYPE_F32:
  8876. {
  8877. ggml_compute_forward_step_f32(params, src0, dst);
  8878. } break;
  8879. default:
  8880. {
  8881. GGML_ASSERT(false);
  8882. } break;
  8883. }
  8884. }
  8885. // ggml_compute_forward_tanh
  8886. static void ggml_compute_forward_tanh_f32(
  8887. const struct ggml_compute_params * params,
  8888. const struct ggml_tensor * src0,
  8889. struct ggml_tensor * dst) {
  8890. assert(params->ith == 0);
  8891. assert(ggml_are_same_shape(src0, dst));
  8892. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8893. return;
  8894. }
  8895. const int n = ggml_nrows(src0);
  8896. const int nc = src0->ne[0];
  8897. assert(dst->nb[0] == sizeof(float));
  8898. assert(src0->nb[0] == sizeof(float));
  8899. for (int i = 0; i < n; i++) {
  8900. ggml_vec_tanh_f32(nc,
  8901. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8902. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8903. }
  8904. }
  8905. static void ggml_compute_forward_tanh(
  8906. const struct ggml_compute_params * params,
  8907. const struct ggml_tensor * src0,
  8908. struct ggml_tensor * dst) {
  8909. switch (src0->type) {
  8910. case GGML_TYPE_F32:
  8911. {
  8912. ggml_compute_forward_tanh_f32(params, src0, dst);
  8913. } break;
  8914. default:
  8915. {
  8916. GGML_ASSERT(false);
  8917. } break;
  8918. }
  8919. }
  8920. // ggml_compute_forward_elu
  8921. static void ggml_compute_forward_elu_f32(
  8922. const struct ggml_compute_params * params,
  8923. const struct ggml_tensor * src0,
  8924. struct ggml_tensor * dst) {
  8925. assert(params->ith == 0);
  8926. assert(ggml_are_same_shape(src0, dst));
  8927. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8928. return;
  8929. }
  8930. const int n = ggml_nrows(src0);
  8931. const int nc = src0->ne[0];
  8932. assert(dst->nb[0] == sizeof(float));
  8933. assert(src0->nb[0] == sizeof(float));
  8934. for (int i = 0; i < n; i++) {
  8935. ggml_vec_elu_f32(nc,
  8936. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8937. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8938. }
  8939. }
  8940. static void ggml_compute_forward_elu(
  8941. const struct ggml_compute_params * params,
  8942. const struct ggml_tensor * src0,
  8943. struct ggml_tensor * dst) {
  8944. switch (src0->type) {
  8945. case GGML_TYPE_F32:
  8946. {
  8947. ggml_compute_forward_elu_f32(params, src0, dst);
  8948. } break;
  8949. default:
  8950. {
  8951. GGML_ASSERT(false);
  8952. } break;
  8953. }
  8954. }
  8955. // ggml_compute_forward_relu
  8956. static void ggml_compute_forward_relu_f32(
  8957. const struct ggml_compute_params * params,
  8958. const struct ggml_tensor * src0,
  8959. struct ggml_tensor * dst) {
  8960. assert(params->ith == 0);
  8961. assert(ggml_are_same_shape(src0, dst));
  8962. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8963. return;
  8964. }
  8965. const int n = ggml_nrows(src0);
  8966. const int nc = src0->ne[0];
  8967. assert(dst->nb[0] == sizeof(float));
  8968. assert(src0->nb[0] == sizeof(float));
  8969. for (int i = 0; i < n; i++) {
  8970. ggml_vec_relu_f32(nc,
  8971. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8972. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8973. }
  8974. }
  8975. static void ggml_compute_forward_relu(
  8976. const struct ggml_compute_params * params,
  8977. const struct ggml_tensor * src0,
  8978. struct ggml_tensor * dst) {
  8979. switch (src0->type) {
  8980. case GGML_TYPE_F32:
  8981. {
  8982. ggml_compute_forward_relu_f32(params, src0, dst);
  8983. } break;
  8984. default:
  8985. {
  8986. GGML_ASSERT(false);
  8987. } break;
  8988. }
  8989. }
  8990. // ggml_compute_forward_gelu
  8991. static void ggml_compute_forward_gelu_f32(
  8992. const struct ggml_compute_params * params,
  8993. const struct ggml_tensor * src0,
  8994. struct ggml_tensor * dst) {
  8995. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  8996. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  8997. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8998. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8999. return;
  9000. }
  9001. const int ith = params->ith;
  9002. const int nth = params->nth;
  9003. const int nc = src0->ne[0];
  9004. const int nr = ggml_nrows(src0);
  9005. // rows per thread
  9006. const int dr = (nr + nth - 1)/nth;
  9007. // row range for this thread
  9008. const int ir0 = dr*ith;
  9009. const int ir1 = MIN(ir0 + dr, nr);
  9010. for (int i1 = ir0; i1 < ir1; i1++) {
  9011. ggml_vec_gelu_f32(nc,
  9012. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9013. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9014. #ifndef NDEBUG
  9015. for (int k = 0; k < nc; k++) {
  9016. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9017. UNUSED(x);
  9018. assert(!isnan(x));
  9019. assert(!isinf(x));
  9020. }
  9021. #endif
  9022. }
  9023. }
  9024. static void ggml_compute_forward_gelu(
  9025. const struct ggml_compute_params * params,
  9026. const struct ggml_tensor * src0,
  9027. struct ggml_tensor * dst) {
  9028. switch (src0->type) {
  9029. case GGML_TYPE_F32:
  9030. {
  9031. ggml_compute_forward_gelu_f32(params, src0, dst);
  9032. } break;
  9033. default:
  9034. {
  9035. GGML_ASSERT(false);
  9036. } break;
  9037. }
  9038. }
  9039. // ggml_compute_forward_gelu_quick
  9040. static void ggml_compute_forward_gelu_quick_f32(
  9041. const struct ggml_compute_params * params,
  9042. const struct ggml_tensor * src0,
  9043. struct ggml_tensor * dst) {
  9044. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9045. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9046. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9047. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9048. return;
  9049. }
  9050. const int ith = params->ith;
  9051. const int nth = params->nth;
  9052. const int nc = src0->ne[0];
  9053. const int nr = ggml_nrows(src0);
  9054. // rows per thread
  9055. const int dr = (nr + nth - 1)/nth;
  9056. // row range for this thread
  9057. const int ir0 = dr*ith;
  9058. const int ir1 = MIN(ir0 + dr, nr);
  9059. for (int i1 = ir0; i1 < ir1; i1++) {
  9060. ggml_vec_gelu_quick_f32(nc,
  9061. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9062. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9063. #ifndef NDEBUG
  9064. for (int k = 0; k < nc; k++) {
  9065. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9066. UNUSED(x);
  9067. assert(!isnan(x));
  9068. assert(!isinf(x));
  9069. }
  9070. #endif
  9071. }
  9072. }
  9073. static void ggml_compute_forward_gelu_quick(
  9074. const struct ggml_compute_params * params,
  9075. const struct ggml_tensor * src0,
  9076. struct ggml_tensor * dst) {
  9077. switch (src0->type) {
  9078. case GGML_TYPE_F32:
  9079. {
  9080. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  9081. } break;
  9082. default:
  9083. {
  9084. GGML_ASSERT(false);
  9085. } break;
  9086. }
  9087. }
  9088. // ggml_compute_forward_silu
  9089. static void ggml_compute_forward_silu_f32(
  9090. const struct ggml_compute_params * params,
  9091. const struct ggml_tensor * src0,
  9092. struct ggml_tensor * dst) {
  9093. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9094. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9095. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9096. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9097. return;
  9098. }
  9099. const int ith = params->ith;
  9100. const int nth = params->nth;
  9101. const int nc = src0->ne[0];
  9102. const int nr = ggml_nrows(src0);
  9103. // rows per thread
  9104. const int dr = (nr + nth - 1)/nth;
  9105. // row range for this thread
  9106. const int ir0 = dr*ith;
  9107. const int ir1 = MIN(ir0 + dr, nr);
  9108. for (int i1 = ir0; i1 < ir1; i1++) {
  9109. ggml_vec_silu_f32(nc,
  9110. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9111. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9112. #ifndef NDEBUG
  9113. for (int k = 0; k < nc; k++) {
  9114. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9115. UNUSED(x);
  9116. assert(!isnan(x));
  9117. assert(!isinf(x));
  9118. }
  9119. #endif
  9120. }
  9121. }
  9122. static void ggml_compute_forward_silu(
  9123. const struct ggml_compute_params * params,
  9124. const struct ggml_tensor * src0,
  9125. struct ggml_tensor * dst) {
  9126. switch (src0->type) {
  9127. case GGML_TYPE_F32:
  9128. {
  9129. ggml_compute_forward_silu_f32(params, src0, dst);
  9130. } break;
  9131. default:
  9132. {
  9133. GGML_ASSERT(false);
  9134. } break;
  9135. }
  9136. }
  9137. // ggml_compute_forward_silu_back
  9138. static void ggml_compute_forward_silu_back_f32(
  9139. const struct ggml_compute_params * params,
  9140. const struct ggml_tensor * src0,
  9141. const struct ggml_tensor * grad,
  9142. struct ggml_tensor * dst) {
  9143. GGML_ASSERT(ggml_is_contiguous_except_dim_1(grad));
  9144. GGML_ASSERT(ggml_is_contiguous_except_dim_1(src0));
  9145. GGML_ASSERT(ggml_is_contiguous_except_dim_1(dst));
  9146. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9147. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  9148. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9149. return;
  9150. }
  9151. const int ith = params->ith;
  9152. const int nth = params->nth;
  9153. const int nc = src0->ne[0];
  9154. const int nr = ggml_nrows(src0);
  9155. // rows per thread
  9156. const int dr = (nr + nth - 1)/nth;
  9157. // row range for this thread
  9158. const int ir0 = dr*ith;
  9159. const int ir1 = MIN(ir0 + dr, nr);
  9160. for (int i1 = ir0; i1 < ir1; i1++) {
  9161. ggml_vec_silu_backward_f32(nc,
  9162. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9163. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9164. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9165. #ifndef NDEBUG
  9166. for (int k = 0; k < nc; k++) {
  9167. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9168. UNUSED(x);
  9169. assert(!isnan(x));
  9170. assert(!isinf(x));
  9171. }
  9172. #endif
  9173. }
  9174. }
  9175. static void ggml_compute_forward_silu_back(
  9176. const struct ggml_compute_params * params,
  9177. const struct ggml_tensor * src0,
  9178. const struct ggml_tensor * grad,
  9179. struct ggml_tensor * dst) {
  9180. switch (src0->type) {
  9181. case GGML_TYPE_F32:
  9182. {
  9183. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  9184. } break;
  9185. default:
  9186. {
  9187. GGML_ASSERT(false);
  9188. } break;
  9189. }
  9190. }
  9191. // ggml_compute_forward_norm
  9192. static void ggml_compute_forward_norm_f32(
  9193. const struct ggml_compute_params * params,
  9194. const struct ggml_tensor * src0,
  9195. struct ggml_tensor * dst) {
  9196. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9197. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9198. return;
  9199. }
  9200. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9201. const int ith = params->ith;
  9202. const int nth = params->nth;
  9203. GGML_TENSOR_UNARY_OP_LOCALS
  9204. float eps;
  9205. memcpy(&eps, dst->op_params, sizeof(float));
  9206. // TODO: optimize
  9207. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9208. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9209. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9210. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9211. ggml_float sum = 0.0;
  9212. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9213. sum += (ggml_float)x[i00];
  9214. }
  9215. float mean = sum/ne00;
  9216. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9217. ggml_float sum2 = 0.0;
  9218. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9219. float v = x[i00] - mean;
  9220. y[i00] = v;
  9221. sum2 += (ggml_float)(v*v);
  9222. }
  9223. float variance = sum2/ne00;
  9224. const float scale = 1.0f/sqrtf(variance + eps);
  9225. ggml_vec_scale_f32(ne00, y, scale);
  9226. }
  9227. }
  9228. }
  9229. }
  9230. static void ggml_compute_forward_norm(
  9231. const struct ggml_compute_params * params,
  9232. const struct ggml_tensor * src0,
  9233. struct ggml_tensor * dst) {
  9234. switch (src0->type) {
  9235. case GGML_TYPE_F32:
  9236. {
  9237. ggml_compute_forward_norm_f32(params, src0, dst);
  9238. } break;
  9239. default:
  9240. {
  9241. GGML_ASSERT(false);
  9242. } break;
  9243. }
  9244. }
  9245. // ggml_compute_forward_group_rms_norm
  9246. static void ggml_compute_forward_rms_norm_f32(
  9247. const struct ggml_compute_params * params,
  9248. const struct ggml_tensor * src0,
  9249. struct ggml_tensor * dst) {
  9250. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9251. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9252. return;
  9253. }
  9254. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9255. const int ith = params->ith;
  9256. const int nth = params->nth;
  9257. GGML_TENSOR_UNARY_OP_LOCALS
  9258. float eps;
  9259. memcpy(&eps, dst->op_params, sizeof(float));
  9260. // TODO: optimize
  9261. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9262. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9263. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9264. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9265. ggml_float sum = 0.0;
  9266. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9267. sum += (ggml_float)(x[i00] * x[i00]);
  9268. }
  9269. const float mean = sum/ne00;
  9270. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9271. memcpy(y, x, ne00 * sizeof(float));
  9272. // for (int i00 = 0; i00 < ne00; i00++) {
  9273. // y[i00] = x[i00];
  9274. // }
  9275. const float scale = 1.0f/sqrtf(mean + eps);
  9276. ggml_vec_scale_f32(ne00, y, scale);
  9277. }
  9278. }
  9279. }
  9280. }
  9281. static void ggml_compute_forward_rms_norm(
  9282. const struct ggml_compute_params * params,
  9283. const struct ggml_tensor * src0,
  9284. struct ggml_tensor * dst) {
  9285. switch (src0->type) {
  9286. case GGML_TYPE_F32:
  9287. {
  9288. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  9289. } break;
  9290. default:
  9291. {
  9292. GGML_ASSERT(false);
  9293. } break;
  9294. }
  9295. }
  9296. static void ggml_compute_forward_rms_norm_back_f32(
  9297. const struct ggml_compute_params * params,
  9298. const struct ggml_tensor * src0,
  9299. const struct ggml_tensor * src1,
  9300. struct ggml_tensor * dst) {
  9301. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9302. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9303. return;
  9304. }
  9305. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9306. const int ith = params->ith;
  9307. const int nth = params->nth;
  9308. GGML_TENSOR_BINARY_OP_LOCALS
  9309. float eps;
  9310. memcpy(&eps, dst->op_params, sizeof(float));
  9311. // TODO: optimize
  9312. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9313. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9314. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9315. // src1 is same shape as src0 => same indices
  9316. const int64_t i11 = i01;
  9317. const int64_t i12 = i02;
  9318. const int64_t i13 = i03;
  9319. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9320. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9321. ggml_float sum_xx = 0.0;
  9322. ggml_float sum_xdz = 0.0;
  9323. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9324. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9325. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9326. }
  9327. //const float mean = (float)(sum_xx)/ne00;
  9328. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9329. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9330. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9331. // we could cache rms from forward pass to improve performance.
  9332. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9333. //const float rms = sqrtf(mean_eps);
  9334. const float rrms = 1.0f / sqrtf(mean_eps);
  9335. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9336. {
  9337. // z = rms_norm(x)
  9338. //
  9339. // rms_norm(src0) =
  9340. // scale(
  9341. // src0,
  9342. // div(
  9343. // 1,
  9344. // sqrt(
  9345. // add(
  9346. // scale(
  9347. // sum(
  9348. // sqr(
  9349. // src0)),
  9350. // (1.0/N)),
  9351. // eps))));
  9352. // postorder:
  9353. // ## op args grad
  9354. // 00 param src0 grad[#00]
  9355. // 01 const 1
  9356. // 02 sqr (#00) grad[#02]
  9357. // 03 sum (#02) grad[#03]
  9358. // 04 const 1/N
  9359. // 05 scale (#03, #04) grad[#05]
  9360. // 06 const eps
  9361. // 07 add (#05, #06) grad[#07]
  9362. // 08 sqrt (#07) grad[#08]
  9363. // 09 div (#01,#08) grad[#09]
  9364. // 10 scale (#00,#09) grad[#10]
  9365. //
  9366. // backward pass, given grad[#10]
  9367. // #10: scale
  9368. // grad[#00] += scale(grad[#10],#09)
  9369. // grad[#09] += sum(mul(grad[#10],#00))
  9370. // #09: div
  9371. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9372. // #08: sqrt
  9373. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9374. // #07: add
  9375. // grad[#05] += grad[#07]
  9376. // #05: scale
  9377. // grad[#03] += scale(grad[#05],#04)
  9378. // #03: sum
  9379. // grad[#02] += repeat(grad[#03], #02)
  9380. // #02:
  9381. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9382. //
  9383. // substitute and simplify:
  9384. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9385. // grad[#02] = repeat(grad[#03], #02)
  9386. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9387. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9388. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9389. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9390. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9391. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9392. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9393. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9394. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9395. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9396. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9397. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9398. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9399. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9400. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9401. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9402. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9403. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9404. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9405. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9406. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9407. // a = b*c + d*e
  9408. // a = b*c*f/f + d*e*f/f
  9409. // a = (b*c*f + d*e*f)*(1/f)
  9410. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9411. // a = (b + d*e/c)*c
  9412. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9413. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9414. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9415. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9416. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9417. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9418. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9419. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9420. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9421. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9422. }
  9423. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9424. // post-order:
  9425. // dx := x
  9426. // dx := scale(dx,-mean_xdz/mean_eps)
  9427. // dx := add(dx, dz)
  9428. // dx := scale(dx, rrms)
  9429. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9430. ggml_vec_cpy_f32 (ne00, dx, x);
  9431. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9432. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9433. ggml_vec_acc_f32 (ne00, dx, dz);
  9434. ggml_vec_scale_f32(ne00, dx, rrms);
  9435. }
  9436. }
  9437. }
  9438. }
  9439. static void ggml_compute_forward_rms_norm_back(
  9440. const struct ggml_compute_params * params,
  9441. const struct ggml_tensor * src0,
  9442. const struct ggml_tensor * src1,
  9443. struct ggml_tensor * dst) {
  9444. switch (src0->type) {
  9445. case GGML_TYPE_F32:
  9446. {
  9447. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  9448. } break;
  9449. default:
  9450. {
  9451. GGML_ASSERT(false);
  9452. } break;
  9453. }
  9454. }
  9455. // ggml_compute_forward_group_norm
  9456. static void ggml_compute_forward_group_norm_f32(
  9457. const struct ggml_compute_params * params,
  9458. const struct ggml_tensor * src0,
  9459. struct ggml_tensor * dst) {
  9460. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9461. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9462. return;
  9463. }
  9464. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9465. const int ith = params->ith;
  9466. const int nth = params->nth;
  9467. GGML_TENSOR_UNARY_OP_LOCALS
  9468. const float eps = 1e-6f; // TODO: make this a parameter
  9469. // TODO: optimize
  9470. int n_channels = src0->ne[2];
  9471. int n_groups = dst->op_params[0];
  9472. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9473. for (int i = ith; i < n_groups; i+=nth) {
  9474. int start = i * n_channels_per_group;
  9475. int end = start + n_channels_per_group;
  9476. if (end > n_channels) {
  9477. end = n_channels;
  9478. }
  9479. int step = end - start;
  9480. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9481. ggml_float sum = 0.0;
  9482. for (int64_t i02 = start; i02 < end; i02++) {
  9483. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9484. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9485. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9486. sum += (ggml_float)x[i00];
  9487. }
  9488. }
  9489. }
  9490. float mean = sum / (ne00 * ne01 * step);
  9491. ggml_float sum2 = 0.0;
  9492. for (int64_t i02 = start; i02 < end; i02++) {
  9493. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9494. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9495. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9496. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9497. float v = x[i00] - mean;
  9498. y[i00] = v;
  9499. sum2 += (ggml_float)(v * v);
  9500. }
  9501. }
  9502. }
  9503. float variance = sum2 / (ne00 * ne01 * step);
  9504. const float scale = 1.0f / sqrtf(variance + eps);
  9505. for (int64_t i02 = start; i02 < end; i02++) {
  9506. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9507. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9508. ggml_vec_scale_f32(ne00, y, scale);
  9509. }
  9510. }
  9511. }
  9512. }
  9513. }
  9514. static void ggml_compute_forward_group_norm(
  9515. const struct ggml_compute_params * params,
  9516. const struct ggml_tensor * src0,
  9517. struct ggml_tensor * dst) {
  9518. switch (src0->type) {
  9519. case GGML_TYPE_F32:
  9520. {
  9521. ggml_compute_forward_group_norm_f32(params, src0, dst);
  9522. } break;
  9523. default:
  9524. {
  9525. GGML_ASSERT(false);
  9526. } break;
  9527. }
  9528. }
  9529. // ggml_compute_forward_mul_mat
  9530. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9531. // helper function to determine if it is better to use BLAS or not
  9532. // for large matrices, BLAS is faster
  9533. static bool ggml_compute_forward_mul_mat_use_blas(
  9534. const struct ggml_tensor * src0,
  9535. const struct ggml_tensor * src1,
  9536. struct ggml_tensor * dst) {
  9537. //const int64_t ne00 = src0->ne[0];
  9538. //const int64_t ne01 = src0->ne[1];
  9539. const int64_t ne10 = src1->ne[0];
  9540. const int64_t ne0 = dst->ne[0];
  9541. const int64_t ne1 = dst->ne[1];
  9542. // TODO: find the optimal values for these
  9543. if (ggml_is_contiguous(src0) &&
  9544. ggml_is_contiguous(src1) &&
  9545. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  9546. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  9547. return true;
  9548. }
  9549. return false;
  9550. }
  9551. #endif
  9552. static void ggml_compute_forward_mul_mat(
  9553. const struct ggml_compute_params * params,
  9554. const struct ggml_tensor * src0,
  9555. const struct ggml_tensor * src1,
  9556. struct ggml_tensor * dst) {
  9557. int64_t t0 = ggml_perf_time_us();
  9558. UNUSED(t0);
  9559. GGML_TENSOR_BINARY_OP_LOCALS
  9560. const int ith = params->ith;
  9561. const int nth = params->nth;
  9562. const enum ggml_type type = src0->type;
  9563. const bool src1_cont = ggml_is_contiguous(src1);
  9564. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9565. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9566. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9567. GGML_ASSERT(ne0 == ne01);
  9568. GGML_ASSERT(ne1 == ne11);
  9569. GGML_ASSERT(ne2 == ne12);
  9570. GGML_ASSERT(ne3 == ne13);
  9571. // we don't support permuted src0 or src1
  9572. GGML_ASSERT(nb00 == ggml_type_size(type));
  9573. GGML_ASSERT(nb10 == sizeof(float));
  9574. // dst cannot be transposed or permuted
  9575. GGML_ASSERT(nb0 == sizeof(float));
  9576. GGML_ASSERT(nb0 <= nb1);
  9577. GGML_ASSERT(nb1 <= nb2);
  9578. GGML_ASSERT(nb2 <= nb3);
  9579. // broadcast factors
  9580. const int64_t r2 = ne12/ne02;
  9581. const int64_t r3 = ne13/ne03;
  9582. // nb01 >= nb00 - src0 is not transposed
  9583. // compute by src0 rows
  9584. #if defined(GGML_USE_CLBLAST)
  9585. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  9586. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  9587. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  9588. }
  9589. return;
  9590. }
  9591. #endif
  9592. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  9593. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  9594. if (params->ith != 0) {
  9595. return;
  9596. }
  9597. if (params->type == GGML_TASK_INIT) {
  9598. return;
  9599. }
  9600. if (params->type == GGML_TASK_FINALIZE) {
  9601. return;
  9602. }
  9603. for (int64_t i13 = 0; i13 < ne13; i13++) {
  9604. for (int64_t i12 = 0; i12 < ne12; i12++) {
  9605. // broadcast src0 into src1 across 2nd,3rd dimension
  9606. const int64_t i03 = i13/r3;
  9607. const int64_t i02 = i12/r2;
  9608. const void * x = (char *) src0->data + i02*nb02 + i03*nb03;
  9609. const float * y = (float *) ((char *) src1->data + i12*nb12 + i13*nb13);
  9610. float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
  9611. if (type != GGML_TYPE_F32) {
  9612. float * const wdata = params->wdata;
  9613. ggml_to_float_t const to_float = type_traits[type].to_float;
  9614. size_t id = 0;
  9615. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9616. to_float((const char *) x + i01*nb01, wdata + id, ne00);
  9617. id += ne00;
  9618. }
  9619. assert(id*sizeof(float) <= params->wsize);
  9620. x = wdata;
  9621. }
  9622. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  9623. ne11, ne01, ne10,
  9624. 1.0f, y, ne10,
  9625. x, ne00,
  9626. 0.0f, d, ne01);
  9627. }
  9628. }
  9629. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9630. return;
  9631. }
  9632. #endif
  9633. if (params->type == GGML_TASK_INIT) {
  9634. if (src1->type != vec_dot_type) {
  9635. char * wdata = params->wdata;
  9636. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9637. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9638. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9639. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9640. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9641. wdata += row_size;
  9642. }
  9643. }
  9644. }
  9645. }
  9646. return;
  9647. }
  9648. if (params->type == GGML_TASK_FINALIZE) {
  9649. return;
  9650. }
  9651. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9652. const size_t row_size = ne10*ggml_type_size(vec_dot_type)/ggml_blck_size(vec_dot_type);
  9653. const int64_t nr0 = ne01; // src0 rows
  9654. const int64_t nr1 = ne11*ne12*ne13; // src1 rows
  9655. //printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
  9656. // distribute the thread work across the inner or outer loop based on which one is larger
  9657. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  9658. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  9659. const int64_t ith0 = ith % nth0;
  9660. const int64_t ith1 = ith / nth0;
  9661. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  9662. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  9663. const int64_t ir010 = dr0*ith0;
  9664. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  9665. const int64_t ir110 = dr1*ith1;
  9666. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  9667. //printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
  9668. // threads with no work simply yield (not sure if it helps)
  9669. if (ir010 >= ir011 || ir110 >= ir111) {
  9670. sched_yield();
  9671. return;
  9672. }
  9673. assert(ne12 % ne02 == 0);
  9674. assert(ne13 % ne03 == 0);
  9675. // block-tiling attempt
  9676. const int64_t blck_0 = 16;
  9677. const int64_t blck_1 = 16;
  9678. // attempt to reduce false-sharing (does not seem to make a difference)
  9679. float tmp[16];
  9680. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  9681. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  9682. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  9683. const int64_t i13 = (ir1/(ne12*ne11));
  9684. const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
  9685. const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
  9686. // broadcast src0 into src1
  9687. const int64_t i03 = i13/r3;
  9688. const int64_t i02 = i12/r2;
  9689. const int64_t i1 = i11;
  9690. const int64_t i2 = i12;
  9691. const int64_t i3 = i13;
  9692. const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
  9693. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9694. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9695. // the original src1 data pointer, so we should index using the indices directly
  9696. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9697. const char * src1_col = (const char *) wdata +
  9698. (src1_cont || src1->type != vec_dot_type
  9699. ? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
  9700. : (i11*nb11 + i12*nb12 + i13*nb13));
  9701. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
  9702. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9703. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9704. //}
  9705. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  9706. vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
  9707. }
  9708. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  9709. }
  9710. }
  9711. }
  9712. }
  9713. // ggml_compute_forward_out_prod
  9714. static void ggml_compute_forward_out_prod_f32(
  9715. const struct ggml_compute_params * params,
  9716. const struct ggml_tensor * src0,
  9717. const struct ggml_tensor * src1,
  9718. struct ggml_tensor * dst) {
  9719. // int64_t t0 = ggml_perf_time_us();
  9720. // UNUSED(t0);
  9721. GGML_TENSOR_BINARY_OP_LOCALS
  9722. const int ith = params->ith;
  9723. const int nth = params->nth;
  9724. GGML_ASSERT(ne02 == ne12);
  9725. GGML_ASSERT(ne03 == ne13);
  9726. GGML_ASSERT(ne2 == ne12);
  9727. GGML_ASSERT(ne3 == ne13);
  9728. // we don't support permuted src0 or src1
  9729. GGML_ASSERT(nb00 == sizeof(float));
  9730. // dst cannot be transposed or permuted
  9731. GGML_ASSERT(nb0 == sizeof(float));
  9732. // GGML_ASSERT(nb0 <= nb1);
  9733. // GGML_ASSERT(nb1 <= nb2);
  9734. // GGML_ASSERT(nb2 <= nb3);
  9735. GGML_ASSERT(ne0 == ne00);
  9736. GGML_ASSERT(ne1 == ne10);
  9737. GGML_ASSERT(ne2 == ne02);
  9738. GGML_ASSERT(ne3 == ne03);
  9739. // nb01 >= nb00 - src0 is not transposed
  9740. // compute by src0 rows
  9741. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9742. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9743. if (params->type == GGML_TASK_INIT) {
  9744. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9745. return;
  9746. }
  9747. if (params->type == GGML_TASK_FINALIZE) {
  9748. return;
  9749. }
  9750. // dst[:,:,:,:] = 0
  9751. // for i2,i3:
  9752. // for i1:
  9753. // for i01:
  9754. // for i0:
  9755. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9756. // parallelize by last three dimensions
  9757. // total rows in dst
  9758. const int64_t nr = ne1*ne2*ne3;
  9759. // rows per thread
  9760. const int64_t dr = (nr + nth - 1)/nth;
  9761. // row range for this thread
  9762. const int64_t ir0 = dr*ith;
  9763. const int64_t ir1 = MIN(ir0 + dr, nr);
  9764. // block-tiling attempt
  9765. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  9766. const int64_t blck_1 = 16;
  9767. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  9768. const int64_t bir1 = MIN(bir + blck_1, ir1);
  9769. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  9770. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  9771. for (int64_t ir = bir; ir < bir1; ++ir) {
  9772. // dst indices
  9773. const int64_t i3 = ir/(ne2*ne1);
  9774. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9775. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9776. const int64_t i02 = i2;
  9777. const int64_t i03 = i3;
  9778. //const int64_t i10 = i1;
  9779. const int64_t i12 = i2;
  9780. const int64_t i13 = i3;
  9781. #if GGML_VEC_MAD_UNROLL > 2
  9782. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  9783. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  9784. const int64_t i11 = i01;
  9785. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9786. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9787. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9788. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  9789. }
  9790. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  9791. const int64_t i11 = i01;
  9792. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9793. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9794. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9795. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9796. }
  9797. #else
  9798. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  9799. const int64_t i11 = i01;
  9800. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9801. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9802. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9803. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9804. }
  9805. #endif
  9806. }
  9807. }
  9808. }
  9809. //int64_t t1 = ggml_perf_time_us();
  9810. //static int64_t acc = 0;
  9811. //acc += t1 - t0;
  9812. //if (t1 - t0 > 10) {
  9813. // printf("\n");
  9814. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9815. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9816. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9817. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9818. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9819. //}
  9820. }
  9821. static void ggml_compute_forward_out_prod_q_f32(
  9822. const struct ggml_compute_params * params,
  9823. const struct ggml_tensor * src0,
  9824. const struct ggml_tensor * src1,
  9825. struct ggml_tensor * dst) {
  9826. // int64_t t0 = ggml_perf_time_us();
  9827. // UNUSED(t0);
  9828. GGML_TENSOR_BINARY_OP_LOCALS;
  9829. const int ith = params->ith;
  9830. const int nth = params->nth;
  9831. const enum ggml_type type = src0->type;
  9832. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9833. GGML_ASSERT(ne02 == ne12);
  9834. GGML_ASSERT(ne03 == ne13);
  9835. GGML_ASSERT(ne2 == ne12);
  9836. GGML_ASSERT(ne3 == ne13);
  9837. // we don't support permuted src0 dim0
  9838. GGML_ASSERT(nb00 == ggml_type_size(type));
  9839. // dst dim0 cannot be transposed or permuted
  9840. GGML_ASSERT(nb0 == sizeof(float));
  9841. // GGML_ASSERT(nb0 <= nb1);
  9842. // GGML_ASSERT(nb1 <= nb2);
  9843. // GGML_ASSERT(nb2 <= nb3);
  9844. GGML_ASSERT(ne0 == ne00);
  9845. GGML_ASSERT(ne1 == ne10);
  9846. GGML_ASSERT(ne2 == ne02);
  9847. GGML_ASSERT(ne3 == ne03);
  9848. // nb01 >= nb00 - src0 is not transposed
  9849. // compute by src0 rows
  9850. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9851. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9852. if (params->type == GGML_TASK_INIT) {
  9853. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9854. return;
  9855. }
  9856. if (params->type == GGML_TASK_FINALIZE) {
  9857. return;
  9858. }
  9859. // parallelize by last three dimensions
  9860. // total rows in dst
  9861. const int64_t nr = ne1*ne2*ne3;
  9862. // rows per thread
  9863. const int64_t dr = (nr + nth - 1)/nth;
  9864. // row range for this thread
  9865. const int64_t ir0 = dr*ith;
  9866. const int64_t ir1 = MIN(ir0 + dr, nr);
  9867. // dst[:,:,:,:] = 0
  9868. // for i2,i3:
  9869. // for i1:
  9870. // for i01:
  9871. // for i0:
  9872. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9873. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  9874. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9875. // dst indices
  9876. const int64_t i3 = ir/(ne2*ne1);
  9877. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9878. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9879. const int64_t i02 = i2;
  9880. const int64_t i03 = i3;
  9881. //const int64_t i10 = i1;
  9882. const int64_t i12 = i2;
  9883. const int64_t i13 = i3;
  9884. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9885. const int64_t i11 = i01;
  9886. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9887. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9888. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9889. dequantize_row_q(s0, wdata, ne0);
  9890. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  9891. }
  9892. }
  9893. //int64_t t1 = ggml_perf_time_us();
  9894. //static int64_t acc = 0;
  9895. //acc += t1 - t0;
  9896. //if (t1 - t0 > 10) {
  9897. // printf("\n");
  9898. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9899. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9900. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9901. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9902. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9903. //}
  9904. }
  9905. static void ggml_compute_forward_out_prod(
  9906. const struct ggml_compute_params * params,
  9907. const struct ggml_tensor * src0,
  9908. const struct ggml_tensor * src1,
  9909. struct ggml_tensor * dst) {
  9910. switch (src0->type) {
  9911. case GGML_TYPE_Q4_0:
  9912. case GGML_TYPE_Q4_1:
  9913. case GGML_TYPE_Q5_0:
  9914. case GGML_TYPE_Q5_1:
  9915. case GGML_TYPE_Q8_0:
  9916. case GGML_TYPE_Q2_K:
  9917. case GGML_TYPE_Q3_K:
  9918. case GGML_TYPE_Q4_K:
  9919. case GGML_TYPE_Q5_K:
  9920. case GGML_TYPE_Q6_K:
  9921. {
  9922. ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9923. } break;
  9924. case GGML_TYPE_F16:
  9925. {
  9926. GGML_ASSERT(false); // todo
  9927. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9928. } break;
  9929. case GGML_TYPE_F32:
  9930. {
  9931. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9932. } break;
  9933. default:
  9934. {
  9935. GGML_ASSERT(false);
  9936. } break;
  9937. }
  9938. }
  9939. // ggml_compute_forward_scale
  9940. static void ggml_compute_forward_scale_f32(
  9941. const struct ggml_compute_params * params,
  9942. const struct ggml_tensor * src0,
  9943. const struct ggml_tensor * src1,
  9944. struct ggml_tensor * dst) {
  9945. GGML_ASSERT(ggml_is_contiguous(src0));
  9946. GGML_ASSERT(ggml_is_contiguous(dst));
  9947. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9948. GGML_ASSERT(ggml_is_scalar(src1));
  9949. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9950. return;
  9951. }
  9952. // scale factor
  9953. const float v = *(float *) src1->data;
  9954. const int ith = params->ith;
  9955. const int nth = params->nth;
  9956. const int nc = src0->ne[0];
  9957. const int nr = ggml_nrows(src0);
  9958. // rows per thread
  9959. const int dr = (nr + nth - 1)/nth;
  9960. // row range for this thread
  9961. const int ir0 = dr*ith;
  9962. const int ir1 = MIN(ir0 + dr, nr);
  9963. const size_t nb01 = src0->nb[1];
  9964. const size_t nb1 = dst->nb[1];
  9965. for (int i1 = ir0; i1 < ir1; i1++) {
  9966. if (dst->data != src0->data) {
  9967. // src0 is same shape as dst => same indices
  9968. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9969. }
  9970. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9971. }
  9972. }
  9973. static void ggml_compute_forward_scale(
  9974. const struct ggml_compute_params * params,
  9975. const struct ggml_tensor * src0,
  9976. const struct ggml_tensor * src1,
  9977. struct ggml_tensor * dst) {
  9978. switch (src0->type) {
  9979. case GGML_TYPE_F32:
  9980. {
  9981. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9982. } break;
  9983. default:
  9984. {
  9985. GGML_ASSERT(false);
  9986. } break;
  9987. }
  9988. }
  9989. // ggml_compute_forward_set
  9990. static void ggml_compute_forward_set_f32(
  9991. const struct ggml_compute_params * params,
  9992. const struct ggml_tensor * src0,
  9993. const struct ggml_tensor * src1,
  9994. struct ggml_tensor * dst) {
  9995. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9996. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9997. // view src0 and dst with these strides and data offset inbytes during set
  9998. // nb0 is implicitely element_size because src0 and dst are contiguous
  9999. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10000. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10001. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10002. size_t offset = ((int32_t *) dst->op_params)[3];
  10003. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10004. if (!inplace && (params->type == GGML_TASK_INIT)) {
  10005. // memcpy needs to be synchronized across threads to avoid race conditions.
  10006. // => do it in INIT phase
  10007. memcpy(
  10008. ((char *) dst->data),
  10009. ((char *) src0->data),
  10010. ggml_nbytes(dst));
  10011. }
  10012. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10013. return;
  10014. }
  10015. const int ith = params->ith;
  10016. const int nth = params->nth;
  10017. const int nr = ggml_nrows(src1);
  10018. const int nc = src1->ne[0];
  10019. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10020. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10021. // src0 and dst as viewed during set
  10022. const size_t nb0 = ggml_element_size(src0);
  10023. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10024. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10025. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10026. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10027. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10028. GGML_ASSERT(nb10 == sizeof(float));
  10029. // rows per thread
  10030. const int dr = (nr + nth - 1)/nth;
  10031. // row range for this thread
  10032. const int ir0 = dr*ith;
  10033. const int ir1 = MIN(ir0 + dr, nr);
  10034. for (int ir = ir0; ir < ir1; ++ir) {
  10035. // src0 and dst are viewed with shape of src1 and offset
  10036. // => same indices
  10037. const int i3 = ir/(ne12*ne11);
  10038. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10039. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10040. ggml_vec_cpy_f32(nc,
  10041. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10042. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10043. }
  10044. }
  10045. static void ggml_compute_forward_set(
  10046. const struct ggml_compute_params * params,
  10047. const struct ggml_tensor * src0,
  10048. const struct ggml_tensor * src1,
  10049. struct ggml_tensor * dst) {
  10050. switch (src0->type) {
  10051. case GGML_TYPE_F32:
  10052. {
  10053. ggml_compute_forward_set_f32(params, src0, src1, dst);
  10054. } break;
  10055. case GGML_TYPE_F16:
  10056. case GGML_TYPE_Q4_0:
  10057. case GGML_TYPE_Q4_1:
  10058. case GGML_TYPE_Q5_0:
  10059. case GGML_TYPE_Q5_1:
  10060. case GGML_TYPE_Q8_0:
  10061. case GGML_TYPE_Q8_1:
  10062. case GGML_TYPE_Q2_K:
  10063. case GGML_TYPE_Q3_K:
  10064. case GGML_TYPE_Q4_K:
  10065. case GGML_TYPE_Q5_K:
  10066. case GGML_TYPE_Q6_K:
  10067. default:
  10068. {
  10069. GGML_ASSERT(false);
  10070. } break;
  10071. }
  10072. }
  10073. // ggml_compute_forward_cpy
  10074. static void ggml_compute_forward_cpy(
  10075. const struct ggml_compute_params * params,
  10076. const struct ggml_tensor * src0,
  10077. struct ggml_tensor * dst) {
  10078. ggml_compute_forward_dup(params, src0, dst);
  10079. }
  10080. // ggml_compute_forward_cont
  10081. static void ggml_compute_forward_cont(
  10082. const struct ggml_compute_params * params,
  10083. const struct ggml_tensor * src0,
  10084. struct ggml_tensor * dst) {
  10085. ggml_compute_forward_dup(params, src0, dst);
  10086. }
  10087. // ggml_compute_forward_reshape
  10088. static void ggml_compute_forward_reshape(
  10089. const struct ggml_compute_params * params,
  10090. const struct ggml_tensor * src0,
  10091. struct ggml_tensor * dst) {
  10092. // NOP
  10093. UNUSED(params);
  10094. UNUSED(src0);
  10095. UNUSED(dst);
  10096. }
  10097. // ggml_compute_forward_view
  10098. static void ggml_compute_forward_view(
  10099. const struct ggml_compute_params * params,
  10100. const struct ggml_tensor * src0) {
  10101. // NOP
  10102. UNUSED(params);
  10103. UNUSED(src0);
  10104. }
  10105. // ggml_compute_forward_permute
  10106. static void ggml_compute_forward_permute(
  10107. const struct ggml_compute_params * params,
  10108. const struct ggml_tensor * src0) {
  10109. // NOP
  10110. UNUSED(params);
  10111. UNUSED(src0);
  10112. }
  10113. // ggml_compute_forward_transpose
  10114. static void ggml_compute_forward_transpose(
  10115. const struct ggml_compute_params * params,
  10116. const struct ggml_tensor * src0) {
  10117. // NOP
  10118. UNUSED(params);
  10119. UNUSED(src0);
  10120. }
  10121. // ggml_compute_forward_get_rows
  10122. static void ggml_compute_forward_get_rows_q(
  10123. const struct ggml_compute_params * params,
  10124. const struct ggml_tensor * src0,
  10125. const struct ggml_tensor * src1,
  10126. struct ggml_tensor * dst) {
  10127. assert(params->ith == 0);
  10128. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10129. return;
  10130. }
  10131. const int nc = src0->ne[0];
  10132. const int nr = ggml_nelements(src1);
  10133. const enum ggml_type type = src0->type;
  10134. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10135. assert( dst->ne[0] == nc);
  10136. assert( dst->ne[1] == nr);
  10137. assert(src0->nb[0] == ggml_type_size(type));
  10138. for (int i = 0; i < nr; ++i) {
  10139. const int r = ((int32_t *) src1->data)[i];
  10140. dequantize_row_q(
  10141. (const void *) ((char *) src0->data + r*src0->nb[1]),
  10142. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  10143. }
  10144. }
  10145. static void ggml_compute_forward_get_rows_f16(
  10146. const struct ggml_compute_params * params,
  10147. const struct ggml_tensor * src0,
  10148. const struct ggml_tensor * src1,
  10149. struct ggml_tensor * dst) {
  10150. assert(params->ith == 0);
  10151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10152. return;
  10153. }
  10154. const int nc = src0->ne[0];
  10155. const int nr = ggml_nelements(src1);
  10156. assert( dst->ne[0] == nc);
  10157. assert( dst->ne[1] == nr);
  10158. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  10159. for (int i = 0; i < nr; ++i) {
  10160. const int r = ((int32_t *) src1->data)[i];
  10161. for (int j = 0; j < nc; ++j) {
  10162. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  10163. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  10164. }
  10165. }
  10166. }
  10167. static void ggml_compute_forward_get_rows_f32(
  10168. const struct ggml_compute_params * params,
  10169. const struct ggml_tensor * src0,
  10170. const struct ggml_tensor * src1,
  10171. struct ggml_tensor * dst) {
  10172. assert(params->ith == 0);
  10173. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10174. return;
  10175. }
  10176. const int nc = src0->ne[0];
  10177. const int nr = ggml_nelements(src1);
  10178. assert( dst->ne[0] == nc);
  10179. assert( dst->ne[1] == nr);
  10180. assert(src0->nb[0] == sizeof(float));
  10181. for (int i = 0; i < nr; ++i) {
  10182. const int r = ((int32_t *) src1->data)[i];
  10183. ggml_vec_cpy_f32(nc,
  10184. (float *) ((char *) dst->data + i*dst->nb[1]),
  10185. (float *) ((char *) src0->data + r*src0->nb[1]));
  10186. }
  10187. }
  10188. static void ggml_compute_forward_get_rows(
  10189. const struct ggml_compute_params * params,
  10190. const struct ggml_tensor * src0,
  10191. const struct ggml_tensor * src1,
  10192. struct ggml_tensor * dst) {
  10193. switch (src0->type) {
  10194. case GGML_TYPE_Q4_0:
  10195. case GGML_TYPE_Q4_1:
  10196. case GGML_TYPE_Q5_0:
  10197. case GGML_TYPE_Q5_1:
  10198. case GGML_TYPE_Q8_0:
  10199. case GGML_TYPE_Q8_1:
  10200. case GGML_TYPE_Q2_K:
  10201. case GGML_TYPE_Q3_K:
  10202. case GGML_TYPE_Q4_K:
  10203. case GGML_TYPE_Q5_K:
  10204. case GGML_TYPE_Q6_K:
  10205. {
  10206. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  10207. } break;
  10208. case GGML_TYPE_F16:
  10209. {
  10210. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  10211. } break;
  10212. case GGML_TYPE_F32:
  10213. {
  10214. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  10215. } break;
  10216. default:
  10217. {
  10218. GGML_ASSERT(false);
  10219. } break;
  10220. }
  10221. //static bool first = true;
  10222. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10223. //if (first) {
  10224. // first = false;
  10225. //} else {
  10226. // for (int k = 0; k < dst->ne[1]; ++k) {
  10227. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10228. // for (int i = 0; i < 16; ++i) {
  10229. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10230. // }
  10231. // printf("\n");
  10232. // }
  10233. // printf("\n");
  10234. // }
  10235. // printf("\n");
  10236. // exit(0);
  10237. //}
  10238. }
  10239. // ggml_compute_forward_get_rows_back
  10240. static void ggml_compute_forward_get_rows_back_f32_f16(
  10241. const struct ggml_compute_params * params,
  10242. const struct ggml_tensor * src0,
  10243. const struct ggml_tensor * src1,
  10244. struct ggml_tensor * dst) {
  10245. GGML_ASSERT(params->ith == 0);
  10246. GGML_ASSERT(ggml_is_contiguous(dst));
  10247. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10248. if (params->type == GGML_TASK_INIT) {
  10249. memset(dst->data, 0, ggml_nbytes(dst));
  10250. }
  10251. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10252. return;
  10253. }
  10254. const int nc = src0->ne[0];
  10255. const int nr = ggml_nelements(src1);
  10256. GGML_ASSERT( dst->ne[0] == nc);
  10257. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10258. for (int i = 0; i < nr; ++i) {
  10259. const int r = ((int32_t *) src1->data)[i];
  10260. for (int j = 0; j < nc; ++j) {
  10261. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10262. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10263. }
  10264. }
  10265. }
  10266. static void ggml_compute_forward_get_rows_back_f32(
  10267. const struct ggml_compute_params * params,
  10268. const struct ggml_tensor * src0,
  10269. const struct ggml_tensor * src1,
  10270. struct ggml_tensor * dst) {
  10271. GGML_ASSERT(params->ith == 0);
  10272. GGML_ASSERT(ggml_is_contiguous(dst));
  10273. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10274. if (params->type == GGML_TASK_INIT) {
  10275. memset(dst->data, 0, ggml_nbytes(dst));
  10276. }
  10277. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10278. return;
  10279. }
  10280. const int nc = src0->ne[0];
  10281. const int nr = ggml_nelements(src1);
  10282. GGML_ASSERT( dst->ne[0] == nc);
  10283. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10284. for (int i = 0; i < nr; ++i) {
  10285. const int r = ((int32_t *) src1->data)[i];
  10286. ggml_vec_add_f32(nc,
  10287. (float *) ((char *) dst->data + r*dst->nb[1]),
  10288. (float *) ((char *) dst->data + r*dst->nb[1]),
  10289. (float *) ((char *) src0->data + i*src0->nb[1]));
  10290. }
  10291. }
  10292. static void ggml_compute_forward_get_rows_back(
  10293. const struct ggml_compute_params * params,
  10294. const struct ggml_tensor * src0,
  10295. const struct ggml_tensor * src1,
  10296. struct ggml_tensor * dst) {
  10297. switch (src0->type) {
  10298. case GGML_TYPE_F16:
  10299. {
  10300. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, dst);
  10301. } break;
  10302. case GGML_TYPE_F32:
  10303. {
  10304. ggml_compute_forward_get_rows_back_f32(params, src0, src1, dst);
  10305. } break;
  10306. default:
  10307. {
  10308. GGML_ASSERT(false);
  10309. } break;
  10310. }
  10311. //static bool first = true;
  10312. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10313. //if (first) {
  10314. // first = false;
  10315. //} else {
  10316. // for (int k = 0; k < dst->ne[1]; ++k) {
  10317. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10318. // for (int i = 0; i < 16; ++i) {
  10319. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10320. // }
  10321. // printf("\n");
  10322. // }
  10323. // printf("\n");
  10324. // }
  10325. // printf("\n");
  10326. // exit(0);
  10327. //}
  10328. }
  10329. // ggml_compute_forward_diag
  10330. static void ggml_compute_forward_diag_f32(
  10331. const struct ggml_compute_params * params,
  10332. const struct ggml_tensor * src0,
  10333. struct ggml_tensor * dst) {
  10334. GGML_ASSERT(params->ith == 0);
  10335. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10336. return;
  10337. }
  10338. // TODO: handle transposed/permuted matrices
  10339. GGML_TENSOR_UNARY_OP_LOCALS
  10340. GGML_ASSERT(ne00 == ne0);
  10341. GGML_ASSERT(ne00 == ne1);
  10342. GGML_ASSERT(ne01 == 1);
  10343. GGML_ASSERT(ne02 == ne2);
  10344. GGML_ASSERT(ne03 == ne3);
  10345. GGML_ASSERT(nb00 == sizeof(float));
  10346. GGML_ASSERT(nb0 == sizeof(float));
  10347. for (int i3 = 0; i3 < ne3; i3++) {
  10348. for (int i2 = 0; i2 < ne2; i2++) {
  10349. for (int i1 = 0; i1 < ne1; i1++) {
  10350. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10351. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10352. for (int i0 = 0; i0 < i1; i0++) {
  10353. d[i0] = 0;
  10354. }
  10355. d[i1] = s[i1];
  10356. for (int i0 = i1+1; i0 < ne0; i0++) {
  10357. d[i0] = 0;
  10358. }
  10359. }
  10360. }
  10361. }
  10362. }
  10363. static void ggml_compute_forward_diag(
  10364. const struct ggml_compute_params * params,
  10365. const struct ggml_tensor * src0,
  10366. struct ggml_tensor * dst) {
  10367. switch (src0->type) {
  10368. case GGML_TYPE_F32:
  10369. {
  10370. ggml_compute_forward_diag_f32(params, src0, dst);
  10371. } break;
  10372. default:
  10373. {
  10374. GGML_ASSERT(false);
  10375. } break;
  10376. }
  10377. }
  10378. // ggml_compute_forward_diag_mask_inf
  10379. static void ggml_compute_forward_diag_mask_f32(
  10380. const struct ggml_compute_params * params,
  10381. const struct ggml_tensor * src0,
  10382. struct ggml_tensor * dst,
  10383. const float value) {
  10384. const int ith = params->ith;
  10385. const int nth = params->nth;
  10386. const int n_past = ((int32_t *) dst->op_params)[0];
  10387. const bool inplace = src0->data == dst->data;
  10388. GGML_ASSERT(n_past >= 0);
  10389. if (!inplace && (params->type == GGML_TASK_INIT)) {
  10390. // memcpy needs to be synchronized across threads to avoid race conditions.
  10391. // => do it in INIT phase
  10392. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10393. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10394. memcpy(
  10395. ((char *) dst->data),
  10396. ((char *) src0->data),
  10397. ggml_nbytes(dst));
  10398. }
  10399. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10400. return;
  10401. }
  10402. // TODO: handle transposed/permuted matrices
  10403. const int n = ggml_nrows(src0);
  10404. const int nc = src0->ne[0];
  10405. const int nr = src0->ne[1];
  10406. const int nz = n/nr;
  10407. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10408. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10409. for (int k = 0; k < nz; k++) {
  10410. for (int j = ith; j < nr; j += nth) {
  10411. for (int i = n_past; i < nc; i++) {
  10412. if (i > n_past + j) {
  10413. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10414. }
  10415. }
  10416. }
  10417. }
  10418. }
  10419. static void ggml_compute_forward_diag_mask_inf(
  10420. const struct ggml_compute_params * params,
  10421. const struct ggml_tensor * src0,
  10422. struct ggml_tensor * dst) {
  10423. switch (src0->type) {
  10424. case GGML_TYPE_F32:
  10425. {
  10426. ggml_compute_forward_diag_mask_f32(params, src0, dst, -INFINITY);
  10427. } break;
  10428. default:
  10429. {
  10430. GGML_ASSERT(false);
  10431. } break;
  10432. }
  10433. }
  10434. static void ggml_compute_forward_diag_mask_zero(
  10435. const struct ggml_compute_params * params,
  10436. const struct ggml_tensor * src0,
  10437. struct ggml_tensor * dst) {
  10438. switch (src0->type) {
  10439. case GGML_TYPE_F32:
  10440. {
  10441. ggml_compute_forward_diag_mask_f32(params, src0, dst, 0);
  10442. } break;
  10443. default:
  10444. {
  10445. GGML_ASSERT(false);
  10446. } break;
  10447. }
  10448. }
  10449. // ggml_compute_forward_soft_max
  10450. static void ggml_compute_forward_soft_max_f32(
  10451. const struct ggml_compute_params * params,
  10452. const struct ggml_tensor * src0,
  10453. struct ggml_tensor * dst) {
  10454. GGML_ASSERT(ggml_is_contiguous(src0));
  10455. GGML_ASSERT(ggml_is_contiguous(dst));
  10456. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10457. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10458. return;
  10459. }
  10460. // TODO: handle transposed/permuted matrices
  10461. const int ith = params->ith;
  10462. const int nth = params->nth;
  10463. const int nc = src0->ne[0];
  10464. const int nr = ggml_nrows(src0);
  10465. // rows per thread
  10466. const int dr = (nr + nth - 1)/nth;
  10467. // row range for this thread
  10468. const int ir0 = dr*ith;
  10469. const int ir1 = MIN(ir0 + dr, nr);
  10470. for (int i1 = ir0; i1 < ir1; i1++) {
  10471. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  10472. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  10473. #ifndef NDEBUG
  10474. for (int i = 0; i < nc; ++i) {
  10475. //printf("p[%d] = %f\n", i, p[i]);
  10476. assert(!isnan(sp[i]));
  10477. }
  10478. #endif
  10479. float max = -INFINITY;
  10480. ggml_vec_max_f32(nc, &max, sp);
  10481. ggml_float sum = 0.0;
  10482. uint16_t scvt;
  10483. for (int i = 0; i < nc; i++) {
  10484. if (sp[i] == -INFINITY) {
  10485. dp[i] = 0.0f;
  10486. } else {
  10487. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  10488. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  10489. memcpy(&scvt, &s, sizeof(scvt));
  10490. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  10491. sum += (ggml_float)val;
  10492. dp[i] = val;
  10493. }
  10494. }
  10495. assert(sum > 0.0);
  10496. sum = 1.0/sum;
  10497. ggml_vec_scale_f32(nc, dp, sum);
  10498. #ifndef NDEBUG
  10499. for (int i = 0; i < nc; ++i) {
  10500. assert(!isnan(dp[i]));
  10501. assert(!isinf(dp[i]));
  10502. }
  10503. #endif
  10504. }
  10505. }
  10506. static void ggml_compute_forward_soft_max(
  10507. const struct ggml_compute_params * params,
  10508. const struct ggml_tensor * src0,
  10509. struct ggml_tensor * dst) {
  10510. switch (src0->type) {
  10511. case GGML_TYPE_F32:
  10512. {
  10513. ggml_compute_forward_soft_max_f32(params, src0, dst);
  10514. } break;
  10515. default:
  10516. {
  10517. GGML_ASSERT(false);
  10518. } break;
  10519. }
  10520. }
  10521. // ggml_compute_forward_soft_max_back
  10522. static void ggml_compute_forward_soft_max_back_f32(
  10523. const struct ggml_compute_params * params,
  10524. const struct ggml_tensor * src0,
  10525. const struct ggml_tensor * src1,
  10526. struct ggml_tensor * dst) {
  10527. GGML_ASSERT(ggml_is_contiguous(src0));
  10528. GGML_ASSERT(ggml_is_contiguous(src1));
  10529. GGML_ASSERT(ggml_is_contiguous(dst));
  10530. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10531. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  10532. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10533. return;
  10534. }
  10535. // TODO: handle transposed/permuted matrices
  10536. const int ith = params->ith;
  10537. const int nth = params->nth;
  10538. const int nc = src0->ne[0];
  10539. const int nr = ggml_nrows(src0);
  10540. // rows per thread
  10541. const int dr = (nr + nth - 1)/nth;
  10542. // row range for this thread
  10543. const int ir0 = dr*ith;
  10544. const int ir1 = MIN(ir0 + dr, nr);
  10545. for (int i1 = ir0; i1 < ir1; i1++) {
  10546. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  10547. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  10548. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  10549. #ifndef NDEBUG
  10550. for (int i = 0; i < nc; ++i) {
  10551. //printf("p[%d] = %f\n", i, p[i]);
  10552. assert(!isnan(dy[i]));
  10553. assert(!isnan(y[i]));
  10554. }
  10555. #endif
  10556. // Jii = yi - yi*yi
  10557. // Jij = -yi*yj
  10558. // J = diag(y)-y.T*y
  10559. // dx = J * dy
  10560. // dxk = sum_i(Jki * dyi)
  10561. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  10562. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  10563. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  10564. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  10565. // dxk = -yk * dot(y, dy) + yk*dyk
  10566. // dxk = yk * (- dot(y, dy) + dyk)
  10567. // dxk = yk * (dyk - dot(y, dy))
  10568. //
  10569. // post-order:
  10570. // dot_y_dy := dot(y, dy)
  10571. // dx := dy
  10572. // dx := dx - dot_y_dy
  10573. // dx := dx * y
  10574. // linear runtime, no additional memory
  10575. float dot_y_dy = 0;
  10576. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  10577. ggml_vec_cpy_f32 (nc, dx, dy);
  10578. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  10579. ggml_vec_mul_f32 (nc, dx, dx, y);
  10580. #ifndef NDEBUG
  10581. for (int i = 0; i < nc; ++i) {
  10582. assert(!isnan(dx[i]));
  10583. assert(!isinf(dx[i]));
  10584. }
  10585. #endif
  10586. }
  10587. }
  10588. static void ggml_compute_forward_soft_max_back(
  10589. const struct ggml_compute_params * params,
  10590. const struct ggml_tensor * src0,
  10591. const struct ggml_tensor * src1,
  10592. struct ggml_tensor * dst) {
  10593. switch (src0->type) {
  10594. case GGML_TYPE_F32:
  10595. {
  10596. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  10597. } break;
  10598. default:
  10599. {
  10600. GGML_ASSERT(false);
  10601. } break;
  10602. }
  10603. }
  10604. // ggml_compute_forward_alibi
  10605. static void ggml_compute_forward_alibi_f32(
  10606. const struct ggml_compute_params * params,
  10607. const struct ggml_tensor * src0,
  10608. struct ggml_tensor * dst) {
  10609. assert(params->ith == 0);
  10610. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10611. return;
  10612. }
  10613. //const int n_past = ((int32_t *) dst->op_params)[0];
  10614. const int n_head = ((int32_t *) dst->op_params)[1];
  10615. float max_bias;
  10616. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10617. const int64_t ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10618. const int64_t ne1 = src0->ne[1]; // seq_len_without_past
  10619. const int64_t ne2 = src0->ne[2]; // n_head -> this is k
  10620. //const int64_t ne3 = src0->ne[3]; // 1 -> bsz
  10621. const int64_t n = ggml_nrows(src0);
  10622. const int64_t ne2_ne3 = n/ne1; // ne2*ne3
  10623. const size_t nb0 = src0->nb[0];
  10624. const size_t nb1 = src0->nb[1];
  10625. const size_t nb2 = src0->nb[2];
  10626. //const int nb3 = src0->nb[3];
  10627. GGML_ASSERT(nb0 == sizeof(float));
  10628. GGML_ASSERT(n_head == ne2);
  10629. // add alibi to src0 (KQ_scaled)
  10630. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10631. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10632. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10633. for (int64_t i = 0; i < ne0; i++) {
  10634. for (int64_t j = 0; j < ne1; j++) {
  10635. for (int64_t k = 0; k < ne2_ne3; k++) {
  10636. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10637. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10638. // TODO: k*nb2 or k*nb3
  10639. float m_k;
  10640. if (k < n_heads_log2_floor) {
  10641. m_k = powf(m0, k + 1);
  10642. } else {
  10643. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10644. }
  10645. pdst[0] = i * m_k + src[0];
  10646. }
  10647. }
  10648. }
  10649. }
  10650. static void ggml_compute_forward_alibi_f16(
  10651. const struct ggml_compute_params * params,
  10652. const struct ggml_tensor * src0,
  10653. struct ggml_tensor * dst) {
  10654. assert(params->ith == 0);
  10655. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10656. return;
  10657. }
  10658. //const int n_past = ((int32_t *) dst->op_params)[0];
  10659. const int n_head = ((int32_t *) dst->op_params)[1];
  10660. float max_bias;
  10661. memcpy(&max_bias, (int32_t *) dst->op_params + 2, sizeof(float));
  10662. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  10663. const int ne1 = src0->ne[1]; // seq_len_without_past
  10664. const int ne2 = src0->ne[2]; // n_head -> this is k
  10665. //const int ne3 = src0->ne[3]; // 1 -> bsz
  10666. const int n = ggml_nrows(src0);
  10667. const int ne2_ne3 = n/ne1; // ne2*ne3
  10668. const int nb0 = src0->nb[0];
  10669. const int nb1 = src0->nb[1];
  10670. const int nb2 = src0->nb[2];
  10671. //const int nb3 = src0->nb[3];
  10672. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10673. //GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  10674. GGML_ASSERT(n_head == ne2);
  10675. // add alibi to src0 (KQ_scaled)
  10676. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10677. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10678. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10679. for (int i = 0; i < ne0; i++) {
  10680. for (int j = 0; j < ne1; j++) {
  10681. for (int k = 0; k < ne2_ne3; k++) {
  10682. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10683. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10684. // TODO: k*nb2 or k*nb3
  10685. float m_k;
  10686. if (k < n_heads_log2_floor) {
  10687. m_k = powf(m0, k + 1);
  10688. } else {
  10689. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10690. }
  10691. // we return F32
  10692. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  10693. }
  10694. }
  10695. }
  10696. }
  10697. static void ggml_compute_forward_alibi(
  10698. const struct ggml_compute_params * params,
  10699. const struct ggml_tensor * src0,
  10700. struct ggml_tensor * dst) {
  10701. switch (src0->type) {
  10702. case GGML_TYPE_F16:
  10703. {
  10704. ggml_compute_forward_alibi_f16(params, src0, dst);
  10705. } break;
  10706. case GGML_TYPE_F32:
  10707. {
  10708. ggml_compute_forward_alibi_f32(params, src0, dst);
  10709. } break;
  10710. case GGML_TYPE_Q4_0:
  10711. case GGML_TYPE_Q4_1:
  10712. case GGML_TYPE_Q5_0:
  10713. case GGML_TYPE_Q5_1:
  10714. case GGML_TYPE_Q8_0:
  10715. case GGML_TYPE_Q8_1:
  10716. case GGML_TYPE_Q2_K:
  10717. case GGML_TYPE_Q3_K:
  10718. case GGML_TYPE_Q4_K:
  10719. case GGML_TYPE_Q5_K:
  10720. case GGML_TYPE_Q6_K:
  10721. case GGML_TYPE_Q8_K:
  10722. case GGML_TYPE_I8:
  10723. case GGML_TYPE_I16:
  10724. case GGML_TYPE_I32:
  10725. case GGML_TYPE_COUNT:
  10726. {
  10727. GGML_ASSERT(false);
  10728. } break;
  10729. }
  10730. }
  10731. // ggml_compute_forward_clamp
  10732. static void ggml_compute_forward_clamp_f32(
  10733. const struct ggml_compute_params * params,
  10734. const struct ggml_tensor * src0,
  10735. struct ggml_tensor * dst) {
  10736. assert(params->ith == 0);
  10737. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10738. return;
  10739. }
  10740. float min;
  10741. float max;
  10742. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  10743. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  10744. const int ith = params->ith;
  10745. const int nth = params->nth;
  10746. const int n = ggml_nrows(src0);
  10747. const int nc = src0->ne[0];
  10748. const size_t nb00 = src0->nb[0];
  10749. const size_t nb01 = src0->nb[1];
  10750. const size_t nb0 = dst->nb[0];
  10751. const size_t nb1 = dst->nb[1];
  10752. GGML_ASSERT( nb0 == sizeof(float));
  10753. GGML_ASSERT(nb00 == sizeof(float));
  10754. for (int j = ith; j < n; j += nth) {
  10755. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10756. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10757. for (int i = 0; i < nc; i++) {
  10758. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10759. }
  10760. }
  10761. }
  10762. static void ggml_compute_forward_clamp(
  10763. const struct ggml_compute_params * params,
  10764. const struct ggml_tensor * src0,
  10765. struct ggml_tensor * dst) {
  10766. switch (src0->type) {
  10767. case GGML_TYPE_F32:
  10768. {
  10769. ggml_compute_forward_clamp_f32(params, src0, dst);
  10770. } break;
  10771. case GGML_TYPE_F16:
  10772. case GGML_TYPE_Q4_0:
  10773. case GGML_TYPE_Q4_1:
  10774. case GGML_TYPE_Q5_0:
  10775. case GGML_TYPE_Q5_1:
  10776. case GGML_TYPE_Q8_0:
  10777. case GGML_TYPE_Q8_1:
  10778. case GGML_TYPE_Q2_K:
  10779. case GGML_TYPE_Q3_K:
  10780. case GGML_TYPE_Q4_K:
  10781. case GGML_TYPE_Q5_K:
  10782. case GGML_TYPE_Q6_K:
  10783. case GGML_TYPE_Q8_K:
  10784. case GGML_TYPE_I8:
  10785. case GGML_TYPE_I16:
  10786. case GGML_TYPE_I32:
  10787. case GGML_TYPE_COUNT:
  10788. {
  10789. GGML_ASSERT(false);
  10790. } break;
  10791. }
  10792. }
  10793. // ggml_compute_forward_rope
  10794. static void ggml_compute_forward_rope_f32(
  10795. const struct ggml_compute_params * params,
  10796. const struct ggml_tensor * src0,
  10797. const struct ggml_tensor * src1,
  10798. struct ggml_tensor * dst) {
  10799. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10800. return;
  10801. }
  10802. float freq_base;
  10803. float freq_scale;
  10804. // these two only relevant for xPos RoPE:
  10805. float xpos_base;
  10806. bool xpos_down;
  10807. //const int n_past = ((int32_t *) dst->op_params)[0];
  10808. const int n_dims = ((int32_t *) dst->op_params)[1];
  10809. const int mode = ((int32_t *) dst->op_params)[2];
  10810. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10811. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10812. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10813. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  10814. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  10815. GGML_TENSOR_UNARY_OP_LOCALS
  10816. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10817. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10818. GGML_ASSERT(nb00 == sizeof(float));
  10819. const int ith = params->ith;
  10820. const int nth = params->nth;
  10821. const int nr = ggml_nrows(dst);
  10822. GGML_ASSERT(n_dims <= ne0);
  10823. GGML_ASSERT(n_dims % 2 == 0);
  10824. // rows per thread
  10825. const int dr = (nr + nth - 1)/nth;
  10826. // row range for this thread
  10827. const int ir0 = dr*ith;
  10828. const int ir1 = MIN(ir0 + dr, nr);
  10829. // row index used to determine which thread to use
  10830. int ir = 0;
  10831. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10832. const bool is_neox = mode & 2;
  10833. const bool is_glm = mode & 4;
  10834. const int32_t * pos = (const int32_t *) src1->data;
  10835. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10836. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10837. const int64_t p = pos[i2];
  10838. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10839. if (ir++ < ir0) continue;
  10840. if (ir > ir1) break;
  10841. float theta = freq_scale * (float)p;
  10842. if (is_glm) {
  10843. theta = MIN(p, n_ctx - 2);
  10844. float block_theta = MAX(p - (n_ctx - 2), 0);
  10845. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10846. const float cos_theta = cosf(theta);
  10847. const float sin_theta = sinf(theta);
  10848. const float cos_block_theta = cosf(block_theta);
  10849. const float sin_block_theta = sinf(block_theta);
  10850. theta *= theta_scale;
  10851. block_theta *= theta_scale;
  10852. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10853. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10854. const float x0 = src[0];
  10855. const float x1 = src[n_dims/2];
  10856. const float x2 = src[n_dims];
  10857. const float x3 = src[n_dims/2*3];
  10858. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10859. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10860. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10861. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10862. }
  10863. } else if (!is_neox) {
  10864. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10865. const float cos_theta = cosf(theta);
  10866. const float sin_theta = sinf(theta);
  10867. // zeta scaling for xPos only:
  10868. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  10869. if (xpos_down) zeta = 1.0f / zeta;
  10870. theta *= theta_scale;
  10871. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10872. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10873. const float x0 = src[0];
  10874. const float x1 = src[1];
  10875. dst_data[0] = x0*cos_theta*zeta - x1*sin_theta*zeta;
  10876. dst_data[1] = x0*sin_theta*zeta + x1*cos_theta*zeta;
  10877. }
  10878. } else {
  10879. // TODO: this might be wrong for ne0 != n_dims - need double check
  10880. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10881. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10882. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10883. const float cos_theta = cosf(theta);
  10884. const float sin_theta = sinf(theta);
  10885. theta *= theta_scale;
  10886. const int64_t i0 = ib*n_dims + ic/2;
  10887. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10888. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10889. const float x0 = src[0];
  10890. const float x1 = src[n_dims/2];
  10891. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10892. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10893. }
  10894. }
  10895. }
  10896. }
  10897. }
  10898. }
  10899. }
  10900. static void ggml_compute_forward_rope_f16(
  10901. const struct ggml_compute_params * params,
  10902. const struct ggml_tensor * src0,
  10903. const struct ggml_tensor * src1,
  10904. struct ggml_tensor * dst) {
  10905. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10906. return;
  10907. }
  10908. float freq_base;
  10909. float freq_scale;
  10910. //const int n_past = ((int32_t *) dst->op_params)[0];
  10911. const int n_dims = ((int32_t *) dst->op_params)[1];
  10912. const int mode = ((int32_t *) dst->op_params)[2];
  10913. const int n_ctx = ((int32_t *) dst->op_params)[3];
  10914. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  10915. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  10916. GGML_TENSOR_UNARY_OP_LOCALS
  10917. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10918. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10919. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10920. const int ith = params->ith;
  10921. const int nth = params->nth;
  10922. const int nr = ggml_nrows(dst);
  10923. GGML_ASSERT(n_dims <= ne0);
  10924. GGML_ASSERT(n_dims % 2 == 0);
  10925. // rows per thread
  10926. const int dr = (nr + nth - 1)/nth;
  10927. // row range for this thread
  10928. const int ir0 = dr*ith;
  10929. const int ir1 = MIN(ir0 + dr, nr);
  10930. // row index used to determine which thread to use
  10931. int ir = 0;
  10932. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  10933. const bool is_neox = mode & 2;
  10934. const bool is_glm = mode & 4;
  10935. const int32_t * pos = (const int32_t *) src1->data;
  10936. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10937. for (int64_t i2 = 0; i2 < ne2; i2++) {
  10938. const int64_t p = pos[i2];
  10939. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10940. if (ir++ < ir0) continue;
  10941. if (ir > ir1) break;
  10942. float theta = freq_scale * (float)p;
  10943. if (is_glm) {
  10944. theta = MIN(p, n_ctx - 2);
  10945. float block_theta = MAX(p - (n_ctx - 2), 0);
  10946. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10947. const float cos_theta = cosf(theta);
  10948. const float sin_theta = sinf(theta);
  10949. const float cos_block_theta = cosf(block_theta);
  10950. const float sin_block_theta = sinf(block_theta);
  10951. theta *= theta_scale;
  10952. block_theta *= theta_scale;
  10953. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10954. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10955. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10956. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10957. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10958. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10959. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10960. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10961. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10962. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10963. }
  10964. } else if (!is_neox) {
  10965. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10966. const float cos_theta = cosf(theta);
  10967. const float sin_theta = sinf(theta);
  10968. theta *= theta_scale;
  10969. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10970. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10971. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10972. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10973. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10974. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10975. }
  10976. } else {
  10977. // TODO: this might be wrong for ne0 != n_dims - need double check
  10978. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10979. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10980. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10981. const float cos_theta = cosf(theta);
  10982. const float sin_theta = sinf(theta);
  10983. theta *= theta_scale;
  10984. const int64_t i0 = ib*n_dims + ic/2;
  10985. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10986. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10987. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10988. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10989. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10990. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10991. }
  10992. }
  10993. }
  10994. }
  10995. }
  10996. }
  10997. }
  10998. static void ggml_compute_forward_rope(
  10999. const struct ggml_compute_params * params,
  11000. const struct ggml_tensor * src0,
  11001. const struct ggml_tensor * src1,
  11002. struct ggml_tensor * dst) {
  11003. switch (src0->type) {
  11004. case GGML_TYPE_F16:
  11005. {
  11006. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  11007. } break;
  11008. case GGML_TYPE_F32:
  11009. {
  11010. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  11011. } break;
  11012. default:
  11013. {
  11014. GGML_ASSERT(false);
  11015. } break;
  11016. }
  11017. }
  11018. // ggml_compute_forward_rope_back
  11019. static void ggml_compute_forward_rope_back_f32(
  11020. const struct ggml_compute_params * params,
  11021. const struct ggml_tensor * src0,
  11022. const struct ggml_tensor * src1,
  11023. struct ggml_tensor * dst) {
  11024. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11025. return;
  11026. }
  11027. // y = rope(x, src1)
  11028. // dx = rope_back(dy, src1)
  11029. // src0 is dy, src1 contains options
  11030. float freq_base;
  11031. float freq_scale;
  11032. // these two only relevant for xPos RoPE:
  11033. float xpos_base;
  11034. bool xpos_down;
  11035. //const int n_past = ((int32_t *) dst->op_params)[0];
  11036. const int n_dims = ((int32_t *) dst->op_params)[1];
  11037. const int mode = ((int32_t *) dst->op_params)[2];
  11038. const int n_ctx = ((int32_t *) dst->op_params)[3]; UNUSED(n_ctx);
  11039. memcpy(&freq_base, (int32_t *) dst->op_params + 4, sizeof(float));
  11040. memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
  11041. memcpy(&xpos_base, (int32_t *) dst->op_params + 6, sizeof(float));
  11042. memcpy(&xpos_down, (int32_t *) dst->op_params + 7, sizeof(bool));
  11043. GGML_TENSOR_UNARY_OP_LOCALS
  11044. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11045. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11046. assert(nb0 == sizeof(float));
  11047. const int ith = params->ith;
  11048. const int nth = params->nth;
  11049. const int nr = ggml_nrows(dst);
  11050. // rows per thread
  11051. const int dr = (nr + nth - 1)/nth;
  11052. // row range for this thread
  11053. const int ir0 = dr*ith;
  11054. const int ir1 = MIN(ir0 + dr, nr);
  11055. // row index used to determine which thread to use
  11056. int ir = 0;
  11057. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11058. const bool is_neox = mode & 2;
  11059. const int32_t * pos = (const int32_t *) src1->data;
  11060. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11061. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11062. const int64_t p = pos[i2];
  11063. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11064. if (ir++ < ir0) continue;
  11065. if (ir > ir1) break;
  11066. float theta = freq_scale * (float)p;
  11067. if (!is_neox) {
  11068. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11069. const float cos_theta = cosf(theta);
  11070. const float sin_theta = sinf(theta);
  11071. // zeta scaling for xPos only:
  11072. float zeta = xpos_base != 0.0f ? powf((i0 + 0.4f * ne0) / (1.4f * ne0), p / xpos_base) : 1.0f;
  11073. if (xpos_down) zeta = 1.0f / zeta;
  11074. theta *= theta_scale;
  11075. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11076. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11077. const float dy0 = dy[0];
  11078. const float dy1 = dy[1];
  11079. dx[0] = dy0*cos_theta*zeta + dy1*sin_theta*zeta;
  11080. dx[1] = - dy0*sin_theta*zeta + dy1*cos_theta*zeta;
  11081. }
  11082. } else {
  11083. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  11084. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  11085. const float cos_theta = cosf(theta);
  11086. const float sin_theta = sinf(theta);
  11087. theta *= theta_scale;
  11088. const int64_t i0 = ib*n_dims + ic/2;
  11089. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11090. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11091. const float dy0 = dy[0];
  11092. const float dy1 = dy[n_dims/2];
  11093. dx[0] = dy0*cos_theta + dy1*sin_theta;
  11094. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  11095. }
  11096. }
  11097. }
  11098. }
  11099. }
  11100. }
  11101. }
  11102. static void ggml_compute_forward_rope_back_f16(
  11103. const struct ggml_compute_params * params,
  11104. const struct ggml_tensor * src0,
  11105. const struct ggml_tensor * src1,
  11106. struct ggml_tensor * dst) {
  11107. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11108. return;
  11109. }
  11110. // y = rope(x, src1)
  11111. // dx = rope_back(dy, src1)
  11112. // src0 is dy, src1 contains options
  11113. //const int n_past = ((int32_t *) dst->op_params)[0];
  11114. const int n_dims = ((int32_t *) dst->op_params)[1];
  11115. const int mode = ((int32_t *) dst->op_params)[2];
  11116. GGML_TENSOR_UNARY_OP_LOCALS
  11117. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11118. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11119. assert(nb0 == sizeof(ggml_fp16_t));
  11120. const int ith = params->ith;
  11121. const int nth = params->nth;
  11122. const int nr = ggml_nrows(dst);
  11123. // rows per thread
  11124. const int dr = (nr + nth - 1)/nth;
  11125. // row range for this thread
  11126. const int ir0 = dr*ith;
  11127. const int ir1 = MIN(ir0 + dr, nr);
  11128. // row index used to determine which thread to use
  11129. int ir = 0;
  11130. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  11131. const bool is_neox = mode & 2;
  11132. const int32_t * pos = (const int32_t *) src1->data;
  11133. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11134. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11135. const int64_t p = pos[i2];
  11136. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11137. if (ir++ < ir0) continue;
  11138. if (ir > ir1) break;
  11139. float theta = (float)p;
  11140. if (!is_neox) {
  11141. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11142. const float cos_theta = cosf(theta);
  11143. const float sin_theta = sinf(theta);
  11144. theta *= theta_scale;
  11145. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11146. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11147. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  11148. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  11149. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  11150. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  11151. }
  11152. } else {
  11153. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  11154. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  11155. const float cos_theta = cosf(theta);
  11156. const float sin_theta = sinf(theta);
  11157. theta *= theta_scale;
  11158. const int64_t i0 = ib*n_dims + ic/2;
  11159. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11160. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11161. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  11162. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  11163. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  11164. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  11165. }
  11166. }
  11167. }
  11168. }
  11169. }
  11170. }
  11171. }
  11172. static void ggml_compute_forward_rope_back(
  11173. const struct ggml_compute_params * params,
  11174. const struct ggml_tensor * src0,
  11175. const struct ggml_tensor * src1,
  11176. struct ggml_tensor * dst) {
  11177. switch (src0->type) {
  11178. case GGML_TYPE_F16:
  11179. {
  11180. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  11181. } break;
  11182. case GGML_TYPE_F32:
  11183. {
  11184. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  11185. } break;
  11186. default:
  11187. {
  11188. GGML_ASSERT(false);
  11189. } break;
  11190. }
  11191. }
  11192. // ggml_compute_forward_conv_1d
  11193. static void ggml_compute_forward_conv_1d_f16_f32(
  11194. const struct ggml_compute_params * params,
  11195. const struct ggml_tensor * src0,
  11196. const struct ggml_tensor * src1,
  11197. struct ggml_tensor * dst) {
  11198. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11199. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11200. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11201. int64_t t0 = ggml_perf_time_us();
  11202. UNUSED(t0);
  11203. GGML_TENSOR_BINARY_OP_LOCALS
  11204. const int ith = params->ith;
  11205. const int nth = params->nth;
  11206. const int nk = ne00;
  11207. // size of the convolution row - the kernel size unrolled across all input channels
  11208. const int ew0 = nk*ne01;
  11209. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11210. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  11211. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  11212. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11213. GGML_ASSERT(nb10 == sizeof(float));
  11214. if (params->type == GGML_TASK_INIT) {
  11215. memset(params->wdata, 0, params->wsize);
  11216. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11217. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11218. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11219. ggml_fp16_t * dst_data = wdata;
  11220. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11221. for (int64_t ik = 0; ik < nk; ik++) {
  11222. const int idx0 = i0*s0 + ik*d0 - p0;
  11223. if(!(idx0 < 0 || idx0 >= ne10)) {
  11224. dst_data[i0*ew0 + i11*nk + ik] = GGML_FP32_TO_FP16(src[idx0]);
  11225. }
  11226. }
  11227. }
  11228. }
  11229. return;
  11230. }
  11231. if (params->type == GGML_TASK_FINALIZE) {
  11232. return;
  11233. }
  11234. // total rows in dst
  11235. const int nr = ne2;
  11236. // rows per thread
  11237. const int dr = (nr + nth - 1)/nth;
  11238. // row range for this thread
  11239. const int ir0 = dr*ith;
  11240. const int ir1 = MIN(ir0 + dr, nr);
  11241. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11242. for (int i2 = 0; i2 < ne2; i2++) {
  11243. for (int i1 = ir0; i1 < ir1; i1++) {
  11244. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  11245. for (int i0 = 0; i0 < ne0; i0++) {
  11246. ggml_vec_dot_f16(ew0, dst_data + i0,
  11247. (ggml_fp16_t *) ((char *) src0->data + i1*nb02),
  11248. (ggml_fp16_t *) wdata + i2*nb2 + i0*ew0);
  11249. }
  11250. }
  11251. }
  11252. }
  11253. static void ggml_compute_forward_conv_1d_f32(
  11254. const struct ggml_compute_params * params,
  11255. const struct ggml_tensor * src0,
  11256. const struct ggml_tensor * src1,
  11257. struct ggml_tensor * dst) {
  11258. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11259. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11260. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11261. int64_t t0 = ggml_perf_time_us();
  11262. UNUSED(t0);
  11263. GGML_TENSOR_BINARY_OP_LOCALS
  11264. const int ith = params->ith;
  11265. const int nth = params->nth;
  11266. const int nk = ne00;
  11267. const int ew0 = nk*ne01;
  11268. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11269. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  11270. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  11271. GGML_ASSERT(nb00 == sizeof(float));
  11272. GGML_ASSERT(nb10 == sizeof(float));
  11273. if (params->type == GGML_TASK_INIT) {
  11274. memset(params->wdata, 0, params->wsize);
  11275. float * const wdata = (float *) params->wdata + 0;
  11276. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11277. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11278. float * dst_data = wdata;
  11279. for (int64_t i0 = 0; i0 < ne0; i0++) {
  11280. for (int64_t ik = 0; ik < nk; ik++) {
  11281. const int idx0 = i0*s0 + ik*d0 - p0;
  11282. if(!(idx0 < 0 || idx0 >= ne10)) {
  11283. dst_data[i0*ew0 + i11*nk + ik] = src[idx0];
  11284. }
  11285. }
  11286. }
  11287. }
  11288. return;
  11289. }
  11290. if (params->type == GGML_TASK_FINALIZE) {
  11291. return;
  11292. }
  11293. // total rows in dst
  11294. const int nr = ne02;
  11295. // rows per thread
  11296. const int dr = (nr + nth - 1)/nth;
  11297. // row range for this thread
  11298. const int ir0 = dr*ith;
  11299. const int ir1 = MIN(ir0 + dr, nr);
  11300. float * const wdata = (float *) params->wdata + 0;
  11301. for (int i2 = 0; i2 < ne2; i2++) {
  11302. for (int i1 = ir0; i1 < ir1; i1++) {
  11303. float * dst_data = (float *)((char *) dst->data + i2*nb2 + i1*nb1);
  11304. for (int i0 = 0; i0 < ne0; i0++) {
  11305. ggml_vec_dot_f32(ew0, dst_data + i0,
  11306. (float *) ((char *) src0->data + i1*nb02),
  11307. (float *) wdata + i2*nb2 + i0*ew0);
  11308. }
  11309. }
  11310. }
  11311. }
  11312. static void gemm_f16_out_f32(int64_t m, int64_t n, int64_t k,
  11313. ggml_fp16_t * A,
  11314. ggml_fp16_t * B,
  11315. float * C,
  11316. const int ith, const int nth) {
  11317. // does not seem to make a difference
  11318. int64_t m0, m1, n0, n1;
  11319. // patches per thread
  11320. if (m > n) {
  11321. n0 = 0;
  11322. n1 = n;
  11323. // total patches in dst
  11324. const int np = m;
  11325. // patches per thread
  11326. const int dp = (np + nth - 1)/nth;
  11327. // patch range for this thread
  11328. m0 = dp*ith;
  11329. m1 = MIN(m0 + dp, np);
  11330. } else {
  11331. m0 = 0;
  11332. m1 = m;
  11333. // total patches in dst
  11334. const int np = n;
  11335. // patches per thread
  11336. const int dp = (np + nth - 1)/nth;
  11337. // patch range for this thread
  11338. n0 = dp*ith;
  11339. n1 = MIN(n0 + dp, np);
  11340. }
  11341. // block-tiling attempt
  11342. int64_t blck_n = 16;
  11343. int64_t blck_m = 16;
  11344. // int64_t CACHE_SIZE = 2 * 1024 * 1024; // 2MB
  11345. // int64_t blck_size = CACHE_SIZE / (sizeof(float) + 2 * sizeof(ggml_fp16_t) * K);
  11346. // if (blck_size > 0) {
  11347. // blck_0 = 4;
  11348. // blck_1 = blck_size / blck_0;
  11349. // if (blck_1 < 0) {
  11350. // blck_1 = 1;
  11351. // }
  11352. // // blck_0 = (int64_t)sqrt(blck_size);
  11353. // // blck_1 = blck_0;
  11354. // }
  11355. // // printf("%zd %zd %zd %zd\n", blck_size, K, blck_0, blck_1);
  11356. for (int j = n0; j < n1; j+=blck_n) {
  11357. for (int i = m0; i < m1; i+=blck_m) {
  11358. // printf("i j k => %d %d %d\n", i, j, K);
  11359. for (int ii = i; ii < i + blck_m && ii < m1; ii++) {
  11360. for (int jj = j; jj < j + blck_n && jj < n1; jj++) {
  11361. ggml_vec_dot_f16(k,
  11362. C + ii*n + jj,
  11363. A + ii * k,
  11364. B + jj * k);
  11365. }
  11366. }
  11367. }
  11368. }
  11369. }
  11370. // src0: kernel [OC, IC, K]
  11371. // src1: signal [N, IC, IL]
  11372. // dst: result [N, OL, IC*K]
  11373. static void ggml_compute_forward_conv_1d_stage_0_f32(
  11374. const struct ggml_compute_params * params,
  11375. const struct ggml_tensor * src0,
  11376. const struct ggml_tensor * src1,
  11377. struct ggml_tensor * dst) {
  11378. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11379. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11380. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11381. int64_t t0 = ggml_perf_time_us();
  11382. UNUSED(t0);
  11383. GGML_TENSOR_BINARY_OP_LOCALS;
  11384. const int64_t N = ne12;
  11385. const int64_t IC = ne11;
  11386. const int64_t IL = ne10;
  11387. const int64_t K = ne00;
  11388. const int64_t OL = ne1;
  11389. const int ith = params->ith;
  11390. const int nth = params->nth;
  11391. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11392. const int32_t p0 = ((const int32_t*)(dst->op_params))[1];
  11393. const int32_t d0 = ((const int32_t*)(dst->op_params))[2];
  11394. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11395. GGML_ASSERT(nb10 == sizeof(float));
  11396. if (params->type == GGML_TASK_INIT) {
  11397. memset(dst->data, 0, ggml_nbytes(dst));
  11398. return;
  11399. }
  11400. if (params->type == GGML_TASK_FINALIZE) {
  11401. return;
  11402. }
  11403. // im2col: [N, IC, IL] => [N, OL, IC*K]
  11404. {
  11405. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11406. for (int64_t in = 0; in < N; in++) {
  11407. for (int64_t iol = 0; iol < OL; iol++) {
  11408. for (int64_t iic = ith; iic < IC; iic+=nth) {
  11409. // micro kernel
  11410. ggml_fp16_t * dst_data = wdata + (in*OL + iol)*(IC*K); // [IC, K]
  11411. const float * const src_data = (float *)((char *) src1->data + in*nb12 + iic*nb11); // [IL]
  11412. for (int64_t ik = 0; ik < K; ik++) {
  11413. const int64_t iil = iol*s0 + ik*d0 - p0;
  11414. if (!(iil < 0 || iil >= IL)) {
  11415. dst_data[iic*K + ik] = GGML_FP32_TO_FP16(src_data[iil]);
  11416. }
  11417. }
  11418. }
  11419. }
  11420. }
  11421. }
  11422. }
  11423. // gemm: [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  11424. // src0: [OC, IC, K]
  11425. // src1: [N, OL, IC * K]
  11426. // result: [N, OC, OL]
  11427. static void ggml_compute_forward_conv_1d_stage_1_f16(
  11428. const struct ggml_compute_params * params,
  11429. const struct ggml_tensor * src0,
  11430. const struct ggml_tensor * src1,
  11431. struct ggml_tensor * dst) {
  11432. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11433. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  11434. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11435. int64_t t0 = ggml_perf_time_us();
  11436. UNUSED(t0);
  11437. if (params->type == GGML_TASK_INIT) {
  11438. return;
  11439. }
  11440. if (params->type == GGML_TASK_FINALIZE) {
  11441. return;
  11442. }
  11443. GGML_TENSOR_BINARY_OP_LOCALS;
  11444. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11445. GGML_ASSERT(nb10 == sizeof(ggml_fp16_t));
  11446. GGML_ASSERT(nb0 == sizeof(float));
  11447. const int N = ne12;
  11448. const int OL = ne11;
  11449. const int OC = ne02;
  11450. const int IC = ne01;
  11451. const int K = ne00;
  11452. const int ith = params->ith;
  11453. const int nth = params->nth;
  11454. int64_t m = OC;
  11455. int64_t n = OL;
  11456. int64_t k = IC * K;
  11457. // [N, OC, OL] = [OC, IC * K] x [N*OL, IC * K]
  11458. for (int i = 0; i < N; i++) {
  11459. ggml_fp16_t * A = (ggml_fp16_t *)src0->data; // [m, k]
  11460. ggml_fp16_t * B = (ggml_fp16_t *)src1->data + i * m * k; // [n, k]
  11461. float * C = (float *)dst->data + i * m * n; // [m, n]
  11462. gemm_f16_out_f32(m, n, k, A, B, C, ith, nth);
  11463. }
  11464. }
  11465. static void ggml_compute_forward_conv_1d(
  11466. const struct ggml_compute_params * params,
  11467. const struct ggml_tensor * src0,
  11468. const struct ggml_tensor * src1,
  11469. struct ggml_tensor * dst) {
  11470. switch(src0->type) {
  11471. case GGML_TYPE_F16:
  11472. {
  11473. ggml_compute_forward_conv_1d_f16_f32(params, src0, src1, dst);
  11474. } break;
  11475. case GGML_TYPE_F32:
  11476. {
  11477. ggml_compute_forward_conv_1d_f32(params, src0, src1, dst);
  11478. } break;
  11479. default:
  11480. {
  11481. GGML_ASSERT(false);
  11482. } break;
  11483. }
  11484. }
  11485. static void ggml_compute_forward_conv_1d_stage_0(
  11486. const struct ggml_compute_params * params,
  11487. const struct ggml_tensor * src0,
  11488. const struct ggml_tensor * src1,
  11489. struct ggml_tensor * dst) {
  11490. switch(src0->type) {
  11491. case GGML_TYPE_F16:
  11492. {
  11493. ggml_compute_forward_conv_1d_stage_0_f32(params, src0, src1, dst);
  11494. } break;
  11495. default:
  11496. {
  11497. GGML_ASSERT(false);
  11498. } break;
  11499. }
  11500. }
  11501. static void ggml_compute_forward_conv_1d_stage_1(
  11502. const struct ggml_compute_params * params,
  11503. const struct ggml_tensor * src0,
  11504. const struct ggml_tensor * src1,
  11505. struct ggml_tensor * dst) {
  11506. switch(src0->type) {
  11507. case GGML_TYPE_F16:
  11508. {
  11509. ggml_compute_forward_conv_1d_stage_1_f16(params, src0, src1, dst);
  11510. } break;
  11511. default:
  11512. {
  11513. GGML_ASSERT(false);
  11514. } break;
  11515. }
  11516. }
  11517. // ggml_compute_forward_conv_transpose_1d
  11518. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11519. const struct ggml_compute_params * params,
  11520. const struct ggml_tensor * src0,
  11521. const struct ggml_tensor * src1,
  11522. struct ggml_tensor * dst) {
  11523. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11524. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11525. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11526. int64_t t0 = ggml_perf_time_us();
  11527. UNUSED(t0);
  11528. GGML_TENSOR_BINARY_OP_LOCALS
  11529. const int ith = params->ith;
  11530. const int nth = params->nth;
  11531. const int nk = ne00*ne01*ne02;
  11532. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11533. GGML_ASSERT(nb10 == sizeof(float));
  11534. if (params->type == GGML_TASK_INIT) {
  11535. memset(params->wdata, 0, params->wsize);
  11536. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11537. {
  11538. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11539. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11540. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11541. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11542. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11543. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11544. dst_data[i00*ne02 + i02] = src[i00];
  11545. }
  11546. }
  11547. }
  11548. }
  11549. // permute source data (src1) from (L x Cin) to (Cin x L)
  11550. {
  11551. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11552. ggml_fp16_t * dst_data = wdata;
  11553. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11554. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11555. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11556. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11557. }
  11558. }
  11559. }
  11560. return;
  11561. }
  11562. if (params->type == GGML_TASK_FINALIZE) {
  11563. return;
  11564. }
  11565. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11566. // total rows in dst
  11567. const int nr = ne1;
  11568. // rows per thread
  11569. const int dr = (nr + nth - 1)/nth;
  11570. // row range for this thread
  11571. const int ir0 = dr*ith;
  11572. const int ir1 = MIN(ir0 + dr, nr);
  11573. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11574. ggml_fp16_t * const wdata_src = wdata + nk;
  11575. for (int i1 = ir0; i1 < ir1; i1++) {
  11576. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11577. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11578. for (int i10 = 0; i10 < ne10; i10++) {
  11579. const int i1n = i10*ne11;
  11580. for (int i00 = 0; i00 < ne00; i00++) {
  11581. float v = 0;
  11582. ggml_vec_dot_f16(ne02, &v,
  11583. (ggml_fp16_t *) wdata_src + i1n,
  11584. (ggml_fp16_t *) wdata_kernel + i00*ne02);
  11585. dst_data[i10*s0 + i00] += v;
  11586. }
  11587. }
  11588. }
  11589. }
  11590. static void ggml_compute_forward_conv_transpose_1d_f32(
  11591. const struct ggml_compute_params * params,
  11592. const struct ggml_tensor * src0,
  11593. const struct ggml_tensor * src1,
  11594. struct ggml_tensor * dst) {
  11595. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11596. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11597. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11598. int64_t t0 = ggml_perf_time_us();
  11599. UNUSED(t0);
  11600. GGML_TENSOR_BINARY_OP_LOCALS
  11601. const int ith = params->ith;
  11602. const int nth = params->nth;
  11603. const int nk = ne00*ne01*ne02;
  11604. GGML_ASSERT(nb00 == sizeof(float));
  11605. GGML_ASSERT(nb10 == sizeof(float));
  11606. if (params->type == GGML_TASK_INIT) {
  11607. memset(params->wdata, 0, params->wsize);
  11608. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11609. {
  11610. float * const wdata = (float *) params->wdata + 0;
  11611. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11612. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11613. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11614. float * dst_data = wdata + i01*ne00*ne02;
  11615. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11616. dst_data[i01*ne00*ne02 + i00*ne02 + i02] = src[i00];
  11617. }
  11618. }
  11619. }
  11620. }
  11621. // prepare source data (src1)
  11622. {
  11623. float * const wdata = (float *) params->wdata + nk;
  11624. float * dst_data = wdata;
  11625. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11626. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11627. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11628. dst_data[i10*ne11 + i11] = src[i10];
  11629. }
  11630. }
  11631. }
  11632. return;
  11633. }
  11634. if (params->type == GGML_TASK_FINALIZE) {
  11635. return;
  11636. }
  11637. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11638. // total rows in dst
  11639. const int nr = ne1;
  11640. // rows per thread
  11641. const int dr = (nr + nth - 1)/nth;
  11642. // row range for this thread
  11643. const int ir0 = dr*ith;
  11644. const int ir1 = MIN(ir0 + dr, nr);
  11645. float * const wdata = (float *) params->wdata + 0;
  11646. float * const wdata_src = wdata + nk;
  11647. for (int i1 = ir0; i1 < ir1; i1++) {
  11648. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11649. float * wdata_kernel = wdata + i1*ne02*ne00;
  11650. for (int i10 = 0; i10 < ne10; i10++) {
  11651. const int i1n = i10*ne11;
  11652. for (int i00 = 0; i00 < ne00; i00++) {
  11653. float v = 0;
  11654. ggml_vec_dot_f32(ne02, &v,
  11655. wdata_src + i1n,
  11656. wdata_kernel + i00*ne02);
  11657. dst_data[i10*s0 + i00] += v;
  11658. }
  11659. }
  11660. }
  11661. }
  11662. static void ggml_compute_forward_conv_transpose_1d(
  11663. const struct ggml_compute_params * params,
  11664. const struct ggml_tensor * src0,
  11665. const struct ggml_tensor * src1,
  11666. struct ggml_tensor * dst) {
  11667. switch (src0->type) {
  11668. case GGML_TYPE_F16:
  11669. {
  11670. ggml_compute_forward_conv_transpose_1d_f16_f32(params, src0, src1, dst);
  11671. } break;
  11672. case GGML_TYPE_F32:
  11673. {
  11674. ggml_compute_forward_conv_transpose_1d_f32(params, src0, src1, dst);
  11675. } break;
  11676. default:
  11677. {
  11678. GGML_ASSERT(false);
  11679. } break;
  11680. }
  11681. }
  11682. // ggml_compute_forward_conv_2d
  11683. static void ggml_compute_forward_conv_2d_f16_f32(
  11684. const struct ggml_compute_params * params,
  11685. const struct ggml_tensor * src0,
  11686. const struct ggml_tensor * src1,
  11687. struct ggml_tensor * dst) {
  11688. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11689. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11690. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11691. int64_t t0 = ggml_perf_time_us();
  11692. UNUSED(t0);
  11693. GGML_TENSOR_BINARY_OP_LOCALS;
  11694. const int ith = params->ith;
  11695. const int nth = params->nth;
  11696. const int nk0 = ne00;
  11697. const int nk1 = ne01;
  11698. // size of the convolution row - the kernel size unrolled across all channels
  11699. const int ew0 = nk0*nk1*ne02;
  11700. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11701. const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
  11702. const int32_t p0 = ((const int32_t*)(dst->op_params))[2];
  11703. const int32_t p1 = ((const int32_t*)(dst->op_params))[3];
  11704. const int32_t d0 = ((const int32_t*)(dst->op_params))[4];
  11705. const int32_t d1 = ((const int32_t*)(dst->op_params))[5];
  11706. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11707. GGML_ASSERT(nb10 == sizeof(float));
  11708. if (params->type == GGML_TASK_INIT) {
  11709. memset(params->wdata, 0, params->wsize);
  11710. // prepare source data (src1)
  11711. {
  11712. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11713. for (int i13 = 0; i13 < ne13; i13++) {
  11714. for (int i12 = 0; i12 < ne12; i12++) {
  11715. const float * const src = (float *)((char *) src1->data + i13*nb13 + i12*nb12);
  11716. ggml_fp16_t * dst_data = wdata + i13*(ne1*ne0*ew0);
  11717. for (int i1 = 0; i1 < ne1; i1++) {
  11718. for (int i0 = 0; i0 < ne0; i0++) {
  11719. for (int ik1 = 0; ik1 < nk1; ik1++) {
  11720. for (int ik0 = 0; ik0 < nk0; ik0++) {
  11721. const int idx0 = i0*s0 + ik0*d0 - p0;
  11722. const int idx1 = i1*s1 + ik1*d1 - p1;
  11723. if (!(idx1 < 0 || idx1 >= ne11 || idx0 < 0 || idx0 >= ne10)) {
  11724. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  11725. GGML_FP32_TO_FP16(src[idx1*ne10 + idx0]);
  11726. }
  11727. }
  11728. }
  11729. }
  11730. }
  11731. }
  11732. }
  11733. }
  11734. return;
  11735. }
  11736. if (params->type == GGML_TASK_FINALIZE) {
  11737. return;
  11738. }
  11739. // total patches in dst
  11740. const int np = ne2;
  11741. // patches per thread
  11742. const int dp = (np + nth - 1)/nth;
  11743. // patch range for this thread
  11744. const int ip0 = dp*ith;
  11745. const int ip1 = MIN(ip0 + dp, np);
  11746. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11747. for (int i3 = 0; i3 < ne3; i3++) {
  11748. for (int i2 = ip0; i2 < ip1; i2++) {
  11749. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2);
  11750. for (int i1 = 0; i1 < ne1; ++i1) {
  11751. for (int i0 = 0; i0 < ne0; ++i0) {
  11752. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11753. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11754. (ggml_fp16_t *) wdata + i3*nb3 + (i1*ne0 + i0)*ew0);
  11755. }
  11756. }
  11757. }
  11758. }
  11759. }
  11760. static void ggml_compute_forward_conv_2d(
  11761. const struct ggml_compute_params * params,
  11762. const struct ggml_tensor * src0,
  11763. const struct ggml_tensor * src1,
  11764. struct ggml_tensor * dst) {
  11765. switch (src0->type) {
  11766. case GGML_TYPE_F16:
  11767. {
  11768. ggml_compute_forward_conv_2d_f16_f32(params, src0, src1, dst);
  11769. } break;
  11770. case GGML_TYPE_F32:
  11771. {
  11772. //ggml_compute_forward_conv_2d_f32(params, src0, src1, dst);
  11773. GGML_ASSERT(false);
  11774. } break;
  11775. default:
  11776. {
  11777. GGML_ASSERT(false);
  11778. } break;
  11779. }
  11780. }
  11781. // ggml_compute_forward_conv_transpose_2d
  11782. static void ggml_compute_forward_conv_transpose_2d(
  11783. const struct ggml_compute_params * params,
  11784. const struct ggml_tensor * src0,
  11785. const struct ggml_tensor * src1,
  11786. struct ggml_tensor * dst) {
  11787. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11788. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11789. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11790. int64_t t0 = ggml_perf_time_us();
  11791. UNUSED(t0);
  11792. GGML_TENSOR_BINARY_OP_LOCALS
  11793. const int ith = params->ith;
  11794. const int nth = params->nth;
  11795. const int nk = ne00*ne01*ne02*ne03;
  11796. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11797. GGML_ASSERT(nb10 == sizeof(float));
  11798. if (params->type == GGML_TASK_INIT) {
  11799. memset(params->wdata, 0, params->wsize);
  11800. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11801. {
  11802. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11803. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11804. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11805. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11806. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11807. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11808. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11809. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11810. }
  11811. }
  11812. }
  11813. }
  11814. }
  11815. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11816. {
  11817. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11818. for (int i12 = 0; i12 < ne12; i12++) {
  11819. for (int i11 = 0; i11 < ne11; i11++) {
  11820. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11821. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11822. for (int i10 = 0; i10 < ne10; i10++) {
  11823. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11824. }
  11825. }
  11826. }
  11827. }
  11828. return;
  11829. }
  11830. if (params->type == GGML_TASK_FINALIZE) {
  11831. return;
  11832. }
  11833. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11834. // total patches in dst
  11835. const int np = ne2;
  11836. // patches per thread
  11837. const int dp = (np + nth - 1)/nth;
  11838. // patch range for this thread
  11839. const int ip0 = dp*ith;
  11840. const int ip1 = MIN(ip0 + dp, np);
  11841. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11842. ggml_fp16_t * const wdata_src = wdata + nk;
  11843. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11844. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11845. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11846. for (int i11 = 0; i11 < ne11; i11++) {
  11847. for (int i10 = 0; i10 < ne10; i10++) {
  11848. const int i1n = i11*ne10*ne12 + i10*ne12;
  11849. for (int i01 = 0; i01 < ne01; i01++) {
  11850. for (int i00 = 0; i00 < ne00; i00++) {
  11851. float v = 0;
  11852. ggml_vec_dot_f16(ne03, &v,
  11853. wdata_src + i1n,
  11854. wdata_kernel + i01*ne00*ne03 + i00*ne03);
  11855. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11856. }
  11857. }
  11858. }
  11859. }
  11860. }
  11861. }
  11862. // ggml_compute_forward_pool_1d_sk_p0
  11863. static void ggml_compute_forward_pool_1d_sk_p0(
  11864. const struct ggml_compute_params * params,
  11865. const enum ggml_op_pool op,
  11866. const struct ggml_tensor * src,
  11867. const int k,
  11868. struct ggml_tensor * dst) {
  11869. assert(src->type == GGML_TYPE_F32);
  11870. assert(params->ith == 0);
  11871. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11872. return;
  11873. }
  11874. const char * cdata = (const char *)src->data;
  11875. const char * const data_end = cdata + ggml_nbytes(src);
  11876. float * drow = (float *)dst->data;
  11877. const int64_t rs = dst->ne[0];
  11878. while (cdata < data_end) {
  11879. const float * const srow = (const float *)cdata;
  11880. int j = 0;
  11881. for (int64_t i = 0; i < rs; ++i) {
  11882. switch (op) {
  11883. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11884. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11885. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11886. }
  11887. for (int ki = 0; ki < k; ++ki) {
  11888. switch (op) {
  11889. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11890. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11891. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11892. }
  11893. ++j;
  11894. }
  11895. switch (op) {
  11896. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11897. case GGML_OP_POOL_MAX: break;
  11898. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11899. }
  11900. }
  11901. cdata += src->nb[1];
  11902. drow += rs;
  11903. }
  11904. }
  11905. // ggml_compute_forward_pool_1d
  11906. static void ggml_compute_forward_pool_1d(
  11907. const struct ggml_compute_params * params,
  11908. const struct ggml_tensor * src0,
  11909. struct ggml_tensor * dst) {
  11910. const int32_t * opts = (const int32_t *)dst->op_params;
  11911. enum ggml_op_pool op = opts[0];
  11912. const int k0 = opts[1];
  11913. const int s0 = opts[2];
  11914. const int p0 = opts[3];
  11915. GGML_ASSERT(p0 == 0); // padding not supported
  11916. GGML_ASSERT(k0 == s0); // only s = k supported
  11917. ggml_compute_forward_pool_1d_sk_p0(params, op, src0, k0, dst);
  11918. }
  11919. // ggml_compute_forward_pool_2d_sk_p0
  11920. static void ggml_compute_forward_pool_2d_sk_p0(
  11921. const struct ggml_compute_params * params,
  11922. const enum ggml_op_pool op,
  11923. const struct ggml_tensor * src,
  11924. const int k0,
  11925. const int k1,
  11926. struct ggml_tensor * dst) {
  11927. assert(src->type == GGML_TYPE_F32);
  11928. assert(params->ith == 0);
  11929. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11930. return;
  11931. }
  11932. const char * cdata = (const char*)src->data;
  11933. const char * const data_end = cdata + ggml_nbytes(src);
  11934. const int64_t px = dst->ne[0];
  11935. const int64_t py = dst->ne[1];
  11936. const int64_t pa = px * py;
  11937. float * dplane = (float *)dst->data;
  11938. const int ka = k0 * k1;
  11939. while (cdata < data_end) {
  11940. for (int oy = 0; oy < py; ++oy) {
  11941. float * const drow = dplane + oy * px;
  11942. for (int ox = 0; ox < px; ++ox) {
  11943. float * const out = drow + ox;
  11944. switch (op) {
  11945. case GGML_OP_POOL_AVG: *out = 0; break;
  11946. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11947. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11948. }
  11949. const int ix = ox * k0;
  11950. const int iy = oy * k1;
  11951. for (int ky = 0; ky < k1; ++ky) {
  11952. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11953. for (int kx = 0; kx < k0; ++kx) {
  11954. int j = ix + kx;
  11955. switch (op) {
  11956. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11957. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11958. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11959. }
  11960. }
  11961. }
  11962. switch (op) {
  11963. case GGML_OP_POOL_AVG: *out /= ka; break;
  11964. case GGML_OP_POOL_MAX: break;
  11965. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11966. }
  11967. }
  11968. }
  11969. cdata += src->nb[2];
  11970. dplane += pa;
  11971. }
  11972. }
  11973. // ggml_compute_forward_pool_2d
  11974. static void ggml_compute_forward_pool_2d(
  11975. const struct ggml_compute_params * params,
  11976. const struct ggml_tensor * src0,
  11977. struct ggml_tensor * dst) {
  11978. const int32_t * opts = (const int32_t *)dst->op_params;
  11979. enum ggml_op_pool op = opts[0];
  11980. const int k0 = opts[1];
  11981. const int k1 = opts[2];
  11982. const int s0 = opts[3];
  11983. const int s1 = opts[4];
  11984. const int p0 = opts[5];
  11985. const int p1 = opts[6];
  11986. GGML_ASSERT(p0 == 0);
  11987. GGML_ASSERT(p1 == 0); // padding not supported
  11988. GGML_ASSERT(k0 == s0);
  11989. GGML_ASSERT(k1 == s1); // only s = k supported
  11990. ggml_compute_forward_pool_2d_sk_p0(params, op, src0, k0, k1, dst);
  11991. }
  11992. // ggml_compute_forward_upscale
  11993. static void ggml_compute_forward_upscale_f32(
  11994. const struct ggml_compute_params * params,
  11995. const struct ggml_tensor * src0,
  11996. struct ggml_tensor * dst) {
  11997. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11998. return;
  11999. }
  12000. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12001. const int ith = params->ith;
  12002. GGML_TENSOR_UNARY_OP_LOCALS
  12003. const int scale_factor = dst->op_params[0];
  12004. // TODO: optimize
  12005. for (int i03 = 0; i03 < ne03; i03++) {
  12006. for (int i02 = ith; i02 < ne02; i02++) {
  12007. for (int m = 0; m < dst->ne[1]; m++) {
  12008. int i01 = m / scale_factor;
  12009. for (int n = 0; n < dst->ne[0]; n++) {
  12010. int i00 = n / scale_factor;
  12011. const float * x = (float *)((char *) src0->data + i00 * nb00 +i01 * nb01 + i02 * nb02 + i03 * nb03);
  12012. float * y = (float *)((char *) dst->data + n * dst->nb[0] + m * dst->nb[1] + i02 * dst->nb[2] + i03 * dst->nb[3]);
  12013. *y = *x;
  12014. }
  12015. }
  12016. }
  12017. }
  12018. }
  12019. static void ggml_compute_forward_upscale(
  12020. const struct ggml_compute_params * params,
  12021. const struct ggml_tensor * src0,
  12022. struct ggml_tensor * dst) {
  12023. switch (src0->type) {
  12024. case GGML_TYPE_F32:
  12025. {
  12026. ggml_compute_forward_upscale_f32(params, src0, dst);
  12027. } break;
  12028. default:
  12029. {
  12030. GGML_ASSERT(false);
  12031. } break;
  12032. }
  12033. }
  12034. // ggml_compute_forward_flash_attn
  12035. static void ggml_compute_forward_flash_attn_f32(
  12036. const struct ggml_compute_params * params,
  12037. const struct ggml_tensor * q,
  12038. const struct ggml_tensor * k,
  12039. const struct ggml_tensor * v,
  12040. const bool masked,
  12041. struct ggml_tensor * dst) {
  12042. int64_t t0 = ggml_perf_time_us();
  12043. UNUSED(t0);
  12044. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12045. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12046. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12047. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12048. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12049. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12050. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12051. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12052. const int ith = params->ith;
  12053. const int nth = params->nth;
  12054. const int64_t D = neq0;
  12055. const int64_t N = neq1;
  12056. const int64_t P = nek1 - N;
  12057. const int64_t M = P + N;
  12058. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12059. GGML_ASSERT(ne0 == D);
  12060. GGML_ASSERT(ne1 == N);
  12061. GGML_ASSERT(P >= 0);
  12062. GGML_ASSERT(nbq0 == sizeof(float));
  12063. GGML_ASSERT(nbk0 == sizeof(float));
  12064. GGML_ASSERT(nbv0 == sizeof(float));
  12065. GGML_ASSERT(neq0 == D);
  12066. GGML_ASSERT(nek0 == D);
  12067. GGML_ASSERT(nev1 == D);
  12068. GGML_ASSERT(neq1 == N);
  12069. GGML_ASSERT(nek1 == N + P);
  12070. GGML_ASSERT(nev1 == D);
  12071. // dst cannot be transposed or permuted
  12072. GGML_ASSERT(nb0 == sizeof(float));
  12073. GGML_ASSERT(nb0 <= nb1);
  12074. GGML_ASSERT(nb1 <= nb2);
  12075. GGML_ASSERT(nb2 <= nb3);
  12076. if (params->type == GGML_TASK_INIT) {
  12077. return;
  12078. }
  12079. if (params->type == GGML_TASK_FINALIZE) {
  12080. return;
  12081. }
  12082. // parallelize by q rows using ggml_vec_dot_f32
  12083. // total rows in q
  12084. const int nr = neq1*neq2*neq3;
  12085. // rows per thread
  12086. const int dr = (nr + nth - 1)/nth;
  12087. // row range for this thread
  12088. const int ir0 = dr*ith;
  12089. const int ir1 = MIN(ir0 + dr, nr);
  12090. const float scale = 1.0f/sqrtf(D);
  12091. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12092. for (int ir = ir0; ir < ir1; ++ir) {
  12093. // q indices
  12094. const int iq3 = ir/(neq2*neq1);
  12095. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12096. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12097. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  12098. for (int i = M; i < Mup; ++i) {
  12099. S[i] = -INFINITY;
  12100. }
  12101. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12102. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12103. // k indices
  12104. const int ik3 = iq3;
  12105. const int ik2 = iq2 % nek2;
  12106. const int ik1 = ic;
  12107. // S indices
  12108. const int i1 = ik1;
  12109. ggml_vec_dot_f32(neq0,
  12110. S + i1,
  12111. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12112. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12113. }
  12114. // scale
  12115. ggml_vec_scale_f32(masked_begin, S, scale);
  12116. for (int64_t i = masked_begin; i < M; i++) {
  12117. S[i] = -INFINITY;
  12118. }
  12119. // softmax
  12120. // exclude known -INF S[..] values from max and loop
  12121. // dont forget to set their SW values to zero
  12122. {
  12123. float max = -INFINITY;
  12124. ggml_vec_max_f32(masked_begin, &max, S);
  12125. ggml_float sum = 0.0;
  12126. {
  12127. #ifdef GGML_SOFT_MAX_ACCELERATE
  12128. max = -max;
  12129. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12130. vvexpf(S, S, &Mup);
  12131. ggml_vec_sum_f32(Mup, &sum, S);
  12132. #else
  12133. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12134. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12135. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12136. if (i >= masked_begin) {
  12137. break;
  12138. }
  12139. float * SS = S + i;
  12140. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12141. if (i + j >= masked_begin) {
  12142. break;
  12143. } else if (SS[j] == -INFINITY) {
  12144. SS[j] = 0.0f;
  12145. } else {
  12146. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12147. const float val = expf(SS[j] - max);
  12148. #else
  12149. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12150. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12151. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12152. #endif
  12153. sump[j] += (ggml_float)val;
  12154. SS[j] = val;
  12155. }
  12156. }
  12157. }
  12158. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12159. sum += sump[i];
  12160. }
  12161. #endif
  12162. }
  12163. assert(sum > 0.0);
  12164. sum = 1.0/sum;
  12165. ggml_vec_scale_f32(masked_begin, S, sum);
  12166. #ifndef NDEBUG
  12167. for (int i = 0; i < masked_begin; ++i) {
  12168. assert(!isnan(S[i]));
  12169. assert(!isinf(S[i]));
  12170. }
  12171. #endif
  12172. }
  12173. for (int64_t ic = 0; ic < nev1; ++ic) {
  12174. // dst indices
  12175. const int i1 = iq1;
  12176. const int i2 = iq2;
  12177. const int i3 = iq3;
  12178. // v indices
  12179. const int iv2 = iq2 % nev2;
  12180. const int iv3 = iq3;
  12181. ggml_vec_dot_f32(masked_begin,
  12182. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12183. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12184. S);
  12185. }
  12186. }
  12187. }
  12188. static void ggml_compute_forward_flash_attn_f16(
  12189. const struct ggml_compute_params * params,
  12190. const struct ggml_tensor * q,
  12191. const struct ggml_tensor * k,
  12192. const struct ggml_tensor * v,
  12193. const bool masked,
  12194. struct ggml_tensor * dst) {
  12195. int64_t t0 = ggml_perf_time_us();
  12196. UNUSED(t0);
  12197. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12198. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12199. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12200. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12201. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12202. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12203. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12204. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12205. const int ith = params->ith;
  12206. const int nth = params->nth;
  12207. const int64_t D = neq0;
  12208. const int64_t N = neq1;
  12209. const int64_t P = nek1 - N;
  12210. const int64_t M = P + N;
  12211. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12212. GGML_ASSERT(ne0 == D);
  12213. GGML_ASSERT(ne1 == N);
  12214. GGML_ASSERT(P >= 0);
  12215. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  12216. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  12217. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  12218. GGML_ASSERT(neq0 == D);
  12219. GGML_ASSERT(nek0 == D);
  12220. GGML_ASSERT(nev1 == D);
  12221. GGML_ASSERT(neq1 == N);
  12222. GGML_ASSERT(nek1 == N + P);
  12223. GGML_ASSERT(nev1 == D);
  12224. // dst cannot be transposed or permuted
  12225. GGML_ASSERT(nb0 == sizeof(float));
  12226. GGML_ASSERT(nb0 <= nb1);
  12227. GGML_ASSERT(nb1 <= nb2);
  12228. GGML_ASSERT(nb2 <= nb3);
  12229. if (params->type == GGML_TASK_INIT) {
  12230. return;
  12231. }
  12232. if (params->type == GGML_TASK_FINALIZE) {
  12233. return;
  12234. }
  12235. // parallelize by q rows using ggml_vec_dot_f32
  12236. // total rows in q
  12237. const int nr = neq1*neq2*neq3;
  12238. // rows per thread
  12239. const int dr = (nr + nth - 1)/nth;
  12240. // row range for this thread
  12241. const int ir0 = dr*ith;
  12242. const int ir1 = MIN(ir0 + dr, nr);
  12243. const float scale = 1.0f/sqrtf(D);
  12244. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12245. for (int ir = ir0; ir < ir1; ++ir) {
  12246. // q indices
  12247. const int iq3 = ir/(neq2*neq1);
  12248. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12249. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12250. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  12251. for (int i = M; i < Mup; ++i) {
  12252. S[i] = -INFINITY;
  12253. }
  12254. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  12255. for (int64_t ic = 0; ic < nek1; ++ic) {
  12256. // k indices
  12257. const int ik3 = iq3;
  12258. const int ik2 = iq2 % nek2;
  12259. const int ik1 = ic;
  12260. // S indices
  12261. const int i1 = ik1;
  12262. ggml_vec_dot_f16(neq0,
  12263. S + i1,
  12264. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12265. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12266. }
  12267. } else {
  12268. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  12269. // k indices
  12270. const int ik3 = iq3;
  12271. const int ik2 = iq2 % nek2;
  12272. const int ik1 = ic;
  12273. // S indices
  12274. const int i1 = ik1;
  12275. ggml_vec_dot_f16_unroll(neq0, nbk1,
  12276. S + i1,
  12277. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12278. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12279. }
  12280. }
  12281. // scale
  12282. ggml_vec_scale_f32(nek1, S, scale);
  12283. if (masked) {
  12284. for (int64_t i = P; i < M; i++) {
  12285. if (i > P + iq1) {
  12286. S[i] = -INFINITY;
  12287. }
  12288. }
  12289. }
  12290. // softmax
  12291. // todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
  12292. // dont forget to set their S values to zero
  12293. {
  12294. float max = -INFINITY;
  12295. ggml_vec_max_f32(M, &max, S);
  12296. ggml_float sum = 0.0;
  12297. {
  12298. #ifdef GGML_SOFT_MAX_ACCELERATE
  12299. max = -max;
  12300. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  12301. vvexpf(S, S, &Mup);
  12302. ggml_vec_sum_f32(Mup, &sum, S);
  12303. #else
  12304. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  12305. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12306. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12307. float * SS = S + i;
  12308. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12309. if (SS[j] == -INFINITY) {
  12310. SS[j] = 0.0f;
  12311. } else {
  12312. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  12313. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12314. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12315. sump[j] += (ggml_float)val;
  12316. SS[j] = val;
  12317. }
  12318. }
  12319. }
  12320. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12321. sum += sump[i];
  12322. }
  12323. #endif
  12324. }
  12325. assert(sum > 0.0);
  12326. sum = 1.0/sum;
  12327. ggml_vec_scale_f32(M, S, sum);
  12328. #ifndef NDEBUG
  12329. for (int i = 0; i < M; ++i) {
  12330. assert(!isnan(S[i]));
  12331. assert(!isinf(S[i]));
  12332. }
  12333. #endif
  12334. }
  12335. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  12336. for (int64_t i = 0; i < M; i++) {
  12337. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12338. }
  12339. // todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
  12340. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  12341. for (int64_t ic = 0; ic < nev1; ++ic) {
  12342. // dst indices
  12343. const int i1 = iq1;
  12344. const int i2 = iq2;
  12345. const int i3 = iq3;
  12346. // v indices
  12347. const int iv2 = iq2 % nev2;
  12348. const int iv3 = iq3;
  12349. ggml_vec_dot_f16(nev0,
  12350. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12351. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12352. S16);
  12353. }
  12354. } else {
  12355. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  12356. // dst indices
  12357. const int i1 = iq1;
  12358. const int i2 = iq2;
  12359. const int i3 = iq3;
  12360. // v indices
  12361. const int iv2 = iq2 % nev2;
  12362. const int iv3 = iq3;
  12363. ggml_vec_dot_f16_unroll(nev0, nbv1,
  12364. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12365. ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12366. S16);
  12367. }
  12368. }
  12369. }
  12370. }
  12371. static void ggml_compute_forward_flash_attn(
  12372. const struct ggml_compute_params * params,
  12373. const struct ggml_tensor * q,
  12374. const struct ggml_tensor * k,
  12375. const struct ggml_tensor * v,
  12376. const bool masked,
  12377. struct ggml_tensor * dst) {
  12378. switch (q->type) {
  12379. case GGML_TYPE_F16:
  12380. {
  12381. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  12382. } break;
  12383. case GGML_TYPE_F32:
  12384. {
  12385. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  12386. } break;
  12387. default:
  12388. {
  12389. GGML_ASSERT(false);
  12390. } break;
  12391. }
  12392. }
  12393. // ggml_compute_forward_flash_ff
  12394. static void ggml_compute_forward_flash_ff_f16(
  12395. const struct ggml_compute_params * params,
  12396. const struct ggml_tensor * a, // F16
  12397. const struct ggml_tensor * b0, // F16 fc_w
  12398. const struct ggml_tensor * b1, // F32 fc_b
  12399. const struct ggml_tensor * c0, // F16 proj_w
  12400. const struct ggml_tensor * c1, // F32 proj_b
  12401. struct ggml_tensor * dst) {
  12402. int64_t t0 = ggml_perf_time_us();
  12403. UNUSED(t0);
  12404. GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
  12405. GGML_TENSOR_LOCALS(size_t, nba, a, nb)
  12406. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
  12407. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
  12408. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
  12409. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
  12410. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
  12411. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
  12412. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
  12413. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
  12414. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12415. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12416. const int ith = params->ith;
  12417. const int nth = params->nth;
  12418. const int64_t D = nea0;
  12419. //const int64_t N = nea1;
  12420. const int64_t M = neb01;
  12421. GGML_ASSERT(ne0 == nea0);
  12422. GGML_ASSERT(ne1 == nea1);
  12423. GGML_ASSERT(ne2 == nea2);
  12424. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  12425. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  12426. GGML_ASSERT(nbb10 == sizeof(float));
  12427. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  12428. GGML_ASSERT(nbc10 == sizeof(float));
  12429. GGML_ASSERT(neb00 == D);
  12430. GGML_ASSERT(neb01 == M);
  12431. GGML_ASSERT(neb10 == M);
  12432. GGML_ASSERT(neb11 == 1);
  12433. GGML_ASSERT(nec00 == M);
  12434. GGML_ASSERT(nec01 == D);
  12435. GGML_ASSERT(nec10 == D);
  12436. GGML_ASSERT(nec11 == 1);
  12437. // dst cannot be transposed or permuted
  12438. GGML_ASSERT(nb0 == sizeof(float));
  12439. GGML_ASSERT(nb0 <= nb1);
  12440. GGML_ASSERT(nb1 <= nb2);
  12441. GGML_ASSERT(nb2 <= nb3);
  12442. if (params->type == GGML_TASK_INIT) {
  12443. return;
  12444. }
  12445. if (params->type == GGML_TASK_FINALIZE) {
  12446. return;
  12447. }
  12448. // parallelize by a rows using ggml_vec_dot_f32
  12449. // total rows in a
  12450. const int nr = nea1*nea2*nea3;
  12451. // rows per thread
  12452. const int dr = (nr + nth - 1)/nth;
  12453. // row range for this thread
  12454. const int ir0 = dr*ith;
  12455. const int ir1 = MIN(ir0 + dr, nr);
  12456. for (int ir = ir0; ir < ir1; ++ir) {
  12457. // a indices
  12458. const int ia3 = ir/(nea2*nea1);
  12459. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  12460. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  12461. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  12462. for (int64_t ic = 0; ic < neb01; ++ic) {
  12463. // b0 indices
  12464. const int ib03 = ia3;
  12465. const int ib02 = ia2;
  12466. const int ib01 = ic;
  12467. // S indices
  12468. const int i1 = ib01;
  12469. ggml_vec_dot_f16(nea0,
  12470. S + i1,
  12471. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  12472. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  12473. }
  12474. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  12475. //ggml_vec_gelu_f32(neb01, S, S);
  12476. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  12477. for (int64_t i = 0; i < M; i++) {
  12478. S16[i] = GGML_FP32_TO_FP16(S[i]);
  12479. }
  12480. ggml_vec_gelu_f16(neb01, S16, S16);
  12481. {
  12482. // dst indices
  12483. const int i1 = ia1;
  12484. const int i2 = ia2;
  12485. const int i3 = ia3;
  12486. for (int64_t ic = 0; ic < nec01; ++ic) {
  12487. ggml_vec_dot_f16(neb01,
  12488. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  12489. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  12490. S16);
  12491. }
  12492. ggml_vec_add_f32(nec01,
  12493. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12494. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  12495. (float *) c1->data);
  12496. }
  12497. }
  12498. }
  12499. static void ggml_compute_forward_flash_ff(
  12500. const struct ggml_compute_params * params,
  12501. const struct ggml_tensor * a,
  12502. const struct ggml_tensor * b0,
  12503. const struct ggml_tensor * b1,
  12504. const struct ggml_tensor * c0,
  12505. const struct ggml_tensor * c1,
  12506. struct ggml_tensor * dst) {
  12507. switch (b0->type) {
  12508. case GGML_TYPE_F16:
  12509. {
  12510. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  12511. } break;
  12512. case GGML_TYPE_F32:
  12513. {
  12514. GGML_ASSERT(false); // TODO
  12515. } break;
  12516. default:
  12517. {
  12518. GGML_ASSERT(false);
  12519. } break;
  12520. }
  12521. }
  12522. // ggml_compute_forward_flash_attn_back
  12523. static void ggml_compute_forward_flash_attn_back_f32(
  12524. const struct ggml_compute_params * params,
  12525. const struct ggml_tensor * q,
  12526. const struct ggml_tensor * k,
  12527. const struct ggml_tensor * v,
  12528. const struct ggml_tensor * d,
  12529. const bool masked,
  12530. struct ggml_tensor * dst) {
  12531. int64_t t0 = ggml_perf_time_us();
  12532. UNUSED(t0);
  12533. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12534. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12535. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12536. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12537. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12538. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12539. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12540. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12541. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12542. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12543. const int ith = params->ith;
  12544. const int nth = params->nth;
  12545. const int64_t D = neq0;
  12546. const int64_t N = neq1;
  12547. const int64_t P = nek1 - N;
  12548. const int64_t M = P + N;
  12549. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12550. const int mxDM = MAX(D, Mup);
  12551. // GGML_ASSERT(ne0 == D);
  12552. // GGML_ASSERT(ne1 == N);
  12553. GGML_ASSERT(P >= 0);
  12554. GGML_ASSERT(nbq0 == sizeof(float));
  12555. GGML_ASSERT(nbk0 == sizeof(float));
  12556. GGML_ASSERT(nbv0 == sizeof(float));
  12557. GGML_ASSERT(neq0 == D);
  12558. GGML_ASSERT(nek0 == D);
  12559. GGML_ASSERT(nev1 == D);
  12560. GGML_ASSERT(ned0 == D);
  12561. GGML_ASSERT(neq1 == N);
  12562. GGML_ASSERT(nek1 == N + P);
  12563. GGML_ASSERT(nev1 == D);
  12564. GGML_ASSERT(ned1 == N);
  12565. // dst cannot be transposed or permuted
  12566. GGML_ASSERT(nb0 == sizeof(float));
  12567. GGML_ASSERT(nb0 <= nb1);
  12568. GGML_ASSERT(nb1 <= nb2);
  12569. GGML_ASSERT(nb2 <= nb3);
  12570. if (params->type == GGML_TASK_INIT) {
  12571. if (ith == 0) {
  12572. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12573. }
  12574. return;
  12575. }
  12576. if (params->type == GGML_TASK_FINALIZE) {
  12577. return;
  12578. }
  12579. const int64_t elem_q = ggml_nelements(q);
  12580. const int64_t elem_k = ggml_nelements(k);
  12581. enum ggml_type result_type = dst->type;
  12582. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12583. const size_t tsize = ggml_type_size(result_type);
  12584. const size_t offs_q = 0;
  12585. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12586. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12587. void * grad_q = (char *) dst->data;
  12588. void * grad_k = (char *) dst->data + offs_k;
  12589. void * grad_v = (char *) dst->data + offs_v;
  12590. const size_t nbgq1 = nb0*neq0;
  12591. const size_t nbgq2 = nb0*neq0*neq1;
  12592. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12593. const size_t nbgk1 = nb0*nek0;
  12594. const size_t nbgk2 = nb0*nek0*nek1;
  12595. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12596. const size_t nbgv1 = nb0*nev0;
  12597. const size_t nbgv2 = nb0*nev0*nev1;
  12598. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12599. // parallelize by k rows using ggml_vec_dot_f32
  12600. // total rows in k
  12601. const int nr = nek2*nek3;
  12602. // rows per thread
  12603. const int dr = (nr + nth - 1)/nth;
  12604. // row range for this thread
  12605. const int ir0 = dr*ith;
  12606. const int ir1 = MIN(ir0 + dr, nr);
  12607. const float scale = 1.0f/sqrtf(D);
  12608. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12609. // how often k2 (and v2) is repeated in q2
  12610. int nrep = neq2/nek2;
  12611. for (int ir = ir0; ir < ir1; ++ir) {
  12612. // q indices
  12613. const int ik3 = ir/(nek2);
  12614. const int ik2 = ir - ik3*nek2;
  12615. const int iq3 = ik3;
  12616. const int id3 = ik3;
  12617. const int iv3 = ik3;
  12618. const int iv2 = ik2;
  12619. for (int irep = 0; irep < nrep; ++irep) {
  12620. const int iq2 = ik2 + irep*nek2;
  12621. const int id2 = iq2;
  12622. // (ik2 + irep*nek2) % nek2 == ik2
  12623. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12624. const int id1 = iq1;
  12625. // not sure about CACHE_LINE_SIZE_F32..
  12626. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12627. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12628. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12629. for (int i = M; i < Mup; ++i) {
  12630. S[i] = -INFINITY;
  12631. }
  12632. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12633. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12634. // k indices
  12635. const int ik1 = ic;
  12636. // S indices
  12637. const int i1 = ik1;
  12638. ggml_vec_dot_f32(neq0,
  12639. S + i1,
  12640. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12641. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  12642. }
  12643. // scale
  12644. ggml_vec_scale_f32(masked_begin, S, scale);
  12645. for (int64_t i = masked_begin; i < M; i++) {
  12646. S[i] = -INFINITY;
  12647. }
  12648. // softmax
  12649. // exclude known -INF S[..] values from max and loop
  12650. // dont forget to set their SM values to zero
  12651. {
  12652. float max = -INFINITY;
  12653. ggml_vec_max_f32(masked_begin, &max, S);
  12654. ggml_float sum = 0.0;
  12655. {
  12656. #ifdef GGML_SOFT_MAX_ACCELERATE
  12657. max = -max;
  12658. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12659. vvexpf(SM, SM, &Mup);
  12660. ggml_vec_sum_f32(Mup, &sum, SM);
  12661. #else
  12662. uint16_t scvt[GGML_SOFT_MAX_UNROLL]; UNUSED(scvt);
  12663. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  12664. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  12665. if (i >= masked_begin) {
  12666. break;
  12667. }
  12668. float * SR = S + i;
  12669. float * SW = SM + i;
  12670. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  12671. if (i + j >= masked_begin) {
  12672. break;
  12673. } else if (SR[j] == -INFINITY) {
  12674. SW[j] = 0.0f;
  12675. } else {
  12676. #ifndef GGML_FLASH_ATTN_EXP_FP16
  12677. const float val = expf(SR[j] - max);
  12678. #else
  12679. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  12680. memcpy(&scvt[j], &s, sizeof(uint16_t));
  12681. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  12682. #endif
  12683. sump[j] += (ggml_float)val;
  12684. SW[j] = val;
  12685. }
  12686. }
  12687. }
  12688. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  12689. sum += sump[i];
  12690. }
  12691. #endif
  12692. }
  12693. assert(sum > 0.0);
  12694. sum = 1.0/sum;
  12695. ggml_vec_scale_f32(masked_begin, SM, sum);
  12696. }
  12697. // step-by-step explanation
  12698. {
  12699. // forward-process shape grads from backward process
  12700. // parallel_for ik2,ik3:
  12701. // for irep:
  12702. // iq2 = ik2 + irep*nek2
  12703. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12704. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12705. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12706. // for iq1:
  12707. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12708. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12709. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12710. // S0 = -Inf [D,1,1,1]
  12711. // ~S1[i] = dot(kcur[:D,i], qcur)
  12712. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12713. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12714. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12715. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12716. // ~S5[i] = dot(vcur[:,i], S4)
  12717. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12718. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12719. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12720. // dst backward-/ grad[dst] = d
  12721. //
  12722. // output gradients with their dependencies:
  12723. //
  12724. // grad[kcur] = grad[S1].T @ qcur
  12725. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12726. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12727. // grad[S4] = grad[S5] @ vcur
  12728. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12729. // grad[qcur] = grad[S1] @ kcur
  12730. // grad[vcur] = grad[S5].T @ S4
  12731. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12732. //
  12733. // in post-order:
  12734. //
  12735. // S1 = qcur @ kcur.T
  12736. // S2 = S1 * scale
  12737. // S3 = diag_mask_inf(S2, P)
  12738. // S4 = softmax(S3)
  12739. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12740. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12741. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12742. // grad[qcur] = grad[S1] @ kcur
  12743. // grad[kcur] = grad[S1].T @ qcur
  12744. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12745. //
  12746. // using less variables (SM=S4):
  12747. //
  12748. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12749. // SM = softmax(S)
  12750. // S = d[:D,iq1,iq2,iq3] @ vcur
  12751. // dot_SM_gradSM = dot(SM, S)
  12752. // S = SM * (S - dot(SM, S))
  12753. // S = diag_mask_zero(S, P) * scale
  12754. //
  12755. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12756. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12757. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12758. }
  12759. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12760. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12761. // for ic:
  12762. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12763. // exclude known future zero S[..] values from operation
  12764. ggml_vec_set_f32(masked_begin, S, 0);
  12765. for (int64_t ic = 0; ic < D; ++ic) {
  12766. ggml_vec_mad_f32(masked_begin,
  12767. S,
  12768. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12769. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12770. }
  12771. // S = SM * (S - dot(SM, S))
  12772. float dot_SM_gradSM = 0;
  12773. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, SM, S);
  12774. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12775. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12776. // S = diag_mask_zero(S, P) * scale
  12777. // already done by above ggml_vec_set_f32
  12778. // exclude known zero S[..] values from operation
  12779. ggml_vec_scale_f32(masked_begin, S, scale);
  12780. // S shape [M,1]
  12781. // SM shape [M,1]
  12782. // kcur shape [D,M]
  12783. // qcur shape [D,1]
  12784. // vcur shape [M,D]
  12785. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12786. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12787. // for ic:
  12788. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12789. // exclude known zero S[..] values from loop
  12790. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12791. ggml_vec_mad_f32(D,
  12792. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12793. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12794. S[ic]);
  12795. }
  12796. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12797. // for ic:
  12798. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12799. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12800. // exclude known zero S[..] values from loop
  12801. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12802. ggml_vec_mad_f32(D,
  12803. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12804. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12805. S[ic]);
  12806. }
  12807. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12808. // for ic:
  12809. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12810. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12811. // exclude known zero SM[..] values from mad
  12812. for (int64_t ic = 0; ic < D; ++ic) {
  12813. ggml_vec_mad_f32(masked_begin,
  12814. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12815. SM,
  12816. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12817. }
  12818. }
  12819. }
  12820. }
  12821. }
  12822. static void ggml_compute_forward_flash_attn_back(
  12823. const struct ggml_compute_params * params,
  12824. const struct ggml_tensor * q,
  12825. const struct ggml_tensor * k,
  12826. const struct ggml_tensor * v,
  12827. const struct ggml_tensor * d,
  12828. const bool masked,
  12829. struct ggml_tensor * dst) {
  12830. switch (q->type) {
  12831. case GGML_TYPE_F32:
  12832. {
  12833. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  12834. } break;
  12835. default:
  12836. {
  12837. GGML_ASSERT(false);
  12838. } break;
  12839. }
  12840. }
  12841. // ggml_compute_forward_win_part
  12842. static void ggml_compute_forward_win_part_f32(
  12843. const struct ggml_compute_params * params,
  12844. const struct ggml_tensor * src0,
  12845. struct ggml_tensor * dst) {
  12846. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12847. return;
  12848. }
  12849. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12850. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12851. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12852. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12853. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12854. assert(ne00 == ne0);
  12855. assert(ne3 == nep0*nep1);
  12856. // TODO: optimize / multi-thread
  12857. for (int py = 0; py < nep1; ++py) {
  12858. for (int px = 0; px < nep0; ++px) {
  12859. const int64_t i3 = py*nep0 + px;
  12860. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12861. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12862. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12863. const int64_t i02 = py*w + i2;
  12864. const int64_t i01 = px*w + i1;
  12865. const int64_t i00 = i0;
  12866. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12867. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12868. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12869. ((float *) dst->data)[i] = 0.0f;
  12870. } else {
  12871. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12872. }
  12873. }
  12874. }
  12875. }
  12876. }
  12877. }
  12878. }
  12879. static void ggml_compute_forward_win_part(
  12880. const struct ggml_compute_params * params,
  12881. const struct ggml_tensor * src0,
  12882. struct ggml_tensor * dst) {
  12883. switch (src0->type) {
  12884. case GGML_TYPE_F32:
  12885. {
  12886. ggml_compute_forward_win_part_f32(params, src0, dst);
  12887. } break;
  12888. default:
  12889. {
  12890. GGML_ASSERT(false);
  12891. } break;
  12892. }
  12893. }
  12894. // ggml_compute_forward_win_unpart
  12895. static void ggml_compute_forward_win_unpart_f32(
  12896. const struct ggml_compute_params * params,
  12897. const struct ggml_tensor * src0,
  12898. struct ggml_tensor * dst) {
  12899. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12900. return;
  12901. }
  12902. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12903. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12904. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12905. // padding
  12906. const int px = (w - ne1%w)%w;
  12907. //const int py = (w - ne2%w)%w;
  12908. const int npx = (px + ne1)/w;
  12909. //const int npy = (py + ne2)/w;
  12910. assert(ne0 == ne00);
  12911. // TODO: optimize / multi-thread
  12912. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12913. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12914. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12915. const int ip2 = i2/w;
  12916. const int ip1 = i1/w;
  12917. const int64_t i02 = i2%w;
  12918. const int64_t i01 = i1%w;
  12919. const int64_t i00 = i0;
  12920. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12921. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12922. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12923. }
  12924. }
  12925. }
  12926. }
  12927. static void ggml_compute_forward_win_unpart(
  12928. const struct ggml_compute_params * params,
  12929. const struct ggml_tensor * src0,
  12930. struct ggml_tensor * dst) {
  12931. switch (src0->type) {
  12932. case GGML_TYPE_F32:
  12933. {
  12934. ggml_compute_forward_win_unpart_f32(params, src0, dst);
  12935. } break;
  12936. default:
  12937. {
  12938. GGML_ASSERT(false);
  12939. } break;
  12940. }
  12941. }
  12942. //gmml_compute_forward_unary
  12943. static void ggml_compute_forward_unary(
  12944. const struct ggml_compute_params * params,
  12945. const struct ggml_tensor * src0,
  12946. struct ggml_tensor * dst) {
  12947. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12948. switch (op) {
  12949. case GGML_UNARY_OP_ABS:
  12950. {
  12951. ggml_compute_forward_abs(params, src0, dst);
  12952. } break;
  12953. case GGML_UNARY_OP_SGN:
  12954. {
  12955. ggml_compute_forward_sgn(params, src0, dst);
  12956. } break;
  12957. case GGML_UNARY_OP_NEG:
  12958. {
  12959. ggml_compute_forward_neg(params, src0, dst);
  12960. } break;
  12961. case GGML_UNARY_OP_STEP:
  12962. {
  12963. ggml_compute_forward_step(params, src0, dst);
  12964. } break;
  12965. case GGML_UNARY_OP_TANH:
  12966. {
  12967. ggml_compute_forward_tanh(params, src0, dst);
  12968. } break;
  12969. case GGML_UNARY_OP_ELU:
  12970. {
  12971. ggml_compute_forward_elu(params, src0, dst);
  12972. } break;
  12973. case GGML_UNARY_OP_RELU:
  12974. {
  12975. ggml_compute_forward_relu(params, src0, dst);
  12976. } break;
  12977. case GGML_UNARY_OP_GELU:
  12978. {
  12979. ggml_compute_forward_gelu(params, src0, dst);
  12980. } break;
  12981. case GGML_UNARY_OP_GELU_QUICK:
  12982. {
  12983. ggml_compute_forward_gelu_quick(params, src0, dst);
  12984. } break;
  12985. case GGML_UNARY_OP_SILU:
  12986. {
  12987. ggml_compute_forward_silu(params, src0, dst);
  12988. } break;
  12989. default:
  12990. {
  12991. GGML_ASSERT(false);
  12992. } break;
  12993. }
  12994. }
  12995. // ggml_compute_forward_get_rel_pos
  12996. static void ggml_compute_forward_get_rel_pos_f16(
  12997. const struct ggml_compute_params * params,
  12998. const struct ggml_tensor * src0,
  12999. struct ggml_tensor * dst) {
  13000. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13001. return;
  13002. }
  13003. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13004. GGML_TENSOR_UNARY_OP_LOCALS
  13005. const int64_t w = ne1;
  13006. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13007. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13008. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13009. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13010. const int64_t pos = (w - i1 - 1) + i2;
  13011. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13012. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13013. }
  13014. }
  13015. }
  13016. }
  13017. static void ggml_compute_forward_get_rel_pos(
  13018. const struct ggml_compute_params * params,
  13019. const struct ggml_tensor * src0,
  13020. struct ggml_tensor * dst) {
  13021. switch (src0->type) {
  13022. case GGML_TYPE_F16:
  13023. {
  13024. ggml_compute_forward_get_rel_pos_f16(params, src0, dst);
  13025. } break;
  13026. default:
  13027. {
  13028. GGML_ASSERT(false);
  13029. } break;
  13030. }
  13031. }
  13032. // ggml_compute_forward_add_rel_pos
  13033. static void ggml_compute_forward_add_rel_pos_f32(
  13034. const struct ggml_compute_params * params,
  13035. const struct ggml_tensor * src0,
  13036. const struct ggml_tensor * src1,
  13037. const struct ggml_tensor * src2,
  13038. struct ggml_tensor * dst) {
  13039. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13040. if (!inplace && params->type == GGML_TASK_INIT) {
  13041. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13042. return;
  13043. }
  13044. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13045. return;
  13046. }
  13047. int64_t t0 = ggml_perf_time_us();
  13048. UNUSED(t0);
  13049. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13050. float * src1_data = (float *) src1->data;
  13051. float * src2_data = (float *) src2->data;
  13052. float * dst_data = (float *) dst->data;
  13053. const int64_t ne10 = src1->ne[0];
  13054. const int64_t ne11 = src1->ne[1];
  13055. const int64_t ne12 = src1->ne[2];
  13056. const int64_t ne13 = src1->ne[3];
  13057. const int ith = params->ith;
  13058. const int nth = params->nth;
  13059. // total patches in dst
  13060. const int np = ne13;
  13061. // patches per thread
  13062. const int dp = (np + nth - 1)/nth;
  13063. // patch range for this thread
  13064. const int ip0 = dp*ith;
  13065. const int ip1 = MIN(ip0 + dp, np);
  13066. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13067. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13068. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13069. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13070. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13071. const int64_t jp0 = jp1 + i10;
  13072. const float src1_e = src1_data[jp0];
  13073. const float src2_e = src2_data[jp0];
  13074. const int64_t jdh = jp0 * ne10;
  13075. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13076. for (int64_t j = 0; j < ne10; ++j) {
  13077. dst_data[jdh + j ] += src2_e;
  13078. dst_data[jdw + j*ne10] += src1_e;
  13079. }
  13080. }
  13081. }
  13082. }
  13083. }
  13084. }
  13085. static void ggml_compute_forward_add_rel_pos(
  13086. const struct ggml_compute_params * params,
  13087. const struct ggml_tensor * src0,
  13088. const struct ggml_tensor * src1,
  13089. const struct ggml_tensor * src2,
  13090. struct ggml_tensor * dst) {
  13091. switch (src0->type) {
  13092. case GGML_TYPE_F32:
  13093. {
  13094. ggml_compute_forward_add_rel_pos_f32(params, src0, src1, src2, dst);
  13095. } break;
  13096. default:
  13097. {
  13098. GGML_ASSERT(false);
  13099. } break;
  13100. }
  13101. }
  13102. // ggml_compute_forward_map_unary
  13103. static void ggml_compute_forward_map_unary_f32(
  13104. const struct ggml_compute_params * params,
  13105. const struct ggml_tensor * src0,
  13106. struct ggml_tensor * dst,
  13107. const ggml_unary_op_f32_t fun) {
  13108. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  13109. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13110. return;
  13111. }
  13112. const int n = ggml_nrows(src0);
  13113. const int nc = src0->ne[0];
  13114. assert( dst->nb[0] == sizeof(float));
  13115. assert(src0->nb[0] == sizeof(float));
  13116. for (int i = 0; i < n; i++) {
  13117. fun(nc,
  13118. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13119. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13120. }
  13121. }
  13122. static void ggml_compute_forward_map_unary(
  13123. const struct ggml_compute_params * params,
  13124. const struct ggml_tensor * src0,
  13125. struct ggml_tensor * dst,
  13126. const ggml_unary_op_f32_t fun) {
  13127. switch (src0->type) {
  13128. case GGML_TYPE_F32:
  13129. {
  13130. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  13131. } break;
  13132. default:
  13133. {
  13134. GGML_ASSERT(false);
  13135. } break;
  13136. }
  13137. }
  13138. // ggml_compute_forward_map_binary
  13139. static void ggml_compute_forward_map_binary_f32(
  13140. const struct ggml_compute_params * params,
  13141. const struct ggml_tensor * src0,
  13142. const struct ggml_tensor * src1,
  13143. struct ggml_tensor * dst,
  13144. const ggml_binary_op_f32_t fun) {
  13145. assert(params->ith == 0);
  13146. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13147. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13148. return;
  13149. }
  13150. const int n = ggml_nrows(src0);
  13151. const int nc = src0->ne[0];
  13152. assert( dst->nb[0] == sizeof(float));
  13153. assert(src0->nb[0] == sizeof(float));
  13154. assert(src1->nb[0] == sizeof(float));
  13155. for (int i = 0; i < n; i++) {
  13156. fun(nc,
  13157. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13158. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13159. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13160. }
  13161. }
  13162. static void ggml_compute_forward_map_binary(
  13163. const struct ggml_compute_params * params,
  13164. const struct ggml_tensor * src0,
  13165. const struct ggml_tensor * src1,
  13166. struct ggml_tensor * dst,
  13167. const ggml_binary_op_f32_t fun) {
  13168. switch (src0->type) {
  13169. case GGML_TYPE_F32:
  13170. {
  13171. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  13172. } break;
  13173. default:
  13174. {
  13175. GGML_ASSERT(false);
  13176. } break;
  13177. }
  13178. }
  13179. // ggml_compute_forward_map_custom1
  13180. static void ggml_compute_forward_map_custom1_f32(
  13181. const struct ggml_compute_params * params,
  13182. const struct ggml_tensor * a,
  13183. struct ggml_tensor * dst,
  13184. const ggml_custom1_op_f32_t fun) {
  13185. assert(params->ith == 0);
  13186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13187. return;
  13188. }
  13189. fun(dst, a);
  13190. }
  13191. // ggml_compute_forward_map_custom2
  13192. static void ggml_compute_forward_map_custom2_f32(
  13193. const struct ggml_compute_params * params,
  13194. const struct ggml_tensor * a,
  13195. const struct ggml_tensor * b,
  13196. struct ggml_tensor * dst,
  13197. const ggml_custom2_op_f32_t fun) {
  13198. assert(params->ith == 0);
  13199. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13200. return;
  13201. }
  13202. fun(dst, a, b);
  13203. }
  13204. // ggml_compute_forward_map_custom3
  13205. static void ggml_compute_forward_map_custom3_f32(
  13206. const struct ggml_compute_params * params,
  13207. const struct ggml_tensor * a,
  13208. const struct ggml_tensor * b,
  13209. const struct ggml_tensor * c,
  13210. struct ggml_tensor * dst,
  13211. const ggml_custom3_op_f32_t fun) {
  13212. assert(params->ith == 0);
  13213. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13214. return;
  13215. }
  13216. fun(dst, a, b, c);
  13217. }
  13218. // ggml_compute_forward_map_custom1
  13219. static void ggml_compute_forward_map_custom1(
  13220. const struct ggml_compute_params * params,
  13221. const struct ggml_tensor * a,
  13222. struct ggml_tensor * dst) {
  13223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13224. return;
  13225. }
  13226. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
  13227. p->fun(dst, a, params->ith, params->nth, p->userdata);
  13228. }
  13229. // ggml_compute_forward_map_custom2
  13230. static void ggml_compute_forward_map_custom2(
  13231. const struct ggml_compute_params * params,
  13232. const struct ggml_tensor * a,
  13233. const struct ggml_tensor * b,
  13234. struct ggml_tensor * dst) {
  13235. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13236. return;
  13237. }
  13238. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
  13239. p->fun(dst, a, b, params->ith, params->nth, p->userdata);
  13240. }
  13241. // ggml_compute_forward_map_custom3
  13242. static void ggml_compute_forward_map_custom3(
  13243. const struct ggml_compute_params * params,
  13244. const struct ggml_tensor * a,
  13245. const struct ggml_tensor * b,
  13246. const struct ggml_tensor * c,
  13247. struct ggml_tensor * dst) {
  13248. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13249. return;
  13250. }
  13251. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
  13252. p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
  13253. }
  13254. // ggml_compute_forward_cross_entropy_loss
  13255. static void ggml_compute_forward_cross_entropy_loss_f32(
  13256. const struct ggml_compute_params * params,
  13257. const struct ggml_tensor * src0,
  13258. const struct ggml_tensor * src1,
  13259. struct ggml_tensor * dst) {
  13260. GGML_ASSERT(ggml_is_contiguous(src0));
  13261. GGML_ASSERT(ggml_is_contiguous(src1));
  13262. GGML_ASSERT(ggml_is_scalar(dst));
  13263. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13264. const int ith = params->ith;
  13265. const int nth = params->nth;
  13266. float * sums = (float *) params->wdata;
  13267. // TODO: handle transposed/permuted matrices
  13268. const int nc = src0->ne[0];
  13269. const int nr = ggml_nrows(src0);
  13270. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13271. if (params->type == GGML_TASK_INIT) {
  13272. if (ith == 0) {
  13273. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13274. }
  13275. return;
  13276. }
  13277. if (params->type == GGML_TASK_FINALIZE) {
  13278. if (ith == 0) {
  13279. float * dp = (float *) dst->data;
  13280. ggml_vec_sum_f32(nth, dp, sums);
  13281. dp[0] *= -1.0f / (float) nr;
  13282. }
  13283. return;
  13284. }
  13285. const double eps = 1e-9;
  13286. // rows per thread
  13287. const int dr = (nr + nth - 1)/nth;
  13288. // row range for this thread
  13289. const int ir0 = dr*ith;
  13290. const int ir1 = MIN(ir0 + dr, nr);
  13291. for (int i1 = ir0; i1 < ir1; i1++) {
  13292. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13293. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13294. float * st = ((float *) params->wdata) + nth + ith*nc;
  13295. #ifndef NDEBUG
  13296. for (int i = 0; i < nc; ++i) {
  13297. //printf("p[%d] = %f\n", i, p[i]);
  13298. assert(!isnan(s0[i]));
  13299. assert(!isnan(s1[i]));
  13300. }
  13301. #endif
  13302. // soft_max
  13303. ggml_float sum = 0.0;
  13304. {
  13305. float max = -INFINITY;
  13306. ggml_vec_max_f32(nc, &max, s0);
  13307. uint16_t scvt; UNUSED(scvt);
  13308. for (int i = 0; i < nc; i++) {
  13309. if (s0[i] == -INFINITY) {
  13310. st[i] = 0.0f;
  13311. } else {
  13312. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13313. const float s = s0[i] - max;
  13314. const float val = expf(s);
  13315. #else
  13316. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13317. memcpy(&scvt, &s, sizeof(scvt));
  13318. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  13319. #endif
  13320. sum += (ggml_float)val;
  13321. st[i] = val;
  13322. }
  13323. }
  13324. assert(sum > 0.0);
  13325. // sum = 1.0/sum;
  13326. }
  13327. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13328. sum = (1.0 - eps) / sum;
  13329. ggml_vec_scale_f32(nc, st, sum);
  13330. ggml_vec_add1_f32(nc, st, st, eps);
  13331. ggml_vec_log_f32(nc, st, st);
  13332. ggml_vec_mul_f32(nc, st, st, s1);
  13333. float st_sum = 0;
  13334. ggml_vec_sum_f32(nc, &st_sum, st);
  13335. sums[ith] += st_sum;
  13336. #ifndef NDEBUG
  13337. for (int i = 0; i < nc; ++i) {
  13338. assert(!isnan(st[i]));
  13339. assert(!isinf(st[i]));
  13340. }
  13341. #endif
  13342. }
  13343. }
  13344. static void ggml_compute_forward_cross_entropy_loss(
  13345. const struct ggml_compute_params * params,
  13346. const struct ggml_tensor * src0,
  13347. const struct ggml_tensor * src1,
  13348. struct ggml_tensor * dst) {
  13349. switch (src0->type) {
  13350. case GGML_TYPE_F32:
  13351. {
  13352. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  13353. } break;
  13354. default:
  13355. {
  13356. GGML_ASSERT(false);
  13357. } break;
  13358. }
  13359. }
  13360. // ggml_compute_forward_cross_entropy_loss_back
  13361. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13362. const struct ggml_compute_params * params,
  13363. const struct ggml_tensor * src0,
  13364. const struct ggml_tensor * src1,
  13365. const struct ggml_tensor * opt0,
  13366. struct ggml_tensor * dst) {
  13367. GGML_ASSERT(ggml_is_contiguous(dst));
  13368. GGML_ASSERT(ggml_is_contiguous(src0));
  13369. GGML_ASSERT(ggml_is_contiguous(src1));
  13370. GGML_ASSERT(ggml_is_contiguous(opt0));
  13371. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13372. const int64_t ith = params->ith;
  13373. const int64_t nth = params->nth;
  13374. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  13375. return;
  13376. }
  13377. const double eps = 1e-9;
  13378. // TODO: handle transposed/permuted matrices
  13379. const int64_t nc = src0->ne[0];
  13380. const int64_t nr = ggml_nrows(src0);
  13381. // rows per thread
  13382. const int64_t dr = (nr + nth - 1)/nth;
  13383. // row range for this thread
  13384. const int64_t ir0 = dr*ith;
  13385. const int64_t ir1 = MIN(ir0 + dr, nr);
  13386. float * d = (float *) opt0->data;
  13387. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13388. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13389. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13390. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13391. #ifndef NDEBUG
  13392. for (int i = 0; i < nc; ++i) {
  13393. //printf("p[%d] = %f\n", i, p[i]);
  13394. assert(!isnan(s0[i]));
  13395. assert(!isnan(s1[i]));
  13396. }
  13397. #endif
  13398. // soft_max
  13399. ggml_float sum = 0.0;
  13400. {
  13401. float max = -INFINITY;
  13402. ggml_vec_max_f32(nc, &max, s0);
  13403. uint16_t scvt; UNUSED(scvt);
  13404. for (int i = 0; i < nc; i++) {
  13405. if (s0[i] == -INFINITY) {
  13406. ds0[i] = 0.0f;
  13407. } else {
  13408. #ifndef GGML_CROSS_ENTROPY_EXP_FP16
  13409. const float s = s0[i] - max;
  13410. const float val = expf(s);
  13411. #else
  13412. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  13413. memcpy(&scvt, &s, sizeof(scvt));
  13414. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  13415. #endif
  13416. sum += (ggml_float)val;
  13417. ds0[i] = val;
  13418. }
  13419. }
  13420. assert(sum > 0.0);
  13421. sum = (1.0 - eps)/sum;
  13422. }
  13423. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13424. ggml_vec_scale_f32(nc, ds0, sum);
  13425. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13426. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13427. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13428. #ifndef NDEBUG
  13429. for (int i = 0; i < nc; ++i) {
  13430. assert(!isnan(ds0[i]));
  13431. assert(!isinf(ds0[i]));
  13432. }
  13433. #endif
  13434. }
  13435. }
  13436. static void ggml_compute_forward_cross_entropy_loss_back(
  13437. const struct ggml_compute_params * params,
  13438. const struct ggml_tensor * src0,
  13439. const struct ggml_tensor * src1,
  13440. const struct ggml_tensor * opt0,
  13441. struct ggml_tensor * dst) {
  13442. switch (src0->type) {
  13443. case GGML_TYPE_F32:
  13444. {
  13445. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  13446. } break;
  13447. default:
  13448. {
  13449. GGML_ASSERT(false);
  13450. } break;
  13451. }
  13452. }
  13453. /////////////////////////////////
  13454. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13455. GGML_ASSERT(params);
  13456. if (tensor->op == GGML_OP_NONE) {
  13457. return;
  13458. }
  13459. #ifdef GGML_USE_CUBLAS
  13460. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  13461. if (skip_cpu) {
  13462. return;
  13463. }
  13464. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  13465. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  13466. #endif // GGML_USE_CUBLAS
  13467. switch (tensor->op) {
  13468. case GGML_OP_DUP:
  13469. {
  13470. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  13471. } break;
  13472. case GGML_OP_ADD:
  13473. {
  13474. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  13475. } break;
  13476. case GGML_OP_ADD1:
  13477. {
  13478. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  13479. } break;
  13480. case GGML_OP_ACC:
  13481. {
  13482. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor);
  13483. } break;
  13484. case GGML_OP_SUB:
  13485. {
  13486. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  13487. } break;
  13488. case GGML_OP_MUL:
  13489. {
  13490. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  13491. } break;
  13492. case GGML_OP_DIV:
  13493. {
  13494. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  13495. } break;
  13496. case GGML_OP_SQR:
  13497. {
  13498. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  13499. } break;
  13500. case GGML_OP_SQRT:
  13501. {
  13502. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  13503. } break;
  13504. case GGML_OP_LOG:
  13505. {
  13506. ggml_compute_forward_log(params, tensor->src[0], tensor);
  13507. } break;
  13508. case GGML_OP_SUM:
  13509. {
  13510. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  13511. } break;
  13512. case GGML_OP_SUM_ROWS:
  13513. {
  13514. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  13515. } break;
  13516. case GGML_OP_MEAN:
  13517. {
  13518. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  13519. } break;
  13520. case GGML_OP_ARGMAX:
  13521. {
  13522. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  13523. } break;
  13524. case GGML_OP_REPEAT:
  13525. {
  13526. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  13527. } break;
  13528. case GGML_OP_REPEAT_BACK:
  13529. {
  13530. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  13531. } break;
  13532. case GGML_OP_CONCAT:
  13533. {
  13534. ggml_compute_forward_concat(params, tensor->src[0], tensor->src[1], tensor);
  13535. } break;
  13536. case GGML_OP_SILU_BACK:
  13537. {
  13538. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  13539. } break;
  13540. case GGML_OP_NORM:
  13541. {
  13542. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  13543. } break;
  13544. case GGML_OP_RMS_NORM:
  13545. {
  13546. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  13547. } break;
  13548. case GGML_OP_RMS_NORM_BACK:
  13549. {
  13550. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  13551. } break;
  13552. case GGML_OP_GROUP_NORM:
  13553. {
  13554. ggml_compute_forward_group_norm(params, tensor->src[0], tensor);
  13555. } break;
  13556. case GGML_OP_MUL_MAT:
  13557. {
  13558. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  13559. } break;
  13560. case GGML_OP_OUT_PROD:
  13561. {
  13562. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  13563. } break;
  13564. case GGML_OP_SCALE:
  13565. {
  13566. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  13567. } break;
  13568. case GGML_OP_SET:
  13569. {
  13570. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor);
  13571. } break;
  13572. case GGML_OP_CPY:
  13573. {
  13574. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  13575. } break;
  13576. case GGML_OP_CONT:
  13577. {
  13578. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  13579. } break;
  13580. case GGML_OP_RESHAPE:
  13581. {
  13582. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  13583. } break;
  13584. case GGML_OP_VIEW:
  13585. {
  13586. ggml_compute_forward_view(params, tensor->src[0]);
  13587. } break;
  13588. case GGML_OP_PERMUTE:
  13589. {
  13590. ggml_compute_forward_permute(params, tensor->src[0]);
  13591. } break;
  13592. case GGML_OP_TRANSPOSE:
  13593. {
  13594. ggml_compute_forward_transpose(params, tensor->src[0]);
  13595. } break;
  13596. case GGML_OP_GET_ROWS:
  13597. {
  13598. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  13599. } break;
  13600. case GGML_OP_GET_ROWS_BACK:
  13601. {
  13602. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor);
  13603. } break;
  13604. case GGML_OP_DIAG:
  13605. {
  13606. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  13607. } break;
  13608. case GGML_OP_DIAG_MASK_INF:
  13609. {
  13610. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor);
  13611. } break;
  13612. case GGML_OP_DIAG_MASK_ZERO:
  13613. {
  13614. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor);
  13615. } break;
  13616. case GGML_OP_SOFT_MAX:
  13617. {
  13618. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  13619. } break;
  13620. case GGML_OP_SOFT_MAX_BACK:
  13621. {
  13622. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  13623. } break;
  13624. case GGML_OP_ROPE:
  13625. {
  13626. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  13627. } break;
  13628. case GGML_OP_ROPE_BACK:
  13629. {
  13630. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  13631. } break;
  13632. case GGML_OP_ALIBI:
  13633. {
  13634. ggml_compute_forward_alibi(params, tensor->src[0], tensor);
  13635. } break;
  13636. case GGML_OP_CLAMP:
  13637. {
  13638. ggml_compute_forward_clamp(params, tensor->src[0], tensor);
  13639. } break;
  13640. case GGML_OP_CONV_1D:
  13641. {
  13642. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor);
  13643. } break;
  13644. case GGML_OP_CONV_1D_STAGE_0:
  13645. {
  13646. ggml_compute_forward_conv_1d_stage_0(params, tensor->src[0], tensor->src[1], tensor);
  13647. } break;
  13648. case GGML_OP_CONV_1D_STAGE_1:
  13649. {
  13650. ggml_compute_forward_conv_1d_stage_1(params, tensor->src[0], tensor->src[1], tensor);
  13651. } break;
  13652. case GGML_OP_CONV_TRANSPOSE_1D:
  13653. {
  13654. ggml_compute_forward_conv_transpose_1d(params, tensor->src[0], tensor->src[1], tensor);
  13655. } break;
  13656. case GGML_OP_CONV_2D:
  13657. {
  13658. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor);
  13659. } break;
  13660. case GGML_OP_CONV_TRANSPOSE_2D:
  13661. {
  13662. ggml_compute_forward_conv_transpose_2d(params, tensor->src[0], tensor->src[1], tensor);
  13663. } break;
  13664. case GGML_OP_POOL_1D:
  13665. {
  13666. ggml_compute_forward_pool_1d(params, tensor->src[0], tensor);
  13667. } break;
  13668. case GGML_OP_POOL_2D:
  13669. {
  13670. ggml_compute_forward_pool_2d(params, tensor->src[0], tensor);
  13671. } break;
  13672. case GGML_OP_UPSCALE:
  13673. {
  13674. ggml_compute_forward_upscale(params, tensor->src[0], tensor);
  13675. } break;
  13676. case GGML_OP_FLASH_ATTN:
  13677. {
  13678. const int32_t t = ggml_get_op_params_i32(tensor, 0);
  13679. GGML_ASSERT(t == 0 || t == 1);
  13680. const bool masked = t != 0;
  13681. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  13682. } break;
  13683. case GGML_OP_FLASH_FF:
  13684. {
  13685. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  13686. } break;
  13687. case GGML_OP_FLASH_ATTN_BACK:
  13688. {
  13689. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13690. GGML_ASSERT(t == 0 || t == 1);
  13691. bool masked = t != 0;
  13692. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  13693. } break;
  13694. case GGML_OP_WIN_PART:
  13695. {
  13696. ggml_compute_forward_win_part(params, tensor->src[0], tensor);
  13697. } break;
  13698. case GGML_OP_WIN_UNPART:
  13699. {
  13700. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor);
  13701. } break;
  13702. case GGML_OP_UNARY:
  13703. {
  13704. ggml_compute_forward_unary(params, tensor->src[0], tensor);
  13705. } break;
  13706. case GGML_OP_GET_REL_POS:
  13707. {
  13708. ggml_compute_forward_get_rel_pos(params, tensor->src[0], tensor);
  13709. } break;
  13710. case GGML_OP_ADD_REL_POS:
  13711. {
  13712. ggml_compute_forward_add_rel_pos(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13713. } break;
  13714. case GGML_OP_MAP_UNARY:
  13715. {
  13716. ggml_unary_op_f32_t fun;
  13717. memcpy(&fun, tensor->op_params, sizeof(fun));
  13718. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  13719. }
  13720. break;
  13721. case GGML_OP_MAP_BINARY:
  13722. {
  13723. ggml_binary_op_f32_t fun;
  13724. memcpy(&fun, tensor->op_params, sizeof(fun));
  13725. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  13726. }
  13727. break;
  13728. case GGML_OP_MAP_CUSTOM1_F32:
  13729. {
  13730. ggml_custom1_op_f32_t fun;
  13731. memcpy(&fun, tensor->op_params, sizeof(fun));
  13732. ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
  13733. }
  13734. break;
  13735. case GGML_OP_MAP_CUSTOM2_F32:
  13736. {
  13737. ggml_custom2_op_f32_t fun;
  13738. memcpy(&fun, tensor->op_params, sizeof(fun));
  13739. ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
  13740. }
  13741. break;
  13742. case GGML_OP_MAP_CUSTOM3_F32:
  13743. {
  13744. ggml_custom3_op_f32_t fun;
  13745. memcpy(&fun, tensor->op_params, sizeof(fun));
  13746. ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
  13747. }
  13748. break;
  13749. case GGML_OP_MAP_CUSTOM1:
  13750. {
  13751. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
  13752. }
  13753. break;
  13754. case GGML_OP_MAP_CUSTOM2:
  13755. {
  13756. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
  13757. }
  13758. break;
  13759. case GGML_OP_MAP_CUSTOM3:
  13760. {
  13761. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13762. }
  13763. break;
  13764. case GGML_OP_CROSS_ENTROPY_LOSS:
  13765. {
  13766. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  13767. }
  13768. break;
  13769. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13770. {
  13771. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  13772. }
  13773. break;
  13774. case GGML_OP_NONE:
  13775. {
  13776. // nop
  13777. } break;
  13778. case GGML_OP_COUNT:
  13779. {
  13780. GGML_ASSERT(false);
  13781. } break;
  13782. }
  13783. }
  13784. ////////////////////////////////////////////////////////////////////////////////
  13785. static_assert(GGML_GRAPH_HASHTABLE_SIZE > GGML_MAX_NODES * 2, "GGML_GRAPH_HT_SIZE is too small");
  13786. static size_t hash(void * p) {
  13787. return (size_t)p % GGML_GRAPH_HASHTABLE_SIZE;
  13788. }
  13789. static size_t hash_find(void * hash_table[], void * p) {
  13790. size_t h = hash(p);
  13791. // linear probing
  13792. size_t i = h;
  13793. while (hash_table[i] != NULL && hash_table[i] != p) {
  13794. i = (i + 1) % GGML_GRAPH_HASHTABLE_SIZE;
  13795. if (i == h) {
  13796. // visited all hash table entries -> not found
  13797. return GGML_GRAPH_HASHTABLE_SIZE;
  13798. }
  13799. }
  13800. return i;
  13801. }
  13802. static bool hash_insert(void * hash_table[], void * p) {
  13803. size_t i = hash_find(hash_table, p);
  13804. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13805. if (hash_table[i] == p) {
  13806. return true;
  13807. }
  13808. // insert
  13809. GGML_ASSERT(hash_table[i] == NULL);
  13810. hash_table[i] = p;
  13811. return false;
  13812. }
  13813. static bool hash_contains(void * hash_table[], void * p) {
  13814. size_t i = hash_find(hash_table, p);
  13815. return (i < GGML_GRAPH_HASHTABLE_SIZE) && (hash_table[i] == p);
  13816. }
  13817. struct hash_map {
  13818. void * keys[GGML_GRAPH_HASHTABLE_SIZE];
  13819. void * vals[GGML_GRAPH_HASHTABLE_SIZE];
  13820. };
  13821. static struct hash_map * new_hash_map(void) {
  13822. struct hash_map * result = malloc(sizeof(struct hash_map));
  13823. for (int i=0; i<GGML_GRAPH_HASHTABLE_SIZE; ++i) {
  13824. result->keys[i] = NULL;
  13825. result->vals[i] = NULL;
  13826. }
  13827. return result;
  13828. }
  13829. static void free_hash_map(struct hash_map * map) {
  13830. free(map);
  13831. }
  13832. // gradient checkpointing
  13833. static struct ggml_tensor * ggml_recompute_graph_node(
  13834. struct ggml_context * ctx,
  13835. struct ggml_cgraph * graph,
  13836. struct hash_map * replacements,
  13837. struct ggml_tensor * node) {
  13838. if (node == NULL) {
  13839. return NULL;
  13840. }
  13841. if (node->is_param) {
  13842. return node;
  13843. }
  13844. if (!hash_contains(graph->visited_hash_table, node)) {
  13845. return node;
  13846. }
  13847. int count_children = 0;
  13848. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13849. if (node->src[k]) {
  13850. ++count_children;
  13851. }
  13852. }
  13853. if (count_children == 0) {
  13854. return node;
  13855. }
  13856. size_t i = hash_find(replacements->keys, node);
  13857. GGML_ASSERT(i < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13858. if (replacements->keys[i] == node) {
  13859. return (struct ggml_tensor *) replacements->vals[i];
  13860. }
  13861. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, node->n_dims, node->ne);
  13862. // insert clone into replacements
  13863. GGML_ASSERT(replacements->keys[i] == NULL); // assert that we don't overwrite
  13864. replacements->keys[i] = node;
  13865. replacements->vals[i] = clone;
  13866. clone->op = node->op;
  13867. clone->grad = node->grad;
  13868. clone->is_param = node->is_param;
  13869. clone->extra = node->extra;
  13870. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13871. clone->nb[k] = node->nb[k];
  13872. }
  13873. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13874. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13875. }
  13876. if (node->view_src != NULL) {
  13877. clone->data = (node->view_src->data == NULL)
  13878. ? NULL // view_src not yet allocated
  13879. : (char *) node->view_src->data // view_src already allocated
  13880. + node->view_offs;
  13881. clone->view_src = node->view_src;
  13882. clone->view_offs = node->view_offs;
  13883. }
  13884. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13885. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13886. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13887. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13888. return clone;
  13889. }
  13890. void ggml_build_backward_gradient_checkpointing(
  13891. struct ggml_context * ctx,
  13892. struct ggml_cgraph * gf,
  13893. struct ggml_cgraph * gb,
  13894. struct ggml_cgraph * gb_tmp,
  13895. struct ggml_tensor * * checkpoints,
  13896. int n_checkpoints) {
  13897. *gb_tmp = *gf;
  13898. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13899. if (n_checkpoints <= 0) {
  13900. *gb = *gb_tmp;
  13901. return;
  13902. }
  13903. struct hash_map * replacements = new_hash_map();
  13904. // insert checkpoints in replacements
  13905. for (int i = 0; i < n_checkpoints; ++i) {
  13906. size_t k = hash_find(replacements->keys, checkpoints[i]);
  13907. GGML_ASSERT(k < GGML_GRAPH_HASHTABLE_SIZE); // assert that not full
  13908. GGML_ASSERT(replacements->keys[k] == NULL); // assert that we don't overwrite
  13909. replacements->keys[k] = checkpoints[i];
  13910. replacements->vals[k] = checkpoints[i];
  13911. }
  13912. *gb = *gf;
  13913. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13914. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13915. // by recomputing them from checkpoints
  13916. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13917. struct ggml_tensor * node = gb_tmp->nodes[i];
  13918. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13919. // insert new tensors recomputing src, reusing already made replacements,
  13920. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13921. // recurse for input tensors,
  13922. // unless (i.e. terminating when) input tensors are replacments (like checkpoints)
  13923. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13924. }
  13925. // insert rewritten backward node with replacements made into resulting backward graph gb
  13926. ggml_build_forward_expand(gb, node);
  13927. }
  13928. free_hash_map(replacements);
  13929. }
  13930. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13931. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13932. if (hash_contains(zero_table, a)) {
  13933. return b;
  13934. } else {
  13935. return ggml_add_impl(ctx, a, b, false);
  13936. }
  13937. }
  13938. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, void * zero_table[]) {
  13939. if (hash_contains(zero_table, a)) {
  13940. struct ggml_tensor * a_zero = ggml_scale(ctx, a, ggml_new_f32(ctx, 0));
  13941. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13942. } else {
  13943. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13944. }
  13945. }
  13946. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13947. if (hash_contains(zero_table, a)) {
  13948. return ggml_repeat(ctx, b, a);
  13949. } else {
  13950. return ggml_add1_impl(ctx, a, b, false);
  13951. }
  13952. }
  13953. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, void * zero_table[]) {
  13954. if (hash_contains(zero_table, a)) {
  13955. return ggml_neg(ctx, b);
  13956. } else {
  13957. return ggml_sub_impl(ctx, a, b, false);
  13958. }
  13959. }
  13960. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, void * zero_table[]) {
  13961. struct ggml_tensor * src0 = tensor->src[0];
  13962. struct ggml_tensor * src1 = tensor->src[1];
  13963. switch (tensor->op) {
  13964. case GGML_OP_DUP:
  13965. {
  13966. if (src0->grad) {
  13967. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13968. }
  13969. } break;
  13970. case GGML_OP_ADD:
  13971. {
  13972. if (src0->grad) {
  13973. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13974. }
  13975. if (src1->grad) {
  13976. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13977. }
  13978. } break;
  13979. case GGML_OP_ADD1:
  13980. {
  13981. if (src0->grad) {
  13982. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13983. }
  13984. if (src1->grad) {
  13985. src1->grad = ggml_add_or_set(ctx,
  13986. src1->grad,
  13987. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13988. zero_table);
  13989. }
  13990. } break;
  13991. case GGML_OP_ACC:
  13992. {
  13993. if (src0->grad) {
  13994. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13995. }
  13996. if (src1->grad) {
  13997. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  13998. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  13999. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14000. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14001. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14002. tensor->grad,
  14003. src1->grad->ne[0],
  14004. src1->grad->ne[1],
  14005. src1->grad->ne[2],
  14006. src1->grad->ne[3],
  14007. nb1, nb2, nb3, offset);
  14008. src1->grad =
  14009. ggml_add_or_set(ctx,
  14010. src1->grad,
  14011. ggml_reshape(ctx,
  14012. ggml_cont(ctx, tensor_grad_view),
  14013. src1->grad),
  14014. zero_table);
  14015. }
  14016. } break;
  14017. case GGML_OP_SUB:
  14018. {
  14019. if (src0->grad) {
  14020. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14021. }
  14022. if (src1->grad) {
  14023. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14024. }
  14025. } break;
  14026. case GGML_OP_MUL:
  14027. {
  14028. if (src0->grad) {
  14029. src0->grad =
  14030. ggml_add_or_set(ctx,
  14031. src0->grad,
  14032. ggml_mul(ctx, src1, tensor->grad),
  14033. zero_table);
  14034. }
  14035. if (src1->grad) {
  14036. src1->grad =
  14037. ggml_add_or_set(ctx,
  14038. src1->grad,
  14039. ggml_mul(ctx, src0, tensor->grad),
  14040. zero_table);
  14041. }
  14042. } break;
  14043. case GGML_OP_DIV:
  14044. {
  14045. if (src0->grad) {
  14046. src0->grad =
  14047. ggml_add_or_set(ctx,
  14048. src0->grad,
  14049. ggml_div(ctx, tensor->grad, src1),
  14050. zero_table);
  14051. }
  14052. if (src1->grad) {
  14053. src1->grad =
  14054. ggml_sub_or_set(ctx,
  14055. src1->grad,
  14056. ggml_mul(ctx,
  14057. tensor->grad,
  14058. ggml_div(ctx, tensor, src1)),
  14059. zero_table);
  14060. }
  14061. } break;
  14062. case GGML_OP_SQR:
  14063. {
  14064. if (src0->grad) {
  14065. src0->grad =
  14066. ggml_add_or_set(ctx,
  14067. src0->grad,
  14068. ggml_scale(ctx,
  14069. ggml_mul(ctx, src0, tensor->grad),
  14070. ggml_new_f32(ctx, 2.0f)),
  14071. zero_table);
  14072. }
  14073. } break;
  14074. case GGML_OP_SQRT:
  14075. {
  14076. if (src0->grad) {
  14077. src0->grad =
  14078. ggml_add_or_set(ctx,
  14079. src0->grad,
  14080. ggml_scale(ctx,
  14081. ggml_div(ctx,
  14082. tensor->grad,
  14083. tensor),
  14084. ggml_new_f32(ctx, 0.5f)),
  14085. zero_table);
  14086. }
  14087. } break;
  14088. case GGML_OP_LOG:
  14089. {
  14090. if (src0->grad) {
  14091. src0->grad =
  14092. ggml_add_or_set(ctx,
  14093. src0->grad,
  14094. ggml_div(ctx,
  14095. tensor->grad,
  14096. src0),
  14097. zero_table);
  14098. }
  14099. } break;
  14100. case GGML_OP_SUM:
  14101. {
  14102. if (src0->grad) {
  14103. src0->grad =
  14104. ggml_add1_or_set(ctx,
  14105. src0->grad,
  14106. tensor->grad,
  14107. zero_table);
  14108. }
  14109. } break;
  14110. case GGML_OP_SUM_ROWS:
  14111. {
  14112. if (src0->grad) {
  14113. src0->grad =
  14114. ggml_add_or_set(ctx,
  14115. src0->grad,
  14116. ggml_repeat(ctx,
  14117. tensor->grad,
  14118. src0->grad),
  14119. zero_table);
  14120. }
  14121. } break;
  14122. case GGML_OP_MEAN:
  14123. case GGML_OP_ARGMAX:
  14124. {
  14125. GGML_ASSERT(false); // TODO: implement
  14126. } break;
  14127. case GGML_OP_REPEAT:
  14128. {
  14129. // necessary for llama
  14130. if (src0->grad) {
  14131. src0->grad = ggml_add_or_set(ctx,
  14132. src0->grad,
  14133. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14134. zero_table);
  14135. }
  14136. } break;
  14137. case GGML_OP_REPEAT_BACK:
  14138. {
  14139. if (src0->grad) {
  14140. // TODO: test this
  14141. src0->grad = ggml_add_or_set(ctx,
  14142. src0->grad,
  14143. ggml_repeat(ctx, tensor->grad, src0->grad),
  14144. zero_table);
  14145. }
  14146. } break;
  14147. case GGML_OP_CONCAT:
  14148. {
  14149. GGML_ASSERT(false); // TODO: implement
  14150. } break;
  14151. case GGML_OP_SILU_BACK:
  14152. {
  14153. GGML_ASSERT(false); // TODO: not implemented
  14154. } break;
  14155. case GGML_OP_NORM:
  14156. {
  14157. GGML_ASSERT(false); // TODO: not implemented
  14158. } break;
  14159. case GGML_OP_RMS_NORM:
  14160. {
  14161. // necessary for llama
  14162. if (src0->grad) {
  14163. float eps;
  14164. memcpy(&eps, tensor->op_params, sizeof(float));
  14165. src0->grad = ggml_add_or_set(ctx,
  14166. src0->grad,
  14167. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14168. zero_table);
  14169. }
  14170. } break;
  14171. case GGML_OP_RMS_NORM_BACK:
  14172. {
  14173. GGML_ASSERT(false); // TODO: not implemented
  14174. } break;
  14175. case GGML_OP_GROUP_NORM:
  14176. {
  14177. GGML_ASSERT(false); // TODO: not implemented
  14178. } break;
  14179. case GGML_OP_MUL_MAT:
  14180. {
  14181. // https://cs231n.github.io/optimization-2/#staged
  14182. // # forward pass
  14183. // s0 = np.random.randn(5, 10)
  14184. // s1 = np.random.randn(10, 3)
  14185. // t = s0.dot(s1)
  14186. // # now suppose we had the gradient on t from above in the circuit
  14187. // dt = np.random.randn(*t.shape) # same shape as t
  14188. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14189. // ds1 = t.T.dot(dt)
  14190. // tensor.shape [m,p,qq,rr]
  14191. // src0.shape [n,m,q1,r1]
  14192. // src1.shape [n,p,qq,rr]
  14193. // necessary for llama
  14194. if (src0->grad) {
  14195. struct ggml_tensor * s1_tg =
  14196. ggml_out_prod(ctx, // [n,m,qq,rr]
  14197. src1, // [n,p,qq,rr]
  14198. tensor->grad); // [m,p,qq,rr]
  14199. const int64_t qq = s1_tg->ne[2];
  14200. const int64_t rr = s1_tg->ne[3];
  14201. const int64_t q1 = src0->ne[2];
  14202. const int64_t r1 = src0->ne[3];
  14203. const bool ne2_broadcasted = qq > q1;
  14204. const bool ne3_broadcasted = rr > r1;
  14205. if (ne2_broadcasted || ne3_broadcasted) {
  14206. // sum broadcast repetitions of s1_tg into shape of src0
  14207. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14208. }
  14209. src0->grad =
  14210. ggml_add_or_set(ctx,
  14211. src0->grad, // [n,m,q1,r1]
  14212. s1_tg, // [n,m,q1,r1]
  14213. zero_table);
  14214. }
  14215. if (src1->grad) {
  14216. src1->grad =
  14217. ggml_add_or_set(ctx,
  14218. src1->grad, // [n,p,qq,rr]
  14219. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14220. // ggml_cont(ctx, // [m,n,q1,r1]
  14221. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14222. // tensor->grad), // [m,p,qq,rr]
  14223. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14224. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14225. // // and then use ggml_out_prod
  14226. ggml_out_prod(ctx, // [n,p,qq,rr]
  14227. src0, // [n,m,q1,r1]
  14228. ggml_transpose(ctx, // [p,m,qq,rr]
  14229. tensor->grad)), // [m,p,qq,rr]
  14230. zero_table);
  14231. }
  14232. } break;
  14233. case GGML_OP_OUT_PROD:
  14234. {
  14235. GGML_ASSERT(false); // TODO: not implemented
  14236. } break;
  14237. case GGML_OP_SCALE:
  14238. {
  14239. // necessary for llama
  14240. if (src0->grad) {
  14241. src0->grad =
  14242. ggml_add_or_set(ctx,
  14243. src0->grad,
  14244. ggml_scale_impl(ctx, tensor->grad, src1, false),
  14245. zero_table);
  14246. }
  14247. if (src1->grad) {
  14248. src1->grad =
  14249. ggml_add_or_set(ctx,
  14250. src1->grad,
  14251. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  14252. zero_table);
  14253. }
  14254. } break;
  14255. case GGML_OP_SET:
  14256. {
  14257. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14258. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14259. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14260. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14261. struct ggml_tensor * tensor_grad_view = NULL;
  14262. if (src0->grad || src1->grad) {
  14263. GGML_ASSERT(src0->type == tensor->type);
  14264. GGML_ASSERT(tensor->grad->type == tensor->type);
  14265. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14266. tensor_grad_view = ggml_view_4d(ctx,
  14267. tensor->grad,
  14268. src1->grad->ne[0],
  14269. src1->grad->ne[1],
  14270. src1->grad->ne[2],
  14271. src1->grad->ne[3],
  14272. nb1, nb2, nb3, offset);
  14273. }
  14274. if (src0->grad) {
  14275. src0->grad = ggml_add_or_set(ctx,
  14276. src0->grad,
  14277. ggml_acc_impl(ctx,
  14278. tensor->grad,
  14279. ggml_neg(ctx, tensor_grad_view),
  14280. nb1, nb2, nb3, offset, false),
  14281. zero_table);
  14282. }
  14283. if (src1->grad) {
  14284. src1->grad =
  14285. ggml_add_or_set(ctx,
  14286. src1->grad,
  14287. ggml_reshape(ctx,
  14288. ggml_cont(ctx, tensor_grad_view),
  14289. src1->grad),
  14290. zero_table);
  14291. }
  14292. } break;
  14293. case GGML_OP_CPY:
  14294. {
  14295. // necessary for llama
  14296. // cpy overwrites value of src1 by src0 and returns view(src1)
  14297. // the overwriting is mathematically equivalent to:
  14298. // tensor = src0 * 1 + src1 * 0
  14299. if (src0->grad) {
  14300. // dsrc0 = dtensor * 1
  14301. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14302. }
  14303. if (src1->grad) {
  14304. // dsrc1 = dtensor * 0 -> noop
  14305. }
  14306. } break;
  14307. case GGML_OP_CONT:
  14308. {
  14309. // same as cpy
  14310. if (src0->grad) {
  14311. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14312. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14313. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14314. }
  14315. } break;
  14316. case GGML_OP_RESHAPE:
  14317. {
  14318. // necessary for llama
  14319. if (src0->grad) {
  14320. src0->grad =
  14321. ggml_add_or_set(ctx, src0->grad,
  14322. ggml_reshape(ctx,
  14323. ggml_is_contiguous(tensor->grad)
  14324. ? tensor->grad
  14325. : ggml_cont(ctx, tensor->grad),
  14326. src0->grad),
  14327. zero_table);
  14328. }
  14329. } break;
  14330. case GGML_OP_VIEW:
  14331. {
  14332. // necessary for llama
  14333. if (src0->grad) {
  14334. size_t offset;
  14335. memcpy(&offset, tensor->op_params, sizeof(offset));
  14336. size_t nb1 = tensor->nb[1];
  14337. size_t nb2 = tensor->nb[2];
  14338. size_t nb3 = tensor->nb[3];
  14339. if (src0->type != src0->grad->type) {
  14340. // gradient is typically F32, but src0 could be other type
  14341. size_t ng = ggml_element_size(src0->grad);
  14342. size_t n0 = ggml_element_size(src0);
  14343. GGML_ASSERT(offset % n0 == 0);
  14344. GGML_ASSERT(nb1 % n0 == 0);
  14345. GGML_ASSERT(nb2 % n0 == 0);
  14346. GGML_ASSERT(nb3 % n0 == 0);
  14347. offset = (offset / n0) * ng;
  14348. nb1 = (nb1 / n0) * ng;
  14349. nb2 = (nb2 / n0) * ng;
  14350. nb3 = (nb3 / n0) * ng;
  14351. }
  14352. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14353. }
  14354. } break;
  14355. case GGML_OP_PERMUTE:
  14356. {
  14357. // necessary for llama
  14358. if (src0->grad) {
  14359. int32_t * axes = (int32_t *) tensor->op_params;
  14360. int axis0 = axes[0] & 0x3;
  14361. int axis1 = axes[1] & 0x3;
  14362. int axis2 = axes[2] & 0x3;
  14363. int axis3 = axes[3] & 0x3;
  14364. int axes_backward[4] = {0,0,0,0};
  14365. axes_backward[axis0] = 0;
  14366. axes_backward[axis1] = 1;
  14367. axes_backward[axis2] = 2;
  14368. axes_backward[axis3] = 3;
  14369. src0->grad =
  14370. ggml_add_or_set(ctx, src0->grad,
  14371. ggml_permute(ctx,
  14372. tensor->grad,
  14373. axes_backward[0],
  14374. axes_backward[1],
  14375. axes_backward[2],
  14376. axes_backward[3]),
  14377. zero_table);
  14378. }
  14379. } break;
  14380. case GGML_OP_TRANSPOSE:
  14381. {
  14382. // necessary for llama
  14383. if (src0->grad) {
  14384. src0->grad =
  14385. ggml_add_or_set(ctx, src0->grad,
  14386. ggml_transpose(ctx, tensor->grad),
  14387. zero_table);
  14388. }
  14389. } break;
  14390. case GGML_OP_GET_ROWS:
  14391. {
  14392. // necessary for llama (only for tokenizer)
  14393. if (src0->grad) {
  14394. src0->grad =
  14395. ggml_add_or_set(ctx, src0->grad,
  14396. // last ggml_get_rows_back argument src0->grad is only
  14397. // necessary to setup correct output shape
  14398. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14399. zero_table);
  14400. }
  14401. if (src1->grad) {
  14402. // noop
  14403. }
  14404. } break;
  14405. case GGML_OP_GET_ROWS_BACK:
  14406. {
  14407. GGML_ASSERT(false); // TODO: not implemented
  14408. } break;
  14409. case GGML_OP_DIAG:
  14410. {
  14411. GGML_ASSERT(false); // TODO: not implemented
  14412. } break;
  14413. case GGML_OP_DIAG_MASK_INF:
  14414. {
  14415. // necessary for llama
  14416. if (src0->grad) {
  14417. const int n_past = ((int32_t *) tensor->op_params)[0];
  14418. src0->grad =
  14419. ggml_add_or_set(ctx, src0->grad,
  14420. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14421. zero_table);
  14422. }
  14423. } break;
  14424. case GGML_OP_DIAG_MASK_ZERO:
  14425. {
  14426. // necessary for llama
  14427. if (src0->grad) {
  14428. const int n_past = ((int32_t *) tensor->op_params)[0];
  14429. src0->grad =
  14430. ggml_add_or_set(ctx, src0->grad,
  14431. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14432. zero_table);
  14433. }
  14434. } break;
  14435. case GGML_OP_SOFT_MAX:
  14436. {
  14437. // necessary for llama
  14438. if (src0->grad) {
  14439. src0->grad =
  14440. ggml_add_or_set(ctx, src0->grad,
  14441. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14442. zero_table);
  14443. }
  14444. } break;
  14445. case GGML_OP_SOFT_MAX_BACK:
  14446. {
  14447. GGML_ASSERT(false); // TODO: not implemented
  14448. } break;
  14449. case GGML_OP_ROPE:
  14450. {
  14451. // necessary for llama
  14452. if (src0->grad) {
  14453. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14454. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14455. const int mode = ((int32_t *) tensor->op_params)[2];
  14456. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14457. float freq_base;
  14458. float freq_scale;
  14459. float xpos_base;
  14460. bool xpos_down;
  14461. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  14462. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  14463. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  14464. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  14465. src0->grad = ggml_add_or_set(ctx,
  14466. src0->grad,
  14467. ggml_rope_back(ctx,
  14468. tensor->grad,
  14469. src1,
  14470. n_dims,
  14471. mode,
  14472. n_ctx,
  14473. freq_base,
  14474. freq_scale,
  14475. xpos_base,
  14476. xpos_down),
  14477. zero_table);
  14478. }
  14479. } break;
  14480. case GGML_OP_ROPE_BACK:
  14481. {
  14482. if (src0->grad) {
  14483. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14484. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14485. const int mode = ((int32_t *) tensor->op_params)[2];
  14486. const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14487. float freq_base;
  14488. float freq_scale;
  14489. float xpos_base;
  14490. bool xpos_down;
  14491. memcpy(&freq_base, (int32_t *) tensor->op_params + 4, sizeof(float));
  14492. memcpy(&freq_scale, (int32_t *) tensor->op_params + 5, sizeof(float));
  14493. memcpy(&xpos_base, (int32_t *) tensor->op_params + 6, sizeof(float));
  14494. memcpy(&xpos_down, (int32_t *) tensor->op_params + 7, sizeof(bool));
  14495. src0->grad = ggml_add_or_set(ctx,
  14496. src0->grad,
  14497. ggml_rope_impl(ctx,
  14498. tensor->grad,
  14499. src1,
  14500. n_dims,
  14501. mode,
  14502. n_ctx,
  14503. freq_base,
  14504. freq_scale,
  14505. xpos_base,
  14506. xpos_down,
  14507. false),
  14508. zero_table);
  14509. }
  14510. } break;
  14511. case GGML_OP_ALIBI:
  14512. {
  14513. GGML_ASSERT(false); // TODO: not implemented
  14514. } break;
  14515. case GGML_OP_CLAMP:
  14516. {
  14517. GGML_ASSERT(false); // TODO: not implemented
  14518. } break;
  14519. case GGML_OP_CONV_1D:
  14520. {
  14521. GGML_ASSERT(false); // TODO: not implemented
  14522. } break;
  14523. case GGML_OP_CONV_1D_STAGE_0:
  14524. {
  14525. GGML_ASSERT(false); // TODO: not implemented
  14526. } break;
  14527. case GGML_OP_CONV_1D_STAGE_1:
  14528. {
  14529. GGML_ASSERT(false); // TODO: not implemented
  14530. } break;
  14531. case GGML_OP_CONV_2D:
  14532. {
  14533. GGML_ASSERT(false); // TODO: not implemented
  14534. } break;
  14535. case GGML_OP_CONV_TRANSPOSE_1D:
  14536. {
  14537. GGML_ASSERT(false); // TODO: not implemented
  14538. } break;
  14539. case GGML_OP_CONV_TRANSPOSE_2D:
  14540. {
  14541. GGML_ASSERT(false); // TODO: not implemented
  14542. } break;
  14543. case GGML_OP_POOL_1D:
  14544. {
  14545. GGML_ASSERT(false); // TODO: not implemented
  14546. } break;
  14547. case GGML_OP_POOL_2D:
  14548. {
  14549. GGML_ASSERT(false); // TODO: not implemented
  14550. } break;
  14551. case GGML_OP_UPSCALE:
  14552. {
  14553. GGML_ASSERT(false); // TODO: not implemented
  14554. } break;
  14555. case GGML_OP_FLASH_ATTN:
  14556. {
  14557. struct ggml_tensor * flash_grad = NULL;
  14558. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14559. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14560. GGML_ASSERT(t == 0 || t == 1);
  14561. bool masked = t != 0;
  14562. flash_grad =
  14563. ggml_flash_attn_back(ctx,
  14564. src0,
  14565. src1,
  14566. tensor->src[2],
  14567. tensor->grad,
  14568. masked);
  14569. }
  14570. struct ggml_tensor * src2 = tensor->src[2];
  14571. const int64_t elem_q = ggml_nelements(src0);
  14572. const int64_t elem_k = ggml_nelements(src1);
  14573. const int64_t elem_v = ggml_nelements(src2);
  14574. enum ggml_type result_type = flash_grad->type;
  14575. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14576. const size_t tsize = ggml_type_size(result_type);
  14577. const size_t offs_q = 0;
  14578. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14579. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14580. if (src0->grad) {
  14581. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14582. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14583. src0->grad = ggml_add_or_set(ctx,
  14584. src0->grad,
  14585. grad_q,
  14586. zero_table);
  14587. }
  14588. if (src1->grad) {
  14589. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14590. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14591. src1->grad = ggml_add_or_set(ctx,
  14592. src1->grad,
  14593. grad_k,
  14594. zero_table);
  14595. }
  14596. if (src2->grad) {
  14597. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14598. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14599. src2->grad = ggml_add_or_set(ctx,
  14600. src2->grad,
  14601. grad_v,
  14602. zero_table);
  14603. }
  14604. } break;
  14605. case GGML_OP_FLASH_FF:
  14606. {
  14607. GGML_ASSERT(false); // not supported
  14608. } break;
  14609. case GGML_OP_FLASH_ATTN_BACK:
  14610. {
  14611. GGML_ASSERT(false); // not supported
  14612. } break;
  14613. case GGML_OP_WIN_PART:
  14614. case GGML_OP_WIN_UNPART:
  14615. case GGML_OP_UNARY:
  14616. {
  14617. switch (ggml_get_unary_op(tensor)) {
  14618. case GGML_UNARY_OP_ABS:
  14619. {
  14620. if (src0->grad) {
  14621. src0->grad =
  14622. ggml_add_or_set(ctx,
  14623. src0->grad,
  14624. ggml_mul(ctx,
  14625. ggml_sgn(ctx, src0),
  14626. tensor->grad),
  14627. zero_table);
  14628. }
  14629. } break;
  14630. case GGML_UNARY_OP_SGN:
  14631. {
  14632. if (src0->grad) {
  14633. // noop
  14634. }
  14635. } break;
  14636. case GGML_UNARY_OP_NEG:
  14637. {
  14638. if (src0->grad) {
  14639. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14640. }
  14641. } break;
  14642. case GGML_UNARY_OP_STEP:
  14643. {
  14644. if (src0->grad) {
  14645. // noop
  14646. }
  14647. } break;
  14648. case GGML_UNARY_OP_TANH:
  14649. {
  14650. GGML_ASSERT(false); // TODO: not implemented
  14651. } break;
  14652. case GGML_UNARY_OP_ELU:
  14653. {
  14654. GGML_ASSERT(false); // TODO: not implemented
  14655. } break;
  14656. case GGML_UNARY_OP_RELU:
  14657. {
  14658. if (src0->grad) {
  14659. src0->grad = ggml_add_or_set(ctx,
  14660. src0->grad,
  14661. ggml_mul(ctx,
  14662. ggml_step(ctx, src0),
  14663. tensor->grad),
  14664. zero_table);
  14665. }
  14666. } break;
  14667. case GGML_UNARY_OP_GELU:
  14668. {
  14669. GGML_ASSERT(false); // TODO: not implemented
  14670. } break;
  14671. case GGML_UNARY_OP_GELU_QUICK:
  14672. {
  14673. GGML_ASSERT(false); // TODO: not implemented
  14674. } break;
  14675. case GGML_UNARY_OP_SILU:
  14676. {
  14677. // necessary for llama
  14678. if (src0->grad) {
  14679. src0->grad = ggml_add_or_set(ctx,
  14680. src0->grad,
  14681. ggml_silu_back(ctx, src0, tensor->grad),
  14682. zero_table);
  14683. }
  14684. } break;
  14685. default:
  14686. GGML_ASSERT(false);
  14687. }
  14688. } break;
  14689. case GGML_OP_GET_REL_POS:
  14690. case GGML_OP_ADD_REL_POS:
  14691. case GGML_OP_MAP_UNARY:
  14692. case GGML_OP_MAP_BINARY:
  14693. case GGML_OP_MAP_CUSTOM1_F32:
  14694. case GGML_OP_MAP_CUSTOM2_F32:
  14695. case GGML_OP_MAP_CUSTOM3_F32:
  14696. case GGML_OP_MAP_CUSTOM1:
  14697. case GGML_OP_MAP_CUSTOM2:
  14698. case GGML_OP_MAP_CUSTOM3:
  14699. {
  14700. GGML_ASSERT(false); // not supported
  14701. } break;
  14702. case GGML_OP_CROSS_ENTROPY_LOSS:
  14703. {
  14704. if (src0->grad) {
  14705. src0->grad = ggml_add_or_set(ctx,
  14706. src0->grad,
  14707. ggml_cross_entropy_loss_back(ctx,
  14708. src0,
  14709. src1,
  14710. tensor->grad),
  14711. zero_table);
  14712. }
  14713. } break;
  14714. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14715. {
  14716. GGML_ASSERT(false); // not supported
  14717. } break;
  14718. case GGML_OP_NONE:
  14719. {
  14720. // nop
  14721. } break;
  14722. case GGML_OP_COUNT:
  14723. {
  14724. GGML_ASSERT(false);
  14725. } break;
  14726. }
  14727. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14728. if (tensor->src[i] && tensor->src[i]->grad) {
  14729. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14730. }
  14731. }
  14732. }
  14733. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14734. if (node->grad == NULL) {
  14735. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14736. // it can also happen during forward pass, if the user performs computations with constants
  14737. if (node->op != GGML_OP_NONE) {
  14738. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14739. }
  14740. }
  14741. // check if already visited
  14742. if (hash_insert(cgraph->visited_hash_table, node)) {
  14743. return;
  14744. }
  14745. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14746. const int k =
  14747. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14748. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14749. /* unknown order, just fall back to using i*/ i;
  14750. if (node->src[k]) {
  14751. ggml_visit_parents(cgraph, node->src[k]);
  14752. }
  14753. }
  14754. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14755. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14756. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  14757. if (strlen(node->name) == 0) {
  14758. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14759. }
  14760. cgraph->leafs[cgraph->n_leafs] = node;
  14761. cgraph->n_leafs++;
  14762. } else {
  14763. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  14764. if (strlen(node->name) == 0) {
  14765. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14766. }
  14767. cgraph->nodes[cgraph->n_nodes] = node;
  14768. cgraph->grads[cgraph->n_nodes] = node->grad;
  14769. cgraph->n_nodes++;
  14770. }
  14771. }
  14772. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14773. if (!expand) {
  14774. cgraph->n_nodes = 0;
  14775. cgraph->n_leafs = 0;
  14776. }
  14777. const int n0 = cgraph->n_nodes;
  14778. UNUSED(n0);
  14779. ggml_visit_parents(cgraph, tensor);
  14780. const int n_new = cgraph->n_nodes - n0;
  14781. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14782. if (n_new > 0) {
  14783. // the last added node should always be starting point
  14784. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14785. }
  14786. }
  14787. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14788. ggml_build_forward_impl(cgraph, tensor, true);
  14789. }
  14790. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  14791. struct ggml_cgraph result = {
  14792. /*.n_nodes =*/ 0,
  14793. /*.n_leafs =*/ 0,
  14794. /*.nodes =*/ { NULL },
  14795. /*.grads =*/ { NULL },
  14796. /*.leafs =*/ { NULL },
  14797. /*.hash_table =*/ { NULL },
  14798. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14799. /*.perf_runs =*/ 0,
  14800. /*.perf_cycles =*/ 0,
  14801. /*.perf_time_us =*/ 0,
  14802. };
  14803. ggml_build_forward_impl(&result, tensor, false);
  14804. return result;
  14805. }
  14806. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14807. GGML_ASSERT(gf->n_nodes > 0);
  14808. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14809. if (keep) {
  14810. for (int i = 0; i < gf->n_nodes; i++) {
  14811. struct ggml_tensor * node = gf->nodes[i];
  14812. if (node->grad) {
  14813. node->grad = ggml_dup_tensor(ctx, node);
  14814. gf->grads[i] = node->grad;
  14815. }
  14816. }
  14817. }
  14818. // remember original gradients which start with zero values
  14819. void ** zero_table = malloc(sizeof(void *) * GGML_GRAPH_HASHTABLE_SIZE);
  14820. memset(zero_table, 0, sizeof(void*) * GGML_GRAPH_HASHTABLE_SIZE);
  14821. for (int i = 0; i < gf->n_nodes; i++) {
  14822. if (gf->grads[i]) {
  14823. hash_insert(zero_table, gf->grads[i]);
  14824. }
  14825. }
  14826. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14827. struct ggml_tensor * node = gf->nodes[i];
  14828. // inplace operations to add gradients are not created by ggml_compute_backward
  14829. // use allocator to automatically make inplace operations
  14830. if (node->grad) {
  14831. ggml_compute_backward(ctx, node, zero_table);
  14832. }
  14833. }
  14834. for (int i = 0; i < gf->n_nodes; i++) {
  14835. struct ggml_tensor * node = gf->nodes[i];
  14836. if (node->is_param) {
  14837. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14838. ggml_build_forward_expand(gb, node->grad);
  14839. }
  14840. }
  14841. free(zero_table);
  14842. }
  14843. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  14844. struct ggml_cgraph result = *gf;
  14845. ggml_build_backward_expand(ctx, gf, &result, keep);
  14846. return result;
  14847. }
  14848. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14849. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_GRAPH, GGML_GRAPH_SIZE);
  14850. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14851. *cgraph = (struct ggml_cgraph) {
  14852. /*.n_nodes =*/ 0,
  14853. /*.n_leafs =*/ 0,
  14854. /*.nodes =*/ { NULL },
  14855. /*.grads =*/ { NULL },
  14856. /*.leafs =*/ { NULL },
  14857. /*.hash_table =*/ { NULL },
  14858. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14859. /*.perf_runs =*/ 0,
  14860. /*.perf_cycles =*/ 0,
  14861. /*.perf_time_us =*/ 0,
  14862. };
  14863. return cgraph;
  14864. }
  14865. struct ggml_cgraph * ggml_build_forward_ctx(struct ggml_context * ctx, struct ggml_tensor * tensor) {
  14866. struct ggml_cgraph * cgraph = ggml_new_graph(ctx);
  14867. ggml_build_forward_impl(cgraph, tensor, false);
  14868. return cgraph;
  14869. }
  14870. size_t ggml_graph_overhead(void) {
  14871. return GGML_OBJECT_SIZE + GGML_PAD(GGML_GRAPH_SIZE, GGML_MEM_ALIGN);
  14872. }
  14873. //
  14874. // thread data
  14875. //
  14876. // synchronization is done via busy loops
  14877. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14878. //
  14879. #ifdef __APPLE__
  14880. //#include <os/lock.h>
  14881. //
  14882. //typedef os_unfair_lock ggml_lock_t;
  14883. //
  14884. //#define ggml_lock_init(x) UNUSED(x)
  14885. //#define ggml_lock_destroy(x) UNUSED(x)
  14886. //#define ggml_lock_lock os_unfair_lock_lock
  14887. //#define ggml_lock_unlock os_unfair_lock_unlock
  14888. //
  14889. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14890. typedef int ggml_lock_t;
  14891. #define ggml_lock_init(x) UNUSED(x)
  14892. #define ggml_lock_destroy(x) UNUSED(x)
  14893. #define ggml_lock_lock(x) UNUSED(x)
  14894. #define ggml_lock_unlock(x) UNUSED(x)
  14895. #define GGML_LOCK_INITIALIZER 0
  14896. typedef pthread_t ggml_thread_t;
  14897. #define ggml_thread_create pthread_create
  14898. #define ggml_thread_join pthread_join
  14899. #else
  14900. //typedef pthread_spinlock_t ggml_lock_t;
  14901. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14902. //#define ggml_lock_destroy pthread_spin_destroy
  14903. //#define ggml_lock_lock pthread_spin_lock
  14904. //#define ggml_lock_unlock pthread_spin_unlock
  14905. typedef int ggml_lock_t;
  14906. #define ggml_lock_init(x) UNUSED(x)
  14907. #define ggml_lock_destroy(x) UNUSED(x)
  14908. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14909. #define ggml_lock_lock(x) _mm_pause()
  14910. #else
  14911. #define ggml_lock_lock(x) UNUSED(x)
  14912. #endif
  14913. #define ggml_lock_unlock(x) UNUSED(x)
  14914. #define GGML_LOCK_INITIALIZER 0
  14915. typedef pthread_t ggml_thread_t;
  14916. #define ggml_thread_create pthread_create
  14917. #define ggml_thread_join pthread_join
  14918. #endif
  14919. // Android's libc implementation "bionic" does not support setting affinity
  14920. #if defined(__linux__) && !defined(__BIONIC__)
  14921. static void set_numa_thread_affinity(int thread_n, int n_threads) {
  14922. if (!ggml_is_numa()) {
  14923. return;
  14924. }
  14925. // run thread on node_num thread_n / (threads per node)
  14926. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  14927. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  14928. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14929. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14930. CPU_ZERO_S(setsize, cpus);
  14931. for (size_t i = 0; i < node->n_cpus; ++i) {
  14932. CPU_SET_S(node->cpus[i], setsize, cpus);
  14933. }
  14934. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14935. if (rv) {
  14936. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14937. strerror(rv));
  14938. }
  14939. CPU_FREE(cpus);
  14940. }
  14941. static void clear_numa_thread_affinity(void) {
  14942. if (!ggml_is_numa()) {
  14943. return;
  14944. }
  14945. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  14946. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  14947. CPU_ZERO_S(setsize, cpus);
  14948. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  14949. CPU_SET_S(i, setsize, cpus);
  14950. }
  14951. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  14952. if (rv) {
  14953. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  14954. strerror(rv));
  14955. }
  14956. CPU_FREE(cpus);
  14957. }
  14958. #else
  14959. // TODO: Windows etc.
  14960. // (the linux implementation may also work on BSD, someone should test)
  14961. static void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  14962. static void clear_numa_thread_affinity(void) {}
  14963. #endif
  14964. struct ggml_compute_state_shared {
  14965. const struct ggml_cgraph * cgraph;
  14966. const struct ggml_cplan * cplan;
  14967. int64_t perf_node_start_cycles;
  14968. int64_t perf_node_start_time_us;
  14969. const int n_threads;
  14970. // synchronization primitives
  14971. atomic_int n_active; // num active threads
  14972. atomic_int node_n; // active graph node
  14973. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  14974. void * abort_callback_data;
  14975. };
  14976. struct ggml_compute_state {
  14977. ggml_thread_t thrd;
  14978. int ith;
  14979. struct ggml_compute_state_shared * shared;
  14980. };
  14981. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  14982. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  14983. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  14984. node->perf_runs++;
  14985. node->perf_cycles += cycles_cur;
  14986. node->perf_time_us += time_us_cur;
  14987. }
  14988. static thread_ret_t ggml_graph_compute_thread(void * data) {
  14989. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  14990. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  14991. const struct ggml_cplan * cplan = state->shared->cplan;
  14992. const int * n_tasks_arr = cplan->n_tasks;
  14993. const int n_threads = state->shared->n_threads;
  14994. set_numa_thread_affinity(state->ith, n_threads);
  14995. int node_n = -1;
  14996. while (true) {
  14997. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  14998. state->shared->node_n += 1;
  14999. return (thread_ret_t) GGML_EXIT_ABORTED;
  15000. }
  15001. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  15002. // all other threads are finished and spinning
  15003. // do finalize and init here so we don't have synchronize again
  15004. struct ggml_compute_params params = {
  15005. /*.type =*/ GGML_TASK_FINALIZE,
  15006. /*.ith =*/ 0,
  15007. /*.nth =*/ 0,
  15008. /*.wsize =*/ cplan->work_size,
  15009. /*.wdata =*/ cplan->work_data,
  15010. };
  15011. if (node_n != -1) {
  15012. /* FINALIZE */
  15013. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  15014. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15015. params.nth = n_tasks_arr[node_n];
  15016. ggml_compute_forward(&params, node);
  15017. }
  15018. ggml_graph_compute_perf_stats_node(node, state->shared);
  15019. }
  15020. // distribute new work or execute it direct if 1T
  15021. while (++node_n < cgraph->n_nodes) {
  15022. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  15023. struct ggml_tensor * node = cgraph->nodes[node_n];
  15024. const int n_tasks = n_tasks_arr[node_n];
  15025. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  15026. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  15027. params.nth = n_tasks;
  15028. /* INIT */
  15029. if (GGML_OP_HAS_INIT[node->op]) {
  15030. params.type = GGML_TASK_INIT;
  15031. ggml_compute_forward(&params, node);
  15032. }
  15033. if (n_tasks == 1) {
  15034. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  15035. // they do something more efficient than spinning (?)
  15036. params.type = GGML_TASK_COMPUTE;
  15037. ggml_compute_forward(&params, node);
  15038. if (GGML_OP_HAS_FINALIZE[node->op]) {
  15039. params.type = GGML_TASK_FINALIZE;
  15040. ggml_compute_forward(&params, node);
  15041. }
  15042. ggml_graph_compute_perf_stats_node(node, state->shared);
  15043. } else {
  15044. break;
  15045. }
  15046. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15047. break;
  15048. }
  15049. }
  15050. atomic_store(&state->shared->n_active, n_threads);
  15051. atomic_store(&state->shared->node_n, node_n);
  15052. } else {
  15053. // wait for other threads to finish
  15054. const int last = node_n;
  15055. while (true) {
  15056. // TODO: this sched_yield can have significant impact on the performance - either positive or negative
  15057. // depending on the workload and the operating system.
  15058. // since it is not clear what is the best approach, it should potentially become user-configurable
  15059. // ref: https://github.com/ggerganov/ggml/issues/291
  15060. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15061. sched_yield();
  15062. #endif
  15063. node_n = atomic_load(&state->shared->node_n);
  15064. if (node_n != last) break;
  15065. };
  15066. }
  15067. // check if we should stop
  15068. if (node_n >= cgraph->n_nodes) break;
  15069. /* COMPUTE */
  15070. struct ggml_tensor * node = cgraph->nodes[node_n];
  15071. const int n_tasks = n_tasks_arr[node_n];
  15072. struct ggml_compute_params params = {
  15073. /*.type =*/ GGML_TASK_COMPUTE,
  15074. /*.ith =*/ state->ith,
  15075. /*.nth =*/ n_tasks,
  15076. /*.wsize =*/ cplan->work_size,
  15077. /*.wdata =*/ cplan->work_data,
  15078. };
  15079. if (state->ith < n_tasks) {
  15080. ggml_compute_forward(&params, node);
  15081. }
  15082. }
  15083. return GGML_EXIT_SUCCESS;
  15084. }
  15085. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  15086. if (n_threads <= 0) {
  15087. n_threads = GGML_DEFAULT_N_THREADS;
  15088. }
  15089. size_t work_size = 0;
  15090. struct ggml_cplan cplan;
  15091. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15092. // thread scheduling for the different operations + work buffer size estimation
  15093. for (int i = 0; i < cgraph->n_nodes; i++) {
  15094. int n_tasks = 1;
  15095. struct ggml_tensor * node = cgraph->nodes[i];
  15096. switch (node->op) {
  15097. case GGML_OP_CPY:
  15098. case GGML_OP_DUP:
  15099. {
  15100. n_tasks = n_threads;
  15101. size_t cur = 0;
  15102. if (ggml_is_quantized(node->type)) {
  15103. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15104. }
  15105. work_size = MAX(work_size, cur);
  15106. } break;
  15107. case GGML_OP_ADD:
  15108. case GGML_OP_ADD1:
  15109. {
  15110. n_tasks = n_threads;
  15111. size_t cur = 0;
  15112. if (ggml_is_quantized(node->src[0]->type)) {
  15113. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15114. }
  15115. work_size = MAX(work_size, cur);
  15116. } break;
  15117. case GGML_OP_ACC:
  15118. {
  15119. n_tasks = n_threads;
  15120. size_t cur = 0;
  15121. if (ggml_is_quantized(node->src[0]->type)) {
  15122. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15123. }
  15124. work_size = MAX(work_size, cur);
  15125. } break;
  15126. case GGML_OP_SUB:
  15127. case GGML_OP_DIV:
  15128. case GGML_OP_SQR:
  15129. case GGML_OP_SQRT:
  15130. case GGML_OP_LOG:
  15131. case GGML_OP_SUM:
  15132. case GGML_OP_SUM_ROWS:
  15133. case GGML_OP_MEAN:
  15134. case GGML_OP_ARGMAX:
  15135. case GGML_OP_REPEAT:
  15136. case GGML_OP_REPEAT_BACK:
  15137. {
  15138. n_tasks = 1;
  15139. } break;
  15140. case GGML_OP_UNARY:
  15141. {
  15142. switch (ggml_get_unary_op(node)) {
  15143. case GGML_UNARY_OP_ABS:
  15144. case GGML_UNARY_OP_SGN:
  15145. case GGML_UNARY_OP_NEG:
  15146. case GGML_UNARY_OP_STEP:
  15147. case GGML_UNARY_OP_TANH:
  15148. case GGML_UNARY_OP_ELU:
  15149. case GGML_UNARY_OP_RELU:
  15150. {
  15151. n_tasks = 1;
  15152. } break;
  15153. case GGML_UNARY_OP_GELU:
  15154. case GGML_UNARY_OP_GELU_QUICK:
  15155. case GGML_UNARY_OP_SILU:
  15156. {
  15157. n_tasks = n_threads;
  15158. } break;
  15159. }
  15160. } break;
  15161. case GGML_OP_SILU_BACK:
  15162. case GGML_OP_MUL:
  15163. case GGML_OP_NORM:
  15164. case GGML_OP_RMS_NORM:
  15165. case GGML_OP_RMS_NORM_BACK:
  15166. case GGML_OP_GROUP_NORM:
  15167. {
  15168. n_tasks = n_threads;
  15169. } break;
  15170. case GGML_OP_CONCAT:
  15171. case GGML_OP_MUL_MAT:
  15172. {
  15173. n_tasks = n_threads;
  15174. // TODO: use different scheduling for different matrix sizes
  15175. //const int nr0 = ggml_nrows(node->src[0]);
  15176. //const int nr1 = ggml_nrows(node->src[1]);
  15177. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  15178. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  15179. size_t cur = 0;
  15180. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15181. #if defined(GGML_USE_CUBLAS)
  15182. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  15183. n_tasks = 1; // TODO: this actually is doing nothing
  15184. // the threads are still spinning
  15185. } else
  15186. #elif defined(GGML_USE_CLBLAST)
  15187. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  15188. n_tasks = 1; // TODO: this actually is doing nothing
  15189. // the threads are still spinning
  15190. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  15191. } else
  15192. #endif
  15193. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  15194. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  15195. n_tasks = 1; // TODO: this actually is doing nothing
  15196. // the threads are still spinning
  15197. if (node->src[0]->type != GGML_TYPE_F32) {
  15198. // here we need memory just for single 2D matrix from src0
  15199. cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  15200. }
  15201. } else
  15202. #endif
  15203. if (node->src[1]->type != vec_dot_type) {
  15204. cur = ggml_type_size(vec_dot_type)*ggml_nelements(node->src[1])/ggml_blck_size(vec_dot_type);
  15205. } else {
  15206. cur = 0;
  15207. }
  15208. work_size = MAX(work_size, cur);
  15209. } break;
  15210. case GGML_OP_OUT_PROD:
  15211. {
  15212. n_tasks = n_threads;
  15213. size_t cur = 0;
  15214. if (ggml_is_quantized(node->src[0]->type)) {
  15215. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15216. }
  15217. work_size = MAX(work_size, cur);
  15218. } break;
  15219. case GGML_OP_SCALE:
  15220. {
  15221. n_tasks = 1;
  15222. } break;
  15223. case GGML_OP_SET:
  15224. case GGML_OP_CONT:
  15225. case GGML_OP_RESHAPE:
  15226. case GGML_OP_VIEW:
  15227. case GGML_OP_PERMUTE:
  15228. case GGML_OP_TRANSPOSE:
  15229. case GGML_OP_GET_ROWS:
  15230. case GGML_OP_GET_ROWS_BACK:
  15231. case GGML_OP_DIAG:
  15232. {
  15233. n_tasks = 1;
  15234. } break;
  15235. case GGML_OP_DIAG_MASK_ZERO:
  15236. case GGML_OP_DIAG_MASK_INF:
  15237. case GGML_OP_SOFT_MAX:
  15238. case GGML_OP_SOFT_MAX_BACK:
  15239. case GGML_OP_ROPE:
  15240. case GGML_OP_ROPE_BACK:
  15241. case GGML_OP_ADD_REL_POS:
  15242. {
  15243. n_tasks = n_threads;
  15244. } break;
  15245. case GGML_OP_ALIBI:
  15246. {
  15247. n_tasks = 1; //TODO
  15248. } break;
  15249. case GGML_OP_CLAMP:
  15250. {
  15251. n_tasks = 1; //TODO
  15252. } break;
  15253. case GGML_OP_CONV_1D:
  15254. {
  15255. n_tasks = n_threads;
  15256. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15257. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15258. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15259. const int64_t ne00 = node->src[0]->ne[0];
  15260. const int64_t ne01 = node->src[0]->ne[1];
  15261. const int64_t ne02 = node->src[0]->ne[2];
  15262. const int64_t ne10 = node->src[1]->ne[0];
  15263. const int64_t ne11 = node->src[1]->ne[1];
  15264. const int64_t ne0 = node->ne[0];
  15265. const int64_t ne1 = node->ne[1];
  15266. const int64_t nk = ne00;
  15267. const int64_t ew0 = nk * ne01;
  15268. UNUSED(ne02);
  15269. UNUSED(ne10);
  15270. UNUSED(ne11);
  15271. size_t cur = 0;
  15272. if (node->src[0]->type == GGML_TYPE_F16 &&
  15273. node->src[1]->type == GGML_TYPE_F32) {
  15274. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  15275. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15276. node->src[1]->type == GGML_TYPE_F32) {
  15277. cur = sizeof(float)*(ne0*ne1*ew0);
  15278. } else {
  15279. GGML_ASSERT(false);
  15280. }
  15281. work_size = MAX(work_size, cur);
  15282. } break;
  15283. case GGML_OP_CONV_1D_STAGE_0:
  15284. {
  15285. n_tasks = n_threads;
  15286. } break;
  15287. case GGML_OP_CONV_1D_STAGE_1:
  15288. {
  15289. n_tasks = n_threads;
  15290. } break;
  15291. case GGML_OP_CONV_TRANSPOSE_1D:
  15292. {
  15293. n_tasks = n_threads;
  15294. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15295. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15296. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15297. const int64_t ne00 = node->src[0]->ne[0]; // K
  15298. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15299. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15300. const int64_t ne10 = node->src[1]->ne[0]; // L
  15301. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15302. size_t cur = 0;
  15303. if (node->src[0]->type == GGML_TYPE_F16 &&
  15304. node->src[1]->type == GGML_TYPE_F32) {
  15305. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15306. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15307. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15308. node->src[1]->type == GGML_TYPE_F32) {
  15309. cur += sizeof(float)*ne00*ne01*ne02;
  15310. cur += sizeof(float)*ne10*ne11;
  15311. } else {
  15312. GGML_ASSERT(false);
  15313. }
  15314. work_size = MAX(work_size, cur);
  15315. } break;
  15316. case GGML_OP_CONV_2D:
  15317. {
  15318. n_tasks = n_threads;
  15319. const int64_t ne00 = node->src[0]->ne[0]; // W
  15320. const int64_t ne01 = node->src[0]->ne[1]; // H
  15321. const int64_t ne02 = node->src[0]->ne[2]; // C
  15322. const int64_t ne03 = node->src[0]->ne[3]; // N
  15323. const int64_t ne10 = node->src[1]->ne[0]; // W
  15324. const int64_t ne11 = node->src[1]->ne[1]; // H
  15325. const int64_t ne12 = node->src[1]->ne[2]; // C
  15326. const int64_t ne0 = node->ne[0];
  15327. const int64_t ne1 = node->ne[1];
  15328. const int64_t ne2 = node->ne[2];
  15329. const int64_t nk = ne00*ne01;
  15330. const int64_t ew0 = nk * ne02;
  15331. UNUSED(ne03);
  15332. UNUSED(ne2);
  15333. size_t cur = 0;
  15334. if (node->src[0]->type == GGML_TYPE_F16 &&
  15335. node->src[1]->type == GGML_TYPE_F32) {
  15336. cur = sizeof(ggml_fp16_t)*(ne0*ne1*ew0);
  15337. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15338. node->src[1]->type == GGML_TYPE_F32) {
  15339. cur = sizeof(float)* (ne10*ne11*ne12);
  15340. } else {
  15341. GGML_ASSERT(false);
  15342. }
  15343. work_size = MAX(work_size, cur);
  15344. } break;
  15345. case GGML_OP_CONV_TRANSPOSE_2D:
  15346. {
  15347. n_tasks = n_threads;
  15348. const int64_t ne00 = node->src[0]->ne[0]; // W
  15349. const int64_t ne01 = node->src[0]->ne[1]; // H
  15350. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15351. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15352. const int64_t ne10 = node->src[1]->ne[0]; // W
  15353. const int64_t ne11 = node->src[1]->ne[1]; // H
  15354. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15355. size_t cur = 0;
  15356. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15357. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15358. work_size = MAX(work_size, cur);
  15359. } break;
  15360. case GGML_OP_POOL_1D:
  15361. case GGML_OP_POOL_2D:
  15362. {
  15363. n_tasks = 1;
  15364. } break;
  15365. case GGML_OP_UPSCALE:
  15366. {
  15367. n_tasks = n_threads;
  15368. } break;
  15369. case GGML_OP_FLASH_ATTN:
  15370. {
  15371. n_tasks = n_threads;
  15372. size_t cur = 0;
  15373. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15374. if (node->src[1]->type == GGML_TYPE_F32) {
  15375. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15376. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15377. }
  15378. if (node->src[1]->type == GGML_TYPE_F16) {
  15379. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  15380. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  15381. }
  15382. work_size = MAX(work_size, cur);
  15383. } break;
  15384. case GGML_OP_FLASH_FF:
  15385. {
  15386. n_tasks = n_threads;
  15387. size_t cur = 0;
  15388. if (node->src[1]->type == GGML_TYPE_F32) {
  15389. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15390. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15391. }
  15392. if (node->src[1]->type == GGML_TYPE_F16) {
  15393. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  15394. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  15395. }
  15396. work_size = MAX(work_size, cur);
  15397. } break;
  15398. case GGML_OP_FLASH_ATTN_BACK:
  15399. {
  15400. n_tasks = n_threads;
  15401. size_t cur = 0;
  15402. const int64_t D = node->src[0]->ne[0];
  15403. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15404. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15405. if (node->src[1]->type == GGML_TYPE_F32) {
  15406. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15407. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15408. }
  15409. if (node->src[1]->type == GGML_TYPE_F16) {
  15410. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15411. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15412. }
  15413. work_size = MAX(work_size, cur);
  15414. } break;
  15415. case GGML_OP_WIN_PART:
  15416. case GGML_OP_WIN_UNPART:
  15417. case GGML_OP_GET_REL_POS:
  15418. case GGML_OP_MAP_UNARY:
  15419. case GGML_OP_MAP_BINARY:
  15420. case GGML_OP_MAP_CUSTOM1_F32:
  15421. case GGML_OP_MAP_CUSTOM2_F32:
  15422. case GGML_OP_MAP_CUSTOM3_F32:
  15423. {
  15424. n_tasks = 1;
  15425. } break;
  15426. case GGML_OP_MAP_CUSTOM1:
  15427. {
  15428. struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
  15429. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15430. n_tasks = n_threads;
  15431. } else {
  15432. n_tasks = MIN(p->n_tasks, n_threads);
  15433. }
  15434. } break;
  15435. case GGML_OP_MAP_CUSTOM2:
  15436. {
  15437. struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
  15438. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15439. n_tasks = n_threads;
  15440. } else {
  15441. n_tasks = MIN(p->n_tasks, n_threads);
  15442. }
  15443. } break;
  15444. case GGML_OP_MAP_CUSTOM3:
  15445. {
  15446. struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
  15447. if (p->n_tasks == GGML_N_TASKS_MAX) {
  15448. n_tasks = n_threads;
  15449. } else {
  15450. n_tasks = MIN(p->n_tasks, n_threads);
  15451. }
  15452. } break;
  15453. case GGML_OP_CROSS_ENTROPY_LOSS:
  15454. {
  15455. n_tasks = n_threads;
  15456. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15457. work_size = MAX(work_size, cur);
  15458. } break;
  15459. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15460. {
  15461. n_tasks = n_threads;
  15462. } break;
  15463. case GGML_OP_NONE:
  15464. {
  15465. n_tasks = 1;
  15466. } break;
  15467. case GGML_OP_COUNT:
  15468. {
  15469. GGML_ASSERT(false);
  15470. } break;
  15471. }
  15472. cplan.n_tasks[i] = n_tasks;
  15473. }
  15474. if (work_size > 0) {
  15475. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15476. }
  15477. cplan.n_threads = n_threads;
  15478. cplan.work_size = work_size;
  15479. cplan.work_data = NULL;
  15480. return cplan;
  15481. }
  15482. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15483. {
  15484. GGML_ASSERT(cplan);
  15485. GGML_ASSERT(cplan->n_threads > 0);
  15486. if (cplan->work_size > 0) {
  15487. GGML_ASSERT(cplan->work_data);
  15488. }
  15489. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15490. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  15491. GGML_ASSERT(cplan->n_tasks[i] > 0);
  15492. }
  15493. }
  15494. }
  15495. const int n_threads = cplan->n_threads;
  15496. struct ggml_compute_state_shared state_shared = {
  15497. /*.cgraph =*/ cgraph,
  15498. /*.cgraph_plan =*/ cplan,
  15499. /*.perf_node_start_cycles =*/ 0,
  15500. /*.perf_node_start_time_us =*/ 0,
  15501. /*.n_threads =*/ n_threads,
  15502. /*.n_active =*/ n_threads,
  15503. /*.node_n =*/ -1,
  15504. /*.abort_callback =*/ NULL,
  15505. /*.abort_callback_data =*/ NULL,
  15506. };
  15507. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15508. // create thread pool
  15509. if (n_threads > 1) {
  15510. for (int j = 1; j < n_threads; ++j) {
  15511. workers[j] = (struct ggml_compute_state) {
  15512. .thrd = 0,
  15513. .ith = j,
  15514. .shared = &state_shared,
  15515. };
  15516. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15517. GGML_ASSERT(rc == 0);
  15518. UNUSED(rc);
  15519. }
  15520. }
  15521. workers[0].ith = 0;
  15522. workers[0].shared = &state_shared;
  15523. const int64_t perf_start_cycles = ggml_perf_cycles();
  15524. const int64_t perf_start_time_us = ggml_perf_time_us();
  15525. // this is a work thread too
  15526. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  15527. // don't leave affinity set on the main thread
  15528. clear_numa_thread_affinity();
  15529. // join or kill thread pool
  15530. if (n_threads > 1) {
  15531. for (int j = 1; j < n_threads; j++) {
  15532. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15533. GGML_ASSERT(rc == 0);
  15534. }
  15535. }
  15536. // performance stats (graph)
  15537. {
  15538. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  15539. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  15540. cgraph->perf_runs++;
  15541. cgraph->perf_cycles += perf_cycles_cur;
  15542. cgraph->perf_time_us += perf_time_us_cur;
  15543. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  15544. __func__, cgraph->perf_runs,
  15545. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  15546. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  15547. (double) perf_time_us_cur / 1000.0,
  15548. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  15549. }
  15550. return compute_status;
  15551. }
  15552. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15553. for (int i = 0; i < cgraph->n_nodes; i++) {
  15554. struct ggml_tensor * grad = cgraph->grads[i];
  15555. if (grad) {
  15556. ggml_set_zero(grad);
  15557. }
  15558. }
  15559. }
  15560. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15561. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15562. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  15563. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15564. ggml_graph_compute(cgraph, &cplan);
  15565. }
  15566. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15567. for (int i = 0; i < cgraph->n_leafs; i++) {
  15568. struct ggml_tensor * leaf = cgraph->leafs[i];
  15569. if (strcmp(leaf->name, name) == 0) {
  15570. return leaf;
  15571. }
  15572. }
  15573. for (int i = 0; i < cgraph->n_nodes; i++) {
  15574. struct ggml_tensor * node = cgraph->nodes[i];
  15575. if (strcmp(node->name, name) == 0) {
  15576. return node;
  15577. }
  15578. }
  15579. return NULL;
  15580. }
  15581. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15582. const int64_t * ne = tensor->ne;
  15583. const size_t * nb = tensor->nb;
  15584. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15585. ggml_type_name(tensor->type),
  15586. ggml_op_name (tensor->op),
  15587. tensor->n_dims,
  15588. ne[0], ne[1], ne[2], ne[3],
  15589. nb[0], nb[1], nb[2], nb[3],
  15590. tensor->data,
  15591. tensor->name);
  15592. }
  15593. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15594. const int64_t * ne = tensor->ne;
  15595. const size_t * nb = tensor->nb;
  15596. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15597. arg,
  15598. ggml_type_name(tensor->type),
  15599. ggml_op_name (tensor->op),
  15600. tensor->n_dims,
  15601. ne[0], ne[1], ne[2], ne[3],
  15602. nb[0], nb[1], nb[2], nb[3],
  15603. tensor->data,
  15604. tensor->name);
  15605. }
  15606. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15607. uint64_t size_eval = 0;
  15608. // compute size of intermediate results
  15609. // TODO: does not take into account scratch buffers !!!!
  15610. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15611. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15612. }
  15613. // print
  15614. {
  15615. FILE * fout = stdout;
  15616. fprintf(fout, "\n");
  15617. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15618. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15619. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15620. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15621. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15622. // header
  15623. fprintf(fout, "\n");
  15624. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15625. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15626. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15627. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15628. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15629. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15630. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15631. }
  15632. // header
  15633. fprintf(fout, "\n");
  15634. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15635. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15636. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15637. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15638. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15639. if (cgraph->nodes[i]->src[j]) {
  15640. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15641. }
  15642. }
  15643. fprintf(fout, "\n");
  15644. }
  15645. fprintf(fout, "\n");
  15646. }
  15647. // write binary data
  15648. {
  15649. FILE * fout = fopen(fname, "wb");
  15650. if (!fout) {
  15651. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15652. return;
  15653. }
  15654. // header
  15655. {
  15656. const uint32_t magic = GGML_FILE_MAGIC;
  15657. const uint32_t version = GGML_FILE_VERSION;
  15658. const uint32_t n_leafs = cgraph->n_leafs;
  15659. const uint32_t nodes = cgraph->n_nodes;
  15660. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15661. fwrite(&version, sizeof(uint32_t), 1, fout);
  15662. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15663. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  15664. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15665. }
  15666. // leafs
  15667. {
  15668. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15669. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15670. const uint32_t type = tensor->type;
  15671. const uint32_t op = tensor->op;
  15672. const uint32_t n_dims = tensor->n_dims;
  15673. fwrite(&type, sizeof(uint32_t), 1, fout);
  15674. fwrite(&op, sizeof(uint32_t), 1, fout);
  15675. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  15676. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15677. const uint64_t ne = tensor->ne[j];
  15678. const uint64_t nb = tensor->nb[j];
  15679. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15680. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15681. }
  15682. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15683. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15684. // dump the data
  15685. // TODO: pad this to 32 byte boundary
  15686. {
  15687. const size_t size = ggml_nbytes(tensor);
  15688. fwrite(tensor->data, sizeof(char), size, fout);
  15689. }
  15690. }
  15691. }
  15692. // nodes
  15693. {
  15694. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15695. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15696. const uint32_t type = tensor->type;
  15697. const uint32_t op = tensor->op;
  15698. const uint32_t n_dims = tensor->n_dims;
  15699. fwrite(&type, sizeof(uint32_t), 1, fout);
  15700. fwrite(&op, sizeof(uint32_t), 1, fout);
  15701. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  15702. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15703. const uint64_t ne = tensor->ne[j];
  15704. const uint64_t nb = tensor->nb[j];
  15705. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15706. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15707. }
  15708. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15709. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15710. // output the op arguments
  15711. {
  15712. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15713. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15714. args[j] = tensor->src[j];
  15715. }
  15716. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15717. if (args[j]) {
  15718. int32_t idx = -1;
  15719. // check if leaf
  15720. {
  15721. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15722. if (args[j] == cgraph->leafs[k]) {
  15723. idx = k;
  15724. break;
  15725. }
  15726. }
  15727. }
  15728. // check if node
  15729. if (idx == -1) {
  15730. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15731. if (args[j] == cgraph->nodes[k]) {
  15732. idx = GGML_MAX_NODES + k;
  15733. break;
  15734. }
  15735. }
  15736. }
  15737. if (idx == -1) {
  15738. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15739. fclose(fout);
  15740. return;
  15741. }
  15742. fwrite(&idx, sizeof(int32_t), 1, fout);
  15743. } else {
  15744. const int32_t nul = -1;
  15745. fwrite(&nul, sizeof(int32_t), 1, fout);
  15746. }
  15747. }
  15748. }
  15749. }
  15750. }
  15751. fclose(fout);
  15752. }
  15753. }
  15754. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15755. assert(*ctx_data == NULL);
  15756. assert(*ctx_eval == NULL);
  15757. struct ggml_cgraph result = { 0 };
  15758. struct ggml_tensor * data = NULL;
  15759. // read file into data
  15760. {
  15761. FILE * fin = fopen(fname, "rb");
  15762. if (!fin) {
  15763. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15764. return result;
  15765. }
  15766. size_t fsize = 0;
  15767. fseek(fin, 0, SEEK_END);
  15768. fsize = ftell(fin);
  15769. fseek(fin, 0, SEEK_SET);
  15770. // create the data context
  15771. {
  15772. const size_t overhead = 1*ggml_tensor_overhead();
  15773. struct ggml_init_params params = {
  15774. .mem_size = fsize + overhead,
  15775. .mem_buffer = NULL,
  15776. .no_alloc = false,
  15777. };
  15778. *ctx_data = ggml_init(params);
  15779. if (!*ctx_data) {
  15780. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15781. fclose(fin);
  15782. return result;
  15783. }
  15784. }
  15785. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15786. {
  15787. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15788. if (ret != fsize) {
  15789. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15790. fclose(fin);
  15791. return result;
  15792. }
  15793. }
  15794. fclose(fin);
  15795. }
  15796. // populate result
  15797. {
  15798. char * ptr = (char *) data->data;
  15799. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15800. if (magic != GGML_FILE_MAGIC) {
  15801. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15802. return result;
  15803. }
  15804. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15805. if (version != GGML_FILE_VERSION) {
  15806. fprintf(stderr, "%s: invalid version number\n", __func__);
  15807. return result;
  15808. }
  15809. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15810. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15811. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15812. result.n_leafs = n_leafs;
  15813. result.n_nodes = n_nodes;
  15814. // create the data context
  15815. {
  15816. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  15817. struct ggml_init_params params = {
  15818. .mem_size = size_eval + overhead,
  15819. .mem_buffer = NULL,
  15820. .no_alloc = true,
  15821. };
  15822. *ctx_eval = ggml_init(params);
  15823. if (!*ctx_eval) {
  15824. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15825. return result;
  15826. }
  15827. }
  15828. // leafs
  15829. {
  15830. uint32_t type;
  15831. uint32_t op;
  15832. uint32_t n_dims;
  15833. for (uint32_t i = 0; i < n_leafs; ++i) {
  15834. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15835. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15836. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15837. int64_t ne[GGML_MAX_DIMS];
  15838. size_t nb[GGML_MAX_DIMS];
  15839. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15840. uint64_t ne_cur;
  15841. uint64_t nb_cur;
  15842. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15843. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15844. ne[j] = ne_cur;
  15845. nb[j] = nb_cur;
  15846. }
  15847. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15848. tensor->op = (enum ggml_op) op;
  15849. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15850. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15851. tensor->data = (void *) ptr;
  15852. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15853. tensor->nb[j] = nb[j];
  15854. }
  15855. result.leafs[i] = tensor;
  15856. ptr += ggml_nbytes(tensor);
  15857. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15858. }
  15859. }
  15860. ggml_set_no_alloc(*ctx_eval, false);
  15861. // nodes
  15862. {
  15863. uint32_t type;
  15864. uint32_t op;
  15865. uint32_t n_dims;
  15866. for (uint32_t i = 0; i < n_nodes; ++i) {
  15867. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15868. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15869. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  15870. enum ggml_op eop = (enum ggml_op) op;
  15871. int64_t ne[GGML_MAX_DIMS];
  15872. size_t nb[GGML_MAX_DIMS];
  15873. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15874. uint64_t ne_cur;
  15875. uint64_t nb_cur;
  15876. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15877. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15878. ne[j] = ne_cur;
  15879. nb[j] = nb_cur;
  15880. }
  15881. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15882. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15883. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15884. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15885. // parse args
  15886. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15887. const int32_t arg_idx = ptr_arg_idx[j];
  15888. if (arg_idx == -1) {
  15889. continue;
  15890. }
  15891. if (arg_idx < GGML_MAX_NODES) {
  15892. args[j] = result.leafs[arg_idx];
  15893. } else {
  15894. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  15895. }
  15896. }
  15897. // create the tensor
  15898. // "view" operations are handled differently
  15899. // TODO: handle inplace ops - currently a copy is always made
  15900. struct ggml_tensor * tensor = NULL;
  15901. switch (eop) {
  15902. // TODO: implement other view ops
  15903. case GGML_OP_RESHAPE:
  15904. {
  15905. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15906. } break;
  15907. case GGML_OP_VIEW:
  15908. {
  15909. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15910. size_t offs;
  15911. memcpy(&offs, ptr_op_params, sizeof(offs));
  15912. tensor->data = ((char *) tensor->data) + offs;
  15913. } break;
  15914. case GGML_OP_TRANSPOSE:
  15915. {
  15916. tensor = ggml_transpose(*ctx_eval, args[0]);
  15917. } break;
  15918. case GGML_OP_PERMUTE:
  15919. {
  15920. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15921. } break;
  15922. default:
  15923. {
  15924. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  15925. tensor->op = eop;
  15926. } break;
  15927. }
  15928. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15929. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15930. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15931. tensor->nb[j] = nb[j];
  15932. }
  15933. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15934. tensor->src[j] = args[j];
  15935. }
  15936. result.nodes[i] = tensor;
  15937. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  15938. }
  15939. }
  15940. }
  15941. return result;
  15942. }
  15943. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15944. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  15945. GGML_PRINT("=== GRAPH ===\n");
  15946. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15947. for (int i = 0; i < cgraph->n_nodes; i++) {
  15948. struct ggml_tensor * node = cgraph->nodes[i];
  15949. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  15950. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  15951. i,
  15952. node->ne[0], node->ne[1], node->ne[2],
  15953. ggml_op_name(node->op), node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  15954. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  15955. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  15956. (double) node->perf_time_us / 1000.0,
  15957. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  15958. }
  15959. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15960. for (int i = 0; i < cgraph->n_leafs; i++) {
  15961. struct ggml_tensor * node = cgraph->leafs[i];
  15962. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15963. i,
  15964. node->ne[0], node->ne[1],
  15965. ggml_op_name(node->op),
  15966. ggml_get_name(node));
  15967. }
  15968. for (int i = 0; i < GGML_OP_COUNT; i++) {
  15969. if (perf_total_per_op_us[i] == 0) {
  15970. continue;
  15971. }
  15972. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", ggml_op_name(i), (double) perf_total_per_op_us[i] / 1000.0);
  15973. }
  15974. GGML_PRINT("========================================\n");
  15975. }
  15976. // check if node is part of the graph
  15977. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15978. if (cgraph == NULL) {
  15979. return true;
  15980. }
  15981. for (int i = 0; i < cgraph->n_nodes; i++) {
  15982. if (cgraph->nodes[i] == node) {
  15983. return true;
  15984. }
  15985. }
  15986. return false;
  15987. }
  15988. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15989. for (int i = 0; i < cgraph->n_nodes; i++) {
  15990. struct ggml_tensor * parent = cgraph->nodes[i];
  15991. if (parent->grad == node) {
  15992. return parent;
  15993. }
  15994. }
  15995. return NULL;
  15996. }
  15997. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15998. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15999. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16000. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16001. gparent0 ? (void *) gparent0 : (void *) parent,
  16002. gparent0 ? "g" : "x",
  16003. gparent ? (void *) gparent : (void *) node,
  16004. gparent ? "g" : "x",
  16005. gparent ? "empty" : "vee",
  16006. gparent ? "dashed" : "solid",
  16007. label);
  16008. }
  16009. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16010. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16011. (void *) parent, "x",
  16012. (void *) node, "x",
  16013. label);
  16014. }
  16015. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16016. char color[16];
  16017. FILE * fp = fopen(filename, "w");
  16018. GGML_ASSERT(fp);
  16019. fprintf(fp, "digraph G {\n");
  16020. fprintf(fp, " newrank = true;\n");
  16021. fprintf(fp, " rankdir = LR;\n");
  16022. for (int i = 0; i < gb->n_nodes; i++) {
  16023. struct ggml_tensor * node = gb->nodes[i];
  16024. if (ggml_graph_get_parent(gb, node) != NULL) {
  16025. continue;
  16026. }
  16027. if (node->is_param) {
  16028. snprintf(color, sizeof(color), "yellow");
  16029. } else if (node->grad) {
  16030. if (ggml_graph_find(gf, node)) {
  16031. snprintf(color, sizeof(color), "green");
  16032. } else {
  16033. snprintf(color, sizeof(color), "lightblue");
  16034. }
  16035. } else {
  16036. snprintf(color, sizeof(color), "white");
  16037. }
  16038. fprintf(fp, " \"%p\" [ "
  16039. "style = filled; fillcolor = %s; shape = record; "
  16040. "label=\"",
  16041. (void *) node, color);
  16042. if (strlen(node->name) > 0) {
  16043. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16044. } else {
  16045. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16046. }
  16047. if (node->n_dims == 2) {
  16048. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16049. } else {
  16050. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16051. }
  16052. if (node->grad) {
  16053. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16054. } else {
  16055. fprintf(fp, "\"; ]\n");
  16056. }
  16057. }
  16058. for (int i = 0; i < gb->n_leafs; i++) {
  16059. struct ggml_tensor * node = gb->leafs[i];
  16060. snprintf(color, sizeof(color), "pink");
  16061. fprintf(fp, " \"%p\" [ "
  16062. "style = filled; fillcolor = %s; shape = record; "
  16063. "label=\"<x>",
  16064. (void *) node, color);
  16065. if (strlen(node->name) > 0) {
  16066. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16067. } else {
  16068. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16069. }
  16070. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16071. if (ggml_nelements(node) < 5) {
  16072. fprintf(fp, " | (");
  16073. for (int j = 0; j < ggml_nelements(node); j++) {
  16074. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16075. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16076. }
  16077. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  16078. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16079. }
  16080. else {
  16081. fprintf(fp, "#");
  16082. }
  16083. if (j < ggml_nelements(node) - 1) {
  16084. fprintf(fp, ", ");
  16085. }
  16086. }
  16087. fprintf(fp, ")");
  16088. }
  16089. fprintf(fp, "\"; ]\n");
  16090. }
  16091. for (int i = 0; i < gb->n_nodes; i++) {
  16092. struct ggml_tensor * node = gb->nodes[i];
  16093. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16094. if (node->src[j]) {
  16095. char label[16];
  16096. snprintf(label, sizeof(label), "src %d", j);
  16097. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16098. }
  16099. }
  16100. }
  16101. for (int i = 0; i < gb->n_leafs; i++) {
  16102. struct ggml_tensor * node = gb->leafs[i];
  16103. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16104. if (node->src[j]) {
  16105. char label[16];
  16106. snprintf(label, sizeof(label), "src %d", j);
  16107. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16108. }
  16109. }
  16110. }
  16111. fprintf(fp, "}\n");
  16112. fclose(fp);
  16113. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16114. }
  16115. ////////////////////////////////////////////////////////////////////////////////
  16116. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16117. int i = 0;
  16118. for (int p = 0; p < np; ++p) {
  16119. const int64_t ne = ggml_nelements(ps[p]) ;
  16120. // TODO: add function to set tensor from array
  16121. for (int64_t j = 0; j < ne; ++j) {
  16122. ggml_set_f32_1d(ps[p], j, x[i++]);
  16123. }
  16124. }
  16125. }
  16126. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16127. int i = 0;
  16128. for (int p = 0; p < np; ++p) {
  16129. const int64_t ne = ggml_nelements(ps[p]) ;
  16130. // TODO: add function to get all elements at once
  16131. for (int64_t j = 0; j < ne; ++j) {
  16132. x[i++] = ggml_get_f32_1d(ps[p], j);
  16133. }
  16134. }
  16135. }
  16136. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16137. int64_t i = 0;
  16138. for (int p = 0; p < np; ++p) {
  16139. const int64_t ne = ggml_nelements(ps[p]) ;
  16140. // TODO: add function to get all elements at once
  16141. for (int64_t j = 0; j < ne; ++j) {
  16142. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16143. }
  16144. }
  16145. }
  16146. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16147. int64_t i = 0;
  16148. for (int p = 0; p < np; ++p) {
  16149. const int64_t ne = ggml_nelements(ps[p]) ;
  16150. // TODO: add function to get all elements at once
  16151. for (int64_t j = 0; j < ne; ++j) {
  16152. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16153. }
  16154. }
  16155. }
  16156. //
  16157. // ADAM
  16158. //
  16159. // ref: https://arxiv.org/pdf/1412.6980.pdf
  16160. //
  16161. static enum ggml_opt_result ggml_opt_adam(
  16162. struct ggml_context * ctx,
  16163. struct ggml_opt_context * opt,
  16164. struct ggml_opt_params params,
  16165. struct ggml_tensor * f,
  16166. struct ggml_cgraph * gf,
  16167. struct ggml_cgraph * gb,
  16168. ggml_opt_callback callback,
  16169. void * callback_data) {
  16170. GGML_ASSERT(ggml_is_scalar(f));
  16171. // these will store the parameters we want to optimize
  16172. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16173. int np = 0;
  16174. int64_t nx = 0;
  16175. for (int i = 0; i < gf->n_nodes; ++i) {
  16176. if (gf->nodes[i]->is_param) {
  16177. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16178. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16179. ps[np++] = gf->nodes[i];
  16180. nx += ggml_nelements(gf->nodes[i]);
  16181. }
  16182. }
  16183. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16184. int iter = opt->iter;
  16185. ggml_opt_init(opt->ctx, opt, params, nx);
  16186. opt->iter = iter;
  16187. }
  16188. // constants
  16189. float sched = params.adam.sched;
  16190. const float alpha = params.adam.alpha;
  16191. const float decay = params.adam.decay * alpha;
  16192. const float beta1 = params.adam.beta1;
  16193. const float beta2 = params.adam.beta2;
  16194. const float eps = params.adam.eps;
  16195. const float gclip = params.adam.gclip;
  16196. const int decay_min_ndim = params.adam.decay_min_ndim;
  16197. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16198. const float accum_norm = 1.0f / (float) n_accum;
  16199. float * g = opt->adam.g->data; // gradients
  16200. float * m = opt->adam.m->data; // first moment
  16201. float * v = opt->adam.v->data; // second moment
  16202. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16203. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16204. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  16205. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16206. bool cancel = false;
  16207. // compute the function value
  16208. float fx = 0;
  16209. ggml_set_zero(opt->adam.g);
  16210. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16211. if (callback) {
  16212. callback(callback_data, accum_step, &sched, &cancel);
  16213. if (cancel) {
  16214. return GGML_OPT_CANCEL;
  16215. }
  16216. }
  16217. // ggml_graph_reset (gf);
  16218. ggml_set_f32 (f->grad, 1.0f);
  16219. ggml_graph_compute(gb, &cplan);
  16220. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16221. fx += ggml_get_f32_1d(f, 0);
  16222. }
  16223. fx *= accum_norm;
  16224. opt->adam.fx_prev = fx;
  16225. opt->adam.fx_best = opt->adam.fx_prev;
  16226. if (pf) {
  16227. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16228. }
  16229. opt->loss_before = opt->adam.fx_prev;
  16230. opt->loss_after = opt->adam.fx_prev;
  16231. // initialize
  16232. if (opt->just_initialized) {
  16233. opt->adam.n_no_improvement = 0;
  16234. opt->just_initialized = false;
  16235. }
  16236. float * fx_best = &opt->adam.fx_best;
  16237. float * fx_prev = &opt->adam.fx_prev;
  16238. int * n_no_improvement = &opt->adam.n_no_improvement;
  16239. int iter0 = opt->iter;
  16240. // run the optimizer
  16241. for (int t = 0; t < params.adam.n_iter; ++t) {
  16242. opt->iter = iter0 + t + 1;
  16243. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16244. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16245. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16246. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16247. for (int i = 0; i < np; ++i) {
  16248. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16249. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16250. }
  16251. const int64_t t_start_wall = ggml_time_us();
  16252. const int64_t t_start_cpu = ggml_cycles();
  16253. UNUSED(t_start_wall);
  16254. UNUSED(t_start_cpu);
  16255. {
  16256. float gnorm = 1.0f;
  16257. if (gclip > 0.0f) {
  16258. // gradient clipping
  16259. ggml_float sum = 0.0;
  16260. for (int64_t i = 0; i < nx; ++i) {
  16261. sum += (ggml_float)(g[i]*g[i]);
  16262. }
  16263. ggml_float norm = sqrt(sum);
  16264. if (norm > (ggml_float) gclip) {
  16265. gnorm = (float) ((ggml_float) gclip / norm);
  16266. }
  16267. }
  16268. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16269. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16270. int64_t i = 0;
  16271. for (int p = 0; p < np; ++p) {
  16272. const int64_t ne = ggml_nelements(ps[p]);
  16273. const float p_decay = ((ps[p]->n_dims >= decay_min_ndim) ? decay : 0.0f) * sched;
  16274. for (int64_t j = 0; j < ne; ++j) {
  16275. float x = ggml_get_f32_1d(ps[p], j);
  16276. float g_ = g[i]*gnorm;
  16277. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16278. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16279. float mh = m[i]*beta1h;
  16280. float vh = v[i]*beta2h;
  16281. vh = sqrtf(vh) + eps;
  16282. x = x*(1.0f - p_decay) - mh/vh;
  16283. ggml_set_f32_1d(ps[p], j, x);
  16284. ++i;
  16285. }
  16286. }
  16287. }
  16288. fx = 0;
  16289. ggml_set_zero(opt->adam.g);
  16290. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16291. if (callback) {
  16292. callback(callback_data, accum_step, &sched, &cancel);
  16293. if (cancel) {
  16294. return GGML_OPT_CANCEL;;
  16295. }
  16296. }
  16297. // ggml_graph_reset (gf);
  16298. ggml_set_f32 (f->grad, 1.0f);
  16299. ggml_graph_compute(gb, &cplan);
  16300. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16301. fx += ggml_get_f32_1d(f, 0);
  16302. }
  16303. fx *= accum_norm;
  16304. opt->loss_after = fx;
  16305. // check convergence
  16306. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16307. GGML_PRINT_DEBUG("converged\n");
  16308. return GGML_OPT_OK;
  16309. }
  16310. // delta-based convergence test
  16311. if (pf != NULL) {
  16312. // need at least params.past iterations to start checking for convergence
  16313. if (params.past <= iter0 + t) {
  16314. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16315. if (fabsf(rate) < params.delta) {
  16316. return GGML_OPT_OK;
  16317. }
  16318. }
  16319. pf[(iter0 + t)%params.past] = fx;
  16320. }
  16321. // check for improvement
  16322. if (params.max_no_improvement > 0) {
  16323. if (fx_best[0] > fx) {
  16324. fx_best[0] = fx;
  16325. n_no_improvement[0] = 0;
  16326. } else {
  16327. ++n_no_improvement[0];
  16328. if (n_no_improvement[0] >= params.max_no_improvement) {
  16329. return GGML_OPT_OK;
  16330. }
  16331. }
  16332. }
  16333. fx_prev[0] = fx;
  16334. {
  16335. const int64_t t_end_cpu = ggml_cycles();
  16336. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16337. UNUSED(t_end_cpu);
  16338. const int64_t t_end_wall = ggml_time_us();
  16339. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16340. UNUSED(t_end_wall);
  16341. }
  16342. }
  16343. return GGML_OPT_DID_NOT_CONVERGE;
  16344. }
  16345. //
  16346. // L-BFGS
  16347. //
  16348. // the L-BFGS implementation below is based on the following implementation:
  16349. //
  16350. // https://github.com/chokkan/liblbfgs
  16351. //
  16352. struct ggml_lbfgs_iteration_data {
  16353. float alpha;
  16354. float ys;
  16355. float * s;
  16356. float * y;
  16357. };
  16358. static enum ggml_opt_result linesearch_backtracking(
  16359. const struct ggml_opt_params * params,
  16360. int nx,
  16361. float * x,
  16362. float * fx,
  16363. float * g,
  16364. float * d,
  16365. float * step,
  16366. const float * xp,
  16367. struct ggml_tensor * f,
  16368. struct ggml_cgraph * gb,
  16369. struct ggml_cplan * cplan,
  16370. const int np,
  16371. struct ggml_tensor * ps[],
  16372. bool * cancel,
  16373. ggml_opt_callback callback,
  16374. void * callback_data) {
  16375. int count = 0;
  16376. float width = 0.0f;
  16377. float dg = 0.0f;
  16378. float finit = 0.0f;
  16379. float dginit = 0.0f;
  16380. float dgtest = 0.0f;
  16381. const float dec = 0.5f;
  16382. const float inc = 2.1f;
  16383. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16384. const float accum_norm = 1.0f / (float) n_accum;
  16385. if (*step <= 0.f) {
  16386. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16387. }
  16388. // compute the initial gradient in the search direction
  16389. ggml_vec_dot_f32(nx, &dginit, g, d);
  16390. // make sure that d points to a descent direction
  16391. if (0 < dginit) {
  16392. return GGML_LINESEARCH_FAIL;
  16393. }
  16394. // initialize local variables
  16395. finit = *fx;
  16396. dgtest = params->lbfgs.ftol*dginit;
  16397. while (true) {
  16398. ggml_vec_cpy_f32(nx, x, xp);
  16399. ggml_vec_mad_f32(nx, x, d, *step);
  16400. // evaluate the function and gradient values
  16401. {
  16402. ggml_opt_set_params(np, ps, x);
  16403. *fx = 0;
  16404. memset(g, 0, sizeof(float)*nx);
  16405. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16406. if (callback) {
  16407. // LBFG-S does not support learning rate -> ignore learning schedule
  16408. float sched = 0;
  16409. callback(callback_data, accum_step, &sched, cancel);
  16410. if (*cancel) {
  16411. return GGML_OPT_CANCEL;
  16412. }
  16413. }
  16414. // ggml_graph_reset (gf);
  16415. ggml_set_f32 (f->grad, 1.0f);
  16416. ggml_graph_compute(gb, cplan);
  16417. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16418. *fx += ggml_get_f32_1d(f, 0);
  16419. }
  16420. *fx *= accum_norm;
  16421. }
  16422. ++count;
  16423. if (*fx > finit + (*step)*dgtest) {
  16424. width = dec;
  16425. } else {
  16426. // Armijo condition is satisfied
  16427. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16428. return count;
  16429. }
  16430. ggml_vec_dot_f32(nx, &dg, g, d);
  16431. // check the Wolfe condition
  16432. if (dg < params->lbfgs.wolfe * dginit) {
  16433. width = inc;
  16434. } else {
  16435. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16436. // regular Wolfe conditions
  16437. return count;
  16438. }
  16439. if(dg > -params->lbfgs.wolfe*dginit) {
  16440. width = dec;
  16441. } else {
  16442. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16443. return count;
  16444. }
  16445. }
  16446. }
  16447. if (*step < params->lbfgs.min_step) {
  16448. return GGML_LINESEARCH_MINIMUM_STEP;
  16449. }
  16450. if (*step > params->lbfgs.max_step) {
  16451. return GGML_LINESEARCH_MAXIMUM_STEP;
  16452. }
  16453. if (params->lbfgs.max_linesearch <= count) {
  16454. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16455. }
  16456. (*step) *= width;
  16457. }
  16458. GGML_UNREACHABLE();
  16459. }
  16460. static enum ggml_opt_result ggml_opt_lbfgs(
  16461. struct ggml_context * ctx,
  16462. struct ggml_opt_context * opt,
  16463. struct ggml_opt_params params,
  16464. struct ggml_tensor * f,
  16465. struct ggml_cgraph * gf,
  16466. struct ggml_cgraph * gb,
  16467. ggml_opt_callback callback,
  16468. void * callback_data) {
  16469. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16470. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16471. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16472. return GGML_OPT_INVALID_WOLFE;
  16473. }
  16474. }
  16475. const int m = params.lbfgs.m;
  16476. // these will store the parameters we want to optimize
  16477. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16478. int np = 0;
  16479. int nx = 0;
  16480. for (int i = 0; i < gf->n_nodes; ++i) {
  16481. if (gf->nodes[i]->is_param) {
  16482. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16483. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16484. ps[np++] = gf->nodes[i];
  16485. nx += ggml_nelements(gf->nodes[i]);
  16486. }
  16487. }
  16488. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16489. int iter = opt->iter;
  16490. ggml_opt_init(ctx, opt, params, nx);
  16491. opt->iter = iter;
  16492. }
  16493. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16494. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_WORK_BUFFER, cplan.work_size);
  16495. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16496. float * x = opt->lbfgs.x->data; // current parameters
  16497. float * xp = opt->lbfgs.xp->data; // previous parameters
  16498. float * g = opt->lbfgs.g->data; // current gradient
  16499. float * gp = opt->lbfgs.gp->data; // previous gradient
  16500. float * d = opt->lbfgs.d->data; // search direction
  16501. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16502. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16503. const float accum_norm = 1.0f / (float) n_accum;
  16504. float fx = 0.0f; // cost function value
  16505. float xnorm = 0.0f; // ||x||
  16506. float gnorm = 0.0f; // ||g||
  16507. // initialize x from the graph nodes
  16508. ggml_opt_get_params(np, ps, x);
  16509. // the L-BFGS memory
  16510. float * lm_alpha = opt->lbfgs.lmal->data;
  16511. float * lm_ys = opt->lbfgs.lmys->data;
  16512. float * lm_s = opt->lbfgs.lms->data;
  16513. float * lm_y = opt->lbfgs.lmy->data;
  16514. bool cancel = false;
  16515. // evaluate the function value and its gradient
  16516. {
  16517. ggml_opt_set_params(np, ps, x);
  16518. fx = 0;
  16519. memset(g, 0, sizeof(float)*nx);
  16520. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16521. if (callback) {
  16522. // LBFG-S does not support learning rate -> ignore learning schedule
  16523. float sched = 0;
  16524. callback(callback_data, accum_step, &sched, &cancel);
  16525. if (cancel) {
  16526. return GGML_OPT_CANCEL;
  16527. }
  16528. }
  16529. // ggml_graph_reset (gf);
  16530. ggml_set_f32 (f->grad, 1.0f);
  16531. ggml_graph_compute(gb, &cplan);
  16532. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16533. fx += ggml_get_f32_1d(f, 0);
  16534. }
  16535. fx *= accum_norm;
  16536. opt->loss_before = fx;
  16537. opt->loss_after = fx;
  16538. }
  16539. // search direction = -gradient
  16540. ggml_vec_neg_f32(nx, d, g);
  16541. // ||x||, ||g||
  16542. ggml_vec_norm_f32(nx, &xnorm, x);
  16543. ggml_vec_norm_f32(nx, &gnorm, g);
  16544. if (xnorm < 1.0f) {
  16545. xnorm = 1.0f;
  16546. }
  16547. // already optimized
  16548. if (gnorm/xnorm <= params.lbfgs.eps) {
  16549. return GGML_OPT_OK;
  16550. }
  16551. if (opt->just_initialized) {
  16552. if (pf) {
  16553. pf[0] = fx;
  16554. }
  16555. opt->lbfgs.fx_best = fx;
  16556. // initial step
  16557. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16558. opt->lbfgs.j = 0;
  16559. opt->lbfgs.k = 1;
  16560. opt->lbfgs.end = 0;
  16561. opt->lbfgs.n_no_improvement = 0;
  16562. opt->just_initialized = false;
  16563. }
  16564. float * fx_best = &opt->lbfgs.fx_best;
  16565. float * step = &opt->lbfgs.step;
  16566. int * j = &opt->lbfgs.j;
  16567. int * k = &opt->lbfgs.k;
  16568. int * end = &opt->lbfgs.end;
  16569. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16570. int ls = 0;
  16571. int bound = 0;
  16572. float ys = 0.0f;
  16573. float yy = 0.0f;
  16574. float beta = 0.0f;
  16575. int it = 0;
  16576. while (true) {
  16577. // store the current position and gradient vectors
  16578. ggml_vec_cpy_f32(nx, xp, x);
  16579. ggml_vec_cpy_f32(nx, gp, g);
  16580. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16581. // to determine if the optimization should be cancelled
  16582. // this is a simple change, but not doing this atm, since I don't have a nice
  16583. // way to test and don't want to break something with so many changes lined up
  16584. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16585. if (cancel) {
  16586. return GGML_OPT_CANCEL;
  16587. }
  16588. if (ls < 0) {
  16589. // linesearch failed - go back to the previous point and return
  16590. ggml_vec_cpy_f32(nx, x, xp);
  16591. ggml_vec_cpy_f32(nx, g, gp);
  16592. return ls;
  16593. }
  16594. opt->loss_after = fx;
  16595. ggml_vec_norm_f32(nx, &xnorm, x);
  16596. ggml_vec_norm_f32(nx, &gnorm, g);
  16597. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16598. if (xnorm < 1.0f) {
  16599. xnorm = 1.0f;
  16600. }
  16601. if (gnorm/xnorm <= params.lbfgs.eps) {
  16602. // converged
  16603. return GGML_OPT_OK;
  16604. }
  16605. // delta-based convergence test
  16606. if (pf != NULL) {
  16607. // need at least params.past iterations to start checking for convergence
  16608. if (params.past <= k[0]) {
  16609. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16610. if (fabsf(rate) < params.delta) {
  16611. return GGML_OPT_OK;
  16612. }
  16613. }
  16614. pf[k[0]%params.past] = fx;
  16615. }
  16616. // check for improvement
  16617. if (params.max_no_improvement > 0) {
  16618. if (fx < fx_best[0]) {
  16619. fx_best[0] = fx;
  16620. n_no_improvement[0] = 0;
  16621. } else {
  16622. n_no_improvement[0]++;
  16623. if (n_no_improvement[0] >= params.max_no_improvement) {
  16624. return GGML_OPT_OK;
  16625. }
  16626. }
  16627. }
  16628. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16629. // reached the maximum number of iterations
  16630. return GGML_OPT_DID_NOT_CONVERGE;
  16631. }
  16632. // update vectors s and y:
  16633. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16634. // y_{k+1} = g_{k+1} - g_{k}.
  16635. //
  16636. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16637. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16638. // compute scalars ys and yy:
  16639. // ys = y^t \cdot s -> 1 / \rho.
  16640. // yy = y^t \cdot y.
  16641. //
  16642. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0]*nx]);
  16643. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  16644. lm_ys[end[0]] = ys;
  16645. // find new search direction
  16646. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16647. bound = (m <= k[0]) ? m : k[0];
  16648. k[0]++;
  16649. it++;
  16650. end[0] = (end[0] + 1)%m;
  16651. // initialize search direction with -g
  16652. ggml_vec_neg_f32(nx, d, g);
  16653. j[0] = end[0];
  16654. for (int i = 0; i < bound; ++i) {
  16655. j[0] = (j[0] + m - 1) % m;
  16656. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16657. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  16658. lm_alpha[j[0]] /= lm_ys[j[0]];
  16659. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16660. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16661. }
  16662. ggml_vec_scale_f32(nx, d, ys/yy);
  16663. for (int i = 0; i < bound; ++i) {
  16664. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16665. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  16666. beta /= lm_ys[j[0]];
  16667. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16668. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16669. j[0] = (j[0] + 1)%m;
  16670. }
  16671. step[0] = 1.0;
  16672. }
  16673. GGML_UNREACHABLE();
  16674. }
  16675. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16676. struct ggml_opt_params result;
  16677. switch (type) {
  16678. case GGML_OPT_ADAM:
  16679. {
  16680. result = (struct ggml_opt_params) {
  16681. .type = GGML_OPT_ADAM,
  16682. .n_threads = 1,
  16683. .past = 0,
  16684. .delta = 1e-5f,
  16685. .max_no_improvement = 100,
  16686. .print_forward_graph = true,
  16687. .print_backward_graph = true,
  16688. .n_gradient_accumulation = 1,
  16689. .adam = {
  16690. .n_iter = 10000,
  16691. .sched = 1.000f,
  16692. .decay = 0.0f,
  16693. .decay_min_ndim = 2,
  16694. .alpha = 0.001f,
  16695. .beta1 = 0.9f,
  16696. .beta2 = 0.999f,
  16697. .eps = 1e-8f,
  16698. .eps_f = 1e-5f,
  16699. .eps_g = 1e-3f,
  16700. .gclip = 0.0f,
  16701. },
  16702. };
  16703. } break;
  16704. case GGML_OPT_LBFGS:
  16705. {
  16706. result = (struct ggml_opt_params) {
  16707. .type = GGML_OPT_LBFGS,
  16708. .n_threads = 1,
  16709. .past = 0,
  16710. .delta = 1e-5f,
  16711. .max_no_improvement = 0,
  16712. .print_forward_graph = true,
  16713. .print_backward_graph = true,
  16714. .n_gradient_accumulation = 1,
  16715. .lbfgs = {
  16716. .m = 6,
  16717. .n_iter = 100,
  16718. .max_linesearch = 20,
  16719. .eps = 1e-5f,
  16720. .ftol = 1e-4f,
  16721. .wolfe = 0.9f,
  16722. .min_step = 1e-20f,
  16723. .max_step = 1e+20f,
  16724. .linesearch = GGML_LINESEARCH_DEFAULT,
  16725. },
  16726. };
  16727. } break;
  16728. }
  16729. return result;
  16730. }
  16731. GGML_API void ggml_opt_init(
  16732. struct ggml_context * ctx,
  16733. struct ggml_opt_context * opt,
  16734. struct ggml_opt_params params,
  16735. int64_t nx) {
  16736. opt->ctx = ctx;
  16737. opt->params = params;
  16738. opt->iter = 0;
  16739. opt->nx = nx;
  16740. opt->just_initialized = true;
  16741. if (opt->ctx == NULL) {
  16742. struct ggml_init_params ctx_opt_params;
  16743. if (opt->params.type == GGML_OPT_ADAM) {
  16744. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16745. if (opt->params.past > 0) {
  16746. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16747. }
  16748. } else if (opt->params.type == GGML_OPT_LBFGS) {
  16749. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16750. if (opt->params.past > 0) {
  16751. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16752. }
  16753. }
  16754. ctx_opt_params.mem_buffer = NULL;
  16755. ctx_opt_params.no_alloc = false;
  16756. opt->ctx = ggml_init(ctx_opt_params);
  16757. }
  16758. switch (opt->params.type) {
  16759. case GGML_OPT_ADAM:
  16760. {
  16761. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16762. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16763. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16764. opt->adam.pf = params.past > 0
  16765. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16766. : NULL;
  16767. ggml_set_zero(opt->adam.m);
  16768. ggml_set_zero(opt->adam.v);
  16769. if (opt->adam.pf) {
  16770. ggml_set_zero(opt->adam.pf);
  16771. }
  16772. } break;
  16773. case GGML_OPT_LBFGS:
  16774. {
  16775. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16776. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16777. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16778. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16779. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16780. opt->lbfgs.pf = params.past > 0
  16781. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16782. : NULL;
  16783. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16784. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16785. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16786. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16787. ggml_set_zero(opt->lbfgs.x);
  16788. ggml_set_zero(opt->lbfgs.xp);
  16789. ggml_set_zero(opt->lbfgs.g);
  16790. ggml_set_zero(opt->lbfgs.gp);
  16791. ggml_set_zero(opt->lbfgs.d);
  16792. if (opt->lbfgs.pf) {
  16793. ggml_set_zero(opt->lbfgs.pf);
  16794. }
  16795. ggml_set_zero(opt->lbfgs.lmal);
  16796. ggml_set_zero(opt->lbfgs.lmys);
  16797. ggml_set_zero(opt->lbfgs.lms);
  16798. ggml_set_zero(opt->lbfgs.lmy);
  16799. } break;
  16800. }
  16801. }
  16802. enum ggml_opt_result ggml_opt(
  16803. struct ggml_context * ctx,
  16804. struct ggml_opt_params params,
  16805. struct ggml_tensor * f) {
  16806. bool free_ctx = false;
  16807. if (ctx == NULL) {
  16808. struct ggml_init_params params_ctx = {
  16809. .mem_size = 16*1024*1024,
  16810. .mem_buffer = NULL,
  16811. .no_alloc = false,
  16812. };
  16813. ctx = ggml_init(params_ctx);
  16814. if (ctx == NULL) {
  16815. return GGML_OPT_NO_CONTEXT;
  16816. }
  16817. free_ctx = true;
  16818. }
  16819. enum ggml_opt_result result = GGML_OPT_OK;
  16820. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16821. ggml_opt_init(ctx, opt, params, 0);
  16822. result = ggml_opt_resume(ctx, opt, f);
  16823. if (free_ctx) {
  16824. ggml_free(ctx);
  16825. }
  16826. return result;
  16827. }
  16828. enum ggml_opt_result ggml_opt_resume(
  16829. struct ggml_context * ctx,
  16830. struct ggml_opt_context * opt,
  16831. struct ggml_tensor * f) {
  16832. // build forward + backward compute graphs
  16833. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  16834. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / ggml_type_size(GGML_TYPE_I32)+ (sizeof(struct ggml_cgraph) % ggml_type_size(GGML_TYPE_I32) ? 1 : 0));
  16835. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  16836. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  16837. *gf = ggml_build_forward (f);
  16838. *gb = ggml_build_backward(ctx, gf, true);
  16839. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16840. }
  16841. enum ggml_opt_result ggml_opt_resume_g(
  16842. struct ggml_context * ctx,
  16843. struct ggml_opt_context * opt,
  16844. struct ggml_tensor * f,
  16845. struct ggml_cgraph * gf,
  16846. struct ggml_cgraph * gb,
  16847. ggml_opt_callback callback,
  16848. void * callback_data) {
  16849. // build forward + backward compute graphs
  16850. enum ggml_opt_result result = GGML_OPT_OK;
  16851. switch (opt->params.type) {
  16852. case GGML_OPT_ADAM:
  16853. {
  16854. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16855. } break;
  16856. case GGML_OPT_LBFGS:
  16857. {
  16858. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16859. } break;
  16860. }
  16861. if (opt->params.print_forward_graph) {
  16862. ggml_graph_print (gf);
  16863. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16864. }
  16865. if (opt->params.print_backward_graph) {
  16866. ggml_graph_print (gb);
  16867. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16868. }
  16869. return result;
  16870. }
  16871. ////////////////////////////////////////////////////////////////////////////////
  16872. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16873. assert(k % QK4_0 == 0);
  16874. const int nb = k / QK4_0;
  16875. for (int b = 0; b < n; b += k) {
  16876. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  16877. quantize_row_q4_0_reference(src + b, y, k);
  16878. for (int i = 0; i < nb; i++) {
  16879. for (int j = 0; j < QK4_0; j += 2) {
  16880. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16881. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16882. hist[vi0]++;
  16883. hist[vi1]++;
  16884. }
  16885. }
  16886. }
  16887. return (n/QK4_0*sizeof(block_q4_0));
  16888. }
  16889. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16890. assert(k % QK4_1 == 0);
  16891. const int nb = k / QK4_1;
  16892. for (int b = 0; b < n; b += k) {
  16893. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  16894. quantize_row_q4_1_reference(src + b, y, k);
  16895. for (int i = 0; i < nb; i++) {
  16896. for (int j = 0; j < QK4_1; j += 2) {
  16897. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  16898. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  16899. hist[vi0]++;
  16900. hist[vi1]++;
  16901. }
  16902. }
  16903. }
  16904. return (n/QK4_1*sizeof(block_q4_1));
  16905. }
  16906. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16907. assert(k % QK5_0 == 0);
  16908. const int nb = k / QK5_0;
  16909. for (int b = 0; b < n; b += k) {
  16910. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  16911. quantize_row_q5_0_reference(src + b, y, k);
  16912. for (int i = 0; i < nb; i++) {
  16913. uint32_t qh;
  16914. memcpy(&qh, &y[i].qh, sizeof(qh));
  16915. for (int j = 0; j < QK5_0; j += 2) {
  16916. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16917. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16918. // cast to 16 bins
  16919. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16920. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16921. hist[vi0]++;
  16922. hist[vi1]++;
  16923. }
  16924. }
  16925. }
  16926. return (n/QK5_0*sizeof(block_q5_0));
  16927. }
  16928. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  16929. assert(k % QK5_1 == 0);
  16930. const int nb = k / QK5_1;
  16931. for (int b = 0; b < n; b += k) {
  16932. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  16933. quantize_row_q5_1_reference(src + b, y, k);
  16934. for (int i = 0; i < nb; i++) {
  16935. uint32_t qh;
  16936. memcpy(&qh, &y[i].qh, sizeof(qh));
  16937. for (int j = 0; j < QK5_1; j += 2) {
  16938. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  16939. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  16940. // cast to 16 bins
  16941. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  16942. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  16943. hist[vi0]++;
  16944. hist[vi1]++;
  16945. }
  16946. }
  16947. }
  16948. return (n/QK5_1*sizeof(block_q5_1));
  16949. }
  16950. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  16951. assert(k % QK8_0 == 0);
  16952. const int nb = k / QK8_0;
  16953. for (int b = 0; b < n; b += k) {
  16954. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  16955. quantize_row_q8_0_reference(src + b, y, k);
  16956. for (int i = 0; i < nb; i++) {
  16957. for (int j = 0; j < QK8_0; ++j) {
  16958. const int8_t vi = y[i].qs[j];
  16959. hist[vi/16 + 8]++;
  16960. }
  16961. }
  16962. }
  16963. return (n/QK8_0*sizeof(block_q8_0));
  16964. }
  16965. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  16966. size_t result = 0;
  16967. switch (type) {
  16968. case GGML_TYPE_Q4_0:
  16969. {
  16970. GGML_ASSERT(start % QK4_0 == 0);
  16971. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  16972. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  16973. } break;
  16974. case GGML_TYPE_Q4_1:
  16975. {
  16976. GGML_ASSERT(start % QK4_1 == 0);
  16977. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  16978. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  16979. } break;
  16980. case GGML_TYPE_Q5_0:
  16981. {
  16982. GGML_ASSERT(start % QK5_0 == 0);
  16983. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  16984. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  16985. } break;
  16986. case GGML_TYPE_Q5_1:
  16987. {
  16988. GGML_ASSERT(start % QK5_1 == 0);
  16989. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  16990. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  16991. } break;
  16992. case GGML_TYPE_Q8_0:
  16993. {
  16994. GGML_ASSERT(start % QK8_0 == 0);
  16995. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  16996. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  16997. } break;
  16998. #ifdef GGML_USE_K_QUANTS
  16999. case GGML_TYPE_Q2_K:
  17000. {
  17001. GGML_ASSERT(start % QK_K == 0);
  17002. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  17003. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  17004. } break;
  17005. case GGML_TYPE_Q3_K:
  17006. {
  17007. GGML_ASSERT(start % QK_K == 0);
  17008. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  17009. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  17010. } break;
  17011. case GGML_TYPE_Q4_K:
  17012. {
  17013. GGML_ASSERT(start % QK_K == 0);
  17014. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  17015. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  17016. } break;
  17017. case GGML_TYPE_Q5_K:
  17018. {
  17019. GGML_ASSERT(start % QK_K == 0);
  17020. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  17021. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  17022. } break;
  17023. case GGML_TYPE_Q6_K:
  17024. {
  17025. GGML_ASSERT(start % QK_K == 0);
  17026. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  17027. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  17028. } break;
  17029. #endif
  17030. case GGML_TYPE_F16:
  17031. {
  17032. int elemsize = sizeof(ggml_fp16_t);
  17033. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17034. result = n * elemsize;
  17035. } break;
  17036. case GGML_TYPE_F32:
  17037. {
  17038. int elemsize = sizeof(float);
  17039. result = n * elemsize;
  17040. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17041. } break;
  17042. default:
  17043. assert(false);
  17044. }
  17045. return result;
  17046. }
  17047. ////////////////////////////////////////////////////////////////////////////////
  17048. struct gguf_str {
  17049. uint64_t n; // GGUFv2
  17050. char * data;
  17051. };
  17052. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17053. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17054. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17055. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17056. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17057. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17058. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17059. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17060. [GGUF_TYPE_BOOL] = sizeof(bool),
  17061. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17062. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17063. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17064. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17065. [GGUF_TYPE_ARRAY] = 0, // undefined
  17066. };
  17067. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17068. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17069. [GGUF_TYPE_UINT8] = "u8",
  17070. [GGUF_TYPE_INT8] = "i8",
  17071. [GGUF_TYPE_UINT16] = "u16",
  17072. [GGUF_TYPE_INT16] = "i16",
  17073. [GGUF_TYPE_UINT32] = "u32",
  17074. [GGUF_TYPE_INT32] = "i32",
  17075. [GGUF_TYPE_FLOAT32] = "f32",
  17076. [GGUF_TYPE_BOOL] = "bool",
  17077. [GGUF_TYPE_STRING] = "str",
  17078. [GGUF_TYPE_ARRAY] = "arr",
  17079. [GGUF_TYPE_UINT64] = "u64",
  17080. [GGUF_TYPE_INT64] = "i64",
  17081. [GGUF_TYPE_FLOAT64] = "f64",
  17082. };
  17083. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17084. union gguf_value {
  17085. uint8_t uint8;
  17086. int8_t int8;
  17087. uint16_t uint16;
  17088. int16_t int16;
  17089. uint32_t uint32;
  17090. int32_t int32;
  17091. float float32;
  17092. uint64_t uint64;
  17093. int64_t int64;
  17094. double float64;
  17095. bool bool_;
  17096. struct gguf_str str;
  17097. struct {
  17098. enum gguf_type type;
  17099. uint64_t n; // GGUFv2
  17100. void * data;
  17101. } arr;
  17102. };
  17103. struct gguf_kv {
  17104. struct gguf_str key;
  17105. enum gguf_type type;
  17106. union gguf_value value;
  17107. };
  17108. struct gguf_header {
  17109. char magic[4];
  17110. uint32_t version;
  17111. uint64_t n_tensors; // GGUFv2
  17112. uint64_t n_kv; // GGUFv2
  17113. };
  17114. struct gguf_tensor_info {
  17115. struct gguf_str name;
  17116. uint32_t n_dims;
  17117. uint64_t ne[GGML_MAX_DIMS];
  17118. enum ggml_type type;
  17119. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17120. // for writing API
  17121. const void * data;
  17122. size_t size;
  17123. };
  17124. struct gguf_context {
  17125. struct gguf_header header;
  17126. struct gguf_kv * kv;
  17127. struct gguf_tensor_info * infos;
  17128. size_t alignment;
  17129. size_t offset; // offset of `data` from beginning of file
  17130. size_t size; // size of `data` in bytes
  17131. //uint8_t * padding;
  17132. void * data;
  17133. };
  17134. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17135. const size_t n = fread(dst, 1, size, file);
  17136. *offset += n;
  17137. return n == size;
  17138. }
  17139. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  17140. static bool gguf_fread_str_cur(FILE * file, struct gguf_str * p, size_t * offset) {
  17141. p->n = 0;
  17142. p->data = NULL;
  17143. bool ok = true;
  17144. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset); p->data = calloc(p->n + 1, 1);
  17145. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17146. return ok;
  17147. }
  17148. static bool gguf_fread_str_v1(FILE * file, struct gguf_str * p, size_t * offset) {
  17149. p->n = 0;
  17150. p->data = NULL;
  17151. bool ok = true;
  17152. uint32_t n = 0;
  17153. ok = ok && gguf_fread_el(file, &n, sizeof(n), offset); p->data = calloc(n + 1, 1); p->n = n;
  17154. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17155. return ok;
  17156. }
  17157. struct gguf_context * gguf_init_empty(void) {
  17158. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  17159. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17160. ctx->header.version = GGUF_VERSION;
  17161. ctx->header.n_tensors = 0;
  17162. ctx->header.n_kv = 0;
  17163. ctx->kv = NULL;
  17164. ctx->infos = NULL;
  17165. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17166. ctx->offset = 0;
  17167. ctx->size = 0;
  17168. ctx->data = NULL;
  17169. return ctx;
  17170. }
  17171. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17172. FILE * file = fopen(fname, "rb");
  17173. if (!file) {
  17174. return NULL;
  17175. }
  17176. // offset from start of file
  17177. size_t offset = 0;
  17178. char magic[4];
  17179. // check the magic before making allocations
  17180. {
  17181. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17182. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17183. if (magic[i] != GGUF_MAGIC[i]) {
  17184. fprintf(stderr, "%s: invalid magic characters %s.\n", __func__, magic);
  17185. fclose(file);
  17186. return NULL;
  17187. }
  17188. }
  17189. }
  17190. bool ok = true;
  17191. struct gguf_context * ctx = GGML_ALIGNED_MALLOC(sizeof(struct gguf_context));
  17192. // read the header
  17193. {
  17194. strncpy(ctx->header.magic, magic, 4);
  17195. ctx->kv = NULL;
  17196. ctx->infos = NULL;
  17197. ctx->data = NULL;
  17198. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17199. if (ctx->header.version == 1) {
  17200. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  17201. uint32_t n_tensors = 0;
  17202. uint32_t n_kv = 0;
  17203. ok = ok && gguf_fread_el(file, &n_tensors, sizeof(n_tensors), &offset);
  17204. ok = ok && gguf_fread_el(file, &n_kv, sizeof(n_kv), &offset);
  17205. ctx->header.n_tensors = n_tensors;
  17206. ctx->header.n_kv = n_kv;
  17207. } else {
  17208. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17209. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17210. }
  17211. if (!ok) {
  17212. fprintf(stderr, "%s: failed to read header\n", __func__);
  17213. fclose(file);
  17214. gguf_free(ctx);
  17215. return NULL;
  17216. }
  17217. }
  17218. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  17219. bool (* gguf_fread_str)(FILE *, struct gguf_str *, size_t *) = gguf_fread_str_cur;
  17220. if (ctx->header.version == 1) {
  17221. gguf_fread_str = gguf_fread_str_v1;
  17222. }
  17223. // read the kv pairs
  17224. {
  17225. ctx->kv = malloc(ctx->header.n_kv * sizeof(struct gguf_kv));
  17226. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17227. struct gguf_kv * kv = &ctx->kv[i];
  17228. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17229. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17230. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17231. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17232. switch (kv->type) {
  17233. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17234. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17235. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17236. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17237. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17238. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17239. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17240. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17241. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17242. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17243. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17244. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17245. case GGUF_TYPE_ARRAY:
  17246. {
  17247. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17248. if (ctx->header.version == 1) {
  17249. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  17250. uint32_t n = 0;
  17251. ok = ok && gguf_fread_el(file, &n, sizeof(n), &offset);
  17252. kv->value.arr.n = n;
  17253. } else {
  17254. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17255. }
  17256. switch (kv->value.arr.type) {
  17257. case GGUF_TYPE_UINT8:
  17258. case GGUF_TYPE_INT8:
  17259. case GGUF_TYPE_UINT16:
  17260. case GGUF_TYPE_INT16:
  17261. case GGUF_TYPE_UINT32:
  17262. case GGUF_TYPE_INT32:
  17263. case GGUF_TYPE_FLOAT32:
  17264. case GGUF_TYPE_UINT64:
  17265. case GGUF_TYPE_INT64:
  17266. case GGUF_TYPE_FLOAT64:
  17267. case GGUF_TYPE_BOOL:
  17268. {
  17269. kv->value.arr.data = malloc(kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  17270. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type], &offset);
  17271. } break;
  17272. case GGUF_TYPE_STRING:
  17273. {
  17274. kv->value.arr.data = malloc(kv->value.arr.n * sizeof(struct gguf_str));
  17275. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17276. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17277. }
  17278. } break;
  17279. case GGUF_TYPE_ARRAY:
  17280. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17281. }
  17282. } break;
  17283. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  17284. }
  17285. if (!ok) {
  17286. break;
  17287. }
  17288. }
  17289. if (!ok) {
  17290. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17291. fclose(file);
  17292. gguf_free(ctx);
  17293. return NULL;
  17294. }
  17295. }
  17296. // read the tensor infos
  17297. {
  17298. ctx->infos = malloc(ctx->header.n_tensors * sizeof(struct gguf_tensor_info));
  17299. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17300. struct gguf_tensor_info * info = &ctx->infos[i];
  17301. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17302. info->ne[j] = 1;
  17303. }
  17304. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17305. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17306. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17307. if (ctx->header.version == 1) {
  17308. // NOTE: temporary handling of GGUFv1 >> remove after Oct 2023
  17309. uint32_t t = 0;
  17310. ok = ok && gguf_fread_el(file, &t, sizeof(t), &offset);
  17311. info->ne[j] = t;
  17312. } else {
  17313. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17314. }
  17315. }
  17316. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17317. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17318. if (!ok) {
  17319. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17320. fclose(file);
  17321. gguf_free(ctx);
  17322. return NULL;
  17323. }
  17324. }
  17325. }
  17326. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17327. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17328. if (alignment_idx != -1) {
  17329. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17330. }
  17331. // we require the data section to be aligned, so take into account any padding
  17332. {
  17333. const size_t offset_pad = offset % ctx->alignment;
  17334. if (offset_pad != 0) {
  17335. offset += ctx->alignment - offset_pad;
  17336. fseek(file, offset, SEEK_SET);
  17337. }
  17338. }
  17339. // store the current file offset - this is where the data section starts
  17340. ctx->offset = offset;
  17341. // compute the total size of the data section, taking into account the alignment
  17342. {
  17343. ctx->size = 0;
  17344. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17345. struct gguf_tensor_info * info = &ctx->infos[i];
  17346. const int64_t ne =
  17347. (int64_t) info->ne[0] *
  17348. (int64_t) info->ne[1] *
  17349. (int64_t) info->ne[2] *
  17350. (int64_t) info->ne[3];
  17351. if (ne % ggml_blck_size(info->type) != 0) {
  17352. fprintf(stderr, "%s: tensor '%s' number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17353. __func__, info->name.data, ne, ggml_blck_size(info->type));
  17354. fclose(file);
  17355. gguf_free(ctx);
  17356. return NULL;
  17357. }
  17358. const size_t size_cur = (ne*ggml_type_size(info->type))/ggml_blck_size(info->type);
  17359. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17360. }
  17361. }
  17362. // load the tensor data only if requested
  17363. if (params.ctx != NULL) {
  17364. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17365. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17366. // the ggml_tensor structs to the appropriate locations in the binary blob
  17367. // compute the exact size needed for the new ggml_context
  17368. const size_t mem_size =
  17369. params.no_alloc ?
  17370. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17371. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17372. struct ggml_init_params pdata = {
  17373. .mem_size = mem_size,
  17374. .mem_buffer = NULL,
  17375. .no_alloc = params.no_alloc,
  17376. };
  17377. *params.ctx = ggml_init(pdata);
  17378. struct ggml_context * ctx_data = *params.ctx;
  17379. struct ggml_tensor * data = NULL;
  17380. if (!params.no_alloc) {
  17381. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17382. ok = ok && data != NULL;
  17383. // read the binary blob with the tensor data
  17384. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17385. if (!ok) {
  17386. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17387. fclose(file);
  17388. ggml_free(ctx_data);
  17389. gguf_free(ctx);
  17390. return NULL;
  17391. }
  17392. ctx->data = data->data;
  17393. }
  17394. ggml_set_no_alloc(ctx_data, true);
  17395. // create the tensors
  17396. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17397. const int64_t ne[GGML_MAX_DIMS] = {
  17398. ctx->infos[i].ne[0],
  17399. ctx->infos[i].ne[1],
  17400. ctx->infos[i].ne[2],
  17401. ctx->infos[i].ne[3],
  17402. };
  17403. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17404. ok = ok && cur != NULL;
  17405. ggml_set_name(cur, ctx->infos[i].name.data);
  17406. if (!ok) {
  17407. break;
  17408. }
  17409. // point the data member to the appropriate location in the binary blob using the tensor infos
  17410. if (!params.no_alloc) {
  17411. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17412. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17413. }
  17414. }
  17415. if (!ok) {
  17416. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17417. fclose(file);
  17418. ggml_free(ctx_data);
  17419. gguf_free(ctx);
  17420. return NULL;
  17421. }
  17422. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17423. }
  17424. fclose(file);
  17425. return ctx;
  17426. }
  17427. void gguf_free(struct gguf_context * ctx) {
  17428. if (ctx == NULL) {
  17429. return;
  17430. }
  17431. if (ctx->kv) {
  17432. // free string memory - not great..
  17433. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17434. struct gguf_kv * kv = &ctx->kv[i];
  17435. if (kv->key.data) {
  17436. free(kv->key.data);
  17437. }
  17438. if (kv->type == GGUF_TYPE_STRING) {
  17439. if (kv->value.str.data) {
  17440. free(kv->value.str.data);
  17441. }
  17442. }
  17443. if (kv->type == GGUF_TYPE_ARRAY) {
  17444. if (kv->value.arr.data) {
  17445. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17446. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17447. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17448. if (str->data) {
  17449. free(str->data);
  17450. }
  17451. }
  17452. }
  17453. free(kv->value.arr.data);
  17454. }
  17455. }
  17456. }
  17457. free(ctx->kv);
  17458. }
  17459. if (ctx->infos) {
  17460. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17461. struct gguf_tensor_info * info = &ctx->infos[i];
  17462. if (info->name.data) {
  17463. free(info->name.data);
  17464. }
  17465. }
  17466. free(ctx->infos);
  17467. }
  17468. GGML_ALIGNED_FREE(ctx);
  17469. }
  17470. const char * gguf_type_name(enum gguf_type type) {
  17471. return GGUF_TYPE_NAME[type];
  17472. }
  17473. int gguf_get_version(const struct gguf_context * ctx) {
  17474. return ctx->header.version;
  17475. }
  17476. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17477. return ctx->alignment;
  17478. }
  17479. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17480. return ctx->offset;
  17481. }
  17482. void * gguf_get_data(const struct gguf_context * ctx) {
  17483. return ctx->data;
  17484. }
  17485. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17486. return ctx->header.n_kv;
  17487. }
  17488. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17489. // return -1 if key not found
  17490. int keyfound = -1;
  17491. const int n_kv = gguf_get_n_kv(ctx);
  17492. for (int i = 0; i < n_kv; ++i) {
  17493. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17494. keyfound = i;
  17495. break;
  17496. }
  17497. }
  17498. return keyfound;
  17499. }
  17500. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17501. return ctx->kv[key_id].key.data;
  17502. }
  17503. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17504. return ctx->kv[key_id].type;
  17505. }
  17506. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17507. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17508. return ctx->kv[key_id].value.arr.type;
  17509. }
  17510. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17511. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17512. return ctx->kv[key_id].value.arr.data;
  17513. }
  17514. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17515. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17516. struct gguf_kv * kv = &ctx->kv[key_id];
  17517. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17518. return str->data;
  17519. }
  17520. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17521. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17522. return ctx->kv[key_id].value.arr.n;
  17523. }
  17524. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17525. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17526. return ctx->kv[key_id].value.uint8;
  17527. }
  17528. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17529. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17530. return ctx->kv[key_id].value.int8;
  17531. }
  17532. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17533. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17534. return ctx->kv[key_id].value.uint16;
  17535. }
  17536. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17537. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17538. return ctx->kv[key_id].value.int16;
  17539. }
  17540. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17541. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17542. return ctx->kv[key_id].value.uint32;
  17543. }
  17544. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17545. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17546. return ctx->kv[key_id].value.int32;
  17547. }
  17548. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17549. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17550. return ctx->kv[key_id].value.float32;
  17551. }
  17552. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17553. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17554. return ctx->kv[key_id].value.uint64;
  17555. }
  17556. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17557. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17558. return ctx->kv[key_id].value.int64;
  17559. }
  17560. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17561. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17562. return ctx->kv[key_id].value.float64;
  17563. }
  17564. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17565. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17566. return ctx->kv[key_id].value.bool_;
  17567. }
  17568. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17569. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17570. return ctx->kv[key_id].value.str.data;
  17571. }
  17572. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17573. return ctx->header.n_tensors;
  17574. }
  17575. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17576. // return -1 if tensor not found
  17577. int tensorfound = -1;
  17578. const int n_tensors = gguf_get_n_tensors(ctx);
  17579. for (int i = 0; i < n_tensors; ++i) {
  17580. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17581. tensorfound = i;
  17582. break;
  17583. }
  17584. }
  17585. return tensorfound;
  17586. }
  17587. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17588. return ctx->infos[i].offset;
  17589. }
  17590. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17591. return ctx->infos[i].name.data;
  17592. }
  17593. // returns the index
  17594. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17595. const int idx = gguf_find_key(ctx, key);
  17596. if (idx >= 0) {
  17597. return idx;
  17598. }
  17599. const int n_kv = gguf_get_n_kv(ctx);
  17600. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17601. ctx->kv[n_kv].key.n = strlen(key);
  17602. ctx->kv[n_kv].key.data = strdup(key);
  17603. ctx->header.n_kv++;
  17604. return n_kv;
  17605. }
  17606. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17607. const int idx = gguf_get_or_add_key(ctx, key);
  17608. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17609. ctx->kv[idx].value.uint8 = val;
  17610. }
  17611. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17612. const int idx = gguf_get_or_add_key(ctx, key);
  17613. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17614. ctx->kv[idx].value.int8 = val;
  17615. }
  17616. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17617. const int idx = gguf_get_or_add_key(ctx, key);
  17618. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17619. ctx->kv[idx].value.uint16 = val;
  17620. }
  17621. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17622. const int idx = gguf_get_or_add_key(ctx, key);
  17623. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17624. ctx->kv[idx].value.int16 = val;
  17625. }
  17626. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17627. const int idx = gguf_get_or_add_key(ctx, key);
  17628. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17629. ctx->kv[idx].value.uint32 = val;
  17630. }
  17631. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17632. const int idx = gguf_get_or_add_key(ctx, key);
  17633. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17634. ctx->kv[idx].value.int32 = val;
  17635. }
  17636. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17637. const int idx = gguf_get_or_add_key(ctx, key);
  17638. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17639. ctx->kv[idx].value.float32 = val;
  17640. }
  17641. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17642. const int idx = gguf_get_or_add_key(ctx, key);
  17643. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17644. ctx->kv[idx].value.uint64 = val;
  17645. }
  17646. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17647. const int idx = gguf_get_or_add_key(ctx, key);
  17648. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17649. ctx->kv[idx].value.int64 = val;
  17650. }
  17651. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17652. const int idx = gguf_get_or_add_key(ctx, key);
  17653. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17654. ctx->kv[idx].value.float64 = val;
  17655. }
  17656. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17657. const int idx = gguf_get_or_add_key(ctx, key);
  17658. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17659. ctx->kv[idx].value.bool_ = val;
  17660. }
  17661. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17662. const int idx = gguf_get_or_add_key(ctx, key);
  17663. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17664. ctx->kv[idx].value.str.n = strlen(val);
  17665. ctx->kv[idx].value.str.data = strdup(val);
  17666. }
  17667. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17668. const int idx = gguf_get_or_add_key(ctx, key);
  17669. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17670. ctx->kv[idx].value.arr.type = type;
  17671. ctx->kv[idx].value.arr.n = n;
  17672. ctx->kv[idx].value.arr.data = malloc(n*GGUF_TYPE_SIZE[type]);
  17673. memcpy(ctx->kv[idx].value.arr.data, data, n*GGUF_TYPE_SIZE[type]);
  17674. }
  17675. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17676. const int idx = gguf_get_or_add_key(ctx, key);
  17677. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17678. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17679. ctx->kv[idx].value.arr.n = n;
  17680. ctx->kv[idx].value.arr.data = malloc(n*sizeof(struct gguf_str));
  17681. for (int i = 0; i < n; i++) {
  17682. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17683. str->n = strlen(data[i]);
  17684. str->data = strdup(data[i]);
  17685. }
  17686. }
  17687. // set or add KV pairs from another context
  17688. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17689. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17690. switch (src->kv[i].type) {
  17691. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17692. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17693. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17694. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17695. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17696. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17697. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17698. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17699. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17700. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17701. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17702. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17703. case GGUF_TYPE_ARRAY:
  17704. {
  17705. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17706. const char ** data = malloc(src->kv[i].value.arr.n*sizeof(char *));
  17707. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17708. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17709. }
  17710. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17711. free(data);
  17712. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17713. GGML_ASSERT(false && "nested arrays not supported");
  17714. } else {
  17715. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17716. }
  17717. } break;
  17718. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17719. }
  17720. }
  17721. }
  17722. void gguf_add_tensor(
  17723. struct gguf_context * ctx,
  17724. const struct ggml_tensor * tensor) {
  17725. const int idx = ctx->header.n_tensors;
  17726. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17727. ctx->infos[idx].name.n = strlen(tensor->name);
  17728. ctx->infos[idx].name.data = strdup(tensor->name);
  17729. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17730. ctx->infos[idx].ne[i] = 1;
  17731. }
  17732. ctx->infos[idx].n_dims = tensor->n_dims;
  17733. for (int i = 0; i < tensor->n_dims; i++) {
  17734. ctx->infos[idx].ne[i] = tensor->ne[i];
  17735. }
  17736. ctx->infos[idx].type = tensor->type;
  17737. ctx->infos[idx].offset = 0;
  17738. ctx->infos[idx].data = tensor->data;
  17739. ctx->infos[idx].size = ggml_nbytes(tensor);
  17740. if (ctx->header.n_tensors > 0) {
  17741. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17742. }
  17743. ctx->header.n_tensors++;
  17744. }
  17745. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17746. const int idx = gguf_find_tensor(ctx, name);
  17747. if (idx < 0) {
  17748. GGML_ASSERT(false && "tensor not found");
  17749. }
  17750. ctx->infos[idx].type = type;
  17751. }
  17752. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17753. const int idx = gguf_find_tensor(ctx, name);
  17754. if (idx < 0) {
  17755. GGML_ASSERT(false && "tensor not found");
  17756. }
  17757. ctx->infos[idx].data = data;
  17758. ctx->infos[idx].size = size;
  17759. // update offsets
  17760. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17761. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17762. }
  17763. }
  17764. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17765. // fwrite(&val->n, sizeof(val->n), 1, file);
  17766. // fwrite(val->data, sizeof(char), val->n, file);
  17767. //}
  17768. //
  17769. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17770. // fwrite(val, sizeof(char), size, file);
  17771. //}
  17772. struct gguf_buf {
  17773. void * data;
  17774. size_t size;
  17775. size_t offset;
  17776. };
  17777. static struct gguf_buf gguf_buf_init(size_t size) {
  17778. struct gguf_buf buf = {
  17779. /*buf.data =*/ size == 0 ? NULL : malloc(size),
  17780. /*buf.size =*/ size,
  17781. /*buf.offset =*/ 0,
  17782. };
  17783. return buf;
  17784. }
  17785. static void gguf_buf_free(struct gguf_buf buf) {
  17786. if (buf.data) {
  17787. free(buf.data);
  17788. }
  17789. }
  17790. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17791. if (buf->offset + size > buf->size) {
  17792. buf->size = 1.5*(buf->offset + size);
  17793. if (buf->data) {
  17794. buf->data = realloc(buf->data, buf->size);
  17795. }
  17796. }
  17797. }
  17798. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17799. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17800. if (buf->data) {
  17801. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17802. }
  17803. buf->offset += sizeof(val->n);
  17804. if (buf->data) {
  17805. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17806. }
  17807. buf->offset += val->n;
  17808. }
  17809. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17810. gguf_buf_grow(buf, el_size);
  17811. if (buf->data) {
  17812. memcpy((char *) buf->data + buf->offset, val, el_size);
  17813. }
  17814. buf->offset += el_size;
  17815. }
  17816. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17817. // write header
  17818. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17819. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17820. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17821. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17822. // write key-value pairs
  17823. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17824. struct gguf_kv * kv = &ctx->kv[i];
  17825. gguf_bwrite_str(buf, &kv->key);
  17826. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17827. switch (kv->type) {
  17828. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17829. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17830. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17831. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17832. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17833. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17834. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17835. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17836. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17837. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17838. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17839. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17840. case GGUF_TYPE_ARRAY:
  17841. {
  17842. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17843. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17844. switch (kv->value.arr.type) {
  17845. case GGUF_TYPE_UINT8:
  17846. case GGUF_TYPE_INT8:
  17847. case GGUF_TYPE_UINT16:
  17848. case GGUF_TYPE_INT16:
  17849. case GGUF_TYPE_UINT32:
  17850. case GGUF_TYPE_INT32:
  17851. case GGUF_TYPE_FLOAT32:
  17852. case GGUF_TYPE_UINT64:
  17853. case GGUF_TYPE_INT64:
  17854. case GGUF_TYPE_FLOAT64:
  17855. case GGUF_TYPE_BOOL:
  17856. {
  17857. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * GGUF_TYPE_SIZE[kv->value.arr.type]);
  17858. } break;
  17859. case GGUF_TYPE_STRING:
  17860. {
  17861. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17862. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17863. }
  17864. } break;
  17865. case GGUF_TYPE_ARRAY:
  17866. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type"); break;
  17867. }
  17868. } break;
  17869. case GGUF_TYPE_COUNT: GGML_ASSERT(false && "invalid type");
  17870. }
  17871. }
  17872. // write tensor infos
  17873. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17874. struct gguf_tensor_info * info = &ctx->infos[i];
  17875. gguf_bwrite_str(buf, &info->name);
  17876. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17877. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17878. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17879. }
  17880. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17881. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17882. }
  17883. // we require the data section to be aligned, so take into account any padding
  17884. {
  17885. const size_t offset = buf->offset;
  17886. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17887. if (offset_pad != offset) {
  17888. uint8_t pad = 0;
  17889. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17890. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17891. }
  17892. }
  17893. }
  17894. if (only_meta) {
  17895. return;
  17896. }
  17897. size_t offset = 0;
  17898. // write tensor data
  17899. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17900. struct gguf_tensor_info * info = &ctx->infos[i];
  17901. const size_t size = info->size;
  17902. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17903. gguf_bwrite_el(buf, info->data, size);
  17904. if (size_pad != size) {
  17905. uint8_t pad = 0;
  17906. for (size_t j = 0; j < size_pad - size; ++j) {
  17907. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17908. }
  17909. }
  17910. GGML_ASSERT(offset == info->offset);
  17911. offset += size_pad;
  17912. }
  17913. }
  17914. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17915. FILE * file = fopen(fname, "wb");
  17916. if (!file) {
  17917. GGML_ASSERT(false && "failed to open file for writing");
  17918. }
  17919. struct gguf_buf buf = gguf_buf_init(16*1024);
  17920. gguf_write_to_buf(ctx, &buf, only_meta);
  17921. fwrite(buf.data, 1, buf.offset, file);
  17922. gguf_buf_free(buf);
  17923. fclose(file);
  17924. }
  17925. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17926. // no allocs - only compute size
  17927. struct gguf_buf buf = gguf_buf_init(0);
  17928. gguf_write_to_buf(ctx, &buf, true);
  17929. return buf.offset;
  17930. }
  17931. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17932. struct gguf_buf buf = gguf_buf_init(16*1024);
  17933. gguf_write_to_buf(ctx, &buf, true);
  17934. memcpy(data, buf.data, buf.offset);
  17935. gguf_buf_free(buf);
  17936. }
  17937. ////////////////////////////////////////////////////////////////////////////////
  17938. int ggml_cpu_has_avx(void) {
  17939. #if defined(__AVX__)
  17940. return 1;
  17941. #else
  17942. return 0;
  17943. #endif
  17944. }
  17945. int ggml_cpu_has_avx2(void) {
  17946. #if defined(__AVX2__)
  17947. return 1;
  17948. #else
  17949. return 0;
  17950. #endif
  17951. }
  17952. int ggml_cpu_has_avx512(void) {
  17953. #if defined(__AVX512F__)
  17954. return 1;
  17955. #else
  17956. return 0;
  17957. #endif
  17958. }
  17959. int ggml_cpu_has_avx512_vbmi(void) {
  17960. #if defined(__AVX512VBMI__)
  17961. return 1;
  17962. #else
  17963. return 0;
  17964. #endif
  17965. }
  17966. int ggml_cpu_has_avx512_vnni(void) {
  17967. #if defined(__AVX512VNNI__)
  17968. return 1;
  17969. #else
  17970. return 0;
  17971. #endif
  17972. }
  17973. int ggml_cpu_has_fma(void) {
  17974. #if defined(__FMA__)
  17975. return 1;
  17976. #else
  17977. return 0;
  17978. #endif
  17979. }
  17980. int ggml_cpu_has_neon(void) {
  17981. #if defined(__ARM_NEON)
  17982. return 1;
  17983. #else
  17984. return 0;
  17985. #endif
  17986. }
  17987. int ggml_cpu_has_arm_fma(void) {
  17988. #if defined(__ARM_FEATURE_FMA)
  17989. return 1;
  17990. #else
  17991. return 0;
  17992. #endif
  17993. }
  17994. int ggml_cpu_has_metal(void) {
  17995. #if defined(GGML_USE_METAL)
  17996. return 1;
  17997. #else
  17998. return 0;
  17999. #endif
  18000. }
  18001. int ggml_cpu_has_f16c(void) {
  18002. #if defined(__F16C__)
  18003. return 1;
  18004. #else
  18005. return 0;
  18006. #endif
  18007. }
  18008. int ggml_cpu_has_fp16_va(void) {
  18009. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18010. return 1;
  18011. #else
  18012. return 0;
  18013. #endif
  18014. }
  18015. int ggml_cpu_has_wasm_simd(void) {
  18016. #if defined(__wasm_simd128__)
  18017. return 1;
  18018. #else
  18019. return 0;
  18020. #endif
  18021. }
  18022. int ggml_cpu_has_blas(void) {
  18023. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  18024. return 1;
  18025. #else
  18026. return 0;
  18027. #endif
  18028. }
  18029. int ggml_cpu_has_cublas(void) {
  18030. #if defined(GGML_USE_CUBLAS)
  18031. return 1;
  18032. #else
  18033. return 0;
  18034. #endif
  18035. }
  18036. int ggml_cpu_has_clblast(void) {
  18037. #if defined(GGML_USE_CLBLAST)
  18038. return 1;
  18039. #else
  18040. return 0;
  18041. #endif
  18042. }
  18043. int ggml_cpu_has_gpublas(void) {
  18044. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  18045. }
  18046. int ggml_cpu_has_sse3(void) {
  18047. #if defined(__SSE3__)
  18048. return 1;
  18049. #else
  18050. return 0;
  18051. #endif
  18052. }
  18053. int ggml_cpu_has_ssse3(void) {
  18054. #if defined(__SSSE3__)
  18055. return 1;
  18056. #else
  18057. return 0;
  18058. #endif
  18059. }
  18060. int ggml_cpu_has_vsx(void) {
  18061. #if defined(__POWER9_VECTOR__)
  18062. return 1;
  18063. #else
  18064. return 0;
  18065. #endif
  18066. }
  18067. ////////////////////////////////////////////////////////////////////////////////