ggml.c 585 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #ifdef GGML_USE_METAL
  26. #include <unistd.h>
  27. #endif
  28. // if C99 - static_assert is noop
  29. // ref: https://stackoverflow.com/a/53923785/4039976
  30. #ifndef static_assert
  31. #define static_assert(cond, msg) struct global_scope_noop_trick
  32. #endif
  33. #if defined(_MSC_VER)
  34. // disable "possible loss of data" to avoid hundreds of casts
  35. // we should just be careful :)
  36. #pragma warning(disable: 4244 4267)
  37. #endif
  38. #if defined(_WIN32)
  39. #include <windows.h>
  40. typedef volatile LONG atomic_int;
  41. typedef atomic_int atomic_bool;
  42. static void atomic_store(atomic_int * ptr, LONG val) {
  43. InterlockedExchange(ptr, val);
  44. }
  45. static LONG atomic_load(atomic_int * ptr) {
  46. return InterlockedCompareExchange(ptr, 0, 0);
  47. }
  48. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  49. return InterlockedExchangeAdd(ptr, inc);
  50. }
  51. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  52. return atomic_fetch_add(ptr, -(dec));
  53. }
  54. typedef HANDLE pthread_t;
  55. typedef DWORD thread_ret_t;
  56. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  57. (void) unused;
  58. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  59. if (handle == NULL)
  60. {
  61. return EAGAIN;
  62. }
  63. *out = handle;
  64. return 0;
  65. }
  66. static int pthread_join(pthread_t thread, void * unused) {
  67. (void) unused;
  68. return (int) WaitForSingleObject(thread, INFINITE);
  69. }
  70. static int sched_yield (void) {
  71. Sleep (0);
  72. return 0;
  73. }
  74. #else
  75. #include <pthread.h>
  76. #include <stdatomic.h>
  77. typedef void * thread_ret_t;
  78. #include <sys/types.h>
  79. #include <sys/stat.h>
  80. #include <unistd.h>
  81. #endif
  82. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  83. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  84. #ifndef __FMA__
  85. #define __FMA__
  86. #endif
  87. #ifndef __F16C__
  88. #define __F16C__
  89. #endif
  90. #ifndef __SSE3__
  91. #define __SSE3__
  92. #endif
  93. #endif
  94. #ifdef __HAIKU__
  95. #define static_assert(cond, msg) _Static_assert(cond, msg)
  96. #endif
  97. /*#define GGML_PERF*/
  98. #define GGML_DEBUG 0
  99. #define GGML_GELU_FP16
  100. #define GGML_GELU_QUICK_FP16
  101. #define GGML_SILU_FP16
  102. #define GGML_SOFT_MAX_UNROLL 4
  103. #define GGML_VEC_DOT_UNROLL 2
  104. //
  105. // logging
  106. //
  107. #if (GGML_DEBUG >= 1)
  108. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  109. #else
  110. #define GGML_PRINT_DEBUG(...)
  111. #endif
  112. #if (GGML_DEBUG >= 5)
  113. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  114. #else
  115. #define GGML_PRINT_DEBUG_5(...)
  116. #endif
  117. #if (GGML_DEBUG >= 10)
  118. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  119. #else
  120. #define GGML_PRINT_DEBUG_10(...)
  121. #endif
  122. #define GGML_PRINT(...) printf(__VA_ARGS__)
  123. #ifdef GGML_USE_ACCELERATE
  124. // uncomment to use vDSP for soft max computation
  125. // note: not sure if it is actually faster
  126. //#define GGML_SOFT_MAX_ACCELERATE
  127. #endif
  128. #if UINTPTR_MAX == 0xFFFFFFFF
  129. #define GGML_MEM_ALIGN 4
  130. #else
  131. #define GGML_MEM_ALIGN 16
  132. #endif
  133. //
  134. // logging
  135. //
  136. #if (GGML_DEBUG >= 1)
  137. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  138. #else
  139. #define GGML_PRINT_DEBUG(...)
  140. #endif
  141. #if (GGML_DEBUG >= 5)
  142. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  143. #else
  144. #define GGML_PRINT_DEBUG_5(...)
  145. #endif
  146. #if (GGML_DEBUG >= 10)
  147. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  148. #else
  149. #define GGML_PRINT_DEBUG_10(...)
  150. #endif
  151. #define GGML_PRINT(...) printf(__VA_ARGS__)
  152. //
  153. // end of logging block
  154. //
  155. #if defined(_MSC_VER) || defined(__MINGW32__)
  156. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  157. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  158. #else
  159. inline static void* ggml_aligned_malloc(size_t size) {
  160. void* aligned_memory = NULL;
  161. #ifdef GGML_USE_METAL
  162. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  163. #else
  164. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  165. #endif
  166. if (result != 0) {
  167. // Handle allocation failure
  168. const char *error_desc = "unknown allocation error";
  169. switch (result) {
  170. case EINVAL:
  171. error_desc = "invalid alignment value";
  172. break;
  173. case ENOMEM:
  174. error_desc = "insufficient memory";
  175. break;
  176. }
  177. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  178. __func__, error_desc, size/(1024.0*1024.0));
  179. return NULL;
  180. }
  181. return aligned_memory;
  182. }
  183. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  184. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  185. #endif
  186. #define UNUSED GGML_UNUSED
  187. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  188. //
  189. // tensor access macros
  190. //
  191. #define GGML_TENSOR_UNARY_OP_LOCALS \
  192. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  193. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  194. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  195. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  196. #define GGML_TENSOR_BINARY_OP_LOCALS \
  197. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne); \
  198. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb); \
  199. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne); \
  200. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb); \
  201. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne); \
  202. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  203. #if defined(GGML_USE_ACCELERATE)
  204. #include <Accelerate/Accelerate.h>
  205. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  206. #include "ggml-opencl.h"
  207. #endif
  208. #elif defined(GGML_USE_OPENBLAS)
  209. #if defined(GGML_BLAS_USE_MKL)
  210. #include <mkl.h>
  211. #else
  212. #include <cblas.h>
  213. #endif
  214. #elif defined(GGML_USE_CUBLAS)
  215. #include "ggml-cuda.h"
  216. #elif defined(GGML_USE_CLBLAST)
  217. #include "ggml-opencl.h"
  218. #endif
  219. #undef MIN
  220. #undef MAX
  221. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  222. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  223. // floating point type used to accumulate sums
  224. typedef double ggml_float;
  225. // 16-bit float
  226. // on Arm, we use __fp16
  227. // on x86, we use uint16_t
  228. #ifdef __ARM_NEON
  229. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  230. //
  231. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  232. //
  233. #include <arm_neon.h>
  234. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  235. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  236. #define GGML_FP16_TO_FP32(x) ((float) (x))
  237. #define GGML_FP32_TO_FP16(x) (x)
  238. #else
  239. #ifdef __wasm_simd128__
  240. #include <wasm_simd128.h>
  241. #else
  242. #ifdef __POWER9_VECTOR__
  243. #include <altivec.h>
  244. #undef bool
  245. #define bool _Bool
  246. #else
  247. #if defined(_MSC_VER) || defined(__MINGW32__)
  248. #include <intrin.h>
  249. #else
  250. #if !defined(__riscv)
  251. #include <immintrin.h>
  252. #endif
  253. #endif
  254. #endif
  255. #endif
  256. #ifdef __F16C__
  257. #ifdef _MSC_VER
  258. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  259. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  260. #else
  261. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  262. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  263. #endif
  264. #elif defined(__POWER9_VECTOR__)
  265. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  266. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  267. /* the inline asm below is about 12% faster than the lookup method */
  268. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  269. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  270. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  271. register float f;
  272. register double d;
  273. __asm__(
  274. "mtfprd %0,%2\n"
  275. "xscvhpdp %0,%0\n"
  276. "frsp %1,%0\n" :
  277. /* temp */ "=d"(d),
  278. /* out */ "=f"(f):
  279. /* in */ "r"(h));
  280. return f;
  281. }
  282. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  283. register double d;
  284. register ggml_fp16_t r;
  285. __asm__( /* xscvdphp can work on double or single precision */
  286. "xscvdphp %0,%2\n"
  287. "mffprd %1,%0\n" :
  288. /* temp */ "=d"(d),
  289. /* out */ "=r"(r):
  290. /* in */ "f"(f));
  291. return r;
  292. }
  293. #else
  294. // FP16 <-> FP32
  295. // ref: https://github.com/Maratyszcza/FP16
  296. static inline float fp32_from_bits(uint32_t w) {
  297. union {
  298. uint32_t as_bits;
  299. float as_value;
  300. } fp32;
  301. fp32.as_bits = w;
  302. return fp32.as_value;
  303. }
  304. static inline uint32_t fp32_to_bits(float f) {
  305. union {
  306. float as_value;
  307. uint32_t as_bits;
  308. } fp32;
  309. fp32.as_value = f;
  310. return fp32.as_bits;
  311. }
  312. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  313. const uint32_t w = (uint32_t) h << 16;
  314. const uint32_t sign = w & UINT32_C(0x80000000);
  315. const uint32_t two_w = w + w;
  316. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  317. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  318. const float exp_scale = 0x1.0p-112f;
  319. #else
  320. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  321. #endif
  322. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  323. const uint32_t magic_mask = UINT32_C(126) << 23;
  324. const float magic_bias = 0.5f;
  325. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  326. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  327. const uint32_t result = sign |
  328. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  329. return fp32_from_bits(result);
  330. }
  331. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  332. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  333. const float scale_to_inf = 0x1.0p+112f;
  334. const float scale_to_zero = 0x1.0p-110f;
  335. #else
  336. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  337. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  338. #endif
  339. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  340. const uint32_t w = fp32_to_bits(f);
  341. const uint32_t shl1_w = w + w;
  342. const uint32_t sign = w & UINT32_C(0x80000000);
  343. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  344. if (bias < UINT32_C(0x71000000)) {
  345. bias = UINT32_C(0x71000000);
  346. }
  347. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  348. const uint32_t bits = fp32_to_bits(base);
  349. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  350. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  351. const uint32_t nonsign = exp_bits + mantissa_bits;
  352. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  353. }
  354. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  355. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  356. #endif // __F16C__
  357. #endif // __ARM_NEON
  358. //
  359. // global data
  360. //
  361. // precomputed gelu table for f16 (128 KB)
  362. static ggml_fp16_t table_gelu_f16[1 << 16];
  363. // precomputed quick gelu table for f16 (128 KB)
  364. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  365. // precomputed silu table for f16 (128 KB)
  366. static ggml_fp16_t table_silu_f16[1 << 16];
  367. // precomputed exp table for f16 (128 KB)
  368. static ggml_fp16_t table_exp_f16[1 << 16];
  369. // precomputed f32 table for f16 (256 KB)
  370. static float table_f32_f16[1 << 16];
  371. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  372. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  373. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  374. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  375. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  376. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  377. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  378. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  379. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  380. // precomputed tables for expanding 8bits to 8 bytes:
  381. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  382. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  383. #endif
  384. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  385. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  386. // This is also true for POWER9.
  387. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  388. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  389. uint16_t s;
  390. memcpy(&s, &f, sizeof(uint16_t));
  391. return table_f32_f16[s];
  392. }
  393. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  394. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  395. #endif
  396. // note: do not use these inside ggml.c
  397. // these are meant to be used via the ggml.h API
  398. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  399. return (float) GGML_FP16_TO_FP32(x);
  400. }
  401. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  402. return GGML_FP32_TO_FP16(x);
  403. }
  404. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int n) {
  405. for (int i = 0; i < n; i++) {
  406. y[i] = GGML_FP16_TO_FP32(x[i]);
  407. }
  408. }
  409. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int n) {
  410. int i = 0;
  411. #if defined(__F16C__)
  412. for (; i + 7 < n; i += 8) {
  413. __m256 x_vec = _mm256_loadu_ps(x + i);
  414. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  415. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  416. }
  417. for(; i + 3 < n; i += 4) {
  418. __m128 x_vec = _mm_loadu_ps(x + i);
  419. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  420. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  421. }
  422. #endif
  423. for (; i < n; i++) {
  424. y[i] = GGML_FP32_TO_FP16(x[i]);
  425. }
  426. }
  427. //
  428. // timing
  429. //
  430. #if defined(_MSC_VER) || defined(__MINGW32__)
  431. static int64_t timer_freq, timer_start;
  432. void ggml_time_init(void) {
  433. LARGE_INTEGER t;
  434. QueryPerformanceFrequency(&t);
  435. timer_freq = t.QuadPart;
  436. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  437. // and the uptime is high enough.
  438. // We subtract the program start time to reduce the likelihood of that happening.
  439. QueryPerformanceCounter(&t);
  440. timer_start = t.QuadPart;
  441. }
  442. int64_t ggml_time_ms(void) {
  443. LARGE_INTEGER t;
  444. QueryPerformanceCounter(&t);
  445. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  446. }
  447. int64_t ggml_time_us(void) {
  448. LARGE_INTEGER t;
  449. QueryPerformanceCounter(&t);
  450. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  451. }
  452. #else
  453. void ggml_time_init(void) {}
  454. int64_t ggml_time_ms(void) {
  455. struct timespec ts;
  456. clock_gettime(CLOCK_MONOTONIC, &ts);
  457. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  458. }
  459. int64_t ggml_time_us(void) {
  460. struct timespec ts;
  461. clock_gettime(CLOCK_MONOTONIC, &ts);
  462. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  463. }
  464. #endif
  465. int64_t ggml_cycles(void) {
  466. return clock();
  467. }
  468. int64_t ggml_cycles_per_ms(void) {
  469. return CLOCKS_PER_SEC/1000;
  470. }
  471. #ifdef GGML_PERF
  472. #define ggml_perf_time_ms() ggml_time_ms()
  473. #define ggml_perf_time_us() ggml_time_us()
  474. #define ggml_perf_cycles() ggml_cycles()
  475. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  476. #else
  477. #define ggml_perf_time_ms() 0
  478. #define ggml_perf_time_us() 0
  479. #define ggml_perf_cycles() 0
  480. #define ggml_perf_cycles_per_ms() 0
  481. #endif
  482. //
  483. // cache line
  484. //
  485. #if defined(__cpp_lib_hardware_interference_size)
  486. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  487. #else
  488. #if defined(__POWER9_VECTOR__)
  489. #define CACHE_LINE_SIZE 128
  490. #else
  491. #define CACHE_LINE_SIZE 64
  492. #endif
  493. #endif
  494. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  495. //
  496. // quantization
  497. //
  498. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  499. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  500. // multiply int8_t, add results pairwise twice
  501. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  502. // Get absolute values of x vectors
  503. const __m128i ax = _mm_sign_epi8(x, x);
  504. // Sign the values of the y vectors
  505. const __m128i sy = _mm_sign_epi8(y, x);
  506. // Perform multiplication and create 16-bit values
  507. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  508. const __m128i ones = _mm_set1_epi16(1);
  509. return _mm_madd_epi16(ones, dot);
  510. }
  511. #if __AVX__ || __AVX2__ || __AVX512F__
  512. // horizontally add 8 floats
  513. static inline float hsum_float_8(const __m256 x) {
  514. __m128 res = _mm256_extractf128_ps(x, 1);
  515. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  516. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  517. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  518. return _mm_cvtss_f32(res);
  519. }
  520. // horizontally add 8 int32_t
  521. static inline int hsum_i32_8(const __m256i a) {
  522. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  523. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  524. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  525. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  526. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  527. }
  528. // horizontally add 4 int32_t
  529. static inline int hsum_i32_4(const __m128i a) {
  530. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  531. const __m128i sum64 = _mm_add_epi32(hi64, a);
  532. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  533. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  534. }
  535. #if defined(__AVX2__) || defined(__AVX512F__)
  536. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  537. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  538. uint32_t x32;
  539. memcpy(&x32, x, sizeof(uint32_t));
  540. const __m256i shuf_mask = _mm256_set_epi64x(
  541. 0x0303030303030303, 0x0202020202020202,
  542. 0x0101010101010101, 0x0000000000000000);
  543. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  544. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  545. bytes = _mm256_or_si256(bytes, bit_mask);
  546. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  547. }
  548. // Unpack 32 4-bit fields into 32 bytes
  549. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  550. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  551. {
  552. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  553. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  554. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  555. return _mm256_and_si256(lowMask, bytes);
  556. }
  557. // add int16_t pairwise and return as float vector
  558. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  559. const __m256i ones = _mm256_set1_epi16(1);
  560. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  561. return _mm256_cvtepi32_ps(summed_pairs);
  562. }
  563. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  564. #if __AVXVNNI__
  565. const __m256i zero = _mm256_setzero_si256();
  566. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  567. return _mm256_cvtepi32_ps(summed_pairs);
  568. #else
  569. // Perform multiplication and create 16-bit values
  570. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  571. return sum_i16_pairs_float(dot);
  572. #endif
  573. }
  574. // multiply int8_t, add results pairwise twice and return as float vector
  575. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  576. #if __AVXVNNIINT8__
  577. const __m256i zero = _mm256_setzero_si256();
  578. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  579. return _mm256_cvtepi32_ps(summed_pairs);
  580. #else
  581. // Get absolute values of x vectors
  582. const __m256i ax = _mm256_sign_epi8(x, x);
  583. // Sign the values of the y vectors
  584. const __m256i sy = _mm256_sign_epi8(y, x);
  585. return mul_sum_us8_pairs_float(ax, sy);
  586. #endif
  587. }
  588. static inline __m128i packNibbles( __m256i bytes )
  589. {
  590. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  591. #if __AVX512F__
  592. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  593. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  594. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  595. #else
  596. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  597. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  598. __m256i low = _mm256_and_si256( lowByte, bytes );
  599. high = _mm256_srli_epi16( high, 4 );
  600. bytes = _mm256_or_si256( low, high );
  601. // Compress uint16_t lanes into bytes
  602. __m128i r0 = _mm256_castsi256_si128( bytes );
  603. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  604. return _mm_packus_epi16( r0, r1 );
  605. #endif
  606. }
  607. #elif defined(__AVX__)
  608. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  609. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  610. uint32_t x32;
  611. memcpy(&x32, x, sizeof(uint32_t));
  612. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  613. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  614. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  615. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  616. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  617. bytesl = _mm_or_si128(bytesl, bit_mask);
  618. bytesh = _mm_or_si128(bytesh, bit_mask);
  619. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  620. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  621. return MM256_SET_M128I(bytesh, bytesl);
  622. }
  623. // Unpack 32 4-bit fields into 32 bytes
  624. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  625. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  626. {
  627. // Load 16 bytes from memory
  628. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  629. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  630. const __m128i lowMask = _mm_set1_epi8(0xF);
  631. tmpl = _mm_and_si128(lowMask, tmpl);
  632. tmph = _mm_and_si128(lowMask, tmph);
  633. return MM256_SET_M128I(tmph, tmpl);
  634. }
  635. // add int16_t pairwise and return as float vector
  636. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  637. const __m128i ones = _mm_set1_epi16(1);
  638. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  639. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  640. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  641. return _mm256_cvtepi32_ps(summed_pairs);
  642. }
  643. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  644. const __m128i axl = _mm256_castsi256_si128(ax);
  645. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  646. const __m128i syl = _mm256_castsi256_si128(sy);
  647. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  648. // Perform multiplication and create 16-bit values
  649. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  650. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  651. return sum_i16_pairs_float(doth, dotl);
  652. }
  653. // multiply int8_t, add results pairwise twice and return as float vector
  654. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  655. const __m128i xl = _mm256_castsi256_si128(x);
  656. const __m128i xh = _mm256_extractf128_si256(x, 1);
  657. const __m128i yl = _mm256_castsi256_si128(y);
  658. const __m128i yh = _mm256_extractf128_si256(y, 1);
  659. // Get absolute values of x vectors
  660. const __m128i axl = _mm_sign_epi8(xl, xl);
  661. const __m128i axh = _mm_sign_epi8(xh, xh);
  662. // Sign the values of the y vectors
  663. const __m128i syl = _mm_sign_epi8(yl, xl);
  664. const __m128i syh = _mm_sign_epi8(yh, xh);
  665. // Perform multiplication and create 16-bit values
  666. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  667. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  668. return sum_i16_pairs_float(doth, dotl);
  669. }
  670. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  671. {
  672. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  673. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  674. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  675. __m128i low = _mm_and_si128( lowByte, bytes1 );
  676. high = _mm_srli_epi16( high, 4 );
  677. bytes1 = _mm_or_si128( low, high );
  678. high = _mm_andnot_si128( lowByte, bytes2 );
  679. low = _mm_and_si128( lowByte, bytes2 );
  680. high = _mm_srli_epi16( high, 4 );
  681. bytes2 = _mm_or_si128( low, high );
  682. return _mm_packus_epi16( bytes1, bytes2);
  683. }
  684. #endif
  685. #elif defined(__SSSE3__)
  686. // horizontally add 4x4 floats
  687. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  688. __m128 res_0 =_mm_hadd_ps(a, b);
  689. __m128 res_1 =_mm_hadd_ps(c, d);
  690. __m128 res =_mm_hadd_ps(res_0, res_1);
  691. res =_mm_hadd_ps(res, res);
  692. res =_mm_hadd_ps(res, res);
  693. return _mm_cvtss_f32(res);
  694. }
  695. #endif // __AVX__ || __AVX2__ || __AVX512F__
  696. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  697. #if defined(__ARM_NEON)
  698. #if !defined(__aarch64__)
  699. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  700. return
  701. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  702. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  703. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  704. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  705. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  706. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  707. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  708. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  709. }
  710. inline static int16_t vaddvq_s8(int8x16_t v) {
  711. return
  712. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  713. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  714. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  715. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  716. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  717. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  718. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  719. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  720. }
  721. inline static int32_t vaddvq_s16(int16x8_t v) {
  722. return
  723. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  724. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  725. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  726. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  727. }
  728. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  729. return
  730. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  731. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  732. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  733. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  734. }
  735. inline static int32_t vaddvq_s32(int32x4_t v) {
  736. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  737. }
  738. inline static float vaddvq_f32(float32x4_t v) {
  739. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  740. }
  741. inline static float vminvq_f32(float32x4_t v) {
  742. return
  743. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  744. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  745. }
  746. inline static float vmaxvq_f32(float32x4_t v) {
  747. return
  748. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  749. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  750. }
  751. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  752. int32x4_t res;
  753. res[0] = roundf(vgetq_lane_f32(v, 0));
  754. res[1] = roundf(vgetq_lane_f32(v, 1));
  755. res[2] = roundf(vgetq_lane_f32(v, 2));
  756. res[3] = roundf(vgetq_lane_f32(v, 3));
  757. return res;
  758. }
  759. #endif
  760. #endif
  761. #define QK4_0 32
  762. typedef struct {
  763. ggml_fp16_t d; // delta
  764. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  765. } block_q4_0;
  766. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  767. #define QK4_1 32
  768. typedef struct {
  769. ggml_fp16_t d; // delta
  770. ggml_fp16_t m; // min
  771. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  772. } block_q4_1;
  773. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  774. #define QK5_0 32
  775. typedef struct {
  776. ggml_fp16_t d; // delta
  777. uint8_t qh[4]; // 5-th bit of quants
  778. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  779. } block_q5_0;
  780. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  781. #define QK5_1 32
  782. typedef struct {
  783. ggml_fp16_t d; // delta
  784. ggml_fp16_t m; // min
  785. uint8_t qh[4]; // 5-th bit of quants
  786. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  787. } block_q5_1;
  788. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  789. #define QK8_0 32
  790. typedef struct {
  791. ggml_fp16_t d; // delta
  792. int8_t qs[QK8_0]; // quants
  793. } block_q8_0;
  794. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  795. #define QK8_1 32
  796. typedef struct {
  797. float d; // delta
  798. float s; // d * sum(qs[i])
  799. int8_t qs[QK8_1]; // quants
  800. } block_q8_1;
  801. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  802. // reference implementation for deterministic creation of model files
  803. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  804. static const int qk = QK4_0;
  805. assert(k % qk == 0);
  806. const int nb = k / qk;
  807. for (int i = 0; i < nb; i++) {
  808. float amax = 0.0f; // absolute max
  809. float max = 0.0f;
  810. for (int j = 0; j < qk; j++) {
  811. const float v = x[i*qk + j];
  812. if (amax < fabsf(v)) {
  813. amax = fabsf(v);
  814. max = v;
  815. }
  816. }
  817. const float d = max / -8;
  818. const float id = d ? 1.0f/d : 0.0f;
  819. y[i].d = GGML_FP32_TO_FP16(d);
  820. for (int j = 0; j < qk/2; ++j) {
  821. const float x0 = x[i*qk + 0 + j]*id;
  822. const float x1 = x[i*qk + qk/2 + j]*id;
  823. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  824. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  825. y[i].qs[j] = xi0;
  826. y[i].qs[j] |= xi1 << 4;
  827. }
  828. }
  829. }
  830. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  831. quantize_row_q4_0_reference(x, y, k);
  832. }
  833. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  834. const int qk = QK4_1;
  835. assert(k % qk == 0);
  836. const int nb = k / qk;
  837. for (int i = 0; i < nb; i++) {
  838. float min = FLT_MAX;
  839. float max = -FLT_MAX;
  840. for (int j = 0; j < qk; j++) {
  841. const float v = x[i*qk + j];
  842. if (v < min) min = v;
  843. if (v > max) max = v;
  844. }
  845. const float d = (max - min) / ((1 << 4) - 1);
  846. const float id = d ? 1.0f/d : 0.0f;
  847. y[i].d = GGML_FP32_TO_FP16(d);
  848. y[i].m = GGML_FP32_TO_FP16(min);
  849. for (int j = 0; j < qk/2; ++j) {
  850. const float x0 = (x[i*qk + 0 + j] - min)*id;
  851. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  852. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  853. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  854. y[i].qs[j] = xi0;
  855. y[i].qs[j] |= xi1 << 4;
  856. }
  857. }
  858. }
  859. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  860. quantize_row_q4_1_reference(x, y, k);
  861. }
  862. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  863. static const int qk = QK5_0;
  864. assert(k % qk == 0);
  865. const int nb = k / qk;
  866. for (int i = 0; i < nb; i++) {
  867. float amax = 0.0f; // absolute max
  868. float max = 0.0f;
  869. for (int j = 0; j < qk; j++) {
  870. const float v = x[i*qk + j];
  871. if (amax < fabsf(v)) {
  872. amax = fabsf(v);
  873. max = v;
  874. }
  875. }
  876. const float d = max / -16;
  877. const float id = d ? 1.0f/d : 0.0f;
  878. y[i].d = GGML_FP32_TO_FP16(d);
  879. uint32_t qh = 0;
  880. for (int j = 0; j < qk/2; ++j) {
  881. const float x0 = x[i*qk + 0 + j]*id;
  882. const float x1 = x[i*qk + qk/2 + j]*id;
  883. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  884. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  885. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  886. // get the 5-th bit and store it in qh at the right position
  887. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  888. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  889. }
  890. memcpy(&y[i].qh, &qh, sizeof(qh));
  891. }
  892. }
  893. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  894. quantize_row_q5_0_reference(x, y, k);
  895. }
  896. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  897. const int qk = QK5_1;
  898. assert(k % qk == 0);
  899. const int nb = k / qk;
  900. for (int i = 0; i < nb; i++) {
  901. float min = FLT_MAX;
  902. float max = -FLT_MAX;
  903. for (int j = 0; j < qk; j++) {
  904. const float v = x[i*qk + j];
  905. if (v < min) min = v;
  906. if (v > max) max = v;
  907. }
  908. const float d = (max - min) / ((1 << 5) - 1);
  909. const float id = d ? 1.0f/d : 0.0f;
  910. y[i].d = GGML_FP32_TO_FP16(d);
  911. y[i].m = GGML_FP32_TO_FP16(min);
  912. uint32_t qh = 0;
  913. for (int j = 0; j < qk/2; ++j) {
  914. const float x0 = (x[i*qk + 0 + j] - min)*id;
  915. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  916. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  917. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  918. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  919. // get the 5-th bit and store it in qh at the right position
  920. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  921. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  922. }
  923. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  924. }
  925. }
  926. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  927. quantize_row_q5_1_reference(x, y, k);
  928. }
  929. // reference implementation for deterministic creation of model files
  930. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  931. assert(k % QK8_0 == 0);
  932. const int nb = k / QK8_0;
  933. for (int i = 0; i < nb; i++) {
  934. float amax = 0.0f; // absolute max
  935. for (int j = 0; j < QK8_0; j++) {
  936. const float v = x[i*QK8_0 + j];
  937. amax = MAX(amax, fabsf(v));
  938. }
  939. const float d = amax / ((1 << 7) - 1);
  940. const float id = d ? 1.0f/d : 0.0f;
  941. y[i].d = GGML_FP32_TO_FP16(d);
  942. for (int j = 0; j < QK8_0; ++j) {
  943. const float x0 = x[i*QK8_0 + j]*id;
  944. y[i].qs[j] = roundf(x0);
  945. }
  946. }
  947. }
  948. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  949. assert(QK8_0 == 32);
  950. assert(k % QK8_0 == 0);
  951. const int nb = k / QK8_0;
  952. block_q8_0 * restrict y = vy;
  953. #if defined(__ARM_NEON)
  954. for (int i = 0; i < nb; i++) {
  955. float32x4_t srcv [8];
  956. float32x4_t asrcv[8];
  957. float32x4_t amaxv[8];
  958. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  959. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  960. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  961. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  962. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  963. const float amax = vmaxvq_f32(amaxv[0]);
  964. const float d = amax / ((1 << 7) - 1);
  965. const float id = d ? 1.0f/d : 0.0f;
  966. y[i].d = GGML_FP32_TO_FP16(d);
  967. for (int j = 0; j < 8; j++) {
  968. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  969. const int32x4_t vi = vcvtnq_s32_f32(v);
  970. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  971. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  972. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  973. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  974. }
  975. }
  976. #elif defined(__wasm_simd128__)
  977. for (int i = 0; i < nb; i++) {
  978. v128_t srcv [8];
  979. v128_t asrcv[8];
  980. v128_t amaxv[8];
  981. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  982. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  983. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  984. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  985. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  986. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  987. wasm_f32x4_extract_lane(amaxv[0], 1)),
  988. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  989. wasm_f32x4_extract_lane(amaxv[0], 3)));
  990. const float d = amax / ((1 << 7) - 1);
  991. const float id = d ? 1.0f/d : 0.0f;
  992. y[i].d = GGML_FP32_TO_FP16(d);
  993. for (int j = 0; j < 8; j++) {
  994. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  995. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  996. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  997. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  998. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  999. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1000. }
  1001. }
  1002. #elif defined(__AVX2__) || defined(__AVX__)
  1003. for (int i = 0; i < nb; i++) {
  1004. // Load elements into 4 AVX vectors
  1005. __m256 v0 = _mm256_loadu_ps( x );
  1006. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1007. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1008. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1009. x += 32;
  1010. // Compute max(abs(e)) for the block
  1011. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1012. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1013. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1014. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1015. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1016. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1017. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1018. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1019. const float maxScalar = _mm_cvtss_f32( max4 );
  1020. // Quantize these floats
  1021. const float d = maxScalar / 127.f;
  1022. y[i].d = GGML_FP32_TO_FP16(d);
  1023. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1024. const __m256 mul = _mm256_set1_ps( id );
  1025. // Apply the multiplier
  1026. v0 = _mm256_mul_ps( v0, mul );
  1027. v1 = _mm256_mul_ps( v1, mul );
  1028. v2 = _mm256_mul_ps( v2, mul );
  1029. v3 = _mm256_mul_ps( v3, mul );
  1030. // Round to nearest integer
  1031. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1032. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1033. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1034. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1035. // Convert floats to integers
  1036. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1037. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1038. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1039. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1040. #if defined(__AVX2__)
  1041. // Convert int32 to int16
  1042. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1043. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1044. // Convert int16 to int8
  1045. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1046. // We got our precious signed bytes, but the order is now wrong
  1047. // These AVX2 pack instructions process 16-byte pieces independently
  1048. // The following instruction is fixing the order
  1049. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1050. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1051. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1052. #else
  1053. // Since we don't have in AVX some necessary functions,
  1054. // we split the registers in half and call AVX2 analogs from SSE
  1055. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1056. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1057. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1058. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1059. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1060. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1061. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1062. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1063. // Convert int32 to int16
  1064. ni0 = _mm_packs_epi32( ni0, ni1 );
  1065. ni2 = _mm_packs_epi32( ni2, ni3 );
  1066. ni4 = _mm_packs_epi32( ni4, ni5 );
  1067. ni6 = _mm_packs_epi32( ni6, ni7 );
  1068. // Convert int16 to int8
  1069. ni0 = _mm_packs_epi16( ni0, ni2 );
  1070. ni4 = _mm_packs_epi16( ni4, ni6 );
  1071. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1072. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1073. #endif
  1074. }
  1075. #else
  1076. // scalar
  1077. quantize_row_q8_0_reference(x, y, k);
  1078. #endif
  1079. }
  1080. // reference implementation for deterministic creation of model files
  1081. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1082. assert(QK8_1 == 32);
  1083. assert(k % QK8_1 == 0);
  1084. const int nb = k / QK8_1;
  1085. for (int i = 0; i < nb; i++) {
  1086. float amax = 0.0f; // absolute max
  1087. for (int j = 0; j < QK8_1; j++) {
  1088. const float v = x[i*QK8_1 + j];
  1089. amax = MAX(amax, fabsf(v));
  1090. }
  1091. const float d = amax / ((1 << 7) - 1);
  1092. const float id = d ? 1.0f/d : 0.0f;
  1093. y[i].d = d;
  1094. int sum = 0;
  1095. for (int j = 0; j < QK8_1/2; ++j) {
  1096. const float v0 = x[i*QK8_1 + j]*id;
  1097. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1098. y[i].qs[ j] = roundf(v0);
  1099. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1100. sum += y[i].qs[ j];
  1101. sum += y[i].qs[QK8_1/2 + j];
  1102. }
  1103. y[i].s = sum*d;
  1104. }
  1105. }
  1106. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1107. assert(k % QK8_1 == 0);
  1108. const int nb = k / QK8_1;
  1109. block_q8_1 * restrict y = vy;
  1110. #if defined(__ARM_NEON)
  1111. for (int i = 0; i < nb; i++) {
  1112. float32x4_t srcv [8];
  1113. float32x4_t asrcv[8];
  1114. float32x4_t amaxv[8];
  1115. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1116. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1117. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1118. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1119. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1120. const float amax = vmaxvq_f32(amaxv[0]);
  1121. const float d = amax / ((1 << 7) - 1);
  1122. const float id = d ? 1.0f/d : 0.0f;
  1123. y[i].d = d;
  1124. int32x4_t accv = vdupq_n_s32(0);
  1125. for (int j = 0; j < 8; j++) {
  1126. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1127. const int32x4_t vi = vcvtnq_s32_f32(v);
  1128. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1129. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1130. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1131. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1132. accv = vaddq_s32(accv, vi);
  1133. }
  1134. y[i].s = d * vaddvq_s32(accv);
  1135. }
  1136. #elif defined(__wasm_simd128__)
  1137. for (int i = 0; i < nb; i++) {
  1138. v128_t srcv [8];
  1139. v128_t asrcv[8];
  1140. v128_t amaxv[8];
  1141. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1142. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1143. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1144. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1145. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1146. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1147. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1148. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1149. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1150. const float d = amax / ((1 << 7) - 1);
  1151. const float id = d ? 1.0f/d : 0.0f;
  1152. y[i].d = d;
  1153. v128_t accv = wasm_i32x4_splat(0);
  1154. for (int j = 0; j < 8; j++) {
  1155. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1156. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1157. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1158. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1159. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1160. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1161. accv = wasm_i32x4_add(accv, vi);
  1162. }
  1163. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1164. wasm_i32x4_extract_lane(accv, 1) +
  1165. wasm_i32x4_extract_lane(accv, 2) +
  1166. wasm_i32x4_extract_lane(accv, 3));
  1167. }
  1168. #elif defined(__AVX2__) || defined(__AVX__)
  1169. for (int i = 0; i < nb; i++) {
  1170. // Load elements into 4 AVX vectors
  1171. __m256 v0 = _mm256_loadu_ps( x );
  1172. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1173. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1174. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1175. x += 32;
  1176. // Compute max(abs(e)) for the block
  1177. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1178. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1179. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1180. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1181. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1182. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1183. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1184. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1185. const float maxScalar = _mm_cvtss_f32( max4 );
  1186. // Quantize these floats
  1187. const float d = maxScalar / 127.f;
  1188. y[i].d = d;
  1189. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1190. const __m256 mul = _mm256_set1_ps( id );
  1191. // Apply the multiplier
  1192. v0 = _mm256_mul_ps( v0, mul );
  1193. v1 = _mm256_mul_ps( v1, mul );
  1194. v2 = _mm256_mul_ps( v2, mul );
  1195. v3 = _mm256_mul_ps( v3, mul );
  1196. // Round to nearest integer
  1197. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1198. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1199. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1200. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1201. // Convert floats to integers
  1202. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1203. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1204. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1205. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1206. #if defined(__AVX2__)
  1207. // Compute the sum of the quants and set y[i].s
  1208. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1209. // Convert int32 to int16
  1210. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1211. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1212. // Convert int16 to int8
  1213. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1214. // We got our precious signed bytes, but the order is now wrong
  1215. // These AVX2 pack instructions process 16-byte pieces independently
  1216. // The following instruction is fixing the order
  1217. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1218. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1219. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1220. #else
  1221. // Since we don't have in AVX some necessary functions,
  1222. // we split the registers in half and call AVX2 analogs from SSE
  1223. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1224. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1225. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1226. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1227. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1228. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1229. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1230. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1231. // Compute the sum of the quants and set y[i].s
  1232. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1233. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1234. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1235. // Convert int32 to int16
  1236. ni0 = _mm_packs_epi32( ni0, ni1 );
  1237. ni2 = _mm_packs_epi32( ni2, ni3 );
  1238. ni4 = _mm_packs_epi32( ni4, ni5 );
  1239. ni6 = _mm_packs_epi32( ni6, ni7 );
  1240. // Convert int16 to int8
  1241. ni0 = _mm_packs_epi16( ni0, ni2 );
  1242. ni4 = _mm_packs_epi16( ni4, ni6 );
  1243. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1244. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1245. #endif
  1246. }
  1247. #else
  1248. // scalar
  1249. quantize_row_q8_1_reference(x, y, k);
  1250. #endif
  1251. }
  1252. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1253. static const int qk = QK4_0;
  1254. assert(k % qk == 0);
  1255. const int nb = k / qk;
  1256. for (int i = 0; i < nb; i++) {
  1257. const float d = GGML_FP16_TO_FP32(x[i].d);
  1258. for (int j = 0; j < qk/2; ++j) {
  1259. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1260. const int x1 = (x[i].qs[j] >> 4) - 8;
  1261. y[i*qk + j + 0 ] = x0*d;
  1262. y[i*qk + j + qk/2] = x1*d;
  1263. }
  1264. }
  1265. }
  1266. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1267. static const int qk = QK4_1;
  1268. assert(k % qk == 0);
  1269. const int nb = k / qk;
  1270. for (int i = 0; i < nb; i++) {
  1271. const float d = GGML_FP16_TO_FP32(x[i].d);
  1272. const float m = GGML_FP16_TO_FP32(x[i].m);
  1273. for (int j = 0; j < qk/2; ++j) {
  1274. const int x0 = (x[i].qs[j] & 0x0F);
  1275. const int x1 = (x[i].qs[j] >> 4);
  1276. y[i*qk + j + 0 ] = x0*d + m;
  1277. y[i*qk + j + qk/2] = x1*d + m;
  1278. }
  1279. }
  1280. }
  1281. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1282. static const int qk = QK5_0;
  1283. assert(k % qk == 0);
  1284. const int nb = k / qk;
  1285. for (int i = 0; i < nb; i++) {
  1286. const float d = GGML_FP16_TO_FP32(x[i].d);
  1287. uint32_t qh;
  1288. memcpy(&qh, x[i].qh, sizeof(qh));
  1289. for (int j = 0; j < qk/2; ++j) {
  1290. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1291. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1292. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1293. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1294. y[i*qk + j + 0 ] = x0*d;
  1295. y[i*qk + j + qk/2] = x1*d;
  1296. }
  1297. }
  1298. }
  1299. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1300. static const int qk = QK5_1;
  1301. assert(k % qk == 0);
  1302. const int nb = k / qk;
  1303. for (int i = 0; i < nb; i++) {
  1304. const float d = GGML_FP16_TO_FP32(x[i].d);
  1305. const float m = GGML_FP16_TO_FP32(x[i].m);
  1306. uint32_t qh;
  1307. memcpy(&qh, x[i].qh, sizeof(qh));
  1308. for (int j = 0; j < qk/2; ++j) {
  1309. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1310. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1311. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1312. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1313. y[i*qk + j + 0 ] = x0*d + m;
  1314. y[i*qk + j + qk/2] = x1*d + m;
  1315. }
  1316. }
  1317. }
  1318. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1319. static const int qk = QK8_0;
  1320. assert(k % qk == 0);
  1321. const int nb = k / qk;
  1322. const block_q8_0 * restrict x = vx;
  1323. for (int i = 0; i < nb; i++) {
  1324. const float d = GGML_FP16_TO_FP32(x[i].d);
  1325. for (int j = 0; j < qk; ++j) {
  1326. y[i*qk + j] = x[i].qs[j]*d;
  1327. }
  1328. }
  1329. }
  1330. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y);
  1331. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y);
  1332. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1333. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1334. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1335. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1336. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1337. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  1338. [GGML_TYPE_F32] = {
  1339. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  1340. .vec_dot_type = GGML_TYPE_F32,
  1341. },
  1342. [GGML_TYPE_F16] = {
  1343. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  1344. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1345. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  1346. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  1347. .vec_dot_type = GGML_TYPE_F16,
  1348. },
  1349. [GGML_TYPE_Q4_0] = {
  1350. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  1351. .from_float = quantize_row_q4_0,
  1352. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  1353. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  1354. .vec_dot_type = GGML_TYPE_Q8_0,
  1355. },
  1356. [GGML_TYPE_Q4_1] = {
  1357. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  1358. .from_float = quantize_row_q4_1,
  1359. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  1360. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  1361. .vec_dot_type = GGML_TYPE_Q8_1,
  1362. },
  1363. [GGML_TYPE_Q5_0] = {
  1364. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  1365. .from_float = quantize_row_q5_0,
  1366. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  1367. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  1368. .vec_dot_type = GGML_TYPE_Q8_0,
  1369. },
  1370. [GGML_TYPE_Q5_1] = {
  1371. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  1372. .from_float = quantize_row_q5_1,
  1373. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  1374. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  1375. .vec_dot_type = GGML_TYPE_Q8_1,
  1376. },
  1377. [GGML_TYPE_Q8_0] = {
  1378. .to_float = dequantize_row_q8_0,
  1379. .from_float = quantize_row_q8_0,
  1380. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  1381. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  1382. .vec_dot_type = GGML_TYPE_Q8_0,
  1383. },
  1384. [GGML_TYPE_Q8_1] = {
  1385. .from_float = quantize_row_q8_1,
  1386. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  1387. .vec_dot_type = GGML_TYPE_Q8_1,
  1388. },
  1389. #ifdef GGML_USE_K_QUANTS
  1390. [GGML_TYPE_Q2_K] = {
  1391. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  1392. .from_float = quantize_row_q2_K,
  1393. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  1394. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  1395. .vec_dot_type = GGML_TYPE_Q8_K,
  1396. },
  1397. [GGML_TYPE_Q3_K] = {
  1398. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  1399. .from_float = quantize_row_q3_K,
  1400. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  1401. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  1402. .vec_dot_type = GGML_TYPE_Q8_K,
  1403. },
  1404. [GGML_TYPE_Q4_K] = {
  1405. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  1406. .from_float = quantize_row_q4_K,
  1407. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  1408. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  1409. .vec_dot_type = GGML_TYPE_Q8_K,
  1410. },
  1411. [GGML_TYPE_Q5_K] = {
  1412. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  1413. .from_float = quantize_row_q5_K,
  1414. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  1415. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  1416. .vec_dot_type = GGML_TYPE_Q8_K,
  1417. },
  1418. [GGML_TYPE_Q6_K] = {
  1419. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  1420. .from_float = quantize_row_q6_K,
  1421. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  1422. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  1423. .vec_dot_type = GGML_TYPE_Q8_K,
  1424. },
  1425. [GGML_TYPE_Q8_K] = {
  1426. .from_float = quantize_row_q8_K,
  1427. }
  1428. #endif
  1429. };
  1430. // For internal test use
  1431. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type i) {
  1432. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1433. return type_traits[i];
  1434. }
  1435. //
  1436. // simd mappings
  1437. //
  1438. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1439. // we then implement the fundamental computation operations below using only these macros
  1440. // adding support for new architectures requires to define the corresponding SIMD macros
  1441. //
  1442. // GGML_F32_STEP / GGML_F16_STEP
  1443. // number of elements to process in a single step
  1444. //
  1445. // GGML_F32_EPR / GGML_F16_EPR
  1446. // number of elements to fit in a single register
  1447. //
  1448. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1449. #define GGML_SIMD
  1450. // F32 NEON
  1451. #define GGML_F32_STEP 16
  1452. #define GGML_F32_EPR 4
  1453. #define GGML_F32x4 float32x4_t
  1454. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1455. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1456. #define GGML_F32x4_LOAD vld1q_f32
  1457. #define GGML_F32x4_STORE vst1q_f32
  1458. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1459. #define GGML_F32x4_ADD vaddq_f32
  1460. #define GGML_F32x4_MUL vmulq_f32
  1461. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1462. #define GGML_F32x4_REDUCE(res, x) \
  1463. { \
  1464. int offset = GGML_F32_ARR >> 1; \
  1465. for (int i = 0; i < offset; ++i) { \
  1466. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1467. } \
  1468. offset >>= 1; \
  1469. for (int i = 0; i < offset; ++i) { \
  1470. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1471. } \
  1472. offset >>= 1; \
  1473. for (int i = 0; i < offset; ++i) { \
  1474. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1475. } \
  1476. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1477. }
  1478. #define GGML_F32_VEC GGML_F32x4
  1479. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1480. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1481. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1482. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1483. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1484. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1485. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1486. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1487. // F16 NEON
  1488. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1489. #define GGML_F16_STEP 32
  1490. #define GGML_F16_EPR 8
  1491. #define GGML_F16x8 float16x8_t
  1492. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1493. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1494. #define GGML_F16x8_LOAD vld1q_f16
  1495. #define GGML_F16x8_STORE vst1q_f16
  1496. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1497. #define GGML_F16x8_ADD vaddq_f16
  1498. #define GGML_F16x8_MUL vmulq_f16
  1499. #define GGML_F16x8_REDUCE(res, x) \
  1500. { \
  1501. int offset = GGML_F16_ARR >> 1; \
  1502. for (int i = 0; i < offset; ++i) { \
  1503. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1504. } \
  1505. offset >>= 1; \
  1506. for (int i = 0; i < offset; ++i) { \
  1507. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1508. } \
  1509. offset >>= 1; \
  1510. for (int i = 0; i < offset; ++i) { \
  1511. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1512. } \
  1513. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1514. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1515. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1516. }
  1517. #define GGML_F16_VEC GGML_F16x8
  1518. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1519. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1520. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1521. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1522. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1523. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1524. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1525. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1526. #else
  1527. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1528. // and take advantage of the vcvt_ functions to convert to/from FP16
  1529. #define GGML_F16_STEP 16
  1530. #define GGML_F16_EPR 4
  1531. #define GGML_F32Cx4 float32x4_t
  1532. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1533. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1534. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1535. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1536. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1537. #define GGML_F32Cx4_ADD vaddq_f32
  1538. #define GGML_F32Cx4_MUL vmulq_f32
  1539. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1540. #define GGML_F16_VEC GGML_F32Cx4
  1541. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1542. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1543. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1544. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1545. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1546. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1547. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1548. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1549. #endif
  1550. #elif defined(__AVX__)
  1551. #define GGML_SIMD
  1552. // F32 AVX
  1553. #define GGML_F32_STEP 32
  1554. #define GGML_F32_EPR 8
  1555. #define GGML_F32x8 __m256
  1556. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1557. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1558. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1559. #define GGML_F32x8_STORE _mm256_storeu_ps
  1560. #if defined(__FMA__)
  1561. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1562. #else
  1563. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1564. #endif
  1565. #define GGML_F32x8_ADD _mm256_add_ps
  1566. #define GGML_F32x8_MUL _mm256_mul_ps
  1567. #define GGML_F32x8_REDUCE(res, x) \
  1568. { \
  1569. int offset = GGML_F32_ARR >> 1; \
  1570. for (int i = 0; i < offset; ++i) { \
  1571. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1572. } \
  1573. offset >>= 1; \
  1574. for (int i = 0; i < offset; ++i) { \
  1575. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1576. } \
  1577. offset >>= 1; \
  1578. for (int i = 0; i < offset; ++i) { \
  1579. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1580. } \
  1581. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1582. _mm256_extractf128_ps(x[0], 1)); \
  1583. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1584. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1585. }
  1586. // TODO: is this optimal ?
  1587. #define GGML_F32_VEC GGML_F32x8
  1588. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1589. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1590. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1591. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1592. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1593. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1594. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1595. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1596. // F16 AVX
  1597. #define GGML_F16_STEP 32
  1598. #define GGML_F16_EPR 8
  1599. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1600. #define GGML_F32Cx8 __m256
  1601. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1602. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1603. #if defined(__F16C__)
  1604. // the _mm256_cvt intrinsics require F16C
  1605. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1606. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1607. #else
  1608. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1609. float tmp[8];
  1610. for (int i = 0; i < 8; i++) {
  1611. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1612. }
  1613. return _mm256_loadu_ps(tmp);
  1614. }
  1615. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1616. float arr[8];
  1617. _mm256_storeu_ps(arr, y);
  1618. for (int i = 0; i < 8; i++)
  1619. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1620. }
  1621. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1622. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1623. #endif
  1624. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1625. #define GGML_F32Cx8_ADD _mm256_add_ps
  1626. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1627. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1628. #define GGML_F16_VEC GGML_F32Cx8
  1629. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1630. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1631. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1632. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1633. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1634. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1635. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1636. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1637. #elif defined(__POWER9_VECTOR__)
  1638. #define GGML_SIMD
  1639. // F32 POWER9
  1640. #define GGML_F32_STEP 32
  1641. #define GGML_F32_EPR 4
  1642. #define GGML_F32x4 vector float
  1643. #define GGML_F32x4_ZERO 0.0f
  1644. #define GGML_F32x4_SET1 vec_splats
  1645. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1646. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1647. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1648. #define GGML_F32x4_ADD vec_add
  1649. #define GGML_F32x4_MUL vec_mul
  1650. #define GGML_F32x4_REDUCE(res, x) \
  1651. { \
  1652. int offset = GGML_F32_ARR >> 1; \
  1653. for (int i = 0; i < offset; ++i) { \
  1654. x[i] = vec_add(x[i], x[offset+i]); \
  1655. } \
  1656. offset >>= 1; \
  1657. for (int i = 0; i < offset; ++i) { \
  1658. x[i] = vec_add(x[i], x[offset+i]); \
  1659. } \
  1660. offset >>= 1; \
  1661. for (int i = 0; i < offset; ++i) { \
  1662. x[i] = vec_add(x[i], x[offset+i]); \
  1663. } \
  1664. res = vec_extract(x[0], 0) + \
  1665. vec_extract(x[0], 1) + \
  1666. vec_extract(x[0], 2) + \
  1667. vec_extract(x[0], 3); \
  1668. }
  1669. #define GGML_F32_VEC GGML_F32x4
  1670. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1671. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1672. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1673. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1674. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1675. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1676. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1677. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1678. // F16 POWER9
  1679. #define GGML_F16_STEP GGML_F32_STEP
  1680. #define GGML_F16_EPR GGML_F32_EPR
  1681. #define GGML_F16_VEC GGML_F32x4
  1682. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1683. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1684. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1685. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1686. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1687. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1688. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1689. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1690. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1691. #define GGML_F16_VEC_STORE(p, r, i) \
  1692. if (i & 0x1) \
  1693. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1694. r[i - GGML_ENDIAN_BYTE(0)]), \
  1695. 0, p - GGML_F16_EPR)
  1696. #elif defined(__wasm_simd128__)
  1697. #define GGML_SIMD
  1698. // F32 WASM
  1699. #define GGML_F32_STEP 16
  1700. #define GGML_F32_EPR 4
  1701. #define GGML_F32x4 v128_t
  1702. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1703. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1704. #define GGML_F32x4_LOAD wasm_v128_load
  1705. #define GGML_F32x4_STORE wasm_v128_store
  1706. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1707. #define GGML_F32x4_ADD wasm_f32x4_add
  1708. #define GGML_F32x4_MUL wasm_f32x4_mul
  1709. #define GGML_F32x4_REDUCE(res, x) \
  1710. { \
  1711. int offset = GGML_F32_ARR >> 1; \
  1712. for (int i = 0; i < offset; ++i) { \
  1713. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1714. } \
  1715. offset >>= 1; \
  1716. for (int i = 0; i < offset; ++i) { \
  1717. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1718. } \
  1719. offset >>= 1; \
  1720. for (int i = 0; i < offset; ++i) { \
  1721. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1722. } \
  1723. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1724. wasm_f32x4_extract_lane(x[0], 1) + \
  1725. wasm_f32x4_extract_lane(x[0], 2) + \
  1726. wasm_f32x4_extract_lane(x[0], 3); \
  1727. }
  1728. #define GGML_F32_VEC GGML_F32x4
  1729. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1730. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1731. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1732. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1733. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1734. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1735. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1736. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1737. // F16 WASM
  1738. #define GGML_F16_STEP 16
  1739. #define GGML_F16_EPR 4
  1740. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1741. float tmp[4];
  1742. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1743. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1744. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1745. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1746. return wasm_v128_load(tmp);
  1747. }
  1748. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1749. float tmp[4];
  1750. wasm_v128_store(tmp, x);
  1751. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1752. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1753. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1754. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1755. }
  1756. #define GGML_F16x4 v128_t
  1757. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1758. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1759. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1760. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1761. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1762. #define GGML_F16x4_ADD wasm_f32x4_add
  1763. #define GGML_F16x4_MUL wasm_f32x4_mul
  1764. #define GGML_F16x4_REDUCE(res, x) \
  1765. { \
  1766. int offset = GGML_F16_ARR >> 1; \
  1767. for (int i = 0; i < offset; ++i) { \
  1768. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1769. } \
  1770. offset >>= 1; \
  1771. for (int i = 0; i < offset; ++i) { \
  1772. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1773. } \
  1774. offset >>= 1; \
  1775. for (int i = 0; i < offset; ++i) { \
  1776. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1777. } \
  1778. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1779. wasm_f32x4_extract_lane(x[0], 1) + \
  1780. wasm_f32x4_extract_lane(x[0], 2) + \
  1781. wasm_f32x4_extract_lane(x[0], 3); \
  1782. }
  1783. #define GGML_F16_VEC GGML_F16x4
  1784. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1785. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1786. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1787. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1788. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1789. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1790. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1791. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1792. #elif defined(__SSE3__)
  1793. #define GGML_SIMD
  1794. // F32 SSE
  1795. #define GGML_F32_STEP 32
  1796. #define GGML_F32_EPR 4
  1797. #define GGML_F32x4 __m128
  1798. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1799. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1800. #define GGML_F32x4_LOAD _mm_loadu_ps
  1801. #define GGML_F32x4_STORE _mm_storeu_ps
  1802. #if defined(__FMA__)
  1803. // TODO: Does this work?
  1804. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1805. #else
  1806. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1807. #endif
  1808. #define GGML_F32x4_ADD _mm_add_ps
  1809. #define GGML_F32x4_MUL _mm_mul_ps
  1810. #define GGML_F32x4_REDUCE(res, x) \
  1811. { \
  1812. int offset = GGML_F32_ARR >> 1; \
  1813. for (int i = 0; i < offset; ++i) { \
  1814. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1815. } \
  1816. offset >>= 1; \
  1817. for (int i = 0; i < offset; ++i) { \
  1818. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1819. } \
  1820. offset >>= 1; \
  1821. for (int i = 0; i < offset; ++i) { \
  1822. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1823. } \
  1824. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1825. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1826. }
  1827. // TODO: is this optimal ?
  1828. #define GGML_F32_VEC GGML_F32x4
  1829. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1830. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1831. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1832. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1833. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1834. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1835. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1836. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1837. // F16 SSE
  1838. #define GGML_F16_STEP 32
  1839. #define GGML_F16_EPR 4
  1840. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1841. float tmp[4];
  1842. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1843. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1844. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1845. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1846. return _mm_loadu_ps(tmp);
  1847. }
  1848. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1849. float arr[4];
  1850. _mm_storeu_ps(arr, y);
  1851. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1852. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1853. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1854. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1855. }
  1856. #define GGML_F32Cx4 __m128
  1857. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1858. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1859. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1860. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1861. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1862. #define GGML_F32Cx4_ADD _mm_add_ps
  1863. #define GGML_F32Cx4_MUL _mm_mul_ps
  1864. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1865. #define GGML_F16_VEC GGML_F32Cx4
  1866. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1867. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1868. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1869. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1870. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1871. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1872. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1873. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1874. #endif
  1875. // GGML_F32_ARR / GGML_F16_ARR
  1876. // number of registers to use per step
  1877. #ifdef GGML_SIMD
  1878. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1879. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1880. #endif
  1881. //
  1882. // fundamental operations
  1883. //
  1884. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1885. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1886. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1887. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1888. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1889. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1890. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1891. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1892. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1893. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1894. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1895. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1896. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1897. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1898. static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1899. #ifdef GGML_SIMD
  1900. float sumf = 0.0f;
  1901. const int np = (n & ~(GGML_F32_STEP - 1));
  1902. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1903. GGML_F32_VEC ax[GGML_F32_ARR];
  1904. GGML_F32_VEC ay[GGML_F32_ARR];
  1905. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1906. for (int j = 0; j < GGML_F32_ARR; j++) {
  1907. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1908. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1909. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1910. }
  1911. }
  1912. // reduce sum0..sum3 to sum0
  1913. GGML_F32_VEC_REDUCE(sumf, sum);
  1914. // leftovers
  1915. for (int i = np; i < n; ++i) {
  1916. sumf += x[i]*y[i];
  1917. }
  1918. #else
  1919. // scalar
  1920. ggml_float sumf = 0.0;
  1921. for (int i = 0; i < n; ++i) {
  1922. sumf += (ggml_float)(x[i]*y[i]);
  1923. }
  1924. #endif
  1925. *s = sumf;
  1926. }
  1927. static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1928. ggml_float sumf = 0.0;
  1929. #if defined(GGML_SIMD)
  1930. const int np = (n & ~(GGML_F16_STEP - 1));
  1931. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1932. GGML_F16_VEC ax[GGML_F16_ARR];
  1933. GGML_F16_VEC ay[GGML_F16_ARR];
  1934. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1935. for (int j = 0; j < GGML_F16_ARR; j++) {
  1936. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1937. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1938. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1939. }
  1940. }
  1941. // reduce sum0..sum3 to sum0
  1942. GGML_F16_VEC_REDUCE(sumf, sum);
  1943. // leftovers
  1944. for (int i = np; i < n; ++i) {
  1945. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1946. }
  1947. #else
  1948. for (int i = 0; i < n; ++i) {
  1949. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1950. }
  1951. #endif
  1952. *s = sumf;
  1953. }
  1954. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1955. const int qk = QK8_0;
  1956. const int nb = n / qk;
  1957. assert(n % qk == 0);
  1958. assert(nb % 2 == 0);
  1959. const block_q4_0 * restrict x = vx;
  1960. const block_q8_0 * restrict y = vy;
  1961. #if defined(__ARM_NEON)
  1962. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1963. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1964. for (int i = 0; i < nb; i += 2) {
  1965. const block_q4_0 * restrict x0 = &x[i + 0];
  1966. const block_q4_0 * restrict x1 = &x[i + 1];
  1967. const block_q8_0 * restrict y0 = &y[i + 0];
  1968. const block_q8_0 * restrict y1 = &y[i + 1];
  1969. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1970. const int8x16_t s8b = vdupq_n_s8(0x8);
  1971. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1972. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1973. // 4-bit -> 8-bit
  1974. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1975. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1976. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1977. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1978. // sub 8
  1979. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1980. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1981. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1982. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1983. // load y
  1984. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1985. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1986. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1987. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1988. #if defined(__ARM_FEATURE_DOTPROD)
  1989. // dot product into int32x4_t
  1990. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1991. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1992. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1993. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1994. #else
  1995. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1996. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1997. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1998. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1999. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  2000. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  2001. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  2002. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  2003. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2004. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2005. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2006. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2007. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2008. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2009. #endif
  2010. }
  2011. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2012. #elif defined(__AVX2__)
  2013. // Initialize accumulator with zeros
  2014. __m256 acc = _mm256_setzero_ps();
  2015. // Main loop
  2016. for (int i = 0; i < nb; ++i) {
  2017. /* Compute combined scale for the block */
  2018. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2019. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2020. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2021. const __m256i off = _mm256_set1_epi8( 8 );
  2022. bx = _mm256_sub_epi8( bx, off );
  2023. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2024. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2025. /* Multiply q with scale and accumulate */
  2026. acc = _mm256_fmadd_ps( d, q, acc );
  2027. }
  2028. *s = hsum_float_8(acc);
  2029. #elif defined(__AVX__)
  2030. // Initialize accumulator with zeros
  2031. __m256 acc = _mm256_setzero_ps();
  2032. // Main loop
  2033. for (int i = 0; i < nb; ++i) {
  2034. // Compute combined scale for the block
  2035. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2036. const __m128i lowMask = _mm_set1_epi8(0xF);
  2037. const __m128i off = _mm_set1_epi8(8);
  2038. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2039. __m128i bx = _mm_and_si128(lowMask, tmp);
  2040. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2041. bx = _mm_sub_epi8(bx, off);
  2042. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2043. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2044. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2045. bx = _mm_sub_epi8(bx, off);
  2046. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2047. // Convert int32_t to float
  2048. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2049. // Apply the scale, and accumulate
  2050. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2051. }
  2052. *s = hsum_float_8(acc);
  2053. #elif defined(__SSSE3__)
  2054. // set constants
  2055. const __m128i lowMask = _mm_set1_epi8(0xF);
  2056. const __m128i off = _mm_set1_epi8(8);
  2057. // Initialize accumulator with zeros
  2058. __m128 acc_0 = _mm_setzero_ps();
  2059. __m128 acc_1 = _mm_setzero_ps();
  2060. __m128 acc_2 = _mm_setzero_ps();
  2061. __m128 acc_3 = _mm_setzero_ps();
  2062. // First round without accumulation
  2063. {
  2064. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2065. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2066. // Compute combined scale for the block 0 and 1
  2067. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2068. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2069. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2070. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2071. bx_0 = _mm_sub_epi8(bx_0, off);
  2072. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2073. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2074. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2075. bx_1 = _mm_sub_epi8(bx_1, off);
  2076. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2077. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2078. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2079. // Compute combined scale for the block 2 and 3
  2080. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2081. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2082. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2083. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2084. bx_2 = _mm_sub_epi8(bx_2, off);
  2085. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2086. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2087. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2088. bx_3 = _mm_sub_epi8(bx_3, off);
  2089. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2090. // Convert int32_t to float
  2091. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2092. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2093. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2094. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2095. // Apply the scale
  2096. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2097. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2098. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2099. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2100. }
  2101. // Main loop
  2102. for (int i = 2; i < nb; i+=2) {
  2103. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2104. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2105. // Compute combined scale for the block 0 and 1
  2106. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2107. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2108. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2109. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2110. bx_0 = _mm_sub_epi8(bx_0, off);
  2111. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2112. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2113. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2114. bx_1 = _mm_sub_epi8(bx_1, off);
  2115. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2116. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2117. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2118. // Compute combined scale for the block 2 and 3
  2119. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2120. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2121. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2122. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2123. bx_2 = _mm_sub_epi8(bx_2, off);
  2124. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2125. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2126. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2127. bx_3 = _mm_sub_epi8(bx_3, off);
  2128. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2129. // Convert int32_t to float
  2130. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2131. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2132. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2133. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2134. // Apply the scale
  2135. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2136. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2137. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2138. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2139. // Acummulate
  2140. acc_0 = _mm_add_ps(p0_d, acc_0);
  2141. acc_1 = _mm_add_ps(p1_d, acc_1);
  2142. acc_2 = _mm_add_ps(p2_d, acc_2);
  2143. acc_3 = _mm_add_ps(p3_d, acc_3);
  2144. }
  2145. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2146. #else
  2147. // scalar
  2148. float sumf = 0.0;
  2149. for (int i = 0; i < nb; i++) {
  2150. int sumi = 0;
  2151. for (int j = 0; j < qk/2; ++j) {
  2152. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2153. const int v1 = (x[i].qs[j] >> 4) - 8;
  2154. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2155. }
  2156. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2157. }
  2158. *s = sumf;
  2159. #endif
  2160. }
  2161. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2162. const int qk = QK8_1;
  2163. const int nb = n / qk;
  2164. assert(n % qk == 0);
  2165. assert(nb % 2 == 0);
  2166. const block_q4_1 * restrict x = vx;
  2167. const block_q8_1 * restrict y = vy;
  2168. // TODO: add WASM SIMD
  2169. #if defined(__ARM_NEON)
  2170. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2171. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2172. float summs = 0;
  2173. for (int i = 0; i < nb; i += 2) {
  2174. const block_q4_1 * restrict x0 = &x[i + 0];
  2175. const block_q4_1 * restrict x1 = &x[i + 1];
  2176. const block_q8_1 * restrict y0 = &y[i + 0];
  2177. const block_q8_1 * restrict y1 = &y[i + 1];
  2178. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2179. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2180. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2181. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2182. // 4-bit -> 8-bit
  2183. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2184. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2185. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2186. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2187. // load y
  2188. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2189. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2190. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2191. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2192. #if defined(__ARM_FEATURE_DOTPROD)
  2193. // dot product into int32x4_t
  2194. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2195. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2196. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2197. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2198. #else
  2199. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2200. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2201. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2202. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2203. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2204. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2205. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2206. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2207. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2208. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2209. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2210. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2211. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2212. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2213. #endif
  2214. }
  2215. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2216. #elif defined(__AVX2__) || defined(__AVX__)
  2217. // Initialize accumulator with zeros
  2218. __m256 acc = _mm256_setzero_ps();
  2219. float summs = 0;
  2220. // Main loop
  2221. for (int i = 0; i < nb; ++i) {
  2222. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2223. const float d1 = y[i].d;
  2224. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2225. const __m256 d0v = _mm256_set1_ps( d0 );
  2226. const __m256 d1v = _mm256_set1_ps( d1 );
  2227. // Compute combined scales
  2228. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2229. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2230. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2231. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2232. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2233. // Accumulate d0*d1*x*y
  2234. #if defined(__AVX2__)
  2235. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2236. #else
  2237. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2238. #endif
  2239. }
  2240. *s = hsum_float_8(acc) + summs;
  2241. #else
  2242. // scalar
  2243. float sumf = 0.0;
  2244. for (int i = 0; i < nb; i++) {
  2245. int sumi = 0;
  2246. for (int j = 0; j < qk/2; ++j) {
  2247. const int v0 = (x[i].qs[j] & 0x0F);
  2248. const int v1 = (x[i].qs[j] >> 4);
  2249. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2250. }
  2251. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2252. }
  2253. *s = sumf;
  2254. #endif
  2255. }
  2256. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2257. const int qk = QK8_0;
  2258. const int nb = n / qk;
  2259. assert(n % qk == 0);
  2260. assert(nb % 2 == 0);
  2261. assert(qk == QK5_0);
  2262. const block_q5_0 * restrict x = vx;
  2263. const block_q8_0 * restrict y = vy;
  2264. #if defined(__ARM_NEON)
  2265. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2266. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2267. uint32_t qh0;
  2268. uint32_t qh1;
  2269. uint64_t tmp0[4];
  2270. uint64_t tmp1[4];
  2271. for (int i = 0; i < nb; i += 2) {
  2272. const block_q5_0 * restrict x0 = &x[i];
  2273. const block_q5_0 * restrict x1 = &x[i + 1];
  2274. const block_q8_0 * restrict y0 = &y[i];
  2275. const block_q8_0 * restrict y1 = &y[i + 1];
  2276. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2277. // extract the 5th bit via lookup table ((!b) << 4)
  2278. memcpy(&qh0, x0->qh, sizeof(qh0));
  2279. memcpy(&qh1, x1->qh, sizeof(qh1));
  2280. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2281. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2282. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2283. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2284. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2285. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2286. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2287. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2288. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2289. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2290. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2291. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2292. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2293. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2294. // 4-bit -> 8-bit
  2295. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2296. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2297. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2298. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2299. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2300. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2301. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2302. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2303. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2304. // load y
  2305. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2306. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2307. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2308. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2309. #if defined(__ARM_FEATURE_DOTPROD)
  2310. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2311. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2312. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2313. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2314. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2315. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2316. #else
  2317. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2318. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2319. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2320. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2321. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2322. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2323. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2324. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2325. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2326. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2327. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2328. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2329. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2330. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2331. #endif
  2332. }
  2333. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2334. #elif defined(__wasm_simd128__)
  2335. v128_t sumv = wasm_f32x4_splat(0.0f);
  2336. uint32_t qh;
  2337. uint64_t tmp[4];
  2338. // TODO: check if unrolling this is better
  2339. for (int i = 0; i < nb; ++i) {
  2340. const block_q5_0 * restrict x0 = &x[i];
  2341. const block_q8_0 * restrict y0 = &y[i];
  2342. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2343. // extract the 5th bit
  2344. memcpy(&qh, x0->qh, sizeof(qh));
  2345. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2346. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2347. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2348. tmp[3] = table_b2b_1[(qh >> 24) ];
  2349. const v128_t qhl = wasm_v128_load(tmp + 0);
  2350. const v128_t qhh = wasm_v128_load(tmp + 2);
  2351. const v128_t v0 = wasm_v128_load(x0->qs);
  2352. // 4-bit -> 8-bit
  2353. const v128_t v0l = wasm_v128_and (v0, m4b);
  2354. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2355. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2356. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2357. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2358. // load y
  2359. const v128_t v1l = wasm_v128_load(y0->qs);
  2360. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2361. // int8x16 -> int16x8
  2362. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2363. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2364. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2365. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2366. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2367. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2368. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2369. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2370. // dot product
  2371. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2372. wasm_i32x4_add(
  2373. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2374. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2375. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2376. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2377. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2378. }
  2379. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2380. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2381. #elif defined(__AVX2__)
  2382. // Initialize accumulator with zeros
  2383. __m256 acc = _mm256_setzero_ps();
  2384. // Main loop
  2385. for (int i = 0; i < nb; i++) {
  2386. /* Compute combined scale for the block */
  2387. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2388. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2389. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2390. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2391. bx = _mm256_or_si256(bx, bxhi);
  2392. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2393. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2394. /* Multiply q with scale and accumulate */
  2395. acc = _mm256_fmadd_ps(d, q, acc);
  2396. }
  2397. *s = hsum_float_8(acc);
  2398. #elif defined(__AVX__)
  2399. // Initialize accumulator with zeros
  2400. __m256 acc = _mm256_setzero_ps();
  2401. __m128i mask = _mm_set1_epi8((char)0xF0);
  2402. // Main loop
  2403. for (int i = 0; i < nb; i++) {
  2404. /* Compute combined scale for the block */
  2405. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2406. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2407. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2408. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2409. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2410. bxhil = _mm_andnot_si128(bxhil, mask);
  2411. bxhih = _mm_andnot_si128(bxhih, mask);
  2412. __m128i bxl = _mm256_castsi256_si128(bx);
  2413. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2414. bxl = _mm_or_si128(bxl, bxhil);
  2415. bxh = _mm_or_si128(bxh, bxhih);
  2416. bx = MM256_SET_M128I(bxh, bxl);
  2417. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2418. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2419. /* Multiply q with scale and accumulate */
  2420. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2421. }
  2422. *s = hsum_float_8(acc);
  2423. #else
  2424. // scalar
  2425. float sumf = 0.0;
  2426. for (int i = 0; i < nb; i++) {
  2427. uint32_t qh;
  2428. memcpy(&qh, x[i].qh, sizeof(qh));
  2429. int sumi = 0;
  2430. for (int j = 0; j < qk/2; ++j) {
  2431. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2432. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2433. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2434. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2435. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2436. }
  2437. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2438. }
  2439. *s = sumf;
  2440. #endif
  2441. }
  2442. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2443. const int qk = QK8_1;
  2444. const int nb = n / qk;
  2445. assert(n % qk == 0);
  2446. assert(nb % 2 == 0);
  2447. assert(qk == QK5_1);
  2448. const block_q5_1 * restrict x = vx;
  2449. const block_q8_1 * restrict y = vy;
  2450. #if defined(__ARM_NEON)
  2451. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2452. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2453. float summs0 = 0.0f;
  2454. float summs1 = 0.0f;
  2455. uint32_t qh0;
  2456. uint32_t qh1;
  2457. uint64_t tmp0[4];
  2458. uint64_t tmp1[4];
  2459. for (int i = 0; i < nb; i += 2) {
  2460. const block_q5_1 * restrict x0 = &x[i];
  2461. const block_q5_1 * restrict x1 = &x[i + 1];
  2462. const block_q8_1 * restrict y0 = &y[i];
  2463. const block_q8_1 * restrict y1 = &y[i + 1];
  2464. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2465. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2466. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2467. // extract the 5th bit via lookup table ((b) << 4)
  2468. memcpy(&qh0, x0->qh, sizeof(qh0));
  2469. memcpy(&qh1, x1->qh, sizeof(qh1));
  2470. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2471. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2472. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2473. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2474. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2475. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2476. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2477. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2478. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2479. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2480. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2481. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2482. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2483. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2484. // 4-bit -> 8-bit
  2485. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2486. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2487. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2488. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2489. // add high bit
  2490. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2491. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2492. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2493. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2494. // load y
  2495. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2496. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2497. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2498. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2499. #if defined(__ARM_FEATURE_DOTPROD)
  2500. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2501. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2502. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2503. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2504. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2505. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2506. #else
  2507. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2508. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2509. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2510. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2511. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2512. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2513. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2514. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2515. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2516. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2517. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2518. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2519. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2520. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2521. #endif
  2522. }
  2523. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2524. #elif defined(__wasm_simd128__)
  2525. v128_t sumv = wasm_f32x4_splat(0.0f);
  2526. float summs = 0.0f;
  2527. uint32_t qh;
  2528. uint64_t tmp[4];
  2529. // TODO: check if unrolling this is better
  2530. for (int i = 0; i < nb; ++i) {
  2531. const block_q5_1 * restrict x0 = &x[i];
  2532. const block_q8_1 * restrict y0 = &y[i];
  2533. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2534. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2535. // extract the 5th bit
  2536. memcpy(&qh, x0->qh, sizeof(qh));
  2537. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2538. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2539. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2540. tmp[3] = table_b2b_0[(qh >> 24) ];
  2541. const v128_t qhl = wasm_v128_load(tmp + 0);
  2542. const v128_t qhh = wasm_v128_load(tmp + 2);
  2543. const v128_t v0 = wasm_v128_load(x0->qs);
  2544. // 4-bit -> 8-bit
  2545. const v128_t v0l = wasm_v128_and (v0, m4b);
  2546. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2547. // add high bit
  2548. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2549. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2550. // load y
  2551. const v128_t v1l = wasm_v128_load(y0->qs);
  2552. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2553. // int8x16 -> int16x8
  2554. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2555. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2556. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2557. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2558. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2559. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2560. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2561. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2562. // dot product
  2563. sumv = wasm_f32x4_add(sumv,
  2564. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2565. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2566. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2567. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2568. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2569. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2570. }
  2571. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2572. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2573. #elif defined(__AVX2__)
  2574. // Initialize accumulator with zeros
  2575. __m256 acc = _mm256_setzero_ps();
  2576. float summs = 0.0f;
  2577. // Main loop
  2578. for (int i = 0; i < nb; i++) {
  2579. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2580. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2581. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2582. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2583. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2584. bx = _mm256_or_si256(bx, bxhi);
  2585. const __m256 dy = _mm256_set1_ps(y[i].d);
  2586. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2587. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2588. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2589. }
  2590. *s = hsum_float_8(acc) + summs;
  2591. #elif defined(__AVX__)
  2592. // Initialize accumulator with zeros
  2593. __m256 acc = _mm256_setzero_ps();
  2594. __m128i mask = _mm_set1_epi8(0x10);
  2595. float summs = 0.0f;
  2596. // Main loop
  2597. for (int i = 0; i < nb; i++) {
  2598. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2599. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2600. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2601. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2602. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2603. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2604. bxhil = _mm_and_si128(bxhil, mask);
  2605. bxhih = _mm_and_si128(bxhih, mask);
  2606. __m128i bxl = _mm256_castsi256_si128(bx);
  2607. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2608. bxl = _mm_or_si128(bxl, bxhil);
  2609. bxh = _mm_or_si128(bxh, bxhih);
  2610. bx = MM256_SET_M128I(bxh, bxl);
  2611. const __m256 dy = _mm256_set1_ps(y[i].d);
  2612. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2613. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2614. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2615. }
  2616. *s = hsum_float_8(acc) + summs;
  2617. #else
  2618. // scalar
  2619. float sumf = 0.0;
  2620. for (int i = 0; i < nb; i++) {
  2621. uint32_t qh;
  2622. memcpy(&qh, x[i].qh, sizeof(qh));
  2623. int sumi = 0;
  2624. for (int j = 0; j < qk/2; ++j) {
  2625. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2626. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2627. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2628. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2629. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2630. }
  2631. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2632. }
  2633. *s = sumf;
  2634. #endif
  2635. }
  2636. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2637. const int qk = QK8_0;
  2638. const int nb = n / qk;
  2639. assert(n % qk == 0);
  2640. assert(nb % 2 == 0);
  2641. const block_q8_0 * restrict x = vx;
  2642. const block_q8_0 * restrict y = vy;
  2643. #if defined(__ARM_NEON)
  2644. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2645. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2646. for (int i = 0; i < nb; i += 2) {
  2647. const block_q8_0 * restrict x0 = &x[i + 0];
  2648. const block_q8_0 * restrict x1 = &x[i + 1];
  2649. const block_q8_0 * restrict y0 = &y[i + 0];
  2650. const block_q8_0 * restrict y1 = &y[i + 1];
  2651. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2652. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2653. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2654. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2655. // load y
  2656. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2657. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2658. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2659. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2660. #if defined(__ARM_FEATURE_DOTPROD)
  2661. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2662. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2663. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2664. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2665. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2666. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2667. #else
  2668. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2669. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2670. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2671. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2672. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2673. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2674. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2675. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2676. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2677. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2678. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2679. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2680. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2681. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2682. #endif
  2683. }
  2684. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2685. #elif defined(__AVX2__) || defined(__AVX__)
  2686. // Initialize accumulator with zeros
  2687. __m256 acc = _mm256_setzero_ps();
  2688. // Main loop
  2689. for (int i = 0; i < nb; ++i) {
  2690. // Compute combined scale for the block
  2691. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2692. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2693. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2694. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2695. // Multiply q with scale and accumulate
  2696. #if defined(__AVX2__)
  2697. acc = _mm256_fmadd_ps( d, q, acc );
  2698. #else
  2699. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2700. #endif
  2701. }
  2702. *s = hsum_float_8(acc);
  2703. #else
  2704. // scalar
  2705. float sumf = 0.0;
  2706. for (int i = 0; i < nb; i++) {
  2707. int sumi = 0;
  2708. for (int j = 0; j < qk; j++) {
  2709. sumi += x[i].qs[j]*y[i].qs[j];
  2710. }
  2711. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2712. }
  2713. *s = sumf;
  2714. #endif
  2715. }
  2716. // compute GGML_VEC_DOT_UNROLL dot products at once
  2717. // xs - x row stride in bytes
  2718. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2719. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2720. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2721. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2722. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2723. }
  2724. #if defined(GGML_SIMD)
  2725. const int np = (n & ~(GGML_F16_STEP - 1));
  2726. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2727. GGML_F16_VEC ax[GGML_F16_ARR];
  2728. GGML_F16_VEC ay[GGML_F16_ARR];
  2729. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2730. for (int j = 0; j < GGML_F16_ARR; j++) {
  2731. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2732. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2733. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2734. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2735. }
  2736. }
  2737. }
  2738. // reduce sum0..sum3 to sum0
  2739. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2740. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2741. }
  2742. // leftovers
  2743. for (int i = np; i < n; ++i) {
  2744. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2745. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2746. }
  2747. }
  2748. #else
  2749. for (int i = 0; i < n; ++i) {
  2750. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2751. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2752. }
  2753. }
  2754. #endif
  2755. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2756. s[i] = sumf[i];
  2757. }
  2758. }
  2759. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2760. #if defined(GGML_SIMD)
  2761. const int np = (n & ~(GGML_F32_STEP - 1));
  2762. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2763. GGML_F32_VEC ax[GGML_F32_ARR];
  2764. GGML_F32_VEC ay[GGML_F32_ARR];
  2765. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2766. for (int j = 0; j < GGML_F32_ARR; j++) {
  2767. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2768. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2769. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2770. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2771. }
  2772. }
  2773. // leftovers
  2774. for (int i = np; i < n; ++i) {
  2775. y[i] += x[i]*v;
  2776. }
  2777. #else
  2778. // scalar
  2779. for (int i = 0; i < n; ++i) {
  2780. y[i] += x[i]*v;
  2781. }
  2782. #endif
  2783. }
  2784. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2785. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2786. #if defined(GGML_SIMD)
  2787. const int np = (n & ~(GGML_F32_STEP - 1));
  2788. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2789. GGML_F32_VEC ay[GGML_F32_ARR];
  2790. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2791. for (int j = 0; j < GGML_F32_ARR; j++) {
  2792. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2793. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2794. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2795. }
  2796. }
  2797. // leftovers
  2798. for (int i = np; i < n; ++i) {
  2799. y[i] *= v;
  2800. }
  2801. #else
  2802. // scalar
  2803. for (int i = 0; i < n; ++i) {
  2804. y[i] *= v;
  2805. }
  2806. #endif
  2807. }
  2808. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2809. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2810. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2811. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2812. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2813. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2814. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2815. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2816. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  2817. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2818. static const float GELU_COEF_A = 0.044715f;
  2819. static const float GELU_QUICK_COEF = -1.702f;
  2820. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2821. inline static float ggml_gelu_f32(float x) {
  2822. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2823. }
  2824. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2825. const uint16_t * i16 = (const uint16_t *) x;
  2826. for (int i = 0; i < n; ++i) {
  2827. y[i] = table_gelu_f16[i16[i]];
  2828. }
  2829. }
  2830. #ifdef GGML_GELU_FP16
  2831. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2832. uint16_t t;
  2833. for (int i = 0; i < n; ++i) {
  2834. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2835. memcpy(&t, &fp16, sizeof(uint16_t));
  2836. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2837. }
  2838. }
  2839. #else
  2840. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2841. for (int i = 0; i < n; ++i) {
  2842. y[i] = ggml_gelu_f32(x[i]);
  2843. }
  2844. }
  2845. #endif
  2846. inline static float ggml_gelu_quick_f32(float x) {
  2847. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2848. }
  2849. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2850. // const uint16_t * i16 = (const uint16_t *) x;
  2851. // for (int i = 0; i < n; ++i) {
  2852. // y[i] = table_gelu_quick_f16[i16[i]];
  2853. // }
  2854. //}
  2855. #ifdef GGML_GELU_QUICK_FP16
  2856. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2857. uint16_t t;
  2858. for (int i = 0; i < n; ++i) {
  2859. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2860. memcpy(&t, &fp16, sizeof(uint16_t));
  2861. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2862. }
  2863. }
  2864. #else
  2865. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2866. for (int i = 0; i < n; ++i) {
  2867. y[i] = ggml_gelu_quick_f32(x[i]);
  2868. }
  2869. }
  2870. #endif
  2871. // Sigmoid Linear Unit (SiLU) function
  2872. inline static float ggml_silu_f32(float x) {
  2873. return x/(1.0f + expf(-x));
  2874. }
  2875. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2876. // const uint16_t * i16 = (const uint16_t *) x;
  2877. // for (int i = 0; i < n; ++i) {
  2878. // y[i] = table_silu_f16[i16[i]];
  2879. // }
  2880. //}
  2881. #ifdef GGML_SILU_FP16
  2882. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2883. uint16_t t;
  2884. for (int i = 0; i < n; ++i) {
  2885. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2886. memcpy(&t, &fp16, sizeof(uint16_t));
  2887. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2888. }
  2889. }
  2890. #else
  2891. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2892. for (int i = 0; i < n; ++i) {
  2893. y[i] = ggml_silu_f32(x[i]);
  2894. }
  2895. }
  2896. #endif
  2897. inline static float ggml_silu_backward_f32(float x, float dy) {
  2898. const float s = 1.0f/(1.0f + expf(-x));
  2899. return dy*s*(1.0f + x*(1.0f - s));
  2900. }
  2901. #ifdef GGML_SILU_FP16
  2902. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2903. for (int i = 0; i < n; ++i) {
  2904. // we did not use x[i] to compute forward silu but its f16 equivalent
  2905. // take derivative at f16 of x[i]:
  2906. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2907. float usedx = GGML_FP16_TO_FP32(fp16);
  2908. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2909. }
  2910. }
  2911. #else
  2912. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2913. for (int i = 0; i < n; ++i) {
  2914. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2915. }
  2916. }
  2917. #endif
  2918. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2919. #ifndef GGML_USE_ACCELERATE
  2920. ggml_float sum = 0.0;
  2921. for (int i = 0; i < n; ++i) {
  2922. sum += (ggml_float)x[i];
  2923. }
  2924. *s = sum;
  2925. #else
  2926. vDSP_sve(x, 1, s, n);
  2927. #endif
  2928. }
  2929. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2930. ggml_float sum = 0.0;
  2931. for (int i = 0; i < n; ++i) {
  2932. sum += (ggml_float)x[i];
  2933. }
  2934. *s = sum;
  2935. }
  2936. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2937. #ifndef GGML_USE_ACCELERATE
  2938. float max = -INFINITY;
  2939. for (int i = 0; i < n; ++i) {
  2940. max = MAX(max, x[i]);
  2941. }
  2942. *s = max;
  2943. #else
  2944. vDSP_maxv(x, 1, s, n);
  2945. #endif
  2946. }
  2947. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2948. ggml_vec_norm_f32(n, s, x);
  2949. *s = 1.f/(*s);
  2950. }
  2951. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2952. float max = -INFINITY;
  2953. int idx = 0;
  2954. for (int i = 0; i < n; ++i) {
  2955. max = MAX(max, x[i]);
  2956. if (max == x[i]) { idx = i; }
  2957. }
  2958. *s = idx;
  2959. }
  2960. //
  2961. // data types
  2962. //
  2963. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2964. [GGML_TYPE_F32] = 1,
  2965. [GGML_TYPE_F16] = 1,
  2966. [GGML_TYPE_Q4_0] = QK4_0,
  2967. [GGML_TYPE_Q4_1] = QK4_1,
  2968. [GGML_TYPE_Q5_0] = QK5_0,
  2969. [GGML_TYPE_Q5_1] = QK5_1,
  2970. [GGML_TYPE_Q8_0] = QK8_0,
  2971. [GGML_TYPE_Q8_1] = QK8_1,
  2972. #ifdef GGML_USE_K_QUANTS
  2973. [GGML_TYPE_Q2_K] = QK_K,
  2974. [GGML_TYPE_Q3_K] = QK_K,
  2975. [GGML_TYPE_Q4_K] = QK_K,
  2976. [GGML_TYPE_Q5_K] = QK_K,
  2977. [GGML_TYPE_Q6_K] = QK_K,
  2978. [GGML_TYPE_Q8_K] = QK_K,
  2979. #endif
  2980. [GGML_TYPE_I8] = 1,
  2981. [GGML_TYPE_I16] = 1,
  2982. [GGML_TYPE_I32] = 1,
  2983. };
  2984. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2985. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2986. [GGML_TYPE_F32] = sizeof(float),
  2987. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2988. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2989. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2990. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2991. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2992. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2993. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2994. #ifdef GGML_USE_K_QUANTS
  2995. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2996. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2997. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2998. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2999. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  3000. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  3001. #endif
  3002. [GGML_TYPE_I8] = sizeof(int8_t),
  3003. [GGML_TYPE_I16] = sizeof(int16_t),
  3004. [GGML_TYPE_I32] = sizeof(int32_t),
  3005. };
  3006. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  3007. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3008. [GGML_TYPE_F32] = "f32",
  3009. [GGML_TYPE_F16] = "f16",
  3010. [GGML_TYPE_Q4_0] = "q4_0",
  3011. [GGML_TYPE_Q4_1] = "q4_1",
  3012. [GGML_TYPE_Q5_0] = "q5_0",
  3013. [GGML_TYPE_Q5_1] = "q5_1",
  3014. [GGML_TYPE_Q8_0] = "q8_0",
  3015. [GGML_TYPE_Q8_1] = "q8_1",
  3016. [GGML_TYPE_Q2_K] = "q2_K",
  3017. [GGML_TYPE_Q3_K] = "q3_K",
  3018. [GGML_TYPE_Q4_K] = "q4_K",
  3019. [GGML_TYPE_Q5_K] = "q5_K",
  3020. [GGML_TYPE_Q6_K] = "q6_K",
  3021. [GGML_TYPE_Q8_K] = "q8_K",
  3022. [GGML_TYPE_I8] = "i8",
  3023. [GGML_TYPE_I16] = "i16",
  3024. [GGML_TYPE_I32] = "i32",
  3025. };
  3026. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  3027. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3028. [GGML_TYPE_F32] = false,
  3029. [GGML_TYPE_F16] = false,
  3030. [GGML_TYPE_Q4_0] = true,
  3031. [GGML_TYPE_Q4_1] = true,
  3032. [GGML_TYPE_Q5_0] = true,
  3033. [GGML_TYPE_Q5_1] = true,
  3034. [GGML_TYPE_Q8_0] = true,
  3035. [GGML_TYPE_Q8_1] = true,
  3036. [GGML_TYPE_Q2_K] = true,
  3037. [GGML_TYPE_Q3_K] = true,
  3038. [GGML_TYPE_Q4_K] = true,
  3039. [GGML_TYPE_Q5_K] = true,
  3040. [GGML_TYPE_Q6_K] = true,
  3041. [GGML_TYPE_Q8_K] = true,
  3042. [GGML_TYPE_I8] = false,
  3043. [GGML_TYPE_I16] = false,
  3044. [GGML_TYPE_I32] = false,
  3045. };
  3046. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3047. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3048. "NONE",
  3049. "DUP",
  3050. "ADD",
  3051. "ADD1",
  3052. "ACC",
  3053. "SUB",
  3054. "MUL",
  3055. "DIV",
  3056. "SQR",
  3057. "SQRT",
  3058. "LOG",
  3059. "SUM",
  3060. "SUM_ROWS",
  3061. "MEAN",
  3062. "ARGMAX",
  3063. "REPEAT",
  3064. "REPEAT_BACK",
  3065. "ABS",
  3066. "SGN",
  3067. "NEG",
  3068. "STEP",
  3069. "TANH",
  3070. "ELU",
  3071. "RELU",
  3072. "GELU",
  3073. "GELU_QUICK",
  3074. "SILU",
  3075. "SILU_BACK",
  3076. "NORM",
  3077. "RMS_NORM",
  3078. "RMS_NORM_BACK",
  3079. "MUL_MAT",
  3080. "OUT_PROD",
  3081. "SCALE",
  3082. "SET",
  3083. "CPY",
  3084. "CONT",
  3085. "RESHAPE",
  3086. "VIEW",
  3087. "PERMUTE",
  3088. "TRANSPOSE",
  3089. "GET_ROWS",
  3090. "GET_ROWS_BACK",
  3091. "DIAG",
  3092. "DIAG_MASK_INF",
  3093. "DIAG_MASK_ZERO",
  3094. "SOFT_MAX",
  3095. "SOFT_MAX_BACK",
  3096. "ROPE",
  3097. "ROPE_BACK",
  3098. "ALIBI",
  3099. "CLAMP",
  3100. "CONV_1D",
  3101. "CONV_2D",
  3102. "FLASH_ATTN",
  3103. "FLASH_FF",
  3104. "FLASH_ATTN_BACK",
  3105. "WIN_PART",
  3106. "WIN_UNPART",
  3107. "MAP_UNARY",
  3108. "MAP_BINARY",
  3109. "MAP_CUSTOM1",
  3110. "MAP_CUSTOM2",
  3111. "MAP_CUSTOM3",
  3112. "CROSS_ENTROPY_LOSS",
  3113. "CROSS_ENTROPY_LOSS_BACK",
  3114. };
  3115. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3116. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3117. "none",
  3118. "x",
  3119. "x+y",
  3120. "x+y",
  3121. "view(x,nb,offset)+=y->x",
  3122. "x-y",
  3123. "x*y",
  3124. "x/y",
  3125. "x^2",
  3126. "√x",
  3127. "log(x)",
  3128. "Σx",
  3129. "Σx_k",
  3130. "Σx/n",
  3131. "argmax(x)",
  3132. "repeat(x)",
  3133. "repeat_back(x)",
  3134. "abs(x)",
  3135. "sgn(x)",
  3136. "-x",
  3137. "step(x)",
  3138. "tanh(x)",
  3139. "elu(x)",
  3140. "relu(x)",
  3141. "gelu(x)",
  3142. "gelu_quick(x)",
  3143. "silu(x)",
  3144. "silu_back(x)",
  3145. "norm(x)",
  3146. "rms_norm(x)",
  3147. "rms_norm_back(x)",
  3148. "X*Y",
  3149. "X*Y",
  3150. "x*v",
  3151. "y-\\>view(x)",
  3152. "x-\\>y",
  3153. "cont(x)",
  3154. "reshape(x)",
  3155. "view(x)",
  3156. "permute(x)",
  3157. "transpose(x)",
  3158. "get_rows(x)",
  3159. "get_rows_back(x)",
  3160. "diag(x)",
  3161. "diag_mask_inf(x)",
  3162. "diag_mask_zero(x)",
  3163. "soft_max(x)",
  3164. "soft_max_back(x)",
  3165. "rope(x)",
  3166. "rope_back(x)",
  3167. "alibi(x)",
  3168. "clamp(x)",
  3169. "conv_1d(x)",
  3170. "conv_2d(x)",
  3171. "flash_attn(x)",
  3172. "flash_ff(x)",
  3173. "flash_attn_back(x)",
  3174. "win_part(x)",
  3175. "win_unpart(x)",
  3176. "f(x)",
  3177. "f(x,y)",
  3178. "custom(x)",
  3179. "custom(x,y)",
  3180. "custom(x,y,z)",
  3181. "cross_entropy_loss(x,y)",
  3182. "cross_entropy_loss_back(x,y)",
  3183. };
  3184. static_assert(GGML_OP_COUNT == 66, "GGML_OP_COUNT != 66");
  3185. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3186. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3187. // WARN:
  3188. // Mis-confguration can lead to problem that's hard to reason about:
  3189. // * At best it crash or talks nosense.
  3190. // * At worst it talks slightly difference but hard to perceive.
  3191. //
  3192. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3193. // Take care about compile options (e.g., GGML_USE_xxx).
  3194. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3195. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3196. static void ggml_setup_op_has_task_pass(void) {
  3197. { // INIT
  3198. bool * p = GGML_OP_HAS_INIT;
  3199. p[GGML_OP_ACC ] = true;
  3200. p[GGML_OP_MUL_MAT ] = true;
  3201. p[GGML_OP_OUT_PROD ] = true;
  3202. p[GGML_OP_SET ] = true;
  3203. p[GGML_OP_GET_ROWS_BACK ] = true;
  3204. p[GGML_OP_DIAG_MASK_INF ] = true;
  3205. p[GGML_OP_DIAG_MASK_ZERO ] = true;
  3206. p[GGML_OP_CONV_1D ] = true;
  3207. p[GGML_OP_CONV_2D ] = true;
  3208. p[GGML_OP_FLASH_ATTN_BACK ] = true;
  3209. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3210. }
  3211. { // FINALIZE
  3212. bool * p = GGML_OP_HAS_FINALIZE;
  3213. p[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3214. }
  3215. }
  3216. //
  3217. // ggml context
  3218. //
  3219. struct ggml_context {
  3220. size_t mem_size;
  3221. void * mem_buffer;
  3222. bool mem_buffer_owned;
  3223. bool no_alloc;
  3224. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3225. int n_objects;
  3226. struct ggml_object * objects_begin;
  3227. struct ggml_object * objects_end;
  3228. struct ggml_scratch scratch;
  3229. struct ggml_scratch scratch_save;
  3230. };
  3231. struct ggml_context_container {
  3232. bool used;
  3233. struct ggml_context context;
  3234. };
  3235. //
  3236. // NUMA support
  3237. //
  3238. #define GGML_NUMA_MAX_NODES 8
  3239. #define GGML_NUMA_MAX_CPUS 512
  3240. struct ggml_numa_node {
  3241. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3242. uint32_t n_cpus;
  3243. };
  3244. struct ggml_numa_nodes {
  3245. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3246. uint32_t n_nodes;
  3247. uint32_t total_cpus; // hardware threads on system
  3248. };
  3249. //
  3250. // ggml state
  3251. //
  3252. struct ggml_state {
  3253. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3254. struct ggml_numa_nodes numa;
  3255. };
  3256. // global state
  3257. static struct ggml_state g_state;
  3258. static atomic_int g_state_barrier = 0;
  3259. // barrier via spin lock
  3260. inline static void ggml_critical_section_start(void) {
  3261. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3262. while (processing > 0) {
  3263. // wait for other threads to finish
  3264. atomic_fetch_sub(&g_state_barrier, 1);
  3265. sched_yield(); // TODO: reconsider this
  3266. processing = atomic_fetch_add(&g_state_barrier, 1);
  3267. }
  3268. }
  3269. // TODO: make this somehow automatically executed
  3270. // some sort of "sentry" mechanism
  3271. inline static void ggml_critical_section_end(void) {
  3272. atomic_fetch_sub(&g_state_barrier, 1);
  3273. }
  3274. void ggml_numa_init(void) {
  3275. if (g_state.numa.n_nodes > 0) {
  3276. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3277. return;
  3278. }
  3279. #ifdef __linux__
  3280. struct stat st;
  3281. char path[256];
  3282. int rv;
  3283. // enumerate nodes
  3284. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3285. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3286. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3287. if (stat(path, &st) != 0) { break; }
  3288. ++g_state.numa.n_nodes;
  3289. }
  3290. // enumerate CPUs
  3291. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3292. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3293. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3294. if (stat(path, &st) != 0) { break; }
  3295. ++g_state.numa.total_cpus;
  3296. }
  3297. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3298. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3299. g_state.numa.n_nodes = 0;
  3300. return;
  3301. }
  3302. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3303. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3304. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3305. node->n_cpus = 0;
  3306. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3307. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3308. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3309. if (stat(path, &st) == 0) {
  3310. node->cpus[node->n_cpus++] = c;
  3311. GGML_PRINT_DEBUG(" %u", c);
  3312. }
  3313. }
  3314. GGML_PRINT_DEBUG("\n");
  3315. }
  3316. if (ggml_is_numa()) {
  3317. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3318. if (fptr != NULL) {
  3319. char buf[42];
  3320. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3321. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3322. }
  3323. fclose(fptr);
  3324. }
  3325. }
  3326. #else
  3327. // TODO
  3328. #endif
  3329. }
  3330. bool ggml_is_numa(void) {
  3331. return g_state.numa.n_nodes > 1;
  3332. }
  3333. ////////////////////////////////////////////////////////////////////////////////
  3334. void ggml_print_object(const struct ggml_object * obj) {
  3335. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3336. obj->offs, obj->size, (const void *) obj->next);
  3337. }
  3338. void ggml_print_objects(const struct ggml_context * ctx) {
  3339. struct ggml_object * obj = ctx->objects_begin;
  3340. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3341. while (obj != NULL) {
  3342. ggml_print_object(obj);
  3343. obj = obj->next;
  3344. }
  3345. GGML_PRINT("%s: --- end ---\n", __func__);
  3346. }
  3347. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3348. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3349. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3350. }
  3351. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3352. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3353. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3354. }
  3355. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3356. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3357. // this should handle cases where the tensor is not contiguous in memory
  3358. // probaby just:
  3359. //
  3360. // return tensor->ne[3]*tensor->nb[3]
  3361. //
  3362. // is enough, but just in case, adding the second part
  3363. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3364. }
  3365. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3366. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3367. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3368. }
  3369. int ggml_blck_size(enum ggml_type type) {
  3370. return GGML_BLCK_SIZE[type];
  3371. }
  3372. size_t ggml_type_size(enum ggml_type type) {
  3373. return GGML_TYPE_SIZE[type];
  3374. }
  3375. float ggml_type_sizef(enum ggml_type type) {
  3376. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3377. }
  3378. const char * ggml_type_name(enum ggml_type type) {
  3379. return GGML_TYPE_NAME[type];
  3380. }
  3381. const char * ggml_op_name(enum ggml_op op) {
  3382. return GGML_OP_NAME[op];
  3383. }
  3384. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3385. return GGML_TYPE_SIZE[tensor->type];
  3386. }
  3387. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3388. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3389. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3390. }
  3391. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3392. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3393. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3394. }
  3395. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3396. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3397. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3398. }
  3399. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3400. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3401. return
  3402. (t0->ne[0] == t1->ne[0]) &&
  3403. (t0->ne[2] == t1->ne[2]) &&
  3404. (t0->ne[3] == t1->ne[3]);
  3405. }
  3406. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3407. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3408. return
  3409. (t0->ne[1] == t1->ne[1]) &&
  3410. (t0->ne[2] == t1->ne[2]) &&
  3411. (t0->ne[3] == t1->ne[3]);
  3412. }
  3413. bool ggml_is_quantized(enum ggml_type type) {
  3414. return GGML_IS_QUANTIZED[type];
  3415. }
  3416. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3417. enum ggml_type wtype = GGML_TYPE_COUNT;
  3418. switch (ftype) {
  3419. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3420. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3421. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3422. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3423. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3424. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3425. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3426. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3427. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3428. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3429. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3430. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3431. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3432. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3433. }
  3434. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3435. return wtype;
  3436. }
  3437. size_t ggml_tensor_overhead(void) {
  3438. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3439. }
  3440. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3441. return tensor->nb[0] > tensor->nb[1];
  3442. }
  3443. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3444. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3445. return
  3446. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3447. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3448. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3449. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3450. }
  3451. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3452. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3453. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3454. }
  3455. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3456. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3457. return
  3458. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3459. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3460. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3461. }
  3462. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3463. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3464. return
  3465. (t0->ne[0] == t1->ne[0] ) &&
  3466. (t0->ne[1] == t1->ne[1] ) &&
  3467. (t0->ne[2] == t1->ne[2] ) &&
  3468. (t0->ne[3] == t1->ne[3] );
  3469. }
  3470. // check if t1 can be represented as a repeatition of t0
  3471. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3472. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3473. return
  3474. (t1->ne[0]%t0->ne[0] == 0) &&
  3475. (t1->ne[1]%t0->ne[1] == 0) &&
  3476. (t1->ne[2]%t0->ne[2] == 0) &&
  3477. (t1->ne[3]%t0->ne[3] == 0);
  3478. }
  3479. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3480. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3481. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3482. }
  3483. static inline int ggml_up32(int n) {
  3484. return (n + 31) & ~31;
  3485. }
  3486. //static inline int ggml_up64(int n) {
  3487. // return (n + 63) & ~63;
  3488. //}
  3489. static inline int ggml_up(int n, int m) {
  3490. // assert m is a power of 2
  3491. GGML_ASSERT((m & (m - 1)) == 0);
  3492. return (n + m - 1) & ~(m - 1);
  3493. }
  3494. // assert that pointer is aligned to GGML_MEM_ALIGN
  3495. #define ggml_assert_aligned(ptr) \
  3496. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3497. ////////////////////////////////////////////////////////////////////////////////
  3498. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3499. // make this function thread safe
  3500. ggml_critical_section_start();
  3501. static bool is_first_call = true;
  3502. if (is_first_call) {
  3503. // initialize time system (required on Windows)
  3504. ggml_time_init();
  3505. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3506. {
  3507. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3508. ggml_fp16_t ii;
  3509. for (int i = 0; i < (1 << 16); ++i) {
  3510. uint16_t ui = i;
  3511. memcpy(&ii, &ui, sizeof(ii));
  3512. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3513. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3514. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3515. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3516. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3517. }
  3518. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3519. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3520. }
  3521. // initialize g_state
  3522. {
  3523. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3524. g_state = (struct ggml_state) {
  3525. /*.contexts =*/ { { 0 } },
  3526. /*.numa =*/ {
  3527. .n_nodes = 0,
  3528. .total_cpus = 0,
  3529. },
  3530. };
  3531. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3532. g_state.contexts[i].used = false;
  3533. }
  3534. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3535. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3536. }
  3537. #if defined(GGML_USE_CUBLAS)
  3538. ggml_init_cublas();
  3539. #elif defined(GGML_USE_CLBLAST)
  3540. ggml_cl_init();
  3541. #endif
  3542. ggml_setup_op_has_task_pass();
  3543. is_first_call = false;
  3544. }
  3545. // find non-used context in g_state
  3546. struct ggml_context * ctx = NULL;
  3547. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3548. if (!g_state.contexts[i].used) {
  3549. g_state.contexts[i].used = true;
  3550. ctx = &g_state.contexts[i].context;
  3551. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3552. break;
  3553. }
  3554. }
  3555. if (ctx == NULL) {
  3556. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3557. ggml_critical_section_end();
  3558. return NULL;
  3559. }
  3560. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3561. *ctx = (struct ggml_context) {
  3562. /*.mem_size =*/ mem_size,
  3563. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3564. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3565. /*.no_alloc =*/ params.no_alloc,
  3566. /*.no_alloc_save =*/ params.no_alloc,
  3567. /*.n_objects =*/ 0,
  3568. /*.objects_begin =*/ NULL,
  3569. /*.objects_end =*/ NULL,
  3570. /*.scratch =*/ { 0, 0, NULL, },
  3571. /*.scratch_save =*/ { 0, 0, NULL, },
  3572. };
  3573. GGML_ASSERT(ctx->mem_buffer != NULL);
  3574. ggml_assert_aligned(ctx->mem_buffer);
  3575. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3576. ggml_critical_section_end();
  3577. return ctx;
  3578. }
  3579. void ggml_free(struct ggml_context * ctx) {
  3580. // make this function thread safe
  3581. ggml_critical_section_start();
  3582. bool found = false;
  3583. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3584. if (&g_state.contexts[i].context == ctx) {
  3585. g_state.contexts[i].used = false;
  3586. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3587. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3588. if (ctx->mem_buffer_owned) {
  3589. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3590. }
  3591. found = true;
  3592. break;
  3593. }
  3594. }
  3595. if (!found) {
  3596. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3597. }
  3598. ggml_critical_section_end();
  3599. }
  3600. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3601. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3602. }
  3603. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3604. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3605. ctx->scratch = scratch;
  3606. return result;
  3607. }
  3608. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3609. ctx->no_alloc = no_alloc;
  3610. }
  3611. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3612. return ctx->mem_buffer;
  3613. }
  3614. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3615. return ctx->mem_size;
  3616. }
  3617. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3618. size_t max_size = 0;
  3619. struct ggml_object * obj = ctx->objects_begin;
  3620. while (obj != NULL) {
  3621. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3622. const size_t size = ggml_nbytes(tensor);
  3623. if (max_size < size) {
  3624. max_size = size;
  3625. }
  3626. obj = obj->next;
  3627. }
  3628. return max_size;
  3629. }
  3630. // IMPORTANT:
  3631. // when creating "opt" tensors, always save and load the scratch buffer
  3632. // this is an error prone process, but it is necessary to support inplace
  3633. // operators when using scratch buffers
  3634. // TODO: implement a better way
  3635. void ggml_scratch_save(struct ggml_context * ctx) {
  3636. // this is needed to allow opt tensors to store their data
  3637. // TODO: again, need to find a better way
  3638. ctx->no_alloc_save = ctx->no_alloc;
  3639. ctx->no_alloc = false;
  3640. ctx->scratch_save = ctx->scratch;
  3641. ctx->scratch.data = NULL;
  3642. }
  3643. void ggml_scratch_load(struct ggml_context * ctx) {
  3644. ctx->no_alloc = ctx->no_alloc_save;
  3645. ctx->scratch = ctx->scratch_save;
  3646. }
  3647. ////////////////////////////////////////////////////////////////////////////////
  3648. struct ggml_tensor * ggml_new_tensor_impl(
  3649. struct ggml_context * ctx,
  3650. enum ggml_type type,
  3651. int n_dims,
  3652. const int64_t* ne,
  3653. void* data) {
  3654. // always insert objects at the end of the context's memory pool
  3655. struct ggml_object * obj_cur = ctx->objects_end;
  3656. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3657. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3658. const size_t cur_end = cur_offs + cur_size;
  3659. size_t size_needed = 0;
  3660. if (data == NULL && !ctx->no_alloc) {
  3661. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3662. for (int i = 1; i < n_dims; i++) {
  3663. size_needed *= ne[i];
  3664. }
  3665. // align to GGML_MEM_ALIGN
  3666. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3667. }
  3668. char * const mem_buffer = ctx->mem_buffer;
  3669. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3670. if (ctx->scratch.data == NULL || data != NULL) {
  3671. size_needed += GGML_TENSOR_SIZE;
  3672. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3673. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3674. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3675. assert(false);
  3676. return NULL;
  3677. }
  3678. *obj_new = (struct ggml_object) {
  3679. .offs = cur_end + GGML_OBJECT_SIZE,
  3680. .size = size_needed,
  3681. .next = NULL,
  3682. };
  3683. } else {
  3684. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3685. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3686. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3687. assert(false);
  3688. return NULL;
  3689. }
  3690. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3691. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3692. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3693. assert(false);
  3694. return NULL;
  3695. }
  3696. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3697. *obj_new = (struct ggml_object) {
  3698. .offs = cur_end + GGML_OBJECT_SIZE,
  3699. .size = GGML_TENSOR_SIZE,
  3700. .next = NULL,
  3701. };
  3702. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3703. ctx->scratch.offs += size_needed;
  3704. }
  3705. if (obj_cur != NULL) {
  3706. obj_cur->next = obj_new;
  3707. } else {
  3708. // this is the first object in this context
  3709. ctx->objects_begin = obj_new;
  3710. }
  3711. ctx->objects_end = obj_new;
  3712. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3713. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3714. ggml_assert_aligned(result);
  3715. *result = (struct ggml_tensor) {
  3716. /*.type =*/ type,
  3717. /*.backend =*/ GGML_BACKEND_CPU,
  3718. /*.n_dims =*/ n_dims,
  3719. /*.ne =*/ { 1, 1, 1, 1 },
  3720. /*.nb =*/ { 0, 0, 0, 0 },
  3721. /*.op =*/ GGML_OP_NONE,
  3722. /*.is_param =*/ false,
  3723. /*.grad =*/ NULL,
  3724. /*.src =*/ { NULL },
  3725. /*.perf_runs =*/ 0,
  3726. /*.perf_cycles =*/ 0,
  3727. /*.perf_time_us =*/ 0,
  3728. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3729. /*.name =*/ { 0 },
  3730. /*.extra =*/ NULL,
  3731. /*.padding =*/ { 0 },
  3732. };
  3733. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3734. //ggml_assert_aligned(result->data);
  3735. for (int i = 0; i < n_dims; i++) {
  3736. result->ne[i] = ne[i];
  3737. }
  3738. result->nb[0] = GGML_TYPE_SIZE[type];
  3739. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3740. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3741. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3742. }
  3743. ctx->n_objects++;
  3744. return result;
  3745. }
  3746. struct ggml_tensor * ggml_new_tensor(
  3747. struct ggml_context * ctx,
  3748. enum ggml_type type,
  3749. int n_dims,
  3750. const int64_t * ne) {
  3751. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3752. }
  3753. struct ggml_tensor * ggml_new_tensor_1d(
  3754. struct ggml_context * ctx,
  3755. enum ggml_type type,
  3756. int64_t ne0) {
  3757. return ggml_new_tensor(ctx, type, 1, &ne0);
  3758. }
  3759. struct ggml_tensor * ggml_new_tensor_2d(
  3760. struct ggml_context * ctx,
  3761. enum ggml_type type,
  3762. int64_t ne0,
  3763. int64_t ne1) {
  3764. const int64_t ne[2] = { ne0, ne1 };
  3765. return ggml_new_tensor(ctx, type, 2, ne);
  3766. }
  3767. struct ggml_tensor * ggml_new_tensor_3d(
  3768. struct ggml_context * ctx,
  3769. enum ggml_type type,
  3770. int64_t ne0,
  3771. int64_t ne1,
  3772. int64_t ne2) {
  3773. const int64_t ne[3] = { ne0, ne1, ne2 };
  3774. return ggml_new_tensor(ctx, type, 3, ne);
  3775. }
  3776. struct ggml_tensor * ggml_new_tensor_4d(
  3777. struct ggml_context * ctx,
  3778. enum ggml_type type,
  3779. int64_t ne0,
  3780. int64_t ne1,
  3781. int64_t ne2,
  3782. int64_t ne3) {
  3783. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3784. return ggml_new_tensor(ctx, type, 4, ne);
  3785. }
  3786. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3787. ggml_scratch_save(ctx);
  3788. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3789. ggml_scratch_load(ctx);
  3790. ggml_set_i32(result, value);
  3791. return result;
  3792. }
  3793. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3794. ggml_scratch_save(ctx);
  3795. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3796. ggml_scratch_load(ctx);
  3797. ggml_set_f32(result, value);
  3798. return result;
  3799. }
  3800. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3801. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3802. }
  3803. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3804. memset(tensor->data, 0, ggml_nbytes(tensor));
  3805. return tensor;
  3806. }
  3807. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3808. const int n = ggml_nrows(tensor);
  3809. const int nc = tensor->ne[0];
  3810. const size_t n1 = tensor->nb[1];
  3811. char * const data = tensor->data;
  3812. switch (tensor->type) {
  3813. case GGML_TYPE_I8:
  3814. {
  3815. assert(tensor->nb[0] == sizeof(int8_t));
  3816. for (int i = 0; i < n; i++) {
  3817. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3818. }
  3819. } break;
  3820. case GGML_TYPE_I16:
  3821. {
  3822. assert(tensor->nb[0] == sizeof(int16_t));
  3823. for (int i = 0; i < n; i++) {
  3824. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3825. }
  3826. } break;
  3827. case GGML_TYPE_I32:
  3828. {
  3829. assert(tensor->nb[0] == sizeof(int32_t));
  3830. for (int i = 0; i < n; i++) {
  3831. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3832. }
  3833. } break;
  3834. case GGML_TYPE_F16:
  3835. {
  3836. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3837. for (int i = 0; i < n; i++) {
  3838. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3839. }
  3840. } break;
  3841. case GGML_TYPE_F32:
  3842. {
  3843. assert(tensor->nb[0] == sizeof(float));
  3844. for (int i = 0; i < n; i++) {
  3845. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3846. }
  3847. } break;
  3848. default:
  3849. {
  3850. GGML_ASSERT(false);
  3851. } break;
  3852. }
  3853. return tensor;
  3854. }
  3855. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3856. const int n = ggml_nrows(tensor);
  3857. const int nc = tensor->ne[0];
  3858. const size_t n1 = tensor->nb[1];
  3859. char * const data = tensor->data;
  3860. switch (tensor->type) {
  3861. case GGML_TYPE_I8:
  3862. {
  3863. assert(tensor->nb[0] == sizeof(int8_t));
  3864. for (int i = 0; i < n; i++) {
  3865. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3866. }
  3867. } break;
  3868. case GGML_TYPE_I16:
  3869. {
  3870. assert(tensor->nb[0] == sizeof(int16_t));
  3871. for (int i = 0; i < n; i++) {
  3872. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3873. }
  3874. } break;
  3875. case GGML_TYPE_I32:
  3876. {
  3877. assert(tensor->nb[0] == sizeof(int32_t));
  3878. for (int i = 0; i < n; i++) {
  3879. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3880. }
  3881. } break;
  3882. case GGML_TYPE_F16:
  3883. {
  3884. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3885. for (int i = 0; i < n; i++) {
  3886. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3887. }
  3888. } break;
  3889. case GGML_TYPE_F32:
  3890. {
  3891. assert(tensor->nb[0] == sizeof(float));
  3892. for (int i = 0; i < n; i++) {
  3893. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3894. }
  3895. } break;
  3896. default:
  3897. {
  3898. GGML_ASSERT(false);
  3899. } break;
  3900. }
  3901. return tensor;
  3902. }
  3903. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3904. switch (tensor->type) {
  3905. case GGML_TYPE_I8:
  3906. {
  3907. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3908. return ((int8_t *)(tensor->data))[i];
  3909. } break;
  3910. case GGML_TYPE_I16:
  3911. {
  3912. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3913. return ((int16_t *)(tensor->data))[i];
  3914. } break;
  3915. case GGML_TYPE_I32:
  3916. {
  3917. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3918. return ((int32_t *)(tensor->data))[i];
  3919. } break;
  3920. case GGML_TYPE_F16:
  3921. {
  3922. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3923. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3924. } break;
  3925. case GGML_TYPE_F32:
  3926. {
  3927. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3928. return ((float *)(tensor->data))[i];
  3929. } break;
  3930. default:
  3931. {
  3932. GGML_ASSERT(false);
  3933. } break;
  3934. }
  3935. return 0.0f;
  3936. }
  3937. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3938. switch (tensor->type) {
  3939. case GGML_TYPE_I8:
  3940. {
  3941. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3942. ((int8_t *)(tensor->data))[i] = value;
  3943. } break;
  3944. case GGML_TYPE_I16:
  3945. {
  3946. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3947. ((int16_t *)(tensor->data))[i] = value;
  3948. } break;
  3949. case GGML_TYPE_I32:
  3950. {
  3951. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3952. ((int32_t *)(tensor->data))[i] = value;
  3953. } break;
  3954. case GGML_TYPE_F16:
  3955. {
  3956. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3957. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3958. } break;
  3959. case GGML_TYPE_F32:
  3960. {
  3961. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3962. ((float *)(tensor->data))[i] = value;
  3963. } break;
  3964. default:
  3965. {
  3966. GGML_ASSERT(false);
  3967. } break;
  3968. }
  3969. }
  3970. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3971. switch (tensor->type) {
  3972. case GGML_TYPE_I8:
  3973. {
  3974. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3975. return ((int8_t *)(tensor->data))[i];
  3976. } break;
  3977. case GGML_TYPE_I16:
  3978. {
  3979. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3980. return ((int16_t *)(tensor->data))[i];
  3981. } break;
  3982. case GGML_TYPE_I32:
  3983. {
  3984. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3985. return ((int32_t *)(tensor->data))[i];
  3986. } break;
  3987. case GGML_TYPE_F16:
  3988. {
  3989. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3990. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3991. } break;
  3992. case GGML_TYPE_F32:
  3993. {
  3994. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3995. return ((float *)(tensor->data))[i];
  3996. } break;
  3997. default:
  3998. {
  3999. GGML_ASSERT(false);
  4000. } break;
  4001. }
  4002. return 0.0f;
  4003. }
  4004. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  4005. switch (tensor->type) {
  4006. case GGML_TYPE_I8:
  4007. {
  4008. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  4009. ((int8_t *)(tensor->data))[i] = value;
  4010. } break;
  4011. case GGML_TYPE_I16:
  4012. {
  4013. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  4014. ((int16_t *)(tensor->data))[i] = value;
  4015. } break;
  4016. case GGML_TYPE_I32:
  4017. {
  4018. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  4019. ((int32_t *)(tensor->data))[i] = value;
  4020. } break;
  4021. case GGML_TYPE_F16:
  4022. {
  4023. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  4024. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  4025. } break;
  4026. case GGML_TYPE_F32:
  4027. {
  4028. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  4029. ((float *)(tensor->data))[i] = value;
  4030. } break;
  4031. default:
  4032. {
  4033. GGML_ASSERT(false);
  4034. } break;
  4035. }
  4036. }
  4037. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4038. return tensor->data;
  4039. }
  4040. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4041. assert(tensor->type == GGML_TYPE_F32);
  4042. return (float *)(tensor->data);
  4043. }
  4044. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4045. return tensor->name;
  4046. }
  4047. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4048. strncpy(tensor->name, name, sizeof(tensor->name));
  4049. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4050. return tensor;
  4051. }
  4052. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4053. va_list args;
  4054. va_start(args, fmt);
  4055. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4056. va_end(args);
  4057. return tensor;
  4058. }
  4059. struct ggml_tensor * ggml_view_tensor(
  4060. struct ggml_context * ctx,
  4061. const struct ggml_tensor * src) {
  4062. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4063. ggml_format_name(result, "%s (view)", src->name);
  4064. result->nb[0] = src->nb[0];
  4065. result->nb[1] = src->nb[1];
  4066. result->nb[2] = src->nb[2];
  4067. result->nb[3] = src->nb[3];
  4068. return result;
  4069. }
  4070. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4071. struct ggml_object * obj = ctx->objects_begin;
  4072. char * const mem_buffer = ctx->mem_buffer;
  4073. while (obj != NULL) {
  4074. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4075. if (strcmp(cur->name, name) == 0) {
  4076. return cur;
  4077. }
  4078. obj = obj->next;
  4079. }
  4080. return NULL;
  4081. }
  4082. ////////////////////////////////////////////////////////////////////////////////
  4083. // ggml_dup
  4084. struct ggml_tensor * ggml_dup_impl(
  4085. struct ggml_context * ctx,
  4086. struct ggml_tensor * a,
  4087. bool inplace) {
  4088. bool is_node = false;
  4089. if (!inplace && (a->grad)) {
  4090. is_node = true;
  4091. }
  4092. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4093. result->op = GGML_OP_DUP;
  4094. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4095. result->src[0] = a;
  4096. result->src[1] = NULL;
  4097. return result;
  4098. }
  4099. struct ggml_tensor * ggml_dup(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a) {
  4102. return ggml_dup_impl(ctx, a, false);
  4103. }
  4104. struct ggml_tensor * ggml_dup_inplace(
  4105. struct ggml_context * ctx,
  4106. struct ggml_tensor * a) {
  4107. return ggml_dup_impl(ctx, a, true);
  4108. }
  4109. // ggml_add
  4110. struct ggml_tensor * ggml_add_impl(
  4111. struct ggml_context * ctx,
  4112. struct ggml_tensor * a,
  4113. struct ggml_tensor * b,
  4114. bool inplace) {
  4115. // TODO: support less-strict constraint
  4116. // GGML_ASSERT(ggml_can_repeat(b, a));
  4117. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4118. bool is_node = false;
  4119. if (!inplace && (a->grad || b->grad)) {
  4120. // TODO: support backward pass for broadcasting
  4121. GGML_ASSERT(ggml_are_same_shape(a, b));
  4122. is_node = true;
  4123. }
  4124. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4125. result->op = GGML_OP_ADD;
  4126. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4127. result->src[0] = a;
  4128. result->src[1] = b;
  4129. return result;
  4130. }
  4131. struct ggml_tensor * ggml_add(
  4132. struct ggml_context * ctx,
  4133. struct ggml_tensor * a,
  4134. struct ggml_tensor * b) {
  4135. return ggml_add_impl(ctx, a, b, false);
  4136. }
  4137. struct ggml_tensor * ggml_add_inplace(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a,
  4140. struct ggml_tensor * b) {
  4141. return ggml_add_impl(ctx, a, b, true);
  4142. }
  4143. // ggml_add1
  4144. struct ggml_tensor * ggml_add1_impl(
  4145. struct ggml_context * ctx,
  4146. struct ggml_tensor * a,
  4147. struct ggml_tensor * b,
  4148. bool inplace) {
  4149. GGML_ASSERT(ggml_is_scalar(b));
  4150. GGML_ASSERT(ggml_is_padded_1d(a));
  4151. bool is_node = false;
  4152. if (a->grad || b->grad) {
  4153. is_node = true;
  4154. }
  4155. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4156. result->op = GGML_OP_ADD1;
  4157. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4158. result->src[0] = a;
  4159. result->src[1] = b;
  4160. return result;
  4161. }
  4162. struct ggml_tensor * ggml_add1(
  4163. struct ggml_context * ctx,
  4164. struct ggml_tensor * a,
  4165. struct ggml_tensor * b) {
  4166. return ggml_add1_impl(ctx, a, b, false);
  4167. }
  4168. struct ggml_tensor * ggml_add1_inplace(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a,
  4171. struct ggml_tensor * b) {
  4172. return ggml_add1_impl(ctx, a, b, true);
  4173. }
  4174. // ggml_acc
  4175. struct ggml_tensor * ggml_acc_impl(
  4176. struct ggml_context * ctx,
  4177. struct ggml_tensor * a,
  4178. struct ggml_tensor * b,
  4179. size_t nb1,
  4180. size_t nb2,
  4181. size_t nb3,
  4182. size_t offset,
  4183. bool inplace) {
  4184. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4185. GGML_ASSERT(ggml_is_contiguous(a));
  4186. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4187. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4188. bool is_node = false;
  4189. if (!inplace && (a->grad || b->grad)) {
  4190. is_node = true;
  4191. }
  4192. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4193. ggml_scratch_save(ctx);
  4194. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4195. ((int32_t *) c->data)[0] = nb1;
  4196. ((int32_t *) c->data)[1] = nb2;
  4197. ((int32_t *) c->data)[2] = nb3;
  4198. ((int32_t *) c->data)[3] = offset;
  4199. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4200. ggml_scratch_load(ctx);
  4201. result->op = GGML_OP_ACC;
  4202. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4203. result->src[0] = a;
  4204. result->src[1] = b;
  4205. result->src[2] = c;
  4206. return result;
  4207. }
  4208. struct ggml_tensor * ggml_acc(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a,
  4211. struct ggml_tensor * b,
  4212. size_t nb1,
  4213. size_t nb2,
  4214. size_t nb3,
  4215. size_t offset) {
  4216. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4217. }
  4218. struct ggml_tensor * ggml_acc_inplace(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a,
  4221. struct ggml_tensor * b,
  4222. size_t nb1,
  4223. size_t nb2,
  4224. size_t nb3,
  4225. size_t offset) {
  4226. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4227. }
  4228. // ggml_sub
  4229. struct ggml_tensor * ggml_sub_impl(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a,
  4232. struct ggml_tensor * b,
  4233. bool inplace) {
  4234. GGML_ASSERT(ggml_are_same_shape(a, b));
  4235. bool is_node = false;
  4236. if (!inplace && (a->grad || b->grad)) {
  4237. is_node = true;
  4238. }
  4239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4240. result->op = GGML_OP_SUB;
  4241. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4242. result->src[0] = a;
  4243. result->src[1] = b;
  4244. return result;
  4245. }
  4246. struct ggml_tensor * ggml_sub(
  4247. struct ggml_context * ctx,
  4248. struct ggml_tensor * a,
  4249. struct ggml_tensor * b) {
  4250. return ggml_sub_impl(ctx, a, b, false);
  4251. }
  4252. struct ggml_tensor * ggml_sub_inplace(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a,
  4255. struct ggml_tensor * b) {
  4256. return ggml_sub_impl(ctx, a, b, true);
  4257. }
  4258. // ggml_mul
  4259. struct ggml_tensor * ggml_mul_impl(
  4260. struct ggml_context * ctx,
  4261. struct ggml_tensor * a,
  4262. struct ggml_tensor * b,
  4263. bool inplace) {
  4264. // TODO: support less-strict constraint
  4265. // GGML_ASSERT(ggml_can_repeat(b, a));
  4266. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4267. bool is_node = false;
  4268. if (!inplace && (a->grad || b->grad)) {
  4269. // TODO: support backward pass for broadcasting
  4270. GGML_ASSERT(ggml_are_same_shape(a, b));
  4271. is_node = true;
  4272. }
  4273. if (inplace) {
  4274. GGML_ASSERT(is_node == false);
  4275. }
  4276. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4277. result->op = GGML_OP_MUL;
  4278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4279. result->src[0] = a;
  4280. result->src[1] = b;
  4281. return result;
  4282. }
  4283. struct ggml_tensor * ggml_mul(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a,
  4286. struct ggml_tensor * b) {
  4287. return ggml_mul_impl(ctx, a, b, false);
  4288. }
  4289. struct ggml_tensor * ggml_mul_inplace(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. struct ggml_tensor * b) {
  4293. return ggml_mul_impl(ctx, a, b, true);
  4294. }
  4295. // ggml_div
  4296. struct ggml_tensor * ggml_div_impl(
  4297. struct ggml_context * ctx,
  4298. struct ggml_tensor * a,
  4299. struct ggml_tensor * b,
  4300. bool inplace) {
  4301. GGML_ASSERT(ggml_are_same_shape(a, b));
  4302. bool is_node = false;
  4303. if (!inplace && (a->grad || b->grad)) {
  4304. is_node = true;
  4305. }
  4306. if (inplace) {
  4307. GGML_ASSERT(is_node == false);
  4308. }
  4309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4310. result->op = GGML_OP_DIV;
  4311. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4312. result->src[0] = a;
  4313. result->src[1] = b;
  4314. return result;
  4315. }
  4316. struct ggml_tensor * ggml_div(
  4317. struct ggml_context * ctx,
  4318. struct ggml_tensor * a,
  4319. struct ggml_tensor * b) {
  4320. return ggml_div_impl(ctx, a, b, false);
  4321. }
  4322. struct ggml_tensor * ggml_div_inplace(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a,
  4325. struct ggml_tensor * b) {
  4326. return ggml_div_impl(ctx, a, b, true);
  4327. }
  4328. // ggml_sqr
  4329. struct ggml_tensor * ggml_sqr_impl(
  4330. struct ggml_context * ctx,
  4331. struct ggml_tensor * a,
  4332. bool inplace) {
  4333. bool is_node = false;
  4334. if (!inplace && (a->grad)) {
  4335. is_node = true;
  4336. }
  4337. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4338. result->op = GGML_OP_SQR;
  4339. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4340. result->src[0] = a;
  4341. result->src[1] = NULL;
  4342. return result;
  4343. }
  4344. struct ggml_tensor * ggml_sqr(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a) {
  4347. return ggml_sqr_impl(ctx, a, false);
  4348. }
  4349. struct ggml_tensor * ggml_sqr_inplace(
  4350. struct ggml_context * ctx,
  4351. struct ggml_tensor * a) {
  4352. return ggml_sqr_impl(ctx, a, true);
  4353. }
  4354. // ggml_sqrt
  4355. struct ggml_tensor * ggml_sqrt_impl(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a,
  4358. bool inplace) {
  4359. bool is_node = false;
  4360. if (!inplace && (a->grad)) {
  4361. is_node = true;
  4362. }
  4363. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4364. result->op = GGML_OP_SQRT;
  4365. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4366. result->src[0] = a;
  4367. result->src[1] = NULL;
  4368. return result;
  4369. }
  4370. struct ggml_tensor * ggml_sqrt(
  4371. struct ggml_context * ctx,
  4372. struct ggml_tensor * a) {
  4373. return ggml_sqrt_impl(ctx, a, false);
  4374. }
  4375. struct ggml_tensor * ggml_sqrt_inplace(
  4376. struct ggml_context * ctx,
  4377. struct ggml_tensor * a) {
  4378. return ggml_sqrt_impl(ctx, a, true);
  4379. }
  4380. // ggml_log
  4381. struct ggml_tensor * ggml_log_impl(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a,
  4384. bool inplace) {
  4385. bool is_node = false;
  4386. if (!inplace && (a->grad)) {
  4387. is_node = true;
  4388. }
  4389. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4390. result->op = GGML_OP_LOG;
  4391. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4392. result->src[0] = a;
  4393. result->src[1] = NULL;
  4394. return result;
  4395. }
  4396. struct ggml_tensor * ggml_log(
  4397. struct ggml_context * ctx,
  4398. struct ggml_tensor * a) {
  4399. return ggml_log_impl(ctx, a, false);
  4400. }
  4401. struct ggml_tensor * ggml_log_inplace(
  4402. struct ggml_context * ctx,
  4403. struct ggml_tensor * a) {
  4404. return ggml_log_impl(ctx, a, true);
  4405. }
  4406. // ggml_sum
  4407. struct ggml_tensor * ggml_sum(
  4408. struct ggml_context * ctx,
  4409. struct ggml_tensor * a) {
  4410. bool is_node = false;
  4411. if (a->grad) {
  4412. is_node = true;
  4413. }
  4414. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4415. result->op = GGML_OP_SUM;
  4416. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4417. result->src[0] = a;
  4418. result->src[1] = NULL;
  4419. return result;
  4420. }
  4421. // ggml_sum_rows
  4422. struct ggml_tensor * ggml_sum_rows(
  4423. struct ggml_context * ctx,
  4424. struct ggml_tensor * a) {
  4425. bool is_node = false;
  4426. if (a->grad) {
  4427. is_node = true;
  4428. }
  4429. int64_t ne[4] = {1,1,1,1};
  4430. for (int i=1; i<a->n_dims; ++i) {
  4431. ne[i] = a->ne[i];
  4432. }
  4433. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4434. result->op = GGML_OP_SUM_ROWS;
  4435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4436. result->src[0] = a;
  4437. result->src[1] = NULL;
  4438. return result;
  4439. }
  4440. // ggml_mean
  4441. struct ggml_tensor * ggml_mean(
  4442. struct ggml_context * ctx,
  4443. struct ggml_tensor * a) {
  4444. bool is_node = false;
  4445. if (a->grad) {
  4446. GGML_ASSERT(false); // TODO: implement
  4447. is_node = true;
  4448. }
  4449. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4450. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4451. result->op = GGML_OP_MEAN;
  4452. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4453. result->src[0] = a;
  4454. result->src[1] = NULL;
  4455. return result;
  4456. }
  4457. // ggml_argmax
  4458. struct ggml_tensor * ggml_argmax(
  4459. struct ggml_context * ctx,
  4460. struct ggml_tensor * a) {
  4461. GGML_ASSERT(ggml_is_matrix(a));
  4462. bool is_node = false;
  4463. if (a->grad) {
  4464. GGML_ASSERT(false);
  4465. is_node = true;
  4466. }
  4467. int64_t ne[GGML_MAX_DIMS] = { a->ne[1], 1, 1, 1 };
  4468. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, a->n_dims, ne);
  4469. result->op = GGML_OP_ARGMAX;
  4470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4471. result->src[0] = a;
  4472. result->src[1] = NULL;
  4473. return result;
  4474. }
  4475. // ggml_repeat
  4476. struct ggml_tensor * ggml_repeat(
  4477. struct ggml_context * ctx,
  4478. struct ggml_tensor * a,
  4479. struct ggml_tensor * b) {
  4480. GGML_ASSERT(ggml_can_repeat(a, b));
  4481. bool is_node = false;
  4482. if (a->grad) {
  4483. is_node = true;
  4484. }
  4485. if (ggml_are_same_shape(a, b) && !is_node) {
  4486. return a;
  4487. }
  4488. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4489. result->op = GGML_OP_REPEAT;
  4490. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4491. result->src[0] = a;
  4492. result->src[1] = b;
  4493. return result;
  4494. }
  4495. // ggml_repeat_back
  4496. struct ggml_tensor * ggml_repeat_back(
  4497. struct ggml_context * ctx,
  4498. struct ggml_tensor * a,
  4499. struct ggml_tensor * b) {
  4500. GGML_ASSERT(ggml_can_repeat(b, a));
  4501. bool is_node = false;
  4502. if (a->grad) {
  4503. is_node = true;
  4504. }
  4505. if (ggml_are_same_shape(a, b) && !is_node) {
  4506. return a;
  4507. }
  4508. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4509. result->op = GGML_OP_REPEAT_BACK;
  4510. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4511. result->src[0] = a;
  4512. result->src[1] = b;
  4513. return result;
  4514. }
  4515. // ggml_abs
  4516. struct ggml_tensor * ggml_abs_impl(
  4517. struct ggml_context * ctx,
  4518. struct ggml_tensor * a,
  4519. bool inplace) {
  4520. bool is_node = false;
  4521. if (!inplace && (a->grad)) {
  4522. is_node = true;
  4523. }
  4524. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4525. result->op = GGML_OP_ABS;
  4526. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4527. result->src[0] = a;
  4528. result->src[1] = NULL;
  4529. return result;
  4530. }
  4531. struct ggml_tensor * ggml_abs(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a) {
  4534. return ggml_abs_impl(ctx, a, false);
  4535. }
  4536. struct ggml_tensor * ggml_abs_inplace(
  4537. struct ggml_context * ctx,
  4538. struct ggml_tensor * a) {
  4539. return ggml_abs_impl(ctx, a, true);
  4540. }
  4541. // ggml_sgn
  4542. struct ggml_tensor * ggml_sgn_impl(
  4543. struct ggml_context * ctx,
  4544. struct ggml_tensor * a,
  4545. bool inplace) {
  4546. bool is_node = false;
  4547. if (!inplace && (a->grad)) {
  4548. is_node = true;
  4549. }
  4550. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4551. result->op = GGML_OP_SGN;
  4552. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4553. result->src[0] = a;
  4554. result->src[1] = NULL;
  4555. return result;
  4556. }
  4557. struct ggml_tensor * ggml_sgn(
  4558. struct ggml_context * ctx,
  4559. struct ggml_tensor * a) {
  4560. return ggml_sgn_impl(ctx, a, false);
  4561. }
  4562. struct ggml_tensor * ggml_sgn_inplace(
  4563. struct ggml_context * ctx,
  4564. struct ggml_tensor * a) {
  4565. return ggml_sgn_impl(ctx, a, true);
  4566. }
  4567. // ggml_neg
  4568. struct ggml_tensor * ggml_neg_impl(
  4569. struct ggml_context * ctx,
  4570. struct ggml_tensor * a,
  4571. bool inplace) {
  4572. bool is_node = false;
  4573. if (!inplace && (a->grad)) {
  4574. is_node = true;
  4575. }
  4576. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4577. result->op = GGML_OP_NEG;
  4578. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4579. result->src[0] = a;
  4580. result->src[1] = NULL;
  4581. return result;
  4582. }
  4583. struct ggml_tensor * ggml_neg(
  4584. struct ggml_context * ctx,
  4585. struct ggml_tensor * a) {
  4586. return ggml_neg_impl(ctx, a, false);
  4587. }
  4588. struct ggml_tensor * ggml_neg_inplace(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a) {
  4591. return ggml_neg_impl(ctx, a, true);
  4592. }
  4593. // ggml_step
  4594. struct ggml_tensor * ggml_step_impl(
  4595. struct ggml_context * ctx,
  4596. struct ggml_tensor * a,
  4597. bool inplace) {
  4598. bool is_node = false;
  4599. if (!inplace && (a->grad)) {
  4600. is_node = true;
  4601. }
  4602. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4603. result->op = GGML_OP_STEP;
  4604. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4605. result->src[0] = a;
  4606. result->src[1] = NULL;
  4607. return result;
  4608. }
  4609. struct ggml_tensor * ggml_step(
  4610. struct ggml_context * ctx,
  4611. struct ggml_tensor * a) {
  4612. return ggml_step_impl(ctx, a, false);
  4613. }
  4614. struct ggml_tensor * ggml_step_inplace(
  4615. struct ggml_context * ctx,
  4616. struct ggml_tensor * a) {
  4617. return ggml_step_impl(ctx, a, true);
  4618. }
  4619. // ggml_tanh
  4620. struct ggml_tensor * ggml_tanh_impl(
  4621. struct ggml_context * ctx,
  4622. struct ggml_tensor * a,
  4623. bool inplace) {
  4624. bool is_node = false;
  4625. if (!inplace && (a->grad)) {
  4626. is_node = true;
  4627. }
  4628. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4629. result->op = GGML_OP_TANH;
  4630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4631. result->src[0] = a;
  4632. result->src[1] = NULL;
  4633. return result;
  4634. }
  4635. struct ggml_tensor * ggml_tanh(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a) {
  4638. return ggml_tanh_impl(ctx, a, false);
  4639. }
  4640. struct ggml_tensor * ggml_tanh_inplace(
  4641. struct ggml_context * ctx,
  4642. struct ggml_tensor * a) {
  4643. return ggml_tanh_impl(ctx, a, true);
  4644. }
  4645. // ggml_elu
  4646. struct ggml_tensor * ggml_elu_impl(
  4647. struct ggml_context * ctx,
  4648. struct ggml_tensor * a,
  4649. bool inplace) {
  4650. bool is_node = false;
  4651. if (!inplace && (a->grad)) {
  4652. is_node = true;
  4653. }
  4654. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4655. result->op = GGML_OP_ELU;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src[0] = a;
  4658. result->src[1] = NULL;
  4659. return result;
  4660. }
  4661. struct ggml_tensor * ggml_elu(
  4662. struct ggml_context * ctx,
  4663. struct ggml_tensor * a) {
  4664. return ggml_elu_impl(ctx, a, false);
  4665. }
  4666. struct ggml_tensor * ggml_elu_inplace(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a) {
  4669. return ggml_elu_impl(ctx, a, true);
  4670. }
  4671. // ggml_relu
  4672. struct ggml_tensor * ggml_relu_impl(
  4673. struct ggml_context * ctx,
  4674. struct ggml_tensor * a,
  4675. bool inplace) {
  4676. bool is_node = false;
  4677. if (!inplace && (a->grad)) {
  4678. is_node = true;
  4679. }
  4680. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4681. result->op = GGML_OP_RELU;
  4682. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4683. result->src[0] = a;
  4684. result->src[1] = NULL;
  4685. return result;
  4686. }
  4687. struct ggml_tensor * ggml_relu(
  4688. struct ggml_context * ctx,
  4689. struct ggml_tensor * a) {
  4690. return ggml_relu_impl(ctx, a, false);
  4691. }
  4692. struct ggml_tensor * ggml_relu_inplace(
  4693. struct ggml_context * ctx,
  4694. struct ggml_tensor * a) {
  4695. return ggml_relu_impl(ctx, a, true);
  4696. }
  4697. // ggml_gelu
  4698. struct ggml_tensor * ggml_gelu_impl(
  4699. struct ggml_context * ctx,
  4700. struct ggml_tensor * a,
  4701. bool inplace) {
  4702. bool is_node = false;
  4703. if (!inplace && (a->grad)) {
  4704. is_node = true;
  4705. }
  4706. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4707. result->op = GGML_OP_GELU;
  4708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4709. result->src[0] = a;
  4710. result->src[1] = NULL;
  4711. return result;
  4712. }
  4713. struct ggml_tensor * ggml_gelu(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a) {
  4716. return ggml_gelu_impl(ctx, a, false);
  4717. }
  4718. struct ggml_tensor * ggml_gelu_inplace(
  4719. struct ggml_context * ctx,
  4720. struct ggml_tensor * a) {
  4721. return ggml_gelu_impl(ctx, a, true);
  4722. }
  4723. // ggml_gelu_quick
  4724. struct ggml_tensor * ggml_gelu_quick_impl(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. bool inplace) {
  4728. bool is_node = false;
  4729. if (!inplace && (a->grad)) {
  4730. is_node = true;
  4731. }
  4732. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4733. result->op = GGML_OP_GELU_QUICK;
  4734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4735. result->src[0] = a;
  4736. result->src[1] = NULL;
  4737. return result;
  4738. }
  4739. struct ggml_tensor * ggml_gelu_quick(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a) {
  4742. return ggml_gelu_quick_impl(ctx, a, false);
  4743. }
  4744. struct ggml_tensor * ggml_gelu_quick_inplace(
  4745. struct ggml_context * ctx,
  4746. struct ggml_tensor * a) {
  4747. return ggml_gelu_quick_impl(ctx, a, true);
  4748. }
  4749. // ggml_silu
  4750. struct ggml_tensor * ggml_silu_impl(
  4751. struct ggml_context * ctx,
  4752. struct ggml_tensor * a,
  4753. bool inplace) {
  4754. bool is_node = false;
  4755. if (!inplace && (a->grad)) {
  4756. is_node = true;
  4757. }
  4758. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4759. result->op = GGML_OP_SILU;
  4760. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4761. result->src[0] = a;
  4762. result->src[1] = NULL;
  4763. return result;
  4764. }
  4765. struct ggml_tensor * ggml_silu(
  4766. struct ggml_context * ctx,
  4767. struct ggml_tensor * a) {
  4768. return ggml_silu_impl(ctx, a, false);
  4769. }
  4770. struct ggml_tensor * ggml_silu_inplace(
  4771. struct ggml_context * ctx,
  4772. struct ggml_tensor * a) {
  4773. return ggml_silu_impl(ctx, a, true);
  4774. }
  4775. // ggml_silu_back
  4776. struct ggml_tensor * ggml_silu_back(
  4777. struct ggml_context * ctx,
  4778. struct ggml_tensor * a,
  4779. struct ggml_tensor * b) {
  4780. bool is_node = false;
  4781. if (a->grad || b->grad) {
  4782. // TODO: implement backward
  4783. is_node = true;
  4784. }
  4785. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4786. result->op = GGML_OP_SILU_BACK;
  4787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4788. result->src[0] = a;
  4789. result->src[1] = b;
  4790. return result;
  4791. }
  4792. // ggml_norm
  4793. struct ggml_tensor * ggml_norm_impl(
  4794. struct ggml_context * ctx,
  4795. struct ggml_tensor * a,
  4796. bool inplace) {
  4797. bool is_node = false;
  4798. if (!inplace && (a->grad)) {
  4799. GGML_ASSERT(false); // TODO: implement backward
  4800. is_node = true;
  4801. }
  4802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4803. result->op = GGML_OP_NORM;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src[0] = a;
  4806. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4807. return result;
  4808. }
  4809. struct ggml_tensor * ggml_norm(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a) {
  4812. return ggml_norm_impl(ctx, a, false);
  4813. }
  4814. struct ggml_tensor * ggml_norm_inplace(
  4815. struct ggml_context * ctx,
  4816. struct ggml_tensor * a) {
  4817. return ggml_norm_impl(ctx, a, true);
  4818. }
  4819. struct ggml_tensor * ggml_rms_norm_impl(
  4820. struct ggml_context * ctx,
  4821. struct ggml_tensor * a,
  4822. bool inplace) {
  4823. bool is_node = false;
  4824. if (!inplace && (a->grad)) {
  4825. is_node = true;
  4826. }
  4827. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4828. result->op = GGML_OP_RMS_NORM;
  4829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4830. result->src[0] = a;
  4831. result->src[1] = NULL; // TODO: maybe store epsilon here?
  4832. return result;
  4833. }
  4834. struct ggml_tensor * ggml_rms_norm(
  4835. struct ggml_context * ctx,
  4836. struct ggml_tensor * a) {
  4837. return ggml_rms_norm_impl(ctx, a, false);
  4838. }
  4839. struct ggml_tensor * ggml_rms_norm_inplace(
  4840. struct ggml_context * ctx,
  4841. struct ggml_tensor * a) {
  4842. return ggml_rms_norm_impl(ctx, a, true);
  4843. }
  4844. struct ggml_tensor * ggml_rms_norm_back(
  4845. struct ggml_context * ctx,
  4846. struct ggml_tensor * a,
  4847. struct ggml_tensor * b) {
  4848. bool is_node = false;
  4849. if (a->grad) {
  4850. // TODO: implement backward
  4851. is_node = true;
  4852. }
  4853. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4854. result->op = GGML_OP_RMS_NORM_BACK;
  4855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4856. result->src[0] = a;
  4857. result->src[1] = b;
  4858. return result;
  4859. }
  4860. // ggml_mul_mat
  4861. struct ggml_tensor * ggml_mul_mat(
  4862. struct ggml_context * ctx,
  4863. struct ggml_tensor * a,
  4864. struct ggml_tensor * b) {
  4865. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4866. GGML_ASSERT(!ggml_is_transposed(a));
  4867. bool is_node = false;
  4868. if (a->grad || b->grad) {
  4869. is_node = true;
  4870. }
  4871. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4872. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4873. result->op = GGML_OP_MUL_MAT;
  4874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4875. result->src[0] = a;
  4876. result->src[1] = b;
  4877. return result;
  4878. }
  4879. // ggml_out_prod
  4880. struct ggml_tensor * ggml_out_prod(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. struct ggml_tensor * b) {
  4884. GGML_ASSERT(ggml_can_out_prod(a, b));
  4885. GGML_ASSERT(!ggml_is_transposed(a));
  4886. bool is_node = false;
  4887. if (a->grad || b->grad) {
  4888. is_node = true;
  4889. }
  4890. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4891. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4892. result->op = GGML_OP_OUT_PROD;
  4893. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4894. result->src[0] = a;
  4895. result->src[1] = b;
  4896. return result;
  4897. }
  4898. // ggml_scale
  4899. struct ggml_tensor * ggml_scale_impl(
  4900. struct ggml_context * ctx,
  4901. struct ggml_tensor * a,
  4902. struct ggml_tensor * b,
  4903. bool inplace) {
  4904. GGML_ASSERT(ggml_is_scalar(b));
  4905. GGML_ASSERT(ggml_is_padded_1d(a));
  4906. bool is_node = false;
  4907. if (a->grad || b->grad) {
  4908. is_node = true;
  4909. }
  4910. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4911. result->op = GGML_OP_SCALE;
  4912. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4913. result->src[0] = a;
  4914. result->src[1] = b;
  4915. return result;
  4916. }
  4917. struct ggml_tensor * ggml_scale(
  4918. struct ggml_context * ctx,
  4919. struct ggml_tensor * a,
  4920. struct ggml_tensor * b) {
  4921. return ggml_scale_impl(ctx, a, b, false);
  4922. }
  4923. struct ggml_tensor * ggml_scale_inplace(
  4924. struct ggml_context * ctx,
  4925. struct ggml_tensor * a,
  4926. struct ggml_tensor * b) {
  4927. return ggml_scale_impl(ctx, a, b, true);
  4928. }
  4929. // ggml_set
  4930. struct ggml_tensor * ggml_set_impl(
  4931. struct ggml_context * ctx,
  4932. struct ggml_tensor * a,
  4933. struct ggml_tensor * b,
  4934. size_t nb1,
  4935. size_t nb2,
  4936. size_t nb3,
  4937. size_t offset,
  4938. bool inplace) {
  4939. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4940. bool is_node = false;
  4941. if (a->grad || b->grad) {
  4942. is_node = true;
  4943. }
  4944. // make a view of the destination
  4945. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4946. ggml_scratch_save(ctx);
  4947. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4948. (( int32_t * ) c->data)[0] = nb1;
  4949. (( int32_t * ) c->data)[1] = nb2;
  4950. (( int32_t * ) c->data)[2] = nb3;
  4951. (( int32_t * ) c->data)[3] = offset;
  4952. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4953. ggml_scratch_load(ctx);
  4954. result->op = GGML_OP_SET;
  4955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4956. result->src[0] = a;
  4957. result->src[1] = b;
  4958. result->src[2] = c;
  4959. return result;
  4960. }
  4961. struct ggml_tensor * ggml_set(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a,
  4964. struct ggml_tensor * b,
  4965. size_t nb1,
  4966. size_t nb2,
  4967. size_t nb3,
  4968. size_t offset) {
  4969. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4970. }
  4971. struct ggml_tensor * ggml_set_inplace(
  4972. struct ggml_context * ctx,
  4973. struct ggml_tensor * a,
  4974. struct ggml_tensor * b,
  4975. size_t nb1,
  4976. size_t nb2,
  4977. size_t nb3,
  4978. size_t offset) {
  4979. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4980. }
  4981. struct ggml_tensor * ggml_set_1d(
  4982. struct ggml_context * ctx,
  4983. struct ggml_tensor * a,
  4984. struct ggml_tensor * b,
  4985. size_t offset) {
  4986. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4987. }
  4988. struct ggml_tensor * ggml_set_1d_inplace(
  4989. struct ggml_context * ctx,
  4990. struct ggml_tensor * a,
  4991. struct ggml_tensor * b,
  4992. size_t offset) {
  4993. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4994. }
  4995. struct ggml_tensor * ggml_set_2d(
  4996. struct ggml_context * ctx,
  4997. struct ggml_tensor * a,
  4998. struct ggml_tensor * b,
  4999. size_t nb1,
  5000. size_t offset) {
  5001. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5002. }
  5003. struct ggml_tensor * ggml_set_2d_inplace(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. struct ggml_tensor * b,
  5007. size_t nb1,
  5008. size_t offset) {
  5009. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  5010. }
  5011. // ggml_cpy
  5012. struct ggml_tensor * ggml_cpy_impl(
  5013. struct ggml_context * ctx,
  5014. struct ggml_tensor * a,
  5015. struct ggml_tensor * b,
  5016. bool inplace) {
  5017. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5018. bool is_node = false;
  5019. if (!inplace && (a->grad || b->grad)) {
  5020. is_node = true;
  5021. }
  5022. // make a view of the destination
  5023. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  5024. if (strlen(b->name) > 0) {
  5025. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  5026. } else {
  5027. ggml_format_name(result, "%s (copy)", a->name);
  5028. }
  5029. result->op = GGML_OP_CPY;
  5030. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5031. result->src[0] = a;
  5032. result->src[1] = b;
  5033. return result;
  5034. }
  5035. struct ggml_tensor * ggml_cpy(
  5036. struct ggml_context * ctx,
  5037. struct ggml_tensor * a,
  5038. struct ggml_tensor * b) {
  5039. return ggml_cpy_impl(ctx, a, b, false);
  5040. }
  5041. struct ggml_tensor * ggml_cpy_inplace(
  5042. struct ggml_context * ctx,
  5043. struct ggml_tensor * a,
  5044. struct ggml_tensor * b) {
  5045. return ggml_cpy_impl(ctx, a, b, true);
  5046. }
  5047. // ggml_cont
  5048. struct ggml_tensor * ggml_cont_impl(
  5049. struct ggml_context * ctx,
  5050. struct ggml_tensor * a,
  5051. bool inplace) {
  5052. bool is_node = false;
  5053. if (!inplace && a->grad) {
  5054. is_node = true;
  5055. }
  5056. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5057. ggml_format_name(result, "%s (cont)", a->name);
  5058. result->op = GGML_OP_CONT;
  5059. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5060. result->src[0] = a;
  5061. result->src[1] = NULL;
  5062. return result;
  5063. }
  5064. struct ggml_tensor * ggml_cont(
  5065. struct ggml_context * ctx,
  5066. struct ggml_tensor * a) {
  5067. return ggml_cont_impl(ctx, a, false);
  5068. }
  5069. struct ggml_tensor * ggml_cont_inplace(
  5070. struct ggml_context * ctx,
  5071. struct ggml_tensor * a) {
  5072. return ggml_cont_impl(ctx, a, true);
  5073. }
  5074. // ggml_reshape
  5075. struct ggml_tensor * ggml_reshape(
  5076. struct ggml_context * ctx,
  5077. struct ggml_tensor * a,
  5078. struct ggml_tensor * b) {
  5079. GGML_ASSERT(ggml_is_contiguous(a));
  5080. GGML_ASSERT(ggml_is_contiguous(b));
  5081. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  5082. bool is_node = false;
  5083. if (a->grad) {
  5084. is_node = true;
  5085. }
  5086. if (b->grad) {
  5087. // gradient propagation is not supported
  5088. //GGML_ASSERT(false);
  5089. }
  5090. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  5091. ggml_format_name(result, "%s (reshaped)", a->name);
  5092. result->op = GGML_OP_RESHAPE;
  5093. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5094. result->src[0] = a;
  5095. result->src[1] = NULL;
  5096. return result;
  5097. }
  5098. struct ggml_tensor * ggml_reshape_1d(
  5099. struct ggml_context * ctx,
  5100. struct ggml_tensor * a,
  5101. int64_t ne0) {
  5102. GGML_ASSERT(ggml_is_contiguous(a));
  5103. GGML_ASSERT(ggml_nelements(a) == ne0);
  5104. bool is_node = false;
  5105. if (a->grad) {
  5106. is_node = true;
  5107. }
  5108. const int64_t ne[1] = { ne0 };
  5109. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5110. ggml_format_name(result, "%s (reshaped)", a->name);
  5111. result->op = GGML_OP_RESHAPE;
  5112. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5113. result->src[0] = a;
  5114. result->src[1] = NULL;
  5115. return result;
  5116. }
  5117. struct ggml_tensor * ggml_reshape_2d(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a,
  5120. int64_t ne0,
  5121. int64_t ne1) {
  5122. GGML_ASSERT(ggml_is_contiguous(a));
  5123. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5124. bool is_node = false;
  5125. if (a->grad) {
  5126. is_node = true;
  5127. }
  5128. const int64_t ne[2] = { ne0, ne1 };
  5129. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5130. ggml_format_name(result, "%s (reshaped)", a->name);
  5131. result->op = GGML_OP_RESHAPE;
  5132. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5133. result->src[0] = a;
  5134. result->src[1] = NULL;
  5135. return result;
  5136. }
  5137. struct ggml_tensor * ggml_reshape_3d(
  5138. struct ggml_context * ctx,
  5139. struct ggml_tensor * a,
  5140. int64_t ne0,
  5141. int64_t ne1,
  5142. int64_t ne2) {
  5143. GGML_ASSERT(ggml_is_contiguous(a));
  5144. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5145. bool is_node = false;
  5146. if (a->grad) {
  5147. is_node = true;
  5148. }
  5149. const int64_t ne[3] = { ne0, ne1, ne2 };
  5150. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5151. ggml_format_name(result, "%s (reshaped)", a->name);
  5152. result->op = GGML_OP_RESHAPE;
  5153. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5154. result->src[0] = a;
  5155. result->src[1] = NULL;
  5156. return result;
  5157. }
  5158. struct ggml_tensor * ggml_reshape_4d(
  5159. struct ggml_context * ctx,
  5160. struct ggml_tensor * a,
  5161. int64_t ne0,
  5162. int64_t ne1,
  5163. int64_t ne2,
  5164. int64_t ne3) {
  5165. GGML_ASSERT(ggml_is_contiguous(a));
  5166. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5167. bool is_node = false;
  5168. if (a->grad) {
  5169. is_node = true;
  5170. }
  5171. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5172. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5173. ggml_format_name(result, "%s (reshaped)", a->name);
  5174. result->op = GGML_OP_RESHAPE;
  5175. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5176. result->src[0] = a;
  5177. result->src[1] = NULL;
  5178. return result;
  5179. }
  5180. // ggml_view_1d
  5181. struct ggml_tensor * ggml_view_1d(
  5182. struct ggml_context * ctx,
  5183. struct ggml_tensor * a,
  5184. int64_t ne0,
  5185. size_t offset) {
  5186. bool is_node = false;
  5187. if (a->grad) {
  5188. is_node = true;
  5189. }
  5190. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5191. ggml_format_name(result, "%s (view)", a->name);
  5192. ggml_scratch_save(ctx);
  5193. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5194. ggml_set_name(offs, "offset");
  5195. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5196. ggml_scratch_load(ctx);
  5197. result->op = GGML_OP_VIEW;
  5198. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5199. result->src[0] = a;
  5200. result->src[1] = NULL;
  5201. result->src[2] = offs;
  5202. return result;
  5203. }
  5204. // ggml_view_2d
  5205. struct ggml_tensor * ggml_view_2d(
  5206. struct ggml_context * ctx,
  5207. struct ggml_tensor * a,
  5208. int64_t ne0,
  5209. int64_t ne1,
  5210. size_t nb1,
  5211. size_t offset) {
  5212. bool is_node = false;
  5213. if (a->grad) {
  5214. is_node = true;
  5215. }
  5216. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5217. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5218. ggml_format_name(result, "%s (view)", a->name);
  5219. ggml_scratch_save(ctx);
  5220. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5221. ggml_set_name(offs, "offset");
  5222. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5223. ggml_scratch_load(ctx);
  5224. result->nb[1] = nb1;
  5225. result->nb[2] = result->nb[1]*ne1;
  5226. result->nb[3] = result->nb[2];
  5227. result->op = GGML_OP_VIEW;
  5228. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5229. result->src[0] = a;
  5230. result->src[1] = NULL;
  5231. result->src[2] = offs;
  5232. return result;
  5233. }
  5234. // ggml_view_3d
  5235. struct ggml_tensor * ggml_view_3d(
  5236. struct ggml_context * ctx,
  5237. struct ggml_tensor * a,
  5238. int64_t ne0,
  5239. int64_t ne1,
  5240. int64_t ne2,
  5241. size_t nb1,
  5242. size_t nb2,
  5243. size_t offset) {
  5244. bool is_node = false;
  5245. if (a->grad) {
  5246. is_node = true;
  5247. }
  5248. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5249. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5250. ggml_format_name(result, "%s (view)", a->name);
  5251. ggml_scratch_save(ctx);
  5252. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5253. ggml_set_name(offs, "offset");
  5254. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5255. ggml_scratch_load(ctx);
  5256. result->nb[1] = nb1;
  5257. result->nb[2] = nb2;
  5258. result->nb[3] = result->nb[2]*ne2;
  5259. result->op = GGML_OP_VIEW;
  5260. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5261. result->src[0] = a;
  5262. result->src[1] = NULL;
  5263. result->src[2] = offs;
  5264. return result;
  5265. }
  5266. // ggml_view_4d
  5267. struct ggml_tensor * ggml_view_4d(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. int64_t ne0,
  5271. int64_t ne1,
  5272. int64_t ne2,
  5273. int64_t ne3,
  5274. size_t nb1,
  5275. size_t nb2,
  5276. size_t nb3,
  5277. size_t offset) {
  5278. bool is_node = false;
  5279. if (a->grad) {
  5280. is_node = true;
  5281. }
  5282. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5283. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5284. ggml_format_name(result, "%s (view)", a->name);
  5285. ggml_scratch_save(ctx);
  5286. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5287. ggml_set_name(offs, "offset");
  5288. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5289. ggml_scratch_load(ctx);
  5290. result->nb[1] = nb1;
  5291. result->nb[2] = nb2;
  5292. result->nb[3] = nb3;
  5293. result->op = GGML_OP_VIEW;
  5294. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5295. result->src[0] = a;
  5296. result->src[1] = NULL;
  5297. result->src[2] = offs;
  5298. return result;
  5299. }
  5300. // ggml_permute
  5301. struct ggml_tensor * ggml_permute(
  5302. struct ggml_context * ctx,
  5303. struct ggml_tensor * a,
  5304. int axis0,
  5305. int axis1,
  5306. int axis2,
  5307. int axis3) {
  5308. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5309. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5310. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5311. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5312. GGML_ASSERT(axis0 != axis1);
  5313. GGML_ASSERT(axis0 != axis2);
  5314. GGML_ASSERT(axis0 != axis3);
  5315. GGML_ASSERT(axis1 != axis2);
  5316. GGML_ASSERT(axis1 != axis3);
  5317. GGML_ASSERT(axis2 != axis3);
  5318. bool is_node = false;
  5319. if (a->grad) {
  5320. is_node = true;
  5321. }
  5322. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5323. ggml_format_name(result, "%s (permuted)", a->name);
  5324. int ne[GGML_MAX_DIMS];
  5325. int nb[GGML_MAX_DIMS];
  5326. ne[axis0] = a->ne[0];
  5327. ne[axis1] = a->ne[1];
  5328. ne[axis2] = a->ne[2];
  5329. ne[axis3] = a->ne[3];
  5330. nb[axis0] = a->nb[0];
  5331. nb[axis1] = a->nb[1];
  5332. nb[axis2] = a->nb[2];
  5333. nb[axis3] = a->nb[3];
  5334. result->ne[0] = ne[0];
  5335. result->ne[1] = ne[1];
  5336. result->ne[2] = ne[2];
  5337. result->ne[3] = ne[3];
  5338. result->nb[0] = nb[0];
  5339. result->nb[1] = nb[1];
  5340. result->nb[2] = nb[2];
  5341. result->nb[3] = nb[3];
  5342. result->op = GGML_OP_PERMUTE;
  5343. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5344. result->src[0] = a;
  5345. result->src[1] = NULL;
  5346. if (is_node) {
  5347. ggml_scratch_save(ctx);
  5348. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5349. ((int32_t *) b->data)[0] = axis0;
  5350. ((int32_t *) b->data)[1] = axis1;
  5351. ((int32_t *) b->data)[2] = axis2;
  5352. ((int32_t *) b->data)[3] = axis3;
  5353. ggml_scratch_load(ctx);
  5354. result->src[2] = b;
  5355. }
  5356. return result;
  5357. }
  5358. // ggml_transpose
  5359. struct ggml_tensor * ggml_transpose(
  5360. struct ggml_context * ctx,
  5361. struct ggml_tensor * a) {
  5362. bool is_node = false;
  5363. if (a->grad) {
  5364. is_node = true;
  5365. }
  5366. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5367. ggml_format_name(result, "%s (transposed)", a->name);
  5368. result->ne[0] = a->ne[1];
  5369. result->ne[1] = a->ne[0];
  5370. result->nb[0] = a->nb[1];
  5371. result->nb[1] = a->nb[0];
  5372. result->op = GGML_OP_TRANSPOSE;
  5373. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5374. result->src[0] = a;
  5375. result->src[1] = NULL;
  5376. return result;
  5377. }
  5378. // ggml_get_rows
  5379. struct ggml_tensor * ggml_get_rows(
  5380. struct ggml_context * ctx,
  5381. struct ggml_tensor * a,
  5382. struct ggml_tensor * b) {
  5383. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5384. bool is_node = false;
  5385. if (a->grad || b->grad) {
  5386. is_node = true;
  5387. }
  5388. // TODO: implement non F32 return
  5389. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5390. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5391. result->op = GGML_OP_GET_ROWS;
  5392. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5393. result->src[0] = a;
  5394. result->src[1] = b;
  5395. return result;
  5396. }
  5397. // ggml_get_rows_back
  5398. struct ggml_tensor * ggml_get_rows_back(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. struct ggml_tensor * b,
  5402. struct ggml_tensor * c) {
  5403. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5404. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5405. bool is_node = false;
  5406. if (a->grad || b->grad) {
  5407. is_node = true;
  5408. }
  5409. // TODO: implement non F32 return
  5410. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5411. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5412. result->op = GGML_OP_GET_ROWS_BACK;
  5413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5414. result->src[0] = a;
  5415. result->src[1] = b;
  5416. result->src[2] = c;
  5417. return result;
  5418. }
  5419. // ggml_diag
  5420. struct ggml_tensor * ggml_diag(
  5421. struct ggml_context * ctx,
  5422. struct ggml_tensor * a) {
  5423. GGML_ASSERT(a->ne[1] == 1);
  5424. bool is_node = false;
  5425. if (a->grad) {
  5426. is_node = true;
  5427. }
  5428. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5429. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5430. result->op = GGML_OP_DIAG;
  5431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5432. result->src[0] = a;
  5433. result->src[1] = NULL;
  5434. return result;
  5435. }
  5436. // ggml_diag_mask_inf
  5437. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5438. struct ggml_context * ctx,
  5439. struct ggml_tensor * a,
  5440. int n_past,
  5441. bool inplace) {
  5442. bool is_node = false;
  5443. if (a->grad) {
  5444. is_node = true;
  5445. }
  5446. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5447. ggml_scratch_save(ctx);
  5448. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5449. ((int32_t *) b->data)[0] = n_past;
  5450. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5451. ggml_scratch_load(ctx);
  5452. result->op = GGML_OP_DIAG_MASK_INF;
  5453. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5454. result->src[0] = a;
  5455. result->src[1] = b;
  5456. return result;
  5457. }
  5458. struct ggml_tensor * ggml_diag_mask_inf(
  5459. struct ggml_context * ctx,
  5460. struct ggml_tensor * a,
  5461. int n_past) {
  5462. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5463. }
  5464. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5465. struct ggml_context * ctx,
  5466. struct ggml_tensor * a,
  5467. int n_past) {
  5468. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5469. }
  5470. // ggml_diag_mask_zero
  5471. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5472. struct ggml_context * ctx,
  5473. struct ggml_tensor * a,
  5474. int n_past,
  5475. bool inplace) {
  5476. bool is_node = false;
  5477. if (a->grad) {
  5478. is_node = true;
  5479. }
  5480. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5481. ggml_scratch_save(ctx);
  5482. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5483. ggml_set_name(b, "n_past, inplace");
  5484. ((int32_t *) b->data)[0] = n_past;
  5485. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5486. ggml_scratch_load(ctx);
  5487. result->op = GGML_OP_DIAG_MASK_ZERO;
  5488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5489. result->src[0] = a;
  5490. result->src[1] = b;
  5491. return result;
  5492. }
  5493. struct ggml_tensor * ggml_diag_mask_zero(
  5494. struct ggml_context * ctx,
  5495. struct ggml_tensor * a,
  5496. int n_past) {
  5497. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5498. }
  5499. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. int n_past) {
  5503. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5504. }
  5505. // ggml_soft_max
  5506. struct ggml_tensor * ggml_soft_max_impl(
  5507. struct ggml_context * ctx,
  5508. struct ggml_tensor * a,
  5509. bool inplace) {
  5510. bool is_node = false;
  5511. if (a->grad) {
  5512. is_node = true;
  5513. }
  5514. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5515. result->op = GGML_OP_SOFT_MAX;
  5516. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5517. result->src[0] = a;
  5518. result->src[1] = NULL;
  5519. return result;
  5520. }
  5521. struct ggml_tensor * ggml_soft_max(
  5522. struct ggml_context * ctx,
  5523. struct ggml_tensor * a) {
  5524. return ggml_soft_max_impl(ctx, a, false);
  5525. }
  5526. struct ggml_tensor * ggml_soft_max_inplace(
  5527. struct ggml_context * ctx,
  5528. struct ggml_tensor * a) {
  5529. return ggml_soft_max_impl(ctx, a, true);
  5530. }
  5531. // ggml_soft_max_back
  5532. struct ggml_tensor * ggml_soft_max_back_impl(
  5533. struct ggml_context * ctx,
  5534. struct ggml_tensor * a,
  5535. struct ggml_tensor * b,
  5536. bool inplace) {
  5537. bool is_node = false;
  5538. if (a->grad || b->grad) {
  5539. is_node = true; // TODO : implement backward pass
  5540. }
  5541. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5542. result->op = GGML_OP_SOFT_MAX_BACK;
  5543. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5544. result->src[0] = a;
  5545. result->src[1] = b;
  5546. return result;
  5547. }
  5548. struct ggml_tensor * ggml_soft_max_back(
  5549. struct ggml_context * ctx,
  5550. struct ggml_tensor * a,
  5551. struct ggml_tensor * b) {
  5552. return ggml_soft_max_back_impl(ctx, a, b, false);
  5553. }
  5554. struct ggml_tensor * ggml_soft_max_back_inplace(
  5555. struct ggml_context * ctx,
  5556. struct ggml_tensor * a,
  5557. struct ggml_tensor * b) {
  5558. return ggml_soft_max_back_impl(ctx, a, b, true);
  5559. }
  5560. // ggml_rope
  5561. struct ggml_tensor * ggml_rope_impl(
  5562. struct ggml_context * ctx,
  5563. struct ggml_tensor * a,
  5564. int n_past,
  5565. int n_dims,
  5566. int mode,
  5567. int n_ctx,
  5568. bool inplace) {
  5569. GGML_ASSERT(n_past >= 0);
  5570. bool is_node = false;
  5571. if (a->grad) {
  5572. is_node = true;
  5573. }
  5574. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5575. ggml_scratch_save(ctx);
  5576. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5577. ((int32_t *) b->data)[0] = n_past;
  5578. ((int32_t *) b->data)[1] = n_dims;
  5579. ((int32_t *) b->data)[2] = mode;
  5580. ((int32_t *) b->data)[3] = n_ctx;
  5581. ggml_scratch_load(ctx);
  5582. result->op = GGML_OP_ROPE;
  5583. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5584. result->src[0] = a;
  5585. result->src[1] = b;
  5586. return result;
  5587. }
  5588. struct ggml_tensor * ggml_rope(
  5589. struct ggml_context * ctx,
  5590. struct ggml_tensor * a,
  5591. int n_past,
  5592. int n_dims,
  5593. int mode,
  5594. int n_ctx) {
  5595. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5596. }
  5597. struct ggml_tensor * ggml_rope_inplace(
  5598. struct ggml_context * ctx,
  5599. struct ggml_tensor * a,
  5600. int n_past,
  5601. int n_dims,
  5602. int mode,
  5603. int n_ctx) {
  5604. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5605. }
  5606. // ggml_rope_back
  5607. struct ggml_tensor * ggml_rope_back(
  5608. struct ggml_context * ctx,
  5609. struct ggml_tensor * a,
  5610. int n_past,
  5611. int n_dims,
  5612. int mode) {
  5613. GGML_ASSERT(n_past >= 0);
  5614. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5615. bool is_node = false;
  5616. if (a->grad) {
  5617. is_node = false; // TODO: implement backward
  5618. }
  5619. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5620. ggml_scratch_save(ctx);
  5621. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5622. ggml_set_name(b, "n_past, n_dims, mode");
  5623. ((int32_t *) b->data)[0] = n_past;
  5624. ((int32_t *) b->data)[1] = n_dims;
  5625. ((int32_t *) b->data)[2] = mode;
  5626. ggml_scratch_load(ctx);
  5627. result->op = GGML_OP_ROPE_BACK;
  5628. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5629. result->src[0] = a;
  5630. result->src[1] = b;
  5631. return result;
  5632. }
  5633. // ggml_alibi
  5634. struct ggml_tensor * ggml_alibi(
  5635. struct ggml_context * ctx,
  5636. struct ggml_tensor * a,
  5637. int n_past,
  5638. int n_head,
  5639. float bias_max) {
  5640. GGML_ASSERT(n_past >= 0);
  5641. bool is_node = false;
  5642. if (a->grad) {
  5643. GGML_ASSERT(false); // TODO: implement backward
  5644. is_node = true;
  5645. }
  5646. // TODO: when implement backward, fix this:
  5647. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5648. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5649. ggml_scratch_save(ctx);
  5650. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5651. ((int32_t *) b->data)[0] = n_past;
  5652. ((int32_t *) b->data)[1] = n_head;
  5653. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5654. (((float *) b->data)[2]) = bias_max;
  5655. ggml_scratch_load(ctx);
  5656. result->op = GGML_OP_ALIBI;
  5657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5658. result->src[0] = a;
  5659. result->src[1] = b;
  5660. return result;
  5661. }
  5662. // ggml_clamp
  5663. struct ggml_tensor * ggml_clamp(
  5664. struct ggml_context * ctx,
  5665. struct ggml_tensor * a,
  5666. float min,
  5667. float max) {
  5668. bool is_node = false;
  5669. if (a->grad) {
  5670. GGML_ASSERT(false); // TODO: implement backward
  5671. is_node = true;
  5672. }
  5673. // TODO: when implement backward, fix this:
  5674. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5675. ggml_scratch_save(ctx);
  5676. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5677. ((float *) b->data)[0] = min;
  5678. ((float *) b->data)[1] = max;
  5679. ggml_scratch_load(ctx);
  5680. result->op = GGML_OP_CLAMP;
  5681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5682. result->src[0] = a;
  5683. result->src[1] = b;
  5684. return result;
  5685. }
  5686. // ggml_conv_1d
  5687. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5688. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5689. }
  5690. GGML_API struct ggml_tensor * ggml_conv_1d(
  5691. struct ggml_context * ctx,
  5692. struct ggml_tensor * a,
  5693. struct ggml_tensor * b,
  5694. int s0,
  5695. int p0,
  5696. int d0) {
  5697. GGML_ASSERT(ggml_is_matrix(b));
  5698. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5699. bool is_node = false;
  5700. if (a->grad || b->grad) {
  5701. GGML_ASSERT(false); // TODO: implement backward
  5702. is_node = true;
  5703. }
  5704. const int64_t ne[4] = {
  5705. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5706. a->ne[2], 1, 1,
  5707. };
  5708. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5709. ggml_scratch_save(ctx);
  5710. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5711. ((int32_t*)c->data)[0] = s0;
  5712. ((int32_t*)c->data)[1] = p0;
  5713. ((int32_t*)c->data)[2] = d0;
  5714. ggml_scratch_load(ctx);
  5715. result->op = GGML_OP_CONV_1D;
  5716. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5717. result->src[0] = a;
  5718. result->src[1] = b;
  5719. result->src[2] = c;
  5720. return result;
  5721. }
  5722. // ggml_conv_2d
  5723. struct ggml_tensor* ggml_conv_2d(
  5724. struct ggml_context* ctx,
  5725. struct ggml_tensor * a,
  5726. struct ggml_tensor * b,
  5727. int s0,
  5728. int s1,
  5729. int p0,
  5730. int p1,
  5731. int d0,
  5732. int d1) {
  5733. GGML_ASSERT(b->ne[3] == 1);
  5734. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5735. bool is_node = false;
  5736. if (a->grad || b->grad) {
  5737. GGML_ASSERT(false); // TODO: implement backward
  5738. is_node = true;
  5739. }
  5740. const int64_t ne[4] = {
  5741. ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
  5742. ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
  5743. a->ne[3], 1,
  5744. };
  5745. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5746. ggml_scratch_save(ctx);
  5747. struct ggml_tensor* c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 6);
  5748. ((int32_t*)c->data)[0] = s0;
  5749. ((int32_t*)c->data)[1] = s1;
  5750. ((int32_t*)c->data)[2] = p0;
  5751. ((int32_t*)c->data)[3] = p1;
  5752. ((int32_t*)c->data)[4] = d0;
  5753. ((int32_t*)c->data)[5] = d1;
  5754. ggml_scratch_load(ctx);
  5755. result->op = GGML_OP_CONV_2D;
  5756. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5757. result->src[0] = a;
  5758. result->src[1] = b;
  5759. result->src[2] = c;
  5760. return result;
  5761. }
  5762. // ggml_conv_1d_ph
  5763. struct ggml_tensor* ggml_conv_1d_ph(
  5764. struct ggml_context * ctx,
  5765. struct ggml_tensor * a,
  5766. struct ggml_tensor * b,
  5767. int s,
  5768. int d) {
  5769. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5770. }
  5771. // ggml_flash_attn
  5772. struct ggml_tensor * ggml_flash_attn(
  5773. struct ggml_context * ctx,
  5774. struct ggml_tensor * q,
  5775. struct ggml_tensor * k,
  5776. struct ggml_tensor * v,
  5777. bool masked) {
  5778. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5779. // TODO: check if vT can be multiplied by (k*qT)
  5780. bool is_node = false;
  5781. if (q->grad || k->grad || v->grad) {
  5782. is_node = true;
  5783. }
  5784. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5785. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5786. result->op = GGML_OP_FLASH_ATTN;
  5787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5788. result->src[0] = q;
  5789. result->src[1] = k;
  5790. result->src[2] = v;
  5791. result->src[3] = ggml_new_i32(ctx, masked ? 1 : 0);
  5792. return result;
  5793. }
  5794. // ggml_flash_ff
  5795. struct ggml_tensor * ggml_flash_ff(
  5796. struct ggml_context * ctx,
  5797. struct ggml_tensor * a,
  5798. struct ggml_tensor * b0,
  5799. struct ggml_tensor * b1,
  5800. struct ggml_tensor * c0,
  5801. struct ggml_tensor * c1) {
  5802. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5803. // TODO: more checks
  5804. bool is_node = false;
  5805. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5806. is_node = true;
  5807. }
  5808. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5809. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5810. result->op = GGML_OP_FLASH_FF;
  5811. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5812. result->src[0] = a;
  5813. result->src[1] = b0;
  5814. result->src[2] = b1;
  5815. result->src[3] = c0;
  5816. result->src[4] = c1;
  5817. return result;
  5818. }
  5819. // ggml_flash_attn_back
  5820. struct ggml_tensor * ggml_flash_attn_back(
  5821. struct ggml_context * ctx,
  5822. struct ggml_tensor * q,
  5823. struct ggml_tensor * k,
  5824. struct ggml_tensor * v,
  5825. struct ggml_tensor * d,
  5826. bool masked) {
  5827. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5828. // TODO: check if vT can be multiplied by (k*qT)
  5829. // d shape [D,N,ne2,ne3]
  5830. // q shape [D,N,ne2,ne3]
  5831. // k shape [D,M,ne2,ne3]
  5832. // v shape [M,D,ne2,ne3]
  5833. const int64_t D = q->ne[0];
  5834. const int64_t N = q->ne[1];
  5835. const int64_t M = k->ne[1];
  5836. const int64_t ne2 = q->ne[2];
  5837. const int64_t ne3 = q->ne[3];
  5838. GGML_ASSERT(k->ne[0] == D);
  5839. GGML_ASSERT(v->ne[0] == M);
  5840. GGML_ASSERT(v->ne[1] == D);
  5841. GGML_ASSERT(d->ne[0] == D);
  5842. GGML_ASSERT(d->ne[1] == N);
  5843. GGML_ASSERT(k->ne[2] == ne2);
  5844. GGML_ASSERT(k->ne[3] == ne3);
  5845. GGML_ASSERT(v->ne[2] == ne2);
  5846. GGML_ASSERT(v->ne[3] == ne3);
  5847. GGML_ASSERT(d->ne[2] == ne2);
  5848. GGML_ASSERT(d->ne[3] == ne3);
  5849. bool is_node = false;
  5850. if (q->grad || k->grad || v->grad) {
  5851. // when using this operation (in backwards pass) these grads are set.
  5852. // we don't want to create (big) grad of our result, so is_node is false.
  5853. is_node = false;
  5854. }
  5855. // store gradients of q, k and v as continuous tensors concatenated in result.
  5856. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5857. // gradq->data = result->data
  5858. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5859. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5860. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5861. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5862. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5863. result->op = GGML_OP_FLASH_ATTN_BACK;
  5864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5865. result->src[0] = q;
  5866. result->src[1] = k;
  5867. result->src[2] = v;
  5868. result->src[3] = d;
  5869. result->src[4] = ggml_new_i32(ctx, masked ? 1 : 0);
  5870. return result;
  5871. }
  5872. // ggml_win_part
  5873. struct ggml_tensor * ggml_win_part(
  5874. struct ggml_context * ctx,
  5875. struct ggml_tensor * a,
  5876. int w) {
  5877. GGML_ASSERT(a->ne[3] == 1);
  5878. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5879. bool is_node = false;
  5880. if (a->grad) {
  5881. GGML_ASSERT(false); // TODO: implement backward
  5882. is_node = true;
  5883. }
  5884. // padding
  5885. const int px = (w - a->ne[1]%w)%w;
  5886. const int py = (w - a->ne[2]%w)%w;
  5887. const int npx = (px + a->ne[1])/w;
  5888. const int npy = (py + a->ne[2])/w;
  5889. const int np = npx*npy;
  5890. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5891. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5892. ggml_scratch_save(ctx);
  5893. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5894. ((int32_t *) b->data)[0] = npx;
  5895. ((int32_t *) b->data)[1] = npy;
  5896. ((int32_t *) b->data)[2] = w;
  5897. ggml_scratch_load(ctx);
  5898. result->op = GGML_OP_WIN_PART;
  5899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5900. result->src[0] = a;
  5901. result->src[1] = NULL;
  5902. result->src[2] = b;
  5903. return result;
  5904. }
  5905. // ggml_win_unpart
  5906. struct ggml_tensor * ggml_win_unpart(
  5907. struct ggml_context * ctx,
  5908. struct ggml_tensor * a,
  5909. int w0,
  5910. int h0,
  5911. int w) {
  5912. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5913. bool is_node = false;
  5914. if (a->grad) {
  5915. GGML_ASSERT(false); // TODO: implement backward
  5916. is_node = true;
  5917. }
  5918. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5919. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5920. ggml_scratch_save(ctx);
  5921. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5922. ((int32_t *) b->data)[0] = w;
  5923. ggml_scratch_load(ctx);
  5924. result->op = GGML_OP_WIN_UNPART;
  5925. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5926. result->src[0] = a;
  5927. result->src[1] = NULL;
  5928. result->src[2] = b;
  5929. return result;
  5930. }
  5931. // ggml_map_unary
  5932. struct ggml_tensor * ggml_map_unary_impl_f32(
  5933. struct ggml_context * ctx,
  5934. struct ggml_tensor * a,
  5935. const ggml_unary_op_f32_t fun,
  5936. bool inplace) {
  5937. bool is_node = false;
  5938. if (!inplace && a->grad) {
  5939. is_node = true;
  5940. }
  5941. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5942. ggml_scratch_save(ctx);
  5943. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5944. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5945. ggml_scratch_load(ctx);
  5946. result->op = GGML_OP_MAP_UNARY;
  5947. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5948. result->src[0] = a;
  5949. result->src[2] = addr_tensor;
  5950. return result;
  5951. }
  5952. struct ggml_tensor * ggml_map_unary_f32(
  5953. struct ggml_context * ctx,
  5954. struct ggml_tensor * a,
  5955. const ggml_unary_op_f32_t fun) {
  5956. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5957. }
  5958. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5959. struct ggml_context * ctx,
  5960. struct ggml_tensor * a,
  5961. const ggml_unary_op_f32_t fun) {
  5962. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5963. }
  5964. // ggml_map_binary
  5965. struct ggml_tensor * ggml_map_binary_impl_f32(
  5966. struct ggml_context * ctx,
  5967. struct ggml_tensor * a,
  5968. struct ggml_tensor * b,
  5969. const ggml_binary_op_f32_t fun,
  5970. bool inplace) {
  5971. GGML_ASSERT(ggml_are_same_shape(a, b));
  5972. bool is_node = false;
  5973. if (!inplace && (a->grad || b->grad)) {
  5974. is_node = true;
  5975. }
  5976. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5977. ggml_scratch_save(ctx);
  5978. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5979. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5980. ggml_scratch_load(ctx);
  5981. result->op = GGML_OP_MAP_BINARY;
  5982. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5983. result->src[0] = a;
  5984. result->src[1] = b;
  5985. result->src[2] = addr_tensor;
  5986. return result;
  5987. }
  5988. struct ggml_tensor * ggml_map_binary_f32(
  5989. struct ggml_context * ctx,
  5990. struct ggml_tensor * a,
  5991. struct ggml_tensor * b,
  5992. const ggml_binary_op_f32_t fun) {
  5993. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5994. }
  5995. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5996. struct ggml_context * ctx,
  5997. struct ggml_tensor * a,
  5998. struct ggml_tensor * b,
  5999. const ggml_binary_op_f32_t fun) {
  6000. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6001. }
  6002. // ggml_map_custom1
  6003. struct ggml_tensor * ggml_map_custom1_impl_f32(
  6004. struct ggml_context * ctx,
  6005. struct ggml_tensor * a,
  6006. const ggml_custom1_op_f32_t fun,
  6007. bool inplace) {
  6008. bool is_node = false;
  6009. if (!inplace && a->grad) {
  6010. is_node = true;
  6011. }
  6012. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6013. ggml_scratch_save(ctx);
  6014. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6015. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6016. ggml_scratch_load(ctx);
  6017. result->op = GGML_OP_MAP_CUSTOM1;
  6018. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6019. result->src[0] = a;
  6020. result->src[2] = addr_tensor;
  6021. return result;
  6022. }
  6023. struct ggml_tensor * ggml_map_custom1_f32(
  6024. struct ggml_context * ctx,
  6025. struct ggml_tensor * a,
  6026. const ggml_custom1_op_f32_t fun) {
  6027. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6028. }
  6029. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6030. struct ggml_context * ctx,
  6031. struct ggml_tensor * a,
  6032. const ggml_custom1_op_f32_t fun) {
  6033. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6034. }
  6035. // ggml_map_custom2
  6036. struct ggml_tensor * ggml_map_custom2_impl_f32(
  6037. struct ggml_context * ctx,
  6038. struct ggml_tensor * a,
  6039. struct ggml_tensor * b,
  6040. const ggml_custom2_op_f32_t fun,
  6041. bool inplace) {
  6042. bool is_node = false;
  6043. if (!inplace && (a->grad || b->grad)) {
  6044. is_node = true;
  6045. }
  6046. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6047. ggml_scratch_save(ctx);
  6048. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6049. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6050. ggml_scratch_load(ctx);
  6051. result->op = GGML_OP_MAP_CUSTOM2;
  6052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6053. result->src[0] = a;
  6054. result->src[1] = b;
  6055. result->src[2] = addr_tensor;
  6056. return result;
  6057. }
  6058. struct ggml_tensor * ggml_map_custom2_f32(
  6059. struct ggml_context * ctx,
  6060. struct ggml_tensor * a,
  6061. struct ggml_tensor * b,
  6062. const ggml_custom2_op_f32_t fun) {
  6063. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6064. }
  6065. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6066. struct ggml_context * ctx,
  6067. struct ggml_tensor * a,
  6068. struct ggml_tensor * b,
  6069. const ggml_custom2_op_f32_t fun) {
  6070. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6071. }
  6072. // ggml_map_custom3
  6073. struct ggml_tensor * ggml_map_custom3_impl_f32(
  6074. struct ggml_context * ctx,
  6075. struct ggml_tensor * a,
  6076. struct ggml_tensor * b,
  6077. struct ggml_tensor * c,
  6078. const ggml_custom3_op_f32_t fun,
  6079. bool inplace) {
  6080. bool is_node = false;
  6081. if (!inplace && (a->grad || b->grad || c->grad)) {
  6082. is_node = true;
  6083. }
  6084. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6085. ggml_scratch_save(ctx);
  6086. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  6087. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  6088. ggml_scratch_load(ctx);
  6089. result->op = GGML_OP_MAP_CUSTOM3;
  6090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6091. result->src[0] = a;
  6092. result->src[1] = b;
  6093. result->src[2] = addr_tensor;
  6094. result->src[3] = c;
  6095. return result;
  6096. }
  6097. struct ggml_tensor * ggml_map_custom3_f32(
  6098. struct ggml_context * ctx,
  6099. struct ggml_tensor * a,
  6100. struct ggml_tensor * b,
  6101. struct ggml_tensor * c,
  6102. const ggml_custom3_op_f32_t fun) {
  6103. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6104. }
  6105. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6106. struct ggml_context * ctx,
  6107. struct ggml_tensor * a,
  6108. struct ggml_tensor * b,
  6109. struct ggml_tensor * c,
  6110. const ggml_custom3_op_f32_t fun) {
  6111. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6112. }
  6113. // ggml_cross_entropy_loss
  6114. struct ggml_tensor * ggml_cross_entropy_loss(
  6115. struct ggml_context * ctx,
  6116. struct ggml_tensor * a,
  6117. struct ggml_tensor * b) {
  6118. GGML_ASSERT(ggml_are_same_shape(a, b));
  6119. bool is_node = false;
  6120. if (a->grad || b->grad) {
  6121. is_node = true;
  6122. }
  6123. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6124. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6125. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6126. result->src[0] = a;
  6127. result->src[1] = b;
  6128. return result;
  6129. }
  6130. // ggml_cross_entropy_loss_back
  6131. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6132. struct ggml_context * ctx,
  6133. struct ggml_tensor * a,
  6134. struct ggml_tensor * b,
  6135. struct ggml_tensor * c) {
  6136. GGML_ASSERT(ggml_are_same_shape(a, b));
  6137. GGML_ASSERT(ggml_is_scalar(c));
  6138. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6139. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6140. result->grad = NULL;
  6141. result->src[0] = a;
  6142. result->src[1] = b;
  6143. result->src[2] = c;
  6144. return result;
  6145. }
  6146. ////////////////////////////////////////////////////////////////////////////////
  6147. void ggml_set_param(
  6148. struct ggml_context * ctx,
  6149. struct ggml_tensor * tensor) {
  6150. tensor->is_param = true;
  6151. GGML_ASSERT(tensor->grad == NULL);
  6152. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6153. }
  6154. // ggml_compute_forward_dup
  6155. static void ggml_compute_forward_dup_same_cont(
  6156. const struct ggml_compute_params * params,
  6157. const struct ggml_tensor * src0,
  6158. struct ggml_tensor * dst) {
  6159. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6160. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6161. GGML_ASSERT(src0->type == dst->type);
  6162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6163. return;
  6164. }
  6165. const size_t nb00 = src0->nb[0];
  6166. const size_t nb0 = dst->nb[0];
  6167. const int ith = params->ith; // thread index
  6168. const int nth = params->nth; // number of threads
  6169. // parallelize by elements
  6170. const int ne = ggml_nelements(dst);
  6171. const int dr = (ne + nth - 1) / nth;
  6172. const int ie0 = dr * ith;
  6173. const int ie1 = MIN(ie0 + dr, ne);
  6174. if (ie0 < ie1) {
  6175. memcpy(
  6176. ((char *) dst->data + ie0*nb0),
  6177. ((char *) src0->data + ie0*nb00),
  6178. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6179. }
  6180. }
  6181. static void ggml_compute_forward_dup_f16(
  6182. const struct ggml_compute_params * params,
  6183. const struct ggml_tensor * src0,
  6184. struct ggml_tensor * dst) {
  6185. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6186. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6187. return;
  6188. }
  6189. GGML_TENSOR_UNARY_OP_LOCALS;
  6190. const int ith = params->ith; // thread index
  6191. const int nth = params->nth; // number of threads
  6192. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6193. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6194. return;
  6195. }
  6196. // parallelize by rows
  6197. const int nr = ne01;
  6198. // number of rows per thread
  6199. const int dr = (nr + nth - 1) / nth;
  6200. // row range for this thread
  6201. const int ir0 = dr * ith;
  6202. const int ir1 = MIN(ir0 + dr, nr);
  6203. if (src0->type == dst->type &&
  6204. ne00 == ne0 &&
  6205. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6206. // copy by rows
  6207. const size_t rs = ne00*nb00;
  6208. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6209. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6210. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6211. memcpy(
  6212. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6213. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6214. rs);
  6215. }
  6216. }
  6217. }
  6218. return;
  6219. }
  6220. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6221. if (ggml_is_contiguous(dst)) {
  6222. if (nb00 == sizeof(ggml_fp16_t)) {
  6223. if (dst->type == GGML_TYPE_F16) {
  6224. size_t id = 0;
  6225. const size_t rs = ne00 * nb00;
  6226. char * dst_ptr = (char *) dst->data;
  6227. for (int i03 = 0; i03 < ne03; i03++) {
  6228. for (int i02 = 0; i02 < ne02; i02++) {
  6229. id += rs * ir0;
  6230. for (int i01 = ir0; i01 < ir1; i01++) {
  6231. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6232. memcpy(dst_ptr + id, src0_ptr, rs);
  6233. id += rs;
  6234. }
  6235. id += rs * (ne01 - ir1);
  6236. }
  6237. }
  6238. } else if (dst->type == GGML_TYPE_F32) {
  6239. size_t id = 0;
  6240. float * dst_ptr = (float *) dst->data;
  6241. for (int i03 = 0; i03 < ne03; i03++) {
  6242. for (int i02 = 0; i02 < ne02; i02++) {
  6243. id += ne00 * ir0;
  6244. for (int i01 = ir0; i01 < ir1; i01++) {
  6245. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6246. for (int i00 = 0; i00 < ne00; i00++) {
  6247. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6248. id++;
  6249. }
  6250. }
  6251. id += ne00 * (ne01 - ir1);
  6252. }
  6253. }
  6254. } else if (type_traits[dst->type].from_float) {
  6255. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6256. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6257. size_t id = 0;
  6258. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6259. char * dst_ptr = (char *) dst->data;
  6260. for (int i03 = 0; i03 < ne03; i03++) {
  6261. for (int i02 = 0; i02 < ne02; i02++) {
  6262. id += rs * ir0;
  6263. for (int i01 = ir0; i01 < ir1; i01++) {
  6264. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6265. for (int i00 = 0; i00 < ne00; i00++) {
  6266. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6267. }
  6268. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6269. id += rs;
  6270. }
  6271. id += rs * (ne01 - ir1);
  6272. }
  6273. }
  6274. } else {
  6275. GGML_ASSERT(false); // TODO: implement
  6276. }
  6277. } else {
  6278. //printf("%s: this is not optimal - fix me\n", __func__);
  6279. if (dst->type == GGML_TYPE_F32) {
  6280. size_t id = 0;
  6281. float * dst_ptr = (float *) dst->data;
  6282. for (int i03 = 0; i03 < ne03; i03++) {
  6283. for (int i02 = 0; i02 < ne02; i02++) {
  6284. id += ne00 * ir0;
  6285. for (int i01 = ir0; i01 < ir1; i01++) {
  6286. for (int i00 = 0; i00 < ne00; i00++) {
  6287. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6288. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6289. id++;
  6290. }
  6291. }
  6292. id += ne00 * (ne01 - ir1);
  6293. }
  6294. }
  6295. } else if (dst->type == GGML_TYPE_F16) {
  6296. size_t id = 0;
  6297. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6298. for (int i03 = 0; i03 < ne03; i03++) {
  6299. for (int i02 = 0; i02 < ne02; i02++) {
  6300. id += ne00 * ir0;
  6301. for (int i01 = ir0; i01 < ir1; i01++) {
  6302. for (int i00 = 0; i00 < ne00; i00++) {
  6303. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6304. dst_ptr[id] = *src0_ptr;
  6305. id++;
  6306. }
  6307. }
  6308. id += ne00 * (ne01 - ir1);
  6309. }
  6310. }
  6311. } else {
  6312. GGML_ASSERT(false); // TODO: implement
  6313. }
  6314. }
  6315. return;
  6316. }
  6317. // dst counters
  6318. int64_t i10 = 0;
  6319. int64_t i11 = 0;
  6320. int64_t i12 = 0;
  6321. int64_t i13 = 0;
  6322. if (dst->type == GGML_TYPE_F16) {
  6323. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6324. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6325. i10 += ne00 * ir0;
  6326. while (i10 >= ne0) {
  6327. i10 -= ne0;
  6328. if (++i11 == ne1) {
  6329. i11 = 0;
  6330. if (++i12 == ne2) {
  6331. i12 = 0;
  6332. if (++i13 == ne3) {
  6333. i13 = 0;
  6334. }
  6335. }
  6336. }
  6337. }
  6338. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6339. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6340. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6341. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6342. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6343. if (++i10 == ne00) {
  6344. i10 = 0;
  6345. if (++i11 == ne01) {
  6346. i11 = 0;
  6347. if (++i12 == ne02) {
  6348. i12 = 0;
  6349. if (++i13 == ne03) {
  6350. i13 = 0;
  6351. }
  6352. }
  6353. }
  6354. }
  6355. }
  6356. }
  6357. i10 += ne00 * (ne01 - ir1);
  6358. while (i10 >= ne0) {
  6359. i10 -= ne0;
  6360. if (++i11 == ne1) {
  6361. i11 = 0;
  6362. if (++i12 == ne2) {
  6363. i12 = 0;
  6364. if (++i13 == ne3) {
  6365. i13 = 0;
  6366. }
  6367. }
  6368. }
  6369. }
  6370. }
  6371. }
  6372. } else if (dst->type == GGML_TYPE_F32) {
  6373. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6374. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6375. i10 += ne00 * ir0;
  6376. while (i10 >= ne0) {
  6377. i10 -= ne0;
  6378. if (++i11 == ne1) {
  6379. i11 = 0;
  6380. if (++i12 == ne2) {
  6381. i12 = 0;
  6382. if (++i13 == ne3) {
  6383. i13 = 0;
  6384. }
  6385. }
  6386. }
  6387. }
  6388. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6389. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6390. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6391. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6392. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6393. if (++i10 == ne0) {
  6394. i10 = 0;
  6395. if (++i11 == ne1) {
  6396. i11 = 0;
  6397. if (++i12 == ne2) {
  6398. i12 = 0;
  6399. if (++i13 == ne3) {
  6400. i13 = 0;
  6401. }
  6402. }
  6403. }
  6404. }
  6405. }
  6406. }
  6407. i10 += ne00 * (ne01 - ir1);
  6408. while (i10 >= ne0) {
  6409. i10 -= ne0;
  6410. if (++i11 == ne1) {
  6411. i11 = 0;
  6412. if (++i12 == ne2) {
  6413. i12 = 0;
  6414. if (++i13 == ne3) {
  6415. i13 = 0;
  6416. }
  6417. }
  6418. }
  6419. }
  6420. }
  6421. }
  6422. } else {
  6423. GGML_ASSERT(false); // TODO: implement
  6424. }
  6425. }
  6426. static void ggml_compute_forward_dup_f32(
  6427. const struct ggml_compute_params * params,
  6428. const struct ggml_tensor * src0,
  6429. struct ggml_tensor * dst) {
  6430. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6431. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6432. return;
  6433. }
  6434. GGML_TENSOR_UNARY_OP_LOCALS;
  6435. const int ith = params->ith; // thread index
  6436. const int nth = params->nth; // number of threads
  6437. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6438. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6439. return;
  6440. }
  6441. // parallelize by rows
  6442. const int nr = ne01;
  6443. // number of rows per thread
  6444. const int dr = (nr + nth - 1) / nth;
  6445. // row range for this thread
  6446. const int ir0 = dr * ith;
  6447. const int ir1 = MIN(ir0 + dr, nr);
  6448. if (src0->type == dst->type &&
  6449. ne00 == ne0 &&
  6450. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6451. // copy by rows
  6452. const size_t rs = ne00*nb00;
  6453. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6454. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6455. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6456. memcpy(
  6457. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6458. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6459. rs);
  6460. }
  6461. }
  6462. }
  6463. return;
  6464. }
  6465. if (ggml_is_contiguous(dst)) {
  6466. // TODO: simplify
  6467. if (nb00 == sizeof(float)) {
  6468. if (dst->type == GGML_TYPE_F32) {
  6469. size_t id = 0;
  6470. const size_t rs = ne00 * nb00;
  6471. char * dst_ptr = (char *) dst->data;
  6472. for (int i03 = 0; i03 < ne03; i03++) {
  6473. for (int i02 = 0; i02 < ne02; i02++) {
  6474. id += rs * ir0;
  6475. for (int i01 = ir0; i01 < ir1; i01++) {
  6476. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6477. memcpy(dst_ptr + id, src0_ptr, rs);
  6478. id += rs;
  6479. }
  6480. id += rs * (ne01 - ir1);
  6481. }
  6482. }
  6483. } else if (type_traits[dst->type].from_float) {
  6484. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6485. size_t id = 0;
  6486. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6487. char * dst_ptr = (char *) dst->data;
  6488. for (int i03 = 0; i03 < ne03; i03++) {
  6489. for (int i02 = 0; i02 < ne02; i02++) {
  6490. id += rs * ir0;
  6491. for (int i01 = ir0; i01 < ir1; i01++) {
  6492. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6493. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6494. id += rs;
  6495. }
  6496. id += rs * (ne01 - ir1);
  6497. }
  6498. }
  6499. } else {
  6500. GGML_ASSERT(false); // TODO: implement
  6501. }
  6502. } else {
  6503. //printf("%s: this is not optimal - fix me\n", __func__);
  6504. if (dst->type == GGML_TYPE_F32) {
  6505. size_t id = 0;
  6506. float * dst_ptr = (float *) dst->data;
  6507. for (int i03 = 0; i03 < ne03; i03++) {
  6508. for (int i02 = 0; i02 < ne02; i02++) {
  6509. id += ne00 * ir0;
  6510. for (int i01 = ir0; i01 < ir1; i01++) {
  6511. for (int i00 = 0; i00 < ne00; i00++) {
  6512. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6513. dst_ptr[id] = *src0_ptr;
  6514. id++;
  6515. }
  6516. }
  6517. id += ne00 * (ne01 - ir1);
  6518. }
  6519. }
  6520. } else if (dst->type == GGML_TYPE_F16) {
  6521. size_t id = 0;
  6522. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6523. for (int i03 = 0; i03 < ne03; i03++) {
  6524. for (int i02 = 0; i02 < ne02; i02++) {
  6525. id += ne00 * ir0;
  6526. for (int i01 = ir0; i01 < ir1; i01++) {
  6527. for (int i00 = 0; i00 < ne00; i00++) {
  6528. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6529. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6530. id++;
  6531. }
  6532. }
  6533. id += ne00 * (ne01 - ir1);
  6534. }
  6535. }
  6536. } else {
  6537. GGML_ASSERT(false); // TODO: implement
  6538. }
  6539. }
  6540. return;
  6541. }
  6542. // dst counters
  6543. int64_t i10 = 0;
  6544. int64_t i11 = 0;
  6545. int64_t i12 = 0;
  6546. int64_t i13 = 0;
  6547. if (dst->type == GGML_TYPE_F32) {
  6548. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6549. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6550. i10 += ne00 * ir0;
  6551. while (i10 >= ne0) {
  6552. i10 -= ne0;
  6553. if (++i11 == ne1) {
  6554. i11 = 0;
  6555. if (++i12 == ne2) {
  6556. i12 = 0;
  6557. if (++i13 == ne3) {
  6558. i13 = 0;
  6559. }
  6560. }
  6561. }
  6562. }
  6563. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6564. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6565. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6566. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6567. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6568. if (++i10 == ne0) {
  6569. i10 = 0;
  6570. if (++i11 == ne1) {
  6571. i11 = 0;
  6572. if (++i12 == ne2) {
  6573. i12 = 0;
  6574. if (++i13 == ne3) {
  6575. i13 = 0;
  6576. }
  6577. }
  6578. }
  6579. }
  6580. }
  6581. }
  6582. i10 += ne00 * (ne01 - ir1);
  6583. while (i10 >= ne0) {
  6584. i10 -= ne0;
  6585. if (++i11 == ne1) {
  6586. i11 = 0;
  6587. if (++i12 == ne2) {
  6588. i12 = 0;
  6589. if (++i13 == ne3) {
  6590. i13 = 0;
  6591. }
  6592. }
  6593. }
  6594. }
  6595. }
  6596. }
  6597. } else if (dst->type == GGML_TYPE_F16) {
  6598. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6599. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6600. i10 += ne00 * ir0;
  6601. while (i10 >= ne0) {
  6602. i10 -= ne0;
  6603. if (++i11 == ne1) {
  6604. i11 = 0;
  6605. if (++i12 == ne2) {
  6606. i12 = 0;
  6607. if (++i13 == ne3) {
  6608. i13 = 0;
  6609. }
  6610. }
  6611. }
  6612. }
  6613. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6614. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6615. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6616. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6617. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6618. if (++i10 == ne0) {
  6619. i10 = 0;
  6620. if (++i11 == ne1) {
  6621. i11 = 0;
  6622. if (++i12 == ne2) {
  6623. i12 = 0;
  6624. if (++i13 == ne3) {
  6625. i13 = 0;
  6626. }
  6627. }
  6628. }
  6629. }
  6630. }
  6631. }
  6632. i10 += ne00 * (ne01 - ir1);
  6633. while (i10 >= ne0) {
  6634. i10 -= ne0;
  6635. if (++i11 == ne1) {
  6636. i11 = 0;
  6637. if (++i12 == ne2) {
  6638. i12 = 0;
  6639. if (++i13 == ne3) {
  6640. i13 = 0;
  6641. }
  6642. }
  6643. }
  6644. }
  6645. }
  6646. }
  6647. } else {
  6648. GGML_ASSERT(false); // TODO: implement
  6649. }
  6650. }
  6651. static void ggml_compute_forward_dup(
  6652. const struct ggml_compute_params * params,
  6653. const struct ggml_tensor * src0,
  6654. struct ggml_tensor * dst) {
  6655. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6656. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6657. return;
  6658. }
  6659. switch (src0->type) {
  6660. case GGML_TYPE_F16:
  6661. {
  6662. ggml_compute_forward_dup_f16(params, src0, dst);
  6663. } break;
  6664. case GGML_TYPE_F32:
  6665. {
  6666. ggml_compute_forward_dup_f32(params, src0, dst);
  6667. } break;
  6668. default:
  6669. {
  6670. GGML_ASSERT(false);
  6671. } break;
  6672. }
  6673. }
  6674. // ggml_compute_forward_add
  6675. static void ggml_compute_forward_add_f32(
  6676. const struct ggml_compute_params * params,
  6677. const struct ggml_tensor * src0,
  6678. const struct ggml_tensor * src1,
  6679. struct ggml_tensor * dst) {
  6680. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  6681. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6682. return;
  6683. }
  6684. const int ith = params->ith;
  6685. const int nth = params->nth;
  6686. const int nr = ggml_nrows(src0);
  6687. GGML_TENSOR_BINARY_OP_LOCALS;
  6688. GGML_ASSERT( nb0 == sizeof(float));
  6689. GGML_ASSERT(nb00 == sizeof(float));
  6690. // rows per thread
  6691. const int dr = (nr + nth - 1)/nth;
  6692. // row range for this thread
  6693. const int ir0 = dr*ith;
  6694. const int ir1 = MIN(ir0 + dr, nr);
  6695. if (nb10 == sizeof(float)) {
  6696. for (int ir = ir0; ir < ir1; ++ir) {
  6697. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6698. const int64_t i03 = ir/(ne02*ne01);
  6699. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6700. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6701. const int64_t i13 = i03 % ne13;
  6702. const int64_t i12 = i02 % ne12;
  6703. const int64_t i11 = i01 % ne11;
  6704. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6705. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6706. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  6707. #ifdef GGML_USE_ACCELERATE
  6708. vDSP_vadd(src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  6709. #else
  6710. ggml_vec_add_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  6711. #endif
  6712. // }
  6713. // }
  6714. }
  6715. } else {
  6716. // src1 is not contiguous
  6717. for (int ir = ir0; ir < ir1; ++ir) {
  6718. // src1 is broadcastable across src0 and dst in i1, i2, i3
  6719. const int64_t i03 = ir/(ne02*ne01);
  6720. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  6721. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6722. const int64_t i13 = i03 % ne13;
  6723. const int64_t i12 = i02 % ne12;
  6724. const int64_t i11 = i01 % ne11;
  6725. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  6726. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  6727. for (int i0 = 0; i0 < ne0; i0++) {
  6728. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  6729. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6730. }
  6731. }
  6732. }
  6733. }
  6734. static void ggml_compute_forward_add_f16_f32(
  6735. const struct ggml_compute_params * params,
  6736. const struct ggml_tensor * src0,
  6737. const struct ggml_tensor * src1,
  6738. struct ggml_tensor * dst) {
  6739. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6740. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6741. return;
  6742. }
  6743. const int ith = params->ith;
  6744. const int nth = params->nth;
  6745. const int nr = ggml_nrows(src0);
  6746. GGML_TENSOR_BINARY_OP_LOCALS;
  6747. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6748. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6749. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6750. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6751. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6752. // rows per thread
  6753. const int dr = (nr + nth - 1)/nth;
  6754. // row range for this thread
  6755. const int ir0 = dr*ith;
  6756. const int ir1 = MIN(ir0 + dr, nr);
  6757. if (nb10 == sizeof(float)) {
  6758. for (int ir = ir0; ir < ir1; ++ir) {
  6759. // src0, src1 and dst are same shape => same indices
  6760. const int i3 = ir/(ne2*ne1);
  6761. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6762. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6763. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6764. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6765. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6766. for (int i = 0; i < ne0; i++) {
  6767. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6768. }
  6769. }
  6770. }
  6771. else {
  6772. // src1 is not contiguous
  6773. GGML_ASSERT(false);
  6774. }
  6775. }
  6776. static void ggml_compute_forward_add_f16_f16(
  6777. const struct ggml_compute_params * params,
  6778. const struct ggml_tensor * src0,
  6779. const struct ggml_tensor * src1,
  6780. struct ggml_tensor * dst) {
  6781. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6783. return;
  6784. }
  6785. const int ith = params->ith;
  6786. const int nth = params->nth;
  6787. const int nr = ggml_nrows(src0);
  6788. GGML_TENSOR_BINARY_OP_LOCALS;
  6789. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6790. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6791. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6792. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6793. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6794. // rows per thread
  6795. const int dr = (nr + nth - 1)/nth;
  6796. // row range for this thread
  6797. const int ir0 = dr*ith;
  6798. const int ir1 = MIN(ir0 + dr, nr);
  6799. if (nb10 == sizeof(ggml_fp16_t)) {
  6800. for (int ir = ir0; ir < ir1; ++ir) {
  6801. // src0, src1 and dst are same shape => same indices
  6802. const int i3 = ir/(ne2*ne1);
  6803. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6804. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6805. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6806. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6807. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6808. for (int i = 0; i < ne0; i++) {
  6809. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6810. }
  6811. }
  6812. }
  6813. else {
  6814. // src1 is not contiguous
  6815. GGML_ASSERT(false);
  6816. }
  6817. }
  6818. static void ggml_compute_forward_add_q_f32(
  6819. const struct ggml_compute_params * params,
  6820. const struct ggml_tensor * src0,
  6821. const struct ggml_tensor * src1,
  6822. struct ggml_tensor * dst) {
  6823. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6824. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6825. return;
  6826. }
  6827. const int nr = ggml_nrows(src0);
  6828. GGML_TENSOR_BINARY_OP_LOCALS;
  6829. const int ith = params->ith;
  6830. const int nth = params->nth;
  6831. const enum ggml_type type = src0->type;
  6832. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  6833. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  6834. // we don't support permuted src0 or src1
  6835. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6836. GGML_ASSERT(nb10 == sizeof(float));
  6837. // dst cannot be transposed or permuted
  6838. GGML_ASSERT(nb0 <= nb1);
  6839. GGML_ASSERT(nb1 <= nb2);
  6840. GGML_ASSERT(nb2 <= nb3);
  6841. GGML_ASSERT(ggml_is_quantized(src0->type));
  6842. GGML_ASSERT(dst->type == src0->type);
  6843. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6844. // rows per thread
  6845. const int dr = (nr + nth - 1)/nth;
  6846. // row range for this thread
  6847. const int ir0 = dr*ith;
  6848. const int ir1 = MIN(ir0 + dr, nr);
  6849. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6850. for (int ir = ir0; ir < ir1; ++ir) {
  6851. // src0 indices
  6852. const int i03 = ir/(ne02*ne01);
  6853. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6854. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6855. // src1 and dst are same shape as src0 => same indices
  6856. const int i13 = i03;
  6857. const int i12 = i02;
  6858. const int i11 = i01;
  6859. const int i3 = i03;
  6860. const int i2 = i02;
  6861. const int i1 = i01;
  6862. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6863. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6864. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6865. assert(ne00 % 32 == 0);
  6866. // unquantize row from src0 to temp buffer
  6867. dequantize_row_q(src0_row, wdata, ne00);
  6868. // add src1
  6869. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6870. // quantize row to dst
  6871. quantize_row_q(wdata, dst_row, ne00);
  6872. }
  6873. }
  6874. static void ggml_compute_forward_add(
  6875. const struct ggml_compute_params * params,
  6876. const struct ggml_tensor * src0,
  6877. const struct ggml_tensor * src1,
  6878. struct ggml_tensor * dst) {
  6879. switch (src0->type) {
  6880. case GGML_TYPE_F32:
  6881. {
  6882. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6883. } break;
  6884. case GGML_TYPE_F16:
  6885. {
  6886. if (src1->type == GGML_TYPE_F16) {
  6887. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6888. }
  6889. else if (src1->type == GGML_TYPE_F32) {
  6890. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6891. }
  6892. else {
  6893. GGML_ASSERT(false);
  6894. }
  6895. } break;
  6896. case GGML_TYPE_Q4_0:
  6897. case GGML_TYPE_Q4_1:
  6898. case GGML_TYPE_Q5_0:
  6899. case GGML_TYPE_Q5_1:
  6900. case GGML_TYPE_Q8_0:
  6901. case GGML_TYPE_Q2_K:
  6902. case GGML_TYPE_Q3_K:
  6903. case GGML_TYPE_Q4_K:
  6904. case GGML_TYPE_Q5_K:
  6905. case GGML_TYPE_Q6_K:
  6906. {
  6907. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6908. } break;
  6909. default:
  6910. {
  6911. GGML_ASSERT(false);
  6912. } break;
  6913. }
  6914. }
  6915. // ggml_compute_forward_add1
  6916. static void ggml_compute_forward_add1_f32(
  6917. const struct ggml_compute_params * params,
  6918. const struct ggml_tensor * src0,
  6919. const struct ggml_tensor * src1,
  6920. struct ggml_tensor * dst) {
  6921. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6922. GGML_ASSERT(ggml_is_scalar(src1));
  6923. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6924. return;
  6925. }
  6926. const int ith = params->ith;
  6927. const int nth = params->nth;
  6928. const int nr = ggml_nrows(src0);
  6929. GGML_TENSOR_UNARY_OP_LOCALS;
  6930. GGML_ASSERT( nb0 == sizeof(float));
  6931. GGML_ASSERT(nb00 == sizeof(float));
  6932. // rows per thread
  6933. const int dr = (nr + nth - 1)/nth;
  6934. // row range for this thread
  6935. const int ir0 = dr*ith;
  6936. const int ir1 = MIN(ir0 + dr, nr);
  6937. for (int ir = ir0; ir < ir1; ++ir) {
  6938. // src0 and dst are same shape => same indices
  6939. const int i3 = ir/(ne2*ne1);
  6940. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6941. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6942. #ifdef GGML_USE_ACCELERATE
  6943. UNUSED(ggml_vec_add1_f32);
  6944. vDSP_vadd(
  6945. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6946. (float *) ((char *) src1->data), 0,
  6947. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6948. ne0);
  6949. #else
  6950. ggml_vec_add1_f32(ne0,
  6951. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6952. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6953. *(float *) src1->data);
  6954. #endif
  6955. }
  6956. }
  6957. static void ggml_compute_forward_add1_f16_f32(
  6958. const struct ggml_compute_params * params,
  6959. const struct ggml_tensor * src0,
  6960. const struct ggml_tensor * src1,
  6961. struct ggml_tensor * dst) {
  6962. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6963. GGML_ASSERT(ggml_is_scalar(src1));
  6964. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6965. return;
  6966. }
  6967. // scalar to add
  6968. const float v = *(float *) src1->data;
  6969. const int ith = params->ith;
  6970. const int nth = params->nth;
  6971. const int nr = ggml_nrows(src0);
  6972. GGML_TENSOR_UNARY_OP_LOCALS;
  6973. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6974. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6975. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6976. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6977. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6978. // rows per thread
  6979. const int dr = (nr + nth - 1)/nth;
  6980. // row range for this thread
  6981. const int ir0 = dr*ith;
  6982. const int ir1 = MIN(ir0 + dr, nr);
  6983. for (int ir = ir0; ir < ir1; ++ir) {
  6984. // src0 and dst are same shape => same indices
  6985. const int i3 = ir/(ne2*ne1);
  6986. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6987. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6988. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6989. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6990. for (int i = 0; i < ne0; i++) {
  6991. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6992. }
  6993. }
  6994. }
  6995. static void ggml_compute_forward_add1_f16_f16(
  6996. const struct ggml_compute_params * params,
  6997. const struct ggml_tensor * src0,
  6998. const struct ggml_tensor * src1,
  6999. struct ggml_tensor * dst) {
  7000. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7001. GGML_ASSERT(ggml_is_scalar(src1));
  7002. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7003. return;
  7004. }
  7005. // scalar to add
  7006. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7007. const int ith = params->ith;
  7008. const int nth = params->nth;
  7009. const int nr = ggml_nrows(src0);
  7010. GGML_TENSOR_UNARY_OP_LOCALS;
  7011. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7012. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7013. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7014. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7015. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7016. // rows per thread
  7017. const int dr = (nr + nth - 1)/nth;
  7018. // row range for this thread
  7019. const int ir0 = dr*ith;
  7020. const int ir1 = MIN(ir0 + dr, nr);
  7021. for (int ir = ir0; ir < ir1; ++ir) {
  7022. // src0 and dst are same shape => same indices
  7023. const int i3 = ir/(ne2*ne1);
  7024. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7025. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7026. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7027. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7028. for (int i = 0; i < ne0; i++) {
  7029. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7030. }
  7031. }
  7032. }
  7033. static void ggml_compute_forward_add1_q_f32(
  7034. const struct ggml_compute_params * params,
  7035. const struct ggml_tensor * src0,
  7036. const struct ggml_tensor * src1,
  7037. struct ggml_tensor * dst) {
  7038. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7039. GGML_ASSERT(ggml_is_scalar(src1));
  7040. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7041. return;
  7042. }
  7043. // scalar to add
  7044. const float v = *(float *) src1->data;
  7045. const int ith = params->ith;
  7046. const int nth = params->nth;
  7047. const int nr = ggml_nrows(src0);
  7048. GGML_TENSOR_UNARY_OP_LOCALS;
  7049. const enum ggml_type type = src0->type;
  7050. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7051. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7052. // we don't support permuted src0
  7053. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7054. // dst cannot be transposed or permuted
  7055. GGML_ASSERT(nb0 <= nb1);
  7056. GGML_ASSERT(nb1 <= nb2);
  7057. GGML_ASSERT(nb2 <= nb3);
  7058. GGML_ASSERT(ggml_is_quantized(src0->type));
  7059. GGML_ASSERT(dst->type == src0->type);
  7060. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7061. // rows per thread
  7062. const int dr = (nr + nth - 1)/nth;
  7063. // row range for this thread
  7064. const int ir0 = dr*ith;
  7065. const int ir1 = MIN(ir0 + dr, nr);
  7066. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7067. for (int ir = ir0; ir < ir1; ++ir) {
  7068. // src0 and dst are same shape => same indices
  7069. const int i3 = ir/(ne2*ne1);
  7070. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7071. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7072. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7073. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7074. assert(ne0 % 32 == 0);
  7075. // unquantize row from src0 to temp buffer
  7076. dequantize_row_q(src0_row, wdata, ne0);
  7077. // add src1
  7078. ggml_vec_acc1_f32(ne0, wdata, v);
  7079. // quantize row to dst
  7080. quantize_row_q(wdata, dst_row, ne0);
  7081. }
  7082. }
  7083. static void ggml_compute_forward_add1(
  7084. const struct ggml_compute_params * params,
  7085. const struct ggml_tensor * src0,
  7086. const struct ggml_tensor * src1,
  7087. struct ggml_tensor * dst) {
  7088. switch (src0->type) {
  7089. case GGML_TYPE_F32:
  7090. {
  7091. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7092. } break;
  7093. case GGML_TYPE_F16:
  7094. {
  7095. if (src1->type == GGML_TYPE_F16) {
  7096. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7097. }
  7098. else if (src1->type == GGML_TYPE_F32) {
  7099. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7100. }
  7101. else {
  7102. GGML_ASSERT(false);
  7103. }
  7104. } break;
  7105. case GGML_TYPE_Q4_0:
  7106. case GGML_TYPE_Q4_1:
  7107. case GGML_TYPE_Q5_0:
  7108. case GGML_TYPE_Q5_1:
  7109. case GGML_TYPE_Q8_0:
  7110. case GGML_TYPE_Q8_1:
  7111. case GGML_TYPE_Q2_K:
  7112. case GGML_TYPE_Q3_K:
  7113. case GGML_TYPE_Q4_K:
  7114. case GGML_TYPE_Q5_K:
  7115. case GGML_TYPE_Q6_K:
  7116. {
  7117. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7118. } break;
  7119. default:
  7120. {
  7121. GGML_ASSERT(false);
  7122. } break;
  7123. }
  7124. }
  7125. // ggml_compute_forward_acc
  7126. static void ggml_compute_forward_acc_f32(
  7127. const struct ggml_compute_params * params,
  7128. const struct ggml_tensor * src0,
  7129. const struct ggml_tensor * src1,
  7130. const struct ggml_tensor * opt0,
  7131. struct ggml_tensor * dst) {
  7132. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7133. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7134. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7135. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7136. // view src0 and dst with these strides and data offset inbytes during acc
  7137. // nb0 is implicitely element_size because src0 and dst are contiguous
  7138. size_t nb1 = ((int32_t *) opt0->data)[0];
  7139. size_t nb2 = ((int32_t *) opt0->data)[1];
  7140. size_t nb3 = ((int32_t *) opt0->data)[2];
  7141. size_t offset = ((int32_t *) opt0->data)[3];
  7142. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7143. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7144. // memcpy needs to be synchronized across threads to avoid race conditions.
  7145. // => do it in INIT phase
  7146. memcpy(
  7147. ((char *) dst->data),
  7148. ((char *) src0->data),
  7149. ggml_nbytes(dst));
  7150. }
  7151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7152. return;
  7153. }
  7154. const int ith = params->ith;
  7155. const int nth = params->nth;
  7156. const int nr = ggml_nrows(src1);
  7157. const int nc = src1->ne[0];
  7158. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  7159. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  7160. // src0 and dst as viewed during acc
  7161. const size_t nb0 = ggml_element_size(src0);
  7162. const size_t nb00 = nb0;
  7163. const size_t nb01 = nb1;
  7164. const size_t nb02 = nb2;
  7165. const size_t nb03 = nb3;
  7166. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7167. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7168. GGML_ASSERT(nb10 == sizeof(float));
  7169. // rows per thread
  7170. const int dr = (nr + nth - 1)/nth;
  7171. // row range for this thread
  7172. const int ir0 = dr*ith;
  7173. const int ir1 = MIN(ir0 + dr, nr);
  7174. for (int ir = ir0; ir < ir1; ++ir) {
  7175. // src0 and dst are viewed with shape of src1 and offset
  7176. // => same indices
  7177. const int i3 = ir/(ne12*ne11);
  7178. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7179. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7180. #ifdef GGML_USE_ACCELERATE
  7181. vDSP_vadd(
  7182. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7183. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7184. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7185. #else
  7186. ggml_vec_add_f32(nc,
  7187. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7188. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7189. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7190. #endif
  7191. }
  7192. }
  7193. static void ggml_compute_forward_acc(
  7194. const struct ggml_compute_params * params,
  7195. const struct ggml_tensor * src0,
  7196. const struct ggml_tensor * src1,
  7197. const struct ggml_tensor * opt0,
  7198. struct ggml_tensor * dst) {
  7199. switch (src0->type) {
  7200. case GGML_TYPE_F32:
  7201. {
  7202. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7203. } break;
  7204. case GGML_TYPE_F16:
  7205. case GGML_TYPE_Q4_0:
  7206. case GGML_TYPE_Q4_1:
  7207. case GGML_TYPE_Q5_0:
  7208. case GGML_TYPE_Q5_1:
  7209. case GGML_TYPE_Q8_0:
  7210. case GGML_TYPE_Q8_1:
  7211. case GGML_TYPE_Q2_K:
  7212. case GGML_TYPE_Q3_K:
  7213. case GGML_TYPE_Q4_K:
  7214. case GGML_TYPE_Q5_K:
  7215. case GGML_TYPE_Q6_K:
  7216. default:
  7217. {
  7218. GGML_ASSERT(false);
  7219. } break;
  7220. }
  7221. }
  7222. // ggml_compute_forward_sub
  7223. static void ggml_compute_forward_sub_f32(
  7224. const struct ggml_compute_params * params,
  7225. const struct ggml_tensor * src0,
  7226. const struct ggml_tensor * src1,
  7227. struct ggml_tensor * dst) {
  7228. assert(params->ith == 0);
  7229. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7230. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7231. return;
  7232. }
  7233. const int nr = ggml_nrows(src0);
  7234. GGML_TENSOR_BINARY_OP_LOCALS;
  7235. GGML_ASSERT( nb0 == sizeof(float));
  7236. GGML_ASSERT(nb00 == sizeof(float));
  7237. if (nb10 == sizeof(float)) {
  7238. for (int ir = 0; ir < nr; ++ir) {
  7239. // src0, src1 and dst are same shape => same indices
  7240. const int i3 = ir/(ne2*ne1);
  7241. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7242. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7243. #ifdef GGML_USE_ACCELERATE
  7244. vDSP_vsub(
  7245. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7246. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7247. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7248. ne0);
  7249. #else
  7250. ggml_vec_sub_f32(ne0,
  7251. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7252. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7253. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7254. #endif
  7255. // }
  7256. // }
  7257. }
  7258. } else {
  7259. // src1 is not contiguous
  7260. for (int ir = 0; ir < nr; ++ir) {
  7261. // src0, src1 and dst are same shape => same indices
  7262. const int i3 = ir/(ne2*ne1);
  7263. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7264. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7265. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7266. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7267. for (int i0 = 0; i0 < ne0; i0++) {
  7268. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7269. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7270. }
  7271. }
  7272. }
  7273. }
  7274. static void ggml_compute_forward_sub(
  7275. const struct ggml_compute_params * params,
  7276. const struct ggml_tensor * src0,
  7277. const struct ggml_tensor * src1,
  7278. struct ggml_tensor * dst) {
  7279. switch (src0->type) {
  7280. case GGML_TYPE_F32:
  7281. {
  7282. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7283. } break;
  7284. default:
  7285. {
  7286. GGML_ASSERT(false);
  7287. } break;
  7288. }
  7289. }
  7290. // ggml_compute_forward_mul
  7291. static void ggml_compute_forward_mul_f32(
  7292. const struct ggml_compute_params * params,
  7293. const struct ggml_tensor * src0,
  7294. const struct ggml_tensor * src1,
  7295. struct ggml_tensor * dst) {
  7296. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7297. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7298. return;
  7299. }
  7300. const int ith = params->ith;
  7301. const int nth = params->nth;
  7302. #ifdef GGML_USE_CLBLAST
  7303. if (src1->backend == GGML_BACKEND_GPU) {
  7304. if (ith == 0) {
  7305. ggml_cl_mul(src0, src1, dst);
  7306. }
  7307. return;
  7308. }
  7309. #endif
  7310. const int64_t nr = ggml_nrows(src0);
  7311. GGML_TENSOR_BINARY_OP_LOCALS;
  7312. GGML_ASSERT( nb0 == sizeof(float));
  7313. GGML_ASSERT(nb00 == sizeof(float));
  7314. GGML_ASSERT(ne00 == ne10);
  7315. if (nb10 == sizeof(float)) {
  7316. for (int64_t ir = ith; ir < nr; ir += nth) {
  7317. // src0 and dst are same shape => same indices
  7318. const int64_t i03 = ir/(ne02*ne01);
  7319. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7320. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7321. const int64_t i13 = i03 % ne13;
  7322. const int64_t i12 = i02 % ne12;
  7323. const int64_t i11 = i01 % ne11;
  7324. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7325. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7326. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7327. #ifdef GGML_USE_ACCELERATE
  7328. UNUSED(ggml_vec_mul_f32);
  7329. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7330. #else
  7331. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7332. #endif
  7333. // }
  7334. // }
  7335. }
  7336. } else {
  7337. // src1 is not contiguous
  7338. for (int64_t ir = ith; ir < nr; ir += nth) {
  7339. // src0 and dst are same shape => same indices
  7340. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7341. const int64_t i03 = ir/(ne02*ne01);
  7342. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7343. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7344. const int64_t i13 = i03 % ne13;
  7345. const int64_t i12 = i02 % ne12;
  7346. const int64_t i11 = i01 % ne11;
  7347. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7348. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7349. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7350. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7351. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7352. }
  7353. }
  7354. }
  7355. }
  7356. static void ggml_compute_forward_mul(
  7357. const struct ggml_compute_params * params,
  7358. const struct ggml_tensor * src0,
  7359. const struct ggml_tensor * src1,
  7360. struct ggml_tensor * dst) {
  7361. switch (src0->type) {
  7362. case GGML_TYPE_F32:
  7363. {
  7364. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7365. } break;
  7366. default:
  7367. {
  7368. GGML_ASSERT(false);
  7369. } break;
  7370. }
  7371. }
  7372. // ggml_compute_forward_div
  7373. static void ggml_compute_forward_div_f32(
  7374. const struct ggml_compute_params * params,
  7375. const struct ggml_tensor * src0,
  7376. const struct ggml_tensor * src1,
  7377. struct ggml_tensor * dst) {
  7378. assert(params->ith == 0);
  7379. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7380. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7381. return;
  7382. }
  7383. const int nr = ggml_nrows(src0);
  7384. GGML_TENSOR_BINARY_OP_LOCALS;
  7385. GGML_ASSERT( nb0 == sizeof(float));
  7386. GGML_ASSERT(nb00 == sizeof(float));
  7387. if (nb10 == sizeof(float)) {
  7388. for (int ir = 0; ir < nr; ++ir) {
  7389. // src0, src1 and dst are same shape => same indices
  7390. const int i3 = ir/(ne2*ne1);
  7391. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7392. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7393. #ifdef GGML_USE_ACCELERATE
  7394. vDSP_vdiv(
  7395. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7396. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7397. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7398. ne0);
  7399. #else
  7400. ggml_vec_div_f32(ne0,
  7401. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7402. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7403. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7404. #endif
  7405. // }
  7406. // }
  7407. }
  7408. } else {
  7409. // src1 is not contiguous
  7410. for (int ir = 0; ir < nr; ++ir) {
  7411. // src0, src1 and dst are same shape => same indices
  7412. const int i3 = ir/(ne2*ne1);
  7413. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7414. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7415. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7416. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7417. for (int i0 = 0; i0 < ne0; i0++) {
  7418. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7419. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7420. }
  7421. }
  7422. }
  7423. }
  7424. static void ggml_compute_forward_div(
  7425. const struct ggml_compute_params * params,
  7426. const struct ggml_tensor * src0,
  7427. const struct ggml_tensor * src1,
  7428. struct ggml_tensor * dst) {
  7429. switch (src0->type) {
  7430. case GGML_TYPE_F32:
  7431. {
  7432. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7433. } break;
  7434. default:
  7435. {
  7436. GGML_ASSERT(false);
  7437. } break;
  7438. }
  7439. }
  7440. // ggml_compute_forward_sqr
  7441. static void ggml_compute_forward_sqr_f32(
  7442. const struct ggml_compute_params * params,
  7443. const struct ggml_tensor * src0,
  7444. struct ggml_tensor * dst) {
  7445. assert(params->ith == 0);
  7446. assert(ggml_are_same_shape(src0, dst));
  7447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7448. return;
  7449. }
  7450. const int n = ggml_nrows(src0);
  7451. const int nc = src0->ne[0];
  7452. assert( dst->nb[0] == sizeof(float));
  7453. assert(src0->nb[0] == sizeof(float));
  7454. for (int i = 0; i < n; i++) {
  7455. ggml_vec_sqr_f32(nc,
  7456. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7457. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7458. }
  7459. }
  7460. static void ggml_compute_forward_sqr(
  7461. const struct ggml_compute_params * params,
  7462. const struct ggml_tensor * src0,
  7463. struct ggml_tensor * dst) {
  7464. switch (src0->type) {
  7465. case GGML_TYPE_F32:
  7466. {
  7467. ggml_compute_forward_sqr_f32(params, src0, dst);
  7468. } break;
  7469. default:
  7470. {
  7471. GGML_ASSERT(false);
  7472. } break;
  7473. }
  7474. }
  7475. // ggml_compute_forward_sqrt
  7476. static void ggml_compute_forward_sqrt_f32(
  7477. const struct ggml_compute_params * params,
  7478. const struct ggml_tensor * src0,
  7479. struct ggml_tensor * dst) {
  7480. assert(params->ith == 0);
  7481. assert(ggml_are_same_shape(src0, dst));
  7482. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7483. return;
  7484. }
  7485. const int n = ggml_nrows(src0);
  7486. const int nc = src0->ne[0];
  7487. assert( dst->nb[0] == sizeof(float));
  7488. assert(src0->nb[0] == sizeof(float));
  7489. for (int i = 0; i < n; i++) {
  7490. ggml_vec_sqrt_f32(nc,
  7491. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7492. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7493. }
  7494. }
  7495. static void ggml_compute_forward_sqrt(
  7496. const struct ggml_compute_params * params,
  7497. const struct ggml_tensor * src0,
  7498. struct ggml_tensor * dst) {
  7499. switch (src0->type) {
  7500. case GGML_TYPE_F32:
  7501. {
  7502. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7503. } break;
  7504. default:
  7505. {
  7506. GGML_ASSERT(false);
  7507. } break;
  7508. }
  7509. }
  7510. // ggml_compute_forward_log
  7511. static void ggml_compute_forward_log_f32(
  7512. const struct ggml_compute_params * params,
  7513. const struct ggml_tensor * src0,
  7514. struct ggml_tensor * dst) {
  7515. GGML_ASSERT(params->ith == 0);
  7516. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7517. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7518. return;
  7519. }
  7520. const int n = ggml_nrows(src0);
  7521. const int nc = src0->ne[0];
  7522. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7523. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7524. for (int i = 0; i < n; i++) {
  7525. ggml_vec_log_f32(nc,
  7526. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7527. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7528. }
  7529. }
  7530. static void ggml_compute_forward_log(
  7531. const struct ggml_compute_params * params,
  7532. const struct ggml_tensor * src0,
  7533. struct ggml_tensor * dst) {
  7534. switch (src0->type) {
  7535. case GGML_TYPE_F32:
  7536. {
  7537. ggml_compute_forward_log_f32(params, src0, dst);
  7538. } break;
  7539. default:
  7540. {
  7541. GGML_ASSERT(false);
  7542. } break;
  7543. }
  7544. }
  7545. // ggml_compute_forward_sum
  7546. static void ggml_compute_forward_sum_f32(
  7547. const struct ggml_compute_params * params,
  7548. const struct ggml_tensor * src0,
  7549. struct ggml_tensor * dst) {
  7550. assert(params->ith == 0);
  7551. assert(ggml_is_scalar(dst));
  7552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7553. return;
  7554. }
  7555. assert(ggml_is_scalar(dst));
  7556. assert(src0->nb[0] == sizeof(float));
  7557. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  7558. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb);
  7559. ggml_float sum = 0;
  7560. ggml_float row_sum = 0;
  7561. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7562. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7563. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7564. ggml_vec_sum_ggf(ne00,
  7565. &row_sum,
  7566. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7567. sum += row_sum;
  7568. }
  7569. }
  7570. }
  7571. ((float *) dst->data)[0] = sum;
  7572. }
  7573. static void ggml_compute_forward_sum(
  7574. const struct ggml_compute_params * params,
  7575. const struct ggml_tensor * src0,
  7576. struct ggml_tensor * dst) {
  7577. switch (src0->type) {
  7578. case GGML_TYPE_F32:
  7579. {
  7580. ggml_compute_forward_sum_f32(params, src0, dst);
  7581. } break;
  7582. default:
  7583. {
  7584. GGML_ASSERT(false);
  7585. } break;
  7586. }
  7587. }
  7588. // ggml_compute_forward_sum_rows
  7589. static void ggml_compute_forward_sum_rows_f32(
  7590. const struct ggml_compute_params * params,
  7591. const struct ggml_tensor * src0,
  7592. struct ggml_tensor * dst) {
  7593. GGML_ASSERT(params->ith == 0);
  7594. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7595. return;
  7596. }
  7597. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7598. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7599. GGML_TENSOR_UNARY_OP_LOCALS;
  7600. GGML_ASSERT(ne0 == 1);
  7601. GGML_ASSERT(ne1 == ne01);
  7602. GGML_ASSERT(ne2 == ne02);
  7603. GGML_ASSERT(ne3 == ne03);
  7604. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7605. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7606. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7607. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7608. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7609. float row_sum = 0;
  7610. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7611. dst_row[0] = row_sum;
  7612. }
  7613. }
  7614. }
  7615. }
  7616. static void ggml_compute_forward_sum_rows(
  7617. const struct ggml_compute_params * params,
  7618. const struct ggml_tensor * src0,
  7619. struct ggml_tensor * dst) {
  7620. switch (src0->type) {
  7621. case GGML_TYPE_F32:
  7622. {
  7623. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7624. } break;
  7625. default:
  7626. {
  7627. GGML_ASSERT(false);
  7628. } break;
  7629. }
  7630. }
  7631. // ggml_compute_forward_mean
  7632. static void ggml_compute_forward_mean_f32(
  7633. const struct ggml_compute_params * params,
  7634. const struct ggml_tensor * src0,
  7635. struct ggml_tensor * dst) {
  7636. assert(params->ith == 0);
  7637. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7638. return;
  7639. }
  7640. assert(src0->nb[0] == sizeof(float));
  7641. GGML_TENSOR_UNARY_OP_LOCALS;
  7642. assert(ne0 == 1);
  7643. assert(ne1 == ne01);
  7644. assert(ne2 == ne02);
  7645. assert(ne3 == ne03);
  7646. UNUSED(ne0);
  7647. UNUSED(ne1);
  7648. UNUSED(ne2);
  7649. UNUSED(ne3);
  7650. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7651. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7652. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7653. ggml_vec_sum_f32(ne00,
  7654. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7655. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7656. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7657. }
  7658. }
  7659. }
  7660. }
  7661. static void ggml_compute_forward_mean(
  7662. const struct ggml_compute_params * params,
  7663. const struct ggml_tensor * src0,
  7664. struct ggml_tensor * dst) {
  7665. switch (src0->type) {
  7666. case GGML_TYPE_F32:
  7667. {
  7668. ggml_compute_forward_mean_f32(params, src0, dst);
  7669. } break;
  7670. default:
  7671. {
  7672. GGML_ASSERT(false);
  7673. } break;
  7674. }
  7675. }
  7676. // ggml_compute_forward_argmax
  7677. static void ggml_compute_forward_argmax_f32(
  7678. const struct ggml_compute_params * params,
  7679. const struct ggml_tensor * src0,
  7680. struct ggml_tensor * dst) {
  7681. assert(params->ith == 0);
  7682. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7683. return;
  7684. }
  7685. assert(src0->nb[0] == sizeof(float));
  7686. assert(dst->nb[0] == sizeof(float));
  7687. const int64_t ne00 = src0->ne[0];
  7688. const int64_t ne01 = src0->ne[1];
  7689. const size_t nb01 = src0->nb[1];
  7690. const size_t nb0 = dst->nb[0];
  7691. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7692. float * src = (float *) ((char *) src0->data + i1*nb01);
  7693. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  7694. int v = 0;
  7695. ggml_vec_argmax_f32(ne00, &v, src);
  7696. dst_[0] = v;
  7697. }
  7698. }
  7699. static void ggml_compute_forward_argmax(
  7700. const struct ggml_compute_params * params,
  7701. const struct ggml_tensor * src0,
  7702. struct ggml_tensor * dst) {
  7703. switch (src0->type) {
  7704. case GGML_TYPE_F32:
  7705. {
  7706. ggml_compute_forward_argmax_f32(params, src0, dst);
  7707. } break;
  7708. default:
  7709. {
  7710. GGML_ASSERT(false);
  7711. } break;
  7712. }
  7713. }
  7714. // ggml_compute_forward_repeat
  7715. static void ggml_compute_forward_repeat_f32(
  7716. const struct ggml_compute_params * params,
  7717. const struct ggml_tensor * src0,
  7718. struct ggml_tensor * dst) {
  7719. GGML_ASSERT(params->ith == 0);
  7720. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7721. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7722. return;
  7723. }
  7724. GGML_TENSOR_UNARY_OP_LOCALS;
  7725. // guaranteed to be an integer due to the check in ggml_can_repeat
  7726. const int nr0 = (int)(ne0/ne00);
  7727. const int nr1 = (int)(ne1/ne01);
  7728. const int nr2 = (int)(ne2/ne02);
  7729. const int nr3 = (int)(ne3/ne03);
  7730. // TODO: support for transposed / permuted tensors
  7731. GGML_ASSERT(nb0 == sizeof(float));
  7732. GGML_ASSERT(nb00 == sizeof(float));
  7733. // TODO: maybe this is not optimal?
  7734. for (int i3 = 0; i3 < nr3; i3++) {
  7735. for (int k3 = 0; k3 < ne03; k3++) {
  7736. for (int i2 = 0; i2 < nr2; i2++) {
  7737. for (int k2 = 0; k2 < ne02; k2++) {
  7738. for (int i1 = 0; i1 < nr1; i1++) {
  7739. for (int k1 = 0; k1 < ne01; k1++) {
  7740. for (int i0 = 0; i0 < nr0; i0++) {
  7741. ggml_vec_cpy_f32(ne00,
  7742. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7743. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7744. }
  7745. }
  7746. }
  7747. }
  7748. }
  7749. }
  7750. }
  7751. }
  7752. static void ggml_compute_forward_repeat(
  7753. const struct ggml_compute_params * params,
  7754. const struct ggml_tensor * src0,
  7755. struct ggml_tensor * dst) {
  7756. switch (src0->type) {
  7757. case GGML_TYPE_F32:
  7758. {
  7759. ggml_compute_forward_repeat_f32(params, src0, dst);
  7760. } break;
  7761. default:
  7762. {
  7763. GGML_ASSERT(false);
  7764. } break;
  7765. }
  7766. }
  7767. // ggml_compute_forward_repeat_back
  7768. static void ggml_compute_forward_repeat_back_f32(
  7769. const struct ggml_compute_params * params,
  7770. const struct ggml_tensor * src0,
  7771. struct ggml_tensor * dst) {
  7772. GGML_ASSERT(params->ith == 0);
  7773. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7774. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7775. return;
  7776. }
  7777. GGML_TENSOR_UNARY_OP_LOCALS;
  7778. // guaranteed to be an integer due to the check in ggml_can_repeat
  7779. const int nr0 = (int)(ne00/ne0);
  7780. const int nr1 = (int)(ne01/ne1);
  7781. const int nr2 = (int)(ne02/ne2);
  7782. const int nr3 = (int)(ne03/ne3);
  7783. // TODO: support for transposed / permuted tensors
  7784. GGML_ASSERT(nb0 == sizeof(float));
  7785. GGML_ASSERT(nb00 == sizeof(float));
  7786. if (ggml_is_contiguous(dst)) {
  7787. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7788. } else {
  7789. for (int k3 = 0; k3 < ne3; k3++) {
  7790. for (int k2 = 0; k2 < ne2; k2++) {
  7791. for (int k1 = 0; k1 < ne1; k1++) {
  7792. ggml_vec_set_f32(ne0,
  7793. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7794. 0);
  7795. }
  7796. }
  7797. }
  7798. }
  7799. // TODO: maybe this is not optimal?
  7800. for (int i3 = 0; i3 < nr3; i3++) {
  7801. for (int k3 = 0; k3 < ne3; k3++) {
  7802. for (int i2 = 0; i2 < nr2; i2++) {
  7803. for (int k2 = 0; k2 < ne2; k2++) {
  7804. for (int i1 = 0; i1 < nr1; i1++) {
  7805. for (int k1 = 0; k1 < ne1; k1++) {
  7806. for (int i0 = 0; i0 < nr0; i0++) {
  7807. ggml_vec_acc_f32(ne0,
  7808. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7809. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7810. }
  7811. }
  7812. }
  7813. }
  7814. }
  7815. }
  7816. }
  7817. }
  7818. static void ggml_compute_forward_repeat_back(
  7819. const struct ggml_compute_params * params,
  7820. const struct ggml_tensor * src0,
  7821. struct ggml_tensor * dst) {
  7822. switch (src0->type) {
  7823. case GGML_TYPE_F32:
  7824. {
  7825. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7826. } break;
  7827. default:
  7828. {
  7829. GGML_ASSERT(false);
  7830. } break;
  7831. }
  7832. }
  7833. // ggml_compute_forward_abs
  7834. static void ggml_compute_forward_abs_f32(
  7835. const struct ggml_compute_params * params,
  7836. const struct ggml_tensor * src0,
  7837. struct ggml_tensor * dst) {
  7838. assert(params->ith == 0);
  7839. assert(ggml_are_same_shape(src0, dst));
  7840. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7841. return;
  7842. }
  7843. const int n = ggml_nrows(src0);
  7844. const int nc = src0->ne[0];
  7845. assert(dst->nb[0] == sizeof(float));
  7846. assert(src0->nb[0] == sizeof(float));
  7847. for (int i = 0; i < n; i++) {
  7848. ggml_vec_abs_f32(nc,
  7849. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7850. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7851. }
  7852. }
  7853. static void ggml_compute_forward_abs(
  7854. const struct ggml_compute_params * params,
  7855. const struct ggml_tensor * src0,
  7856. struct ggml_tensor * dst) {
  7857. switch (src0->type) {
  7858. case GGML_TYPE_F32:
  7859. {
  7860. ggml_compute_forward_abs_f32(params, src0, dst);
  7861. } break;
  7862. default:
  7863. {
  7864. GGML_ASSERT(false);
  7865. } break;
  7866. }
  7867. }
  7868. // ggml_compute_forward_sgn
  7869. static void ggml_compute_forward_sgn_f32(
  7870. const struct ggml_compute_params * params,
  7871. const struct ggml_tensor * src0,
  7872. struct ggml_tensor * dst) {
  7873. assert(params->ith == 0);
  7874. assert(ggml_are_same_shape(src0, dst));
  7875. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7876. return;
  7877. }
  7878. const int n = ggml_nrows(src0);
  7879. const int nc = src0->ne[0];
  7880. assert(dst->nb[0] == sizeof(float));
  7881. assert(src0->nb[0] == sizeof(float));
  7882. for (int i = 0; i < n; i++) {
  7883. ggml_vec_sgn_f32(nc,
  7884. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7885. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7886. }
  7887. }
  7888. static void ggml_compute_forward_sgn(
  7889. const struct ggml_compute_params * params,
  7890. const struct ggml_tensor * src0,
  7891. struct ggml_tensor * dst) {
  7892. switch (src0->type) {
  7893. case GGML_TYPE_F32:
  7894. {
  7895. ggml_compute_forward_sgn_f32(params, src0, dst);
  7896. } break;
  7897. default:
  7898. {
  7899. GGML_ASSERT(false);
  7900. } break;
  7901. }
  7902. }
  7903. // ggml_compute_forward_neg
  7904. static void ggml_compute_forward_neg_f32(
  7905. const struct ggml_compute_params * params,
  7906. const struct ggml_tensor * src0,
  7907. struct ggml_tensor * dst) {
  7908. assert(params->ith == 0);
  7909. assert(ggml_are_same_shape(src0, dst));
  7910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7911. return;
  7912. }
  7913. const int n = ggml_nrows(src0);
  7914. const int nc = src0->ne[0];
  7915. assert(dst->nb[0] == sizeof(float));
  7916. assert(src0->nb[0] == sizeof(float));
  7917. for (int i = 0; i < n; i++) {
  7918. ggml_vec_neg_f32(nc,
  7919. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7920. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7921. }
  7922. }
  7923. static void ggml_compute_forward_neg(
  7924. const struct ggml_compute_params * params,
  7925. const struct ggml_tensor * src0,
  7926. struct ggml_tensor * dst) {
  7927. switch (src0->type) {
  7928. case GGML_TYPE_F32:
  7929. {
  7930. ggml_compute_forward_neg_f32(params, src0, dst);
  7931. } break;
  7932. default:
  7933. {
  7934. GGML_ASSERT(false);
  7935. } break;
  7936. }
  7937. }
  7938. // ggml_compute_forward_step
  7939. static void ggml_compute_forward_step_f32(
  7940. const struct ggml_compute_params * params,
  7941. const struct ggml_tensor * src0,
  7942. struct ggml_tensor * dst) {
  7943. assert(params->ith == 0);
  7944. assert(ggml_are_same_shape(src0, dst));
  7945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7946. return;
  7947. }
  7948. const int n = ggml_nrows(src0);
  7949. const int nc = src0->ne[0];
  7950. assert(dst->nb[0] == sizeof(float));
  7951. assert(src0->nb[0] == sizeof(float));
  7952. for (int i = 0; i < n; i++) {
  7953. ggml_vec_step_f32(nc,
  7954. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7955. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7956. }
  7957. }
  7958. static void ggml_compute_forward_step(
  7959. const struct ggml_compute_params * params,
  7960. const struct ggml_tensor * src0,
  7961. struct ggml_tensor * dst) {
  7962. switch (src0->type) {
  7963. case GGML_TYPE_F32:
  7964. {
  7965. ggml_compute_forward_step_f32(params, src0, dst);
  7966. } break;
  7967. default:
  7968. {
  7969. GGML_ASSERT(false);
  7970. } break;
  7971. }
  7972. }
  7973. // ggml_compute_forward_tanh
  7974. static void ggml_compute_forward_tanh_f32(
  7975. const struct ggml_compute_params * params,
  7976. const struct ggml_tensor * src0,
  7977. struct ggml_tensor * dst) {
  7978. assert(params->ith == 0);
  7979. assert(ggml_are_same_shape(src0, dst));
  7980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7981. return;
  7982. }
  7983. const int n = ggml_nrows(src0);
  7984. const int nc = src0->ne[0];
  7985. assert(dst->nb[0] == sizeof(float));
  7986. assert(src0->nb[0] == sizeof(float));
  7987. for (int i = 0; i < n; i++) {
  7988. ggml_vec_tanh_f32(nc,
  7989. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7990. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7991. }
  7992. }
  7993. static void ggml_compute_forward_tanh(
  7994. const struct ggml_compute_params * params,
  7995. const struct ggml_tensor * src0,
  7996. struct ggml_tensor * dst) {
  7997. switch (src0->type) {
  7998. case GGML_TYPE_F32:
  7999. {
  8000. ggml_compute_forward_tanh_f32(params, src0, dst);
  8001. } break;
  8002. default:
  8003. {
  8004. GGML_ASSERT(false);
  8005. } break;
  8006. }
  8007. }
  8008. // ggml_compute_forward_elu
  8009. static void ggml_compute_forward_elu_f32(
  8010. const struct ggml_compute_params * params,
  8011. const struct ggml_tensor * src0,
  8012. struct ggml_tensor * dst) {
  8013. assert(params->ith == 0);
  8014. assert(ggml_are_same_shape(src0, dst));
  8015. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8016. return;
  8017. }
  8018. const int n = ggml_nrows(src0);
  8019. const int nc = src0->ne[0];
  8020. assert(dst->nb[0] == sizeof(float));
  8021. assert(src0->nb[0] == sizeof(float));
  8022. for (int i = 0; i < n; i++) {
  8023. ggml_vec_elu_f32(nc,
  8024. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8025. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8026. }
  8027. }
  8028. static void ggml_compute_forward_elu(
  8029. const struct ggml_compute_params * params,
  8030. const struct ggml_tensor * src0,
  8031. struct ggml_tensor * dst) {
  8032. switch (src0->type) {
  8033. case GGML_TYPE_F32:
  8034. {
  8035. ggml_compute_forward_elu_f32(params, src0, dst);
  8036. } break;
  8037. default:
  8038. {
  8039. GGML_ASSERT(false);
  8040. } break;
  8041. }
  8042. }
  8043. // ggml_compute_forward_relu
  8044. static void ggml_compute_forward_relu_f32(
  8045. const struct ggml_compute_params * params,
  8046. const struct ggml_tensor * src0,
  8047. struct ggml_tensor * dst) {
  8048. assert(params->ith == 0);
  8049. assert(ggml_are_same_shape(src0, dst));
  8050. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8051. return;
  8052. }
  8053. const int n = ggml_nrows(src0);
  8054. const int nc = src0->ne[0];
  8055. assert(dst->nb[0] == sizeof(float));
  8056. assert(src0->nb[0] == sizeof(float));
  8057. for (int i = 0; i < n; i++) {
  8058. ggml_vec_relu_f32(nc,
  8059. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8060. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8061. }
  8062. }
  8063. static void ggml_compute_forward_relu(
  8064. const struct ggml_compute_params * params,
  8065. const struct ggml_tensor * src0,
  8066. struct ggml_tensor * dst) {
  8067. switch (src0->type) {
  8068. case GGML_TYPE_F32:
  8069. {
  8070. ggml_compute_forward_relu_f32(params, src0, dst);
  8071. } break;
  8072. default:
  8073. {
  8074. GGML_ASSERT(false);
  8075. } break;
  8076. }
  8077. }
  8078. // ggml_compute_forward_gelu
  8079. static void ggml_compute_forward_gelu_f32(
  8080. const struct ggml_compute_params * params,
  8081. const struct ggml_tensor * src0,
  8082. struct ggml_tensor * dst) {
  8083. GGML_ASSERT(ggml_is_contiguous(src0));
  8084. GGML_ASSERT(ggml_is_contiguous(dst));
  8085. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8086. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8087. return;
  8088. }
  8089. const int ith = params->ith;
  8090. const int nth = params->nth;
  8091. const int nc = src0->ne[0];
  8092. const int nr = ggml_nrows(src0);
  8093. // rows per thread
  8094. const int dr = (nr + nth - 1)/nth;
  8095. // row range for this thread
  8096. const int ir0 = dr*ith;
  8097. const int ir1 = MIN(ir0 + dr, nr);
  8098. for (int i1 = ir0; i1 < ir1; i1++) {
  8099. ggml_vec_gelu_f32(nc,
  8100. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8101. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8102. #ifndef NDEBUG
  8103. for (int k = 0; k < nc; k++) {
  8104. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8105. UNUSED(x);
  8106. assert(!isnan(x));
  8107. assert(!isinf(x));
  8108. }
  8109. #endif
  8110. }
  8111. }
  8112. static void ggml_compute_forward_gelu(
  8113. const struct ggml_compute_params * params,
  8114. const struct ggml_tensor * src0,
  8115. struct ggml_tensor * dst) {
  8116. switch (src0->type) {
  8117. case GGML_TYPE_F32:
  8118. {
  8119. ggml_compute_forward_gelu_f32(params, src0, dst);
  8120. } break;
  8121. default:
  8122. {
  8123. GGML_ASSERT(false);
  8124. } break;
  8125. }
  8126. }
  8127. // ggml_compute_forward_gelu_quick
  8128. static void ggml_compute_forward_gelu_quick_f32(
  8129. const struct ggml_compute_params * params,
  8130. const struct ggml_tensor * src0,
  8131. struct ggml_tensor * dst) {
  8132. GGML_ASSERT(ggml_is_contiguous(src0));
  8133. GGML_ASSERT(ggml_is_contiguous(dst));
  8134. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8135. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8136. return;
  8137. }
  8138. const int ith = params->ith;
  8139. const int nth = params->nth;
  8140. const int nc = src0->ne[0];
  8141. const int nr = ggml_nrows(src0);
  8142. // rows per thread
  8143. const int dr = (nr + nth - 1)/nth;
  8144. // row range for this thread
  8145. const int ir0 = dr*ith;
  8146. const int ir1 = MIN(ir0 + dr, nr);
  8147. for (int i1 = ir0; i1 < ir1; i1++) {
  8148. ggml_vec_gelu_quick_f32(nc,
  8149. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8150. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8151. #ifndef NDEBUG
  8152. for (int k = 0; k < nc; k++) {
  8153. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8154. UNUSED(x);
  8155. assert(!isnan(x));
  8156. assert(!isinf(x));
  8157. }
  8158. #endif
  8159. }
  8160. }
  8161. static void ggml_compute_forward_gelu_quick(
  8162. const struct ggml_compute_params * params,
  8163. const struct ggml_tensor * src0,
  8164. struct ggml_tensor * dst) {
  8165. switch (src0->type) {
  8166. case GGML_TYPE_F32:
  8167. {
  8168. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8169. } break;
  8170. default:
  8171. {
  8172. GGML_ASSERT(false);
  8173. } break;
  8174. }
  8175. }
  8176. // ggml_compute_forward_silu
  8177. static void ggml_compute_forward_silu_f32(
  8178. const struct ggml_compute_params * params,
  8179. const struct ggml_tensor * src0,
  8180. struct ggml_tensor * dst) {
  8181. GGML_ASSERT(ggml_is_contiguous(src0));
  8182. GGML_ASSERT(ggml_is_contiguous(dst));
  8183. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8184. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8185. return;
  8186. }
  8187. const int ith = params->ith;
  8188. const int nth = params->nth;
  8189. const int nc = src0->ne[0];
  8190. const int nr = ggml_nrows(src0);
  8191. // rows per thread
  8192. const int dr = (nr + nth - 1)/nth;
  8193. // row range for this thread
  8194. const int ir0 = dr*ith;
  8195. const int ir1 = MIN(ir0 + dr, nr);
  8196. for (int i1 = ir0; i1 < ir1; i1++) {
  8197. ggml_vec_silu_f32(nc,
  8198. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8199. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8200. #ifndef NDEBUG
  8201. for (int k = 0; k < nc; k++) {
  8202. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8203. UNUSED(x);
  8204. assert(!isnan(x));
  8205. assert(!isinf(x));
  8206. }
  8207. #endif
  8208. }
  8209. }
  8210. static void ggml_compute_forward_silu(
  8211. const struct ggml_compute_params * params,
  8212. const struct ggml_tensor * src0,
  8213. struct ggml_tensor * dst) {
  8214. switch (src0->type) {
  8215. case GGML_TYPE_F32:
  8216. {
  8217. ggml_compute_forward_silu_f32(params, src0, dst);
  8218. } break;
  8219. default:
  8220. {
  8221. GGML_ASSERT(false);
  8222. } break;
  8223. }
  8224. }
  8225. // ggml_compute_forward_silu_back
  8226. static void ggml_compute_forward_silu_back_f32(
  8227. const struct ggml_compute_params * params,
  8228. const struct ggml_tensor * src0,
  8229. const struct ggml_tensor * grad,
  8230. struct ggml_tensor * dst) {
  8231. GGML_ASSERT(ggml_is_contiguous(grad));
  8232. GGML_ASSERT(ggml_is_contiguous(src0));
  8233. GGML_ASSERT(ggml_is_contiguous(dst));
  8234. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8235. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8236. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8237. return;
  8238. }
  8239. const int ith = params->ith;
  8240. const int nth = params->nth;
  8241. const int nc = src0->ne[0];
  8242. const int nr = ggml_nrows(src0);
  8243. // rows per thread
  8244. const int dr = (nr + nth - 1)/nth;
  8245. // row range for this thread
  8246. const int ir0 = dr*ith;
  8247. const int ir1 = MIN(ir0 + dr, nr);
  8248. for (int i1 = ir0; i1 < ir1; i1++) {
  8249. ggml_vec_silu_backward_f32(nc,
  8250. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8251. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8252. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8253. #ifndef NDEBUG
  8254. for (int k = 0; k < nc; k++) {
  8255. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8256. UNUSED(x);
  8257. assert(!isnan(x));
  8258. assert(!isinf(x));
  8259. }
  8260. #endif
  8261. }
  8262. }
  8263. static void ggml_compute_forward_silu_back(
  8264. const struct ggml_compute_params * params,
  8265. const struct ggml_tensor * src0,
  8266. const struct ggml_tensor * grad,
  8267. struct ggml_tensor * dst) {
  8268. switch (src0->type) {
  8269. case GGML_TYPE_F32:
  8270. {
  8271. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8272. } break;
  8273. default:
  8274. {
  8275. GGML_ASSERT(false);
  8276. } break;
  8277. }
  8278. }
  8279. // ggml_compute_forward_norm
  8280. static void ggml_compute_forward_norm_f32(
  8281. const struct ggml_compute_params * params,
  8282. const struct ggml_tensor * src0,
  8283. struct ggml_tensor * dst) {
  8284. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8285. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8286. return;
  8287. }
  8288. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8289. const int ith = params->ith;
  8290. const int nth = params->nth;
  8291. GGML_TENSOR_UNARY_OP_LOCALS;
  8292. const float eps = 1e-5f; // TODO: make this a parameter
  8293. // TODO: optimize
  8294. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8295. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8296. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8297. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8298. ggml_float sum = 0.0;
  8299. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8300. sum += (ggml_float)x[i00];
  8301. }
  8302. float mean = sum/ne00;
  8303. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8304. ggml_float sum2 = 0.0;
  8305. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8306. float v = x[i00] - mean;
  8307. y[i00] = v;
  8308. sum2 += (ggml_float)(v*v);
  8309. }
  8310. float variance = sum2/ne00;
  8311. const float scale = 1.0f/sqrtf(variance + eps);
  8312. ggml_vec_scale_f32(ne00, y, scale);
  8313. }
  8314. }
  8315. }
  8316. }
  8317. static void ggml_compute_forward_norm(
  8318. const struct ggml_compute_params * params,
  8319. const struct ggml_tensor * src0,
  8320. struct ggml_tensor * dst) {
  8321. switch (src0->type) {
  8322. case GGML_TYPE_F32:
  8323. {
  8324. ggml_compute_forward_norm_f32(params, src0, dst);
  8325. } break;
  8326. default:
  8327. {
  8328. GGML_ASSERT(false);
  8329. } break;
  8330. }
  8331. }
  8332. static void ggml_compute_forward_rms_norm_f32(
  8333. const struct ggml_compute_params * params,
  8334. const struct ggml_tensor * src0,
  8335. struct ggml_tensor * dst) {
  8336. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8337. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8338. return;
  8339. }
  8340. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8341. const int ith = params->ith;
  8342. const int nth = params->nth;
  8343. GGML_TENSOR_UNARY_OP_LOCALS;
  8344. const float eps = 1e-6f; // TODO: make this a parameter
  8345. // TODO: optimize
  8346. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8347. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8348. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8349. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8350. ggml_float sum = 0.0;
  8351. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8352. sum += (ggml_float)(x[i00] * x[i00]);
  8353. }
  8354. const float mean = sum/ne00;
  8355. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8356. memcpy(y, x, ne00 * sizeof(float));
  8357. // for (int i00 = 0; i00 < ne00; i00++) {
  8358. // y[i00] = x[i00];
  8359. // }
  8360. const float scale = 1.0f/sqrtf(mean + eps);
  8361. ggml_vec_scale_f32(ne00, y, scale);
  8362. }
  8363. }
  8364. }
  8365. }
  8366. static void ggml_compute_forward_rms_norm(
  8367. const struct ggml_compute_params * params,
  8368. const struct ggml_tensor * src0,
  8369. struct ggml_tensor * dst) {
  8370. switch (src0->type) {
  8371. case GGML_TYPE_F32:
  8372. {
  8373. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8374. } break;
  8375. default:
  8376. {
  8377. GGML_ASSERT(false);
  8378. } break;
  8379. }
  8380. }
  8381. static void ggml_compute_forward_rms_norm_back_f32(
  8382. const struct ggml_compute_params * params,
  8383. const struct ggml_tensor * src0,
  8384. const struct ggml_tensor * src1,
  8385. struct ggml_tensor * dst) {
  8386. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8387. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8388. return;
  8389. }
  8390. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8391. const int ith = params->ith;
  8392. const int nth = params->nth;
  8393. GGML_TENSOR_BINARY_OP_LOCALS;
  8394. const float eps = 1e-6f; // TODO: make this a parameter
  8395. // TODO: optimize
  8396. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8397. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8398. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8399. // src1 is same shape as src0 => same indices
  8400. const int64_t i11 = i01;
  8401. const int64_t i12 = i02;
  8402. const int64_t i13 = i03;
  8403. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8404. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8405. ggml_float sum_xx = 0.0;
  8406. ggml_float sum_xdz = 0.0;
  8407. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8408. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8409. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8410. }
  8411. //const float mean = (float)(sum_xx)/ne00;
  8412. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8413. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8414. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8415. // we could cache rms from forward pass to improve performance.
  8416. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8417. //const float rms = sqrtf(mean_eps);
  8418. const float rrms = 1.0f / sqrtf(mean_eps);
  8419. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8420. {
  8421. // z = rms_norm(x)
  8422. //
  8423. // rms_norm(src0) =
  8424. // scale(
  8425. // src0,
  8426. // div(
  8427. // 1,
  8428. // sqrt(
  8429. // add(
  8430. // scale(
  8431. // sum(
  8432. // sqr(
  8433. // src0)),
  8434. // (1.0/N)),
  8435. // eps))));
  8436. // postorder:
  8437. // ## op args grad
  8438. // 00 param src0 grad[#00]
  8439. // 01 const 1
  8440. // 02 sqr (#00) grad[#02]
  8441. // 03 sum (#02) grad[#03]
  8442. // 04 const 1/N
  8443. // 05 scale (#03, #04) grad[#05]
  8444. // 06 const eps
  8445. // 07 add (#05, #06) grad[#07]
  8446. // 08 sqrt (#07) grad[#08]
  8447. // 09 div (#01,#08) grad[#09]
  8448. // 10 scale (#00,#09) grad[#10]
  8449. //
  8450. // backward pass, given grad[#10]
  8451. // #10: scale
  8452. // grad[#00] += scale(grad[#10],#09)
  8453. // grad[#09] += sum(mul(grad[#10],#00))
  8454. // #09: div
  8455. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8456. // #08: sqrt
  8457. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8458. // #07: add
  8459. // grad[#05] += grad[#07]
  8460. // #05: scale
  8461. // grad[#03] += scale(grad[#05],#04)
  8462. // #03: sum
  8463. // grad[#02] += repeat(grad[#03], #02)
  8464. // #02:
  8465. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8466. //
  8467. // substitute and simplify:
  8468. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8469. // grad[#02] = repeat(grad[#03], #02)
  8470. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8471. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8472. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8473. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8474. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8475. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8476. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8477. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8478. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8479. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8480. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8481. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8482. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8483. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8484. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8485. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8486. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8487. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8488. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8489. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8490. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8491. // a = b*c + d*e
  8492. // a = b*c*f/f + d*e*f/f
  8493. // a = (b*c*f + d*e*f)*(1/f)
  8494. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8495. // a = (b + d*e/c)*c
  8496. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8497. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8498. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8499. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8500. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8501. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8502. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8503. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8504. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8505. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8506. }
  8507. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8508. // post-order:
  8509. // dx := x
  8510. // dx := scale(dx,-mean_xdz/mean_eps)
  8511. // dx := add(dx, dz)
  8512. // dx := scale(dx, rrms)
  8513. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8514. ggml_vec_cpy_f32 (ne00, dx, x);
  8515. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8516. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8517. ggml_vec_acc_f32 (ne00, dx, dz);
  8518. ggml_vec_scale_f32(ne00, dx, rrms);
  8519. }
  8520. }
  8521. }
  8522. }
  8523. static void ggml_compute_forward_rms_norm_back(
  8524. const struct ggml_compute_params * params,
  8525. const struct ggml_tensor * src0,
  8526. const struct ggml_tensor * src1,
  8527. struct ggml_tensor * dst) {
  8528. switch (src0->type) {
  8529. case GGML_TYPE_F32:
  8530. {
  8531. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8532. } break;
  8533. default:
  8534. {
  8535. GGML_ASSERT(false);
  8536. } break;
  8537. }
  8538. }
  8539. // ggml_compute_forward_mul_mat
  8540. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8541. // helper function to determine if it is better to use BLAS or not
  8542. // for large matrices, BLAS is faster
  8543. static bool ggml_compute_forward_mul_mat_use_blas(
  8544. const struct ggml_tensor * src0,
  8545. const struct ggml_tensor * src1,
  8546. struct ggml_tensor * dst) {
  8547. //const int64_t ne00 = src0->ne[0];
  8548. //const int64_t ne01 = src0->ne[1];
  8549. const int64_t ne10 = src1->ne[0];
  8550. const int64_t ne0 = dst->ne[0];
  8551. const int64_t ne1 = dst->ne[1];
  8552. // TODO: find the optimal values for these
  8553. if (ggml_is_contiguous(src0) &&
  8554. ggml_is_contiguous(src1) &&
  8555. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8556. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8557. return true;
  8558. }
  8559. return false;
  8560. }
  8561. #endif
  8562. static void ggml_compute_forward_mul_mat(
  8563. const struct ggml_compute_params * params,
  8564. const struct ggml_tensor * src0,
  8565. const struct ggml_tensor * src1,
  8566. struct ggml_tensor * dst) {
  8567. int64_t t0 = ggml_perf_time_us();
  8568. UNUSED(t0);
  8569. GGML_TENSOR_BINARY_OP_LOCALS;
  8570. const int ith = params->ith;
  8571. const int nth = params->nth;
  8572. GGML_ASSERT(ne02 == ne12);
  8573. GGML_ASSERT(ne03 == ne13);
  8574. GGML_ASSERT(ne2 == ne12);
  8575. GGML_ASSERT(ne3 == ne13);
  8576. const enum ggml_type type = src0->type;
  8577. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  8578. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  8579. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  8580. // we don't support permuted src0 or src1
  8581. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  8582. GGML_ASSERT(nb10 == sizeof(float));
  8583. // dst cannot be transposed or permuted
  8584. GGML_ASSERT(nb0 == sizeof(float));
  8585. GGML_ASSERT(nb0 <= nb1);
  8586. GGML_ASSERT(nb1 <= nb2);
  8587. GGML_ASSERT(nb2 <= nb3);
  8588. GGML_ASSERT(ne0 == ne01);
  8589. GGML_ASSERT(ne1 == ne11);
  8590. GGML_ASSERT(ne2 == ne02);
  8591. GGML_ASSERT(ne3 == ne03);
  8592. // nb01 >= nb00 - src0 is not transposed
  8593. // compute by src0 rows
  8594. #if defined(GGML_USE_CLBLAST)
  8595. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8596. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8597. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8598. }
  8599. return;
  8600. }
  8601. #endif
  8602. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8603. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8604. if (params->ith != 0) {
  8605. return;
  8606. }
  8607. if (params->type == GGML_TASK_INIT) {
  8608. return;
  8609. }
  8610. if (params->type == GGML_TASK_FINALIZE) {
  8611. return;
  8612. }
  8613. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8614. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8615. const void * x = (char *) src0->data + i03*nb03 + i02*nb02;
  8616. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8617. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8618. if (type != GGML_TYPE_F32) {
  8619. float * const wdata = params->wdata;
  8620. ggml_to_float_t const to_float = type_traits[type].to_float;
  8621. size_t id = 0;
  8622. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8623. to_float((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8624. id += ne00;
  8625. }
  8626. assert(id*sizeof(float) <= params->wsize);
  8627. x = wdata;
  8628. }
  8629. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8630. ne11, ne01, ne10,
  8631. 1.0f, y, ne10,
  8632. x, ne00,
  8633. 0.0f, d, ne01);
  8634. }
  8635. }
  8636. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8637. return;
  8638. }
  8639. #endif
  8640. if (params->type == GGML_TASK_INIT) {
  8641. if (src1->type != vec_dot_type) {
  8642. char * wdata = params->wdata;
  8643. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8644. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8645. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8646. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8647. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  8648. wdata += row_size;
  8649. }
  8650. }
  8651. }
  8652. }
  8653. return;
  8654. }
  8655. if (params->type == GGML_TASK_FINALIZE) {
  8656. return;
  8657. }
  8658. // parallelize by src0 rows using ggml_vec_dot_q
  8659. // total rows in src0
  8660. const int nr = ne01*ne02*ne03;
  8661. // rows per thread
  8662. const int dr = (nr + nth - 1)/nth;
  8663. // row range for this thread
  8664. const int ir0 = dr*ith;
  8665. const int ir1 = MIN(ir0 + dr, nr);
  8666. void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  8667. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  8668. for (int ir = ir0; ir < ir1; ++ir) {
  8669. // src0 indices
  8670. const int i03 = ir/(ne02*ne01);
  8671. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8672. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8673. const int i13 = i03;
  8674. const int i12 = i02;
  8675. const int i0 = i01;
  8676. const int i2 = i02;
  8677. const int i3 = i03;
  8678. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8679. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  8680. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8681. for (int64_t ic = 0; ic < ne11; ++ic) {
  8682. vec_dot(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  8683. }
  8684. }
  8685. //int64_t t1 = ggml_time_us();
  8686. //static int64_t acc = 0;
  8687. //acc += t1 - t0;
  8688. //if (t1 - t0 > 10) {
  8689. // printf("\n");
  8690. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8691. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8692. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8693. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8694. //}
  8695. }
  8696. // ggml_compute_forward_out_prod
  8697. static void ggml_compute_forward_out_prod_f32(
  8698. const struct ggml_compute_params * params,
  8699. const struct ggml_tensor * src0,
  8700. const struct ggml_tensor * src1,
  8701. struct ggml_tensor * dst) {
  8702. int64_t t0 = ggml_perf_time_us();
  8703. UNUSED(t0);
  8704. GGML_TENSOR_BINARY_OP_LOCALS;
  8705. const int ith = params->ith;
  8706. const int nth = params->nth;
  8707. GGML_ASSERT(ne02 == ne12);
  8708. GGML_ASSERT(ne03 == ne13);
  8709. GGML_ASSERT(ne2 == ne12);
  8710. GGML_ASSERT(ne3 == ne13);
  8711. // we don't support permuted src0 or src1
  8712. GGML_ASSERT(nb00 == sizeof(float));
  8713. // dst cannot be transposed or permuted
  8714. GGML_ASSERT(nb0 == sizeof(float));
  8715. // GGML_ASSERT(nb0 <= nb1);
  8716. // GGML_ASSERT(nb1 <= nb2);
  8717. // GGML_ASSERT(nb2 <= nb3);
  8718. GGML_ASSERT(ne0 == ne00);
  8719. GGML_ASSERT(ne1 == ne10);
  8720. GGML_ASSERT(ne2 == ne02);
  8721. GGML_ASSERT(ne3 == ne03);
  8722. // nb01 >= nb00 - src0 is not transposed
  8723. // compute by src0 rows
  8724. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  8725. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  8726. if (params->type == GGML_TASK_INIT) {
  8727. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8728. return;
  8729. }
  8730. if (params->type == GGML_TASK_FINALIZE) {
  8731. return;
  8732. }
  8733. // parallelize by last three dimensions
  8734. // total rows in dst
  8735. const int64_t nr = ne1*ne2*ne3;
  8736. // rows per thread
  8737. const int64_t dr = (nr + nth - 1)/nth;
  8738. // row range for this thread
  8739. const int64_t ir0 = dr*ith;
  8740. const int64_t ir1 = MIN(ir0 + dr, nr);
  8741. // dst[:,:,:,:] = 0
  8742. // for i2,i3:
  8743. // for i1:
  8744. // for i01:
  8745. // for i0:
  8746. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  8747. for (int64_t ir = ir0; ir < ir1; ++ir) {
  8748. // dst indices
  8749. const int64_t i3 = ir/(ne2*ne1);
  8750. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  8751. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8752. const int64_t i02 = i2;
  8753. const int64_t i03 = i3;
  8754. //const int64_t i10 = i1;
  8755. const int64_t i12 = i2;
  8756. const int64_t i13 = i3;
  8757. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8758. const int64_t i11 = i01;
  8759. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  8760. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  8761. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  8762. ggml_vec_mad_f32(ne0, d, s0, *s1);
  8763. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  8764. // d[i0] += s0[i0] * s1[i1];
  8765. // }
  8766. }
  8767. }
  8768. //int64_t t1 = ggml_perf_time_us();
  8769. //static int64_t acc = 0;
  8770. //acc += t1 - t0;
  8771. //if (t1 - t0 > 10) {
  8772. // printf("\n");
  8773. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8774. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8775. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8776. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8777. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8778. //}
  8779. }
  8780. static void ggml_compute_forward_out_prod(
  8781. const struct ggml_compute_params * params,
  8782. const struct ggml_tensor * src0,
  8783. const struct ggml_tensor * src1,
  8784. struct ggml_tensor * dst) {
  8785. switch (src0->type) {
  8786. case GGML_TYPE_Q4_0:
  8787. case GGML_TYPE_Q4_1:
  8788. case GGML_TYPE_Q5_0:
  8789. case GGML_TYPE_Q5_1:
  8790. case GGML_TYPE_Q8_0:
  8791. case GGML_TYPE_Q8_1:
  8792. {
  8793. GGML_ASSERT(false); // todo
  8794. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  8795. } break;
  8796. case GGML_TYPE_F16:
  8797. {
  8798. GGML_ASSERT(false); // todo
  8799. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  8800. } break;
  8801. case GGML_TYPE_F32:
  8802. {
  8803. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  8804. } break;
  8805. default:
  8806. {
  8807. GGML_ASSERT(false);
  8808. } break;
  8809. }
  8810. }
  8811. // ggml_compute_forward_scale
  8812. static void ggml_compute_forward_scale_f32(
  8813. const struct ggml_compute_params * params,
  8814. const struct ggml_tensor * src0,
  8815. const struct ggml_tensor * src1,
  8816. struct ggml_tensor * dst) {
  8817. GGML_ASSERT(ggml_is_contiguous(src0));
  8818. GGML_ASSERT(ggml_is_contiguous(dst));
  8819. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8820. GGML_ASSERT(ggml_is_scalar(src1));
  8821. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8822. return;
  8823. }
  8824. // scale factor
  8825. const float v = *(float *) src1->data;
  8826. const int ith = params->ith;
  8827. const int nth = params->nth;
  8828. const int nc = src0->ne[0];
  8829. const int nr = ggml_nrows(src0);
  8830. // rows per thread
  8831. const int dr = (nr + nth - 1)/nth;
  8832. // row range for this thread
  8833. const int ir0 = dr*ith;
  8834. const int ir1 = MIN(ir0 + dr, nr);
  8835. const size_t nb01 = src0->nb[1];
  8836. const size_t nb1 = dst->nb[1];
  8837. for (int i1 = ir0; i1 < ir1; i1++) {
  8838. if (dst->data != src0->data) {
  8839. // src0 is same shape as dst => same indices
  8840. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  8841. }
  8842. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  8843. }
  8844. }
  8845. static void ggml_compute_forward_scale(
  8846. const struct ggml_compute_params * params,
  8847. const struct ggml_tensor * src0,
  8848. const struct ggml_tensor * src1,
  8849. struct ggml_tensor * dst) {
  8850. switch (src0->type) {
  8851. case GGML_TYPE_F32:
  8852. {
  8853. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  8854. } break;
  8855. default:
  8856. {
  8857. GGML_ASSERT(false);
  8858. } break;
  8859. }
  8860. }
  8861. // ggml_compute_forward_set
  8862. static void ggml_compute_forward_set_f32(
  8863. const struct ggml_compute_params * params,
  8864. const struct ggml_tensor * src0,
  8865. const struct ggml_tensor * src1,
  8866. const struct ggml_tensor * opt0,
  8867. struct ggml_tensor * dst) {
  8868. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8869. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8870. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  8871. GGML_ASSERT(ggml_nelements(opt0) == 5);
  8872. // view src0 and dst with these strides and data offset inbytes during set
  8873. // nb0 is implicitely element_size because src0 and dst are contiguous
  8874. size_t nb1 = ((int32_t *) opt0->data)[0];
  8875. size_t nb2 = ((int32_t *) opt0->data)[1];
  8876. size_t nb3 = ((int32_t *) opt0->data)[2];
  8877. size_t offset = ((int32_t *) opt0->data)[3];
  8878. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  8879. if (!inplace && (params->type == GGML_TASK_INIT)) {
  8880. // memcpy needs to be synchronized across threads to avoid race conditions.
  8881. // => do it in INIT phase
  8882. memcpy(
  8883. ((char *) dst->data),
  8884. ((char *) src0->data),
  8885. ggml_nbytes(dst));
  8886. }
  8887. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8888. return;
  8889. }
  8890. const int ith = params->ith;
  8891. const int nth = params->nth;
  8892. const int nr = ggml_nrows(src1);
  8893. const int nc = src1->ne[0];
  8894. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne);
  8895. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb);
  8896. // src0 and dst as viewed during set
  8897. const size_t nb0 = ggml_element_size(src0);
  8898. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  8899. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  8900. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  8901. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  8902. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  8903. GGML_ASSERT(nb10 == sizeof(float));
  8904. // rows per thread
  8905. const int dr = (nr + nth - 1)/nth;
  8906. // row range for this thread
  8907. const int ir0 = dr*ith;
  8908. const int ir1 = MIN(ir0 + dr, nr);
  8909. for (int ir = ir0; ir < ir1; ++ir) {
  8910. // src0 and dst are viewed with shape of src1 and offset
  8911. // => same indices
  8912. const int i3 = ir/(ne12*ne11);
  8913. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8914. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8915. ggml_vec_cpy_f32(nc,
  8916. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8917. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8918. }
  8919. }
  8920. static void ggml_compute_forward_set(
  8921. const struct ggml_compute_params * params,
  8922. const struct ggml_tensor * src0,
  8923. const struct ggml_tensor * src1,
  8924. const struct ggml_tensor * opt0,
  8925. struct ggml_tensor * dst) {
  8926. switch (src0->type) {
  8927. case GGML_TYPE_F32:
  8928. {
  8929. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  8930. } break;
  8931. case GGML_TYPE_F16:
  8932. case GGML_TYPE_Q4_0:
  8933. case GGML_TYPE_Q4_1:
  8934. case GGML_TYPE_Q5_0:
  8935. case GGML_TYPE_Q5_1:
  8936. case GGML_TYPE_Q8_0:
  8937. case GGML_TYPE_Q8_1:
  8938. case GGML_TYPE_Q2_K:
  8939. case GGML_TYPE_Q3_K:
  8940. case GGML_TYPE_Q4_K:
  8941. case GGML_TYPE_Q5_K:
  8942. case GGML_TYPE_Q6_K:
  8943. default:
  8944. {
  8945. GGML_ASSERT(false);
  8946. } break;
  8947. }
  8948. }
  8949. // ggml_compute_forward_cpy
  8950. static void ggml_compute_forward_cpy(
  8951. const struct ggml_compute_params * params,
  8952. const struct ggml_tensor * src0,
  8953. struct ggml_tensor * dst) {
  8954. ggml_compute_forward_dup(params, src0, dst);
  8955. }
  8956. // ggml_compute_forward_cont
  8957. static void ggml_compute_forward_cont(
  8958. const struct ggml_compute_params * params,
  8959. const struct ggml_tensor * src0,
  8960. struct ggml_tensor * dst) {
  8961. ggml_compute_forward_dup(params, src0, dst);
  8962. }
  8963. // ggml_compute_forward_reshape
  8964. static void ggml_compute_forward_reshape(
  8965. const struct ggml_compute_params * params,
  8966. const struct ggml_tensor * src0,
  8967. struct ggml_tensor * dst) {
  8968. // NOP
  8969. UNUSED(params);
  8970. UNUSED(src0);
  8971. UNUSED(dst);
  8972. }
  8973. // ggml_compute_forward_view
  8974. static void ggml_compute_forward_view(
  8975. const struct ggml_compute_params * params,
  8976. const struct ggml_tensor * src0) {
  8977. // NOP
  8978. UNUSED(params);
  8979. UNUSED(src0);
  8980. }
  8981. // ggml_compute_forward_permute
  8982. static void ggml_compute_forward_permute(
  8983. const struct ggml_compute_params * params,
  8984. const struct ggml_tensor * src0) {
  8985. // NOP
  8986. UNUSED(params);
  8987. UNUSED(src0);
  8988. }
  8989. // ggml_compute_forward_transpose
  8990. static void ggml_compute_forward_transpose(
  8991. const struct ggml_compute_params * params,
  8992. const struct ggml_tensor * src0) {
  8993. // NOP
  8994. UNUSED(params);
  8995. UNUSED(src0);
  8996. }
  8997. // ggml_compute_forward_get_rows
  8998. static void ggml_compute_forward_get_rows_q(
  8999. const struct ggml_compute_params * params,
  9000. const struct ggml_tensor * src0,
  9001. const struct ggml_tensor * src1,
  9002. struct ggml_tensor * dst) {
  9003. assert(params->ith == 0);
  9004. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9005. return;
  9006. }
  9007. const int nc = src0->ne[0];
  9008. const int nr = ggml_nelements(src1);
  9009. const enum ggml_type type = src0->type;
  9010. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  9011. assert( dst->ne[0] == nc);
  9012. assert( dst->ne[1] == nr);
  9013. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9014. for (int i = 0; i < nr; ++i) {
  9015. const int r = ((int32_t *) src1->data)[i];
  9016. dequantize_row_q(
  9017. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9018. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9019. }
  9020. }
  9021. static void ggml_compute_forward_get_rows_f16(
  9022. const struct ggml_compute_params * params,
  9023. const struct ggml_tensor * src0,
  9024. const struct ggml_tensor * src1,
  9025. struct ggml_tensor * dst) {
  9026. assert(params->ith == 0);
  9027. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9028. return;
  9029. }
  9030. const int nc = src0->ne[0];
  9031. const int nr = ggml_nelements(src1);
  9032. assert( dst->ne[0] == nc);
  9033. assert( dst->ne[1] == nr);
  9034. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9035. for (int i = 0; i < nr; ++i) {
  9036. const int r = ((int32_t *) src1->data)[i];
  9037. for (int j = 0; j < nc; ++j) {
  9038. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9039. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9040. }
  9041. }
  9042. }
  9043. static void ggml_compute_forward_get_rows_f32(
  9044. const struct ggml_compute_params * params,
  9045. const struct ggml_tensor * src0,
  9046. const struct ggml_tensor * src1,
  9047. struct ggml_tensor * dst) {
  9048. assert(params->ith == 0);
  9049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9050. return;
  9051. }
  9052. const int nc = src0->ne[0];
  9053. const int nr = ggml_nelements(src1);
  9054. assert( dst->ne[0] == nc);
  9055. assert( dst->ne[1] == nr);
  9056. assert(src0->nb[0] == sizeof(float));
  9057. for (int i = 0; i < nr; ++i) {
  9058. const int r = ((int32_t *) src1->data)[i];
  9059. ggml_vec_cpy_f32(nc,
  9060. (float *) ((char *) dst->data + i*dst->nb[1]),
  9061. (float *) ((char *) src0->data + r*src0->nb[1]));
  9062. }
  9063. }
  9064. static void ggml_compute_forward_get_rows(
  9065. const struct ggml_compute_params * params,
  9066. const struct ggml_tensor * src0,
  9067. const struct ggml_tensor * src1,
  9068. struct ggml_tensor * dst) {
  9069. switch (src0->type) {
  9070. case GGML_TYPE_Q4_0:
  9071. case GGML_TYPE_Q4_1:
  9072. case GGML_TYPE_Q5_0:
  9073. case GGML_TYPE_Q5_1:
  9074. case GGML_TYPE_Q8_0:
  9075. case GGML_TYPE_Q8_1:
  9076. case GGML_TYPE_Q2_K:
  9077. case GGML_TYPE_Q3_K:
  9078. case GGML_TYPE_Q4_K:
  9079. case GGML_TYPE_Q5_K:
  9080. case GGML_TYPE_Q6_K:
  9081. {
  9082. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9083. } break;
  9084. case GGML_TYPE_F16:
  9085. {
  9086. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9087. } break;
  9088. case GGML_TYPE_F32:
  9089. {
  9090. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9091. } break;
  9092. default:
  9093. {
  9094. GGML_ASSERT(false);
  9095. } break;
  9096. }
  9097. //static bool first = true;
  9098. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9099. //if (first) {
  9100. // first = false;
  9101. //} else {
  9102. // for (int k = 0; k < dst->ne[1]; ++k) {
  9103. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9104. // for (int i = 0; i < 16; ++i) {
  9105. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9106. // }
  9107. // printf("\n");
  9108. // }
  9109. // printf("\n");
  9110. // }
  9111. // printf("\n");
  9112. // exit(0);
  9113. //}
  9114. }
  9115. // ggml_compute_forward_get_rows_back
  9116. static void ggml_compute_forward_get_rows_back_f32_f16(
  9117. const struct ggml_compute_params * params,
  9118. const struct ggml_tensor * src0,
  9119. const struct ggml_tensor * src1,
  9120. const struct ggml_tensor * opt0,
  9121. struct ggml_tensor * dst) {
  9122. GGML_ASSERT(params->ith == 0);
  9123. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9124. GGML_ASSERT(ggml_is_contiguous(opt0));
  9125. GGML_ASSERT(ggml_is_contiguous(dst));
  9126. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9127. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9128. return;
  9129. }
  9130. const int nc = src0->ne[0];
  9131. const int nr = ggml_nelements(src1);
  9132. GGML_ASSERT( dst->ne[0] == nc);
  9133. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9134. for (int i = 0; i < nr; ++i) {
  9135. const int r = ((int32_t *) src1->data)[i];
  9136. for (int j = 0; j < nc; ++j) {
  9137. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9138. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9139. }
  9140. }
  9141. }
  9142. static void ggml_compute_forward_get_rows_back_f32(
  9143. const struct ggml_compute_params * params,
  9144. const struct ggml_tensor * src0,
  9145. const struct ggml_tensor * src1,
  9146. const struct ggml_tensor * opt0,
  9147. struct ggml_tensor * dst) {
  9148. GGML_ASSERT(params->ith == 0);
  9149. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9150. GGML_ASSERT(ggml_is_contiguous(opt0));
  9151. GGML_ASSERT(ggml_is_contiguous(dst));
  9152. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9153. if (params->type == GGML_TASK_INIT) {
  9154. memset(dst->data, 0, ggml_nbytes(dst));
  9155. }
  9156. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9157. return;
  9158. }
  9159. const int nc = src0->ne[0];
  9160. const int nr = ggml_nelements(src1);
  9161. GGML_ASSERT( dst->ne[0] == nc);
  9162. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9163. for (int i = 0; i < nr; ++i) {
  9164. const int r = ((int32_t *) src1->data)[i];
  9165. ggml_vec_add_f32(nc,
  9166. (float *) ((char *) dst->data + r*dst->nb[1]),
  9167. (float *) ((char *) dst->data + r*dst->nb[1]),
  9168. (float *) ((char *) src0->data + i*src0->nb[1]));
  9169. }
  9170. }
  9171. static void ggml_compute_forward_get_rows_back(
  9172. const struct ggml_compute_params * params,
  9173. const struct ggml_tensor * src0,
  9174. const struct ggml_tensor * src1,
  9175. const struct ggml_tensor * opt0,
  9176. struct ggml_tensor * dst) {
  9177. switch (src0->type) {
  9178. case GGML_TYPE_F16:
  9179. {
  9180. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9181. } break;
  9182. case GGML_TYPE_F32:
  9183. {
  9184. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9185. } break;
  9186. default:
  9187. {
  9188. GGML_ASSERT(false);
  9189. } break;
  9190. }
  9191. //static bool first = true;
  9192. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9193. //if (first) {
  9194. // first = false;
  9195. //} else {
  9196. // for (int k = 0; k < dst->ne[1]; ++k) {
  9197. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9198. // for (int i = 0; i < 16; ++i) {
  9199. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9200. // }
  9201. // printf("\n");
  9202. // }
  9203. // printf("\n");
  9204. // }
  9205. // printf("\n");
  9206. // exit(0);
  9207. //}
  9208. }
  9209. // ggml_compute_forward_diag
  9210. static void ggml_compute_forward_diag_f32(
  9211. const struct ggml_compute_params * params,
  9212. const struct ggml_tensor * src0,
  9213. struct ggml_tensor * dst) {
  9214. GGML_ASSERT(params->ith == 0);
  9215. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9216. return;
  9217. }
  9218. // TODO: handle transposed/permuted matrices
  9219. GGML_TENSOR_UNARY_OP_LOCALS;
  9220. GGML_ASSERT(ne00 == ne0);
  9221. GGML_ASSERT(ne00 == ne1);
  9222. GGML_ASSERT(ne01 == 1);
  9223. GGML_ASSERT(ne02 == ne2);
  9224. GGML_ASSERT(ne03 == ne3);
  9225. GGML_ASSERT(nb00 == sizeof(float));
  9226. GGML_ASSERT(nb0 == sizeof(float));
  9227. for (int i3 = 0; i3 < ne3; i3++) {
  9228. for (int i2 = 0; i2 < ne2; i2++) {
  9229. for (int i1 = 0; i1 < ne1; i1++) {
  9230. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9231. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9232. for (int i0 = 0; i0 < i1; i0++) {
  9233. d[i0] = 0;
  9234. }
  9235. d[i1] = s[i1];
  9236. for (int i0 = i1+1; i0 < ne0; i0++) {
  9237. d[i0] = 0;
  9238. }
  9239. }
  9240. }
  9241. }
  9242. }
  9243. static void ggml_compute_forward_diag(
  9244. const struct ggml_compute_params * params,
  9245. const struct ggml_tensor * src0,
  9246. struct ggml_tensor * dst) {
  9247. switch (src0->type) {
  9248. case GGML_TYPE_F32:
  9249. {
  9250. ggml_compute_forward_diag_f32(params, src0, dst);
  9251. } break;
  9252. default:
  9253. {
  9254. GGML_ASSERT(false);
  9255. } break;
  9256. }
  9257. }
  9258. // ggml_compute_forward_diag_mask_inf
  9259. static void ggml_compute_forward_diag_mask_f32(
  9260. const struct ggml_compute_params * params,
  9261. const struct ggml_tensor * src0,
  9262. const struct ggml_tensor * src1,
  9263. struct ggml_tensor * dst,
  9264. const float value) {
  9265. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9266. GGML_ASSERT(ggml_nelements(src1) == 2);
  9267. const int ith = params->ith;
  9268. const int nth = params->nth;
  9269. const int n_past = ((int32_t *) src1->data)[0];
  9270. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9271. GGML_ASSERT(n_past >= 0);
  9272. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9273. // memcpy needs to be synchronized across threads to avoid race conditions.
  9274. // => do it in INIT phase
  9275. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9276. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9277. memcpy(
  9278. ((char *) dst->data),
  9279. ((char *) src0->data),
  9280. ggml_nbytes(dst));
  9281. }
  9282. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9283. return;
  9284. }
  9285. // TODO: handle transposed/permuted matrices
  9286. const int n = ggml_nrows(src0);
  9287. const int nc = src0->ne[0];
  9288. const int nr = src0->ne[1];
  9289. const int nz = n/nr;
  9290. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9291. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9292. for (int k = 0; k < nz; k++) {
  9293. for (int j = ith; j < nr; j += nth) {
  9294. for (int i = n_past; i < nc; i++) {
  9295. if (i > n_past + j) {
  9296. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9297. }
  9298. }
  9299. }
  9300. }
  9301. }
  9302. static void ggml_compute_forward_diag_mask_inf(
  9303. const struct ggml_compute_params * params,
  9304. const struct ggml_tensor * src0,
  9305. const struct ggml_tensor * src1,
  9306. struct ggml_tensor * dst) {
  9307. switch (src0->type) {
  9308. case GGML_TYPE_F32:
  9309. {
  9310. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9311. } break;
  9312. default:
  9313. {
  9314. GGML_ASSERT(false);
  9315. } break;
  9316. }
  9317. }
  9318. static void ggml_compute_forward_diag_mask_zero(
  9319. const struct ggml_compute_params * params,
  9320. const struct ggml_tensor * src0,
  9321. const struct ggml_tensor * src1,
  9322. struct ggml_tensor * dst) {
  9323. switch (src0->type) {
  9324. case GGML_TYPE_F32:
  9325. {
  9326. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9327. } break;
  9328. default:
  9329. {
  9330. GGML_ASSERT(false);
  9331. } break;
  9332. }
  9333. }
  9334. // ggml_compute_forward_soft_max
  9335. static void ggml_compute_forward_soft_max_f32(
  9336. const struct ggml_compute_params * params,
  9337. const struct ggml_tensor * src0,
  9338. struct ggml_tensor * dst) {
  9339. GGML_ASSERT(ggml_is_contiguous(src0));
  9340. GGML_ASSERT(ggml_is_contiguous(dst));
  9341. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9342. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9343. return;
  9344. }
  9345. // TODO: handle transposed/permuted matrices
  9346. const int ith = params->ith;
  9347. const int nth = params->nth;
  9348. const int nc = src0->ne[0];
  9349. const int nr = ggml_nrows(src0);
  9350. // rows per thread
  9351. const int dr = (nr + nth - 1)/nth;
  9352. // row range for this thread
  9353. const int ir0 = dr*ith;
  9354. const int ir1 = MIN(ir0 + dr, nr);
  9355. for (int i1 = ir0; i1 < ir1; i1++) {
  9356. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9357. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9358. #ifndef NDEBUG
  9359. for (int i = 0; i < nc; ++i) {
  9360. //printf("p[%d] = %f\n", i, p[i]);
  9361. assert(!isnan(sp[i]));
  9362. }
  9363. #endif
  9364. float max = -INFINITY;
  9365. ggml_vec_max_f32(nc, &max, sp);
  9366. ggml_float sum = 0.0;
  9367. uint16_t scvt;
  9368. for (int i = 0; i < nc; i++) {
  9369. if (sp[i] == -INFINITY) {
  9370. dp[i] = 0.0f;
  9371. } else {
  9372. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9373. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9374. memcpy(&scvt, &s, sizeof(scvt));
  9375. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9376. sum += (ggml_float)val;
  9377. dp[i] = val;
  9378. }
  9379. }
  9380. assert(sum > 0.0);
  9381. sum = 1.0/sum;
  9382. ggml_vec_scale_f32(nc, dp, sum);
  9383. #ifndef NDEBUG
  9384. for (int i = 0; i < nc; ++i) {
  9385. assert(!isnan(dp[i]));
  9386. assert(!isinf(dp[i]));
  9387. }
  9388. #endif
  9389. }
  9390. }
  9391. static void ggml_compute_forward_soft_max(
  9392. const struct ggml_compute_params * params,
  9393. const struct ggml_tensor * src0,
  9394. struct ggml_tensor * dst) {
  9395. switch (src0->type) {
  9396. case GGML_TYPE_F32:
  9397. {
  9398. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9399. } break;
  9400. default:
  9401. {
  9402. GGML_ASSERT(false);
  9403. } break;
  9404. }
  9405. }
  9406. // ggml_compute_forward_soft_max_back
  9407. static void ggml_compute_forward_soft_max_back_f32(
  9408. const struct ggml_compute_params * params,
  9409. const struct ggml_tensor * src0,
  9410. const struct ggml_tensor * src1,
  9411. struct ggml_tensor * dst) {
  9412. GGML_ASSERT(ggml_is_contiguous(src0));
  9413. GGML_ASSERT(ggml_is_contiguous(src1));
  9414. GGML_ASSERT(ggml_is_contiguous(dst));
  9415. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9416. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9417. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9418. return;
  9419. }
  9420. // TODO: handle transposed/permuted matrices
  9421. const int ith = params->ith;
  9422. const int nth = params->nth;
  9423. const int nc = src0->ne[0];
  9424. const int nr = ggml_nrows(src0);
  9425. // rows per thread
  9426. const int dr = (nr + nth - 1)/nth;
  9427. // row range for this thread
  9428. const int ir0 = dr*ith;
  9429. const int ir1 = MIN(ir0 + dr, nr);
  9430. for (int i1 = ir0; i1 < ir1; i1++) {
  9431. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9432. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9433. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9434. #ifndef NDEBUG
  9435. for (int i = 0; i < nc; ++i) {
  9436. //printf("p[%d] = %f\n", i, p[i]);
  9437. assert(!isnan(dy[i]));
  9438. assert(!isnan(y[i]));
  9439. }
  9440. #endif
  9441. // Jii = yi - yi*yi
  9442. // Jij = -yi*yj
  9443. // J = diag(y)-y.T*y
  9444. // dx = J * dy
  9445. // dxk = sum_i(Jki * dyi)
  9446. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9447. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9448. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9449. // dxk = -yk * dot(y, dy) + yk*dyk
  9450. // dxk = yk * (- dot(y, dy) + dyk)
  9451. // dxk = yk * (dyk - dot(y, dy))
  9452. //
  9453. // post-order:
  9454. // dot_y_dy := dot(y, dy)
  9455. // dx := dy
  9456. // dx := dx - dot_y_dy
  9457. // dx := dx * y
  9458. // linear runtime, no additional memory
  9459. float dot_y_dy = 0;
  9460. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9461. ggml_vec_cpy_f32 (nc, dx, dy);
  9462. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9463. ggml_vec_mul_f32 (nc, dx, dx, y);
  9464. #ifndef NDEBUG
  9465. for (int i = 0; i < nc; ++i) {
  9466. assert(!isnan(dx[i]));
  9467. assert(!isinf(dx[i]));
  9468. }
  9469. #endif
  9470. }
  9471. }
  9472. static void ggml_compute_forward_soft_max_back(
  9473. const struct ggml_compute_params * params,
  9474. const struct ggml_tensor * src0,
  9475. const struct ggml_tensor * src1,
  9476. struct ggml_tensor * dst) {
  9477. switch (src0->type) {
  9478. case GGML_TYPE_F32:
  9479. {
  9480. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9481. } break;
  9482. default:
  9483. {
  9484. GGML_ASSERT(false);
  9485. } break;
  9486. }
  9487. }
  9488. // ggml_compute_forward_alibi
  9489. static void ggml_compute_forward_alibi_f32(
  9490. const struct ggml_compute_params * params,
  9491. const struct ggml_tensor * src0,
  9492. const struct ggml_tensor * src1,
  9493. struct ggml_tensor * dst) {
  9494. assert(params->ith == 0);
  9495. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9496. GGML_ASSERT(ggml_nelements(src1) == 3);
  9497. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9498. return;
  9499. }
  9500. const int n_past = ((int32_t *) src1->data)[0];
  9501. const int n_head = ((int32_t *) src1->data)[1];
  9502. const float max_bias = ((float *) src1->data)[2];
  9503. assert(n_past >= 0);
  9504. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9505. const int ne1 = src0->ne[1]; // seq_len_without_past
  9506. const int ne2 = src0->ne[2]; // n_head -> this is k
  9507. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9508. const int n = ggml_nrows(src0);
  9509. const int ne2_ne3 = n/ne1; // ne2*ne3
  9510. const int nb0 = src0->nb[0];
  9511. const int nb1 = src0->nb[1];
  9512. const int nb2 = src0->nb[2];
  9513. //const int nb3 = src0->nb[3];
  9514. GGML_ASSERT(nb0 == sizeof(float));
  9515. GGML_ASSERT(ne1 + n_past == ne0);
  9516. GGML_ASSERT(n_head == ne2);
  9517. // add alibi to src0 (KQ_scaled)
  9518. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9519. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9520. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9521. for (int i = 0; i < ne0; i++) {
  9522. for (int j = 0; j < ne1; j++) {
  9523. for (int k = 0; k < ne2_ne3; k++) {
  9524. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9525. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9526. // TODO: k*nb2 or k*nb3
  9527. float m_k;
  9528. if (k < n_heads_log2_floor) {
  9529. m_k = powf(m0, k + 1);
  9530. } else {
  9531. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9532. }
  9533. pdst[0] = i * m_k + src[0];
  9534. }
  9535. }
  9536. }
  9537. }
  9538. static void ggml_compute_forward_alibi_f16(
  9539. const struct ggml_compute_params * params,
  9540. const struct ggml_tensor * src0,
  9541. const struct ggml_tensor * src1,
  9542. struct ggml_tensor * dst) {
  9543. assert(params->ith == 0);
  9544. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9545. GGML_ASSERT(ggml_nelements(src1) == 3);
  9546. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9547. return;
  9548. }
  9549. const int n_past = ((int32_t *) src1->data)[0];
  9550. const int n_head = ((int32_t *) src1->data)[1];
  9551. const float max_bias = ((float *) src1->data)[2];
  9552. assert(n_past >= 0);
  9553. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9554. const int ne1 = src0->ne[1]; // seq_len_without_past
  9555. const int ne2 = src0->ne[2]; // n_head -> this is k
  9556. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9557. const int n = ggml_nrows(src0);
  9558. const int ne2_ne3 = n/ne1; // ne2*ne3
  9559. const int nb0 = src0->nb[0];
  9560. const int nb1 = src0->nb[1];
  9561. const int nb2 = src0->nb[2];
  9562. //const int nb3 = src0->nb[3];
  9563. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9564. GGML_ASSERT(ne1 + n_past == ne0); (void) n_past;
  9565. GGML_ASSERT(n_head == ne2);
  9566. // add alibi to src0 (KQ_scaled)
  9567. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9568. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9569. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9570. for (int i = 0; i < ne0; i++) {
  9571. for (int j = 0; j < ne1; j++) {
  9572. for (int k = 0; k < ne2_ne3; k++) {
  9573. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9574. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9575. // TODO: k*nb2 or k*nb3
  9576. float m_k;
  9577. if (k < n_heads_log2_floor) {
  9578. m_k = powf(m0, k + 1);
  9579. } else {
  9580. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9581. }
  9582. // we return F32
  9583. pdst[0] = i * m_k + GGML_FP16_TO_FP32(src[0]);
  9584. }
  9585. }
  9586. }
  9587. }
  9588. static void ggml_compute_forward_alibi(
  9589. const struct ggml_compute_params * params,
  9590. const struct ggml_tensor * src0,
  9591. const struct ggml_tensor * src1,
  9592. struct ggml_tensor * dst) {
  9593. switch (src0->type) {
  9594. case GGML_TYPE_F16:
  9595. {
  9596. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  9597. } break;
  9598. case GGML_TYPE_F32:
  9599. {
  9600. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  9601. } break;
  9602. case GGML_TYPE_Q4_0:
  9603. case GGML_TYPE_Q4_1:
  9604. case GGML_TYPE_Q5_0:
  9605. case GGML_TYPE_Q5_1:
  9606. case GGML_TYPE_Q8_0:
  9607. case GGML_TYPE_Q8_1:
  9608. case GGML_TYPE_Q2_K:
  9609. case GGML_TYPE_Q3_K:
  9610. case GGML_TYPE_Q4_K:
  9611. case GGML_TYPE_Q5_K:
  9612. case GGML_TYPE_Q6_K:
  9613. case GGML_TYPE_Q8_K:
  9614. case GGML_TYPE_I8:
  9615. case GGML_TYPE_I16:
  9616. case GGML_TYPE_I32:
  9617. case GGML_TYPE_COUNT:
  9618. {
  9619. GGML_ASSERT(false);
  9620. } break;
  9621. }
  9622. }
  9623. // ggml_compute_forward_clamp
  9624. static void ggml_compute_forward_clamp_f32(
  9625. const struct ggml_compute_params * params,
  9626. const struct ggml_tensor * src0,
  9627. const struct ggml_tensor * src1,
  9628. struct ggml_tensor * dst) {
  9629. assert(params->ith == 0);
  9630. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  9631. GGML_ASSERT(ggml_nelements(src1) == 2);
  9632. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9633. return;
  9634. }
  9635. const float min = ((float *) src1->data)[0];
  9636. const float max = ((float *) src1->data)[1];
  9637. const int ith = params->ith;
  9638. const int nth = params->nth;
  9639. const int n = ggml_nrows(src0);
  9640. const int nc = src0->ne[0];
  9641. const size_t nb00 = src0->nb[0];
  9642. const size_t nb01 = src0->nb[1];
  9643. const size_t nb0 = dst->nb[0];
  9644. const size_t nb1 = dst->nb[1];
  9645. GGML_ASSERT( nb0 == sizeof(float));
  9646. GGML_ASSERT(nb00 == sizeof(float));
  9647. for (int j = ith; j < n; j += nth) {
  9648. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  9649. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  9650. for (int i = 0; i < nc; i++) {
  9651. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  9652. }
  9653. }
  9654. }
  9655. static void ggml_compute_forward_clamp(
  9656. const struct ggml_compute_params * params,
  9657. const struct ggml_tensor * src0,
  9658. const struct ggml_tensor * src1,
  9659. struct ggml_tensor * dst) {
  9660. switch (src0->type) {
  9661. case GGML_TYPE_F32:
  9662. {
  9663. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  9664. } break;
  9665. case GGML_TYPE_F16:
  9666. case GGML_TYPE_Q4_0:
  9667. case GGML_TYPE_Q4_1:
  9668. case GGML_TYPE_Q5_0:
  9669. case GGML_TYPE_Q5_1:
  9670. case GGML_TYPE_Q8_0:
  9671. case GGML_TYPE_Q8_1:
  9672. case GGML_TYPE_Q2_K:
  9673. case GGML_TYPE_Q3_K:
  9674. case GGML_TYPE_Q4_K:
  9675. case GGML_TYPE_Q5_K:
  9676. case GGML_TYPE_Q6_K:
  9677. case GGML_TYPE_Q8_K:
  9678. case GGML_TYPE_I8:
  9679. case GGML_TYPE_I16:
  9680. case GGML_TYPE_I32:
  9681. case GGML_TYPE_COUNT:
  9682. {
  9683. GGML_ASSERT(false);
  9684. } break;
  9685. }
  9686. }
  9687. // ggml_compute_forward_rope
  9688. static void ggml_compute_forward_rope_f32(
  9689. const struct ggml_compute_params * params,
  9690. const struct ggml_tensor * src0,
  9691. const struct ggml_tensor * src1,
  9692. struct ggml_tensor * dst) {
  9693. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9694. GGML_ASSERT(ggml_nelements(src1) == 4);
  9695. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9696. return;
  9697. }
  9698. const int n_past = ((int32_t *) src1->data)[0];
  9699. const int n_dims = ((int32_t *) src1->data)[1];
  9700. const int mode = ((int32_t *) src1->data)[2];
  9701. const int n_ctx = ((int32_t *) src1->data)[3];
  9702. assert(n_past >= 0);
  9703. GGML_TENSOR_UNARY_OP_LOCALS;
  9704. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9705. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9706. GGML_ASSERT(nb00 == sizeof(float));
  9707. const int ith = params->ith;
  9708. const int nth = params->nth;
  9709. const int nr = ggml_nrows(dst);
  9710. GGML_ASSERT(n_dims <= ne0);
  9711. GGML_ASSERT(n_dims % 2 == 0);
  9712. // rows per thread
  9713. const int dr = (nr + nth - 1)/nth;
  9714. // row range for this thread
  9715. const int ir0 = dr*ith;
  9716. const int ir1 = MIN(ir0 + dr, nr);
  9717. // row index used to determine which thread to use
  9718. int ir = 0;
  9719. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9720. const bool is_neox = mode & 2;
  9721. const bool is_glm = mode & 4;
  9722. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9723. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9724. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9725. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9726. if (ir++ < ir0) continue;
  9727. if (ir > ir1) break;
  9728. float theta = (float)p;
  9729. if (is_glm) {
  9730. theta = MIN(p, n_ctx - 2);
  9731. float block_theta = MAX(p - (n_ctx - 2), 0);
  9732. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9733. const float cos_theta = cosf(theta);
  9734. const float sin_theta = sinf(theta);
  9735. const float cos_block_theta = cosf(block_theta);
  9736. const float sin_block_theta = sinf(block_theta);
  9737. theta *= theta_scale;
  9738. block_theta *= theta_scale;
  9739. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9740. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9741. const float x0 = src[0];
  9742. const float x1 = src[n_dims/2];
  9743. const float x2 = src[n_dims];
  9744. const float x3 = src[n_dims/2*3];
  9745. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9746. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9747. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  9748. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  9749. }
  9750. } else if (!is_neox) {
  9751. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9752. const float cos_theta = cosf(theta);
  9753. const float sin_theta = sinf(theta);
  9754. theta *= theta_scale;
  9755. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9756. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9757. const float x0 = src[0];
  9758. const float x1 = src[1];
  9759. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9760. dst_data[1] = x0*sin_theta + x1*cos_theta;
  9761. }
  9762. } else {
  9763. // TODO: this is probably wrong, but I can't figure it out ..
  9764. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9765. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9766. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9767. const float cos_theta = cosf(theta);
  9768. const float sin_theta = sinf(theta);
  9769. theta *= theta_scale;
  9770. const int64_t i0 = ib*n_dims + ic/2;
  9771. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9772. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9773. const float x0 = src[0];
  9774. const float x1 = src[n_dims/2];
  9775. dst_data[0] = x0*cos_theta - x1*sin_theta;
  9776. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  9777. }
  9778. }
  9779. }
  9780. }
  9781. }
  9782. }
  9783. }
  9784. static void ggml_compute_forward_rope_f16(
  9785. const struct ggml_compute_params * params,
  9786. const struct ggml_tensor * src0,
  9787. const struct ggml_tensor * src1,
  9788. struct ggml_tensor * dst) {
  9789. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9790. GGML_ASSERT(ggml_nelements(src1) == 4);
  9791. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9792. return;
  9793. }
  9794. const int n_past = ((int32_t *) src1->data)[0];
  9795. const int n_dims = ((int32_t *) src1->data)[1];
  9796. const int mode = ((int32_t *) src1->data)[2];
  9797. const int n_ctx = ((int32_t *) src1->data)[3];
  9798. assert(n_past >= 0);
  9799. GGML_TENSOR_UNARY_OP_LOCALS;
  9800. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9801. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9802. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  9803. const int ith = params->ith;
  9804. const int nth = params->nth;
  9805. const int nr = ggml_nrows(dst);
  9806. GGML_ASSERT(n_dims <= ne0);
  9807. GGML_ASSERT(n_dims % 2 == 0);
  9808. // rows per thread
  9809. const int dr = (nr + nth - 1)/nth;
  9810. // row range for this thread
  9811. const int ir0 = dr*ith;
  9812. const int ir1 = MIN(ir0 + dr, nr);
  9813. // row index used to determine which thread to use
  9814. int ir = 0;
  9815. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9816. const bool is_neox = mode & 2;
  9817. const bool is_glm = mode & 4;
  9818. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9819. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9820. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9821. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9822. if (ir++ < ir0) continue;
  9823. if (ir > ir1) break;
  9824. float theta = (float)p;
  9825. if (is_glm) {
  9826. theta = MIN(p, n_ctx - 2);
  9827. float block_theta = MAX(p - (n_ctx - 2), 0);
  9828. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  9829. const float cos_theta = cosf(theta);
  9830. const float sin_theta = sinf(theta);
  9831. const float cos_block_theta = cosf(block_theta);
  9832. const float sin_block_theta = sinf(block_theta);
  9833. theta *= theta_scale;
  9834. block_theta *= theta_scale;
  9835. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9836. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9837. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9838. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9839. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  9840. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  9841. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9842. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9843. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  9844. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  9845. }
  9846. } if (!is_neox) {
  9847. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9848. const float cos_theta = cosf(theta);
  9849. const float sin_theta = sinf(theta);
  9850. theta *= theta_scale;
  9851. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9852. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9853. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9854. const float x1 = GGML_FP16_TO_FP32(src[1]);
  9855. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9856. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9857. }
  9858. } else {
  9859. // TODO: this is probably wrong, but I can't figure it out ..
  9860. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  9861. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9862. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9863. const float cos_theta = cosf(theta);
  9864. const float sin_theta = sinf(theta);
  9865. theta *= theta_scale;
  9866. const int64_t i0 = ib*n_dims + ic/2;
  9867. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9868. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9869. const float x0 = GGML_FP16_TO_FP32(src[0]);
  9870. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  9871. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  9872. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  9873. }
  9874. }
  9875. }
  9876. }
  9877. }
  9878. }
  9879. }
  9880. static void ggml_compute_forward_rope(
  9881. const struct ggml_compute_params * params,
  9882. const struct ggml_tensor * src0,
  9883. const struct ggml_tensor * src1,
  9884. struct ggml_tensor * dst) {
  9885. switch (src0->type) {
  9886. case GGML_TYPE_F16:
  9887. {
  9888. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  9889. } break;
  9890. case GGML_TYPE_F32:
  9891. {
  9892. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  9893. } break;
  9894. default:
  9895. {
  9896. GGML_ASSERT(false);
  9897. } break;
  9898. }
  9899. }
  9900. // ggml_compute_forward_rope_back
  9901. static void ggml_compute_forward_rope_back_f32(
  9902. const struct ggml_compute_params * params,
  9903. const struct ggml_tensor * src0,
  9904. const struct ggml_tensor * src1,
  9905. struct ggml_tensor * dst) {
  9906. assert(src1->type == GGML_TYPE_I32);
  9907. assert(ggml_nelements(src1) == 3);
  9908. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9909. return;
  9910. }
  9911. // y = rope(x, src1)
  9912. // dx = rope_back(dy, src1)
  9913. // src0 is dy, src1 contains options
  9914. const int n_past = ((int32_t *) src1->data)[0];
  9915. const int n_dims = ((int32_t *) src1->data)[1];
  9916. const int mode = ((int32_t *) src1->data)[2];
  9917. assert(n_past >= 0);
  9918. GGML_TENSOR_UNARY_OP_LOCALS;
  9919. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9920. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9921. assert(nb0 == sizeof(float));
  9922. const int ith = params->ith;
  9923. const int nth = params->nth;
  9924. const int nr = ggml_nrows(dst);
  9925. // rows per thread
  9926. const int dr = (nr + nth - 1)/nth;
  9927. // row range for this thread
  9928. const int ir0 = dr*ith;
  9929. const int ir1 = MIN(ir0 + dr, nr);
  9930. // row index used to determine which thread to use
  9931. int ir = 0;
  9932. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  9933. const bool is_neox = mode & 2;
  9934. for (int64_t i3 = 0; i3 < ne3; i3++) {
  9935. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  9936. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  9937. for (int64_t i1 = 0; i1 < ne1; i1++) {
  9938. if (ir++ < ir0) continue;
  9939. if (ir > ir1) break;
  9940. float theta = (float)p;
  9941. if (!is_neox) {
  9942. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  9943. const float cos_theta = cosf(theta);
  9944. const float sin_theta = sinf(theta);
  9945. theta *= theta_scale;
  9946. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9947. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9948. const float dy0 = dy[0];
  9949. const float dy1 = dy[1];
  9950. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9951. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  9952. }
  9953. } else {
  9954. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  9955. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  9956. const float cos_theta = cosf(theta);
  9957. const float sin_theta = sinf(theta);
  9958. theta *= theta_scale;
  9959. const int64_t i0 = ib*n_dims + ic/2;
  9960. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  9961. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  9962. const float dy0 = dy[0];
  9963. const float dy1 = dy[n_dims/2];
  9964. dx[0] = dy0*cos_theta + dy1*sin_theta;
  9965. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  9966. }
  9967. }
  9968. }
  9969. }
  9970. }
  9971. }
  9972. }
  9973. static void ggml_compute_forward_rope_back_f16(
  9974. const struct ggml_compute_params * params,
  9975. const struct ggml_tensor * src0,
  9976. const struct ggml_tensor * src1,
  9977. struct ggml_tensor * dst) {
  9978. assert(src1->type == GGML_TYPE_I32);
  9979. assert(ggml_nelements(src1) == 3);
  9980. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9981. return;
  9982. }
  9983. // y = rope(x, src1)
  9984. // dx = rope_back(dy, src1)
  9985. // src0 is dy, src1 contains options
  9986. const int n_past = ((int32_t *) src1->data)[0];
  9987. const int n_dims = ((int32_t *) src1->data)[1];
  9988. const int mode = ((int32_t *) src1->data)[2];
  9989. assert(n_past >= 0);
  9990. GGML_TENSOR_UNARY_OP_LOCALS;
  9991. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  9992. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  9993. assert(nb0 == sizeof(ggml_fp16_t));
  9994. const int ith = params->ith;
  9995. const int nth = params->nth;
  9996. const int nr = ggml_nrows(dst);
  9997. // rows per thread
  9998. const int dr = (nr + nth - 1)/nth;
  9999. // row range for this thread
  10000. const int ir0 = dr*ith;
  10001. const int ir1 = MIN(ir0 + dr, nr);
  10002. // row index used to determine which thread to use
  10003. int ir = 0;
  10004. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10005. const bool is_neox = mode & 2;
  10006. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10007. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10008. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10009. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10010. if (ir++ < ir0) continue;
  10011. if (ir > ir1) break;
  10012. float theta = (float)p;
  10013. if (!is_neox) {
  10014. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10015. const float cos_theta = cosf(theta);
  10016. const float sin_theta = sinf(theta);
  10017. theta *= theta_scale;
  10018. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10019. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10020. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10021. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10022. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10023. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10024. }
  10025. } else {
  10026. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10027. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10028. const float cos_theta = cosf(theta);
  10029. const float sin_theta = sinf(theta);
  10030. theta *= theta_scale;
  10031. const int64_t i0 = ib*n_dims + ic/2;
  10032. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10033. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10034. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10035. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10036. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10037. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10038. }
  10039. }
  10040. }
  10041. }
  10042. }
  10043. }
  10044. }
  10045. static void ggml_compute_forward_rope_back(
  10046. const struct ggml_compute_params * params,
  10047. const struct ggml_tensor * src0,
  10048. const struct ggml_tensor * src1,
  10049. struct ggml_tensor * dst) {
  10050. switch (src0->type) {
  10051. case GGML_TYPE_F16:
  10052. {
  10053. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10054. } break;
  10055. case GGML_TYPE_F32:
  10056. {
  10057. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10058. } break;
  10059. default:
  10060. {
  10061. GGML_ASSERT(false);
  10062. } break;
  10063. }
  10064. }
  10065. // ggml_compute_forward_conv_1d
  10066. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10067. const struct ggml_compute_params * params,
  10068. const struct ggml_tensor * src0,
  10069. const struct ggml_tensor * src1,
  10070. struct ggml_tensor * dst) {
  10071. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10072. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10073. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10074. int64_t t0 = ggml_perf_time_us();
  10075. UNUSED(t0);
  10076. GGML_TENSOR_BINARY_OP_LOCALS;
  10077. const int ith = params->ith;
  10078. const int nth = params->nth;
  10079. const int nk = ne00;
  10080. const int nh = nk/2;
  10081. const int ew0 = ggml_up32(ne01);
  10082. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10083. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10084. GGML_ASSERT(nb10 == sizeof(float));
  10085. if (params->type == GGML_TASK_INIT) {
  10086. // TODO: fix this memset (wsize is overestimated)
  10087. memset(params->wdata, 0, params->wsize);
  10088. // prepare kernel data (src0)
  10089. {
  10090. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10091. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10092. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10093. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10094. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10095. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10096. dst_data[i00*ew0 + i01] = src[i00];
  10097. }
  10098. }
  10099. }
  10100. }
  10101. // prepare source data (src1)
  10102. {
  10103. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10104. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10105. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10106. ggml_fp16_t * dst_data = wdata;
  10107. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10108. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10109. }
  10110. }
  10111. }
  10112. return;
  10113. }
  10114. if (params->type == GGML_TASK_FINALIZE) {
  10115. return;
  10116. }
  10117. // total rows in dst
  10118. const int nr = ne02;
  10119. // rows per thread
  10120. const int dr = (nr + nth - 1)/nth;
  10121. // row range for this thread
  10122. const int ir0 = dr*ith;
  10123. const int ir1 = MIN(ir0 + dr, nr);
  10124. for (int i1 = ir0; i1 < ir1; i1++) {
  10125. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10126. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10127. dst_data[i0] = 0;
  10128. for (int k = -nh; k <= nh; k++) {
  10129. float v = 0.0f;
  10130. ggml_vec_dot_f16(ew0, &v,
  10131. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10132. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10133. dst_data[i0] += v;
  10134. }
  10135. }
  10136. }
  10137. }
  10138. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10139. const struct ggml_compute_params * params,
  10140. const struct ggml_tensor * src0,
  10141. const struct ggml_tensor * src1,
  10142. struct ggml_tensor * dst) {
  10143. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10144. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10145. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10146. int64_t t0 = ggml_perf_time_us();
  10147. UNUSED(t0);
  10148. GGML_TENSOR_BINARY_OP_LOCALS;
  10149. const int ith = params->ith;
  10150. const int nth = params->nth;
  10151. const int nk = ne00;
  10152. const int nh = nk/2;
  10153. const int ew0 = ggml_up32(ne01);
  10154. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10155. GGML_ASSERT(nb00 == sizeof(float));
  10156. GGML_ASSERT(nb10 == sizeof(float));
  10157. if (params->type == GGML_TASK_INIT) {
  10158. // TODO: fix this memset (wsize is overestimated)
  10159. memset(params->wdata, 0, params->wsize);
  10160. // prepare kernel data (src0)
  10161. {
  10162. float * const wdata = (float *) params->wdata + 0;
  10163. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10164. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10165. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10166. float * dst_data = wdata + i02*ew0*ne00;
  10167. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10168. dst_data[i00*ew0 + i01] = src[i00];
  10169. }
  10170. }
  10171. }
  10172. }
  10173. // prepare source data (src1)
  10174. {
  10175. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10176. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10177. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10178. float * dst_data = wdata;
  10179. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10180. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10181. }
  10182. }
  10183. }
  10184. return;
  10185. }
  10186. if (params->type == GGML_TASK_FINALIZE) {
  10187. return;
  10188. }
  10189. // total rows in dst
  10190. const int nr = ne02;
  10191. // rows per thread
  10192. const int dr = (nr + nth - 1)/nth;
  10193. // row range for this thread
  10194. const int ir0 = dr*ith;
  10195. const int ir1 = MIN(ir0 + dr, nr);
  10196. for (int i1 = ir0; i1 < ir1; i1++) {
  10197. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10198. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10199. dst_data[i0] = 0;
  10200. for (int k = -nh; k <= nh; k++) {
  10201. float v = 0.0f;
  10202. ggml_vec_dot_f32(ew0, &v,
  10203. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10204. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10205. dst_data[i0] += v;
  10206. }
  10207. }
  10208. }
  10209. }
  10210. static void ggml_compute_forward_conv_1d_s1_ph(
  10211. const struct ggml_compute_params * params,
  10212. const struct ggml_tensor * src0,
  10213. const struct ggml_tensor * src1,
  10214. struct ggml_tensor * dst) {
  10215. switch (src0->type) {
  10216. case GGML_TYPE_F16:
  10217. {
  10218. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10219. } break;
  10220. case GGML_TYPE_F32:
  10221. {
  10222. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10223. } break;
  10224. default:
  10225. {
  10226. GGML_ASSERT(false);
  10227. } break;
  10228. }
  10229. }
  10230. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10231. const struct ggml_compute_params * params,
  10232. const struct ggml_tensor * src0,
  10233. const struct ggml_tensor * src1,
  10234. struct ggml_tensor * dst) {
  10235. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10236. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10237. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10238. int64_t t0 = ggml_perf_time_us();
  10239. UNUSED(t0);
  10240. GGML_TENSOR_BINARY_OP_LOCALS;
  10241. const int ith = params->ith;
  10242. const int nth = params->nth;
  10243. const int nk = ne00;
  10244. const int nh = nk/2;
  10245. const int ew0 = ggml_up32(ne01);
  10246. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10247. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10248. GGML_ASSERT(nb10 == sizeof(float));
  10249. if (params->type == GGML_TASK_INIT) {
  10250. // TODO: fix this memset (wsize is overestimated)
  10251. memset(params->wdata, 0, params->wsize);
  10252. // prepare kernel data (src0)
  10253. {
  10254. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10255. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10256. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10257. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10258. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10259. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10260. dst_data[i00*ew0 + i01] = src[i00];
  10261. }
  10262. }
  10263. }
  10264. }
  10265. // prepare source data (src1)
  10266. {
  10267. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10268. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10269. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10270. ggml_fp16_t * dst_data = wdata;
  10271. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10272. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10273. }
  10274. }
  10275. }
  10276. return;
  10277. }
  10278. if (params->type == GGML_TASK_FINALIZE) {
  10279. return;
  10280. }
  10281. // total rows in dst
  10282. const int nr = ne02;
  10283. // rows per thread
  10284. const int dr = (nr + nth - 1)/nth;
  10285. // row range for this thread
  10286. const int ir0 = dr*ith;
  10287. const int ir1 = MIN(ir0 + dr, nr);
  10288. for (int i1 = ir0; i1 < ir1; i1++) {
  10289. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10290. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10291. dst_data[i0/2] = 0;
  10292. for (int k = -nh; k <= nh; k++) {
  10293. float v = 0.0f;
  10294. ggml_vec_dot_f16(ew0, &v,
  10295. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10296. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10297. dst_data[i0/2] += v;
  10298. }
  10299. }
  10300. }
  10301. }
  10302. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10303. const struct ggml_compute_params * params,
  10304. const struct ggml_tensor * src0,
  10305. const struct ggml_tensor * src1,
  10306. struct ggml_tensor * dst) {
  10307. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10308. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10309. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10310. int64_t t0 = ggml_perf_time_us();
  10311. UNUSED(t0);
  10312. GGML_TENSOR_BINARY_OP_LOCALS;
  10313. const int ith = params->ith;
  10314. const int nth = params->nth;
  10315. const int nk = ne00;
  10316. const int nh = nk/2;
  10317. const int ew0 = ggml_up32(ne01);
  10318. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10319. GGML_ASSERT(nb00 == sizeof(float));
  10320. GGML_ASSERT(nb10 == sizeof(float));
  10321. if (params->type == GGML_TASK_INIT) {
  10322. // TODO: fix this memset (wsize is overestimated)
  10323. memset(params->wdata, 0, params->wsize);
  10324. // prepare kernel data (src0)
  10325. {
  10326. float * const wdata = (float *) params->wdata + 0;
  10327. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10328. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10329. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10330. float * dst_data = wdata + i02*ew0*ne00;
  10331. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10332. dst_data[i00*ew0 + i01] = src[i00];
  10333. }
  10334. }
  10335. }
  10336. }
  10337. // prepare source data (src1)
  10338. {
  10339. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10340. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10341. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10342. float * dst_data = wdata;
  10343. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10344. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10345. }
  10346. }
  10347. }
  10348. return;
  10349. }
  10350. if (params->type == GGML_TASK_FINALIZE) {
  10351. return;
  10352. }
  10353. // total rows in dst
  10354. const int nr = ne02;
  10355. // rows per thread
  10356. const int dr = (nr + nth - 1)/nth;
  10357. // row range for this thread
  10358. const int ir0 = dr*ith;
  10359. const int ir1 = MIN(ir0 + dr, nr);
  10360. for (int i1 = ir0; i1 < ir1; i1++) {
  10361. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10362. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10363. dst_data[i0/2] = 0;
  10364. for (int k = -nh; k <= nh; k++) {
  10365. float v = 0.0f;
  10366. ggml_vec_dot_f32(ew0, &v,
  10367. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10368. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10369. dst_data[i0/2] += v;
  10370. }
  10371. }
  10372. }
  10373. }
  10374. static void ggml_compute_forward_conv_1d_s2_ph(
  10375. const struct ggml_compute_params * params,
  10376. const struct ggml_tensor * src0,
  10377. const struct ggml_tensor * src1,
  10378. struct ggml_tensor * dst) {
  10379. switch (src0->type) {
  10380. case GGML_TYPE_F16:
  10381. {
  10382. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10383. } break;
  10384. case GGML_TYPE_F32:
  10385. {
  10386. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10387. } break;
  10388. default:
  10389. {
  10390. GGML_ASSERT(false);
  10391. } break;
  10392. }
  10393. }
  10394. // ggml_compute_forward_conv_1d
  10395. static void ggml_compute_forward_conv_1d(
  10396. const struct ggml_compute_params * params,
  10397. const struct ggml_tensor * src0,
  10398. const struct ggml_tensor * src1,
  10399. const struct ggml_tensor * opt0,
  10400. struct ggml_tensor * dst) {
  10401. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10402. const int32_t p0 = ((const int32_t*)(opt0->data))[1];
  10403. const int32_t d0 = ((const int32_t*)(opt0->data))[2];
  10404. GGML_ASSERT(d0 == 1); // dilation not supported
  10405. GGML_ASSERT(p0 == src0->ne[0]/2); // only half padding supported
  10406. if (s0 == 1) {
  10407. ggml_compute_forward_conv_1d_s1_ph(params, src0, src1, dst);
  10408. } else if (s0 == 2) {
  10409. ggml_compute_forward_conv_1d_s2_ph(params, src0, src1, dst);
  10410. } else {
  10411. GGML_ASSERT(false); // only stride 1 and 2 supported
  10412. };
  10413. }
  10414. // ggml_compute_forward_conv_2d_sk_p0
  10415. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10416. const struct ggml_compute_params * params,
  10417. const struct ggml_tensor * src0,
  10418. const struct ggml_tensor * src1,
  10419. struct ggml_tensor * dst) {
  10420. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10421. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10422. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10423. int64_t t0 = ggml_perf_time_us();
  10424. UNUSED(t0);
  10425. GGML_TENSOR_BINARY_OP_LOCALS;
  10426. const int ith = params->ith;
  10427. const int nth = params->nth;
  10428. const int nk0 = ne00;
  10429. const int nk1 = ne01;
  10430. // size of the convolution row - the kernel size unrolled across all channels
  10431. const int ew0 = nk0*nk1*ne02;
  10432. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10433. GGML_ASSERT(nb10 == sizeof(float));
  10434. if (params->type == GGML_TASK_INIT) {
  10435. // TODO: fix this memset (wsize is overestimated)
  10436. memset(params->wdata, 0, params->wsize);
  10437. // prepare source data (src1)
  10438. {
  10439. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10440. for (int i12 = 0; i12 < ne12; i12++) {
  10441. const float * const src = (float *)((char *) src1->data + i12*nb12);
  10442. ggml_fp16_t * dst_data = wdata;
  10443. for (int i1 = 0; i1 < ne1; i1++) {
  10444. for (int i0 = 0; i0 < ne0; i0++) {
  10445. for (int ik1 = 0; ik1 < nk1; ik1++) {
  10446. for (int ik0 = 0; ik0 < nk0; ik0++) {
  10447. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  10448. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  10449. }
  10450. }
  10451. }
  10452. }
  10453. }
  10454. }
  10455. return;
  10456. }
  10457. if (params->type == GGML_TASK_FINALIZE) {
  10458. return;
  10459. }
  10460. // total patches in dst
  10461. const int np = ne2;
  10462. // patches per thread
  10463. const int dp = (np + nth - 1)/nth;
  10464. // patch range for this thread
  10465. const int ip0 = dp*ith;
  10466. const int ip1 = MIN(ip0 + dp, np);
  10467. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10468. for (int i2 = ip0; i2 < ip1; i2++) {
  10469. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  10470. for (int i1 = 0; i1 < ne1; ++i1) {
  10471. for (int i0 = 0; i0 < ne0; ++i0) {
  10472. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  10473. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  10474. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  10475. }
  10476. }
  10477. }
  10478. }
  10479. static void ggml_compute_forward_conv_2d_sk_p0(
  10480. const struct ggml_compute_params * params,
  10481. const struct ggml_tensor * src0,
  10482. const struct ggml_tensor * src1,
  10483. struct ggml_tensor * dst) {
  10484. switch (src0->type) {
  10485. case GGML_TYPE_F16:
  10486. {
  10487. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  10488. } break;
  10489. case GGML_TYPE_F32:
  10490. {
  10491. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  10492. GGML_ASSERT(false);
  10493. } break;
  10494. default:
  10495. {
  10496. GGML_ASSERT(false);
  10497. } break;
  10498. }
  10499. }
  10500. // ggml_compute_forward_conv_2d
  10501. static void ggml_compute_forward_conv_2d(
  10502. const struct ggml_compute_params* params,
  10503. const struct ggml_tensor* src0,
  10504. const struct ggml_tensor* src1,
  10505. const struct ggml_tensor* opt0,
  10506. struct ggml_tensor* dst) {
  10507. const int32_t s0 = ((const int32_t*)(opt0->data))[0];
  10508. const int32_t s1 = ((const int32_t*)(opt0->data))[1];
  10509. const int32_t p0 = ((const int32_t*)(opt0->data))[2];
  10510. const int32_t p1 = ((const int32_t*)(opt0->data))[3];
  10511. const int32_t d0 = ((const int32_t*)(opt0->data))[4];
  10512. const int32_t d1 = ((const int32_t*)(opt0->data))[5];
  10513. GGML_ASSERT(d0 == 1); // dilation not supported
  10514. GGML_ASSERT(d1 == 1);
  10515. GGML_ASSERT(p0 == 0); // padding not supported
  10516. GGML_ASSERT(p1 == 0);
  10517. if (s0 == src0->ne[0] && s1 == src0->ne[1]) {
  10518. ggml_compute_forward_conv_2d_sk_p0(params, src0, src1, dst);
  10519. }
  10520. else {
  10521. GGML_ASSERT(false); // only stride equal to kernel size is supported
  10522. };
  10523. }
  10524. // ggml_compute_forward_flash_attn
  10525. static void ggml_compute_forward_flash_attn_f32(
  10526. const struct ggml_compute_params * params,
  10527. const struct ggml_tensor * q,
  10528. const struct ggml_tensor * k,
  10529. const struct ggml_tensor * v,
  10530. const bool masked,
  10531. struct ggml_tensor * dst) {
  10532. int64_t t0 = ggml_perf_time_us();
  10533. UNUSED(t0);
  10534. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10535. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10536. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10537. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10538. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10539. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10540. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10541. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10542. const int ith = params->ith;
  10543. const int nth = params->nth;
  10544. const int64_t D = neq0;
  10545. const int64_t N = neq1;
  10546. const int64_t P = nek1 - N;
  10547. const int64_t M = P + N;
  10548. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10549. GGML_ASSERT(ne0 == D);
  10550. GGML_ASSERT(ne1 == N);
  10551. GGML_ASSERT(P >= 0);
  10552. GGML_ASSERT(nbq0 == sizeof(float));
  10553. GGML_ASSERT(nbk0 == sizeof(float));
  10554. GGML_ASSERT(nbv0 == sizeof(float));
  10555. GGML_ASSERT(neq0 == D);
  10556. GGML_ASSERT(nek0 == D);
  10557. GGML_ASSERT(nev1 == D);
  10558. GGML_ASSERT(neq1 == N);
  10559. GGML_ASSERT(nek1 == N + P);
  10560. GGML_ASSERT(nev1 == D);
  10561. // dst cannot be transposed or permuted
  10562. GGML_ASSERT(nb0 == sizeof(float));
  10563. GGML_ASSERT(nb0 <= nb1);
  10564. GGML_ASSERT(nb1 <= nb2);
  10565. GGML_ASSERT(nb2 <= nb3);
  10566. if (params->type == GGML_TASK_INIT) {
  10567. return;
  10568. }
  10569. if (params->type == GGML_TASK_FINALIZE) {
  10570. return;
  10571. }
  10572. // parallelize by q rows using ggml_vec_dot_f32
  10573. // total rows in q
  10574. const int nr = neq1*neq2*neq3;
  10575. // rows per thread
  10576. const int dr = (nr + nth - 1)/nth;
  10577. // row range for this thread
  10578. const int ir0 = dr*ith;
  10579. const int ir1 = MIN(ir0 + dr, nr);
  10580. const float scale = 1.0f/sqrtf(D);
  10581. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10582. for (int ir = ir0; ir < ir1; ++ir) {
  10583. // q indices
  10584. const int iq3 = ir/(neq2*neq1);
  10585. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10586. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10587. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  10588. for (int i = M; i < Mup; ++i) {
  10589. S[i] = -INFINITY;
  10590. }
  10591. for (int64_t ic = 0; ic < nek1; ++ic) {
  10592. // k indices
  10593. const int ik3 = iq3;
  10594. const int ik2 = iq2;
  10595. const int ik1 = ic;
  10596. // S indices
  10597. const int i1 = ik1;
  10598. ggml_vec_dot_f32(neq0,
  10599. S + i1,
  10600. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10601. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10602. }
  10603. // scale
  10604. ggml_vec_scale_f32(nek1, S, scale);
  10605. if (masked) {
  10606. for (int64_t i = P; i < M; i++) {
  10607. if (i > P + iq1) {
  10608. S[i] = -INFINITY;
  10609. }
  10610. }
  10611. }
  10612. // softmax
  10613. {
  10614. float max = -INFINITY;
  10615. ggml_vec_max_f32(M, &max, S);
  10616. ggml_float sum = 0.0;
  10617. {
  10618. #ifdef GGML_SOFT_MAX_ACCELERATE
  10619. max = -max;
  10620. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10621. vvexpf(S, S, &Mup);
  10622. ggml_vec_sum_f32(Mup, &sum, S);
  10623. #else
  10624. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10625. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10626. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10627. float * SS = S + i;
  10628. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10629. if (SS[j] == -INFINITY) {
  10630. SS[j] = 0.0f;
  10631. } else {
  10632. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10633. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10634. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10635. sump[j] += (ggml_float)val;
  10636. SS[j] = val;
  10637. }
  10638. }
  10639. }
  10640. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10641. sum += sump[i];
  10642. }
  10643. #endif
  10644. }
  10645. assert(sum > 0.0);
  10646. sum = 1.0/sum;
  10647. ggml_vec_scale_f32(M, S, sum);
  10648. #ifndef NDEBUG
  10649. for (int i = 0; i < M; ++i) {
  10650. assert(!isnan(S[i]));
  10651. assert(!isinf(S[i]));
  10652. }
  10653. #endif
  10654. }
  10655. for (int64_t ic = 0; ic < nev1; ++ic) {
  10656. // dst indices
  10657. const int i1 = iq1;
  10658. const int i2 = iq2;
  10659. const int i3 = iq3;
  10660. ggml_vec_dot_f32(nek1,
  10661. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10662. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10663. S);
  10664. }
  10665. }
  10666. }
  10667. static void ggml_compute_forward_flash_attn_f16(
  10668. const struct ggml_compute_params * params,
  10669. const struct ggml_tensor * q,
  10670. const struct ggml_tensor * k,
  10671. const struct ggml_tensor * v,
  10672. const bool masked,
  10673. struct ggml_tensor * dst) {
  10674. int64_t t0 = ggml_perf_time_us();
  10675. UNUSED(t0);
  10676. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  10677. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  10678. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  10679. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  10680. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  10681. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  10682. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10683. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10684. const int ith = params->ith;
  10685. const int nth = params->nth;
  10686. const int64_t D = neq0;
  10687. const int64_t N = neq1;
  10688. const int64_t P = nek1 - N;
  10689. const int64_t M = P + N;
  10690. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  10691. GGML_ASSERT(ne0 == D);
  10692. GGML_ASSERT(ne1 == N);
  10693. GGML_ASSERT(P >= 0);
  10694. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  10695. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  10696. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  10697. GGML_ASSERT(neq0 == D);
  10698. GGML_ASSERT(nek0 == D);
  10699. GGML_ASSERT(nev1 == D);
  10700. GGML_ASSERT(neq1 == N);
  10701. GGML_ASSERT(nek1 == N + P);
  10702. GGML_ASSERT(nev1 == D);
  10703. // dst cannot be transposed or permuted
  10704. GGML_ASSERT(nb0 == sizeof(float));
  10705. GGML_ASSERT(nb0 <= nb1);
  10706. GGML_ASSERT(nb1 <= nb2);
  10707. GGML_ASSERT(nb2 <= nb3);
  10708. if (params->type == GGML_TASK_INIT) {
  10709. return;
  10710. }
  10711. if (params->type == GGML_TASK_FINALIZE) {
  10712. return;
  10713. }
  10714. // parallelize by q rows using ggml_vec_dot_f32
  10715. // total rows in q
  10716. const int nr = neq1*neq2*neq3;
  10717. // rows per thread
  10718. const int dr = (nr + nth - 1)/nth;
  10719. // row range for this thread
  10720. const int ir0 = dr*ith;
  10721. const int ir1 = MIN(ir0 + dr, nr);
  10722. const float scale = 1.0f/sqrtf(D);
  10723. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  10724. for (int ir = ir0; ir < ir1; ++ir) {
  10725. // q indices
  10726. const int iq3 = ir/(neq2*neq1);
  10727. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  10728. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  10729. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  10730. for (int i = M; i < Mup; ++i) {
  10731. S[i] = -INFINITY;
  10732. }
  10733. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  10734. for (int64_t ic = 0; ic < nek1; ++ic) {
  10735. // k indices
  10736. const int ik3 = iq3;
  10737. const int ik2 = iq2;
  10738. const int ik1 = ic;
  10739. // S indices
  10740. const int i1 = ik1;
  10741. ggml_vec_dot_f16(neq0,
  10742. S + i1,
  10743. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10744. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10745. }
  10746. } else {
  10747. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  10748. // k indices
  10749. const int ik3 = iq3;
  10750. const int ik2 = iq2;
  10751. const int ik1 = ic;
  10752. // S indices
  10753. const int i1 = ik1;
  10754. ggml_vec_dot_f16_unroll(neq0, nbk1,
  10755. S + i1,
  10756. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  10757. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  10758. }
  10759. }
  10760. // scale
  10761. ggml_vec_scale_f32(nek1, S, scale);
  10762. if (masked) {
  10763. for (int64_t i = P; i < M; i++) {
  10764. if (i > P + iq1) {
  10765. S[i] = -INFINITY;
  10766. }
  10767. }
  10768. }
  10769. // softmax
  10770. {
  10771. float max = -INFINITY;
  10772. ggml_vec_max_f32(M, &max, S);
  10773. ggml_float sum = 0.0;
  10774. {
  10775. #ifdef GGML_SOFT_MAX_ACCELERATE
  10776. max = -max;
  10777. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  10778. vvexpf(S, S, &Mup);
  10779. ggml_vec_sum_f32(Mup, &sum, S);
  10780. #else
  10781. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  10782. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  10783. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  10784. float * SS = S + i;
  10785. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  10786. if (SS[j] == -INFINITY) {
  10787. SS[j] = 0.0f;
  10788. } else {
  10789. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  10790. memcpy(&scvt[j], &s, sizeof(uint16_t));
  10791. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  10792. sump[j] += (ggml_float)val;
  10793. SS[j] = val;
  10794. }
  10795. }
  10796. }
  10797. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  10798. sum += sump[i];
  10799. }
  10800. #endif
  10801. }
  10802. assert(sum > 0.0);
  10803. sum = 1.0/sum;
  10804. ggml_vec_scale_f32(M, S, sum);
  10805. #ifndef NDEBUG
  10806. for (int i = 0; i < M; ++i) {
  10807. assert(!isnan(S[i]));
  10808. assert(!isinf(S[i]));
  10809. }
  10810. #endif
  10811. }
  10812. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  10813. for (int64_t i = 0; i < M; i++) {
  10814. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10815. }
  10816. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  10817. for (int64_t ic = 0; ic < nev1; ++ic) {
  10818. // dst indices
  10819. const int i1 = iq1;
  10820. const int i2 = iq2;
  10821. const int i3 = iq3;
  10822. ggml_vec_dot_f16(nek1,
  10823. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10824. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10825. S16);
  10826. }
  10827. } else {
  10828. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  10829. // dst indices
  10830. const int i1 = iq1;
  10831. const int i2 = iq2;
  10832. const int i3 = iq3;
  10833. ggml_vec_dot_f16_unroll(nek1, nbv1,
  10834. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10835. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  10836. S16);
  10837. }
  10838. }
  10839. }
  10840. }
  10841. static void ggml_compute_forward_flash_attn(
  10842. const struct ggml_compute_params * params,
  10843. const struct ggml_tensor * q,
  10844. const struct ggml_tensor * k,
  10845. const struct ggml_tensor * v,
  10846. const bool masked,
  10847. struct ggml_tensor * dst) {
  10848. switch (q->type) {
  10849. case GGML_TYPE_F16:
  10850. {
  10851. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  10852. } break;
  10853. case GGML_TYPE_F32:
  10854. {
  10855. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  10856. } break;
  10857. default:
  10858. {
  10859. GGML_ASSERT(false);
  10860. } break;
  10861. }
  10862. }
  10863. // ggml_compute_forward_flash_ff
  10864. static void ggml_compute_forward_flash_ff_f16(
  10865. const struct ggml_compute_params * params,
  10866. const struct ggml_tensor * a, // F16
  10867. const struct ggml_tensor * b0, // F16 fc_w
  10868. const struct ggml_tensor * b1, // F32 fc_b
  10869. const struct ggml_tensor * c0, // F16 proj_w
  10870. const struct ggml_tensor * c1, // F32 proj_b
  10871. struct ggml_tensor * dst) {
  10872. int64_t t0 = ggml_perf_time_us();
  10873. UNUSED(t0);
  10874. GGML_TENSOR_LOCALS(int64_t, nea, a, ne);
  10875. GGML_TENSOR_LOCALS(size_t, nba, a, nb);
  10876. GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne);
  10877. GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb);
  10878. GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne);
  10879. GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb);
  10880. GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne);
  10881. GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb);
  10882. GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne);
  10883. GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb);
  10884. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  10885. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  10886. const int ith = params->ith;
  10887. const int nth = params->nth;
  10888. const int64_t D = nea0;
  10889. //const int64_t N = nea1;
  10890. const int64_t M = neb01;
  10891. GGML_ASSERT(ne0 == nea0);
  10892. GGML_ASSERT(ne1 == nea1);
  10893. GGML_ASSERT(ne2 == nea2);
  10894. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  10895. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  10896. GGML_ASSERT(nbb10 == sizeof(float));
  10897. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  10898. GGML_ASSERT(nbc10 == sizeof(float));
  10899. GGML_ASSERT(neb00 == D);
  10900. GGML_ASSERT(neb01 == M);
  10901. GGML_ASSERT(neb10 == M);
  10902. GGML_ASSERT(neb11 == 1);
  10903. GGML_ASSERT(nec00 == M);
  10904. GGML_ASSERT(nec01 == D);
  10905. GGML_ASSERT(nec10 == D);
  10906. GGML_ASSERT(nec11 == 1);
  10907. // dst cannot be transposed or permuted
  10908. GGML_ASSERT(nb0 == sizeof(float));
  10909. GGML_ASSERT(nb0 <= nb1);
  10910. GGML_ASSERT(nb1 <= nb2);
  10911. GGML_ASSERT(nb2 <= nb3);
  10912. if (params->type == GGML_TASK_INIT) {
  10913. return;
  10914. }
  10915. if (params->type == GGML_TASK_FINALIZE) {
  10916. return;
  10917. }
  10918. // parallelize by a rows using ggml_vec_dot_f32
  10919. // total rows in a
  10920. const int nr = nea1*nea2*nea3;
  10921. // rows per thread
  10922. const int dr = (nr + nth - 1)/nth;
  10923. // row range for this thread
  10924. const int ir0 = dr*ith;
  10925. const int ir1 = MIN(ir0 + dr, nr);
  10926. for (int ir = ir0; ir < ir1; ++ir) {
  10927. // a indices
  10928. const int ia3 = ir/(nea2*nea1);
  10929. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  10930. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  10931. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  10932. for (int64_t ic = 0; ic < neb01; ++ic) {
  10933. // b0 indices
  10934. const int ib03 = ia3;
  10935. const int ib02 = ia2;
  10936. const int ib01 = ic;
  10937. // S indices
  10938. const int i1 = ib01;
  10939. ggml_vec_dot_f16(nea0,
  10940. S + i1,
  10941. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  10942. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  10943. }
  10944. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  10945. //ggml_vec_gelu_f32(neb01, S, S);
  10946. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  10947. for (int64_t i = 0; i < M; i++) {
  10948. S16[i] = GGML_FP32_TO_FP16(S[i]);
  10949. }
  10950. ggml_vec_gelu_f16(neb01, S16, S16);
  10951. {
  10952. // dst indices
  10953. const int i1 = ia1;
  10954. const int i2 = ia2;
  10955. const int i3 = ia3;
  10956. for (int64_t ic = 0; ic < nec01; ++ic) {
  10957. ggml_vec_dot_f16(neb01,
  10958. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  10959. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  10960. S16);
  10961. }
  10962. ggml_vec_add_f32(nec01,
  10963. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10964. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  10965. (float *) c1->data);
  10966. }
  10967. }
  10968. }
  10969. static void ggml_compute_forward_flash_ff(
  10970. const struct ggml_compute_params * params,
  10971. const struct ggml_tensor * a,
  10972. const struct ggml_tensor * b0,
  10973. const struct ggml_tensor * b1,
  10974. const struct ggml_tensor * c0,
  10975. const struct ggml_tensor * c1,
  10976. struct ggml_tensor * dst) {
  10977. switch (b0->type) {
  10978. case GGML_TYPE_F16:
  10979. {
  10980. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  10981. } break;
  10982. case GGML_TYPE_F32:
  10983. {
  10984. GGML_ASSERT(false); // TODO
  10985. } break;
  10986. default:
  10987. {
  10988. GGML_ASSERT(false);
  10989. } break;
  10990. }
  10991. }
  10992. // ggml_compute_forward_flash_attn_back
  10993. static void ggml_compute_forward_flash_attn_back_f32(
  10994. const struct ggml_compute_params * params,
  10995. const struct ggml_tensor * q,
  10996. const struct ggml_tensor * k,
  10997. const struct ggml_tensor * v,
  10998. const struct ggml_tensor * d,
  10999. const bool masked,
  11000. struct ggml_tensor * dst) {
  11001. int64_t t0 = ggml_perf_time_us();
  11002. UNUSED(t0);
  11003. GGML_TENSOR_LOCALS(int64_t, neq, q, ne);
  11004. GGML_TENSOR_LOCALS(size_t, nbq, q, nb);
  11005. GGML_TENSOR_LOCALS(int64_t, nek, k, ne);
  11006. GGML_TENSOR_LOCALS(size_t, nbk, k, nb);
  11007. GGML_TENSOR_LOCALS(int64_t, nev, v, ne);
  11008. GGML_TENSOR_LOCALS(size_t, nbv, v, nb);
  11009. GGML_TENSOR_LOCALS(int64_t, ned, d, ne);
  11010. GGML_TENSOR_LOCALS(size_t, nbd, d, nb);
  11011. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11012. GGML_TENSOR_LOCALS(size_t, nb, dst, nb);
  11013. const int ith = params->ith;
  11014. const int nth = params->nth;
  11015. const int64_t D = neq0;
  11016. const int64_t N = neq1;
  11017. const int64_t P = nek1 - N;
  11018. const int64_t M = P + N;
  11019. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11020. const int mxDM = MAX(D, Mup);
  11021. // GGML_ASSERT(ne0 == D);
  11022. // GGML_ASSERT(ne1 == N);
  11023. GGML_ASSERT(P >= 0);
  11024. GGML_ASSERT(nbq0 == sizeof(float));
  11025. GGML_ASSERT(nbk0 == sizeof(float));
  11026. GGML_ASSERT(nbv0 == sizeof(float));
  11027. GGML_ASSERT(neq0 == D);
  11028. GGML_ASSERT(nek0 == D);
  11029. GGML_ASSERT(nev1 == D);
  11030. GGML_ASSERT(ned0 == D);
  11031. GGML_ASSERT(neq1 == N);
  11032. GGML_ASSERT(nek1 == N + P);
  11033. GGML_ASSERT(nev1 == D);
  11034. GGML_ASSERT(ned1 == N);
  11035. // dst cannot be transposed or permuted
  11036. GGML_ASSERT(nb0 == sizeof(float));
  11037. GGML_ASSERT(nb0 <= nb1);
  11038. GGML_ASSERT(nb1 <= nb2);
  11039. GGML_ASSERT(nb2 <= nb3);
  11040. if (params->type == GGML_TASK_INIT) {
  11041. if (ith == 0) {
  11042. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11043. }
  11044. return;
  11045. }
  11046. if (params->type == GGML_TASK_FINALIZE) {
  11047. return;
  11048. }
  11049. // parallelize by q rows using ggml_vec_dot_f32
  11050. // total rows in q
  11051. const int nr = neq2*neq3;
  11052. // rows per thread
  11053. const int dr = (nr + nth - 1)/nth;
  11054. // row range for this thread
  11055. const int ir0 = dr*ith;
  11056. const int ir1 = MIN(ir0 + dr, nr);
  11057. const float scale = 1.0f/sqrtf(D);
  11058. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11059. for (int ir = ir0; ir < ir1; ++ir) {
  11060. // q indices
  11061. const int iq3 = ir/(neq2);
  11062. const int iq2 = ir - iq3*neq2;
  11063. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11064. // not sure about CACHE_LINE_SIZE_F32..
  11065. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11066. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11067. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11068. for (int i = M; i < Mup; ++i) {
  11069. S[i] = -INFINITY;
  11070. }
  11071. for (int64_t ic = 0; ic < nek1; ++ic) {
  11072. // k indices
  11073. const int ik3 = iq3;
  11074. const int ik2 = iq2;
  11075. const int ik1 = ic;
  11076. // S indices
  11077. const int i1 = ik1;
  11078. ggml_vec_dot_f32(neq0,
  11079. S + i1,
  11080. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11081. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11082. }
  11083. // scale
  11084. ggml_vec_scale_f32(nek1, S, scale);
  11085. if (masked) {
  11086. for (int64_t i = P; i < M; i++) {
  11087. if (i > P + iq1) {
  11088. S[i] = -INFINITY;
  11089. }
  11090. }
  11091. }
  11092. // softmax
  11093. {
  11094. float max = -INFINITY;
  11095. ggml_vec_max_f32(M, &max, S);
  11096. ggml_float sum = 0.0;
  11097. {
  11098. #ifdef GGML_SOFT_MAX_ACCELERATE
  11099. max = -max;
  11100. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11101. vvexpf(SM, SM, &Mup);
  11102. ggml_vec_sum_f32(Mup, &sum, SM);
  11103. #else
  11104. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11105. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11106. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11107. float * SR = S + i;
  11108. float * SW = SM + i;
  11109. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11110. if (SR[j] == -INFINITY) {
  11111. SW[j] = 0.0f;
  11112. } else {
  11113. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11114. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11115. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11116. sump[j] += (ggml_float)val;
  11117. SW[j] = val;
  11118. }
  11119. }
  11120. }
  11121. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11122. sum += sump[i];
  11123. }
  11124. #endif
  11125. }
  11126. assert(sum > 0.0);
  11127. sum = 1.0/sum;
  11128. ggml_vec_scale_f32(M, SM, sum);
  11129. }
  11130. // step-by-step explanation
  11131. {
  11132. // forward-process shape grads from backward process
  11133. // parallel_for iq2,iq3:
  11134. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11135. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11136. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11137. // for iq1:
  11138. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11139. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11140. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11141. // S0 = -Inf [D,1,1,1]
  11142. // ~S1[i] = dot(kcur[:D,i], qcur)
  11143. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11144. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11145. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11146. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11147. // ~S5[i] = dot(vcur[:,i], S4)
  11148. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11149. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11150. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11151. // dst backward-/ grad[dst] = d
  11152. //
  11153. // output gradients with their dependencies:
  11154. //
  11155. // grad[kcur] = grad[S1].T @ qcur
  11156. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11157. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11158. // grad[S4] = grad[S5] @ vcur
  11159. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11160. // grad[qcur] = grad[S1] @ kcur
  11161. // grad[vcur] = grad[S5].T @ S4
  11162. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11163. //
  11164. // in post-order:
  11165. //
  11166. // S1 = qcur @ kcur.T
  11167. // S2 = S1 * scale
  11168. // S3 = diag_mask_inf(S2, P)
  11169. // S4 = softmax(S3)
  11170. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11171. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11172. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11173. // grad[qcur] = grad[S1] @ kcur
  11174. // grad[kcur] = grad[S1].T @ qcur
  11175. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11176. //
  11177. // using less variables (SM=S4):
  11178. //
  11179. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11180. // SM = softmax(S)
  11181. // S = d[:D,iq1,iq2,iq3] @ vcur
  11182. // dot_SM_gradSM = dot(SM, S)
  11183. // S = SM * (S - dot(SM, S))
  11184. // S = diag_mask_zero(S, P) * scale
  11185. //
  11186. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11187. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11188. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11189. }
  11190. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11191. // S = d[:D,iq1,iq2,iq3] @ vcur
  11192. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11193. ggml_vec_set_f32(M, S, 0);
  11194. for (int64_t ic = 0; ic < D; ++ic) {
  11195. // dst indices
  11196. const int i1 = iq1;
  11197. const int i2 = iq2;
  11198. const int i3 = iq3;
  11199. ggml_vec_mad_f32(M,
  11200. S,
  11201. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11202. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11203. }
  11204. // S = SM * (S - dot(SM, S))
  11205. float dot_SM_gradSM = 0;
  11206. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11207. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11208. ggml_vec_mul_f32 (M, S, S, SM);
  11209. // S = diag_mask_zero(S, P) * scale
  11210. if (masked) {
  11211. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11212. // S[i] = 0;
  11213. // }
  11214. for (int64_t i = P; i < M; i++) {
  11215. if (i > P + iq1) {
  11216. S[i] = 0;
  11217. }
  11218. }
  11219. }
  11220. ggml_vec_scale_f32(M, S, scale);
  11221. void * grad_q = (char *) dst->data;
  11222. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11223. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11224. const size_t nbgq1 = nb0*neq0;
  11225. const size_t nbgq2 = nb0*neq0*neq1;
  11226. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11227. const size_t nbgk1 = nb0*nek0;
  11228. const size_t nbgk2 = nb0*nek0*nek1;
  11229. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11230. const size_t nbgv1 = nb0*nev0;
  11231. const size_t nbgv2 = nb0*nev0*nev1;
  11232. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11233. // S shape [M,1]
  11234. // SM shape [M,1]
  11235. // kcur shape [D,M]
  11236. // qcur shape [D,1]
  11237. // vcur shape [M,D]
  11238. //
  11239. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11240. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11241. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11242. //
  11243. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11244. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11245. for (int64_t ic = 0; ic < M; ++ic) {
  11246. // dst indices
  11247. const int i1 = iq1;
  11248. const int i2 = iq2;
  11249. const int i3 = iq3;
  11250. ggml_vec_mad_f32(D,
  11251. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11252. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11253. S[ic]);
  11254. }
  11255. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11256. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11257. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11258. for (int64_t ic = 0; ic < M; ++ic) {
  11259. // dst indices
  11260. const int i1 = iq1;
  11261. const int i2 = iq2;
  11262. const int i3 = iq3;
  11263. // ggml_vec_set_f32(D,
  11264. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11265. // 0);
  11266. ggml_vec_mad_f32(D,
  11267. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11268. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11269. S[ic]);
  11270. }
  11271. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11272. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11273. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11274. for (int64_t ic = 0; ic < D; ++ic) {
  11275. // dst indices
  11276. const int i1 = iq1;
  11277. const int i2 = iq2;
  11278. const int i3 = iq3;
  11279. // ggml_vec_set_f32(M,
  11280. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11281. // 0);
  11282. ggml_vec_mad_f32(M,
  11283. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11284. SM,
  11285. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11286. }
  11287. }
  11288. }
  11289. }
  11290. static void ggml_compute_forward_flash_attn_back(
  11291. const struct ggml_compute_params * params,
  11292. const struct ggml_tensor * q,
  11293. const struct ggml_tensor * k,
  11294. const struct ggml_tensor * v,
  11295. const struct ggml_tensor * d,
  11296. const bool masked,
  11297. struct ggml_tensor * dst) {
  11298. switch (q->type) {
  11299. case GGML_TYPE_F32:
  11300. {
  11301. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11302. } break;
  11303. default:
  11304. {
  11305. GGML_ASSERT(false);
  11306. } break;
  11307. }
  11308. }
  11309. // ggml_compute_forward_win_part
  11310. static void ggml_compute_forward_win_part_f32(
  11311. const struct ggml_compute_params * params,
  11312. const struct ggml_tensor * src0,
  11313. const struct ggml_tensor * opt0,
  11314. struct ggml_tensor * dst) {
  11315. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11316. return;
  11317. }
  11318. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11319. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11320. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  11321. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  11322. const int32_t w = ((const int32_t *)(opt0->data))[2];
  11323. assert(ne00 == ne0);
  11324. assert(ne3 == nep0*nep1);
  11325. // TODO: optimize / multi-thread
  11326. for (int py = 0; py < nep1; ++py) {
  11327. for (int px = 0; px < nep0; ++px) {
  11328. const int64_t i3 = py*nep0 + px;
  11329. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11330. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11331. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11332. const int64_t i02 = py*w + i2;
  11333. const int64_t i01 = px*w + i1;
  11334. const int64_t i00 = i0;
  11335. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  11336. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  11337. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  11338. ((float *) dst->data)[i] = 0.0f;
  11339. } else {
  11340. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  11341. }
  11342. }
  11343. }
  11344. }
  11345. }
  11346. }
  11347. }
  11348. static void ggml_compute_forward_win_part(
  11349. const struct ggml_compute_params * params,
  11350. const struct ggml_tensor * src0,
  11351. const struct ggml_tensor * opt0,
  11352. struct ggml_tensor * dst) {
  11353. switch (src0->type) {
  11354. case GGML_TYPE_F32:
  11355. {
  11356. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  11357. } break;
  11358. default:
  11359. {
  11360. GGML_ASSERT(false);
  11361. } break;
  11362. }
  11363. }
  11364. // ggml_compute_forward_win_unpart
  11365. static void ggml_compute_forward_win_unpart_f32(
  11366. const struct ggml_compute_params * params,
  11367. const struct ggml_tensor * src0,
  11368. const struct ggml_tensor * opt0,
  11369. struct ggml_tensor * dst) {
  11370. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11371. return;
  11372. }
  11373. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne);
  11374. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne);
  11375. const int32_t w = ((const int32_t *)(opt0->data))[0];
  11376. // padding
  11377. const int px = (w - ne1%w)%w;
  11378. //const int py = (w - ne2%w)%w;
  11379. const int npx = (px + ne1)/w;
  11380. //const int npy = (py + ne2)/w;
  11381. assert(ne0 == ne00);
  11382. // TODO: optimize / multi-thread
  11383. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  11384. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  11385. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  11386. const int ip2 = i2/w;
  11387. const int ip1 = i1/w;
  11388. const int64_t i02 = i2%w;
  11389. const int64_t i01 = i1%w;
  11390. const int64_t i00 = i0;
  11391. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  11392. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  11393. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  11394. }
  11395. }
  11396. }
  11397. }
  11398. static void ggml_compute_forward_win_unpart(
  11399. const struct ggml_compute_params * params,
  11400. const struct ggml_tensor * src0,
  11401. const struct ggml_tensor * opt0,
  11402. struct ggml_tensor * dst) {
  11403. switch (src0->type) {
  11404. case GGML_TYPE_F32:
  11405. {
  11406. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  11407. } break;
  11408. default:
  11409. {
  11410. GGML_ASSERT(false);
  11411. } break;
  11412. }
  11413. }
  11414. // ggml_compute_forward_map_unary
  11415. static void ggml_compute_forward_map_unary_f32(
  11416. const struct ggml_compute_params * params,
  11417. const struct ggml_tensor * src0,
  11418. struct ggml_tensor * dst,
  11419. const ggml_unary_op_f32_t fun) {
  11420. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11421. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11422. return;
  11423. }
  11424. const int n = ggml_nrows(src0);
  11425. const int nc = src0->ne[0];
  11426. assert( dst->nb[0] == sizeof(float));
  11427. assert(src0->nb[0] == sizeof(float));
  11428. for (int i = 0; i < n; i++) {
  11429. fun(nc,
  11430. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11431. (float *) ((char *) src0->data + i*(src0->nb[1])));
  11432. }
  11433. }
  11434. static void ggml_compute_forward_map_unary(
  11435. const struct ggml_compute_params * params,
  11436. const struct ggml_tensor * src0,
  11437. struct ggml_tensor * dst,
  11438. const ggml_unary_op_f32_t fun) {
  11439. switch (src0->type) {
  11440. case GGML_TYPE_F32:
  11441. {
  11442. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  11443. } break;
  11444. default:
  11445. {
  11446. GGML_ASSERT(false);
  11447. } break;
  11448. }
  11449. }
  11450. // ggml_compute_forward_map_binary
  11451. static void ggml_compute_forward_map_binary_f32(
  11452. const struct ggml_compute_params * params,
  11453. const struct ggml_tensor * src0,
  11454. const struct ggml_tensor * src1,
  11455. struct ggml_tensor * dst,
  11456. const ggml_binary_op_f32_t fun) {
  11457. assert(params->ith == 0);
  11458. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11459. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11460. return;
  11461. }
  11462. const int n = ggml_nrows(src0);
  11463. const int nc = src0->ne[0];
  11464. assert( dst->nb[0] == sizeof(float));
  11465. assert(src0->nb[0] == sizeof(float));
  11466. assert(src1->nb[0] == sizeof(float));
  11467. for (int i = 0; i < n; i++) {
  11468. fun(nc,
  11469. (float *) ((char *) dst->data + i*( dst->nb[1])),
  11470. (float *) ((char *) src0->data + i*(src0->nb[1])),
  11471. (float *) ((char *) src1->data + i*(src1->nb[1])));
  11472. }
  11473. }
  11474. static void ggml_compute_forward_map_binary(
  11475. const struct ggml_compute_params * params,
  11476. const struct ggml_tensor * src0,
  11477. const struct ggml_tensor * src1,
  11478. struct ggml_tensor * dst,
  11479. const ggml_binary_op_f32_t fun) {
  11480. switch (src0->type) {
  11481. case GGML_TYPE_F32:
  11482. {
  11483. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  11484. } break;
  11485. default:
  11486. {
  11487. GGML_ASSERT(false);
  11488. } break;
  11489. }
  11490. }
  11491. // ggml_compute_forward_map_custom1
  11492. static void ggml_compute_forward_map_custom1_f32(
  11493. const struct ggml_compute_params * params,
  11494. const struct ggml_tensor * a,
  11495. struct ggml_tensor * dst,
  11496. const ggml_custom1_op_f32_t fun) {
  11497. assert(params->ith == 0);
  11498. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11499. return;
  11500. }
  11501. fun(dst, a);
  11502. }
  11503. static void ggml_compute_forward_map_custom1(
  11504. const struct ggml_compute_params * params,
  11505. const struct ggml_tensor * a,
  11506. struct ggml_tensor * dst,
  11507. const ggml_custom1_op_f32_t fun) {
  11508. switch (a->type) {
  11509. case GGML_TYPE_F32:
  11510. {
  11511. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  11512. } break;
  11513. default:
  11514. {
  11515. GGML_ASSERT(false);
  11516. } break;
  11517. }
  11518. }
  11519. // ggml_compute_forward_map_custom2
  11520. static void ggml_compute_forward_map_custom2_f32(
  11521. const struct ggml_compute_params * params,
  11522. const struct ggml_tensor * a,
  11523. const struct ggml_tensor * b,
  11524. struct ggml_tensor * dst,
  11525. const ggml_custom2_op_f32_t fun) {
  11526. assert(params->ith == 0);
  11527. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11528. return;
  11529. }
  11530. fun(dst, a, b);
  11531. }
  11532. static void ggml_compute_forward_map_custom2(
  11533. const struct ggml_compute_params * params,
  11534. const struct ggml_tensor * a,
  11535. const struct ggml_tensor * b,
  11536. struct ggml_tensor * dst,
  11537. const ggml_custom2_op_f32_t fun) {
  11538. switch (a->type) {
  11539. case GGML_TYPE_F32:
  11540. {
  11541. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  11542. } break;
  11543. default:
  11544. {
  11545. GGML_ASSERT(false);
  11546. } break;
  11547. }
  11548. }
  11549. // ggml_compute_forward_map_custom3
  11550. static void ggml_compute_forward_map_custom3_f32(
  11551. const struct ggml_compute_params * params,
  11552. const struct ggml_tensor * a,
  11553. const struct ggml_tensor * b,
  11554. const struct ggml_tensor * c,
  11555. struct ggml_tensor * dst,
  11556. const ggml_custom3_op_f32_t fun) {
  11557. assert(params->ith == 0);
  11558. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11559. return;
  11560. }
  11561. fun(dst, a, b, c);
  11562. }
  11563. static void ggml_compute_forward_map_custom3(
  11564. const struct ggml_compute_params * params,
  11565. const struct ggml_tensor * a,
  11566. const struct ggml_tensor * b,
  11567. const struct ggml_tensor * c,
  11568. struct ggml_tensor * dst,
  11569. const ggml_custom3_op_f32_t fun) {
  11570. switch (a->type) {
  11571. case GGML_TYPE_F32:
  11572. {
  11573. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  11574. } break;
  11575. default:
  11576. {
  11577. GGML_ASSERT(false);
  11578. } break;
  11579. }
  11580. }
  11581. // ggml_compute_forward_cross_entropy_loss
  11582. static void ggml_compute_forward_cross_entropy_loss_f32(
  11583. const struct ggml_compute_params * params,
  11584. const struct ggml_tensor * src0,
  11585. const struct ggml_tensor * src1,
  11586. struct ggml_tensor * dst) {
  11587. GGML_ASSERT(ggml_is_contiguous(src0));
  11588. GGML_ASSERT(ggml_is_contiguous(src1));
  11589. GGML_ASSERT(ggml_is_scalar(dst));
  11590. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  11591. const int ith = params->ith;
  11592. const int nth = params->nth;
  11593. float * sums = (float *) params->wdata;
  11594. // TODO: handle transposed/permuted matrices
  11595. const int nc = src0->ne[0];
  11596. const int nr = ggml_nrows(src0);
  11597. if (params->type == GGML_TASK_INIT) {
  11598. if (ith == 0) {
  11599. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  11600. }
  11601. return;
  11602. }
  11603. if (params->type == GGML_TASK_FINALIZE) {
  11604. if (ith == 0) {
  11605. float * dp = (float *) dst->data;
  11606. ggml_vec_sum_f32(nth, dp, sums);
  11607. dp[0] *= -1.0f;
  11608. }
  11609. return;
  11610. }
  11611. const double eps = 1e-9;
  11612. // rows per thread
  11613. const int dr = (nr + nth - 1)/nth;
  11614. // row range for this thread
  11615. const int ir0 = dr*ith;
  11616. const int ir1 = MIN(ir0 + dr, nr);
  11617. for (int i1 = ir0; i1 < ir1; i1++) {
  11618. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11619. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11620. float * st = (float *) params->wdata + nth + ith*nc;
  11621. #ifndef NDEBUG
  11622. for (int i = 0; i < nc; ++i) {
  11623. //printf("p[%d] = %f\n", i, p[i]);
  11624. assert(!isnan(s0[i]));
  11625. assert(!isnan(s1[i]));
  11626. }
  11627. #endif
  11628. // soft_max
  11629. ggml_float sum = 0.0;
  11630. {
  11631. float max = -INFINITY;
  11632. ggml_vec_max_f32(nc, &max, s0);
  11633. uint16_t scvt;
  11634. for (int i = 0; i < nc; i++) {
  11635. if (s0[i] == -INFINITY) {
  11636. st[i] = 0.0f;
  11637. } else {
  11638. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11639. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11640. memcpy(&scvt, &s, sizeof(scvt));
  11641. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11642. sum += (ggml_float)val;
  11643. st[i] = val;
  11644. }
  11645. }
  11646. assert(sum > 0.0);
  11647. // sum = 1.0/sum;
  11648. }
  11649. // avoid log(0) by rescaling from [0..1] to [eps..1]
  11650. sum = (1.0 - eps) / sum;
  11651. ggml_vec_scale_f32(nc, st, sum);
  11652. ggml_vec_add1_f32(nc, st, st, eps);
  11653. ggml_vec_log_f32(nc, st, st);
  11654. ggml_vec_mul_f32(nc, st, st, s1);
  11655. ggml_vec_sum_f32(nc, sums + ith, st);
  11656. #ifndef NDEBUG
  11657. for (int i = 0; i < nc; ++i) {
  11658. assert(!isnan(st[i]));
  11659. assert(!isinf(st[i]));
  11660. }
  11661. #endif
  11662. }
  11663. }
  11664. static void ggml_compute_forward_cross_entropy_loss(
  11665. const struct ggml_compute_params * params,
  11666. const struct ggml_tensor * src0,
  11667. const struct ggml_tensor * src1,
  11668. struct ggml_tensor * dst) {
  11669. switch (src0->type) {
  11670. case GGML_TYPE_F32:
  11671. {
  11672. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  11673. } break;
  11674. default:
  11675. {
  11676. GGML_ASSERT(false);
  11677. } break;
  11678. }
  11679. }
  11680. // ggml_compute_forward_cross_entropy_loss_back
  11681. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  11682. const struct ggml_compute_params * params,
  11683. const struct ggml_tensor * src0,
  11684. const struct ggml_tensor * src1,
  11685. const struct ggml_tensor * opt0,
  11686. struct ggml_tensor * dst) {
  11687. GGML_ASSERT(ggml_is_contiguous(dst));
  11688. GGML_ASSERT(ggml_is_contiguous(src0));
  11689. GGML_ASSERT(ggml_is_contiguous(src1));
  11690. GGML_ASSERT(ggml_is_contiguous(opt0));
  11691. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  11692. const int64_t ith = params->ith;
  11693. const int64_t nth = params->nth;
  11694. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11695. return;
  11696. }
  11697. const float eps = 1e-9f;
  11698. // TODO: handle transposed/permuted matrices
  11699. const int64_t nc = src0->ne[0];
  11700. const int64_t nr = ggml_nrows(src0);
  11701. // rows per thread
  11702. const int64_t dr = (nr + nth - 1)/nth;
  11703. // row range for this thread
  11704. const int64_t ir0 = dr*ith;
  11705. const int64_t ir1 = MIN(ir0 + dr, nr);
  11706. float * d = (float *) opt0->data;
  11707. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  11708. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  11709. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  11710. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  11711. float * sm = (float *) params->wdata + ith*nc;
  11712. #ifndef NDEBUG
  11713. for (int i = 0; i < nc; ++i) {
  11714. //printf("p[%d] = %f\n", i, p[i]);
  11715. assert(!isnan(s0[i]));
  11716. assert(!isnan(s1[i]));
  11717. }
  11718. #endif
  11719. // step by step explanation:
  11720. {
  11721. //float * sums = (float *) params->wdata;
  11722. // forward pass with annotated gradients from backward pass
  11723. // (built by going in reverse operation order, adding to gradients of current operation args)
  11724. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  11725. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11726. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  11727. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  11728. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  11729. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  11730. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  11731. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  11732. // substitute into grad[st1], because we can reuse softmax_back from this point on
  11733. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  11734. // postorder:
  11735. // grad[st1] := softmax(s0)
  11736. // grad[st1] := grad[st1]*(1.0 - eps)
  11737. // grad[st1] := grad[st1] + eps
  11738. // grad[st1] := s1 / grad[st1]
  11739. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  11740. // src0 gradients by going through softmax_back
  11741. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  11742. // from softmax_back:
  11743. // dxk = yk * (dyk - dot(y, dy))
  11744. // dot_y_dy := dot(y, dy)
  11745. // dx := dy
  11746. // dx := dx - dot_y_dy
  11747. // dx := dx * y
  11748. // postorder:
  11749. // dot_st1_dst1 := dot(st1, grad[st1])
  11750. // grad[s0] := grad[st1]
  11751. // grad[s0] := grad[s0] - dot_st1_dst1
  11752. // grad[s0] := grad[s0] * st1
  11753. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  11754. // sm := softmax(s0)
  11755. // grad[s0] := sm*(1.0 - eps)
  11756. // grad[s0] := grad[s0] + eps
  11757. // grad[s0] := s1 / grad[s0]
  11758. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  11759. // dot_st1_dst1 := dot(sm, grad[s0])
  11760. // grad[s0] := grad[s0] - dot_st1_dst1
  11761. // grad[s0] := grad[s0] * sm
  11762. }
  11763. // soft_max
  11764. ggml_float sum = 0.0;
  11765. {
  11766. float max = -INFINITY;
  11767. ggml_vec_max_f32(nc, &max, s0);
  11768. uint16_t scvt;
  11769. for (int i = 0; i < nc; i++) {
  11770. if (s0[i] == -INFINITY) {
  11771. sm[i] = 0.0f;
  11772. } else {
  11773. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  11774. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  11775. memcpy(&scvt, &s, sizeof(scvt));
  11776. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  11777. sum += (ggml_float)val;
  11778. sm[i] = val;
  11779. }
  11780. }
  11781. assert(sum > 0.0);
  11782. sum = 1.0/sum;
  11783. }
  11784. float dot_st1_dst1 = 0;
  11785. ggml_vec_scale_f32(nc, sm, sum);
  11786. ggml_vec_cpy_f32 (nc, ds0, sm);
  11787. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  11788. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  11789. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  11790. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  11791. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  11792. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  11793. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  11794. #ifndef NDEBUG
  11795. for (int i = 0; i < nc; ++i) {
  11796. assert(!isnan(sm[i]));
  11797. assert(!isinf(sm[i]));
  11798. assert(!isnan(ds0[i]));
  11799. assert(!isinf(ds0[i]));
  11800. }
  11801. #endif
  11802. }
  11803. }
  11804. static void ggml_compute_forward_cross_entropy_loss_back(
  11805. const struct ggml_compute_params * params,
  11806. const struct ggml_tensor * src0,
  11807. const struct ggml_tensor * src1,
  11808. const struct ggml_tensor * opt0,
  11809. struct ggml_tensor * dst) {
  11810. switch (src0->type) {
  11811. case GGML_TYPE_F32:
  11812. {
  11813. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  11814. } break;
  11815. default:
  11816. {
  11817. GGML_ASSERT(false);
  11818. } break;
  11819. }
  11820. }
  11821. /////////////////////////////////
  11822. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  11823. GGML_ASSERT(params);
  11824. #ifdef GGML_USE_CUBLAS
  11825. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  11826. if (skip_cpu) {
  11827. return;
  11828. }
  11829. GGML_ASSERT(tensor->src[0] == NULL || tensor->src[0]->backend == GGML_BACKEND_CPU);
  11830. GGML_ASSERT(tensor->src[1] == NULL || tensor->src[1]->backend == GGML_BACKEND_CPU);
  11831. #endif // GGML_USE_CUBLAS
  11832. switch (tensor->op) {
  11833. case GGML_OP_DUP:
  11834. {
  11835. ggml_compute_forward_dup(params, tensor->src[0], tensor);
  11836. } break;
  11837. case GGML_OP_ADD:
  11838. {
  11839. ggml_compute_forward_add(params, tensor->src[0], tensor->src[1], tensor);
  11840. } break;
  11841. case GGML_OP_ADD1:
  11842. {
  11843. ggml_compute_forward_add1(params, tensor->src[0], tensor->src[1], tensor);
  11844. } break;
  11845. case GGML_OP_ACC:
  11846. {
  11847. ggml_compute_forward_acc(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11848. } break;
  11849. case GGML_OP_SUB:
  11850. {
  11851. ggml_compute_forward_sub(params, tensor->src[0], tensor->src[1], tensor);
  11852. } break;
  11853. case GGML_OP_MUL:
  11854. {
  11855. ggml_compute_forward_mul(params, tensor->src[0], tensor->src[1], tensor);
  11856. } break;
  11857. case GGML_OP_DIV:
  11858. {
  11859. ggml_compute_forward_div(params, tensor->src[0], tensor->src[1], tensor);
  11860. } break;
  11861. case GGML_OP_SQR:
  11862. {
  11863. ggml_compute_forward_sqr(params, tensor->src[0], tensor);
  11864. } break;
  11865. case GGML_OP_SQRT:
  11866. {
  11867. ggml_compute_forward_sqrt(params, tensor->src[0], tensor);
  11868. } break;
  11869. case GGML_OP_LOG:
  11870. {
  11871. ggml_compute_forward_log(params, tensor->src[0], tensor);
  11872. } break;
  11873. case GGML_OP_SUM:
  11874. {
  11875. ggml_compute_forward_sum(params, tensor->src[0], tensor);
  11876. } break;
  11877. case GGML_OP_SUM_ROWS:
  11878. {
  11879. ggml_compute_forward_sum_rows(params, tensor->src[0], tensor);
  11880. } break;
  11881. case GGML_OP_MEAN:
  11882. {
  11883. ggml_compute_forward_mean(params, tensor->src[0], tensor);
  11884. } break;
  11885. case GGML_OP_ARGMAX:
  11886. {
  11887. ggml_compute_forward_argmax(params, tensor->src[0], tensor);
  11888. } break;
  11889. case GGML_OP_REPEAT:
  11890. {
  11891. ggml_compute_forward_repeat(params, tensor->src[0], tensor);
  11892. } break;
  11893. case GGML_OP_REPEAT_BACK:
  11894. {
  11895. ggml_compute_forward_repeat_back(params, tensor->src[0], tensor);
  11896. } break;
  11897. case GGML_OP_ABS:
  11898. {
  11899. ggml_compute_forward_abs(params, tensor->src[0], tensor);
  11900. } break;
  11901. case GGML_OP_SGN:
  11902. {
  11903. ggml_compute_forward_sgn(params, tensor->src[0], tensor);
  11904. } break;
  11905. case GGML_OP_NEG:
  11906. {
  11907. ggml_compute_forward_neg(params, tensor->src[0], tensor);
  11908. } break;
  11909. case GGML_OP_STEP:
  11910. {
  11911. ggml_compute_forward_step(params, tensor->src[0], tensor);
  11912. } break;
  11913. case GGML_OP_TANH:
  11914. {
  11915. ggml_compute_forward_tanh(params, tensor->src[0], tensor);
  11916. } break;
  11917. case GGML_OP_ELU:
  11918. {
  11919. ggml_compute_forward_elu(params, tensor->src[0], tensor);
  11920. } break;
  11921. case GGML_OP_RELU:
  11922. {
  11923. ggml_compute_forward_relu(params, tensor->src[0], tensor);
  11924. } break;
  11925. case GGML_OP_GELU:
  11926. {
  11927. ggml_compute_forward_gelu(params, tensor->src[0], tensor);
  11928. } break;
  11929. case GGML_OP_GELU_QUICK:
  11930. {
  11931. ggml_compute_forward_gelu_quick(params, tensor->src[0], tensor);
  11932. } break;
  11933. case GGML_OP_SILU:
  11934. {
  11935. ggml_compute_forward_silu(params, tensor->src[0], tensor);
  11936. } break;
  11937. case GGML_OP_SILU_BACK:
  11938. {
  11939. ggml_compute_forward_silu_back(params, tensor->src[0], tensor->src[1], tensor);
  11940. } break;
  11941. case GGML_OP_NORM:
  11942. {
  11943. ggml_compute_forward_norm(params, tensor->src[0], tensor);
  11944. } break;
  11945. case GGML_OP_RMS_NORM:
  11946. {
  11947. ggml_compute_forward_rms_norm(params, tensor->src[0], tensor);
  11948. } break;
  11949. case GGML_OP_RMS_NORM_BACK:
  11950. {
  11951. ggml_compute_forward_rms_norm_back(params, tensor->src[0], tensor->src[1], tensor);
  11952. } break;
  11953. case GGML_OP_MUL_MAT:
  11954. {
  11955. ggml_compute_forward_mul_mat(params, tensor->src[0], tensor->src[1], tensor);
  11956. } break;
  11957. case GGML_OP_OUT_PROD:
  11958. {
  11959. ggml_compute_forward_out_prod(params, tensor->src[0], tensor->src[1], tensor);
  11960. } break;
  11961. case GGML_OP_SCALE:
  11962. {
  11963. ggml_compute_forward_scale(params, tensor->src[0], tensor->src[1], tensor);
  11964. } break;
  11965. case GGML_OP_SET:
  11966. {
  11967. ggml_compute_forward_set(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  11968. } break;
  11969. case GGML_OP_CPY:
  11970. {
  11971. ggml_compute_forward_cpy(params, tensor->src[0], tensor);
  11972. } break;
  11973. case GGML_OP_CONT:
  11974. {
  11975. ggml_compute_forward_cont(params, tensor->src[0], tensor);
  11976. } break;
  11977. case GGML_OP_RESHAPE:
  11978. {
  11979. ggml_compute_forward_reshape(params, tensor->src[0], tensor);
  11980. } break;
  11981. case GGML_OP_VIEW:
  11982. {
  11983. ggml_compute_forward_view(params, tensor->src[0]);
  11984. } break;
  11985. case GGML_OP_PERMUTE:
  11986. {
  11987. ggml_compute_forward_permute(params, tensor->src[0]);
  11988. } break;
  11989. case GGML_OP_TRANSPOSE:
  11990. {
  11991. ggml_compute_forward_transpose(params, tensor->src[0]);
  11992. } break;
  11993. case GGML_OP_GET_ROWS:
  11994. {
  11995. ggml_compute_forward_get_rows(params, tensor->src[0], tensor->src[1], tensor);
  11996. } break;
  11997. case GGML_OP_GET_ROWS_BACK:
  11998. {
  11999. ggml_compute_forward_get_rows_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12000. } break;
  12001. case GGML_OP_DIAG:
  12002. {
  12003. ggml_compute_forward_diag(params, tensor->src[0], tensor);
  12004. } break;
  12005. case GGML_OP_DIAG_MASK_INF:
  12006. {
  12007. ggml_compute_forward_diag_mask_inf(params, tensor->src[0], tensor->src[1], tensor);
  12008. } break;
  12009. case GGML_OP_DIAG_MASK_ZERO:
  12010. {
  12011. ggml_compute_forward_diag_mask_zero(params, tensor->src[0], tensor->src[1], tensor);
  12012. } break;
  12013. case GGML_OP_SOFT_MAX:
  12014. {
  12015. ggml_compute_forward_soft_max(params, tensor->src[0], tensor);
  12016. } break;
  12017. case GGML_OP_SOFT_MAX_BACK:
  12018. {
  12019. ggml_compute_forward_soft_max_back(params, tensor->src[0], tensor->src[1], tensor);
  12020. } break;
  12021. case GGML_OP_ROPE:
  12022. {
  12023. ggml_compute_forward_rope(params, tensor->src[0], tensor->src[1], tensor);
  12024. } break;
  12025. case GGML_OP_ROPE_BACK:
  12026. {
  12027. ggml_compute_forward_rope_back(params, tensor->src[0], tensor->src[1], tensor);
  12028. } break;
  12029. case GGML_OP_ALIBI:
  12030. {
  12031. ggml_compute_forward_alibi(params, tensor->src[0], tensor->src[1], tensor);
  12032. } break;
  12033. case GGML_OP_CLAMP:
  12034. {
  12035. ggml_compute_forward_clamp(params, tensor->src[0], tensor->src[1], tensor);
  12036. } break;
  12037. case GGML_OP_CONV_1D:
  12038. {
  12039. ggml_compute_forward_conv_1d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12040. } break;
  12041. case GGML_OP_CONV_2D:
  12042. {
  12043. ggml_compute_forward_conv_2d(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12044. } break;
  12045. case GGML_OP_FLASH_ATTN:
  12046. {
  12047. const int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12048. GGML_ASSERT(t == 0 || t == 1);
  12049. const bool masked = t != 0;
  12050. ggml_compute_forward_flash_attn(params, tensor->src[0], tensor->src[1], tensor->src[2], masked, tensor);
  12051. } break;
  12052. case GGML_OP_FLASH_FF:
  12053. {
  12054. ggml_compute_forward_flash_ff(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor->src[4], tensor);
  12055. } break;
  12056. case GGML_OP_FLASH_ATTN_BACK:
  12057. {
  12058. int32_t t = ggml_get_i32_1d(tensor->src[4], 0);
  12059. GGML_ASSERT(t == 0 || t == 1);
  12060. bool masked = t != 0;
  12061. ggml_compute_forward_flash_attn_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], masked, tensor);
  12062. } break;
  12063. case GGML_OP_WIN_PART:
  12064. {
  12065. ggml_compute_forward_win_part(params, tensor->src[0], tensor->src[2], tensor);
  12066. } break;
  12067. case GGML_OP_WIN_UNPART:
  12068. {
  12069. ggml_compute_forward_win_unpart(params, tensor->src[0], tensor->src[2], tensor);
  12070. } break;
  12071. case GGML_OP_MAP_UNARY:
  12072. {
  12073. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->src[2]->data);
  12074. ggml_compute_forward_map_unary(params, tensor->src[0], tensor, fun);
  12075. }
  12076. break;
  12077. case GGML_OP_MAP_BINARY:
  12078. {
  12079. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->src[2]->data);
  12080. ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
  12081. }
  12082. break;
  12083. case GGML_OP_MAP_CUSTOM1:
  12084. {
  12085. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->src[2]->data);
  12086. ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
  12087. }
  12088. break;
  12089. case GGML_OP_MAP_CUSTOM2:
  12090. {
  12091. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->src[2]->data);
  12092. ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
  12093. }
  12094. break;
  12095. case GGML_OP_MAP_CUSTOM3:
  12096. {
  12097. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->src[2]->data);
  12098. ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[3], tensor, fun);
  12099. }
  12100. break;
  12101. case GGML_OP_CROSS_ENTROPY_LOSS:
  12102. {
  12103. ggml_compute_forward_cross_entropy_loss(params, tensor->src[0], tensor->src[1], tensor);
  12104. }
  12105. break;
  12106. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12107. {
  12108. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
  12109. }
  12110. break;
  12111. case GGML_OP_NONE:
  12112. {
  12113. // nop
  12114. } break;
  12115. case GGML_OP_COUNT:
  12116. {
  12117. GGML_ASSERT(false);
  12118. } break;
  12119. }
  12120. }
  12121. ////////////////////////////////////////////////////////////////////////////////
  12122. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12123. struct ggml_tensor * src0 = tensor->src[0];
  12124. struct ggml_tensor * src1 = tensor->src[1];
  12125. switch (tensor->op) {
  12126. case GGML_OP_DUP:
  12127. {
  12128. if (src0->grad) {
  12129. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12130. }
  12131. } break;
  12132. case GGML_OP_ADD:
  12133. {
  12134. if (src0->grad) {
  12135. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12136. }
  12137. if (src1->grad) {
  12138. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12139. }
  12140. } break;
  12141. case GGML_OP_ADD1:
  12142. {
  12143. if (src0->grad) {
  12144. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12145. }
  12146. if (src1->grad) {
  12147. src1->grad = ggml_add_impl(ctx,
  12148. src1->grad,
  12149. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12150. inplace);
  12151. }
  12152. } break;
  12153. case GGML_OP_ACC:
  12154. {
  12155. if (src0->grad) {
  12156. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12157. }
  12158. if (src1->grad) {
  12159. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12160. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12161. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12162. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12163. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12164. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12165. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12166. tensor->grad,
  12167. src1->grad->ne[0],
  12168. src1->grad->ne[1],
  12169. src1->grad->ne[2],
  12170. src1->grad->ne[3],
  12171. nb1, nb2, nb3, offset);
  12172. src1->grad =
  12173. ggml_add_impl(ctx,
  12174. src1->grad,
  12175. ggml_reshape(ctx,
  12176. ggml_cont(ctx, tensor_grad_view),
  12177. src1->grad),
  12178. inplace);
  12179. }
  12180. } break;
  12181. case GGML_OP_SUB:
  12182. {
  12183. if (src0->grad) {
  12184. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12185. }
  12186. if (src1->grad) {
  12187. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12188. }
  12189. } break;
  12190. case GGML_OP_MUL:
  12191. {
  12192. if (src0->grad) {
  12193. src0->grad =
  12194. ggml_add_impl(ctx,
  12195. src0->grad,
  12196. ggml_mul(ctx, src1, tensor->grad),
  12197. inplace);
  12198. }
  12199. if (src1->grad) {
  12200. src1->grad =
  12201. ggml_add_impl(ctx,
  12202. src1->grad,
  12203. ggml_mul(ctx, src0, tensor->grad),
  12204. inplace);
  12205. }
  12206. } break;
  12207. case GGML_OP_DIV:
  12208. {
  12209. if (src0->grad) {
  12210. src0->grad =
  12211. ggml_add_impl(ctx,
  12212. src0->grad,
  12213. ggml_div(ctx, tensor->grad, src1),
  12214. inplace);
  12215. }
  12216. if (src1->grad) {
  12217. src1->grad =
  12218. ggml_sub_impl(ctx,
  12219. src1->grad,
  12220. ggml_mul(ctx,
  12221. tensor->grad,
  12222. ggml_div(ctx, tensor, src1)),
  12223. inplace);
  12224. }
  12225. } break;
  12226. case GGML_OP_SQR:
  12227. {
  12228. if (src0->grad) {
  12229. src0->grad =
  12230. ggml_add_impl(ctx,
  12231. src0->grad,
  12232. ggml_scale(ctx,
  12233. ggml_mul(ctx, src0, tensor->grad),
  12234. ggml_new_f32(ctx, 2.0f)),
  12235. inplace);
  12236. }
  12237. } break;
  12238. case GGML_OP_SQRT:
  12239. {
  12240. if (src0->grad) {
  12241. src0->grad =
  12242. ggml_add_impl(ctx,
  12243. src0->grad,
  12244. ggml_scale(ctx,
  12245. ggml_div(ctx,
  12246. tensor->grad,
  12247. tensor),
  12248. ggml_new_f32(ctx, 0.5f)),
  12249. inplace);
  12250. }
  12251. } break;
  12252. case GGML_OP_LOG:
  12253. {
  12254. if (src0->grad) {
  12255. src0->grad =
  12256. ggml_add_impl(ctx,
  12257. src0->grad,
  12258. ggml_div(ctx,
  12259. tensor->grad,
  12260. src0),
  12261. inplace);
  12262. }
  12263. } break;
  12264. case GGML_OP_SUM:
  12265. {
  12266. if (src0->grad) {
  12267. src0->grad =
  12268. ggml_add1_impl(ctx,
  12269. src0->grad,
  12270. tensor->grad,
  12271. inplace);
  12272. }
  12273. } break;
  12274. case GGML_OP_SUM_ROWS:
  12275. {
  12276. if (src0->grad) {
  12277. src0->grad =
  12278. ggml_add_impl(ctx,
  12279. src0->grad,
  12280. ggml_repeat(ctx,
  12281. tensor->grad,
  12282. src0->grad),
  12283. inplace);
  12284. }
  12285. } break;
  12286. case GGML_OP_MEAN:
  12287. case GGML_OP_ARGMAX:
  12288. {
  12289. GGML_ASSERT(false); // TODO: implement
  12290. } break;
  12291. case GGML_OP_REPEAT:
  12292. {
  12293. // necessary for llama
  12294. if (src0->grad) {
  12295. src0->grad = ggml_add_impl(ctx,
  12296. src0->grad,
  12297. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12298. inplace);
  12299. }
  12300. } break;
  12301. case GGML_OP_REPEAT_BACK:
  12302. {
  12303. if (src0->grad) {
  12304. // TODO: test this
  12305. src0->grad = ggml_add_impl(ctx,
  12306. src0->grad,
  12307. ggml_repeat(ctx, tensor->grad, src0->grad),
  12308. inplace);
  12309. }
  12310. } break;
  12311. case GGML_OP_ABS:
  12312. {
  12313. if (src0->grad) {
  12314. src0->grad =
  12315. ggml_add_impl(ctx,
  12316. src0->grad,
  12317. ggml_mul(ctx,
  12318. ggml_sgn(ctx, src0),
  12319. tensor->grad),
  12320. inplace);
  12321. }
  12322. } break;
  12323. case GGML_OP_SGN:
  12324. {
  12325. if (src0->grad) {
  12326. // noop
  12327. }
  12328. } break;
  12329. case GGML_OP_NEG:
  12330. {
  12331. if (src0->grad) {
  12332. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  12333. }
  12334. } break;
  12335. case GGML_OP_STEP:
  12336. {
  12337. if (src0->grad) {
  12338. // noop
  12339. }
  12340. } break;
  12341. case GGML_OP_TANH:
  12342. {
  12343. GGML_ASSERT(false); // TODO: not implemented
  12344. } break;
  12345. case GGML_OP_ELU:
  12346. {
  12347. GGML_ASSERT(false); // TODO: not implemented
  12348. } break;
  12349. case GGML_OP_RELU:
  12350. {
  12351. if (src0->grad) {
  12352. src0->grad = ggml_sub_impl(ctx,
  12353. src0->grad,
  12354. ggml_mul(ctx,
  12355. ggml_step(ctx, src0),
  12356. tensor->grad),
  12357. inplace);
  12358. }
  12359. } break;
  12360. case GGML_OP_GELU:
  12361. {
  12362. GGML_ASSERT(false); // TODO: not implemented
  12363. } break;
  12364. case GGML_OP_GELU_QUICK:
  12365. {
  12366. GGML_ASSERT(false); // TODO: not implemented
  12367. } break;
  12368. case GGML_OP_SILU:
  12369. {
  12370. // necessary for llama
  12371. if (src0->grad) {
  12372. src0->grad = ggml_add_impl(ctx,
  12373. src0->grad,
  12374. ggml_silu_back(ctx, src0, tensor->grad),
  12375. inplace);
  12376. }
  12377. } break;
  12378. case GGML_OP_SILU_BACK:
  12379. {
  12380. GGML_ASSERT(false); // TODO: not implemented
  12381. } break;
  12382. case GGML_OP_NORM:
  12383. {
  12384. GGML_ASSERT(false); // TODO: not implemented
  12385. } break;
  12386. case GGML_OP_RMS_NORM:
  12387. {
  12388. // necessary for llama
  12389. if (src0->grad) {
  12390. src0->grad = ggml_add_impl(ctx,
  12391. src0->grad,
  12392. ggml_rms_norm_back(ctx, src0, tensor->grad),
  12393. inplace);
  12394. }
  12395. } break;
  12396. case GGML_OP_RMS_NORM_BACK:
  12397. {
  12398. GGML_ASSERT(false); // TODO: not implemented
  12399. } break;
  12400. case GGML_OP_MUL_MAT:
  12401. {
  12402. // https://cs231n.github.io/optimization-2/#staged
  12403. // # forward pass
  12404. // s0 = np.random.randn(5, 10)
  12405. // s1 = np.random.randn(10, 3)
  12406. // t = s0.dot(s1)
  12407. // # now suppose we had the gradient on t from above in the circuit
  12408. // dt = np.random.randn(*t.shape) # same shape as t
  12409. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  12410. // ds1 = t.T.dot(dt)
  12411. // tensor.shape [m,p]
  12412. // src0.shape [n,m]
  12413. // src1.shape [n,p]
  12414. // necessary for llama
  12415. if (src0->grad) {
  12416. src0->grad =
  12417. ggml_add_impl(ctx,
  12418. src0->grad,
  12419. ggml_out_prod(ctx, // [n,m]
  12420. src1, // [n,p]
  12421. tensor->grad), // [m,p]
  12422. inplace);
  12423. }
  12424. if (src1->grad) {
  12425. src1->grad =
  12426. ggml_add_impl(ctx,
  12427. src1->grad,
  12428. // ggml_mul_mat(ctx, // [n,p]
  12429. // ggml_cont(ctx, // [m,n]
  12430. // ggml_transpose(ctx, src0)), // [m,n]
  12431. // tensor->grad), // [m,p]
  12432. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  12433. // // avoid transpose of src0, rather transpose smaller tensor->grad
  12434. // // and then use ggml_out_prod
  12435. ggml_out_prod(ctx, // [n,p]
  12436. src0, // [n,m]
  12437. ggml_transpose(ctx, // [p,m]
  12438. tensor->grad)), // [m,p]
  12439. inplace);
  12440. }
  12441. } break;
  12442. case GGML_OP_OUT_PROD:
  12443. {
  12444. GGML_ASSERT(false); // TODO: not implemented
  12445. } break;
  12446. case GGML_OP_SCALE:
  12447. {
  12448. // necessary for llama
  12449. if (src0->grad) {
  12450. src0->grad =
  12451. ggml_add_impl(ctx,
  12452. src0->grad,
  12453. ggml_scale_impl(ctx, tensor->grad, src1, false),
  12454. inplace);
  12455. }
  12456. if (src1->grad) {
  12457. src1->grad =
  12458. ggml_add_impl(ctx,
  12459. src1->grad,
  12460. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  12461. inplace);
  12462. }
  12463. } break;
  12464. case GGML_OP_SET:
  12465. {
  12466. GGML_ASSERT(ggml_nelements(tensor->src[2]) == 5);
  12467. GGML_ASSERT(tensor->src[2]->type == GGML_TYPE_I32);
  12468. const size_t nb1 = (( int32_t * ) tensor->src[2]->data)[0];
  12469. const size_t nb2 = (( int32_t * ) tensor->src[2]->data)[1];
  12470. const size_t nb3 = (( int32_t * ) tensor->src[2]->data)[2];
  12471. const size_t offset = (( int32_t * ) tensor->src[2]->data)[3];
  12472. struct ggml_tensor * tensor_grad_view = NULL;
  12473. if (src0->grad || src1->grad) {
  12474. GGML_ASSERT(src0->type == tensor->type);
  12475. GGML_ASSERT(tensor->grad->type == tensor->type);
  12476. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  12477. tensor_grad_view = ggml_view_4d(ctx,
  12478. tensor->grad,
  12479. src1->grad->ne[0],
  12480. src1->grad->ne[1],
  12481. src1->grad->ne[2],
  12482. src1->grad->ne[3],
  12483. nb1, nb2, nb3, offset);
  12484. }
  12485. if (src0->grad) {
  12486. src0->grad = ggml_add_impl(ctx,
  12487. src0->grad,
  12488. ggml_acc_impl(ctx,
  12489. tensor->grad,
  12490. ggml_neg(ctx, tensor_grad_view),
  12491. nb1, nb2, nb3, offset, false),
  12492. inplace);
  12493. }
  12494. if (src1->grad) {
  12495. src1->grad =
  12496. ggml_add_impl(ctx,
  12497. src1->grad,
  12498. ggml_reshape(ctx,
  12499. ggml_cont(ctx, tensor_grad_view),
  12500. src1->grad),
  12501. inplace);
  12502. }
  12503. } break;
  12504. case GGML_OP_CPY:
  12505. {
  12506. // necessary for llama
  12507. // cpy overwrites value of src1 by src0 and returns view(src1)
  12508. // the overwriting is mathematically equivalent to:
  12509. // tensor = src0 * 1 + src1 * 0
  12510. if (src0->grad) {
  12511. // dsrc0 = dtensor * 1
  12512. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12513. }
  12514. if (src1->grad) {
  12515. // dsrc1 = dtensor * 0 -> noop
  12516. }
  12517. } break;
  12518. case GGML_OP_CONT:
  12519. {
  12520. // same as cpy
  12521. if (src0->grad) {
  12522. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  12523. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  12524. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12525. }
  12526. } break;
  12527. case GGML_OP_RESHAPE:
  12528. {
  12529. // necessary for llama
  12530. if (src0->grad) {
  12531. src0->grad =
  12532. ggml_add_impl(ctx, src0->grad,
  12533. ggml_reshape(ctx, tensor->grad, src0->grad),
  12534. inplace);
  12535. }
  12536. } break;
  12537. case GGML_OP_VIEW:
  12538. {
  12539. // necessary for llama
  12540. if (src0->grad) {
  12541. size_t offset;
  12542. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->src[2]));
  12543. memcpy(&offset, tensor->src[2]->data, sizeof(offset));
  12544. size_t nb1 = tensor->nb[1];
  12545. size_t nb2 = tensor->nb[2];
  12546. size_t nb3 = tensor->nb[3];
  12547. if (src0->type != src0->grad->type) {
  12548. // gradient is typically F32, but src0 could be other type
  12549. size_t ng = ggml_element_size(src0->grad);
  12550. size_t n0 = ggml_element_size(src0);
  12551. GGML_ASSERT(offset % n0 == 0);
  12552. GGML_ASSERT(nb1 % n0 == 0);
  12553. GGML_ASSERT(nb2 % n0 == 0);
  12554. GGML_ASSERT(nb3 % n0 == 0);
  12555. offset = (offset / n0) * ng;
  12556. nb1 = (nb1 / n0) * ng;
  12557. nb2 = (nb2 / n0) * ng;
  12558. nb3 = (nb3 / n0) * ng;
  12559. }
  12560. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  12561. }
  12562. } break;
  12563. case GGML_OP_PERMUTE:
  12564. {
  12565. // necessary for llama
  12566. if (src0->grad) {
  12567. int32_t * axes = (int32_t *) tensor->src[2]->data;
  12568. int axis0 = axes[0] & 0x3;
  12569. int axis1 = axes[1] & 0x3;
  12570. int axis2 = axes[2] & 0x3;
  12571. int axis3 = axes[3] & 0x3;
  12572. int axes_backward[4] = {0,0,0,0};
  12573. axes_backward[axis0] = 0;
  12574. axes_backward[axis1] = 1;
  12575. axes_backward[axis2] = 2;
  12576. axes_backward[axis3] = 3;
  12577. src0->grad =
  12578. ggml_add_impl(ctx, src0->grad,
  12579. ggml_permute(ctx,
  12580. tensor->grad,
  12581. axes_backward[0],
  12582. axes_backward[1],
  12583. axes_backward[2],
  12584. axes_backward[3]),
  12585. inplace);
  12586. }
  12587. } break;
  12588. case GGML_OP_TRANSPOSE:
  12589. {
  12590. // necessary for llama
  12591. if (src0->grad) {
  12592. src0->grad =
  12593. ggml_add_impl(ctx, src0->grad,
  12594. ggml_transpose(ctx, tensor->grad),
  12595. inplace);
  12596. }
  12597. } break;
  12598. case GGML_OP_GET_ROWS:
  12599. {
  12600. // necessary for llama (only for tokenizer)
  12601. if (src0->grad) {
  12602. src0->grad =
  12603. ggml_add_impl(ctx, src0->grad,
  12604. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  12605. inplace);
  12606. }
  12607. if (src1->grad) {
  12608. // noop
  12609. }
  12610. } break;
  12611. case GGML_OP_GET_ROWS_BACK:
  12612. {
  12613. GGML_ASSERT(false); // TODO: not implemented
  12614. } break;
  12615. case GGML_OP_DIAG:
  12616. {
  12617. GGML_ASSERT(false); // TODO: not implemented
  12618. } break;
  12619. case GGML_OP_DIAG_MASK_INF:
  12620. {
  12621. // necessary for llama
  12622. if (src0->grad) {
  12623. assert(src1->type == GGML_TYPE_I32);
  12624. assert(ggml_nelements(src1) == 2);
  12625. const int n_past = ((int32_t *) src1->data)[0];
  12626. src0->grad =
  12627. ggml_add_impl(ctx, src0->grad,
  12628. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12629. inplace);
  12630. }
  12631. if (src1->grad) {
  12632. // noop
  12633. }
  12634. } break;
  12635. case GGML_OP_DIAG_MASK_ZERO:
  12636. {
  12637. // necessary for llama
  12638. if (src0->grad) {
  12639. assert(src1->type == GGML_TYPE_I32);
  12640. assert(ggml_nelements(src1) == 2);
  12641. const int n_past = ((int32_t *) src1->data)[0];
  12642. src0->grad =
  12643. ggml_add_impl(ctx, src0->grad,
  12644. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  12645. inplace);
  12646. }
  12647. if (src1->grad) {
  12648. // noop
  12649. }
  12650. } break;
  12651. case GGML_OP_SOFT_MAX:
  12652. {
  12653. // necessary for llama
  12654. if (src0->grad) {
  12655. src0->grad =
  12656. ggml_add_impl(ctx, src0->grad,
  12657. ggml_soft_max_back(ctx, tensor->grad, tensor),
  12658. inplace);
  12659. }
  12660. } break;
  12661. case GGML_OP_SOFT_MAX_BACK:
  12662. {
  12663. GGML_ASSERT(false); // TODO: not implemented
  12664. } break;
  12665. case GGML_OP_ROPE:
  12666. {
  12667. // necessary for llama
  12668. if (src0->grad) {
  12669. assert(src1->type == GGML_TYPE_I32);
  12670. assert(ggml_nelements(src1) == 4);
  12671. const int n_past = ((int32_t *) src1->data)[0];
  12672. const int n_dims = ((int32_t *) src1->data)[1];
  12673. const int mode = ((int32_t *) src1->data)[2];
  12674. src0->grad = ggml_add_impl(ctx,
  12675. src0->grad,
  12676. ggml_rope_back(ctx,
  12677. tensor->grad,
  12678. n_past,
  12679. n_dims,
  12680. mode),
  12681. inplace);
  12682. }
  12683. if (src1->grad) {
  12684. // noop
  12685. }
  12686. } break;
  12687. case GGML_OP_ROPE_BACK:
  12688. {
  12689. if (src0->grad) {
  12690. assert(src1->type == GGML_TYPE_I32);
  12691. assert(ggml_nelements(src1) == 4);
  12692. const int n_past = ((int32_t *) src1->data)[0];
  12693. const int n_dims = ((int32_t *) src1->data)[1];
  12694. const int mode = ((int32_t *) src1->data)[2];
  12695. const int n_ctx = ((int32_t *) src1->data)[3];
  12696. src0->grad = ggml_add_impl(ctx,
  12697. src0->grad,
  12698. ggml_rope(ctx,
  12699. tensor->grad,
  12700. n_past,
  12701. n_dims,
  12702. mode,
  12703. n_ctx),
  12704. inplace);
  12705. }
  12706. if (src1->grad) {
  12707. // noop
  12708. }
  12709. } break;
  12710. case GGML_OP_ALIBI:
  12711. {
  12712. GGML_ASSERT(false); // TODO: not implemented
  12713. } break;
  12714. case GGML_OP_CLAMP:
  12715. {
  12716. GGML_ASSERT(false); // TODO: not implemented
  12717. } break;
  12718. case GGML_OP_CONV_1D:
  12719. {
  12720. GGML_ASSERT(false); // TODO: not implemented
  12721. } break;
  12722. case GGML_OP_CONV_2D:
  12723. {
  12724. GGML_ASSERT(false); // TODO: not implemented
  12725. } break;
  12726. case GGML_OP_FLASH_ATTN:
  12727. {
  12728. struct ggml_tensor * flash_grad = NULL;
  12729. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  12730. int32_t t = ggml_get_i32_1d(tensor->src[3], 0);
  12731. GGML_ASSERT(t == 0 || t == 1);
  12732. bool masked = t != 0;
  12733. flash_grad =
  12734. ggml_flash_attn_back(ctx,
  12735. src0,
  12736. src1,
  12737. tensor->src[2],
  12738. tensor->grad,
  12739. masked);
  12740. }
  12741. if (src0->grad) {
  12742. struct ggml_tensor * grad_q = NULL;
  12743. const size_t nb0 = flash_grad->nb[0];
  12744. const size_t offset = 0;
  12745. switch(src0->n_dims) {
  12746. case 2:
  12747. {
  12748. grad_q = ggml_view_2d(ctx,
  12749. flash_grad,
  12750. src0->ne[0],
  12751. src0->ne[1],
  12752. nb0*src0->ne[0],
  12753. offset);
  12754. } break;
  12755. case 3:
  12756. {
  12757. grad_q = ggml_view_3d(ctx,
  12758. flash_grad,
  12759. src0->ne[0],
  12760. src0->ne[1],
  12761. src0->ne[2],
  12762. nb0*src0->ne[0],
  12763. nb0*src0->ne[0]*src0->ne[1],
  12764. offset);
  12765. } break;
  12766. case 4:
  12767. {
  12768. grad_q = ggml_view_4d(ctx,
  12769. flash_grad,
  12770. src0->ne[0],
  12771. src0->ne[1],
  12772. src0->ne[2],
  12773. src0->ne[3],
  12774. nb0*src0->ne[0],
  12775. nb0*src0->ne[0]*src0->ne[1],
  12776. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  12777. offset);
  12778. } break;
  12779. }
  12780. src0->grad = ggml_add_impl(ctx,
  12781. src0->grad,
  12782. grad_q,
  12783. inplace);
  12784. }
  12785. if (src1->grad) {
  12786. struct ggml_tensor * grad_k = NULL;
  12787. const size_t nb0 = flash_grad->nb[0];
  12788. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  12789. switch(src1->n_dims) {
  12790. case 2:
  12791. {
  12792. grad_k = ggml_view_2d(ctx,
  12793. flash_grad,
  12794. src1->ne[0],
  12795. src1->ne[1],
  12796. nb0*src1->ne[0],
  12797. offset);
  12798. } break;
  12799. case 3:
  12800. {
  12801. grad_k = ggml_view_3d(ctx,
  12802. flash_grad,
  12803. src1->ne[0],
  12804. src1->ne[1],
  12805. src1->ne[2],
  12806. nb0*src1->ne[0],
  12807. nb0*src1->ne[0]*src1->ne[1],
  12808. offset);
  12809. } break;
  12810. case 4:
  12811. {
  12812. grad_k = ggml_view_4d(ctx,
  12813. flash_grad,
  12814. src1->ne[0],
  12815. src1->ne[1],
  12816. src1->ne[2],
  12817. src1->ne[3],
  12818. nb0*src1->ne[0],
  12819. nb0*src1->ne[0]*src1->ne[1],
  12820. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  12821. offset);
  12822. } break;
  12823. }
  12824. src1->grad = ggml_add_impl(ctx,
  12825. src1->grad,
  12826. grad_k,
  12827. inplace);
  12828. }
  12829. struct ggml_tensor * opt0 = tensor->src[2];
  12830. if (opt0->grad) {
  12831. struct ggml_tensor * grad_v = NULL;
  12832. const size_t nb0 = flash_grad->nb[0];
  12833. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  12834. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  12835. switch(opt0->n_dims) {
  12836. case 2:
  12837. {
  12838. grad_v = ggml_view_2d(ctx,
  12839. flash_grad,
  12840. opt0->ne[0],
  12841. opt0->ne[1],
  12842. nb0*opt0->ne[0],
  12843. offset);
  12844. } break;
  12845. case 3:
  12846. {
  12847. grad_v = ggml_view_3d(ctx,
  12848. flash_grad,
  12849. opt0->ne[0],
  12850. opt0->ne[1],
  12851. opt0->ne[2],
  12852. nb0*opt0->ne[0],
  12853. nb0*opt0->ne[0]*opt0->ne[1],
  12854. offset);
  12855. } break;
  12856. case 4:
  12857. {
  12858. grad_v = ggml_view_4d(ctx,
  12859. flash_grad,
  12860. opt0->ne[0],
  12861. opt0->ne[1],
  12862. opt0->ne[2],
  12863. opt0->ne[3],
  12864. nb0*opt0->ne[0],
  12865. nb0*opt0->ne[0]*opt0->ne[1],
  12866. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  12867. offset);
  12868. } break;
  12869. }
  12870. opt0->grad = ggml_add_impl(ctx,
  12871. opt0->grad,
  12872. grad_v,
  12873. inplace);
  12874. }
  12875. } break;
  12876. case GGML_OP_FLASH_FF:
  12877. {
  12878. GGML_ASSERT(false); // not supported
  12879. } break;
  12880. case GGML_OP_FLASH_ATTN_BACK:
  12881. {
  12882. GGML_ASSERT(false); // not supported
  12883. } break;
  12884. case GGML_OP_WIN_PART:
  12885. case GGML_OP_WIN_UNPART:
  12886. case GGML_OP_MAP_UNARY:
  12887. case GGML_OP_MAP_BINARY:
  12888. case GGML_OP_MAP_CUSTOM1:
  12889. case GGML_OP_MAP_CUSTOM2:
  12890. case GGML_OP_MAP_CUSTOM3:
  12891. {
  12892. GGML_ASSERT(false); // not supported
  12893. } break;
  12894. case GGML_OP_CROSS_ENTROPY_LOSS:
  12895. {
  12896. if (src0->grad) {
  12897. src0->grad = ggml_add_impl(ctx,
  12898. src0->grad,
  12899. ggml_cross_entropy_loss_back(ctx,
  12900. src0,
  12901. src1,
  12902. tensor->grad),
  12903. inplace);
  12904. }
  12905. } break;
  12906. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12907. {
  12908. GGML_ASSERT(false); // not supported
  12909. } break;
  12910. case GGML_OP_NONE:
  12911. {
  12912. // nop
  12913. } break;
  12914. case GGML_OP_COUNT:
  12915. {
  12916. GGML_ASSERT(false);
  12917. } break;
  12918. }
  12919. }
  12920. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  12921. if (node->grad == NULL) {
  12922. // this usually happens when we generate intermediate nodes from constants in the backward pass
  12923. // it can also happen during forward pass, if the user performs computations with constants
  12924. if (node->op != GGML_OP_NONE) {
  12925. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  12926. }
  12927. }
  12928. // check if already visited
  12929. for (int i = 0; i < cgraph->n_nodes; i++) {
  12930. if (cgraph->nodes[i] == node) {
  12931. return;
  12932. }
  12933. }
  12934. for (int i = 0; i < cgraph->n_leafs; i++) {
  12935. if (cgraph->leafs[i] == node) {
  12936. return;
  12937. }
  12938. }
  12939. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  12940. if (node->src[i]) {
  12941. ggml_visit_parents(cgraph, node->src[i]);
  12942. }
  12943. }
  12944. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  12945. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  12946. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  12947. if (strlen(node->name) == 0) {
  12948. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  12949. }
  12950. cgraph->leafs[cgraph->n_leafs] = node;
  12951. cgraph->n_leafs++;
  12952. } else {
  12953. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  12954. if (strlen(node->name) == 0) {
  12955. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  12956. }
  12957. cgraph->nodes[cgraph->n_nodes] = node;
  12958. cgraph->grads[cgraph->n_nodes] = node->grad;
  12959. cgraph->n_nodes++;
  12960. }
  12961. }
  12962. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  12963. if (!expand) {
  12964. cgraph->n_nodes = 0;
  12965. cgraph->n_leafs = 0;
  12966. }
  12967. const int n0 = cgraph->n_nodes;
  12968. UNUSED(n0);
  12969. ggml_visit_parents(cgraph, tensor);
  12970. const int n_new = cgraph->n_nodes - n0;
  12971. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  12972. if (n_new > 0) {
  12973. // the last added node should always be starting point
  12974. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  12975. }
  12976. }
  12977. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  12978. ggml_build_forward_impl(cgraph, tensor, true);
  12979. }
  12980. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  12981. struct ggml_cgraph result = {
  12982. /*.n_nodes =*/ 0,
  12983. /*.n_leafs =*/ 0,
  12984. /*.nodes =*/ { NULL },
  12985. /*.grads =*/ { NULL },
  12986. /*.leafs =*/ { NULL },
  12987. /*.perf_runs =*/ 0,
  12988. /*.perf_cycles =*/ 0,
  12989. /*.perf_time_us =*/ 0,
  12990. };
  12991. ggml_build_forward_impl(&result, tensor, false);
  12992. return result;
  12993. }
  12994. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  12995. struct ggml_cgraph result = *gf;
  12996. GGML_ASSERT(gf->n_nodes > 0);
  12997. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  12998. if (keep) {
  12999. for (int i = 0; i < gf->n_nodes; i++) {
  13000. struct ggml_tensor * node = gf->nodes[i];
  13001. if (node->grad) {
  13002. node->grad = ggml_dup_tensor(ctx, node);
  13003. gf->grads[i] = node->grad;
  13004. }
  13005. }
  13006. }
  13007. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13008. struct ggml_tensor * node = gf->nodes[i];
  13009. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13010. if (node->grad) {
  13011. ggml_compute_backward(ctx, node, keep);
  13012. }
  13013. }
  13014. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13015. struct ggml_tensor * node = gf->nodes[i];
  13016. if (node->is_param) {
  13017. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13018. ggml_build_forward_impl(&result, node->grad, true);
  13019. }
  13020. }
  13021. return result;
  13022. }
  13023. //
  13024. // thread data
  13025. //
  13026. // synchronization is done via busy loops
  13027. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13028. //
  13029. #ifdef __APPLE__
  13030. //#include <os/lock.h>
  13031. //
  13032. //typedef os_unfair_lock ggml_lock_t;
  13033. //
  13034. //#define ggml_lock_init(x) UNUSED(x)
  13035. //#define ggml_lock_destroy(x) UNUSED(x)
  13036. //#define ggml_lock_lock os_unfair_lock_lock
  13037. //#define ggml_lock_unlock os_unfair_lock_unlock
  13038. //
  13039. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13040. typedef int ggml_lock_t;
  13041. #define ggml_lock_init(x) UNUSED(x)
  13042. #define ggml_lock_destroy(x) UNUSED(x)
  13043. #define ggml_lock_lock(x) UNUSED(x)
  13044. #define ggml_lock_unlock(x) UNUSED(x)
  13045. #define GGML_LOCK_INITIALIZER 0
  13046. typedef pthread_t ggml_thread_t;
  13047. #define ggml_thread_create pthread_create
  13048. #define ggml_thread_join pthread_join
  13049. #else
  13050. //typedef pthread_spinlock_t ggml_lock_t;
  13051. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13052. //#define ggml_lock_destroy pthread_spin_destroy
  13053. //#define ggml_lock_lock pthread_spin_lock
  13054. //#define ggml_lock_unlock pthread_spin_unlock
  13055. typedef int ggml_lock_t;
  13056. #define ggml_lock_init(x) UNUSED(x)
  13057. #define ggml_lock_destroy(x) UNUSED(x)
  13058. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13059. #define ggml_lock_lock(x) _mm_pause()
  13060. #else
  13061. #define ggml_lock_lock(x) UNUSED(x)
  13062. #endif
  13063. #define ggml_lock_unlock(x) UNUSED(x)
  13064. #define GGML_LOCK_INITIALIZER 0
  13065. typedef pthread_t ggml_thread_t;
  13066. #define ggml_thread_create pthread_create
  13067. #define ggml_thread_join pthread_join
  13068. #endif
  13069. // Android's libc implementation "bionic" does not support setting affinity
  13070. #if defined(__linux__) && !defined(__BIONIC__)
  13071. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13072. if (!ggml_is_numa()) {
  13073. return;
  13074. }
  13075. // run thread on node_num thread_n / (threads per node)
  13076. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13077. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13078. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13079. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13080. CPU_ZERO_S(setsize, cpus);
  13081. for (size_t i = 0; i < node->n_cpus; ++i) {
  13082. CPU_SET_S(node->cpus[i], setsize, cpus);
  13083. }
  13084. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13085. if (rv) {
  13086. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13087. strerror(rv));
  13088. }
  13089. CPU_FREE(cpus);
  13090. }
  13091. void clear_numa_thread_affinity(void) {
  13092. if (!ggml_is_numa()) {
  13093. return;
  13094. }
  13095. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13096. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13097. CPU_ZERO_S(setsize, cpus);
  13098. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13099. CPU_SET_S(i, setsize, cpus);
  13100. }
  13101. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13102. if (rv) {
  13103. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13104. strerror(rv));
  13105. }
  13106. CPU_FREE(cpus);
  13107. }
  13108. #else
  13109. // TODO: Windows etc.
  13110. // (the linux implementation may also work on BSD, someone should test)
  13111. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13112. void clear_numa_thread_affinity(void) {}
  13113. #endif
  13114. struct ggml_compute_state_shared {
  13115. const struct ggml_cgraph * cgraph;
  13116. const struct ggml_cplan * cplan;
  13117. int64_t perf_node_start_cycles;
  13118. int64_t perf_node_start_time_us;
  13119. const int n_threads;
  13120. // synchronization primitives
  13121. atomic_int n_active; // num active threads
  13122. atomic_int node_n; // active graph node
  13123. bool (*abort_callback)(void * data); // abort ggml_graph_compute when true
  13124. void * abort_callback_data;
  13125. };
  13126. struct ggml_compute_state {
  13127. ggml_thread_t thrd;
  13128. int ith;
  13129. struct ggml_compute_state_shared * shared;
  13130. };
  13131. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13132. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13133. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13134. node->perf_runs++;
  13135. node->perf_cycles += cycles_cur;
  13136. node->perf_time_us += time_us_cur;
  13137. }
  13138. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13139. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13140. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  13141. const struct ggml_cplan * cplan = state->shared->cplan;
  13142. const int * n_tasks_arr = cplan->n_tasks;
  13143. const int n_threads = state->shared->n_threads;
  13144. set_numa_thread_affinity(state->ith, n_threads);
  13145. int node_n = -1;
  13146. while (true) {
  13147. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13148. state->shared->node_n += 1;
  13149. return (thread_ret_t) GGML_EXIT_ABORTED;
  13150. }
  13151. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13152. // all other threads are finished and spinning
  13153. // do finalize and init here so we don't have synchronize again
  13154. struct ggml_compute_params params = {
  13155. /*.type =*/ GGML_TASK_FINALIZE,
  13156. /*.ith =*/ 0,
  13157. /*.nth =*/ 0,
  13158. /*.wsize =*/ cplan->work_size,
  13159. /*.wdata =*/ cplan->work_data,
  13160. };
  13161. if (node_n != -1) {
  13162. /* FINALIZE */
  13163. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13164. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13165. params.nth = n_tasks_arr[node_n];
  13166. ggml_compute_forward(&params, node);
  13167. ggml_graph_compute_perf_stats_node(node, state->shared);
  13168. }
  13169. }
  13170. // distribute new work or execute it direct if 1T
  13171. while (++node_n < cgraph->n_nodes) {
  13172. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13173. struct ggml_tensor * node = cgraph->nodes[node_n];
  13174. const int n_tasks = n_tasks_arr[node_n];
  13175. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13176. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13177. params.nth = n_tasks;
  13178. /* INIT */
  13179. if (GGML_OP_HAS_INIT[node->op]) {
  13180. params.type = GGML_TASK_INIT;
  13181. ggml_compute_forward(&params, node);
  13182. }
  13183. if (n_tasks == 1) {
  13184. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13185. // they do something more efficient than spinning (?)
  13186. params.type = GGML_TASK_COMPUTE;
  13187. ggml_compute_forward(&params, node);
  13188. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13189. params.type = GGML_TASK_FINALIZE;
  13190. ggml_compute_forward(&params, node);
  13191. ggml_graph_compute_perf_stats_node(node, state->shared);
  13192. }
  13193. } else {
  13194. break;
  13195. }
  13196. if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  13197. break;
  13198. }
  13199. }
  13200. atomic_store(&state->shared->n_active, n_threads);
  13201. atomic_store(&state->shared->node_n, node_n);
  13202. } else {
  13203. // wait for other threads to finish
  13204. const int last = node_n;
  13205. do {
  13206. //sched_yield();
  13207. node_n = atomic_load(&state->shared->node_n);
  13208. } while (node_n == last);
  13209. }
  13210. // check if we should stop
  13211. if (node_n >= cgraph->n_nodes) break;
  13212. /* COMPUTE */
  13213. struct ggml_tensor * node = cgraph->nodes[node_n];
  13214. const int n_tasks = n_tasks_arr[node_n];
  13215. struct ggml_compute_params params = {
  13216. /*.type =*/ GGML_TASK_COMPUTE,
  13217. /*.ith =*/ state->ith,
  13218. /*.nth =*/ n_tasks,
  13219. /*.wsize =*/ cplan->work_size,
  13220. /*.wdata =*/ cplan->work_data,
  13221. };
  13222. if (state->ith < n_tasks) {
  13223. ggml_compute_forward(&params, node);
  13224. }
  13225. }
  13226. return GGML_EXIT_SUCCESS;
  13227. }
  13228. struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
  13229. if (n_threads <= 0) {
  13230. n_threads = GGML_DEFAULT_N_THREADS;
  13231. }
  13232. size_t work_size = 0;
  13233. struct ggml_cplan cplan;
  13234. memset(&cplan, 0, sizeof(struct ggml_cplan));
  13235. // thread scheduling for the different operations + work buffer size estimation
  13236. for (int i = 0; i < cgraph->n_nodes; i++) {
  13237. int n_tasks = 1;
  13238. struct ggml_tensor * node = cgraph->nodes[i];
  13239. switch (node->op) {
  13240. case GGML_OP_CPY:
  13241. case GGML_OP_DUP:
  13242. {
  13243. n_tasks = n_threads;
  13244. size_t cur = 0;
  13245. if (ggml_is_quantized(node->type)) {
  13246. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_tasks;
  13247. }
  13248. work_size = MAX(work_size, cur);
  13249. } break;
  13250. case GGML_OP_ADD:
  13251. case GGML_OP_ADD1:
  13252. {
  13253. n_tasks = n_threads;
  13254. size_t cur = 0;
  13255. if (ggml_is_quantized(node->src[0]->type)) {
  13256. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[0]->ne[0] * n_tasks;
  13257. }
  13258. work_size = MAX(work_size, cur);
  13259. } break;
  13260. case GGML_OP_ACC:
  13261. {
  13262. n_tasks = n_threads;
  13263. size_t cur = 0;
  13264. if (ggml_is_quantized(node->src[0]->type)) {
  13265. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src[1]->ne[0] * n_tasks;
  13266. }
  13267. work_size = MAX(work_size, cur);
  13268. } break;
  13269. case GGML_OP_SUB:
  13270. case GGML_OP_DIV:
  13271. case GGML_OP_SQR:
  13272. case GGML_OP_SQRT:
  13273. case GGML_OP_LOG:
  13274. case GGML_OP_SUM:
  13275. case GGML_OP_SUM_ROWS:
  13276. case GGML_OP_MEAN:
  13277. case GGML_OP_ARGMAX:
  13278. case GGML_OP_REPEAT:
  13279. case GGML_OP_REPEAT_BACK:
  13280. case GGML_OP_ABS:
  13281. case GGML_OP_SGN:
  13282. case GGML_OP_NEG:
  13283. case GGML_OP_STEP:
  13284. case GGML_OP_TANH:
  13285. case GGML_OP_ELU:
  13286. case GGML_OP_RELU:
  13287. {
  13288. n_tasks = 1;
  13289. } break;
  13290. case GGML_OP_MUL:
  13291. case GGML_OP_GELU:
  13292. case GGML_OP_GELU_QUICK:
  13293. case GGML_OP_SILU:
  13294. case GGML_OP_SILU_BACK:
  13295. case GGML_OP_NORM:
  13296. case GGML_OP_RMS_NORM:
  13297. case GGML_OP_RMS_NORM_BACK:
  13298. {
  13299. n_tasks = n_threads;
  13300. } break;
  13301. case GGML_OP_MUL_MAT:
  13302. case GGML_OP_OUT_PROD:
  13303. {
  13304. n_tasks = n_threads;
  13305. // TODO: use different scheduling for different matrix sizes
  13306. //const int nr0 = ggml_nrows(node->src[0]);
  13307. //const int nr1 = ggml_nrows(node->src[1]);
  13308. //n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13309. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks%d\n", nr0, nr1, nr0*nr1, n_tasks);
  13310. size_t cur = 0;
  13311. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  13312. #if defined(GGML_USE_CUBLAS)
  13313. if (ggml_cuda_can_mul_mat(node->src[0], node->src[1], node)) {
  13314. n_tasks = 1; // TODO: this actually is doing nothing
  13315. // the threads are still spinning
  13316. } else
  13317. #elif defined(GGML_USE_CLBLAST)
  13318. if (ggml_cl_can_mul_mat(node->src[0], node->src[1], node)) {
  13319. n_tasks = 1; // TODO: this actually is doing nothing
  13320. // the threads are still spinning
  13321. cur = ggml_cl_mul_mat_get_wsize(node->src[0], node->src[1], node);
  13322. } else
  13323. #endif
  13324. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13325. if (ggml_compute_forward_mul_mat_use_blas(node->src[0], node->src[1], node)) {
  13326. n_tasks = 1; // TODO: this actually is doing nothing
  13327. // the threads are still spinning
  13328. if (node->src[0]->type != GGML_TYPE_F32) {
  13329. // here we need memory just for single 2D matrix from src0
  13330. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src[0]->ne[0]*node->src[0]->ne[1]);
  13331. }
  13332. } else
  13333. #endif
  13334. if (node->src[1]->type != vec_dot_type) {
  13335. cur = GGML_TYPE_SIZE[vec_dot_type]*ggml_nelements(node->src[1])/GGML_BLCK_SIZE[vec_dot_type];
  13336. } else {
  13337. cur = 0;
  13338. }
  13339. work_size = MAX(work_size, cur);
  13340. } break;
  13341. case GGML_OP_SCALE:
  13342. {
  13343. n_tasks = 1;
  13344. } break;
  13345. case GGML_OP_SET:
  13346. case GGML_OP_CONT:
  13347. case GGML_OP_RESHAPE:
  13348. case GGML_OP_VIEW:
  13349. case GGML_OP_PERMUTE:
  13350. case GGML_OP_TRANSPOSE:
  13351. case GGML_OP_GET_ROWS:
  13352. case GGML_OP_GET_ROWS_BACK:
  13353. case GGML_OP_DIAG:
  13354. case GGML_OP_DIAG_MASK_ZERO:
  13355. {
  13356. n_tasks = 1;
  13357. } break;
  13358. case GGML_OP_DIAG_MASK_INF:
  13359. case GGML_OP_SOFT_MAX:
  13360. case GGML_OP_SOFT_MAX_BACK:
  13361. case GGML_OP_ROPE:
  13362. case GGML_OP_ROPE_BACK:
  13363. {
  13364. n_tasks = n_threads;
  13365. } break;
  13366. case GGML_OP_ALIBI:
  13367. {
  13368. n_tasks = 1; //TODO
  13369. } break;
  13370. case GGML_OP_CLAMP:
  13371. {
  13372. n_tasks = 1; //TODO
  13373. } break;
  13374. case GGML_OP_CONV_1D:
  13375. {
  13376. n_tasks = n_threads;
  13377. GGML_ASSERT(node->src[0]->ne[3] == 1);
  13378. GGML_ASSERT(node->src[1]->ne[2] == 1);
  13379. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13380. size_t cur = 0;
  13381. const int nk = node->src[0]->ne[0];
  13382. if (node->src[0]->type == GGML_TYPE_F16 &&
  13383. node->src[1]->type == GGML_TYPE_F32) {
  13384. cur = sizeof(ggml_fp16_t)*(
  13385. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13386. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13387. );
  13388. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13389. node->src[1]->type == GGML_TYPE_F32) {
  13390. cur = sizeof(float)*(
  13391. nk*ggml_up32(node->src[0]->ne[1])*node->src[0]->ne[2] +
  13392. ( 2*(nk/2) + node->src[1]->ne[0])*node->src[1]->ne[1]
  13393. );
  13394. } else {
  13395. GGML_ASSERT(false);
  13396. }
  13397. work_size = MAX(work_size, cur);
  13398. } break;
  13399. case GGML_OP_CONV_2D:
  13400. {
  13401. n_tasks = n_threads;
  13402. GGML_ASSERT(node->src[1]->ne[3] == 1);
  13403. const int64_t ne00 = node->src[0]->ne[0]; // W
  13404. const int64_t ne01 = node->src[0]->ne[1]; // H
  13405. const int64_t ne02 = node->src[0]->ne[2]; // C
  13406. const int64_t ne03 = node->src[0]->ne[3]; // N
  13407. const int64_t ne10 = node->src[1]->ne[0]; // W
  13408. const int64_t ne11 = node->src[1]->ne[1]; // H
  13409. const int64_t ne12 = node->src[1]->ne[2]; // C
  13410. const int64_t nk = ne00*ne01;
  13411. UNUSED(ne02);
  13412. UNUSED(ne03);
  13413. UNUSED(nk);
  13414. size_t cur = 0;
  13415. if (node->src[0]->type == GGML_TYPE_F16 &&
  13416. node->src[1]->type == GGML_TYPE_F32) {
  13417. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  13418. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  13419. node->src[1]->type == GGML_TYPE_F32) {
  13420. cur = sizeof(float)* (ne10*ne11*ne12);
  13421. } else {
  13422. GGML_ASSERT(false);
  13423. }
  13424. work_size = MAX(work_size, cur);
  13425. } break;
  13426. case GGML_OP_FLASH_ATTN:
  13427. {
  13428. n_tasks = n_threads;
  13429. size_t cur = 0;
  13430. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13431. if (node->src[1]->type == GGML_TYPE_F32) {
  13432. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13433. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13434. }
  13435. if (node->src[1]->type == GGML_TYPE_F16) {
  13436. cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
  13437. cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
  13438. }
  13439. work_size = MAX(work_size, cur);
  13440. } break;
  13441. case GGML_OP_FLASH_FF:
  13442. {
  13443. n_tasks = n_threads;
  13444. size_t cur = 0;
  13445. if (node->src[1]->type == GGML_TYPE_F32) {
  13446. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13447. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13448. }
  13449. if (node->src[1]->type == GGML_TYPE_F16) {
  13450. cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
  13451. cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
  13452. }
  13453. work_size = MAX(work_size, cur);
  13454. } break;
  13455. case GGML_OP_FLASH_ATTN_BACK:
  13456. {
  13457. n_tasks = n_threads;
  13458. size_t cur = 0;
  13459. const int64_t D = node->src[0]->ne[0];
  13460. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  13461. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  13462. if (node->src[1]->type == GGML_TYPE_F32) {
  13463. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13464. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13465. }
  13466. if (node->src[1]->type == GGML_TYPE_F16) {
  13467. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  13468. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  13469. }
  13470. work_size = MAX(work_size, cur);
  13471. } break;
  13472. case GGML_OP_WIN_PART:
  13473. case GGML_OP_WIN_UNPART:
  13474. case GGML_OP_MAP_UNARY:
  13475. case GGML_OP_MAP_BINARY:
  13476. case GGML_OP_MAP_CUSTOM1:
  13477. case GGML_OP_MAP_CUSTOM2:
  13478. case GGML_OP_MAP_CUSTOM3:
  13479. {
  13480. n_tasks = 1;
  13481. } break;
  13482. case GGML_OP_CROSS_ENTROPY_LOSS:
  13483. {
  13484. n_tasks = n_threads;
  13485. size_t cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  13486. work_size = MAX(work_size, cur);
  13487. } break;
  13488. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13489. {
  13490. n_tasks = n_threads;
  13491. size_t cur = ggml_type_size(node->type)*node->src[0]->ne[0]*n_tasks;
  13492. work_size = MAX(work_size, cur);
  13493. } break;
  13494. case GGML_OP_NONE:
  13495. {
  13496. n_tasks = 1;
  13497. } break;
  13498. case GGML_OP_COUNT:
  13499. {
  13500. GGML_ASSERT(false);
  13501. } break;
  13502. }
  13503. cplan.n_tasks[i] = n_tasks;
  13504. }
  13505. if (work_size > 0) {
  13506. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  13507. }
  13508. cplan.n_threads = n_threads;
  13509. cplan.work_size = work_size;
  13510. cplan.work_data = NULL;
  13511. return cplan;
  13512. }
  13513. int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  13514. {
  13515. GGML_ASSERT(cplan);
  13516. GGML_ASSERT(cplan->n_threads > 0);
  13517. if (cplan->work_size > 0) {
  13518. GGML_ASSERT(cplan->work_data);
  13519. }
  13520. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13521. if (cgraph->nodes[i]->op != GGML_OP_NONE) {
  13522. GGML_ASSERT(cplan->n_tasks[i] > 0);
  13523. }
  13524. }
  13525. }
  13526. const int n_threads = cplan->n_threads;
  13527. struct ggml_compute_state_shared state_shared = {
  13528. /*.cgraph =*/ cgraph,
  13529. /*.cgraph_plan =*/ cplan,
  13530. /*.perf_node_start_cycles =*/ 0,
  13531. /*.perf_node_start_time_us =*/ 0,
  13532. /*.n_threads =*/ n_threads,
  13533. /*.n_active =*/ n_threads,
  13534. /*.node_n =*/ -1,
  13535. /*.abort_callback =*/ NULL,
  13536. /*.abort_callback_data =*/ NULL,
  13537. };
  13538. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13539. // create thread pool
  13540. if (n_threads > 1) {
  13541. for (int j = 1; j < n_threads; ++j) {
  13542. workers[j] = (struct ggml_compute_state) {
  13543. .thrd = 0,
  13544. .ith = j,
  13545. .shared = &state_shared,
  13546. };
  13547. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  13548. GGML_ASSERT(rc == 0);
  13549. }
  13550. }
  13551. workers[0].ith = 0;
  13552. workers[0].shared = &state_shared;
  13553. const int64_t perf_start_cycles = ggml_perf_cycles();
  13554. const int64_t perf_start_time_us = ggml_perf_time_us();
  13555. // this is a work thread too
  13556. int compute_status = (size_t) ggml_graph_compute_thread(&workers[0]);
  13557. // don't leave affinity set on the main thread
  13558. clear_numa_thread_affinity();
  13559. // join or kill thread pool
  13560. if (n_threads > 1) {
  13561. for (int j = 1; j < n_threads; j++) {
  13562. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  13563. GGML_ASSERT(rc == 0);
  13564. }
  13565. }
  13566. // performance stats (graph)
  13567. {
  13568. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  13569. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  13570. cgraph->perf_runs++;
  13571. cgraph->perf_cycles += perf_cycles_cur;
  13572. cgraph->perf_time_us += perf_time_us_cur;
  13573. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  13574. __func__, cgraph->perf_runs,
  13575. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  13576. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  13577. (double) perf_time_us_cur / 1000.0,
  13578. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  13579. }
  13580. return compute_status;
  13581. }
  13582. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  13583. for (int i = 0; i < cgraph->n_nodes; i++) {
  13584. struct ggml_tensor * grad = cgraph->grads[i];
  13585. if (grad) {
  13586. ggml_set_zero(grad);
  13587. }
  13588. }
  13589. }
  13590. void ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  13591. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  13592. struct ggml_tensor * buf = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cplan.work_size);
  13593. GGML_ASSERT(buf);
  13594. cplan.work_data = buf->data;
  13595. ggml_graph_compute(cgraph, &cplan);
  13596. }
  13597. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  13598. for (int i = 0; i < cgraph->n_leafs; i++) {
  13599. struct ggml_tensor * leaf = cgraph->leafs[i];
  13600. if (strcmp(leaf->name, name) == 0) {
  13601. return leaf;
  13602. }
  13603. }
  13604. for (int i = 0; i < cgraph->n_nodes; i++) {
  13605. struct ggml_tensor * node = cgraph->nodes[i];
  13606. if (strcmp(node->name, name) == 0) {
  13607. return node;
  13608. }
  13609. }
  13610. return NULL;
  13611. }
  13612. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  13613. const int64_t * ne = tensor->ne;
  13614. const size_t * nb = tensor->nb;
  13615. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13616. ggml_type_name(tensor->type),
  13617. ggml_op_name (tensor->op),
  13618. tensor->n_dims,
  13619. ne[0], ne[1], ne[2], ne[3],
  13620. nb[0], nb[1], nb[2], nb[3],
  13621. tensor->data,
  13622. tensor->name);
  13623. }
  13624. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  13625. const int64_t * ne = tensor->ne;
  13626. const size_t * nb = tensor->nb;
  13627. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  13628. arg,
  13629. ggml_type_name(tensor->type),
  13630. ggml_op_name (tensor->op),
  13631. tensor->n_dims,
  13632. ne[0], ne[1], ne[2], ne[3],
  13633. nb[0], nb[1], nb[2], nb[3],
  13634. tensor->data,
  13635. tensor->name);
  13636. }
  13637. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  13638. //assert(cgraph->work == NULL);
  13639. //assert(cgraph->work_size == 0);
  13640. uint64_t size_eval = 0;
  13641. // compute size of intermediate results
  13642. // TODO: does not take into account scratch buffers !!!!
  13643. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13644. size_eval += ggml_nbytes(cgraph->nodes[i]);
  13645. }
  13646. // print
  13647. {
  13648. FILE * fout = stdout;
  13649. fprintf(fout, "\n");
  13650. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  13651. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  13652. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  13653. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  13654. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  13655. // header
  13656. fprintf(fout, "\n");
  13657. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  13658. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  13659. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13660. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  13661. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  13662. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  13663. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  13664. }
  13665. // header
  13666. fprintf(fout, "\n");
  13667. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  13668. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  13669. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13670. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  13671. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13672. if (cgraph->nodes[i]->src[j]) {
  13673. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  13674. }
  13675. }
  13676. fprintf(fout, "\n");
  13677. }
  13678. fprintf(fout, "\n");
  13679. }
  13680. // write binary data
  13681. {
  13682. FILE * fout = fopen(fname, "wb");
  13683. if (!fout) {
  13684. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13685. return;
  13686. }
  13687. // header
  13688. {
  13689. const uint32_t magic = GGML_FILE_MAGIC;
  13690. const uint32_t version = GGML_FILE_VERSION;
  13691. const uint32_t n_leafs = cgraph->n_leafs;
  13692. const uint32_t nodes = cgraph->n_nodes;
  13693. fwrite(&magic, sizeof(uint32_t), 1, fout);
  13694. fwrite(&version, sizeof(uint32_t), 1, fout);
  13695. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  13696. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  13697. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  13698. }
  13699. // leafs
  13700. {
  13701. for (int i = 0; i < cgraph->n_leafs; ++i) {
  13702. const struct ggml_tensor * tensor = cgraph->leafs[i];
  13703. const uint32_t type = tensor->type;
  13704. const uint32_t op = tensor->op;
  13705. const uint32_t n_dims = tensor->n_dims;
  13706. fwrite(&type, sizeof(uint32_t), 1, fout);
  13707. fwrite(&op, sizeof(uint32_t), 1, fout);
  13708. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13709. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13710. const uint64_t ne = tensor->ne[j];
  13711. const uint64_t nb = tensor->nb[j];
  13712. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13713. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13714. }
  13715. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13716. // dump the data
  13717. // TODO: pad this to 32 byte boundary
  13718. {
  13719. const size_t size = ggml_nbytes(tensor);
  13720. fwrite(tensor->data, sizeof(char), size, fout);
  13721. }
  13722. }
  13723. }
  13724. // nodes
  13725. {
  13726. for (int i = 0; i < cgraph->n_nodes; ++i) {
  13727. const struct ggml_tensor * tensor = cgraph->nodes[i];
  13728. const uint32_t type = tensor->type;
  13729. const uint32_t op = tensor->op;
  13730. const uint32_t n_dims = tensor->n_dims;
  13731. fwrite(&type, sizeof(uint32_t), 1, fout);
  13732. fwrite(&op, sizeof(uint32_t), 1, fout);
  13733. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  13734. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13735. const uint64_t ne = tensor->ne[j];
  13736. const uint64_t nb = tensor->nb[j];
  13737. fwrite(&ne, sizeof(uint64_t), 1, fout);
  13738. fwrite(&nb, sizeof(uint64_t), 1, fout);
  13739. }
  13740. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  13741. // output the op arguments
  13742. {
  13743. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13744. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13745. args[j] = tensor->src[j];
  13746. }
  13747. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13748. if (args[j]) {
  13749. int32_t idx = -1;
  13750. // check if leaf
  13751. {
  13752. for (int k = 0; k < cgraph->n_leafs; ++k) {
  13753. if (args[j] == cgraph->leafs[k]) {
  13754. idx = k;
  13755. break;
  13756. }
  13757. }
  13758. }
  13759. // check if node
  13760. if (idx == -1) {
  13761. for (int k = 0; k < cgraph->n_nodes; ++k) {
  13762. if (args[j] == cgraph->nodes[k]) {
  13763. idx = GGML_MAX_NODES + k;
  13764. break;
  13765. }
  13766. }
  13767. }
  13768. if (idx == -1) {
  13769. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  13770. return;
  13771. }
  13772. fwrite(&idx, sizeof(int32_t), 1, fout);
  13773. } else {
  13774. const int32_t nul = -1;
  13775. fwrite(&nul, sizeof(int32_t), 1, fout);
  13776. }
  13777. }
  13778. }
  13779. }
  13780. }
  13781. fclose(fout);
  13782. }
  13783. }
  13784. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  13785. assert(*ctx_data == NULL);
  13786. assert(*ctx_eval == NULL);
  13787. struct ggml_cgraph result = { 0 };
  13788. struct ggml_tensor * data = NULL;
  13789. // read file into data
  13790. {
  13791. FILE * fin = fopen(fname, "rb");
  13792. if (!fin) {
  13793. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  13794. return result;
  13795. }
  13796. size_t fsize = 0;
  13797. fseek(fin, 0, SEEK_END);
  13798. fsize = ftell(fin);
  13799. fseek(fin, 0, SEEK_SET);
  13800. // create the data context
  13801. {
  13802. const size_t overhead = 1*ggml_tensor_overhead();
  13803. struct ggml_init_params params = {
  13804. .mem_size = fsize + overhead,
  13805. .mem_buffer = NULL,
  13806. .no_alloc = false,
  13807. };
  13808. *ctx_data = ggml_init(params);
  13809. if (!*ctx_data) {
  13810. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13811. fclose(fin);
  13812. return result;
  13813. }
  13814. }
  13815. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  13816. {
  13817. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  13818. if (ret != fsize) {
  13819. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  13820. fclose(fin);
  13821. return result;
  13822. }
  13823. }
  13824. fclose(fin);
  13825. }
  13826. // populate result
  13827. {
  13828. char * ptr = (char *) data->data;
  13829. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  13830. if (magic != GGML_FILE_MAGIC) {
  13831. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  13832. return result;
  13833. }
  13834. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  13835. if (version != GGML_FILE_VERSION) {
  13836. fprintf(stderr, "%s: invalid version number\n", __func__);
  13837. return result;
  13838. }
  13839. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  13840. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  13841. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  13842. result.n_leafs = n_leafs;
  13843. result.n_nodes = n_nodes;
  13844. // create the data context
  13845. {
  13846. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  13847. struct ggml_init_params params = {
  13848. .mem_size = size_eval + overhead,
  13849. .mem_buffer = NULL,
  13850. .no_alloc = true,
  13851. };
  13852. *ctx_eval = ggml_init(params);
  13853. if (!*ctx_eval) {
  13854. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  13855. return result;
  13856. }
  13857. }
  13858. // leafs
  13859. {
  13860. uint32_t type;
  13861. uint32_t op;
  13862. uint32_t n_dims;
  13863. for (uint32_t i = 0; i < n_leafs; ++i) {
  13864. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13865. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13866. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13867. int64_t ne[GGML_MAX_DIMS];
  13868. size_t nb[GGML_MAX_DIMS];
  13869. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13870. uint64_t ne_cur;
  13871. uint64_t nb_cur;
  13872. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13873. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13874. ne[j] = ne_cur;
  13875. nb[j] = nb_cur;
  13876. }
  13877. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13878. tensor->op = (enum ggml_op) op;
  13879. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  13880. tensor->data = (void *) ptr;
  13881. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13882. tensor->nb[j] = nb[j];
  13883. }
  13884. result.leafs[i] = tensor;
  13885. ptr += ggml_nbytes(tensor);
  13886. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13887. }
  13888. }
  13889. ggml_set_no_alloc(*ctx_eval, false);
  13890. // nodes
  13891. {
  13892. uint32_t type;
  13893. uint32_t op;
  13894. uint32_t n_dims;
  13895. for (uint32_t i = 0; i < n_nodes; ++i) {
  13896. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  13897. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  13898. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  13899. enum ggml_op eop = (enum ggml_op) op;
  13900. int64_t ne[GGML_MAX_DIMS];
  13901. size_t nb[GGML_MAX_DIMS];
  13902. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13903. uint64_t ne_cur;
  13904. uint64_t nb_cur;
  13905. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  13906. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  13907. ne[j] = ne_cur;
  13908. nb[j] = nb_cur;
  13909. }
  13910. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  13911. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  13912. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  13913. // parse args
  13914. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13915. const int32_t arg_idx = ptr_arg_idx[j];
  13916. if (arg_idx == -1) {
  13917. continue;
  13918. }
  13919. if (arg_idx < GGML_MAX_NODES) {
  13920. args[j] = result.leafs[arg_idx];
  13921. } else {
  13922. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  13923. }
  13924. }
  13925. // create the tensor
  13926. // "view" operations are handled differently
  13927. // TODO: handle inplace ops - currently a copy is always made
  13928. struct ggml_tensor * tensor = NULL;
  13929. switch (eop) {
  13930. // TODO: implement other view ops
  13931. case GGML_OP_RESHAPE:
  13932. {
  13933. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  13934. } break;
  13935. case GGML_OP_VIEW:
  13936. {
  13937. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13938. uint64_t offs;
  13939. memcpy(&offs, args[2]->data, sizeof(offs));
  13940. tensor->data = ((char *) tensor->data) + offs;
  13941. } break;
  13942. case GGML_OP_TRANSPOSE:
  13943. {
  13944. tensor = ggml_transpose(*ctx_eval, args[0]);
  13945. } break;
  13946. case GGML_OP_PERMUTE:
  13947. {
  13948. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  13949. } break;
  13950. default:
  13951. {
  13952. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  13953. tensor->op = eop;
  13954. } break;
  13955. }
  13956. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  13957. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  13958. tensor->nb[j] = nb[j];
  13959. }
  13960. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  13961. tensor->src[j] = args[j];
  13962. }
  13963. result.nodes[i] = tensor;
  13964. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  13965. }
  13966. }
  13967. }
  13968. return result;
  13969. }
  13970. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  13971. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  13972. GGML_PRINT("=== GRAPH ===\n");
  13973. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  13974. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  13975. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  13976. for (int i = 0; i < cgraph->n_nodes; i++) {
  13977. struct ggml_tensor * node = cgraph->nodes[i];
  13978. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  13979. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  13980. i,
  13981. node->ne[0], node->ne[1], node->ne[2],
  13982. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  13983. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  13984. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  13985. (double) node->perf_time_us / 1000.0,
  13986. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  13987. }
  13988. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  13989. for (int i = 0; i < cgraph->n_leafs; i++) {
  13990. struct ggml_tensor * node = cgraph->leafs[i];
  13991. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  13992. i,
  13993. node->ne[0], node->ne[1],
  13994. GGML_OP_NAME[node->op]);
  13995. }
  13996. for (int i = 0; i < GGML_OP_COUNT; i++) {
  13997. if (perf_total_per_op_us[i] == 0) {
  13998. continue;
  13999. }
  14000. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14001. }
  14002. GGML_PRINT("========================================\n");
  14003. }
  14004. // check if node is part of the graph
  14005. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14006. if (cgraph == NULL) {
  14007. return true;
  14008. }
  14009. for (int i = 0; i < cgraph->n_nodes; i++) {
  14010. if (cgraph->nodes[i] == node) {
  14011. return true;
  14012. }
  14013. }
  14014. return false;
  14015. }
  14016. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14017. for (int i = 0; i < cgraph->n_nodes; i++) {
  14018. struct ggml_tensor * parent = cgraph->nodes[i];
  14019. if (parent->grad == node) {
  14020. return parent;
  14021. }
  14022. }
  14023. return NULL;
  14024. }
  14025. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14026. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14027. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14028. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14029. gparent0 ? (void *) gparent0 : (void *) parent,
  14030. gparent0 ? "g" : "x",
  14031. gparent ? (void *) gparent : (void *) node,
  14032. gparent ? "g" : "x",
  14033. gparent ? "empty" : "vee",
  14034. gparent ? "dashed" : "solid",
  14035. label);
  14036. }
  14037. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14038. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14039. (void *) parent, "x",
  14040. (void *) node, "x",
  14041. label);
  14042. }
  14043. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14044. char color[16];
  14045. FILE * fp = fopen(filename, "w");
  14046. GGML_ASSERT(fp);
  14047. fprintf(fp, "digraph G {\n");
  14048. fprintf(fp, " newrank = true;\n");
  14049. fprintf(fp, " rankdir = LR;\n");
  14050. for (int i = 0; i < gb->n_nodes; i++) {
  14051. struct ggml_tensor * node = gb->nodes[i];
  14052. if (ggml_graph_get_parent(gb, node) != NULL) {
  14053. continue;
  14054. }
  14055. if (node->is_param) {
  14056. snprintf(color, sizeof(color), "yellow");
  14057. } else if (node->grad) {
  14058. if (ggml_graph_find(gf, node)) {
  14059. snprintf(color, sizeof(color), "green");
  14060. } else {
  14061. snprintf(color, sizeof(color), "lightblue");
  14062. }
  14063. } else {
  14064. snprintf(color, sizeof(color), "white");
  14065. }
  14066. fprintf(fp, " \"%p\" [ "
  14067. "style = filled; fillcolor = %s; shape = record; "
  14068. "label=\"",
  14069. (void *) node, color);
  14070. if (strlen(node->name) > 0) {
  14071. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14072. } else {
  14073. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14074. }
  14075. if (node->n_dims == 2) {
  14076. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14077. } else {
  14078. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14079. }
  14080. if (node->grad) {
  14081. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14082. } else {
  14083. fprintf(fp, "\"; ]\n");
  14084. }
  14085. }
  14086. for (int i = 0; i < gb->n_leafs; i++) {
  14087. struct ggml_tensor * node = gb->leafs[i];
  14088. snprintf(color, sizeof(color), "pink");
  14089. fprintf(fp, " \"%p\" [ "
  14090. "style = filled; fillcolor = %s; shape = record; "
  14091. "label=\"<x>",
  14092. (void *) node, color);
  14093. if (strlen(node->name) > 0) {
  14094. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14095. } else {
  14096. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14097. }
  14098. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14099. if (ggml_nelements(node) < 5) {
  14100. fprintf(fp, " | (");
  14101. for (int j = 0; j < ggml_nelements(node); j++) {
  14102. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14103. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14104. }
  14105. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14106. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14107. }
  14108. else {
  14109. fprintf(fp, "#");
  14110. }
  14111. if (j < ggml_nelements(node) - 1) {
  14112. fprintf(fp, ", ");
  14113. }
  14114. }
  14115. fprintf(fp, ")");
  14116. }
  14117. fprintf(fp, "\"; ]\n");
  14118. }
  14119. for (int i = 0; i < gb->n_nodes; i++) {
  14120. struct ggml_tensor * node = gb->nodes[i];
  14121. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14122. if (node->src[j]) {
  14123. char label[16];
  14124. snprintf(label, sizeof(label), "src %d", j);
  14125. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  14126. }
  14127. }
  14128. }
  14129. for (int i = 0; i < gb->n_leafs; i++) {
  14130. struct ggml_tensor * node = gb->leafs[i];
  14131. for (int j = 0; j < GGML_MAX_SRC; j++) {
  14132. if (node->src[j]) {
  14133. char label[16];
  14134. snprintf(label, sizeof(label), "src %d", j);
  14135. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  14136. }
  14137. }
  14138. }
  14139. fprintf(fp, "}\n");
  14140. fclose(fp);
  14141. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14142. }
  14143. ////////////////////////////////////////////////////////////////////////////////
  14144. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14145. int i = 0;
  14146. for (int p = 0; p < np; ++p) {
  14147. const int64_t ne = ggml_nelements(ps[p]) ;
  14148. // TODO: add function to set tensor from array
  14149. for (int64_t j = 0; j < ne; ++j) {
  14150. ggml_set_f32_1d(ps[p], j, x[i++]);
  14151. }
  14152. }
  14153. }
  14154. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14155. int i = 0;
  14156. for (int p = 0; p < np; ++p) {
  14157. const int64_t ne = ggml_nelements(ps[p]) ;
  14158. // TODO: add function to get all elements at once
  14159. for (int64_t j = 0; j < ne; ++j) {
  14160. x[i++] = ggml_get_f32_1d(ps[p], j);
  14161. }
  14162. }
  14163. }
  14164. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14165. int i = 0;
  14166. for (int p = 0; p < np; ++p) {
  14167. const int64_t ne = ggml_nelements(ps[p]) ;
  14168. // TODO: add function to get all elements at once
  14169. for (int64_t j = 0; j < ne; ++j) {
  14170. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14171. }
  14172. }
  14173. }
  14174. //
  14175. // ADAM
  14176. //
  14177. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14178. //
  14179. static enum ggml_opt_result ggml_opt_adam(
  14180. struct ggml_context * ctx,
  14181. struct ggml_opt_context * opt,
  14182. struct ggml_opt_params params,
  14183. struct ggml_tensor * f,
  14184. struct ggml_cgraph * gf,
  14185. struct ggml_cgraph * gb) {
  14186. GGML_ASSERT(ggml_is_scalar(f));
  14187. // these will store the parameters we want to optimize
  14188. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14189. int np = 0;
  14190. int nx = 0;
  14191. for (int i = 0; i < gf->n_nodes; ++i) {
  14192. if (gf->nodes[i]->is_param) {
  14193. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14194. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14195. ps[np++] = gf->nodes[i];
  14196. nx += ggml_nelements(gf->nodes[i]);
  14197. }
  14198. }
  14199. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14200. int iter = opt->iter;
  14201. ggml_opt_init(opt->ctx, opt, params, nx);
  14202. opt->iter = iter;
  14203. }
  14204. // constants
  14205. const float sched = params.adam.sched;
  14206. const float decay = params.adam.decay * sched;
  14207. const float alpha = params.adam.alpha * sched;
  14208. const float beta1 = params.adam.beta1;
  14209. const float beta2 = params.adam.beta2;
  14210. const float eps = params.adam.eps;
  14211. float * x = opt->adam.x->data; // view of the parameters
  14212. float * g1 = opt->adam.g1->data; // gradient
  14213. float * g2 = opt->adam.g2->data; // gradient squared
  14214. float * m = opt->adam.m->data; // first moment
  14215. float * v = opt->adam.v->data; // second moment
  14216. float * mh = opt->adam.mh->data; // first moment hat
  14217. float * vh = opt->adam.vh->data; // second moment hat
  14218. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14219. // update view
  14220. ggml_opt_get_params(np, ps, x);
  14221. // compute the function value
  14222. ggml_graph_reset (gf);
  14223. ggml_set_f32 (f->grad, 1.0f);
  14224. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14225. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14226. opt->adam.fx_best = opt->adam.fx_prev;
  14227. if (pf) {
  14228. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14229. }
  14230. // initialize
  14231. if (opt->just_initialized) {
  14232. opt->adam.n_no_improvement = 0;
  14233. opt->just_initialized = false;
  14234. }
  14235. float * fx_best = &opt->adam.fx_best;
  14236. float * fx_prev = &opt->adam.fx_prev;
  14237. int * n_no_improvement = &opt->adam.n_no_improvement;
  14238. int iter0 = opt->iter;
  14239. // run the optimizer
  14240. for (int t = 0; t < params.adam.n_iter; ++t) {
  14241. opt->iter = iter0 + t + 1;
  14242. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14243. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14244. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14245. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14246. for (int i = 0; i < np; ++i) {
  14247. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14248. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14249. }
  14250. const int64_t t_start_wall = ggml_time_us();
  14251. const int64_t t_start_cpu = ggml_cycles();
  14252. UNUSED(t_start_wall);
  14253. UNUSED(t_start_cpu);
  14254. {
  14255. // update the gradient
  14256. ggml_opt_get_grad(np, ps, g1);
  14257. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14258. ggml_vec_scale_f32(nx, m, beta1);
  14259. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14260. // g2 = g1^2
  14261. ggml_vec_sqr_f32 (nx, g2, g1);
  14262. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14263. ggml_vec_scale_f32(nx, v, beta2);
  14264. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14265. // m^hat = m_t / (1 - beta1^t)
  14266. // v^hat = v_t / (1 - beta2^t)
  14267. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14268. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14269. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14270. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14271. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14272. ggml_vec_cpy_f32 (nx, mh, m);
  14273. ggml_vec_cpy_f32 (nx, vh, v);
  14274. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14275. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14276. ggml_vec_sqrt_f32 (nx, vh, vh);
  14277. ggml_vec_acc1_f32 (nx, vh, eps);
  14278. ggml_vec_div_f32 (nx, mh, mh, vh);
  14279. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14280. ggml_vec_sub_f32 (nx, x, x, mh);
  14281. // update the parameters
  14282. ggml_opt_set_params(np, ps, x);
  14283. }
  14284. ggml_graph_reset (gf);
  14285. ggml_set_f32 (f->grad, 1.0f);
  14286. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14287. const float fx = ggml_get_f32_1d(f, 0);
  14288. // check convergence
  14289. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14290. GGML_PRINT_DEBUG("converged\n");
  14291. return GGML_OPT_OK;
  14292. }
  14293. // delta-based convergence test
  14294. if (pf != NULL) {
  14295. // need at least params.past iterations to start checking for convergence
  14296. if (params.past <= iter0 + t) {
  14297. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14298. if (fabsf(rate) < params.delta) {
  14299. return GGML_OPT_OK;
  14300. }
  14301. }
  14302. pf[(iter0 + t)%params.past] = fx;
  14303. }
  14304. // check for improvement
  14305. if (params.max_no_improvement > 0) {
  14306. if (fx_best[0] > fx) {
  14307. fx_best[0] = fx;
  14308. n_no_improvement[0] = 0;
  14309. } else {
  14310. ++n_no_improvement[0];
  14311. if (n_no_improvement[0] >= params.max_no_improvement) {
  14312. return GGML_OPT_OK;
  14313. }
  14314. }
  14315. }
  14316. fx_prev[0] = fx;
  14317. {
  14318. const int64_t t_end_cpu = ggml_cycles();
  14319. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  14320. UNUSED(t_end_cpu);
  14321. const int64_t t_end_wall = ggml_time_us();
  14322. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  14323. UNUSED(t_end_wall);
  14324. }
  14325. }
  14326. return GGML_OPT_DID_NOT_CONVERGE;
  14327. }
  14328. //
  14329. // L-BFGS
  14330. //
  14331. // the L-BFGS implementation below is based on the following implementation:
  14332. //
  14333. // https://github.com/chokkan/liblbfgs
  14334. //
  14335. struct ggml_lbfgs_iteration_data {
  14336. float alpha;
  14337. float ys;
  14338. float * s;
  14339. float * y;
  14340. };
  14341. static enum ggml_opt_result linesearch_backtracking(
  14342. struct ggml_context * ctx,
  14343. const struct ggml_opt_params * params,
  14344. int nx,
  14345. float * x,
  14346. float * fx,
  14347. float * g,
  14348. float * d,
  14349. float * step,
  14350. const float * xp,
  14351. struct ggml_tensor * f,
  14352. struct ggml_cgraph * gf,
  14353. struct ggml_cgraph * gb,
  14354. const int np,
  14355. struct ggml_tensor * ps[]) {
  14356. int count = 0;
  14357. float width = 0.0f;
  14358. float dg = 0.0f;
  14359. float finit = 0.0f;
  14360. float dginit = 0.0f;
  14361. float dgtest = 0.0f;
  14362. const float dec = 0.5f;
  14363. const float inc = 2.1f;
  14364. if (*step <= 0.f) {
  14365. return GGML_LINESEARCH_INVALID_PARAMETERS;
  14366. }
  14367. // compute the initial gradient in the search direction
  14368. ggml_vec_dot_f32(nx, &dginit, g, d);
  14369. // make sure that d points to a descent direction
  14370. if (0 < dginit) {
  14371. return GGML_LINESEARCH_FAIL;
  14372. }
  14373. // initialize local variables
  14374. finit = *fx;
  14375. dgtest = params->lbfgs.ftol*dginit;
  14376. while (true) {
  14377. ggml_vec_cpy_f32(nx, x, xp);
  14378. ggml_vec_mad_f32(nx, x, d, *step);
  14379. // evaluate the function and gradient values
  14380. {
  14381. ggml_opt_set_params(np, ps, x);
  14382. ggml_graph_reset (gf);
  14383. ggml_set_f32 (f->grad, 1.0f);
  14384. ggml_graph_compute_with_ctx(ctx, gb, params->n_threads);
  14385. ggml_opt_get_grad(np, ps, g);
  14386. *fx = ggml_get_f32_1d(f, 0);
  14387. }
  14388. ++count;
  14389. if (*fx > finit + (*step)*dgtest) {
  14390. width = dec;
  14391. } else {
  14392. // Armijo condition is satisfied
  14393. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  14394. return count;
  14395. }
  14396. ggml_vec_dot_f32(nx, &dg, g, d);
  14397. // check the Wolfe condition
  14398. if (dg < params->lbfgs.wolfe * dginit) {
  14399. width = inc;
  14400. } else {
  14401. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  14402. // regular Wolfe conditions
  14403. return count;
  14404. }
  14405. if(dg > -params->lbfgs.wolfe*dginit) {
  14406. width = dec;
  14407. } else {
  14408. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  14409. return count;
  14410. }
  14411. return count;
  14412. }
  14413. }
  14414. if (*step < params->lbfgs.min_step) {
  14415. return GGML_LINESEARCH_MINIMUM_STEP;
  14416. }
  14417. if (*step > params->lbfgs.max_step) {
  14418. return GGML_LINESEARCH_MAXIMUM_STEP;
  14419. }
  14420. if (params->lbfgs.max_linesearch <= count) {
  14421. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  14422. }
  14423. (*step) *= width;
  14424. }
  14425. return GGML_LINESEARCH_FAIL;
  14426. }
  14427. static enum ggml_opt_result ggml_opt_lbfgs(
  14428. struct ggml_context * ctx,
  14429. struct ggml_opt_context * opt,
  14430. struct ggml_opt_params params,
  14431. struct ggml_tensor * f,
  14432. struct ggml_cgraph * gf,
  14433. struct ggml_cgraph * gb) {
  14434. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  14435. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  14436. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  14437. return GGML_OPT_INVALID_WOLFE;
  14438. }
  14439. }
  14440. const int m = params.lbfgs.m;
  14441. // these will store the parameters we want to optimize
  14442. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14443. int np = 0;
  14444. int nx = 0;
  14445. for (int i = 0; i < gf->n_nodes; ++i) {
  14446. if (gf->nodes[i]->is_param) {
  14447. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14448. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14449. ps[np++] = gf->nodes[i];
  14450. nx += ggml_nelements(gf->nodes[i]);
  14451. }
  14452. }
  14453. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  14454. int iter = opt->iter;
  14455. ggml_opt_init(ctx, opt, params, nx);
  14456. opt->iter = iter;
  14457. }
  14458. float * x = opt->lbfgs.x->data; // current parameters
  14459. float * xp = opt->lbfgs.xp->data; // previous parameters
  14460. float * g = opt->lbfgs.g->data; // current gradient
  14461. float * gp = opt->lbfgs.gp->data; // previous gradient
  14462. float * d = opt->lbfgs.d->data; // search direction
  14463. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  14464. float fx = 0.0f; // cost function value
  14465. float xnorm = 0.0f; // ||x||
  14466. float gnorm = 0.0f; // ||g||
  14467. // initialize x from the graph nodes
  14468. ggml_opt_get_params(np, ps, x);
  14469. // the L-BFGS memory
  14470. float * lm_alpha = opt->lbfgs.lmal->data;
  14471. float * lm_ys = opt->lbfgs.lmys->data;
  14472. float * lm_s = opt->lbfgs.lms->data;
  14473. float * lm_y = opt->lbfgs.lmy->data;
  14474. // evaluate the function value and its gradient
  14475. {
  14476. ggml_opt_set_params(np, ps, x);
  14477. ggml_graph_reset (gf);
  14478. ggml_set_f32 (f->grad, 1.0f);
  14479. ggml_graph_compute_with_ctx(ctx, gb, params.n_threads);
  14480. ggml_opt_get_grad(np, ps, g);
  14481. fx = ggml_get_f32_1d(f, 0);
  14482. }
  14483. // search direction = -gradient
  14484. ggml_vec_neg_f32(nx, d, g);
  14485. // ||x||, ||g||
  14486. ggml_vec_norm_f32(nx, &xnorm, x);
  14487. ggml_vec_norm_f32(nx, &gnorm, g);
  14488. if (xnorm < 1.0f) {
  14489. xnorm = 1.0f;
  14490. }
  14491. // already optimized
  14492. if (gnorm/xnorm <= params.lbfgs.eps) {
  14493. return GGML_OPT_OK;
  14494. }
  14495. if (opt->just_initialized) {
  14496. if (pf) {
  14497. pf[0] = fx;
  14498. }
  14499. opt->lbfgs.fx_best = fx;
  14500. // initial step
  14501. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  14502. opt->lbfgs.j = 0;
  14503. opt->lbfgs.k = 1;
  14504. opt->lbfgs.end = 0;
  14505. opt->lbfgs.n_no_improvement = 0;
  14506. opt->just_initialized = false;
  14507. }
  14508. float * fx_best = &opt->lbfgs.fx_best;
  14509. float * step = &opt->lbfgs.step;
  14510. int * j = &opt->lbfgs.j;
  14511. int * k = &opt->lbfgs.k;
  14512. int * end = &opt->lbfgs.end;
  14513. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  14514. int ls = 0;
  14515. int bound = 0;
  14516. float ys = 0.0f;
  14517. float yy = 0.0f;
  14518. float beta = 0.0f;
  14519. int it = 0;
  14520. while (true) {
  14521. // store the current position and gradient vectors
  14522. ggml_vec_cpy_f32(nx, xp, x);
  14523. ggml_vec_cpy_f32(nx, gp, g);
  14524. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  14525. if (ls < 0) {
  14526. // linesearch failed - go back to the previous point and return
  14527. ggml_vec_cpy_f32(nx, x, xp);
  14528. ggml_vec_cpy_f32(nx, g, gp);
  14529. return ls;
  14530. }
  14531. ggml_vec_norm_f32(nx, &xnorm, x);
  14532. ggml_vec_norm_f32(nx, &gnorm, g);
  14533. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14534. if (xnorm < 1.0f) {
  14535. xnorm = 1.0f;
  14536. }
  14537. if (gnorm/xnorm <= params.lbfgs.eps) {
  14538. // converged
  14539. return GGML_OPT_OK;
  14540. }
  14541. // delta-based convergence test
  14542. if (pf != NULL) {
  14543. // need at least params.past iterations to start checking for convergence
  14544. if (params.past <= k[0]) {
  14545. const float rate = (pf[k[0]%params.past] - fx)/fx;
  14546. if (fabsf(rate) < params.delta) {
  14547. return GGML_OPT_OK;
  14548. }
  14549. }
  14550. pf[k[0]%params.past] = fx;
  14551. }
  14552. // check for improvement
  14553. if (params.max_no_improvement > 0) {
  14554. if (fx < fx_best[0]) {
  14555. fx_best[0] = fx;
  14556. n_no_improvement[0] = 0;
  14557. } else {
  14558. n_no_improvement[0]++;
  14559. if (n_no_improvement[0] >= params.max_no_improvement) {
  14560. return GGML_OPT_OK;
  14561. }
  14562. }
  14563. }
  14564. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  14565. // reached the maximum number of iterations
  14566. return GGML_OPT_DID_NOT_CONVERGE;
  14567. }
  14568. // update vectors s and y:
  14569. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  14570. // y_{k+1} = g_{k+1} - g_{k}.
  14571. //
  14572. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  14573. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  14574. // compute scalars ys and yy:
  14575. // ys = y^t \cdot s -> 1 / \rho.
  14576. // yy = y^t \cdot y.
  14577. //
  14578. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  14579. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  14580. lm_ys[end[0]] = ys;
  14581. // find new search direction
  14582. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  14583. bound = (m <= k[0]) ? m : k[0];
  14584. k[0]++;
  14585. it++;
  14586. end[0] = (end[0] + 1)%m;
  14587. // initialize search direction with -g
  14588. ggml_vec_neg_f32(nx, d, g);
  14589. j[0] = end[0];
  14590. for (int i = 0; i < bound; ++i) {
  14591. j[0] = (j[0] + m - 1) % m;
  14592. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  14593. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  14594. lm_alpha[j[0]] /= lm_ys[j[0]];
  14595. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  14596. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  14597. }
  14598. ggml_vec_scale_f32(nx, d, ys/yy);
  14599. for (int i = 0; i < bound; ++i) {
  14600. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  14601. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  14602. beta /= lm_ys[j[0]];
  14603. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  14604. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  14605. j[0] = (j[0] + 1)%m;
  14606. }
  14607. step[0] = 1.0;
  14608. }
  14609. return GGML_OPT_DID_NOT_CONVERGE;
  14610. }
  14611. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  14612. struct ggml_opt_params result;
  14613. switch (type) {
  14614. case GGML_OPT_ADAM:
  14615. {
  14616. result = (struct ggml_opt_params) {
  14617. .type = GGML_OPT_ADAM,
  14618. .n_threads = 1,
  14619. .past = 0,
  14620. .delta = 1e-5f,
  14621. .max_no_improvement = 100,
  14622. .print_forward_graph = true,
  14623. .print_backward_graph = true,
  14624. .adam = {
  14625. .n_iter = 10000,
  14626. .sched = 1.000f,
  14627. .decay = 0.001f,
  14628. .alpha = 0.001f,
  14629. .beta1 = 0.9f,
  14630. .beta2 = 0.999f,
  14631. .eps = 1e-8f,
  14632. .eps_f = 1e-5f,
  14633. .eps_g = 1e-3f,
  14634. },
  14635. };
  14636. } break;
  14637. case GGML_OPT_LBFGS:
  14638. {
  14639. result = (struct ggml_opt_params) {
  14640. .type = GGML_OPT_LBFGS,
  14641. .n_threads = 1,
  14642. .past = 0,
  14643. .delta = 1e-5f,
  14644. .max_no_improvement = 0,
  14645. .print_forward_graph = true,
  14646. .print_backward_graph = true,
  14647. .lbfgs = {
  14648. .m = 6,
  14649. .n_iter = 100,
  14650. .max_linesearch = 20,
  14651. .eps = 1e-5f,
  14652. .ftol = 1e-4f,
  14653. .wolfe = 0.9f,
  14654. .min_step = 1e-20f,
  14655. .max_step = 1e+20f,
  14656. .linesearch = GGML_LINESEARCH_DEFAULT,
  14657. },
  14658. };
  14659. } break;
  14660. }
  14661. return result;
  14662. }
  14663. GGML_API void ggml_opt_init(
  14664. struct ggml_context * ctx,
  14665. struct ggml_opt_context * opt,
  14666. struct ggml_opt_params params,
  14667. int64_t nx) {
  14668. opt->ctx = ctx;
  14669. opt->params = params;
  14670. opt->iter = 0;
  14671. opt->nx = nx;
  14672. opt->just_initialized = true;
  14673. switch (opt->params.type) {
  14674. case GGML_OPT_ADAM:
  14675. {
  14676. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14677. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14678. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14679. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14680. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14681. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14682. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14683. opt->adam.pf = params.past > 0
  14684. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14685. : NULL;
  14686. ggml_set_zero(opt->adam.x);
  14687. ggml_set_zero(opt->adam.g1);
  14688. ggml_set_zero(opt->adam.g2);
  14689. ggml_set_zero(opt->adam.m);
  14690. ggml_set_zero(opt->adam.v);
  14691. ggml_set_zero(opt->adam.mh);
  14692. ggml_set_zero(opt->adam.vh);
  14693. if (opt->adam.pf) {
  14694. ggml_set_zero(opt->adam.pf);
  14695. }
  14696. } break;
  14697. case GGML_OPT_LBFGS:
  14698. {
  14699. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14700. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14701. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14702. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14703. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  14704. opt->lbfgs.pf = params.past > 0
  14705. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  14706. : NULL;
  14707. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14708. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  14709. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14710. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  14711. ggml_set_zero(opt->lbfgs.x);
  14712. ggml_set_zero(opt->lbfgs.xp);
  14713. ggml_set_zero(opt->lbfgs.g);
  14714. ggml_set_zero(opt->lbfgs.gp);
  14715. ggml_set_zero(opt->lbfgs.d);
  14716. if (opt->lbfgs.pf) {
  14717. ggml_set_zero(opt->lbfgs.pf);
  14718. }
  14719. ggml_set_zero(opt->lbfgs.lmal);
  14720. ggml_set_zero(opt->lbfgs.lmys);
  14721. ggml_set_zero(opt->lbfgs.lms);
  14722. ggml_set_zero(opt->lbfgs.lmy);
  14723. } break;
  14724. }
  14725. }
  14726. enum ggml_opt_result ggml_opt(
  14727. struct ggml_context * ctx,
  14728. struct ggml_opt_params params,
  14729. struct ggml_tensor * f) {
  14730. bool free_ctx = false;
  14731. if (ctx == NULL) {
  14732. struct ggml_init_params params_ctx = {
  14733. .mem_size = 16*1024*1024,
  14734. .mem_buffer = NULL,
  14735. .no_alloc = false,
  14736. };
  14737. ctx = ggml_init(params_ctx);
  14738. if (ctx == NULL) {
  14739. return GGML_OPT_NO_CONTEXT;
  14740. }
  14741. free_ctx = true;
  14742. }
  14743. enum ggml_opt_result result = GGML_OPT_OK;
  14744. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  14745. ggml_opt_init(ctx, opt, params, 0);
  14746. result = ggml_opt_resume(ctx, opt, f);
  14747. if (free_ctx) {
  14748. ggml_free(ctx);
  14749. }
  14750. return result;
  14751. }
  14752. enum ggml_opt_result ggml_opt_resume(
  14753. struct ggml_context * ctx,
  14754. struct ggml_opt_context * opt,
  14755. struct ggml_tensor * f) {
  14756. // build forward + backward compute graphs
  14757. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14758. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  14759. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  14760. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  14761. *gf = ggml_build_forward (f);
  14762. *gb = ggml_build_backward(ctx, gf, true);
  14763. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  14764. }
  14765. enum ggml_opt_result ggml_opt_resume_g(
  14766. struct ggml_context * ctx,
  14767. struct ggml_opt_context * opt,
  14768. struct ggml_tensor * f,
  14769. struct ggml_cgraph * gf,
  14770. struct ggml_cgraph * gb) {
  14771. // build forward + backward compute graphs
  14772. enum ggml_opt_result result = GGML_OPT_OK;
  14773. switch (opt->params.type) {
  14774. case GGML_OPT_ADAM:
  14775. {
  14776. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  14777. } break;
  14778. case GGML_OPT_LBFGS:
  14779. {
  14780. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  14781. } break;
  14782. }
  14783. if (opt->params.print_forward_graph) {
  14784. ggml_graph_print (gf);
  14785. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  14786. }
  14787. if (opt->params.print_backward_graph) {
  14788. ggml_graph_print (gb);
  14789. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  14790. }
  14791. return result;
  14792. }
  14793. ////////////////////////////////////////////////////////////////////////////////
  14794. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14795. assert(k % QK4_0 == 0);
  14796. const int nb = k / QK4_0;
  14797. for (int b = 0; b < n; b += k) {
  14798. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  14799. quantize_row_q4_0_reference(src + b, y, k);
  14800. for (int i = 0; i < nb; i++) {
  14801. for (int j = 0; j < QK4_0; j += 2) {
  14802. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14803. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14804. hist[vi0]++;
  14805. hist[vi1]++;
  14806. }
  14807. }
  14808. }
  14809. return (n/QK4_0*sizeof(block_q4_0));
  14810. }
  14811. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14812. assert(k % QK4_1 == 0);
  14813. const int nb = k / QK4_1;
  14814. for (int b = 0; b < n; b += k) {
  14815. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  14816. quantize_row_q4_1_reference(src + b, y, k);
  14817. for (int i = 0; i < nb; i++) {
  14818. for (int j = 0; j < QK4_1; j += 2) {
  14819. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  14820. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  14821. hist[vi0]++;
  14822. hist[vi1]++;
  14823. }
  14824. }
  14825. }
  14826. return (n/QK4_1*sizeof(block_q4_1));
  14827. }
  14828. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14829. assert(k % QK5_0 == 0);
  14830. const int nb = k / QK5_0;
  14831. for (int b = 0; b < n; b += k) {
  14832. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  14833. quantize_row_q5_0_reference(src + b, y, k);
  14834. for (int i = 0; i < nb; i++) {
  14835. uint32_t qh;
  14836. memcpy(&qh, &y[i].qh, sizeof(qh));
  14837. for (int j = 0; j < QK5_0; j += 2) {
  14838. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14839. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14840. // cast to 16 bins
  14841. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14842. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14843. hist[vi0]++;
  14844. hist[vi1]++;
  14845. }
  14846. }
  14847. }
  14848. return (n/QK5_0*sizeof(block_q5_0));
  14849. }
  14850. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  14851. assert(k % QK5_1 == 0);
  14852. const int nb = k / QK5_1;
  14853. for (int b = 0; b < n; b += k) {
  14854. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  14855. quantize_row_q5_1_reference(src + b, y, k);
  14856. for (int i = 0; i < nb; i++) {
  14857. uint32_t qh;
  14858. memcpy(&qh, &y[i].qh, sizeof(qh));
  14859. for (int j = 0; j < QK5_1; j += 2) {
  14860. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  14861. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  14862. // cast to 16 bins
  14863. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  14864. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  14865. hist[vi0]++;
  14866. hist[vi1]++;
  14867. }
  14868. }
  14869. }
  14870. return (n/QK5_1*sizeof(block_q5_1));
  14871. }
  14872. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  14873. assert(k % QK8_0 == 0);
  14874. const int nb = k / QK8_0;
  14875. for (int b = 0; b < n; b += k) {
  14876. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  14877. quantize_row_q8_0_reference(src + b, y, k);
  14878. for (int i = 0; i < nb; i++) {
  14879. for (int j = 0; j < QK8_0; ++j) {
  14880. const int8_t vi = y[i].qs[j];
  14881. hist[vi/16 + 8]++;
  14882. }
  14883. }
  14884. }
  14885. return (n/QK8_0*sizeof(block_q8_0));
  14886. }
  14887. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  14888. size_t result = 0;
  14889. switch (type) {
  14890. case GGML_TYPE_Q4_0:
  14891. {
  14892. GGML_ASSERT(start % QK4_0 == 0);
  14893. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  14894. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  14895. } break;
  14896. case GGML_TYPE_Q4_1:
  14897. {
  14898. GGML_ASSERT(start % QK4_1 == 0);
  14899. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  14900. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  14901. } break;
  14902. case GGML_TYPE_Q5_0:
  14903. {
  14904. GGML_ASSERT(start % QK5_0 == 0);
  14905. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  14906. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  14907. } break;
  14908. case GGML_TYPE_Q5_1:
  14909. {
  14910. GGML_ASSERT(start % QK5_1 == 0);
  14911. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  14912. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  14913. } break;
  14914. case GGML_TYPE_Q8_0:
  14915. {
  14916. GGML_ASSERT(start % QK8_0 == 0);
  14917. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  14918. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  14919. } break;
  14920. #ifdef GGML_USE_K_QUANTS
  14921. case GGML_TYPE_Q2_K:
  14922. {
  14923. GGML_ASSERT(start % QK_K == 0);
  14924. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  14925. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  14926. } break;
  14927. case GGML_TYPE_Q3_K:
  14928. {
  14929. GGML_ASSERT(start % QK_K == 0);
  14930. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  14931. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  14932. } break;
  14933. case GGML_TYPE_Q4_K:
  14934. {
  14935. GGML_ASSERT(start % QK_K == 0);
  14936. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  14937. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  14938. } break;
  14939. case GGML_TYPE_Q5_K:
  14940. {
  14941. GGML_ASSERT(start % QK_K == 0);
  14942. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  14943. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  14944. } break;
  14945. case GGML_TYPE_Q6_K:
  14946. {
  14947. GGML_ASSERT(start % QK_K == 0);
  14948. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  14949. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  14950. } break;
  14951. #endif
  14952. case GGML_TYPE_F16:
  14953. {
  14954. int elemsize = sizeof(ggml_fp16_t);
  14955. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  14956. result = n * elemsize;
  14957. } break;
  14958. case GGML_TYPE_F32:
  14959. {
  14960. int elemsize = sizeof(float);
  14961. result = n * elemsize;
  14962. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  14963. } break;
  14964. default:
  14965. assert(false);
  14966. }
  14967. return result;
  14968. }
  14969. ////////////////////////////////////////////////////////////////////////////////
  14970. int ggml_cpu_has_avx(void) {
  14971. #if defined(__AVX__)
  14972. return 1;
  14973. #else
  14974. return 0;
  14975. #endif
  14976. }
  14977. int ggml_cpu_has_avx2(void) {
  14978. #if defined(__AVX2__)
  14979. return 1;
  14980. #else
  14981. return 0;
  14982. #endif
  14983. }
  14984. int ggml_cpu_has_avx512(void) {
  14985. #if defined(__AVX512F__)
  14986. return 1;
  14987. #else
  14988. return 0;
  14989. #endif
  14990. }
  14991. int ggml_cpu_has_avx512_vbmi(void) {
  14992. #if defined(__AVX512VBMI__)
  14993. return 1;
  14994. #else
  14995. return 0;
  14996. #endif
  14997. }
  14998. int ggml_cpu_has_avx512_vnni(void) {
  14999. #if defined(__AVX512VNNI__)
  15000. return 1;
  15001. #else
  15002. return 0;
  15003. #endif
  15004. }
  15005. int ggml_cpu_has_fma(void) {
  15006. #if defined(__FMA__)
  15007. return 1;
  15008. #else
  15009. return 0;
  15010. #endif
  15011. }
  15012. int ggml_cpu_has_neon(void) {
  15013. #if defined(__ARM_NEON)
  15014. return 1;
  15015. #else
  15016. return 0;
  15017. #endif
  15018. }
  15019. int ggml_cpu_has_arm_fma(void) {
  15020. #if defined(__ARM_FEATURE_FMA)
  15021. return 1;
  15022. #else
  15023. return 0;
  15024. #endif
  15025. }
  15026. int ggml_cpu_has_f16c(void) {
  15027. #if defined(__F16C__)
  15028. return 1;
  15029. #else
  15030. return 0;
  15031. #endif
  15032. }
  15033. int ggml_cpu_has_fp16_va(void) {
  15034. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15035. return 1;
  15036. #else
  15037. return 0;
  15038. #endif
  15039. }
  15040. int ggml_cpu_has_wasm_simd(void) {
  15041. #if defined(__wasm_simd128__)
  15042. return 1;
  15043. #else
  15044. return 0;
  15045. #endif
  15046. }
  15047. int ggml_cpu_has_blas(void) {
  15048. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15049. return 1;
  15050. #else
  15051. return 0;
  15052. #endif
  15053. }
  15054. int ggml_cpu_has_cublas(void) {
  15055. #if defined(GGML_USE_CUBLAS)
  15056. return 1;
  15057. #else
  15058. return 0;
  15059. #endif
  15060. }
  15061. int ggml_cpu_has_clblast(void) {
  15062. #if defined(GGML_USE_CLBLAST)
  15063. return 1;
  15064. #else
  15065. return 0;
  15066. #endif
  15067. }
  15068. int ggml_cpu_has_gpublas(void) {
  15069. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15070. }
  15071. int ggml_cpu_has_sse3(void) {
  15072. #if defined(__SSE3__)
  15073. return 1;
  15074. #else
  15075. return 0;
  15076. #endif
  15077. }
  15078. int ggml_cpu_has_vsx(void) {
  15079. #if defined(__POWER9_VECTOR__)
  15080. return 1;
  15081. #else
  15082. return 0;
  15083. #endif
  15084. }
  15085. ////////////////////////////////////////////////////////////////////////////////