1
0

llama-model-loader.cpp 47 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163
  1. #include "llama-model-loader.h"
  2. #include "ggml.h"
  3. #include <array>
  4. #include <cinttypes>
  5. #include <cstring>
  6. #include <future>
  7. static const size_t kiB = 1024;
  8. static const size_t MiB = 1024*kiB;
  9. static const size_t GiB = 1024*MiB;
  10. const char * llama_file_version_name(llama_fver version) {
  11. switch (version) {
  12. case GGUF_FILE_VERSION_V1: return "GGUF V1 (support until nov 2023)";
  13. case GGUF_FILE_VERSION_V2: return "GGUF V2";
  14. case GGUF_FILE_VERSION_V3: return "GGUF V3 (latest)";
  15. }
  16. return "unknown";
  17. }
  18. static std::string llama_model_ftype_name(llama_ftype ftype) {
  19. if (ftype & LLAMA_FTYPE_GUESSED) {
  20. return llama_model_ftype_name((enum llama_ftype) (ftype & ~LLAMA_FTYPE_GUESSED)) + " (guessed)";
  21. }
  22. switch (ftype) {
  23. case LLAMA_FTYPE_ALL_F32: return "all F32";
  24. case LLAMA_FTYPE_MOSTLY_F16: return "F16";
  25. case LLAMA_FTYPE_MOSTLY_BF16: return "BF16";
  26. case LLAMA_FTYPE_MOSTLY_Q4_0: return "Q4_0";
  27. case LLAMA_FTYPE_MOSTLY_Q4_1: return "Q4_1";
  28. case LLAMA_FTYPE_MOSTLY_Q5_0: return "Q5_0";
  29. case LLAMA_FTYPE_MOSTLY_Q5_1: return "Q5_1";
  30. case LLAMA_FTYPE_MOSTLY_Q8_0: return "Q8_0";
  31. case LLAMA_FTYPE_MOSTLY_Q2_K: return "Q2_K - Medium";
  32. case LLAMA_FTYPE_MOSTLY_Q2_K_S: return "Q2_K - Small";
  33. case LLAMA_FTYPE_MOSTLY_Q3_K_S: return "Q3_K - Small";
  34. case LLAMA_FTYPE_MOSTLY_Q3_K_M: return "Q3_K - Medium";
  35. case LLAMA_FTYPE_MOSTLY_Q3_K_L: return "Q3_K - Large";
  36. case LLAMA_FTYPE_MOSTLY_Q4_K_S: return "Q4_K - Small";
  37. case LLAMA_FTYPE_MOSTLY_Q4_K_M: return "Q4_K - Medium";
  38. case LLAMA_FTYPE_MOSTLY_Q5_K_S: return "Q5_K - Small";
  39. case LLAMA_FTYPE_MOSTLY_Q5_K_M: return "Q5_K - Medium";
  40. case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K";
  41. case LLAMA_FTYPE_MOSTLY_TQ1_0: return "TQ1_0 - 1.69 bpw ternary";
  42. case LLAMA_FTYPE_MOSTLY_TQ2_0: return "TQ2_0 - 2.06 bpw ternary";
  43. case LLAMA_FTYPE_MOSTLY_IQ2_XXS: return "IQ2_XXS - 2.0625 bpw";
  44. case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw";
  45. case LLAMA_FTYPE_MOSTLY_IQ2_S: return "IQ2_S - 2.5 bpw";
  46. case LLAMA_FTYPE_MOSTLY_IQ2_M: return "IQ2_M - 2.7 bpw";
  47. case LLAMA_FTYPE_MOSTLY_IQ3_XS: return "IQ3_XS - 3.3 bpw";
  48. case LLAMA_FTYPE_MOSTLY_IQ3_XXS: return "IQ3_XXS - 3.0625 bpw";
  49. case LLAMA_FTYPE_MOSTLY_IQ1_S: return "IQ1_S - 1.5625 bpw";
  50. case LLAMA_FTYPE_MOSTLY_IQ1_M: return "IQ1_M - 1.75 bpw";
  51. case LLAMA_FTYPE_MOSTLY_IQ4_NL: return "IQ4_NL - 4.5 bpw";
  52. case LLAMA_FTYPE_MOSTLY_IQ4_XS: return "IQ4_XS - 4.25 bpw";
  53. case LLAMA_FTYPE_MOSTLY_IQ3_S: return "IQ3_S - 3.4375 bpw";
  54. case LLAMA_FTYPE_MOSTLY_IQ3_M: return "IQ3_S mix - 3.66 bpw";
  55. default: return "unknown, may not work";
  56. }
  57. }
  58. // return a list of splits for a given path
  59. // for example, given "<name>-00002-of-00004.gguf", returns list of all 4 splits
  60. static std::vector<std::string> llama_get_list_splits(const std::string & path, const int idx, const int n_split) {
  61. std::vector<std::string> paths;
  62. std::string split_prefix;
  63. std::vector<char> buf(llama_path_max(), 0);
  64. {
  65. int ret = llama_split_prefix(buf.data(), buf.size(), path.c_str(), idx, n_split);
  66. if (!ret) {
  67. throw std::runtime_error(format("invalid split file name: %s", path.c_str()));
  68. }
  69. split_prefix = std::string(buf.data(), ret);
  70. }
  71. if (split_prefix.empty()) {
  72. throw std::runtime_error(format("invalid split file: %s", path.c_str()));
  73. }
  74. for (int idx = 0; idx < n_split; ++idx) {
  75. int ret = llama_split_path(buf.data(), buf.size(), split_prefix.c_str(), idx, n_split);
  76. paths.push_back(std::string(buf.data(), ret));
  77. }
  78. return paths;
  79. }
  80. namespace GGUFMeta {
  81. template <typename T, gguf_type gt_, T (*gfun)(const gguf_context *, const int64_t)>
  82. struct GKV_Base_Type {
  83. static constexpr gguf_type gt = gt_;
  84. static T getter(const gguf_context * ctx, const int kid) {
  85. return gfun(ctx, kid);
  86. }
  87. };
  88. template<typename T> struct GKV_Base;
  89. template<> struct GKV_Base<bool >: GKV_Base_Type<bool, GGUF_TYPE_BOOL, gguf_get_val_bool> {};
  90. template<> struct GKV_Base<uint8_t >: GKV_Base_Type<uint8_t, GGUF_TYPE_UINT8, gguf_get_val_u8 > {};
  91. template<> struct GKV_Base<uint16_t >: GKV_Base_Type<uint16_t, GGUF_TYPE_UINT16, gguf_get_val_u16 > {};
  92. template<> struct GKV_Base<uint32_t >: GKV_Base_Type<uint32_t, GGUF_TYPE_UINT32, gguf_get_val_u32 > {};
  93. template<> struct GKV_Base<uint64_t >: GKV_Base_Type<uint64_t, GGUF_TYPE_UINT64, gguf_get_val_u64 > {};
  94. template<> struct GKV_Base<int8_t >: GKV_Base_Type<int8_t, GGUF_TYPE_INT8, gguf_get_val_i8 > {};
  95. template<> struct GKV_Base<int16_t >: GKV_Base_Type<int16_t, GGUF_TYPE_INT16, gguf_get_val_i16 > {};
  96. template<> struct GKV_Base<int32_t >: GKV_Base_Type<int32_t, GGUF_TYPE_INT32, gguf_get_val_i32 > {};
  97. template<> struct GKV_Base<int64_t >: GKV_Base_Type<int64_t, GGUF_TYPE_INT64, gguf_get_val_i64 > {};
  98. template<> struct GKV_Base<float >: GKV_Base_Type<float, GGUF_TYPE_FLOAT32, gguf_get_val_f32 > {};
  99. template<> struct GKV_Base<double >: GKV_Base_Type<double, GGUF_TYPE_FLOAT64, gguf_get_val_f64 > {};
  100. template<> struct GKV_Base<const char *>: GKV_Base_Type<const char *, GGUF_TYPE_STRING, gguf_get_val_str > {};
  101. template<> struct GKV_Base<std::string> {
  102. static constexpr gguf_type gt = GGUF_TYPE_STRING;
  103. static std::string getter(const gguf_context * ctx, const int kid) {
  104. return gguf_get_val_str(ctx, kid);
  105. }
  106. };
  107. struct ArrayInfo {
  108. const gguf_type gt;
  109. const size_t length;
  110. const void * data;
  111. };
  112. template<> struct GKV_Base<ArrayInfo> {
  113. public:
  114. static constexpr gguf_type gt = GGUF_TYPE_ARRAY;
  115. static ArrayInfo getter(const gguf_context *ctx, const int k) {
  116. const enum gguf_type arr_type = gguf_get_arr_type(ctx, k);
  117. return ArrayInfo {
  118. arr_type,
  119. size_t(gguf_get_arr_n(ctx, k)),
  120. arr_type == GGUF_TYPE_STRING ? nullptr : gguf_get_arr_data(ctx, k),
  121. };
  122. }
  123. };
  124. template<typename T>
  125. class GKV : public GKV_Base<T> {
  126. GKV() = delete;
  127. public:
  128. static T get_kv(const gguf_context * ctx, const int k) {
  129. const enum gguf_type kt = gguf_get_kv_type(ctx, k);
  130. if (kt != GKV::gt) {
  131. throw std::runtime_error(format("key %s has wrong type %s but expected type %s",
  132. gguf_get_key(ctx, k), gguf_type_name(kt), gguf_type_name(GKV::gt)));
  133. }
  134. return GKV::getter(ctx, k);
  135. }
  136. static const char * override_type_to_str(const llama_model_kv_override_type ty) {
  137. switch (ty) {
  138. case LLAMA_KV_OVERRIDE_TYPE_BOOL: return "bool";
  139. case LLAMA_KV_OVERRIDE_TYPE_INT: return "int";
  140. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: return "float";
  141. case LLAMA_KV_OVERRIDE_TYPE_STR: return "str";
  142. }
  143. return "unknown";
  144. }
  145. static bool validate_override(const llama_model_kv_override_type expected_type, const struct llama_model_kv_override * ovrd) {
  146. if (!ovrd) { return false; }
  147. if (ovrd->tag == expected_type) {
  148. LLAMA_LOG_INFO("%s: Using metadata override (%5s) '%s' = ",
  149. __func__, override_type_to_str(ovrd->tag), ovrd->key);
  150. switch (ovrd->tag) {
  151. case LLAMA_KV_OVERRIDE_TYPE_BOOL: {
  152. LLAMA_LOG_INFO("%s\n", ovrd->val_bool ? "true" : "false");
  153. } break;
  154. case LLAMA_KV_OVERRIDE_TYPE_INT: {
  155. LLAMA_LOG_INFO("%" PRId64 "\n", ovrd->val_i64);
  156. } break;
  157. case LLAMA_KV_OVERRIDE_TYPE_FLOAT: {
  158. LLAMA_LOG_INFO("%.6f\n", ovrd->val_f64);
  159. } break;
  160. case LLAMA_KV_OVERRIDE_TYPE_STR: {
  161. LLAMA_LOG_INFO("%s\n", ovrd->val_str);
  162. } break;
  163. default:
  164. // Shouldn't be possible to end up here, but just in case...
  165. throw std::runtime_error(
  166. format("Unsupported attempt to override %s type for metadata key %s\n",
  167. override_type_to_str(ovrd->tag), ovrd->key));
  168. }
  169. return true;
  170. }
  171. LLAMA_LOG_WARN("%s: Warning: Bad metadata override type for key '%s', expected %s but got %s\n",
  172. __func__, ovrd->key, override_type_to_str(expected_type), override_type_to_str(ovrd->tag));
  173. return false;
  174. }
  175. template<typename OT>
  176. static typename std::enable_if<std::is_same<OT, bool>::value, bool>::type
  177. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  178. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_BOOL, ovrd)) {
  179. target = ovrd->val_bool;
  180. return true;
  181. }
  182. return false;
  183. }
  184. template<typename OT>
  185. static typename std::enable_if<!std::is_same<OT, bool>::value && std::is_integral<OT>::value, bool>::type
  186. try_override(OT & target, const struct llama_model_kv_override * ovrd) {
  187. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_INT, ovrd)) {
  188. target = ovrd->val_i64;
  189. return true;
  190. }
  191. return false;
  192. }
  193. template<typename OT>
  194. static typename std::enable_if<std::is_floating_point<OT>::value, bool>::type
  195. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  196. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_FLOAT, ovrd)) {
  197. target = ovrd->val_f64;
  198. return true;
  199. }
  200. return false;
  201. }
  202. template<typename OT>
  203. static typename std::enable_if<std::is_same<OT, std::string>::value, bool>::type
  204. try_override(T & target, const struct llama_model_kv_override * ovrd) {
  205. if (validate_override(LLAMA_KV_OVERRIDE_TYPE_STR, ovrd)) {
  206. target = ovrd->val_str;
  207. return true;
  208. }
  209. return false;
  210. }
  211. static bool set(const gguf_context * ctx, const int k, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  212. if (try_override<T>(target, ovrd)) {
  213. return true;
  214. }
  215. if (k < 0) { return false; }
  216. target = get_kv(ctx, k);
  217. return true;
  218. }
  219. static bool set(const gguf_context * ctx, const char * key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  220. return set(ctx, gguf_find_key(ctx, key), target, ovrd);
  221. }
  222. static bool set(const gguf_context * ctx, const std::string & key, T & target, const struct llama_model_kv_override * ovrd = nullptr) {
  223. return set(ctx, key.c_str(), target, ovrd);
  224. }
  225. };
  226. }
  227. template<typename T>
  228. typename std::enable_if<std::is_integral<T>::value, bool>::type
  229. llama_model_loader::get_arr_n(const std::string & key, T & result, bool required) {
  230. const int kid = gguf_find_key(meta.get(), key.c_str());
  231. if (kid < 0) {
  232. if (required) {
  233. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  234. }
  235. return false;
  236. }
  237. struct GGUFMeta::ArrayInfo arr_info =
  238. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
  239. result = arr_info.length;
  240. return true;
  241. }
  242. template<typename T>
  243. typename std::enable_if<std::is_integral<T>::value, bool>::type
  244. llama_model_loader::get_arr_n(enum llm_kv kid, T & result, bool required) {
  245. return get_arr_n(llm_kv(kid), result, required);
  246. }
  247. template bool llama_model_loader::get_arr_n(enum llm_kv kid, uint32_t & result, bool required);
  248. template<typename T>
  249. bool llama_model_loader::get_arr(const std::string & key, std::vector<T> & result, bool required) {
  250. const gguf_context * ctx = meta.get();
  251. const int kid = gguf_find_key(ctx, key.c_str());
  252. if (kid < 0 || gguf_get_kv_type(ctx, kid) != GGUF_TYPE_ARRAY) {
  253. if (required) {
  254. throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
  255. }
  256. return false;
  257. }
  258. struct GGUFMeta::ArrayInfo arr_info =
  259. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx, kid);
  260. switch (arr_info.gt) {
  261. case GGUF_TYPE_UINT32:
  262. case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
  263. (std::is_same<T, uint32_t>::value)); break;
  264. case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
  265. case GGUF_TYPE_STRING: GGML_ASSERT((std::is_same<T, std::string>::value)); break;
  266. default:
  267. throw std::runtime_error(format("%s is not a string/float32/uint32/int32 array", key.c_str()));
  268. }
  269. if constexpr (std::is_same<T, std::string>::value) {
  270. const size_t n_items = gguf_get_arr_n(ctx, kid);
  271. result.clear();
  272. for (size_t i = 0; i < n_items; i++) {
  273. const T value = gguf_get_arr_str(ctx, kid, i);
  274. result.emplace_back(value);
  275. }
  276. } else {
  277. result.resize(arr_info.length);
  278. result.assign((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length);
  279. }
  280. return true;
  281. }
  282. template<typename T, size_t N_MAX>
  283. bool llama_model_loader::get_arr(const std::string & key, std::array<T, N_MAX> & result, bool required) {
  284. const gguf_context * ctx = meta.get();
  285. const int kid = gguf_find_key(ctx, key.c_str());
  286. if (kid < 0 || gguf_get_kv_type(ctx, kid) != GGUF_TYPE_ARRAY) {
  287. if (required) {
  288. throw std::runtime_error(format("array key not found in model: %s", key.c_str()));
  289. }
  290. return false;
  291. }
  292. struct GGUFMeta::ArrayInfo arr_info =
  293. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(ctx, kid);
  294. switch (arr_info.gt) {
  295. case GGUF_TYPE_UINT32:
  296. case GGUF_TYPE_INT32: GGML_ASSERT((std::is_same<T, int32_t>::value) ||
  297. (std::is_same<T, uint32_t>::value)); break;
  298. case GGUF_TYPE_FLOAT32: GGML_ASSERT((std::is_same<T, float>::value)); break;
  299. case GGUF_TYPE_STRING: GGML_ASSERT((std::is_same<T, std::string>::value)); break;
  300. default:
  301. throw std::runtime_error(format("%s is not a string/float32/uint32/int32 array", key.c_str()));
  302. }
  303. if (arr_info.length > N_MAX) {
  304. throw std::runtime_error(format("array length %u for key %s exceeds max %u", (uint32_t) arr_info.length, key.c_str(), (uint32_t) N_MAX));
  305. }
  306. if constexpr (std::is_same<T, std::string>::value) {
  307. const size_t n_items = gguf_get_arr_n(ctx, kid);
  308. for (size_t i = 0; i < n_items; i++) {
  309. const T value = gguf_get_arr_str(ctx, kid, i);
  310. result[i] = value;
  311. }
  312. } else {
  313. std::copy((const T*)arr_info.data, (const T *)arr_info.data + arr_info.length, result.begin());
  314. }
  315. return true;
  316. }
  317. template<typename T>
  318. bool llama_model_loader::get_arr(enum llm_kv kid, T & result, bool required) {
  319. return get_arr(llm_kv(kid), result, required);
  320. }
  321. template bool llama_model_loader::get_arr<std::vector<std::string>>(enum llm_kv kid, std::vector<std::string> & result, bool required);
  322. template<typename T>
  323. bool llama_model_loader::get_key(const std::string & key, T & result, bool required) {
  324. auto it = kv_overrides.find(key);
  325. const struct llama_model_kv_override * override =
  326. it != kv_overrides.end() ? &it->second : nullptr;
  327. const bool found = GGUFMeta::GKV<T>::set(meta.get(), key, result, override);
  328. if (required && !found) {
  329. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  330. }
  331. return found;
  332. }
  333. template<typename T>
  334. bool llama_model_loader::get_key(enum llm_kv kid, T & result, bool required) {
  335. return get_key(llm_kv(kid), result, required);
  336. }
  337. template bool llama_model_loader::get_key<bool> (enum llm_kv kid, bool & result, bool required);
  338. template bool llama_model_loader::get_key<float> (enum llm_kv kid, float & result, bool required);
  339. template bool llama_model_loader::get_key<uint32_t> (enum llm_kv kid, uint32_t & result, bool required);
  340. template bool llama_model_loader::get_key<std::string>(enum llm_kv kid, std::string & result, bool required);
  341. template<>
  342. bool llama_model_loader::get_key(enum llm_kv kid, enum llama_pooling_type & result, bool required) {
  343. uint32_t tmp;
  344. const bool found = get_key(kid, tmp, required);
  345. if (found) {
  346. result = (enum llama_pooling_type) tmp;
  347. } else {
  348. result = LLAMA_POOLING_TYPE_UNSPECIFIED;
  349. }
  350. return found;
  351. }
  352. // get array of n <= N_MAX elements, or a single element repeated n times
  353. template<typename T, size_t N_MAX>
  354. bool llama_model_loader::get_key_or_arr(const std::string & key, std::array<T, N_MAX> & result, uint32_t n, bool required) {
  355. const int kid = gguf_find_key(meta.get(), key.c_str());
  356. if (kid < 0) {
  357. if (required) {
  358. throw std::runtime_error(format("key not found in model: %s", key.c_str()));
  359. }
  360. return false;
  361. }
  362. if (n > N_MAX) {
  363. throw std::runtime_error(format("n > N_MAX: %u > %u for key %s", (uint32_t) n, (uint32_t) N_MAX, key.c_str()));
  364. }
  365. if (gguf_get_kv_type(meta.get(), kid) == GGUF_TYPE_ARRAY) {
  366. struct GGUFMeta::ArrayInfo arr_info =
  367. GGUFMeta::GKV<GGUFMeta::ArrayInfo>::get_kv(meta.get(), kid);
  368. if (n != arr_info.length) {
  369. throw std::runtime_error(format("key %s has wrong array length; expected %u, got %u", key.c_str(), n, (uint32_t) arr_info.length));
  370. }
  371. return get_arr(key, result, required);
  372. }
  373. T value;
  374. bool ok = get_key(key, value, required);
  375. if (!ok) {
  376. return false;
  377. }
  378. for (uint32_t i = 0; i < n; i++) {
  379. result[i] = value;
  380. }
  381. return true;
  382. }
  383. template<typename T>
  384. bool llama_model_loader::get_key_or_arr(enum llm_kv kid, T & result, uint32_t n, bool required) {
  385. return get_key_or_arr(llm_kv(kid), result, n, required);
  386. }
  387. // TODO: this is not very clever - figure out something better
  388. template bool llama_model_loader::get_key_or_arr<std::array<int, 4>>(enum llm_kv kid, std::array<int, 4> & result, uint32_t n, bool required);
  389. template bool llama_model_loader::get_key_or_arr<std::array<uint32_t, 512>>(enum llm_kv kid, std::array<uint32_t, 512> & result, uint32_t n, bool required);
  390. llama_model_loader::llama_model_loader(
  391. const std::string & fname,
  392. std::vector<std::string> & splits,
  393. bool use_mmap,
  394. bool check_tensors,
  395. const llama_model_kv_override * param_overrides_p,
  396. const llama_model_tensor_buft_override * param_tensor_buft_overrides_p) {
  397. int trace = 0;
  398. if (getenv("LLAMA_TRACE")) {
  399. trace = atoi(getenv("LLAMA_TRACE"));
  400. }
  401. if (param_overrides_p != nullptr) {
  402. for (const struct llama_model_kv_override * p = param_overrides_p; p->key[0] != 0; p++) {
  403. kv_overrides.insert({std::string(p->key), *p});
  404. }
  405. }
  406. tensor_buft_overrides = param_tensor_buft_overrides_p;
  407. // Load the main GGUF
  408. struct ggml_context * ctx = NULL;
  409. struct gguf_init_params params = {
  410. /*.no_alloc = */ true,
  411. /*.ctx = */ &ctx,
  412. };
  413. meta.reset(gguf_init_from_file(fname.c_str(), params));
  414. if (!meta) {
  415. throw std::runtime_error(format("%s: failed to load model from %s", __func__, fname.c_str()));
  416. }
  417. get_key(llm_kv(LLM_KV_GENERAL_ARCHITECTURE), arch_name, false);
  418. llm_kv = LLM_KV(llm_arch_from_string(arch_name));
  419. files.emplace_back(new llama_file(fname.c_str(), "rb"));
  420. contexts.emplace_back(ctx);
  421. // Save tensors data offset of the main file.
  422. // For subsidiary files, `meta` tensor data offset must not be used,
  423. // so we build a unified tensors index for weights.
  424. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  425. std::string tensor_name = std::string(cur->name);
  426. // make sure there is no duplicated tensor names
  427. if (weights_map.find(tensor_name) != weights_map.end()) {
  428. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
  429. }
  430. n_elements += ggml_nelements(cur);
  431. n_bytes += ggml_nbytes(cur);
  432. weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), 0, meta.get(), cur));
  433. }
  434. uint16_t n_split = 0;
  435. get_key(llm_kv(LLM_KV_SPLIT_COUNT), n_split, false);
  436. // Load additional GGML contexts
  437. if (n_split > 1) {
  438. // make sure the main file is loaded first
  439. uint16_t idx = 0;
  440. const std::string kv_split_no = llm_kv(LLM_KV_SPLIT_NO);
  441. get_key(kv_split_no, idx);
  442. if (idx != 0) {
  443. throw std::runtime_error(format("illegal split file idx: %d (file: %s), model must be loaded with the first split", idx, fname.c_str()));
  444. }
  445. // generate list of splits if needed
  446. if (splits.empty()) {
  447. splits = llama_get_list_splits(fname, idx, n_split);
  448. }
  449. // in case user give a custom list of splits, check if it matches the expected number
  450. if (n_split != (uint16_t)splits.size()) {
  451. throw std::runtime_error(format("invalid split count, given: %zu splits, but expected %d", splits.size(), n_split));
  452. }
  453. if (trace > 0) {
  454. LLAMA_LOG_INFO("%s: loading additional %d GGUFs\n", __func__, n_split);
  455. }
  456. // load other splits
  457. for (idx = 1; idx < n_split; idx++) {
  458. const char * fname_split = splits[idx].c_str();
  459. struct gguf_init_params split_params = {
  460. /*.no_alloc = */ true,
  461. /*.ctx = */ &ctx,
  462. };
  463. gguf_context_ptr ctx_gguf { gguf_init_from_file(fname_split, split_params) };
  464. if (!ctx_gguf) {
  465. throw std::runtime_error(format("%s: failed to load GGUF split from %s", __func__, fname_split));
  466. }
  467. // check idx
  468. {
  469. const int kid = gguf_find_key(ctx_gguf.get(), kv_split_no.c_str());
  470. if (kid < 0) {
  471. throw std::runtime_error(format("missing key %s in GGUF split %s", kv_split_no.c_str(), fname_split));
  472. }
  473. int idx_gguf = gguf_get_val_u16(ctx_gguf.get(), kid);
  474. if (idx_gguf != idx) {
  475. throw std::runtime_error(format("invalid split file idx: %d (file: %s), expected %d", idx_gguf, fname_split, idx));
  476. }
  477. }
  478. files.emplace_back(new llama_file(fname_split, "rb"));
  479. contexts.emplace_back(ctx);
  480. // Save tensors data offset info of the shard.
  481. for (ggml_tensor * cur = ggml_get_first_tensor(ctx); cur; cur = ggml_get_next_tensor(ctx, cur)) {
  482. std::string tensor_name = std::string(cur->name);
  483. // make sure there is no duplicated tensor names
  484. if (weights_map.find(tensor_name) != weights_map.end()) {
  485. throw std::runtime_error(format("invalid model: tensor '%s' is duplicated", ggml_get_name(cur)));
  486. }
  487. n_elements += ggml_nelements(cur);
  488. n_bytes += ggml_nbytes(cur);
  489. weights_map.emplace(tensor_name, llama_tensor_weight(files.back().get(), idx, ctx_gguf.get(), cur));
  490. }
  491. }
  492. get_key(llm_kv(LLM_KV_SPLIT_TENSORS_COUNT), n_tensors);
  493. // sanity check
  494. {
  495. const int n_tensors_loaded = (int) weights_map.size();
  496. if (n_tensors != n_tensors_loaded) {
  497. throw std::runtime_error(format("corrupted model: %d tensors expected but %d found", n_tensors, n_tensors_loaded));
  498. }
  499. }
  500. LLAMA_LOG_INFO("%s: additional %d GGUFs metadata loaded.\n", __func__, n_split - 1);
  501. }
  502. n_kv = gguf_get_n_kv(meta.get());
  503. n_tensors = weights_map.size();
  504. fver = (enum llama_fver) gguf_get_version(meta.get());
  505. LLAMA_LOG_INFO("%s: loaded meta data with %d key-value pairs and %d tensors from %s (version %s)\n",
  506. __func__, n_kv, n_tensors, fname.c_str(), llama_file_version_name(fver));
  507. // determine file type based on the number of tensors for each quantization and print meta data
  508. // TODO: make optional
  509. {
  510. std::map<enum ggml_type, uint32_t> n_type;
  511. uint32_t n_type_max = 0;
  512. enum ggml_type type_max = GGML_TYPE_F32;
  513. for (const auto & it : weights_map) {
  514. const llama_tensor_weight & w = it.second;
  515. const ggml_tensor * tensor = w.tensor;
  516. enum ggml_type type = tensor->type;
  517. n_type[type]++;
  518. if (n_type_max < n_type[type]) {
  519. n_type_max = n_type[type];
  520. type_max = type;
  521. }
  522. if (trace > 0) {
  523. const uint16_t sid = w.idx;
  524. LLAMA_LOG_INFO("%s: - tensor split %2d: %32s %-8s [ %s ] %8.2f MiB\n", __func__,
  525. sid, ggml_get_name(tensor), ggml_type_name(type), llama_format_tensor_shape(tensor).c_str(),
  526. ggml_nbytes(tensor)/1024.0f/1024.0f);
  527. }
  528. }
  529. switch (type_max) {
  530. case GGML_TYPE_F32: ftype = LLAMA_FTYPE_ALL_F32; break;
  531. case GGML_TYPE_F16: ftype = LLAMA_FTYPE_MOSTLY_F16; break;
  532. case GGML_TYPE_BF16: ftype = LLAMA_FTYPE_MOSTLY_BF16; break;
  533. case GGML_TYPE_Q4_0: ftype = LLAMA_FTYPE_MOSTLY_Q4_0; break;
  534. case GGML_TYPE_Q4_1: ftype = LLAMA_FTYPE_MOSTLY_Q4_1; break;
  535. case GGML_TYPE_Q5_0: ftype = LLAMA_FTYPE_MOSTLY_Q5_0; break;
  536. case GGML_TYPE_Q5_1: ftype = LLAMA_FTYPE_MOSTLY_Q5_1; break;
  537. case GGML_TYPE_Q8_0: ftype = LLAMA_FTYPE_MOSTLY_Q8_0; break;
  538. case GGML_TYPE_Q2_K: ftype = LLAMA_FTYPE_MOSTLY_Q2_K; break;
  539. case GGML_TYPE_Q3_K: ftype = LLAMA_FTYPE_MOSTLY_Q3_K_M; break;
  540. case GGML_TYPE_Q4_K: ftype = LLAMA_FTYPE_MOSTLY_Q4_K_M; break;
  541. case GGML_TYPE_Q5_K: ftype = LLAMA_FTYPE_MOSTLY_Q5_K_M; break;
  542. case GGML_TYPE_Q6_K: ftype = LLAMA_FTYPE_MOSTLY_Q6_K; break;
  543. case GGML_TYPE_TQ1_0: ftype = LLAMA_FTYPE_MOSTLY_TQ1_0; break;
  544. case GGML_TYPE_TQ2_0: ftype = LLAMA_FTYPE_MOSTLY_TQ2_0; break;
  545. case GGML_TYPE_IQ2_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XXS; break;
  546. case GGML_TYPE_IQ2_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ2_XS; break;
  547. case GGML_TYPE_IQ2_S: ftype = LLAMA_FTYPE_MOSTLY_IQ2_S; break;
  548. case GGML_TYPE_IQ3_XXS: ftype = LLAMA_FTYPE_MOSTLY_IQ3_XXS; break;
  549. case GGML_TYPE_IQ1_S: ftype = LLAMA_FTYPE_MOSTLY_IQ1_S; break;
  550. case GGML_TYPE_IQ1_M: ftype = LLAMA_FTYPE_MOSTLY_IQ1_M; break;
  551. case GGML_TYPE_IQ4_NL: ftype = LLAMA_FTYPE_MOSTLY_IQ4_NL; break;
  552. case GGML_TYPE_IQ4_XS: ftype = LLAMA_FTYPE_MOSTLY_IQ4_XS; break;
  553. case GGML_TYPE_IQ3_S: ftype = LLAMA_FTYPE_MOSTLY_IQ3_S; break;
  554. default:
  555. {
  556. LLAMA_LOG_WARN("%s: unknown type %s\n", __func__, ggml_type_name(type_max));
  557. ftype = LLAMA_FTYPE_ALL_F32;
  558. } break;
  559. }
  560. // this is a way to mark that we have "guessed" the file type
  561. ftype = (llama_ftype) (ftype | LLAMA_FTYPE_GUESSED);
  562. {
  563. uint32_t ftype_val = 0;
  564. if (get_key(LLM_KV_GENERAL_FILE_TYPE, ftype_val, false)) {
  565. ftype = (llama_ftype) ftype_val;
  566. }
  567. }
  568. LLAMA_LOG_INFO("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__);
  569. for (int i = 0; i < n_kv; i++) {
  570. const char * name = gguf_get_key(meta.get(), i);
  571. const enum gguf_type type = gguf_get_kv_type(meta.get(), i);
  572. const std::string type_name =
  573. type == GGUF_TYPE_ARRAY
  574. ? format("%s[%s,%zu]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(meta.get(), i)), gguf_get_arr_n(meta.get(), i))
  575. : gguf_type_name(type);
  576. std::string value = gguf_kv_to_str(meta.get(), i);
  577. const size_t MAX_VALUE_LEN = 40;
  578. if (value.size() > MAX_VALUE_LEN) {
  579. value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str());
  580. }
  581. replace_all(value, "\n", "\\n");
  582. LLAMA_LOG_INFO("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str());
  583. }
  584. // print type counts
  585. for (auto & kv : n_type) {
  586. if (kv.second == 0) {
  587. continue;
  588. }
  589. LLAMA_LOG_INFO("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second);
  590. }
  591. }
  592. if (!llama_mmap::SUPPORTED) {
  593. LLAMA_LOG_WARN("%s: mmap is not supported on this platform\n", __func__);
  594. use_mmap = false;
  595. }
  596. this->use_mmap = use_mmap;
  597. this->check_tensors = check_tensors;
  598. }
  599. std::string llama_model_loader::get_arch_name() const {
  600. return arch_name;
  601. }
  602. enum llm_arch llama_model_loader::get_arch() const {
  603. return llm_kv.arch;
  604. }
  605. const llama_model_loader::llama_tensor_weight * llama_model_loader::get_weight(const char * name) const {
  606. auto pos = weights_map.find(name);
  607. if (pos != weights_map.end()) {
  608. return &pos->second;
  609. }
  610. return nullptr;
  611. }
  612. const llama_model_loader::llama_tensor_weight & llama_model_loader::require_weight(const char * name) const {
  613. const llama_tensor_weight * weight = get_weight(name);
  614. if (!weight) {
  615. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name));
  616. }
  617. return *weight;
  618. }
  619. struct ggml_tensor * llama_model_loader::get_tensor_meta(const char * name) const {
  620. const auto * weight = get_weight(name);
  621. if (!weight) {
  622. return nullptr;
  623. }
  624. return weight->tensor;
  625. }
  626. struct ggml_tensor * llama_model_loader::require_tensor_meta(const std::string & name) const {
  627. struct ggml_tensor * tensor = get_tensor_meta(name.c_str());
  628. if (!tensor) {
  629. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  630. }
  631. return tensor;
  632. }
  633. const struct ggml_tensor * llama_model_loader::check_tensor_dims(const std::string & name, const std::vector<int64_t> & ne, bool required) const {
  634. const struct ggml_tensor * cur = get_tensor_meta(name.c_str());
  635. if (cur == NULL) {
  636. if (!required) {
  637. return NULL;
  638. }
  639. throw std::runtime_error(format("%s: tensor '%s' not found", __func__, name.c_str()));
  640. }
  641. {
  642. bool is_ok = true;
  643. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  644. if ((i < ne.size() && ne[i] != cur->ne[i]) || (i >= ne.size() && cur->ne[i] != 1)) {
  645. is_ok = false;
  646. break;
  647. }
  648. }
  649. if (!is_ok) {
  650. throw std::runtime_error(
  651. format("%s: tensor '%s' has wrong shape; expected %s, got %s",
  652. __func__, name.c_str(),
  653. llama_format_tensor_shape(ne).c_str(),
  654. llama_format_tensor_shape(cur).c_str()));
  655. }
  656. }
  657. return cur;
  658. }
  659. struct ggml_tensor * llama_model_loader::create_tensor(struct ggml_context * ctx, const std::string & name, const std::initializer_list<int64_t> & ne, int flags) {
  660. const struct ggml_tensor * cur = check_tensor_dims(name, ne, !(flags & TENSOR_NOT_REQUIRED));
  661. if (cur == NULL) {
  662. return NULL;
  663. }
  664. bool duplicated = flags & TENSOR_DUPLICATED;
  665. struct ggml_tensor * tensor = ggml_dup_tensor(ctx, cur);
  666. ggml_set_name(tensor, ggml_get_name(cur));
  667. if (duplicated) {
  668. size_data += ggml_nbytes(cur);
  669. } else {
  670. n_created++;
  671. }
  672. return tensor;
  673. }
  674. struct ggml_tensor * llama_model_loader::create_tensor_as_view(struct ggml_context * ctx, struct ggml_tensor * base, const std::string & name, const std::initializer_list<int64_t> & ne, size_t offset, bool required) {
  675. const struct ggml_tensor * cur = check_tensor_dims(name, ne, required);
  676. if (cur == NULL) {
  677. return NULL;
  678. }
  679. if (cur->type != base->type) {
  680. throw std::runtime_error(format("%s: tensor '%s' has wrong type; expected %s, got %s", __func__, name.c_str(), ggml_type_name(base->type), ggml_type_name(cur->type)));
  681. }
  682. std::array<int64_t, GGML_MAX_DIMS> dims;
  683. for (size_t i = 0; i < GGML_MAX_DIMS; ++i) {
  684. dims[i] = i < ne.size() ? ne.begin()[i] : 1;
  685. }
  686. struct ggml_tensor * tensor = ggml_view_4d(ctx, base,
  687. dims[0], dims[1], dims[2], dims[3],
  688. cur->nb[1], cur->nb[2], cur->nb[3],
  689. offset);
  690. ggml_set_name(tensor, name.c_str());
  691. n_created++;
  692. return tensor;
  693. }
  694. void llama_model_loader::done_getting_tensors() const {
  695. if (n_created != n_tensors) {
  696. throw std::runtime_error(format("%s: wrong number of tensors; expected %d, got %d", __func__, n_tensors, n_created));
  697. }
  698. }
  699. void llama_model_loader::init_mappings(bool prefetch, llama_mlocks * mlock_mmaps) {
  700. if (use_mmap) {
  701. mappings.reserve(files.size());
  702. mmaps_used.reserve(files.size());
  703. for (const auto & file : files) {
  704. bool is_numa = false;
  705. auto * dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  706. if (dev) {
  707. auto * reg = ggml_backend_dev_backend_reg(dev);
  708. auto * is_numa_fn = (decltype(ggml_is_numa) *) ggml_backend_reg_get_proc_address(reg, "ggml_backend_cpu_is_numa");
  709. if (is_numa_fn) {
  710. is_numa = is_numa_fn();
  711. }
  712. }
  713. std::unique_ptr<llama_mmap> mapping = std::make_unique<llama_mmap>(file.get(), prefetch ? -1 : 0, is_numa);
  714. mmaps_used.emplace_back(mapping->size(), 0);
  715. if (mlock_mmaps) {
  716. std::unique_ptr<llama_mlock> mlock_mmap(new llama_mlock());
  717. mlock_mmap->init(mapping->addr());
  718. mlock_mmaps->emplace_back(std::move(mlock_mmap));
  719. }
  720. mappings.emplace_back(std::move(mapping));
  721. }
  722. }
  723. // compute the total size of all tensors for progress reporting
  724. for (const auto & it : weights_map) {
  725. size_data += ggml_nbytes(it.second.tensor);
  726. }
  727. }
  728. void llama_model_loader::get_mapping_range(size_t * first, size_t * last, void ** addr, int idx, ggml_context * ctx) const {
  729. GGML_ASSERT(!mappings.empty());
  730. const auto & mapping = mappings.at(idx);
  731. *first = mapping->size();
  732. *last = 0;
  733. *addr = mapping->addr();
  734. for (ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor; tensor = ggml_get_next_tensor(ctx, tensor)) {
  735. const auto * weight = get_weight(ggml_get_name(tensor));
  736. if (!weight || weight->idx != idx) {
  737. continue;
  738. }
  739. *first = std::min(*first, weight->offs);
  740. *last = std::max(*last, weight->offs + ggml_nbytes(tensor));
  741. }
  742. }
  743. void llama_model_loader::load_data_for(struct ggml_tensor * cur) const {
  744. const auto & w = require_weight(ggml_get_name(cur));
  745. if (use_mmap) {
  746. const auto & mapping = mappings.at(w.idx);
  747. if (cur->data == nullptr) {
  748. cur->data = (uint8_t *)mapping->addr() + w.offs;
  749. } else {
  750. memcpy(cur->data, (uint8_t *)mapping->addr() + w.offs, ggml_nbytes(cur));
  751. }
  752. } else {
  753. GGML_ASSERT(cur->data != nullptr);
  754. GGML_ASSERT(w.idx < files.size());
  755. const auto & file = files.at(w.idx);
  756. file->seek(w.offs, SEEK_SET);
  757. file->read_raw(cur->data, ggml_nbytes(cur));
  758. }
  759. if (check_tensors && !ggml_validate_row_data(cur->type, cur->data, ggml_nbytes(cur))) {
  760. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  761. }
  762. }
  763. bool llama_model_loader::load_all_data(
  764. struct ggml_context * ctx,
  765. llama_buf_map & bufs,
  766. llama_mlocks * lmlocks,
  767. llama_progress_callback progress_callback,
  768. void * progress_callback_user_data) {
  769. GGML_ASSERT(size_data != 0 && "call init_mappings() first");
  770. std::vector<no_init<uint8_t>> read_buf;
  771. std::vector<std::future<std::pair<ggml_tensor *, bool>>> validation_result;
  772. // 4 staging buffers for async uploads, each sized 1MB seems to be a good default for single NVMe drives.
  773. // NVMe raid configurations might require more / larger buffers.
  774. constexpr size_t n_buffers = 4;
  775. constexpr size_t buffer_size = 1 * 1024 * 1024; // 1MB
  776. std::vector<ggml_backend_buffer_t> host_buffers;
  777. std::vector<ggml_backend_event_t> events;
  778. std::vector<void *> host_ptrs;
  779. size_t buffer_idx = 0; // buffer to use for async loads
  780. ggml_backend_t upload_backend = [&](const char * func) -> ggml_backend_t {
  781. if (use_mmap || check_tensors) {
  782. return nullptr;
  783. }
  784. // When not using mmaped io use async uploads from pinned memory to GPU memory.
  785. // First determine if the backend supports the necessary features for async uploads.
  786. auto * buf = bufs.count(0) ? bufs.at(0) : nullptr;
  787. if (!buf) {
  788. LLAMA_LOG_DEBUG("%s: no buffer found for async uploads\n", func);
  789. return nullptr;
  790. }
  791. auto * buft = ggml_backend_buffer_get_type(buf);
  792. auto * dev = ggml_backend_buft_get_device(buft);
  793. if (!dev) {
  794. LLAMA_LOG_DEBUG("%s: no device found for buffer type %s for async uploads\n", func,
  795. ggml_backend_buft_name(buft));
  796. return nullptr;
  797. }
  798. if (buft != ggml_backend_dev_buffer_type(dev)) {
  799. LLAMA_LOG_DEBUG("%s: buffer type %s is not the default buffer type for device %s for async uploads\n", func,
  800. ggml_backend_buft_name(buft), ggml_backend_dev_name(dev));
  801. return nullptr;
  802. }
  803. ggml_backend_dev_props props;
  804. ggml_backend_dev_get_props(dev, &props);
  805. if (!props.caps.async || !props.caps.host_buffer || !props.caps.events) {
  806. LLAMA_LOG_DEBUG("%s: device %s does not support async, host buffers or events\n", func,
  807. ggml_backend_dev_name(dev));
  808. return nullptr;
  809. }
  810. auto * host_buft = ggml_backend_dev_host_buffer_type(dev);
  811. if (!host_buft) {
  812. LLAMA_LOG_DEBUG("%s: no host buffer type found for device %s\n", func,
  813. ggml_backend_dev_name(dev));
  814. return nullptr;
  815. }
  816. // If the backend is supported, create pinned memory buffers and events for synchronisation.
  817. for (size_t idx = 0; idx < n_buffers; ++idx) {
  818. auto * buf = ggml_backend_buft_alloc_buffer(host_buft, buffer_size);
  819. if (!buf) {
  820. LLAMA_LOG_DEBUG("%s: failed to allocate host buffer for async uploads for device %s\n", func,
  821. ggml_backend_dev_name(dev));
  822. return nullptr;
  823. }
  824. host_buffers.emplace_back(buf);
  825. host_ptrs.emplace_back(ggml_backend_buffer_get_base(buf));
  826. auto * event = ggml_backend_event_new(dev);
  827. if (!event) {
  828. LLAMA_LOG_DEBUG("%s: failed to create event for async uploads for device %s\n", func,
  829. ggml_backend_dev_name(dev));
  830. return nullptr;
  831. }
  832. events.emplace_back(event);
  833. }
  834. ggml_backend_t backend = ggml_backend_dev_init(dev, nullptr);
  835. if (!backend) {
  836. LLAMA_LOG_DEBUG("%s: failed to initialize backend for device %s for async uploads\n", func,
  837. ggml_backend_dev_name(dev));
  838. return nullptr;
  839. }
  840. return backend;
  841. }(__func__);
  842. if (upload_backend) {
  843. LLAMA_LOG_DEBUG("%s: using async uploads for device %s, buffer type %s, backend %s\n", __func__,
  844. ggml_backend_dev_name(ggml_backend_get_device(upload_backend)),
  845. ggml_backend_buft_name(ggml_backend_buffer_get_type(bufs.at(0))),
  846. ggml_backend_name(upload_backend));
  847. }
  848. for (struct ggml_tensor * cur = ggml_get_first_tensor(ctx); cur != NULL; cur = ggml_get_next_tensor(ctx, cur)) {
  849. const auto * weight = get_weight(ggml_get_name(cur));
  850. if (weight == nullptr) {
  851. // this can happen with split experts models
  852. continue;
  853. }
  854. if (progress_callback) {
  855. if (!progress_callback((float) size_done / size_data, progress_callback_user_data)) {
  856. return false;
  857. }
  858. }
  859. size_t n_size = ggml_nbytes(cur);
  860. if (use_mmap) {
  861. const auto & mapping = mappings.at(weight->idx);
  862. ggml_backend_buffer_t buf_mmap = nullptr;
  863. if (bufs.count(weight->idx)) {
  864. buf_mmap = bufs.at(weight->idx);
  865. }
  866. uint8_t * data = (uint8_t *) mapping->addr() + weight->offs;
  867. if (check_tensors) {
  868. validation_result.emplace_back(std::async(std::launch::async, [cur, data, n_size] {
  869. return std::make_pair(cur, ggml_validate_row_data(cur->type, data, n_size));
  870. }));
  871. }
  872. GGML_ASSERT(buf_mmap || cur->data); // either we have a buffer to allocate the tensor in, or it is already allocated
  873. if (buf_mmap && cur->data == nullptr) {
  874. ggml_backend_tensor_alloc(buf_mmap, cur, data);
  875. if (lmlocks) {
  876. const auto & lmlock = lmlocks->at(weight->idx);
  877. lmlock->grow_to(weight->offs + n_size);
  878. }
  879. auto & mmap_used = mmaps_used[weight->idx];
  880. mmap_used.first = std::min(mmap_used.first, weight->offs);
  881. mmap_used.second = std::max(mmap_used.second, weight->offs + n_size);
  882. } else {
  883. ggml_backend_tensor_set(cur, data, 0, n_size);
  884. }
  885. } else {
  886. const auto & file = files.at(weight->idx);
  887. if (ggml_backend_buffer_is_host(cur->buffer)) {
  888. file->seek(weight->offs, SEEK_SET);
  889. file->read_raw(cur->data, n_size);
  890. if (check_tensors) {
  891. validation_result.emplace_back(std::async(std::launch::async, [cur, n_size] {
  892. return std::make_pair(cur, ggml_validate_row_data(cur->type, cur->data, n_size));
  893. }));
  894. }
  895. } else {
  896. // If upload_backend is valid load the tensor in chunks to pinned memory and upload the buffers asynchronously to the GPU.
  897. if (upload_backend) {
  898. file->seek(weight->offs, SEEK_SET);
  899. size_t bytes_read = 0;
  900. while (bytes_read < n_size) {
  901. size_t read_iteration = std::min<size_t>(buffer_size, n_size - bytes_read);
  902. ggml_backend_event_synchronize(events[buffer_idx]);
  903. file->read_raw(host_ptrs[buffer_idx], read_iteration);
  904. ggml_backend_tensor_set_async(upload_backend, cur, host_ptrs[buffer_idx], bytes_read, read_iteration);
  905. ggml_backend_event_record(events[buffer_idx], upload_backend);
  906. bytes_read += read_iteration;
  907. ++buffer_idx;
  908. buffer_idx %= n_buffers;
  909. }
  910. } else {
  911. read_buf.resize(n_size);
  912. file->seek(weight->offs, SEEK_SET);
  913. file->read_raw(read_buf.data(), n_size);
  914. ggml_backend_tensor_set(cur, read_buf.data(), 0, n_size);
  915. if (check_tensors && !ggml_validate_row_data(cur->type, read_buf.data(), n_size)) {
  916. throw std::runtime_error(format("tensor '%s' has invalid data", ggml_get_name(cur)));
  917. }
  918. }
  919. }
  920. }
  921. size_done += n_size;
  922. }
  923. // free temporary resources used for async uploads
  924. for (auto * event : events) {
  925. ggml_backend_event_synchronize(event);
  926. ggml_backend_event_free(event);
  927. }
  928. for (auto * buf : host_buffers) {
  929. ggml_backend_buffer_free(buf);
  930. }
  931. ggml_backend_free(upload_backend);
  932. // check validation results
  933. bool validation_failed = false;
  934. for (auto & future : validation_result) {
  935. auto result = future.get();
  936. if (!result.second) {
  937. LLAMA_LOG_ERROR("%s: tensor '%s' has invalid data\n", __func__, ggml_get_name(result.first));
  938. validation_failed = true;
  939. }
  940. }
  941. if (validation_failed) {
  942. throw std::runtime_error("found tensors with invalid data");
  943. }
  944. // check if this is the last call and do final cleanup
  945. if (size_done >= size_data) {
  946. // unmap offloaded tensors and metadata
  947. if (use_mmap) {
  948. for (uint32_t idx = 0; idx < mappings.size(); idx++) {
  949. const auto & mmap_used = mmaps_used.at(idx);
  950. auto & mapping = mappings.at(idx);
  951. mapping->unmap_fragment(0, mmap_used.first);
  952. if (mmap_used.second != 0) {
  953. mapping->unmap_fragment(mmap_used.second, mapping->size());
  954. }
  955. }
  956. }
  957. if (progress_callback) {
  958. // Even though the model is done loading, we still honor
  959. // cancellation since we need to free allocations.
  960. return progress_callback(1.0f, progress_callback_user_data);
  961. }
  962. }
  963. return true;
  964. }
  965. std::string llama_model_loader::ftype_name() const {
  966. return llama_model_ftype_name(ftype);
  967. }
  968. void llama_model_loader::print_info() const {
  969. LLAMA_LOG_INFO("%s: file format = %s\n", __func__, llama_file_version_name(fver));
  970. LLAMA_LOG_INFO("%s: file type = %s\n", __func__, llama_model_ftype_name(ftype).c_str());
  971. if (n_bytes < GiB) {
  972. LLAMA_LOG_INFO("%s: file size = %.2f MiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0, n_bytes*8.0/n_elements);
  973. } else {
  974. LLAMA_LOG_INFO("%s: file size = %.2f GiB (%.2f BPW) \n", __func__, n_bytes/1024.0/1024.0/1024.0, n_bytes*8.0/n_elements);
  975. }
  976. }