ggml.c 412 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236
  1. // Defines CLOCK_MONOTONIC on Linux
  2. #define _GNU_SOURCE
  3. #include "ggml.h"
  4. #if defined(_MSC_VER) || defined(__MINGW32__)
  5. #include <malloc.h> // using malloc.h with MSC/MINGW
  6. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  7. #include <alloca.h>
  8. #endif
  9. #include <assert.h>
  10. #include <errno.h>
  11. #include <time.h>
  12. #include <math.h>
  13. #include <stdlib.h>
  14. #include <string.h>
  15. #include <stdint.h>
  16. #include <inttypes.h>
  17. #include <stdio.h>
  18. #include <float.h>
  19. #include <limits.h>
  20. // if C99 - static_assert is noop
  21. // ref: https://stackoverflow.com/a/53923785/4039976
  22. #ifndef static_assert
  23. #define static_assert(cond, msg) struct global_scope_noop_trick
  24. #endif
  25. #if defined(_WIN32)
  26. #include <windows.h>
  27. typedef volatile LONG atomic_int;
  28. typedef atomic_int atomic_bool;
  29. static void atomic_store(atomic_int* ptr, LONG val) {
  30. InterlockedExchange(ptr, val);
  31. }
  32. static LONG atomic_load(atomic_int* ptr) {
  33. return InterlockedCompareExchange(ptr, 0, 0);
  34. }
  35. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  36. return InterlockedExchangeAdd(ptr, inc);
  37. }
  38. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  39. return atomic_fetch_add(ptr, -(dec));
  40. }
  41. typedef HANDLE pthread_t;
  42. typedef DWORD thread_ret_t;
  43. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  44. (void) unused;
  45. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  46. if (handle == NULL)
  47. {
  48. return EAGAIN;
  49. }
  50. *out = handle;
  51. return 0;
  52. }
  53. static int pthread_join(pthread_t thread, void* unused) {
  54. (void) unused;
  55. return (int) WaitForSingleObject(thread, INFINITE);
  56. }
  57. static int sched_yield (void) {
  58. Sleep (0);
  59. return 0;
  60. }
  61. #else
  62. #include <pthread.h>
  63. #include <stdatomic.h>
  64. typedef void* thread_ret_t;
  65. #endif
  66. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  67. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  68. #ifndef __FMA__
  69. #define __FMA__
  70. #endif
  71. #ifndef __F16C__
  72. #define __F16C__
  73. #endif
  74. #ifndef __SSE3__
  75. #define __SSE3__
  76. #endif
  77. #endif
  78. #ifdef __HAIKU__
  79. #define static_assert(cond, msg) _Static_assert(cond, msg)
  80. #endif
  81. /*#define GGML_PERF*/
  82. #define GGML_DEBUG 0
  83. #define GGML_GELU_FP16
  84. #define GGML_SILU_FP16
  85. #define GGML_SOFT_MAX_UNROLL 4
  86. #define GGML_VEC_DOT_UNROLL 2
  87. #ifdef GGML_USE_ACCELERATE
  88. // uncomment to use vDSP for soft max computation
  89. // note: not sure if it is actually faster
  90. //#define GGML_SOFT_MAX_ACCELERATE
  91. #endif
  92. #if UINTPTR_MAX == 0xFFFFFFFF
  93. #define GGML_MEM_ALIGN 4
  94. #else
  95. #define GGML_MEM_ALIGN 16
  96. #endif
  97. #if defined(_MSC_VER) || defined(__MINGW32__)
  98. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  99. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  100. #else
  101. inline static void* ggml_aligned_malloc(size_t size) {
  102. void* aligned_memory = NULL;
  103. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  104. if (result != 0) {
  105. // Handle allocation failure
  106. return NULL;
  107. }
  108. return aligned_memory;
  109. }
  110. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  111. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  112. #endif
  113. #define UNUSED(x) (void)(x)
  114. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  115. #if defined(GGML_USE_ACCELERATE)
  116. #include <Accelerate/Accelerate.h>
  117. #elif defined(GGML_USE_OPENBLAS)
  118. #include <cblas.h>
  119. #elif defined(GGML_USE_CUBLAS)
  120. #include "ggml-cuda.h"
  121. #elif defined(GGML_USE_CLBLAST)
  122. #include "ggml-opencl.h"
  123. #endif
  124. #undef MIN
  125. #undef MAX
  126. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  127. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  128. // floating point type used to accumulate sums
  129. typedef double ggml_float;
  130. // 16-bit float
  131. // on Arm, we use __fp16
  132. // on x86, we use uint16_t
  133. #ifdef __ARM_NEON
  134. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  135. //
  136. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  137. //
  138. #include <arm_neon.h>
  139. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  140. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  141. #define GGML_FP16_TO_FP32(x) ((float) (x))
  142. #define GGML_FP32_TO_FP16(x) (x)
  143. #else
  144. #ifdef __wasm_simd128__
  145. #include <wasm_simd128.h>
  146. #else
  147. #ifdef __POWER9_VECTOR__
  148. #include <altivec.h>
  149. #undef bool
  150. #define bool _Bool
  151. #else
  152. #include <immintrin.h>
  153. #endif
  154. #endif
  155. #ifdef __F16C__
  156. #ifdef _MSC_VER
  157. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  158. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  159. #else
  160. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  161. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  162. #endif
  163. #elif defined(__POWER9_VECTOR__)
  164. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  165. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  166. /* the inline asm below is about 12% faster than the lookup method */
  167. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  168. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  169. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  170. register float f;
  171. register double d;
  172. __asm__(
  173. "mtfprd %0,%2\n"
  174. "xscvhpdp %0,%0\n"
  175. "frsp %1,%0\n" :
  176. /* temp */ "=d"(d),
  177. /* out */ "=f"(f):
  178. /* in */ "r"(h));
  179. return f;
  180. }
  181. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  182. register double d;
  183. register ggml_fp16_t r;
  184. __asm__( /* xscvdphp can work on double or single precision */
  185. "xscvdphp %0,%2\n"
  186. "mffprd %1,%0\n" :
  187. /* temp */ "=d"(d),
  188. /* out */ "=r"(r):
  189. /* in */ "f"(f));
  190. return r;
  191. }
  192. #else
  193. // FP16 <-> FP32
  194. // ref: https://github.com/Maratyszcza/FP16
  195. static inline float fp32_from_bits(uint32_t w) {
  196. union {
  197. uint32_t as_bits;
  198. float as_value;
  199. } fp32;
  200. fp32.as_bits = w;
  201. return fp32.as_value;
  202. }
  203. static inline uint32_t fp32_to_bits(float f) {
  204. union {
  205. float as_value;
  206. uint32_t as_bits;
  207. } fp32;
  208. fp32.as_value = f;
  209. return fp32.as_bits;
  210. }
  211. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  212. const uint32_t w = (uint32_t) h << 16;
  213. const uint32_t sign = w & UINT32_C(0x80000000);
  214. const uint32_t two_w = w + w;
  215. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  216. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  217. const float exp_scale = 0x1.0p-112f;
  218. #else
  219. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  220. #endif
  221. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  222. const uint32_t magic_mask = UINT32_C(126) << 23;
  223. const float magic_bias = 0.5f;
  224. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  225. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  226. const uint32_t result = sign |
  227. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  228. return fp32_from_bits(result);
  229. }
  230. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  231. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  232. const float scale_to_inf = 0x1.0p+112f;
  233. const float scale_to_zero = 0x1.0p-110f;
  234. #else
  235. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  236. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  237. #endif
  238. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  239. const uint32_t w = fp32_to_bits(f);
  240. const uint32_t shl1_w = w + w;
  241. const uint32_t sign = w & UINT32_C(0x80000000);
  242. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  243. if (bias < UINT32_C(0x71000000)) {
  244. bias = UINT32_C(0x71000000);
  245. }
  246. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  247. const uint32_t bits = fp32_to_bits(base);
  248. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  249. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  250. const uint32_t nonsign = exp_bits + mantissa_bits;
  251. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  252. }
  253. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  254. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  255. #endif // __F16C__
  256. #endif // __ARM_NEON
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t table_gelu_f16[1 << 16];
  262. // precomputed silu table for f16 (128 KB)
  263. static ggml_fp16_t table_silu_f16[1 << 16];
  264. // precomputed exp table for f16 (128 KB)
  265. static ggml_fp16_t table_exp_f16[1 << 16];
  266. // precomputed f32 table for f16 (256 KB)
  267. static float table_f32_f16[1 << 16];
  268. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  269. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  270. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  271. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  272. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  273. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  274. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  275. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  276. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  277. // precomputed tables for expanding 8bits to 8 bytes (shl 4)
  278. static const uint64_t table_b2b_u[1 << 8] = { B8(00, 10) };
  279. #endif
  280. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  281. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  282. // This is also true for POWER9.
  283. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  284. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  285. uint16_t s;
  286. memcpy(&s, &f, sizeof(uint16_t));
  287. return table_f32_f16[s];
  288. }
  289. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  290. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  291. #endif
  292. // note: do not use these inside ggml.c
  293. // these are meant to be used via the ggml.h API
  294. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  295. return (float) GGML_FP16_TO_FP32(x);
  296. }
  297. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  298. return GGML_FP32_TO_FP16(x);
  299. }
  300. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  301. for (size_t i = 0; i < n; i++) {
  302. y[i] = GGML_FP16_TO_FP32(x[i]);
  303. }
  304. }
  305. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  306. size_t i = 0;
  307. #if defined(__F16C__)
  308. for (; i + 7 < n; i += 8) {
  309. __m256 x_vec = _mm256_loadu_ps(x + i);
  310. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  311. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  312. }
  313. for(; i + 3 < n; i += 4) {
  314. __m128 x_vec = _mm_loadu_ps(x + i);
  315. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  316. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  317. }
  318. #endif
  319. for (; i < n; i++) {
  320. y[i] = GGML_FP32_TO_FP16(x[i]);
  321. }
  322. }
  323. //
  324. // timing
  325. //
  326. #if defined(_MSC_VER) || defined(__MINGW32__)
  327. static int64_t timer_freq;
  328. void ggml_time_init(void) {
  329. LARGE_INTEGER frequency;
  330. QueryPerformanceFrequency(&frequency);
  331. timer_freq = frequency.QuadPart;
  332. }
  333. int64_t ggml_time_ms(void) {
  334. LARGE_INTEGER t;
  335. QueryPerformanceCounter(&t);
  336. return (t.QuadPart * 1000) / timer_freq;
  337. }
  338. int64_t ggml_time_us(void) {
  339. LARGE_INTEGER t;
  340. QueryPerformanceCounter(&t);
  341. return (t.QuadPart * 1000000) / timer_freq;
  342. }
  343. #else
  344. void ggml_time_init(void) {}
  345. int64_t ggml_time_ms(void) {
  346. struct timespec ts;
  347. clock_gettime(CLOCK_MONOTONIC, &ts);
  348. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  349. }
  350. int64_t ggml_time_us(void) {
  351. struct timespec ts;
  352. clock_gettime(CLOCK_MONOTONIC, &ts);
  353. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  354. }
  355. #endif
  356. int64_t ggml_cycles(void) {
  357. return clock();
  358. }
  359. int64_t ggml_cycles_per_ms(void) {
  360. return CLOCKS_PER_SEC/1000;
  361. }
  362. #ifdef GGML_PERF
  363. #define ggml_perf_time_ms() ggml_time_ms()
  364. #define ggml_perf_time_us() ggml_time_us()
  365. #define ggml_perf_cycles() ggml_cycles()
  366. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  367. #else
  368. #define ggml_perf_time_ms() 0
  369. #define ggml_perf_time_us() 0
  370. #define ggml_perf_cycles() 0
  371. #define ggml_perf_cycles_per_ms() 0
  372. #endif
  373. //
  374. // cache line
  375. //
  376. #if defined(__cpp_lib_hardware_interference_size)
  377. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  378. #else
  379. #if defined(__POWER9_VECTOR__)
  380. #define CACHE_LINE_SIZE 128
  381. #else
  382. #define CACHE_LINE_SIZE 64
  383. #endif
  384. #endif
  385. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  386. //
  387. // quantization
  388. //
  389. #if __AVX__ || __AVX2__ || __AVX512F__
  390. // Unpack 16 4-bit fields into 16 bytes
  391. // The output vector contains 16 bytes, each one in [ 0 .. 15 ] interval
  392. static inline __m128i bytes_from_nibbles_16(const uint8_t * rsi)
  393. {
  394. // Load 8 bytes from memory
  395. __m128i tmp = _mm_loadl_epi64( ( const __m128i* )rsi );
  396. // Expand bytes into uint16_t values
  397. __m128i bytes = _mm_cvtepu8_epi16( tmp );
  398. // Unpack values into individual bytes
  399. const __m128i lowMask = _mm_set1_epi8( 0xF );
  400. __m128i high = _mm_andnot_si128( lowMask, bytes );
  401. __m128i low = _mm_and_si128( lowMask, bytes );
  402. high = _mm_slli_epi16( high, 4 );
  403. bytes = _mm_or_si128( low, high );
  404. return bytes;
  405. }
  406. // horizontally add 8 floats
  407. static inline float hsum_float_8(const __m256 x) {
  408. __m128 res = _mm256_extractf128_ps(x, 1);
  409. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  410. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  411. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  412. return _mm_cvtss_f32(res);
  413. }
  414. // horizontally add 8 int32_t
  415. static inline int hsum_i32_8(const __m256i a) {
  416. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  417. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  418. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  419. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  420. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  421. }
  422. // horizontally add 4 int32_t
  423. static inline int hsum_i32_4(const __m128i a) {
  424. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  425. const __m128i sum64 = _mm_add_epi32(hi64, a);
  426. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  427. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  428. }
  429. #if __AVX2__ || __AVX512F__
  430. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  431. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  432. uint32_t x32;
  433. memcpy(&x32, x, sizeof(uint32_t));
  434. const __m256i shuf_mask = _mm256_set_epi64x(
  435. 0x0303030303030303, 0x0202020202020202,
  436. 0x0101010101010101, 0x0000000000000000);
  437. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  438. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  439. bytes = _mm256_or_si256(bytes, bit_mask);
  440. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  441. }
  442. // Unpack 32 4-bit fields into 32 bytes
  443. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  444. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  445. {
  446. // Load 16 bytes from memory
  447. __m128i tmp = _mm_loadu_si128( ( const __m128i* )rsi );
  448. // Expand bytes into uint16_t values
  449. __m256i bytes = _mm256_cvtepu8_epi16( tmp );
  450. // Unpack values into individual bytes
  451. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  452. __m256i high = _mm256_andnot_si256( lowMask, bytes );
  453. __m256i low = _mm256_and_si256( lowMask, bytes );
  454. high = _mm256_slli_epi16( high, 4 );
  455. bytes = _mm256_or_si256( low, high );
  456. return bytes;
  457. }
  458. // add int16_t pairwise and return as float vector
  459. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  460. const __m256i ones = _mm256_set1_epi16(1);
  461. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  462. return _mm256_cvtepi32_ps(summed_pairs);
  463. }
  464. // multiply int8_t, add results pairwise twice and return as float vector
  465. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  466. // Get absolute values of x vectors
  467. const __m256i ax = _mm256_sign_epi8(x, x);
  468. // Sign the values of the y vectors
  469. const __m256i sy = _mm256_sign_epi8(y, x);
  470. #if __AVXVNNI__
  471. const __m256i zero = _mm256_setzero_si256();
  472. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  473. return _mm256_cvtepi32_ps(summed_pairs);
  474. #else
  475. // Perform multiplication and create 16-bit values
  476. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  477. return sum_i16_pairs_float(dot);
  478. #endif
  479. }
  480. static inline __m128i packNibbles( __m256i bytes )
  481. {
  482. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  483. #if __AVX512F__
  484. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  485. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  486. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  487. #else
  488. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  489. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  490. __m256i low = _mm256_and_si256( lowByte, bytes );
  491. high = _mm256_srli_epi16( high, 4 );
  492. bytes = _mm256_or_si256( low, high );
  493. // Compress uint16_t lanes into bytes
  494. __m128i r0 = _mm256_castsi256_si128( bytes );
  495. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  496. return _mm_packus_epi16( r0, r1 );
  497. #endif
  498. }
  499. #else
  500. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  501. {
  502. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  503. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  504. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  505. __m128i low = _mm_and_si128( lowByte, bytes1 );
  506. high = _mm_srli_epi16( high, 4 );
  507. bytes1 = _mm_or_si128( low, high );
  508. high = _mm_andnot_si128( lowByte, bytes2 );
  509. low = _mm_and_si128( lowByte, bytes2 );
  510. high = _mm_srli_epi16( high, 4 );
  511. bytes2 = _mm_or_si128( low, high );
  512. return _mm_packus_epi16( bytes1, bytes2);
  513. }
  514. #endif
  515. #endif // __AVX__ || __AVX2__ || __AVX512F__
  516. #if __ARM_NEON
  517. #if !defined(__aarch64__)
  518. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  519. return
  520. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  521. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  522. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  523. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  524. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  525. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  526. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  527. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  528. }
  529. inline static int16_t vaddvq_s8(int8x16_t v) {
  530. return
  531. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  532. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  533. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  534. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  535. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  536. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  537. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  538. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  539. }
  540. inline static int32_t vaddvq_s16(int16x8_t v) {
  541. return
  542. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  543. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  544. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  545. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  546. }
  547. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  548. return
  549. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  550. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  551. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  552. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  553. }
  554. inline static int32_t vaddvq_s32(int32x4_t v) {
  555. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  556. }
  557. inline static float vaddvq_f32(float32x4_t v) {
  558. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  559. }
  560. float vminvq_f32(float32x4_t v) {
  561. return
  562. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  563. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  564. }
  565. float vmaxvq_f32(float32x4_t v) {
  566. return
  567. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  568. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  569. }
  570. int8x8_t vzip1_s8(int8x8_t a, int8x8_t b) {
  571. return vget_low_s8(vcombine_s8(a, b));
  572. }
  573. int8x8_t vzip2_s8(int8x8_t a, int8x8_t b) {
  574. return vget_high_s8(vcombine_s8(a, b));
  575. }
  576. uint8x8_t vzip1_u8(uint8x8_t a, uint8x8_t b) {
  577. return vget_low_u8(vcombine_u8(a, b));
  578. }
  579. uint8x8_t vzip2_u8(uint8x8_t a, uint8x8_t b) {
  580. return vget_high_u8(vcombine_u8(a, b));
  581. }
  582. int8x16_t vzip1q_s8(int8x16_t a, int8x16_t b) {
  583. return vcombine_s8(vget_low_s8(a), vget_low_s8(b));
  584. }
  585. int8x16_t vzip2q_s8(int8x16_t a, int8x16_t b) {
  586. return vcombine_s8(vget_high_s8(a), vget_high_s8(b));
  587. }
  588. uint8x16_t vzip1q_u8(uint8x16_t a, uint8x16_t b) {
  589. return vcombine_u8(vget_low_u8(a), vget_low_u8(b));
  590. }
  591. uint8x16_t vzip2q_u8(uint8x16_t a, uint8x16_t b) {
  592. return vcombine_u8(vget_high_u8(a), vget_high_u8(b));
  593. }
  594. int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  595. int32x4_t res;
  596. res[0] = roundf(vgetq_lane_f32(v, 0));
  597. res[1] = roundf(vgetq_lane_f32(v, 1));
  598. res[2] = roundf(vgetq_lane_f32(v, 2));
  599. res[3] = roundf(vgetq_lane_f32(v, 3));
  600. return res;
  601. }
  602. #endif
  603. #endif
  604. #define QK4_0 32
  605. typedef struct {
  606. float d; // delta
  607. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  608. } block_q4_0;
  609. static_assert(sizeof(block_q4_0) == sizeof(float) + QK4_0 / 2, "wrong q4_0 block size/padding");
  610. #define QK4_1 32
  611. typedef struct {
  612. float d; // delta
  613. float m; // min
  614. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  615. } block_q4_1;
  616. static_assert(sizeof(block_q4_1) == 2 * sizeof(float) + QK4_1 / 2, "wrong q4_1 block size/padding");
  617. #define QK4_2 16
  618. typedef struct {
  619. ggml_fp16_t d; // delta
  620. uint8_t qs[QK4_2 / 2]; // nibbles / quants
  621. } block_q4_2;
  622. static_assert(sizeof(block_q4_2) == sizeof(ggml_fp16_t) + QK4_2 / 2, "wrong q4_2 block size/padding");
  623. #define QK5_0 32
  624. typedef struct {
  625. ggml_fp16_t d; // delta
  626. uint8_t qh[4]; // 5-th bit of quants
  627. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  628. } block_q5_0;
  629. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  630. #define QK5_1 32
  631. typedef struct {
  632. ggml_fp16_t d; // delta
  633. ggml_fp16_t m; // min
  634. uint8_t qh[4]; // 5-th bit of quants
  635. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  636. } block_q5_1;
  637. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  638. #define QK8_0 32
  639. typedef struct {
  640. float d; // delta
  641. int8_t qs[QK8_0]; // quants
  642. } block_q8_0;
  643. static_assert(sizeof(block_q8_0) == sizeof(float) + QK8_0, "wrong q8_0 block size/padding");
  644. #define QK8_1 32
  645. typedef struct {
  646. float d; // delta
  647. float s0; // d * sum(qs[i]) low
  648. float s1; // d * sum(qs[i]) high
  649. int8_t qs[QK8_1]; // quants
  650. } block_q8_1;
  651. static_assert(sizeof(block_q8_1) == 3*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  652. // reference implementation for deterministic creation of model files
  653. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  654. assert(k % QK4_0 == 0);
  655. const int nb = k / QK4_0;
  656. uint8_t pp[QK4_0/2];
  657. for (int i = 0; i < nb; i++) {
  658. float amax = 0.0f; // absolute max
  659. float max = 0.0f;
  660. for (int l = 0; l < QK4_0; l++) {
  661. const float v = x[i*QK4_0 + l];
  662. if (amax < fabsf(v)) {
  663. amax = fabsf(v);
  664. max = v;
  665. }
  666. }
  667. const float d = max / -8;
  668. const float id = d ? 1.0f/d : 0.0f;
  669. y[i].d = d;
  670. for (int l = 0; l < QK4_0; l += 2) {
  671. const float v0 = x[i*QK4_0 + l + 0]*id;
  672. const float v1 = x[i*QK4_0 + l + 1]*id;
  673. const uint8_t vi0 = MIN(15, (int8_t)roundf(v0) + 8);
  674. const uint8_t vi1 = MIN(15, (int8_t)roundf(v1) + 8);
  675. assert(vi0 < 16);
  676. assert(vi1 < 16);
  677. pp[l/2] = vi0 | (vi1 << 4);
  678. }
  679. memcpy(y[i].qs, pp, sizeof(pp));
  680. }
  681. }
  682. static void quantize_row_q4_0(const float * restrict x, void * restrict vy, int k) {
  683. assert(k % QK4_0 == 0);
  684. const int nb = k / QK4_0;
  685. block_q4_0 * restrict y = vy;
  686. #if defined(__POWER9_VECTOR__)
  687. const vector float v85 = vec_splats(8.5f);
  688. const vector signed int v15 = vec_splats(15);
  689. for (int i = 0; i < nb; i++) {
  690. float max = 0.0f;
  691. float min = 0.0f;
  692. vector float srcv [8];
  693. vector float maxv[8];
  694. vector float minv[8];
  695. for (int l = 0; l < 8; l++) srcv[l] = *(vector float *)(x + i*32 + 4*l);
  696. //for (int l = 0; l < 8; l++) asrcv[l] = vec_abs(srcv[l]);
  697. for (int l = 0; l < 4; l++) maxv[2*l] = vec_max(asrcv[2*l], asrcv[2*l+1]);
  698. //for (int l = 0; l < 2; l++) maxv[4*l] = vec_max(maxv[4*l], maxv[4*l+2]);
  699. maxv[0] = vec_max(maxv[0], maxv[2]);
  700. maxv[4] = vec_max(maxv[4], maxv[6]);
  701. //for (int l = 0; l < 1; l++) maxv[8*l] = vec_max(maxv[8*l], maxv[8*l+4]);
  702. maxv[0] = vec_max(maxv[0], maxv[4]);
  703. for (int l = 0; l < 4; l++) minv[2*l] = vec_min(asrcv[2*l], asrcv[2*l+1]);
  704. //for (int l = 0; l < 2; l++) minv[4*l] = vec_min(minv[4*l], minv[4*l+2]);
  705. minv[0] = vec_min(minv[0], minv[2]);
  706. minv[4] = vec_min(minv[4], minv[6]);
  707. //for (int l = 0; l < 1; l++) minv[8*l] = vec_min(minv[8*l], minv[8*l+4]);
  708. minv[0] = vec_min(minv[0], minv[4]);
  709. max = MAX(
  710. MAX(vec_extract(maxv[0], 0), vec_extract(maxv[0], 1)),
  711. MAX(vec_extract(maxv[0], 2), vec_extract(maxv[0], 3)));
  712. min = MIN(
  713. MIN(vec_extract(minv[0], 0), vec_extract(minv[0], 1)),
  714. MIN(vec_extract(minv[0], 2), vec_extract(minv[0], 3)));
  715. const float magnitude = max >= fabsf(min) ? max : min;
  716. const float d = magnitude / -8;
  717. const float id = d ? 1.0/d : 0.0;
  718. y[i].d = d;
  719. const vector float vid = vec_splats(id);
  720. uint8_t * restrict pb = y[i].qs;
  721. for (int l = 0; l < 8; l++) {
  722. const vector float vf = vec_madd(srcv[l], vid, v85);
  723. const vector signed int vi = vec_signed(vf);
  724. const vector signed int vc = vec_min(vi, v15);
  725. pb[2*l + 0] = vec_extract(vc, 0) | (vec_extract(vc, 1) << 4);
  726. pb[2*l + 1] = vec_extract(vc, 2) | (vec_extract(vc, 3) << 4);
  727. }
  728. }
  729. #elif __ARM_NEON
  730. for (int i = 0; i < nb; i++) {
  731. float32x4_t srcv [8];
  732. float32x4_t maxv[8];
  733. float32x4_t minv[8];
  734. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  735. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l+1]);
  736. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l+2]);
  737. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l+4]);
  738. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l+1]);
  739. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l+2]);
  740. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l+4]);
  741. const float max = vmaxvq_f32(maxv[0]);
  742. const float min = vminvq_f32(minv[0]);
  743. const float magnitude = max >= fabsf(min) ? max : min;
  744. const float d = magnitude / -8;
  745. const float id = d ? 1.0f/d : 0.0f;
  746. y[i].d = d;
  747. for (int l = 0; l < 8; l++) {
  748. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  749. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(8.5f));
  750. const int32x4_t vi = vcvtq_s32_f32(vf);
  751. const int32x4_t vc = vminq_s32(vi, vdupq_n_s32(15));
  752. y[i].qs[2*l + 0] = vgetq_lane_s32(vc, 0) | (vgetq_lane_s32(vc, 1) << 4);
  753. y[i].qs[2*l + 1] = vgetq_lane_s32(vc, 2) | (vgetq_lane_s32(vc, 3) << 4);
  754. }
  755. }
  756. #elif defined(__AVX2__)
  757. for (int i = 0; i < nb; i++) {
  758. // Load elements into 4 AVX vectors
  759. __m256 v0 = _mm256_loadu_ps( x );
  760. __m256 v1 = _mm256_loadu_ps( x + 8 );
  761. __m256 v2 = _mm256_loadu_ps( x + 16 );
  762. __m256 v3 = _mm256_loadu_ps( x + 24 );
  763. x += 32;
  764. // Compute max for the block
  765. __m256 max = _mm256_max_ps( v0, v1 );
  766. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  767. max = _mm256_max_ps( max, maxTmp );
  768. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  769. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  770. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  771. const float maxScalar = _mm_cvtss_f32( max4 );
  772. // Compute min for the block
  773. __m256 min = _mm256_min_ps( v0, v1 );
  774. __m256 minTmp = _mm256_min_ps( v2, v3 );
  775. min = _mm256_min_ps( min, minTmp );
  776. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  777. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  778. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  779. const float minScalar = _mm_cvtss_f32( min4 );
  780. // Quantize these floats
  781. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  782. const float d = magnitude / -8.0f;
  783. y[i].d = d;
  784. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  785. const __m256 mul = _mm256_set1_ps( id );
  786. // Apply the multiplier
  787. v0 = _mm256_mul_ps( v0, mul );
  788. v1 = _mm256_mul_ps( v1, mul );
  789. v2 = _mm256_mul_ps( v2, mul );
  790. v3 = _mm256_mul_ps( v3, mul );
  791. // Round to nearest integer
  792. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  793. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  794. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  795. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  796. // Convert floats to integers
  797. __m256i i0 = _mm256_cvtps_epi32( v0 );
  798. __m256i i1 = _mm256_cvtps_epi32( v1 );
  799. __m256i i2 = _mm256_cvtps_epi32( v2 );
  800. __m256i i3 = _mm256_cvtps_epi32( v3 );
  801. // Convert int32 to int16
  802. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  803. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  804. // Convert int16 to int8
  805. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  806. // We got our precious signed bytes, but the order is now wrong
  807. // These AVX2 pack instructions process 16-byte pieces independently
  808. // The following instruction is fixing the order
  809. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  810. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  811. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  812. const __m256i off = _mm256_set1_epi8( 8 );
  813. i0 = _mm256_add_epi8( i0, off );
  814. const __m256i maxNibble = _mm256_set1_epi8( 15 );
  815. i0 = _mm256_min_epi8( i0, maxNibble );
  816. // Compress the vector into 4 bit/value, and store
  817. __m128i res = packNibbles( i0 );
  818. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  819. }
  820. #elif defined(__AVX__)
  821. for (int i = 0; i < nb; i++) {
  822. // Load elements into 4 AVX vectors
  823. __m256 v0 = _mm256_loadu_ps( x );
  824. __m256 v1 = _mm256_loadu_ps( x + 8 );
  825. __m256 v2 = _mm256_loadu_ps( x + 16 );
  826. __m256 v3 = _mm256_loadu_ps( x + 24 );
  827. x += 32;
  828. // Compute max for the block
  829. __m256 max = _mm256_max_ps( v0, v1 );
  830. __m256 maxTmp = _mm256_max_ps( v2, v3 );
  831. max = _mm256_max_ps( max, maxTmp );
  832. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( max, 1 ), _mm256_castps256_ps128( max ) );
  833. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  834. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  835. const float maxScalar = _mm_cvtss_f32( max4 );
  836. // Compute min for the block
  837. __m256 min = _mm256_min_ps( v0, v1 );
  838. __m256 minTmp = _mm256_min_ps( v2, v3 );
  839. min = _mm256_min_ps( min, minTmp );
  840. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( min, 1 ), _mm256_castps256_ps128( min ) );
  841. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  842. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  843. const float minScalar = _mm_cvtss_f32( min4 );
  844. // Quantize these floats
  845. const float magnitude = maxScalar >= fabsf(minScalar) ? maxScalar : minScalar;
  846. const float d = magnitude / -8.0f;
  847. y[i].d = d;
  848. const float id = ( magnitude != 0.0f ) ? -8.0f / magnitude : 0.0f;
  849. const __m256 mul = _mm256_set1_ps( id );
  850. // Apply the multiplier
  851. v0 = _mm256_mul_ps( v0, mul );
  852. v1 = _mm256_mul_ps( v1, mul );
  853. v2 = _mm256_mul_ps( v2, mul );
  854. v3 = _mm256_mul_ps( v3, mul );
  855. // Round to nearest integer
  856. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  857. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  858. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  859. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  860. // Convert floats to integers
  861. __m256i i0 = _mm256_cvtps_epi32( v0 );
  862. __m256i i1 = _mm256_cvtps_epi32( v1 );
  863. __m256i i2 = _mm256_cvtps_epi32( v2 );
  864. __m256i i3 = _mm256_cvtps_epi32( v3 );
  865. // Since we don't have in AVX some necessary functions,
  866. // we split the registers in half and call AVX2 analogs from SSE
  867. __m128i ni0 = _mm256_castsi256_si128( i0 );
  868. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  869. __m128i ni2 = _mm256_castsi256_si128( i1 );
  870. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  871. __m128i ni4 = _mm256_castsi256_si128( i2 );
  872. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  873. __m128i ni6 = _mm256_castsi256_si128( i3 );
  874. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  875. // Convert int32 to int16
  876. ni0 = _mm_packs_epi32( ni0, ni1 );
  877. ni2 = _mm_packs_epi32( ni2, ni3 );
  878. ni4 = _mm_packs_epi32( ni4, ni5 );
  879. ni6 = _mm_packs_epi32( ni6, ni7 );
  880. // Convert int16 to int8
  881. ni0 = _mm_packs_epi16( ni0, ni2 );
  882. ni4 = _mm_packs_epi16( ni4, ni6 );
  883. // Apply offset and clamp to translate the range from [ -8 .. +8 ] into [ +0 .. +15 ]
  884. const __m128i off = _mm_set1_epi8( 8 );
  885. ni0 = _mm_add_epi8( ni0, off );
  886. ni4 = _mm_add_epi8( ni4, off );
  887. const __m128i maxNibble = _mm_set1_epi8( 15 );
  888. ni0 = _mm_min_epi8( ni0, maxNibble );
  889. ni4 = _mm_min_epi8( ni4, maxNibble );
  890. // Compress the vector into 4 bit/value, and store
  891. __m128i res = packNibbles( ni0, ni4 );
  892. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  893. }
  894. #elif defined(__wasm_simd128__)
  895. for (int i = 0; i < nb; i++) {
  896. float max = 0.0f;
  897. float min = 0.0f;
  898. v128_t srcv [8];
  899. v128_t maxv[8];
  900. v128_t minv[8];
  901. for (int l = 0; l < 8; l++) srcv[l] = wasm_v128_load(x + i*32 + 4*l);
  902. for (int l = 0; l < 4; l++) maxv[2*l] = wasm_f32x4_max(srcv[2*l], srcv[2*l+1]);
  903. for (int l = 0; l < 2; l++) maxv[4*l] = wasm_f32x4_max(maxv[4*l], maxv[4*l+2]);
  904. for (int l = 0; l < 1; l++) maxv[8*l] = wasm_f32x4_max(maxv[8*l], maxv[8*l+4]);
  905. for (int l = 0; l < 4; l++) minv[2*l] = wasm_f32x4_min(srcv[2*l], srcv[2*l+1]);
  906. for (int l = 0; l < 2; l++) minv[4*l] = wasm_f32x4_min(minv[4*l], minv[4*l+2]);
  907. for (int l = 0; l < 1; l++) minv[8*l] = wasm_f32x4_min(minv[8*l], minv[8*l+4]);
  908. max = MAX(
  909. MAX(wasm_f32x4_extract_lane(maxv[0], 0), wasm_f32x4_extract_lane(maxv[0], 1)),
  910. MAX(wasm_f32x4_extract_lane(maxv[0], 2), wasm_f32x4_extract_lane(maxv[0], 3)));
  911. min = MIN(
  912. MIN(wasm_f32x4_extract_lane(minv[0], 0), wasm_f32x4_extract_lane(minv[0], 1)),
  913. MIN(wasm_f32x4_extract_lane(minv[0], 2), wasm_f32x4_extract_lane(minv[0], 3)));
  914. const float magnitude = max >= fabsf(min) ? max : min;
  915. const float d = magnitude / -8;
  916. const float id = d ? 1.0/d : 0.0;
  917. y[i].d = d;
  918. for (int l = 0; l < 8; l++) {
  919. const v128_t v = wasm_f32x4_mul(srcv[l], wasm_f32x4_splat(id));
  920. const v128_t vf = wasm_f32x4_add(v, wasm_f32x4_splat(8.5f));
  921. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(vf);
  922. const v128_t vc = wasm_i32x4_min(vi, wasm_i32x4_splat(15));
  923. y[i].qs[2*l + 0] = wasm_i32x4_extract_lane(vc, 0) | (wasm_i32x4_extract_lane(vc, 1) << 4);
  924. y[i].qs[2*l + 1] = wasm_i32x4_extract_lane(vc, 2) | (wasm_i32x4_extract_lane(vc, 3) << 4);
  925. }
  926. }
  927. #else
  928. // scalar
  929. quantize_row_q4_0_reference(x, y, k);
  930. #endif
  931. }
  932. static void quantize_row_q4_1_reference(const float * restrict x, void * restrict vy, int k) {
  933. assert(k % QK4_1 == 0);
  934. const int nb = k / QK4_1;
  935. block_q4_1 * restrict y = vy;
  936. uint8_t pp[QK4_1/2];
  937. for (int i = 0; i < nb; i++) {
  938. float min = FLT_MAX;
  939. float max = -FLT_MAX;
  940. for (int l = 0; l < QK4_1; l++) {
  941. const float v = x[i*QK4_1 + l];
  942. if (v < min) min = v;
  943. if (v > max) max = v;
  944. }
  945. const float d = (max - min) / ((1 << 4) - 1);
  946. const float id = d ? 1.0f/d : 0.0f;
  947. y[i].d = d;
  948. y[i].m = min;
  949. for (int l = 0; l < QK4_1; l += 2) {
  950. const float v0 = (x[i*QK4_1 + l + 0] - min)*id;
  951. const float v1 = (x[i*QK4_1 + l + 1] - min)*id;
  952. const uint8_t vi0 = roundf(v0);
  953. const uint8_t vi1 = roundf(v1);
  954. assert(vi0 < 16);
  955. assert(vi1 < 16);
  956. pp[l/2] = vi0 | (vi1 << 4);
  957. }
  958. memcpy(y[i].qs, pp, sizeof(pp));
  959. }
  960. }
  961. static void quantize_row_q4_1(const float * restrict x, void * restrict vy, int k) {
  962. assert(k % QK4_1 == 0);
  963. const int nb = k / QK4_1;
  964. block_q4_1 * restrict y = vy;
  965. #if defined(__AVX2__)
  966. for (int i = 0; i < nb; i++) {
  967. // Load elements into 4 AVX vectors
  968. __m256 v0 = _mm256_loadu_ps( x );
  969. __m256 v1 = _mm256_loadu_ps( x + 8 );
  970. __m256 v2 = _mm256_loadu_ps( x + 16 );
  971. __m256 v3 = _mm256_loadu_ps( x + 24 );
  972. x += 32;
  973. // Compute max for the block
  974. __m256 vmax;
  975. vmax = _mm256_max_ps( v0, v1 );
  976. vmax = _mm256_max_ps( vmax, v2 );
  977. vmax = _mm256_max_ps( vmax, v3 );
  978. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( vmax, 1 ), _mm256_castps256_ps128( vmax ) );
  979. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  980. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  981. const float maxScalar = _mm_cvtss_f32( max4 );
  982. // Compute min for the block
  983. __m256 vmin;
  984. vmin = _mm256_min_ps( v0, v1 );
  985. vmin = _mm256_min_ps( vmin, v2 );
  986. vmin = _mm256_min_ps( vmin, v3 );
  987. __m128 min4 = _mm_min_ps( _mm256_extractf128_ps( vmin, 1 ), _mm256_castps256_ps128( vmin ) );
  988. min4 = _mm_min_ps( min4, _mm_movehl_ps( min4, min4 ) );
  989. min4 = _mm_min_ss( min4, _mm_movehdup_ps( min4 ) );
  990. const float minScalar = _mm_cvtss_f32( min4 );
  991. // Quantize these floats
  992. const float d = (maxScalar - minScalar) / ((1 << 4) - 1);
  993. const float id = d ? 1.0f/d : 0.0f;
  994. y[i].m = minScalar;
  995. y[i].d = d;
  996. // x = (x-min)*id
  997. const __m256 mul = _mm256_set1_ps( id );
  998. const __m256 off = _mm256_set1_ps( minScalar );
  999. v0 = _mm256_mul_ps( _mm256_sub_ps( v0, off ), mul );
  1000. v1 = _mm256_mul_ps( _mm256_sub_ps( v1, off ), mul );
  1001. v2 = _mm256_mul_ps( _mm256_sub_ps( v2, off ), mul );
  1002. v3 = _mm256_mul_ps( _mm256_sub_ps( v3, off ), mul );
  1003. // Round to nearest integer
  1004. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1005. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1006. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1007. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1008. // Convert floats to integers
  1009. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1010. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1011. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1012. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1013. // Convert int32 to int16
  1014. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1015. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1016. // Convert int16 to int8
  1017. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1018. // We got our precious signed bytes, but the order is now wrong
  1019. // These AVX2 pack instructions process 16-byte pieces independently
  1020. // The following instruction is fixing the order
  1021. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1022. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1023. // Compress the vector into 4 bit/value, and store
  1024. __m128i res = packNibbles( i0 );
  1025. _mm_storeu_si128( ( __m128i* )y[i].qs, res );
  1026. }
  1027. #elif __ARM_NEON
  1028. for (int i = 0; i < nb; i++) {
  1029. float32x4_t srcv[8];
  1030. float32x4_t minv[8];
  1031. float32x4_t maxv[8];
  1032. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*QK4_1 + 4*l);
  1033. for (int l = 0; l < 4; l++) minv[2*l] = vminq_f32(srcv[2*l], srcv[2*l + 1]);
  1034. for (int l = 0; l < 2; l++) minv[4*l] = vminq_f32(minv[4*l], minv[4*l + 2]);
  1035. for (int l = 0; l < 1; l++) minv[8*l] = vminq_f32(minv[8*l], minv[8*l + 4]);
  1036. for (int l = 0; l < 4; l++) maxv[2*l] = vmaxq_f32(srcv[2*l], srcv[2*l + 1]);
  1037. for (int l = 0; l < 2; l++) maxv[4*l] = vmaxq_f32(maxv[4*l], maxv[4*l + 2]);
  1038. for (int l = 0; l < 1; l++) maxv[8*l] = vmaxq_f32(maxv[8*l], maxv[8*l + 4]);
  1039. const float min = vminvq_f32(minv[0]);
  1040. const float max = vmaxvq_f32(maxv[0]);
  1041. const float d = (max - min) / ((1 << 4) - 1);
  1042. const float id = d ? 1.0f/d : 0.0f;
  1043. y[i].d = d;
  1044. y[i].m = min;
  1045. const float32x4_t minv0 = vdupq_n_f32(min);
  1046. for (int l = 0; l < 8; l++) {
  1047. const float32x4_t v = vmulq_n_f32(vsubq_f32(srcv[l], minv0), id);
  1048. const float32x4_t vf = vaddq_f32(v, vdupq_n_f32(0.5f)); // needed to round to nearest
  1049. const int32x4_t vi = vcvtq_s32_f32(vf);
  1050. y[i].qs[2*l + 0] = vgetq_lane_s32(vi, 0) | (vgetq_lane_s32(vi, 1) << 4);
  1051. y[i].qs[2*l + 1] = vgetq_lane_s32(vi, 2) | (vgetq_lane_s32(vi, 3) << 4);
  1052. }
  1053. }
  1054. #else
  1055. // scalar
  1056. quantize_row_q4_1_reference(x, vy, k);
  1057. #endif
  1058. }
  1059. // reference implementation for deterministic creation of model files
  1060. static void quantize_row_q4_2_reference(const float * restrict x, block_q4_2 * restrict y, int k) {
  1061. assert(k % QK4_2 == 0);
  1062. const int nb = k / QK4_2;
  1063. for (int i = 0; i < nb; i++) {
  1064. float amax = 0.0f; // absolute max
  1065. float max = 0.0f;
  1066. for (int l = 0; l < QK4_2; l++) {
  1067. const float v = x[i*QK4_2 + l];
  1068. if (amax < fabsf(v)) {
  1069. amax = fabsf(v);
  1070. max = v;
  1071. }
  1072. }
  1073. const float d = max / -8;
  1074. const float id = d ? 1.0f/d : 0.0f;
  1075. y[i].d = GGML_FP32_TO_FP16(d);
  1076. for (int l = 0; l < QK4_2; l += 2) {
  1077. const float v0 = x[i*QK4_2 + l + 0]*id;
  1078. const float v1 = x[i*QK4_2 + l + 1]*id;
  1079. const uint8_t vi0 = MIN(15, (uint8_t)(v0 + 8.5f));
  1080. const uint8_t vi1 = MIN(15, (uint8_t)(v1 + 8.5f));
  1081. assert(vi0 < 16);
  1082. assert(vi1 < 16);
  1083. y[i].qs[l/2] = vi0 | (vi1 << 4);
  1084. }
  1085. }
  1086. }
  1087. static void quantize_row_q4_2(const float * restrict x, void * restrict vy, int k) {
  1088. assert(k % QK4_2 == 0);
  1089. block_q4_2 * restrict y = vy;
  1090. quantize_row_q4_2_reference(x, y, k);
  1091. }
  1092. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  1093. assert(k % QK5_0 == 0);
  1094. const int nb = k / QK5_0;
  1095. for (int i = 0; i < nb; i++) {
  1096. float amax = 0.0f; // absolute max
  1097. float max = 0.0f;
  1098. for (int l = 0; l < QK5_0; l++) {
  1099. const float v = x[i*QK5_0 + l];
  1100. if (amax < fabsf(v)) {
  1101. amax = fabsf(v);
  1102. max = v;
  1103. }
  1104. }
  1105. const float d = max / -16;
  1106. const float id = d ? 1.0f/d : 0.0f;
  1107. y[i].d = GGML_FP32_TO_FP16(d);
  1108. uint32_t qh = 0;
  1109. for (int l = 0; l < QK5_0; l += 2) {
  1110. const float v0 = x[i*QK5_0 + l + 0]*id;
  1111. const float v1 = x[i*QK5_0 + l + 1]*id;
  1112. const uint32_t vi0 = MIN(31, (int) (v0 + 16.5f));
  1113. const uint32_t vi1 = MIN(31, (int) (v1 + 16.5f));
  1114. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1115. // get the 5-th bit and store it in qh at the right position
  1116. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1117. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1118. }
  1119. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1120. }
  1121. }
  1122. static void quantize_row_q5_0(const float * restrict x, void * restrict vy, int k) {
  1123. assert(k % QK5_0 == 0);
  1124. block_q5_0 * restrict y = vy;
  1125. quantize_row_q5_0_reference(x, y, k);
  1126. }
  1127. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  1128. assert(k % QK5_1 == 0);
  1129. const int nb = k / QK5_1;
  1130. for (int i = 0; i < nb; i++) {
  1131. float min = FLT_MAX;
  1132. float max = -FLT_MAX;
  1133. for (int l = 0; l < QK5_1; l++) {
  1134. const float v = x[i*QK5_1 + l];
  1135. if (v < min) min = v;
  1136. if (v > max) max = v;
  1137. }
  1138. const float d = (max - min) / ((1 << 5) - 1);
  1139. const float id = d ? 1.0f/d : 0.0f;
  1140. y[i].d = GGML_FP32_TO_FP16(d);
  1141. y[i].m = GGML_FP32_TO_FP16(min);
  1142. uint32_t qh = 0;
  1143. for (int l = 0; l < QK5_1; l += 2) {
  1144. const float v0 = (x[i*QK5_1 + l + 0] - min)*id;
  1145. const float v1 = (x[i*QK5_1 + l + 1] - min)*id;
  1146. const uint32_t vi0 = (int) (v0 + 0.5f);
  1147. const uint32_t vi1 = (int) (v1 + 0.5f);
  1148. y[i].qs[l/2] = (vi0 & 0x0F) | ((vi1 & 0x0F) << 4);
  1149. // get the 5-th bit and store it in qh at the right position
  1150. qh |= ((vi0 & 0x10) >> 4) << (l + 0);
  1151. qh |= ((vi1 & 0x10) >> 4) << (l + 1);
  1152. }
  1153. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  1154. }
  1155. }
  1156. static void quantize_row_q5_1(const float * restrict x, void * restrict vy, int k) {
  1157. assert(k % QK5_1 == 0);
  1158. block_q5_1 * restrict y = vy;
  1159. quantize_row_q5_1_reference(x, y, k);
  1160. }
  1161. // reference implementation for deterministic creation of model files
  1162. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  1163. assert(k % QK8_0 == 0);
  1164. const int nb = k / QK8_0;
  1165. for (int i = 0; i < nb; i++) {
  1166. float amax = 0.0f; // absolute max
  1167. for (int l = 0; l < QK8_0; l++) {
  1168. const float v = x[i*QK8_0 + l];
  1169. amax = MAX(amax, fabsf(v));
  1170. }
  1171. const float d = amax / ((1 << 7) - 1);
  1172. const float id = d ? 1.0f/d : 0.0f;
  1173. y[i].d = d;
  1174. for (int l = 0; l < QK8_0; ++l) {
  1175. const float v0 = x[i*QK8_0 + l]*id;
  1176. y[i].qs[l] = roundf(v0);
  1177. }
  1178. }
  1179. }
  1180. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  1181. assert(k % QK8_0 == 0);
  1182. block_q8_0 * restrict y = vy;
  1183. quantize_row_q8_0_reference(x, y, k);
  1184. }
  1185. // reference implementation for deterministic creation of model files
  1186. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1187. assert(k % QK8_1 == 0);
  1188. const int nb = k / QK8_1;
  1189. for (int i = 0; i < nb; i++) {
  1190. float amax = 0.0f; // absolute max
  1191. for (int l = 0; l < QK8_1; l++) {
  1192. const float v = x[i*QK8_1 + l];
  1193. amax = MAX(amax, fabsf(v));
  1194. }
  1195. const float d = amax / ((1 << 7) - 1);
  1196. const float id = d ? 1.0f/d : 0.0f;
  1197. y[i].d = d;
  1198. int sum0 = 0;
  1199. int sum1 = 0;
  1200. for (int l = 0; l < QK8_1/2; ++l) {
  1201. const float v0 = x[i*QK8_1 + l]*id;
  1202. const float v1 = x[i*QK8_1 + QK8_1/2 + l]*id;
  1203. y[i].qs[ l] = roundf(v0);
  1204. y[i].qs[QK8_1/2 + l] = roundf(v1);
  1205. sum0 += y[i].qs[ l];
  1206. sum1 += y[i].qs[QK8_1/2 + l];
  1207. }
  1208. y[i].s0 = d * sum0;
  1209. y[i].s1 = d * sum1;
  1210. }
  1211. }
  1212. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1213. assert(k % QK8_1 == 0);
  1214. const int nb = k / QK8_1;
  1215. block_q8_1 * restrict y = vy;
  1216. #if defined(__ARM_NEON)
  1217. for (int i = 0; i < nb; i++) {
  1218. float32x4_t srcv [8];
  1219. float32x4_t asrcv[8];
  1220. float32x4_t amaxv[8];
  1221. for (int l = 0; l < 8; l++) srcv[l] = vld1q_f32(x + i*32 + 4*l);
  1222. for (int l = 0; l < 8; l++) asrcv[l] = vabsq_f32(srcv[l]);
  1223. for (int l = 0; l < 4; l++) amaxv[2*l] = vmaxq_f32(asrcv[2*l], asrcv[2*l+1]);
  1224. for (int l = 0; l < 2; l++) amaxv[4*l] = vmaxq_f32(amaxv[4*l], amaxv[4*l+2]);
  1225. for (int l = 0; l < 1; l++) amaxv[8*l] = vmaxq_f32(amaxv[8*l], amaxv[8*l+4]);
  1226. const float amax = vmaxvq_f32(amaxv[0]);
  1227. const float d = amax / ((1 << 7) - 1);
  1228. const float id = d ? 1.0f/d : 0.0f;
  1229. y[i].d = d;
  1230. int32x4_t accv0 = vdupq_n_s32(0);
  1231. int32x4_t accv1 = vdupq_n_s32(0);
  1232. // low half
  1233. for (int l = 0; l < 4; l++) {
  1234. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1235. const int32x4_t vi = vcvtnq_s32_f32(v);
  1236. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1237. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1238. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1239. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1240. accv0 = vaddq_s32(accv0, vi);
  1241. }
  1242. // high half
  1243. for (int l = 4; l < 8; l++) {
  1244. const float32x4_t v = vmulq_n_f32(srcv[l], id);
  1245. const int32x4_t vi = vcvtnq_s32_f32(v);
  1246. y[i].qs[4*l + 0] = vgetq_lane_s32(vi, 0);
  1247. y[i].qs[4*l + 1] = vgetq_lane_s32(vi, 1);
  1248. y[i].qs[4*l + 2] = vgetq_lane_s32(vi, 2);
  1249. y[i].qs[4*l + 3] = vgetq_lane_s32(vi, 3);
  1250. accv1 = vaddq_s32(accv1, vi);
  1251. }
  1252. const int32_t sum0 = vaddvq_s32(accv0);
  1253. const int32_t sum1 = vaddvq_s32(accv1);
  1254. y[i].s0 = d * sum0;
  1255. y[i].s1 = d * sum1;
  1256. }
  1257. #elif defined(__AVX2__) || defined(__AVX__)
  1258. for (int i = 0; i < nb; i++) {
  1259. // Load elements into 4 AVX vectors
  1260. __m256 v0 = _mm256_loadu_ps( x );
  1261. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1262. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1263. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1264. x += 32;
  1265. // Compute max(abs(e)) for the block
  1266. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1267. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1268. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1269. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1270. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1271. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1272. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1273. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1274. const float maxScalar = _mm_cvtss_f32( max4 );
  1275. // Quantize these floats
  1276. const float d = maxScalar / 127.f;
  1277. y[i].d = d;
  1278. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1279. const __m256 mul = _mm256_set1_ps( id );
  1280. // Apply the multiplier
  1281. v0 = _mm256_mul_ps( v0, mul );
  1282. v1 = _mm256_mul_ps( v1, mul );
  1283. v2 = _mm256_mul_ps( v2, mul );
  1284. v3 = _mm256_mul_ps( v3, mul );
  1285. // Round to nearest integer
  1286. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1287. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1288. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1289. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1290. // Convert floats to integers
  1291. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1292. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1293. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1294. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1295. #if defined(__AVX2__)
  1296. // Compute the sum of the quants and set y[i].s
  1297. //y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1298. y[i].s0 = d * hsum_i32_8(_mm256_add_epi32(i0, i1));
  1299. y[i].s1 = d * hsum_i32_8(_mm256_add_epi32(i2, i3));
  1300. // Convert int32 to int16
  1301. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1302. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1303. // Convert int16 to int8
  1304. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1305. // We got our precious signed bytes, but the order is now wrong
  1306. // These AVX2 pack instructions process 16-byte pieces independently
  1307. // The following instruction is fixing the order
  1308. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1309. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1310. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1311. #else
  1312. // Since we don't have in AVX some necessary functions,
  1313. // we split the registers in half and call AVX2 analogs from SSE
  1314. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1315. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1316. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1317. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1318. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1319. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1320. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1321. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1322. // Compute the sum of the quants and set y[i].s
  1323. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1324. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1325. y[i].s0 = d * hsum_i32_4(s0);
  1326. y[i].s1 = d * hsum_i32_4(s1);
  1327. // Convert int32 to int16
  1328. ni0 = _mm_packs_epi32( ni0, ni1 );
  1329. ni2 = _mm_packs_epi32( ni2, ni3 );
  1330. ni4 = _mm_packs_epi32( ni4, ni5 );
  1331. ni6 = _mm_packs_epi32( ni6, ni7 );
  1332. // Convert int16 to int8
  1333. ni0 = _mm_packs_epi16( ni0, ni2 );
  1334. ni4 = _mm_packs_epi16( ni4, ni6 );
  1335. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1336. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1337. #endif
  1338. }
  1339. #else
  1340. // scalar
  1341. quantize_row_q8_1_reference(x, y, k);
  1342. #endif
  1343. }
  1344. static void dequantize_row_q4_0(const void * restrict vx, float * restrict y, int k) {
  1345. assert(k % QK4_0 == 0);
  1346. const int nb = k / QK4_0;
  1347. const block_q4_0 * restrict x = vx;
  1348. #if defined(__AVX2__)
  1349. for (int i = 0; i < nb; i++) {
  1350. // scale factor
  1351. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1352. const uint8_t * restrict pp = x[i].qs;
  1353. for (int l = 0; l < QK4_0; l += 32) {
  1354. // Load 32x4-bit integers into 32x8-bit integers
  1355. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1356. // Subtract 8 from the integers
  1357. vx8 = _mm256_sub_epi8(vx8, _mm256_set1_epi8(8));
  1358. // Convert to 16-bit int
  1359. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1360. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1361. // Convert to 32-bit int -> float 32
  1362. const __m256 vf[4] = {
  1363. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1364. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1365. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1366. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1367. };
  1368. // Scale and store
  1369. for (int j = 0; j < 4; j++) {
  1370. const __m256 result = _mm256_mul_ps(vf[j], d_v);
  1371. _mm256_storeu_ps(y + i * QK4_0 + l + j*8, result);
  1372. }
  1373. }
  1374. }
  1375. #elif defined(__ARM_NEON)
  1376. for (int i = 0; i < nb; i++) {
  1377. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1378. const uint8_t * restrict pp = x[i].qs;
  1379. for (int l = 0; l < QK4_0; l += 16) {
  1380. // Load 16x4-bit integers into 8x8-bit integers
  1381. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1382. // Expand 4-bit qs to 8-bit bytes
  1383. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1384. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1385. // Convert to signed 8-bit integers
  1386. const int8x8_t vs_0 = vreinterpret_s8_u8(v0);
  1387. const int8x8_t vs_1 = vreinterpret_s8_u8(v1);
  1388. // Subtract 8 from each byte
  1389. const int8x8_t vb_0 = vsub_s8(vs_0, vdup_n_s8(8));
  1390. const int8x8_t vb_1 = vsub_s8(vs_1, vdup_n_s8(8));
  1391. // Interleave and combine
  1392. const int8x8_t vx_0 = vzip1_s8(vb_0, vb_1);
  1393. const int8x8_t vx_1 = vzip2_s8(vb_0, vb_1);
  1394. const int8x16_t vq = vcombine_s8(vx_0, vx_1);
  1395. // convert to 2x int16x8_t
  1396. const int16x8_t vi_0 = vmovl_s8(vget_low_s8 (vq));
  1397. const int16x8_t vi_1 = vmovl_s8(vget_high_s8(vq));
  1398. // convert to 4x float32x4_t
  1399. const float32x4_t vf_0 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_0)));
  1400. const float32x4_t vf_1 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_0)));
  1401. const float32x4_t vf_2 = vcvtq_f32_s32(vmovl_s16(vget_low_s16 (vi_1)));
  1402. const float32x4_t vf_3 = vcvtq_f32_s32(vmovl_s16(vget_high_s16(vi_1)));
  1403. // Multiply by d
  1404. const float32x4_t r0 = vmulq_f32(vf_0, vd);
  1405. const float32x4_t r1 = vmulq_f32(vf_1, vd);
  1406. const float32x4_t r2 = vmulq_f32(vf_2, vd);
  1407. const float32x4_t r3 = vmulq_f32(vf_3, vd);
  1408. // Store
  1409. vst1q_f32(y + i*QK4_0 + l + 0, r0);
  1410. vst1q_f32(y + i*QK4_0 + l + 4, r1);
  1411. vst1q_f32(y + i*QK4_0 + l + 8, r2);
  1412. vst1q_f32(y + i*QK4_0 + l + 12, r3);
  1413. }
  1414. }
  1415. #else
  1416. // scalar
  1417. for (int i = 0; i < nb; i++) {
  1418. const float d = x[i].d;
  1419. const uint8_t * restrict pp = x[i].qs;
  1420. for (int l = 0; l < QK4_0; l += 2) {
  1421. const uint8_t vi = pp[l/2];
  1422. const int8_t vi0 = vi & 0x0F;
  1423. const int8_t vi1 = vi >> 4;
  1424. const float v0 = (vi0 - 8)*d;
  1425. const float v1 = (vi1 - 8)*d;
  1426. //printf("d = %f, vi = %d, vi0 = %d, vi1 = %d, v0 = %f, v1 = %f\n", d, vi, vi0, vi1, v0, v1);
  1427. y[i*QK4_0 + l + 0] = v0;
  1428. y[i*QK4_0 + l + 1] = v1;
  1429. assert(!isnan(y[i*QK4_0 + l + 0]));
  1430. assert(!isnan(y[i*QK4_0 + l + 1]));
  1431. }
  1432. }
  1433. #endif
  1434. }
  1435. static void dequantize_row_q4_1(const void * restrict vx, float * restrict y, int k) {
  1436. assert(k % QK4_1 == 0);
  1437. const int nb = k / QK4_1;
  1438. const block_q4_1 * restrict x = vx;
  1439. #if defined(__AVX2__)
  1440. for (int i = 0; i < nb; i++) {
  1441. const __m256 d_v = _mm256_broadcast_ss(&x[i].d);
  1442. const __m256 d_m = _mm256_broadcast_ss(&x[i].m);
  1443. const uint8_t * restrict pp = x[i].qs;
  1444. for (int l = 0; l < QK4_1; l += 32) {
  1445. // Load 32x4-bit integers into 32x8-bit integers
  1446. __m256i vx8 = bytes_from_nibbles_32(pp+l/2);
  1447. // Convert to 16-bit int
  1448. const __m256i vx16_lo = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 0));
  1449. const __m256i vx16_hi = _mm256_cvtepi8_epi16(_mm256_extracti128_si256(vx8, 1));
  1450. // Convert to 32-bit int -> float 32
  1451. const __m256 vf[4] = {
  1452. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 0))),
  1453. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_lo, 1))),
  1454. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 0))),
  1455. _mm256_cvtepi32_ps(_mm256_cvtepi16_epi32(_mm256_extracti128_si256(vx16_hi, 1)))
  1456. };
  1457. // Scale, add m and store
  1458. for (int j = 0; j < 4; j++) {
  1459. const __m256 result = _mm256_add_ps(_mm256_mul_ps(vf[j], d_v), d_m);
  1460. _mm256_storeu_ps(y + i * QK4_1 + l + j*8, result);
  1461. }
  1462. }
  1463. }
  1464. #elif defined(__ARM_NEON)
  1465. for (int i = 0; i < nb; i++) {
  1466. const float32x4_t vd = vdupq_n_f32(x[i].d);
  1467. const float32x4_t vm = vdupq_n_f32(x[i].m);
  1468. const uint8_t * restrict pp = x[i].qs;
  1469. for (int l = 0; l < QK4_1; l += 16) {
  1470. // Load 16x4-bit integers into 8x8-bit integers
  1471. const uint8x8_t v8 = vld1_u8(pp + l/2);
  1472. // Expand 4-bit qs to 8-bit bytes
  1473. const uint8x8_t v0 = vand_u8(v8, vdup_n_u8(0x0F));
  1474. const uint8x8_t v1 = vshr_n_u8(v8, 4);
  1475. // Interleave and combine
  1476. const uint8x8_t vx_0 = vzip1_u8(v0, v1);
  1477. const uint8x8_t vx_1 = vzip2_u8(v0, v1);
  1478. const uint8x16_t vq = vcombine_u8(vx_0, vx_1);
  1479. // convert to 2x uint16x8_t
  1480. const uint16x8_t vi_0 = vmovl_u8(vget_low_u8 (vq));
  1481. const uint16x8_t vi_1 = vmovl_u8(vget_high_u8(vq));
  1482. // convert to 4x float32x4_t
  1483. const float32x4_t vf_0 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_0)));
  1484. const float32x4_t vf_1 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_0)));
  1485. const float32x4_t vf_2 = vcvtq_f32_u32(vmovl_u16(vget_low_u16 (vi_1)));
  1486. const float32x4_t vf_3 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(vi_1)));
  1487. // multiply by d and add m
  1488. const float32x4_t r0 = vmlaq_f32(vm, vf_0, vd);
  1489. const float32x4_t r1 = vmlaq_f32(vm, vf_1, vd);
  1490. const float32x4_t r2 = vmlaq_f32(vm, vf_2, vd);
  1491. const float32x4_t r3 = vmlaq_f32(vm, vf_3, vd);
  1492. // Store
  1493. vst1q_f32(y + i*QK4_1 + l + 0, r0);
  1494. vst1q_f32(y + i*QK4_1 + l + 4, r1);
  1495. vst1q_f32(y + i*QK4_1 + l + 8, r2);
  1496. vst1q_f32(y + i*QK4_1 + l + 12, r3);
  1497. }
  1498. }
  1499. #else
  1500. for (int i = 0; i < nb; i++) {
  1501. const float d = x[i].d;
  1502. const float m = x[i].m;
  1503. const uint8_t * restrict pp = x[i].qs;
  1504. for (int l = 0; l < QK4_1; l += 2) {
  1505. const uint8_t vi = pp[l/2];
  1506. const int8_t vi0 = vi & 0x0F;
  1507. const int8_t vi1 = vi >> 4;
  1508. const float v0 = vi0*d + m;
  1509. const float v1 = vi1*d + m;
  1510. y[i*QK4_1 + l + 0] = v0;
  1511. y[i*QK4_1 + l + 1] = v1;
  1512. assert(!isnan(y[i*QK4_1 + l + 0]));
  1513. assert(!isnan(y[i*QK4_1 + l + 1]));
  1514. }
  1515. }
  1516. #endif
  1517. }
  1518. static void dequantize_row_q4_2(const void * restrict vx, float * restrict y, int k) {
  1519. assert(k % QK4_2 == 0);
  1520. const int nb = k / QK4_2;
  1521. const block_q4_2 * restrict x = vx;
  1522. for (int i = 0; i < nb; i++) {
  1523. const float d = GGML_FP16_TO_FP32(x[i].d);
  1524. const uint8_t * restrict pp = x[i].qs;
  1525. for (int l = 0; l < QK4_2; l += 2) {
  1526. const uint8_t vi = pp[l/2];
  1527. const int8_t vi0 = vi & 0x0F;
  1528. const int8_t vi1 = vi >> 4;
  1529. const float v0 = (vi0 - 8)*d;
  1530. const float v1 = (vi1 - 8)*d;
  1531. y[i*QK4_2 + l + 0] = v0;
  1532. y[i*QK4_2 + l + 1] = v1;
  1533. assert(!isnan(y[i*QK4_2 + l + 0]));
  1534. assert(!isnan(y[i*QK4_2 + l + 1]));
  1535. }
  1536. }
  1537. }
  1538. static void dequantize_row_q5_0(const void * restrict vx, float * restrict y, int k) {
  1539. assert(k % QK5_0 == 0);
  1540. const int nb = k / QK5_0;
  1541. const block_q5_0 * restrict x = vx;
  1542. for (int i = 0; i < nb; i++) {
  1543. const float d = GGML_FP16_TO_FP32(x[i].d);
  1544. const uint8_t * restrict pp = x[i].qs;
  1545. uint32_t qh;
  1546. memcpy(&qh, x[i].qh, sizeof(qh));
  1547. for (int l = 0; l < QK5_0; l += 2) {
  1548. const uint8_t vi = pp[l/2];
  1549. // extract the 5-th bit from qh
  1550. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1551. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1552. const int8_t vi0 = (vi & 0x0F) | vh0;
  1553. const int8_t vi1 = (vi >> 4) | vh1;
  1554. const float v0 = (vi0 - 16)*d;
  1555. const float v1 = (vi1 - 16)*d;
  1556. y[i*QK5_0 + l + 0] = v0;
  1557. y[i*QK5_0 + l + 1] = v1;
  1558. assert(!isnan(y[i*QK5_0 + l + 0]));
  1559. assert(!isnan(y[i*QK5_0 + l + 1]));
  1560. }
  1561. }
  1562. }
  1563. static void dequantize_row_q5_1(const void * restrict vx, float * restrict y, int k) {
  1564. assert(k % QK5_1 == 0);
  1565. const int nb = k / QK5_1;
  1566. const block_q5_1 * restrict x = vx;
  1567. for (int i = 0; i < nb; i++) {
  1568. const float d = GGML_FP16_TO_FP32(x[i].d);
  1569. const float m = GGML_FP16_TO_FP32(x[i].m);
  1570. const uint8_t * restrict pp = x[i].qs;
  1571. uint32_t qh;
  1572. memcpy(&qh, x[i].qh, sizeof(qh));
  1573. for (int l = 0; l < QK5_1; l += 2) {
  1574. const uint8_t vi = pp[l/2];
  1575. // extract the 5-th bit from qh
  1576. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  1577. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  1578. const uint8_t vi0 = (vi & 0x0F) | vh0;
  1579. const uint8_t vi1 = (vi >> 4) | vh1;
  1580. const float v0 = vi0*d + m;
  1581. const float v1 = vi1*d + m;
  1582. y[i*QK5_1 + l + 0] = v0;
  1583. y[i*QK5_1 + l + 1] = v1;
  1584. assert(!isnan(y[i*QK5_1 + l + 0]));
  1585. assert(!isnan(y[i*QK5_1 + l + 1]));
  1586. }
  1587. }
  1588. }
  1589. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1590. assert(k % QK8_0 == 0);
  1591. const int nb = k / QK8_0;
  1592. const block_q8_0 * restrict x = vx;
  1593. for (int i = 0; i < nb; i++) {
  1594. const float d = x[i].d;
  1595. const int8_t * restrict pp = x[i].qs;
  1596. for (int l = 0; l < QK8_0; ++l) {
  1597. y[i*QK8_0 + l] = pp[l]*d;
  1598. }
  1599. }
  1600. }
  1601. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1602. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1603. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1604. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1605. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1606. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1607. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1608. [GGML_TYPE_Q4_0] = {
  1609. .dequantize_row_q = dequantize_row_q4_0,
  1610. .quantize_row_q = quantize_row_q4_0,
  1611. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1612. .quantize_row_q_dot = quantize_row_q8_0,
  1613. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1614. .vec_dot_type = GGML_TYPE_Q8_0,
  1615. },
  1616. [GGML_TYPE_Q4_1] = {
  1617. .dequantize_row_q = dequantize_row_q4_1,
  1618. .quantize_row_q = quantize_row_q4_1,
  1619. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1620. .quantize_row_q_dot = quantize_row_q8_1,
  1621. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1622. .vec_dot_type = GGML_TYPE_Q8_1,
  1623. },
  1624. [GGML_TYPE_Q4_2] = {
  1625. .dequantize_row_q = dequantize_row_q4_2,
  1626. .quantize_row_q = quantize_row_q4_2,
  1627. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_2_reference,
  1628. .quantize_row_q_dot = quantize_row_q8_0,
  1629. .vec_dot_q = ggml_vec_dot_q4_2_q8_0,
  1630. .vec_dot_type = GGML_TYPE_Q8_0,
  1631. },
  1632. [GGML_TYPE_Q5_0] = {
  1633. .dequantize_row_q = dequantize_row_q5_0,
  1634. .quantize_row_q = quantize_row_q5_0,
  1635. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1636. .quantize_row_q_dot = quantize_row_q8_0,
  1637. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1638. .vec_dot_type = GGML_TYPE_Q8_0,
  1639. },
  1640. [GGML_TYPE_Q5_1] = {
  1641. .dequantize_row_q = dequantize_row_q5_1,
  1642. .quantize_row_q = quantize_row_q5_1,
  1643. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1644. .quantize_row_q_dot = quantize_row_q8_1,
  1645. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1646. .vec_dot_type = GGML_TYPE_Q8_1,
  1647. },
  1648. [GGML_TYPE_Q8_0] = {
  1649. .dequantize_row_q = dequantize_row_q8_0,
  1650. .quantize_row_q = quantize_row_q8_0,
  1651. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1652. .quantize_row_q_dot = quantize_row_q8_0,
  1653. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1654. .vec_dot_type = GGML_TYPE_Q8_0,
  1655. },
  1656. [GGML_TYPE_Q8_1] = {
  1657. .dequantize_row_q = NULL, // TODO
  1658. .quantize_row_q = quantize_row_q8_1,
  1659. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1660. .quantize_row_q_dot = quantize_row_q8_1,
  1661. .vec_dot_q = NULL, // TODO
  1662. .vec_dot_type = GGML_TYPE_Q8_1,
  1663. },
  1664. };
  1665. // For internal test use
  1666. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1667. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1668. return quantize_fns[i];
  1669. }
  1670. //
  1671. // simd mappings
  1672. //
  1673. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1674. // we then implement the fundamental computation operations below using only these macros
  1675. // adding support for new architectures requires to define the corresponding SIMD macros
  1676. //
  1677. // GGML_F32_STEP / GGML_F16_STEP
  1678. // number of elements to process in a single step
  1679. //
  1680. // GGML_F32_EPR / GGML_F16_EPR
  1681. // number of elements to fit in a single register
  1682. //
  1683. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1684. #define GGML_SIMD
  1685. // F32 NEON
  1686. #define GGML_F32_STEP 16
  1687. #define GGML_F32_EPR 4
  1688. #define GGML_F32x4 float32x4_t
  1689. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1690. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1691. #define GGML_F32x4_LOAD vld1q_f32
  1692. #define GGML_F32x4_STORE vst1q_f32
  1693. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1694. #define GGML_F32x4_ADD vaddq_f32
  1695. #define GGML_F32x4_MUL vmulq_f32
  1696. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1697. #define GGML_F32x4_REDUCE(res, x) \
  1698. { \
  1699. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1700. x[2*i] = vaddq_f32(x[2*i], x[2*i+1]); \
  1701. } \
  1702. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1703. x[4*i] = vaddq_f32(x[4*i], x[4*i+2]); \
  1704. } \
  1705. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1706. x[8*i] = vaddq_f32(x[8*i], x[8*i+4]); \
  1707. } \
  1708. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1709. }
  1710. #define GGML_F32_VEC GGML_F32x4
  1711. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1712. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1713. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1714. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1715. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1716. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1717. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1718. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1719. // F16 NEON
  1720. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1721. #define GGML_F16_STEP 32
  1722. #define GGML_F16_EPR 8
  1723. #define GGML_F16x8 float16x8_t
  1724. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1725. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1726. #define GGML_F16x8_LOAD vld1q_f16
  1727. #define GGML_F16x8_STORE vst1q_f16
  1728. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1729. #define GGML_F16x8_ADD vaddq_f16
  1730. #define GGML_F16x8_MUL vmulq_f16
  1731. #define GGML_F16x8_REDUCE(res, x) \
  1732. { \
  1733. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1734. x[2*i] = vaddq_f16(x[2*i], x[2*i+1]); \
  1735. } \
  1736. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1737. x[4*i] = vaddq_f16(x[4*i], x[4*i+2]); \
  1738. } \
  1739. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1740. x[8*i] = vaddq_f16(x[8*i], x[8*i+4]); \
  1741. } \
  1742. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1743. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1744. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1745. }
  1746. #define GGML_F16_VEC GGML_F16x8
  1747. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1748. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1749. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1750. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1751. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1752. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1753. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1754. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1755. #else
  1756. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1757. // and take advantage of the vcvt_ functions to convert to/from FP16
  1758. #define GGML_F16_STEP 16
  1759. #define GGML_F16_EPR 4
  1760. #define GGML_F32Cx4 float32x4_t
  1761. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1762. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1763. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1764. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1765. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1766. #define GGML_F32Cx4_ADD vaddq_f32
  1767. #define GGML_F32Cx4_MUL vmulq_f32
  1768. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1769. #define GGML_F16_VEC GGML_F32Cx4
  1770. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1771. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1772. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1773. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1774. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1775. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1776. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1777. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1778. #endif
  1779. #elif defined(__AVX__)
  1780. #define GGML_SIMD
  1781. // F32 AVX
  1782. #define GGML_F32_STEP 32
  1783. #define GGML_F32_EPR 8
  1784. #define GGML_F32x8 __m256
  1785. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1786. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1787. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1788. #define GGML_F32x8_STORE _mm256_storeu_ps
  1789. #if defined(__FMA__)
  1790. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1791. #else
  1792. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1793. #endif
  1794. #define GGML_F32x8_ADD _mm256_add_ps
  1795. #define GGML_F32x8_MUL _mm256_mul_ps
  1796. #define GGML_F32x8_REDUCE(res, x) \
  1797. { \
  1798. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1799. x[2*i] = _mm256_add_ps(x[2*i], x[2*i+1]); \
  1800. } \
  1801. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1802. x[4*i] = _mm256_add_ps(x[4*i], x[4*i+2]); \
  1803. } \
  1804. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1805. x[8*i] = _mm256_add_ps(x[8*i], x[8*i+4]); \
  1806. } \
  1807. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1808. _mm256_extractf128_ps(x[0], 1)); \
  1809. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1810. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1811. }
  1812. // TODO: is this optimal ?
  1813. #define GGML_F32_VEC GGML_F32x8
  1814. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1815. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1816. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1817. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1818. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1819. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1820. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1821. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1822. // F16 AVX
  1823. #define GGML_F16_STEP 32
  1824. #define GGML_F16_EPR 8
  1825. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1826. #define GGML_F32Cx8 __m256
  1827. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1828. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1829. #if defined(__F16C__)
  1830. // the _mm256_cvt intrinsics require F16C
  1831. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1832. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1833. #else
  1834. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1835. float tmp[8];
  1836. for (int i = 0; i < 8; i++)
  1837. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1838. return _mm256_loadu_ps(tmp);
  1839. }
  1840. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1841. float arr[8];
  1842. _mm256_storeu_ps(arr, y);
  1843. for (int i = 0; i < 8; i++)
  1844. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1845. }
  1846. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1847. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1848. #endif
  1849. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1850. #define GGML_F32Cx8_ADD _mm256_add_ps
  1851. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1852. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1853. #define GGML_F16_VEC GGML_F32Cx8
  1854. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1855. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1856. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1857. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1858. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1859. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1860. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1861. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1862. #elif defined(__POWER9_VECTOR__)
  1863. #define GGML_SIMD
  1864. // F32 POWER9
  1865. #define GGML_F32_STEP 32
  1866. #define GGML_F32_EPR 4
  1867. #define GGML_F32x4 vector float
  1868. #define GGML_F32x4_ZERO 0.0f
  1869. #define GGML_F32x4_SET1 vec_splats
  1870. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1871. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1872. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1873. #define GGML_F32x4_ADD vec_add
  1874. #define GGML_F32x4_MUL vec_mul
  1875. #define GGML_F32x4_REDUCE(res, x) \
  1876. { \
  1877. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1878. x[2*i] = vec_add(x[2*i], x[2*i+1]); \
  1879. } \
  1880. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1881. x[4*i] = vec_add(x[4*i], x[4*i+2]); \
  1882. } \
  1883. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1884. x[8*i] = vec_add(x[8*i], x[8*i+4]); \
  1885. } \
  1886. res = vec_extract(x[0], 0) + \
  1887. vec_extract(x[0], 1) + \
  1888. vec_extract(x[0], 2) + \
  1889. vec_extract(x[0], 3); \
  1890. }
  1891. #define GGML_F32_VEC GGML_F32x4
  1892. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1893. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1894. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1895. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1896. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1897. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1898. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1899. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1900. // F16 POWER9
  1901. #define GGML_F16_STEP GGML_F32_STEP
  1902. #define GGML_F16_EPR GGML_F32_EPR
  1903. #define GGML_F16_VEC GGML_F32x4
  1904. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1905. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1906. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1907. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1908. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1909. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1910. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1911. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1912. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1913. #define GGML_F16_VEC_STORE(p, r, i) \
  1914. if (i & 0x1) \
  1915. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1916. r[i - GGML_ENDIAN_BYTE(0)]), \
  1917. 0, p - GGML_F16_EPR)
  1918. #elif defined(__wasm_simd128__)
  1919. #define GGML_SIMD
  1920. // F32 WASM
  1921. #define GGML_F32_STEP 16
  1922. #define GGML_F32_EPR 4
  1923. #define GGML_F32x4 v128_t
  1924. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1925. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1926. #define GGML_F32x4_LOAD wasm_v128_load
  1927. #define GGML_F32x4_STORE wasm_v128_store
  1928. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1929. #define GGML_F32x4_ADD wasm_f32x4_add
  1930. #define GGML_F32x4_MUL wasm_f32x4_mul
  1931. #define GGML_F32x4_REDUCE(res, x) \
  1932. { \
  1933. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  1934. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1935. } \
  1936. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  1937. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1938. } \
  1939. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  1940. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1941. } \
  1942. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1943. wasm_f32x4_extract_lane(x[0], 1) + \
  1944. wasm_f32x4_extract_lane(x[0], 2) + \
  1945. wasm_f32x4_extract_lane(x[0], 3); \
  1946. }
  1947. #define GGML_F32_VEC GGML_F32x4
  1948. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1949. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1950. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1951. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1952. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1953. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1954. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1955. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1956. // F16 WASM
  1957. #define GGML_F16_STEP 16
  1958. #define GGML_F16_EPR 4
  1959. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1960. float tmp[4];
  1961. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1962. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1963. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1964. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1965. return wasm_v128_load(tmp);
  1966. }
  1967. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1968. float tmp[4];
  1969. wasm_v128_store(tmp, x);
  1970. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1971. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1972. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1973. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1974. }
  1975. #define GGML_F16x4 v128_t
  1976. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1977. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1978. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1979. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1980. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1981. #define GGML_F16x4_ADD wasm_f32x4_add
  1982. #define GGML_F16x4_MUL wasm_f32x4_mul
  1983. #define GGML_F16x4_REDUCE(res, x) \
  1984. { \
  1985. for (int i = 0; i < GGML_F16_ARR/2; ++i) { \
  1986. x[2*i] = wasm_f32x4_add(x[2*i], x[2*i+1]); \
  1987. } \
  1988. for (int i = 0; i < GGML_F16_ARR/4; ++i) { \
  1989. x[4*i] = wasm_f32x4_add(x[4*i], x[4*i+2]); \
  1990. } \
  1991. for (int i = 0; i < GGML_F16_ARR/8; ++i) { \
  1992. x[8*i] = wasm_f32x4_add(x[8*i], x[8*i+4]); \
  1993. } \
  1994. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1995. wasm_f32x4_extract_lane(x[0], 1) + \
  1996. wasm_f32x4_extract_lane(x[0], 2) + \
  1997. wasm_f32x4_extract_lane(x[0], 3); \
  1998. }
  1999. #define GGML_F16_VEC GGML_F16x4
  2000. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  2001. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  2002. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  2003. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  2004. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  2005. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  2006. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  2007. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  2008. #elif defined(__SSE3__)
  2009. #define GGML_SIMD
  2010. // F32 SSE
  2011. #define GGML_F32_STEP 32
  2012. #define GGML_F32_EPR 4
  2013. #define GGML_F32x4 __m128
  2014. #define GGML_F32x4_ZERO _mm_setzero_ps()
  2015. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  2016. #define GGML_F32x4_LOAD _mm_loadu_ps
  2017. #define GGML_F32x4_STORE _mm_storeu_ps
  2018. #if defined(__FMA__)
  2019. // TODO: Does this work?
  2020. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  2021. #else
  2022. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  2023. #endif
  2024. #define GGML_F32x4_ADD _mm_add_ps
  2025. #define GGML_F32x4_MUL _mm_mul_ps
  2026. #define GGML_F32x4_REDUCE(res, x) \
  2027. { \
  2028. for (int i = 0; i < GGML_F32_ARR/2; ++i) { \
  2029. x[2*i] = _mm_add_ps(x[2*i], x[2*i+1]); \
  2030. } \
  2031. for (int i = 0; i < GGML_F32_ARR/4; ++i) { \
  2032. x[4*i] = _mm_add_ps(x[4*i], x[4*i+2]); \
  2033. } \
  2034. for (int i = 0; i < GGML_F32_ARR/8; ++i) { \
  2035. x[8*i] = _mm_add_ps(x[8*i], x[8*i+4]); \
  2036. } \
  2037. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  2038. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  2039. }
  2040. // TODO: is this optimal ?
  2041. #define GGML_F32_VEC GGML_F32x4
  2042. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  2043. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  2044. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  2045. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  2046. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  2047. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  2048. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  2049. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  2050. // F16 SSE
  2051. #define GGML_F16_STEP 32
  2052. #define GGML_F16_EPR 4
  2053. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  2054. float tmp[4];
  2055. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  2056. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  2057. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  2058. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  2059. return _mm_loadu_ps(tmp);
  2060. }
  2061. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  2062. float arr[4];
  2063. _mm_storeu_ps(arr, y);
  2064. x[0] = GGML_FP32_TO_FP16(arr[0]);
  2065. x[1] = GGML_FP32_TO_FP16(arr[1]);
  2066. x[2] = GGML_FP32_TO_FP16(arr[2]);
  2067. x[3] = GGML_FP32_TO_FP16(arr[3]);
  2068. }
  2069. #define GGML_F32Cx4 __m128
  2070. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  2071. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  2072. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  2073. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  2074. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  2075. #define GGML_F32Cx4_ADD _mm_add_ps
  2076. #define GGML_F32Cx4_MUL _mm_mul_ps
  2077. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  2078. #define GGML_F16_VEC GGML_F32Cx4
  2079. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  2080. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  2081. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  2082. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  2083. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  2084. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  2085. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  2086. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  2087. #endif
  2088. // GGML_F32_ARR / GGML_F16_ARR
  2089. // number of registers to use per step
  2090. #ifdef GGML_SIMD
  2091. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  2092. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  2093. #endif
  2094. //
  2095. // fundamental operations
  2096. //
  2097. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2098. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2099. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2100. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2101. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  2102. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  2103. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  2104. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  2105. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  2106. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  2107. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  2108. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  2109. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  2110. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  2111. #ifdef GGML_SIMD
  2112. float sumf = 0.0f;
  2113. const int np = (n & ~(GGML_F32_STEP - 1));
  2114. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  2115. GGML_F32_VEC ax[GGML_F32_ARR];
  2116. GGML_F32_VEC ay[GGML_F32_ARR];
  2117. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2118. for (int j = 0; j < GGML_F32_ARR; j++) {
  2119. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2120. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2121. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  2122. }
  2123. }
  2124. // reduce sum0..sum3 to sum0
  2125. GGML_F32_VEC_REDUCE(sumf, sum);
  2126. // leftovers
  2127. for (int i = np; i < n; ++i) {
  2128. sumf += x[i]*y[i];
  2129. }
  2130. #else
  2131. // scalar
  2132. ggml_float sumf = 0.0;
  2133. for (int i = 0; i < n; ++i) {
  2134. sumf += (ggml_float)(x[i]*y[i]);
  2135. }
  2136. #endif
  2137. *s = sumf;
  2138. }
  2139. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  2140. ggml_float sumf = 0.0;
  2141. #if defined(GGML_SIMD)
  2142. const int np = (n & ~(GGML_F16_STEP - 1));
  2143. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  2144. GGML_F16_VEC ax[GGML_F16_ARR];
  2145. GGML_F16_VEC ay[GGML_F16_ARR];
  2146. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2147. for (int j = 0; j < GGML_F16_ARR; j++) {
  2148. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  2149. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2150. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  2151. }
  2152. }
  2153. // reduce sum0..sum3 to sum0
  2154. GGML_F16_VEC_REDUCE(sumf, sum);
  2155. // leftovers
  2156. for (int i = np; i < n; ++i) {
  2157. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2158. }
  2159. #else
  2160. for (int i = 0; i < n; ++i) {
  2161. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  2162. }
  2163. #endif
  2164. *s = sumf;
  2165. }
  2166. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2167. const int nb = n / QK8_0;
  2168. assert(n % QK8_0 == 0);
  2169. assert(nb % 2 == 0);
  2170. const block_q4_0 * restrict x = vx;
  2171. const block_q8_0 * restrict y = vy;
  2172. #if defined(__ARM_NEON)
  2173. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2174. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2175. for (int i = 0; i < nb; i += 2) {
  2176. const block_q4_0 * restrict x0 = &x[i + 0];
  2177. const block_q4_0 * restrict x1 = &x[i + 1];
  2178. const block_q8_0 * restrict y0 = &y[i + 0];
  2179. const block_q8_0 * restrict y1 = &y[i + 1];
  2180. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2181. const int8x16_t s8b = vdupq_n_s8(0x8);
  2182. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2183. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2184. // 4-bit -> 8-bit
  2185. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2186. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2187. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2188. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2189. // sub 8
  2190. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2191. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2192. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2193. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2194. // interleave
  2195. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2196. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2197. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2198. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2199. // load y
  2200. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2201. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2202. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2203. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2204. #if defined(__ARM_FEATURE_DOTPROD)
  2205. // dot product into int32x4_t
  2206. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2207. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2208. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2209. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2210. #else
  2211. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2212. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2213. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2214. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2215. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2216. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2217. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2218. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2219. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2220. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2221. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2222. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2223. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2224. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2225. #endif
  2226. }
  2227. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2228. #elif defined(__AVX2__)
  2229. // Initialize accumulator with zeros
  2230. __m256 acc = _mm256_setzero_ps();
  2231. // Main loop
  2232. for (int i = 0; i < nb; ++i) {
  2233. /* Compute combined scale for the block */
  2234. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2235. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2236. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2237. const __m256i off = _mm256_set1_epi8( 8 );
  2238. bx = _mm256_sub_epi8( bx, off );
  2239. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2240. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2241. /* Multiply q with scale and accumulate */
  2242. acc = _mm256_fmadd_ps( d, q, acc );
  2243. }
  2244. *s = hsum_float_8(acc);
  2245. #elif defined(__AVX__)
  2246. // Initialize accumulator with zeros
  2247. __m256 acc = _mm256_setzero_ps();
  2248. // Main loop
  2249. for (int i = 0; i < nb; ++i) {
  2250. // Compute combined scale for the block
  2251. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2252. __m128i i32[2];
  2253. for (int j = 0; j < 2; ++j) {
  2254. // Load 8 bytes, and unpack 4 bit fields into bytes, making 16 bytes
  2255. __m128i bx = bytes_from_nibbles_16(x[i].qs + 8*j);
  2256. __m128i by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16*j));
  2257. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2258. const __m128i off = _mm_set1_epi8( 8 );
  2259. bx = _mm_sub_epi8( bx, off );
  2260. // Get absolute values of x vectors
  2261. const __m128i ax = _mm_sign_epi8(bx, bx);
  2262. // Sign the values of the y vectors
  2263. const __m128i sy = _mm_sign_epi8(by, bx);
  2264. // Perform multiplication and create 16-bit values
  2265. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  2266. const __m128i ones = _mm_set1_epi16(1);
  2267. i32[j] = _mm_madd_epi16(ones, dot);
  2268. }
  2269. // Convert int32_t to float
  2270. __m256 p = _mm256_cvtepi32_ps( _mm256_set_m128i( i32[0], i32[1] ));
  2271. // Apply the scale, and accumulate
  2272. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2273. }
  2274. *s = hsum_float_8(acc);
  2275. #else
  2276. // scalar
  2277. float sumf = 0.0;
  2278. for (int i = 0; i < nb; i++) {
  2279. const float d0 = x[i].d;
  2280. const float d1 = y[i].d;
  2281. const uint8_t * restrict p0 = x[i].qs;
  2282. const int8_t * restrict p1 = y[i].qs;
  2283. int sumi = 0;
  2284. for (int j = 0; j < QK8_0/2; j++) {
  2285. const uint8_t v0 = p0[j];
  2286. const int i0 = (int8_t) (v0 & 0x0F) - 8;
  2287. const int i1 = (int8_t) (v0 >> 4) - 8;
  2288. const int i2 = p1[2*j + 0];
  2289. const int i3 = p1[2*j + 1];
  2290. sumi += i0*i2 + i1*i3;
  2291. }
  2292. sumf += d0*d1*sumi;
  2293. }
  2294. *s = sumf;
  2295. #endif
  2296. }
  2297. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2298. const int nb = n / QK8_1;
  2299. assert(n % QK8_1 == 0);
  2300. assert(nb % 2 == 0);
  2301. const block_q4_1 * restrict x = vx;
  2302. const block_q8_1 * restrict y = vy;
  2303. // TODO: add AVX / WASM SIMD / etc
  2304. #if defined(__ARM_NEON)
  2305. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2306. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2307. float summs = 0;
  2308. for (int i = 0; i < nb; i += 2) {
  2309. const block_q4_1 * restrict x0 = &x[i + 0];
  2310. const block_q4_1 * restrict x1 = &x[i + 1];
  2311. const block_q8_1 * restrict y0 = &y[i + 0];
  2312. const block_q8_1 * restrict y1 = &y[i + 1];
  2313. summs += x0->m * (y0->s0 + y0->s1) + x1->m * (y1->s0 + y1->s1);
  2314. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2315. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2316. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2317. // 4-bit -> 8-bit
  2318. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2319. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2320. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2321. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2322. // interleave
  2323. const int8x16_t v0_0lz = vzip1q_s8(v0_0l, v0_0h);
  2324. const int8x16_t v0_0hz = vzip2q_s8(v0_0l, v0_0h);
  2325. const int8x16_t v0_1lz = vzip1q_s8(v0_1l, v0_1h);
  2326. const int8x16_t v0_1hz = vzip2q_s8(v0_1l, v0_1h);
  2327. // load y
  2328. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2329. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2330. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2331. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2332. #if defined(__ARM_FEATURE_DOTPROD)
  2333. // dot product into int32x4_t
  2334. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l), v0_0hz, v1_0h);
  2335. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l), v0_1hz, v1_1h);
  2336. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), x0->d*y0->d);
  2337. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), x1->d*y1->d);
  2338. #else
  2339. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2340. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2341. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2342. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2343. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2344. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2345. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2346. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2347. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2348. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2349. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2350. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2351. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0->d*y0->d);
  2352. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), x1->d*y1->d);
  2353. #endif
  2354. }
  2355. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2356. #elif defined(__AVX2__)
  2357. // Initialize accumulator with zeros
  2358. __m256 acc = _mm256_setzero_ps();
  2359. float summs = 0;
  2360. // Main loop
  2361. for (int i = 0; i < nb; ++i) {
  2362. const float * d0 = &x[i].d;
  2363. const float * d1 = &y[i].d;
  2364. summs += x[i].m * (y[i].s0 + y[i].s1);
  2365. const __m256 d0v = _mm256_broadcast_ss( d0 );
  2366. const __m256 d1v = _mm256_broadcast_ss( d1 );
  2367. // Compute combined scales
  2368. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2369. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2370. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2371. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2372. const __m256 xy = mul_sum_i8_pairs_float(bx, by);
  2373. // Accumulate d0*d1*x*y
  2374. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2375. }
  2376. *s = hsum_float_8(acc) + summs;
  2377. #else
  2378. // scalar
  2379. float sumf = 0.0;
  2380. for (int i = 0; i < nb; i++) {
  2381. const float d0 = x[i].d;
  2382. const float m0 = x[i].m;
  2383. const float d1 = y[i].d;
  2384. const uint8_t * restrict p0 = x[i].qs;
  2385. const int8_t * restrict p1 = y[i].qs;
  2386. // TODO: this is very slow ..
  2387. for (int j = 0; j < QK8_1/2; j++) {
  2388. const uint8_t v0 = p0[j];
  2389. const float f0 = d0*(v0 & 0x0F) + m0;
  2390. const float f1 = d0*(v0 >> 4) + m0;
  2391. const float f2 = d1*p1[2*j + 0];
  2392. const float f3 = d1*p1[2*j + 1];
  2393. sumf += f0*f2 + f1*f3;
  2394. }
  2395. }
  2396. *s = sumf;
  2397. #endif
  2398. }
  2399. static void ggml_vec_dot_q4_2_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2400. const int nb = n / QK8_0;
  2401. assert(n % QK8_0 == 0);
  2402. assert(nb % 2 == 0);
  2403. assert(QK8_0 == 2*QK4_2);
  2404. const block_q4_2 * restrict x = vx;
  2405. const block_q8_0 * restrict y = vy;
  2406. #if defined(__ARM_NEON)
  2407. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2408. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2409. for (int i = 0; i < nb; i += 2) {
  2410. const block_q4_2 * restrict x0_0 = &x[2*(i + 0) + 0];
  2411. const block_q4_2 * restrict x0_1 = &x[2*(i + 0) + 1];
  2412. const block_q4_2 * restrict x1_0 = &x[2*(i + 1) + 0];
  2413. const block_q4_2 * restrict x1_1 = &x[2*(i + 1) + 1];
  2414. const block_q8_0 * restrict y0 = &y[i + 0];
  2415. const block_q8_0 * restrict y1 = &y[i + 1];
  2416. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2417. const int8x16_t s8b = vdupq_n_s8(0x8);
  2418. const uint8x16_t v0_0 = vcombine_u8(vld1_u8(x0_0->qs), vld1_u8(x0_1->qs));
  2419. const uint8x16_t v0_1 = vcombine_u8(vld1_u8(x1_0->qs), vld1_u8(x1_1->qs));
  2420. // 4-bit -> 8-bit
  2421. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2422. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2423. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2424. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2425. // sub 8
  2426. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  2427. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  2428. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  2429. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  2430. // interleave
  2431. const int8x16_t v0_0lz = vzip1q_s8(v0_0ls, v0_0hs);
  2432. const int8x16_t v0_0hz = vzip2q_s8(v0_0ls, v0_0hs);
  2433. const int8x16_t v0_1lz = vzip1q_s8(v0_1ls, v0_1hs);
  2434. const int8x16_t v0_1hz = vzip2q_s8(v0_1ls, v0_1hs);
  2435. // load y
  2436. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2437. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2438. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2439. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2440. #if defined(__ARM_FEATURE_DOTPROD)
  2441. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2442. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0lz, v1_0l)), GGML_FP16_TO_FP32(x0_0->d)),
  2443. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_0hz, v1_0h)), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2444. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2445. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1lz, v1_1l)), GGML_FP16_TO_FP32(x1_0->d)),
  2446. vmulq_n_f32(vcvtq_f32_s32(vdotq_s32(vdupq_n_s32(0), v0_1hz, v1_1h)), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2447. #else
  2448. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lz), vget_low_s8 (v1_0l));
  2449. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lz), vget_high_s8(v1_0l));
  2450. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hz), vget_low_s8 (v1_0h));
  2451. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hz), vget_high_s8(v1_0h));
  2452. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lz), vget_low_s8 (v1_1l));
  2453. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lz), vget_high_s8(v1_1l));
  2454. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hz), vget_low_s8 (v1_1h));
  2455. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hz), vget_high_s8(v1_1h));
  2456. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2457. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2458. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2459. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2460. sumv0 = vmlaq_n_f32(sumv0, vaddq_f32(
  2461. vmulq_n_f32(vcvtq_f32_s32(pl0), GGML_FP16_TO_FP32(x0_0->d)),
  2462. vmulq_n_f32(vcvtq_f32_s32(ph0), GGML_FP16_TO_FP32(x0_1->d))), y0->d);
  2463. sumv1 = vmlaq_n_f32(sumv1, vaddq_f32(
  2464. vmulq_n_f32(vcvtq_f32_s32(pl1), GGML_FP16_TO_FP32(x1_0->d)),
  2465. vmulq_n_f32(vcvtq_f32_s32(ph1), GGML_FP16_TO_FP32(x1_1->d))), y1->d);
  2466. #endif
  2467. }
  2468. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2469. #elif defined(__AVX2__)
  2470. // Initialize accumulator with zeros
  2471. __m256 acc = _mm256_setzero_ps();
  2472. // Main loop
  2473. for (int i = 0; i < nb; i++) {
  2474. /* Compute combined scale for the block */
  2475. const __m128 d0 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 0].d));
  2476. const __m128 d1 = _mm_set1_ps(GGML_FP16_TO_FP32(x[2*i + 1].d));
  2477. const __m256 d = _mm256_mul_ps(_mm256_set_m128(d1, d0), _mm256_broadcast_ss(&y[i].d));
  2478. __m128i bx0 = bytes_from_nibbles_16(x[2*i + 0].qs);
  2479. __m128i bx1 = bytes_from_nibbles_16(x[2*i + 1].qs);
  2480. __m256i bx = _mm256_set_m128i(bx1, bx0);
  2481. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  2482. const __m256i off = _mm256_set1_epi8(8);
  2483. bx = _mm256_sub_epi8(bx, off);
  2484. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2485. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2486. /* Multiply q with scale and accumulate */
  2487. acc = _mm256_fmadd_ps(d, q, acc);
  2488. }
  2489. *s = hsum_float_8(acc);
  2490. #else
  2491. // scalar
  2492. float sumf = 0.0;
  2493. for (int i = 0; i < nb; i++) {
  2494. const uint8_t * restrict x0 = x[2*i + 0].qs;
  2495. const uint8_t * restrict x1 = x[2*i + 1].qs;
  2496. const int8_t * restrict y0 = y[i].qs;
  2497. const float d0 = GGML_FP16_TO_FP32(x[2*i + 0].d);
  2498. const float d1 = GGML_FP16_TO_FP32(x[2*i + 1].d);
  2499. int sumi_0 = 0;
  2500. int sumi_1 = 0;
  2501. for (int j = 0; j < QK8_0/4; j++) {
  2502. const uint8_t v0 = x0[j];
  2503. const uint8_t v1 = x1[j];
  2504. const int i0_0 = (int8_t) (v0 & 0x0F) - 8;
  2505. const int i1_0 = (int8_t) (v0 >> 4) - 8;
  2506. const int i0_1 = (int8_t) (v1 & 0x0F) - 8;
  2507. const int i1_1 = (int8_t) (v1 >> 4) - 8;
  2508. const int i2_0 = y0[2*j + 0];
  2509. const int i3_0 = y0[2*j + 1];
  2510. const int i2_1 = y0[2*(j + QK8_0/4) + 0];
  2511. const int i3_1 = y0[2*(j + QK8_0/4) + 1];
  2512. sumi_0 += i0_0*i2_0 + i1_0*i3_0;
  2513. sumi_1 += i0_1*i2_1 + i1_1*i3_1;
  2514. }
  2515. sumf += (d0 * y[i].d) * sumi_0;
  2516. sumf += (d1 * y[i].d) * sumi_1;
  2517. }
  2518. *s = sumf;
  2519. #endif
  2520. }
  2521. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2522. const int nb = n / QK8_0;
  2523. assert(n % QK8_0 == 0);
  2524. assert(nb % 2 == 0);
  2525. assert(QK8_0 == QK5_0);
  2526. const block_q5_0 * restrict x = vx;
  2527. const block_q8_0 * restrict y = vy;
  2528. #if defined(__ARM_NEON)
  2529. float32x4_t sumv = vdupq_n_f32(0.0f);
  2530. uint64_t tmp[4];
  2531. for (int i = 0; i < nb; ++i) {
  2532. const block_q5_0 * restrict x0 = &x[i];
  2533. const block_q8_0 * restrict y0 = &y[i];
  2534. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2535. const int8x16_t s16b = vdupq_n_s8(0x10);
  2536. // extract the 5th bit
  2537. uint32_t qh;
  2538. memcpy(&qh, x0->qh, sizeof(qh));
  2539. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2540. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2541. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2542. tmp[3] = table_b2b_u[(qh >> 24) ];
  2543. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2544. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2545. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2546. // 4-bit -> 8-bit
  2547. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, m4b));
  2548. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2549. // interleave
  2550. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2551. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2552. // add high bit and sub 16
  2553. const int8x16_t v0lf = vsubq_s8(vorrq_s8(v0lz, qhl), s16b);
  2554. const int8x16_t v0hf = vsubq_s8(vorrq_s8(v0hz, qhh), s16b);
  2555. // load y
  2556. const int8x16_t v1l = vld1q_s8(y0->qs);
  2557. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2558. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2559. #if defined(__ARM_FEATURE_DOTPROD)
  2560. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2561. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2562. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2563. #else
  2564. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2565. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2566. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2567. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2568. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2569. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2570. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2571. #endif
  2572. }
  2573. *s = vaddvq_f32(sumv);
  2574. #elif defined(__wasm_simd128__)
  2575. v128_t sumv = wasm_f32x4_splat(0.0f);
  2576. uint64_t tmp[4];
  2577. for (int i = 0; i < nb; ++i) {
  2578. const block_q5_0 * restrict x0 = &x[i];
  2579. const block_q8_0 * restrict y0 = &y[i];
  2580. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2581. const v128_t s16b = wasm_i8x16_splat(0x10);
  2582. // extract the 5th bit
  2583. uint32_t qh;
  2584. memcpy(&qh, x0->qh, sizeof(qh));
  2585. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2586. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2587. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2588. tmp[3] = table_b2b_u[(qh >> 24) ];
  2589. const v128_t qhl = wasm_v128_load(tmp + 0);
  2590. const v128_t qhh = wasm_v128_load(tmp + 2);
  2591. const v128_t v0 = wasm_v128_load(x0->qs);
  2592. // 4-bit -> 8-bit
  2593. const v128_t v0l = wasm_v128_and (v0, m4b);
  2594. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2595. // interleave
  2596. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2597. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2598. // add high bit and sub 16
  2599. const v128_t v0lf = wasm_i8x16_sub(wasm_v128_or(v0lz, qhl), s16b);
  2600. const v128_t v0hf = wasm_i8x16_sub(wasm_v128_or(v0hz, qhh), s16b);
  2601. // load y
  2602. const v128_t v1l = wasm_v128_load(y0->qs);
  2603. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2604. // int8x16 -> int16x8
  2605. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2606. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2607. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2608. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2609. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2610. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2611. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2612. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2613. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2614. // dot product
  2615. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2616. wasm_i32x4_add(
  2617. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2618. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2619. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2620. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2621. }
  2622. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2623. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2624. #elif defined(__AVX2__)
  2625. // Initialize accumulator with zeros
  2626. __m256 acc = _mm256_setzero_ps();
  2627. // Main loop
  2628. for (int i = 0; i < nb; i++) {
  2629. /* Compute combined scale for the block */
  2630. const __m256 d = _mm256_mul_ps(_mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d)), _mm256_broadcast_ss(&y[i].d));
  2631. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2632. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2633. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2634. bx = _mm256_or_si256(bx, bxhi);
  2635. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2636. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2637. /* Multiply q with scale and accumulate */
  2638. acc = _mm256_fmadd_ps(d, q, acc);
  2639. }
  2640. *s = hsum_float_8(acc);
  2641. #else
  2642. // scalar
  2643. float sumf = 0.0;
  2644. for (int i = 0; i < nb; i++) {
  2645. const uint8_t * restrict x0 = x[i].qs;
  2646. const int8_t * restrict y0 = y[i].qs;
  2647. uint32_t qh;
  2648. memcpy(&qh, x[i].qh, sizeof(qh));
  2649. const float d = GGML_FP16_TO_FP32(x[i].d);
  2650. int sxy = 0;
  2651. for (int j = 0; j < QK8_0/2; j++) {
  2652. const uint8_t v0 = x0[j];
  2653. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2654. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2655. const int x0_0 = ((v0 & 0x0F) | x0_0h) - 16;
  2656. const int x1_0 = ((v0 >> 4) | x1_0h) - 16;
  2657. const int y0_0 = y0[2*j + 0];
  2658. const int y1_0 = y0[2*j + 1];
  2659. sxy += x0_0*y0_0 + x1_0*y1_0;
  2660. }
  2661. sumf += (d*sxy)*y[i].d;
  2662. }
  2663. *s = sumf;
  2664. #endif
  2665. }
  2666. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2667. const int nb = n / QK8_1;
  2668. assert(n % QK8_1 == 0);
  2669. assert(nb % 2 == 0);
  2670. assert(QK8_1 == QK5_1);
  2671. const block_q5_1 * restrict x = vx;
  2672. const block_q8_1 * restrict y = vy;
  2673. #if defined(__ARM_NEON)
  2674. float32x4_t sumv = vdupq_n_f32(0.0f);
  2675. float summs = 0.0f;
  2676. uint64_t tmp[4];
  2677. for (int i = 0; i < nb; ++i) {
  2678. const block_q5_1 * restrict x0 = &x[i];
  2679. const block_q8_1 * restrict y0 = &y[i];
  2680. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2681. // extract the 5th bit
  2682. uint32_t qh;
  2683. memcpy(&qh, x0->qh, sizeof(qh));
  2684. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2685. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2686. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2687. tmp[3] = table_b2b_u[(qh >> 24) ];
  2688. const int8x16_t qhl = vld1q_s8((const int8_t *)(tmp + 0));
  2689. const int8x16_t qhh = vld1q_s8((const int8_t *)(tmp + 2));
  2690. const uint8x16_t v0 = vld1q_u8(x0->qs);
  2691. // 4-bit -> 8-bit
  2692. const int8x16_t v0l = vreinterpretq_s8_u8(vandq_u8 (v0, vdupq_n_u8(0x0F)));
  2693. const int8x16_t v0h = vreinterpretq_s8_u8(vshrq_n_u8(v0, 4));
  2694. // interleave
  2695. const int8x16_t v0lz = vzip1q_s8(v0l, v0h);
  2696. const int8x16_t v0hz = vzip2q_s8(v0l, v0h);
  2697. // add
  2698. const int8x16_t v0lf = vorrq_s8(v0lz, qhl);
  2699. const int8x16_t v0hf = vorrq_s8(v0hz, qhh);
  2700. // load y
  2701. const int8x16_t v1l = vld1q_s8(y0->qs);
  2702. const int8x16_t v1h = vld1q_s8(y0->qs + 16);
  2703. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2704. #if defined(__ARM_FEATURE_DOTPROD)
  2705. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(
  2706. vdotq_s32(vdupq_n_s32(0), v0lf, v1l),
  2707. vdotq_s32(vdupq_n_s32(0), v0hf, v1h))), x0d*y0->d);
  2708. #else
  2709. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0lf), vget_low_s8 (v1l));
  2710. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0lf), vget_high_s8(v1l));
  2711. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0hf), vget_low_s8 (v1h));
  2712. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0hf), vget_high_s8(v1h));
  2713. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2714. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2715. sumv = vmlaq_n_f32(sumv, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), x0d*y0->d);
  2716. #endif
  2717. }
  2718. *s = vaddvq_f32(sumv) + summs;
  2719. #elif defined(__wasm_simd128__)
  2720. v128_t sumv = wasm_f32x4_splat(0.0f);
  2721. float summs = 0.0f;
  2722. uint64_t tmp[4];
  2723. for (int i = 0; i < nb; ++i) {
  2724. const block_q5_1 * restrict x0 = &x[i];
  2725. const block_q8_1 * restrict y0 = &y[i];
  2726. summs += GGML_FP16_TO_FP32(x0->m) * (y0->s0 + y0->s1);
  2727. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2728. // extract the 5th bit
  2729. uint32_t qh;
  2730. memcpy(&qh, x0->qh, sizeof(qh));
  2731. tmp[0] = table_b2b_u[(qh >> 0) & 0xFF];
  2732. tmp[1] = table_b2b_u[(qh >> 8) & 0xFF];
  2733. tmp[2] = table_b2b_u[(qh >> 16) & 0xFF];
  2734. tmp[3] = table_b2b_u[(qh >> 24) ];
  2735. const v128_t qhl = wasm_v128_load(tmp + 0);
  2736. const v128_t qhh = wasm_v128_load(tmp + 2);
  2737. const v128_t v0 = wasm_v128_load(x0->qs);
  2738. // 4-bit -> 8-bit
  2739. const v128_t v0l = wasm_v128_and (v0, m4b);
  2740. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2741. static bool x = true;
  2742. // interleave
  2743. const v128_t v0lz = wasm_v8x16_shuffle(v0l, v0h, 0, 16, 1, 17, 2, 18, 3, 19, 4, 20, 5, 21, 6, 22, 7, 23);
  2744. const v128_t v0hz = wasm_v8x16_shuffle(v0l, v0h, 8, 24, 9, 25, 10, 26, 11, 27, 12, 28, 13, 29, 14, 30, 15, 31);
  2745. // add high bit
  2746. const v128_t v0lf = wasm_v128_or(v0lz, qhl);
  2747. const v128_t v0hf = wasm_v128_or(v0hz, qhh);
  2748. // load y
  2749. const v128_t v1l = wasm_v128_load(y0->qs);
  2750. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2751. // int8x16 -> int16x8
  2752. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2753. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2754. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2755. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2756. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2757. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2758. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2759. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2760. const float x0d = GGML_FP16_TO_FP32(x0->d);
  2761. // dot product
  2762. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2763. wasm_i32x4_add(
  2764. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2765. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2766. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2767. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))), wasm_f32x4_splat(x0d*y0->d)));
  2768. }
  2769. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2770. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2771. #elif defined(__AVX2__)
  2772. // Initialize accumulator with zeros
  2773. __m256 acc = _mm256_setzero_ps();
  2774. float summs = 0.0f;
  2775. // Main loop
  2776. for (int i = 0; i < nb; i++) {
  2777. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2778. summs += GGML_FP16_TO_FP32(x[i].m) * (y[i].s0 + y[i].s1);
  2779. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2780. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2781. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2782. bx = _mm256_or_si256(bx, bxhi);
  2783. const __m256 dy = _mm256_broadcast_ss(&y[i].d);
  2784. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2785. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2786. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2787. }
  2788. *s = hsum_float_8(acc) + summs;
  2789. #else
  2790. float sumf = 0.0;
  2791. for (int i = 0; i < nb; i++) {
  2792. const uint8_t * restrict x0 = x[i].qs;
  2793. const int8_t * restrict y0 = y[i].qs;
  2794. uint32_t qh;
  2795. memcpy(&qh, x[i].qh, sizeof(qh));
  2796. const float d = GGML_FP16_TO_FP32(x[i].d);
  2797. const float m = GGML_FP16_TO_FP32(x[i].m);
  2798. int sxy = 0;
  2799. for (int j = 0; j < QK8_1/2; j++) {
  2800. const uint8_t v0 = x0[j];
  2801. const int x0_0h = ((qh & (1u << (2*j + 0))) >> (2*j + 0)) << 4;
  2802. const int x1_0h = ((qh & (1u << (2*j + 1))) >> (2*j + 1)) << 4;
  2803. const int x0_0 = (v0 & 0x0F) | x0_0h;
  2804. const int x1_0 = (v0 >> 4) | x1_0h;
  2805. const int y0_0 = y0[2*j + 0];
  2806. const int y1_0 = y0[2*j + 1];
  2807. sxy += x0_0*y0_0 + x1_0*y1_0;
  2808. }
  2809. sumf += (d*sxy)*y[i].d + m*(y[i].s0 + y[i].s1);
  2810. }
  2811. *s = sumf;
  2812. #endif
  2813. }
  2814. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2815. const int nb = n / QK8_0;
  2816. assert(n % QK8_0 == 0);
  2817. assert(nb % 2 == 0);
  2818. assert(QK8_0 == QK8_0);
  2819. const block_q8_0 * restrict x = vx;
  2820. const block_q8_0 * restrict y = vy;
  2821. #if defined(__ARM_NEON)
  2822. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2823. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2824. for (int i = 0; i < nb; i += 2) {
  2825. const block_q8_0 * restrict x0 = &x[i + 0];
  2826. const block_q8_0 * restrict x1 = &x[i + 1];
  2827. const block_q8_0 * restrict y0 = &y[i + 0];
  2828. const block_q8_0 * restrict y1 = &y[i + 1];
  2829. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2830. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2831. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2832. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2833. // load y
  2834. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2835. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2836. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2837. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2838. #if defined(__ARM_FEATURE_DOTPROD)
  2839. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2840. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2841. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), x0->d*y0->d);
  2842. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2843. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2844. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), x1->d*y1->d);
  2845. #else
  2846. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2847. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2848. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2849. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2850. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2851. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2852. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2853. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2854. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2855. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2856. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2857. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2858. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), x0->d*y0->d);
  2859. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), x1->d*y1->d);
  2860. #endif
  2861. }
  2862. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2863. #elif defined(__AVX2__)
  2864. // Initialize accumulator with zeros
  2865. __m256 acc = _mm256_setzero_ps();
  2866. // Main loop
  2867. for (int i = 0; i < nb; ++i) {
  2868. // Compute combined scale for the block
  2869. const __m256 d = _mm256_mul_ps( _mm256_broadcast_ss( &x[i].d ), _mm256_broadcast_ss( &y[i].d ) );
  2870. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2871. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2872. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2873. // Multiply q with scale and accumulate
  2874. acc = _mm256_fmadd_ps( d, q, acc );
  2875. }
  2876. *s = hsum_float_8(acc);
  2877. #else
  2878. // scalar
  2879. float sumf = 0.0;
  2880. for (int i = 0; i < nb; i++) {
  2881. const int8_t * restrict x0 = x[i].qs;
  2882. const int8_t * restrict y0 = y[i].qs;
  2883. int sumi = 0;
  2884. for (int j = 0; j < QK8_0; j++) {
  2885. const int v0 = x0[j];
  2886. const int v1 = y0[j];
  2887. sumi += v0*v1;
  2888. }
  2889. sumf += (x[i].d*y[i].d)*sumi;
  2890. }
  2891. *s = sumf;
  2892. #endif
  2893. }
  2894. // compute GGML_VEC_DOT_UNROLL dot products at once
  2895. // xs - x row stride in bytes
  2896. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2897. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2898. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2899. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2900. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2901. }
  2902. #if defined(GGML_SIMD)
  2903. const int np = (n & ~(GGML_F16_STEP - 1));
  2904. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2905. GGML_F16_VEC ax[GGML_F16_ARR];
  2906. GGML_F16_VEC ay[GGML_F16_ARR];
  2907. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2908. for (int j = 0; j < GGML_F16_ARR; j++) {
  2909. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2910. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2911. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2912. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2913. }
  2914. }
  2915. }
  2916. // reduce sum0..sum3 to sum0
  2917. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2918. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2919. }
  2920. // leftovers
  2921. for (int i = np; i < n; ++i) {
  2922. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2923. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2924. }
  2925. }
  2926. #else
  2927. for (int i = 0; i < n; ++i) {
  2928. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2929. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2930. }
  2931. }
  2932. #endif
  2933. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2934. s[i] = sumf[i];
  2935. }
  2936. }
  2937. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2938. #if defined(GGML_SIMD)
  2939. const int np = (n & ~(GGML_F32_STEP - 1));
  2940. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2941. GGML_F32_VEC ax[GGML_F32_ARR];
  2942. GGML_F32_VEC ay[GGML_F32_ARR];
  2943. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2944. for (int j = 0; j < GGML_F32_ARR; j++) {
  2945. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2946. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2947. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2948. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2949. }
  2950. }
  2951. // leftovers
  2952. for (int i = np; i < n; ++i) {
  2953. y[i] += x[i]*v;
  2954. }
  2955. #else
  2956. // scalar
  2957. for (int i = 0; i < n; ++i) {
  2958. y[i] += x[i]*v;
  2959. }
  2960. #endif
  2961. }
  2962. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2963. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2964. #if defined(GGML_SIMD)
  2965. const int np = (n & ~(GGML_F32_STEP - 1));
  2966. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2967. GGML_F32_VEC ay[GGML_F32_ARR];
  2968. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2969. for (int j = 0; j < GGML_F32_ARR; j++) {
  2970. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2971. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2972. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2973. }
  2974. }
  2975. // leftovers
  2976. for (int i = np; i < n; ++i) {
  2977. y[i] *= v;
  2978. }
  2979. #else
  2980. // scalar
  2981. for (int i = 0; i < n; ++i) {
  2982. y[i] *= v;
  2983. }
  2984. #endif
  2985. }
  2986. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2987. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2988. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2989. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2990. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2991. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2992. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2993. static const float GELU_COEF_A = 0.044715f;
  2994. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2995. inline static float ggml_gelu_f32(float x) {
  2996. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2997. }
  2998. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2999. const uint16_t * i16 = (const uint16_t *) x;
  3000. for (int i = 0; i < n; ++i) {
  3001. y[i] = table_gelu_f16[i16[i]];
  3002. }
  3003. }
  3004. #ifdef GGML_GELU_FP16
  3005. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3006. uint16_t t;
  3007. for (int i = 0; i < n; ++i) {
  3008. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3009. memcpy(&t, &fp16, sizeof(uint16_t));
  3010. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  3011. }
  3012. }
  3013. #else
  3014. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  3015. for (int i = 0; i < n; ++i) {
  3016. y[i] = ggml_gelu_f32(x[i]);
  3017. }
  3018. }
  3019. #endif
  3020. // Sigmoid Linear Unit (SiLU) function
  3021. inline static float ggml_silu_f32(float x) {
  3022. return x/(1.0f + expf(-x));
  3023. }
  3024. inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  3025. const uint16_t * i16 = (const uint16_t *) x;
  3026. for (int i = 0; i < n; ++i) {
  3027. y[i] = table_silu_f16[i16[i]];
  3028. }
  3029. }
  3030. #ifdef GGML_SILU_FP16
  3031. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3032. uint16_t t;
  3033. for (int i = 0; i < n; ++i) {
  3034. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  3035. memcpy(&t, &fp16, sizeof(uint16_t));
  3036. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  3037. }
  3038. }
  3039. #else
  3040. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  3041. for (int i = 0; i < n; ++i) {
  3042. y[i] = ggml_silu_f32(x[i]);
  3043. }
  3044. }
  3045. #endif
  3046. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  3047. #ifndef GGML_USE_ACCELERATE
  3048. ggml_float sum = 0.0;
  3049. for (int i = 0; i < n; ++i) {
  3050. sum += (ggml_float)x[i];
  3051. }
  3052. *s = sum;
  3053. #else
  3054. vDSP_sve(x, 1, s, n);
  3055. #endif
  3056. }
  3057. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  3058. ggml_float sum = 0.0;
  3059. for (int i = 0; i < n; ++i) {
  3060. sum += (ggml_float)x[i];
  3061. }
  3062. *s = sum;
  3063. }
  3064. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  3065. #ifndef GGML_USE_ACCELERATE
  3066. float max = -INFINITY;
  3067. for (int i = 0; i < n; ++i) {
  3068. max = MAX(max, x[i]);
  3069. }
  3070. *s = max;
  3071. #else
  3072. vDSP_maxv(x, 1, s, n);
  3073. #endif
  3074. }
  3075. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  3076. ggml_vec_norm_f32(n, s, x);
  3077. *s = 1.f/(*s);
  3078. }
  3079. //
  3080. // logging
  3081. //
  3082. #if (GGML_DEBUG >= 1)
  3083. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  3084. #else
  3085. #define GGML_PRINT_DEBUG(...)
  3086. #endif
  3087. #if (GGML_DEBUG >= 5)
  3088. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  3089. #else
  3090. #define GGML_PRINT_DEBUG_5(...)
  3091. #endif
  3092. #if (GGML_DEBUG >= 10)
  3093. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  3094. #else
  3095. #define GGML_PRINT_DEBUG_10(...)
  3096. #endif
  3097. #define GGML_PRINT(...) printf(__VA_ARGS__)
  3098. //
  3099. // data types
  3100. //
  3101. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  3102. [GGML_TYPE_F32] = 1,
  3103. [GGML_TYPE_F16] = 1,
  3104. [GGML_TYPE_Q4_0] = QK4_0,
  3105. [GGML_TYPE_Q4_1] = QK4_1,
  3106. [GGML_TYPE_Q4_2] = QK4_2,
  3107. [GGML_TYPE_Q5_0] = QK5_0,
  3108. [GGML_TYPE_Q5_1] = QK5_1,
  3109. [GGML_TYPE_Q8_0] = QK8_0,
  3110. [GGML_TYPE_Q8_1] = QK8_1,
  3111. [GGML_TYPE_I8] = 1,
  3112. [GGML_TYPE_I16] = 1,
  3113. [GGML_TYPE_I32] = 1,
  3114. };
  3115. static_assert(GGML_TYPE_COUNT == 13, "GGML_BLCK_SIZE is outdated");
  3116. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  3117. [GGML_TYPE_F32] = sizeof(float),
  3118. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  3119. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  3120. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  3121. [GGML_TYPE_Q4_2] = sizeof(block_q4_2),
  3122. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  3123. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  3124. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  3125. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  3126. [GGML_TYPE_I8] = sizeof(int8_t),
  3127. [GGML_TYPE_I16] = sizeof(int16_t),
  3128. [GGML_TYPE_I32] = sizeof(int32_t),
  3129. };
  3130. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_SIZE is outdated");
  3131. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  3132. [GGML_TYPE_F32] = "f32",
  3133. [GGML_TYPE_F16] = "f16",
  3134. [GGML_TYPE_Q4_0] = "q4_0",
  3135. [GGML_TYPE_Q4_1] = "q4_1",
  3136. [GGML_TYPE_Q4_2] = "q4_2",
  3137. [GGML_TYPE_Q5_0] = "q5_0",
  3138. [GGML_TYPE_Q5_1] = "q5_1",
  3139. [GGML_TYPE_Q8_0] = "q8_0",
  3140. [GGML_TYPE_Q8_1] = "q8_1",
  3141. [GGML_TYPE_I8] = "i8",
  3142. [GGML_TYPE_I16] = "i16",
  3143. [GGML_TYPE_I32] = "i32",
  3144. };
  3145. static_assert(GGML_TYPE_COUNT == 13, "GGML_TYPE_NAME is outdated");
  3146. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  3147. [GGML_TYPE_F32] = false,
  3148. [GGML_TYPE_F16] = false,
  3149. [GGML_TYPE_Q4_0] = true,
  3150. [GGML_TYPE_Q4_1] = true,
  3151. [GGML_TYPE_Q4_2] = true,
  3152. [GGML_TYPE_Q5_0] = true,
  3153. [GGML_TYPE_Q5_1] = true,
  3154. [GGML_TYPE_Q8_0] = true,
  3155. [GGML_TYPE_Q8_1] = true,
  3156. [GGML_TYPE_I8] = false,
  3157. [GGML_TYPE_I16] = false,
  3158. [GGML_TYPE_I32] = false,
  3159. };
  3160. static_assert(GGML_TYPE_COUNT == 13, "GGML_IS_QUANTIZED is outdated");
  3161. static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
  3162. "NONE",
  3163. "DUP",
  3164. "ADD",
  3165. "SUB",
  3166. "MUL",
  3167. "DIV",
  3168. "SQR",
  3169. "SQRT",
  3170. "SUM",
  3171. "MEAN",
  3172. "REPEAT",
  3173. "ABS",
  3174. "SGN",
  3175. "NEG",
  3176. "STEP",
  3177. "RELU",
  3178. "GELU",
  3179. "SILU",
  3180. "NORM",
  3181. "RMS_NORM",
  3182. "MUL_MAT",
  3183. "SCALE",
  3184. "CPY",
  3185. "CONT",
  3186. "RESHAPE",
  3187. "VIEW",
  3188. "PERMUTE",
  3189. "TRANSPOSE",
  3190. "GET_ROWS",
  3191. "DIAG_MASK_INF",
  3192. "SOFT_MAX",
  3193. "ROPE",
  3194. "ALIBI",
  3195. "CONV_1D_1S",
  3196. "CONV_1D_2S",
  3197. "FLASH_ATTN",
  3198. "FLASH_FF",
  3199. "MAP_UNARY",
  3200. "MAP_BINARY",
  3201. };
  3202. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3203. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3204. "none",
  3205. "x",
  3206. "x+y",
  3207. "x-y",
  3208. "x*y",
  3209. "x/y",
  3210. "x^2",
  3211. "√x",
  3212. "Σx",
  3213. "Σx/n",
  3214. "repeat(x)",
  3215. "abs(x)",
  3216. "sgn(x)",
  3217. "-x",
  3218. "step(x)",
  3219. "relu(x)",
  3220. "gelu(x)",
  3221. "silu(x)",
  3222. "norm(x)",
  3223. "rms_norm(x)",
  3224. "X*Y",
  3225. "x*v",
  3226. "x-\\>y",
  3227. "cont(x)",
  3228. "reshape(x)",
  3229. "view(x)",
  3230. "permute(x)",
  3231. "transpose(x)",
  3232. "get_rows(x)",
  3233. "diag_mask_inf(x)",
  3234. "soft_max(x)",
  3235. "rope(x)",
  3236. "alibi(x)",
  3237. "conv_1d_1s(x)",
  3238. "conv_1d_2s(x)",
  3239. "flash_attn(x)",
  3240. "flash_ff(x)",
  3241. "f(x)",
  3242. "f(x,y)",
  3243. };
  3244. static_assert(GGML_OP_COUNT == 39, "GGML_OP_COUNT != 39");
  3245. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3246. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3247. //
  3248. // ggml context
  3249. //
  3250. struct ggml_context {
  3251. size_t mem_size;
  3252. void * mem_buffer;
  3253. bool mem_buffer_owned;
  3254. bool no_alloc;
  3255. int n_objects;
  3256. struct ggml_object * objects_begin;
  3257. struct ggml_object * objects_end;
  3258. struct ggml_scratch scratch;
  3259. struct ggml_scratch scratch_save;
  3260. };
  3261. struct ggml_context_container {
  3262. bool used;
  3263. struct ggml_context context;
  3264. };
  3265. //
  3266. // compute types
  3267. //
  3268. enum ggml_task_type {
  3269. GGML_TASK_INIT = 0,
  3270. GGML_TASK_COMPUTE,
  3271. GGML_TASK_FINALIZE,
  3272. };
  3273. struct ggml_compute_params {
  3274. enum ggml_task_type type;
  3275. int ith, nth;
  3276. // work buffer for all threads
  3277. size_t wsize;
  3278. void * wdata;
  3279. };
  3280. //
  3281. // ggml state
  3282. //
  3283. struct ggml_state {
  3284. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3285. };
  3286. // global state
  3287. static struct ggml_state g_state;
  3288. static atomic_int g_state_barrier = 0;
  3289. // barrier via spin lock
  3290. inline static void ggml_critical_section_start(void) {
  3291. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3292. while (processing > 0) {
  3293. // wait for other threads to finish
  3294. atomic_fetch_sub(&g_state_barrier, 1);
  3295. sched_yield(); // TODO: reconsider this
  3296. processing = atomic_fetch_add(&g_state_barrier, 1);
  3297. }
  3298. }
  3299. // TODO: make this somehow automatically executed
  3300. // some sort of "sentry" mechanism
  3301. inline static void ggml_critical_section_end(void) {
  3302. atomic_fetch_sub(&g_state_barrier, 1);
  3303. }
  3304. ////////////////////////////////////////////////////////////////////////////////
  3305. void ggml_print_object(const struct ggml_object * obj) {
  3306. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3307. obj->offs, obj->size, (const void *) obj->next);
  3308. }
  3309. void ggml_print_objects(const struct ggml_context * ctx) {
  3310. struct ggml_object * obj = ctx->objects_begin;
  3311. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3312. while (obj != NULL) {
  3313. ggml_print_object(obj);
  3314. obj = obj->next;
  3315. }
  3316. GGML_PRINT("%s: --- end ---\n", __func__);
  3317. }
  3318. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3319. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3320. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3321. }
  3322. int ggml_nrows(const struct ggml_tensor * tensor) {
  3323. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3324. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3325. }
  3326. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3327. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3328. return (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3329. }
  3330. int ggml_blck_size(enum ggml_type type) {
  3331. return GGML_BLCK_SIZE[type];
  3332. }
  3333. size_t ggml_type_size(enum ggml_type type) {
  3334. return GGML_TYPE_SIZE[type];
  3335. }
  3336. float ggml_type_sizef(enum ggml_type type) {
  3337. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3338. }
  3339. const char * ggml_type_name(enum ggml_type type) {
  3340. return GGML_TYPE_NAME[type];
  3341. }
  3342. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3343. return GGML_TYPE_SIZE[tensor->type];
  3344. }
  3345. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3346. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3347. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3348. }
  3349. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3350. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3351. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3352. }
  3353. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3354. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3355. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3356. }
  3357. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3358. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3359. return
  3360. (t0->ne[0] == t1->ne[0]) &&
  3361. (t0->ne[2] == t1->ne[2]) &&
  3362. (t0->ne[3] == t1->ne[3]);
  3363. }
  3364. bool ggml_is_quantized(enum ggml_type type) {
  3365. return GGML_IS_QUANTIZED[type];
  3366. }
  3367. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3368. enum ggml_type wtype = GGML_TYPE_COUNT;
  3369. switch (ftype) {
  3370. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3371. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3372. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3373. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3374. case GGML_FTYPE_MOSTLY_Q4_2: wtype = GGML_TYPE_Q4_2; break;
  3375. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3376. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3377. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3378. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3379. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3380. }
  3381. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3382. return wtype;
  3383. }
  3384. static inline bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3385. return tensor->nb[0] > tensor->nb[1];
  3386. }
  3387. static inline bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3388. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3389. return
  3390. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3391. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3392. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3393. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3394. }
  3395. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3396. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3397. return
  3398. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3399. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3400. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3401. }
  3402. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3403. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3404. return
  3405. (t0->ne[0] == t1->ne[0] ) &&
  3406. (t0->ne[1] == t1->ne[1] ) &&
  3407. (t0->ne[2] == t1->ne[2] ) &&
  3408. (t0->ne[3] == t1->ne[3] );
  3409. }
  3410. // check if t1 can be represented as a repeatition of t0
  3411. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3412. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3413. return
  3414. (t1->ne[0]%t0->ne[0] == 0) &&
  3415. (t1->ne[1]%t0->ne[1] == 0) &&
  3416. (t1->ne[2]%t0->ne[2] == 0) &&
  3417. (t1->ne[3]%t0->ne[3] == 0);
  3418. }
  3419. static inline int ggml_up32(int n) {
  3420. return (n + 31) & ~31;
  3421. }
  3422. static inline int ggml_up64(int n) {
  3423. return (n + 63) & ~63;
  3424. }
  3425. static inline int ggml_up(int n, int m) {
  3426. // assert m is a power of 2
  3427. GGML_ASSERT((m & (m - 1)) == 0);
  3428. return (n + m - 1) & ~(m - 1);
  3429. }
  3430. // assert that pointer is aligned to GGML_MEM_ALIGN
  3431. #define ggml_assert_aligned(ptr) \
  3432. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3433. ////////////////////////////////////////////////////////////////////////////////
  3434. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3435. // make this function thread safe
  3436. ggml_critical_section_start();
  3437. static bool is_first_call = true;
  3438. if (is_first_call) {
  3439. // initialize time system (required on Windows)
  3440. ggml_time_init();
  3441. // initialize GELU, SILU and EXP F32 tables
  3442. {
  3443. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3444. ggml_fp16_t ii;
  3445. for (int i = 0; i < (1 << 16); ++i) {
  3446. uint16_t ui = i;
  3447. memcpy(&ii, &ui, sizeof(ii));
  3448. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3449. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3450. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3451. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3452. }
  3453. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3454. GGML_PRINT_DEBUG("%s: GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3455. }
  3456. // initialize g_state
  3457. {
  3458. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3459. g_state = (struct ggml_state) {
  3460. /*.contexts =*/ { { 0 } },
  3461. };
  3462. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3463. g_state.contexts[i].used = false;
  3464. }
  3465. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3466. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3467. }
  3468. #if defined(GGML_USE_CUBLAS)
  3469. ggml_init_cublas();
  3470. #elif defined(GGML_USE_CLBLAST)
  3471. ggml_cl_init();
  3472. #endif
  3473. is_first_call = false;
  3474. }
  3475. // find non-used context in g_state
  3476. struct ggml_context * ctx = NULL;
  3477. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3478. if (!g_state.contexts[i].used) {
  3479. g_state.contexts[i].used = true;
  3480. ctx = &g_state.contexts[i].context;
  3481. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3482. break;
  3483. }
  3484. }
  3485. if (ctx == NULL) {
  3486. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3487. ggml_critical_section_end();
  3488. return NULL;
  3489. }
  3490. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3491. *ctx = (struct ggml_context) {
  3492. /*.mem_size =*/ mem_size,
  3493. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3494. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3495. /*.no_alloc =*/ params.no_alloc,
  3496. /*.n_objects =*/ 0,
  3497. /*.objects_begin =*/ NULL,
  3498. /*.objects_end =*/ NULL,
  3499. /*.scratch =*/ { 0, 0, NULL, },
  3500. /*.scratch_save =*/ { 0, 0, NULL, },
  3501. };
  3502. GGML_ASSERT(ctx->mem_buffer != NULL);
  3503. ggml_assert_aligned(ctx->mem_buffer);
  3504. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3505. ggml_critical_section_end();
  3506. return ctx;
  3507. }
  3508. void ggml_free(struct ggml_context * ctx) {
  3509. // make this function thread safe
  3510. ggml_critical_section_start();
  3511. bool found = false;
  3512. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3513. if (&g_state.contexts[i].context == ctx) {
  3514. g_state.contexts[i].used = false;
  3515. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3516. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3517. if (ctx->mem_buffer_owned) {
  3518. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3519. }
  3520. found = true;
  3521. break;
  3522. }
  3523. }
  3524. if (!found) {
  3525. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3526. }
  3527. ggml_critical_section_end();
  3528. }
  3529. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3530. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3531. }
  3532. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3533. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3534. ctx->scratch = scratch;
  3535. return result;
  3536. }
  3537. ////////////////////////////////////////////////////////////////////////////////
  3538. struct ggml_tensor * ggml_new_tensor_impl(
  3539. struct ggml_context * ctx,
  3540. enum ggml_type type,
  3541. int n_dims,
  3542. const int64_t* ne,
  3543. void* data) {
  3544. // always insert objects at the end of the context's memory pool
  3545. struct ggml_object * obj_cur = ctx->objects_end;
  3546. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3547. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3548. const size_t cur_end = cur_offs + cur_size;
  3549. size_t size_needed = 0;
  3550. if (data == NULL && !ctx->no_alloc) {
  3551. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3552. for (int i = 1; i < n_dims; i++) {
  3553. size_needed *= ne[i];
  3554. }
  3555. // align to GGML_MEM_ALIGN
  3556. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3557. }
  3558. char * const mem_buffer = ctx->mem_buffer;
  3559. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3560. if (ctx->scratch.data == NULL || data != NULL) {
  3561. size_needed += sizeof(struct ggml_tensor);
  3562. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3563. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3564. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3565. assert(false);
  3566. return NULL;
  3567. }
  3568. *obj_new = (struct ggml_object) {
  3569. .offs = cur_end + GGML_OBJECT_SIZE,
  3570. .size = size_needed,
  3571. .next = NULL,
  3572. };
  3573. } else {
  3574. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3575. GGML_PRINT("%s: not enough space in the scratch memory\n", __func__);
  3576. assert(false);
  3577. return NULL;
  3578. }
  3579. if (cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE > ctx->mem_size) {
  3580. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3581. __func__, cur_end + sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE, ctx->mem_size);
  3582. assert(false);
  3583. return NULL;
  3584. }
  3585. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3586. *obj_new = (struct ggml_object) {
  3587. .offs = cur_end + GGML_OBJECT_SIZE,
  3588. .size = sizeof(struct ggml_tensor),
  3589. .next = NULL,
  3590. };
  3591. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3592. ctx->scratch.offs += size_needed;
  3593. }
  3594. if (obj_cur != NULL) {
  3595. obj_cur->next = obj_new;
  3596. } else {
  3597. // this is the first object in this context
  3598. ctx->objects_begin = obj_new;
  3599. }
  3600. ctx->objects_end = obj_new;
  3601. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3602. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3603. ggml_assert_aligned(result);
  3604. *result = (struct ggml_tensor) {
  3605. /*.type =*/ type,
  3606. /*.n_dims =*/ n_dims,
  3607. /*.ne =*/ { 1, 1, 1, 1 },
  3608. /*.nb =*/ { 0, 0, 0, 0 },
  3609. /*.op =*/ GGML_OP_NONE,
  3610. /*.is_param =*/ false,
  3611. /*.grad =*/ NULL,
  3612. /*.src0 =*/ NULL,
  3613. /*.src1 =*/ NULL,
  3614. /*.opt =*/ { NULL },
  3615. /*.n_tasks =*/ 0,
  3616. /*.perf_runs =*/ 0,
  3617. /*.perf_cycles =*/ 0,
  3618. /*.perf_time_us =*/ 0,
  3619. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3620. /*.name =*/ { 0 },
  3621. /*.pad =*/ { 0 },
  3622. };
  3623. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3624. //ggml_assert_aligned(result->data);
  3625. for (int i = 0; i < n_dims; i++) {
  3626. result->ne[i] = ne[i];
  3627. }
  3628. result->nb[0] = GGML_TYPE_SIZE[type];
  3629. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3630. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3631. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3632. }
  3633. ctx->n_objects++;
  3634. return result;
  3635. }
  3636. struct ggml_tensor * ggml_new_tensor(
  3637. struct ggml_context * ctx,
  3638. enum ggml_type type,
  3639. int n_dims,
  3640. const int64_t * ne) {
  3641. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3642. }
  3643. struct ggml_tensor * ggml_new_tensor_1d(
  3644. struct ggml_context * ctx,
  3645. enum ggml_type type,
  3646. int64_t ne0) {
  3647. return ggml_new_tensor(ctx, type, 1, &ne0);
  3648. }
  3649. struct ggml_tensor * ggml_new_tensor_2d(
  3650. struct ggml_context * ctx,
  3651. enum ggml_type type,
  3652. int64_t ne0,
  3653. int64_t ne1) {
  3654. const int64_t ne[2] = { ne0, ne1 };
  3655. return ggml_new_tensor(ctx, type, 2, ne);
  3656. }
  3657. struct ggml_tensor * ggml_new_tensor_3d(
  3658. struct ggml_context * ctx,
  3659. enum ggml_type type,
  3660. int64_t ne0,
  3661. int64_t ne1,
  3662. int64_t ne2) {
  3663. const int64_t ne[3] = { ne0, ne1, ne2 };
  3664. return ggml_new_tensor(ctx, type, 3, ne);
  3665. }
  3666. struct ggml_tensor * ggml_new_tensor_4d(
  3667. struct ggml_context * ctx,
  3668. enum ggml_type type,
  3669. int64_t ne0,
  3670. int64_t ne1,
  3671. int64_t ne2,
  3672. int64_t ne3) {
  3673. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3674. return ggml_new_tensor(ctx, type, 4, ne);
  3675. }
  3676. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3677. ctx->scratch_save = ctx->scratch;
  3678. ctx->scratch.data = NULL;
  3679. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3680. ctx->scratch = ctx->scratch_save;
  3681. ggml_set_i32(result, value);
  3682. return result;
  3683. }
  3684. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3685. ctx->scratch_save = ctx->scratch;
  3686. ctx->scratch.data = NULL;
  3687. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3688. ctx->scratch = ctx->scratch_save;
  3689. ggml_set_f32(result, value);
  3690. return result;
  3691. }
  3692. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3693. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3694. }
  3695. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3696. memset(tensor->data, 0, ggml_nbytes(tensor));
  3697. return tensor;
  3698. }
  3699. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3700. const int n = ggml_nrows(tensor);
  3701. const int nc = tensor->ne[0];
  3702. const size_t n1 = tensor->nb[1];
  3703. char * const data = tensor->data;
  3704. switch (tensor->type) {
  3705. case GGML_TYPE_I8:
  3706. {
  3707. assert(tensor->nb[0] == sizeof(int8_t));
  3708. for (int i = 0; i < n; i++) {
  3709. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3710. }
  3711. } break;
  3712. case GGML_TYPE_I16:
  3713. {
  3714. assert(tensor->nb[0] == sizeof(int16_t));
  3715. for (int i = 0; i < n; i++) {
  3716. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3717. }
  3718. } break;
  3719. case GGML_TYPE_I32:
  3720. {
  3721. assert(tensor->nb[0] == sizeof(int32_t));
  3722. for (int i = 0; i < n; i++) {
  3723. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3724. }
  3725. } break;
  3726. case GGML_TYPE_F16:
  3727. {
  3728. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3729. for (int i = 0; i < n; i++) {
  3730. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3731. }
  3732. } break;
  3733. case GGML_TYPE_F32:
  3734. {
  3735. assert(tensor->nb[0] == sizeof(float));
  3736. for (int i = 0; i < n; i++) {
  3737. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3738. }
  3739. } break;
  3740. default:
  3741. {
  3742. GGML_ASSERT(false);
  3743. } break;
  3744. }
  3745. return tensor;
  3746. }
  3747. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3748. const int n = ggml_nrows(tensor);
  3749. const int nc = tensor->ne[0];
  3750. const size_t n1 = tensor->nb[1];
  3751. char * const data = tensor->data;
  3752. switch (tensor->type) {
  3753. case GGML_TYPE_I8:
  3754. {
  3755. assert(tensor->nb[0] == sizeof(int8_t));
  3756. for (int i = 0; i < n; i++) {
  3757. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3758. }
  3759. } break;
  3760. case GGML_TYPE_I16:
  3761. {
  3762. assert(tensor->nb[0] == sizeof(int16_t));
  3763. for (int i = 0; i < n; i++) {
  3764. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3765. }
  3766. } break;
  3767. case GGML_TYPE_I32:
  3768. {
  3769. assert(tensor->nb[0] == sizeof(int32_t));
  3770. for (int i = 0; i < n; i++) {
  3771. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3772. }
  3773. } break;
  3774. case GGML_TYPE_F16:
  3775. {
  3776. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3777. for (int i = 0; i < n; i++) {
  3778. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3779. }
  3780. } break;
  3781. case GGML_TYPE_F32:
  3782. {
  3783. assert(tensor->nb[0] == sizeof(float));
  3784. for (int i = 0; i < n; i++) {
  3785. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3786. }
  3787. } break;
  3788. default:
  3789. {
  3790. GGML_ASSERT(false);
  3791. } break;
  3792. }
  3793. return tensor;
  3794. }
  3795. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3796. switch (tensor->type) {
  3797. case GGML_TYPE_I8:
  3798. {
  3799. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3800. return ((int8_t *)(tensor->data))[i];
  3801. } break;
  3802. case GGML_TYPE_I16:
  3803. {
  3804. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3805. return ((int16_t *)(tensor->data))[i];
  3806. } break;
  3807. case GGML_TYPE_I32:
  3808. {
  3809. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3810. return ((int32_t *)(tensor->data))[i];
  3811. } break;
  3812. case GGML_TYPE_F16:
  3813. {
  3814. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3815. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3816. } break;
  3817. case GGML_TYPE_F32:
  3818. {
  3819. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3820. return ((float *)(tensor->data))[i];
  3821. } break;
  3822. default:
  3823. {
  3824. GGML_ASSERT(false);
  3825. } break;
  3826. }
  3827. return 0.0f;
  3828. }
  3829. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3830. switch (tensor->type) {
  3831. case GGML_TYPE_I8:
  3832. {
  3833. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3834. ((int8_t *)(tensor->data))[i] = value;
  3835. } break;
  3836. case GGML_TYPE_I16:
  3837. {
  3838. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3839. ((int16_t *)(tensor->data))[i] = value;
  3840. } break;
  3841. case GGML_TYPE_I32:
  3842. {
  3843. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3844. ((int32_t *)(tensor->data))[i] = value;
  3845. } break;
  3846. case GGML_TYPE_F16:
  3847. {
  3848. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3849. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3850. } break;
  3851. case GGML_TYPE_F32:
  3852. {
  3853. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3854. ((float *)(tensor->data))[i] = value;
  3855. } break;
  3856. default:
  3857. {
  3858. GGML_ASSERT(false);
  3859. } break;
  3860. }
  3861. }
  3862. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3863. switch (tensor->type) {
  3864. case GGML_TYPE_I8:
  3865. {
  3866. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3867. return ((int8_t *)(tensor->data))[i];
  3868. } break;
  3869. case GGML_TYPE_I16:
  3870. {
  3871. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3872. return ((int16_t *)(tensor->data))[i];
  3873. } break;
  3874. case GGML_TYPE_I32:
  3875. {
  3876. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3877. return ((int32_t *)(tensor->data))[i];
  3878. } break;
  3879. case GGML_TYPE_F16:
  3880. {
  3881. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3882. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3883. } break;
  3884. case GGML_TYPE_F32:
  3885. {
  3886. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3887. return ((float *)(tensor->data))[i];
  3888. } break;
  3889. default:
  3890. {
  3891. GGML_ASSERT(false);
  3892. } break;
  3893. }
  3894. return 0.0f;
  3895. }
  3896. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3897. switch (tensor->type) {
  3898. case GGML_TYPE_I8:
  3899. {
  3900. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3901. ((int8_t *)(tensor->data))[i] = value;
  3902. } break;
  3903. case GGML_TYPE_I16:
  3904. {
  3905. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3906. ((int16_t *)(tensor->data))[i] = value;
  3907. } break;
  3908. case GGML_TYPE_I32:
  3909. {
  3910. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3911. ((int32_t *)(tensor->data))[i] = value;
  3912. } break;
  3913. case GGML_TYPE_F16:
  3914. {
  3915. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3916. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3917. } break;
  3918. case GGML_TYPE_F32:
  3919. {
  3920. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3921. ((float *)(tensor->data))[i] = value;
  3922. } break;
  3923. default:
  3924. {
  3925. GGML_ASSERT(false);
  3926. } break;
  3927. }
  3928. }
  3929. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3930. return tensor->data;
  3931. }
  3932. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3933. assert(tensor->type == GGML_TYPE_F32);
  3934. return (float *)(tensor->data);
  3935. }
  3936. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3937. return tensor->name;
  3938. }
  3939. void ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3940. strncpy(tensor->name, name, sizeof(tensor->name));
  3941. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3942. }
  3943. struct ggml_tensor * ggml_view_tensor(
  3944. struct ggml_context * ctx,
  3945. const struct ggml_tensor * src) {
  3946. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  3947. result->nb[0] = src->nb[0];
  3948. result->nb[1] = src->nb[1];
  3949. result->nb[2] = src->nb[2];
  3950. result->nb[3] = src->nb[3];
  3951. return result;
  3952. }
  3953. ////////////////////////////////////////////////////////////////////////////////
  3954. // ggml_dup
  3955. struct ggml_tensor * ggml_dup_impl(
  3956. struct ggml_context * ctx,
  3957. struct ggml_tensor * a,
  3958. bool inplace) {
  3959. bool is_node = false;
  3960. if (!inplace && (a->grad)) {
  3961. is_node = true;
  3962. }
  3963. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3964. result->op = GGML_OP_DUP;
  3965. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3966. result->src0 = a;
  3967. result->src1 = NULL;
  3968. return result;
  3969. }
  3970. struct ggml_tensor * ggml_dup(
  3971. struct ggml_context * ctx,
  3972. struct ggml_tensor * a) {
  3973. return ggml_dup_impl(ctx, a, false);
  3974. }
  3975. struct ggml_tensor * ggml_dup_inplace(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a) {
  3978. return ggml_dup_impl(ctx, a, true);
  3979. }
  3980. // ggml_add
  3981. struct ggml_tensor * ggml_add_impl(
  3982. struct ggml_context * ctx,
  3983. struct ggml_tensor * a,
  3984. struct ggml_tensor * b,
  3985. bool inplace) {
  3986. GGML_ASSERT(ggml_are_same_shape(a, b));
  3987. bool is_node = false;
  3988. if (!inplace && (a->grad || b->grad)) {
  3989. is_node = true;
  3990. }
  3991. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3992. result->op = GGML_OP_ADD;
  3993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3994. result->src0 = a;
  3995. result->src1 = b;
  3996. return result;
  3997. }
  3998. struct ggml_tensor * ggml_add(
  3999. struct ggml_context * ctx,
  4000. struct ggml_tensor * a,
  4001. struct ggml_tensor * b) {
  4002. return ggml_add_impl(ctx, a, b, false);
  4003. }
  4004. struct ggml_tensor * ggml_add_inplace(
  4005. struct ggml_context * ctx,
  4006. struct ggml_tensor * a,
  4007. struct ggml_tensor * b) {
  4008. return ggml_add_impl(ctx, a, b, true);
  4009. }
  4010. // ggml_sub
  4011. struct ggml_tensor * ggml_sub_impl(
  4012. struct ggml_context * ctx,
  4013. struct ggml_tensor * a,
  4014. struct ggml_tensor * b,
  4015. bool inplace) {
  4016. GGML_ASSERT(ggml_are_same_shape(a, b));
  4017. bool is_node = false;
  4018. if (!inplace && (a->grad || b->grad)) {
  4019. is_node = true;
  4020. }
  4021. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4022. result->op = GGML_OP_SUB;
  4023. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4024. result->src0 = a;
  4025. result->src1 = b;
  4026. return result;
  4027. }
  4028. struct ggml_tensor * ggml_sub(
  4029. struct ggml_context * ctx,
  4030. struct ggml_tensor * a,
  4031. struct ggml_tensor * b) {
  4032. return ggml_sub_impl(ctx, a, b, false);
  4033. }
  4034. struct ggml_tensor * ggml_sub_inplace(
  4035. struct ggml_context * ctx,
  4036. struct ggml_tensor * a,
  4037. struct ggml_tensor * b) {
  4038. return ggml_sub_impl(ctx, a, b, true);
  4039. }
  4040. // ggml_mul
  4041. struct ggml_tensor * ggml_mul_impl(
  4042. struct ggml_context * ctx,
  4043. struct ggml_tensor * a,
  4044. struct ggml_tensor * b,
  4045. bool inplace) {
  4046. GGML_ASSERT(ggml_are_same_shape(a, b));
  4047. bool is_node = false;
  4048. if (!inplace && (a->grad || b->grad)) {
  4049. is_node = true;
  4050. }
  4051. if (inplace) {
  4052. GGML_ASSERT(is_node == false);
  4053. }
  4054. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4055. result->op = GGML_OP_MUL;
  4056. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4057. result->src0 = a;
  4058. result->src1 = b;
  4059. return result;
  4060. }
  4061. struct ggml_tensor * ggml_mul(
  4062. struct ggml_context * ctx,
  4063. struct ggml_tensor * a,
  4064. struct ggml_tensor * b) {
  4065. return ggml_mul_impl(ctx, a, b, false);
  4066. }
  4067. struct ggml_tensor * ggml_mul_inplace(
  4068. struct ggml_context * ctx,
  4069. struct ggml_tensor * a,
  4070. struct ggml_tensor * b) {
  4071. return ggml_mul_impl(ctx, a, b, true);
  4072. }
  4073. // ggml_div
  4074. struct ggml_tensor * ggml_div_impl(
  4075. struct ggml_context * ctx,
  4076. struct ggml_tensor * a,
  4077. struct ggml_tensor * b,
  4078. bool inplace) {
  4079. GGML_ASSERT(ggml_are_same_shape(a, b));
  4080. bool is_node = false;
  4081. if (!inplace && (a->grad || b->grad)) {
  4082. is_node = true;
  4083. }
  4084. if (inplace) {
  4085. GGML_ASSERT(is_node == false);
  4086. }
  4087. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4088. result->op = GGML_OP_DIV;
  4089. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4090. result->src0 = a;
  4091. result->src1 = b;
  4092. return result;
  4093. }
  4094. struct ggml_tensor * ggml_div(
  4095. struct ggml_context * ctx,
  4096. struct ggml_tensor * a,
  4097. struct ggml_tensor * b) {
  4098. return ggml_div_impl(ctx, a, b, false);
  4099. }
  4100. struct ggml_tensor * ggml_div_inplace(
  4101. struct ggml_context * ctx,
  4102. struct ggml_tensor * a,
  4103. struct ggml_tensor * b) {
  4104. return ggml_div_impl(ctx, a, b, true);
  4105. }
  4106. // ggml_sqr
  4107. struct ggml_tensor * ggml_sqr_impl(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. bool inplace) {
  4111. bool is_node = false;
  4112. if (!inplace && (a->grad)) {
  4113. is_node = true;
  4114. }
  4115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4116. result->op = GGML_OP_SQR;
  4117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4118. result->src0 = a;
  4119. result->src1 = NULL;
  4120. return result;
  4121. }
  4122. struct ggml_tensor * ggml_sqr(
  4123. struct ggml_context * ctx,
  4124. struct ggml_tensor * a) {
  4125. return ggml_sqr_impl(ctx, a, false);
  4126. }
  4127. struct ggml_tensor * ggml_sqr_inplace(
  4128. struct ggml_context * ctx,
  4129. struct ggml_tensor * a) {
  4130. return ggml_sqr_impl(ctx, a, true);
  4131. }
  4132. // ggml_sqrt
  4133. struct ggml_tensor * ggml_sqrt_impl(
  4134. struct ggml_context * ctx,
  4135. struct ggml_tensor * a,
  4136. bool inplace) {
  4137. bool is_node = false;
  4138. if (!inplace && (a->grad)) {
  4139. is_node = true;
  4140. }
  4141. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4142. result->op = GGML_OP_SQRT;
  4143. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4144. result->src0 = a;
  4145. result->src1 = NULL;
  4146. return result;
  4147. }
  4148. struct ggml_tensor * ggml_sqrt(
  4149. struct ggml_context * ctx,
  4150. struct ggml_tensor * a) {
  4151. return ggml_sqrt_impl(ctx, a, false);
  4152. }
  4153. struct ggml_tensor * ggml_sqrt_inplace(
  4154. struct ggml_context * ctx,
  4155. struct ggml_tensor * a) {
  4156. return ggml_sqrt_impl(ctx, a, true);
  4157. }
  4158. // ggml_sum
  4159. struct ggml_tensor * ggml_sum(
  4160. struct ggml_context * ctx,
  4161. struct ggml_tensor * a) {
  4162. bool is_node = false;
  4163. if (a->grad) {
  4164. is_node = true;
  4165. }
  4166. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4167. result->op = GGML_OP_SUM;
  4168. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4169. result->src0 = a;
  4170. result->src1 = NULL;
  4171. return result;
  4172. }
  4173. // ggml_mean
  4174. struct ggml_tensor * ggml_mean(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a) {
  4177. bool is_node = false;
  4178. if (a->grad) {
  4179. GGML_ASSERT(false); // TODO: implement
  4180. is_node = true;
  4181. }
  4182. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4183. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4184. result->op = GGML_OP_MEAN;
  4185. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4186. result->src0 = a;
  4187. result->src1 = NULL;
  4188. return result;
  4189. }
  4190. // ggml_repeat
  4191. struct ggml_tensor * ggml_repeat(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a,
  4194. struct ggml_tensor * b) {
  4195. GGML_ASSERT(ggml_can_repeat(a, b));
  4196. bool is_node = false;
  4197. if (a->grad) {
  4198. is_node = true;
  4199. }
  4200. if (ggml_are_same_shape(a, b) && !is_node) {
  4201. return a;
  4202. }
  4203. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4204. result->op = GGML_OP_REPEAT;
  4205. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4206. result->src0 = a;
  4207. result->src1 = b;
  4208. return result;
  4209. }
  4210. // ggml_abs
  4211. struct ggml_tensor * ggml_abs_impl(
  4212. struct ggml_context * ctx,
  4213. struct ggml_tensor * a,
  4214. bool inplace) {
  4215. bool is_node = false;
  4216. if (!inplace && (a->grad)) {
  4217. is_node = true;
  4218. }
  4219. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4220. result->op = GGML_OP_ABS;
  4221. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4222. result->src0 = a;
  4223. result->src1 = NULL;
  4224. return result;
  4225. }
  4226. struct ggml_tensor * ggml_abs(
  4227. struct ggml_context * ctx,
  4228. struct ggml_tensor * a) {
  4229. return ggml_abs_impl(ctx, a, false);
  4230. }
  4231. struct ggml_tensor * ggml_abs_inplace(
  4232. struct ggml_context * ctx,
  4233. struct ggml_tensor * a) {
  4234. return ggml_abs_impl(ctx, a, true);
  4235. }
  4236. // ggml_sgn
  4237. struct ggml_tensor * ggml_sgn_impl(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. bool inplace) {
  4241. bool is_node = false;
  4242. if (!inplace && (a->grad)) {
  4243. is_node = true;
  4244. }
  4245. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4246. result->op = GGML_OP_SGN;
  4247. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4248. result->src0 = a;
  4249. result->src1 = NULL;
  4250. return result;
  4251. }
  4252. struct ggml_tensor * ggml_sgn(
  4253. struct ggml_context * ctx,
  4254. struct ggml_tensor * a) {
  4255. return ggml_sgn_impl(ctx, a, false);
  4256. }
  4257. struct ggml_tensor * ggml_sgn_inplace(
  4258. struct ggml_context * ctx,
  4259. struct ggml_tensor * a) {
  4260. return ggml_sgn_impl(ctx, a, true);
  4261. }
  4262. // ggml_neg
  4263. struct ggml_tensor * ggml_neg_impl(
  4264. struct ggml_context * ctx,
  4265. struct ggml_tensor * a,
  4266. bool inplace) {
  4267. bool is_node = false;
  4268. if (!inplace && (a->grad)) {
  4269. is_node = true;
  4270. }
  4271. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4272. result->op = GGML_OP_NEG;
  4273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4274. result->src0 = a;
  4275. result->src1 = NULL;
  4276. return result;
  4277. }
  4278. struct ggml_tensor * ggml_neg(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a) {
  4281. return ggml_neg_impl(ctx, a, false);
  4282. }
  4283. struct ggml_tensor * ggml_neg_inplace(
  4284. struct ggml_context * ctx,
  4285. struct ggml_tensor * a) {
  4286. return ggml_neg_impl(ctx, a, true);
  4287. }
  4288. // ggml_step
  4289. struct ggml_tensor * ggml_step_impl(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a,
  4292. bool inplace) {
  4293. bool is_node = false;
  4294. if (!inplace && (a->grad)) {
  4295. is_node = true;
  4296. }
  4297. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4298. result->op = GGML_OP_STEP;
  4299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4300. result->src0 = a;
  4301. result->src1 = NULL;
  4302. return result;
  4303. }
  4304. struct ggml_tensor * ggml_step(
  4305. struct ggml_context * ctx,
  4306. struct ggml_tensor * a) {
  4307. return ggml_step_impl(ctx, a, false);
  4308. }
  4309. struct ggml_tensor * ggml_step_inplace(
  4310. struct ggml_context * ctx,
  4311. struct ggml_tensor * a) {
  4312. return ggml_step_impl(ctx, a, true);
  4313. }
  4314. // ggml_relu
  4315. struct ggml_tensor * ggml_relu_impl(
  4316. struct ggml_context * ctx,
  4317. struct ggml_tensor * a,
  4318. bool inplace) {
  4319. bool is_node = false;
  4320. if (!inplace && (a->grad)) {
  4321. is_node = true;
  4322. }
  4323. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4324. result->op = GGML_OP_RELU;
  4325. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4326. result->src0 = a;
  4327. result->src1 = NULL;
  4328. return result;
  4329. }
  4330. struct ggml_tensor * ggml_relu(
  4331. struct ggml_context * ctx,
  4332. struct ggml_tensor * a) {
  4333. return ggml_relu_impl(ctx, a, false);
  4334. }
  4335. struct ggml_tensor * ggml_relu_inplace(
  4336. struct ggml_context * ctx,
  4337. struct ggml_tensor * a) {
  4338. return ggml_relu_impl(ctx, a, true);
  4339. }
  4340. // ggml_gelu
  4341. struct ggml_tensor * ggml_gelu_impl(
  4342. struct ggml_context * ctx,
  4343. struct ggml_tensor * a,
  4344. bool inplace) {
  4345. bool is_node = false;
  4346. if (!inplace && (a->grad)) {
  4347. is_node = true;
  4348. }
  4349. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4350. result->op = GGML_OP_GELU;
  4351. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4352. result->src0 = a;
  4353. result->src1 = NULL;
  4354. return result;
  4355. }
  4356. struct ggml_tensor * ggml_gelu(
  4357. struct ggml_context * ctx,
  4358. struct ggml_tensor * a) {
  4359. return ggml_gelu_impl(ctx, a, false);
  4360. }
  4361. struct ggml_tensor * ggml_gelu_inplace(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a) {
  4364. return ggml_gelu_impl(ctx, a, true);
  4365. }
  4366. // ggml_silu
  4367. struct ggml_tensor * ggml_silu_impl(
  4368. struct ggml_context * ctx,
  4369. struct ggml_tensor * a,
  4370. bool inplace) {
  4371. bool is_node = false;
  4372. if (!inplace && (a->grad)) {
  4373. is_node = true;
  4374. }
  4375. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4376. result->op = GGML_OP_SILU;
  4377. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4378. result->src0 = a;
  4379. result->src1 = NULL;
  4380. return result;
  4381. }
  4382. struct ggml_tensor * ggml_silu(
  4383. struct ggml_context * ctx,
  4384. struct ggml_tensor * a) {
  4385. return ggml_silu_impl(ctx, a, false);
  4386. }
  4387. struct ggml_tensor * ggml_silu_inplace(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_silu_impl(ctx, a, true);
  4391. }
  4392. // ggml_norm
  4393. struct ggml_tensor * ggml_norm_impl(
  4394. struct ggml_context * ctx,
  4395. struct ggml_tensor * a,
  4396. bool inplace) {
  4397. bool is_node = false;
  4398. if (!inplace && (a->grad)) {
  4399. GGML_ASSERT(false); // TODO: implement backward
  4400. is_node = true;
  4401. }
  4402. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4403. result->op = GGML_OP_NORM;
  4404. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4405. result->src0 = a;
  4406. result->src1 = NULL; // TODO: maybe store epsilon here?
  4407. return result;
  4408. }
  4409. struct ggml_tensor * ggml_norm(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a) {
  4412. return ggml_norm_impl(ctx, a, false);
  4413. }
  4414. struct ggml_tensor * ggml_norm_inplace(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a) {
  4417. return ggml_norm_impl(ctx, a, true);
  4418. }
  4419. struct ggml_tensor * ggml_rms_norm_impl(
  4420. struct ggml_context * ctx,
  4421. struct ggml_tensor * a,
  4422. bool inplace) {
  4423. bool is_node = false;
  4424. if (!inplace && (a->grad)) {
  4425. GGML_ASSERT(false); // TODO: implement backward
  4426. is_node = true;
  4427. }
  4428. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4429. result->op = GGML_OP_RMS_NORM;
  4430. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4431. result->src0 = a;
  4432. result->src1 = NULL; // TODO: maybe store epsilon here?
  4433. return result;
  4434. }
  4435. struct ggml_tensor * ggml_rms_norm(
  4436. struct ggml_context * ctx,
  4437. struct ggml_tensor * a) {
  4438. return ggml_rms_norm_impl(ctx, a, false);
  4439. }
  4440. struct ggml_tensor * ggml_rms_norm_inplace(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a) {
  4443. return ggml_rms_norm_impl(ctx, a, true);
  4444. }
  4445. // ggml_mul_mat
  4446. struct ggml_tensor * ggml_mul_mat(
  4447. struct ggml_context * ctx,
  4448. struct ggml_tensor * a,
  4449. struct ggml_tensor * b) {
  4450. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4451. GGML_ASSERT(!ggml_is_transposed(a));
  4452. bool is_node = false;
  4453. if (a->grad || b->grad) {
  4454. is_node = true;
  4455. }
  4456. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4457. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4458. result->op = GGML_OP_MUL_MAT;
  4459. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4460. result->src0 = a;
  4461. result->src1 = b;
  4462. return result;
  4463. }
  4464. // ggml_scale
  4465. struct ggml_tensor * ggml_scale_impl(
  4466. struct ggml_context * ctx,
  4467. struct ggml_tensor * a,
  4468. struct ggml_tensor * b,
  4469. bool inplace) {
  4470. GGML_ASSERT(ggml_is_scalar(b));
  4471. GGML_ASSERT(ggml_is_padded_1d(a));
  4472. bool is_node = false;
  4473. if (!inplace && (a->grad || b->grad)) {
  4474. GGML_ASSERT(false); // TODO: implement backward
  4475. is_node = true;
  4476. }
  4477. // TODO: when implement backward, fix this:
  4478. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4479. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4480. result->op = GGML_OP_SCALE;
  4481. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4482. result->src0 = a;
  4483. result->src1 = b;
  4484. return result;
  4485. }
  4486. struct ggml_tensor * ggml_scale(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. struct ggml_tensor * b) {
  4490. return ggml_scale_impl(ctx, a, b, false);
  4491. }
  4492. struct ggml_tensor * ggml_scale_inplace(
  4493. struct ggml_context * ctx,
  4494. struct ggml_tensor * a,
  4495. struct ggml_tensor * b) {
  4496. return ggml_scale_impl(ctx, a, b, true);
  4497. }
  4498. // ggml_cpy
  4499. struct ggml_tensor * ggml_cpy_impl(
  4500. struct ggml_context * ctx,
  4501. struct ggml_tensor * a,
  4502. struct ggml_tensor * b,
  4503. bool inplace) {
  4504. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4505. bool is_node = false;
  4506. if (!inplace && (a->grad || b->grad)) {
  4507. GGML_ASSERT(false); // TODO: implement backward
  4508. is_node = true;
  4509. }
  4510. // make a view of the destination
  4511. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4512. result->op = GGML_OP_CPY;
  4513. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4514. result->src0 = a;
  4515. result->src1 = b;
  4516. return result;
  4517. }
  4518. struct ggml_tensor * ggml_cpy(
  4519. struct ggml_context * ctx,
  4520. struct ggml_tensor * a,
  4521. struct ggml_tensor * b) {
  4522. return ggml_cpy_impl(ctx, a, b, false);
  4523. }
  4524. struct ggml_tensor * ggml_cpy_inplace(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a,
  4527. struct ggml_tensor * b) {
  4528. return ggml_cpy_impl(ctx, a, b, true);
  4529. }
  4530. // ggml_cont
  4531. struct ggml_tensor * ggml_cont_impl(
  4532. struct ggml_context * ctx,
  4533. struct ggml_tensor * a,
  4534. bool inplace) {
  4535. bool is_node = false;
  4536. if (!inplace && a->grad) {
  4537. GGML_ASSERT(false); // TODO: implement backward
  4538. is_node = true;
  4539. }
  4540. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4541. result->op = GGML_OP_CONT;
  4542. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4543. result->src0 = a;
  4544. result->src1 = NULL;
  4545. return result;
  4546. }
  4547. struct ggml_tensor * ggml_cont(
  4548. struct ggml_context * ctx,
  4549. struct ggml_tensor * a) {
  4550. return ggml_cont_impl(ctx, a, false);
  4551. }
  4552. struct ggml_tensor * ggml_cont_inplace(
  4553. struct ggml_context * ctx,
  4554. struct ggml_tensor * a) {
  4555. return ggml_cont_impl(ctx, a, true);
  4556. }
  4557. // ggml_reshape
  4558. struct ggml_tensor * ggml_reshape(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a,
  4561. struct ggml_tensor * b) {
  4562. GGML_ASSERT(ggml_is_contiguous(a));
  4563. GGML_ASSERT(ggml_is_contiguous(b));
  4564. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4565. bool is_node = false;
  4566. if (a->grad || b->grad) {
  4567. GGML_ASSERT(false); // TODO: implement backward
  4568. is_node = true;
  4569. }
  4570. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4571. result->op = GGML_OP_RESHAPE;
  4572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4573. result->src0 = a;
  4574. result->src1 = NULL;
  4575. return result;
  4576. }
  4577. struct ggml_tensor * ggml_reshape_2d(
  4578. struct ggml_context * ctx,
  4579. struct ggml_tensor * a,
  4580. int64_t ne0,
  4581. int64_t ne1) {
  4582. GGML_ASSERT(ggml_is_contiguous(a));
  4583. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4584. bool is_node = false;
  4585. if (a->grad) {
  4586. GGML_ASSERT(false); // TODO: implement backward
  4587. is_node = true;
  4588. }
  4589. const int64_t ne[2] = { ne0, ne1 };
  4590. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  4591. result->op = GGML_OP_RESHAPE;
  4592. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4593. result->src0 = a;
  4594. result->src1 = NULL;
  4595. return result;
  4596. }
  4597. struct ggml_tensor * ggml_reshape_3d(
  4598. struct ggml_context * ctx,
  4599. struct ggml_tensor * a,
  4600. int64_t ne0,
  4601. int64_t ne1,
  4602. int64_t ne2) {
  4603. GGML_ASSERT(ggml_is_contiguous(a));
  4604. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4605. bool is_node = false;
  4606. if (a->grad) {
  4607. GGML_ASSERT(false); // TODO: implement backward
  4608. is_node = true;
  4609. }
  4610. const int64_t ne[3] = { ne0, ne1, ne2 };
  4611. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  4612. result->op = GGML_OP_RESHAPE;
  4613. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4614. result->src0 = a;
  4615. result->src1 = NULL;
  4616. return result;
  4617. }
  4618. // ggml_view_1d
  4619. struct ggml_tensor * ggml_view_1d(
  4620. struct ggml_context * ctx,
  4621. struct ggml_tensor * a,
  4622. int64_t ne0,
  4623. size_t offset) {
  4624. if (a->grad) {
  4625. GGML_ASSERT(false); // gradient propagation is not supported
  4626. }
  4627. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  4628. result->op = GGML_OP_VIEW;
  4629. result->grad = NULL;
  4630. result->src0 = a;
  4631. result->src1 = NULL; // TODO: maybe store the offset here?
  4632. return result;
  4633. }
  4634. // ggml_view_2d
  4635. struct ggml_tensor * ggml_view_2d(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a,
  4638. int64_t ne0,
  4639. int64_t ne1,
  4640. size_t nb1,
  4641. size_t offset) {
  4642. if (a->grad) {
  4643. GGML_ASSERT(false); // gradient propagation is not supported
  4644. }
  4645. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  4646. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  4647. result->nb[1] = nb1;
  4648. result->nb[2] = result->nb[1]*ne1;
  4649. result->nb[3] = result->nb[2];
  4650. result->op = GGML_OP_VIEW;
  4651. result->grad = NULL;
  4652. result->src0 = a;
  4653. result->src1 = NULL; // TODO: maybe store the offset here?
  4654. return result;
  4655. }
  4656. // ggml_view_3d
  4657. struct ggml_tensor * ggml_view_3d(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a,
  4660. int64_t ne0,
  4661. int64_t ne1,
  4662. int64_t ne2,
  4663. size_t nb1,
  4664. size_t nb2,
  4665. size_t offset) {
  4666. if (a->grad) {
  4667. GGML_ASSERT(false); // gradient propagation is not supported
  4668. }
  4669. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  4670. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  4671. result->nb[1] = nb1;
  4672. result->nb[2] = nb2;
  4673. result->nb[3] = result->nb[2]*ne2;
  4674. result->op = GGML_OP_VIEW;
  4675. result->grad = NULL;
  4676. result->src0 = a;
  4677. result->src1 = NULL; // TODO: maybe store the offset here?
  4678. return result;
  4679. }
  4680. // ggml_permute
  4681. struct ggml_tensor * ggml_permute(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int axis0,
  4685. int axis1,
  4686. int axis2,
  4687. int axis3) {
  4688. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4689. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4690. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4691. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4692. GGML_ASSERT(axis0 != axis1);
  4693. GGML_ASSERT(axis0 != axis2);
  4694. GGML_ASSERT(axis0 != axis3);
  4695. GGML_ASSERT(axis1 != axis2);
  4696. GGML_ASSERT(axis1 != axis3);
  4697. GGML_ASSERT(axis2 != axis3);
  4698. bool is_node = false;
  4699. if (a->grad) {
  4700. GGML_ASSERT(false); // TODO: implement backward
  4701. is_node = true;
  4702. }
  4703. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4704. int ne[GGML_MAX_DIMS];
  4705. int nb[GGML_MAX_DIMS];
  4706. ne[axis0] = a->ne[0];
  4707. ne[axis1] = a->ne[1];
  4708. ne[axis2] = a->ne[2];
  4709. ne[axis3] = a->ne[3];
  4710. nb[axis0] = a->nb[0];
  4711. nb[axis1] = a->nb[1];
  4712. nb[axis2] = a->nb[2];
  4713. nb[axis3] = a->nb[3];
  4714. result->ne[0] = ne[0];
  4715. result->ne[1] = ne[1];
  4716. result->ne[2] = ne[2];
  4717. result->ne[3] = ne[3];
  4718. result->nb[0] = nb[0];
  4719. result->nb[1] = nb[1];
  4720. result->nb[2] = nb[2];
  4721. result->nb[3] = nb[3];
  4722. result->op = GGML_OP_PERMUTE;
  4723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4724. result->src0 = a;
  4725. result->src1 = NULL; // TODO: maybe store the permutation here?
  4726. return result;
  4727. }
  4728. // ggml_transpose
  4729. struct ggml_tensor * ggml_transpose(
  4730. struct ggml_context * ctx,
  4731. struct ggml_tensor * a) {
  4732. bool is_node = false;
  4733. if (a->grad) {
  4734. GGML_ASSERT(false); // TODO: implement backward
  4735. is_node = true;
  4736. }
  4737. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4738. result->ne[0] = a->ne[1];
  4739. result->ne[1] = a->ne[0];
  4740. result->nb[0] = a->nb[1];
  4741. result->nb[1] = a->nb[0];
  4742. result->op = GGML_OP_TRANSPOSE;
  4743. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4744. result->src0 = a;
  4745. result->src1 = NULL;
  4746. return result;
  4747. }
  4748. // ggml_get_rows
  4749. struct ggml_tensor * ggml_get_rows(
  4750. struct ggml_context * ctx,
  4751. struct ggml_tensor * a,
  4752. struct ggml_tensor * b) {
  4753. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4754. bool is_node = false;
  4755. if (a->grad || b->grad) {
  4756. GGML_ASSERT(false); // TODO: implement backward
  4757. is_node = true;
  4758. }
  4759. // TODO: implement non F32 return
  4760. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4761. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  4762. result->op = GGML_OP_GET_ROWS;
  4763. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4764. result->src0 = a;
  4765. result->src1 = b;
  4766. return result;
  4767. }
  4768. // ggml_diag_mask_inf
  4769. struct ggml_tensor * ggml_diag_mask_inf(
  4770. struct ggml_context * ctx,
  4771. struct ggml_tensor * a,
  4772. int n_past) {
  4773. bool is_node = false;
  4774. if (a->grad) {
  4775. GGML_ASSERT(false); // TODO: implement backward
  4776. is_node = true;
  4777. }
  4778. // TODO: when implement backward, fix this:
  4779. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4780. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4781. struct ggml_tensor * b = ggml_new_i32(ctx, n_past);
  4782. ggml_set_name(b, "n_past");
  4783. result->op = GGML_OP_DIAG_MASK_INF;
  4784. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4785. result->src0 = a;
  4786. result->src1 = b;
  4787. return result;
  4788. }
  4789. // ggml_soft_max
  4790. struct ggml_tensor * ggml_soft_max(
  4791. struct ggml_context * ctx,
  4792. struct ggml_tensor * a) {
  4793. bool is_node = false;
  4794. if (a->grad) {
  4795. GGML_ASSERT(false); // TODO: implement backward
  4796. is_node = true;
  4797. }
  4798. // TODO: when implement backward, fix this:
  4799. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4800. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4801. result->op = GGML_OP_SOFT_MAX;
  4802. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4803. result->src0 = a;
  4804. result->src1 = NULL;
  4805. return result;
  4806. }
  4807. // ggml_rope
  4808. struct ggml_tensor * ggml_rope(
  4809. struct ggml_context * ctx,
  4810. struct ggml_tensor * a,
  4811. int n_past,
  4812. int n_dims,
  4813. int mode) {
  4814. GGML_ASSERT(n_past >= 0);
  4815. bool is_node = false;
  4816. if (a->grad) {
  4817. GGML_ASSERT(false); // TODO: implement backward
  4818. is_node = true;
  4819. }
  4820. // TODO: when implement backward, fix this:
  4821. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4822. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4823. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  4824. ((int32_t *) b->data)[0] = n_past;
  4825. ((int32_t *) b->data)[1] = n_dims;
  4826. ((int32_t *) b->data)[2] = mode;
  4827. ggml_set_name(b, "n_past, n_dims, mode");
  4828. result->op = GGML_OP_ROPE;
  4829. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4830. result->src0 = a;
  4831. result->src1 = b;
  4832. return result;
  4833. }
  4834. // ggml_alibi
  4835. struct ggml_tensor * ggml_alibi(
  4836. struct ggml_context * ctx,
  4837. struct ggml_tensor * a,
  4838. int n_past,
  4839. int n_head) {
  4840. GGML_ASSERT(n_past >= 0);
  4841. bool is_node = false;
  4842. if (a->grad) {
  4843. GGML_ASSERT(false); // TODO: implement backward
  4844. is_node = true;
  4845. }
  4846. // TODO: when implement backward, fix this:
  4847. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4848. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4849. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  4850. ((int32_t *) b->data)[0] = n_past;
  4851. ((int32_t *) b->data)[1] = n_head;
  4852. result->op = GGML_OP_ALIBI;
  4853. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4854. result->src0 = a;
  4855. result->src1 = b;
  4856. return result;
  4857. }
  4858. // ggml_conv_1d_1s
  4859. struct ggml_tensor * ggml_conv_1d_1s(
  4860. struct ggml_context * ctx,
  4861. struct ggml_tensor * a,
  4862. struct ggml_tensor * b) {
  4863. GGML_ASSERT(ggml_is_matrix(b));
  4864. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4865. GGML_ASSERT(a->ne[3] == 1);
  4866. bool is_node = false;
  4867. if (a->grad || b->grad) {
  4868. GGML_ASSERT(false); // TODO: implement backward
  4869. is_node = true;
  4870. }
  4871. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  4872. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4873. result->op = GGML_OP_CONV_1D_1S;
  4874. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4875. result->src0 = a;
  4876. result->src1 = b;
  4877. return result;
  4878. }
  4879. // ggml_conv_1d_2s
  4880. struct ggml_tensor * ggml_conv_1d_2s(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. struct ggml_tensor * b) {
  4884. GGML_ASSERT(ggml_is_matrix(b));
  4885. GGML_ASSERT(a->ne[1] == b->ne[1]);
  4886. GGML_ASSERT(a->ne[3] == 1);
  4887. bool is_node = false;
  4888. if (a->grad || b->grad) {
  4889. GGML_ASSERT(false); // TODO: implement backward
  4890. is_node = true;
  4891. }
  4892. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  4893. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  4894. result->op = GGML_OP_CONV_1D_2S;
  4895. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4896. result->src0 = a;
  4897. result->src1 = b;
  4898. return result;
  4899. }
  4900. // ggml_flash_attn
  4901. struct ggml_tensor * ggml_flash_attn(
  4902. struct ggml_context * ctx,
  4903. struct ggml_tensor * q,
  4904. struct ggml_tensor * k,
  4905. struct ggml_tensor * v,
  4906. bool masked) {
  4907. GGML_ASSERT(ggml_can_mul_mat(k, q));
  4908. // TODO: check if vT can be multiplied by (k*qT)
  4909. bool is_node = false;
  4910. if (q->grad || k->grad || v->grad) {
  4911. GGML_ASSERT(false); // TODO: implement backward
  4912. is_node = true;
  4913. }
  4914. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  4915. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  4916. result->op = GGML_OP_FLASH_ATTN;
  4917. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4918. result->src0 = q;
  4919. result->src1 = k;
  4920. result->opt[0] = v;
  4921. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  4922. return result;
  4923. }
  4924. // ggml_flash_ff
  4925. struct ggml_tensor * ggml_flash_ff(
  4926. struct ggml_context * ctx,
  4927. struct ggml_tensor * a,
  4928. struct ggml_tensor * b0,
  4929. struct ggml_tensor * b1,
  4930. struct ggml_tensor * c0,
  4931. struct ggml_tensor * c1) {
  4932. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  4933. // TODO: more checks
  4934. bool is_node = false;
  4935. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  4936. GGML_ASSERT(false); // TODO: implement backward
  4937. is_node = true;
  4938. }
  4939. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4940. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  4941. result->op = GGML_OP_FLASH_FF;
  4942. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4943. result->src0 = a;
  4944. result->src1 = b0;
  4945. result->opt[0] = b1;
  4946. result->opt[1] = c0;
  4947. result->opt[2] = c1;
  4948. return result;
  4949. }
  4950. // ggml_map_unary
  4951. struct ggml_tensor * ggml_map_unary_impl_f32(
  4952. struct ggml_context * ctx,
  4953. struct ggml_tensor * a,
  4954. const ggml_unary_op_f32_t fun,
  4955. bool inplace) {
  4956. bool is_node = false;
  4957. if (!inplace && a->grad) {
  4958. is_node = true;
  4959. }
  4960. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4961. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4962. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4963. result->op = GGML_OP_MAP_UNARY;
  4964. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4965. result->src0 = a;
  4966. result->opt[0] = addr_tensor;
  4967. return result;
  4968. }
  4969. struct ggml_tensor * ggml_map_unary_f32(
  4970. struct ggml_context * ctx,
  4971. struct ggml_tensor * a,
  4972. const ggml_unary_op_f32_t fun) {
  4973. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  4974. }
  4975. struct ggml_tensor * ggml_map_unary_inplace_f32(
  4976. struct ggml_context * ctx,
  4977. struct ggml_tensor * a,
  4978. const ggml_unary_op_f32_t fun) {
  4979. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  4980. }
  4981. // ggml_map_binary
  4982. struct ggml_tensor * ggml_map_binary_impl_f32(
  4983. struct ggml_context * ctx,
  4984. struct ggml_tensor * a,
  4985. struct ggml_tensor * b,
  4986. const ggml_binary_op_f32_t fun,
  4987. bool inplace) {
  4988. GGML_ASSERT(ggml_are_same_shape(a, b));
  4989. bool is_node = false;
  4990. if (!inplace && (a->grad || b->grad)) {
  4991. is_node = true;
  4992. }
  4993. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  4994. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  4995. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4996. result->op = GGML_OP_MAP_BINARY;
  4997. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4998. result->src0 = a;
  4999. result->src1 = b;
  5000. result->opt[0] = addr_tensor;
  5001. return result;
  5002. }
  5003. struct ggml_tensor * ggml_map_binary_f32(
  5004. struct ggml_context * ctx,
  5005. struct ggml_tensor * a,
  5006. struct ggml_tensor * b,
  5007. const ggml_binary_op_f32_t fun) {
  5008. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5009. }
  5010. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5011. struct ggml_context * ctx,
  5012. struct ggml_tensor * a,
  5013. struct ggml_tensor * b,
  5014. const ggml_binary_op_f32_t fun) {
  5015. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5016. }
  5017. ////////////////////////////////////////////////////////////////////////////////
  5018. void ggml_set_param(
  5019. struct ggml_context * ctx,
  5020. struct ggml_tensor * tensor) {
  5021. tensor->is_param = true;
  5022. GGML_ASSERT(tensor->grad == NULL);
  5023. tensor->grad = ggml_dup_tensor(ctx, tensor);
  5024. }
  5025. // ggml_compute_forward_dup
  5026. static void ggml_compute_forward_dup_f16(
  5027. const struct ggml_compute_params * params,
  5028. const struct ggml_tensor * src0,
  5029. struct ggml_tensor * dst) {
  5030. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5032. return;
  5033. }
  5034. const int64_t ne00 = src0->ne[0];
  5035. const int64_t ne01 = src0->ne[1];
  5036. const int64_t ne02 = src0->ne[2];
  5037. const int64_t ne03 = src0->ne[3];
  5038. const int64_t ne0 = dst->ne[0];
  5039. const int64_t ne1 = dst->ne[1];
  5040. const int64_t ne2 = dst->ne[2];
  5041. const int64_t ne3 = dst->ne[3];
  5042. const size_t nb00 = src0->nb[0];
  5043. const size_t nb01 = src0->nb[1];
  5044. const size_t nb02 = src0->nb[2];
  5045. const size_t nb03 = src0->nb[3];
  5046. const size_t nb0 = dst->nb[0];
  5047. const size_t nb1 = dst->nb[1];
  5048. const size_t nb2 = dst->nb[2];
  5049. const size_t nb3 = dst->nb[3];
  5050. const int ith = params->ith; // thread index
  5051. const int nth = params->nth; // number of threads
  5052. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5053. // parallelize by elements
  5054. const int ne = ggml_nelements(dst);
  5055. const int dr = (ne + nth - 1) / nth;
  5056. const int ie0 = dr * ith;
  5057. const int ie1 = MIN(ie0 + dr, ne);
  5058. memcpy(
  5059. ((char *) dst->data + ie0*nb0),
  5060. ((char *) src0->data + ie0*nb00),
  5061. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5062. return;
  5063. }
  5064. // parallelize by rows
  5065. const int nr = ne01;
  5066. // number of rows per thread
  5067. const int dr = (nr + nth - 1) / nth;
  5068. // row range for this thread
  5069. const int ir0 = dr * ith;
  5070. const int ir1 = MIN(ir0 + dr, nr);
  5071. if (src0->type == dst->type &&
  5072. ne00 == ne0 &&
  5073. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5074. // copy by rows
  5075. const size_t rs = ne00*nb00;
  5076. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5077. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5078. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5079. memcpy(
  5080. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5081. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5082. rs);
  5083. }
  5084. }
  5085. }
  5086. return;
  5087. }
  5088. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  5089. if (ggml_is_contiguous(dst)) {
  5090. if (nb00 == sizeof(ggml_fp16_t)) {
  5091. if (dst->type == GGML_TYPE_F16) {
  5092. size_t id = 0;
  5093. const size_t rs = ne00 * nb00;
  5094. char * dst_ptr = (char *) dst->data;
  5095. for (int i03 = 0; i03 < ne03; i03++) {
  5096. for (int i02 = 0; i02 < ne02; i02++) {
  5097. id += rs * ir0;
  5098. for (int i01 = ir0; i01 < ir1; i01++) {
  5099. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5100. memcpy(dst_ptr + id, src0_ptr, rs);
  5101. id += rs;
  5102. }
  5103. id += rs * (ne01 - ir1);
  5104. }
  5105. }
  5106. } else if (dst->type == GGML_TYPE_F32) {
  5107. size_t id = 0;
  5108. float * dst_ptr = (float *) dst->data;
  5109. for (int i03 = 0; i03 < ne03; i03++) {
  5110. for (int i02 = 0; i02 < ne02; i02++) {
  5111. id += ne00 * ir0;
  5112. for (int i01 = ir0; i01 < ir1; i01++) {
  5113. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5114. for (int i00 = 0; i00 < ne00; i00++) {
  5115. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5116. id++;
  5117. }
  5118. }
  5119. id += ne00 * (ne01 - ir1);
  5120. }
  5121. }
  5122. } else if (ggml_is_quantized(dst->type)) {
  5123. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5124. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5125. size_t id = 0;
  5126. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5127. char * dst_ptr = (char *) dst->data;
  5128. for (int i03 = 0; i03 < ne03; i03++) {
  5129. for (int i02 = 0; i02 < ne02; i02++) {
  5130. id += rs * ir0;
  5131. for (int i01 = ir0; i01 < ir1; i01++) {
  5132. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5133. for (int i00 = 0; i00 < ne00; i00++) {
  5134. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  5135. }
  5136. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  5137. id += rs;
  5138. }
  5139. id += rs * (ne01 - ir1);
  5140. }
  5141. }
  5142. } else {
  5143. GGML_ASSERT(false); // TODO: implement
  5144. }
  5145. } else {
  5146. //printf("%s: this is not optimal - fix me\n", __func__);
  5147. if (dst->type == GGML_TYPE_F32) {
  5148. size_t id = 0;
  5149. float * dst_ptr = (float *) dst->data;
  5150. for (int i03 = 0; i03 < ne03; i03++) {
  5151. for (int i02 = 0; i02 < ne02; i02++) {
  5152. id += ne00 * ir0;
  5153. for (int i01 = ir0; i01 < ir1; i01++) {
  5154. for (int i00 = 0; i00 < ne00; i00++) {
  5155. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5156. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  5157. id++;
  5158. }
  5159. }
  5160. id += ne00 * (ne01 - ir1);
  5161. }
  5162. }
  5163. } else if (dst->type == GGML_TYPE_F16) {
  5164. size_t id = 0;
  5165. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5166. for (int i03 = 0; i03 < ne03; i03++) {
  5167. for (int i02 = 0; i02 < ne02; i02++) {
  5168. id += ne00 * ir0;
  5169. for (int i01 = ir0; i01 < ir1; i01++) {
  5170. for (int i00 = 0; i00 < ne00; i00++) {
  5171. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5172. dst_ptr[id] = *src0_ptr;
  5173. id++;
  5174. }
  5175. }
  5176. id += ne00 * (ne01 - ir1);
  5177. }
  5178. }
  5179. } else {
  5180. GGML_ASSERT(false); // TODO: implement
  5181. }
  5182. }
  5183. return;
  5184. }
  5185. // dst counters
  5186. int64_t i10 = 0;
  5187. int64_t i11 = 0;
  5188. int64_t i12 = 0;
  5189. int64_t i13 = 0;
  5190. if (dst->type == GGML_TYPE_F16) {
  5191. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5192. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5193. i10 += ne00 * ir0;
  5194. while (i10 >= ne0) {
  5195. i10 -= ne0;
  5196. if (++i11 == ne1) {
  5197. i11 = 0;
  5198. if (++i12 == ne2) {
  5199. i12 = 0;
  5200. if (++i13 == ne3) {
  5201. i13 = 0;
  5202. }
  5203. }
  5204. }
  5205. }
  5206. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5207. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5208. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5209. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5210. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  5211. if (++i10 == ne00) {
  5212. i10 = 0;
  5213. if (++i11 == ne01) {
  5214. i11 = 0;
  5215. if (++i12 == ne02) {
  5216. i12 = 0;
  5217. if (++i13 == ne03) {
  5218. i13 = 0;
  5219. }
  5220. }
  5221. }
  5222. }
  5223. }
  5224. }
  5225. i10 += ne00 * (ne01 - ir1);
  5226. while (i10 >= ne0) {
  5227. i10 -= ne0;
  5228. if (++i11 == ne1) {
  5229. i11 = 0;
  5230. if (++i12 == ne2) {
  5231. i12 = 0;
  5232. if (++i13 == ne3) {
  5233. i13 = 0;
  5234. }
  5235. }
  5236. }
  5237. }
  5238. }
  5239. }
  5240. } else if (dst->type == GGML_TYPE_F32) {
  5241. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5242. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5243. i10 += ne00 * ir0;
  5244. while (i10 >= ne0) {
  5245. i10 -= ne0;
  5246. if (++i11 == ne1) {
  5247. i11 = 0;
  5248. if (++i12 == ne2) {
  5249. i12 = 0;
  5250. if (++i13 == ne3) {
  5251. i13 = 0;
  5252. }
  5253. }
  5254. }
  5255. }
  5256. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5257. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5258. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5259. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5260. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  5261. if (++i10 == ne0) {
  5262. i10 = 0;
  5263. if (++i11 == ne1) {
  5264. i11 = 0;
  5265. if (++i12 == ne2) {
  5266. i12 = 0;
  5267. if (++i13 == ne3) {
  5268. i13 = 0;
  5269. }
  5270. }
  5271. }
  5272. }
  5273. }
  5274. }
  5275. i10 += ne00 * (ne01 - ir1);
  5276. while (i10 >= ne0) {
  5277. i10 -= ne0;
  5278. if (++i11 == ne1) {
  5279. i11 = 0;
  5280. if (++i12 == ne2) {
  5281. i12 = 0;
  5282. if (++i13 == ne3) {
  5283. i13 = 0;
  5284. }
  5285. }
  5286. }
  5287. }
  5288. }
  5289. }
  5290. } else {
  5291. GGML_ASSERT(false); // TODO: implement
  5292. }
  5293. }
  5294. static void ggml_compute_forward_dup_f32(
  5295. const struct ggml_compute_params * params,
  5296. const struct ggml_tensor * src0,
  5297. struct ggml_tensor * dst) {
  5298. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  5299. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5300. return;
  5301. }
  5302. const int64_t ne00 = src0->ne[0];
  5303. const int64_t ne01 = src0->ne[1];
  5304. const int64_t ne02 = src0->ne[2];
  5305. const int64_t ne03 = src0->ne[3];
  5306. const int64_t ne0 = dst->ne[0];
  5307. const int64_t ne1 = dst->ne[1];
  5308. const int64_t ne2 = dst->ne[2];
  5309. const int64_t ne3 = dst->ne[3];
  5310. const size_t nb00 = src0->nb[0];
  5311. const size_t nb01 = src0->nb[1];
  5312. const size_t nb02 = src0->nb[2];
  5313. const size_t nb03 = src0->nb[3];
  5314. const size_t nb0 = dst->nb[0];
  5315. const size_t nb1 = dst->nb[1];
  5316. const size_t nb2 = dst->nb[2];
  5317. const size_t nb3 = dst->nb[3];
  5318. const int ith = params->ith; // thread index
  5319. const int nth = params->nth; // number of threads
  5320. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  5321. // parallelize by elements
  5322. const int ne = ggml_nelements(dst);
  5323. const int dr = (ne + nth - 1) / nth;
  5324. const int ie0 = dr * ith;
  5325. const int ie1 = MIN(ie0 + dr, ne);
  5326. memcpy(
  5327. ((char *) dst->data + ie0*nb0),
  5328. ((char *) src0->data + ie0*nb00),
  5329. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  5330. return;
  5331. }
  5332. // parallelize by rows
  5333. const int nr = ne01;
  5334. // number of rows per thread
  5335. const int dr = (nr + nth - 1) / nth;
  5336. // row range for this thread
  5337. const int ir0 = dr * ith;
  5338. const int ir1 = MIN(ir0 + dr, nr);
  5339. if (src0->type == dst->type &&
  5340. ne00 == ne0 &&
  5341. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  5342. // copy by rows
  5343. const size_t rs = ne00*nb00;
  5344. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5345. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5346. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5347. memcpy(
  5348. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  5349. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  5350. rs);
  5351. }
  5352. }
  5353. }
  5354. return;
  5355. }
  5356. if (ggml_is_contiguous(dst)) {
  5357. // TODO: simplify
  5358. if (nb00 == sizeof(float)) {
  5359. if (dst->type == GGML_TYPE_F32) {
  5360. size_t id = 0;
  5361. const size_t rs = ne00 * nb00;
  5362. char * dst_ptr = (char *) dst->data;
  5363. for (int i03 = 0; i03 < ne03; i03++) {
  5364. for (int i02 = 0; i02 < ne02; i02++) {
  5365. id += rs * ir0;
  5366. for (int i01 = ir0; i01 < ir1; i01++) {
  5367. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  5368. memcpy(dst_ptr + id, src0_ptr, rs);
  5369. id += rs;
  5370. }
  5371. id += rs * (ne01 - ir1);
  5372. }
  5373. }
  5374. } else if (dst->type == GGML_TYPE_F16) {
  5375. size_t id = 0;
  5376. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5377. for (int i03 = 0; i03 < ne03; i03++) {
  5378. for (int i02 = 0; i02 < ne02; i02++) {
  5379. id += ne00 * ir0;
  5380. for (int i01 = ir0; i01 < ir1; i01++) {
  5381. for (int i00 = 0; i00 < ne00; i00++) {
  5382. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5383. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5384. id++;
  5385. }
  5386. }
  5387. id += ne00 * (ne01 - ir1);
  5388. }
  5389. }
  5390. } else if (ggml_is_quantized(dst->type)) {
  5391. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  5392. size_t id = 0;
  5393. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  5394. char * dst_ptr = (char *) dst->data;
  5395. for (int i03 = 0; i03 < ne03; i03++) {
  5396. for (int i02 = 0; i02 < ne02; i02++) {
  5397. id += rs * ir0;
  5398. for (int i01 = ir0; i01 < ir1; i01++) {
  5399. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  5400. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  5401. id += rs;
  5402. }
  5403. id += rs * (ne01 - ir1);
  5404. }
  5405. }
  5406. } else {
  5407. GGML_ASSERT(false); // TODO: implement
  5408. }
  5409. } else {
  5410. //printf("%s: this is not optimal - fix me\n", __func__);
  5411. if (dst->type == GGML_TYPE_F32) {
  5412. size_t id = 0;
  5413. float * dst_ptr = (float *) dst->data;
  5414. for (int i03 = 0; i03 < ne03; i03++) {
  5415. for (int i02 = 0; i02 < ne02; i02++) {
  5416. id += ne00 * ir0;
  5417. for (int i01 = ir0; i01 < ir1; i01++) {
  5418. for (int i00 = 0; i00 < ne00; i00++) {
  5419. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5420. dst_ptr[id] = *src0_ptr;
  5421. id++;
  5422. }
  5423. }
  5424. id += ne00 * (ne01 - ir1);
  5425. }
  5426. }
  5427. } else if (dst->type == GGML_TYPE_F16) {
  5428. size_t id = 0;
  5429. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  5430. for (int i03 = 0; i03 < ne03; i03++) {
  5431. for (int i02 = 0; i02 < ne02; i02++) {
  5432. id += ne00 * ir0;
  5433. for (int i01 = ir0; i01 < ir1; i01++) {
  5434. for (int i00 = 0; i00 < ne00; i00++) {
  5435. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5436. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  5437. id++;
  5438. }
  5439. }
  5440. id += ne00 * (ne01 - ir1);
  5441. }
  5442. }
  5443. } else {
  5444. GGML_ASSERT(false); // TODO: implement
  5445. }
  5446. }
  5447. return;
  5448. }
  5449. // dst counters
  5450. int64_t i10 = 0;
  5451. int64_t i11 = 0;
  5452. int64_t i12 = 0;
  5453. int64_t i13 = 0;
  5454. if (dst->type == GGML_TYPE_F32) {
  5455. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5456. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5457. i10 += ne00 * ir0;
  5458. while (i10 >= ne0) {
  5459. i10 -= ne0;
  5460. if (++i11 == ne1) {
  5461. i11 = 0;
  5462. if (++i12 == ne2) {
  5463. i12 = 0;
  5464. if (++i13 == ne3) {
  5465. i13 = 0;
  5466. }
  5467. }
  5468. }
  5469. }
  5470. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5471. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5472. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5473. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5474. memcpy(dst_ptr, src0_ptr, sizeof(float));
  5475. if (++i10 == ne0) {
  5476. i10 = 0;
  5477. if (++i11 == ne1) {
  5478. i11 = 0;
  5479. if (++i12 == ne2) {
  5480. i12 = 0;
  5481. if (++i13 == ne3) {
  5482. i13 = 0;
  5483. }
  5484. }
  5485. }
  5486. }
  5487. }
  5488. }
  5489. i10 += ne00 * (ne01 - ir1);
  5490. while (i10 >= ne0) {
  5491. i10 -= ne0;
  5492. if (++i11 == ne1) {
  5493. i11 = 0;
  5494. if (++i12 == ne2) {
  5495. i12 = 0;
  5496. if (++i13 == ne3) {
  5497. i13 = 0;
  5498. }
  5499. }
  5500. }
  5501. }
  5502. }
  5503. }
  5504. } else if (dst->type == GGML_TYPE_F16) {
  5505. for (int64_t i03 = 0; i03 < ne03; i03++) {
  5506. for (int64_t i02 = 0; i02 < ne02; i02++) {
  5507. i10 += ne00 * ir0;
  5508. while (i10 >= ne0) {
  5509. i10 -= ne0;
  5510. if (++i11 == ne1) {
  5511. i11 = 0;
  5512. if (++i12 == ne2) {
  5513. i12 = 0;
  5514. if (++i13 == ne3) {
  5515. i13 = 0;
  5516. }
  5517. }
  5518. }
  5519. }
  5520. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  5521. for (int64_t i00 = 0; i00 < ne00; i00++) {
  5522. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  5523. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  5524. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  5525. if (++i10 == ne0) {
  5526. i10 = 0;
  5527. if (++i11 == ne1) {
  5528. i11 = 0;
  5529. if (++i12 == ne2) {
  5530. i12 = 0;
  5531. if (++i13 == ne3) {
  5532. i13 = 0;
  5533. }
  5534. }
  5535. }
  5536. }
  5537. }
  5538. }
  5539. i10 += ne00 * (ne01 - ir1);
  5540. while (i10 >= ne0) {
  5541. i10 -= ne0;
  5542. if (++i11 == ne1) {
  5543. i11 = 0;
  5544. if (++i12 == ne2) {
  5545. i12 = 0;
  5546. if (++i13 == ne3) {
  5547. i13 = 0;
  5548. }
  5549. }
  5550. }
  5551. }
  5552. }
  5553. }
  5554. } else {
  5555. GGML_ASSERT(false); // TODO: implement
  5556. }
  5557. }
  5558. static void ggml_compute_forward_dup(
  5559. const struct ggml_compute_params * params,
  5560. const struct ggml_tensor * src0,
  5561. struct ggml_tensor * dst) {
  5562. switch (src0->type) {
  5563. case GGML_TYPE_F16:
  5564. {
  5565. ggml_compute_forward_dup_f16(params, src0, dst);
  5566. } break;
  5567. case GGML_TYPE_F32:
  5568. {
  5569. ggml_compute_forward_dup_f32(params, src0, dst);
  5570. } break;
  5571. default:
  5572. {
  5573. GGML_ASSERT(false);
  5574. } break;
  5575. }
  5576. }
  5577. // ggml_compute_forward_add
  5578. static void ggml_compute_forward_add_f32(
  5579. const struct ggml_compute_params * params,
  5580. const struct ggml_tensor * src0,
  5581. const struct ggml_tensor * src1,
  5582. struct ggml_tensor * dst) {
  5583. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5584. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5585. return;
  5586. }
  5587. const int ith = params->ith;
  5588. const int nth = params->nth;
  5589. const int n = ggml_nrows(src0);
  5590. const int nc = src0->ne[0];
  5591. const size_t nb00 = src0->nb[0];
  5592. const size_t nb01 = src0->nb[1];
  5593. const size_t nb10 = src1->nb[0];
  5594. const size_t nb11 = src1->nb[1];
  5595. const size_t nb0 = dst->nb[0];
  5596. const size_t nb1 = dst->nb[1];
  5597. GGML_ASSERT( nb0 == sizeof(float));
  5598. GGML_ASSERT(nb00 == sizeof(float));
  5599. if (nb10 == sizeof(float)) {
  5600. for (int j = ith; j < n; j += nth) {
  5601. #ifdef GGML_USE_ACCELERATE
  5602. vDSP_vadd(
  5603. (float *) ((char *) src0->data + j*nb01), 1,
  5604. (float *) ((char *) src1->data + j*nb11), 1,
  5605. (float *) ((char *) dst->data + j*nb1), 1, nc);
  5606. #else
  5607. ggml_vec_add_f32(nc,
  5608. (float *) ((char *) dst->data + j*nb1),
  5609. (float *) ((char *) src0->data + j*nb01),
  5610. (float *) ((char *) src1->data + j*nb11));
  5611. #endif
  5612. }
  5613. } else {
  5614. // src1 is not contiguous
  5615. for (int j = ith; j < n; j += nth) {
  5616. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  5617. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  5618. for (int i = 0; i < nc; i++) {
  5619. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5620. dst_ptr[i] = src0_ptr[i] + *src1_ptr;
  5621. }
  5622. }
  5623. }
  5624. }
  5625. static void ggml_compute_forward_add_f16_f32(
  5626. const struct ggml_compute_params * params,
  5627. const struct ggml_tensor * src0,
  5628. const struct ggml_tensor * src1,
  5629. struct ggml_tensor * dst) {
  5630. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5631. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5632. return;
  5633. }
  5634. const int ith = params->ith;
  5635. const int nth = params->nth;
  5636. const int n = ggml_nrows(src0);
  5637. const int nc = src0->ne[0];
  5638. const size_t nb00 = src0->nb[0];
  5639. const size_t nb01 = src0->nb[1];
  5640. const size_t nb10 = src1->nb[0];
  5641. const size_t nb11 = src1->nb[1];
  5642. const size_t nb0 = dst->nb[0];
  5643. const size_t nb1 = dst->nb[1];
  5644. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5645. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5646. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5647. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5648. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5649. if (nb10 == sizeof(float)) {
  5650. for (int j = ith; j < n; j += nth) {
  5651. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5652. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5653. for (int i = 0; i < nc; i++) {
  5654. float * src1_ptr = (float *) ((char *) src1->data + j*nb11 + i*nb10);
  5655. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + *src1_ptr);
  5656. }
  5657. }
  5658. }
  5659. else {
  5660. // src1 is not contiguous
  5661. GGML_ASSERT(false);
  5662. }
  5663. }
  5664. static void ggml_compute_forward_add_f16_f16(
  5665. const struct ggml_compute_params * params,
  5666. const struct ggml_tensor * src0,
  5667. const struct ggml_tensor * src1,
  5668. struct ggml_tensor * dst) {
  5669. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5670. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5671. return;
  5672. }
  5673. const int ith = params->ith;
  5674. const int nth = params->nth;
  5675. const int n = ggml_nrows(src0);
  5676. const int nc = src0->ne[0];
  5677. const size_t nb00 = src0->nb[0];
  5678. const size_t nb01 = src0->nb[1];
  5679. const size_t nb10 = src1->nb[0];
  5680. const size_t nb11 = src1->nb[1];
  5681. const size_t nb0 = dst->nb[0];
  5682. const size_t nb1 = dst->nb[1];
  5683. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  5684. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  5685. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  5686. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  5687. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  5688. if (nb10 == sizeof(ggml_fp16_t)) {
  5689. for (int j = ith; j < n; j += nth) {
  5690. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + j*nb1);
  5691. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + j*nb01);
  5692. for (int i = 0; i < nc; i++) {
  5693. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + j*nb11 + i*nb10);
  5694. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(*src1_ptr));
  5695. }
  5696. }
  5697. }
  5698. else {
  5699. // src1 is not contiguous
  5700. GGML_ASSERT(false);
  5701. }
  5702. }
  5703. static void ggml_compute_forward_add_q_f32(
  5704. const struct ggml_compute_params * params,
  5705. const struct ggml_tensor * src0,
  5706. const struct ggml_tensor * src1,
  5707. struct ggml_tensor * dst) {
  5708. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5709. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5710. return;
  5711. }
  5712. const int64_t ne00 = src0->ne[0];
  5713. const int64_t ne01 = src0->ne[1];
  5714. const int64_t ne02 = src0->ne[2];
  5715. const int64_t ne03 = src0->ne[3];
  5716. //const int64_t ne10 = src1->ne[0];
  5717. //const int64_t ne11 = src1->ne[1];
  5718. const int64_t ne12 = src1->ne[2];
  5719. const int64_t ne13 = src1->ne[3];
  5720. //const int64_t ne0 = dst->ne[0];
  5721. //const int64_t ne1 = dst->ne[1];
  5722. const int64_t ne2 = dst->ne[2];
  5723. const int64_t ne3 = dst->ne[3];
  5724. const int nb00 = src0->nb[0];
  5725. const int nb01 = src0->nb[1];
  5726. const int nb02 = src0->nb[2];
  5727. const int nb03 = src0->nb[3];
  5728. const int nb10 = src1->nb[0];
  5729. const int nb11 = src1->nb[1];
  5730. const int nb12 = src1->nb[2];
  5731. const int nb13 = src1->nb[3];
  5732. const int nb0 = dst->nb[0];
  5733. const int nb1 = dst->nb[1];
  5734. const int nb2 = dst->nb[2];
  5735. const int nb3 = dst->nb[3];
  5736. const int ith = params->ith;
  5737. const int nth = params->nth;
  5738. GGML_ASSERT(ne02 == ne12);
  5739. GGML_ASSERT(ne03 == ne13);
  5740. GGML_ASSERT(ne2 == ne12);
  5741. GGML_ASSERT(ne3 == ne13);
  5742. const enum ggml_type type = src0->type;
  5743. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  5744. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  5745. // we don't support permuted src0 or src1
  5746. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  5747. GGML_ASSERT(nb10 == sizeof(float));
  5748. // dst cannot be transposed or permuted
  5749. GGML_ASSERT(nb0 <= nb1);
  5750. GGML_ASSERT(nb1 <= nb2);
  5751. GGML_ASSERT(nb2 <= nb3);
  5752. GGML_ASSERT(ggml_is_quantized(src0->type));
  5753. GGML_ASSERT(dst->type == src0->type);
  5754. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  5755. // total rows in src0
  5756. const int nr = ne01*ne02*ne03;
  5757. // rows per thread
  5758. const int dr = (nr + nth - 1)/nth;
  5759. // row range for this thread
  5760. const int ir0 = dr*ith;
  5761. const int ir1 = MIN(ir0 + dr, nr);
  5762. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  5763. for (int ir = ir0; ir < ir1; ++ir) {
  5764. // src0 indices
  5765. const int i03 = ir/(ne02*ne01);
  5766. const int i02 = (ir - i03*ne02*ne01)/ne01;
  5767. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  5768. // src1 and dst are same shape as src0 => same indices
  5769. const int i13 = i03;
  5770. const int i12 = i02;
  5771. const int i11 = i01;
  5772. const int i3 = i03;
  5773. const int i2 = i02;
  5774. const int i1 = i01;
  5775. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  5776. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  5777. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb0));
  5778. assert(ne00 % 32 == 0);
  5779. // unquantize row from src0 to temp buffer
  5780. dequantize_row_q(src0_row, wdata, ne00);
  5781. // add src1
  5782. ggml_vec_acc_f32(ne00, wdata, src1_row);
  5783. // quantize row to dst
  5784. quantize_row_q(wdata, dst_row, ne00);
  5785. }
  5786. }
  5787. static void ggml_compute_forward_add(
  5788. const struct ggml_compute_params * params,
  5789. const struct ggml_tensor * src0,
  5790. const struct ggml_tensor * src1,
  5791. struct ggml_tensor * dst) {
  5792. switch (src0->type) {
  5793. case GGML_TYPE_F32:
  5794. {
  5795. ggml_compute_forward_add_f32(params, src0, src1, dst);
  5796. } break;
  5797. case GGML_TYPE_F16:
  5798. {
  5799. if (src1->type == GGML_TYPE_F16) {
  5800. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  5801. }
  5802. else if (src1->type == GGML_TYPE_F32) {
  5803. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  5804. }
  5805. else {
  5806. GGML_ASSERT(false);
  5807. }
  5808. } break;
  5809. case GGML_TYPE_Q4_0:
  5810. case GGML_TYPE_Q4_1:
  5811. case GGML_TYPE_Q4_2:
  5812. case GGML_TYPE_Q5_0:
  5813. case GGML_TYPE_Q5_1:
  5814. case GGML_TYPE_Q8_0:
  5815. {
  5816. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  5817. } break;
  5818. default:
  5819. {
  5820. GGML_ASSERT(false);
  5821. } break;
  5822. }
  5823. }
  5824. // ggml_compute_forward_sub
  5825. static void ggml_compute_forward_sub_f32(
  5826. const struct ggml_compute_params * params,
  5827. const struct ggml_tensor * src0,
  5828. const struct ggml_tensor * src1,
  5829. struct ggml_tensor * dst) {
  5830. assert(params->ith == 0);
  5831. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5832. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5833. return;
  5834. }
  5835. const int n = ggml_nrows(src0);
  5836. const int nc = src0->ne[0];
  5837. assert( dst->nb[0] == sizeof(float));
  5838. assert(src0->nb[0] == sizeof(float));
  5839. assert(src1->nb[0] == sizeof(float));
  5840. for (int i = 0; i < n; i++) {
  5841. ggml_vec_sub_f32(nc,
  5842. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5843. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5844. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5845. }
  5846. }
  5847. static void ggml_compute_forward_sub(
  5848. const struct ggml_compute_params * params,
  5849. const struct ggml_tensor * src0,
  5850. const struct ggml_tensor * src1,
  5851. struct ggml_tensor * dst) {
  5852. switch (src0->type) {
  5853. case GGML_TYPE_F32:
  5854. {
  5855. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  5856. } break;
  5857. default:
  5858. {
  5859. GGML_ASSERT(false);
  5860. } break;
  5861. }
  5862. }
  5863. // ggml_compute_forward_mul
  5864. static void ggml_compute_forward_mul_f32(
  5865. const struct ggml_compute_params * params,
  5866. const struct ggml_tensor * src0,
  5867. const struct ggml_tensor * src1,
  5868. struct ggml_tensor * dst) {
  5869. assert(params->ith == 0);
  5870. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5871. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5872. return;
  5873. }
  5874. const int n = ggml_nrows(src0);
  5875. const int nc = src0->ne[0];
  5876. assert( dst->nb[0] == sizeof(float));
  5877. assert(src0->nb[0] == sizeof(float));
  5878. assert(src1->nb[0] == sizeof(float));
  5879. for (int i = 0; i < n; i++) {
  5880. ggml_vec_mul_f32(nc,
  5881. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5882. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5883. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5884. }
  5885. }
  5886. static void ggml_compute_forward_mul(
  5887. const struct ggml_compute_params * params,
  5888. const struct ggml_tensor * src0,
  5889. const struct ggml_tensor * src1,
  5890. struct ggml_tensor * dst) {
  5891. switch (src0->type) {
  5892. case GGML_TYPE_F32:
  5893. {
  5894. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  5895. } break;
  5896. default:
  5897. {
  5898. GGML_ASSERT(false);
  5899. } break;
  5900. }
  5901. }
  5902. // ggml_compute_forward_div
  5903. static void ggml_compute_forward_div_f32(
  5904. const struct ggml_compute_params * params,
  5905. const struct ggml_tensor * src0,
  5906. const struct ggml_tensor * src1,
  5907. struct ggml_tensor * dst) {
  5908. assert(params->ith == 0);
  5909. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  5910. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5911. return;
  5912. }
  5913. const int n = ggml_nrows(src0);
  5914. const int nc = src0->ne[0];
  5915. assert( dst->nb[0] == sizeof(float));
  5916. assert(src0->nb[0] == sizeof(float));
  5917. assert(src1->nb[0] == sizeof(float));
  5918. for (int i = 0; i < n; i++) {
  5919. ggml_vec_div_f32(nc,
  5920. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5921. (float *) ((char *) src0->data + i*(src0->nb[1])),
  5922. (float *) ((char *) src1->data + i*(src1->nb[1])));
  5923. }
  5924. }
  5925. static void ggml_compute_forward_div(
  5926. const struct ggml_compute_params * params,
  5927. const struct ggml_tensor * src0,
  5928. const struct ggml_tensor * src1,
  5929. struct ggml_tensor * dst) {
  5930. switch (src0->type) {
  5931. case GGML_TYPE_F32:
  5932. {
  5933. ggml_compute_forward_div_f32(params, src0, src1, dst);
  5934. } break;
  5935. default:
  5936. {
  5937. GGML_ASSERT(false);
  5938. } break;
  5939. }
  5940. }
  5941. // ggml_compute_forward_sqr
  5942. static void ggml_compute_forward_sqr_f32(
  5943. const struct ggml_compute_params * params,
  5944. const struct ggml_tensor * src0,
  5945. struct ggml_tensor * dst) {
  5946. assert(params->ith == 0);
  5947. assert(ggml_are_same_shape(src0, dst));
  5948. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5949. return;
  5950. }
  5951. const int n = ggml_nrows(src0);
  5952. const int nc = src0->ne[0];
  5953. assert( dst->nb[0] == sizeof(float));
  5954. assert(src0->nb[0] == sizeof(float));
  5955. for (int i = 0; i < n; i++) {
  5956. ggml_vec_sqr_f32(nc,
  5957. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5958. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5959. }
  5960. }
  5961. static void ggml_compute_forward_sqr(
  5962. const struct ggml_compute_params * params,
  5963. const struct ggml_tensor * src0,
  5964. struct ggml_tensor * dst) {
  5965. switch (src0->type) {
  5966. case GGML_TYPE_F32:
  5967. {
  5968. ggml_compute_forward_sqr_f32(params, src0, dst);
  5969. } break;
  5970. default:
  5971. {
  5972. GGML_ASSERT(false);
  5973. } break;
  5974. }
  5975. }
  5976. // ggml_compute_forward_sqrt
  5977. static void ggml_compute_forward_sqrt_f32(
  5978. const struct ggml_compute_params * params,
  5979. const struct ggml_tensor * src0,
  5980. struct ggml_tensor * dst) {
  5981. assert(params->ith == 0);
  5982. assert(ggml_are_same_shape(src0, dst));
  5983. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  5984. return;
  5985. }
  5986. const int n = ggml_nrows(src0);
  5987. const int nc = src0->ne[0];
  5988. assert( dst->nb[0] == sizeof(float));
  5989. assert(src0->nb[0] == sizeof(float));
  5990. for (int i = 0; i < n; i++) {
  5991. ggml_vec_sqrt_f32(nc,
  5992. (float *) ((char *) dst->data + i*( dst->nb[1])),
  5993. (float *) ((char *) src0->data + i*(src0->nb[1])));
  5994. }
  5995. }
  5996. static void ggml_compute_forward_sqrt(
  5997. const struct ggml_compute_params * params,
  5998. const struct ggml_tensor * src0,
  5999. struct ggml_tensor * dst) {
  6000. switch (src0->type) {
  6001. case GGML_TYPE_F32:
  6002. {
  6003. ggml_compute_forward_sqrt_f32(params, src0, dst);
  6004. } break;
  6005. default:
  6006. {
  6007. GGML_ASSERT(false);
  6008. } break;
  6009. }
  6010. }
  6011. // ggml_compute_forward_sum
  6012. static void ggml_compute_forward_sum_f32(
  6013. const struct ggml_compute_params * params,
  6014. const struct ggml_tensor * src0,
  6015. struct ggml_tensor * dst) {
  6016. assert(params->ith == 0);
  6017. assert(ggml_is_scalar(dst));
  6018. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6019. return;
  6020. }
  6021. assert(ggml_is_scalar(dst));
  6022. assert(src0->nb[0] == sizeof(float));
  6023. const int64_t ne00 = src0->ne[0];
  6024. const int64_t ne01 = src0->ne[1];
  6025. const int64_t ne02 = src0->ne[2];
  6026. const int64_t ne03 = src0->ne[3];
  6027. const size_t nb01 = src0->nb[1];
  6028. const size_t nb02 = src0->nb[2];
  6029. const size_t nb03 = src0->nb[3];
  6030. ggml_float sum = 0;
  6031. ggml_float row_sum = 0;
  6032. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6033. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6034. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6035. ggml_vec_sum_ggf(ne00,
  6036. &row_sum,
  6037. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6038. sum += row_sum;
  6039. }
  6040. }
  6041. }
  6042. ((float *) dst->data)[0] = sum;
  6043. }
  6044. static void ggml_compute_forward_sum(
  6045. const struct ggml_compute_params * params,
  6046. const struct ggml_tensor * src0,
  6047. struct ggml_tensor * dst) {
  6048. switch (src0->type) {
  6049. case GGML_TYPE_F32:
  6050. {
  6051. ggml_compute_forward_sum_f32(params, src0, dst);
  6052. } break;
  6053. default:
  6054. {
  6055. GGML_ASSERT(false);
  6056. } break;
  6057. }
  6058. }
  6059. // ggml_compute_forward_mean
  6060. static void ggml_compute_forward_mean_f32(
  6061. const struct ggml_compute_params * params,
  6062. const struct ggml_tensor * src0,
  6063. struct ggml_tensor * dst) {
  6064. assert(params->ith == 0);
  6065. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6066. return;
  6067. }
  6068. assert(src0->nb[0] == sizeof(float));
  6069. const int64_t ne00 = src0->ne[0];
  6070. const int64_t ne01 = src0->ne[1];
  6071. const int64_t ne02 = src0->ne[2];
  6072. const int64_t ne03 = src0->ne[3];
  6073. const size_t nb01 = src0->nb[1];
  6074. const size_t nb02 = src0->nb[2];
  6075. const size_t nb03 = src0->nb[3];
  6076. const int64_t ne0 = dst->ne[0];
  6077. const int64_t ne1 = dst->ne[1];
  6078. const int64_t ne2 = dst->ne[2];
  6079. const int64_t ne3 = dst->ne[3];
  6080. assert(ne0 == 1);
  6081. assert(ne1 == ne01);
  6082. assert(ne2 == ne02);
  6083. assert(ne3 == ne03);
  6084. UNUSED(ne0);
  6085. UNUSED(ne1);
  6086. UNUSED(ne2);
  6087. UNUSED(ne3);
  6088. const size_t nb1 = dst->nb[1];
  6089. const size_t nb2 = dst->nb[2];
  6090. const size_t nb3 = dst->nb[3];
  6091. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6092. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6093. for (int64_t i01 = 0; i01 < ne01; i01++) {
  6094. ggml_vec_sum_f32(ne00,
  6095. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6096. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  6097. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  6098. }
  6099. }
  6100. }
  6101. }
  6102. static void ggml_compute_forward_mean(
  6103. const struct ggml_compute_params * params,
  6104. const struct ggml_tensor * src0,
  6105. struct ggml_tensor * dst) {
  6106. switch (src0->type) {
  6107. case GGML_TYPE_F32:
  6108. {
  6109. ggml_compute_forward_mean_f32(params, src0, dst);
  6110. } break;
  6111. default:
  6112. {
  6113. GGML_ASSERT(false);
  6114. } break;
  6115. }
  6116. }
  6117. // ggml_compute_forward_repeat
  6118. static void ggml_compute_forward_repeat_f32(
  6119. const struct ggml_compute_params * params,
  6120. const struct ggml_tensor * src0,
  6121. struct ggml_tensor * dst) {
  6122. assert(params->ith == 0);
  6123. assert(ggml_can_repeat(src0, dst));
  6124. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6125. return;
  6126. }
  6127. // TODO: implement support for rank > 2 tensors
  6128. assert(src0->ne[2] == 1);
  6129. assert(src0->ne[3] == 1);
  6130. assert( dst->ne[2] == 1);
  6131. assert( dst->ne[3] == 1);
  6132. const int nc = dst->ne[0];
  6133. const int nr = dst->ne[1];
  6134. const int nc0 = src0->ne[0];
  6135. const int nr0 = src0->ne[1];
  6136. const int ncr = nc/nc0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6137. const int nrr = nr/nr0; // guaranteed to be an integer due to the check in ggml_can_repeat
  6138. // TODO: support for transposed / permuted tensors
  6139. assert( dst->nb[0] == sizeof(float));
  6140. assert(src0->nb[0] == sizeof(float));
  6141. // TODO: maybe this is not optimal?
  6142. for (int i = 0; i < nrr; i++) {
  6143. for (int j = 0; j < ncr; j++) {
  6144. for (int k = 0; k < nr0; k++) {
  6145. ggml_vec_cpy_f32(nc0,
  6146. (float *) ((char *) dst->data + (i*nr0 + k)*( dst->nb[1]) + j*nc0*( dst->nb[0])),
  6147. (float *) ((char *) src0->data + ( k)*(src0->nb[1])));
  6148. }
  6149. }
  6150. }
  6151. }
  6152. static void ggml_compute_forward_repeat(
  6153. const struct ggml_compute_params * params,
  6154. const struct ggml_tensor * src0,
  6155. struct ggml_tensor * dst) {
  6156. switch (src0->type) {
  6157. case GGML_TYPE_F32:
  6158. {
  6159. ggml_compute_forward_repeat_f32(params, src0, dst);
  6160. } break;
  6161. default:
  6162. {
  6163. GGML_ASSERT(false);
  6164. } break;
  6165. }
  6166. }
  6167. // ggml_compute_forward_abs
  6168. static void ggml_compute_forward_abs_f32(
  6169. const struct ggml_compute_params * params,
  6170. const struct ggml_tensor * src0,
  6171. struct ggml_tensor * dst) {
  6172. assert(params->ith == 0);
  6173. assert(ggml_are_same_shape(src0, dst));
  6174. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6175. return;
  6176. }
  6177. const int n = ggml_nrows(src0);
  6178. const int nc = src0->ne[0];
  6179. assert(dst->nb[0] == sizeof(float));
  6180. assert(src0->nb[0] == sizeof(float));
  6181. for (int i = 0; i < n; i++) {
  6182. ggml_vec_abs_f32(nc,
  6183. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6184. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6185. }
  6186. }
  6187. static void ggml_compute_forward_abs(
  6188. const struct ggml_compute_params * params,
  6189. const struct ggml_tensor * src0,
  6190. struct ggml_tensor * dst) {
  6191. switch (src0->type) {
  6192. case GGML_TYPE_F32:
  6193. {
  6194. ggml_compute_forward_abs_f32(params, src0, dst);
  6195. } break;
  6196. default:
  6197. {
  6198. GGML_ASSERT(false);
  6199. } break;
  6200. }
  6201. }
  6202. // ggml_compute_forward_sgn
  6203. static void ggml_compute_forward_sgn_f32(
  6204. const struct ggml_compute_params * params,
  6205. const struct ggml_tensor * src0,
  6206. struct ggml_tensor * dst) {
  6207. assert(params->ith == 0);
  6208. assert(ggml_are_same_shape(src0, dst));
  6209. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6210. return;
  6211. }
  6212. const int n = ggml_nrows(src0);
  6213. const int nc = src0->ne[0];
  6214. assert(dst->nb[0] == sizeof(float));
  6215. assert(src0->nb[0] == sizeof(float));
  6216. for (int i = 0; i < n; i++) {
  6217. ggml_vec_sgn_f32(nc,
  6218. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6219. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6220. }
  6221. }
  6222. static void ggml_compute_forward_sgn(
  6223. const struct ggml_compute_params * params,
  6224. const struct ggml_tensor * src0,
  6225. struct ggml_tensor * dst) {
  6226. switch (src0->type) {
  6227. case GGML_TYPE_F32:
  6228. {
  6229. ggml_compute_forward_sgn_f32(params, src0, dst);
  6230. } break;
  6231. default:
  6232. {
  6233. GGML_ASSERT(false);
  6234. } break;
  6235. }
  6236. }
  6237. // ggml_compute_forward_neg
  6238. static void ggml_compute_forward_neg_f32(
  6239. const struct ggml_compute_params * params,
  6240. const struct ggml_tensor * src0,
  6241. struct ggml_tensor * dst) {
  6242. assert(params->ith == 0);
  6243. assert(ggml_are_same_shape(src0, dst));
  6244. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6245. return;
  6246. }
  6247. const int n = ggml_nrows(src0);
  6248. const int nc = src0->ne[0];
  6249. assert(dst->nb[0] == sizeof(float));
  6250. assert(src0->nb[0] == sizeof(float));
  6251. for (int i = 0; i < n; i++) {
  6252. ggml_vec_neg_f32(nc,
  6253. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6254. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6255. }
  6256. }
  6257. static void ggml_compute_forward_neg(
  6258. const struct ggml_compute_params * params,
  6259. const struct ggml_tensor * src0,
  6260. struct ggml_tensor * dst) {
  6261. switch (src0->type) {
  6262. case GGML_TYPE_F32:
  6263. {
  6264. ggml_compute_forward_neg_f32(params, src0, dst);
  6265. } break;
  6266. default:
  6267. {
  6268. GGML_ASSERT(false);
  6269. } break;
  6270. }
  6271. }
  6272. // ggml_compute_forward_step
  6273. static void ggml_compute_forward_step_f32(
  6274. const struct ggml_compute_params * params,
  6275. const struct ggml_tensor * src0,
  6276. struct ggml_tensor * dst) {
  6277. assert(params->ith == 0);
  6278. assert(ggml_are_same_shape(src0, dst));
  6279. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6280. return;
  6281. }
  6282. const int n = ggml_nrows(src0);
  6283. const int nc = src0->ne[0];
  6284. assert(dst->nb[0] == sizeof(float));
  6285. assert(src0->nb[0] == sizeof(float));
  6286. for (int i = 0; i < n; i++) {
  6287. ggml_vec_step_f32(nc,
  6288. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6289. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6290. }
  6291. }
  6292. static void ggml_compute_forward_step(
  6293. const struct ggml_compute_params * params,
  6294. const struct ggml_tensor * src0,
  6295. struct ggml_tensor * dst) {
  6296. switch (src0->type) {
  6297. case GGML_TYPE_F32:
  6298. {
  6299. ggml_compute_forward_step_f32(params, src0, dst);
  6300. } break;
  6301. default:
  6302. {
  6303. GGML_ASSERT(false);
  6304. } break;
  6305. }
  6306. }
  6307. // ggml_compute_forward_relu
  6308. static void ggml_compute_forward_relu_f32(
  6309. const struct ggml_compute_params * params,
  6310. const struct ggml_tensor * src0,
  6311. struct ggml_tensor * dst) {
  6312. assert(params->ith == 0);
  6313. assert(ggml_are_same_shape(src0, dst));
  6314. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6315. return;
  6316. }
  6317. const int n = ggml_nrows(src0);
  6318. const int nc = src0->ne[0];
  6319. assert(dst->nb[0] == sizeof(float));
  6320. assert(src0->nb[0] == sizeof(float));
  6321. for (int i = 0; i < n; i++) {
  6322. ggml_vec_relu_f32(nc,
  6323. (float *) ((char *) dst->data + i*( dst->nb[1])),
  6324. (float *) ((char *) src0->data + i*(src0->nb[1])));
  6325. }
  6326. }
  6327. static void ggml_compute_forward_relu(
  6328. const struct ggml_compute_params * params,
  6329. const struct ggml_tensor * src0,
  6330. struct ggml_tensor * dst) {
  6331. switch (src0->type) {
  6332. case GGML_TYPE_F32:
  6333. {
  6334. ggml_compute_forward_relu_f32(params, src0, dst);
  6335. } break;
  6336. default:
  6337. {
  6338. GGML_ASSERT(false);
  6339. } break;
  6340. }
  6341. }
  6342. // ggml_compute_forward_gelu
  6343. static void ggml_compute_forward_gelu_f32(
  6344. const struct ggml_compute_params * params,
  6345. const struct ggml_tensor * src0,
  6346. struct ggml_tensor * dst) {
  6347. GGML_ASSERT(ggml_is_contiguous(src0));
  6348. GGML_ASSERT(ggml_is_contiguous(dst));
  6349. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6350. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6351. return;
  6352. }
  6353. const int ith = params->ith;
  6354. const int nth = params->nth;
  6355. const int nc = src0->ne[0];
  6356. const int nr = ggml_nrows(src0);
  6357. // rows per thread
  6358. const int dr = (nr + nth - 1)/nth;
  6359. // row range for this thread
  6360. const int ir0 = dr*ith;
  6361. const int ir1 = MIN(ir0 + dr, nr);
  6362. for (int i1 = ir0; i1 < ir1; i1++) {
  6363. ggml_vec_gelu_f32(nc,
  6364. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6365. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6366. #ifndef NDEBUG
  6367. for (int k = 0; k < nc; k++) {
  6368. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6369. UNUSED(x);
  6370. assert(!isnan(x));
  6371. assert(!isinf(x));
  6372. }
  6373. #endif
  6374. }
  6375. }
  6376. static void ggml_compute_forward_gelu(
  6377. const struct ggml_compute_params * params,
  6378. const struct ggml_tensor * src0,
  6379. struct ggml_tensor * dst) {
  6380. switch (src0->type) {
  6381. case GGML_TYPE_F32:
  6382. {
  6383. ggml_compute_forward_gelu_f32(params, src0, dst);
  6384. } break;
  6385. default:
  6386. {
  6387. GGML_ASSERT(false);
  6388. } break;
  6389. }
  6390. //printf("XXXXXXXX gelu\n");
  6391. }
  6392. // ggml_compute_forward_silu
  6393. static void ggml_compute_forward_silu_f32(
  6394. const struct ggml_compute_params * params,
  6395. const struct ggml_tensor * src0,
  6396. struct ggml_tensor * dst) {
  6397. GGML_ASSERT(ggml_is_contiguous(src0));
  6398. GGML_ASSERT(ggml_is_contiguous(dst));
  6399. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6400. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6401. return;
  6402. }
  6403. const int ith = params->ith;
  6404. const int nth = params->nth;
  6405. const int nc = src0->ne[0];
  6406. const int nr = ggml_nrows(src0);
  6407. // rows per thread
  6408. const int dr = (nr + nth - 1)/nth;
  6409. // row range for this thread
  6410. const int ir0 = dr*ith;
  6411. const int ir1 = MIN(ir0 + dr, nr);
  6412. for (int i1 = ir0; i1 < ir1; i1++) {
  6413. ggml_vec_silu_f32(nc,
  6414. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  6415. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  6416. #ifndef NDEBUG
  6417. for (int k = 0; k < nc; k++) {
  6418. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  6419. UNUSED(x);
  6420. assert(!isnan(x));
  6421. assert(!isinf(x));
  6422. }
  6423. #endif
  6424. }
  6425. }
  6426. static void ggml_compute_forward_silu(
  6427. const struct ggml_compute_params * params,
  6428. const struct ggml_tensor * src0,
  6429. struct ggml_tensor * dst) {
  6430. switch (src0->type) {
  6431. case GGML_TYPE_F32:
  6432. {
  6433. ggml_compute_forward_silu_f32(params, src0, dst);
  6434. } break;
  6435. default:
  6436. {
  6437. GGML_ASSERT(false);
  6438. } break;
  6439. }
  6440. }
  6441. // ggml_compute_forward_norm
  6442. static void ggml_compute_forward_norm_f32(
  6443. const struct ggml_compute_params * params,
  6444. const struct ggml_tensor * src0,
  6445. struct ggml_tensor * dst) {
  6446. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6447. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6448. return;
  6449. }
  6450. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6451. const int ith = params->ith;
  6452. const int nth = params->nth;
  6453. const int64_t ne00 = src0->ne[0];
  6454. const int64_t ne01 = src0->ne[1];
  6455. const int64_t ne02 = src0->ne[2];
  6456. const int64_t ne03 = src0->ne[3];
  6457. const size_t nb01 = src0->nb[1];
  6458. const size_t nb02 = src0->nb[2];
  6459. const size_t nb03 = src0->nb[3];
  6460. const size_t nb1 = dst->nb[1];
  6461. const size_t nb2 = dst->nb[2];
  6462. const size_t nb3 = dst->nb[3];
  6463. const float eps = 1e-5f; // TODO: make this a parameter
  6464. // TODO: optimize
  6465. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6466. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6467. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6468. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6469. ggml_float sum = 0.0;
  6470. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6471. sum += (ggml_float)x[i00];
  6472. }
  6473. float mean = sum/ne00;
  6474. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6475. ggml_float sum2 = 0.0;
  6476. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6477. float v = x[i00] - mean;
  6478. y[i00] = v;
  6479. sum2 += (ggml_float)(v*v);
  6480. }
  6481. float variance = sum2/ne00;
  6482. const float scale = 1.0f/sqrtf(variance + eps);
  6483. ggml_vec_scale_f32(ne00, y, scale);
  6484. }
  6485. }
  6486. }
  6487. }
  6488. static void ggml_compute_forward_norm(
  6489. const struct ggml_compute_params * params,
  6490. const struct ggml_tensor * src0,
  6491. struct ggml_tensor * dst) {
  6492. switch (src0->type) {
  6493. case GGML_TYPE_F32:
  6494. {
  6495. ggml_compute_forward_norm_f32(params, src0, dst);
  6496. } break;
  6497. default:
  6498. {
  6499. GGML_ASSERT(false);
  6500. } break;
  6501. }
  6502. }
  6503. static void ggml_compute_forward_rms_norm_f32(
  6504. const struct ggml_compute_params * params,
  6505. const struct ggml_tensor * src0,
  6506. struct ggml_tensor * dst) {
  6507. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6508. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6509. return;
  6510. }
  6511. GGML_ASSERT(src0->nb[0] == sizeof(float));
  6512. const int ith = params->ith;
  6513. const int nth = params->nth;
  6514. const int64_t ne00 = src0->ne[0];
  6515. const int64_t ne01 = src0->ne[1];
  6516. const int64_t ne02 = src0->ne[2];
  6517. const int64_t ne03 = src0->ne[3];
  6518. const size_t nb01 = src0->nb[1];
  6519. const size_t nb02 = src0->nb[2];
  6520. const size_t nb03 = src0->nb[3];
  6521. const size_t nb1 = dst->nb[1];
  6522. const size_t nb2 = dst->nb[2];
  6523. const size_t nb3 = dst->nb[3];
  6524. const float eps = 1e-6f; // TODO: make this a parameter
  6525. // TODO: optimize
  6526. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6527. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6528. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  6529. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6530. ggml_float sum = 0.0;
  6531. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6532. sum += (ggml_float)(x[i00] * x[i00]);
  6533. }
  6534. float mean = sum/ne00;
  6535. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  6536. memcpy(y, x, ne00 * sizeof(float));
  6537. // for (int i00 = 0; i00 < ne00; i00++) {
  6538. // y[i00] = x[i00];
  6539. // }
  6540. const float scale = 1.0f/sqrtf(mean + eps);
  6541. ggml_vec_scale_f32(ne00, y, scale);
  6542. }
  6543. }
  6544. }
  6545. }
  6546. static void ggml_compute_forward_rms_norm(
  6547. const struct ggml_compute_params * params,
  6548. const struct ggml_tensor * src0,
  6549. struct ggml_tensor * dst) {
  6550. switch (src0->type) {
  6551. case GGML_TYPE_F32:
  6552. {
  6553. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  6554. } break;
  6555. default:
  6556. {
  6557. GGML_ASSERT(false);
  6558. } break;
  6559. }
  6560. }
  6561. // ggml_compute_forward_mul_mat
  6562. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6563. // helper function to determine if it is better to use BLAS or not
  6564. // for large matrices, BLAS is faster
  6565. static bool ggml_compute_forward_mul_mat_use_blas(
  6566. const struct ggml_tensor * src0,
  6567. const struct ggml_tensor * src1,
  6568. struct ggml_tensor * dst) {
  6569. //const int64_t ne00 = src0->ne[0];
  6570. //const int64_t ne01 = src0->ne[1];
  6571. const int64_t ne10 = src1->ne[0];
  6572. const int64_t ne0 = dst->ne[0];
  6573. const int64_t ne1 = dst->ne[1];
  6574. // TODO: find the optimal values for these
  6575. if (ggml_is_contiguous(src0) &&
  6576. ggml_is_contiguous(src1) &&
  6577. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  6578. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  6579. return true;
  6580. }
  6581. return false;
  6582. }
  6583. #endif
  6584. static void ggml_compute_forward_mul_mat_f32(
  6585. const struct ggml_compute_params * params,
  6586. const struct ggml_tensor * src0,
  6587. const struct ggml_tensor * src1,
  6588. struct ggml_tensor * dst) {
  6589. int64_t t0 = ggml_perf_time_us();
  6590. UNUSED(t0);
  6591. const int64_t ne00 = src0->ne[0];
  6592. const int64_t ne01 = src0->ne[1];
  6593. const int64_t ne02 = src0->ne[2];
  6594. const int64_t ne03 = src0->ne[3];
  6595. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6596. const int64_t ne10 = src1->ne[0];
  6597. #endif
  6598. const int64_t ne11 = src1->ne[1];
  6599. #ifndef NDEBUG
  6600. const int64_t ne12 = src1->ne[2];
  6601. const int64_t ne13 = src1->ne[3];
  6602. const int64_t ne0 = dst->ne[0];
  6603. const int64_t ne1 = dst->ne[1];
  6604. const int64_t ne2 = dst->ne[2];
  6605. const int64_t ne3 = dst->ne[3];
  6606. const int nb00 = src0->nb[0];
  6607. #endif
  6608. const int nb01 = src0->nb[1];
  6609. const int nb02 = src0->nb[2];
  6610. const int nb03 = src0->nb[3];
  6611. #ifndef NDEBUG
  6612. const int nb10 = src1->nb[0];
  6613. #endif
  6614. const int nb11 = src1->nb[1];
  6615. const int nb12 = src1->nb[2];
  6616. const int nb13 = src1->nb[3];
  6617. const int nb0 = dst->nb[0];
  6618. const int nb1 = dst->nb[1];
  6619. const int nb2 = dst->nb[2];
  6620. const int nb3 = dst->nb[3];
  6621. const int ith = params->ith;
  6622. const int nth = params->nth;
  6623. assert(ne02 == ne12);
  6624. assert(ne03 == ne13);
  6625. assert(ne2 == ne12);
  6626. assert(ne3 == ne13);
  6627. // we don't support permuted src0 or src1
  6628. assert(nb00 == sizeof(float));
  6629. assert(nb10 == sizeof(float));
  6630. // dst cannot be transposed or permuted
  6631. assert(nb0 == sizeof(float));
  6632. assert(nb0 <= nb1);
  6633. assert(nb1 <= nb2);
  6634. assert(nb2 <= nb3);
  6635. assert(ne0 == ne01);
  6636. assert(ne1 == ne11);
  6637. assert(ne2 == ne02);
  6638. assert(ne3 == ne03);
  6639. // nb01 >= nb00 - src0 is not transposed
  6640. // compute by src0 rows
  6641. #if defined(GGML_USE_CUBLAS)
  6642. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6643. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6644. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6645. }
  6646. return;
  6647. }
  6648. #endif
  6649. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6650. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6651. if (params->ith != 0) {
  6652. return;
  6653. }
  6654. if (params->type == GGML_TASK_INIT) {
  6655. return;
  6656. }
  6657. if (params->type == GGML_TASK_FINALIZE) {
  6658. return;
  6659. }
  6660. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6661. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6662. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  6663. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6664. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6665. #if defined(GGML_USE_CLBLAST)
  6666. // zT = y * xT
  6667. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6668. ne11, ne01, ne10,
  6669. 1.0f, y, ne10,
  6670. x, ne10,
  6671. 0.0f, d, ne01,
  6672. GGML_TYPE_F32);
  6673. #else
  6674. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6675. ne11, ne01, ne10,
  6676. 1.0f, y, ne10,
  6677. x, ne00,
  6678. 0.0f, d, ne01);
  6679. #endif
  6680. }
  6681. }
  6682. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  6683. return;
  6684. }
  6685. #endif
  6686. if (params->type == GGML_TASK_INIT) {
  6687. return;
  6688. }
  6689. if (params->type == GGML_TASK_FINALIZE) {
  6690. return;
  6691. }
  6692. // parallelize by src0 rows using ggml_vec_dot_f32
  6693. // total rows in src0
  6694. const int nr = ne01*ne02*ne03;
  6695. // rows per thread
  6696. const int dr = (nr + nth - 1)/nth;
  6697. // row range for this thread
  6698. const int ir0 = dr*ith;
  6699. const int ir1 = MIN(ir0 + dr, nr);
  6700. for (int ir = ir0; ir < ir1; ++ir) {
  6701. // src0 indices
  6702. const int i03 = ir/(ne02*ne01);
  6703. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6704. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6705. for (int64_t ic = 0; ic < ne11; ++ic) {
  6706. // src1 indices
  6707. const int i13 = i03;
  6708. const int i12 = i02;
  6709. const int i11 = ic;
  6710. // dst indices
  6711. const int i0 = i01;
  6712. const int i1 = i11;
  6713. const int i2 = i02;
  6714. const int i3 = i03;
  6715. ggml_vec_dot_f32(ne00,
  6716. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  6717. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  6718. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  6719. }
  6720. }
  6721. //int64_t t1 = ggml_perf_time_us();
  6722. //static int64_t acc = 0;
  6723. //acc += t1 - t0;
  6724. //if (t1 - t0 > 10) {
  6725. // printf("\n");
  6726. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6727. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6728. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6729. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  6730. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6731. //}
  6732. }
  6733. static void ggml_compute_forward_mul_mat_f16_f32(
  6734. const struct ggml_compute_params * params,
  6735. const struct ggml_tensor * src0,
  6736. const struct ggml_tensor * src1,
  6737. struct ggml_tensor * dst) {
  6738. int64_t t0 = ggml_perf_time_us();
  6739. UNUSED(t0);
  6740. const int64_t ne00 = src0->ne[0];
  6741. const int64_t ne01 = src0->ne[1];
  6742. const int64_t ne02 = src0->ne[2];
  6743. const int64_t ne03 = src0->ne[3];
  6744. const int64_t ne10 = src1->ne[0];
  6745. const int64_t ne11 = src1->ne[1];
  6746. const int64_t ne12 = src1->ne[2];
  6747. const int64_t ne13 = src1->ne[3];
  6748. const int64_t ne0 = dst->ne[0];
  6749. const int64_t ne1 = dst->ne[1];
  6750. const int64_t ne2 = dst->ne[2];
  6751. const int64_t ne3 = dst->ne[3];
  6752. //const int64_t ne = ne0*ne1*ne2*ne3;
  6753. const int nb00 = src0->nb[0];
  6754. const int nb01 = src0->nb[1];
  6755. const int nb02 = src0->nb[2];
  6756. const int nb03 = src0->nb[3];
  6757. const int nb10 = src1->nb[0];
  6758. const int nb11 = src1->nb[1];
  6759. const int nb12 = src1->nb[2];
  6760. const int nb13 = src1->nb[3];
  6761. const int nb0 = dst->nb[0];
  6762. const int nb1 = dst->nb[1];
  6763. const int nb2 = dst->nb[2];
  6764. const int nb3 = dst->nb[3];
  6765. const int ith = params->ith;
  6766. const int nth = params->nth;
  6767. GGML_ASSERT(ne02 == ne12);
  6768. GGML_ASSERT(ne03 == ne13);
  6769. GGML_ASSERT(ne2 == ne12);
  6770. GGML_ASSERT(ne3 == ne13);
  6771. // TODO: we don't support permuted src0
  6772. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6773. // dst cannot be transposed or permuted
  6774. GGML_ASSERT(nb0 == sizeof(float));
  6775. GGML_ASSERT(nb0 <= nb1);
  6776. GGML_ASSERT(nb1 <= nb2);
  6777. GGML_ASSERT(nb2 <= nb3);
  6778. GGML_ASSERT(ne0 == ne01);
  6779. GGML_ASSERT(ne1 == ne11);
  6780. GGML_ASSERT(ne2 == ne02);
  6781. GGML_ASSERT(ne3 == ne03);
  6782. // nb01 >= nb00 - src0 is not transposed
  6783. // compute by src0 rows
  6784. #if defined(GGML_USE_CUBLAS)
  6785. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6786. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6787. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6788. }
  6789. return;
  6790. }
  6791. #endif
  6792. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6793. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6794. GGML_ASSERT(nb10 == sizeof(float));
  6795. if (params->ith != 0) {
  6796. return;
  6797. }
  6798. if (params->type == GGML_TASK_INIT) {
  6799. return;
  6800. }
  6801. if (params->type == GGML_TASK_FINALIZE) {
  6802. return;
  6803. }
  6804. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6805. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6806. float * const wdata = params->wdata;
  6807. {
  6808. size_t id = 0;
  6809. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6810. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  6811. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  6812. }
  6813. }
  6814. assert(id*sizeof(float) <= params->wsize);
  6815. }
  6816. #if defined(GGML_USE_CLBLAST)
  6817. const float * x = wdata;
  6818. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6819. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6820. // zT = y * xT
  6821. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6822. ne11, ne01, ne10,
  6823. 1.0f, y, ne10,
  6824. x, ne10,
  6825. 0.0f, d, ne01,
  6826. GGML_TYPE_F32);
  6827. #else
  6828. const float * x = wdata;
  6829. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6830. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6831. // zT = y * xT
  6832. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  6833. ne11, ne01, ne10,
  6834. 1.0f, y, ne10,
  6835. x, ne00,
  6836. 0.0f, d, ne01);
  6837. #endif
  6838. }
  6839. }
  6840. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  6841. return;
  6842. }
  6843. #endif
  6844. if (params->type == GGML_TASK_INIT) {
  6845. ggml_fp16_t * const wdata = params->wdata;
  6846. size_t id = 0;
  6847. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  6848. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  6849. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  6850. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  6851. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  6852. }
  6853. }
  6854. }
  6855. }
  6856. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  6857. return;
  6858. }
  6859. if (params->type == GGML_TASK_FINALIZE) {
  6860. return;
  6861. }
  6862. // fp16 -> half the size, so divide by 2
  6863. // TODO: do not support transposed src1
  6864. assert(nb10/2 == sizeof(ggml_fp16_t));
  6865. // parallelize by src0 rows using ggml_vec_dot_f16
  6866. // total rows in src0
  6867. const int nr = ne01*ne02*ne03;
  6868. // rows per thread
  6869. const int dr = (nr + nth - 1)/nth;
  6870. // row range for this thread
  6871. const int ir0 = dr*ith;
  6872. const int ir1 = MIN(ir0 + dr, nr);
  6873. ggml_fp16_t * wdata = params->wdata;
  6874. for (int ir = ir0; ir < ir1; ++ir) {
  6875. // src0 indices
  6876. const int i03 = ir/(ne02*ne01);
  6877. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6878. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6879. const int i13 = i03;
  6880. const int i12 = i02;
  6881. const int i0 = i01;
  6882. const int i2 = i02;
  6883. const int i3 = i03;
  6884. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6885. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  6886. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  6887. for (int64_t ic = 0; ic < ne11; ++ic) {
  6888. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  6889. }
  6890. }
  6891. //int64_t t1 = ggml_time_us();
  6892. //static int64_t acc = 0;
  6893. //acc += t1 - t0;
  6894. //if (t1 - t0 > 10) {
  6895. // printf("\n");
  6896. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  6897. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  6898. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  6899. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  6900. //}
  6901. }
  6902. static void ggml_compute_forward_mul_mat_q_f32(
  6903. const struct ggml_compute_params * params,
  6904. const struct ggml_tensor * src0,
  6905. const struct ggml_tensor * src1,
  6906. struct ggml_tensor * dst) {
  6907. int64_t t0 = ggml_perf_time_us();
  6908. UNUSED(t0);
  6909. const int64_t ne00 = src0->ne[0];
  6910. const int64_t ne01 = src0->ne[1];
  6911. const int64_t ne02 = src0->ne[2];
  6912. const int64_t ne03 = src0->ne[3];
  6913. const int64_t ne10 = src1->ne[0];
  6914. const int64_t ne11 = src1->ne[1];
  6915. const int64_t ne12 = src1->ne[2];
  6916. const int64_t ne13 = src1->ne[3];
  6917. const int64_t ne0 = dst->ne[0];
  6918. const int64_t ne1 = dst->ne[1];
  6919. const int64_t ne2 = dst->ne[2];
  6920. const int64_t ne3 = dst->ne[3];
  6921. const int nb00 = src0->nb[0];
  6922. const int nb01 = src0->nb[1];
  6923. const int nb02 = src0->nb[2];
  6924. const int nb03 = src0->nb[3];
  6925. const int nb10 = src1->nb[0];
  6926. const int nb11 = src1->nb[1];
  6927. const int nb12 = src1->nb[2];
  6928. const int nb13 = src1->nb[3];
  6929. const int nb0 = dst->nb[0];
  6930. const int nb1 = dst->nb[1];
  6931. const int nb2 = dst->nb[2];
  6932. const int nb3 = dst->nb[3];
  6933. const int ith = params->ith;
  6934. const int nth = params->nth;
  6935. GGML_ASSERT(ne02 == ne12);
  6936. GGML_ASSERT(ne03 == ne13);
  6937. GGML_ASSERT(ne2 == ne12);
  6938. GGML_ASSERT(ne3 == ne13);
  6939. const enum ggml_type type = src0->type;
  6940. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  6941. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  6942. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  6943. // we don't support permuted src0 or src1
  6944. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  6945. GGML_ASSERT(nb10 == sizeof(float));
  6946. // dst cannot be transposed or permuted
  6947. GGML_ASSERT(nb0 == sizeof(float));
  6948. GGML_ASSERT(nb0 <= nb1);
  6949. GGML_ASSERT(nb1 <= nb2);
  6950. GGML_ASSERT(nb2 <= nb3);
  6951. GGML_ASSERT(ne0 == ne01);
  6952. GGML_ASSERT(ne1 == ne11);
  6953. GGML_ASSERT(ne2 == ne02);
  6954. GGML_ASSERT(ne3 == ne03);
  6955. // nb01 >= nb00 - src0 is not transposed
  6956. // compute by src0 rows
  6957. #if defined(GGML_USE_CUBLAS)
  6958. if (ggml_cuda_can_mul_mat(src0, src1, dst)) {
  6959. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  6960. ggml_cuda_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  6961. }
  6962. return;
  6963. }
  6964. #endif
  6965. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  6966. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  6967. if (params->ith != 0) {
  6968. return;
  6969. }
  6970. if (params->type == GGML_TASK_INIT) {
  6971. return;
  6972. }
  6973. if (params->type == GGML_TASK_FINALIZE) {
  6974. return;
  6975. }
  6976. float * const wdata = params->wdata;
  6977. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6978. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6979. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6980. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  6981. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  6982. #if defined(GGML_USE_CLBLAST)
  6983. const void* x = (char *) src0->data + i03*nb03 + i02*nb02;
  6984. #else
  6985. {
  6986. size_t id = 0;
  6987. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  6988. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  6989. id += ne00;
  6990. }
  6991. assert(id*sizeof(float) <= params->wsize);
  6992. }
  6993. const float * x = wdata;
  6994. #endif
  6995. #if defined(GGML_USE_CLBLAST)
  6996. // zT = y * xT
  6997. ggml_cl_sgemm_wrapper(GGML_BLAS_ORDER_ROW_MAJOR, GGML_BLAS_OP_N, GGML_BLAS_OP_T,
  6998. ne11, ne01, ne10,
  6999. 1.0f, y, ne10,
  7000. x, ne10,
  7001. 0.0f, d, ne01,
  7002. type);
  7003. #else
  7004. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  7005. ne11, ne01, ne10,
  7006. 1.0f, y, ne10,
  7007. x, ne00,
  7008. 0.0f, d, ne01);
  7009. #endif
  7010. }
  7011. }
  7012. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  7013. return;
  7014. }
  7015. #endif
  7016. if (params->type == GGML_TASK_INIT) {
  7017. char * wdata = params->wdata;
  7018. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7019. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  7020. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  7021. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  7022. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  7023. wdata += row_size;
  7024. }
  7025. }
  7026. }
  7027. return;
  7028. }
  7029. if (params->type == GGML_TASK_FINALIZE) {
  7030. return;
  7031. }
  7032. // parallelize by src0 rows using ggml_vec_dot_q
  7033. // total rows in src0
  7034. const int nr = ne01*ne02*ne03;
  7035. // rows per thread
  7036. const int dr = (nr + nth - 1)/nth;
  7037. // row range for this thread
  7038. const int ir0 = dr*ith;
  7039. const int ir1 = MIN(ir0 + dr, nr);
  7040. void * wdata = params->wdata;
  7041. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  7042. for (int ir = ir0; ir < ir1; ++ir) {
  7043. // src0 indices
  7044. const int i03 = ir/(ne02*ne01);
  7045. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7046. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7047. const int i13 = i03;
  7048. const int i12 = i02;
  7049. const int i0 = i01;
  7050. const int i2 = i02;
  7051. const int i3 = i03;
  7052. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7053. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  7054. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  7055. assert(ne00 % 32 == 0);
  7056. for (int64_t ic = 0; ic < ne11; ++ic) {
  7057. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  7058. }
  7059. }
  7060. //int64_t t1 = ggml_time_us();
  7061. //static int64_t acc = 0;
  7062. //acc += t1 - t0;
  7063. //if (t1 - t0 > 10) {
  7064. // printf("\n");
  7065. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  7066. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  7067. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  7068. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  7069. //}
  7070. }
  7071. static void ggml_compute_forward_mul_mat(
  7072. const struct ggml_compute_params * params,
  7073. const struct ggml_tensor * src0,
  7074. const struct ggml_tensor * src1,
  7075. struct ggml_tensor * dst) {
  7076. switch (src0->type) {
  7077. case GGML_TYPE_Q4_0:
  7078. case GGML_TYPE_Q4_1:
  7079. case GGML_TYPE_Q4_2:
  7080. case GGML_TYPE_Q5_0:
  7081. case GGML_TYPE_Q5_1:
  7082. case GGML_TYPE_Q8_0:
  7083. case GGML_TYPE_Q8_1:
  7084. {
  7085. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  7086. } break;
  7087. case GGML_TYPE_F16:
  7088. {
  7089. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  7090. } break;
  7091. case GGML_TYPE_F32:
  7092. {
  7093. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  7094. } break;
  7095. default:
  7096. {
  7097. GGML_ASSERT(false);
  7098. } break;
  7099. }
  7100. }
  7101. // ggml_compute_forward_scale
  7102. static void ggml_compute_forward_scale_f32(
  7103. const struct ggml_compute_params * params,
  7104. const struct ggml_tensor * src0,
  7105. const struct ggml_tensor * src1,
  7106. struct ggml_tensor * dst) {
  7107. GGML_ASSERT(ggml_is_contiguous(src0));
  7108. GGML_ASSERT(ggml_is_contiguous(dst));
  7109. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7110. GGML_ASSERT(ggml_is_scalar(src1));
  7111. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7112. return;
  7113. }
  7114. // scale factor
  7115. const float v = *(float *) src1->data;
  7116. const int ith = params->ith;
  7117. const int nth = params->nth;
  7118. const int nc = src0->ne[0];
  7119. const int nr = ggml_nrows(src0);
  7120. // rows per thread
  7121. const int dr = (nr + nth - 1)/nth;
  7122. // row range for this thread
  7123. const int ir0 = dr*ith;
  7124. const int ir1 = MIN(ir0 + dr, nr);
  7125. for (int i1 = ir0; i1 < ir1; i1++) {
  7126. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*(dst->nb[1])), v);
  7127. }
  7128. }
  7129. static void ggml_compute_forward_scale(
  7130. const struct ggml_compute_params * params,
  7131. const struct ggml_tensor * src0,
  7132. const struct ggml_tensor * src1,
  7133. struct ggml_tensor * dst) {
  7134. switch (src0->type) {
  7135. case GGML_TYPE_F32:
  7136. {
  7137. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  7138. } break;
  7139. default:
  7140. {
  7141. GGML_ASSERT(false);
  7142. } break;
  7143. }
  7144. }
  7145. // ggml_compute_forward_cpy
  7146. static void ggml_compute_forward_cpy(
  7147. const struct ggml_compute_params * params,
  7148. const struct ggml_tensor * src0,
  7149. struct ggml_tensor * dst) {
  7150. ggml_compute_forward_dup(params, src0, dst);
  7151. }
  7152. // ggml_compute_forward_cont
  7153. static void ggml_compute_forward_cont(
  7154. const struct ggml_compute_params * params,
  7155. const struct ggml_tensor * src0,
  7156. struct ggml_tensor * dst) {
  7157. ggml_compute_forward_dup(params, src0, dst);
  7158. }
  7159. // ggml_compute_forward_reshape
  7160. static void ggml_compute_forward_reshape(
  7161. const struct ggml_compute_params * params,
  7162. const struct ggml_tensor * src0,
  7163. struct ggml_tensor * dst) {
  7164. // NOP
  7165. UNUSED(params);
  7166. UNUSED(src0);
  7167. UNUSED(dst);
  7168. }
  7169. // ggml_compute_forward_view
  7170. static void ggml_compute_forward_view(
  7171. const struct ggml_compute_params * params,
  7172. const struct ggml_tensor * src0) {
  7173. // NOP
  7174. UNUSED(params);
  7175. UNUSED(src0);
  7176. }
  7177. // ggml_compute_forward_permute
  7178. static void ggml_compute_forward_permute(
  7179. const struct ggml_compute_params * params,
  7180. const struct ggml_tensor * src0) {
  7181. // NOP
  7182. UNUSED(params);
  7183. UNUSED(src0);
  7184. }
  7185. // ggml_compute_forward_transpose
  7186. static void ggml_compute_forward_transpose(
  7187. const struct ggml_compute_params * params,
  7188. const struct ggml_tensor * src0) {
  7189. // NOP
  7190. UNUSED(params);
  7191. UNUSED(src0);
  7192. }
  7193. // ggml_compute_forward_get_rows
  7194. static void ggml_compute_forward_get_rows_q(
  7195. const struct ggml_compute_params * params,
  7196. const struct ggml_tensor * src0,
  7197. const struct ggml_tensor * src1,
  7198. struct ggml_tensor * dst) {
  7199. assert(params->ith == 0);
  7200. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7201. return;
  7202. }
  7203. const int nc = src0->ne[0];
  7204. const int nr = ggml_nelements(src1);
  7205. const enum ggml_type type = src0->type;
  7206. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7207. assert( dst->ne[0] == nc);
  7208. assert( dst->ne[1] == nr);
  7209. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  7210. for (int i = 0; i < nr; ++i) {
  7211. const int r = ((int32_t *) src1->data)[i];
  7212. dequantize_row_q(
  7213. (const void *) ((char *) src0->data + r*src0->nb[1]),
  7214. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  7215. }
  7216. }
  7217. static void ggml_compute_forward_get_rows_f16(
  7218. const struct ggml_compute_params * params,
  7219. const struct ggml_tensor * src0,
  7220. const struct ggml_tensor * src1,
  7221. struct ggml_tensor * dst) {
  7222. assert(params->ith == 0);
  7223. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7224. return;
  7225. }
  7226. const int nc = src0->ne[0];
  7227. const int nr = ggml_nelements(src1);
  7228. assert( dst->ne[0] == nc);
  7229. assert( dst->ne[1] == nr);
  7230. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  7231. for (int i = 0; i < nr; ++i) {
  7232. const int r = ((int32_t *) src1->data)[i];
  7233. for (int j = 0; j < nc; ++j) {
  7234. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  7235. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  7236. }
  7237. }
  7238. }
  7239. static void ggml_compute_forward_get_rows_f32(
  7240. const struct ggml_compute_params * params,
  7241. const struct ggml_tensor * src0,
  7242. const struct ggml_tensor * src1,
  7243. struct ggml_tensor * dst) {
  7244. assert(params->ith == 0);
  7245. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7246. return;
  7247. }
  7248. const int nc = src0->ne[0];
  7249. const int nr = ggml_nelements(src1);
  7250. assert( dst->ne[0] == nc);
  7251. assert( dst->ne[1] == nr);
  7252. assert(src0->nb[0] == sizeof(float));
  7253. for (int i = 0; i < nr; ++i) {
  7254. const int r = ((int32_t *) src1->data)[i];
  7255. ggml_vec_cpy_f32(nc,
  7256. (float *) ((char *) dst->data + i*dst->nb[1]),
  7257. (float *) ((char *) src0->data + r*src0->nb[1]));
  7258. }
  7259. }
  7260. static void ggml_compute_forward_get_rows(
  7261. const struct ggml_compute_params * params,
  7262. const struct ggml_tensor * src0,
  7263. const struct ggml_tensor * src1,
  7264. struct ggml_tensor * dst) {
  7265. switch (src0->type) {
  7266. case GGML_TYPE_Q4_0:
  7267. case GGML_TYPE_Q4_1:
  7268. case GGML_TYPE_Q4_2:
  7269. case GGML_TYPE_Q5_0:
  7270. case GGML_TYPE_Q5_1:
  7271. case GGML_TYPE_Q8_0:
  7272. case GGML_TYPE_Q8_1:
  7273. {
  7274. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  7275. } break;
  7276. case GGML_TYPE_F16:
  7277. {
  7278. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  7279. } break;
  7280. case GGML_TYPE_F32:
  7281. {
  7282. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  7283. } break;
  7284. default:
  7285. {
  7286. GGML_ASSERT(false);
  7287. } break;
  7288. }
  7289. //static bool first = true;
  7290. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  7291. //if (first) {
  7292. // first = false;
  7293. //} else {
  7294. // for (int k = 0; k < dst->ne[1]; ++k) {
  7295. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  7296. // for (int i = 0; i < 16; ++i) {
  7297. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  7298. // }
  7299. // printf("\n");
  7300. // }
  7301. // printf("\n");
  7302. // }
  7303. // printf("\n");
  7304. // exit(0);
  7305. //}
  7306. }
  7307. // ggml_compute_forward_diag_mask_inf
  7308. static void ggml_compute_forward_diag_mask_inf_f32(
  7309. const struct ggml_compute_params * params,
  7310. const struct ggml_tensor * src0,
  7311. const struct ggml_tensor * src1,
  7312. struct ggml_tensor * dst) {
  7313. assert(params->ith == 0);
  7314. assert(src1->type == GGML_TYPE_I32);
  7315. assert(ggml_nelements(src1) == 1);
  7316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7317. return;
  7318. }
  7319. const int n_past = ((int32_t *) src1->data)[0];
  7320. // TODO: handle transposed/permuted matrices
  7321. const int n = ggml_nrows(src0);
  7322. const int nc = src0->ne[0];
  7323. const int nr = src0->ne[1];
  7324. const int nz = n/nr;
  7325. assert( dst->nb[0] == sizeof(float));
  7326. assert(src0->nb[0] == sizeof(float));
  7327. for (int k = 0; k < nz; k++) {
  7328. for (int j = 0; j < nr; j++) {
  7329. for (int i = n_past; i < nc; i++) {
  7330. if (i > n_past + j) {
  7331. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = -INFINITY;
  7332. }
  7333. }
  7334. }
  7335. }
  7336. }
  7337. static void ggml_compute_forward_diag_mask_inf(
  7338. const struct ggml_compute_params * params,
  7339. const struct ggml_tensor * src0,
  7340. const struct ggml_tensor * src1,
  7341. struct ggml_tensor * dst) {
  7342. switch (src0->type) {
  7343. case GGML_TYPE_F32:
  7344. {
  7345. ggml_compute_forward_diag_mask_inf_f32(params, src0, src1, dst);
  7346. } break;
  7347. default:
  7348. {
  7349. GGML_ASSERT(false);
  7350. } break;
  7351. }
  7352. }
  7353. // ggml_compute_forward_soft_max
  7354. static void ggml_compute_forward_soft_max_f32(
  7355. const struct ggml_compute_params * params,
  7356. const struct ggml_tensor * src0,
  7357. struct ggml_tensor * dst) {
  7358. GGML_ASSERT(ggml_is_contiguous(src0));
  7359. GGML_ASSERT(ggml_is_contiguous(dst));
  7360. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7361. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7362. return;
  7363. }
  7364. // TODO: handle transposed/permuted matrices
  7365. const int ith = params->ith;
  7366. const int nth = params->nth;
  7367. const int nc = src0->ne[0];
  7368. const int nr = ggml_nrows(src0);
  7369. // rows per thread
  7370. const int dr = (nr + nth - 1)/nth;
  7371. // row range for this thread
  7372. const int ir0 = dr*ith;
  7373. const int ir1 = MIN(ir0 + dr, nr);
  7374. for (int i1 = ir0; i1 < ir1; i1++) {
  7375. float *p = (float *)((char *) dst->data + i1*dst->nb[1]);
  7376. #ifndef NDEBUG
  7377. for (int i = 0; i < nc; ++i) {
  7378. //printf("p[%d] = %f\n", i, p[i]);
  7379. assert(!isnan(p[i]));
  7380. }
  7381. #endif
  7382. float max = -INFINITY;
  7383. ggml_vec_max_f32(nc, &max, p);
  7384. ggml_float sum = 0.0;
  7385. uint16_t scvt;
  7386. for (int i = 0; i < nc; i++) {
  7387. //printf("p[%3d] = %8.4f\n", i, p[i]);
  7388. if (p[i] == -INFINITY) {
  7389. p[i] = 0.0f;
  7390. } else {
  7391. //const float val = (p[i] == -INFINITY) ? 0.0 : exp(p[i] - max);
  7392. ggml_fp16_t s = GGML_FP32_TO_FP16(p[i] - max);
  7393. memcpy(&scvt, &s, sizeof(scvt));
  7394. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  7395. sum += (ggml_float)val;
  7396. p[i] = val;
  7397. }
  7398. }
  7399. assert(sum > 0.0);
  7400. sum = 1.0/sum;
  7401. ggml_vec_scale_f32(nc, p, sum);
  7402. #ifndef NDEBUG
  7403. for (int i = 0; i < nc; ++i) {
  7404. assert(!isnan(p[i]));
  7405. assert(!isinf(p[i]));
  7406. }
  7407. #endif
  7408. }
  7409. }
  7410. static void ggml_compute_forward_soft_max(
  7411. const struct ggml_compute_params * params,
  7412. const struct ggml_tensor * src0,
  7413. struct ggml_tensor * dst) {
  7414. switch (src0->type) {
  7415. case GGML_TYPE_F32:
  7416. {
  7417. ggml_compute_forward_soft_max_f32(params, src0, dst);
  7418. } break;
  7419. default:
  7420. {
  7421. GGML_ASSERT(false);
  7422. } break;
  7423. }
  7424. }
  7425. // ggml_compute_forward_alibi
  7426. static void ggml_compute_forward_alibi_f32(
  7427. const struct ggml_compute_params * params,
  7428. const struct ggml_tensor * src0,
  7429. const struct ggml_tensor * src1,
  7430. struct ggml_tensor * dst) {
  7431. assert(params->ith == 0);
  7432. assert(src1->type == GGML_TYPE_I32);
  7433. assert(ggml_nelements(src1) == 2);
  7434. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7435. return;
  7436. }
  7437. const int n_past = ((int32_t *) src1->data)[0];
  7438. const int n_head = ((int32_t *) src1->data)[1];
  7439. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7440. const int ne1 = src0->ne[1]; // seq_len_without_past
  7441. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7442. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7443. const int n = ggml_nrows(src0);
  7444. const int ne2_ne3 = n/ne1; // ne2*ne3
  7445. const int nb0 = src0->nb[0];
  7446. const int nb1 = src0->nb[1];
  7447. const int nb2 = src0->nb[2];
  7448. //const int nb3 = src0->nb[3];
  7449. assert(nb0 == sizeof(float));
  7450. assert(ne1 + n_past == ne0); (void) n_past;
  7451. // add alibi to src0 (KQ_scaled)
  7452. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7453. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7454. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7455. for (int i = 0; i < ne0; i++) {
  7456. for (int j = 0; j < ne1; j++) {
  7457. for (int k = 0; k < ne2_ne3; k++) {
  7458. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7459. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7460. // TODO: k*nb2 or k*nb3
  7461. float m_k;
  7462. if (k < n_heads_log2_floor) {
  7463. m_k = powf(m0, k + 1);
  7464. } else {
  7465. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7466. }
  7467. pdst[0] = (j+1) * m_k + src[0];
  7468. }
  7469. }
  7470. }
  7471. }
  7472. static void ggml_compute_forward_alibi_f16(
  7473. const struct ggml_compute_params * params,
  7474. const struct ggml_tensor * src0,
  7475. const struct ggml_tensor * src1,
  7476. struct ggml_tensor * dst) {
  7477. assert(params->ith == 0);
  7478. assert(src1->type == GGML_TYPE_I32);
  7479. assert(ggml_nelements(src1) == 2);
  7480. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7481. return;
  7482. }
  7483. const int n_past = ((int32_t *) src1->data)[0];
  7484. const int n_head = ((int32_t *) src1->data)[1];
  7485. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  7486. const int ne1 = src0->ne[1]; // seq_len_without_past
  7487. //const int ne2 = src0->ne[2]; // n_head -> this is k
  7488. //const int ne3 = src0->ne[3]; // 1 -> bsz
  7489. const int n = ggml_nrows(src0);
  7490. const int ne2_ne3 = n/ne1; // ne2*ne3
  7491. const int nb0 = src0->nb[0];
  7492. const int nb1 = src0->nb[1];
  7493. const int nb2 = src0->nb[2];
  7494. //const int nb3 = src0->nb[3];
  7495. assert(nb0 == sizeof(ggml_fp16_t));
  7496. assert(ne1 + n_past == ne0); (void) n_past;
  7497. // add alibi to src0 (KQ_scaled)
  7498. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  7499. const float m0 = powf(2.0f, -8.0f / n_heads_log2_floor);
  7500. const float m1 = powf(2.0f, -4.0f / n_heads_log2_floor);
  7501. for (int i = 0; i < ne0; i++) {
  7502. for (int j = 0; j < ne1; j++) {
  7503. for (int k = 0; k < ne2_ne3; k++) {
  7504. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  7505. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  7506. // TODO: k*nb2 or k*nb3
  7507. float m_k;
  7508. if (k < n_heads_log2_floor) {
  7509. m_k = powf(m0, k + 1);
  7510. } else {
  7511. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  7512. }
  7513. // we return F32
  7514. pdst[0] = (j+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  7515. }
  7516. }
  7517. }
  7518. }
  7519. static void ggml_compute_forward_alibi(
  7520. const struct ggml_compute_params * params,
  7521. const struct ggml_tensor * src0,
  7522. const struct ggml_tensor * src1,
  7523. struct ggml_tensor * dst) {
  7524. switch (src0->type) {
  7525. case GGML_TYPE_F16:
  7526. {
  7527. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  7528. } break;
  7529. case GGML_TYPE_F32:
  7530. {
  7531. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  7532. } break;
  7533. case GGML_TYPE_Q4_0:
  7534. case GGML_TYPE_Q4_1:
  7535. case GGML_TYPE_Q4_2:
  7536. case GGML_TYPE_Q5_0:
  7537. case GGML_TYPE_Q5_1:
  7538. case GGML_TYPE_Q8_0:
  7539. case GGML_TYPE_Q8_1:
  7540. case GGML_TYPE_I8:
  7541. case GGML_TYPE_I16:
  7542. case GGML_TYPE_I32:
  7543. case GGML_TYPE_COUNT:
  7544. {
  7545. GGML_ASSERT(false);
  7546. } break;
  7547. }
  7548. }
  7549. // ggml_compute_forward_rope
  7550. static void ggml_compute_forward_rope_f32(
  7551. const struct ggml_compute_params * params,
  7552. const struct ggml_tensor * src0,
  7553. const struct ggml_tensor * src1,
  7554. struct ggml_tensor * dst) {
  7555. assert(src1->type == GGML_TYPE_I32);
  7556. assert(ggml_nelements(src1) == 3);
  7557. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7558. return;
  7559. }
  7560. const int n_past = ((int32_t *) src1->data)[0];
  7561. const int n_dims = ((int32_t *) src1->data)[1];
  7562. const int mode = ((int32_t *) src1->data)[2];
  7563. //const int64_t ne0 = src0->ne[0];
  7564. const int64_t ne1 = src0->ne[1];
  7565. const int64_t ne2 = src0->ne[2];
  7566. const int64_t ne3 = src0->ne[3];
  7567. const int nb0 = src0->nb[0];
  7568. const int nb1 = src0->nb[1];
  7569. const int nb2 = src0->nb[2];
  7570. const int nb3 = src0->nb[3];
  7571. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7572. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7573. assert(nb0 == sizeof(float));
  7574. const int ith = params->ith;
  7575. const int nth = params->nth;
  7576. const int nr = ggml_nrows(src0);
  7577. // rows per thread
  7578. const int dr = (nr + nth - 1)/nth;
  7579. // row range for this thread
  7580. const int ir0 = dr*ith;
  7581. const int ir1 = MIN(ir0 + dr, nr);
  7582. // row index used to determine which thread to use
  7583. int ir = 0;
  7584. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7585. const bool is_neox = mode & 2;
  7586. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7587. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7588. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7589. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7590. if (ir++ < ir0) continue;
  7591. if (ir > ir1) break;
  7592. float theta = (float)p;
  7593. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7594. const float cos_theta = cosf(theta);
  7595. const float sin_theta = sinf(theta);
  7596. theta *= theta_scale;
  7597. if (!is_neox) {
  7598. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7599. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7600. const float x0 = src[0];
  7601. const float x1 = src[1];
  7602. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7603. dst_data[1] = x0*sin_theta + x1*cos_theta;
  7604. } else {
  7605. const float * const src = (float *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7606. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7607. const float x0 = src[0];
  7608. const float x1 = src[n_dims/2];
  7609. dst_data[0] = x0*cos_theta - x1*sin_theta;
  7610. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  7611. }
  7612. }
  7613. }
  7614. }
  7615. }
  7616. }
  7617. static void ggml_compute_forward_rope_f16(
  7618. const struct ggml_compute_params * params,
  7619. const struct ggml_tensor * src0,
  7620. const struct ggml_tensor * src1,
  7621. struct ggml_tensor * dst) {
  7622. assert(src1->type == GGML_TYPE_I32);
  7623. assert(ggml_nelements(src1) == 3);
  7624. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7625. return;
  7626. }
  7627. const int n_past = ((int32_t *) src1->data)[0];
  7628. const int n_dims = ((int32_t *) src1->data)[1];
  7629. const int mode = ((int32_t *) src1->data)[2];
  7630. //const int64_t ne0 = src0->ne[0];
  7631. const int64_t ne1 = src0->ne[1];
  7632. const int64_t ne2 = src0->ne[2];
  7633. const int64_t ne3 = src0->ne[3];
  7634. const int nb0 = src0->nb[0];
  7635. const int nb1 = src0->nb[1];
  7636. const int nb2 = src0->nb[2];
  7637. const int nb3 = src0->nb[3];
  7638. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  7639. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  7640. assert(nb0 == sizeof(ggml_fp16_t));
  7641. const int ith = params->ith;
  7642. const int nth = params->nth;
  7643. const int nr = ggml_nrows(src0);
  7644. // rows per thread
  7645. const int dr = (nr + nth - 1)/nth;
  7646. // row range for this thread
  7647. const int ir0 = dr*ith;
  7648. const int ir1 = MIN(ir0 + dr, nr);
  7649. // row index used to determine which thread to use
  7650. int ir = 0;
  7651. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  7652. const bool is_neox = mode & 2;
  7653. for (int64_t i3 = 0; i3 < ne3; i3++) {
  7654. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  7655. const int p = ((mode & 1) == 0 ? n_past + i2 : i2);
  7656. for (int64_t i1 = 0; i1 < ne1; i1++) {
  7657. if (ir++ < ir0) continue;
  7658. if (ir > ir1) break;
  7659. float theta = (float)p;
  7660. for (int i0 = 0; i0 < n_dims; i0 += 2) {
  7661. const float cos_theta = cosf(theta);
  7662. const float sin_theta = sinf(theta);
  7663. theta *= theta_scale;
  7664. if (!is_neox) {
  7665. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7666. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  7667. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7668. const float x1 = GGML_FP16_TO_FP32(src[1]);
  7669. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7670. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7671. } else {
  7672. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7673. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + (i0/2)*nb0);
  7674. const float x0 = GGML_FP16_TO_FP32(src[0]);
  7675. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  7676. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  7677. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  7678. }
  7679. }
  7680. }
  7681. }
  7682. }
  7683. }
  7684. static void ggml_compute_forward_rope(
  7685. const struct ggml_compute_params * params,
  7686. const struct ggml_tensor * src0,
  7687. const struct ggml_tensor * src1,
  7688. struct ggml_tensor * dst) {
  7689. switch (src0->type) {
  7690. case GGML_TYPE_F16:
  7691. {
  7692. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  7693. } break;
  7694. case GGML_TYPE_F32:
  7695. {
  7696. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  7697. } break;
  7698. default:
  7699. {
  7700. GGML_ASSERT(false);
  7701. } break;
  7702. }
  7703. }
  7704. // ggml_compute_forward_conv_1d_1s
  7705. static void ggml_compute_forward_conv_1d_1s_f16_f32(
  7706. const struct ggml_compute_params * params,
  7707. const struct ggml_tensor * src0,
  7708. const struct ggml_tensor * src1,
  7709. struct ggml_tensor * dst) {
  7710. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7711. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7712. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7713. int64_t t0 = ggml_perf_time_us();
  7714. UNUSED(t0);
  7715. const int64_t ne00 = src0->ne[0];
  7716. const int64_t ne01 = src0->ne[1];
  7717. const int64_t ne02 = src0->ne[2];
  7718. //const int64_t ne03 = src0->ne[3];
  7719. const int64_t ne10 = src1->ne[0];
  7720. const int64_t ne11 = src1->ne[1];
  7721. //const int64_t ne12 = src1->ne[2];
  7722. //const int64_t ne13 = src1->ne[3];
  7723. //const int64_t ne0 = dst->ne[0];
  7724. //const int64_t ne1 = dst->ne[1];
  7725. //const int64_t ne2 = dst->ne[2];
  7726. //const int64_t ne3 = dst->ne[3];
  7727. //const int64_t ne = ne0*ne1*ne2*ne3;
  7728. const int nb00 = src0->nb[0];
  7729. const int nb01 = src0->nb[1];
  7730. const int nb02 = src0->nb[2];
  7731. //const int nb03 = src0->nb[3];
  7732. const int nb10 = src1->nb[0];
  7733. const int nb11 = src1->nb[1];
  7734. //const int nb12 = src1->nb[2];
  7735. //const int nb13 = src1->nb[3];
  7736. //const int nb0 = dst->nb[0];
  7737. const int nb1 = dst->nb[1];
  7738. //const int nb2 = dst->nb[2];
  7739. //const int nb3 = dst->nb[3];
  7740. const int ith = params->ith;
  7741. const int nth = params->nth;
  7742. const int nk = ne00;
  7743. const int nh = nk/2;
  7744. const int ew0 = ggml_up32(ne01);
  7745. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7746. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7747. GGML_ASSERT(nb10 == sizeof(float));
  7748. if (params->type == GGML_TASK_INIT) {
  7749. // TODO: fix this memset (wsize is overestimated)
  7750. memset(params->wdata, 0, params->wsize);
  7751. // prepare kernel data (src0)
  7752. {
  7753. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7754. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7755. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7756. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7757. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7758. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7759. dst_data[i00*ew0 + i01] = src[i00];
  7760. }
  7761. }
  7762. }
  7763. }
  7764. // prepare source data (src1)
  7765. {
  7766. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7767. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7768. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7769. ggml_fp16_t * dst_data = wdata;
  7770. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7771. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7772. }
  7773. }
  7774. }
  7775. return;
  7776. }
  7777. if (params->type == GGML_TASK_FINALIZE) {
  7778. return;
  7779. }
  7780. // total rows in dst
  7781. const int nr = ne02;
  7782. // rows per thread
  7783. const int dr = (nr + nth - 1)/nth;
  7784. // row range for this thread
  7785. const int ir0 = dr*ith;
  7786. const int ir1 = MIN(ir0 + dr, nr);
  7787. for (int i1 = ir0; i1 < ir1; i1++) {
  7788. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7789. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7790. dst_data[i0] = 0;
  7791. for (int k = -nh; k <= nh; k++) {
  7792. float v = 0.0f;
  7793. ggml_vec_dot_f16(ew0, &v,
  7794. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7795. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7796. dst_data[i0] += v;
  7797. }
  7798. }
  7799. }
  7800. }
  7801. static void ggml_compute_forward_conv_1d_1s_f32(
  7802. const struct ggml_compute_params * params,
  7803. const struct ggml_tensor * src0,
  7804. const struct ggml_tensor * src1,
  7805. struct ggml_tensor * dst) {
  7806. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  7807. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7808. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7809. int64_t t0 = ggml_perf_time_us();
  7810. UNUSED(t0);
  7811. const int64_t ne00 = src0->ne[0];
  7812. const int64_t ne01 = src0->ne[1];
  7813. const int64_t ne02 = src0->ne[2];
  7814. //const int64_t ne03 = src0->ne[3];
  7815. const int64_t ne10 = src1->ne[0];
  7816. const int64_t ne11 = src1->ne[1];
  7817. //const int64_t ne12 = src1->ne[2];
  7818. //const int64_t ne13 = src1->ne[3];
  7819. //const int64_t ne0 = dst->ne[0];
  7820. //const int64_t ne1 = dst->ne[1];
  7821. //const int64_t ne2 = dst->ne[2];
  7822. //const int64_t ne3 = dst->ne[3];
  7823. //const int64_t ne = ne0*ne1*ne2*ne3;
  7824. const int nb00 = src0->nb[0];
  7825. const int nb01 = src0->nb[1];
  7826. const int nb02 = src0->nb[2];
  7827. //const int nb03 = src0->nb[3];
  7828. const int nb10 = src1->nb[0];
  7829. const int nb11 = src1->nb[1];
  7830. //const int nb12 = src1->nb[2];
  7831. //const int nb13 = src1->nb[3];
  7832. //const int nb0 = dst->nb[0];
  7833. const int nb1 = dst->nb[1];
  7834. //const int nb2 = dst->nb[2];
  7835. //const int nb3 = dst->nb[3];
  7836. const int ith = params->ith;
  7837. const int nth = params->nth;
  7838. const int nk = ne00;
  7839. const int nh = nk/2;
  7840. const int ew0 = ggml_up32(ne01);
  7841. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7842. GGML_ASSERT(nb00 == sizeof(float));
  7843. GGML_ASSERT(nb10 == sizeof(float));
  7844. if (params->type == GGML_TASK_INIT) {
  7845. // TODO: fix this memset (wsize is overestimated)
  7846. memset(params->wdata, 0, params->wsize);
  7847. // prepare kernel data (src0)
  7848. {
  7849. float * const wdata = (float *) params->wdata + 0;
  7850. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7851. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7852. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  7853. float * dst_data = wdata + i02*ew0*ne00;
  7854. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7855. dst_data[i00*ew0 + i01] = src[i00];
  7856. }
  7857. }
  7858. }
  7859. }
  7860. // prepare source data (src1)
  7861. {
  7862. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  7863. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7864. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7865. float * dst_data = wdata;
  7866. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7867. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  7868. }
  7869. }
  7870. }
  7871. return;
  7872. }
  7873. if (params->type == GGML_TASK_FINALIZE) {
  7874. return;
  7875. }
  7876. // total rows in dst
  7877. const int nr = ne02;
  7878. // rows per thread
  7879. const int dr = (nr + nth - 1)/nth;
  7880. // row range for this thread
  7881. const int ir0 = dr*ith;
  7882. const int ir1 = MIN(ir0 + dr, nr);
  7883. for (int i1 = ir0; i1 < ir1; i1++) {
  7884. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  7885. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  7886. dst_data[i0] = 0;
  7887. for (int k = -nh; k <= nh; k++) {
  7888. float v = 0.0f;
  7889. ggml_vec_dot_f32(ew0, &v,
  7890. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  7891. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  7892. dst_data[i0] += v;
  7893. }
  7894. }
  7895. }
  7896. }
  7897. static void ggml_compute_forward_conv_1d_1s(
  7898. const struct ggml_compute_params * params,
  7899. const struct ggml_tensor * src0,
  7900. const struct ggml_tensor * src1,
  7901. struct ggml_tensor * dst) {
  7902. switch (src0->type) {
  7903. case GGML_TYPE_F16:
  7904. {
  7905. ggml_compute_forward_conv_1d_1s_f16_f32(params, src0, src1, dst);
  7906. } break;
  7907. case GGML_TYPE_F32:
  7908. {
  7909. ggml_compute_forward_conv_1d_1s_f32(params, src0, src1, dst);
  7910. } break;
  7911. default:
  7912. {
  7913. GGML_ASSERT(false);
  7914. } break;
  7915. }
  7916. }
  7917. // ggml_compute_forward_conv_1d_2s
  7918. static void ggml_compute_forward_conv_1d_2s_f16_f32(
  7919. const struct ggml_compute_params * params,
  7920. const struct ggml_tensor * src0,
  7921. const struct ggml_tensor * src1,
  7922. struct ggml_tensor * dst) {
  7923. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7924. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7925. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  7926. int64_t t0 = ggml_perf_time_us();
  7927. UNUSED(t0);
  7928. const int64_t ne00 = src0->ne[0];
  7929. const int64_t ne01 = src0->ne[1];
  7930. const int64_t ne02 = src0->ne[2];
  7931. //const int64_t ne03 = src0->ne[3];
  7932. const int64_t ne10 = src1->ne[0];
  7933. const int64_t ne11 = src1->ne[1];
  7934. //const int64_t ne12 = src1->ne[2];
  7935. //const int64_t ne13 = src1->ne[3];
  7936. //const int64_t ne0 = dst->ne[0];
  7937. //const int64_t ne1 = dst->ne[1];
  7938. //const int64_t ne2 = dst->ne[2];
  7939. //const int64_t ne3 = dst->ne[3];
  7940. //const int64_t ne = ne0*ne1*ne2*ne3;
  7941. const int nb00 = src0->nb[0];
  7942. const int nb01 = src0->nb[1];
  7943. const int nb02 = src0->nb[2];
  7944. //const int nb03 = src0->nb[3];
  7945. const int nb10 = src1->nb[0];
  7946. const int nb11 = src1->nb[1];
  7947. //const int nb12 = src1->nb[2];
  7948. //const int nb13 = src1->nb[3];
  7949. //const int nb0 = dst->nb[0];
  7950. const int nb1 = dst->nb[1];
  7951. //const int nb2 = dst->nb[2];
  7952. //const int nb3 = dst->nb[3];
  7953. const int ith = params->ith;
  7954. const int nth = params->nth;
  7955. const int nk = ne00;
  7956. const int nh = nk/2;
  7957. const int ew0 = ggml_up32(ne01);
  7958. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  7959. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7960. GGML_ASSERT(nb10 == sizeof(float));
  7961. if (params->type == GGML_TASK_INIT) {
  7962. // TODO: fix this memset (wsize is overestimated)
  7963. memset(params->wdata, 0, params->wsize);
  7964. // prepare kernel data (src0)
  7965. {
  7966. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  7967. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7968. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7969. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  7970. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  7971. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7972. dst_data[i00*ew0 + i01] = src[i00];
  7973. }
  7974. }
  7975. }
  7976. }
  7977. // prepare source data (src1)
  7978. {
  7979. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  7980. for (int64_t i11 = 0; i11 < ne11; i11++) {
  7981. const float * const src = (float *)((char *) src1->data + i11*nb11);
  7982. ggml_fp16_t * dst_data = wdata;
  7983. for (int64_t i10 = 0; i10 < ne10; i10++) {
  7984. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  7985. }
  7986. }
  7987. }
  7988. return;
  7989. }
  7990. if (params->type == GGML_TASK_FINALIZE) {
  7991. return;
  7992. }
  7993. // total rows in dst
  7994. const int nr = ne02;
  7995. // rows per thread
  7996. const int dr = (nr + nth - 1)/nth;
  7997. // row range for this thread
  7998. const int ir0 = dr*ith;
  7999. const int ir1 = MIN(ir0 + dr, nr);
  8000. for (int i1 = ir0; i1 < ir1; i1++) {
  8001. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8002. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8003. dst_data[i0/2] = 0;
  8004. for (int k = -nh; k <= nh; k++) {
  8005. float v = 0.0f;
  8006. ggml_vec_dot_f16(ew0, &v,
  8007. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8008. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8009. dst_data[i0/2] += v;
  8010. }
  8011. }
  8012. }
  8013. }
  8014. static void ggml_compute_forward_conv_1d_2s_f32(
  8015. const struct ggml_compute_params * params,
  8016. const struct ggml_tensor * src0,
  8017. const struct ggml_tensor * src1,
  8018. struct ggml_tensor * dst) {
  8019. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  8020. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8021. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  8022. int64_t t0 = ggml_perf_time_us();
  8023. UNUSED(t0);
  8024. const int64_t ne00 = src0->ne[0];
  8025. const int64_t ne01 = src0->ne[1];
  8026. const int64_t ne02 = src0->ne[2];
  8027. //const int64_t ne03 = src0->ne[3];
  8028. const int64_t ne10 = src1->ne[0];
  8029. const int64_t ne11 = src1->ne[1];
  8030. //const int64_t ne12 = src1->ne[2];
  8031. //const int64_t ne13 = src1->ne[3];
  8032. //const int64_t ne0 = dst->ne[0];
  8033. //const int64_t ne1 = dst->ne[1];
  8034. //const int64_t ne2 = dst->ne[2];
  8035. //const int64_t ne3 = dst->ne[3];
  8036. //const int64_t ne = ne0*ne1*ne2*ne3;
  8037. const int nb00 = src0->nb[0];
  8038. const int nb01 = src0->nb[1];
  8039. const int nb02 = src0->nb[2];
  8040. //const int nb03 = src0->nb[3];
  8041. const int nb10 = src1->nb[0];
  8042. const int nb11 = src1->nb[1];
  8043. //const int nb12 = src1->nb[2];
  8044. //const int nb13 = src1->nb[3];
  8045. //const int nb0 = dst->nb[0];
  8046. const int nb1 = dst->nb[1];
  8047. //const int nb2 = dst->nb[2];
  8048. //const int nb3 = dst->nb[3];
  8049. const int ith = params->ith;
  8050. const int nth = params->nth;
  8051. const int nk = ne00;
  8052. const int nh = nk/2;
  8053. const int ew0 = ggml_up32(ne01);
  8054. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  8055. GGML_ASSERT(nb00 == sizeof(float));
  8056. GGML_ASSERT(nb10 == sizeof(float));
  8057. if (params->type == GGML_TASK_INIT) {
  8058. // TODO: fix this memset (wsize is overestimated)
  8059. memset(params->wdata, 0, params->wsize);
  8060. // prepare kernel data (src0)
  8061. {
  8062. float * const wdata = (float *) params->wdata + 0;
  8063. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8064. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8065. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  8066. float * dst_data = wdata + i02*ew0*ne00;
  8067. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8068. dst_data[i00*ew0 + i01] = src[i00];
  8069. }
  8070. }
  8071. }
  8072. }
  8073. // prepare source data (src1)
  8074. {
  8075. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  8076. for (int64_t i11 = 0; i11 < ne11; i11++) {
  8077. const float * const src = (float *)((char *) src1->data + i11*nb11);
  8078. float * dst_data = wdata;
  8079. for (int64_t i10 = 0; i10 < ne10; i10++) {
  8080. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  8081. }
  8082. }
  8083. }
  8084. return;
  8085. }
  8086. if (params->type == GGML_TASK_FINALIZE) {
  8087. return;
  8088. }
  8089. // total rows in dst
  8090. const int nr = ne02;
  8091. // rows per thread
  8092. const int dr = (nr + nth - 1)/nth;
  8093. // row range for this thread
  8094. const int ir0 = dr*ith;
  8095. const int ir1 = MIN(ir0 + dr, nr);
  8096. for (int i1 = ir0; i1 < ir1; i1++) {
  8097. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  8098. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  8099. dst_data[i0/2] = 0;
  8100. for (int k = -nh; k <= nh; k++) {
  8101. float v = 0.0f;
  8102. ggml_vec_dot_f32(ew0, &v,
  8103. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  8104. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  8105. dst_data[i0/2] += v;
  8106. }
  8107. }
  8108. }
  8109. }
  8110. static void ggml_compute_forward_conv_1d_2s(
  8111. const struct ggml_compute_params * params,
  8112. const struct ggml_tensor * src0,
  8113. const struct ggml_tensor * src1,
  8114. struct ggml_tensor * dst) {
  8115. switch (src0->type) {
  8116. case GGML_TYPE_F16:
  8117. {
  8118. ggml_compute_forward_conv_1d_2s_f16_f32(params, src0, src1, dst);
  8119. } break;
  8120. case GGML_TYPE_F32:
  8121. {
  8122. ggml_compute_forward_conv_1d_2s_f32(params, src0, src1, dst);
  8123. } break;
  8124. default:
  8125. {
  8126. GGML_ASSERT(false);
  8127. } break;
  8128. }
  8129. }
  8130. // ggml_compute_forward_flash_attn
  8131. static void ggml_compute_forward_flash_attn_f32(
  8132. const struct ggml_compute_params * params,
  8133. const struct ggml_tensor * q,
  8134. const struct ggml_tensor * k,
  8135. const struct ggml_tensor * v,
  8136. const bool masked,
  8137. struct ggml_tensor * dst) {
  8138. int64_t t0 = ggml_perf_time_us();
  8139. UNUSED(t0);
  8140. const int64_t neq0 = q->ne[0];
  8141. const int64_t neq1 = q->ne[1];
  8142. const int64_t neq2 = q->ne[2];
  8143. const int64_t neq3 = q->ne[3];
  8144. const int64_t nek0 = k->ne[0];
  8145. const int64_t nek1 = k->ne[1];
  8146. //const int64_t nek2 = k->ne[2];
  8147. //const int64_t nek3 = k->ne[3];
  8148. //const int64_t nev0 = v->ne[0];
  8149. const int64_t nev1 = v->ne[1];
  8150. //const int64_t nev2 = v->ne[2];
  8151. //const int64_t nev3 = v->ne[3];
  8152. const int64_t ne0 = dst->ne[0];
  8153. const int64_t ne1 = dst->ne[1];
  8154. //const int64_t ne2 = dst->ne[2];
  8155. //const int64_t ne3 = dst->ne[3];
  8156. const int nbk0 = k->nb[0];
  8157. const int nbk1 = k->nb[1];
  8158. const int nbk2 = k->nb[2];
  8159. const int nbk3 = k->nb[3];
  8160. const int nbq0 = q->nb[0];
  8161. const int nbq1 = q->nb[1];
  8162. const int nbq2 = q->nb[2];
  8163. const int nbq3 = q->nb[3];
  8164. const int nbv0 = v->nb[0];
  8165. const int nbv1 = v->nb[1];
  8166. const int nbv2 = v->nb[2];
  8167. const int nbv3 = v->nb[3];
  8168. const int nb0 = dst->nb[0];
  8169. const int nb1 = dst->nb[1];
  8170. const int nb2 = dst->nb[2];
  8171. const int nb3 = dst->nb[3];
  8172. const int ith = params->ith;
  8173. const int nth = params->nth;
  8174. const int64_t D = neq0;
  8175. const int64_t N = neq1;
  8176. const int64_t P = nek1 - N;
  8177. const int64_t M = P + N;
  8178. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8179. GGML_ASSERT(ne0 == D);
  8180. GGML_ASSERT(ne1 == N);
  8181. GGML_ASSERT(P >= 0);
  8182. GGML_ASSERT(nbq0 == sizeof(float));
  8183. GGML_ASSERT(nbk0 == sizeof(float));
  8184. GGML_ASSERT(nbv0 == sizeof(float));
  8185. GGML_ASSERT(neq0 == D);
  8186. GGML_ASSERT(nek0 == D);
  8187. GGML_ASSERT(nev1 == D);
  8188. GGML_ASSERT(neq1 == N);
  8189. GGML_ASSERT(nek1 == N + P);
  8190. GGML_ASSERT(nev1 == D);
  8191. // dst cannot be transposed or permuted
  8192. GGML_ASSERT(nb0 == sizeof(float));
  8193. GGML_ASSERT(nb0 <= nb1);
  8194. GGML_ASSERT(nb1 <= nb2);
  8195. GGML_ASSERT(nb2 <= nb3);
  8196. if (params->type == GGML_TASK_INIT) {
  8197. return;
  8198. }
  8199. if (params->type == GGML_TASK_FINALIZE) {
  8200. return;
  8201. }
  8202. // parallelize by q rows using ggml_vec_dot_f32
  8203. // total rows in q
  8204. const int nr = neq1*neq2*neq3;
  8205. // rows per thread
  8206. const int dr = (nr + nth - 1)/nth;
  8207. // row range for this thread
  8208. const int ir0 = dr*ith;
  8209. const int ir1 = MIN(ir0 + dr, nr);
  8210. const float scale = 1.0f/sqrtf(D);
  8211. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8212. for (int ir = ir0; ir < ir1; ++ir) {
  8213. // q indices
  8214. const int iq3 = ir/(neq2*neq1);
  8215. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8216. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8217. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  8218. for (int i = M; i < Mup; ++i) {
  8219. S[i] = -INFINITY;
  8220. }
  8221. for (int64_t ic = 0; ic < nek1; ++ic) {
  8222. // k indices
  8223. const int ik3 = iq3;
  8224. const int ik2 = iq2;
  8225. const int ik1 = ic;
  8226. // S indices
  8227. const int i1 = ik1;
  8228. ggml_vec_dot_f32(neq0,
  8229. S + i1,
  8230. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8231. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8232. }
  8233. // scale
  8234. ggml_vec_scale_f32(nek1, S, scale);
  8235. if (masked) {
  8236. for (int64_t i = P; i < M; i++) {
  8237. if (i > P + iq1) {
  8238. S[i] = -INFINITY;
  8239. }
  8240. }
  8241. }
  8242. // softmax
  8243. {
  8244. float max = -INFINITY;
  8245. ggml_vec_max_f32(M, &max, S);
  8246. ggml_float sum = 0.0;
  8247. {
  8248. #ifdef GGML_SOFT_MAX_ACCELERATE
  8249. max = -max;
  8250. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8251. vvexpf(S, S, &Mup);
  8252. ggml_vec_sum_f32(Mup, &sum, S);
  8253. #else
  8254. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8255. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8256. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8257. float * SS = S + i;
  8258. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8259. if (SS[j] == -INFINITY) {
  8260. SS[j] = 0.0f;
  8261. } else {
  8262. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8263. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8264. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8265. sump[j] += (ggml_float)val;
  8266. SS[j] = val;
  8267. }
  8268. }
  8269. }
  8270. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8271. sum += sump[i];
  8272. }
  8273. #endif
  8274. }
  8275. assert(sum > 0.0);
  8276. sum = 1.0/sum;
  8277. ggml_vec_scale_f32(M, S, sum);
  8278. #ifndef NDEBUG
  8279. for (int i = 0; i < M; ++i) {
  8280. assert(!isnan(S[i]));
  8281. assert(!isinf(S[i]));
  8282. }
  8283. #endif
  8284. }
  8285. for (int64_t ic = 0; ic < nev1; ++ic) {
  8286. // dst indices
  8287. const int i1 = iq1;
  8288. const int i2 = iq2;
  8289. const int i3 = iq3;
  8290. ggml_vec_dot_f32(nek1,
  8291. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8292. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8293. S);
  8294. }
  8295. }
  8296. }
  8297. static void ggml_compute_forward_flash_attn_f16(
  8298. const struct ggml_compute_params * params,
  8299. const struct ggml_tensor * q,
  8300. const struct ggml_tensor * k,
  8301. const struct ggml_tensor * v,
  8302. const bool masked,
  8303. struct ggml_tensor * dst) {
  8304. int64_t t0 = ggml_perf_time_us();
  8305. UNUSED(t0);
  8306. const int64_t neq0 = q->ne[0];
  8307. const int64_t neq1 = q->ne[1];
  8308. const int64_t neq2 = q->ne[2];
  8309. const int64_t neq3 = q->ne[3];
  8310. const int64_t nek0 = k->ne[0];
  8311. const int64_t nek1 = k->ne[1];
  8312. //const int64_t nek2 = k->ne[2];
  8313. //const int64_t nek3 = k->ne[3];
  8314. //const int64_t nev0 = v->ne[0];
  8315. const int64_t nev1 = v->ne[1];
  8316. //const int64_t nev2 = v->ne[2];
  8317. //const int64_t nev3 = v->ne[3];
  8318. const int64_t ne0 = dst->ne[0];
  8319. const int64_t ne1 = dst->ne[1];
  8320. //const int64_t ne2 = dst->ne[2];
  8321. //const int64_t ne3 = dst->ne[3];
  8322. const int nbk0 = k->nb[0];
  8323. const int nbk1 = k->nb[1];
  8324. const int nbk2 = k->nb[2];
  8325. const int nbk3 = k->nb[3];
  8326. const int nbq0 = q->nb[0];
  8327. const int nbq1 = q->nb[1];
  8328. const int nbq2 = q->nb[2];
  8329. const int nbq3 = q->nb[3];
  8330. const int nbv0 = v->nb[0];
  8331. const int nbv1 = v->nb[1];
  8332. const int nbv2 = v->nb[2];
  8333. const int nbv3 = v->nb[3];
  8334. const int nb0 = dst->nb[0];
  8335. const int nb1 = dst->nb[1];
  8336. const int nb2 = dst->nb[2];
  8337. const int nb3 = dst->nb[3];
  8338. const int ith = params->ith;
  8339. const int nth = params->nth;
  8340. const int64_t D = neq0;
  8341. const int64_t N = neq1;
  8342. const int64_t P = nek1 - N;
  8343. const int64_t M = P + N;
  8344. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  8345. GGML_ASSERT(ne0 == D);
  8346. GGML_ASSERT(ne1 == N);
  8347. GGML_ASSERT(P >= 0);
  8348. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  8349. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  8350. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  8351. GGML_ASSERT(neq0 == D);
  8352. GGML_ASSERT(nek0 == D);
  8353. GGML_ASSERT(nev1 == D);
  8354. GGML_ASSERT(neq1 == N);
  8355. GGML_ASSERT(nek1 == N + P);
  8356. GGML_ASSERT(nev1 == D);
  8357. // dst cannot be transposed or permuted
  8358. GGML_ASSERT(nb0 == sizeof(float));
  8359. GGML_ASSERT(nb0 <= nb1);
  8360. GGML_ASSERT(nb1 <= nb2);
  8361. GGML_ASSERT(nb2 <= nb3);
  8362. if (params->type == GGML_TASK_INIT) {
  8363. return;
  8364. }
  8365. if (params->type == GGML_TASK_FINALIZE) {
  8366. return;
  8367. }
  8368. // parallelize by q rows using ggml_vec_dot_f32
  8369. // total rows in q
  8370. const int nr = neq1*neq2*neq3;
  8371. // rows per thread
  8372. const int dr = (nr + nth - 1)/nth;
  8373. // row range for this thread
  8374. const int ir0 = dr*ith;
  8375. const int ir1 = MIN(ir0 + dr, nr);
  8376. const float scale = 1.0f/sqrtf(D);
  8377. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  8378. for (int ir = ir0; ir < ir1; ++ir) {
  8379. // q indices
  8380. const int iq3 = ir/(neq2*neq1);
  8381. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  8382. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  8383. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  8384. for (int i = M; i < Mup; ++i) {
  8385. S[i] = -INFINITY;
  8386. }
  8387. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  8388. for (int64_t ic = 0; ic < nek1; ++ic) {
  8389. // k indices
  8390. const int ik3 = iq3;
  8391. const int ik2 = iq2;
  8392. const int ik1 = ic;
  8393. // S indices
  8394. const int i1 = ik1;
  8395. ggml_vec_dot_f16(neq0,
  8396. S + i1,
  8397. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8398. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8399. }
  8400. } else {
  8401. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  8402. // k indices
  8403. const int ik3 = iq3;
  8404. const int ik2 = iq2;
  8405. const int ik1 = ic;
  8406. // S indices
  8407. const int i1 = ik1;
  8408. ggml_vec_dot_f16_unroll(neq0, nbk1,
  8409. S + i1,
  8410. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  8411. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  8412. }
  8413. }
  8414. // scale
  8415. ggml_vec_scale_f32(nek1, S, scale);
  8416. if (masked) {
  8417. for (int64_t i = P; i < M; i++) {
  8418. if (i > P + iq1) {
  8419. S[i] = -INFINITY;
  8420. }
  8421. }
  8422. }
  8423. // softmax
  8424. {
  8425. float max = -INFINITY;
  8426. ggml_vec_max_f32(M, &max, S);
  8427. ggml_float sum = 0.0;
  8428. {
  8429. #ifdef GGML_SOFT_MAX_ACCELERATE
  8430. max = -max;
  8431. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  8432. vvexpf(S, S, &Mup);
  8433. ggml_vec_sum_f32(Mup, &sum, S);
  8434. #else
  8435. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  8436. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  8437. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  8438. float * SS = S + i;
  8439. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  8440. if (SS[j] == -INFINITY) {
  8441. SS[j] = 0.0f;
  8442. } else {
  8443. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  8444. memcpy(&scvt[j], &s, sizeof(uint16_t));
  8445. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  8446. sump[j] += (ggml_float)val;
  8447. SS[j] = val;
  8448. }
  8449. }
  8450. }
  8451. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  8452. sum += sump[i];
  8453. }
  8454. #endif
  8455. }
  8456. assert(sum > 0.0);
  8457. sum = 1.0/sum;
  8458. ggml_vec_scale_f32(M, S, sum);
  8459. #ifndef NDEBUG
  8460. for (int i = 0; i < M; ++i) {
  8461. assert(!isnan(S[i]));
  8462. assert(!isinf(S[i]));
  8463. }
  8464. #endif
  8465. }
  8466. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  8467. for (int64_t i = 0; i < M; i++) {
  8468. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8469. }
  8470. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  8471. for (int64_t ic = 0; ic < nev1; ++ic) {
  8472. // dst indices
  8473. const int i1 = iq1;
  8474. const int i2 = iq2;
  8475. const int i3 = iq3;
  8476. ggml_vec_dot_f16(nek1,
  8477. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8478. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8479. S16);
  8480. }
  8481. } else {
  8482. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  8483. // dst indices
  8484. const int i1 = iq1;
  8485. const int i2 = iq2;
  8486. const int i3 = iq3;
  8487. ggml_vec_dot_f16_unroll(nek1, nbv1,
  8488. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8489. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  8490. S16);
  8491. }
  8492. }
  8493. }
  8494. }
  8495. static void ggml_compute_forward_flash_attn(
  8496. const struct ggml_compute_params * params,
  8497. const struct ggml_tensor * q,
  8498. const struct ggml_tensor * k,
  8499. const struct ggml_tensor * v,
  8500. const bool masked,
  8501. struct ggml_tensor * dst) {
  8502. switch (q->type) {
  8503. case GGML_TYPE_F16:
  8504. {
  8505. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  8506. } break;
  8507. case GGML_TYPE_F32:
  8508. {
  8509. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  8510. } break;
  8511. default:
  8512. {
  8513. GGML_ASSERT(false);
  8514. } break;
  8515. }
  8516. }
  8517. // ggml_compute_forward_flash_ff
  8518. static void ggml_compute_forward_flash_ff_f16(
  8519. const struct ggml_compute_params * params,
  8520. const struct ggml_tensor * a, // F16
  8521. const struct ggml_tensor * b0, // F16 fc_w
  8522. const struct ggml_tensor * b1, // F32 fc_b
  8523. const struct ggml_tensor * c0, // F16 proj_w
  8524. const struct ggml_tensor * c1, // F32 proj_b
  8525. struct ggml_tensor * dst) {
  8526. int64_t t0 = ggml_perf_time_us();
  8527. UNUSED(t0);
  8528. const int64_t nea0 = a->ne[0];
  8529. const int64_t nea1 = a->ne[1];
  8530. const int64_t nea2 = a->ne[2];
  8531. const int64_t nea3 = a->ne[3];
  8532. const int64_t neb00 = b0->ne[0];
  8533. const int64_t neb01 = b0->ne[1];
  8534. //const int64_t neb02 = b0->ne[2];
  8535. //const int64_t neb03 = b0->ne[3];
  8536. const int64_t neb10 = b1->ne[0];
  8537. const int64_t neb11 = b1->ne[1];
  8538. //const int64_t neb12 = b1->ne[2];
  8539. //const int64_t neb13 = b1->ne[3];
  8540. const int64_t nec00 = c0->ne[0];
  8541. const int64_t nec01 = c0->ne[1];
  8542. //const int64_t nec02 = c0->ne[2];
  8543. //const int64_t nec03 = c0->ne[3];
  8544. const int64_t nec10 = c1->ne[0];
  8545. const int64_t nec11 = c1->ne[1];
  8546. //const int64_t nec12 = c1->ne[2];
  8547. //const int64_t nec13 = c1->ne[3];
  8548. const int64_t ne0 = dst->ne[0];
  8549. const int64_t ne1 = dst->ne[1];
  8550. const int64_t ne2 = dst->ne[2];
  8551. //const int64_t ne3 = dst->ne[3];
  8552. const int nba0 = a->nb[0];
  8553. const int nba1 = a->nb[1];
  8554. const int nba2 = a->nb[2];
  8555. const int nba3 = a->nb[3];
  8556. const int nbb00 = b0->nb[0];
  8557. const int nbb01 = b0->nb[1];
  8558. const int nbb02 = b0->nb[2];
  8559. const int nbb03 = b0->nb[3];
  8560. const int nbb10 = b1->nb[0];
  8561. //const int nbb11 = b1->nb[1];
  8562. //const int nbb12 = b1->nb[2];
  8563. //const int nbb13 = b1->nb[3];
  8564. const int nbc00 = c0->nb[0];
  8565. const int nbc01 = c0->nb[1];
  8566. const int nbc02 = c0->nb[2];
  8567. const int nbc03 = c0->nb[3];
  8568. const int nbc10 = c1->nb[0];
  8569. //const int nbc11 = c1->nb[1];
  8570. //const int nbc12 = c1->nb[2];
  8571. //const int nbc13 = c1->nb[3];
  8572. const int nb0 = dst->nb[0];
  8573. const int nb1 = dst->nb[1];
  8574. const int nb2 = dst->nb[2];
  8575. const int nb3 = dst->nb[3];
  8576. const int ith = params->ith;
  8577. const int nth = params->nth;
  8578. const int64_t D = nea0;
  8579. //const int64_t N = nea1;
  8580. const int64_t M = neb01;
  8581. GGML_ASSERT(ne0 == nea0);
  8582. GGML_ASSERT(ne1 == nea1);
  8583. GGML_ASSERT(ne2 == nea2);
  8584. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  8585. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  8586. GGML_ASSERT(nbb10 == sizeof(float));
  8587. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  8588. GGML_ASSERT(nbc10 == sizeof(float));
  8589. GGML_ASSERT(neb00 == D);
  8590. GGML_ASSERT(neb01 == M);
  8591. GGML_ASSERT(neb10 == M);
  8592. GGML_ASSERT(neb11 == 1);
  8593. GGML_ASSERT(nec00 == M);
  8594. GGML_ASSERT(nec01 == D);
  8595. GGML_ASSERT(nec10 == D);
  8596. GGML_ASSERT(nec11 == 1);
  8597. // dst cannot be transposed or permuted
  8598. GGML_ASSERT(nb0 == sizeof(float));
  8599. GGML_ASSERT(nb0 <= nb1);
  8600. GGML_ASSERT(nb1 <= nb2);
  8601. GGML_ASSERT(nb2 <= nb3);
  8602. if (params->type == GGML_TASK_INIT) {
  8603. return;
  8604. }
  8605. if (params->type == GGML_TASK_FINALIZE) {
  8606. return;
  8607. }
  8608. // parallelize by a rows using ggml_vec_dot_f32
  8609. // total rows in a
  8610. const int nr = nea1*nea2*nea3;
  8611. // rows per thread
  8612. const int dr = (nr + nth - 1)/nth;
  8613. // row range for this thread
  8614. const int ir0 = dr*ith;
  8615. const int ir1 = MIN(ir0 + dr, nr);
  8616. for (int ir = ir0; ir < ir1; ++ir) {
  8617. // a indices
  8618. const int ia3 = ir/(nea2*nea1);
  8619. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  8620. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  8621. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  8622. for (int64_t ic = 0; ic < neb01; ++ic) {
  8623. // b0 indices
  8624. const int ib03 = ia3;
  8625. const int ib02 = ia2;
  8626. const int ib01 = ic;
  8627. // S indices
  8628. const int i1 = ib01;
  8629. ggml_vec_dot_f16(nea0,
  8630. S + i1,
  8631. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  8632. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  8633. }
  8634. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  8635. //ggml_vec_gelu_f32(neb01, S, S);
  8636. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  8637. for (int64_t i = 0; i < M; i++) {
  8638. S16[i] = GGML_FP32_TO_FP16(S[i]);
  8639. }
  8640. ggml_vec_gelu_f16(neb01, S16, S16);
  8641. {
  8642. // dst indices
  8643. const int i1 = ia1;
  8644. const int i2 = ia2;
  8645. const int i3 = ia3;
  8646. for (int64_t ic = 0; ic < nec01; ++ic) {
  8647. ggml_vec_dot_f16(neb01,
  8648. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8649. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  8650. S16);
  8651. }
  8652. ggml_vec_add_f32(nec01,
  8653. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8654. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  8655. (float *) c1->data);
  8656. }
  8657. }
  8658. }
  8659. static void ggml_compute_forward_flash_ff(
  8660. const struct ggml_compute_params * params,
  8661. const struct ggml_tensor * a,
  8662. const struct ggml_tensor * b0,
  8663. const struct ggml_tensor * b1,
  8664. const struct ggml_tensor * c0,
  8665. const struct ggml_tensor * c1,
  8666. struct ggml_tensor * dst) {
  8667. switch (b0->type) {
  8668. case GGML_TYPE_F16:
  8669. {
  8670. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  8671. } break;
  8672. case GGML_TYPE_F32:
  8673. {
  8674. GGML_ASSERT(false); // TODO
  8675. } break;
  8676. default:
  8677. {
  8678. GGML_ASSERT(false);
  8679. } break;
  8680. }
  8681. }
  8682. // ggml_compute_forward_map_unary
  8683. static void ggml_compute_forward_map_unary_f32(
  8684. const struct ggml_compute_params * params,
  8685. const struct ggml_tensor * src0,
  8686. struct ggml_tensor * dst,
  8687. const ggml_unary_op_f32_t fun) {
  8688. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8689. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8690. return;
  8691. }
  8692. const int n = ggml_nrows(src0);
  8693. const int nc = src0->ne[0];
  8694. assert( dst->nb[0] == sizeof(float));
  8695. assert(src0->nb[0] == sizeof(float));
  8696. for (int i = 0; i < n; i++) {
  8697. fun(nc,
  8698. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8699. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8700. }
  8701. }
  8702. static void ggml_compute_forward_map_unary(
  8703. const struct ggml_compute_params * params,
  8704. const struct ggml_tensor * src0,
  8705. struct ggml_tensor * dst,
  8706. const ggml_unary_op_f32_t fun) {
  8707. switch (src0->type) {
  8708. case GGML_TYPE_F32:
  8709. {
  8710. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  8711. } break;
  8712. default:
  8713. {
  8714. GGML_ASSERT(false);
  8715. } break;
  8716. }
  8717. }
  8718. // ggml_compute_forward_map_binary
  8719. static void ggml_compute_forward_map_binary_f32(
  8720. const struct ggml_compute_params * params,
  8721. const struct ggml_tensor * src0,
  8722. const struct ggml_tensor * src1,
  8723. struct ggml_tensor * dst,
  8724. const ggml_binary_op_f32_t fun) {
  8725. assert(params->ith == 0);
  8726. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8727. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8728. return;
  8729. }
  8730. const int n = ggml_nrows(src0);
  8731. const int nc = src0->ne[0];
  8732. assert( dst->nb[0] == sizeof(float));
  8733. assert(src0->nb[0] == sizeof(float));
  8734. assert(src1->nb[0] == sizeof(float));
  8735. for (int i = 0; i < n; i++) {
  8736. fun(nc,
  8737. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8738. (float *) ((char *) src0->data + i*(src0->nb[1])),
  8739. (float *) ((char *) src1->data + i*(src1->nb[1])));
  8740. }
  8741. }
  8742. static void ggml_compute_forward_map_binary(
  8743. const struct ggml_compute_params * params,
  8744. const struct ggml_tensor * src0,
  8745. const struct ggml_tensor * src1,
  8746. struct ggml_tensor * dst,
  8747. const ggml_binary_op_f32_t fun) {
  8748. switch (src0->type) {
  8749. case GGML_TYPE_F32:
  8750. {
  8751. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  8752. } break;
  8753. default:
  8754. {
  8755. GGML_ASSERT(false);
  8756. } break;
  8757. }
  8758. }
  8759. /////////////////////////////////
  8760. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  8761. GGML_ASSERT(params);
  8762. switch (tensor->op) {
  8763. case GGML_OP_DUP:
  8764. {
  8765. ggml_compute_forward_dup(params, tensor->src0, tensor);
  8766. } break;
  8767. case GGML_OP_ADD:
  8768. {
  8769. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  8770. } break;
  8771. case GGML_OP_SUB:
  8772. {
  8773. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  8774. } break;
  8775. case GGML_OP_MUL:
  8776. {
  8777. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  8778. } break;
  8779. case GGML_OP_DIV:
  8780. {
  8781. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  8782. } break;
  8783. case GGML_OP_SQR:
  8784. {
  8785. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  8786. } break;
  8787. case GGML_OP_SQRT:
  8788. {
  8789. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  8790. } break;
  8791. case GGML_OP_SUM:
  8792. {
  8793. ggml_compute_forward_sum(params, tensor->src0, tensor);
  8794. } break;
  8795. case GGML_OP_MEAN:
  8796. {
  8797. ggml_compute_forward_mean(params, tensor->src0, tensor);
  8798. } break;
  8799. case GGML_OP_REPEAT:
  8800. {
  8801. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  8802. } break;
  8803. case GGML_OP_ABS:
  8804. {
  8805. ggml_compute_forward_abs(params, tensor->src0, tensor);
  8806. } break;
  8807. case GGML_OP_SGN:
  8808. {
  8809. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  8810. } break;
  8811. case GGML_OP_NEG:
  8812. {
  8813. ggml_compute_forward_neg(params, tensor->src0, tensor);
  8814. } break;
  8815. case GGML_OP_STEP:
  8816. {
  8817. ggml_compute_forward_step(params, tensor->src0, tensor);
  8818. } break;
  8819. case GGML_OP_RELU:
  8820. {
  8821. ggml_compute_forward_relu(params, tensor->src0, tensor);
  8822. } break;
  8823. case GGML_OP_GELU:
  8824. {
  8825. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  8826. } break;
  8827. case GGML_OP_SILU:
  8828. {
  8829. ggml_compute_forward_silu(params, tensor->src0, tensor);
  8830. } break;
  8831. case GGML_OP_NORM:
  8832. {
  8833. ggml_compute_forward_norm(params, tensor->src0, tensor);
  8834. } break;
  8835. case GGML_OP_RMS_NORM:
  8836. {
  8837. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  8838. } break;
  8839. case GGML_OP_MUL_MAT:
  8840. {
  8841. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  8842. } break;
  8843. case GGML_OP_SCALE:
  8844. {
  8845. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  8846. } break;
  8847. case GGML_OP_CPY:
  8848. {
  8849. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  8850. } break;
  8851. case GGML_OP_CONT:
  8852. {
  8853. ggml_compute_forward_cont(params, tensor->src0, tensor);
  8854. } break;
  8855. case GGML_OP_RESHAPE:
  8856. {
  8857. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  8858. } break;
  8859. case GGML_OP_VIEW:
  8860. {
  8861. ggml_compute_forward_view(params, tensor->src0);
  8862. } break;
  8863. case GGML_OP_PERMUTE:
  8864. {
  8865. ggml_compute_forward_permute(params, tensor->src0);
  8866. } break;
  8867. case GGML_OP_TRANSPOSE:
  8868. {
  8869. ggml_compute_forward_transpose(params, tensor->src0);
  8870. } break;
  8871. case GGML_OP_GET_ROWS:
  8872. {
  8873. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  8874. } break;
  8875. case GGML_OP_DIAG_MASK_INF:
  8876. {
  8877. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  8878. } break;
  8879. case GGML_OP_SOFT_MAX:
  8880. {
  8881. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  8882. } break;
  8883. case GGML_OP_ROPE:
  8884. {
  8885. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  8886. } break;
  8887. case GGML_OP_ALIBI:
  8888. {
  8889. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  8890. } break;
  8891. case GGML_OP_CONV_1D_1S:
  8892. {
  8893. ggml_compute_forward_conv_1d_1s(params, tensor->src0, tensor->src1, tensor);
  8894. } break;
  8895. case GGML_OP_CONV_1D_2S:
  8896. {
  8897. ggml_compute_forward_conv_1d_2s(params, tensor->src0, tensor->src1, tensor);
  8898. } break;
  8899. case GGML_OP_FLASH_ATTN:
  8900. {
  8901. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  8902. GGML_ASSERT(t == 0 || t == 1);
  8903. bool masked = t != 0;
  8904. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  8905. } break;
  8906. case GGML_OP_FLASH_FF:
  8907. {
  8908. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  8909. } break;
  8910. case GGML_OP_MAP_UNARY:
  8911. {
  8912. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  8913. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  8914. }
  8915. break;
  8916. case GGML_OP_MAP_BINARY:
  8917. {
  8918. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  8919. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  8920. }
  8921. break;
  8922. case GGML_OP_NONE:
  8923. {
  8924. // nop
  8925. } break;
  8926. case GGML_OP_COUNT:
  8927. {
  8928. GGML_ASSERT(false);
  8929. } break;
  8930. }
  8931. }
  8932. ////////////////////////////////////////////////////////////////////////////////
  8933. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  8934. struct ggml_tensor * src0 = tensor->src0;
  8935. struct ggml_tensor * src1 = tensor->src1;
  8936. switch (tensor->op) {
  8937. case GGML_OP_DUP:
  8938. {
  8939. if (src0->grad) {
  8940. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8941. }
  8942. } break;
  8943. case GGML_OP_ADD:
  8944. {
  8945. if (src0->grad) {
  8946. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8947. }
  8948. if (src1->grad) {
  8949. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  8950. }
  8951. } break;
  8952. case GGML_OP_SUB:
  8953. {
  8954. if (src0->grad) {
  8955. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  8956. }
  8957. if (src1->grad) {
  8958. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  8959. }
  8960. } break;
  8961. case GGML_OP_MUL:
  8962. {
  8963. if (src0->grad) {
  8964. src0->grad =
  8965. ggml_add_impl(ctx,
  8966. src0->grad,
  8967. ggml_mul(ctx, src1, tensor->grad),
  8968. inplace);
  8969. }
  8970. if (src1->grad) {
  8971. src1->grad =
  8972. ggml_add_impl(ctx,
  8973. src1->grad,
  8974. ggml_mul(ctx, src0, tensor->grad),
  8975. inplace);
  8976. }
  8977. } break;
  8978. case GGML_OP_DIV:
  8979. {
  8980. if (src0->grad) {
  8981. src0->grad =
  8982. ggml_add_impl(ctx,
  8983. src0->grad,
  8984. ggml_div(ctx, tensor->grad, src1),
  8985. inplace);
  8986. }
  8987. if (src1->grad) {
  8988. src1->grad =
  8989. ggml_sub_impl(ctx,
  8990. src1->grad,
  8991. ggml_mul(ctx,
  8992. tensor->grad,
  8993. ggml_div(ctx, tensor, src1)),
  8994. inplace);
  8995. }
  8996. } break;
  8997. case GGML_OP_SQR:
  8998. {
  8999. if (src0->grad) {
  9000. src0->grad =
  9001. ggml_add_impl(ctx,
  9002. src0->grad,
  9003. ggml_mul(ctx,
  9004. ggml_mul(ctx, src0, tensor->grad),
  9005. ggml_repeat(ctx, ggml_new_f32(ctx, 2.0f), src0)),
  9006. inplace);
  9007. }
  9008. } break;
  9009. case GGML_OP_SQRT:
  9010. {
  9011. if (src0->grad) {
  9012. src0->grad =
  9013. ggml_add_impl(ctx,
  9014. src0->grad,
  9015. ggml_div(ctx,
  9016. ggml_repeat(ctx, ggml_new_f32(ctx, 0.5f), tensor),
  9017. tensor),
  9018. inplace);
  9019. }
  9020. } break;
  9021. case GGML_OP_SUM:
  9022. {
  9023. if (src0->grad) {
  9024. src0->grad =
  9025. ggml_add_impl(ctx,
  9026. src0->grad,
  9027. ggml_repeat(ctx, tensor->grad, src0->grad),
  9028. inplace);
  9029. }
  9030. } break;
  9031. case GGML_OP_MEAN:
  9032. {
  9033. GGML_ASSERT(false); // TODO: implement
  9034. } break;
  9035. case GGML_OP_REPEAT:
  9036. {
  9037. if (src0->grad) {
  9038. src0->grad =
  9039. ggml_add_impl(ctx,
  9040. src0->grad,
  9041. ggml_sum(ctx, tensor->grad),
  9042. inplace);
  9043. }
  9044. } break;
  9045. case GGML_OP_ABS:
  9046. {
  9047. if (src0->grad) {
  9048. src0->grad =
  9049. ggml_add_impl(ctx,
  9050. src0->grad,
  9051. ggml_mul(ctx,
  9052. ggml_sgn(ctx, src0),
  9053. tensor->grad),
  9054. inplace);
  9055. }
  9056. } break;
  9057. case GGML_OP_SGN:
  9058. {
  9059. if (src0->grad) {
  9060. // noop
  9061. }
  9062. } break;
  9063. case GGML_OP_NEG:
  9064. {
  9065. if (src0->grad) {
  9066. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  9067. }
  9068. } break;
  9069. case GGML_OP_STEP:
  9070. {
  9071. if (src0->grad) {
  9072. // noop
  9073. }
  9074. } break;
  9075. case GGML_OP_RELU:
  9076. {
  9077. if (src0->grad) {
  9078. src0->grad = ggml_sub_impl(ctx,
  9079. src0->grad,
  9080. ggml_mul(ctx,
  9081. ggml_step(ctx, src0),
  9082. tensor->grad),
  9083. inplace);
  9084. }
  9085. } break;
  9086. case GGML_OP_GELU:
  9087. {
  9088. GGML_ASSERT(false); // TODO: not implemented
  9089. } break;
  9090. case GGML_OP_ALIBI:
  9091. {
  9092. GGML_ASSERT(false); // TODO: not implemented
  9093. } break;
  9094. case GGML_OP_SILU:
  9095. {
  9096. GGML_ASSERT(false); // TODO: not implemented
  9097. } break;
  9098. case GGML_OP_NORM:
  9099. {
  9100. GGML_ASSERT(false); // TODO: not implemented
  9101. } break;
  9102. case GGML_OP_RMS_NORM:
  9103. {
  9104. GGML_ASSERT(false); // TODO: not implemented
  9105. } break;
  9106. case GGML_OP_MUL_MAT:
  9107. {
  9108. if (src0->grad) {
  9109. // TODO: this requires outer product - ggml_out_prod(ctx, src1, tensor->grad);
  9110. GGML_ASSERT(false);
  9111. }
  9112. if (src1->grad) {
  9113. src1->grad =
  9114. ggml_add_impl(ctx,
  9115. src1->grad,
  9116. ggml_mul_mat(ctx,
  9117. ggml_cont(ctx, ggml_transpose(ctx, src0)),
  9118. tensor->grad),
  9119. inplace);
  9120. }
  9121. } break;
  9122. case GGML_OP_SCALE:
  9123. {
  9124. GGML_ASSERT(false); // TODO: not implemented
  9125. } break;
  9126. case GGML_OP_CPY:
  9127. {
  9128. GGML_ASSERT(false); // TODO: not implemented
  9129. } break;
  9130. case GGML_OP_CONT:
  9131. {
  9132. GGML_ASSERT(false); // TODO: not implemented
  9133. } break;
  9134. case GGML_OP_RESHAPE:
  9135. {
  9136. GGML_ASSERT(false); // TODO: not implemented
  9137. } break;
  9138. case GGML_OP_VIEW:
  9139. {
  9140. GGML_ASSERT(false); // not supported
  9141. } break;
  9142. case GGML_OP_PERMUTE:
  9143. {
  9144. GGML_ASSERT(false); // TODO: not implemented
  9145. } break;
  9146. case GGML_OP_TRANSPOSE:
  9147. {
  9148. GGML_ASSERT(false); // TODO: not implemented
  9149. } break;
  9150. case GGML_OP_GET_ROWS:
  9151. {
  9152. GGML_ASSERT(false); // TODO: not implemented
  9153. } break;
  9154. case GGML_OP_DIAG_MASK_INF:
  9155. {
  9156. GGML_ASSERT(false); // TODO: not implemented
  9157. } break;
  9158. case GGML_OP_SOFT_MAX:
  9159. {
  9160. GGML_ASSERT(false); // TODO: not implemented
  9161. } break;
  9162. case GGML_OP_ROPE:
  9163. {
  9164. GGML_ASSERT(false); // TODO: not implemented
  9165. } break;
  9166. case GGML_OP_CONV_1D_1S:
  9167. {
  9168. GGML_ASSERT(false); // TODO: not implemented
  9169. } break;
  9170. case GGML_OP_CONV_1D_2S:
  9171. {
  9172. GGML_ASSERT(false); // TODO: not implemented
  9173. } break;
  9174. case GGML_OP_FLASH_ATTN:
  9175. {
  9176. GGML_ASSERT(false); // not supported
  9177. } break;
  9178. case GGML_OP_FLASH_FF:
  9179. {
  9180. GGML_ASSERT(false); // not supported
  9181. } break;
  9182. case GGML_OP_MAP_UNARY:
  9183. case GGML_OP_MAP_BINARY:
  9184. {
  9185. GGML_ASSERT(false); // not supported
  9186. } break;
  9187. case GGML_OP_NONE:
  9188. {
  9189. // nop
  9190. } break;
  9191. case GGML_OP_COUNT:
  9192. {
  9193. GGML_ASSERT(false);
  9194. } break;
  9195. }
  9196. }
  9197. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  9198. if (node->grad == NULL) {
  9199. // this usually happens when we generate intermediate nodes from constants in the backward pass
  9200. // it can also happen during forward pass, if the user performs computations with constants
  9201. if (node->op != GGML_OP_NONE) {
  9202. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  9203. }
  9204. }
  9205. // check if already visited
  9206. for (int i = 0; i < cgraph->n_nodes; i++) {
  9207. if (cgraph->nodes[i] == node) {
  9208. return;
  9209. }
  9210. }
  9211. for (int i = 0; i < cgraph->n_leafs; i++) {
  9212. if (cgraph->leafs[i] == node) {
  9213. return;
  9214. }
  9215. }
  9216. if (node->src0) {
  9217. ggml_visit_parents(cgraph, node->src0);
  9218. }
  9219. if (node->src1) {
  9220. ggml_visit_parents(cgraph, node->src1);
  9221. }
  9222. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  9223. if (node->opt[i]) {
  9224. ggml_visit_parents(cgraph, node->opt[i]);
  9225. }
  9226. }
  9227. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  9228. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  9229. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  9230. cgraph->leafs[cgraph->n_leafs] = node;
  9231. cgraph->n_leafs++;
  9232. } else {
  9233. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  9234. cgraph->nodes[cgraph->n_nodes] = node;
  9235. cgraph->grads[cgraph->n_nodes] = node->grad;
  9236. cgraph->n_nodes++;
  9237. }
  9238. }
  9239. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  9240. if (!expand) {
  9241. cgraph->n_nodes = 0;
  9242. cgraph->n_leafs = 0;
  9243. }
  9244. const int n0 = cgraph->n_nodes;
  9245. UNUSED(n0);
  9246. ggml_visit_parents(cgraph, tensor);
  9247. const int n_new = cgraph->n_nodes - n0;
  9248. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  9249. if (n_new > 0) {
  9250. // the last added node should always be starting point
  9251. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  9252. }
  9253. }
  9254. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  9255. ggml_build_forward_impl(cgraph, tensor, true);
  9256. }
  9257. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  9258. struct ggml_cgraph result = {
  9259. /*.n_nodes =*/ 0,
  9260. /*.n_leafs =*/ 0,
  9261. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  9262. /*.work_size =*/ 0,
  9263. /*.work =*/ NULL,
  9264. /*.nodes =*/ { NULL },
  9265. /*.grads =*/ { NULL },
  9266. /*.leafs =*/ { NULL },
  9267. /*.perf_runs =*/ 0,
  9268. /*.perf_cycles =*/ 0,
  9269. /*.perf_time_us =*/ 0,
  9270. };
  9271. ggml_build_forward_impl(&result, tensor, false);
  9272. return result;
  9273. }
  9274. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  9275. struct ggml_cgraph result = *gf;
  9276. GGML_ASSERT(gf->n_nodes > 0);
  9277. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  9278. if (keep) {
  9279. for (int i = 0; i < gf->n_nodes; i++) {
  9280. struct ggml_tensor * node = gf->nodes[i];
  9281. if (node->grad) {
  9282. node->grad = ggml_dup_tensor(ctx, node);
  9283. gf->grads[i] = node->grad;
  9284. }
  9285. }
  9286. }
  9287. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9288. struct ggml_tensor * node = gf->nodes[i];
  9289. // because we detached the grad nodes from the original graph, we can afford inplace operations
  9290. if (node->grad) {
  9291. ggml_compute_backward(ctx, node, keep);
  9292. }
  9293. }
  9294. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  9295. struct ggml_tensor * node = gf->nodes[i];
  9296. if (node->is_param) {
  9297. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  9298. ggml_build_forward_impl(&result, node->grad, true);
  9299. }
  9300. }
  9301. return result;
  9302. }
  9303. //
  9304. // thread data
  9305. //
  9306. // synchronization is done via busy loops
  9307. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  9308. //
  9309. #ifdef __APPLE__
  9310. //#include <os/lock.h>
  9311. //
  9312. //typedef os_unfair_lock ggml_lock_t;
  9313. //
  9314. //#define ggml_lock_init(x) UNUSED(x)
  9315. //#define ggml_lock_destroy(x) UNUSED(x)
  9316. //#define ggml_lock_lock os_unfair_lock_lock
  9317. //#define ggml_lock_unlock os_unfair_lock_unlock
  9318. //
  9319. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  9320. typedef int ggml_lock_t;
  9321. #define ggml_lock_init(x) UNUSED(x)
  9322. #define ggml_lock_destroy(x) UNUSED(x)
  9323. #define ggml_lock_lock(x) UNUSED(x)
  9324. #define ggml_lock_unlock(x) UNUSED(x)
  9325. #define GGML_LOCK_INITIALIZER 0
  9326. typedef pthread_t ggml_thread_t;
  9327. #define ggml_thread_create pthread_create
  9328. #define ggml_thread_join pthread_join
  9329. #else
  9330. //typedef pthread_spinlock_t ggml_lock_t;
  9331. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  9332. //#define ggml_lock_destroy pthread_spin_destroy
  9333. //#define ggml_lock_lock pthread_spin_lock
  9334. //#define ggml_lock_unlock pthread_spin_unlock
  9335. typedef int ggml_lock_t;
  9336. #define ggml_lock_init(x) UNUSED(x)
  9337. #define ggml_lock_destroy(x) UNUSED(x)
  9338. #define ggml_lock_lock(x) UNUSED(x)
  9339. #define ggml_lock_unlock(x) UNUSED(x)
  9340. #define GGML_LOCK_INITIALIZER 0
  9341. typedef pthread_t ggml_thread_t;
  9342. #define ggml_thread_create pthread_create
  9343. #define ggml_thread_join pthread_join
  9344. #endif
  9345. struct ggml_compute_state_shared {
  9346. ggml_lock_t spin;
  9347. int n_threads;
  9348. // synchronization primitives
  9349. atomic_int n_ready;
  9350. atomic_bool has_work;
  9351. atomic_bool stop; // stop all threads
  9352. };
  9353. struct ggml_compute_state {
  9354. ggml_thread_t thrd;
  9355. struct ggml_compute_params params;
  9356. struct ggml_tensor * node;
  9357. struct ggml_compute_state_shared * shared;
  9358. };
  9359. static thread_ret_t ggml_graph_compute_thread(void * data) {
  9360. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  9361. const int n_threads = state->shared->n_threads;
  9362. while (true) {
  9363. if (atomic_fetch_add(&state->shared->n_ready, 1) == n_threads - 1) {
  9364. atomic_store(&state->shared->has_work, false);
  9365. } else {
  9366. while (atomic_load(&state->shared->has_work)) {
  9367. if (atomic_load(&state->shared->stop)) {
  9368. return 0;
  9369. }
  9370. ggml_lock_lock (&state->shared->spin);
  9371. ggml_lock_unlock(&state->shared->spin);
  9372. }
  9373. }
  9374. atomic_fetch_sub(&state->shared->n_ready, 1);
  9375. // wait for work
  9376. while (!atomic_load(&state->shared->has_work)) {
  9377. if (atomic_load(&state->shared->stop)) {
  9378. return 0;
  9379. }
  9380. ggml_lock_lock (&state->shared->spin);
  9381. ggml_lock_unlock(&state->shared->spin);
  9382. }
  9383. // check if we should stop
  9384. if (atomic_load(&state->shared->stop)) {
  9385. break;
  9386. }
  9387. if (state->node) {
  9388. if (state->params.ith < state->params.nth) {
  9389. ggml_compute_forward(&state->params, state->node);
  9390. }
  9391. state->node = NULL;
  9392. } else {
  9393. break;
  9394. }
  9395. }
  9396. return 0;
  9397. }
  9398. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  9399. const int n_threads = cgraph->n_threads;
  9400. struct ggml_compute_state_shared state_shared = {
  9401. /*.spin =*/ GGML_LOCK_INITIALIZER,
  9402. /*.n_threads =*/ n_threads,
  9403. /*.n_ready =*/ 0,
  9404. /*.has_work =*/ false,
  9405. /*.stop =*/ false,
  9406. };
  9407. struct ggml_compute_state * workers = n_threads > 1 ? alloca(sizeof(struct ggml_compute_state)*(n_threads - 1)) : NULL;
  9408. // create thread pool
  9409. if (n_threads > 1) {
  9410. ggml_lock_init(&state_shared.spin);
  9411. atomic_store(&state_shared.has_work, true);
  9412. for (int j = 0; j < n_threads - 1; j++) {
  9413. workers[j] = (struct ggml_compute_state) {
  9414. .thrd = 0,
  9415. .params = {
  9416. .type = GGML_TASK_COMPUTE,
  9417. .ith = j + 1,
  9418. .nth = n_threads,
  9419. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9420. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9421. },
  9422. .node = NULL,
  9423. .shared = &state_shared,
  9424. };
  9425. int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  9426. GGML_ASSERT(rc == 0);
  9427. UNUSED(rc);
  9428. }
  9429. }
  9430. // initialize tasks + work buffer
  9431. {
  9432. size_t work_size = 0;
  9433. // thread scheduling for the different operations
  9434. for (int i = 0; i < cgraph->n_nodes; i++) {
  9435. struct ggml_tensor * node = cgraph->nodes[i];
  9436. switch (node->op) {
  9437. case GGML_OP_CPY:
  9438. case GGML_OP_DUP:
  9439. {
  9440. node->n_tasks = n_threads;
  9441. size_t cur = 0;
  9442. if (ggml_is_quantized(node->type)) {
  9443. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  9444. }
  9445. work_size = MAX(work_size, cur);
  9446. } break;
  9447. case GGML_OP_ADD:
  9448. {
  9449. node->n_tasks = n_threads;
  9450. size_t cur = 0;
  9451. if (ggml_is_quantized(node->src0->type)) {
  9452. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  9453. }
  9454. work_size = MAX(work_size, cur);
  9455. } break;
  9456. case GGML_OP_SUB:
  9457. case GGML_OP_MUL:
  9458. case GGML_OP_DIV:
  9459. case GGML_OP_SQR:
  9460. case GGML_OP_SQRT:
  9461. case GGML_OP_SUM:
  9462. case GGML_OP_MEAN:
  9463. case GGML_OP_REPEAT:
  9464. case GGML_OP_ABS:
  9465. case GGML_OP_SGN:
  9466. case GGML_OP_NEG:
  9467. case GGML_OP_STEP:
  9468. case GGML_OP_RELU:
  9469. {
  9470. node->n_tasks = 1;
  9471. } break;
  9472. case GGML_OP_GELU:
  9473. {
  9474. node->n_tasks = n_threads;
  9475. } break;
  9476. case GGML_OP_SILU:
  9477. {
  9478. node->n_tasks = n_threads;
  9479. } break;
  9480. case GGML_OP_NORM:
  9481. case GGML_OP_RMS_NORM:
  9482. {
  9483. node->n_tasks = n_threads;
  9484. } break;
  9485. case GGML_OP_MUL_MAT:
  9486. {
  9487. node->n_tasks = n_threads;
  9488. // TODO: use different scheduling for different matrix sizes
  9489. //const int nr0 = ggml_nrows(node->src0);
  9490. //const int nr1 = ggml_nrows(node->src1);
  9491. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  9492. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  9493. size_t cur = 0;
  9494. #if defined(GGML_USE_CUBLAS)
  9495. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  9496. node->n_tasks = 1; // TODO: this actually is doing nothing
  9497. // the threads are still spinning
  9498. cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
  9499. }
  9500. else
  9501. #endif
  9502. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  9503. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9504. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9505. node->n_tasks = 1; // TODO: this actually is doing nothing
  9506. // the threads are still spinning
  9507. // here we need memory just for single 2D matrix from src0
  9508. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9509. } else {
  9510. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9511. }
  9512. #else
  9513. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  9514. #endif
  9515. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  9516. cur = 0;
  9517. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9518. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9519. node->n_tasks = 1;
  9520. }
  9521. #endif
  9522. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  9523. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9524. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  9525. node->n_tasks = 1;
  9526. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  9527. } else
  9528. #endif
  9529. {
  9530. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  9531. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  9532. }
  9533. } else {
  9534. GGML_ASSERT(false);
  9535. }
  9536. work_size = MAX(work_size, cur);
  9537. } break;
  9538. case GGML_OP_SCALE:
  9539. {
  9540. node->n_tasks = n_threads;
  9541. } break;
  9542. case GGML_OP_CONT:
  9543. case GGML_OP_RESHAPE:
  9544. case GGML_OP_VIEW:
  9545. case GGML_OP_PERMUTE:
  9546. case GGML_OP_TRANSPOSE:
  9547. case GGML_OP_GET_ROWS:
  9548. case GGML_OP_DIAG_MASK_INF:
  9549. {
  9550. node->n_tasks = 1;
  9551. } break;
  9552. case GGML_OP_SOFT_MAX:
  9553. {
  9554. node->n_tasks = n_threads;
  9555. } break;
  9556. case GGML_OP_ROPE:
  9557. {
  9558. node->n_tasks = n_threads;
  9559. } break;
  9560. case GGML_OP_ALIBI:
  9561. {
  9562. node->n_tasks = 1; //TODO
  9563. } break;
  9564. case GGML_OP_CONV_1D_1S:
  9565. case GGML_OP_CONV_1D_2S:
  9566. {
  9567. node->n_tasks = n_threads;
  9568. GGML_ASSERT(node->src0->ne[3] == 1);
  9569. GGML_ASSERT(node->src1->ne[2] == 1);
  9570. GGML_ASSERT(node->src1->ne[3] == 1);
  9571. size_t cur = 0;
  9572. const int nk = node->src0->ne[0];
  9573. if (node->src0->type == GGML_TYPE_F16 &&
  9574. node->src1->type == GGML_TYPE_F32) {
  9575. cur = sizeof(ggml_fp16_t)*(
  9576. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9577. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9578. );
  9579. } else if (node->src0->type == GGML_TYPE_F32 &&
  9580. node->src1->type == GGML_TYPE_F32) {
  9581. cur = sizeof(float)*(
  9582. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  9583. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  9584. );
  9585. } else {
  9586. GGML_ASSERT(false);
  9587. }
  9588. work_size = MAX(work_size, cur);
  9589. } break;
  9590. case GGML_OP_FLASH_ATTN:
  9591. {
  9592. node->n_tasks = n_threads;
  9593. size_t cur = 0;
  9594. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  9595. if (node->src1->type == GGML_TYPE_F32) {
  9596. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9597. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9598. }
  9599. if (node->src1->type == GGML_TYPE_F16) {
  9600. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  9601. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  9602. }
  9603. work_size = MAX(work_size, cur);
  9604. } break;
  9605. case GGML_OP_FLASH_FF:
  9606. {
  9607. node->n_tasks = n_threads;
  9608. size_t cur = 0;
  9609. if (node->src1->type == GGML_TYPE_F32) {
  9610. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9611. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9612. }
  9613. if (node->src1->type == GGML_TYPE_F16) {
  9614. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  9615. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  9616. }
  9617. work_size = MAX(work_size, cur);
  9618. } break;
  9619. case GGML_OP_MAP_UNARY:
  9620. case GGML_OP_MAP_BINARY:
  9621. {
  9622. node->n_tasks = 1;
  9623. } break;
  9624. case GGML_OP_NONE:
  9625. {
  9626. node->n_tasks = 1;
  9627. } break;
  9628. case GGML_OP_COUNT:
  9629. {
  9630. GGML_ASSERT(false);
  9631. } break;
  9632. }
  9633. }
  9634. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  9635. GGML_ASSERT(false); // TODO: better handling
  9636. }
  9637. if (work_size > 0 && cgraph->work == NULL) {
  9638. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  9639. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  9640. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  9641. }
  9642. }
  9643. const int64_t perf_start_cycles = ggml_perf_cycles();
  9644. const int64_t perf_start_time_us = ggml_perf_time_us();
  9645. for (int i = 0; i < cgraph->n_nodes; i++) {
  9646. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, i, cgraph->n_nodes);
  9647. struct ggml_tensor * node = cgraph->nodes[i];
  9648. // TODO: this could be used to avoid unnecessary computations, but it needs to be improved
  9649. //if (node->grad == NULL && node->perf_runs > 0) {
  9650. // continue;
  9651. //}
  9652. const int64_t perf_node_start_cycles = ggml_perf_cycles();
  9653. const int64_t perf_node_start_time_us = ggml_perf_time_us();
  9654. // INIT
  9655. struct ggml_compute_params params = {
  9656. /*.type =*/ GGML_TASK_INIT,
  9657. /*.ith =*/ 0,
  9658. /*.nth =*/ node->n_tasks,
  9659. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9660. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  9661. };
  9662. ggml_compute_forward(&params, node);
  9663. // COMPUTE
  9664. if (node->n_tasks > 1) {
  9665. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9666. atomic_store(&state_shared.has_work, false);
  9667. }
  9668. while (atomic_load(&state_shared.has_work)) {
  9669. ggml_lock_lock (&state_shared.spin);
  9670. ggml_lock_unlock(&state_shared.spin);
  9671. }
  9672. // launch thread pool
  9673. for (int j = 0; j < n_threads - 1; j++) {
  9674. workers[j].params = (struct ggml_compute_params) {
  9675. .type = GGML_TASK_COMPUTE,
  9676. .ith = j + 1,
  9677. .nth = node->n_tasks,
  9678. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9679. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9680. };
  9681. workers[j].node = node;
  9682. }
  9683. atomic_fetch_sub(&state_shared.n_ready, 1);
  9684. while (atomic_load(&state_shared.n_ready) > 0) {
  9685. ggml_lock_lock (&state_shared.spin);
  9686. ggml_lock_unlock(&state_shared.spin);
  9687. }
  9688. atomic_store(&state_shared.has_work, true);
  9689. }
  9690. params.type = GGML_TASK_COMPUTE;
  9691. ggml_compute_forward(&params, node);
  9692. // wait for thread pool
  9693. if (node->n_tasks > 1) {
  9694. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9695. atomic_store(&state_shared.has_work, false);
  9696. }
  9697. while (atomic_load(&state_shared.has_work)) {
  9698. ggml_lock_lock (&state_shared.spin);
  9699. ggml_lock_unlock(&state_shared.spin);
  9700. }
  9701. atomic_fetch_sub(&state_shared.n_ready, 1);
  9702. while (atomic_load(&state_shared.n_ready) != 0) {
  9703. ggml_lock_lock (&state_shared.spin);
  9704. ggml_lock_unlock(&state_shared.spin);
  9705. }
  9706. }
  9707. // FINALIZE
  9708. if (node->n_tasks > 1) {
  9709. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9710. atomic_store(&state_shared.has_work, false);
  9711. }
  9712. while (atomic_load(&state_shared.has_work)) {
  9713. ggml_lock_lock (&state_shared.spin);
  9714. ggml_lock_unlock(&state_shared.spin);
  9715. }
  9716. // launch thread pool
  9717. for (int j = 0; j < n_threads - 1; j++) {
  9718. workers[j].params = (struct ggml_compute_params) {
  9719. .type = GGML_TASK_FINALIZE,
  9720. .ith = j + 1,
  9721. .nth = node->n_tasks,
  9722. .wsize = cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  9723. .wdata = cgraph->work ? cgraph->work->data : NULL,
  9724. };
  9725. workers[j].node = node;
  9726. }
  9727. atomic_fetch_sub(&state_shared.n_ready, 1);
  9728. while (atomic_load(&state_shared.n_ready) > 0) {
  9729. ggml_lock_lock (&state_shared.spin);
  9730. ggml_lock_unlock(&state_shared.spin);
  9731. }
  9732. atomic_store(&state_shared.has_work, true);
  9733. }
  9734. params.type = GGML_TASK_FINALIZE;
  9735. ggml_compute_forward(&params, node);
  9736. // wait for thread pool
  9737. if (node->n_tasks > 1) {
  9738. if (atomic_fetch_add(&state_shared.n_ready, 1) == n_threads - 1) {
  9739. atomic_store(&state_shared.has_work, false);
  9740. }
  9741. while (atomic_load(&state_shared.has_work)) {
  9742. ggml_lock_lock (&state_shared.spin);
  9743. ggml_lock_unlock(&state_shared.spin);
  9744. }
  9745. atomic_fetch_sub(&state_shared.n_ready, 1);
  9746. while (atomic_load(&state_shared.n_ready) != 0) {
  9747. ggml_lock_lock (&state_shared.spin);
  9748. ggml_lock_unlock(&state_shared.spin);
  9749. }
  9750. }
  9751. // performance stats (node)
  9752. {
  9753. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_node_start_cycles;
  9754. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_node_start_time_us;
  9755. node->perf_runs++;
  9756. node->perf_cycles += perf_cycles_cur;
  9757. node->perf_time_us += perf_time_us_cur;
  9758. }
  9759. }
  9760. // join thread pool
  9761. if (n_threads > 1) {
  9762. atomic_store(&state_shared.stop, true);
  9763. atomic_store(&state_shared.has_work, true);
  9764. for (int j = 0; j < n_threads - 1; j++) {
  9765. int rc = ggml_thread_join(workers[j].thrd, NULL);
  9766. GGML_ASSERT(rc == 0);
  9767. UNUSED(rc);
  9768. }
  9769. ggml_lock_destroy(&state_shared.spin);
  9770. }
  9771. // performance stats (graph)
  9772. {
  9773. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  9774. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  9775. cgraph->perf_runs++;
  9776. cgraph->perf_cycles += perf_cycles_cur;
  9777. cgraph->perf_time_us += perf_time_us_cur;
  9778. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  9779. __func__, cgraph->perf_runs,
  9780. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  9781. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  9782. (double) perf_time_us_cur / 1000.0,
  9783. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  9784. }
  9785. }
  9786. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  9787. for (int i = 0; i < cgraph->n_nodes; i++) {
  9788. struct ggml_tensor * grad = cgraph->grads[i];
  9789. if (grad) {
  9790. ggml_set_zero(grad);
  9791. }
  9792. }
  9793. }
  9794. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  9795. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  9796. GGML_PRINT("=== GRAPH ===\n");
  9797. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  9798. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  9799. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  9800. for (int i = 0; i < cgraph->n_nodes; i++) {
  9801. struct ggml_tensor * node = cgraph->nodes[i];
  9802. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  9803. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  9804. i,
  9805. node->ne[0], node->ne[1], node->ne[2],
  9806. GGML_OP_LABEL[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  9807. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  9808. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  9809. (double) node->perf_time_us / 1000.0,
  9810. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  9811. }
  9812. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  9813. for (int i = 0; i < cgraph->n_leafs; i++) {
  9814. struct ggml_tensor * node = cgraph->leafs[i];
  9815. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  9816. i,
  9817. node->ne[0], node->ne[1],
  9818. GGML_OP_LABEL[node->op]);
  9819. }
  9820. for (int i = 0; i < GGML_OP_COUNT; i++) {
  9821. if (perf_total_per_op_us[i] == 0) {
  9822. continue;
  9823. }
  9824. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_LABEL[i], (double) perf_total_per_op_us[i] / 1000.0);
  9825. }
  9826. GGML_PRINT("========================================\n");
  9827. }
  9828. // check if node is part of the graph
  9829. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9830. if (cgraph == NULL) {
  9831. return true;
  9832. }
  9833. for (int i = 0; i < cgraph->n_nodes; i++) {
  9834. if (cgraph->nodes[i] == node) {
  9835. return true;
  9836. }
  9837. }
  9838. return false;
  9839. }
  9840. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  9841. for (int i = 0; i < cgraph->n_nodes; i++) {
  9842. struct ggml_tensor * parent = cgraph->nodes[i];
  9843. if (parent->grad == node) {
  9844. return parent;
  9845. }
  9846. }
  9847. return NULL;
  9848. }
  9849. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  9850. char color[16];
  9851. FILE * fp = fopen(filename, "w");
  9852. GGML_ASSERT(fp);
  9853. fprintf(fp, "digraph G {\n");
  9854. fprintf(fp, " newrank = true;\n");
  9855. fprintf(fp, " rankdir = LR;\n");
  9856. for (int i = 0; i < gb->n_nodes; i++) {
  9857. struct ggml_tensor * node = gb->nodes[i];
  9858. if (ggml_graph_get_parent(gb, node) != NULL) {
  9859. continue;
  9860. }
  9861. if (node->is_param) {
  9862. snprintf(color, sizeof(color), "yellow");
  9863. } else if (node->grad) {
  9864. if (ggml_graph_find(gf, node)) {
  9865. snprintf(color, sizeof(color), "green");
  9866. } else {
  9867. snprintf(color, sizeof(color), "lightblue");
  9868. }
  9869. } else {
  9870. snprintf(color, sizeof(color), "white");
  9871. }
  9872. fprintf(fp, " \"%p\" [ "
  9873. "style = filled; fillcolor = %s; shape = record; "
  9874. "label=\"",
  9875. (void *) node, color);
  9876. if (strlen(node->name) > 0) {
  9877. fprintf(fp, "%s |", node->name);
  9878. }
  9879. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s",
  9880. i, node->ne[0], node->ne[1],
  9881. GGML_OP_SYMBOL[node->op]);
  9882. if (node->grad) {
  9883. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  9884. } else {
  9885. fprintf(fp, "\"; ]\n");
  9886. }
  9887. }
  9888. for (int i = 0; i < gb->n_leafs; i++) {
  9889. struct ggml_tensor * node = gb->leafs[i];
  9890. snprintf(color, sizeof(color), "pink");
  9891. fprintf(fp, " \"%p\" [ "
  9892. "style = filled; fillcolor = %s; shape = record; "
  9893. "label=\"<x>",
  9894. (void *) node, color);
  9895. if (strlen(node->name) > 0) {
  9896. fprintf(fp, "%s | ", node->name);
  9897. }
  9898. if (ggml_nelements(node) == 1) {
  9899. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  9900. fprintf(fp, "%d", ggml_get_i32_1d(node, 0));
  9901. }
  9902. else {
  9903. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, 0));
  9904. }
  9905. }
  9906. else {
  9907. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  9908. }
  9909. fprintf(fp, "\"; ]\n");
  9910. }
  9911. for (int i = 0; i < gb->n_nodes; i++) {
  9912. struct ggml_tensor * node = gb->nodes[i];
  9913. struct ggml_tensor * parent = ggml_graph_get_parent(gb, node);
  9914. if (node->src0) {
  9915. struct ggml_tensor * parent0 = ggml_graph_get_parent(gb, node->src0);
  9916. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"x\"; ]\n",
  9917. parent0 ? (void *) parent0 : (void *) node->src0,
  9918. parent0 ? "g" : "x",
  9919. parent ? (void *) parent : (void *) node,
  9920. parent ? "g" : "x",
  9921. parent ? "empty" : "vee",
  9922. parent ? "dashed" : "solid");
  9923. }
  9924. if (node->src1) {
  9925. struct ggml_tensor * parent1 = ggml_graph_get_parent(gb, node->src1);
  9926. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"y\"; ]\n",
  9927. parent1 ? (void *) parent1 : (void *) node->src1,
  9928. parent1 ? "g" : "x",
  9929. parent ? (void *) parent : (void *) node,
  9930. parent ? "g" : "x",
  9931. parent ? "empty" : "vee",
  9932. parent ? "dashed" : "solid");
  9933. }
  9934. }
  9935. for (int i = 0; i < gb->n_leafs; i++) {
  9936. struct ggml_tensor * node = gb->leafs[i];
  9937. if (node->src0) {
  9938. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"x\"; ]\n",
  9939. (void *) node->src0, "x",
  9940. (void *) node, "x");
  9941. }
  9942. if (node->src1) {
  9943. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"y\"; ]\n",
  9944. (void *) node->src1, "x",
  9945. (void *) node, "x");
  9946. }
  9947. }
  9948. fprintf(fp, "}\n");
  9949. fclose(fp);
  9950. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  9951. }
  9952. ////////////////////////////////////////////////////////////////////////////////
  9953. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  9954. int i = 0;
  9955. for (int p = 0; p < np; ++p) {
  9956. const int64_t ne = ggml_nelements(ps[p]) ;
  9957. // TODO: add function to set tensor from array
  9958. for (int64_t j = 0; j < ne; ++j) {
  9959. ggml_set_f32_1d(ps[p], j, x[i++]);
  9960. }
  9961. }
  9962. }
  9963. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  9964. int i = 0;
  9965. for (int p = 0; p < np; ++p) {
  9966. const int64_t ne = ggml_nelements(ps[p]) ;
  9967. // TODO: add function to get all elements at once
  9968. for (int64_t j = 0; j < ne; ++j) {
  9969. x[i++] = ggml_get_f32_1d(ps[p], j);
  9970. }
  9971. }
  9972. }
  9973. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  9974. int i = 0;
  9975. for (int p = 0; p < np; ++p) {
  9976. const int64_t ne = ggml_nelements(ps[p]) ;
  9977. // TODO: add function to get all elements at once
  9978. for (int64_t j = 0; j < ne; ++j) {
  9979. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  9980. }
  9981. }
  9982. }
  9983. //
  9984. // ADAM
  9985. //
  9986. // ref: https://arxiv.org/pdf/1412.6980.pdf
  9987. //
  9988. static enum ggml_opt_result ggml_opt_adam(
  9989. struct ggml_context * ctx,
  9990. struct ggml_opt_params params,
  9991. struct ggml_tensor * f,
  9992. struct ggml_cgraph * gf,
  9993. struct ggml_cgraph * gb) {
  9994. GGML_ASSERT(ggml_is_scalar(f));
  9995. gf->n_threads = params.n_threads;
  9996. gb->n_threads = params.n_threads;
  9997. // these will store the parameters we want to optimize
  9998. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  9999. int np = 0;
  10000. int nx = 0;
  10001. for (int i = 0; i < gf->n_nodes; ++i) {
  10002. if (gf->nodes[i]->is_param) {
  10003. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10004. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10005. ps[np++] = gf->nodes[i];
  10006. nx += ggml_nelements(gf->nodes[i]);
  10007. }
  10008. }
  10009. // constants
  10010. const float alpha = params.adam.alpha;
  10011. const float beta1 = params.adam.beta1;
  10012. const float beta2 = params.adam.beta2;
  10013. const float eps = params.adam.eps;
  10014. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // view of the parameters
  10015. float * g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient
  10016. float * g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // gradient squared
  10017. float * m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment
  10018. float * v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment
  10019. float * mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // first moment hat
  10020. float * vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // second moment hat
  10021. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10022. // initialize
  10023. ggml_vec_set_f32(nx, m, 0.0f);
  10024. ggml_vec_set_f32(nx, v, 0.0f);
  10025. // update view
  10026. ggml_opt_get_params(np, ps, x);
  10027. // compute the function value
  10028. ggml_graph_reset (gf);
  10029. ggml_set_f32 (f->grad, 1.0f);
  10030. ggml_graph_compute(ctx, gb);
  10031. float fx_prev = ggml_get_f32_1d(f, 0);
  10032. if (pf) {
  10033. pf[0] = fx_prev;
  10034. }
  10035. int n_no_improvement = 0;
  10036. float fx_best = fx_prev;
  10037. // run the optimizer
  10038. for (int t = 0; t < params.adam.n_iter; ++t) {
  10039. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  10040. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10041. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  10042. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  10043. for (int i = 0; i < np; ++i) {
  10044. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  10045. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  10046. }
  10047. const int64_t t_start_wall = ggml_time_us();
  10048. const int64_t t_start_cpu = ggml_cycles();
  10049. UNUSED(t_start_wall);
  10050. UNUSED(t_start_cpu);
  10051. {
  10052. // update the gradient
  10053. ggml_opt_get_grad(np, ps, g1);
  10054. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  10055. ggml_vec_scale_f32(nx, m, beta1);
  10056. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  10057. // g2 = g1^2
  10058. ggml_vec_sqr_f32 (nx, g2, g1);
  10059. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  10060. ggml_vec_scale_f32(nx, v, beta2);
  10061. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  10062. // m^hat = m_t / (1 - beta1^t)
  10063. // v^hat = v_t / (1 - beta2^t)
  10064. // x_t = x_t-1 - alpha*m^hat/(sqrt(v^hat) + eps)
  10065. ggml_vec_cpy_f32 (nx, mh, m);
  10066. ggml_vec_cpy_f32 (nx, vh, v);
  10067. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, t + 1)));
  10068. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, t + 1)));
  10069. ggml_vec_sqrt_f32 (nx, vh, vh);
  10070. ggml_vec_acc1_f32 (nx, vh, eps);
  10071. ggml_vec_div_f32 (nx, mh, mh, vh);
  10072. ggml_vec_sub_f32 (nx, x, x, mh);
  10073. // update the parameters
  10074. ggml_opt_set_params(np, ps, x);
  10075. }
  10076. ggml_graph_reset (gf);
  10077. ggml_set_f32 (f->grad, 1.0f);
  10078. ggml_graph_compute(ctx, gb);
  10079. const float fx = ggml_get_f32_1d(f, 0);
  10080. // check convergence
  10081. if (fabsf(fx - fx_prev)/fx < params.adam.eps_f) {
  10082. GGML_PRINT_DEBUG("converged\n");
  10083. return GGML_OPT_OK;
  10084. }
  10085. // delta-based convergence test
  10086. if (pf != NULL) {
  10087. // need at least params.past iterations to start checking for convergence
  10088. if (params.past <= t) {
  10089. const float rate = (pf[t%params.past] - fx)/fx;
  10090. if (fabsf(rate) < params.delta) {
  10091. return GGML_OPT_OK;
  10092. }
  10093. }
  10094. pf[t%params.past] = fx;
  10095. }
  10096. // check for improvement
  10097. if (params.max_no_improvement > 0) {
  10098. if (fx_best > fx) {
  10099. fx_best = fx;
  10100. n_no_improvement = 0;
  10101. } else {
  10102. ++n_no_improvement;
  10103. if (n_no_improvement >= params.max_no_improvement) {
  10104. return GGML_OPT_OK;
  10105. }
  10106. }
  10107. }
  10108. fx_prev = fx;
  10109. {
  10110. const int64_t t_end_cpu = ggml_cycles();
  10111. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  10112. UNUSED(t_end_cpu);
  10113. const int64_t t_end_wall = ggml_time_us();
  10114. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  10115. UNUSED(t_end_wall);
  10116. }
  10117. }
  10118. return GGML_OPT_DID_NOT_CONVERGE;
  10119. }
  10120. //
  10121. // L-BFGS
  10122. //
  10123. // the L-BFGS implementation below is based on the following implementation:
  10124. //
  10125. // https://github.com/chokkan/liblbfgs
  10126. //
  10127. struct ggml_lbfgs_iteration_data {
  10128. float alpha;
  10129. float ys;
  10130. float * s;
  10131. float * y;
  10132. };
  10133. static enum ggml_opt_result linesearch_backtracking(
  10134. struct ggml_context * ctx,
  10135. const struct ggml_opt_params * params,
  10136. int nx,
  10137. float * x,
  10138. float * fx,
  10139. float * g,
  10140. float * d,
  10141. float * step,
  10142. const float * xp,
  10143. struct ggml_tensor * f,
  10144. struct ggml_cgraph * gf,
  10145. struct ggml_cgraph * gb,
  10146. const int np,
  10147. struct ggml_tensor * ps[]) {
  10148. int count = 0;
  10149. float width = 0.0f;
  10150. float dg = 0.0f;
  10151. float finit = 0.0f;
  10152. float dginit = 0.0f;
  10153. float dgtest = 0.0f;
  10154. const float dec = 0.5f;
  10155. const float inc = 2.1f;
  10156. if (*step <= 0.f) {
  10157. return GGML_LINESEARCH_INVALID_PARAMETERS;
  10158. }
  10159. // compute the initial gradient in the search direction
  10160. ggml_vec_dot_f32(nx, &dginit, g, d);
  10161. // make sure that d points to a descent direction
  10162. if (0 < dginit) {
  10163. return GGML_LINESEARCH_FAIL;
  10164. }
  10165. // initialize local variables
  10166. finit = *fx;
  10167. dgtest = params->lbfgs.ftol*dginit;
  10168. while (true) {
  10169. ggml_vec_cpy_f32(nx, x, xp);
  10170. ggml_vec_mad_f32(nx, x, d, *step);
  10171. // evaluate the function and gradient values
  10172. {
  10173. ggml_opt_set_params(np, ps, x);
  10174. ggml_graph_reset (gf);
  10175. ggml_set_f32 (f->grad, 1.0f);
  10176. ggml_graph_compute(ctx, gb);
  10177. ggml_opt_get_grad(np, ps, g);
  10178. *fx = ggml_get_f32_1d(f, 0);
  10179. }
  10180. ++count;
  10181. if (*fx > finit + (*step)*dgtest) {
  10182. width = dec;
  10183. } else {
  10184. // Armijo condition is satisfied
  10185. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  10186. return count;
  10187. }
  10188. ggml_vec_dot_f32(nx, &dg, g, d);
  10189. // check the Wolfe condition
  10190. if (dg < params->lbfgs.wolfe * dginit) {
  10191. width = inc;
  10192. } else {
  10193. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  10194. // regular Wolfe conditions
  10195. return count;
  10196. }
  10197. if(dg > -params->lbfgs.wolfe*dginit) {
  10198. width = dec;
  10199. } else {
  10200. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  10201. return count;
  10202. }
  10203. return count;
  10204. }
  10205. }
  10206. if (*step < params->lbfgs.min_step) {
  10207. return GGML_LINESEARCH_MINIMUM_STEP;
  10208. }
  10209. if (*step > params->lbfgs.max_step) {
  10210. return GGML_LINESEARCH_MAXIMUM_STEP;
  10211. }
  10212. if (params->lbfgs.max_linesearch <= count) {
  10213. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  10214. }
  10215. (*step) *= width;
  10216. }
  10217. return GGML_LINESEARCH_FAIL;
  10218. }
  10219. static enum ggml_opt_result ggml_opt_lbfgs(
  10220. struct ggml_context * ctx,
  10221. struct ggml_opt_params params,
  10222. struct ggml_tensor * f,
  10223. struct ggml_cgraph * gf,
  10224. struct ggml_cgraph * gb) {
  10225. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  10226. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  10227. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  10228. return GGML_OPT_INVALID_WOLFE;
  10229. }
  10230. }
  10231. gf->n_threads = params.n_threads;
  10232. gb->n_threads = params.n_threads;
  10233. const int m = params.lbfgs.m;
  10234. // these will store the parameters we want to optimize
  10235. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  10236. int np = 0;
  10237. int nx = 0;
  10238. for (int i = 0; i < gf->n_nodes; ++i) {
  10239. if (gf->nodes[i]->is_param) {
  10240. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  10241. GGML_ASSERT(np < GGML_MAX_PARAMS);
  10242. ps[np++] = gf->nodes[i];
  10243. nx += ggml_nelements(gf->nodes[i]);
  10244. }
  10245. }
  10246. float * x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current parameters
  10247. float * xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous parameters
  10248. float * g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // current gradient
  10249. float * gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // previous gradient
  10250. float * d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data; // search direction
  10251. float * pf = params.past > 0 ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)->data : NULL; // past function values
  10252. float fx = 0.0f; // cost function value
  10253. float xnorm = 0.0f; // ||x||
  10254. float gnorm = 0.0f; // ||g||
  10255. float step = 0.0f;
  10256. // initialize x from the graph nodes
  10257. ggml_opt_get_params(np, ps, x);
  10258. // the L-BFGS memory
  10259. struct ggml_lbfgs_iteration_data * lm = alloca(sizeof(struct ggml_lbfgs_iteration_data)*m);
  10260. for (int i = 0; i < m; ++i) {
  10261. lm[i].alpha = 0.0f;
  10262. lm[i].ys = 0.0f;
  10263. lm[i].s = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10264. lm[i].y = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx)->data;
  10265. }
  10266. // evaluate the function value and its gradient
  10267. {
  10268. ggml_opt_set_params(np, ps, x);
  10269. ggml_graph_reset (gf);
  10270. ggml_set_f32 (f->grad, 1.0f);
  10271. ggml_graph_compute(ctx, gb);
  10272. ggml_opt_get_grad(np, ps, g);
  10273. fx = ggml_get_f32_1d(f, 0);
  10274. }
  10275. if (pf) {
  10276. pf[0] = fx;
  10277. }
  10278. float fx_best = fx;
  10279. // search direction = -gradient
  10280. ggml_vec_neg_f32(nx, d, g);
  10281. // ||x||, ||g||
  10282. ggml_vec_norm_f32(nx, &xnorm, x);
  10283. ggml_vec_norm_f32(nx, &gnorm, g);
  10284. if (xnorm < 1.0f) {
  10285. xnorm = 1.0f;
  10286. }
  10287. // already optimized
  10288. if (gnorm/xnorm <= params.lbfgs.eps) {
  10289. return GGML_OPT_OK;
  10290. }
  10291. // initial step
  10292. ggml_vec_norm_inv_f32(nx, &step, d);
  10293. int j = 0;
  10294. int k = 1;
  10295. int ls = 0;
  10296. int end = 0;
  10297. int bound = 0;
  10298. int n_no_improvement = 0;
  10299. float ys = 0.0f;
  10300. float yy = 0.0f;
  10301. float beta = 0.0f;
  10302. while (true) {
  10303. // store the current position and gradient vectors
  10304. ggml_vec_cpy_f32(nx, xp, x);
  10305. ggml_vec_cpy_f32(nx, gp, g);
  10306. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, &step, xp, f, gf, gb, np, ps);
  10307. if (ls < 0) {
  10308. // linesearch failed - go back to the previous point and return
  10309. ggml_vec_cpy_f32(nx, x, xp);
  10310. ggml_vec_cpy_f32(nx, g, gp);
  10311. return ls;
  10312. }
  10313. ggml_vec_norm_f32(nx, &xnorm, x);
  10314. ggml_vec_norm_f32(nx, &gnorm, g);
  10315. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  10316. if (xnorm < 1.0f) {
  10317. xnorm = 1.0f;
  10318. }
  10319. if (gnorm/xnorm <= params.lbfgs.eps) {
  10320. // converged
  10321. return GGML_OPT_OK;
  10322. }
  10323. // delta-based convergence test
  10324. if (pf != NULL) {
  10325. // need at least params.past iterations to start checking for convergence
  10326. if (params.past <= k) {
  10327. const float rate = (pf[k%params.past] - fx)/fx;
  10328. if (fabsf(rate) < params.delta) {
  10329. return GGML_OPT_OK;
  10330. }
  10331. }
  10332. pf[k%params.past] = fx;
  10333. }
  10334. // check for improvement
  10335. if (params.max_no_improvement > 0) {
  10336. if (fx < fx_best) {
  10337. fx_best = fx;
  10338. n_no_improvement = 0;
  10339. } else {
  10340. n_no_improvement++;
  10341. if (n_no_improvement >= params.max_no_improvement) {
  10342. return GGML_OPT_OK;
  10343. }
  10344. }
  10345. }
  10346. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < k + 1) {
  10347. // reached the maximum number of iterations
  10348. return GGML_OPT_DID_NOT_CONVERGE;
  10349. }
  10350. // update vectors s and y:
  10351. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  10352. // y_{k+1} = g_{k+1} - g_{k}.
  10353. //
  10354. ggml_vec_sub_f32(nx, lm[end].s, x, xp);
  10355. ggml_vec_sub_f32(nx, lm[end].y, g, gp);
  10356. // compute scalars ys and yy:
  10357. // ys = y^t \cdot s -> 1 / \rho.
  10358. // yy = y^t \cdot y.
  10359. //
  10360. ggml_vec_dot_f32(nx, &ys, lm[end].y, lm[end].s);
  10361. ggml_vec_dot_f32(nx, &yy, lm[end].y, lm[end].y);
  10362. lm[end].ys = ys;
  10363. // find new search direction
  10364. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  10365. bound = (m <= k) ? m : k;
  10366. k++;
  10367. end = (end + 1)%m;
  10368. // initialize search direction with -g
  10369. ggml_vec_neg_f32(nx, d, g);
  10370. j = end;
  10371. for (int i = 0; i < bound; ++i) {
  10372. j = (j + m - 1) % m;
  10373. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  10374. ggml_vec_dot_f32(nx, &lm[j].alpha, lm[j].s, d);
  10375. lm[j].alpha /= lm[j].ys;
  10376. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  10377. ggml_vec_mad_f32(nx, d, lm[j].y, -lm[j].alpha);
  10378. }
  10379. ggml_vec_scale_f32(nx, d, ys/yy);
  10380. for (int i = 0; i < bound; ++i) {
  10381. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  10382. ggml_vec_dot_f32(nx, &beta, lm[j].y, d);
  10383. beta /= lm[j].ys;
  10384. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  10385. ggml_vec_mad_f32(nx, d, lm[j].s, lm[j].alpha - beta);
  10386. j = (j + 1)%m;
  10387. }
  10388. step = 1.0;
  10389. }
  10390. return GGML_OPT_DID_NOT_CONVERGE;
  10391. }
  10392. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  10393. struct ggml_opt_params result;
  10394. switch (type) {
  10395. case GGML_OPT_ADAM:
  10396. {
  10397. result = (struct ggml_opt_params) {
  10398. .type = GGML_OPT_ADAM,
  10399. .n_threads = 1,
  10400. .past = 0,
  10401. .delta = 1e-5f,
  10402. .max_no_improvement = 100,
  10403. .print_forward_graph = true,
  10404. .print_backward_graph = true,
  10405. .adam = {
  10406. .n_iter = 10000,
  10407. .alpha = 0.001f,
  10408. .beta1 = 0.9f,
  10409. .beta2 = 0.999f,
  10410. .eps = 1e-8f,
  10411. .eps_f = 1e-5f,
  10412. .eps_g = 1e-3f,
  10413. },
  10414. };
  10415. } break;
  10416. case GGML_OPT_LBFGS:
  10417. {
  10418. result = (struct ggml_opt_params) {
  10419. .type = GGML_OPT_LBFGS,
  10420. .n_threads = 1,
  10421. .past = 0,
  10422. .delta = 1e-5f,
  10423. .max_no_improvement = 0,
  10424. .print_forward_graph = true,
  10425. .print_backward_graph = true,
  10426. .lbfgs = {
  10427. .m = 6,
  10428. .n_iter = 100,
  10429. .max_linesearch = 20,
  10430. .eps = 1e-5f,
  10431. .ftol = 1e-4f,
  10432. .wolfe = 0.9f,
  10433. .min_step = 1e-20f,
  10434. .max_step = 1e+20f,
  10435. .linesearch = GGML_LINESEARCH_DEFAULT,
  10436. },
  10437. };
  10438. } break;
  10439. }
  10440. return result;
  10441. }
  10442. enum ggml_opt_result ggml_opt(
  10443. struct ggml_context * ctx,
  10444. struct ggml_opt_params params,
  10445. struct ggml_tensor * f) {
  10446. bool free_ctx = false;
  10447. if (ctx == NULL) {
  10448. struct ggml_init_params params_ctx = {
  10449. .mem_size = 16*1024*1024,
  10450. .mem_buffer = NULL,
  10451. .no_alloc = false,
  10452. };
  10453. ctx = ggml_init(params_ctx);
  10454. if (ctx == NULL) {
  10455. return GGML_OPT_NO_CONTEXT;
  10456. }
  10457. free_ctx = true;
  10458. }
  10459. enum ggml_opt_result result = GGML_OPT_OK;
  10460. // build forward + backward compute graphs
  10461. struct ggml_cgraph gf = ggml_build_forward (f);
  10462. struct ggml_cgraph gb = ggml_build_backward(ctx, &gf, false);
  10463. switch (params.type) {
  10464. case GGML_OPT_ADAM:
  10465. {
  10466. result = ggml_opt_adam(ctx, params, f, &gf, &gb);
  10467. } break;
  10468. case GGML_OPT_LBFGS:
  10469. {
  10470. result = ggml_opt_lbfgs(ctx, params, f, &gf, &gb);
  10471. } break;
  10472. }
  10473. if (params.print_forward_graph) {
  10474. ggml_graph_print (&gf);
  10475. ggml_graph_dump_dot(&gf, NULL, "opt-forward.dot");
  10476. }
  10477. if (params.print_backward_graph) {
  10478. ggml_graph_print (&gb);
  10479. ggml_graph_dump_dot(&gb, &gf, "opt-backward.dot");
  10480. }
  10481. if (free_ctx) {
  10482. ggml_free(ctx);
  10483. }
  10484. return result;
  10485. }
  10486. ////////////////////////////////////////////////////////////////////////////////
  10487. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10488. assert(k % QK4_0 == 0);
  10489. const int nb = k / QK4_0;
  10490. for (int j = 0; j < n; j += k) {
  10491. block_q4_0 * restrict y = (block_q4_0 *)dst + j/QK4_0;
  10492. quantize_row_q4_0_reference(src + j, y, k);
  10493. for (int i = 0; i < nb; i++) {
  10494. for (int l = 0; l < QK4_0; l += 2) {
  10495. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10496. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10497. hist[vi0]++;
  10498. hist[vi1]++;
  10499. }
  10500. }
  10501. }
  10502. return (n/QK4_0*sizeof(block_q4_0));
  10503. }
  10504. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10505. assert(k % QK4_1 == 0);
  10506. const int nb = k / QK4_1;
  10507. for (int j = 0; j < n; j += k) {
  10508. block_q4_1 * restrict y = (block_q4_1 *)dst + j/QK4_1;
  10509. quantize_row_q4_1_reference(src + j, y, k);
  10510. for (int i = 0; i < nb; i++) {
  10511. for (int l = 0; l < QK4_1; l += 2) {
  10512. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10513. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10514. hist[vi0]++;
  10515. hist[vi1]++;
  10516. }
  10517. }
  10518. }
  10519. return (n/QK4_1*sizeof(block_q4_1));
  10520. }
  10521. size_t ggml_quantize_q4_2(const float * src, void * dst, int n, int k, int64_t * hist) {
  10522. assert(k % QK4_2 == 0);
  10523. const int nb = k / QK4_2;
  10524. for (int j = 0; j < n; j += k) {
  10525. block_q4_2 * restrict y = (block_q4_2 *)dst + j/QK4_2;
  10526. quantize_row_q4_2_reference(src + j, y, k);
  10527. for (int i = 0; i < nb; i++) {
  10528. for (int l = 0; l < QK4_2; l += 2) {
  10529. const uint8_t vi0 = y[i].qs[l/2] & 0x0F;
  10530. const uint8_t vi1 = y[i].qs[l/2] >> 4;
  10531. hist[vi0]++;
  10532. hist[vi1]++;
  10533. }
  10534. }
  10535. }
  10536. return (n/QK4_2*sizeof(block_q4_2));
  10537. }
  10538. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10539. assert(k % QK5_0 == 0);
  10540. const int nb = k / QK5_0;
  10541. for (int j = 0; j < n; j += k) {
  10542. block_q5_0 * restrict y = (block_q5_0 *)dst + j/QK5_0;
  10543. quantize_row_q5_0_reference(src + j, y, k);
  10544. for (int i = 0; i < nb; i++) {
  10545. uint32_t qh;
  10546. memcpy(&qh, &y[i].qh, sizeof(qh));
  10547. for (int l = 0; l < QK5_0; l += 2) {
  10548. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10549. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10550. // cast to 16 bins
  10551. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10552. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10553. hist[vi0]++;
  10554. hist[vi1]++;
  10555. }
  10556. }
  10557. }
  10558. return (n/QK5_0*sizeof(block_q5_0));
  10559. }
  10560. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  10561. assert(k % QK5_1 == 0);
  10562. const int nb = k / QK5_1;
  10563. for (int j = 0; j < n; j += k) {
  10564. block_q5_1 * restrict y = (block_q5_1 *)dst + j/QK5_1;
  10565. quantize_row_q5_1_reference(src + j, y, k);
  10566. for (int i = 0; i < nb; i++) {
  10567. uint32_t qh;
  10568. memcpy(&qh, &y[i].qh, sizeof(qh));
  10569. for (int l = 0; l < QK5_1; l += 2) {
  10570. const uint8_t vh0 = ((qh & (1u << (l + 0))) >> (l + 0)) << 4;
  10571. const uint8_t vh1 = ((qh & (1u << (l + 1))) >> (l + 1)) << 4;
  10572. // cast to 16 bins
  10573. const uint8_t vi0 = ((y[i].qs[l/2] & 0x0F) | vh0) / 2;
  10574. const uint8_t vi1 = ((y[i].qs[l/2] >> 4) | vh1) / 2;
  10575. hist[vi0]++;
  10576. hist[vi1]++;
  10577. }
  10578. }
  10579. }
  10580. return (n/QK5_1*sizeof(block_q5_1));
  10581. }
  10582. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  10583. assert(k % QK8_0 == 0);
  10584. const int nb = k / QK8_0;
  10585. for (int j = 0; j < n; j += k) {
  10586. block_q8_0 * restrict y = (block_q8_0 *)dst + j/QK8_0;
  10587. quantize_row_q8_0_reference(src + j, y, k);
  10588. for (int i = 0; i < nb; i++) {
  10589. for (int l = 0; l < QK8_0; ++l) {
  10590. const int8_t vi = y[i].qs[l];
  10591. hist[vi/16 + 8]++;
  10592. }
  10593. }
  10594. }
  10595. return (n/QK8_0*sizeof(block_q8_0));
  10596. }
  10597. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  10598. size_t result = 0;
  10599. switch (type) {
  10600. case GGML_TYPE_Q4_0:
  10601. {
  10602. GGML_ASSERT(start % QK4_0 == 0);
  10603. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  10604. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  10605. } break;
  10606. case GGML_TYPE_Q4_1:
  10607. {
  10608. GGML_ASSERT(start % QK4_1 == 0);
  10609. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  10610. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  10611. } break;
  10612. case GGML_TYPE_Q4_2:
  10613. {
  10614. GGML_ASSERT(start % QK4_2 == 0);
  10615. block_q4_2 * block = (block_q4_2*)dst + start / QK4_2;
  10616. result = ggml_quantize_q4_2(src + start, block, n, n, hist);
  10617. } break;
  10618. case GGML_TYPE_Q5_0:
  10619. {
  10620. GGML_ASSERT(start % QK5_0 == 0);
  10621. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  10622. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  10623. } break;
  10624. case GGML_TYPE_Q5_1:
  10625. {
  10626. GGML_ASSERT(start % QK5_1 == 0);
  10627. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  10628. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  10629. } break;
  10630. case GGML_TYPE_Q8_0:
  10631. {
  10632. GGML_ASSERT(start % QK8_0 == 0);
  10633. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  10634. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  10635. } break;
  10636. default:
  10637. assert(false);
  10638. }
  10639. return result;
  10640. }
  10641. ////////////////////////////////////////////////////////////////////////////////
  10642. int ggml_cpu_has_avx(void) {
  10643. #if defined(__AVX__)
  10644. return 1;
  10645. #else
  10646. return 0;
  10647. #endif
  10648. }
  10649. int ggml_cpu_has_avx2(void) {
  10650. #if defined(__AVX2__)
  10651. return 1;
  10652. #else
  10653. return 0;
  10654. #endif
  10655. }
  10656. int ggml_cpu_has_avx512(void) {
  10657. #if defined(__AVX512F__)
  10658. return 1;
  10659. #else
  10660. return 0;
  10661. #endif
  10662. }
  10663. int ggml_cpu_has_avx512_vbmi(void) {
  10664. #if defined(__AVX512VBMI__)
  10665. return 1;
  10666. #else
  10667. return 0;
  10668. #endif
  10669. }
  10670. int ggml_cpu_has_avx512_vnni(void) {
  10671. #if defined(__AVX512VNNI__)
  10672. return 1;
  10673. #else
  10674. return 0;
  10675. #endif
  10676. }
  10677. int ggml_cpu_has_fma(void) {
  10678. #if defined(__FMA__)
  10679. return 1;
  10680. #else
  10681. return 0;
  10682. #endif
  10683. }
  10684. int ggml_cpu_has_neon(void) {
  10685. #if defined(__ARM_NEON)
  10686. return 1;
  10687. #else
  10688. return 0;
  10689. #endif
  10690. }
  10691. int ggml_cpu_has_arm_fma(void) {
  10692. #if defined(__ARM_FEATURE_FMA)
  10693. return 1;
  10694. #else
  10695. return 0;
  10696. #endif
  10697. }
  10698. int ggml_cpu_has_f16c(void) {
  10699. #if defined(__F16C__)
  10700. return 1;
  10701. #else
  10702. return 0;
  10703. #endif
  10704. }
  10705. int ggml_cpu_has_fp16_va(void) {
  10706. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  10707. return 1;
  10708. #else
  10709. return 0;
  10710. #endif
  10711. }
  10712. int ggml_cpu_has_wasm_simd(void) {
  10713. #if defined(__wasm_simd128__)
  10714. return 1;
  10715. #else
  10716. return 0;
  10717. #endif
  10718. }
  10719. int ggml_cpu_has_blas(void) {
  10720. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  10721. return 1;
  10722. #else
  10723. return 0;
  10724. #endif
  10725. }
  10726. int ggml_cpu_has_cublas(void) {
  10727. #if defined(GGML_USE_CUBLAS)
  10728. return 1;
  10729. #else
  10730. return 0;
  10731. #endif
  10732. }
  10733. int ggml_cpu_has_clblast(void) {
  10734. #if defined(GGML_USE_CLBLAST)
  10735. return 1;
  10736. #else
  10737. return 0;
  10738. #endif
  10739. }
  10740. int ggml_cpu_has_gpublas(void) {
  10741. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  10742. }
  10743. int ggml_cpu_has_sse3(void) {
  10744. #if defined(__SSE3__)
  10745. return 1;
  10746. #else
  10747. return 0;
  10748. #endif
  10749. }
  10750. int ggml_cpu_has_vsx(void) {
  10751. #if defined(__POWER9_VECTOR__)
  10752. return 1;
  10753. #else
  10754. return 0;
  10755. #endif
  10756. }
  10757. ////////////////////////////////////////////////////////////////////////////////