tensor_mapping.py 64 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2 rwkv6qwen2 glm4-0414 plamo2 granite-hybrid
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv6
  27. "model.embeddings", # rwkv7
  28. "model.word_embeddings", # bailingmoe
  29. "language_model.model.embed_tokens", # llama4
  30. "encoder", # neobert
  31. "model.transformer.wte", # llada
  32. "embed_tokens", # qwen3-embedding
  33. ),
  34. # Token type embeddings
  35. MODEL_TENSOR.TOKEN_TYPES: (
  36. "embeddings.token_type_embeddings", # bert nomic-bert
  37. ),
  38. # Normalization of token embeddings
  39. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  40. "word_embeddings_layernorm", # bloom
  41. "embeddings.LayerNorm", # bert
  42. "emb_ln", # nomic-bert
  43. "transformer.norm", # openelm
  44. "rwkv.blocks.0.pre_ln", # rwkv
  45. "rwkv.blocks.0.pre_ln", # rwkv6
  46. "model.pre_ln", # rwkv7
  47. "model.layers.0.pre_norm", # rwkv7
  48. "backbone.norm", # wavtokenizer
  49. "model.embedding_norm", # lfm2
  50. ),
  51. # Position embeddings
  52. MODEL_TENSOR.POS_EMBD: (
  53. "transformer.wpe", # gpt2
  54. "embeddings.position_embeddings", # bert
  55. "wpe", # gpt2
  56. ),
  57. # Output
  58. MODEL_TENSOR.OUTPUT: (
  59. "embed_out", # gptneox
  60. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2 phimoe plamo2
  61. "output", # llama-pth bloom internlm2
  62. "word_embeddings_for_head", # persimmon
  63. "lm_head.linear", # phi2
  64. "output_layer", # chatglm
  65. "head", # rwkv
  66. "head.out", # wavtokenizer
  67. "lm_head", # llama4
  68. "model.transformer.ff_out", # llada
  69. ),
  70. # Output norm
  71. MODEL_TENSOR.OUTPUT_NORM: (
  72. "gpt_neox.final_layer_norm", # gptneox
  73. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  74. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2 phimoe plamo2
  75. "norm", # llama-pth
  76. "transformer.norm_f", # mpt dbrx
  77. "ln_f", # refact bloom qwen gpt2
  78. "language_model.encoder.final_layernorm", # persimmon
  79. "model.final_layernorm", # persimmon
  80. "lm_head.ln", # phi2
  81. "model.norm_f", # mamba-qbert
  82. "backbone.norm_f", # mamba
  83. "transformer.rms_norm", # Grok
  84. "encoder.final_layernorm", # chatglm
  85. "transformer.norm", # openelm
  86. "model.norm", # nemotron
  87. "rwkv.ln_out", # rwkv6
  88. "model.ln_out", # rwkv7
  89. "backbone.final_layer_norm", # wavtokenizer
  90. "model.norm", # llama4
  91. "model.transformer.ln_f", # llada
  92. ),
  93. # Rope frequencies
  94. MODEL_TENSOR.ROPE_FREQS: (
  95. "rope.freqs", # llama-pth
  96. "rotary_pos_emb.inv_freq", # chatglm
  97. ),
  98. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  99. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  100. MODEL_TENSOR.CONV1D: (
  101. "backbone.embed", # roberta
  102. ),
  103. }
  104. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  105. # Attention norm
  106. MODEL_TENSOR.ATTN_NORM: (
  107. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  108. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  109. "transformer.blocks.{bid}.norm_1", # mpt
  110. "transformer.h.{bid}.input_layernorm", # falcon7b
  111. "h.{bid}.input_layernorm", # bloom
  112. "transformer.h.{bid}.ln_mlp", # falcon40b
  113. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe phimoe granite-hybrid
  114. "layers.{bid}.attention_norm", # llama-pth
  115. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  116. "model.layers.{bid}.ln1", # yi
  117. "h.{bid}.ln_1", # gpt2
  118. "transformer.h.{bid}.ln", # phi2
  119. "model.layers.layers.{bid}.norm", # plamo
  120. "model.layers.layers.{bid}.pre_mixer_norm", # plamo2
  121. "model.layers.{bid}.attention_norm", # internlm2
  122. "model.layers.{bid}.norm", # mamba-qbert
  123. "backbone.layers.{bid}.norm", # mamba
  124. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  125. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  126. "encoder.layers.{bid}.input_layernorm", # chatglm
  127. "transformer.layers.{bid}.attn_norm", # openelm
  128. "rwkv.blocks.{bid}.ln1", # rwkv6
  129. "model.layers.{bid}.ln1", # rwkv7
  130. "model.layers.{bid}.input_layernorm", # llama4
  131. "transformer_encoder.{bid}.attention_norm", # neobert
  132. "model.layers.{bid}.operator_norm", # lfm2
  133. "model.transformer.blocks.{bid}.attn_norm", # llada
  134. "layers.{bid}.input_layernorm", # qwen3-embedding
  135. ),
  136. # Attention norm 2
  137. MODEL_TENSOR.ATTN_NORM_2: (
  138. "transformer.h.{bid}.ln_attn", # falcon40b
  139. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  140. "rwkv.blocks.{bid}.ln2", # rwkv6
  141. "model.layers.{bid}.ln2", # rwkv7
  142. ),
  143. # Attention query-key-value
  144. MODEL_TENSOR.ATTN_QKV: (
  145. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  146. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  147. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  148. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  149. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  150. "h.{bid}.self_attention.query_key_value", # bloom
  151. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  152. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  153. "h.{bid}.attn.c_attn", # gpt2
  154. "transformer.h.{bid}.mixer.Wqkv", # phi2
  155. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  156. "encoder.layers.{bid}.mixer.Wqkv", # jina
  157. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  158. "model.layers.layers.{bid}.mixer.qkv_proj", # plamo2
  159. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  160. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  161. "transformer_encoder.{bid}.qkv", # neobert
  162. ),
  163. # Attention query
  164. MODEL_TENSOR.ATTN_Q: (
  165. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2 phimoe
  166. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  167. "layers.{bid}.attention.wq", # llama-pth
  168. "encoder.layer.{bid}.attention.self.query", # bert
  169. "transformer.layer.{bid}.attention.q_lin", # distillbert
  170. "transformer.h.{bid}.attn.q_proj", # gpt-j
  171. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  172. "model.layers.{bid}.attention.wq", # internlm2
  173. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  174. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  175. "model.layers.{bid}.self_attn.q_proj", # llama4
  176. "model.transformer.blocks.{bid}.q_proj", # llada
  177. "layers.{bid}.self_attn.q_proj", # qwen3-embedding
  178. ),
  179. # Attention key
  180. MODEL_TENSOR.ATTN_K: (
  181. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2 phimoe
  182. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  183. "layers.{bid}.attention.wk", # llama-pth
  184. "encoder.layer.{bid}.attention.self.key", # bert
  185. "transformer.layer.{bid}.attention.k_lin", # distillbert
  186. "transformer.h.{bid}.attn.k_proj", # gpt-j
  187. "transformer.h.{bid}.attn.k", # refact
  188. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  189. "model.layers.{bid}.attention.wk", # internlm2
  190. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  191. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  192. "model.layers.{bid}.self_attn.k_proj", # llama4
  193. "model.transformer.blocks.{bid}.k_proj", # llada
  194. "layers.{bid}.self_attn.k_proj", # qwen3-embedding
  195. ),
  196. # Attention value
  197. MODEL_TENSOR.ATTN_V: (
  198. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2 phimoe
  199. "layers.{bid}.attention.wv", # llama-pth
  200. "encoder.layer.{bid}.attention.self.value", # bert
  201. "transformer.layer.{bid}.attention.v_lin", # distillbert
  202. "transformer.h.{bid}.attn.v_proj", # gpt-j
  203. "transformer.h.{bid}.attn.v", # refact
  204. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  205. "model.layers.{bid}.attention.wv", # internlm2
  206. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  207. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  208. "model.layers.{bid}.self_attn.v_proj", # llama4
  209. "model.transformer.blocks.{bid}.v_proj", # llada
  210. "layers.{bid}.self_attn.v_proj", # qwen3-embedding
  211. ),
  212. # Attention output
  213. MODEL_TENSOR.ATTN_OUT: (
  214. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  215. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  216. "transformer.blocks.{bid}.attn.out_proj", # mpt
  217. "transformer.h.{bid}.self_attention.dense", # falcon
  218. "h.{bid}.self_attention.dense", # bloom
  219. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2 phimoe
  220. "model.layers.{bid}.self_attn.out_proj", # lfm2
  221. "model.layers.{bid}.self_attn.linear_attn", # deci
  222. "layers.{bid}.attention.wo", # llama-pth
  223. "encoder.layer.{bid}.attention.output.dense", # bert
  224. "transformer.layer.{bid}.attention.out_lin", # distillbert
  225. "transformer.h.{bid}.attn.out_proj", # gpt-j
  226. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  227. "model.layers.{bid}.self_attn.dense", # persimmon
  228. "h.{bid}.attn.c_proj", # gpt2
  229. "transformer.h.{bid}.mixer.out_proj", # phi2
  230. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  231. "model.layers.layers.{bid}.mixer.o_proj", # plamo2
  232. "model.layers.{bid}.attention.wo", # internlm2
  233. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  234. "encoder.layers.{bid}.mixer.out_proj", # jina
  235. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  236. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  237. "encoder.layers.{bid}.self_attention.dense", # chatglm
  238. "transformer.layers.{bid}.attn.out_proj", # openelm
  239. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  240. "model.layers.{bid}.self_attn.o_proj", # llama4
  241. "transformer_encoder.{bid}.wo", # neobert
  242. "model.transformer.blocks.{bid}.attn_out", # llada
  243. "layers.{bid}.self_attn.o_proj", # qwen3-embedding
  244. ),
  245. # Attention output norm
  246. MODEL_TENSOR.ATTN_OUT_NORM: (
  247. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  248. "transformer.layer.{bid}.sa_layer_norm", # distillbert
  249. "encoder.layers.{bid}.norm1", # nomic-bert
  250. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  251. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  252. ),
  253. MODEL_TENSOR.ATTN_POST_NORM: (
  254. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2 # ge
  255. "model.layers.{bid}.post_self_attn_layernorm", # glm-4-0414
  256. "model.layers.layers.{bid}.post_mixer_norm.weight", # plamo2
  257. ),
  258. # Rotary embeddings
  259. MODEL_TENSOR.ATTN_ROT_EMBD: (
  260. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  261. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  262. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  263. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  264. ),
  265. # Feed-forward norm
  266. MODEL_TENSOR.FFN_NORM: (
  267. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  268. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  269. "h.{bid}.post_attention_layernorm", # bloom
  270. "transformer.blocks.{bid}.norm_2", # mpt
  271. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe phimoe
  272. "layers.{bid}.ffn_norm", # llama-pth
  273. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  274. "model.layers.{bid}.ln2", # yi
  275. "h.{bid}.ln_2", # gpt2
  276. "model.layers.{bid}.ffn_norm", # internlm2
  277. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  278. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  279. "transformer.layers.{bid}.ffn_norm", # openelm
  280. "model.layers.{bid}.pre_ff_layernorm", # jamba granite-hybrid
  281. "model.layers.{bid}.pre_moe_layernorm", # mini-jamba
  282. "model.layers.{bid}.post_attention_layernorm", # llama4
  283. "transformer_encoder.{bid}.ffn_norm", # neobert
  284. "model.layers.layers.{bid}.pre_mlp_norm", # plamo2
  285. "model.transformer.blocks.{bid}.ff_norm", # llada
  286. "layers.{bid}.post_attention_layernorm", # qwen3-embedding
  287. ),
  288. # Post feed-forward norm
  289. MODEL_TENSOR.FFN_PRE_NORM: (
  290. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  291. "model.layers.{bid}.pre_ff_layernorm.weight",
  292. ),
  293. # Post feed-forward norm
  294. MODEL_TENSOR.FFN_POST_NORM: (
  295. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  296. "model.layers.{bid}.post_mlp_layernorm", # glm-4-0414
  297. "model.layers.layers.{bid}.post_mlp_norm.weight", # plamo2
  298. "model.layers.{bid}.feed_forward.up_proj",
  299. ),
  300. MODEL_TENSOR.FFN_GATE_INP: (
  301. "layers.{bid}.feed_forward.gate", # mixtral
  302. "model.layers.{bid}.block_sparse_moe.gate", # mixtral phimoe
  303. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  304. "transformer.decoder_layer.{bid}.router", # Grok
  305. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  306. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  307. "model.layers.{bid}.feed_forward.router", # llama4 jamba
  308. "encoder.layers.{bid}.mlp.router.layer", # nomic-bert-moe
  309. "model.layers.{bid}.mlp.gate.wg", # hunyuan
  310. "model.layers.{bid}.block_sparse_moe.primary_router", # smallthinker
  311. ),
  312. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  313. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  314. ),
  315. MODEL_TENSOR.FFN_EXP_PROBS_B: (
  316. "model.layers.{bid}.mlp.gate.e_score_correction", # deepseek-v3 dots1
  317. "model.layers.{bid}.mlp.moe_statics.e_score_correction", # ernie4.5-moe
  318. ),
  319. # Feed-forward up
  320. MODEL_TENSOR.FFN_UP: (
  321. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  322. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  323. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  324. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  325. "h.{bid}.mlp.dense_h_to_4h", # bloom
  326. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  327. "layers.{bid}.feed_forward.w3", # llama-pth
  328. "encoder.layer.{bid}.intermediate.dense", # bert
  329. "transformer.layer.{bid}.ffn.lin1", # distillbert
  330. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  331. "transformer.h.{bid}.mlp.linear_3", # refact
  332. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  333. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  334. "transformer.h.{bid}.mlp.w1", # qwen
  335. "h.{bid}.mlp.c_fc", # gpt2
  336. "transformer.h.{bid}.mlp.fc1", # phi2
  337. "model.layers.{bid}.mlp.fc1", # phi2
  338. "model.layers.{bid}.mlp.gate_up_proj", # phi3 glm-4-0414
  339. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  340. "model.layers.layers.{bid}.mlp.gate_up_proj", # plamo2
  341. "model.layers.{bid}.feed_forward.w3", # internlm2
  342. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  343. "encoder.layers.{bid}.mlp.fc1", # nomic-bert-moe
  344. "model.layers.{bid}.mlp.c_fc", # starcoder2
  345. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2 (split up/gate, no longer used)
  346. "encoder.layer.{bid}.mlp.gated_layers", # jina-bert-v2 (GEGLU)
  347. "encoder.layer.{bid}.mlp.up_gated_layer", # jina-v2-code (GEGLU)
  348. "model.layers.{bid}.residual_mlp.w3", # arctic
  349. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  350. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  351. "model.layers.{bid}.feed_forward.up_proj", # llama4 jamba granite-hybrid
  352. "transformer_encoder.{bid}.ffn.w12", # neobert
  353. "model.layers.{bid}.block_sparse_moe.up", # smallthinker
  354. "model.transformer.blocks.{bid}.up_proj", # llada
  355. "layers.{bid}.mlp.up_proj", # qwen3-embedding
  356. ),
  357. MODEL_TENSOR.FFN_UP_EXP: (
  358. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  359. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  360. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  361. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  362. "model.layers.{bid}.block_sparse_moe.experts.w3", # phimoe (merged)
  363. "model.layers.{bid}.feed_forward.experts.up_proj", # llama4
  364. "encoder.layers.{bid}.mlp.experts.mlp.w1", # nomic-bert-moe
  365. "model.layers.{bid}.block_sparse_moe.experts.up", # smallthinker
  366. ),
  367. MODEL_TENSOR.FFN_UP_SHEXP: (
  368. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  369. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  370. "model.layers.{bid}.feed_forward.shared_expert.up_proj", # llama4
  371. "model.layers.{bid}.feed_forward.down_proj",
  372. "model.layers.{bid}.mlp.shared_mlp.up_proj", # hunyuan
  373. ),
  374. # AWQ-activation gate
  375. MODEL_TENSOR.FFN_ACT: (
  376. "transformer.blocks.{bid}.ffn.act", # mpt
  377. ),
  378. # Feed-forward gate
  379. MODEL_TENSOR.FFN_GATE: (
  380. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  381. "layers.{bid}.feed_forward.w1", # llama-pth
  382. "transformer.h.{bid}.mlp.w2", # qwen
  383. "transformer.h.{bid}.mlp.c_fc2", # jais
  384. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  385. "model.layers.{bid}.feed_forward.w1", # internlm2
  386. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  387. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2 (split up/gate, no longer used)
  388. "transformer.h.{bid}.mlp.linear_1", # refact
  389. "model.layers.{bid}.residual_mlp.w1", # arctic
  390. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  391. "model.layers.{bid}.feed_forward.gate_proj", # llama4 jamba granite-hybrid
  392. "model.layers.{bid}.block_sparse_moe.gate", # smallthinker
  393. "model.transformer.blocks.{bid}.ff_proj", # llada
  394. "layers.{bid}.mlp.gate_proj", # qwen3-embedding
  395. ),
  396. MODEL_TENSOR.FFN_GATE_EXP: (
  397. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  398. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  399. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  400. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  401. "model.layers.{bid}.block_sparse_moe.experts.w1", # phimoe (merged)
  402. "model.layers.{bid}.feed_forward.experts.gate_proj", # llama4
  403. "model.layers.{bid}.block_sparse_moe.experts.gate", # smallthinker
  404. ),
  405. MODEL_TENSOR.FFN_GATE_SHEXP: (
  406. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  407. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  408. "model.layers.{bid}.feed_forward.shared_expert.gate_proj", # llama4
  409. "model.layers.{bid}.mlp.shared_mlp.gate_proj", # hunyuan
  410. ),
  411. # Feed-forward down
  412. MODEL_TENSOR.FFN_DOWN: (
  413. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  414. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  415. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  416. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  417. "h.{bid}.mlp.dense_4h_to_h", # bloom
  418. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  419. "layers.{bid}.feed_forward.w2", # llama-pth
  420. "encoder.layer.{bid}.output.dense", # bert
  421. "transformer.layer.{bid}.ffn.lin2", # distillbert
  422. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  423. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  424. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  425. "h.{bid}.mlp.c_proj", # gpt2
  426. "transformer.h.{bid}.mlp.fc2", # phi2
  427. "model.layers.{bid}.mlp.fc2", # phi2
  428. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  429. "model.layers.{bid}.feed_forward.w2", # internlm2
  430. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  431. "model.layers.{bid}.mlp.c_proj", # starcoder2
  432. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  433. "transformer.layers.{bid}.ffn.proj_2", # openelm
  434. "model.layers.{bid}.residual_mlp.w2", # arctic
  435. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  436. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  437. "model.layers.h.{bid}.mlp.c_proj", # exaone
  438. "model.layers.{bid}.feed_forward.down_proj", # llama4 jamba granite-hybrid
  439. "transformer_encoder.{bid}.ffn.w3", # neobert
  440. "model.layers.{bid}.block_sparse_moe.down", # smallthinker
  441. "model.transformer.blocks.{bid}.ff_out", # llada
  442. "layers.{bid}.mlp.down_proj", # qwen3-embedding
  443. ),
  444. MODEL_TENSOR.FFN_DOWN_EXP: (
  445. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  446. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  447. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  448. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged) ernie4.5-moe
  449. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  450. "model.layers.{bid}.block_sparse_moe.experts.w2", # phimoe (merged)
  451. "model.layers.{bid}.feed_forward.experts.down_proj", # llama4
  452. "encoder.layers.{bid}.mlp.experts.mlp.w2", # nomic-bert-moe
  453. "model.layers.{bid}.block_sparse_moe.experts.down", # smallthinker
  454. ),
  455. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  456. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  457. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  458. "model.layers.{bid}.feed_forward.shared_expert.down_proj", # llama4
  459. "model.layers.{bid}.shared_mlp.output_linear", # granitemoe
  460. "model.layers.{bid}.mlp.shared_mlp.down_proj", # hunyuan
  461. ),
  462. MODEL_TENSOR.ATTN_Q_NORM: (
  463. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  464. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  465. "model.layers.{bid}.self_attn.query_layernorm", # hunyuan
  466. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  467. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  468. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  469. "transformer.layers.{bid}.attn.q_norm", # openelm
  470. "model.layers.layers.{bid}.mixer.q", # plamo2
  471. "layers.{bid}.self_attn.q_norm", # qwen3-embedding
  472. ),
  473. MODEL_TENSOR.ATTN_K_NORM: (
  474. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  475. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  476. "model.layers.{bid}.self_attn.key_layernorm", # hunyuan
  477. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  478. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  479. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  480. "transformer.layers.{bid}.attn.k_norm", # openelm
  481. "model.layers.layers.{bid}.mixer.k", # plamo2
  482. "layers.{bid}.self_attn.k_norm", # qwen3-embedding
  483. ),
  484. MODEL_TENSOR.ROPE_FREQS: (
  485. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  486. ),
  487. MODEL_TENSOR.LAYER_OUT_NORM: (
  488. "encoder.layer.{bid}.output.LayerNorm", # bert
  489. "transformer.layer.{bid}.output_layer_norm", # distillbert
  490. "encoder.layers.{bid}.norm2", # nomic-bert
  491. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  492. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  493. "encoder.layer.{bid}.layer_norm_2", # jina-v2-code
  494. ),
  495. MODEL_TENSOR.PER_LAYER_TOKEN_EMBD: (
  496. "model.embed_tokens_per_layer", # gemma3n
  497. ),
  498. MODEL_TENSOR.PER_LAYER_MODEL_PROJ: (
  499. "model.per_layer_model_projection", # gemma3n
  500. ),
  501. MODEL_TENSOR.PER_LAYER_PROJ_NORM: (
  502. "model.per_layer_projection_norm", # gemma3n
  503. ),
  504. MODEL_TENSOR.ALTUP_PROJ: (
  505. "model.altup_projections", # gemma3n
  506. ),
  507. MODEL_TENSOR.ALTUP_UNEMBD_PROJ: (
  508. "model.altup_unembed_projections", # gemma3n
  509. ),
  510. MODEL_TENSOR.PER_LAYER_INP_GATE: (
  511. "model.layers.{bid}.per_layer_input_gate", # gemma3n
  512. ),
  513. MODEL_TENSOR.PER_LAYER_PROJ: (
  514. "model.layers.{bid}.per_layer_projection", # gemma3n
  515. ),
  516. MODEL_TENSOR.PER_LAYER_POST_NORM: (
  517. "model.layers.{bid}.post_per_layer_input_norm", # gemma3n
  518. ),
  519. MODEL_TENSOR.ALTUP_CORRECT_COEF: (
  520. "model.layers.{bid}.altup.correction_coefs", # gemma3n
  521. ),
  522. MODEL_TENSOR.ALTUP_CORRECT_SCALE: (
  523. "model.layers.{bid}.altup.correct_output_scale", # gemma3n
  524. ),
  525. MODEL_TENSOR.ALTUP_PREDICT_COEF: (
  526. "model.layers.{bid}.altup.prediction_coefs", # gemma3n
  527. ),
  528. MODEL_TENSOR.ALTUP_ROUTER: (
  529. "model.layers.{bid}.altup.modality_router", # gemma3n
  530. ),
  531. MODEL_TENSOR.ALTUP_ROUTER_NORM: (
  532. "model.layers.{bid}.altup.router_norm", # gemma3n
  533. ),
  534. MODEL_TENSOR.LAUREL_L: (
  535. "model.layers.{bid}.laurel.linear_left", # gemma3n
  536. ),
  537. MODEL_TENSOR.LAUREL_R: (
  538. "model.layers.{bid}.laurel.linear_right", # gemma3n
  539. ),
  540. MODEL_TENSOR.LAUREL_POST_NORM: (
  541. "model.layers.{bid}.laurel.post_laurel_norm", # gemma3n
  542. ),
  543. MODEL_TENSOR.SSM_IN: (
  544. "model.layers.{bid}.in_proj", # mamba-hf
  545. "backbone.layers.{bid}.mixer.in_proj", # mamba
  546. "model.layers.{bid}.mamba.in_proj", # jamba falcon-h1 granite-hybrid
  547. "model.layers.layers.{bid}.mixer.in_proj", # plamo2
  548. ),
  549. MODEL_TENSOR.SSM_CONV1D: (
  550. "model.layers.{bid}.conv1d", # mamba-hf
  551. "backbone.layers.{bid}.mixer.conv1d", # mamba
  552. "model.layers.{bid}.mamba.conv1d", # jamba falcon-h1 granite-hybrid
  553. "model.layers.layers.{bid}.mixer.conv1d", # plamo2
  554. ),
  555. MODEL_TENSOR.SSM_X: (
  556. "model.layers.{bid}.x_proj", # mamba-hf
  557. "backbone.layers.{bid}.mixer.x_proj", # mamba
  558. "model.layers.{bid}.mamba.x_proj", # jamba
  559. "model.layers.layers.{bid}.mixer.bcdt_proj", # plamo2
  560. ),
  561. MODEL_TENSOR.SSM_DT: (
  562. "model.layers.{bid}.dt_proj", # mamba-hf
  563. "backbone.layers.{bid}.mixer.dt_proj", # mamba
  564. "model.layers.{bid}.mamba.dt_proj", # jamba falcon-h1 granite-hybrid
  565. "model.layers.layers.{bid}.mixer.dt_proj", # plamo2
  566. ),
  567. MODEL_TENSOR.SSM_DT_NORM: (
  568. "model.layers.layers.{bid}.mixer.dt_norm.weight", # plamo2
  569. "model.layers.{bid}.mamba.dt_layernorm", # jamba
  570. ),
  571. MODEL_TENSOR.SSM_A: (
  572. "model.layers.{bid}.A_log", # mamba-hf
  573. "backbone.layers.{bid}.mixer.A_log", # mamba
  574. "model.layers.{bid}.mamba.A_log", # jamba falcon-h1 granite-hybrid
  575. "model.layers.layers.{bid}.mixer.A_log", # plamo2
  576. ),
  577. MODEL_TENSOR.SSM_B_NORM: (
  578. "model.layers.{bid}.mamba.b_layernorm", # jamba
  579. "model.layers.{bid}.mamba.B_layernorm", # mini-jamba
  580. "model.layers.layers.{bid}.mixer.B_norm.weight", # plamo2
  581. ),
  582. MODEL_TENSOR.SSM_C_NORM: (
  583. "model.layers.{bid}.mamba.c_layernorm", # jamba
  584. "model.layers.{bid}.mamba.C_layernorm", # mini-jamba
  585. "model.layers.layers.{bid}.mixer.C_norm.weight", # plamo2
  586. ),
  587. MODEL_TENSOR.SSM_D: (
  588. "model.layers.{bid}.D", # mamba-hf
  589. "backbone.layers.{bid}.mixer.D", # mamba
  590. "model.layers.{bid}.mamba.D", # jamba falcon-h1 granite-hybrid
  591. "model.layers.layers.{bid}.mixer.D", # plamo2
  592. ),
  593. MODEL_TENSOR.SSM_NORM: (
  594. "model.layers.{bid}.mamba.norm", # falcon-h1 granite-hybrid
  595. "backbone.layers.{bid}.mixer.norm", # mamba2
  596. ),
  597. MODEL_TENSOR.SSM_OUT: (
  598. "model.layers.{bid}.out_proj", # mamba-hf
  599. "backbone.layers.{bid}.mixer.out_proj", # mamba
  600. "model.layers.{bid}.mamba.out_proj", # jamba falcon-h1 granite-hybrid
  601. "model.layers.layers.{bid}.mixer.out_proj", # plamo2
  602. ),
  603. MODEL_TENSOR.TIME_MIX_W0: (
  604. "model.layers.{bid}.attention.w0", # rwkv7
  605. ),
  606. MODEL_TENSOR.TIME_MIX_W1: (
  607. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv6
  608. "model.layers.{bid}.self_attn.time_maa_w1", # rwkv6qwen2
  609. "model.layers.{bid}.attention.w1", # rwkv7
  610. ),
  611. MODEL_TENSOR.TIME_MIX_W2: (
  612. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv6
  613. "model.layers.{bid}.self_attn.time_maa_w2", # rwkv6qwen2
  614. "model.layers.{bid}.attention.w2", # rwkv7
  615. ),
  616. MODEL_TENSOR.TIME_MIX_A0: (
  617. "model.layers.{bid}.attention.a0", # rwkv7
  618. ),
  619. MODEL_TENSOR.TIME_MIX_A1: (
  620. "model.layers.{bid}.attention.a1", # rwkv7
  621. ),
  622. MODEL_TENSOR.TIME_MIX_A2: (
  623. "model.layers.{bid}.attention.a2", # rwkv7
  624. ),
  625. MODEL_TENSOR.TIME_MIX_V0: (
  626. "model.layers.{bid}.attention.v0", # rwkv7
  627. ),
  628. MODEL_TENSOR.TIME_MIX_V1: (
  629. "model.layers.{bid}.attention.v1", # rwkv7
  630. ),
  631. MODEL_TENSOR.TIME_MIX_V2: (
  632. "model.layers.{bid}.attention.v2", # rwkv7
  633. ),
  634. MODEL_TENSOR.TIME_MIX_G1: (
  635. "model.layers.{bid}.attention.g1", # rwkv7
  636. ),
  637. MODEL_TENSOR.TIME_MIX_G2: (
  638. "model.layers.{bid}.attention.g2", # rwkv7
  639. ),
  640. MODEL_TENSOR.TIME_MIX_K_K: (
  641. "model.layers.{bid}.attention.k_k", # rwkv7
  642. ),
  643. MODEL_TENSOR.TIME_MIX_K_A: (
  644. "model.layers.{bid}.attention.k_a", # rwkv7
  645. ),
  646. MODEL_TENSOR.TIME_MIX_R_K: (
  647. "model.layers.{bid}.attention.r_k", # rwkv7
  648. ),
  649. MODEL_TENSOR.TIME_MIX_LERP_X: (
  650. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv6
  651. "model.layers.{bid}.self_attn.time_maa_x", # rwkv6qwen2
  652. ),
  653. MODEL_TENSOR.TIME_MIX_LERP_K: (
  654. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv6
  655. "model.layers.{bid}.self_attn.time_maa_k", # rwkv6qwen2
  656. ),
  657. MODEL_TENSOR.TIME_MIX_LERP_V: (
  658. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv6
  659. "model.layers.{bid}.self_attn.time_maa_v", # rwkv6qwen2
  660. ),
  661. MODEL_TENSOR.TIME_MIX_LERP_R: (
  662. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv6
  663. "model.layers.{bid}.self_attn.time_maa_r", # rwkv6qwen2
  664. ),
  665. MODEL_TENSOR.TIME_MIX_LERP_G: (
  666. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv6
  667. "model.layers.{bid}.self_attn.time_maa_g", # rwkv6qwen2
  668. ),
  669. MODEL_TENSOR.TIME_MIX_LERP_W: (
  670. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv6
  671. "model.layers.{bid}.self_attn.time_maa_w", # rwkv6qwen2
  672. ),
  673. MODEL_TENSOR.TIME_MIX_FIRST: (
  674. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv6
  675. ),
  676. MODEL_TENSOR.TIME_MIX_DECAY: (
  677. "rwkv.blocks.{bid}.attention.time_decay", # rwkv6
  678. "model.layers.{bid}.self_attn.time_decay", # rwkv6qwen2
  679. ),
  680. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  681. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv6
  682. "model.layers.{bid}.self_attn.time_decay_w1", # rwkv6qwen2
  683. ),
  684. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  685. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv6
  686. "model.layers.{bid}.self_attn.time_decay_w2", # rwkv6qwen2
  687. ),
  688. MODEL_TENSOR.TIME_MIX_KEY: (
  689. "rwkv.blocks.{bid}.attention.key", # rwkv6
  690. "model.layers.{bid}.self_attn.k_proj", # rwkv6qwen2
  691. "model.layers.{bid}.attention.key", # rwkv7
  692. "model.layers.{bid}.attention.k_proj", # rwkv7
  693. ),
  694. MODEL_TENSOR.TIME_MIX_VALUE: (
  695. "rwkv.blocks.{bid}.attention.value", # rwkv6
  696. "model.layers.{bid}.self_attn.v_proj", # rwkv6qwen2
  697. "model.layers.{bid}.attention.value", # rwkv7
  698. "model.layers.{bid}.attention.v_proj", # rwkv7
  699. ),
  700. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  701. "rwkv.blocks.{bid}.attention.receptance", # rwkv6
  702. "model.layers.{bid}.self_attn.q_proj", # rwkv6qwen2
  703. "model.layers.{bid}.attention.receptance", # rwkv7
  704. "model.layers.{bid}.attention.r_proj", # rwkv7
  705. ),
  706. MODEL_TENSOR.TIME_MIX_GATE: (
  707. "rwkv.blocks.{bid}.attention.gate", # rwkv6
  708. "model.layers.{bid}.self_attn.gate", # rwkv6qwen2
  709. ),
  710. MODEL_TENSOR.TIME_MIX_LN: (
  711. "rwkv.blocks.{bid}.attention.ln_x", # rwkv6
  712. "model.layers.{bid}.attention.ln_x" # rwkv7
  713. ),
  714. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  715. "rwkv.blocks.{bid}.attention.output", # rwkv6
  716. "model.layers.{bid}.self_attn.o_proj", # rwkv6qwen2
  717. "model.layers.{bid}.attention.output", # rwkv7
  718. "model.layers.{bid}.attention.o_proj", # rwkv7
  719. ),
  720. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  721. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv6
  722. "model.layers.{bid}.feed_forward.x_k", # rwkv7
  723. ),
  724. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  725. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv6
  726. ),
  727. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  728. "rwkv.blocks.{bid}.feed_forward.key", # rwkv6
  729. "model.layers.{bid}.feed_forward.key", # rwkv7
  730. ),
  731. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  732. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv6
  733. ),
  734. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  735. "rwkv.blocks.{bid}.feed_forward.value", # rwkv6
  736. "model.layers.{bid}.feed_forward.value", # rwkv7
  737. ),
  738. MODEL_TENSOR.ATTN_Q_A: (
  739. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  740. ),
  741. MODEL_TENSOR.ATTN_Q_B: (
  742. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  743. ),
  744. MODEL_TENSOR.ATTN_KV_A_MQA: (
  745. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  746. ),
  747. MODEL_TENSOR.ATTN_KV_B: (
  748. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  749. ),
  750. MODEL_TENSOR.ATTN_K_B: (
  751. "model.layers.{bid}.self_attn.k_b_proj", # deepseek2
  752. ),
  753. MODEL_TENSOR.ATTN_V_B: (
  754. "model.layers.{bid}.self_attn.v_b_proj", # deepseek2
  755. ),
  756. MODEL_TENSOR.ATTN_Q_A_NORM: (
  757. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  758. ),
  759. MODEL_TENSOR.ATTN_KV_A_NORM: (
  760. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  761. ),
  762. MODEL_TENSOR.ATTN_SUB_NORM: (
  763. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  764. ),
  765. MODEL_TENSOR.FFN_SUB_NORM: (
  766. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  767. ),
  768. MODEL_TENSOR.DEC_ATTN_NORM: (
  769. "decoder.block.{bid}.layer.0.layer_norm", # t5
  770. ),
  771. MODEL_TENSOR.DEC_ATTN_Q: (
  772. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  773. ),
  774. MODEL_TENSOR.DEC_ATTN_K: (
  775. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  776. ),
  777. MODEL_TENSOR.DEC_ATTN_V: (
  778. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  779. ),
  780. MODEL_TENSOR.DEC_ATTN_OUT: (
  781. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  782. ),
  783. MODEL_TENSOR.DEC_ATTN_REL_B: (
  784. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  785. ),
  786. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  787. "decoder.block.{bid}.layer.1.layer_norm", # t5
  788. ),
  789. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  790. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  791. ),
  792. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  793. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  794. ),
  795. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  796. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  797. ),
  798. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  799. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  800. ),
  801. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  802. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  803. ),
  804. MODEL_TENSOR.DEC_FFN_NORM: (
  805. "decoder.block.{bid}.layer.2.layer_norm", # t5
  806. ),
  807. MODEL_TENSOR.DEC_FFN_GATE: (
  808. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  809. ),
  810. MODEL_TENSOR.DEC_FFN_UP: (
  811. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  812. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  813. ),
  814. MODEL_TENSOR.DEC_FFN_DOWN: (
  815. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  816. ),
  817. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  818. "decoder.final_layer_norm", # t5
  819. ),
  820. MODEL_TENSOR.ENC_ATTN_NORM: (
  821. "encoder.block.{bid}.layer.0.layer_norm", # t5
  822. ),
  823. MODEL_TENSOR.ENC_ATTN_Q: (
  824. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  825. ),
  826. MODEL_TENSOR.ENC_ATTN_K: (
  827. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  828. ),
  829. MODEL_TENSOR.ENC_ATTN_V: (
  830. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  831. ),
  832. MODEL_TENSOR.ENC_ATTN_OUT: (
  833. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  834. ),
  835. MODEL_TENSOR.ENC_ATTN_REL_B: (
  836. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  837. ),
  838. MODEL_TENSOR.ENC_FFN_NORM: (
  839. "encoder.block.{bid}.layer.1.layer_norm", # t5
  840. ),
  841. MODEL_TENSOR.ENC_FFN_GATE: (
  842. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  843. ),
  844. MODEL_TENSOR.ENC_FFN_UP: (
  845. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  846. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  847. ),
  848. MODEL_TENSOR.ENC_FFN_DOWN: (
  849. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  850. ),
  851. ############################################################################
  852. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  853. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  854. "encoder.final_layer_norm", # t5
  855. "layer_norm", # neobert
  856. ),
  857. MODEL_TENSOR.CLS: (
  858. "classifier", # jina
  859. "classifier.dense", # roberta
  860. "pre_classifier", # distillbert
  861. "dense", # neobert
  862. ),
  863. MODEL_TENSOR.CLS_OUT: (
  864. "classifier.out_proj", # roberta
  865. ),
  866. #############################################################################
  867. MODEL_TENSOR.CONVNEXT_DW: (
  868. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  869. ),
  870. MODEL_TENSOR.CONVNEXT_NORM: (
  871. "backbone.convnext.{bid}.norm", # wavtokenizer
  872. ),
  873. MODEL_TENSOR.CONVNEXT_PW1: (
  874. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  875. ),
  876. MODEL_TENSOR.CONVNEXT_PW2: (
  877. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  878. ),
  879. MODEL_TENSOR.CONVNEXT_GAMMA: (
  880. "backbone.convnext.{bid}.gamma", # wavtokenizer
  881. ),
  882. MODEL_TENSOR.POSNET_CONV1: (
  883. "backbone.posnet.{bid}.conv1", # wavtokenizer
  884. ),
  885. MODEL_TENSOR.POSNET_CONV2: (
  886. "backbone.posnet.{bid}.conv2", # wavtokenizer
  887. ),
  888. MODEL_TENSOR.POSNET_NORM: (
  889. "backbone.posnet.{bid}.norm", # wavtokenizer
  890. ),
  891. MODEL_TENSOR.POSNET_NORM1: (
  892. "backbone.posnet.{bid}.norm1", # wavtokenizer
  893. ),
  894. MODEL_TENSOR.POSNET_NORM2: (
  895. "backbone.posnet.{bid}.norm2", # wavtokenizer
  896. ),
  897. MODEL_TENSOR.POSNET_ATTN_NORM: (
  898. "backbone.posnet.{bid}.norm", # wavtokenizer
  899. ),
  900. MODEL_TENSOR.POSNET_ATTN_Q: (
  901. "backbone.posnet.{bid}.q", # wavtokenizer
  902. ),
  903. MODEL_TENSOR.POSNET_ATTN_K: (
  904. "backbone.posnet.{bid}.k", # wavtokenizer
  905. ),
  906. MODEL_TENSOR.POSNET_ATTN_V: (
  907. "backbone.posnet.{bid}.v", # wavtokenizer
  908. ),
  909. MODEL_TENSOR.POSNET_ATTN_OUT: (
  910. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  911. ),
  912. MODEL_TENSOR.SHORTCONV_CONV: (
  913. "model.layers.{bid}.conv.conv",
  914. ),
  915. MODEL_TENSOR.SHORTCONV_INPROJ: (
  916. "model.layers.{bid}.conv.in_proj",
  917. ),
  918. MODEL_TENSOR.SHORTCONV_OUTPROJ: (
  919. "model.layers.{bid}.conv.out_proj",
  920. ),
  921. #############################################################################
  922. ## Vision encoder
  923. MODEL_TENSOR.V_MMPROJ: (
  924. "multi_modal_projector.linear_{bid}",
  925. "visual.merger.mlp.{bid}", # qwen2vl
  926. ),
  927. MODEL_TENSOR.V_MMPROJ_FC: (
  928. "model.connector.modality_projection.proj", # SmolVLM
  929. ),
  930. MODEL_TENSOR.V_MMPROJ_MLP: (
  931. "model.mm_projector.mlp.mlp.{bid}",
  932. "vision_model.vision_adapter.mlp.fc{bid}", # llama 4
  933. "mlp1.{bid}", # InternVL
  934. ),
  935. MODEL_TENSOR.V_MMPROJ_PEG: (
  936. "model.mm_projector.peg.peg.{bid}",
  937. ),
  938. MODEL_TENSOR.V_ENC_EMBD_CLS: (
  939. "vision_tower.vision_model.embeddings.class_embedding",
  940. "vision_model.class_embedding", # llama 4
  941. ),
  942. MODEL_TENSOR.V_ENC_EMBD_PATCH: (
  943. "vision_tower.vision_model.embeddings.patch_embedding",
  944. "vpm.embeddings.patch_embedding",
  945. "model.vision_model.embeddings.patch_embedding", # SmolVLM
  946. "vision_tower.patch_conv", # pixtral
  947. "vision_model.patch_embedding.linear", # llama 4
  948. "visual.patch_embed.proj", # qwen2vl
  949. ),
  950. MODEL_TENSOR.V_ENC_EMBD_POS: (
  951. "vision_tower.vision_model.embeddings.position_embedding",
  952. "vpm.embeddings.position_embedding",
  953. "model.vision_model.embeddings.position_embedding", # SmolVLM
  954. "vision_model.positional_embedding_vlm", # llama 4
  955. ),
  956. MODEL_TENSOR.V_ENC_ATTN_Q: (
  957. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.q_proj",
  958. "vpm.encoder.layers.{bid}.self_attn.q_proj",
  959. "model.vision_model.encoder.layers.{bid}.self_attn.q_proj", # SmolVLM
  960. "vision_model.model.layers.{bid}.self_attn.q_proj", # llama4
  961. "vision_tower.transformer.layers.{bid}.attention.q_proj", # pixtral
  962. "visual.blocks.{bid}.attn.q", # qwen2vl, generated
  963. ),
  964. MODEL_TENSOR.V_ENC_ATTN_Q_NORM: (
  965. "vision_tower.vision_model.encoder.layers.{bid}.attn.q_norm", # InternVL
  966. ),
  967. MODEL_TENSOR.V_ENC_ATTN_K: (
  968. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.k_proj",
  969. "vpm.encoder.layers.{bid}.self_attn.k_proj",
  970. "model.vision_model.encoder.layers.{bid}.self_attn.k_proj", # SmolVLM
  971. "vision_model.model.layers.{bid}.self_attn.k_proj", # llama4
  972. "vision_tower.transformer.layers.{bid}.attention.k_proj", # pixtral
  973. "visual.blocks.{bid}.attn.k", # qwen2vl, generated
  974. ),
  975. MODEL_TENSOR.V_ENC_ATTN_K_NORM: (
  976. "vision_tower.vision_model.encoder.layers.{bid}.attn.k_norm", # InternVL
  977. ),
  978. MODEL_TENSOR.V_ENC_ATTN_V: (
  979. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.v_proj",
  980. "vpm.encoder.layers.{bid}.self_attn.v_proj",
  981. "model.vision_model.encoder.layers.{bid}.self_attn.v_proj", # SmolVLM
  982. "vision_model.model.layers.{bid}.self_attn.v_proj", # llama4
  983. "vision_tower.transformer.layers.{bid}.attention.v_proj", # pixtral
  984. "visual.blocks.{bid}.attn.v", # qwen2vl, generated
  985. ),
  986. MODEL_TENSOR.V_ENC_INPUT_NORM: (
  987. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm1",
  988. "vision_tower.vision_model.encoder.layers.{bid}.norm1", # InternVL
  989. "vpm.encoder.layers.{bid}.layer_norm1",
  990. "model.vision_model.encoder.layers.{bid}.layer_norm1", # SmolVLM
  991. "vision_tower.transformer.layers.{bid}.attention_norm", # pixtral
  992. "vision_model.model.layers.{bid}.input_layernorm", # llama4
  993. "visual.blocks.{bid}.norm1", # qwen2vl
  994. ),
  995. MODEL_TENSOR.V_ENC_ATTN_O: (
  996. "vision_tower.vision_model.encoder.layers.{bid}.self_attn.out_proj",
  997. "vision_tower.vision_model.encoder.layers.{bid}.attn.proj", # InternVL
  998. "vpm.encoder.layers.{bid}.self_attn.out_proj",
  999. "model.vision_model.encoder.layers.{bid}.self_attn.out_proj", # SmolVLM
  1000. "vision_model.model.layers.{bid}.self_attn.o_proj", # llama4
  1001. "vision_tower.transformer.layers.{bid}.attention.o_proj", # pixtral
  1002. "visual.blocks.{bid}.attn.proj", # qwen2vl
  1003. ),
  1004. MODEL_TENSOR.V_ENC_POST_ATTN_NORM: (
  1005. "vision_tower.vision_model.encoder.layers.{bid}.layer_norm2",
  1006. "vision_tower.vision_model.encoder.layers.{bid}.norm2", # InternVL
  1007. "vpm.encoder.layers.{bid}.layer_norm2",
  1008. "model.vision_model.encoder.layers.{bid}.layer_norm2", # SmolVLM
  1009. "vision_model.model.layers.{bid}.post_attention_layernorm", # llama4
  1010. "vision_tower.transformer.layers.{bid}.ffn_norm", # pixtral
  1011. "visual.blocks.{bid}.norm2", # qwen2vl
  1012. ),
  1013. MODEL_TENSOR.V_ENC_FFN_UP: (
  1014. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc1",
  1015. "vpm.encoder.layers.{bid}.mlp.fc1",
  1016. "model.vision_model.encoder.layers.{bid}.mlp.fc1", # SmolVLM, gemma3
  1017. "vision_tower.transformer.layers.{bid}.feed_forward.up_proj", # pixtral
  1018. "vision_model.model.layers.{bid}.mlp.fc1", # llama4
  1019. "visual.blocks.{bid}.mlp.fc1", # qwen2vl
  1020. "visual.blocks.{bid}.mlp.up_proj", # qwen2.5vl
  1021. ),
  1022. MODEL_TENSOR.V_ENC_FFN_GATE: (
  1023. "vision_tower.transformer.layers.{bid}.feed_forward.gate_proj", # pixtral
  1024. "visual.blocks.{bid}.mlp.gate_proj", # qwen2.5vl
  1025. ),
  1026. MODEL_TENSOR.V_ENC_FFN_DOWN: (
  1027. "vision_tower.vision_model.encoder.layers.{bid}.mlp.fc2",
  1028. "vpm.encoder.layers.{bid}.mlp.fc2",
  1029. "model.vision_model.encoder.layers.{bid}.mlp.fc2", # SmolVLM, gemma3
  1030. "vision_tower.transformer.layers.{bid}.feed_forward.down_proj", # pixtral
  1031. "vision_model.model.layers.{bid}.mlp.fc2", # llama4
  1032. "visual.blocks.{bid}.mlp.fc2", # qwen2vl
  1033. "visual.blocks.{bid}.mlp.down_proj", # qwen2.5vl
  1034. ),
  1035. MODEL_TENSOR.V_LAYER_SCALE_1: (
  1036. "vision_tower.vision_model.encoder.layers.{bid}.ls1", # InternVL
  1037. ),
  1038. MODEL_TENSOR.V_LAYER_SCALE_2: (
  1039. "vision_tower.vision_model.encoder.layers.{bid}.ls2", # InternVL
  1040. ),
  1041. MODEL_TENSOR.V_PRE_NORM: (
  1042. "vision_tower.vision_model.pre_layrnorm",
  1043. "vision_tower.ln_pre", # pixtral
  1044. "vision_model.layernorm_pre", # llama4
  1045. ),
  1046. MODEL_TENSOR.V_POST_NORM: (
  1047. "vision_tower.vision_model.post_layernorm",
  1048. "model.vision_model.post_layernorm", # SmolVLM
  1049. "vision_model.layernorm_post", # llama4
  1050. "visual.merger.ln_q", # qwen2vl
  1051. ),
  1052. MODEL_TENSOR.V_MM_INP_PROJ: (
  1053. "multi_modal_projector.mm_input_projection",
  1054. ),
  1055. MODEL_TENSOR.V_MM_INP_NORM: (
  1056. "multi_modal_projector.norm",
  1057. ),
  1058. MODEL_TENSOR.V_MM_SOFT_EMB_NORM: (
  1059. "multi_modal_projector.mm_soft_emb_norm",
  1060. ),
  1061. MODEL_TENSOR.V_RESMPL_POS_EMBD_K: (
  1062. "resampler.pos_embed_k",
  1063. ),
  1064. MODEL_TENSOR.V_RESMPL_ATTN_Q: (
  1065. "resampler.attn.in_proj_q", # tensor generated from resampler.attn.in_proj
  1066. ),
  1067. MODEL_TENSOR.V_RESMPL_ATTN_K: (
  1068. "resampler.attn.in_proj_k", # tensor generated from resampler.attn.in_proj
  1069. ),
  1070. MODEL_TENSOR.V_RESMPL_ATTN_V: (
  1071. "resampler.attn.in_proj_v", # tensor generated from resampler.attn.in_proj
  1072. ),
  1073. MODEL_TENSOR.V_RESMPL_ATTN_OUT: (
  1074. "resampler.attn.out_proj",
  1075. ),
  1076. MODEL_TENSOR.V_RESMPL_KV: (
  1077. "resampler.kv_proj",
  1078. ),
  1079. MODEL_TENSOR.V_RESMPL_POST_NORM: (
  1080. "resampler.ln_post",
  1081. ),
  1082. MODEL_TENSOR.V_RESMPL_KV_NORM: (
  1083. "resampler.ln_kv",
  1084. ),
  1085. MODEL_TENSOR.V_RESMPL_Q_NORM: (
  1086. "resampler.ln_q",
  1087. ),
  1088. MODEL_TENSOR.V_RESMPL_PROJ: (
  1089. "resampler.proj",
  1090. ),
  1091. MODEL_TENSOR.V_RESMPL_QUERY: (
  1092. "resampler.query",
  1093. ),
  1094. MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK: (
  1095. "v.token_embd.img_break", # for pixtral, this is a generated vector
  1096. ),
  1097. MODEL_TENSOR.V_MM_PATCH_MERGER: (
  1098. "multi_modal_projector.patch_merger.merging_layer", # mistral small 3.1
  1099. ),
  1100. # audio (mtmd)
  1101. MODEL_TENSOR.A_ENC_EMBD_POS: (
  1102. "audio_tower.embed_positions", # ultravox
  1103. ),
  1104. MODEL_TENSOR.A_ENC_CONV1D: (
  1105. "audio_tower.conv{bid}", # ultravox
  1106. ),
  1107. MODEL_TENSOR.A_PRE_NORM: (),
  1108. MODEL_TENSOR.A_POST_NORM: (
  1109. "audio_tower.layer_norm", # ultravox
  1110. "audio_tower.ln_post", # qwen2omni
  1111. ),
  1112. MODEL_TENSOR.A_ENC_ATTN_Q: (
  1113. "audio_tower.layers.{bid}.self_attn.q_proj", # ultravox
  1114. ),
  1115. MODEL_TENSOR.A_ENC_ATTN_K: (
  1116. "audio_tower.layers.{bid}.self_attn.k_proj", # ultravox
  1117. ),
  1118. MODEL_TENSOR.A_ENC_ATTN_V: (
  1119. "audio_tower.layers.{bid}.self_attn.v_proj", # ultravox
  1120. ),
  1121. MODEL_TENSOR.A_ENC_INPUT_NORM: (
  1122. "audio_tower.layers.{bid}.self_attn_layer_norm", # ultravox
  1123. ),
  1124. MODEL_TENSOR.A_ENC_OUTPUT: (
  1125. "audio_tower.layers.{bid}.self_attn.out_proj", # ultravox
  1126. ),
  1127. MODEL_TENSOR.A_ENC_OUTPUT_NORM: (
  1128. "audio_tower.layers.{bid}.final_layer_norm", # ultravox
  1129. ),
  1130. MODEL_TENSOR.A_ENC_FFN_UP: (
  1131. "audio_tower.layers.{bid}.fc1", # ultravox
  1132. ),
  1133. MODEL_TENSOR.A_ENC_FFN_GATE: (),
  1134. MODEL_TENSOR.A_ENC_FFN_DOWN: (
  1135. "audio_tower.layers.{bid}.fc2", # ultravox
  1136. ),
  1137. # note: some tensors below has "audio." pseudo-prefix, to prevent conflicts with vision tensors
  1138. # this prefix is added in the conversion code in modify_tensors()
  1139. MODEL_TENSOR.A_MMPROJ: (
  1140. "audio.multi_modal_projector.linear_{bid}", # ultravox
  1141. ),
  1142. MODEL_TENSOR.A_MMPROJ_FC: (
  1143. "audio.multi_modal_projector.linear", # qwen2audio
  1144. "audio_tower.proj", # qwen2omni
  1145. ),
  1146. MODEL_TENSOR.A_MM_NORM_PRE: (
  1147. "audio.multi_modal_projector.ln_pre", # ultravox
  1148. ),
  1149. MODEL_TENSOR.A_MM_NORM_MID: (
  1150. "audio.multi_modal_projector.ln_mid", # ultravox
  1151. ),
  1152. }
  1153. # architecture-specific block mappings
  1154. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  1155. MODEL_ARCH.ARCTIC: {
  1156. MODEL_TENSOR.FFN_NORM: (
  1157. "model.layers.{bid}.residual_layernorm",
  1158. ),
  1159. MODEL_TENSOR.FFN_NORM_EXP: (
  1160. "model.layers.{bid}.post_attention_layernorm",
  1161. ),
  1162. },
  1163. }
  1164. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  1165. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  1166. self.mapping = {}
  1167. for tensor, keys in self.mappings_cfg.items():
  1168. if tensor not in MODEL_TENSORS[arch]:
  1169. continue
  1170. tensor_name = TENSOR_NAMES[tensor]
  1171. self.mapping[tensor_name] = (tensor, tensor_name)
  1172. for key in keys:
  1173. self.mapping[key] = (tensor, tensor_name)
  1174. if arch in self.arch_block_mappings_cfg:
  1175. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  1176. for bid in range(n_blocks):
  1177. for tensor, keys in self.block_mappings_cfg.items():
  1178. if tensor not in MODEL_TENSORS[arch]:
  1179. continue
  1180. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  1181. self.mapping[tensor_name] = (tensor, tensor_name)
  1182. for key in keys:
  1183. key = key.format(bid = bid)
  1184. self.mapping[key] = (tensor, tensor_name)
  1185. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  1186. result = self.mapping.get(key)
  1187. if result is not None:
  1188. return result
  1189. for suffix in try_suffixes:
  1190. if key.endswith(suffix):
  1191. result = self.mapping.get(key[:-len(suffix)])
  1192. if result is not None:
  1193. return result[0], result[1] + suffix
  1194. return None
  1195. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  1196. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1197. if result is None:
  1198. return None
  1199. return result[1]
  1200. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  1201. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  1202. if result is None:
  1203. return None
  1204. return result[0]
  1205. def __getitem__(self, key: str) -> str:
  1206. try:
  1207. return self.mapping[key][1]
  1208. except KeyError:
  1209. raise KeyError(key)
  1210. def __contains__(self, key: str) -> bool:
  1211. return key in self.mapping
  1212. def __repr__(self) -> str:
  1213. return repr(self.mapping)
  1214. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  1215. return TensorNameMap(arch, n_blocks)