server-task.cpp 61 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643
  1. #include "server-common.h"
  2. #include "server-task.h"
  3. #include "common.h"
  4. #include "llama.h"
  5. #include "chat.h"
  6. #include "sampling.h"
  7. #include "json-schema-to-grammar.h"
  8. using json = nlohmann::ordered_json;
  9. //
  10. // task_params
  11. //
  12. json task_params::format_logit_bias(const std::vector<llama_logit_bias> & logit_bias) const {
  13. json data = json::array();
  14. for (const auto & lb : logit_bias) {
  15. data.push_back(json{
  16. {"bias", lb.bias},
  17. {"token", lb.token},
  18. });
  19. }
  20. return data;
  21. }
  22. json task_params::to_json(bool only_metrics) const {
  23. std::vector<std::string> samplers;
  24. samplers.reserve(sampling.samplers.size());
  25. for (const auto & sampler : sampling.samplers) {
  26. samplers.emplace_back(common_sampler_type_to_str(sampler));
  27. }
  28. json lora = json::array();
  29. for (auto & it : this->lora) {
  30. lora.push_back({{"id", it.first}, {"scale", it.second}});
  31. }
  32. if (only_metrics) {
  33. return json {
  34. {"seed", sampling.seed},
  35. {"temperature", sampling.temp},
  36. {"dynatemp_range", sampling.dynatemp_range},
  37. {"dynatemp_exponent", sampling.dynatemp_exponent},
  38. {"top_k", sampling.top_k},
  39. {"top_p", sampling.top_p},
  40. {"min_p", sampling.min_p},
  41. {"top_n_sigma", sampling.top_n_sigma},
  42. {"xtc_probability", sampling.xtc_probability},
  43. {"xtc_threshold", sampling.xtc_threshold},
  44. {"typical_p", sampling.typ_p},
  45. {"repeat_last_n", sampling.penalty_last_n},
  46. {"repeat_penalty", sampling.penalty_repeat},
  47. {"presence_penalty", sampling.penalty_present},
  48. {"frequency_penalty", sampling.penalty_freq},
  49. {"dry_multiplier", sampling.dry_multiplier},
  50. {"dry_base", sampling.dry_base},
  51. {"dry_allowed_length", sampling.dry_allowed_length},
  52. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  53. {"mirostat", sampling.mirostat},
  54. {"mirostat_tau", sampling.mirostat_tau},
  55. {"mirostat_eta", sampling.mirostat_eta},
  56. {"max_tokens", n_predict},
  57. {"n_predict", n_predict}, // TODO: deduplicate?
  58. {"n_keep", n_keep},
  59. {"n_discard", n_discard},
  60. {"ignore_eos", sampling.ignore_eos},
  61. {"stream", stream},
  62. {"n_probs", sampling.n_probs},
  63. {"min_keep", sampling.min_keep},
  64. {"chat_format", common_chat_format_name(chat_parser_params.format)},
  65. {"reasoning_format", common_reasoning_format_name(chat_parser_params.reasoning_format)},
  66. {"reasoning_in_content", chat_parser_params.reasoning_in_content},
  67. {"thinking_forced_open", chat_parser_params.thinking_forced_open},
  68. {"samplers", samplers},
  69. {"speculative.n_max", speculative.n_max},
  70. {"speculative.n_min", speculative.n_min},
  71. {"speculative.p_min", speculative.p_min},
  72. {"timings_per_token", timings_per_token},
  73. {"post_sampling_probs", post_sampling_probs},
  74. {"backend_sampling", sampling.backend_sampling},
  75. {"lora", lora},
  76. };
  77. }
  78. auto grammar_triggers = json::array();
  79. for (const auto & trigger : sampling.grammar_triggers) {
  80. server_grammar_trigger ct(trigger);
  81. grammar_triggers.push_back(ct.to_json());
  82. }
  83. return json {
  84. {"seed", sampling.seed},
  85. {"temperature", sampling.temp},
  86. {"dynatemp_range", sampling.dynatemp_range},
  87. {"dynatemp_exponent", sampling.dynatemp_exponent},
  88. {"top_k", sampling.top_k},
  89. {"top_p", sampling.top_p},
  90. {"min_p", sampling.min_p},
  91. {"top_n_sigma", sampling.top_n_sigma},
  92. {"xtc_probability", sampling.xtc_probability},
  93. {"xtc_threshold", sampling.xtc_threshold},
  94. {"typical_p", sampling.typ_p},
  95. {"repeat_last_n", sampling.penalty_last_n},
  96. {"repeat_penalty", sampling.penalty_repeat},
  97. {"presence_penalty", sampling.penalty_present},
  98. {"frequency_penalty", sampling.penalty_freq},
  99. {"dry_multiplier", sampling.dry_multiplier},
  100. {"dry_base", sampling.dry_base},
  101. {"dry_allowed_length", sampling.dry_allowed_length},
  102. {"dry_penalty_last_n", sampling.dry_penalty_last_n},
  103. {"dry_sequence_breakers", sampling.dry_sequence_breakers},
  104. {"mirostat", sampling.mirostat},
  105. {"mirostat_tau", sampling.mirostat_tau},
  106. {"mirostat_eta", sampling.mirostat_eta},
  107. {"stop", antiprompt},
  108. {"max_tokens", n_predict},
  109. {"n_predict", n_predict}, // TODO: deduplicate?
  110. {"n_keep", n_keep},
  111. {"n_discard", n_discard},
  112. {"ignore_eos", sampling.ignore_eos},
  113. {"stream", stream},
  114. {"logit_bias", format_logit_bias(sampling.logit_bias)},
  115. {"n_probs", sampling.n_probs},
  116. {"min_keep", sampling.min_keep},
  117. {"grammar", sampling.grammar},
  118. {"grammar_lazy", sampling.grammar_lazy},
  119. {"grammar_triggers", grammar_triggers},
  120. {"preserved_tokens", sampling.preserved_tokens},
  121. {"chat_format", common_chat_format_name(chat_parser_params.format)},
  122. {"reasoning_format", common_reasoning_format_name(chat_parser_params.reasoning_format)},
  123. {"reasoning_in_content", chat_parser_params.reasoning_in_content},
  124. {"thinking_forced_open", chat_parser_params.thinking_forced_open},
  125. {"samplers", samplers},
  126. {"speculative.n_max", speculative.n_max},
  127. {"speculative.n_min", speculative.n_min},
  128. {"speculative.p_min", speculative.p_min},
  129. {"timings_per_token", timings_per_token},
  130. {"post_sampling_probs", post_sampling_probs},
  131. {"backend_sampling", sampling.backend_sampling},
  132. {"lora", lora},
  133. };
  134. }
  135. //
  136. // server_task
  137. //
  138. task_params server_task::params_from_json_cmpl(
  139. const llama_vocab * vocab,
  140. const common_params & params_base,
  141. const int n_ctx_slot,
  142. const json & data) {
  143. task_params params;
  144. // Sampling parameter defaults are loaded from the global server context (but individual requests can still them)
  145. task_params defaults;
  146. defaults.sampling = params_base.sampling;
  147. defaults.speculative = params_base.speculative;
  148. defaults.n_keep = params_base.n_keep;
  149. defaults.n_predict = params_base.n_predict;
  150. defaults.n_cache_reuse = params_base.n_cache_reuse;
  151. defaults.cache_prompt = params_base.cache_prompt;
  152. defaults.antiprompt = params_base.antiprompt;
  153. // enabling this will output extra debug information in the HTTP responses from the server
  154. params.verbose = params_base.verbosity > 9;
  155. params.timings_per_token = json_value(data, "timings_per_token", false);
  156. params.stream = json_value(data, "stream", false);
  157. auto stream_opt = json_value(data, "stream_options", json::object());
  158. params.include_usage = json_value(stream_opt, "include_usage", false);
  159. params.cache_prompt = json_value(data, "cache_prompt", defaults.cache_prompt);
  160. params.return_tokens = json_value(data, "return_tokens", false);
  161. params.return_progress = json_value(data, "return_progress", false);
  162. params.n_predict = json_value(data, "n_predict", json_value(data, "max_tokens", defaults.n_predict));
  163. params.n_indent = json_value(data, "n_indent", defaults.n_indent);
  164. params.n_keep = json_value(data, "n_keep", defaults.n_keep);
  165. params.n_discard = json_value(data, "n_discard", defaults.n_discard);
  166. params.n_cmpl = json_value(data, "n_cmpl", json_value(data, "n", 1));
  167. params.n_cache_reuse = json_value(data, "n_cache_reuse", defaults.n_cache_reuse);
  168. //params.t_max_prompt_ms = json_value(data, "t_max_prompt_ms", defaults.t_max_prompt_ms); // TODO: implement
  169. params.t_max_predict_ms = json_value(data, "t_max_predict_ms", defaults.t_max_predict_ms);
  170. params.response_fields = json_value(data, "response_fields", std::vector<std::string>());
  171. params.sampling.top_k = json_value(data, "top_k", defaults.sampling.top_k);
  172. params.sampling.top_p = json_value(data, "top_p", defaults.sampling.top_p);
  173. params.sampling.min_p = json_value(data, "min_p", defaults.sampling.min_p);
  174. params.sampling.top_n_sigma = json_value(data, "top_n_sigma", defaults.sampling.top_n_sigma);
  175. params.sampling.xtc_probability = json_value(data, "xtc_probability", defaults.sampling.xtc_probability);
  176. params.sampling.xtc_threshold = json_value(data, "xtc_threshold", defaults.sampling.xtc_threshold);
  177. params.sampling.typ_p = json_value(data, "typical_p", defaults.sampling.typ_p);
  178. params.sampling.temp = json_value(data, "temperature", defaults.sampling.temp);
  179. params.sampling.dynatemp_range = json_value(data, "dynatemp_range", defaults.sampling.dynatemp_range);
  180. params.sampling.dynatemp_exponent = json_value(data, "dynatemp_exponent", defaults.sampling.dynatemp_exponent);
  181. params.sampling.penalty_last_n = json_value(data, "repeat_last_n", defaults.sampling.penalty_last_n);
  182. params.sampling.penalty_repeat = json_value(data, "repeat_penalty", defaults.sampling.penalty_repeat);
  183. params.sampling.penalty_freq = json_value(data, "frequency_penalty", defaults.sampling.penalty_freq);
  184. params.sampling.penalty_present = json_value(data, "presence_penalty", defaults.sampling.penalty_present);
  185. params.sampling.dry_multiplier = json_value(data, "dry_multiplier", defaults.sampling.dry_multiplier);
  186. params.sampling.dry_base = json_value(data, "dry_base", defaults.sampling.dry_base);
  187. params.sampling.dry_allowed_length = json_value(data, "dry_allowed_length", defaults.sampling.dry_allowed_length);
  188. params.sampling.dry_penalty_last_n = json_value(data, "dry_penalty_last_n", defaults.sampling.dry_penalty_last_n);
  189. params.sampling.mirostat = json_value(data, "mirostat", defaults.sampling.mirostat);
  190. params.sampling.mirostat_tau = json_value(data, "mirostat_tau", defaults.sampling.mirostat_tau);
  191. params.sampling.mirostat_eta = json_value(data, "mirostat_eta", defaults.sampling.mirostat_eta);
  192. params.sampling.adaptive_target = json_value(data, "adaptive_target", defaults.sampling.adaptive_target);
  193. params.sampling.adaptive_decay = json_value(data, "adaptive_decay", defaults.sampling.adaptive_decay);
  194. params.sampling.seed = json_value(data, "seed", defaults.sampling.seed);
  195. params.sampling.n_probs = json_value(data, "n_probs", defaults.sampling.n_probs);
  196. params.sampling.min_keep = json_value(data, "min_keep", defaults.sampling.min_keep);
  197. params.sampling.backend_sampling = json_value(data, "backend_sampling", defaults.sampling.backend_sampling);
  198. params.post_sampling_probs = json_value(data, "post_sampling_probs", defaults.post_sampling_probs);
  199. params.speculative.n_min = json_value(data, "speculative.n_min", defaults.speculative.n_min);
  200. params.speculative.n_max = json_value(data, "speculative.n_max", defaults.speculative.n_max);
  201. params.speculative.p_min = json_value(data, "speculative.p_min", defaults.speculative.p_min);
  202. params.speculative.n_min = std::min(params.speculative.n_max, params.speculative.n_min);
  203. params.speculative.n_min = std::max(params.speculative.n_min, 0);
  204. params.speculative.n_max = std::max(params.speculative.n_max, 0);
  205. // Use OpenAI API logprobs only if n_probs wasn't provided
  206. if (data.contains("logprobs") && params.sampling.n_probs == defaults.sampling.n_probs){
  207. params.sampling.n_probs = json_value(data, "logprobs", defaults.sampling.n_probs);
  208. }
  209. if (data.contains("lora")) {
  210. if (data.at("lora").is_array()) {
  211. params.lora = parse_lora_request(data.at("lora"));
  212. } else {
  213. throw std::runtime_error("Error: 'lora' must be an array of objects with 'id' and 'scale' fields");
  214. }
  215. } else {
  216. params.lora = {};
  217. }
  218. // TODO: add more sanity checks for the input parameters
  219. if (params.sampling.penalty_last_n < -1) {
  220. throw std::runtime_error("Error: repeat_last_n must be >= -1");
  221. }
  222. if (params.sampling.dry_penalty_last_n < -1) {
  223. throw std::runtime_error("Error: dry_penalty_last_n must be >= -1");
  224. }
  225. if (params.sampling.penalty_last_n == -1) {
  226. // note: should be the slot's context and not the full context, but it's ok
  227. params.sampling.penalty_last_n = n_ctx_slot;
  228. }
  229. if (params.sampling.dry_penalty_last_n == -1) {
  230. params.sampling.dry_penalty_last_n = n_ctx_slot;
  231. }
  232. if (params.sampling.dry_base < 1.0f) {
  233. params.sampling.dry_base = defaults.sampling.dry_base;
  234. }
  235. // sequence breakers for DRY
  236. {
  237. // Currently, this is not compatible with TextGen WebUI, Koboldcpp and SillyTavern format
  238. // Ref: https://github.com/oobabooga/text-generation-webui/blob/d1af7a41ade7bd3c3a463bfa640725edb818ebaf/extensions/openai/typing.py#L39
  239. if (data.contains("dry_sequence_breakers")) {
  240. params.sampling.dry_sequence_breakers = json_value(data, "dry_sequence_breakers", std::vector<std::string>());
  241. if (params.sampling.dry_sequence_breakers.empty()) {
  242. throw std::runtime_error("Error: dry_sequence_breakers must be a non-empty array of strings");
  243. }
  244. }
  245. }
  246. // process "json_schema" and "grammar"
  247. if (data.contains("json_schema") && !data.contains("grammar")) {
  248. try {
  249. auto schema = json_value(data, "json_schema", json::object());
  250. SRV_DBG("JSON schema: %s\n", schema.dump(2).c_str());
  251. params.sampling.grammar = json_schema_to_grammar(schema);
  252. SRV_DBG("Converted grammar: %s\n", params.sampling.grammar.c_str());
  253. } catch (const std::exception & e) {
  254. throw std::runtime_error(std::string("\"json_schema\": ") + e.what());
  255. }
  256. } else {
  257. params.sampling.grammar = json_value(data, "grammar", defaults.sampling.grammar);
  258. SRV_DBG("Grammar: %s\n", params.sampling.grammar.c_str());
  259. params.sampling.grammar_lazy = json_value(data, "grammar_lazy", defaults.sampling.grammar_lazy);
  260. SRV_DBG("Grammar lazy: %s\n", params.sampling.grammar_lazy ? "true" : "false");
  261. }
  262. {
  263. auto it = data.find("chat_format");
  264. if (it != data.end()) {
  265. params.chat_parser_params.format = static_cast<common_chat_format>(it->get<int>());
  266. SRV_INF("Chat format: %s\n", common_chat_format_name(params.chat_parser_params.format));
  267. } else {
  268. params.chat_parser_params.format = defaults.chat_parser_params.format;
  269. }
  270. common_reasoning_format reasoning_format = params_base.reasoning_format;
  271. if (data.contains("reasoning_format")) {
  272. reasoning_format = common_reasoning_format_from_name(data.at("reasoning_format").get<std::string>());
  273. }
  274. params.chat_parser_params.reasoning_format = reasoning_format;
  275. params.chat_parser_params.reasoning_in_content = params.stream && (reasoning_format == COMMON_REASONING_FORMAT_DEEPSEEK_LEGACY);
  276. params.chat_parser_params.thinking_forced_open = json_value(data, "thinking_forced_open", false);
  277. params.chat_parser_params.parse_tool_calls = json_value(data, "parse_tool_calls", false);
  278. if (data.contains("chat_parser")) {
  279. params.chat_parser_params.parser.load(data.at("chat_parser").get<std::string>());
  280. }
  281. }
  282. {
  283. const auto preserved_tokens = data.find("preserved_tokens");
  284. if (preserved_tokens != data.end()) {
  285. for (const auto & t : *preserved_tokens) {
  286. auto ids = common_tokenize(vocab, t.get<std::string>(), /* add_special= */ false, /* parse_special= */ true);
  287. if (ids.size() == 1) {
  288. SRV_DBG("Preserved token: %d\n", ids[0]);
  289. params.sampling.preserved_tokens.insert(ids[0]);
  290. } else {
  291. // This may happen when using a tool call style meant for a model with special tokens to preserve on a model without said tokens.
  292. SRV_DBG("Not preserved because more than 1 token: %s\n", t.get<std::string>().c_str());
  293. }
  294. }
  295. }
  296. const auto grammar_triggers = data.find("grammar_triggers");
  297. if (grammar_triggers != data.end()) {
  298. for (const auto & t : *grammar_triggers) {
  299. server_grammar_trigger ct(t);
  300. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_WORD) {
  301. const auto & word = ct.value.value;
  302. auto ids = common_tokenize(vocab, word, /* add_special= */ false, /* parse_special= */ true);
  303. if (ids.size() == 1) {
  304. auto token = ids[0];
  305. if (std::find(params.sampling.preserved_tokens.begin(), params.sampling.preserved_tokens.end(), (llama_token) token) == params.sampling.preserved_tokens.end()) {
  306. throw std::runtime_error("Grammar trigger word should be marked as preserved token: " + word);
  307. }
  308. SRV_DBG("Grammar trigger token: %d (`%s`)\n", token, word.c_str());
  309. common_grammar_trigger trigger;
  310. trigger.type = COMMON_GRAMMAR_TRIGGER_TYPE_TOKEN;
  311. trigger.value = word;
  312. trigger.token = token;
  313. params.sampling.grammar_triggers.push_back(std::move(trigger));
  314. } else {
  315. SRV_DBG("Grammar trigger word: `%s`\n", word.c_str());
  316. params.sampling.grammar_triggers.push_back({COMMON_GRAMMAR_TRIGGER_TYPE_WORD, word});
  317. }
  318. } else {
  319. if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN) {
  320. SRV_DBG("Grammar trigger pattern: `%s`\n", ct.value.value.c_str());
  321. } else if (ct.value.type == COMMON_GRAMMAR_TRIGGER_TYPE_PATTERN_FULL) {
  322. SRV_DBG("Grammar trigger pattern full: `%s`\n", ct.value.value.c_str());
  323. } else {
  324. throw std::runtime_error("Unknown grammar trigger type");
  325. }
  326. params.sampling.grammar_triggers.emplace_back(std::move(ct.value));
  327. }
  328. }
  329. }
  330. if (params.sampling.grammar_lazy && params.sampling.grammar_triggers.empty()) {
  331. throw std::runtime_error("Error: no triggers set for lazy grammar!");
  332. }
  333. }
  334. {
  335. params.sampling.logit_bias.clear();
  336. const auto & logit_bias = data.find("logit_bias");
  337. if (logit_bias != data.end() && logit_bias->is_array()) {
  338. const int n_vocab = llama_vocab_n_tokens(vocab);
  339. for (const auto & el : *logit_bias) {
  340. // TODO: we may want to throw errors here, in case "el" is incorrect
  341. if (el.is_array() && el.size() == 2) {
  342. float bias;
  343. if (el[1].is_number()) {
  344. bias = el[1].get<float>();
  345. } else if (el[1].is_boolean() && !el[1].get<bool>()) {
  346. bias = -INFINITY;
  347. } else {
  348. continue;
  349. }
  350. if (el[0].is_number_integer()) {
  351. llama_token tok = el[0].get<llama_token>();
  352. if (tok >= 0 && tok < n_vocab) {
  353. params.sampling.logit_bias.push_back({tok, bias});
  354. }
  355. } else if (el[0].is_string()) {
  356. auto toks = common_tokenize(vocab, el[0].get<std::string>(), false);
  357. for (auto tok : toks) {
  358. params.sampling.logit_bias.push_back({tok, bias});
  359. }
  360. }
  361. }
  362. }
  363. } else if (logit_bias != data.end() && logit_bias->is_object()) {
  364. const int n_vocab = llama_vocab_n_tokens(vocab);
  365. for (const auto & el : logit_bias->items()) {
  366. float bias;
  367. const auto & key = el.key();
  368. const auto & value = el.value();
  369. if (value.is_number()) {
  370. bias = value.get<float>();
  371. } else if (value.is_boolean() && !value.get<bool>()) {
  372. bias = -INFINITY;
  373. } else {
  374. continue;
  375. }
  376. char *end;
  377. llama_token tok = strtol(key.c_str(), &end, 10);
  378. if (*end == 0) {
  379. if (tok >= 0 && tok < n_vocab) {
  380. params.sampling.logit_bias.push_back({tok, bias});
  381. }
  382. } else {
  383. auto toks = common_tokenize(vocab, key, false);
  384. for (auto tok : toks) {
  385. params.sampling.logit_bias.push_back({tok, bias});
  386. }
  387. }
  388. }
  389. }
  390. params.sampling.ignore_eos = json_value(data, "ignore_eos", params_base.sampling.ignore_eos);
  391. if (params.sampling.ignore_eos) {
  392. params.sampling.logit_bias.insert(
  393. params.sampling.logit_bias.end(),
  394. defaults.sampling.logit_bias_eog.begin(), defaults.sampling.logit_bias_eog.end());
  395. }
  396. }
  397. {
  398. params.antiprompt.clear();
  399. const auto & stop = data.find("stop");
  400. if (stop != data.end() && stop->is_array()) {
  401. for (const auto & word : *stop) {
  402. if (!word.empty()) {
  403. params.antiprompt.push_back(word);
  404. }
  405. }
  406. }
  407. // set reverse prompt from cli args if not set in the request
  408. if (params.antiprompt.empty()) {
  409. params.antiprompt = defaults.antiprompt;
  410. }
  411. }
  412. {
  413. const auto samplers = data.find("samplers");
  414. if (samplers != data.end()) {
  415. if (samplers->is_array()) {
  416. params.sampling.samplers = common_sampler_types_from_names(*samplers, false);
  417. } else if (samplers->is_string()){
  418. params.sampling.samplers = common_sampler_types_from_chars(samplers->get<std::string>());
  419. }
  420. } else {
  421. params.sampling.samplers = defaults.sampling.samplers;
  422. }
  423. }
  424. if (params.n_cmpl > params_base.n_parallel) {
  425. throw std::runtime_error("n_cmpl cannot be greater than the number of slots, please increase -np");
  426. }
  427. return params;
  428. }
  429. //
  430. // result_timings
  431. //
  432. json result_timings::to_json() const {
  433. json base = {
  434. {"cache_n", cache_n},
  435. {"prompt_n", prompt_n},
  436. {"prompt_ms", prompt_ms},
  437. {"prompt_per_token_ms", prompt_per_token_ms},
  438. {"prompt_per_second", prompt_per_second},
  439. {"predicted_n", predicted_n},
  440. {"predicted_ms", predicted_ms},
  441. {"predicted_per_token_ms", predicted_per_token_ms},
  442. {"predicted_per_second", predicted_per_second},
  443. };
  444. if (draft_n > 0) {
  445. base["draft_n"] = draft_n;
  446. base["draft_n_accepted"] = draft_n_accepted;
  447. }
  448. return base;
  449. }
  450. //
  451. // result_prompt_progress
  452. //
  453. json result_prompt_progress::to_json() const {
  454. return json {
  455. {"total", total},
  456. {"cache", cache},
  457. {"processed", processed},
  458. {"time_ms", time_ms},
  459. };
  460. }
  461. static inline std::string stop_type_to_str(stop_type type) {
  462. switch (type) {
  463. case STOP_TYPE_EOS: return "eos";
  464. case STOP_TYPE_WORD: return "word";
  465. case STOP_TYPE_LIMIT: return "limit";
  466. default: return "none";
  467. }
  468. }
  469. //
  470. // completion_token_output
  471. //
  472. json completion_token_output::to_json(bool post_sampling_probs) const {
  473. json probs_for_token = json::array();
  474. for (const auto & p : probs) {
  475. std::string txt(p.txt);
  476. txt.resize(validate_utf8(txt));
  477. probs_for_token.push_back(json {
  478. {"id", p.tok},
  479. {"token", txt},
  480. {"bytes", str_to_bytes(p.txt)},
  481. {
  482. post_sampling_probs ? "prob" : "logprob",
  483. post_sampling_probs ? p.prob : logarithm(p.prob)
  484. },
  485. });
  486. }
  487. return probs_for_token;
  488. }
  489. json completion_token_output::probs_vector_to_json(const std::vector<completion_token_output> & probs, bool post_sampling_probs) {
  490. json out = json::array();
  491. for (const auto & p : probs) {
  492. std::string txt(p.text_to_send);
  493. txt.resize(validate_utf8(txt));
  494. out.push_back(json {
  495. {"id", p.tok},
  496. {"token", txt},
  497. {"bytes", str_to_bytes(p.text_to_send)},
  498. {
  499. post_sampling_probs ? "prob" : "logprob",
  500. post_sampling_probs ? p.prob : logarithm(p.prob)
  501. },
  502. {
  503. post_sampling_probs ? "top_probs" : "top_logprobs",
  504. p.to_json(post_sampling_probs)
  505. },
  506. });
  507. }
  508. return out;
  509. }
  510. float completion_token_output::logarithm(float x) {
  511. // nlohmann::json converts -inf to null, so we need to prevent that
  512. return x == 0.0f ? std::numeric_limits<float>::lowest() : std::log(x);
  513. }
  514. std::vector<unsigned char> completion_token_output::str_to_bytes(const std::string & str) {
  515. std::vector<unsigned char> bytes;
  516. for (unsigned char c : str) {
  517. bytes.push_back(c);
  518. }
  519. return bytes;
  520. }
  521. //
  522. // server_task_result_cmpl_final
  523. //
  524. json server_task_result_cmpl_final::to_json() {
  525. GGML_ASSERT(is_updated && "update() must be called before to_json()");
  526. switch (res_type) {
  527. case TASK_RESPONSE_TYPE_NONE:
  528. return to_json_non_oaicompat();
  529. case TASK_RESPONSE_TYPE_OAI_CMPL:
  530. return to_json_oaicompat();
  531. case TASK_RESPONSE_TYPE_OAI_CHAT:
  532. return stream ? to_json_oaicompat_chat_stream() : to_json_oaicompat_chat();
  533. case TASK_RESPONSE_TYPE_ANTHROPIC:
  534. return stream ? to_json_anthropic_stream() : to_json_anthropic();
  535. default:
  536. GGML_ASSERT(false && "Invalid task_response_type");
  537. }
  538. }
  539. json server_task_result_cmpl_final::to_json_non_oaicompat() {
  540. json res = json {
  541. {"index", index},
  542. {"content", content},
  543. {"tokens", tokens},
  544. {"id_slot", id_slot},
  545. {"stop", true},
  546. {"model", oaicompat_model},
  547. {"tokens_predicted", n_decoded},
  548. {"tokens_evaluated", n_prompt_tokens},
  549. {"generation_settings", generation_params.to_json()},
  550. {"prompt", prompt},
  551. {"has_new_line", has_new_line},
  552. {"truncated", truncated},
  553. {"stop_type", stop_type_to_str(stop)},
  554. {"stopping_word", stopping_word},
  555. {"tokens_cached", n_tokens_cached},
  556. {"timings", timings.to_json()},
  557. };
  558. if (!stream && !probs_output.empty()) {
  559. res["completion_probabilities"] = completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs);
  560. }
  561. return response_fields.empty() ? res : json_get_nested_values(response_fields, res);
  562. }
  563. json server_task_result_cmpl_final::to_json_oaicompat() {
  564. std::time_t t = std::time(0);
  565. json logprobs = json(nullptr); // OAI default to null
  566. if (!stream && probs_output.size() > 0) {
  567. logprobs = json{
  568. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  569. };
  570. }
  571. json finish_reason = "length";
  572. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  573. finish_reason = "stop";
  574. }
  575. json res = json {
  576. {"choices", json::array({
  577. json{
  578. {"text", content},
  579. {"index", index},
  580. {"logprobs", logprobs},
  581. {"finish_reason", finish_reason},
  582. }
  583. })},
  584. {"created", t},
  585. {"model", oaicompat_model},
  586. {"system_fingerprint", build_info},
  587. {"object", "text_completion"},
  588. {"usage", json {
  589. {"completion_tokens", n_decoded},
  590. {"prompt_tokens", n_prompt_tokens},
  591. {"total_tokens", n_decoded + n_prompt_tokens}
  592. }},
  593. {"id", oaicompat_cmpl_id}
  594. };
  595. // extra fields for debugging purposes
  596. if (verbose) {
  597. res["__verbose"] = to_json_non_oaicompat();
  598. }
  599. if (timings.prompt_n >= 0) {
  600. res.push_back({"timings", timings.to_json()});
  601. }
  602. return res;
  603. }
  604. json server_task_result_cmpl_final::to_json_oaicompat_chat() {
  605. std::string finish_reason = "length";
  606. common_chat_msg msg;
  607. if (!oaicompat_msg.empty()) {
  608. msg = oaicompat_msg;
  609. } else {
  610. msg.role = "assistant";
  611. msg.content = content;
  612. }
  613. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  614. finish_reason = msg.tool_calls.empty() ? "stop" : "tool_calls";
  615. }
  616. json choice {
  617. {"finish_reason", finish_reason},
  618. {"index", index},
  619. {"message", msg.to_json_oaicompat<json>()},
  620. };
  621. if (!stream && probs_output.size() > 0) {
  622. choice["logprobs"] = json{
  623. {"content", completion_token_output::probs_vector_to_json(probs_output, post_sampling_probs)},
  624. };
  625. }
  626. std::time_t t = std::time(0);
  627. json res = json {
  628. {"choices", json::array({choice})},
  629. {"created", t},
  630. {"model", oaicompat_model},
  631. {"system_fingerprint", build_info},
  632. {"object", "chat.completion"},
  633. {"usage", json {
  634. {"completion_tokens", n_decoded},
  635. {"prompt_tokens", n_prompt_tokens},
  636. {"total_tokens", n_decoded + n_prompt_tokens}
  637. }},
  638. {"id", oaicompat_cmpl_id}
  639. };
  640. // extra fields for debugging purposes
  641. if (verbose) {
  642. res["__verbose"] = to_json_non_oaicompat();
  643. }
  644. if (timings.prompt_n >= 0) {
  645. res.push_back({"timings", timings.to_json()});
  646. }
  647. return res;
  648. }
  649. common_chat_msg task_result_state::update_chat_msg(
  650. const std::string & text_added,
  651. bool is_partial,
  652. std::vector<common_chat_msg_diff> & diffs) {
  653. generated_text += text_added;
  654. auto msg_prv_copy = chat_msg;
  655. SRV_DBG("Parsing chat message: %s\n", generated_text.c_str());
  656. auto new_msg = common_chat_parse(
  657. generated_text,
  658. is_partial,
  659. chat_parser_params);
  660. if (!new_msg.empty()) {
  661. new_msg.set_tool_call_ids(generated_tool_call_ids, gen_tool_call_id);
  662. chat_msg = new_msg;
  663. diffs = common_chat_msg_diff::compute_diffs(msg_prv_copy, new_msg.empty() ? msg_prv_copy : new_msg);
  664. }
  665. return chat_msg;
  666. }
  667. json server_task_result_cmpl_final::to_json_oaicompat_chat_stream() {
  668. std::time_t t = std::time(0);
  669. std::string finish_reason = "length";
  670. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  671. finish_reason = oaicompat_msg.tool_calls.empty() ? "stop" : "tool_calls";
  672. }
  673. json deltas = json::array();
  674. for (const auto & diff : oaicompat_msg_diffs) {
  675. deltas.push_back({
  676. {"choices", json::array({
  677. json {
  678. {"finish_reason", nullptr},
  679. {"index", 0},
  680. {"delta", common_chat_msg_diff_to_json_oaicompat<json>(diff)},
  681. },
  682. })},
  683. {"created", t},
  684. {"id", oaicompat_cmpl_id},
  685. {"model", oaicompat_model},
  686. {"system_fingerprint", build_info},
  687. {"object", "chat.completion.chunk"},
  688. });
  689. }
  690. deltas.push_back({
  691. {"choices", json::array({
  692. json {
  693. {"finish_reason", finish_reason},
  694. {"index", 0},
  695. {"delta", json::object()},
  696. },
  697. })},
  698. {"created", t},
  699. {"id", oaicompat_cmpl_id},
  700. {"model", oaicompat_model},
  701. {"system_fingerprint", build_info},
  702. {"object", "chat.completion.chunk"},
  703. });
  704. if (include_usage) {
  705. // OpenAI API spec for chat.completion.chunks specifies an empty `choices` array for the last chunk when including usage
  706. // https://platform.openai.com/docs/api-reference/chat_streaming/streaming#chat_streaming/streaming-choices
  707. deltas.push_back({
  708. {"choices", json::array()},
  709. {"created", t},
  710. {"id", oaicompat_cmpl_id},
  711. {"model", oaicompat_model},
  712. {"system_fingerprint", build_info},
  713. {"object", "chat.completion.chunk"},
  714. {"usage", json {
  715. {"completion_tokens", n_decoded},
  716. {"prompt_tokens", n_prompt_tokens},
  717. {"total_tokens", n_decoded + n_prompt_tokens},
  718. }},
  719. });
  720. }
  721. if (timings.prompt_n >= 0) {
  722. deltas.back().push_back({"timings", timings.to_json()});
  723. }
  724. // extra fields for debugging purposes
  725. if (verbose && !deltas.empty()) {
  726. deltas.front()["__verbose"] = to_json_non_oaicompat();
  727. }
  728. return deltas;
  729. }
  730. json server_task_result_cmpl_final::to_json_anthropic() {
  731. std::string stop_reason = "max_tokens";
  732. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  733. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  734. }
  735. json content_blocks = json::array();
  736. common_chat_msg msg;
  737. if (!oaicompat_msg.empty()) {
  738. msg = oaicompat_msg;
  739. } else {
  740. msg.role = "assistant";
  741. msg.content = content;
  742. }
  743. // thinking block comes first (Anthropic extended thinking format)
  744. if (!msg.reasoning_content.empty()) {
  745. content_blocks.push_back({
  746. {"type", "thinking"},
  747. {"thinking", msg.reasoning_content},
  748. {"signature", ""} // empty signature for local models (no cryptographic verification)
  749. });
  750. }
  751. if (!msg.content.empty()) {
  752. content_blocks.push_back({
  753. {"type", "text"},
  754. {"text", msg.content}
  755. });
  756. }
  757. for (const auto & tool_call : msg.tool_calls) {
  758. json tool_use_block = {
  759. {"type", "tool_use"},
  760. {"id", tool_call.id},
  761. {"name", tool_call.name}
  762. };
  763. try {
  764. tool_use_block["input"] = json::parse(tool_call.arguments);
  765. } catch (const std::exception &) {
  766. tool_use_block["input"] = json::object();
  767. }
  768. content_blocks.push_back(tool_use_block);
  769. }
  770. json res = {
  771. {"id", oaicompat_cmpl_id},
  772. {"type", "message"},
  773. {"role", "assistant"},
  774. {"content", content_blocks},
  775. {"model", oaicompat_model},
  776. {"stop_reason", stop_reason},
  777. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)},
  778. {"usage", {
  779. {"input_tokens", n_prompt_tokens},
  780. {"output_tokens", n_decoded}
  781. }}
  782. };
  783. return res;
  784. }
  785. json server_task_result_cmpl_final::to_json_anthropic_stream() {
  786. json events = json::array();
  787. std::string stop_reason = "max_tokens";
  788. if (stop == STOP_TYPE_WORD || stop == STOP_TYPE_EOS) {
  789. stop_reason = oaicompat_msg.tool_calls.empty() ? "end_turn" : "tool_use";
  790. }
  791. bool has_thinking = !oaicompat_msg.reasoning_content.empty();
  792. bool has_text = !oaicompat_msg.content.empty();
  793. size_t num_tool_calls = oaicompat_msg.tool_calls.size();
  794. // content block indices: thinking (0) -> text (0 or 1) -> tool_use (n+)
  795. size_t thinking_block_index = 0;
  796. size_t text_block_index = has_thinking ? 1 : 0;
  797. bool thinking_block_started = false;
  798. bool text_block_started = false;
  799. std::unordered_set<size_t> tool_calls_started;
  800. for (const auto & diff : oaicompat_msg_diffs) {
  801. // handle thinking/reasoning content
  802. if (!diff.reasoning_content_delta.empty()) {
  803. if (!thinking_block_started) {
  804. events.push_back({
  805. {"event", "content_block_start"},
  806. {"data", {
  807. {"type", "content_block_start"},
  808. {"index", thinking_block_index},
  809. {"content_block", {
  810. {"type", "thinking"},
  811. {"thinking", ""}
  812. }}
  813. }}
  814. });
  815. thinking_block_started = true;
  816. }
  817. events.push_back({
  818. {"event", "content_block_delta"},
  819. {"data", {
  820. {"type", "content_block_delta"},
  821. {"index", thinking_block_index},
  822. {"delta", {
  823. {"type", "thinking_delta"},
  824. {"thinking", diff.reasoning_content_delta}
  825. }}
  826. }}
  827. });
  828. }
  829. // handle regular text content
  830. if (!diff.content_delta.empty()) {
  831. if (!text_block_started) {
  832. events.push_back({
  833. {"event", "content_block_start"},
  834. {"data", {
  835. {"type", "content_block_start"},
  836. {"index", text_block_index},
  837. {"content_block", {
  838. {"type", "text"},
  839. {"text", ""}
  840. }}
  841. }}
  842. });
  843. text_block_started = true;
  844. }
  845. events.push_back({
  846. {"event", "content_block_delta"},
  847. {"data", {
  848. {"type", "content_block_delta"},
  849. {"index", text_block_index},
  850. {"delta", {
  851. {"type", "text_delta"},
  852. {"text", diff.content_delta}
  853. }}
  854. }}
  855. });
  856. }
  857. // handle tool calls
  858. if (diff.tool_call_index != std::string::npos) {
  859. size_t content_block_index = (has_thinking ? 1 : 0) + (has_text ? 1 : 0) + diff.tool_call_index;
  860. if (tool_calls_started.find(diff.tool_call_index) == tool_calls_started.end()) {
  861. const auto & full_tool_call = oaicompat_msg.tool_calls[diff.tool_call_index];
  862. events.push_back({
  863. {"event", "content_block_start"},
  864. {"data", {
  865. {"type", "content_block_start"},
  866. {"index", content_block_index},
  867. {"content_block", {
  868. {"type", "tool_use"},
  869. {"id", full_tool_call.id},
  870. {"name", full_tool_call.name}
  871. }}
  872. }}
  873. });
  874. tool_calls_started.insert(diff.tool_call_index);
  875. }
  876. if (!diff.tool_call_delta.arguments.empty()) {
  877. events.push_back({
  878. {"event", "content_block_delta"},
  879. {"data", {
  880. {"type", "content_block_delta"},
  881. {"index", content_block_index},
  882. {"delta", {
  883. {"type", "input_json_delta"},
  884. {"partial_json", diff.tool_call_delta.arguments}
  885. }}
  886. }}
  887. });
  888. }
  889. }
  890. }
  891. // close content blocks in order
  892. if (has_thinking) {
  893. // Anthropic API requires a signature_delta before closing thinking blocks
  894. // We use an empty signature since we can't generate a cryptographic signature for local models
  895. events.push_back({
  896. {"event", "content_block_delta"},
  897. {"data", {
  898. {"type", "content_block_delta"},
  899. {"index", thinking_block_index},
  900. {"delta", {
  901. {"type", "signature_delta"},
  902. {"signature", ""}
  903. }}
  904. }}
  905. });
  906. events.push_back({
  907. {"event", "content_block_stop"},
  908. {"data", {
  909. {"type", "content_block_stop"},
  910. {"index", thinking_block_index}
  911. }}
  912. });
  913. }
  914. if (has_text) {
  915. events.push_back({
  916. {"event", "content_block_stop"},
  917. {"data", {
  918. {"type", "content_block_stop"},
  919. {"index", text_block_index}
  920. }}
  921. });
  922. }
  923. for (size_t i = 0; i < num_tool_calls; i++) {
  924. size_t content_block_index = (has_thinking ? 1 : 0) + (has_text ? 1 : 0) + i;
  925. events.push_back({
  926. {"event", "content_block_stop"},
  927. {"data", {
  928. {"type", "content_block_stop"},
  929. {"index", content_block_index}
  930. }}
  931. });
  932. }
  933. events.push_back({
  934. {"event", "message_delta"},
  935. {"data", {
  936. {"type", "message_delta"},
  937. {"delta", {
  938. {"stop_reason", stop_reason},
  939. {"stop_sequence", stopping_word.empty() ? nullptr : json(stopping_word)}
  940. }},
  941. {"usage", {
  942. {"output_tokens", n_decoded}
  943. }}
  944. }}
  945. });
  946. events.push_back({
  947. {"event", "message_stop"},
  948. {"data", {
  949. {"type", "message_stop"}
  950. }}
  951. });
  952. return events;
  953. }
  954. //
  955. // server_task_result_cmpl_partial
  956. //
  957. json server_task_result_cmpl_partial::to_json() {
  958. GGML_ASSERT(is_updated && "update() must be called before to_json()");
  959. switch (res_type) {
  960. case TASK_RESPONSE_TYPE_NONE:
  961. return to_json_non_oaicompat();
  962. case TASK_RESPONSE_TYPE_OAI_CMPL:
  963. return to_json_oaicompat();
  964. case TASK_RESPONSE_TYPE_OAI_CHAT:
  965. return to_json_oaicompat_chat();
  966. case TASK_RESPONSE_TYPE_ANTHROPIC:
  967. return to_json_anthropic();
  968. default:
  969. GGML_ASSERT(false && "Invalid task_response_type");
  970. }
  971. }
  972. json server_task_result_cmpl_partial::to_json_non_oaicompat() {
  973. // non-OAI-compat JSON
  974. json res = json {
  975. {"index", index},
  976. {"content", content},
  977. {"tokens", tokens},
  978. {"stop", false},
  979. {"id_slot", id_slot},
  980. {"tokens_predicted", n_decoded},
  981. {"tokens_evaluated", n_prompt_tokens},
  982. };
  983. // populate the timings object when needed (usually for the last response or with timings_per_token enabled)
  984. if (timings.prompt_n > 0) {
  985. res.push_back({"timings", timings.to_json()});
  986. }
  987. if (is_progress) {
  988. res.push_back({"prompt_progress", progress.to_json()});
  989. }
  990. if (!prob_output.probs.empty()) {
  991. res["completion_probabilities"] = completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs);
  992. }
  993. return res;
  994. }
  995. json server_task_result_cmpl_partial::to_json_oaicompat() {
  996. std::time_t t = std::time(0);
  997. json logprobs = json(nullptr); // OAI default to null
  998. if (prob_output.probs.size() > 0) {
  999. logprobs = json{
  1000. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  1001. };
  1002. }
  1003. json res = json {
  1004. {"choices", json::array({
  1005. json{
  1006. {"text", content},
  1007. {"index", index},
  1008. {"logprobs", logprobs},
  1009. {"finish_reason", nullptr},
  1010. }
  1011. })},
  1012. {"created", t},
  1013. {"model", oaicompat_model},
  1014. {"system_fingerprint", build_info},
  1015. {"object", "text_completion"},
  1016. {"id", oaicompat_cmpl_id}
  1017. };
  1018. // extra fields for debugging purposes
  1019. if (verbose) {
  1020. res["__verbose"] = to_json_non_oaicompat();
  1021. }
  1022. if (timings.prompt_n >= 0) {
  1023. res.push_back({"timings", timings.to_json()});
  1024. }
  1025. if (is_progress) {
  1026. res.push_back({"prompt_progress", progress.to_json()});
  1027. }
  1028. return res;
  1029. }
  1030. json server_task_result_cmpl_partial::to_json_oaicompat_chat() {
  1031. bool first = n_decoded == 1;
  1032. std::time_t t = std::time(0);
  1033. json choices;
  1034. std::vector<json> deltas;
  1035. auto add_delta = [&](const json & delta) {
  1036. deltas.push_back({
  1037. {"choices", json::array({
  1038. json {
  1039. {"finish_reason", nullptr},
  1040. {"index", index},
  1041. {"delta", delta},
  1042. },
  1043. })},
  1044. {"created", t},
  1045. {"id", oaicompat_cmpl_id},
  1046. {"model", oaicompat_model},
  1047. {"system_fingerprint", build_info},
  1048. {"object", "chat.completion.chunk"},
  1049. });
  1050. };
  1051. // We have to send an initial update to conform to openai behavior
  1052. if (first || is_progress) {
  1053. add_delta({
  1054. {"role", "assistant"},
  1055. {"content", nullptr},
  1056. });
  1057. }
  1058. for (const auto & diff : oaicompat_msg_diffs) {
  1059. add_delta(common_chat_msg_diff_to_json_oaicompat<json>(diff));
  1060. }
  1061. if (!deltas.empty()) {
  1062. auto & last_json = deltas[deltas.size() - 1];
  1063. GGML_ASSERT(last_json.at("choices").size() >= 1);
  1064. if (prob_output.probs.size() > 0) {
  1065. last_json.at("choices").at(0)["logprobs"] = json {
  1066. {"content", completion_token_output::probs_vector_to_json({prob_output}, post_sampling_probs)},
  1067. };
  1068. }
  1069. if (timings.prompt_n >= 0) {
  1070. last_json.push_back({"timings", timings.to_json()});
  1071. }
  1072. if (is_progress) {
  1073. last_json.push_back({"prompt_progress", progress.to_json()});
  1074. }
  1075. }
  1076. return deltas;
  1077. }
  1078. //
  1079. // server_task_result_embd
  1080. //
  1081. json server_task_result_embd::to_json() {
  1082. return res_type == TASK_RESPONSE_TYPE_OAI_EMBD
  1083. ? to_json_oaicompat()
  1084. : to_json_non_oaicompat();
  1085. }
  1086. json server_task_result_embd::to_json_non_oaicompat() {
  1087. return json {
  1088. {"index", index},
  1089. {"embedding", embedding},
  1090. };
  1091. }
  1092. json server_task_result_embd::to_json_oaicompat() {
  1093. return json {
  1094. {"index", index},
  1095. {"embedding", embedding[0]},
  1096. {"tokens_evaluated", n_tokens},
  1097. };
  1098. }
  1099. //
  1100. // server_task_result_rerank
  1101. //
  1102. json server_task_result_rerank::to_json() {
  1103. return json {
  1104. {"index", index},
  1105. {"score", score},
  1106. {"tokens_evaluated", n_tokens},
  1107. };
  1108. }
  1109. json server_task_result_cmpl_partial::to_json_anthropic() {
  1110. json events = json::array();
  1111. bool first = (n_decoded == 1);
  1112. // use member variables to track block state across streaming calls
  1113. // (anthropic_thinking_block_started, anthropic_text_block_started)
  1114. if (first) {
  1115. events.push_back({
  1116. {"event", "message_start"},
  1117. {"data", {
  1118. {"type", "message_start"},
  1119. {"message", {
  1120. {"id", oaicompat_cmpl_id},
  1121. {"type", "message"},
  1122. {"role", "assistant"},
  1123. {"content", json::array()},
  1124. {"model", oaicompat_model},
  1125. {"stop_reason", nullptr},
  1126. {"stop_sequence", nullptr},
  1127. {"usage", {
  1128. {"input_tokens", n_prompt_tokens},
  1129. {"output_tokens", 0}
  1130. }}
  1131. }}
  1132. }}
  1133. });
  1134. }
  1135. // content block indices: thinking (0) -> text (0 or 1) -> tool_use (n+)
  1136. size_t thinking_block_index = 0;
  1137. // use anthropic_has_reasoning (set in update()) to know if ANY reasoning was generated
  1138. size_t text_block_index = anthropic_has_reasoning ? 1 : 0;
  1139. // use local copies of streaming state (copied from task_result_state in update())
  1140. // these reflect the state BEFORE this chunk was processed
  1141. bool thinking_started = anthropic_thinking_block_started;
  1142. bool text_started = anthropic_text_block_started;
  1143. for (const auto & diff : oaicompat_msg_diffs) {
  1144. // handle thinking/reasoning content
  1145. if (!diff.reasoning_content_delta.empty()) {
  1146. if (!thinking_started) {
  1147. events.push_back({
  1148. {"event", "content_block_start"},
  1149. {"data", {
  1150. {"type", "content_block_start"},
  1151. {"index", thinking_block_index},
  1152. {"content_block", {
  1153. {"type", "thinking"},
  1154. {"thinking", ""}
  1155. }}
  1156. }}
  1157. });
  1158. thinking_started = true;
  1159. }
  1160. events.push_back({
  1161. {"event", "content_block_delta"},
  1162. {"data", {
  1163. {"type", "content_block_delta"},
  1164. {"index", thinking_block_index},
  1165. {"delta", {
  1166. {"type", "thinking_delta"},
  1167. {"thinking", diff.reasoning_content_delta}
  1168. }}
  1169. }}
  1170. });
  1171. }
  1172. // handle regular text content
  1173. if (!diff.content_delta.empty()) {
  1174. if (!text_started) {
  1175. events.push_back({
  1176. {"event", "content_block_start"},
  1177. {"data", {
  1178. {"type", "content_block_start"},
  1179. {"index", text_block_index},
  1180. {"content_block", {
  1181. {"type", "text"},
  1182. {"text", ""}
  1183. }}
  1184. }}
  1185. });
  1186. text_started = true;
  1187. }
  1188. events.push_back({
  1189. {"event", "content_block_delta"},
  1190. {"data", {
  1191. {"type", "content_block_delta"},
  1192. {"index", text_block_index},
  1193. {"delta", {
  1194. {"type", "text_delta"},
  1195. {"text", diff.content_delta}
  1196. }}
  1197. }}
  1198. });
  1199. }
  1200. // handle tool calls
  1201. if (diff.tool_call_index != std::string::npos) {
  1202. // use anthropic_has_reasoning for thinking block count (persists across calls)
  1203. size_t content_block_index = (anthropic_has_reasoning ? 1 : 0) + (text_started ? 1 : 0) + diff.tool_call_index;
  1204. if (!diff.tool_call_delta.name.empty()) {
  1205. events.push_back({
  1206. {"event", "content_block_start"},
  1207. {"data", {
  1208. {"type", "content_block_start"},
  1209. {"index", content_block_index},
  1210. {"content_block", {
  1211. {"type", "tool_use"},
  1212. {"id", diff.tool_call_delta.id},
  1213. {"name", diff.tool_call_delta.name}
  1214. }}
  1215. }}
  1216. });
  1217. }
  1218. if (!diff.tool_call_delta.arguments.empty()) {
  1219. events.push_back({
  1220. {"event", "content_block_delta"},
  1221. {"data", {
  1222. {"type", "content_block_delta"},
  1223. {"index", content_block_index},
  1224. {"delta", {
  1225. {"type", "input_json_delta"},
  1226. {"partial_json", diff.tool_call_delta.arguments}
  1227. }}
  1228. }}
  1229. });
  1230. }
  1231. }
  1232. }
  1233. return events;
  1234. }
  1235. //
  1236. // server_task_result_error
  1237. //
  1238. json server_task_result_error::to_json() {
  1239. json res = format_error_response(err_msg, err_type);
  1240. if (err_type == ERROR_TYPE_EXCEED_CONTEXT_SIZE) {
  1241. res["n_prompt_tokens"] = n_prompt_tokens;
  1242. res["n_ctx"] = n_ctx;
  1243. }
  1244. return res;
  1245. }
  1246. //
  1247. // server_task_result_metrics
  1248. //
  1249. json server_task_result_metrics::to_json() {
  1250. return json {
  1251. { "idle", n_idle_slots },
  1252. { "processing", n_processing_slots },
  1253. { "deferred", n_tasks_deferred },
  1254. { "t_start", t_start },
  1255. { "n_prompt_tokens_processed_total", n_prompt_tokens_processed_total },
  1256. { "t_tokens_generation_total", t_tokens_generation_total },
  1257. { "n_tokens_predicted_total", n_tokens_predicted_total },
  1258. { "t_prompt_processing_total", t_prompt_processing_total },
  1259. { "n_tokens_max", n_tokens_max },
  1260. { "n_prompt_tokens_processed", n_prompt_tokens_processed },
  1261. { "t_prompt_processing", t_prompt_processing },
  1262. { "n_tokens_predicted", n_tokens_predicted },
  1263. { "t_tokens_generation", t_tokens_generation },
  1264. { "n_decode_total", n_decode_total },
  1265. { "n_busy_slots_total", n_busy_slots_total },
  1266. { "slots", slots_data },
  1267. };
  1268. }
  1269. //
  1270. // server_task_result_slot_save_load
  1271. //
  1272. json server_task_result_slot_save_load::to_json() {
  1273. if (is_save) {
  1274. return json {
  1275. { "id_slot", id_slot },
  1276. { "filename", filename },
  1277. { "n_saved", n_tokens },
  1278. { "n_written", n_bytes },
  1279. { "timings", {
  1280. { "save_ms", t_ms }
  1281. }},
  1282. };
  1283. }
  1284. return json {
  1285. { "id_slot", id_slot },
  1286. { "filename", filename },
  1287. { "n_restored", n_tokens },
  1288. { "n_read", n_bytes },
  1289. { "timings", {
  1290. { "restore_ms", t_ms }
  1291. }},
  1292. };
  1293. }
  1294. //
  1295. // server_task_result_slot_erase
  1296. //
  1297. json server_task_result_slot_erase::to_json() {
  1298. return json {
  1299. { "id_slot", id_slot },
  1300. { "n_erased", n_erased },
  1301. };
  1302. }
  1303. //
  1304. // server_task_result_get_lora
  1305. //
  1306. json server_task_result_get_lora::to_json() {
  1307. json result = json::array();
  1308. for (size_t i = 0; i < loras.size(); ++i) {
  1309. auto & lora = loras[i];
  1310. json entry = {
  1311. {"id", i},
  1312. {"path", lora.info.path},
  1313. {"scale", lora.info.scale},
  1314. {"task_name", lora.info.task_name},
  1315. {"prompt_prefix", lora.info.prompt_prefix},
  1316. };
  1317. if (!lora.alora_invocation_tokens.empty()) {
  1318. entry["alora_invocation_string"] = lora.alora_invocation_string;
  1319. entry["alora_invocation_tokens"] = lora.alora_invocation_tokens;
  1320. }
  1321. result.push_back(std::move(entry));
  1322. }
  1323. return result;
  1324. }
  1325. //
  1326. // server_task_result_apply_lora
  1327. //
  1328. json server_task_result_apply_lora::to_json() {
  1329. return json {{ "success", true }};
  1330. }
  1331. //
  1332. // server_prompt_cache
  1333. //
  1334. size_t server_prompt_cache::size() const {
  1335. size_t res = 0;
  1336. for (const auto & state : states) {
  1337. res += state.size();
  1338. }
  1339. return res;
  1340. }
  1341. size_t server_prompt_cache::n_tokens() const {
  1342. size_t res = 0;
  1343. for (const auto & state : states) {
  1344. res += state.n_tokens();
  1345. }
  1346. return res;
  1347. }
  1348. server_prompt * server_prompt_cache::alloc(const server_prompt & prompt, size_t state_size) {
  1349. // first check if the current state is contained fully in the cache
  1350. for (auto it = states.begin(); it != states.end(); ++it) {
  1351. const int cur_lcp_len = it->tokens.get_common_prefix(prompt.tokens);
  1352. if (cur_lcp_len == (int) prompt.tokens.size()) {
  1353. SRV_WRN("%s", " - prompt is already in the cache, skipping\n");
  1354. return nullptr;
  1355. }
  1356. }
  1357. // next, remove any cached prompts that are fully contained in the current prompt
  1358. for (auto it = states.begin(); it != states.end();) {
  1359. const int len = it->tokens.get_common_prefix(prompt.tokens);
  1360. if (len == (int) it->tokens.size()) {
  1361. SRV_WRN(" - removing obsolete cached prompt with length %d\n", len);
  1362. it = states.erase(it);
  1363. } else {
  1364. ++it;
  1365. }
  1366. }
  1367. std::vector<uint8_t> state_data;
  1368. // check if we can allocate enough memory for the new state
  1369. try {
  1370. state_data.resize(state_size);
  1371. } catch (const std::bad_alloc & e) {
  1372. SRV_ERR("failed to allocate memory for prompt cache state: %s\n", e.what());
  1373. limit_size = std::max<size_t>(1, 0.4*size());
  1374. SRV_WRN(" - cache size limit reduced to %.3f MiB\n", limit_size / (1024.0 * 1024.0));
  1375. update();
  1376. return nullptr;
  1377. }
  1378. // TODO: for some reason we can't copy server_tokens, so we have to do this workaround
  1379. auto & cur = states.emplace_back();
  1380. cur = {
  1381. /*.tokens =*/ server_tokens(prompt.tokens.get_text_tokens(), false),
  1382. /*.data =*/ std::move(state_data),
  1383. /*.checkpoints =*/ prompt.checkpoints,
  1384. };
  1385. return &cur;
  1386. }
  1387. bool server_prompt_cache::load(server_prompt & prompt, const server_tokens & tokens_new, llama_context * ctx, int32_t id_slot) {
  1388. const int lcp_best = prompt.tokens.get_common_prefix(tokens_new);
  1389. float f_keep_best = float(lcp_best) / prompt.tokens.size();
  1390. float sim_best = float(lcp_best) / tokens_new.size();
  1391. SRV_WRN(" - looking for better prompt, base f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1392. auto it_best = states.end();
  1393. // find the most similar cached prompt, that would also preserve the most context
  1394. for (auto it = states.begin(); it != states.end(); ++it) {
  1395. const int lcp_cur = it->tokens.get_common_prefix(tokens_new);
  1396. const float f_keep_cur = float(lcp_cur) / it->tokens.size();
  1397. const float sim_cur = float(lcp_cur) / tokens_new.size();
  1398. // don't trash large prompts
  1399. if (f_keep_cur < 0.25f) {
  1400. continue;
  1401. }
  1402. if (f_keep_best < f_keep_cur && sim_best < sim_cur) {
  1403. f_keep_best = f_keep_cur;
  1404. sim_best = sim_cur;
  1405. it_best = it;
  1406. }
  1407. }
  1408. if (it_best != states.end()) {
  1409. SRV_WRN(" - found better prompt with f_keep = %.3f, sim = %.3f\n", f_keep_best, sim_best);
  1410. const size_t size = it_best->data.size();
  1411. const size_t n = llama_state_seq_set_data_ext(ctx, it_best->data.data(), size, id_slot, 0);
  1412. if (n != size) {
  1413. SRV_WRN("failed to restore state with size %zu\n", size);
  1414. return false;
  1415. }
  1416. it_best->data.clear();
  1417. it_best->data.shrink_to_fit();
  1418. prompt = std::move(*it_best);
  1419. states.erase(it_best);
  1420. }
  1421. return true;
  1422. }
  1423. void server_prompt_cache::update() {
  1424. if (limit_size > 0) {
  1425. // always keep at least one state, regardless of the limits
  1426. while (states.size() > 1 && size() > limit_size) {
  1427. if (states.empty()) {
  1428. break;
  1429. }
  1430. SRV_WRN(" - cache size limit reached, removing oldest entry (size = %.3f MiB)\n", states.front().size() / (1024.0 * 1024.0));
  1431. states.pop_front();
  1432. }
  1433. }
  1434. // average size per token
  1435. const float size_per_token = std::max<float>(1.0f, float(size()) / (std::max<size_t>(1, n_tokens())));
  1436. // dynamically increase the token limit if it can fit in the memory limit
  1437. const size_t limit_tokens_cur = limit_size > 0 ? std::max<size_t>(limit_tokens, limit_size/size_per_token) : limit_tokens;
  1438. if (limit_tokens > 0) {
  1439. while (states.size() > 1 && n_tokens() > limit_tokens_cur) {
  1440. if (states.empty()) {
  1441. break;
  1442. }
  1443. SRV_WRN(" - cache token limit (%zu, est: %zu) reached, removing oldest entry (size = %.3f MiB)\n",
  1444. limit_tokens, limit_tokens_cur, states.front().size() / (1024.0 * 1024.0));
  1445. states.pop_front();
  1446. }
  1447. }
  1448. SRV_WRN(" - cache state: %zu prompts, %.3f MiB (limits: %.3f MiB, %zu tokens, %zu est)\n",
  1449. states.size(), size() / (1024.0 * 1024.0), limit_size / (1024.0 * 1024.0), limit_tokens, limit_tokens_cur);
  1450. for (const auto & state : states) {
  1451. SRV_WRN(" - prompt %p: %7d tokens, checkpoints: %2zu, %9.3f MiB\n",
  1452. (const void *)&state, state.n_tokens(), state.checkpoints.size(), state.size() / (1024.0 * 1024.0));
  1453. }
  1454. }