llama-bench.cpp 60 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642
  1. #include <algorithm>
  2. #include <array>
  3. #include <cassert>
  4. #include <chrono>
  5. #include <cinttypes>
  6. #include <clocale>
  7. #include <cmath>
  8. #include <cstdio>
  9. #include <cstdlib>
  10. #include <cstring>
  11. #include <ctime>
  12. #include <iterator>
  13. #include <map>
  14. #include <numeric>
  15. #include <regex>
  16. #include <sstream>
  17. #include <string>
  18. #include <thread>
  19. #include <vector>
  20. #include "common.h"
  21. #include "ggml.h"
  22. #include "llama.h"
  23. #ifdef _WIN32
  24. # define WIN32_LEAN_AND_MEAN
  25. # ifndef NOMINMAX
  26. # define NOMINMAX
  27. # endif
  28. # include <windows.h>
  29. #endif
  30. // utils
  31. static uint64_t get_time_ns() {
  32. using clock = std::chrono::high_resolution_clock;
  33. return std::chrono::nanoseconds(clock::now().time_since_epoch()).count();
  34. }
  35. template <class T> static std::string join(const std::vector<T> & values, const std::string & delim) {
  36. std::ostringstream str;
  37. for (size_t i = 0; i < values.size(); i++) {
  38. str << values[i];
  39. if (i < values.size() - 1) {
  40. str << delim;
  41. }
  42. }
  43. return str.str();
  44. }
  45. template <typename T, typename F> static std::vector<std::string> transform_to_str(const std::vector<T> & values, F f) {
  46. std::vector<std::string> str_values;
  47. std::transform(values.begin(), values.end(), std::back_inserter(str_values), f);
  48. return str_values;
  49. }
  50. template <typename T> static T avg(const std::vector<T> & v) {
  51. if (v.empty()) {
  52. return 0;
  53. }
  54. T sum = std::accumulate(v.begin(), v.end(), T(0));
  55. return sum / (T) v.size();
  56. }
  57. template <typename T> static T stdev(const std::vector<T> & v) {
  58. if (v.size() <= 1) {
  59. return 0;
  60. }
  61. T mean = avg(v);
  62. T sq_sum = std::inner_product(v.begin(), v.end(), v.begin(), T(0));
  63. T stdev = std::sqrt(sq_sum / (T) (v.size() - 1) - mean * mean * (T) v.size() / (T) (v.size() - 1));
  64. return stdev;
  65. }
  66. static std::string get_cpu_info() {
  67. std::vector<std::string> cpu_list;
  68. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  69. auto * dev = ggml_backend_dev_get(i);
  70. auto dev_type = ggml_backend_dev_type(dev);
  71. if (dev_type == GGML_BACKEND_DEVICE_TYPE_CPU || dev_type == GGML_BACKEND_DEVICE_TYPE_ACCEL) {
  72. cpu_list.push_back(ggml_backend_dev_description(dev));
  73. }
  74. }
  75. return join(cpu_list, ", ");
  76. }
  77. static std::string get_gpu_info() {
  78. std::vector<std::string> gpu_list;
  79. for (size_t i = 0; i < ggml_backend_dev_count(); i++) {
  80. auto * dev = ggml_backend_dev_get(i);
  81. auto dev_type = ggml_backend_dev_type(dev);
  82. if (dev_type == GGML_BACKEND_DEVICE_TYPE_GPU) {
  83. gpu_list.push_back(ggml_backend_dev_description(dev));
  84. }
  85. }
  86. return join(gpu_list, ", ");
  87. }
  88. // command line params
  89. enum output_formats { NONE, CSV, JSON, JSONL, MARKDOWN, SQL };
  90. static const char * output_format_str(output_formats format) {
  91. switch (format) {
  92. case NONE:
  93. return "none";
  94. case CSV:
  95. return "csv";
  96. case JSON:
  97. return "json";
  98. case JSONL:
  99. return "jsonl";
  100. case MARKDOWN:
  101. return "md";
  102. case SQL:
  103. return "sql";
  104. default:
  105. GGML_ABORT("invalid output format");
  106. }
  107. }
  108. static bool output_format_from_str(const std::string & s, output_formats & format) {
  109. if (s == "none") {
  110. format = NONE;
  111. } else if (s == "csv") {
  112. format = CSV;
  113. } else if (s == "json") {
  114. format = JSON;
  115. } else if (s == "jsonl") {
  116. format = JSONL;
  117. } else if (s == "md") {
  118. format = MARKDOWN;
  119. } else if (s == "sql") {
  120. format = SQL;
  121. } else {
  122. return false;
  123. }
  124. return true;
  125. }
  126. static const char * split_mode_str(llama_split_mode mode) {
  127. switch (mode) {
  128. case LLAMA_SPLIT_MODE_NONE:
  129. return "none";
  130. case LLAMA_SPLIT_MODE_LAYER:
  131. return "layer";
  132. case LLAMA_SPLIT_MODE_ROW:
  133. return "row";
  134. default:
  135. GGML_ABORT("invalid split mode");
  136. }
  137. }
  138. static std::string pair_str(const std::pair<int, int> & p) {
  139. static char buf[32];
  140. snprintf(buf, sizeof(buf), "%d,%d", p.first, p.second);
  141. return buf;
  142. }
  143. struct cmd_params {
  144. std::vector<std::string> model;
  145. std::vector<int> n_prompt;
  146. std::vector<int> n_gen;
  147. std::vector<std::pair<int, int>> n_pg;
  148. std::vector<int> n_batch;
  149. std::vector<int> n_ubatch;
  150. std::vector<ggml_type> type_k;
  151. std::vector<ggml_type> type_v;
  152. std::vector<int> n_threads;
  153. std::vector<std::string> cpu_mask;
  154. std::vector<bool> cpu_strict;
  155. std::vector<int> poll;
  156. std::vector<int> n_gpu_layers;
  157. std::vector<std::string> rpc_servers;
  158. std::vector<llama_split_mode> split_mode;
  159. std::vector<int> main_gpu;
  160. std::vector<bool> no_kv_offload;
  161. std::vector<bool> flash_attn;
  162. std::vector<std::vector<float>> tensor_split;
  163. std::vector<bool> use_mmap;
  164. std::vector<bool> embeddings;
  165. ggml_numa_strategy numa;
  166. int reps;
  167. ggml_sched_priority prio;
  168. int delay;
  169. bool verbose;
  170. bool progress;
  171. output_formats output_format;
  172. output_formats output_format_stderr;
  173. };
  174. static const cmd_params cmd_params_defaults = {
  175. /* model */ { "models/7B/ggml-model-q4_0.gguf" },
  176. /* n_prompt */ { 512 },
  177. /* n_gen */ { 128 },
  178. /* n_pg */ {},
  179. /* n_batch */ { 2048 },
  180. /* n_ubatch */ { 512 },
  181. /* type_k */ { GGML_TYPE_F16 },
  182. /* type_v */ { GGML_TYPE_F16 },
  183. /* n_threads */ { cpu_get_num_math() },
  184. /* cpu_mask */ { "0x0" },
  185. /* cpu_strict */ { false },
  186. /* poll */ { 50 },
  187. /* n_gpu_layers */ { 99 },
  188. /* rpc_servers */ { "" },
  189. /* split_mode */ { LLAMA_SPLIT_MODE_LAYER },
  190. /* main_gpu */ { 0 },
  191. /* no_kv_offload */ { false },
  192. /* flash_attn */ { false },
  193. /* tensor_split */ { std::vector<float>(llama_max_devices(), 0.0f) },
  194. /* use_mmap */ { true },
  195. /* embeddings */ { false },
  196. /* numa */ GGML_NUMA_STRATEGY_DISABLED,
  197. /* reps */ 5,
  198. /* prio */ GGML_SCHED_PRIO_NORMAL,
  199. /* delay */ 0,
  200. /* verbose */ false,
  201. /* progress */ false,
  202. /* output_format */ MARKDOWN,
  203. /* output_format_stderr */ NONE,
  204. };
  205. static void print_usage(int /* argc */, char ** argv) {
  206. printf("usage: %s [options]\n", argv[0]);
  207. printf("\n");
  208. printf("options:\n");
  209. printf(" -h, --help\n");
  210. printf(" -m, --model <filename> (default: %s)\n", join(cmd_params_defaults.model, ",").c_str());
  211. printf(" -p, --n-prompt <n> (default: %s)\n",
  212. join(cmd_params_defaults.n_prompt, ",").c_str());
  213. printf(" -n, --n-gen <n> (default: %s)\n", join(cmd_params_defaults.n_gen, ",").c_str());
  214. printf(" -pg <pp,tg> (default: %s)\n",
  215. join(transform_to_str(cmd_params_defaults.n_pg, pair_str), ",").c_str());
  216. printf(" -b, --batch-size <n> (default: %s)\n",
  217. join(cmd_params_defaults.n_batch, ",").c_str());
  218. printf(" -ub, --ubatch-size <n> (default: %s)\n",
  219. join(cmd_params_defaults.n_ubatch, ",").c_str());
  220. printf(" -ctk, --cache-type-k <t> (default: %s)\n",
  221. join(transform_to_str(cmd_params_defaults.type_k, ggml_type_name), ",").c_str());
  222. printf(" -ctv, --cache-type-v <t> (default: %s)\n",
  223. join(transform_to_str(cmd_params_defaults.type_v, ggml_type_name), ",").c_str());
  224. printf(" -t, --threads <n> (default: %s)\n",
  225. join(cmd_params_defaults.n_threads, ",").c_str());
  226. printf(" -C, --cpu-mask <hex,hex> (default: %s)\n",
  227. join(cmd_params_defaults.cpu_mask, ",").c_str());
  228. printf(" --cpu-strict <0|1> (default: %s)\n",
  229. join(cmd_params_defaults.cpu_strict, ",").c_str());
  230. printf(" --poll <0...100> (default: %s)\n", join(cmd_params_defaults.poll, ",").c_str());
  231. printf(" -ngl, --n-gpu-layers <n> (default: %s)\n",
  232. join(cmd_params_defaults.n_gpu_layers, ",").c_str());
  233. if (llama_supports_rpc()) {
  234. printf(" -rpc, --rpc <rpc_servers> (default: %s)\n",
  235. join(cmd_params_defaults.rpc_servers, ",").c_str());
  236. }
  237. printf(" -sm, --split-mode <none|layer|row> (default: %s)\n",
  238. join(transform_to_str(cmd_params_defaults.split_mode, split_mode_str), ",").c_str());
  239. printf(" -mg, --main-gpu <i> (default: %s)\n",
  240. join(cmd_params_defaults.main_gpu, ",").c_str());
  241. printf(" -nkvo, --no-kv-offload <0|1> (default: %s)\n",
  242. join(cmd_params_defaults.no_kv_offload, ",").c_str());
  243. printf(" -fa, --flash-attn <0|1> (default: %s)\n",
  244. join(cmd_params_defaults.flash_attn, ",").c_str());
  245. printf(" -mmp, --mmap <0|1> (default: %s)\n",
  246. join(cmd_params_defaults.use_mmap, ",").c_str());
  247. printf(" --numa <distribute|isolate|numactl> (default: disabled)\n");
  248. printf(" -embd, --embeddings <0|1> (default: %s)\n",
  249. join(cmd_params_defaults.embeddings, ",").c_str());
  250. printf(" -ts, --tensor-split <ts0/ts1/..> (default: 0)\n");
  251. printf(" -r, --repetitions <n> (default: %d)\n", cmd_params_defaults.reps);
  252. printf(" --prio <0|1|2|3> (default: %d)\n", cmd_params_defaults.prio);
  253. printf(" --delay <0...N> (seconds) (default: %d)\n", cmd_params_defaults.delay);
  254. printf(" -o, --output <csv|json|jsonl|md|sql> (default: %s)\n",
  255. output_format_str(cmd_params_defaults.output_format));
  256. printf(" -oe, --output-err <csv|json|jsonl|md|sql> (default: %s)\n",
  257. output_format_str(cmd_params_defaults.output_format_stderr));
  258. printf(" -v, --verbose (default: %s)\n", cmd_params_defaults.verbose ? "1" : "0");
  259. printf(" --progress (default: %s)\n", cmd_params_defaults.progress ? "1" : "0");
  260. printf("\n");
  261. printf(
  262. "Multiple values can be given for each parameter by separating them with ',' or by specifying the parameter "
  263. "multiple times.\n");
  264. }
  265. static ggml_type ggml_type_from_name(const std::string & s) {
  266. if (s == "f16") {
  267. return GGML_TYPE_F16;
  268. }
  269. if (s == "bf16") {
  270. return GGML_TYPE_BF16;
  271. }
  272. if (s == "q8_0") {
  273. return GGML_TYPE_Q8_0;
  274. }
  275. if (s == "q4_0") {
  276. return GGML_TYPE_Q4_0;
  277. }
  278. if (s == "q4_1") {
  279. return GGML_TYPE_Q4_1;
  280. }
  281. if (s == "q5_0") {
  282. return GGML_TYPE_Q5_0;
  283. }
  284. if (s == "q5_1") {
  285. return GGML_TYPE_Q5_1;
  286. }
  287. if (s == "iq4_nl") {
  288. return GGML_TYPE_IQ4_NL;
  289. }
  290. return GGML_TYPE_COUNT;
  291. }
  292. static cmd_params parse_cmd_params(int argc, char ** argv) {
  293. cmd_params params;
  294. std::string arg;
  295. bool invalid_param = false;
  296. const std::string arg_prefix = "--";
  297. const char split_delim = ',';
  298. params.verbose = cmd_params_defaults.verbose;
  299. params.output_format = cmd_params_defaults.output_format;
  300. params.output_format_stderr = cmd_params_defaults.output_format_stderr;
  301. params.reps = cmd_params_defaults.reps;
  302. params.numa = cmd_params_defaults.numa;
  303. params.prio = cmd_params_defaults.prio;
  304. params.delay = cmd_params_defaults.delay;
  305. params.progress = cmd_params_defaults.progress;
  306. for (int i = 1; i < argc; i++) {
  307. arg = argv[i];
  308. if (arg.compare(0, arg_prefix.size(), arg_prefix) == 0) {
  309. std::replace(arg.begin(), arg.end(), '_', '-');
  310. }
  311. if (arg == "-h" || arg == "--help") {
  312. print_usage(argc, argv);
  313. exit(0);
  314. } else if (arg == "-m" || arg == "--model") {
  315. if (++i >= argc) {
  316. invalid_param = true;
  317. break;
  318. }
  319. auto p = string_split<std::string>(argv[i], split_delim);
  320. params.model.insert(params.model.end(), p.begin(), p.end());
  321. } else if (arg == "-p" || arg == "--n-prompt") {
  322. if (++i >= argc) {
  323. invalid_param = true;
  324. break;
  325. }
  326. auto p = string_split<int>(argv[i], split_delim);
  327. params.n_prompt.insert(params.n_prompt.end(), p.begin(), p.end());
  328. } else if (arg == "-n" || arg == "--n-gen") {
  329. if (++i >= argc) {
  330. invalid_param = true;
  331. break;
  332. }
  333. auto p = string_split<int>(argv[i], split_delim);
  334. params.n_gen.insert(params.n_gen.end(), p.begin(), p.end());
  335. } else if (arg == "-pg") {
  336. if (++i >= argc) {
  337. invalid_param = true;
  338. break;
  339. }
  340. auto p = string_split<std::string>(argv[i], ',');
  341. if (p.size() != 2) {
  342. invalid_param = true;
  343. break;
  344. }
  345. params.n_pg.push_back({ std::stoi(p[0]), std::stoi(p[1]) });
  346. } else if (arg == "-b" || arg == "--batch-size") {
  347. if (++i >= argc) {
  348. invalid_param = true;
  349. break;
  350. }
  351. auto p = string_split<int>(argv[i], split_delim);
  352. params.n_batch.insert(params.n_batch.end(), p.begin(), p.end());
  353. } else if (arg == "-ub" || arg == "--ubatch-size") {
  354. if (++i >= argc) {
  355. invalid_param = true;
  356. break;
  357. }
  358. auto p = string_split<int>(argv[i], split_delim);
  359. params.n_ubatch.insert(params.n_ubatch.end(), p.begin(), p.end());
  360. } else if (arg == "-ctk" || arg == "--cache-type-k") {
  361. if (++i >= argc) {
  362. invalid_param = true;
  363. break;
  364. }
  365. auto p = string_split<std::string>(argv[i], split_delim);
  366. std::vector<ggml_type> types;
  367. for (const auto & t : p) {
  368. ggml_type gt = ggml_type_from_name(t);
  369. if (gt == GGML_TYPE_COUNT) {
  370. invalid_param = true;
  371. break;
  372. }
  373. types.push_back(gt);
  374. }
  375. if (invalid_param) {
  376. break;
  377. }
  378. params.type_k.insert(params.type_k.end(), types.begin(), types.end());
  379. } else if (arg == "-ctv" || arg == "--cache-type-v") {
  380. if (++i >= argc) {
  381. invalid_param = true;
  382. break;
  383. }
  384. auto p = string_split<std::string>(argv[i], split_delim);
  385. std::vector<ggml_type> types;
  386. for (const auto & t : p) {
  387. ggml_type gt = ggml_type_from_name(t);
  388. if (gt == GGML_TYPE_COUNT) {
  389. invalid_param = true;
  390. break;
  391. }
  392. types.push_back(gt);
  393. }
  394. if (invalid_param) {
  395. break;
  396. }
  397. params.type_v.insert(params.type_v.end(), types.begin(), types.end());
  398. } else if (arg == "-t" || arg == "--threads") {
  399. if (++i >= argc) {
  400. invalid_param = true;
  401. break;
  402. }
  403. auto p = string_split<int>(argv[i], split_delim);
  404. params.n_threads.insert(params.n_threads.end(), p.begin(), p.end());
  405. } else if (arg == "-C" || arg == "--cpu-mask") {
  406. if (++i >= argc) {
  407. invalid_param = true;
  408. break;
  409. }
  410. auto p = string_split<std::string>(argv[i], split_delim);
  411. params.cpu_mask.insert(params.cpu_mask.end(), p.begin(), p.end());
  412. } else if (arg == "--cpu-strict") {
  413. if (++i >= argc) {
  414. invalid_param = true;
  415. break;
  416. }
  417. auto p = string_split<bool>(argv[i], split_delim);
  418. params.cpu_strict.insert(params.cpu_strict.end(), p.begin(), p.end());
  419. } else if (arg == "--poll") {
  420. if (++i >= argc) {
  421. invalid_param = true;
  422. break;
  423. }
  424. auto p = string_split<int>(argv[i], split_delim);
  425. params.poll.insert(params.poll.end(), p.begin(), p.end());
  426. } else if (arg == "-ngl" || arg == "--n-gpu-layers") {
  427. if (++i >= argc) {
  428. invalid_param = true;
  429. break;
  430. }
  431. auto p = string_split<int>(argv[i], split_delim);
  432. params.n_gpu_layers.insert(params.n_gpu_layers.end(), p.begin(), p.end());
  433. } else if (llama_supports_rpc() && (arg == "-rpc" || arg == "--rpc")) {
  434. if (++i >= argc) {
  435. invalid_param = true;
  436. break;
  437. }
  438. params.rpc_servers.push_back(argv[i]);
  439. } else if (arg == "-sm" || arg == "--split-mode") {
  440. if (++i >= argc) {
  441. invalid_param = true;
  442. break;
  443. }
  444. auto p = string_split<std::string>(argv[i], split_delim);
  445. std::vector<llama_split_mode> modes;
  446. for (const auto & m : p) {
  447. llama_split_mode mode;
  448. if (m == "none") {
  449. mode = LLAMA_SPLIT_MODE_NONE;
  450. } else if (m == "layer") {
  451. mode = LLAMA_SPLIT_MODE_LAYER;
  452. } else if (m == "row") {
  453. mode = LLAMA_SPLIT_MODE_ROW;
  454. } else {
  455. invalid_param = true;
  456. break;
  457. }
  458. modes.push_back(mode);
  459. }
  460. if (invalid_param) {
  461. break;
  462. }
  463. params.split_mode.insert(params.split_mode.end(), modes.begin(), modes.end());
  464. } else if (arg == "-mg" || arg == "--main-gpu") {
  465. if (++i >= argc) {
  466. invalid_param = true;
  467. break;
  468. }
  469. params.main_gpu = string_split<int>(argv[i], split_delim);
  470. } else if (arg == "-nkvo" || arg == "--no-kv-offload") {
  471. if (++i >= argc) {
  472. invalid_param = true;
  473. break;
  474. }
  475. auto p = string_split<bool>(argv[i], split_delim);
  476. params.no_kv_offload.insert(params.no_kv_offload.end(), p.begin(), p.end());
  477. } else if (arg == "--numa") {
  478. if (++i >= argc) {
  479. invalid_param = true;
  480. break;
  481. } else {
  482. std::string value(argv[i]);
  483. /**/ if (value == "distribute" || value == "") {
  484. params.numa = GGML_NUMA_STRATEGY_DISTRIBUTE;
  485. } else if (value == "isolate") {
  486. params.numa = GGML_NUMA_STRATEGY_ISOLATE;
  487. } else if (value == "numactl") {
  488. params.numa = GGML_NUMA_STRATEGY_NUMACTL;
  489. } else {
  490. invalid_param = true;
  491. break;
  492. }
  493. }
  494. } else if (arg == "-fa" || arg == "--flash-attn") {
  495. if (++i >= argc) {
  496. invalid_param = true;
  497. break;
  498. }
  499. auto p = string_split<bool>(argv[i], split_delim);
  500. params.flash_attn.insert(params.flash_attn.end(), p.begin(), p.end());
  501. } else if (arg == "-mmp" || arg == "--mmap") {
  502. if (++i >= argc) {
  503. invalid_param = true;
  504. break;
  505. }
  506. auto p = string_split<bool>(argv[i], split_delim);
  507. params.use_mmap.insert(params.use_mmap.end(), p.begin(), p.end());
  508. } else if (arg == "-embd" || arg == "--embeddings") {
  509. if (++i >= argc) {
  510. invalid_param = true;
  511. break;
  512. }
  513. auto p = string_split<bool>(argv[i], split_delim);
  514. params.embeddings.insert(params.embeddings.end(), p.begin(), p.end());
  515. } else if (arg == "-ts" || arg == "--tensor-split") {
  516. if (++i >= argc) {
  517. invalid_param = true;
  518. break;
  519. }
  520. for (auto ts : string_split<std::string>(argv[i], split_delim)) {
  521. // split string by ; and /
  522. const std::regex regex{ R"([;/]+)" };
  523. std::sregex_token_iterator it{ ts.begin(), ts.end(), regex, -1 };
  524. std::vector<std::string> split_arg{ it, {} };
  525. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  526. std::vector<float> tensor_split(llama_max_devices());
  527. for (size_t i = 0; i < llama_max_devices(); ++i) {
  528. if (i < split_arg.size()) {
  529. tensor_split[i] = std::stof(split_arg[i]);
  530. } else {
  531. tensor_split[i] = 0.0f;
  532. }
  533. }
  534. params.tensor_split.push_back(tensor_split);
  535. }
  536. } else if (arg == "-r" || arg == "--repetitions") {
  537. if (++i >= argc) {
  538. invalid_param = true;
  539. break;
  540. }
  541. params.reps = std::stoi(argv[i]);
  542. } else if (arg == "--prio") {
  543. if (++i >= argc) {
  544. invalid_param = true;
  545. break;
  546. }
  547. params.prio = (enum ggml_sched_priority) std::stoi(argv[i]);
  548. } else if (arg == "--delay") {
  549. if (++i >= argc) {
  550. invalid_param = true;
  551. break;
  552. }
  553. params.delay = std::stoi(argv[i]);
  554. } else if (arg == "-o" || arg == "--output") {
  555. if (++i >= argc) {
  556. invalid_param = true;
  557. break;
  558. }
  559. invalid_param = !output_format_from_str(argv[i], params.output_format);
  560. } else if (arg == "-oe" || arg == "--output-err") {
  561. if (++i >= argc) {
  562. invalid_param = true;
  563. break;
  564. }
  565. invalid_param = !output_format_from_str(argv[i], params.output_format_stderr);
  566. } else if (arg == "-v" || arg == "--verbose") {
  567. params.verbose = true;
  568. } else if (arg == "--progress") {
  569. params.progress = true;
  570. } else {
  571. invalid_param = true;
  572. break;
  573. }
  574. }
  575. if (invalid_param) {
  576. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  577. print_usage(argc, argv);
  578. exit(1);
  579. }
  580. // set defaults
  581. if (params.model.empty()) {
  582. params.model = cmd_params_defaults.model;
  583. }
  584. if (params.n_prompt.empty()) {
  585. params.n_prompt = cmd_params_defaults.n_prompt;
  586. }
  587. if (params.n_gen.empty()) {
  588. params.n_gen = cmd_params_defaults.n_gen;
  589. }
  590. if (params.n_pg.empty()) {
  591. params.n_pg = cmd_params_defaults.n_pg;
  592. }
  593. if (params.n_batch.empty()) {
  594. params.n_batch = cmd_params_defaults.n_batch;
  595. }
  596. if (params.n_ubatch.empty()) {
  597. params.n_ubatch = cmd_params_defaults.n_ubatch;
  598. }
  599. if (params.type_k.empty()) {
  600. params.type_k = cmd_params_defaults.type_k;
  601. }
  602. if (params.type_v.empty()) {
  603. params.type_v = cmd_params_defaults.type_v;
  604. }
  605. if (params.n_gpu_layers.empty()) {
  606. params.n_gpu_layers = cmd_params_defaults.n_gpu_layers;
  607. }
  608. if (params.rpc_servers.empty()) {
  609. params.rpc_servers = cmd_params_defaults.rpc_servers;
  610. }
  611. if (params.split_mode.empty()) {
  612. params.split_mode = cmd_params_defaults.split_mode;
  613. }
  614. if (params.main_gpu.empty()) {
  615. params.main_gpu = cmd_params_defaults.main_gpu;
  616. }
  617. if (params.no_kv_offload.empty()) {
  618. params.no_kv_offload = cmd_params_defaults.no_kv_offload;
  619. }
  620. if (params.flash_attn.empty()) {
  621. params.flash_attn = cmd_params_defaults.flash_attn;
  622. }
  623. if (params.tensor_split.empty()) {
  624. params.tensor_split = cmd_params_defaults.tensor_split;
  625. }
  626. if (params.use_mmap.empty()) {
  627. params.use_mmap = cmd_params_defaults.use_mmap;
  628. }
  629. if (params.embeddings.empty()) {
  630. params.embeddings = cmd_params_defaults.embeddings;
  631. }
  632. if (params.n_threads.empty()) {
  633. params.n_threads = cmd_params_defaults.n_threads;
  634. }
  635. if (params.cpu_mask.empty()) {
  636. params.cpu_mask = cmd_params_defaults.cpu_mask;
  637. }
  638. if (params.cpu_strict.empty()) {
  639. params.cpu_strict = cmd_params_defaults.cpu_strict;
  640. }
  641. if (params.poll.empty()) {
  642. params.poll = cmd_params_defaults.poll;
  643. }
  644. return params;
  645. }
  646. struct cmd_params_instance {
  647. std::string model;
  648. int n_prompt;
  649. int n_gen;
  650. int n_batch;
  651. int n_ubatch;
  652. ggml_type type_k;
  653. ggml_type type_v;
  654. int n_threads;
  655. std::string cpu_mask;
  656. bool cpu_strict;
  657. int poll;
  658. int n_gpu_layers;
  659. std::string rpc_servers;
  660. llama_split_mode split_mode;
  661. int main_gpu;
  662. bool no_kv_offload;
  663. bool flash_attn;
  664. std::vector<float> tensor_split;
  665. bool use_mmap;
  666. bool embeddings;
  667. llama_model_params to_llama_mparams() const {
  668. llama_model_params mparams = llama_model_default_params();
  669. mparams.n_gpu_layers = n_gpu_layers;
  670. if (!rpc_servers.empty()) {
  671. mparams.rpc_servers = rpc_servers.c_str();
  672. }
  673. mparams.split_mode = split_mode;
  674. mparams.main_gpu = main_gpu;
  675. mparams.tensor_split = tensor_split.data();
  676. mparams.use_mmap = use_mmap;
  677. return mparams;
  678. }
  679. bool equal_mparams(const cmd_params_instance & other) const {
  680. return model == other.model && n_gpu_layers == other.n_gpu_layers && rpc_servers == other.rpc_servers &&
  681. split_mode == other.split_mode && main_gpu == other.main_gpu && use_mmap == other.use_mmap &&
  682. tensor_split == other.tensor_split;
  683. }
  684. llama_context_params to_llama_cparams() const {
  685. llama_context_params cparams = llama_context_default_params();
  686. cparams.n_ctx = n_prompt + n_gen;
  687. cparams.n_batch = n_batch;
  688. cparams.n_ubatch = n_ubatch;
  689. cparams.type_k = type_k;
  690. cparams.type_v = type_v;
  691. cparams.offload_kqv = !no_kv_offload;
  692. cparams.flash_attn = flash_attn;
  693. cparams.embeddings = embeddings;
  694. return cparams;
  695. }
  696. };
  697. static std::vector<cmd_params_instance> get_cmd_params_instances(const cmd_params & params) {
  698. std::vector<cmd_params_instance> instances;
  699. // this ordering minimizes the number of times that each model needs to be reloaded
  700. // clang-format off
  701. for (const auto & m : params.model)
  702. for (const auto & nl : params.n_gpu_layers)
  703. for (const auto & rpc : params.rpc_servers)
  704. for (const auto & sm : params.split_mode)
  705. for (const auto & mg : params.main_gpu)
  706. for (const auto & ts : params.tensor_split)
  707. for (const auto & mmp : params.use_mmap)
  708. for (const auto & embd : params.embeddings)
  709. for (const auto & nb : params.n_batch)
  710. for (const auto & nub : params.n_ubatch)
  711. for (const auto & tk : params.type_k)
  712. for (const auto & tv : params.type_v)
  713. for (const auto & nkvo : params.no_kv_offload)
  714. for (const auto & fa : params.flash_attn)
  715. for (const auto & nt : params.n_threads)
  716. for (const auto & cm : params.cpu_mask)
  717. for (const auto & cs : params.cpu_strict)
  718. for (const auto & pl : params.poll) {
  719. for (const auto & n_prompt : params.n_prompt) {
  720. if (n_prompt == 0) {
  721. continue;
  722. }
  723. cmd_params_instance instance = {
  724. /* .model = */ m,
  725. /* .n_prompt = */ n_prompt,
  726. /* .n_gen = */ 0,
  727. /* .n_batch = */ nb,
  728. /* .n_ubatch = */ nub,
  729. /* .type_k = */ tk,
  730. /* .type_v = */ tv,
  731. /* .n_threads = */ nt,
  732. /* .cpu_mask = */ cm,
  733. /* .cpu_strict = */ cs,
  734. /* .poll = */ pl,
  735. /* .n_gpu_layers = */ nl,
  736. /* .rpc_servers = */ rpc,
  737. /* .split_mode = */ sm,
  738. /* .main_gpu = */ mg,
  739. /* .no_kv_offload= */ nkvo,
  740. /* .flash_attn = */ fa,
  741. /* .tensor_split = */ ts,
  742. /* .use_mmap = */ mmp,
  743. /* .embeddings = */ embd,
  744. };
  745. instances.push_back(instance);
  746. }
  747. for (const auto & n_gen : params.n_gen) {
  748. if (n_gen == 0) {
  749. continue;
  750. }
  751. cmd_params_instance instance = {
  752. /* .model = */ m,
  753. /* .n_prompt = */ 0,
  754. /* .n_gen = */ n_gen,
  755. /* .n_batch = */ nb,
  756. /* .n_ubatch = */ nub,
  757. /* .type_k = */ tk,
  758. /* .type_v = */ tv,
  759. /* .n_threads = */ nt,
  760. /* .cpu_mask = */ cm,
  761. /* .cpu_strict = */ cs,
  762. /* .poll = */ pl,
  763. /* .n_gpu_layers = */ nl,
  764. /* .rpc_servers = */ rpc,
  765. /* .split_mode = */ sm,
  766. /* .main_gpu = */ mg,
  767. /* .no_kv_offload= */ nkvo,
  768. /* .flash_attn = */ fa,
  769. /* .tensor_split = */ ts,
  770. /* .use_mmap = */ mmp,
  771. /* .embeddings = */ embd,
  772. };
  773. instances.push_back(instance);
  774. }
  775. for (const auto & n_pg : params.n_pg) {
  776. if (n_pg.first == 0 && n_pg.second == 0) {
  777. continue;
  778. }
  779. cmd_params_instance instance = {
  780. /* .model = */ m,
  781. /* .n_prompt = */ n_pg.first,
  782. /* .n_gen = */ n_pg.second,
  783. /* .n_batch = */ nb,
  784. /* .n_ubatch = */ nub,
  785. /* .type_k = */ tk,
  786. /* .type_v = */ tv,
  787. /* .n_threads = */ nt,
  788. /* .cpu_mask = */ cm,
  789. /* .cpu_strict = */ cs,
  790. /* .poll = */ pl,
  791. /* .n_gpu_layers = */ nl,
  792. /* .rpc_servers = */ rpc,
  793. /* .split_mode = */ sm,
  794. /* .main_gpu = */ mg,
  795. /* .no_kv_offload= */ nkvo,
  796. /* .flash_attn = */ fa,
  797. /* .tensor_split = */ ts,
  798. /* .use_mmap = */ mmp,
  799. /* .embeddings = */ embd,
  800. };
  801. instances.push_back(instance);
  802. }
  803. }
  804. // clang-format on
  805. return instances;
  806. }
  807. struct test {
  808. static const std::string build_commit;
  809. static const int build_number;
  810. static const std::string cpu_info;
  811. static const std::string gpu_info;
  812. std::string model_filename;
  813. std::string model_type;
  814. uint64_t model_size;
  815. uint64_t model_n_params;
  816. int n_batch;
  817. int n_ubatch;
  818. int n_threads;
  819. std::string cpu_mask;
  820. bool cpu_strict;
  821. int poll;
  822. ggml_type type_k;
  823. ggml_type type_v;
  824. int n_gpu_layers;
  825. llama_split_mode split_mode;
  826. int main_gpu;
  827. bool no_kv_offload;
  828. bool flash_attn;
  829. std::vector<float> tensor_split;
  830. bool use_mmap;
  831. bool embeddings;
  832. int n_prompt;
  833. int n_gen;
  834. std::string test_time;
  835. std::vector<uint64_t> samples_ns;
  836. test(const cmd_params_instance & inst, const llama_model * lmodel, const llama_context * ctx) {
  837. model_filename = inst.model;
  838. char buf[128];
  839. llama_model_desc(lmodel, buf, sizeof(buf));
  840. model_type = buf;
  841. model_size = llama_model_size(lmodel);
  842. model_n_params = llama_model_n_params(lmodel);
  843. n_batch = inst.n_batch;
  844. n_ubatch = inst.n_ubatch;
  845. n_threads = inst.n_threads;
  846. cpu_mask = inst.cpu_mask;
  847. cpu_strict = inst.cpu_strict;
  848. poll = inst.poll;
  849. type_k = inst.type_k;
  850. type_v = inst.type_v;
  851. n_gpu_layers = inst.n_gpu_layers;
  852. split_mode = inst.split_mode;
  853. main_gpu = inst.main_gpu;
  854. no_kv_offload = inst.no_kv_offload;
  855. flash_attn = inst.flash_attn;
  856. tensor_split = inst.tensor_split;
  857. use_mmap = inst.use_mmap;
  858. embeddings = inst.embeddings;
  859. n_prompt = inst.n_prompt;
  860. n_gen = inst.n_gen;
  861. // RFC 3339 date-time format
  862. time_t t = time(NULL);
  863. std::strftime(buf, sizeof(buf), "%FT%TZ", gmtime(&t));
  864. test_time = buf;
  865. (void) ctx;
  866. }
  867. uint64_t avg_ns() const { return ::avg(samples_ns); }
  868. uint64_t stdev_ns() const { return ::stdev(samples_ns); }
  869. std::vector<double> get_ts() const {
  870. int n_tokens = n_prompt + n_gen;
  871. std::vector<double> ts;
  872. std::transform(samples_ns.begin(), samples_ns.end(), std::back_inserter(ts),
  873. [n_tokens](uint64_t t) { return 1e9 * n_tokens / t; });
  874. return ts;
  875. }
  876. double avg_ts() const { return ::avg(get_ts()); }
  877. double stdev_ts() const { return ::stdev(get_ts()); }
  878. static std::string get_backend() {
  879. std::vector<std::string> backends;
  880. for (size_t i = 0; i < ggml_backend_reg_count(); i++) {
  881. auto * reg = ggml_backend_reg_get(i);
  882. std::string name = ggml_backend_reg_name(reg);
  883. if (name != "CPU") {
  884. backends.push_back(ggml_backend_reg_name(reg));
  885. }
  886. }
  887. return backends.empty() ? "CPU" : join(backends, ",");
  888. }
  889. static const std::vector<std::string> & get_fields() {
  890. static const std::vector<std::string> fields = {
  891. "build_commit", "build_number", "cpu_info", "gpu_info", "backends", "model_filename",
  892. "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "n_threads",
  893. "cpu_mask", "cpu_strict", "poll", "type_k", "type_v", "n_gpu_layers",
  894. "split_mode", "main_gpu", "no_kv_offload", "flash_attn", "tensor_split", "use_mmap",
  895. "embeddings", "n_prompt", "n_gen", "test_time", "avg_ns", "stddev_ns",
  896. "avg_ts", "stddev_ts",
  897. };
  898. return fields;
  899. }
  900. enum field_type { STRING, BOOL, INT, FLOAT };
  901. static field_type get_field_type(const std::string & field) {
  902. if (field == "build_number" || field == "n_batch" || field == "n_ubatch" || field == "n_threads" ||
  903. field == "poll" || field == "model_size" || field == "model_n_params" || field == "n_gpu_layers" ||
  904. field == "main_gpu" || field == "n_prompt" || field == "n_gen" || field == "avg_ns" ||
  905. field == "stddev_ns") {
  906. return INT;
  907. }
  908. if (field == "f16_kv" || field == "no_kv_offload" || field == "cpu_strict" || field == "flash_attn" ||
  909. field == "use_mmap" || field == "embeddings") {
  910. return BOOL;
  911. }
  912. if (field == "avg_ts" || field == "stddev_ts") {
  913. return FLOAT;
  914. }
  915. return STRING;
  916. }
  917. std::vector<std::string> get_values() const {
  918. std::string tensor_split_str;
  919. int max_nonzero = 0;
  920. for (size_t i = 0; i < llama_max_devices(); i++) {
  921. if (tensor_split[i] > 0) {
  922. max_nonzero = i;
  923. }
  924. }
  925. for (int i = 0; i <= max_nonzero; i++) {
  926. char buf[32];
  927. snprintf(buf, sizeof(buf), "%.2f", tensor_split[i]);
  928. tensor_split_str += buf;
  929. if (i < max_nonzero) {
  930. tensor_split_str += "/";
  931. }
  932. }
  933. std::vector<std::string> values = { build_commit,
  934. std::to_string(build_number),
  935. cpu_info,
  936. gpu_info,
  937. get_backend(),
  938. model_filename,
  939. model_type,
  940. std::to_string(model_size),
  941. std::to_string(model_n_params),
  942. std::to_string(n_batch),
  943. std::to_string(n_ubatch),
  944. std::to_string(n_threads),
  945. cpu_mask,
  946. std::to_string(cpu_strict),
  947. std::to_string(poll),
  948. ggml_type_name(type_k),
  949. ggml_type_name(type_v),
  950. std::to_string(n_gpu_layers),
  951. split_mode_str(split_mode),
  952. std::to_string(main_gpu),
  953. std::to_string(no_kv_offload),
  954. std::to_string(flash_attn),
  955. tensor_split_str,
  956. std::to_string(use_mmap),
  957. std::to_string(embeddings),
  958. std::to_string(n_prompt),
  959. std::to_string(n_gen),
  960. test_time,
  961. std::to_string(avg_ns()),
  962. std::to_string(stdev_ns()),
  963. std::to_string(avg_ts()),
  964. std::to_string(stdev_ts()) };
  965. return values;
  966. }
  967. std::map<std::string, std::string> get_map() const {
  968. std::map<std::string, std::string> map;
  969. auto fields = get_fields();
  970. auto values = get_values();
  971. std::transform(fields.begin(), fields.end(), values.begin(), std::inserter(map, map.end()),
  972. std::make_pair<const std::string &, const std::string &>);
  973. return map;
  974. }
  975. };
  976. const std::string test::build_commit = LLAMA_COMMIT;
  977. const int test::build_number = LLAMA_BUILD_NUMBER;
  978. const std::string test::cpu_info = get_cpu_info();
  979. const std::string test::gpu_info = get_gpu_info();
  980. struct printer {
  981. virtual ~printer() {}
  982. FILE * fout;
  983. virtual void print_header(const cmd_params & params) { (void) params; }
  984. virtual void print_test(const test & t) = 0;
  985. virtual void print_footer() {}
  986. };
  987. struct csv_printer : public printer {
  988. static std::string escape_csv(const std::string & field) {
  989. std::string escaped = "\"";
  990. for (auto c : field) {
  991. if (c == '"') {
  992. escaped += "\"";
  993. }
  994. escaped += c;
  995. }
  996. escaped += "\"";
  997. return escaped;
  998. }
  999. void print_header(const cmd_params & params) override {
  1000. std::vector<std::string> fields = test::get_fields();
  1001. fprintf(fout, "%s\n", join(fields, ",").c_str());
  1002. (void) params;
  1003. }
  1004. void print_test(const test & t) override {
  1005. std::vector<std::string> values = t.get_values();
  1006. std::transform(values.begin(), values.end(), values.begin(), escape_csv);
  1007. fprintf(fout, "%s\n", join(values, ",").c_str());
  1008. }
  1009. };
  1010. static std::string escape_json(const std::string & value) {
  1011. std::string escaped;
  1012. for (auto c : value) {
  1013. if (c == '"') {
  1014. escaped += "\\\"";
  1015. } else if (c == '\\') {
  1016. escaped += "\\\\";
  1017. } else if (c <= 0x1f) {
  1018. char buf[8];
  1019. snprintf(buf, sizeof(buf), "\\u%04x", c);
  1020. escaped += buf;
  1021. } else {
  1022. escaped += c;
  1023. }
  1024. }
  1025. return escaped;
  1026. }
  1027. static std::string format_json_value(const std::string & field, const std::string & value) {
  1028. switch (test::get_field_type(field)) {
  1029. case test::STRING:
  1030. return "\"" + escape_json(value) + "\"";
  1031. case test::BOOL:
  1032. return value == "0" ? "false" : "true";
  1033. default:
  1034. return value;
  1035. }
  1036. }
  1037. struct json_printer : public printer {
  1038. bool first = true;
  1039. void print_header(const cmd_params & params) override {
  1040. fprintf(fout, "[\n");
  1041. (void) params;
  1042. }
  1043. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1044. assert(fields.size() == values.size());
  1045. for (size_t i = 0; i < fields.size(); i++) {
  1046. fprintf(fout, " \"%s\": %s,\n", fields.at(i).c_str(),
  1047. format_json_value(fields.at(i), values.at(i)).c_str());
  1048. }
  1049. }
  1050. void print_test(const test & t) override {
  1051. if (first) {
  1052. first = false;
  1053. } else {
  1054. fprintf(fout, ",\n");
  1055. }
  1056. fprintf(fout, " {\n");
  1057. print_fields(test::get_fields(), t.get_values());
  1058. fprintf(fout, " \"samples_ns\": [ %s ],\n", join(t.samples_ns, ", ").c_str());
  1059. fprintf(fout, " \"samples_ts\": [ %s ]\n", join(t.get_ts(), ", ").c_str());
  1060. fprintf(fout, " }");
  1061. fflush(fout);
  1062. }
  1063. void print_footer() override { fprintf(fout, "\n]\n"); }
  1064. };
  1065. struct jsonl_printer : public printer {
  1066. void print_fields(const std::vector<std::string> & fields, const std::vector<std::string> & values) {
  1067. assert(fields.size() == values.size());
  1068. for (size_t i = 0; i < fields.size(); i++) {
  1069. fprintf(fout, "\"%s\": %s, ", fields.at(i).c_str(), format_json_value(fields.at(i), values.at(i)).c_str());
  1070. }
  1071. }
  1072. void print_test(const test & t) override {
  1073. fprintf(fout, "{");
  1074. print_fields(test::get_fields(), t.get_values());
  1075. fprintf(fout, "\"samples_ns\": [ %s ],", join(t.samples_ns, ", ").c_str());
  1076. fprintf(fout, "\"samples_ts\": [ %s ]", join(t.get_ts(), ", ").c_str());
  1077. fprintf(fout, "}\n");
  1078. fflush(fout);
  1079. }
  1080. };
  1081. struct markdown_printer : public printer {
  1082. std::vector<std::string> fields;
  1083. static int get_field_width(const std::string & field) {
  1084. if (field == "model") {
  1085. return -30;
  1086. }
  1087. if (field == "t/s") {
  1088. return 20;
  1089. }
  1090. if (field == "size" || field == "params") {
  1091. return 10;
  1092. }
  1093. if (field == "n_gpu_layers") {
  1094. return 3;
  1095. }
  1096. if (field == "n_threads") {
  1097. return 7;
  1098. }
  1099. if (field == "n_batch") {
  1100. return 7;
  1101. }
  1102. if (field == "n_ubatch") {
  1103. return 8;
  1104. }
  1105. if (field == "type_k" || field == "type_v") {
  1106. return 6;
  1107. }
  1108. if (field == "split_mode") {
  1109. return 5;
  1110. }
  1111. if (field == "flash_attn") {
  1112. return 2;
  1113. }
  1114. if (field == "use_mmap") {
  1115. return 4;
  1116. }
  1117. if (field == "test") {
  1118. return 13;
  1119. }
  1120. int width = std::max((int) field.length(), 10);
  1121. if (test::get_field_type(field) == test::STRING) {
  1122. return -width;
  1123. }
  1124. return width;
  1125. }
  1126. static std::string get_field_display_name(const std::string & field) {
  1127. if (field == "n_gpu_layers") {
  1128. return "ngl";
  1129. }
  1130. if (field == "split_mode") {
  1131. return "sm";
  1132. }
  1133. if (field == "n_threads") {
  1134. return "threads";
  1135. }
  1136. if (field == "no_kv_offload") {
  1137. return "nkvo";
  1138. }
  1139. if (field == "flash_attn") {
  1140. return "fa";
  1141. }
  1142. if (field == "use_mmap") {
  1143. return "mmap";
  1144. }
  1145. if (field == "embeddings") {
  1146. return "embd";
  1147. }
  1148. if (field == "tensor_split") {
  1149. return "ts";
  1150. }
  1151. return field;
  1152. }
  1153. void print_header(const cmd_params & params) override {
  1154. // select fields to print
  1155. fields.emplace_back("model");
  1156. fields.emplace_back("size");
  1157. fields.emplace_back("params");
  1158. fields.emplace_back("backend");
  1159. bool is_cpu_backend = test::get_backend().find("CPU") != std::string::npos ||
  1160. test::get_backend().find("BLAS") != std::string::npos;
  1161. if (!is_cpu_backend) {
  1162. fields.emplace_back("n_gpu_layers");
  1163. }
  1164. if (params.n_threads.size() > 1 || params.n_threads != cmd_params_defaults.n_threads || is_cpu_backend) {
  1165. fields.emplace_back("n_threads");
  1166. }
  1167. if (params.cpu_mask.size() > 1 || params.cpu_mask != cmd_params_defaults.cpu_mask) {
  1168. fields.emplace_back("cpu_mask");
  1169. }
  1170. if (params.cpu_strict.size() > 1 || params.cpu_strict != cmd_params_defaults.cpu_strict) {
  1171. fields.emplace_back("cpu_strict");
  1172. }
  1173. if (params.poll.size() > 1 || params.poll != cmd_params_defaults.poll) {
  1174. fields.emplace_back("poll");
  1175. }
  1176. if (params.n_batch.size() > 1 || params.n_batch != cmd_params_defaults.n_batch) {
  1177. fields.emplace_back("n_batch");
  1178. }
  1179. if (params.n_ubatch.size() > 1 || params.n_ubatch != cmd_params_defaults.n_ubatch) {
  1180. fields.emplace_back("n_ubatch");
  1181. }
  1182. if (params.type_k.size() > 1 || params.type_k != cmd_params_defaults.type_k) {
  1183. fields.emplace_back("type_k");
  1184. }
  1185. if (params.type_v.size() > 1 || params.type_v != cmd_params_defaults.type_v) {
  1186. fields.emplace_back("type_v");
  1187. }
  1188. if (params.main_gpu.size() > 1 || params.main_gpu != cmd_params_defaults.main_gpu) {
  1189. fields.emplace_back("main_gpu");
  1190. }
  1191. if (params.split_mode.size() > 1 || params.split_mode != cmd_params_defaults.split_mode) {
  1192. fields.emplace_back("split_mode");
  1193. }
  1194. if (params.no_kv_offload.size() > 1 || params.no_kv_offload != cmd_params_defaults.no_kv_offload) {
  1195. fields.emplace_back("no_kv_offload");
  1196. }
  1197. if (params.flash_attn.size() > 1 || params.flash_attn != cmd_params_defaults.flash_attn) {
  1198. fields.emplace_back("flash_attn");
  1199. }
  1200. if (params.tensor_split.size() > 1 || params.tensor_split != cmd_params_defaults.tensor_split) {
  1201. fields.emplace_back("tensor_split");
  1202. }
  1203. if (params.use_mmap.size() > 1 || params.use_mmap != cmd_params_defaults.use_mmap) {
  1204. fields.emplace_back("use_mmap");
  1205. }
  1206. if (params.embeddings.size() > 1 || params.embeddings != cmd_params_defaults.embeddings) {
  1207. fields.emplace_back("embeddings");
  1208. }
  1209. fields.emplace_back("test");
  1210. fields.emplace_back("t/s");
  1211. fprintf(fout, "|");
  1212. for (const auto & field : fields) {
  1213. fprintf(fout, " %*s |", get_field_width(field), get_field_display_name(field).c_str());
  1214. }
  1215. fprintf(fout, "\n");
  1216. fprintf(fout, "|");
  1217. for (const auto & field : fields) {
  1218. int width = get_field_width(field);
  1219. fprintf(fout, " %s%s |", std::string(std::abs(width) - 1, '-').c_str(), width > 0 ? ":" : "-");
  1220. }
  1221. fprintf(fout, "\n");
  1222. }
  1223. void print_test(const test & t) override {
  1224. std::map<std::string, std::string> vmap = t.get_map();
  1225. fprintf(fout, "|");
  1226. for (const auto & field : fields) {
  1227. std::string value;
  1228. char buf[128];
  1229. if (field == "model") {
  1230. value = t.model_type;
  1231. } else if (field == "size") {
  1232. if (t.model_size < 1024 * 1024 * 1024) {
  1233. snprintf(buf, sizeof(buf), "%.2f MiB", t.model_size / 1024.0 / 1024.0);
  1234. } else {
  1235. snprintf(buf, sizeof(buf), "%.2f GiB", t.model_size / 1024.0 / 1024.0 / 1024.0);
  1236. }
  1237. value = buf;
  1238. } else if (field == "params") {
  1239. if (t.model_n_params < 1000 * 1000 * 1000) {
  1240. snprintf(buf, sizeof(buf), "%.2f M", t.model_n_params / 1e6);
  1241. } else {
  1242. snprintf(buf, sizeof(buf), "%.2f B", t.model_n_params / 1e9);
  1243. }
  1244. value = buf;
  1245. } else if (field == "backend") {
  1246. value = test::get_backend();
  1247. } else if (field == "test") {
  1248. if (t.n_prompt > 0 && t.n_gen == 0) {
  1249. snprintf(buf, sizeof(buf), "pp%d", t.n_prompt);
  1250. } else if (t.n_gen > 0 && t.n_prompt == 0) {
  1251. snprintf(buf, sizeof(buf), "tg%d", t.n_gen);
  1252. } else {
  1253. snprintf(buf, sizeof(buf), "pp%d+tg%d", t.n_prompt, t.n_gen);
  1254. }
  1255. value = buf;
  1256. } else if (field == "t/s") {
  1257. snprintf(buf, sizeof(buf), "%.2f ± %.2f", t.avg_ts(), t.stdev_ts());
  1258. value = buf;
  1259. } else if (vmap.find(field) != vmap.end()) {
  1260. value = vmap.at(field);
  1261. } else {
  1262. assert(false);
  1263. exit(1);
  1264. }
  1265. int width = get_field_width(field);
  1266. if (field == "t/s") {
  1267. // HACK: the utf-8 character is 2 bytes
  1268. width += 1;
  1269. }
  1270. fprintf(fout, " %*s |", width, value.c_str());
  1271. }
  1272. fprintf(fout, "\n");
  1273. }
  1274. void print_footer() override {
  1275. fprintf(fout, "\nbuild: %s (%d)\n", test::build_commit.c_str(), test::build_number);
  1276. }
  1277. };
  1278. struct sql_printer : public printer {
  1279. static std::string get_sql_field_type(const std::string & field) {
  1280. switch (test::get_field_type(field)) {
  1281. case test::STRING:
  1282. return "TEXT";
  1283. case test::BOOL:
  1284. case test::INT:
  1285. return "INTEGER";
  1286. case test::FLOAT:
  1287. return "REAL";
  1288. default:
  1289. assert(false);
  1290. exit(1);
  1291. }
  1292. }
  1293. void print_header(const cmd_params & params) override {
  1294. std::vector<std::string> fields = test::get_fields();
  1295. fprintf(fout, "CREATE TABLE IF NOT EXISTS test (\n");
  1296. for (size_t i = 0; i < fields.size(); i++) {
  1297. fprintf(fout, " %s %s%s\n", fields.at(i).c_str(), get_sql_field_type(fields.at(i)).c_str(),
  1298. i < fields.size() - 1 ? "," : "");
  1299. }
  1300. fprintf(fout, ");\n");
  1301. fprintf(fout, "\n");
  1302. (void) params;
  1303. }
  1304. void print_test(const test & t) override {
  1305. fprintf(fout, "INSERT INTO test (%s) ", join(test::get_fields(), ", ").c_str());
  1306. fprintf(fout, "VALUES (");
  1307. std::vector<std::string> values = t.get_values();
  1308. for (size_t i = 0; i < values.size(); i++) {
  1309. fprintf(fout, "'%s'%s", values.at(i).c_str(), i < values.size() - 1 ? ", " : "");
  1310. }
  1311. fprintf(fout, ");\n");
  1312. }
  1313. };
  1314. static void test_prompt(llama_context * ctx, int n_prompt, int n_batch, int n_threads) {
  1315. llama_set_n_threads(ctx, n_threads, n_threads);
  1316. const llama_model * model = llama_get_model(ctx);
  1317. const int32_t n_vocab = llama_n_vocab(model);
  1318. std::vector<llama_token> tokens(n_batch);
  1319. int n_processed = 0;
  1320. while (n_processed < n_prompt) {
  1321. int n_tokens = std::min(n_prompt - n_processed, n_batch);
  1322. tokens[0] = n_processed == 0 && llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1323. for (int i = 1; i < n_tokens; i++) {
  1324. tokens[i] = std::rand() % n_vocab;
  1325. }
  1326. llama_decode(ctx, llama_batch_get_one(tokens.data(), n_tokens));
  1327. n_processed += n_tokens;
  1328. }
  1329. llama_synchronize(ctx);
  1330. }
  1331. static void test_gen(llama_context * ctx, int n_gen, int n_threads) {
  1332. llama_set_n_threads(ctx, n_threads, n_threads);
  1333. const llama_model * model = llama_get_model(ctx);
  1334. const int32_t n_vocab = llama_n_vocab(model);
  1335. llama_token token = llama_add_bos_token(model) ? llama_token_bos(model) : std::rand() % n_vocab;
  1336. for (int i = 0; i < n_gen; i++) {
  1337. llama_decode(ctx, llama_batch_get_one(&token, 1));
  1338. llama_synchronize(ctx);
  1339. token = std::rand() % n_vocab;
  1340. }
  1341. }
  1342. static void llama_null_log_callback(enum ggml_log_level level, const char * text, void * user_data) {
  1343. (void) level;
  1344. (void) text;
  1345. (void) user_data;
  1346. }
  1347. static std::unique_ptr<printer> create_printer(output_formats format) {
  1348. switch (format) {
  1349. case NONE:
  1350. return nullptr;
  1351. case CSV:
  1352. return std::unique_ptr<printer>(new csv_printer());
  1353. case JSON:
  1354. return std::unique_ptr<printer>(new json_printer());
  1355. case JSONL:
  1356. return std::unique_ptr<printer>(new jsonl_printer());
  1357. case MARKDOWN:
  1358. return std::unique_ptr<printer>(new markdown_printer());
  1359. case SQL:
  1360. return std::unique_ptr<printer>(new sql_printer());
  1361. }
  1362. GGML_ABORT("fatal error");
  1363. }
  1364. int main(int argc, char ** argv) {
  1365. // try to set locale for unicode characters in markdown
  1366. setlocale(LC_CTYPE, ".UTF-8");
  1367. #if !defined(NDEBUG)
  1368. fprintf(stderr, "warning: asserts enabled, performance may be affected\n");
  1369. #endif
  1370. #if (defined(_MSC_VER) && defined(_DEBUG)) || (!defined(_MSC_VER) && !defined(__OPTIMIZE__))
  1371. fprintf(stderr, "warning: debug build, performance may be affected\n");
  1372. #endif
  1373. #if defined(__SANITIZE_ADDRESS__) || defined(__SANITIZE_THREAD__)
  1374. fprintf(stderr, "warning: sanitizer enabled, performance may be affected\n");
  1375. #endif
  1376. cmd_params params = parse_cmd_params(argc, argv);
  1377. // initialize backends
  1378. ggml_backend_load_all();
  1379. auto * cpu_dev = ggml_backend_dev_by_type(GGML_BACKEND_DEVICE_TYPE_CPU);
  1380. if (!cpu_dev) {
  1381. fprintf(stderr, "%s: error: CPU backend is not loaded\n", __func__);
  1382. return 1;
  1383. }
  1384. auto * cpu_reg = ggml_backend_dev_backend_reg(cpu_dev);
  1385. auto * ggml_threadpool_new_fn = (decltype(ggml_threadpool_new) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_new");
  1386. auto * ggml_threadpool_free_fn = (decltype(ggml_threadpool_free) *) ggml_backend_reg_get_proc_address(cpu_reg, "ggml_threadpool_free");
  1387. // initialize llama.cpp
  1388. if (!params.verbose) {
  1389. llama_log_set(llama_null_log_callback, NULL);
  1390. }
  1391. llama_backend_init();
  1392. llama_numa_init(params.numa);
  1393. set_process_priority(params.prio);
  1394. // initialize printer
  1395. std::unique_ptr<printer> p = create_printer(params.output_format);
  1396. std::unique_ptr<printer> p_err = create_printer(params.output_format_stderr);
  1397. if (p) {
  1398. p->fout = stdout;
  1399. p->print_header(params);
  1400. }
  1401. if (p_err) {
  1402. p_err->fout = stderr;
  1403. p_err->print_header(params);
  1404. }
  1405. std::vector<cmd_params_instance> params_instances = get_cmd_params_instances(params);
  1406. llama_model * lmodel = nullptr;
  1407. const cmd_params_instance * prev_inst = nullptr;
  1408. int params_idx = 0;
  1409. auto params_count = params_instances.size();
  1410. for (const auto & inst : params_instances) {
  1411. params_idx++;
  1412. if (params.progress) {
  1413. fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
  1414. }
  1415. // keep the same model between tests when possible
  1416. if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
  1417. if (lmodel) {
  1418. llama_free_model(lmodel);
  1419. }
  1420. lmodel = llama_load_model_from_file(inst.model.c_str(), inst.to_llama_mparams());
  1421. if (lmodel == NULL) {
  1422. fprintf(stderr, "%s: error: failed to load model '%s'\n", __func__, inst.model.c_str());
  1423. return 1;
  1424. }
  1425. prev_inst = &inst;
  1426. }
  1427. llama_context * ctx = llama_new_context_with_model(lmodel, inst.to_llama_cparams());
  1428. if (ctx == NULL) {
  1429. fprintf(stderr, "%s: error: failed to create context with model '%s'\n", __func__, inst.model.c_str());
  1430. llama_free_model(lmodel);
  1431. return 1;
  1432. }
  1433. test t(inst, lmodel, ctx);
  1434. llama_kv_cache_clear(ctx);
  1435. // cool off before the test
  1436. if (params.delay) {
  1437. std::this_thread::sleep_for(std::chrono::seconds(params.delay));
  1438. }
  1439. struct ggml_threadpool_params tpp = ggml_threadpool_params_default(t.n_threads);
  1440. if (!parse_cpu_mask(t.cpu_mask, tpp.cpumask)) {
  1441. fprintf(stderr, "%s: failed to parse cpu-mask: %s\n", __func__, t.cpu_mask.c_str());
  1442. exit(1);
  1443. }
  1444. tpp.strict_cpu = t.cpu_strict;
  1445. tpp.poll = t.poll;
  1446. tpp.prio = params.prio;
  1447. struct ggml_threadpool * threadpool = ggml_threadpool_new_fn(&tpp);
  1448. if (!threadpool) {
  1449. fprintf(stderr, "%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads);
  1450. exit(1);
  1451. }
  1452. llama_attach_threadpool(ctx, threadpool, NULL);
  1453. // warmup run
  1454. if (t.n_prompt > 0) {
  1455. if (params.progress) {
  1456. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
  1457. }
  1458. //test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
  1459. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1460. }
  1461. if (t.n_gen > 0) {
  1462. if (params.progress) {
  1463. fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
  1464. }
  1465. test_gen(ctx, 1, t.n_threads);
  1466. }
  1467. for (int i = 0; i < params.reps; i++) {
  1468. llama_kv_cache_clear(ctx);
  1469. uint64_t t_start = get_time_ns();
  1470. if (t.n_prompt > 0) {
  1471. if (params.progress) {
  1472. fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
  1473. i + 1, params.reps);
  1474. }
  1475. test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
  1476. }
  1477. if (t.n_gen > 0) {
  1478. if (params.progress) {
  1479. fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
  1480. i + 1, params.reps);
  1481. }
  1482. test_gen(ctx, t.n_gen, t.n_threads);
  1483. }
  1484. uint64_t t_ns = get_time_ns() - t_start;
  1485. t.samples_ns.push_back(t_ns);
  1486. }
  1487. if (p) {
  1488. p->print_test(t);
  1489. fflush(p->fout);
  1490. }
  1491. if (p_err) {
  1492. p_err->print_test(t);
  1493. fflush(p_err->fout);
  1494. }
  1495. llama_perf_context_print(ctx);
  1496. llama_free(ctx);
  1497. ggml_threadpool_free_fn(threadpool);
  1498. }
  1499. llama_free_model(lmodel);
  1500. if (p) {
  1501. p->print_footer();
  1502. }
  1503. if (p_err) {
  1504. p_err->print_footer();
  1505. }
  1506. llama_backend_free();
  1507. return 0;
  1508. }