common.cuh 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833
  1. #pragma once
  2. #include "ggml.h"
  3. #include "ggml-cuda.h"
  4. #include <memory>
  5. #if defined(GGML_USE_HIPBLAS)
  6. #define GGML_COMMON_DECL_HIP
  7. #define GGML_COMMON_IMPL_HIP
  8. #else
  9. #define GGML_COMMON_DECL_CUDA
  10. #define GGML_COMMON_IMPL_CUDA
  11. #endif
  12. #include "ggml-common.h"
  13. #include <cstdio>
  14. #include <array>
  15. #include <cassert>
  16. #include <cfloat>
  17. #include <string>
  18. #include <vector>
  19. #if defined(GGML_USE_HIPBLAS)
  20. #include <hip/hip_runtime.h>
  21. #include <hipblas/hipblas.h>
  22. #include <hip/hip_fp16.h>
  23. #ifdef __HIP_PLATFORM_AMD__
  24. // for rocblas_initialize()
  25. #include "rocblas/rocblas.h"
  26. #endif // __HIP_PLATFORM_AMD__
  27. #define CUBLAS_COMPUTE_16F HIPBLAS_R_16F
  28. #define CUBLAS_COMPUTE_32F HIPBLAS_R_32F
  29. #define CUBLAS_COMPUTE_32F_FAST_16F HIPBLAS_R_32F
  30. #define CUBLAS_GEMM_DEFAULT HIPBLAS_GEMM_DEFAULT
  31. #define CUBLAS_GEMM_DEFAULT_TENSOR_OP HIPBLAS_GEMM_DEFAULT
  32. #define CUBLAS_OP_N HIPBLAS_OP_N
  33. #define CUBLAS_OP_T HIPBLAS_OP_T
  34. #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
  35. #define CUBLAS_TF32_TENSOR_OP_MATH 0
  36. #define CUDA_R_16F HIPBLAS_R_16F
  37. #define CUDA_R_32F HIPBLAS_R_32F
  38. #define __shfl_xor_sync(mask, var, laneMask, width) __shfl_xor(var, laneMask, width)
  39. #define cublasComputeType_t hipblasDatatype_t //deprecated, new hipblasComputeType_t not in 5.6
  40. #define cublasCreate hipblasCreate
  41. #define cublasDestroy hipblasDestroy
  42. #define cublasGemmEx hipblasGemmEx
  43. #define cublasGemmBatchedEx hipblasGemmBatchedEx
  44. #define cublasGemmStridedBatchedEx hipblasGemmStridedBatchedEx
  45. #define cublasHandle_t hipblasHandle_t
  46. #define cublasSetMathMode(handle, mode) CUBLAS_STATUS_SUCCESS
  47. #define cublasSetStream hipblasSetStream
  48. #define cublasSgemm hipblasSgemm
  49. #define cublasStatus_t hipblasStatus_t
  50. #define cudaDataType_t hipblasDatatype_t //deprecated, new hipblasDatatype not in 5.6
  51. #define cudaDeviceCanAccessPeer hipDeviceCanAccessPeer
  52. #define cudaDeviceDisablePeerAccess hipDeviceDisablePeerAccess
  53. #define cudaDeviceEnablePeerAccess hipDeviceEnablePeerAccess
  54. #define cudaDeviceProp hipDeviceProp_t
  55. #define cudaDeviceSynchronize hipDeviceSynchronize
  56. #define cudaError_t hipError_t
  57. #define cudaErrorPeerAccessAlreadyEnabled hipErrorPeerAccessAlreadyEnabled
  58. #define cudaErrorPeerAccessNotEnabled hipErrorPeerAccessNotEnabled
  59. #define cudaEventCreateWithFlags hipEventCreateWithFlags
  60. #define cudaEventDisableTiming hipEventDisableTiming
  61. #define cudaEventRecord hipEventRecord
  62. #define cudaEventSynchronize hipEventSynchronize
  63. #define cudaEvent_t hipEvent_t
  64. #define cudaEventDestroy hipEventDestroy
  65. #define cudaFree hipFree
  66. #define cudaFreeHost hipHostFree
  67. #define cudaGetDevice hipGetDevice
  68. #define cudaGetDeviceCount hipGetDeviceCount
  69. #define cudaGetDeviceProperties hipGetDeviceProperties
  70. #define cudaGetErrorString hipGetErrorString
  71. #define cudaGetLastError hipGetLastError
  72. #define cudaHostRegister hipHostRegister
  73. #define cudaHostRegisterPortable hipHostRegisterPortable
  74. #define cudaHostRegisterReadOnly hipHostRegisterReadOnly
  75. #define cudaHostUnregister hipHostUnregister
  76. #define cudaLaunchHostFunc hipLaunchHostFunc
  77. #define cudaMalloc hipMalloc
  78. #define cudaMallocHost(ptr, size) hipHostMalloc(ptr, size, hipHostMallocDefault)
  79. #define cudaMemcpy hipMemcpy
  80. #define cudaMemcpyAsync hipMemcpyAsync
  81. #define cudaMemcpyPeerAsync hipMemcpyPeerAsync
  82. #define cudaMemcpy2DAsync hipMemcpy2DAsync
  83. #define cudaMemcpyDeviceToDevice hipMemcpyDeviceToDevice
  84. #define cudaMemcpyDeviceToHost hipMemcpyDeviceToHost
  85. #define cudaMemcpyHostToDevice hipMemcpyHostToDevice
  86. #define cudaMemcpyKind hipMemcpyKind
  87. #define cudaMemset hipMemset
  88. #define cudaMemsetAsync hipMemsetAsync
  89. #define cudaMemGetInfo hipMemGetInfo
  90. #define cudaOccupancyMaxPotentialBlockSize hipOccupancyMaxPotentialBlockSize
  91. #define cudaSetDevice hipSetDevice
  92. #define cudaStreamCreateWithFlags hipStreamCreateWithFlags
  93. #define cudaStreamDestroy hipStreamDestroy
  94. #define cudaStreamFireAndForget hipStreamFireAndForget
  95. #define cudaStreamNonBlocking hipStreamNonBlocking
  96. #define cudaStreamPerThread hipStreamPerThread
  97. #define cudaStreamSynchronize hipStreamSynchronize
  98. #define cudaStreamWaitEvent(stream, event, flags) hipStreamWaitEvent(stream, event, flags)
  99. #define cudaStream_t hipStream_t
  100. #define cudaSuccess hipSuccess
  101. #define __trap abort
  102. #define CUBLAS_STATUS_SUCCESS HIPBLAS_STATUS_SUCCESS
  103. #define CUBLAS_STATUS_NOT_INITIALIZED HIPBLAS_STATUS_NOT_INITIALIZED
  104. #define CUBLAS_STATUS_ALLOC_FAILED HIPBLAS_STATUS_ALLOC_FAILED
  105. #define CUBLAS_STATUS_INVALID_VALUE HIPBLAS_STATUS_INVALID_VALUE
  106. #define CUBLAS_STATUS_ARCH_MISMATCH HIPBLAS_STATUS_ARCH_MISMATCH
  107. #define CUBLAS_STATUS_MAPPING_ERROR HIPBLAS_STATUS_MAPPING_ERROR
  108. #define CUBLAS_STATUS_EXECUTION_FAILED HIPBLAS_STATUS_EXECUTION_FAILED
  109. #define CUBLAS_STATUS_INTERNAL_ERROR HIPBLAS_STATUS_INTERNAL_ERROR
  110. #define CUBLAS_STATUS_NOT_SUPPORTED HIPBLAS_STATUS_NOT_SUPPORTED
  111. #else
  112. #include <cuda_runtime.h>
  113. #include <cuda.h>
  114. #include <cublas_v2.h>
  115. #include <cuda_fp16.h>
  116. #if CUDART_VERSION < 11020
  117. #define CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED
  118. #define CUBLAS_TF32_TENSOR_OP_MATH CUBLAS_TENSOR_OP_MATH
  119. #define CUBLAS_COMPUTE_16F CUDA_R_16F
  120. #define CUBLAS_COMPUTE_32F CUDA_R_32F
  121. #define cublasComputeType_t cudaDataType_t
  122. #endif // CUDART_VERSION < 11020
  123. #endif // defined(GGML_USE_HIPBLAS)
  124. #define STRINGIZE_IMPL(...) #__VA_ARGS__
  125. #define STRINGIZE(...) STRINGIZE_IMPL(__VA_ARGS__)
  126. #define WARP_SIZE 32
  127. #define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed)
  128. #define CUDART_HMASK 12000 // CUDA 12.0, min. ver. for half2 -> uint mask comparisons
  129. #define CC_PASCAL 600
  130. #define MIN_CC_DP4A 610 // minimum compute capability for __dp4a, an intrinsic for byte-wise dot products
  131. #define CC_VOLTA 700
  132. #define CC_AMPERE 800
  133. #define CC_OFFSET_AMD 1000000
  134. #define CC_RDNA1 (CC_OFFSET_AMD + 1010)
  135. #define CC_RDNA2 (CC_OFFSET_AMD + 1030)
  136. #define CC_RDNA3 (CC_OFFSET_AMD + 1100)
  137. // define this if you want to always fallback to MMQ kernels and not use cuBLAS for matrix multiplication
  138. // on modern hardware, using cuBLAS is recommended as it utilizes F16 tensor cores which are very performant
  139. // for large computational tasks. the drawback is that this requires some extra amount of VRAM:
  140. // - 7B quantum model: +100-200 MB
  141. // - 13B quantum model: +200-400 MB
  142. //
  143. //#define GGML_CUDA_FORCE_MMQ
  144. // TODO: improve this to be correct for more hardware
  145. // for example, currently fails for GeForce GTX 1660 which is TURING arch (> VOLTA) but does not have tensor cores
  146. #if !defined(GGML_CUDA_FORCE_MMQ)
  147. #define CUDA_USE_TENSOR_CORES
  148. #endif
  149. #define MMVQ_MAX_BATCH_SIZE 8 // max batch size to use MMVQ kernels
  150. #define MMQ_MAX_BATCH_SIZE 64 // max batch size to use MMQ kernels when tensor cores are available
  151. #define MATRIX_ROW_PADDING 512 // last row of quant. matrices is a multiple of this to avoid out-of-bounds memory accesses
  152. #if defined(_MSC_VER)
  153. #pragma warning(disable: 4244 4267) // possible loss of data
  154. #endif
  155. #define GGML_CUDA_MAX_STREAMS 8
  156. [[noreturn]]
  157. void ggml_cuda_error(const char * stmt, const char * func, const char * file, int line, const char * msg);
  158. #define CUDA_CHECK_GEN(err, success, error_fn) \
  159. do { \
  160. auto err_ = (err); \
  161. if (err_ != (success)) { \
  162. ggml_cuda_error(#err, __func__, __FILE__, __LINE__, error_fn(err_)); \
  163. } \
  164. } while (0)
  165. #define CUDA_CHECK(err) CUDA_CHECK_GEN(err, cudaSuccess, cudaGetErrorString)
  166. #if CUDART_VERSION >= 12000
  167. static const char * cublas_get_error_str(const cublasStatus_t err) {
  168. return cublasGetStatusString(err);
  169. }
  170. #else
  171. static const char * cublas_get_error_str(const cublasStatus_t err) {
  172. switch (err) {
  173. case CUBLAS_STATUS_SUCCESS: return "CUBLAS_STATUS_SUCCESS";
  174. case CUBLAS_STATUS_NOT_INITIALIZED: return "CUBLAS_STATUS_NOT_INITIALIZED";
  175. case CUBLAS_STATUS_ALLOC_FAILED: return "CUBLAS_STATUS_ALLOC_FAILED";
  176. case CUBLAS_STATUS_INVALID_VALUE: return "CUBLAS_STATUS_INVALID_VALUE";
  177. case CUBLAS_STATUS_ARCH_MISMATCH: return "CUBLAS_STATUS_ARCH_MISMATCH";
  178. case CUBLAS_STATUS_MAPPING_ERROR: return "CUBLAS_STATUS_MAPPING_ERROR";
  179. case CUBLAS_STATUS_EXECUTION_FAILED: return "CUBLAS_STATUS_EXECUTION_FAILED";
  180. case CUBLAS_STATUS_INTERNAL_ERROR: return "CUBLAS_STATUS_INTERNAL_ERROR";
  181. case CUBLAS_STATUS_NOT_SUPPORTED: return "CUBLAS_STATUS_NOT_SUPPORTED";
  182. default: return "unknown error";
  183. }
  184. }
  185. #endif // CUDART_VERSION >= 12000
  186. #define CUBLAS_CHECK(err) CUDA_CHECK_GEN(err, CUBLAS_STATUS_SUCCESS, cublas_get_error_str)
  187. #if !defined(GGML_USE_HIPBLAS)
  188. static const char * cu_get_error_str(CUresult err) {
  189. const char * err_str;
  190. cuGetErrorString(err, &err_str);
  191. return err_str;
  192. }
  193. #define CU_CHECK(err) CUDA_CHECK_GEN(err, CUDA_SUCCESS, cu_get_error_str)
  194. #endif
  195. #if CUDART_VERSION >= 11100
  196. #define GGML_CUDA_ASSUME(x) __builtin_assume(x)
  197. #else
  198. #define GGML_CUDA_ASSUME(x)
  199. #endif // CUDART_VERSION >= 11100
  200. #ifdef GGML_CUDA_F16
  201. typedef half dfloat; // dequantize float
  202. typedef half2 dfloat2;
  203. #else
  204. typedef float dfloat; // dequantize float
  205. typedef float2 dfloat2;
  206. #endif //GGML_CUDA_F16
  207. #if defined(GGML_USE_HIPBLAS)
  208. #define __CUDA_ARCH__ 1300
  209. #if defined(__gfx1100__) || defined(__gfx1101__) || defined(__gfx1102__) || defined(__gfx1103__) || \
  210. defined(__gfx1150__) || defined(__gfx1151__)
  211. #define RDNA3
  212. #endif
  213. #if defined(__gfx1030__) || defined(__gfx1031__) || defined(__gfx1032__) || defined(__gfx1033__) || \
  214. defined(__gfx1034__) || defined(__gfx1035__) || defined(__gfx1036__) || defined(__gfx1037__)
  215. #define RDNA2
  216. #endif
  217. #ifndef __has_builtin
  218. #define __has_builtin(x) 0
  219. #endif
  220. typedef int8_t int8x4_t __attribute__((ext_vector_type(4)));
  221. typedef uint8_t uint8x4_t __attribute__((ext_vector_type(4)));
  222. static __device__ __forceinline__ int __vsubss4(const int a, const int b) {
  223. const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
  224. const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
  225. #if __has_builtin(__builtin_elementwise_sub_sat)
  226. const int8x4_t c = __builtin_elementwise_sub_sat(va, vb);
  227. return reinterpret_cast<const int &>(c);
  228. #else
  229. int8x4_t c;
  230. int16_t tmp;
  231. #pragma unroll
  232. for (int i = 0; i < 4; i++) {
  233. tmp = va[i] - vb[i];
  234. if(tmp > std::numeric_limits<int8_t>::max()) tmp = std::numeric_limits<int8_t>::max();
  235. if(tmp < std::numeric_limits<int8_t>::min()) tmp = std::numeric_limits<int8_t>::min();
  236. c[i] = tmp;
  237. }
  238. return reinterpret_cast<int &>(c);
  239. #endif // __has_builtin(__builtin_elementwise_sub_sat)
  240. }
  241. static __device__ __forceinline__ int __vsub4(const int a, const int b) {
  242. return __vsubss4(a, b);
  243. }
  244. static __device__ __forceinline__ unsigned int __vcmpeq4(unsigned int a, unsigned int b) {
  245. const uint8x4_t& va = reinterpret_cast<const uint8x4_t&>(a);
  246. const uint8x4_t& vb = reinterpret_cast<const uint8x4_t&>(b);
  247. unsigned int c;
  248. uint8x4_t& vc = reinterpret_cast<uint8x4_t&>(c);
  249. #pragma unroll
  250. for (int i = 0; i < 4; ++i) {
  251. vc[i] = va[i] == vb[i] ? 0xff : 0x00;
  252. }
  253. return c;
  254. }
  255. static __device__ __forceinline__ int __dp4a(const int a, const int b, int c) {
  256. #if defined(__gfx906__) || defined(__gfx908__) || defined(__gfx90a__) || defined(__gfx1030__)
  257. c = __builtin_amdgcn_sdot4(a, b, c, false);
  258. #elif defined(RDNA3)
  259. c = __builtin_amdgcn_sudot4( true, a, true, b, c, false);
  260. #elif defined(__gfx1010__) || defined(__gfx900__)
  261. int tmp1;
  262. int tmp2;
  263. asm("\n \
  264. v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_0 src1_sel:BYTE_0 \n \
  265. v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_1 src1_sel:BYTE_1 \n \
  266. v_add3_u32 %0, %1, %2, %0 \n \
  267. v_mul_i32_i24 %1, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_2 src1_sel:BYTE_2 \n \
  268. v_mul_i32_i24 %2, sext(%3), sext(%4) dst_sel:DWORD dst_unused:UNUSED_PAD src0_sel:BYTE_3 src1_sel:BYTE_3 \n \
  269. v_add3_u32 %0, %1, %2, %0 \n \
  270. "
  271. : "+v"(c), "=&v"(tmp1), "=&v"(tmp2)
  272. : "v"(a), "v"(b)
  273. );
  274. #else
  275. const int8x4_t va = reinterpret_cast<const int8x4_t&>(a);
  276. const int8x4_t vb = reinterpret_cast<const int8x4_t&>(b);
  277. c += va[0] * vb[0] + va[1] * vb[1] + va[2] * vb[2] + va[3] * vb[3];
  278. #endif
  279. return c;
  280. }
  281. #if defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
  282. // __shfl_xor() for half2 was added in ROCm 5.6
  283. static __device__ __forceinline__ half2 __shfl_xor(half2 var, int laneMask, int width) {
  284. typedef union half2_b32 {
  285. half2 val;
  286. int b32;
  287. } half2_b32_t;
  288. half2_b32_t tmp;
  289. tmp.val = var;
  290. tmp.b32 = __shfl_xor(tmp.b32, laneMask, width);
  291. return tmp.val;
  292. }
  293. #endif // defined(__HIP_PLATFORM_AMD__) && HIP_VERSION < 50600000
  294. #endif // defined(GGML_USE_HIPBLAS)
  295. #define FP16_AVAILABLE (defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) || __CUDA_ARCH__ >= CC_PASCAL
  296. #define FP16_MMA_AVAILABLE !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_VOLTA
  297. static bool fast_fp16_available(const int cc) {
  298. return cc >= CC_PASCAL && cc != 610;
  299. }
  300. static bool fp16_mma_available(const int cc) {
  301. return cc < CC_OFFSET_AMD && cc >= CC_VOLTA;
  302. }
  303. [[noreturn]]
  304. static __device__ void no_device_code(
  305. const char * file_name, const int line, const char * function_name, const int arch, const char * arch_list) {
  306. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  307. printf("%s:%d: ERROR: HIP kernel %s has no device code compatible with HIP arch %d.\n",
  308. file_name, line, function_name, arch);
  309. GGML_UNUSED(arch_list);
  310. #else
  311. printf("%s:%d: ERROR: CUDA kernel %s has no device code compatible with CUDA arch %d. ggml-cuda.cu was compiled for: %s\n",
  312. file_name, line, function_name, arch, arch_list);
  313. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  314. __trap();
  315. GGML_UNUSED(no_device_code); // suppress unused function warning
  316. }
  317. #ifdef __CUDA_ARCH__
  318. #define NO_DEVICE_CODE no_device_code(__FILE__, __LINE__, __FUNCTION__, __CUDA_ARCH__, STRINGIZE(__CUDA_ARCH_LIST__))
  319. #else
  320. #define NO_DEVICE_CODE //GGML_ASSERT(false && "NO_DEVICE_CODE not valid in host code.")
  321. #endif // __CUDA_ARCH__
  322. static __device__ __forceinline__ float warp_reduce_sum(float x) {
  323. #pragma unroll
  324. for (int mask = 16; mask > 0; mask >>= 1) {
  325. x += __shfl_xor_sync(0xffffffff, x, mask, 32);
  326. }
  327. return x;
  328. }
  329. static __device__ __forceinline__ float2 warp_reduce_sum(float2 a) {
  330. #pragma unroll
  331. for (int mask = 16; mask > 0; mask >>= 1) {
  332. a.x += __shfl_xor_sync(0xffffffff, a.x, mask, 32);
  333. a.y += __shfl_xor_sync(0xffffffff, a.y, mask, 32);
  334. }
  335. return a;
  336. }
  337. static __device__ __forceinline__ half2 warp_reduce_sum(half2 a) {
  338. #if FP16_AVAILABLE
  339. #if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  340. #pragma unroll
  341. for (int mask = 16; mask > 0; mask >>= 1) {
  342. const half2 a_other = __shfl_xor_sync(0xffffffff, a, mask, 32);
  343. reinterpret_cast<half&>(a.x) += __low2half(a_other);
  344. reinterpret_cast<half&>(a.y) += __high2half(a_other);
  345. }
  346. return a;
  347. #else
  348. #pragma unroll
  349. for (int mask = 16; mask > 0; mask >>= 1) {
  350. a = __hadd2(a, __shfl_xor_sync(0xffffffff, a, mask, 32));
  351. }
  352. return a;
  353. #endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
  354. #else
  355. NO_DEVICE_CODE;
  356. return a;
  357. #endif // FP16_AVAILABLE
  358. }
  359. static __device__ __forceinline__ float warp_reduce_max(float x) {
  360. #pragma unroll
  361. for (int mask = 16; mask > 0; mask >>= 1) {
  362. x = fmaxf(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
  363. }
  364. return x;
  365. }
  366. static __device__ __forceinline__ half ggml_cuda_hmax(const half a, const half b) {
  367. #if FP16_AVAILABLE
  368. #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
  369. return __float2half(fmaxf(__half2float(a), __half2float(b)));
  370. #else
  371. return __hmax(a, b);
  372. #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && CUDART_VERSION < CUDART_HMAX
  373. #else
  374. NO_DEVICE_CODE;
  375. GGML_UNUSED(b);
  376. return a;
  377. #endif // FP16_AVAILABLE
  378. }
  379. static __device__ __forceinline__ half2 ggml_cuda_hmax2(const half2 a, const half2 b) {
  380. #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
  381. #if CUDART_VERSION >= CUDART_HMAX
  382. return __hmax2(a, b);
  383. #else
  384. half2 ret;
  385. reinterpret_cast<half&>(ret.x) = __float2half(fmaxf( __low2float(a), __low2float(b)));
  386. reinterpret_cast<half&>(ret.y) = __float2half(fmaxf(__high2float(a), __high2float(b)));
  387. return ret;
  388. #endif // CUDART_VERSION >= CUDART_HMAX
  389. #else
  390. GGML_UNUSED(a);
  391. GGML_UNUSED(b);
  392. NO_DEVICE_CODE;
  393. #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
  394. }
  395. static __device__ __forceinline__ half2 warp_reduce_max(half2 x) {
  396. #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
  397. #pragma unroll
  398. for (int mask = 16; mask > 0; mask >>= 1) {
  399. x = ggml_cuda_hmax2(x, __shfl_xor_sync(0xffffffff, x, mask, 32));
  400. }
  401. return x;
  402. #else
  403. GGML_UNUSED(x);
  404. NO_DEVICE_CODE;
  405. #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) && __CUDA_ARCH__ >= CC_PASCAL
  406. }
  407. #if CUDART_VERSION < CUDART_HMASK
  408. static __device__ __forceinline__ uint32_t __hgt2_mask(const half2 a, const half2 b) {
  409. const uint32_t mask_low = 0x0000FFFF * (float( __low2half(a)) > float( __low2half(b)));
  410. const uint32_t mask_high = 0xFFFF0000 * (float(__high2half(a)) > float(__high2half(b)));
  411. return mask_low | mask_high;
  412. }
  413. #endif // CUDART_VERSION < 12000
  414. // TODO: move to ggml-common.h
  415. static const __device__ int8_t kvalues_iq4nl[16] = {-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113};
  416. typedef void (*dequantize_kernel_t)(const void * vx, const int64_t ib, const int iqs, dfloat2 & v);
  417. static __device__ __forceinline__ float get_alibi_slope(
  418. const float max_bias, const uint32_t h, const uint32_t n_head_log2, const float m0, const float m1
  419. ) {
  420. if (max_bias <= 0.0f) {
  421. return 1.0f;
  422. }
  423. const float base = h < n_head_log2 ? m0 : m1;
  424. const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1;
  425. return powf(base, exph);
  426. }
  427. template <ggml_type type>
  428. struct ggml_cuda_type_traits;
  429. template<>
  430. struct ggml_cuda_type_traits<GGML_TYPE_F16> {
  431. static constexpr int qk = 1;
  432. static constexpr int qr = 1;
  433. };
  434. template<>
  435. struct ggml_cuda_type_traits<GGML_TYPE_Q4_0> {
  436. static constexpr int qk = QK4_0;
  437. static constexpr int qr = QR4_0;
  438. static constexpr int qi = QI4_0;
  439. };
  440. template<>
  441. struct ggml_cuda_type_traits<GGML_TYPE_Q4_1> {
  442. static constexpr int qk = QK4_1;
  443. static constexpr int qr = QR4_1;
  444. static constexpr int qi = QI4_1;
  445. };
  446. template<>
  447. struct ggml_cuda_type_traits<GGML_TYPE_Q5_0> {
  448. static constexpr int qk = QK5_0;
  449. static constexpr int qr = QR5_0;
  450. static constexpr int qi = QI5_0;
  451. };
  452. template<>
  453. struct ggml_cuda_type_traits<GGML_TYPE_Q5_1> {
  454. static constexpr int qk = QK5_1;
  455. static constexpr int qr = QR5_1;
  456. static constexpr int qi = QI5_1;
  457. };
  458. template<>
  459. struct ggml_cuda_type_traits<GGML_TYPE_Q8_0> {
  460. static constexpr int qk = QK8_0;
  461. static constexpr int qr = QR8_0;
  462. static constexpr int qi = QI8_0;
  463. };
  464. template<>
  465. struct ggml_cuda_type_traits<GGML_TYPE_Q2_K> {
  466. static constexpr int qk = QK_K;
  467. static constexpr int qr = QR2_K;
  468. static constexpr int qi = QI2_K;
  469. };
  470. template<>
  471. struct ggml_cuda_type_traits<GGML_TYPE_Q3_K> {
  472. static constexpr int qk = QK_K;
  473. static constexpr int qr = QR3_K;
  474. static constexpr int qi = QI3_K;
  475. };
  476. template<>
  477. struct ggml_cuda_type_traits<GGML_TYPE_Q4_K> {
  478. static constexpr int qk = QK_K;
  479. static constexpr int qr = QR4_K;
  480. static constexpr int qi = QI4_K;
  481. };
  482. template<>
  483. struct ggml_cuda_type_traits<GGML_TYPE_Q5_K> {
  484. static constexpr int qk = QK_K;
  485. static constexpr int qr = QR5_K;
  486. static constexpr int qi = QI5_K;
  487. };
  488. template<>
  489. struct ggml_cuda_type_traits<GGML_TYPE_Q6_K> {
  490. static constexpr int qk = QK_K;
  491. static constexpr int qr = QR6_K;
  492. static constexpr int qi = QI6_K;
  493. };
  494. template<>
  495. struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XXS> {
  496. static constexpr int qk = QK_K;
  497. static constexpr int qr = QR2_XXS;
  498. static constexpr int qi = QI2_XXS;
  499. };
  500. template<>
  501. struct ggml_cuda_type_traits<GGML_TYPE_IQ2_XS> {
  502. static constexpr int qk = QK_K;
  503. static constexpr int qr = QR2_XS;
  504. static constexpr int qi = QI2_XS;
  505. };
  506. template<>
  507. struct ggml_cuda_type_traits<GGML_TYPE_IQ2_S> {
  508. static constexpr int qk = QK_K;
  509. static constexpr int qr = QR2_S;
  510. static constexpr int qi = QI2_S;
  511. };
  512. template<>
  513. struct ggml_cuda_type_traits<GGML_TYPE_IQ3_XXS> {
  514. static constexpr int qk = QK_K;
  515. static constexpr int qr = QR3_XXS;
  516. static constexpr int qi = QI3_XXS;
  517. };
  518. template<>
  519. struct ggml_cuda_type_traits<GGML_TYPE_IQ1_S> {
  520. static constexpr int qk = QK_K;
  521. static constexpr int qr = QR1_S;
  522. static constexpr int qi = QI1_S;
  523. };
  524. template<>
  525. struct ggml_cuda_type_traits<GGML_TYPE_IQ1_M> {
  526. static constexpr int qk = QK_K;
  527. static constexpr int qr = QR1_M;
  528. static constexpr int qi = QI1_M;
  529. };
  530. template<>
  531. struct ggml_cuda_type_traits<GGML_TYPE_IQ4_NL> {
  532. static constexpr int qk = QK4_NL;
  533. static constexpr int qr = QR4_NL;
  534. static constexpr int qi = QI4_NL;
  535. };
  536. template<>
  537. struct ggml_cuda_type_traits<GGML_TYPE_IQ4_XS> {
  538. static constexpr int qk = QK_K;
  539. static constexpr int qr = QR4_XS;
  540. static constexpr int qi = QI4_XS;
  541. };
  542. template<>
  543. struct ggml_cuda_type_traits<GGML_TYPE_IQ3_S> {
  544. static constexpr int qk = QK_K;
  545. static constexpr int qr = QR3_S;
  546. static constexpr int qi = QI3_S;
  547. };
  548. static int get_mmq_x_max_host(const int cc) {
  549. #ifdef CUDA_USE_TENSOR_CORES
  550. return cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? MMQ_MAX_BATCH_SIZE : 64;
  551. #else
  552. return cc >= CC_VOLTA && cc < CC_OFFSET_AMD ? 128 : 64;
  553. #endif // CUDA_USE_TENSOR_CORES
  554. }
  555. // Round rows to this value for --split-mode row:
  556. static int get_mmq_y_host(const int cc, const int mmq_x) {
  557. return cc >= CC_VOLTA && mmq_x >= 32 ? 128 : 64;
  558. }
  559. //////////////////////
  560. struct ggml_cuda_device_info {
  561. int device_count;
  562. struct cuda_device_info {
  563. int cc; // compute capability
  564. int nsm; // number of streaming multiprocessors
  565. size_t smpb; // max. shared memory per block
  566. bool vmm; // virtual memory support
  567. size_t vmm_granularity; // granularity of virtual memory
  568. size_t total_vram;
  569. };
  570. cuda_device_info devices[GGML_CUDA_MAX_DEVICES] = {};
  571. std::array<float, GGML_CUDA_MAX_DEVICES> default_tensor_split = {};
  572. };
  573. const ggml_cuda_device_info & ggml_cuda_info();
  574. void ggml_cuda_set_device(int device);
  575. int ggml_cuda_get_device();
  576. struct ggml_cuda_pool {
  577. virtual ~ggml_cuda_pool() = default;
  578. virtual void * alloc(size_t size, size_t * actual_size) = 0;
  579. virtual void free(void * ptr, size_t size) = 0;
  580. };
  581. template<typename T>
  582. struct ggml_cuda_pool_alloc {
  583. ggml_cuda_pool * pool = nullptr;
  584. T * ptr = nullptr;
  585. size_t actual_size = 0;
  586. ggml_cuda_pool_alloc() = default;
  587. explicit ggml_cuda_pool_alloc(ggml_cuda_pool & pool) : pool(&pool) {
  588. }
  589. ggml_cuda_pool_alloc(ggml_cuda_pool & pool, size_t size) : pool(&pool) {
  590. alloc(size);
  591. }
  592. ~ggml_cuda_pool_alloc() {
  593. if (ptr != nullptr) {
  594. pool->free(ptr, actual_size);
  595. }
  596. }
  597. // size is in number of elements
  598. T * alloc(size_t size) {
  599. GGML_ASSERT(pool != nullptr);
  600. GGML_ASSERT(ptr == nullptr);
  601. ptr = (T *) pool->alloc(size * sizeof(T), &this->actual_size);
  602. return ptr;
  603. }
  604. T * alloc(ggml_cuda_pool & pool, size_t size) {
  605. this->pool = &pool;
  606. return alloc(size);
  607. }
  608. T * get() {
  609. return ptr;
  610. }
  611. ggml_cuda_pool_alloc(const ggml_cuda_pool_alloc &) = delete;
  612. ggml_cuda_pool_alloc(ggml_cuda_pool_alloc &&) = delete;
  613. ggml_cuda_pool_alloc& operator=(const ggml_cuda_pool_alloc &) = delete;
  614. ggml_cuda_pool_alloc& operator=(ggml_cuda_pool_alloc &&) = delete;
  615. };
  616. // backend interface
  617. struct ggml_tensor_extra_gpu {
  618. void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
  619. cudaEvent_t events[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS]; // events for synchronizing multiple GPUs
  620. };
  621. #if (CUDART_VERSION >= 12000) && defined(GGML_CUDA_USE_GRAPHS)
  622. #define USE_CUDA_GRAPH
  623. #endif
  624. struct ggml_graph_node_properties {
  625. void * node_address;
  626. ggml_op node_op;
  627. int64_t ne[GGML_MAX_DIMS];
  628. size_t nb[GGML_MAX_DIMS];
  629. void * src_address[GGML_MAX_SRC];
  630. };
  631. struct ggml_cuda_graph {
  632. #ifdef USE_CUDA_GRAPH
  633. ~ggml_cuda_graph() {
  634. if (instance != nullptr) {
  635. CUDA_CHECK(cudaGraphExecDestroy(instance));
  636. }
  637. if (graph != nullptr) {
  638. CUDA_CHECK(cudaGraphDestroy(graph));
  639. }
  640. }
  641. cudaGraph_t graph = nullptr;
  642. cudaGraphExec_t instance = nullptr;
  643. size_t num_nodes = 0;
  644. std::vector<cudaGraphNode_t> nodes;
  645. std::vector<cudaKernelNodeParams> params;
  646. bool disable_due_to_gpu_arch = false;
  647. bool disable_due_to_too_many_updates = false;
  648. bool disable_due_to_failed_graph_capture = false;
  649. int number_consecutive_updates = 0;
  650. std::vector<ggml_graph_node_properties> ggml_graph_properties;
  651. std::vector<char **> updated_kernel_arg;
  652. #endif
  653. };
  654. struct ggml_backend_cuda_context {
  655. int device;
  656. std::string name;
  657. cudaEvent_t copy_event = nullptr;
  658. cudaStream_t streams[GGML_CUDA_MAX_DEVICES][GGML_CUDA_MAX_STREAMS] = { { nullptr } };
  659. cublasHandle_t cublas_handles[GGML_CUDA_MAX_DEVICES] = {nullptr};
  660. std::unique_ptr<ggml_cuda_graph> cuda_graph;
  661. explicit ggml_backend_cuda_context(int device) :
  662. device(device),
  663. name(GGML_CUDA_NAME + std::to_string(device)) {
  664. }
  665. ~ggml_backend_cuda_context() {
  666. if (copy_event != nullptr) {
  667. CUDA_CHECK(cudaEventDestroy(copy_event));
  668. }
  669. for (int i = 0; i < GGML_CUDA_MAX_DEVICES; ++i) {
  670. for (int j = 0; j < GGML_CUDA_MAX_STREAMS; ++j) {
  671. if (streams[i][j] != nullptr) {
  672. CUDA_CHECK(cudaStreamDestroy(streams[i][j]));
  673. }
  674. }
  675. if (cublas_handles[i] != nullptr) {
  676. CUBLAS_CHECK(cublasDestroy(cublas_handles[i]));
  677. }
  678. }
  679. }
  680. cudaStream_t stream(int device, int stream) {
  681. if (streams[device][stream] == nullptr) {
  682. ggml_cuda_set_device(device);
  683. CUDA_CHECK(cudaStreamCreateWithFlags(&streams[device][stream], cudaStreamNonBlocking));
  684. }
  685. return streams[device][stream];
  686. }
  687. cudaStream_t stream() {
  688. return stream(device, 0);
  689. }
  690. cublasHandle_t cublas_handle(int device) {
  691. if (cublas_handles[device] == nullptr) {
  692. ggml_cuda_set_device(device);
  693. CUBLAS_CHECK(cublasCreate(&cublas_handles[device]));
  694. CUBLAS_CHECK(cublasSetMathMode(cublas_handles[device], CUBLAS_TF32_TENSOR_OP_MATH));
  695. }
  696. return cublas_handles[device];
  697. }
  698. cublasHandle_t cublas_handle() {
  699. return cublas_handle(device);
  700. }
  701. // pool
  702. std::unique_ptr<ggml_cuda_pool> pools[GGML_CUDA_MAX_DEVICES];
  703. static std::unique_ptr<ggml_cuda_pool> new_pool_for_device(int device);
  704. ggml_cuda_pool & pool(int device) {
  705. if (pools[device] == nullptr) {
  706. pools[device] = new_pool_for_device(device);
  707. }
  708. return *pools[device];
  709. }
  710. ggml_cuda_pool & pool() {
  711. return pool(device);
  712. }
  713. };