ggml.c 713 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365936693679368936993709371937293739374937593769377937893799380938193829383938493859386938793889389939093919392939393949395939693979398939994009401940294039404940594069407940894099410941194129413941494159416941794189419942094219422942394249425942694279428942994309431943294339434943594369437943894399440944194429443944494459446944794489449945094519452945394549455945694579458945994609461946294639464946594669467946894699470947194729473947494759476947794789479948094819482948394849485948694879488948994909491949294939494949594969497949894999500950195029503950495059506950795089509951095119512951395149515951695179518951995209521952295239524952595269527952895299530953195329533953495359536953795389539954095419542954395449545954695479548954995509551955295539554955595569557955895599560956195629563956495659566956795689569957095719572957395749575957695779578957995809581958295839584958595869587958895899590959195929593959495959596959795989599960096019602960396049605960696079608960996109611961296139614961596169617961896199620962196229623962496259626962796289629963096319632963396349635963696379638963996409641964296439644964596469647964896499650965196529653965496559656965796589659966096619662966396649665966696679668966996709671967296739674967596769677967896799680968196829683968496859686968796889689969096919692969396949695969696979698969997009701970297039704970597069707970897099710971197129713971497159716971797189719972097219722972397249725972697279728972997309731973297339734973597369737973897399740974197429743974497459746974797489749975097519752975397549755975697579758975997609761976297639764976597669767976897699770977197729773977497759776977797789779978097819782978397849785978697879788978997909791979297939794979597969797979897999800980198029803980498059806980798089809981098119812981398149815981698179818981998209821982298239824982598269827982898299830983198329833983498359836983798389839984098419842984398449845984698479848984998509851985298539854985598569857985898599860986198629863986498659866986798689869987098719872987398749875987698779878987998809881988298839884988598869887988898899890989198929893989498959896989798989899990099019902990399049905990699079908990999109911991299139914991599169917991899199920992199229923992499259926992799289929993099319932993399349935993699379938993999409941994299439944994599469947994899499950995199529953995499559956995799589959996099619962996399649965996699679968996999709971997299739974997599769977997899799980998199829983998499859986998799889989999099919992999399949995999699979998999910000100011000210003100041000510006100071000810009100101001110012100131001410015100161001710018100191002010021100221002310024100251002610027100281002910030100311003210033100341003510036100371003810039100401004110042100431004410045100461004710048100491005010051100521005310054100551005610057100581005910060100611006210063100641006510066100671006810069100701007110072100731007410075100761007710078100791008010081100821008310084100851008610087100881008910090100911009210093100941009510096100971009810099101001010110102101031010410105101061010710108101091011010111101121011310114101151011610117101181011910120101211012210123101241012510126101271012810129101301013110132101331013410135101361013710138101391014010141101421014310144101451014610147101481014910150101511015210153101541015510156101571015810159101601016110162101631016410165101661016710168101691017010171101721017310174101751017610177101781017910180101811018210183101841018510186101871018810189101901019110192101931019410195101961019710198101991020010201102021020310204102051020610207102081020910210102111021210213102141021510216102171021810219102201022110222102231022410225102261022710228102291023010231102321023310234102351023610237102381023910240102411024210243102441024510246102471024810249102501025110252102531025410255102561025710258102591026010261102621026310264102651026610267102681026910270102711027210273102741027510276102771027810279102801028110282102831028410285102861028710288102891029010291102921029310294102951029610297102981029910300103011030210303103041030510306103071030810309103101031110312103131031410315103161031710318103191032010321103221032310324103251032610327103281032910330103311033210333103341033510336103371033810339103401034110342103431034410345103461034710348103491035010351103521035310354103551035610357103581035910360103611036210363103641036510366103671036810369103701037110372103731037410375103761037710378103791038010381103821038310384103851038610387103881038910390103911039210393103941039510396103971039810399104001040110402104031040410405104061040710408104091041010411104121041310414104151041610417104181041910420104211042210423104241042510426104271042810429104301043110432104331043410435104361043710438104391044010441104421044310444104451044610447104481044910450104511045210453104541045510456104571045810459104601046110462104631046410465104661046710468104691047010471104721047310474104751047610477104781047910480104811048210483104841048510486104871048810489104901049110492104931049410495104961049710498104991050010501105021050310504105051050610507105081050910510105111051210513105141051510516105171051810519105201052110522105231052410525105261052710528105291053010531105321053310534105351053610537105381053910540105411054210543105441054510546105471054810549105501055110552105531055410555105561055710558105591056010561105621056310564105651056610567105681056910570105711057210573105741057510576105771057810579105801058110582105831058410585105861058710588105891059010591105921059310594105951059610597105981059910600106011060210603106041060510606106071060810609106101061110612106131061410615106161061710618106191062010621106221062310624106251062610627106281062910630106311063210633106341063510636106371063810639106401064110642106431064410645106461064710648106491065010651106521065310654106551065610657106581065910660106611066210663106641066510666106671066810669106701067110672106731067410675106761067710678106791068010681106821068310684106851068610687106881068910690106911069210693106941069510696106971069810699107001070110702107031070410705107061070710708107091071010711107121071310714107151071610717107181071910720107211072210723107241072510726107271072810729107301073110732107331073410735107361073710738107391074010741107421074310744107451074610747107481074910750107511075210753107541075510756107571075810759107601076110762107631076410765107661076710768107691077010771107721077310774107751077610777107781077910780107811078210783107841078510786107871078810789107901079110792107931079410795107961079710798107991080010801108021080310804108051080610807108081080910810108111081210813108141081510816108171081810819108201082110822108231082410825108261082710828108291083010831108321083310834108351083610837108381083910840108411084210843108441084510846108471084810849108501085110852108531085410855108561085710858108591086010861108621086310864108651086610867108681086910870108711087210873108741087510876108771087810879108801088110882108831088410885108861088710888108891089010891108921089310894108951089610897108981089910900109011090210903109041090510906109071090810909109101091110912109131091410915109161091710918109191092010921109221092310924109251092610927109281092910930109311093210933109341093510936109371093810939109401094110942109431094410945109461094710948109491095010951109521095310954109551095610957109581095910960109611096210963109641096510966109671096810969109701097110972109731097410975109761097710978109791098010981109821098310984109851098610987109881098910990109911099210993109941099510996109971099810999110001100111002110031100411005110061100711008110091101011011110121101311014110151101611017110181101911020110211102211023110241102511026110271102811029110301103111032110331103411035110361103711038110391104011041110421104311044110451104611047110481104911050110511105211053110541105511056110571105811059110601106111062110631106411065110661106711068110691107011071110721107311074110751107611077110781107911080110811108211083110841108511086110871108811089110901109111092110931109411095110961109711098110991110011101111021110311104111051110611107111081110911110111111111211113111141111511116111171111811119111201112111122111231112411125111261112711128111291113011131111321113311134111351113611137111381113911140111411114211143111441114511146111471114811149111501115111152111531115411155111561115711158111591116011161111621116311164111651116611167111681116911170111711117211173111741117511176111771117811179111801118111182111831118411185111861118711188111891119011191111921119311194111951119611197111981119911200112011120211203112041120511206112071120811209112101121111212112131121411215112161121711218112191122011221112221122311224112251122611227112281122911230112311123211233112341123511236112371123811239112401124111242112431124411245112461124711248112491125011251112521125311254112551125611257112581125911260112611126211263112641126511266112671126811269112701127111272112731127411275112761127711278112791128011281112821128311284112851128611287112881128911290112911129211293112941129511296112971129811299113001130111302113031130411305113061130711308113091131011311113121131311314113151131611317113181131911320113211132211323113241132511326113271132811329113301133111332113331133411335113361133711338113391134011341113421134311344113451134611347113481134911350113511135211353113541135511356113571135811359113601136111362113631136411365113661136711368113691137011371113721137311374113751137611377113781137911380113811138211383113841138511386113871138811389113901139111392113931139411395113961139711398113991140011401114021140311404114051140611407114081140911410114111141211413114141141511416114171141811419114201142111422114231142411425114261142711428114291143011431114321143311434114351143611437114381143911440114411144211443114441144511446114471144811449114501145111452114531145411455114561145711458114591146011461114621146311464114651146611467114681146911470114711147211473114741147511476114771147811479114801148111482114831148411485114861148711488114891149011491114921149311494114951149611497114981149911500115011150211503115041150511506115071150811509115101151111512115131151411515115161151711518115191152011521115221152311524115251152611527115281152911530115311153211533115341153511536115371153811539115401154111542115431154411545115461154711548115491155011551115521155311554115551155611557115581155911560115611156211563115641156511566115671156811569115701157111572115731157411575115761157711578115791158011581115821158311584115851158611587115881158911590115911159211593115941159511596115971159811599116001160111602116031160411605116061160711608116091161011611116121161311614116151161611617116181161911620116211162211623116241162511626116271162811629116301163111632116331163411635116361163711638116391164011641116421164311644116451164611647116481164911650116511165211653116541165511656116571165811659116601166111662116631166411665116661166711668116691167011671116721167311674116751167611677116781167911680116811168211683116841168511686116871168811689116901169111692116931169411695116961169711698116991170011701117021170311704117051170611707117081170911710117111171211713117141171511716117171171811719117201172111722117231172411725117261172711728117291173011731117321173311734117351173611737117381173911740117411174211743117441174511746117471174811749117501175111752117531175411755117561175711758117591176011761117621176311764117651176611767117681176911770117711177211773117741177511776117771177811779117801178111782117831178411785117861178711788117891179011791117921179311794117951179611797117981179911800118011180211803118041180511806118071180811809118101181111812118131181411815118161181711818118191182011821118221182311824118251182611827118281182911830118311183211833118341183511836118371183811839118401184111842118431184411845118461184711848118491185011851118521185311854118551185611857118581185911860118611186211863118641186511866118671186811869118701187111872118731187411875118761187711878118791188011881118821188311884118851188611887118881188911890118911189211893118941189511896118971189811899119001190111902119031190411905119061190711908119091191011911119121191311914119151191611917119181191911920119211192211923119241192511926119271192811929119301193111932119331193411935119361193711938119391194011941119421194311944119451194611947119481194911950119511195211953119541195511956119571195811959119601196111962119631196411965119661196711968119691197011971119721197311974119751197611977119781197911980119811198211983119841198511986119871198811989119901199111992119931199411995119961199711998119991200012001120021200312004120051200612007120081200912010120111201212013120141201512016120171201812019120201202112022120231202412025120261202712028120291203012031120321203312034120351203612037120381203912040120411204212043120441204512046120471204812049120501205112052120531205412055120561205712058120591206012061120621206312064120651206612067120681206912070120711207212073120741207512076120771207812079120801208112082120831208412085120861208712088120891209012091120921209312094120951209612097120981209912100121011210212103121041210512106121071210812109121101211112112121131211412115121161211712118121191212012121121221212312124121251212612127121281212912130121311213212133121341213512136121371213812139121401214112142121431214412145121461214712148121491215012151121521215312154121551215612157121581215912160121611216212163121641216512166121671216812169121701217112172121731217412175121761217712178121791218012181121821218312184121851218612187121881218912190121911219212193121941219512196121971219812199122001220112202122031220412205122061220712208122091221012211122121221312214122151221612217122181221912220122211222212223122241222512226122271222812229122301223112232122331223412235122361223712238122391224012241122421224312244122451224612247122481224912250122511225212253122541225512256122571225812259122601226112262122631226412265122661226712268122691227012271122721227312274122751227612277122781227912280122811228212283122841228512286122871228812289122901229112292122931229412295122961229712298122991230012301123021230312304123051230612307123081230912310123111231212313123141231512316123171231812319123201232112322123231232412325123261232712328123291233012331123321233312334123351233612337123381233912340123411234212343123441234512346123471234812349123501235112352123531235412355123561235712358123591236012361123621236312364123651236612367123681236912370123711237212373123741237512376123771237812379123801238112382123831238412385123861238712388123891239012391123921239312394123951239612397123981239912400124011240212403124041240512406124071240812409124101241112412124131241412415124161241712418124191242012421124221242312424124251242612427124281242912430124311243212433124341243512436124371243812439124401244112442124431244412445124461244712448124491245012451124521245312454124551245612457124581245912460124611246212463124641246512466124671246812469124701247112472124731247412475124761247712478124791248012481124821248312484124851248612487124881248912490124911249212493124941249512496124971249812499125001250112502125031250412505125061250712508125091251012511125121251312514125151251612517125181251912520125211252212523125241252512526125271252812529125301253112532125331253412535125361253712538125391254012541125421254312544125451254612547125481254912550125511255212553125541255512556125571255812559125601256112562125631256412565125661256712568125691257012571125721257312574125751257612577125781257912580125811258212583125841258512586125871258812589125901259112592125931259412595125961259712598125991260012601126021260312604126051260612607126081260912610126111261212613126141261512616126171261812619126201262112622126231262412625126261262712628126291263012631126321263312634126351263612637126381263912640126411264212643126441264512646126471264812649126501265112652126531265412655126561265712658126591266012661126621266312664126651266612667126681266912670126711267212673126741267512676126771267812679126801268112682126831268412685126861268712688126891269012691126921269312694126951269612697126981269912700127011270212703127041270512706127071270812709127101271112712127131271412715127161271712718127191272012721127221272312724127251272612727127281272912730127311273212733127341273512736127371273812739127401274112742127431274412745127461274712748127491275012751127521275312754127551275612757127581275912760127611276212763127641276512766127671276812769127701277112772127731277412775127761277712778127791278012781127821278312784127851278612787127881278912790127911279212793127941279512796127971279812799128001280112802128031280412805128061280712808128091281012811128121281312814128151281612817128181281912820128211282212823128241282512826128271282812829128301283112832128331283412835128361283712838128391284012841128421284312844128451284612847128481284912850128511285212853128541285512856128571285812859128601286112862128631286412865128661286712868128691287012871128721287312874128751287612877128781287912880128811288212883128841288512886128871288812889128901289112892128931289412895128961289712898128991290012901129021290312904129051290612907129081290912910129111291212913129141291512916129171291812919129201292112922129231292412925129261292712928129291293012931129321293312934129351293612937129381293912940129411294212943129441294512946129471294812949129501295112952129531295412955129561295712958129591296012961129621296312964129651296612967129681296912970129711297212973129741297512976129771297812979129801298112982129831298412985129861298712988129891299012991129921299312994129951299612997129981299913000130011300213003130041300513006130071300813009130101301113012130131301413015130161301713018130191302013021130221302313024130251302613027130281302913030130311303213033130341303513036130371303813039130401304113042130431304413045130461304713048130491305013051130521305313054130551305613057130581305913060130611306213063130641306513066130671306813069130701307113072130731307413075130761307713078130791308013081130821308313084130851308613087130881308913090130911309213093130941309513096130971309813099131001310113102131031310413105131061310713108131091311013111131121311313114131151311613117131181311913120131211312213123131241312513126131271312813129131301313113132131331313413135131361313713138131391314013141131421314313144131451314613147131481314913150131511315213153131541315513156131571315813159131601316113162131631316413165131661316713168131691317013171131721317313174131751317613177131781317913180131811318213183131841318513186131871318813189131901319113192131931319413195131961319713198131991320013201132021320313204132051320613207132081320913210132111321213213132141321513216132171321813219132201322113222132231322413225132261322713228132291323013231132321323313234132351323613237132381323913240132411324213243132441324513246132471324813249132501325113252132531325413255132561325713258132591326013261132621326313264132651326613267132681326913270132711327213273132741327513276132771327813279132801328113282132831328413285132861328713288132891329013291132921329313294132951329613297132981329913300133011330213303133041330513306133071330813309133101331113312133131331413315133161331713318133191332013321133221332313324133251332613327133281332913330133311333213333133341333513336133371333813339133401334113342133431334413345133461334713348133491335013351133521335313354133551335613357133581335913360133611336213363133641336513366133671336813369133701337113372133731337413375133761337713378133791338013381133821338313384133851338613387133881338913390133911339213393133941339513396133971339813399134001340113402134031340413405134061340713408134091341013411134121341313414134151341613417134181341913420134211342213423134241342513426134271342813429134301343113432134331343413435134361343713438134391344013441134421344313444134451344613447134481344913450134511345213453134541345513456134571345813459134601346113462134631346413465134661346713468134691347013471134721347313474134751347613477134781347913480134811348213483134841348513486134871348813489134901349113492134931349413495134961349713498134991350013501135021350313504135051350613507135081350913510135111351213513135141351513516135171351813519135201352113522135231352413525135261352713528135291353013531135321353313534135351353613537135381353913540135411354213543135441354513546135471354813549135501355113552135531355413555135561355713558135591356013561135621356313564135651356613567135681356913570135711357213573135741357513576135771357813579135801358113582135831358413585135861358713588135891359013591135921359313594135951359613597135981359913600136011360213603136041360513606136071360813609136101361113612136131361413615136161361713618136191362013621136221362313624136251362613627136281362913630136311363213633136341363513636136371363813639136401364113642136431364413645136461364713648136491365013651136521365313654136551365613657136581365913660136611366213663136641366513666136671366813669136701367113672136731367413675136761367713678136791368013681136821368313684136851368613687136881368913690136911369213693136941369513696136971369813699137001370113702137031370413705137061370713708137091371013711137121371313714137151371613717137181371913720137211372213723137241372513726137271372813729137301373113732137331373413735137361373713738137391374013741137421374313744137451374613747137481374913750137511375213753137541375513756137571375813759137601376113762137631376413765137661376713768137691377013771137721377313774137751377613777137781377913780137811378213783137841378513786137871378813789137901379113792137931379413795137961379713798137991380013801138021380313804138051380613807138081380913810138111381213813138141381513816138171381813819138201382113822138231382413825138261382713828138291383013831138321383313834138351383613837138381383913840138411384213843138441384513846138471384813849138501385113852138531385413855138561385713858138591386013861138621386313864138651386613867138681386913870138711387213873138741387513876138771387813879138801388113882138831388413885138861388713888138891389013891138921389313894138951389613897138981389913900139011390213903139041390513906139071390813909139101391113912139131391413915139161391713918139191392013921139221392313924139251392613927139281392913930139311393213933139341393513936139371393813939139401394113942139431394413945139461394713948139491395013951139521395313954139551395613957139581395913960139611396213963139641396513966139671396813969139701397113972139731397413975139761397713978139791398013981139821398313984139851398613987139881398913990139911399213993139941399513996139971399813999140001400114002140031400414005140061400714008140091401014011140121401314014140151401614017140181401914020140211402214023140241402514026140271402814029140301403114032140331403414035140361403714038140391404014041140421404314044140451404614047140481404914050140511405214053140541405514056140571405814059140601406114062140631406414065140661406714068140691407014071140721407314074140751407614077140781407914080140811408214083140841408514086140871408814089140901409114092140931409414095140961409714098140991410014101141021410314104141051410614107141081410914110141111411214113141141411514116141171411814119141201412114122141231412414125141261412714128141291413014131141321413314134141351413614137141381413914140141411414214143141441414514146141471414814149141501415114152141531415414155141561415714158141591416014161141621416314164141651416614167141681416914170141711417214173141741417514176141771417814179141801418114182141831418414185141861418714188141891419014191141921419314194141951419614197141981419914200142011420214203142041420514206142071420814209142101421114212142131421414215142161421714218142191422014221142221422314224142251422614227142281422914230142311423214233142341423514236142371423814239142401424114242142431424414245142461424714248142491425014251142521425314254142551425614257142581425914260142611426214263142641426514266142671426814269142701427114272142731427414275142761427714278142791428014281142821428314284142851428614287142881428914290142911429214293142941429514296142971429814299143001430114302143031430414305143061430714308143091431014311143121431314314143151431614317143181431914320143211432214323143241432514326143271432814329143301433114332143331433414335143361433714338143391434014341143421434314344143451434614347143481434914350143511435214353143541435514356143571435814359143601436114362143631436414365143661436714368143691437014371143721437314374143751437614377143781437914380143811438214383143841438514386143871438814389143901439114392143931439414395143961439714398143991440014401144021440314404144051440614407144081440914410144111441214413144141441514416144171441814419144201442114422144231442414425144261442714428144291443014431144321443314434144351443614437144381443914440144411444214443144441444514446144471444814449144501445114452144531445414455144561445714458144591446014461144621446314464144651446614467144681446914470144711447214473144741447514476144771447814479144801448114482144831448414485144861448714488144891449014491144921449314494144951449614497144981449914500145011450214503145041450514506145071450814509145101451114512145131451414515145161451714518145191452014521145221452314524145251452614527145281452914530145311453214533145341453514536145371453814539145401454114542145431454414545145461454714548145491455014551145521455314554145551455614557145581455914560145611456214563145641456514566145671456814569145701457114572145731457414575145761457714578145791458014581145821458314584145851458614587145881458914590145911459214593145941459514596145971459814599146001460114602146031460414605146061460714608146091461014611146121461314614146151461614617146181461914620146211462214623146241462514626146271462814629146301463114632146331463414635146361463714638146391464014641146421464314644146451464614647146481464914650146511465214653146541465514656146571465814659146601466114662146631466414665146661466714668146691467014671146721467314674146751467614677146781467914680146811468214683146841468514686146871468814689146901469114692146931469414695146961469714698146991470014701147021470314704147051470614707147081470914710147111471214713147141471514716147171471814719147201472114722147231472414725147261472714728147291473014731147321473314734147351473614737147381473914740147411474214743147441474514746147471474814749147501475114752147531475414755147561475714758147591476014761147621476314764147651476614767147681476914770147711477214773147741477514776147771477814779147801478114782147831478414785147861478714788147891479014791147921479314794147951479614797147981479914800148011480214803148041480514806148071480814809148101481114812148131481414815148161481714818148191482014821148221482314824148251482614827148281482914830148311483214833148341483514836148371483814839148401484114842148431484414845148461484714848148491485014851148521485314854148551485614857148581485914860148611486214863148641486514866148671486814869148701487114872148731487414875148761487714878148791488014881148821488314884148851488614887148881488914890148911489214893148941489514896148971489814899149001490114902149031490414905149061490714908149091491014911149121491314914149151491614917149181491914920149211492214923149241492514926149271492814929149301493114932149331493414935149361493714938149391494014941149421494314944149451494614947149481494914950149511495214953149541495514956149571495814959149601496114962149631496414965149661496714968149691497014971149721497314974149751497614977149781497914980149811498214983149841498514986149871498814989149901499114992149931499414995149961499714998149991500015001150021500315004150051500615007150081500915010150111501215013150141501515016150171501815019150201502115022150231502415025150261502715028150291503015031150321503315034150351503615037150381503915040150411504215043150441504515046150471504815049150501505115052150531505415055150561505715058150591506015061150621506315064150651506615067150681506915070150711507215073150741507515076150771507815079150801508115082150831508415085150861508715088150891509015091150921509315094150951509615097150981509915100151011510215103151041510515106151071510815109151101511115112151131511415115151161511715118151191512015121151221512315124151251512615127151281512915130151311513215133151341513515136151371513815139151401514115142151431514415145151461514715148151491515015151151521515315154151551515615157151581515915160151611516215163151641516515166151671516815169151701517115172151731517415175151761517715178151791518015181151821518315184151851518615187151881518915190151911519215193151941519515196151971519815199152001520115202152031520415205152061520715208152091521015211152121521315214152151521615217152181521915220152211522215223152241522515226152271522815229152301523115232152331523415235152361523715238152391524015241152421524315244152451524615247152481524915250152511525215253152541525515256152571525815259152601526115262152631526415265152661526715268152691527015271152721527315274152751527615277152781527915280152811528215283152841528515286152871528815289152901529115292152931529415295152961529715298152991530015301153021530315304153051530615307153081530915310153111531215313153141531515316153171531815319153201532115322153231532415325153261532715328153291533015331153321533315334153351533615337153381533915340153411534215343153441534515346153471534815349153501535115352153531535415355153561535715358153591536015361153621536315364153651536615367153681536915370153711537215373153741537515376153771537815379153801538115382153831538415385153861538715388153891539015391153921539315394153951539615397153981539915400154011540215403154041540515406154071540815409154101541115412154131541415415154161541715418154191542015421154221542315424154251542615427154281542915430154311543215433154341543515436154371543815439154401544115442154431544415445154461544715448154491545015451154521545315454154551545615457154581545915460154611546215463154641546515466154671546815469154701547115472154731547415475154761547715478154791548015481154821548315484154851548615487154881548915490154911549215493154941549515496154971549815499155001550115502155031550415505155061550715508155091551015511155121551315514155151551615517155181551915520155211552215523155241552515526155271552815529155301553115532155331553415535155361553715538155391554015541155421554315544155451554615547155481554915550155511555215553155541555515556155571555815559155601556115562155631556415565155661556715568155691557015571155721557315574155751557615577155781557915580155811558215583155841558515586155871558815589155901559115592155931559415595155961559715598155991560015601156021560315604156051560615607156081560915610156111561215613156141561515616156171561815619156201562115622156231562415625156261562715628156291563015631156321563315634156351563615637156381563915640156411564215643156441564515646156471564815649156501565115652156531565415655156561565715658156591566015661156621566315664156651566615667156681566915670156711567215673156741567515676156771567815679156801568115682156831568415685156861568715688156891569015691156921569315694156951569615697156981569915700157011570215703157041570515706157071570815709157101571115712157131571415715157161571715718157191572015721157221572315724157251572615727157281572915730157311573215733157341573515736157371573815739157401574115742157431574415745157461574715748157491575015751157521575315754157551575615757157581575915760157611576215763157641576515766157671576815769157701577115772157731577415775157761577715778157791578015781157821578315784157851578615787157881578915790157911579215793157941579515796157971579815799158001580115802158031580415805158061580715808158091581015811158121581315814158151581615817158181581915820158211582215823158241582515826158271582815829158301583115832158331583415835158361583715838158391584015841158421584315844158451584615847158481584915850158511585215853158541585515856158571585815859158601586115862158631586415865158661586715868158691587015871158721587315874158751587615877158781587915880158811588215883158841588515886158871588815889158901589115892158931589415895158961589715898158991590015901159021590315904159051590615907159081590915910159111591215913159141591515916159171591815919159201592115922159231592415925159261592715928159291593015931159321593315934159351593615937159381593915940159411594215943159441594515946159471594815949159501595115952159531595415955159561595715958159591596015961159621596315964159651596615967159681596915970159711597215973159741597515976159771597815979159801598115982159831598415985159861598715988159891599015991159921599315994159951599615997159981599916000160011600216003160041600516006160071600816009160101601116012160131601416015160161601716018160191602016021160221602316024160251602616027160281602916030160311603216033160341603516036160371603816039160401604116042160431604416045160461604716048160491605016051160521605316054160551605616057160581605916060160611606216063160641606516066160671606816069160701607116072160731607416075160761607716078160791608016081160821608316084160851608616087160881608916090160911609216093160941609516096160971609816099161001610116102161031610416105161061610716108161091611016111161121611316114161151611616117161181611916120161211612216123161241612516126161271612816129161301613116132161331613416135161361613716138161391614016141161421614316144161451614616147161481614916150161511615216153161541615516156161571615816159161601616116162161631616416165161661616716168161691617016171161721617316174161751617616177161781617916180161811618216183161841618516186161871618816189161901619116192161931619416195161961619716198161991620016201162021620316204162051620616207162081620916210162111621216213162141621516216162171621816219162201622116222162231622416225162261622716228162291623016231162321623316234162351623616237162381623916240162411624216243162441624516246162471624816249162501625116252162531625416255162561625716258162591626016261162621626316264162651626616267162681626916270162711627216273162741627516276162771627816279162801628116282162831628416285162861628716288162891629016291162921629316294162951629616297162981629916300163011630216303163041630516306163071630816309163101631116312163131631416315163161631716318163191632016321163221632316324163251632616327163281632916330163311633216333163341633516336163371633816339163401634116342163431634416345163461634716348163491635016351163521635316354163551635616357163581635916360163611636216363163641636516366163671636816369163701637116372163731637416375163761637716378163791638016381163821638316384163851638616387163881638916390163911639216393163941639516396163971639816399164001640116402164031640416405164061640716408164091641016411164121641316414164151641616417164181641916420164211642216423164241642516426164271642816429164301643116432164331643416435164361643716438164391644016441164421644316444164451644616447164481644916450164511645216453164541645516456164571645816459164601646116462164631646416465164661646716468164691647016471164721647316474164751647616477164781647916480164811648216483164841648516486164871648816489164901649116492164931649416495164961649716498164991650016501165021650316504165051650616507165081650916510165111651216513165141651516516165171651816519165201652116522165231652416525165261652716528165291653016531165321653316534165351653616537165381653916540165411654216543165441654516546165471654816549165501655116552165531655416555165561655716558165591656016561165621656316564165651656616567165681656916570165711657216573165741657516576165771657816579165801658116582165831658416585165861658716588165891659016591165921659316594165951659616597165981659916600166011660216603166041660516606166071660816609166101661116612166131661416615166161661716618166191662016621166221662316624166251662616627166281662916630166311663216633166341663516636166371663816639166401664116642166431664416645166461664716648166491665016651166521665316654166551665616657166581665916660166611666216663166641666516666166671666816669166701667116672166731667416675166761667716678166791668016681166821668316684166851668616687166881668916690166911669216693166941669516696166971669816699167001670116702167031670416705167061670716708167091671016711167121671316714167151671616717167181671916720167211672216723167241672516726167271672816729167301673116732167331673416735167361673716738167391674016741167421674316744167451674616747167481674916750167511675216753167541675516756167571675816759167601676116762167631676416765167661676716768167691677016771167721677316774167751677616777167781677916780167811678216783167841678516786167871678816789167901679116792167931679416795167961679716798167991680016801168021680316804168051680616807168081680916810168111681216813168141681516816168171681816819168201682116822168231682416825168261682716828168291683016831168321683316834168351683616837168381683916840168411684216843168441684516846168471684816849168501685116852168531685416855168561685716858168591686016861168621686316864168651686616867168681686916870168711687216873168741687516876168771687816879168801688116882168831688416885168861688716888168891689016891168921689316894168951689616897168981689916900169011690216903169041690516906169071690816909169101691116912169131691416915169161691716918169191692016921169221692316924169251692616927169281692916930169311693216933169341693516936169371693816939169401694116942169431694416945169461694716948169491695016951169521695316954169551695616957169581695916960169611696216963169641696516966169671696816969169701697116972169731697416975169761697716978169791698016981169821698316984169851698616987169881698916990169911699216993169941699516996169971699816999170001700117002170031700417005170061700717008170091701017011170121701317014170151701617017170181701917020170211702217023170241702517026170271702817029170301703117032170331703417035170361703717038170391704017041170421704317044170451704617047170481704917050170511705217053170541705517056170571705817059170601706117062170631706417065170661706717068170691707017071170721707317074170751707617077170781707917080170811708217083170841708517086170871708817089170901709117092170931709417095170961709717098170991710017101171021710317104171051710617107171081710917110171111711217113171141711517116171171711817119171201712117122171231712417125171261712717128171291713017131171321713317134171351713617137171381713917140171411714217143171441714517146171471714817149171501715117152171531715417155171561715717158171591716017161171621716317164171651716617167171681716917170171711717217173171741717517176171771717817179171801718117182171831718417185171861718717188171891719017191171921719317194171951719617197171981719917200172011720217203172041720517206172071720817209172101721117212172131721417215172161721717218172191722017221172221722317224172251722617227172281722917230172311723217233172341723517236172371723817239172401724117242172431724417245172461724717248172491725017251172521725317254172551725617257172581725917260172611726217263172641726517266172671726817269172701727117272172731727417275172761727717278172791728017281172821728317284172851728617287172881728917290172911729217293172941729517296172971729817299173001730117302173031730417305173061730717308173091731017311173121731317314173151731617317173181731917320173211732217323173241732517326173271732817329173301733117332173331733417335173361733717338173391734017341173421734317344173451734617347173481734917350173511735217353173541735517356173571735817359173601736117362173631736417365173661736717368173691737017371173721737317374173751737617377173781737917380173811738217383173841738517386173871738817389173901739117392173931739417395173961739717398173991740017401174021740317404174051740617407174081740917410174111741217413174141741517416174171741817419174201742117422174231742417425174261742717428174291743017431174321743317434174351743617437174381743917440174411744217443174441744517446174471744817449174501745117452174531745417455174561745717458174591746017461174621746317464174651746617467174681746917470174711747217473174741747517476174771747817479174801748117482174831748417485174861748717488174891749017491174921749317494174951749617497174981749917500175011750217503175041750517506175071750817509175101751117512175131751417515175161751717518175191752017521175221752317524175251752617527175281752917530175311753217533175341753517536175371753817539175401754117542175431754417545175461754717548175491755017551175521755317554175551755617557175581755917560175611756217563175641756517566175671756817569175701757117572175731757417575175761757717578175791758017581175821758317584175851758617587175881758917590175911759217593175941759517596175971759817599176001760117602176031760417605176061760717608176091761017611176121761317614176151761617617176181761917620176211762217623176241762517626176271762817629176301763117632176331763417635176361763717638176391764017641176421764317644176451764617647176481764917650176511765217653176541765517656176571765817659176601766117662176631766417665176661766717668176691767017671176721767317674176751767617677176781767917680176811768217683176841768517686176871768817689176901769117692176931769417695176961769717698176991770017701177021770317704177051770617707177081770917710177111771217713177141771517716177171771817719177201772117722177231772417725177261772717728177291773017731177321773317734177351773617737177381773917740177411774217743177441774517746177471774817749177501775117752177531775417755177561775717758177591776017761177621776317764177651776617767177681776917770177711777217773177741777517776177771777817779177801778117782177831778417785177861778717788177891779017791177921779317794177951779617797177981779917800178011780217803178041780517806178071780817809178101781117812178131781417815178161781717818178191782017821178221782317824178251782617827178281782917830178311783217833178341783517836178371783817839178401784117842178431784417845178461784717848178491785017851178521785317854178551785617857178581785917860178611786217863178641786517866178671786817869178701787117872178731787417875178761787717878178791788017881178821788317884178851788617887178881788917890178911789217893178941789517896178971789817899179001790117902179031790417905179061790717908179091791017911179121791317914179151791617917179181791917920179211792217923179241792517926179271792817929179301793117932179331793417935179361793717938179391794017941179421794317944179451794617947179481794917950179511795217953179541795517956179571795817959179601796117962179631796417965179661796717968179691797017971179721797317974179751797617977179781797917980179811798217983179841798517986179871798817989179901799117992179931799417995179961799717998179991800018001180021800318004180051800618007180081800918010180111801218013180141801518016180171801818019180201802118022180231802418025180261802718028180291803018031180321803318034180351803618037180381803918040180411804218043180441804518046180471804818049180501805118052180531805418055180561805718058180591806018061180621806318064180651806618067180681806918070180711807218073180741807518076180771807818079180801808118082180831808418085180861808718088180891809018091180921809318094180951809618097180981809918100181011810218103181041810518106181071810818109181101811118112181131811418115181161811718118181191812018121181221812318124181251812618127181281812918130181311813218133181341813518136181371813818139181401814118142181431814418145181461814718148181491815018151181521815318154181551815618157181581815918160181611816218163181641816518166181671816818169181701817118172181731817418175181761817718178181791818018181181821818318184181851818618187181881818918190181911819218193181941819518196181971819818199182001820118202182031820418205182061820718208182091821018211182121821318214182151821618217182181821918220182211822218223182241822518226182271822818229182301823118232182331823418235182361823718238182391824018241182421824318244182451824618247182481824918250182511825218253182541825518256182571825818259182601826118262182631826418265182661826718268182691827018271182721827318274182751827618277182781827918280182811828218283182841828518286182871828818289182901829118292182931829418295182961829718298182991830018301183021830318304183051830618307183081830918310183111831218313183141831518316183171831818319183201832118322183231832418325183261832718328183291833018331183321833318334183351833618337183381833918340183411834218343183441834518346183471834818349183501835118352183531835418355183561835718358183591836018361183621836318364183651836618367183681836918370183711837218373183741837518376183771837818379183801838118382183831838418385183861838718388183891839018391183921839318394183951839618397183981839918400184011840218403184041840518406184071840818409184101841118412184131841418415184161841718418184191842018421184221842318424184251842618427184281842918430184311843218433184341843518436184371843818439184401844118442184431844418445184461844718448184491845018451184521845318454184551845618457184581845918460184611846218463184641846518466184671846818469184701847118472184731847418475184761847718478184791848018481184821848318484184851848618487184881848918490184911849218493184941849518496184971849818499185001850118502185031850418505185061850718508185091851018511185121851318514185151851618517185181851918520185211852218523185241852518526185271852818529185301853118532185331853418535185361853718538185391854018541185421854318544185451854618547185481854918550185511855218553185541855518556185571855818559185601856118562185631856418565185661856718568185691857018571185721857318574185751857618577185781857918580185811858218583185841858518586185871858818589185901859118592185931859418595185961859718598185991860018601186021860318604186051860618607186081860918610186111861218613186141861518616186171861818619186201862118622186231862418625186261862718628186291863018631186321863318634186351863618637186381863918640186411864218643186441864518646186471864818649186501865118652186531865418655186561865718658186591866018661186621866318664186651866618667186681866918670186711867218673186741867518676186771867818679186801868118682186831868418685186861868718688186891869018691186921869318694186951869618697186981869918700187011870218703187041870518706187071870818709187101871118712187131871418715187161871718718187191872018721187221872318724187251872618727187281872918730187311873218733187341873518736187371873818739187401874118742187431874418745187461874718748187491875018751187521875318754187551875618757187581875918760187611876218763187641876518766187671876818769187701877118772187731877418775187761877718778187791878018781187821878318784187851878618787187881878918790187911879218793187941879518796187971879818799188001880118802188031880418805188061880718808188091881018811188121881318814188151881618817188181881918820188211882218823188241882518826188271882818829188301883118832188331883418835188361883718838188391884018841188421884318844188451884618847188481884918850188511885218853188541885518856188571885818859188601886118862188631886418865188661886718868188691887018871188721887318874188751887618877188781887918880188811888218883188841888518886188871888818889188901889118892188931889418895188961889718898188991890018901189021890318904189051890618907189081890918910189111891218913189141891518916189171891818919189201892118922189231892418925189261892718928189291893018931189321893318934189351893618937189381893918940189411894218943189441894518946189471894818949189501895118952189531895418955189561895718958189591896018961189621896318964189651896618967189681896918970189711897218973189741897518976189771897818979189801898118982189831898418985189861898718988189891899018991189921899318994189951899618997189981899919000190011900219003190041900519006190071900819009190101901119012190131901419015190161901719018190191902019021190221902319024190251902619027190281902919030190311903219033190341903519036190371903819039190401904119042190431904419045190461904719048190491905019051190521905319054190551905619057190581905919060190611906219063190641906519066190671906819069190701907119072190731907419075190761907719078190791908019081190821908319084190851908619087190881908919090190911909219093190941909519096190971909819099191001910119102191031910419105191061910719108191091911019111191121911319114191151911619117191181911919120191211912219123191241912519126191271912819129191301913119132191331913419135191361913719138191391914019141191421914319144191451914619147191481914919150191511915219153191541915519156191571915819159191601916119162191631916419165191661916719168191691917019171191721917319174191751917619177191781917919180191811918219183191841918519186191871918819189191901919119192191931919419195191961919719198191991920019201192021920319204192051920619207192081920919210192111921219213192141921519216192171921819219192201922119222192231922419225192261922719228192291923019231192321923319234192351923619237192381923919240192411924219243192441924519246192471924819249192501925119252192531925419255192561925719258192591926019261192621926319264192651926619267192681926919270192711927219273192741927519276192771927819279192801928119282192831928419285192861928719288192891929019291192921929319294192951929619297192981929919300193011930219303193041930519306193071930819309193101931119312193131931419315193161931719318193191932019321193221932319324193251932619327193281932919330193311933219333193341933519336193371933819339193401934119342193431934419345193461934719348193491935019351193521935319354193551935619357193581935919360193611936219363193641936519366193671936819369193701937119372193731937419375193761937719378193791938019381193821938319384193851938619387193881938919390193911939219393193941939519396193971939819399194001940119402194031940419405194061940719408194091941019411194121941319414194151941619417194181941919420194211942219423194241942519426194271942819429194301943119432194331943419435194361943719438194391944019441194421944319444194451944619447194481944919450194511945219453194541945519456194571945819459194601946119462194631946419465194661946719468194691947019471194721947319474194751947619477194781947919480194811948219483194841948519486194871948819489194901949119492194931949419495194961949719498194991950019501195021950319504195051950619507195081950919510195111951219513195141951519516195171951819519195201952119522195231952419525195261952719528195291953019531195321953319534195351953619537195381953919540195411954219543195441954519546195471954819549195501955119552195531955419555195561955719558195591956019561195621956319564195651956619567195681956919570195711957219573195741957519576195771957819579195801958119582195831958419585195861958719588195891959019591195921959319594195951959619597195981959919600196011960219603196041960519606196071960819609196101961119612196131961419615196161961719618196191962019621196221962319624196251962619627196281962919630196311963219633196341963519636196371963819639196401964119642196431964419645196461964719648196491965019651196521965319654196551965619657196581965919660196611966219663196641966519666196671966819669196701967119672196731967419675196761967719678196791968019681196821968319684196851968619687196881968919690196911969219693196941969519696196971969819699197001970119702197031970419705197061970719708197091971019711197121971319714197151971619717197181971919720197211972219723197241972519726197271972819729197301973119732197331973419735197361973719738197391974019741197421974319744197451974619747197481974919750197511975219753197541975519756197571975819759197601976119762197631976419765197661976719768197691977019771197721977319774197751977619777197781977919780197811978219783197841978519786197871978819789197901979119792197931979419795197961979719798197991980019801198021980319804198051980619807198081980919810198111981219813198141981519816198171981819819198201982119822198231982419825198261982719828198291983019831198321983319834198351983619837198381983919840198411984219843198441984519846198471984819849198501985119852198531985419855198561985719858198591986019861198621986319864198651986619867198681986919870198711987219873198741987519876198771987819879198801988119882198831988419885198861988719888198891989019891198921989319894198951989619897198981989919900199011990219903199041990519906199071990819909199101991119912199131991419915199161991719918199191992019921199221992319924199251992619927199281992919930199311993219933199341993519936199371993819939199401994119942199431994419945199461994719948199491995019951199521995319954199551995619957199581995919960199611996219963199641996519966199671996819969199701997119972199731997419975199761997719978199791998019981199821998319984199851998619987199881998919990199911999219993199941999519996199971999819999200002000120002200032000420005200062000720008200092001020011200122001320014200152001620017200182001920020200212002220023200242002520026200272002820029200302003120032200332003420035200362003720038200392004020041200422004320044200452004620047200482004920050200512005220053200542005520056200572005820059200602006120062200632006420065200662006720068200692007020071200722007320074200752007620077200782007920080200812008220083200842008520086200872008820089200902009120092200932009420095200962009720098200992010020101201022010320104201052010620107201082010920110201112011220113201142011520116201172011820119201202012120122201232012420125201262012720128201292013020131201322013320134201352013620137201382013920140201412014220143201442014520146201472014820149201502015120152201532015420155201562015720158201592016020161201622016320164201652016620167201682016920170201712017220173201742017520176201772017820179201802018120182201832018420185201862018720188201892019020191201922019320194201952019620197201982019920200202012020220203202042020520206202072020820209202102021120212202132021420215202162021720218202192022020221202222022320224202252022620227202282022920230202312023220233202342023520236202372023820239202402024120242202432024420245202462024720248202492025020251202522025320254202552025620257202582025920260202612026220263202642026520266202672026820269202702027120272202732027420275202762027720278202792028020281202822028320284202852028620287202882028920290202912029220293202942029520296202972029820299203002030120302203032030420305203062030720308203092031020311203122031320314203152031620317203182031920320203212032220323203242032520326203272032820329203302033120332203332033420335203362033720338203392034020341203422034320344203452034620347203482034920350203512035220353203542035520356203572035820359203602036120362203632036420365203662036720368203692037020371203722037320374203752037620377203782037920380203812038220383203842038520386203872038820389203902039120392203932039420395203962039720398203992040020401204022040320404204052040620407204082040920410204112041220413204142041520416204172041820419204202042120422204232042420425204262042720428204292043020431204322043320434204352043620437204382043920440204412044220443204442044520446204472044820449204502045120452204532045420455204562045720458204592046020461204622046320464204652046620467204682046920470204712047220473204742047520476204772047820479204802048120482204832048420485204862048720488204892049020491204922049320494204952049620497204982049920500205012050220503205042050520506205072050820509205102051120512205132051420515205162051720518205192052020521205222052320524205252052620527205282052920530205312053220533205342053520536205372053820539205402054120542205432054420545205462054720548205492055020551205522055320554205552055620557205582055920560205612056220563205642056520566205672056820569205702057120572205732057420575205762057720578205792058020581205822058320584205852058620587205882058920590205912059220593205942059520596205972059820599206002060120602206032060420605206062060720608206092061020611206122061320614206152061620617206182061920620206212062220623206242062520626206272062820629206302063120632206332063420635206362063720638206392064020641206422064320644206452064620647206482064920650206512065220653206542065520656206572065820659206602066120662206632066420665206662066720668206692067020671206722067320674206752067620677206782067920680206812068220683206842068520686206872068820689206902069120692206932069420695206962069720698206992070020701207022070320704207052070620707207082070920710207112071220713207142071520716207172071820719207202072120722207232072420725207262072720728207292073020731207322073320734207352073620737207382073920740207412074220743207442074520746207472074820749207502075120752207532075420755207562075720758207592076020761207622076320764207652076620767207682076920770207712077220773207742077520776207772077820779207802078120782207832078420785207862078720788207892079020791207922079320794207952079620797207982079920800208012080220803208042080520806208072080820809208102081120812208132081420815208162081720818208192082020821208222082320824208252082620827208282082920830208312083220833208342083520836208372083820839208402084120842208432084420845208462084720848208492085020851208522085320854208552085620857208582085920860208612086220863208642086520866208672086820869208702087120872208732087420875208762087720878208792088020881208822088320884208852088620887208882088920890208912089220893208942089520896208972089820899209002090120902209032090420905209062090720908209092091020911209122091320914209152091620917209182091920920209212092220923209242092520926209272092820929209302093120932209332093420935209362093720938209392094020941209422094320944209452094620947209482094920950209512095220953209542095520956209572095820959209602096120962209632096420965209662096720968209692097020971209722097320974209752097620977209782097920980209812098220983209842098520986209872098820989209902099120992209932099420995209962099720998209992100021001210022100321004210052100621007210082100921010210112101221013210142101521016210172101821019210202102121022210232102421025210262102721028210292103021031210322103321034210352103621037210382103921040210412104221043210442104521046210472104821049210502105121052210532105421055210562105721058210592106021061210622106321064210652106621067210682106921070210712107221073210742107521076210772107821079210802108121082210832108421085210862108721088210892109021091210922109321094210952109621097210982109921100211012110221103211042110521106211072110821109211102111121112211132111421115211162111721118211192112021121211222112321124211252112621127211282112921130211312113221133211342113521136211372113821139211402114121142211432114421145211462114721148211492115021151211522115321154211552115621157211582115921160211612116221163211642116521166211672116821169211702117121172211732117421175211762117721178211792118021181211822118321184211852118621187211882118921190211912119221193211942119521196211972119821199212002120121202212032120421205212062120721208212092121021211212122121321214212152121621217212182121921220212212122221223212242122521226212272122821229212302123121232212332123421235212362123721238212392124021241212422124321244212452124621247212482124921250212512125221253212542125521256212572125821259212602126121262212632126421265212662126721268212692127021271212722127321274212752127621277212782127921280212812128221283212842128521286212872128821289212902129121292212932129421295212962129721298212992130021301213022130321304213052130621307213082130921310213112131221313213142131521316213172131821319213202132121322213232132421325213262132721328213292133021331213322133321334213352133621337213382133921340213412134221343213442134521346213472134821349213502135121352213532135421355213562135721358213592136021361213622136321364213652136621367213682136921370213712137221373213742137521376213772137821379213802138121382213832138421385213862138721388213892139021391213922139321394213952139621397213982139921400214012140221403214042140521406214072140821409214102141121412214132141421415214162141721418214192142021421214222142321424214252142621427214282142921430214312143221433214342143521436214372143821439214402144121442214432144421445214462144721448214492145021451214522145321454214552145621457214582145921460214612146221463214642146521466214672146821469214702147121472214732147421475214762147721478214792148021481214822148321484214852148621487214882148921490214912149221493214942149521496214972149821499215002150121502215032150421505215062150721508215092151021511215122151321514215152151621517215182151921520215212152221523215242152521526215272152821529215302153121532215332153421535215362153721538215392154021541215422154321544215452154621547215482154921550215512155221553215542155521556215572155821559215602156121562215632156421565215662156721568215692157021571215722157321574215752157621577215782157921580215812158221583215842158521586215872158821589215902159121592215932159421595215962159721598215992160021601216022160321604216052160621607216082160921610216112161221613216142161521616216172161821619216202162121622216232162421625216262162721628216292163021631216322163321634216352163621637216382163921640216412164221643216442164521646216472164821649216502165121652216532165421655216562165721658216592166021661216622166321664216652166621667216682166921670216712167221673216742167521676216772167821679216802168121682216832168421685216862168721688216892169021691216922169321694216952169621697216982169921700217012170221703217042170521706217072170821709217102171121712217132171421715217162171721718217192172021721217222172321724217252172621727217282172921730217312173221733217342173521736217372173821739217402174121742217432174421745217462174721748217492175021751217522175321754217552175621757217582175921760217612176221763217642176521766217672176821769217702177121772217732177421775217762177721778217792178021781217822178321784217852178621787217882178921790217912179221793217942179521796217972179821799218002180121802218032180421805218062180721808218092181021811218122181321814218152181621817218182181921820218212182221823218242182521826218272182821829218302183121832218332183421835218362183721838218392184021841218422184321844218452184621847218482184921850218512185221853218542185521856218572185821859218602186121862218632186421865218662186721868218692187021871218722187321874218752187621877218782187921880218812188221883218842188521886218872188821889218902189121892218932189421895218962189721898218992190021901219022190321904219052190621907219082190921910219112191221913219142191521916219172191821919219202192121922219232192421925219262192721928219292193021931219322193321934219352193621937219382193921940219412194221943219442194521946219472194821949219502195121952219532195421955219562195721958219592196021961219622196321964219652196621967219682196921970219712197221973219742197521976219772197821979219802198121982219832198421985219862198721988219892199021991219922199321994219952199621997219982199922000220012200222003220042200522006220072200822009220102201122012220132201422015220162201722018220192202022021220222202322024220252202622027220282202922030220312203222033220342203522036220372203822039220402204122042220432204422045220462204722048220492205022051220522205322054220552205622057220582205922060220612206222063220642206522066220672206822069220702207122072220732207422075220762207722078220792208022081220822208322084220852208622087220882208922090220912209222093220942209522096220972209822099221002210122102221032210422105221062210722108221092211022111221122211322114221152211622117221182211922120
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #include "ggml-aarch64.h"
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #include <signal.h>
  25. #if defined(__gnu_linux__)
  26. #include <syscall.h>
  27. #endif
  28. #ifdef GGML_USE_OPENMP
  29. #include <omp.h>
  30. #endif
  31. #ifdef GGML_USE_METAL
  32. #include <unistd.h>
  33. #endif
  34. #if defined(__ARM_FEATURE_SVE)
  35. int ggml_sve_cnt_b = 0;
  36. #endif
  37. #if defined(__ARM_FEATURE_SVE) || defined(__ARM_FEATURE_MATMUL_INT8)
  38. #undef GGML_USE_LLAMAFILE
  39. #endif
  40. #ifdef GGML_USE_LLAMAFILE
  41. #include <llamafile/sgemm.h>
  42. #endif
  43. #if defined(_MSC_VER)
  44. // disable "possible loss of data" to avoid hundreds of casts
  45. // we should just be careful :)
  46. #pragma warning(disable: 4244 4267)
  47. // disable POSIX deprecation warnings
  48. // these functions are never going away, anyway
  49. #pragma warning(disable: 4996)
  50. #endif
  51. #if defined(_WIN32)
  52. #define WIN32_LEAN_AND_MEAN
  53. #ifndef NOMINMAX
  54. #define NOMINMAX
  55. #endif
  56. #include <windows.h>
  57. typedef volatile LONG atomic_int;
  58. typedef atomic_int atomic_bool;
  59. typedef atomic_int atomic_flag;
  60. #define ATOMIC_FLAG_INIT 0
  61. static void atomic_store(atomic_int * ptr, LONG val) {
  62. InterlockedExchange(ptr, val);
  63. }
  64. static LONG atomic_load(atomic_int * ptr) {
  65. return InterlockedCompareExchange(ptr, 0, 0);
  66. }
  67. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  68. return InterlockedExchangeAdd(ptr, inc);
  69. }
  70. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  71. return atomic_fetch_add(ptr, -(dec));
  72. }
  73. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  74. return InterlockedExchange(ptr, 1);
  75. }
  76. static void atomic_flag_clear(atomic_flag * ptr) {
  77. InterlockedExchange(ptr, 0);
  78. }
  79. typedef HANDLE pthread_t;
  80. typedef DWORD thread_ret_t;
  81. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  82. (void) unused;
  83. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  84. if (handle == NULL)
  85. {
  86. return EAGAIN;
  87. }
  88. *out = handle;
  89. return 0;
  90. }
  91. static int pthread_join(pthread_t thread, void * unused) {
  92. (void) unused;
  93. int ret = (int) WaitForSingleObject(thread, INFINITE);
  94. CloseHandle(thread);
  95. return ret;
  96. }
  97. static int sched_yield (void) {
  98. Sleep (0);
  99. return 0;
  100. }
  101. #else
  102. #include <pthread.h>
  103. #include <stdatomic.h>
  104. typedef void * thread_ret_t;
  105. #include <sys/types.h>
  106. #include <sys/stat.h>
  107. #include <unistd.h>
  108. #endif
  109. typedef pthread_t ggml_thread_t;
  110. #ifdef GGML_USE_CPU_HBM
  111. #include <hbwmalloc.h>
  112. #endif
  113. #if defined(__APPLE__)
  114. #include <TargetConditionals.h>
  115. #endif
  116. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  117. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  118. #include <sys/wait.h>
  119. #if defined(__ANDROID__)
  120. #include <unwind.h>
  121. #include <dlfcn.h>
  122. #include <stdio.h>
  123. struct backtrace_state {
  124. void ** current;
  125. void ** end;
  126. };
  127. static _Unwind_Reason_Code unwind_callback(struct _Unwind_Context* context, void* arg) {
  128. struct backtrace_state * state = (struct backtrace_state *)arg;
  129. uintptr_t pc = _Unwind_GetIP(context);
  130. if (pc) {
  131. if (state->current == state->end) {
  132. return _URC_END_OF_STACK;
  133. } else {
  134. *state->current++ = (void*)pc;
  135. }
  136. }
  137. return _URC_NO_REASON;
  138. }
  139. static void ggml_print_backtrace_symbols(void) {
  140. const int max = 100;
  141. void* buffer[max];
  142. struct backtrace_state state = {buffer, buffer + max};
  143. _Unwind_Backtrace(unwind_callback, &state);
  144. int count = state.current - buffer;
  145. for (int idx = 0; idx < count; ++idx) {
  146. const void * addr = buffer[idx];
  147. const char * symbol = "";
  148. Dl_info info;
  149. if (dladdr(addr, &info) && info.dli_sname) {
  150. symbol = info.dli_sname;
  151. }
  152. fprintf(stderr, "%d: %p %s\n", idx, addr, symbol);
  153. }
  154. }
  155. #elif defined(__linux__) && defined(__GLIBC__)
  156. #include <execinfo.h>
  157. static void ggml_print_backtrace_symbols(void) {
  158. void * trace[100];
  159. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  160. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  161. }
  162. #else
  163. static void ggml_print_backtrace_symbols(void) {
  164. // platform not supported
  165. }
  166. #endif
  167. static void ggml_print_backtrace(void) {
  168. char attach[32];
  169. snprintf(attach, sizeof(attach), "attach %d", getpid());
  170. int pid = fork();
  171. if (pid == 0) {
  172. // try gdb
  173. execlp("gdb", "gdb", "--batch",
  174. "-ex", "set style enabled on",
  175. "-ex", attach,
  176. "-ex", "bt -frame-info source-and-location",
  177. "-ex", "detach",
  178. "-ex", "quit",
  179. (char *) NULL);
  180. // try lldb
  181. execlp("lldb", "lldb", "--batch",
  182. "-o", "bt",
  183. "-o", "quit",
  184. "-p", attach,
  185. (char *) NULL);
  186. exit(EXIT_FAILURE);
  187. } else {
  188. int wstatus;
  189. waitpid(pid, &wstatus, 0);
  190. if (WIFEXITED(wstatus)) {
  191. if (WEXITSTATUS(wstatus) == EXIT_FAILURE) {
  192. // gdb failed, fallback to backtrace_symbols
  193. ggml_print_backtrace_symbols();
  194. }
  195. }
  196. }
  197. }
  198. #else
  199. static void ggml_print_backtrace(void) {
  200. // platform not supported
  201. }
  202. #endif
  203. void ggml_abort(const char * file, int line, const char * fmt, ...) {
  204. fflush(stdout);
  205. fprintf(stderr, "%s:%d: ", file, line);
  206. va_list args;
  207. va_start(args, fmt);
  208. vfprintf(stderr, fmt, args);
  209. va_end(args);
  210. fprintf(stderr, "\n");
  211. ggml_print_backtrace();
  212. abort();
  213. }
  214. #define GGML_DEBUG 0
  215. #define GGML_GELU_FP16
  216. #define GGML_GELU_QUICK_FP16
  217. #define GGML_SOFT_MAX_UNROLL 4
  218. #define GGML_VEC_DOT_UNROLL 2
  219. #define GGML_VEC_MAD_UNROLL 32
  220. //
  221. // logging
  222. //
  223. #if (GGML_DEBUG >= 1)
  224. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  225. #else
  226. #define GGML_PRINT_DEBUG(...)
  227. #endif
  228. #if (GGML_DEBUG >= 5)
  229. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  230. #else
  231. #define GGML_PRINT_DEBUG_5(...)
  232. #endif
  233. #if (GGML_DEBUG >= 10)
  234. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  235. #else
  236. #define GGML_PRINT_DEBUG_10(...)
  237. #endif
  238. #define GGML_PRINT(...) printf(__VA_ARGS__)
  239. //
  240. // end of logging block
  241. //
  242. #ifdef GGML_USE_ACCELERATE
  243. // uncomment to use vDSP for soft max computation
  244. // note: not sure if it is actually faster
  245. //#define GGML_SOFT_MAX_ACCELERATE
  246. #endif
  247. #if defined(_MSC_VER) || defined(__MINGW32__)
  248. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  249. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  250. #else
  251. inline static void * ggml_aligned_malloc(size_t size) {
  252. if (size == 0) {
  253. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  254. return NULL;
  255. }
  256. void * aligned_memory = NULL;
  257. #ifdef GGML_USE_CPU_HBM
  258. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  259. #elif GGML_USE_METAL
  260. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  261. #else
  262. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  263. #endif
  264. if (result != 0) {
  265. // Handle allocation failure
  266. const char *error_desc = "unknown allocation error";
  267. switch (result) {
  268. case EINVAL:
  269. error_desc = "invalid alignment value";
  270. break;
  271. case ENOMEM:
  272. error_desc = "insufficient memory";
  273. break;
  274. }
  275. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  276. GGML_ABORT("fatal error");
  277. return NULL;
  278. }
  279. return aligned_memory;
  280. }
  281. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  282. #ifdef GGML_USE_CPU_HBM
  283. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  284. #else
  285. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  286. #endif
  287. #endif
  288. inline static void * ggml_malloc(size_t size) {
  289. if (size == 0) {
  290. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  291. return NULL;
  292. }
  293. void * result = malloc(size);
  294. if (result == NULL) {
  295. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  296. GGML_ABORT("fatal error");
  297. }
  298. return result;
  299. }
  300. // calloc
  301. inline static void * ggml_calloc(size_t num, size_t size) {
  302. if (num == 0 || size == 0) {
  303. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  304. return NULL;
  305. }
  306. void * result = calloc(num, size);
  307. if (result == NULL) {
  308. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  309. GGML_ABORT("fatal error");
  310. }
  311. return result;
  312. }
  313. #define GGML_MALLOC(size) ggml_malloc(size)
  314. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  315. #define GGML_FREE(ptr) free(ptr)
  316. #define UNUSED GGML_UNUSED
  317. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  318. #if defined(GGML_USE_ACCELERATE)
  319. #include <Accelerate/Accelerate.h>
  320. #endif
  321. // floating point type used to accumulate sums
  322. typedef double ggml_float;
  323. #undef MIN
  324. #undef MAX
  325. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  326. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  327. //
  328. // global data
  329. //
  330. // precomputed gelu table for f16 (128 KB)
  331. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  332. // precomputed quick gelu table for f16 (128 KB)
  333. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  334. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  335. float ggml_table_f32_f16[1 << 16];
  336. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  337. switch (status) {
  338. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  339. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  340. case GGML_STATUS_SUCCESS: return "GGML status: success";
  341. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  342. }
  343. return "GGML status: unknown";
  344. }
  345. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  346. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  347. return GGML_FP16_TO_FP32(x);
  348. }
  349. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  350. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  351. return GGML_FP32_TO_FP16(x);
  352. }
  353. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  354. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  355. return GGML_BF16_TO_FP32(x); // it just left shifts
  356. }
  357. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  358. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  359. return GGML_FP32_TO_BF16(x);
  360. }
  361. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  362. for (int64_t i = 0; i < n; i++) {
  363. y[i] = GGML_FP16_TO_FP32(x[i]);
  364. }
  365. }
  366. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  367. int64_t i = 0;
  368. #if defined(__F16C__)
  369. for (; i + 7 < n; i += 8) {
  370. __m256 x_vec = _mm256_loadu_ps(x + i);
  371. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  372. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  373. }
  374. for(; i + 3 < n; i += 4) {
  375. __m128 x_vec = _mm_loadu_ps(x + i);
  376. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  377. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  378. }
  379. #endif
  380. for (; i < n; i++) {
  381. y[i] = GGML_FP32_TO_FP16(x[i]);
  382. }
  383. }
  384. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  385. int64_t i = 0;
  386. #if defined(__AVX512F__)
  387. for (; i + 16 <= n; i += 16) {
  388. _mm512_storeu_ps(y + i,
  389. _mm512_castsi512_ps(
  390. _mm512_slli_epi32(
  391. _mm512_cvtepu16_epi32(
  392. _mm256_loadu_si256(
  393. (const __m256i *)(x + i))),
  394. 16)));
  395. }
  396. #elif defined(__AVX2__)
  397. for (; i + 8 <= n; i += 8) {
  398. _mm256_storeu_ps(y + i,
  399. _mm256_castsi256_ps(
  400. _mm256_slli_epi32(
  401. _mm256_cvtepu16_epi32(
  402. _mm_loadu_si128(
  403. (const __m128i *)(x + i))),
  404. 16)));
  405. }
  406. #endif
  407. for (; i < n; i++) {
  408. y[i] = GGML_BF16_TO_FP32(x[i]);
  409. }
  410. }
  411. void ggml_fp32_to_bf16_row_ref(const float * x, ggml_bf16_t * y, int64_t n) {
  412. for (int i = 0; i < n; i++) {
  413. y[i] = ggml_compute_fp32_to_bf16(x[i]);
  414. }
  415. }
  416. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  417. int i = 0;
  418. #if defined(__AVX512BF16__)
  419. // subnormals are flushed to zero on this platform
  420. for (; i + 32 <= n; i += 32) {
  421. _mm512_storeu_si512(
  422. (__m512i *)(y + i),
  423. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  424. _mm512_loadu_ps(x + i))));
  425. }
  426. #endif
  427. for (; i < n; i++) {
  428. y[i] = GGML_FP32_TO_BF16(x[i]);
  429. }
  430. }
  431. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  432. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  433. }
  434. //
  435. // timing
  436. //
  437. #if defined(_MSC_VER) || defined(__MINGW32__)
  438. static int64_t timer_freq, timer_start;
  439. void ggml_time_init(void) {
  440. LARGE_INTEGER t;
  441. QueryPerformanceFrequency(&t);
  442. timer_freq = t.QuadPart;
  443. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  444. // and the uptime is high enough.
  445. // We subtract the program start time to reduce the likelihood of that happening.
  446. QueryPerformanceCounter(&t);
  447. timer_start = t.QuadPart;
  448. }
  449. int64_t ggml_time_ms(void) {
  450. LARGE_INTEGER t;
  451. QueryPerformanceCounter(&t);
  452. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  453. }
  454. int64_t ggml_time_us(void) {
  455. LARGE_INTEGER t;
  456. QueryPerformanceCounter(&t);
  457. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  458. }
  459. #else
  460. void ggml_time_init(void) {}
  461. int64_t ggml_time_ms(void) {
  462. struct timespec ts;
  463. clock_gettime(CLOCK_MONOTONIC, &ts);
  464. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  465. }
  466. int64_t ggml_time_us(void) {
  467. struct timespec ts;
  468. clock_gettime(CLOCK_MONOTONIC, &ts);
  469. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  470. }
  471. #endif
  472. int64_t ggml_cycles(void) {
  473. return clock();
  474. }
  475. int64_t ggml_cycles_per_ms(void) {
  476. return CLOCKS_PER_SEC/1000;
  477. }
  478. //
  479. // cross-platform UTF-8 file paths
  480. //
  481. #ifdef _WIN32
  482. static wchar_t * ggml_mbstowcs(const char * mbs) {
  483. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  484. if (!wlen) {
  485. errno = EINVAL;
  486. return NULL;
  487. }
  488. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  489. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  490. if (!wlen) {
  491. GGML_FREE(wbuf);
  492. errno = EINVAL;
  493. return NULL;
  494. }
  495. return wbuf;
  496. }
  497. #endif
  498. FILE * ggml_fopen(const char * fname, const char * mode) {
  499. #ifdef _WIN32
  500. FILE * file = NULL;
  501. // convert fname (UTF-8)
  502. wchar_t * wfname = ggml_mbstowcs(fname);
  503. if (wfname) {
  504. // convert mode (ANSI)
  505. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  506. wchar_t * wmode_p = wmode;
  507. do {
  508. *wmode_p++ = (wchar_t)*mode;
  509. } while (*mode++);
  510. // open file
  511. file = _wfopen(wfname, wmode);
  512. GGML_FREE(wfname);
  513. GGML_FREE(wmode);
  514. }
  515. return file;
  516. #else
  517. return fopen(fname, mode);
  518. #endif
  519. }
  520. //
  521. // cache line
  522. //
  523. #if defined(__cpp_lib_hardware_interference_size)
  524. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  525. #else
  526. #if defined(__POWER9_VECTOR__)
  527. #define CACHE_LINE_SIZE 128
  528. #else
  529. #define CACHE_LINE_SIZE 64
  530. #endif
  531. #endif
  532. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  533. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  534. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  535. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  536. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  537. [GGML_TYPE_I8] = {
  538. .type_name = "i8",
  539. .blck_size = 1,
  540. .type_size = sizeof(int8_t),
  541. .is_quantized = false,
  542. },
  543. [GGML_TYPE_I16] = {
  544. .type_name = "i16",
  545. .blck_size = 1,
  546. .type_size = sizeof(int16_t),
  547. .is_quantized = false,
  548. },
  549. [GGML_TYPE_I32] = {
  550. .type_name = "i32",
  551. .blck_size = 1,
  552. .type_size = sizeof(int32_t),
  553. .is_quantized = false,
  554. },
  555. [GGML_TYPE_I64] = {
  556. .type_name = "i64",
  557. .blck_size = 1,
  558. .type_size = sizeof(int64_t),
  559. .is_quantized = false,
  560. },
  561. [GGML_TYPE_F64] = {
  562. .type_name = "f64",
  563. .blck_size = 1,
  564. .type_size = sizeof(double),
  565. .is_quantized = false,
  566. .nrows = 1,
  567. },
  568. [GGML_TYPE_F32] = {
  569. .type_name = "f32",
  570. .blck_size = 1,
  571. .type_size = sizeof(float),
  572. .is_quantized = false,
  573. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  574. .vec_dot_type = GGML_TYPE_F32,
  575. .nrows = 1,
  576. },
  577. [GGML_TYPE_F16] = {
  578. .type_name = "f16",
  579. .blck_size = 1,
  580. .type_size = sizeof(ggml_fp16_t),
  581. .is_quantized = false,
  582. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  583. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  584. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  585. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  586. .vec_dot_type = GGML_TYPE_F16,
  587. .nrows = 1,
  588. },
  589. [GGML_TYPE_Q4_0] = {
  590. .type_name = "q4_0",
  591. .blck_size = QK4_0,
  592. .type_size = sizeof(block_q4_0),
  593. .is_quantized = true,
  594. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  595. .from_float = quantize_row_q4_0,
  596. .from_float_ref = (ggml_from_float_t) quantize_row_q4_0_ref,
  597. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  598. .vec_dot_type = GGML_TYPE_Q8_0,
  599. #if defined (__ARM_FEATURE_MATMUL_INT8)
  600. .nrows = 2,
  601. #else
  602. .nrows = 1,
  603. #endif
  604. },
  605. [GGML_TYPE_Q4_1] = {
  606. .type_name = "q4_1",
  607. .blck_size = QK4_1,
  608. .type_size = sizeof(block_q4_1),
  609. .is_quantized = true,
  610. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  611. .from_float = quantize_row_q4_1,
  612. .from_float_ref = (ggml_from_float_t) quantize_row_q4_1_ref,
  613. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  614. .vec_dot_type = GGML_TYPE_Q8_1,
  615. #if defined (__ARM_FEATURE_MATMUL_INT8)
  616. .nrows = 2,
  617. #else
  618. .nrows = 1,
  619. #endif
  620. },
  621. [4] = { // GGML_TYPE_Q4_2
  622. .type_name = "DEPRECATED",
  623. .blck_size = 0,
  624. .type_size = 0,
  625. .is_quantized = false,
  626. .to_float = NULL,
  627. .from_float = NULL,
  628. .from_float_ref = NULL,
  629. .vec_dot = NULL,
  630. .vec_dot_type = GGML_TYPE_COUNT,
  631. .nrows = 1,
  632. },
  633. [5] = { // GGML_TYPE_Q4_3
  634. .type_name = "DEPRECATED",
  635. .blck_size = 0,
  636. .type_size = 0,
  637. .is_quantized = false,
  638. .to_float = NULL,
  639. .from_float = NULL,
  640. .from_float_ref = NULL,
  641. .vec_dot = NULL,
  642. .vec_dot_type = GGML_TYPE_COUNT,
  643. .nrows = 1,
  644. },
  645. [GGML_TYPE_Q5_0] = {
  646. .type_name = "q5_0",
  647. .blck_size = QK5_0,
  648. .type_size = sizeof(block_q5_0),
  649. .is_quantized = true,
  650. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  651. .from_float = quantize_row_q5_0,
  652. .from_float_ref = (ggml_from_float_t) quantize_row_q5_0_ref,
  653. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  654. .vec_dot_type = GGML_TYPE_Q8_0,
  655. .nrows = 1,
  656. },
  657. [GGML_TYPE_Q5_1] = {
  658. .type_name = "q5_1",
  659. .blck_size = QK5_1,
  660. .type_size = sizeof(block_q5_1),
  661. .is_quantized = true,
  662. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  663. .from_float = quantize_row_q5_1,
  664. .from_float_ref = (ggml_from_float_t) quantize_row_q5_1_ref,
  665. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  666. .vec_dot_type = GGML_TYPE_Q8_1,
  667. .nrows = 1,
  668. },
  669. [GGML_TYPE_Q8_0] = {
  670. .type_name = "q8_0",
  671. .blck_size = QK8_0,
  672. .type_size = sizeof(block_q8_0),
  673. .is_quantized = true,
  674. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  675. .from_float = quantize_row_q8_0,
  676. .from_float_ref = (ggml_from_float_t) quantize_row_q8_0_ref,
  677. .from_float_to_mat = quantize_mat_q8_0,
  678. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  679. .vec_dot_type = GGML_TYPE_Q8_0,
  680. #if defined (__ARM_FEATURE_MATMUL_INT8)
  681. .nrows = 2,
  682. #else
  683. .nrows = 1,
  684. #endif
  685. },
  686. [GGML_TYPE_Q8_1] = {
  687. .type_name = "q8_1",
  688. .blck_size = QK8_1,
  689. .type_size = sizeof(block_q8_1),
  690. .is_quantized = true,
  691. .from_float = quantize_row_q8_1,
  692. .from_float_ref = (ggml_from_float_t) quantize_row_q8_1_ref,
  693. .vec_dot_type = GGML_TYPE_Q8_1,
  694. .nrows = 1,
  695. },
  696. [GGML_TYPE_Q2_K] = {
  697. .type_name = "q2_K",
  698. .blck_size = QK_K,
  699. .type_size = sizeof(block_q2_K),
  700. .is_quantized = true,
  701. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  702. .from_float = quantize_row_q2_K,
  703. .from_float_ref = (ggml_from_float_t) quantize_row_q2_K_ref,
  704. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  705. .vec_dot_type = GGML_TYPE_Q8_K,
  706. .nrows = 1,
  707. },
  708. [GGML_TYPE_Q3_K] = {
  709. .type_name = "q3_K",
  710. .blck_size = QK_K,
  711. .type_size = sizeof(block_q3_K),
  712. .is_quantized = true,
  713. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  714. .from_float = quantize_row_q3_K,
  715. .from_float_ref = (ggml_from_float_t) quantize_row_q3_K_ref,
  716. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  717. .vec_dot_type = GGML_TYPE_Q8_K,
  718. .nrows = 1,
  719. },
  720. [GGML_TYPE_Q4_K] = {
  721. .type_name = "q4_K",
  722. .blck_size = QK_K,
  723. .type_size = sizeof(block_q4_K),
  724. .is_quantized = true,
  725. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  726. .from_float = quantize_row_q4_K,
  727. .from_float_ref = (ggml_from_float_t) quantize_row_q4_K_ref,
  728. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  729. .vec_dot_type = GGML_TYPE_Q8_K,
  730. .nrows = 1,
  731. },
  732. [GGML_TYPE_Q5_K] = {
  733. .type_name = "q5_K",
  734. .blck_size = QK_K,
  735. .type_size = sizeof(block_q5_K),
  736. .is_quantized = true,
  737. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  738. .from_float = quantize_row_q5_K,
  739. .from_float_ref = (ggml_from_float_t) quantize_row_q5_K_ref,
  740. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  741. .vec_dot_type = GGML_TYPE_Q8_K,
  742. .nrows = 1,
  743. },
  744. [GGML_TYPE_Q6_K] = {
  745. .type_name = "q6_K",
  746. .blck_size = QK_K,
  747. .type_size = sizeof(block_q6_K),
  748. .is_quantized = true,
  749. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  750. .from_float = quantize_row_q6_K,
  751. .from_float_ref = (ggml_from_float_t) quantize_row_q6_K_ref,
  752. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  753. .vec_dot_type = GGML_TYPE_Q8_K,
  754. .nrows = 1,
  755. },
  756. [GGML_TYPE_IQ2_XXS] = {
  757. .type_name = "iq2_xxs",
  758. .blck_size = QK_K,
  759. .type_size = sizeof(block_iq2_xxs),
  760. .is_quantized = true,
  761. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  762. .from_float = NULL,
  763. .from_float_ref = NULL,
  764. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  765. .vec_dot_type = GGML_TYPE_Q8_K,
  766. .nrows = 1,
  767. },
  768. [GGML_TYPE_IQ2_XS] = {
  769. .type_name = "iq2_xs",
  770. .blck_size = QK_K,
  771. .type_size = sizeof(block_iq2_xs),
  772. .is_quantized = true,
  773. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  774. .from_float = NULL,
  775. .from_float_ref = NULL,
  776. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  777. .vec_dot_type = GGML_TYPE_Q8_K,
  778. .nrows = 1,
  779. },
  780. [GGML_TYPE_IQ3_XXS] = {
  781. .type_name = "iq3_xxs",
  782. .blck_size = QK_K,
  783. .type_size = sizeof(block_iq3_xxs),
  784. .is_quantized = true,
  785. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  786. .from_float = quantize_row_iq3_xxs,
  787. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_xxs_ref,
  788. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  789. .vec_dot_type = GGML_TYPE_Q8_K,
  790. .nrows = 1,
  791. },
  792. [GGML_TYPE_IQ3_S] = {
  793. .type_name = "iq3_s",
  794. .blck_size = QK_K,
  795. .type_size = sizeof(block_iq3_s),
  796. .is_quantized = true,
  797. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  798. .from_float = quantize_row_iq3_s,
  799. .from_float_ref = (ggml_from_float_t)quantize_row_iq3_s_ref,
  800. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  801. .vec_dot_type = GGML_TYPE_Q8_K,
  802. .nrows = 1,
  803. },
  804. [GGML_TYPE_IQ2_S] = {
  805. .type_name = "iq2_s",
  806. .blck_size = QK_K,
  807. .type_size = sizeof(block_iq2_s),
  808. .is_quantized = true,
  809. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  810. .from_float = quantize_row_iq2_s,
  811. .from_float_ref = (ggml_from_float_t)quantize_row_iq2_s_ref,
  812. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  813. .vec_dot_type = GGML_TYPE_Q8_K,
  814. .nrows = 1,
  815. },
  816. [GGML_TYPE_IQ1_S] = {
  817. .type_name = "iq1_s",
  818. .blck_size = QK_K,
  819. .type_size = sizeof(block_iq1_s),
  820. .is_quantized = true,
  821. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  822. .from_float = NULL,
  823. .from_float_ref = NULL,
  824. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  825. .vec_dot_type = GGML_TYPE_Q8_K,
  826. .nrows = 1,
  827. },
  828. [GGML_TYPE_IQ1_M] = {
  829. .type_name = "iq1_m",
  830. .blck_size = QK_K,
  831. .type_size = sizeof(block_iq1_m),
  832. .is_quantized = true,
  833. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  834. .from_float = NULL,
  835. .from_float_ref = NULL,
  836. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  837. .vec_dot_type = GGML_TYPE_Q8_K,
  838. .nrows = 1,
  839. },
  840. [GGML_TYPE_IQ4_NL] = {
  841. .type_name = "iq4_nl",
  842. .blck_size = QK4_NL,
  843. .type_size = sizeof(block_iq4_nl),
  844. .is_quantized = true,
  845. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  846. .from_float = quantize_row_iq4_nl,
  847. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_nl_ref,
  848. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  849. .vec_dot_type = GGML_TYPE_Q8_0,
  850. .nrows = 1,
  851. },
  852. [GGML_TYPE_IQ4_XS] = {
  853. .type_name = "iq4_xs",
  854. .blck_size = QK_K,
  855. .type_size = sizeof(block_iq4_xs),
  856. .is_quantized = true,
  857. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  858. .from_float = quantize_row_iq4_xs,
  859. .from_float_ref = (ggml_from_float_t)quantize_row_iq4_xs_ref,
  860. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  861. .vec_dot_type = GGML_TYPE_Q8_K,
  862. .nrows = 1,
  863. },
  864. [GGML_TYPE_Q8_K] = {
  865. .type_name = "q8_K",
  866. .blck_size = QK_K,
  867. .type_size = sizeof(block_q8_K),
  868. .is_quantized = true,
  869. .from_float = quantize_row_q8_K,
  870. },
  871. [GGML_TYPE_BF16] = {
  872. .type_name = "bf16",
  873. .blck_size = 1,
  874. .type_size = sizeof(ggml_bf16_t),
  875. .is_quantized = false,
  876. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  877. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  878. .from_float_ref = (ggml_from_float_t) ggml_fp32_to_bf16_row_ref,
  879. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  880. .vec_dot_type = GGML_TYPE_BF16,
  881. .nrows = 1,
  882. },
  883. [GGML_TYPE_Q4_0_4_4] = {
  884. .type_name = "q4_0_4x4",
  885. .blck_size = QK4_0,
  886. .blck_size_interleave = 4,
  887. .type_size = sizeof(block_q4_0),
  888. .is_quantized = true,
  889. .to_float = NULL,
  890. .from_float = NULL,
  891. .from_float_ref = NULL,
  892. .vec_dot = NULL,
  893. .vec_dot_type = GGML_TYPE_Q8_0,
  894. .nrows = 1,
  895. .ncols = 4,
  896. .gemv = ggml_gemv_q4_0_4x4_q8_0,
  897. .gemm = ggml_gemm_q4_0_4x4_q8_0,
  898. },
  899. [GGML_TYPE_Q4_0_4_8] = {
  900. .type_name = "q4_0_4x8",
  901. .blck_size = QK4_0,
  902. .blck_size_interleave = 8,
  903. .type_size = sizeof(block_q4_0),
  904. .is_quantized = true,
  905. .to_float = NULL,
  906. .from_float = NULL,
  907. .from_float_ref = NULL,
  908. .vec_dot = NULL,
  909. .vec_dot_type = GGML_TYPE_Q8_0,
  910. .nrows = 1,
  911. .ncols = 4,
  912. .gemv = ggml_gemv_q4_0_4x8_q8_0,
  913. .gemm = ggml_gemm_q4_0_4x8_q8_0,
  914. },
  915. [GGML_TYPE_Q4_0_8_8] = {
  916. .type_name = "q4_0_8x8",
  917. .blck_size = QK4_0,
  918. .blck_size_interleave = 8,
  919. .type_size = sizeof(block_q4_0),
  920. .is_quantized = true,
  921. .to_float = NULL,
  922. .from_float = NULL,
  923. .from_float_ref = NULL,
  924. .vec_dot = NULL,
  925. .vec_dot_type = GGML_TYPE_Q8_0,
  926. .nrows = 1,
  927. .ncols = 8,
  928. .gemv = ggml_gemv_q4_0_8x8_q8_0,
  929. .gemm = ggml_gemm_q4_0_8x8_q8_0,
  930. }
  931. };
  932. // For internal test use
  933. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  934. GGML_ASSERT(type < GGML_TYPE_COUNT);
  935. return type_traits[type];
  936. }
  937. //
  938. // simd mappings
  939. //
  940. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  941. // we then implement the fundamental computation operations below using only these macros
  942. // adding support for new architectures requires to define the corresponding SIMD macros
  943. //
  944. // GGML_F32_STEP / GGML_F16_STEP
  945. // number of elements to process in a single step
  946. //
  947. // GGML_F32_EPR / GGML_F16_EPR
  948. // number of elements to fit in a single register
  949. //
  950. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  951. #define GGML_SIMD
  952. // F32 NEON
  953. #define GGML_F32_STEP 16
  954. #define GGML_F32_EPR 4
  955. #define GGML_F32x4 float32x4_t
  956. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  957. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  958. #define GGML_F32x4_LOAD vld1q_f32
  959. #define GGML_F32x4_STORE vst1q_f32
  960. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  961. #define GGML_F32x4_ADD vaddq_f32
  962. #define GGML_F32x4_MUL vmulq_f32
  963. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  964. #define GGML_F32x4_REDUCE(res, x) \
  965. { \
  966. int offset = GGML_F32_ARR >> 1; \
  967. for (int i = 0; i < offset; ++i) { \
  968. x[i] = vaddq_f32(x[i], x[offset+i]); \
  969. } \
  970. offset >>= 1; \
  971. for (int i = 0; i < offset; ++i) { \
  972. x[i] = vaddq_f32(x[i], x[offset+i]); \
  973. } \
  974. offset >>= 1; \
  975. for (int i = 0; i < offset; ++i) { \
  976. x[i] = vaddq_f32(x[i], x[offset+i]); \
  977. } \
  978. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  979. }
  980. #define GGML_F32_VEC GGML_F32x4
  981. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  982. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  983. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  984. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  985. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  986. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  987. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  988. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  989. // F16 NEON
  990. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  991. #define GGML_F16_STEP 32
  992. #define GGML_F16_EPR 8
  993. #define GGML_F16x8 float16x8_t
  994. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  995. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  996. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  997. #define GGML_F16x8_STORE vst1q_f16
  998. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  999. #define GGML_F16x8_ADD vaddq_f16
  1000. #define GGML_F16x8_MUL vmulq_f16
  1001. #define GGML_F16x8_REDUCE(res, x) \
  1002. do { \
  1003. int offset = GGML_F16_ARR >> 1; \
  1004. for (int i = 0; i < offset; ++i) { \
  1005. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1006. } \
  1007. offset >>= 1; \
  1008. for (int i = 0; i < offset; ++i) { \
  1009. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1010. } \
  1011. offset >>= 1; \
  1012. for (int i = 0; i < offset; ++i) { \
  1013. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1014. } \
  1015. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1016. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1017. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1018. } while (0)
  1019. #define GGML_F16_VEC GGML_F16x8
  1020. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1021. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1022. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1023. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  1024. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1025. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1026. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1027. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1028. #else
  1029. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1030. // and take advantage of the vcvt_ functions to convert to/from FP16
  1031. #define GGML_F16_STEP 16
  1032. #define GGML_F16_EPR 4
  1033. #define GGML_F32Cx4 float32x4_t
  1034. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1035. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1036. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  1037. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1038. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1039. #define GGML_F32Cx4_ADD vaddq_f32
  1040. #define GGML_F32Cx4_MUL vmulq_f32
  1041. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1042. #define GGML_F16_VEC GGML_F32Cx4
  1043. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1044. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1045. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1046. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  1047. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1048. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1049. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1050. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1051. #endif
  1052. #elif defined(__AVX512F__)
  1053. #define GGML_SIMD
  1054. // F32 AVX512
  1055. #define GGML_F32_STEP 64
  1056. #define GGML_F32_EPR 16
  1057. #define GGML_F32x16 __m512
  1058. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  1059. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  1060. #define GGML_F32x16_LOAD _mm512_loadu_ps
  1061. #define GGML_F32x16_STORE _mm512_storeu_ps
  1062. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  1063. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1064. #define GGML_F32x16_ADD _mm512_add_ps
  1065. #define GGML_F32x16_MUL _mm512_mul_ps
  1066. #define GGML_F32x16_REDUCE(res, x) \
  1067. do { \
  1068. int offset = GGML_F32_ARR >> 1; \
  1069. for (int i = 0; i < offset; ++i) { \
  1070. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1071. } \
  1072. offset >>= 1; \
  1073. for (int i = 0; i < offset; ++i) { \
  1074. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1075. } \
  1076. offset >>= 1; \
  1077. for (int i = 0; i < offset; ++i) { \
  1078. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1079. } \
  1080. res = _mm512_reduce_add_ps(x[0]); \
  1081. } while (0)
  1082. // TODO: is this optimal ?
  1083. #define GGML_F32_VEC GGML_F32x16
  1084. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  1085. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  1086. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  1087. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  1088. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  1089. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  1090. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  1091. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  1092. // F16 AVX512
  1093. // F16 AVX
  1094. #define GGML_F16_STEP 64
  1095. #define GGML_F16_EPR 16
  1096. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  1097. #define GGML_F32Cx16 __m512
  1098. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  1099. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  1100. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  1101. // so F16C guard isn't required
  1102. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  1103. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  1104. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  1105. #define GGML_F32Cx16_ADD _mm512_add_ps
  1106. #define GGML_F32Cx16_MUL _mm512_mul_ps
  1107. #define GGML_F32Cx16_REDUCE(res, x) \
  1108. do { \
  1109. int offset = GGML_F32_ARR >> 1; \
  1110. for (int i = 0; i < offset; ++i) { \
  1111. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1112. } \
  1113. offset >>= 1; \
  1114. for (int i = 0; i < offset; ++i) { \
  1115. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1116. } \
  1117. offset >>= 1; \
  1118. for (int i = 0; i < offset; ++i) { \
  1119. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  1120. } \
  1121. res = _mm512_reduce_add_ps(x[0]); \
  1122. } while (0)
  1123. #define GGML_F16_VEC GGML_F32Cx16
  1124. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1125. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1126. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1127. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1128. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1129. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1130. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1131. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1132. #elif defined(__AVX__)
  1133. #define GGML_SIMD
  1134. // F32 AVX
  1135. #define GGML_F32_STEP 32
  1136. #define GGML_F32_EPR 8
  1137. #define GGML_F32x8 __m256
  1138. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1139. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1140. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1141. #define GGML_F32x8_STORE _mm256_storeu_ps
  1142. #if defined(__FMA__)
  1143. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1144. #else
  1145. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1146. #endif
  1147. #define GGML_F32x8_ADD _mm256_add_ps
  1148. #define GGML_F32x8_MUL _mm256_mul_ps
  1149. #define GGML_F32x8_REDUCE(res, x) \
  1150. do { \
  1151. int offset = GGML_F32_ARR >> 1; \
  1152. for (int i = 0; i < offset; ++i) { \
  1153. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1154. } \
  1155. offset >>= 1; \
  1156. for (int i = 0; i < offset; ++i) { \
  1157. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1158. } \
  1159. offset >>= 1; \
  1160. for (int i = 0; i < offset; ++i) { \
  1161. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1162. } \
  1163. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1164. _mm256_extractf128_ps(x[0], 1)); \
  1165. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1166. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1167. } while (0)
  1168. // TODO: is this optimal ?
  1169. #define GGML_F32_VEC GGML_F32x8
  1170. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1171. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1172. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1173. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1174. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1175. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1176. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1177. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1178. // F16 AVX
  1179. #define GGML_F16_STEP 32
  1180. #define GGML_F16_EPR 8
  1181. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1182. #define GGML_F32Cx8 __m256
  1183. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1184. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1185. #if defined(__F16C__)
  1186. // the _mm256_cvt intrinsics require F16C
  1187. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1188. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1189. #else
  1190. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1191. float tmp[8];
  1192. for (int i = 0; i < 8; i++) {
  1193. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1194. }
  1195. return _mm256_loadu_ps(tmp);
  1196. }
  1197. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1198. float arr[8];
  1199. _mm256_storeu_ps(arr, y);
  1200. for (int i = 0; i < 8; i++)
  1201. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1202. }
  1203. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1204. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1205. #endif
  1206. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1207. #define GGML_F32Cx8_ADD _mm256_add_ps
  1208. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1209. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1210. #define GGML_F16_VEC GGML_F32Cx8
  1211. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1212. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1213. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1214. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1215. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1216. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1217. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1218. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1219. #elif defined(__POWER9_VECTOR__)
  1220. #define GGML_SIMD
  1221. // F32 POWER9
  1222. #define GGML_F32_STEP 32
  1223. #define GGML_F32_EPR 4
  1224. #define GGML_F32x4 vector float
  1225. #define GGML_F32x4_ZERO 0.0f
  1226. #define GGML_F32x4_SET1 vec_splats
  1227. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1228. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1229. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1230. #define GGML_F32x4_ADD vec_add
  1231. #define GGML_F32x4_MUL vec_mul
  1232. #define GGML_F32x4_REDUCE(res, x) \
  1233. { \
  1234. int offset = GGML_F32_ARR >> 1; \
  1235. for (int i = 0; i < offset; ++i) { \
  1236. x[i] = vec_add(x[i], x[offset+i]); \
  1237. } \
  1238. offset >>= 1; \
  1239. for (int i = 0; i < offset; ++i) { \
  1240. x[i] = vec_add(x[i], x[offset+i]); \
  1241. } \
  1242. offset >>= 1; \
  1243. for (int i = 0; i < offset; ++i) { \
  1244. x[i] = vec_add(x[i], x[offset+i]); \
  1245. } \
  1246. res = vec_extract(x[0], 0) + \
  1247. vec_extract(x[0], 1) + \
  1248. vec_extract(x[0], 2) + \
  1249. vec_extract(x[0], 3); \
  1250. }
  1251. #define GGML_F32_VEC GGML_F32x4
  1252. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1253. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1254. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1255. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1256. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1257. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1258. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1259. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1260. // F16 POWER9
  1261. #define GGML_F16_STEP GGML_F32_STEP
  1262. #define GGML_F16_EPR GGML_F32_EPR
  1263. #define GGML_F16_VEC GGML_F32x4
  1264. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1265. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1266. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1267. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1268. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1269. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1270. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1271. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1272. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1273. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1274. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1275. #define GGML_F16_VEC_STORE(p, r, i) \
  1276. if (i & 0x1) \
  1277. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1278. r[i - GGML_ENDIAN_BYTE(0)]), \
  1279. 0, p - GGML_F16_EPR)
  1280. #elif defined(__wasm_simd128__)
  1281. #define GGML_SIMD
  1282. // F32 WASM
  1283. #define GGML_F32_STEP 16
  1284. #define GGML_F32_EPR 4
  1285. #define GGML_F32x4 v128_t
  1286. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1287. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1288. #define GGML_F32x4_LOAD wasm_v128_load
  1289. #define GGML_F32x4_STORE wasm_v128_store
  1290. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1291. #define GGML_F32x4_ADD wasm_f32x4_add
  1292. #define GGML_F32x4_MUL wasm_f32x4_mul
  1293. #define GGML_F32x4_REDUCE(res, x) \
  1294. { \
  1295. int offset = GGML_F32_ARR >> 1; \
  1296. for (int i = 0; i < offset; ++i) { \
  1297. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1298. } \
  1299. offset >>= 1; \
  1300. for (int i = 0; i < offset; ++i) { \
  1301. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1302. } \
  1303. offset >>= 1; \
  1304. for (int i = 0; i < offset; ++i) { \
  1305. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1306. } \
  1307. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1308. wasm_f32x4_extract_lane(x[0], 1) + \
  1309. wasm_f32x4_extract_lane(x[0], 2) + \
  1310. wasm_f32x4_extract_lane(x[0], 3); \
  1311. }
  1312. #define GGML_F32_VEC GGML_F32x4
  1313. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1314. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1315. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1316. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1317. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1318. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1319. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1320. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1321. // F16 WASM
  1322. #define GGML_F16_STEP 16
  1323. #define GGML_F16_EPR 4
  1324. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1325. float tmp[4];
  1326. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1327. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1328. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1329. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1330. return wasm_v128_load(tmp);
  1331. }
  1332. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1333. float tmp[4];
  1334. wasm_v128_store(tmp, x);
  1335. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1336. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1337. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1338. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1339. }
  1340. #define GGML_F16x4 v128_t
  1341. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1342. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1343. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1344. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1345. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1346. #define GGML_F16x4_ADD wasm_f32x4_add
  1347. #define GGML_F16x4_MUL wasm_f32x4_mul
  1348. #define GGML_F16x4_REDUCE(res, x) \
  1349. { \
  1350. int offset = GGML_F16_ARR >> 1; \
  1351. for (int i = 0; i < offset; ++i) { \
  1352. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1353. } \
  1354. offset >>= 1; \
  1355. for (int i = 0; i < offset; ++i) { \
  1356. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1357. } \
  1358. offset >>= 1; \
  1359. for (int i = 0; i < offset; ++i) { \
  1360. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1361. } \
  1362. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1363. wasm_f32x4_extract_lane(x[0], 1) + \
  1364. wasm_f32x4_extract_lane(x[0], 2) + \
  1365. wasm_f32x4_extract_lane(x[0], 3); \
  1366. }
  1367. #define GGML_F16_VEC GGML_F16x4
  1368. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1369. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1370. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1371. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1372. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1373. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1374. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1375. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1376. #elif defined(__SSE3__)
  1377. #define GGML_SIMD
  1378. // F32 SSE
  1379. #define GGML_F32_STEP 32
  1380. #define GGML_F32_EPR 4
  1381. #define GGML_F32x4 __m128
  1382. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1383. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1384. #define GGML_F32x4_LOAD _mm_loadu_ps
  1385. #define GGML_F32x4_STORE _mm_storeu_ps
  1386. #if defined(__FMA__)
  1387. // TODO: Does this work?
  1388. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1389. #else
  1390. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1391. #endif
  1392. #define GGML_F32x4_ADD _mm_add_ps
  1393. #define GGML_F32x4_MUL _mm_mul_ps
  1394. #define GGML_F32x4_REDUCE(res, x) \
  1395. { \
  1396. int offset = GGML_F32_ARR >> 1; \
  1397. for (int i = 0; i < offset; ++i) { \
  1398. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1399. } \
  1400. offset >>= 1; \
  1401. for (int i = 0; i < offset; ++i) { \
  1402. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1403. } \
  1404. offset >>= 1; \
  1405. for (int i = 0; i < offset; ++i) { \
  1406. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1407. } \
  1408. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1409. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1410. }
  1411. // TODO: is this optimal ?
  1412. #define GGML_F32_VEC GGML_F32x4
  1413. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1414. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1415. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1416. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1417. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1418. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1419. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1420. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1421. // F16 SSE
  1422. #define GGML_F16_STEP 32
  1423. #define GGML_F16_EPR 4
  1424. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1425. float tmp[4];
  1426. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1427. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1428. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1429. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1430. return _mm_loadu_ps(tmp);
  1431. }
  1432. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1433. float arr[4];
  1434. _mm_storeu_ps(arr, y);
  1435. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1436. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1437. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1438. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1439. }
  1440. #define GGML_F32Cx4 __m128
  1441. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1442. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1443. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1444. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1445. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1446. #define GGML_F32Cx4_ADD _mm_add_ps
  1447. #define GGML_F32Cx4_MUL _mm_mul_ps
  1448. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1449. #define GGML_F16_VEC GGML_F32Cx4
  1450. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1451. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1452. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1453. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1454. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1455. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1456. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1457. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1458. #elif defined(__loongarch_asx)
  1459. #define GGML_SIMD
  1460. // F32 LASX
  1461. #define GGML_F32_STEP 32
  1462. #define GGML_F32_EPR 8
  1463. #define GGML_F32x8 __m256
  1464. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1465. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1466. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1467. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1468. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1469. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1470. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1471. #define GGML_F32x8_REDUCE(res, x) \
  1472. do { \
  1473. int offset = GGML_F32_ARR >> 1; \
  1474. for (int i = 0; i < offset; ++i) { \
  1475. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1476. } \
  1477. offset >>= 1; \
  1478. for (int i = 0; i < offset; ++i) { \
  1479. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1480. } \
  1481. offset >>= 1; \
  1482. for (int i = 0; i < offset; ++i) { \
  1483. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1484. } \
  1485. float *tmp_p = (float *)&x[0]; \
  1486. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1487. } while (0)
  1488. // TODO: is this optimal ?
  1489. #define GGML_F32_VEC GGML_F32x8
  1490. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1491. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1492. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1493. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1494. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1495. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1496. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1497. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1498. // F16 LASX
  1499. #define GGML_F16_STEP 32
  1500. #define GGML_F16_EPR 8
  1501. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1502. #define GGML_F32Cx8 __m256
  1503. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1504. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1505. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1506. float tmp[8];
  1507. for (int i = 0; i < 8; i++) {
  1508. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1509. }
  1510. return (__m256)__lasx_xvld(tmp, 0);
  1511. }
  1512. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1513. float arr[8];
  1514. __lasx_xvst(y, arr, 0);
  1515. for (int i = 0; i < 8; i++) {
  1516. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1517. }
  1518. }
  1519. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1520. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1521. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1522. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1523. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1524. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1525. #define GGML_F16_VEC GGML_F32Cx8
  1526. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1527. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1528. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1529. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1530. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1531. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1532. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1533. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1534. #elif defined(__loongarch_sx)
  1535. #define GGML_SIMD
  1536. // F32 LSX
  1537. #define GGML_F32_STEP 32
  1538. #define GGML_F32_EPR 4
  1539. #define GGML_F32x4 __m128
  1540. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1541. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1542. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1543. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1544. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1545. #define GGML_F32x4_ADD __lsx_vfadd_s
  1546. #define GGML_F32x4_MUL __lsx_vfmul_s
  1547. #define GGML_F32x4_REDUCE(res, x) \
  1548. { \
  1549. int offset = GGML_F32_ARR >> 1; \
  1550. for (int i = 0; i < offset; ++i) { \
  1551. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1552. } \
  1553. offset >>= 1; \
  1554. for (int i = 0; i < offset; ++i) { \
  1555. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1556. } \
  1557. offset >>= 1; \
  1558. for (int i = 0; i < offset; ++i) { \
  1559. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1560. } \
  1561. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1562. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1563. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1564. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1565. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1566. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1567. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1568. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1569. }
  1570. #define GGML_F32_VEC GGML_F32x4
  1571. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1572. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1573. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1574. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1575. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1576. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1577. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1578. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1579. // F16 LSX
  1580. #define GGML_F16_STEP 32
  1581. #define GGML_F16_EPR 4
  1582. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1583. float tmp[4];
  1584. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1585. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1586. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1587. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1588. return __lsx_vld(tmp, 0);
  1589. }
  1590. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1591. float arr[4];
  1592. __lsx_vst(y, arr, 0);
  1593. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1594. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1595. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1596. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1597. }
  1598. #define GGML_F32Cx4 __m128
  1599. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1600. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1601. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1602. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1603. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1604. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1605. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1606. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1607. #define GGML_F16_VEC GGML_F32Cx4
  1608. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1609. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1610. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1611. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1612. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1613. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1614. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1615. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1616. #endif
  1617. // GGML_F32_ARR / GGML_F16_ARR
  1618. // number of registers to use per step
  1619. #ifdef GGML_SIMD
  1620. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1621. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1622. #endif
  1623. //
  1624. // ggml context
  1625. //
  1626. struct ggml_context {
  1627. size_t mem_size;
  1628. void* mem_buffer;
  1629. bool mem_buffer_owned;
  1630. bool no_alloc;
  1631. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1632. int n_objects;
  1633. struct ggml_object * objects_begin;
  1634. struct ggml_object * objects_end;
  1635. struct ggml_scratch scratch;
  1636. struct ggml_scratch scratch_save;
  1637. };
  1638. struct ggml_context_container {
  1639. bool used;
  1640. struct ggml_context context;
  1641. };
  1642. struct ggml_compute_state_shared {
  1643. const struct ggml_cgraph * cgraph;
  1644. const struct ggml_cplan * cplan;
  1645. int n_threads;
  1646. // synchronization primitives
  1647. atomic_int n_barrier;
  1648. atomic_int n_barrier_passed;
  1649. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1650. void * abort_callback_data;
  1651. atomic_int current_chunk; // currently processing chunk during mul_mat, shared between all the threads
  1652. enum ggml_status ec;
  1653. };
  1654. struct ggml_compute_state {
  1655. ggml_thread_t thrd;
  1656. int ith;
  1657. struct ggml_compute_state_shared * shared;
  1658. };
  1659. struct ggml_compute_params {
  1660. // ith = thread index, nth = number of threads
  1661. int ith, nth;
  1662. // work buffer for all threads
  1663. size_t wsize;
  1664. void * wdata;
  1665. struct ggml_compute_state_shared * shared;
  1666. };
  1667. //
  1668. // fundamental operations
  1669. //
  1670. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1671. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1672. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1673. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1674. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1675. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1676. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1677. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1678. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1679. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1680. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1681. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1682. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1683. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1684. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1685. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1686. assert(nrc == 1);
  1687. UNUSED(nrc);
  1688. UNUSED(bx);
  1689. UNUSED(by);
  1690. UNUSED(bs);
  1691. #if defined(GGML_SIMD)
  1692. float sumf = 0.0f;
  1693. const int np = (n & ~(GGML_F32_STEP - 1));
  1694. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1695. GGML_F32_VEC ax[GGML_F32_ARR];
  1696. GGML_F32_VEC ay[GGML_F32_ARR];
  1697. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1698. for (int j = 0; j < GGML_F32_ARR; j++) {
  1699. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1700. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1701. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1702. }
  1703. }
  1704. // reduce sum0..sum3 to sum0
  1705. GGML_F32_VEC_REDUCE(sumf, sum);
  1706. // leftovers
  1707. for (int i = np; i < n; ++i) {
  1708. sumf += x[i]*y[i];
  1709. }
  1710. #else
  1711. // scalar
  1712. ggml_float sumf = 0.0;
  1713. for (int i = 0; i < n; ++i) {
  1714. sumf += (ggml_float)(x[i]*y[i]);
  1715. }
  1716. #endif
  1717. *s = sumf;
  1718. }
  1719. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1720. assert(nrc == 1);
  1721. UNUSED(nrc);
  1722. UNUSED(bx);
  1723. UNUSED(by);
  1724. UNUSED(bs);
  1725. int i = 0;
  1726. ggml_float sumf = 0;
  1727. #if defined(__AVX512BF16__)
  1728. __m512 c1 = _mm512_setzero_ps();
  1729. __m512 c2 = _mm512_setzero_ps();
  1730. for (; i + 64 <= n; i += 64) {
  1731. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1732. m512bh(_mm512_loadu_si512((y + i))));
  1733. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1734. m512bh(_mm512_loadu_si512((y + i + 32))));
  1735. }
  1736. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1737. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1738. #elif defined(__AVX512F__)
  1739. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1740. __m512 c1 = _mm512_setzero_ps();
  1741. __m512 c2 = _mm512_setzero_ps();
  1742. for (; i + 32 <= n; i += 32) {
  1743. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1744. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1745. }
  1746. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1747. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1748. #undef LOAD
  1749. #elif defined(__AVX2__)
  1750. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1751. __m256 c1 = _mm256_setzero_ps();
  1752. __m256 c2 = _mm256_setzero_ps();
  1753. __m256 c3 = _mm256_setzero_ps();
  1754. __m256 c4 = _mm256_setzero_ps();
  1755. for (; i + 32 <= n; i += 32) {
  1756. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1757. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1758. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1759. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1760. }
  1761. __m128 g;
  1762. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1763. _mm256_add_ps(c2, c4));
  1764. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1765. _mm256_castps256_ps128(c1));
  1766. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1767. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1768. sumf += (ggml_float)_mm_cvtss_f32(g);
  1769. #undef LOAD
  1770. #endif
  1771. for (; i < n; ++i) {
  1772. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1773. GGML_BF16_TO_FP32(y[i]));
  1774. }
  1775. *s = sumf;
  1776. }
  1777. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1778. assert(nrc == 1);
  1779. UNUSED(nrc);
  1780. UNUSED(bx);
  1781. UNUSED(by);
  1782. UNUSED(bs);
  1783. ggml_float sumf = 0.0;
  1784. #if defined(GGML_SIMD)
  1785. const int np = (n & ~(GGML_F16_STEP - 1));
  1786. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1787. GGML_F16_VEC ax[GGML_F16_ARR];
  1788. GGML_F16_VEC ay[GGML_F16_ARR];
  1789. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1790. for (int j = 0; j < GGML_F16_ARR; j++) {
  1791. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1792. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1793. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1794. }
  1795. }
  1796. // reduce sum0..sum3 to sum0
  1797. GGML_F16_VEC_REDUCE(sumf, sum);
  1798. // leftovers
  1799. for (int i = np; i < n; ++i) {
  1800. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1801. }
  1802. #else
  1803. for (int i = 0; i < n; ++i) {
  1804. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1805. }
  1806. #endif
  1807. *s = sumf;
  1808. }
  1809. // compute GGML_VEC_DOT_UNROLL dot products at once
  1810. // xs - x row stride in bytes
  1811. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1812. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1813. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1814. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1815. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1816. }
  1817. #if defined(GGML_SIMD)
  1818. const int np = (n & ~(GGML_F16_STEP - 1));
  1819. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1820. GGML_F16_VEC ax[GGML_F16_ARR];
  1821. GGML_F16_VEC ay[GGML_F16_ARR];
  1822. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1823. for (int j = 0; j < GGML_F16_ARR; j++) {
  1824. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1825. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1826. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1827. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1828. }
  1829. }
  1830. }
  1831. // reduce sum0..sum3 to sum0
  1832. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1833. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1834. }
  1835. // leftovers
  1836. for (int i = np; i < n; ++i) {
  1837. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1838. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1839. }
  1840. }
  1841. #else
  1842. for (int i = 0; i < n; ++i) {
  1843. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1844. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1845. }
  1846. }
  1847. #endif
  1848. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1849. s[i] = sumf[i];
  1850. }
  1851. }
  1852. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1853. #if defined(GGML_SIMD)
  1854. const int np = (n & ~(GGML_F32_STEP - 1));
  1855. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1856. GGML_F32_VEC ax[GGML_F32_ARR];
  1857. GGML_F32_VEC ay[GGML_F32_ARR];
  1858. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1859. for (int j = 0; j < GGML_F32_ARR; j++) {
  1860. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1861. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1862. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1863. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1864. }
  1865. }
  1866. // leftovers
  1867. for (int i = np; i < n; ++i) {
  1868. y[i] += x[i]*v;
  1869. }
  1870. #else
  1871. // scalar
  1872. for (int i = 0; i < n; ++i) {
  1873. y[i] += x[i]*v;
  1874. }
  1875. #endif
  1876. }
  1877. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1878. #if defined(GGML_SIMD)
  1879. const int np = (n & ~(GGML_F16_STEP - 1));
  1880. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1881. GGML_F16_VEC ax[GGML_F16_ARR];
  1882. GGML_F16_VEC ay[GGML_F16_ARR];
  1883. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1884. for (int j = 0; j < GGML_F16_ARR; j++) {
  1885. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1886. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1887. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1888. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1889. }
  1890. }
  1891. // leftovers
  1892. for (int i = np; i < n; ++i) {
  1893. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1894. }
  1895. #else
  1896. // scalar
  1897. for (int i = 0; i < n; ++i) {
  1898. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1899. }
  1900. #endif
  1901. }
  1902. // xs and vs are byte strides of x and v
  1903. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1904. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1905. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1906. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1907. x[i] = (const float *) ((const char *) xv + i*xs);
  1908. v[i] = (const float *) ((const char *) vv + i*vs);
  1909. }
  1910. #if defined(GGML_SIMD)
  1911. const int np = (n & ~(GGML_F32_STEP - 1));
  1912. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1913. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1914. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1915. }
  1916. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1917. GGML_F32_VEC ay[GGML_F32_ARR];
  1918. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1919. for (int j = 0; j < GGML_F32_ARR; j++) {
  1920. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1921. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1922. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1923. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1924. }
  1925. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1926. }
  1927. }
  1928. // leftovers
  1929. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1930. for (int i = np; i < n; ++i) {
  1931. y[i] += x[k][i]*v[k][0];
  1932. }
  1933. }
  1934. #else
  1935. // scalar
  1936. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1937. for (int i = 0; i < n; ++i) {
  1938. y[i] += x[k][i]*v[k][0];
  1939. }
  1940. }
  1941. #endif
  1942. }
  1943. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1944. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1945. #if defined(GGML_USE_ACCELERATE)
  1946. vDSP_vsmul(y, 1, &v, y, 1, n);
  1947. #elif defined(GGML_SIMD)
  1948. const int np = (n & ~(GGML_F32_STEP - 1));
  1949. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1950. GGML_F32_VEC ay[GGML_F32_ARR];
  1951. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1952. for (int j = 0; j < GGML_F32_ARR; j++) {
  1953. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1954. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1955. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1956. }
  1957. }
  1958. // leftovers
  1959. for (int i = np; i < n; ++i) {
  1960. y[i] *= v;
  1961. }
  1962. #else
  1963. // scalar
  1964. for (int i = 0; i < n; ++i) {
  1965. y[i] *= v;
  1966. }
  1967. #endif
  1968. }
  1969. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1970. #if defined(GGML_SIMD)
  1971. const int np = (n & ~(GGML_F16_STEP - 1));
  1972. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1973. GGML_F16_VEC ay[GGML_F16_ARR];
  1974. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1975. for (int j = 0; j < GGML_F16_ARR; j++) {
  1976. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1977. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1978. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1979. }
  1980. }
  1981. // leftovers
  1982. for (int i = np; i < n; ++i) {
  1983. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1984. }
  1985. #else
  1986. // scalar
  1987. for (int i = 0; i < n; ++i) {
  1988. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1989. }
  1990. #endif
  1991. }
  1992. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1993. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1994. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1995. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1996. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1997. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1998. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1999. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  2000. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expm1f(x[i]); }
  2001. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2002. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  2003. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  2004. // TODO: optimize performance
  2005. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2006. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  2007. static const float GELU_COEF_A = 0.044715f;
  2008. static const float GELU_QUICK_COEF = -1.702f;
  2009. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2010. inline static float ggml_gelu_f32(float x) {
  2011. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2012. }
  2013. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2014. const uint16_t * i16 = (const uint16_t *) x;
  2015. for (int i = 0; i < n; ++i) {
  2016. y[i] = ggml_table_gelu_f16[i16[i]];
  2017. }
  2018. }
  2019. #ifdef GGML_GELU_FP16
  2020. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2021. uint16_t t;
  2022. for (int i = 0; i < n; ++i) {
  2023. if (x[i] <= -10.0f) {
  2024. y[i] = 0.0f;
  2025. } else if (x[i] >= 10.0f) {
  2026. y[i] = x[i];
  2027. } else {
  2028. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2029. memcpy(&t, &fp16, sizeof(uint16_t));
  2030. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  2031. }
  2032. }
  2033. }
  2034. #else
  2035. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2036. for (int i = 0; i < n; ++i) {
  2037. y[i] = ggml_gelu_f32(x[i]);
  2038. }
  2039. }
  2040. #endif
  2041. inline static float ggml_gelu_quick_f32(float x) {
  2042. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2043. }
  2044. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2045. // const uint16_t * i16 = (const uint16_t *) x;
  2046. // for (int i = 0; i < n; ++i) {
  2047. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  2048. // }
  2049. //}
  2050. #ifdef GGML_GELU_QUICK_FP16
  2051. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2052. uint16_t t;
  2053. for (int i = 0; i < n; ++i) {
  2054. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2055. memcpy(&t, &fp16, sizeof(uint16_t));
  2056. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  2057. }
  2058. }
  2059. #else
  2060. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2061. for (int i = 0; i < n; ++i) {
  2062. y[i] = ggml_gelu_quick_f32(x[i]);
  2063. }
  2064. }
  2065. #endif
  2066. // Sigmoid Linear Unit (SiLU) function
  2067. inline static float ggml_silu_f32(float x) {
  2068. return x/(1.0f + expf(-x));
  2069. }
  2070. #if __FINITE_MATH_ONLY__
  2071. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  2072. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  2073. #endif
  2074. #if defined(__ARM_NEON) && defined(__aarch64__)
  2075. // adapted from arm limited optimized routine
  2076. // the maximum error is 1.45358 plus 0.5 ulps
  2077. // numbers above 88.38 will flush to infinity
  2078. // numbers beneath -103.97 will flush to zero
  2079. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  2080. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  2081. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  2082. const float32x4_t n = vsubq_f32(z, r);
  2083. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  2084. vdupq_n_f32(0x1.7f7d1cp-20f));
  2085. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  2086. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  2087. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  2088. const float32x4_t u = vmulq_f32(b, b);
  2089. const float32x4_t j = vfmaq_f32(
  2090. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  2091. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  2092. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  2093. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  2094. return vfmaq_f32(k, j, k);
  2095. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  2096. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  2097. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  2098. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  2099. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  2100. }
  2101. // computes silu x/(1+exp(-x)) in single precision vector
  2102. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  2103. const float32x4_t one = vdupq_n_f32(1.0f);
  2104. const float32x4_t zero = vdupq_n_f32(0.0f);
  2105. const float32x4_t neg_x = vsubq_f32(zero, x);
  2106. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  2107. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  2108. return vdivq_f32(x, one_plus_exp_neg_x);
  2109. }
  2110. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  2111. // adapted from arm limited optimized routine
  2112. // the maximum error is 1.45358 plus 0.5 ulps
  2113. // numbers above 88.38 will flush to infinity
  2114. // numbers beneath -103.97 will flush to zero
  2115. inline static __m512 ggml_v_expf(__m512 x) {
  2116. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  2117. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  2118. const __m512 n = _mm512_sub_ps(z, r);
  2119. const __m512 b =
  2120. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  2121. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  2122. const __mmask16 d =
  2123. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  2124. const __m512 u = _mm512_mul_ps(b, b);
  2125. const __m512 j = _mm512_fmadd_ps(
  2126. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2127. _mm512_set1_ps(0x1.573e2ep-5f)),
  2128. u,
  2129. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2130. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2131. u,
  2132. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2133. const __m512 res = _mm512_scalef_ps(j, n);
  2134. if (_mm512_kortestz(d, d))
  2135. return res;
  2136. const __m512 zero = _mm512_setzero_ps();
  2137. const __m512 alt = _mm512_mask_blend_ps(
  2138. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2139. return _mm512_mask_blend_ps(d, res, alt);
  2140. }
  2141. // computes silu x/(1+exp(-x)) in single precision vector
  2142. inline static __m512 ggml_v_silu(__m512 x) {
  2143. const __m512 one = _mm512_set1_ps(1);
  2144. const __m512 zero = _mm512_setzero_ps();
  2145. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2146. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2147. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2148. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2149. }
  2150. #elif defined(__AVX2__) && defined(__FMA__)
  2151. // adapted from arm limited optimized routine
  2152. // the maximum error is 1.45358 plus 0.5 ulps
  2153. // numbers above 88.38 will flush to infinity
  2154. // numbers beneath -103.97 will flush to zero
  2155. inline static __m256 ggml_v_expf(__m256 x) {
  2156. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2157. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2158. const __m256 n = _mm256_sub_ps(z, r);
  2159. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2160. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2161. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2162. const __m256 k = _mm256_castsi256_ps(
  2163. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2164. const __m256i c = _mm256_castps_si256(
  2165. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2166. _mm256_set1_ps(126), _CMP_GT_OQ));
  2167. const __m256 u = _mm256_mul_ps(b, b);
  2168. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2169. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2170. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2171. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2172. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2173. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2174. return _mm256_fmadd_ps(j, k, k);
  2175. const __m256i g = _mm256_and_si256(
  2176. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2177. _mm256_set1_epi32(0x82000000u));
  2178. const __m256 s1 =
  2179. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2180. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2181. const __m256i d = _mm256_castps_si256(
  2182. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2183. _mm256_set1_ps(192), _CMP_GT_OQ));
  2184. return _mm256_or_ps(
  2185. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2186. _mm256_andnot_ps(
  2187. _mm256_castsi256_ps(d),
  2188. _mm256_or_ps(
  2189. _mm256_and_ps(_mm256_castsi256_ps(c),
  2190. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2191. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2192. }
  2193. // computes silu x/(1+exp(-x)) in single precision vector
  2194. inline static __m256 ggml_v_silu(__m256 x) {
  2195. const __m256 one = _mm256_set1_ps(1);
  2196. const __m256 zero = _mm256_setzero_ps();
  2197. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2198. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2199. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2200. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2201. }
  2202. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2203. #if defined(__FMA__)
  2204. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2205. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2206. #else
  2207. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2208. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2209. #endif
  2210. // adapted from arm limited optimized routine
  2211. // the maximum error is 1.45358 plus 0.5 ulps
  2212. // numbers above 88.38 will flush to infinity
  2213. // numbers beneath -103.97 will flush to zero
  2214. inline static __m128 ggml_v_expf(__m128 x) {
  2215. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2216. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2217. const __m128 n = _mm_sub_ps(z, r);
  2218. const __m128 b =
  2219. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2220. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2221. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2222. const __m128i c =
  2223. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2224. const __m128 u = _mm_mul_ps(b, b);
  2225. const __m128 j =
  2226. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2227. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2228. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2229. if (!_mm_movemask_epi8(c))
  2230. return MADD128(j, k, k);
  2231. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2232. _mm_set1_epi32(0x82000000u));
  2233. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2234. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2235. const __m128i d =
  2236. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2237. return _mm_or_ps(
  2238. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2239. _mm_andnot_ps(_mm_castsi128_ps(d),
  2240. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2241. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2242. }
  2243. // computes silu x/(1+exp(-x)) in single precision vector
  2244. inline static __m128 ggml_v_silu(__m128 x) {
  2245. const __m128 one = _mm_set1_ps(1);
  2246. const __m128 zero = _mm_setzero_ps();
  2247. const __m128 neg_x = _mm_sub_ps(zero, x);
  2248. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2249. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2250. return _mm_div_ps(x, one_plus_exp_neg_x);
  2251. }
  2252. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2253. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2254. int i = 0;
  2255. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2256. for (; i + 15 < n; i += 16) {
  2257. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2258. }
  2259. #elif defined(__AVX2__) && defined(__FMA__)
  2260. for (; i + 7 < n; i += 8) {
  2261. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2262. }
  2263. #elif defined(__SSE2__)
  2264. for (; i + 3 < n; i += 4) {
  2265. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2266. }
  2267. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2268. for (; i + 3 < n; i += 4) {
  2269. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2270. }
  2271. #endif
  2272. for (; i < n; ++i) {
  2273. y[i] = ggml_silu_f32(x[i]);
  2274. }
  2275. }
  2276. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2277. int i = 0;
  2278. ggml_float sum = 0;
  2279. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2280. for (; i + 15 < n; i += 16) {
  2281. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2282. _mm512_set1_ps(max)));
  2283. _mm512_storeu_ps(y + i, val);
  2284. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2285. }
  2286. #elif defined(__AVX2__) && defined(__FMA__)
  2287. for (; i + 7 < n; i += 8) {
  2288. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2289. _mm256_set1_ps(max)));
  2290. _mm256_storeu_ps(y + i, val);
  2291. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2292. _mm256_castps256_ps128(val));
  2293. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2294. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2295. sum += (ggml_float)_mm_cvtss_f32(val2);
  2296. }
  2297. #elif defined(__SSE2__)
  2298. for (; i + 3 < n; i += 4) {
  2299. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2300. _mm_set1_ps(max)));
  2301. _mm_storeu_ps(y + i, val);
  2302. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2303. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2304. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2305. #else
  2306. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2307. val = _mm_add_ps(val, tmp);
  2308. tmp = _mm_movehl_ps(tmp, val);
  2309. val = _mm_add_ss(val, tmp);
  2310. #endif
  2311. sum += (ggml_float)_mm_cvtss_f32(val);
  2312. }
  2313. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2314. for (; i + 3 < n; i += 4) {
  2315. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2316. vdupq_n_f32(max)));
  2317. vst1q_f32(y + i, val);
  2318. sum += (ggml_float)vaddvq_f32(val);
  2319. }
  2320. #endif
  2321. for (; i < n; ++i) {
  2322. float val = expf(x[i] - max);
  2323. sum += (ggml_float)val;
  2324. y[i] = val;
  2325. }
  2326. return sum;
  2327. }
  2328. inline static float ggml_silu_backward_f32(float x, float dy) {
  2329. const float s = 1.0f/(1.0f + expf(-x));
  2330. return dy*s*(1.0f + x*(1.0f - s));
  2331. }
  2332. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2333. for (int i = 0; i < n; ++i) {
  2334. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2335. }
  2336. }
  2337. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2338. #ifndef GGML_USE_ACCELERATE
  2339. ggml_float sum = 0.0;
  2340. for (int i = 0; i < n; ++i) {
  2341. sum += (ggml_float)x[i];
  2342. }
  2343. *s = sum;
  2344. #else
  2345. vDSP_sve(x, 1, s, n);
  2346. #endif
  2347. }
  2348. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2349. ggml_float sum = 0.0;
  2350. for (int i = 0; i < n; ++i) {
  2351. sum += (ggml_float)x[i];
  2352. }
  2353. *s = sum;
  2354. }
  2355. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2356. float sum = 0.0f;
  2357. for (int i = 0; i < n; ++i) {
  2358. sum += GGML_FP16_TO_FP32(x[i]);
  2359. }
  2360. *s = sum;
  2361. }
  2362. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2363. float sum = 0.0f;
  2364. for (int i = 0; i < n; ++i) {
  2365. sum += GGML_BF16_TO_FP32(x[i]);
  2366. }
  2367. *s = sum;
  2368. }
  2369. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2370. #ifndef GGML_USE_ACCELERATE
  2371. float max = -INFINITY;
  2372. for (int i = 0; i < n; ++i) {
  2373. max = MAX(max, x[i]);
  2374. }
  2375. *s = max;
  2376. #else
  2377. vDSP_maxv(x, 1, s, n);
  2378. #endif
  2379. }
  2380. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2381. ggml_vec_norm_f32(n, s, x);
  2382. *s = 1.f/(*s);
  2383. }
  2384. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2385. float max = -INFINITY;
  2386. int idx = 0;
  2387. for (int i = 0; i < n; ++i) {
  2388. max = MAX(max, x[i]);
  2389. if (max == x[i]) { idx = i; }
  2390. }
  2391. *s = idx;
  2392. }
  2393. //
  2394. // data types
  2395. //
  2396. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2397. "NONE",
  2398. "DUP",
  2399. "ADD",
  2400. "ADD1",
  2401. "ACC",
  2402. "SUB",
  2403. "MUL",
  2404. "DIV",
  2405. "SQR",
  2406. "SQRT",
  2407. "LOG",
  2408. "SUM",
  2409. "SUM_ROWS",
  2410. "MEAN",
  2411. "ARGMAX",
  2412. "REPEAT",
  2413. "REPEAT_BACK",
  2414. "CONCAT",
  2415. "SILU_BACK",
  2416. "NORM",
  2417. "RMS_NORM",
  2418. "RMS_NORM_BACK",
  2419. "GROUP_NORM",
  2420. "MUL_MAT",
  2421. "MUL_MAT_ID",
  2422. "OUT_PROD",
  2423. "SCALE",
  2424. "SET",
  2425. "CPY",
  2426. "CONT",
  2427. "RESHAPE",
  2428. "VIEW",
  2429. "PERMUTE",
  2430. "TRANSPOSE",
  2431. "GET_ROWS",
  2432. "GET_ROWS_BACK",
  2433. "DIAG",
  2434. "DIAG_MASK_INF",
  2435. "DIAG_MASK_ZERO",
  2436. "SOFT_MAX",
  2437. "SOFT_MAX_BACK",
  2438. "ROPE",
  2439. "ROPE_BACK",
  2440. "CLAMP",
  2441. "CONV_TRANSPOSE_1D",
  2442. "IM2COL",
  2443. "CONV_TRANSPOSE_2D",
  2444. "POOL_1D",
  2445. "POOL_2D",
  2446. "UPSCALE",
  2447. "PAD",
  2448. "ARANGE",
  2449. "TIMESTEP_EMBEDDING",
  2450. "ARGSORT",
  2451. "LEAKY_RELU",
  2452. "FLASH_ATTN_EXT",
  2453. "FLASH_ATTN_BACK",
  2454. "SSM_CONV",
  2455. "SSM_SCAN",
  2456. "WIN_PART",
  2457. "WIN_UNPART",
  2458. "GET_REL_POS",
  2459. "ADD_REL_POS",
  2460. "UNARY",
  2461. "MAP_UNARY",
  2462. "MAP_BINARY",
  2463. "MAP_CUSTOM1_F32",
  2464. "MAP_CUSTOM2_F32",
  2465. "MAP_CUSTOM3_F32",
  2466. "MAP_CUSTOM1",
  2467. "MAP_CUSTOM2",
  2468. "MAP_CUSTOM3",
  2469. "CROSS_ENTROPY_LOSS",
  2470. "CROSS_ENTROPY_LOSS_BACK",
  2471. };
  2472. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2473. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2474. "none",
  2475. "x",
  2476. "x+y",
  2477. "x+y",
  2478. "view(x,nb,offset)+=y->x",
  2479. "x-y",
  2480. "x*y",
  2481. "x/y",
  2482. "x^2",
  2483. "√x",
  2484. "log(x)",
  2485. "Σx",
  2486. "Σx_k",
  2487. "Σx/n",
  2488. "argmax(x)",
  2489. "repeat(x)",
  2490. "repeat_back(x)",
  2491. "concat(x, y)",
  2492. "silu_back(x)",
  2493. "norm(x)",
  2494. "rms_norm(x)",
  2495. "rms_norm_back(x)",
  2496. "group_norm(x)",
  2497. "X*Y",
  2498. "X[i]*Y",
  2499. "X*Y",
  2500. "x*v",
  2501. "y-\\>view(x)",
  2502. "x-\\>y",
  2503. "cont(x)",
  2504. "reshape(x)",
  2505. "view(x)",
  2506. "permute(x)",
  2507. "transpose(x)",
  2508. "get_rows(x)",
  2509. "get_rows_back(x)",
  2510. "diag(x)",
  2511. "diag_mask_inf(x)",
  2512. "diag_mask_zero(x)",
  2513. "soft_max(x)",
  2514. "soft_max_back(x)",
  2515. "rope(x)",
  2516. "rope_back(x)",
  2517. "clamp(x)",
  2518. "conv_transpose_1d(x)",
  2519. "im2col(x)",
  2520. "conv_transpose_2d(x)",
  2521. "pool_1d(x)",
  2522. "pool_2d(x)",
  2523. "upscale(x)",
  2524. "pad(x)",
  2525. "arange(start, stop, step)",
  2526. "timestep_embedding(timesteps, dim, max_period)",
  2527. "argsort(x)",
  2528. "leaky_relu(x)",
  2529. "flash_attn_ext(x)",
  2530. "flash_attn_back(x)",
  2531. "ssm_conv(x)",
  2532. "ssm_scan(x)",
  2533. "win_part(x)",
  2534. "win_unpart(x)",
  2535. "get_rel_pos(x)",
  2536. "add_rel_pos(x)",
  2537. "unary(x)",
  2538. "f(x)",
  2539. "f(x,y)",
  2540. "custom_f32(x)",
  2541. "custom_f32(x,y)",
  2542. "custom_f32(x,y,z)",
  2543. "custom(x)",
  2544. "custom(x,y)",
  2545. "custom(x,y,z)",
  2546. "cross_entropy_loss(x,y)",
  2547. "cross_entropy_loss_back(x,y)",
  2548. };
  2549. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2550. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2551. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2552. "ABS",
  2553. "SGN",
  2554. "NEG",
  2555. "STEP",
  2556. "TANH",
  2557. "ELU",
  2558. "RELU",
  2559. "SIGMOID",
  2560. "GELU",
  2561. "GELU_QUICK",
  2562. "SILU",
  2563. "HARDSWISH",
  2564. "HARDSIGMOID",
  2565. };
  2566. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2567. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2568. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2569. //
  2570. // NUMA support
  2571. //
  2572. #define GGML_NUMA_MAX_NODES 8
  2573. #define GGML_NUMA_MAX_CPUS 512
  2574. struct ggml_numa_node {
  2575. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2576. uint32_t n_cpus;
  2577. };
  2578. struct ggml_numa_nodes {
  2579. enum ggml_numa_strategy numa_strategy;
  2580. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2581. uint32_t n_nodes;
  2582. uint32_t total_cpus; // hardware threads on system
  2583. uint32_t current_node; // node on which main process is execting
  2584. #if defined(__gnu_linux__)
  2585. cpu_set_t cpuset; // cpuset from numactl
  2586. #else
  2587. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2588. #endif
  2589. };
  2590. //
  2591. // ggml state
  2592. //
  2593. struct ggml_state {
  2594. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2595. struct ggml_numa_nodes numa;
  2596. };
  2597. // global state
  2598. static struct ggml_state g_state;
  2599. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2600. // critical section via spin lock
  2601. inline static void ggml_critical_section_start(void) {
  2602. while (atomic_flag_test_and_set(&g_state_critical)) {
  2603. // spin
  2604. sched_yield();
  2605. }
  2606. }
  2607. #ifdef GGML_USE_OPENMP
  2608. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2609. if (shared->n_threads == 1) {
  2610. return;
  2611. }
  2612. #pragma omp barrier
  2613. }
  2614. #else
  2615. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2616. if (shared->n_threads == 1) {
  2617. return;
  2618. }
  2619. atomic_int * n_barrier = &shared->n_barrier;
  2620. atomic_int * n_barrier_passed = &shared->n_barrier_passed;
  2621. int n_threads = shared->n_threads;
  2622. int passed_old = atomic_load(n_barrier_passed);
  2623. if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
  2624. // last thread
  2625. atomic_store(n_barrier, 0);
  2626. atomic_fetch_add(n_barrier_passed, 1);
  2627. } else {
  2628. // wait for other threads
  2629. const int n_spin_before_sleep = 100000;
  2630. while (true) {
  2631. for (int i = 0; i < n_spin_before_sleep; i++) {
  2632. if (atomic_load(n_barrier_passed) != passed_old) {
  2633. return;
  2634. }
  2635. #if defined(__SSE3__)
  2636. _mm_pause();
  2637. #endif
  2638. }
  2639. sched_yield();
  2640. }
  2641. }
  2642. }
  2643. #endif
  2644. // TODO: make this somehow automatically executed
  2645. // some sort of "sentry" mechanism
  2646. inline static void ggml_critical_section_end(void) {
  2647. atomic_flag_clear(&g_state_critical);
  2648. }
  2649. #if defined(__gnu_linux__)
  2650. static cpu_set_t ggml_get_numa_affinity(void) {
  2651. cpu_set_t cpuset;
  2652. pthread_t thread;
  2653. thread = pthread_self();
  2654. CPU_ZERO(&cpuset);
  2655. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2656. return cpuset;
  2657. }
  2658. #else
  2659. static uint32_t ggml_get_numa_affinity(void) {
  2660. return 0; // no NUMA support
  2661. }
  2662. #endif
  2663. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2664. if (g_state.numa.n_nodes > 0) {
  2665. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2666. return;
  2667. }
  2668. #if defined(__gnu_linux__)
  2669. struct stat st;
  2670. char path[256];
  2671. int rv;
  2672. // set numa scheme
  2673. g_state.numa.numa_strategy = numa_flag;
  2674. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2675. g_state.numa.cpuset = ggml_get_numa_affinity();
  2676. // enumerate nodes
  2677. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2678. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2679. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2680. if (stat(path, &st) != 0) { break; }
  2681. ++g_state.numa.n_nodes;
  2682. }
  2683. // enumerate CPUs
  2684. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2685. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2686. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2687. if (stat(path, &st) != 0) { break; }
  2688. ++g_state.numa.total_cpus;
  2689. }
  2690. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2691. // figure out which node we're on
  2692. uint current_cpu;
  2693. int getcpu_ret = 0;
  2694. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2695. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2696. #else
  2697. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2698. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2699. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2700. # endif
  2701. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2702. #endif
  2703. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2704. g_state.numa.n_nodes = 0;
  2705. return;
  2706. }
  2707. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2708. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2709. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2710. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2711. node->n_cpus = 0;
  2712. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2713. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2714. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2715. if (stat(path, &st) == 0) {
  2716. node->cpus[node->n_cpus++] = c;
  2717. GGML_PRINT_DEBUG(" %u", c);
  2718. }
  2719. }
  2720. GGML_PRINT_DEBUG("\n");
  2721. }
  2722. if (ggml_is_numa()) {
  2723. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2724. if (fptr != NULL) {
  2725. char buf[42];
  2726. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2727. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2728. }
  2729. fclose(fptr);
  2730. }
  2731. }
  2732. #else
  2733. UNUSED(numa_flag);
  2734. // TODO
  2735. #endif
  2736. }
  2737. bool ggml_is_numa(void) {
  2738. return g_state.numa.n_nodes > 1;
  2739. }
  2740. ////////////////////////////////////////////////////////////////////////////////
  2741. void ggml_print_object(const struct ggml_object * obj) {
  2742. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2743. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2744. }
  2745. void ggml_print_objects(const struct ggml_context * ctx) {
  2746. struct ggml_object * obj = ctx->objects_begin;
  2747. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2748. while (obj != NULL) {
  2749. ggml_print_object(obj);
  2750. obj = obj->next;
  2751. }
  2752. GGML_PRINT("%s: --- end ---\n", __func__);
  2753. }
  2754. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2755. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2756. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2757. }
  2758. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2759. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2760. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2761. }
  2762. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2763. size_t nbytes;
  2764. size_t blck_size = ggml_blck_size(tensor->type);
  2765. if (blck_size == 1) {
  2766. nbytes = ggml_type_size(tensor->type);
  2767. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2768. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2769. }
  2770. }
  2771. else {
  2772. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2773. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2774. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2775. }
  2776. }
  2777. return nbytes;
  2778. }
  2779. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2780. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2781. }
  2782. GGML_CALL int64_t ggml_blck_size(enum ggml_type type) {
  2783. return type_traits[type].blck_size;
  2784. }
  2785. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2786. return type_traits[type].type_size;
  2787. }
  2788. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2789. assert(ne % ggml_blck_size(type) == 0);
  2790. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2791. }
  2792. double ggml_type_sizef(enum ggml_type type) {
  2793. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2794. }
  2795. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2796. return type_traits[type].type_name;
  2797. }
  2798. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2799. return type_traits[type].is_quantized;
  2800. }
  2801. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2802. return GGML_OP_NAME[op];
  2803. }
  2804. const char * ggml_op_symbol(enum ggml_op op) {
  2805. return GGML_OP_SYMBOL[op];
  2806. }
  2807. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2808. return GGML_UNARY_OP_NAME[op];
  2809. }
  2810. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2811. if (t->op == GGML_OP_UNARY) {
  2812. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2813. return ggml_unary_op_name(uop);
  2814. }
  2815. return ggml_op_name(t->op);
  2816. }
  2817. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2818. return ggml_type_size(tensor->type);
  2819. }
  2820. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2822. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2823. }
  2824. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2825. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2826. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2827. }
  2828. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2830. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2831. }
  2832. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2833. return tensor->ne[3] == 1;
  2834. }
  2835. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2836. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2837. if (tensor->ne[i] > 1) {
  2838. return i + 1;
  2839. }
  2840. }
  2841. return 1;
  2842. }
  2843. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2844. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2845. return (t0->ne[0] == t1->ne[0]) &&
  2846. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2847. (t1->ne[3]%t0->ne[3] == 0);
  2848. }
  2849. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2850. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2851. return (t0->ne[1] == t1->ne[1]) &&
  2852. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2853. (t1->ne[3]%t0->ne[3] == 0);
  2854. }
  2855. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2856. enum ggml_type wtype = GGML_TYPE_COUNT;
  2857. switch (ftype) {
  2858. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2859. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2860. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2861. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2862. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2863. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2864. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2865. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2866. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2867. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2868. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2869. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2870. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2871. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2872. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2873. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2874. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2875. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2876. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2877. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2878. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2879. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2880. case GGML_FTYPE_MOSTLY_Q4_0_4_4: wtype = GGML_TYPE_Q4_0_4_4; break;
  2881. case GGML_FTYPE_MOSTLY_Q4_0_4_8: wtype = GGML_TYPE_Q4_0_4_8; break;
  2882. case GGML_FTYPE_MOSTLY_Q4_0_8_8: wtype = GGML_TYPE_Q4_0_8_8; break;
  2883. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2884. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2885. }
  2886. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2887. return wtype;
  2888. }
  2889. size_t ggml_tensor_overhead(void) {
  2890. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2891. }
  2892. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2893. return tensor->nb[0] > tensor->nb[1];
  2894. }
  2895. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  2896. size_t next_nb = ggml_type_size(tensor->type);
  2897. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  2898. return false;
  2899. }
  2900. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  2901. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2902. if (tensor->ne[i] != 1) {
  2903. if (i > n) {
  2904. if (tensor->nb[i] != next_nb) {
  2905. return false;
  2906. }
  2907. next_nb *= tensor->ne[i];
  2908. } else {
  2909. // this dimension does not need to be contiguous
  2910. next_nb = tensor->ne[i]*tensor->nb[i];
  2911. }
  2912. }
  2913. }
  2914. return true;
  2915. }
  2916. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2917. return ggml_is_contiguous_0(tensor);
  2918. }
  2919. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2920. return ggml_is_contiguous_n(tensor, 0);
  2921. }
  2922. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2923. return ggml_is_contiguous_n(tensor, 1);
  2924. }
  2925. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2926. return ggml_is_contiguous_n(tensor, 2);
  2927. }
  2928. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2929. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2930. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2931. }
  2932. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2933. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2934. return
  2935. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2936. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2937. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2938. }
  2939. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2940. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2941. if (tensor->ne[i] == 0) {
  2942. // empty if any dimension has no elements
  2943. return true;
  2944. }
  2945. }
  2946. return false;
  2947. }
  2948. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2949. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2950. return
  2951. (t0->ne[0] == t1->ne[0]) &&
  2952. (t0->ne[1] == t1->ne[1]) &&
  2953. (t0->ne[2] == t1->ne[2]) &&
  2954. (t0->ne[3] == t1->ne[3]);
  2955. }
  2956. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2957. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2958. return
  2959. (t0->nb[0] == t1->nb[0]) &&
  2960. (t0->nb[1] == t1->nb[1]) &&
  2961. (t0->nb[2] == t1->nb[2]) &&
  2962. (t0->nb[3] == t1->nb[3]);
  2963. }
  2964. // check if t1 can be represented as a repeatition of t0
  2965. bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2966. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2967. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2968. (t1->ne[0]%t0->ne[0] == 0) &&
  2969. (t1->ne[1]%t0->ne[1] == 0) &&
  2970. (t1->ne[2]%t0->ne[2] == 0) &&
  2971. (t1->ne[3]%t0->ne[3] == 0);
  2972. }
  2973. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2974. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2975. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2976. }
  2977. static inline int ggml_up32(int n) {
  2978. return (n + 31) & ~31;
  2979. }
  2980. //static inline int ggml_up64(int n) {
  2981. // return (n + 63) & ~63;
  2982. //}
  2983. static inline int ggml_up(int n, int m) {
  2984. // assert m is a power of 2
  2985. GGML_ASSERT((m & (m - 1)) == 0);
  2986. return (n + m - 1) & ~(m - 1);
  2987. }
  2988. // assert that pointer is aligned to GGML_MEM_ALIGN
  2989. #define GGML_ASSERT_ALIGNED(ptr) \
  2990. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2991. ////////////////////////////////////////////////////////////////////////////////
  2992. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2993. // make this function thread safe
  2994. ggml_critical_section_start();
  2995. static bool is_first_call = true;
  2996. if (is_first_call) {
  2997. // initialize time system (required on Windows)
  2998. ggml_time_init();
  2999. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3000. {
  3001. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3002. for (int i = 0; i < (1 << 16); ++i) {
  3003. union {
  3004. uint16_t u16;
  3005. ggml_fp16_t fp16;
  3006. } u = {i};
  3007. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  3008. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3009. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3010. }
  3011. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3012. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3013. }
  3014. // initialize g_state
  3015. {
  3016. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3017. g_state = (struct ggml_state) {
  3018. /*.contexts =*/ { { 0 } },
  3019. /*.numa =*/ {
  3020. .n_nodes = 0,
  3021. .total_cpus = 0,
  3022. },
  3023. };
  3024. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3025. g_state.contexts[i].used = false;
  3026. }
  3027. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3028. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3029. }
  3030. is_first_call = false;
  3031. }
  3032. // find non-used context in g_state
  3033. struct ggml_context * ctx = NULL;
  3034. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3035. if (!g_state.contexts[i].used) {
  3036. g_state.contexts[i].used = true;
  3037. ctx = &g_state.contexts[i].context;
  3038. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3039. break;
  3040. }
  3041. }
  3042. if (ctx == NULL) {
  3043. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3044. ggml_critical_section_end();
  3045. return NULL;
  3046. }
  3047. // allow to call ggml_init with 0 size
  3048. if (params.mem_size == 0) {
  3049. params.mem_size = GGML_MEM_ALIGN;
  3050. }
  3051. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  3052. *ctx = (struct ggml_context) {
  3053. /*.mem_size =*/ mem_size,
  3054. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3055. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3056. /*.no_alloc =*/ params.no_alloc,
  3057. /*.no_alloc_save =*/ params.no_alloc,
  3058. /*.n_objects =*/ 0,
  3059. /*.objects_begin =*/ NULL,
  3060. /*.objects_end =*/ NULL,
  3061. /*.scratch =*/ { 0, 0, NULL, },
  3062. /*.scratch_save =*/ { 0, 0, NULL, },
  3063. };
  3064. GGML_ASSERT(ctx->mem_buffer != NULL);
  3065. GGML_ASSERT_ALIGNED(ctx->mem_buffer);
  3066. #if defined(__ARM_FEATURE_SVE)
  3067. if (!ggml_sve_cnt_b) {
  3068. ggml_sve_cnt_b = PR_SVE_VL_LEN_MASK & prctl(PR_SVE_GET_VL);
  3069. }
  3070. #endif
  3071. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3072. ggml_critical_section_end();
  3073. return ctx;
  3074. }
  3075. void ggml_free(struct ggml_context * ctx) {
  3076. if (ctx == NULL) {
  3077. return;
  3078. }
  3079. // make this function thread safe
  3080. ggml_critical_section_start();
  3081. bool found = false;
  3082. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3083. if (&g_state.contexts[i].context == ctx) {
  3084. g_state.contexts[i].used = false;
  3085. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  3086. __func__, i, ggml_used_mem(ctx));
  3087. if (ctx->mem_buffer_owned) {
  3088. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3089. }
  3090. found = true;
  3091. break;
  3092. }
  3093. }
  3094. if (!found) {
  3095. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3096. }
  3097. ggml_critical_section_end();
  3098. }
  3099. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3100. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3101. }
  3102. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3103. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3104. ctx->scratch = scratch;
  3105. return result;
  3106. }
  3107. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  3108. return ctx->no_alloc;
  3109. }
  3110. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3111. ctx->no_alloc = no_alloc;
  3112. }
  3113. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3114. return ctx->mem_buffer;
  3115. }
  3116. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3117. return ctx->mem_size;
  3118. }
  3119. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3120. size_t max_size = 0;
  3121. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  3122. size_t bytes = ggml_nbytes(tensor);
  3123. max_size = MAX(max_size, bytes);
  3124. }
  3125. return max_size;
  3126. }
  3127. // IMPORTANT:
  3128. // when creating "opt" tensors, always save and load the scratch buffer
  3129. // this is an error prone process, but it is necessary to support inplace
  3130. // operators when using scratch buffers
  3131. // TODO: implement a better way
  3132. static void ggml_scratch_save(struct ggml_context * ctx) {
  3133. // this is needed to allow opt tensors to store their data
  3134. // TODO: again, need to find a better way
  3135. ctx->no_alloc_save = ctx->no_alloc;
  3136. ctx->no_alloc = false;
  3137. ctx->scratch_save = ctx->scratch;
  3138. ctx->scratch.data = NULL;
  3139. }
  3140. static void ggml_scratch_load(struct ggml_context * ctx) {
  3141. ctx->no_alloc = ctx->no_alloc_save;
  3142. ctx->scratch = ctx->scratch_save;
  3143. }
  3144. ////////////////////////////////////////////////////////////////////////////////
  3145. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3146. // always insert objects at the end of the context's memory pool
  3147. struct ggml_object * obj_cur = ctx->objects_end;
  3148. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3149. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3150. const size_t cur_end = cur_offs + cur_size;
  3151. // align to GGML_MEM_ALIGN
  3152. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3153. char * const mem_buffer = ctx->mem_buffer;
  3154. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3155. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3156. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3157. __func__, cur_end + size_needed, ctx->mem_size);
  3158. assert(false);
  3159. return NULL;
  3160. }
  3161. *obj_new = (struct ggml_object) {
  3162. .offs = cur_end + GGML_OBJECT_SIZE,
  3163. .size = size_needed,
  3164. .next = NULL,
  3165. .type = type,
  3166. };
  3167. GGML_ASSERT_ALIGNED(mem_buffer + obj_new->offs);
  3168. if (obj_cur != NULL) {
  3169. obj_cur->next = obj_new;
  3170. } else {
  3171. // this is the first object in this context
  3172. ctx->objects_begin = obj_new;
  3173. }
  3174. ctx->objects_end = obj_new;
  3175. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3176. return obj_new;
  3177. }
  3178. static struct ggml_tensor * ggml_new_tensor_impl(
  3179. struct ggml_context * ctx,
  3180. enum ggml_type type,
  3181. int n_dims,
  3182. const int64_t * ne,
  3183. struct ggml_tensor * view_src,
  3184. size_t view_offs) {
  3185. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3186. // find the base tensor and absolute offset
  3187. if (view_src != NULL && view_src->view_src != NULL) {
  3188. view_offs += view_src->view_offs;
  3189. view_src = view_src->view_src;
  3190. }
  3191. size_t data_size = ggml_row_size(type, ne[0]);
  3192. for (int i = 1; i < n_dims; i++) {
  3193. data_size *= ne[i];
  3194. }
  3195. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3196. void * data = view_src != NULL ? view_src->data : NULL;
  3197. if (data != NULL) {
  3198. data = (char *) data + view_offs;
  3199. }
  3200. size_t obj_alloc_size = 0;
  3201. if (view_src == NULL && !ctx->no_alloc) {
  3202. if (ctx->scratch.data != NULL) {
  3203. // allocate tensor data in the scratch buffer
  3204. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3205. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3206. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3207. assert(false);
  3208. return NULL;
  3209. }
  3210. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3211. ctx->scratch.offs += data_size;
  3212. } else {
  3213. // allocate tensor data in the context's memory pool
  3214. obj_alloc_size = data_size;
  3215. }
  3216. }
  3217. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3218. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3219. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3220. #ifdef __clang__
  3221. // temporary until ggml_tensor::backend is removed
  3222. #pragma clang diagnostic push
  3223. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3224. #endif
  3225. *result = (struct ggml_tensor) {
  3226. /*.type =*/ type,
  3227. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3228. /*.buffer =*/ NULL,
  3229. /*.ne =*/ { 1, 1, 1, 1 },
  3230. /*.nb =*/ { 0, 0, 0, 0 },
  3231. /*.op =*/ GGML_OP_NONE,
  3232. /*.op_params =*/ { 0 },
  3233. /*.flags =*/ 0,
  3234. /*.grad =*/ NULL,
  3235. /*.src =*/ { NULL },
  3236. /*.view_src =*/ view_src,
  3237. /*.view_offs =*/ view_offs,
  3238. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3239. /*.name =*/ { 0 },
  3240. /*.extra =*/ NULL,
  3241. ///*.padding =*/ { 0 },
  3242. };
  3243. #ifdef __clang__
  3244. #pragma clang diagnostic pop
  3245. #endif
  3246. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3247. //GGML_ASSERT_ALIGNED(result->data);
  3248. for (int i = 0; i < n_dims; i++) {
  3249. result->ne[i] = ne[i];
  3250. }
  3251. result->nb[0] = ggml_type_size(type);
  3252. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3253. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3254. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3255. }
  3256. ctx->n_objects++;
  3257. return result;
  3258. }
  3259. struct ggml_tensor * ggml_new_tensor(
  3260. struct ggml_context * ctx,
  3261. enum ggml_type type,
  3262. int n_dims,
  3263. const int64_t * ne) {
  3264. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3265. }
  3266. struct ggml_tensor * ggml_new_tensor_1d(
  3267. struct ggml_context * ctx,
  3268. enum ggml_type type,
  3269. int64_t ne0) {
  3270. return ggml_new_tensor(ctx, type, 1, &ne0);
  3271. }
  3272. struct ggml_tensor * ggml_new_tensor_2d(
  3273. struct ggml_context * ctx,
  3274. enum ggml_type type,
  3275. int64_t ne0,
  3276. int64_t ne1) {
  3277. const int64_t ne[2] = { ne0, ne1 };
  3278. return ggml_new_tensor(ctx, type, 2, ne);
  3279. }
  3280. struct ggml_tensor * ggml_new_tensor_3d(
  3281. struct ggml_context * ctx,
  3282. enum ggml_type type,
  3283. int64_t ne0,
  3284. int64_t ne1,
  3285. int64_t ne2) {
  3286. const int64_t ne[3] = { ne0, ne1, ne2 };
  3287. return ggml_new_tensor(ctx, type, 3, ne);
  3288. }
  3289. struct ggml_tensor * ggml_new_tensor_4d(
  3290. struct ggml_context * ctx,
  3291. enum ggml_type type,
  3292. int64_t ne0,
  3293. int64_t ne1,
  3294. int64_t ne2,
  3295. int64_t ne3) {
  3296. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3297. return ggml_new_tensor(ctx, type, 4, ne);
  3298. }
  3299. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3300. ggml_scratch_save(ctx);
  3301. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3302. ggml_scratch_load(ctx);
  3303. ggml_set_i32(result, value);
  3304. return result;
  3305. }
  3306. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3307. ggml_scratch_save(ctx);
  3308. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3309. ggml_scratch_load(ctx);
  3310. ggml_set_f32(result, value);
  3311. return result;
  3312. }
  3313. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3314. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3315. }
  3316. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3317. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3318. assert(params_size <= GGML_MAX_OP_PARAMS);
  3319. memcpy(tensor->op_params, params, params_size);
  3320. }
  3321. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3322. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3323. return ((const int32_t *)(tensor->op_params))[i];
  3324. }
  3325. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3326. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3327. return ((const float *)(tensor->op_params))[i];
  3328. }
  3329. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3330. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3331. ((int32_t *)(tensor->op_params))[i] = value;
  3332. }
  3333. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3334. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3335. ((float *)(tensor->op_params))[i] = value;
  3336. }
  3337. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3338. memset(tensor->data, 0, ggml_nbytes(tensor));
  3339. return tensor;
  3340. }
  3341. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3342. const int n = ggml_nrows(tensor);
  3343. const int nc = tensor->ne[0];
  3344. const size_t n1 = tensor->nb[1];
  3345. char * const data = tensor->data;
  3346. switch (tensor->type) {
  3347. case GGML_TYPE_I8:
  3348. {
  3349. assert(tensor->nb[0] == sizeof(int8_t));
  3350. for (int i = 0; i < n; i++) {
  3351. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3352. }
  3353. } break;
  3354. case GGML_TYPE_I16:
  3355. {
  3356. assert(tensor->nb[0] == sizeof(int16_t));
  3357. for (int i = 0; i < n; i++) {
  3358. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3359. }
  3360. } break;
  3361. case GGML_TYPE_I32:
  3362. {
  3363. assert(tensor->nb[0] == sizeof(int32_t));
  3364. for (int i = 0; i < n; i++) {
  3365. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3366. }
  3367. } break;
  3368. case GGML_TYPE_F16:
  3369. {
  3370. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3371. for (int i = 0; i < n; i++) {
  3372. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3373. }
  3374. } break;
  3375. case GGML_TYPE_BF16:
  3376. {
  3377. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3378. for (int i = 0; i < n; i++) {
  3379. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3380. }
  3381. } break;
  3382. case GGML_TYPE_F32:
  3383. {
  3384. assert(tensor->nb[0] == sizeof(float));
  3385. for (int i = 0; i < n; i++) {
  3386. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3387. }
  3388. } break;
  3389. default:
  3390. {
  3391. GGML_ABORT("fatal error");
  3392. }
  3393. }
  3394. return tensor;
  3395. }
  3396. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3397. const int n = ggml_nrows(tensor);
  3398. const int nc = tensor->ne[0];
  3399. const size_t n1 = tensor->nb[1];
  3400. char * const data = tensor->data;
  3401. switch (tensor->type) {
  3402. case GGML_TYPE_I8:
  3403. {
  3404. assert(tensor->nb[0] == sizeof(int8_t));
  3405. for (int i = 0; i < n; i++) {
  3406. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3407. }
  3408. } break;
  3409. case GGML_TYPE_I16:
  3410. {
  3411. assert(tensor->nb[0] == sizeof(int16_t));
  3412. for (int i = 0; i < n; i++) {
  3413. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3414. }
  3415. } break;
  3416. case GGML_TYPE_I32:
  3417. {
  3418. assert(tensor->nb[0] == sizeof(int32_t));
  3419. for (int i = 0; i < n; i++) {
  3420. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3421. }
  3422. } break;
  3423. case GGML_TYPE_F16:
  3424. {
  3425. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3426. for (int i = 0; i < n; i++) {
  3427. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3428. }
  3429. } break;
  3430. case GGML_TYPE_BF16:
  3431. {
  3432. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3433. for (int i = 0; i < n; i++) {
  3434. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3435. }
  3436. } break;
  3437. case GGML_TYPE_F32:
  3438. {
  3439. assert(tensor->nb[0] == sizeof(float));
  3440. for (int i = 0; i < n; i++) {
  3441. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3442. }
  3443. } break;
  3444. default:
  3445. {
  3446. GGML_ABORT("fatal error");
  3447. }
  3448. }
  3449. return tensor;
  3450. }
  3451. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3452. const int64_t ne2 = tensor->ne[2];
  3453. const int64_t ne1 = tensor->ne[1];
  3454. const int64_t ne0 = tensor->ne[0];
  3455. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3456. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3457. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3458. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3459. if (i0) {
  3460. * i0 = i0_;
  3461. }
  3462. if (i1) {
  3463. * i1 = i1_;
  3464. }
  3465. if (i2) {
  3466. * i2 = i2_;
  3467. }
  3468. if (i3) {
  3469. * i3 = i3_;
  3470. }
  3471. }
  3472. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3473. if (!ggml_is_contiguous(tensor)) {
  3474. int64_t id[4] = { 0, 0, 0, 0 };
  3475. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3476. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3477. }
  3478. switch (tensor->type) {
  3479. case GGML_TYPE_I8:
  3480. {
  3481. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3482. return ((int8_t *)(tensor->data))[i];
  3483. }
  3484. case GGML_TYPE_I16:
  3485. {
  3486. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3487. return ((int16_t *)(tensor->data))[i];
  3488. }
  3489. case GGML_TYPE_I32:
  3490. {
  3491. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3492. return ((int32_t *)(tensor->data))[i];
  3493. }
  3494. case GGML_TYPE_F16:
  3495. {
  3496. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3497. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3498. }
  3499. case GGML_TYPE_BF16:
  3500. {
  3501. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3502. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3503. }
  3504. case GGML_TYPE_F32:
  3505. {
  3506. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3507. return ((float *)(tensor->data))[i];
  3508. }
  3509. default:
  3510. {
  3511. GGML_ABORT("fatal error");
  3512. }
  3513. }
  3514. }
  3515. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3516. if (!ggml_is_contiguous(tensor)) {
  3517. int64_t id[4] = { 0, 0, 0, 0 };
  3518. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3519. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3520. return;
  3521. }
  3522. switch (tensor->type) {
  3523. case GGML_TYPE_I8:
  3524. {
  3525. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3526. ((int8_t *)(tensor->data))[i] = value;
  3527. } break;
  3528. case GGML_TYPE_I16:
  3529. {
  3530. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3531. ((int16_t *)(tensor->data))[i] = value;
  3532. } break;
  3533. case GGML_TYPE_I32:
  3534. {
  3535. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3536. ((int32_t *)(tensor->data))[i] = value;
  3537. } break;
  3538. case GGML_TYPE_F16:
  3539. {
  3540. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3541. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3542. } break;
  3543. case GGML_TYPE_BF16:
  3544. {
  3545. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3546. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3547. } break;
  3548. case GGML_TYPE_F32:
  3549. {
  3550. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3551. ((float *)(tensor->data))[i] = value;
  3552. } break;
  3553. default:
  3554. {
  3555. GGML_ABORT("fatal error");
  3556. }
  3557. }
  3558. }
  3559. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3560. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3561. switch (tensor->type) {
  3562. case GGML_TYPE_I8:
  3563. return ((int8_t *) data)[0];
  3564. case GGML_TYPE_I16:
  3565. return ((int16_t *) data)[0];
  3566. case GGML_TYPE_I32:
  3567. return ((int32_t *) data)[0];
  3568. case GGML_TYPE_F16:
  3569. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3570. case GGML_TYPE_BF16:
  3571. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3572. case GGML_TYPE_F32:
  3573. return ((float *) data)[0];
  3574. default:
  3575. GGML_ABORT("fatal error");
  3576. }
  3577. }
  3578. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3579. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3580. switch (tensor->type) {
  3581. case GGML_TYPE_I8:
  3582. {
  3583. ((int8_t *)(data))[0] = value;
  3584. } break;
  3585. case GGML_TYPE_I16:
  3586. {
  3587. ((int16_t *)(data))[0] = value;
  3588. } break;
  3589. case GGML_TYPE_I32:
  3590. {
  3591. ((int32_t *)(data))[0] = value;
  3592. } break;
  3593. case GGML_TYPE_F16:
  3594. {
  3595. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3596. } break;
  3597. case GGML_TYPE_BF16:
  3598. {
  3599. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3600. } break;
  3601. case GGML_TYPE_F32:
  3602. {
  3603. ((float *)(data))[0] = value;
  3604. } break;
  3605. default:
  3606. {
  3607. GGML_ABORT("fatal error");
  3608. }
  3609. }
  3610. }
  3611. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3612. if (!ggml_is_contiguous(tensor)) {
  3613. int64_t id[4] = { 0, 0, 0, 0 };
  3614. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3615. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3616. }
  3617. switch (tensor->type) {
  3618. case GGML_TYPE_I8:
  3619. {
  3620. return ((int8_t *)(tensor->data))[i];
  3621. }
  3622. case GGML_TYPE_I16:
  3623. {
  3624. return ((int16_t *)(tensor->data))[i];
  3625. }
  3626. case GGML_TYPE_I32:
  3627. {
  3628. return ((int32_t *)(tensor->data))[i];
  3629. }
  3630. case GGML_TYPE_F16:
  3631. {
  3632. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3633. }
  3634. case GGML_TYPE_BF16:
  3635. {
  3636. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3637. }
  3638. case GGML_TYPE_F32:
  3639. {
  3640. return ((float *)(tensor->data))[i];
  3641. }
  3642. default:
  3643. {
  3644. GGML_ABORT("fatal error");
  3645. }
  3646. }
  3647. }
  3648. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3649. if (!ggml_is_contiguous(tensor)) {
  3650. int64_t id[4] = { 0, 0, 0, 0 };
  3651. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3652. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3653. return;
  3654. }
  3655. switch (tensor->type) {
  3656. case GGML_TYPE_I8:
  3657. {
  3658. ((int8_t *)(tensor->data))[i] = value;
  3659. } break;
  3660. case GGML_TYPE_I16:
  3661. {
  3662. ((int16_t *)(tensor->data))[i] = value;
  3663. } break;
  3664. case GGML_TYPE_I32:
  3665. {
  3666. ((int32_t *)(tensor->data))[i] = value;
  3667. } break;
  3668. case GGML_TYPE_F16:
  3669. {
  3670. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3671. } break;
  3672. case GGML_TYPE_BF16:
  3673. {
  3674. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3675. } break;
  3676. case GGML_TYPE_F32:
  3677. {
  3678. ((float *)(tensor->data))[i] = value;
  3679. } break;
  3680. default:
  3681. {
  3682. GGML_ABORT("fatal error");
  3683. }
  3684. }
  3685. }
  3686. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3687. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3688. switch (tensor->type) {
  3689. case GGML_TYPE_I8:
  3690. return ((int8_t *) data)[0];
  3691. case GGML_TYPE_I16:
  3692. return ((int16_t *) data)[0];
  3693. case GGML_TYPE_I32:
  3694. return ((int32_t *) data)[0];
  3695. case GGML_TYPE_F16:
  3696. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3697. case GGML_TYPE_BF16:
  3698. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3699. case GGML_TYPE_F32:
  3700. return ((float *) data)[0];
  3701. default:
  3702. GGML_ABORT("fatal error");
  3703. }
  3704. }
  3705. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3706. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3707. switch (tensor->type) {
  3708. case GGML_TYPE_I8:
  3709. {
  3710. ((int8_t *)(data))[0] = value;
  3711. } break;
  3712. case GGML_TYPE_I16:
  3713. {
  3714. ((int16_t *)(data))[0] = value;
  3715. } break;
  3716. case GGML_TYPE_I32:
  3717. {
  3718. ((int32_t *)(data))[0] = value;
  3719. } break;
  3720. case GGML_TYPE_F16:
  3721. {
  3722. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3723. } break;
  3724. case GGML_TYPE_BF16:
  3725. {
  3726. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3727. } break;
  3728. case GGML_TYPE_F32:
  3729. {
  3730. ((float *)(data))[0] = value;
  3731. } break;
  3732. default:
  3733. {
  3734. GGML_ABORT("fatal error");
  3735. }
  3736. }
  3737. }
  3738. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3739. return tensor->data;
  3740. }
  3741. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3742. assert(tensor->type == GGML_TYPE_F32);
  3743. return (float *)(tensor->data);
  3744. }
  3745. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3746. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3747. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3748. }
  3749. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3750. return tensor->name;
  3751. }
  3752. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3753. size_t i;
  3754. for (i = 0; i < sizeof(tensor->name) - 1 && name[i] != '\0'; i++) {
  3755. tensor->name[i] = name[i];
  3756. }
  3757. tensor->name[i] = '\0';
  3758. return tensor;
  3759. }
  3760. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3761. va_list args;
  3762. va_start(args, fmt);
  3763. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3764. va_end(args);
  3765. return tensor;
  3766. }
  3767. struct ggml_tensor * ggml_view_tensor(
  3768. struct ggml_context * ctx,
  3769. struct ggml_tensor * src) {
  3770. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3771. ggml_format_name(result, "%s (view)", src->name);
  3772. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3773. result->nb[i] = src->nb[i];
  3774. }
  3775. return result;
  3776. }
  3777. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3778. struct ggml_object * obj = ctx->objects_begin;
  3779. char * const mem_buffer = ctx->mem_buffer;
  3780. while (obj != NULL) {
  3781. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3782. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3783. }
  3784. obj = obj->next;
  3785. }
  3786. return NULL;
  3787. }
  3788. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3789. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3790. obj = obj->next;
  3791. char * const mem_buffer = ctx->mem_buffer;
  3792. while (obj != NULL) {
  3793. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3794. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3795. }
  3796. obj = obj->next;
  3797. }
  3798. return NULL;
  3799. }
  3800. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3801. struct ggml_object * obj = ctx->objects_begin;
  3802. char * const mem_buffer = ctx->mem_buffer;
  3803. while (obj != NULL) {
  3804. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3805. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3806. if (strcmp(cur->name, name) == 0) {
  3807. return cur;
  3808. }
  3809. }
  3810. obj = obj->next;
  3811. }
  3812. return NULL;
  3813. }
  3814. ////////////////////////////////////////////////////////////////////////////////
  3815. // ggml_dup
  3816. static struct ggml_tensor * ggml_dup_impl(
  3817. struct ggml_context * ctx,
  3818. struct ggml_tensor * a,
  3819. bool inplace) {
  3820. bool is_node = false;
  3821. if (!inplace && (a->grad)) {
  3822. is_node = true;
  3823. }
  3824. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3825. result->op = GGML_OP_DUP;
  3826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3827. result->src[0] = a;
  3828. return result;
  3829. }
  3830. struct ggml_tensor * ggml_dup(
  3831. struct ggml_context * ctx,
  3832. struct ggml_tensor * a) {
  3833. return ggml_dup_impl(ctx, a, false);
  3834. }
  3835. struct ggml_tensor * ggml_dup_inplace(
  3836. struct ggml_context * ctx,
  3837. struct ggml_tensor * a) {
  3838. return ggml_dup_impl(ctx, a, true);
  3839. }
  3840. // ggml_add
  3841. static struct ggml_tensor * ggml_add_impl(
  3842. struct ggml_context * ctx,
  3843. struct ggml_tensor * a,
  3844. struct ggml_tensor * b,
  3845. bool inplace) {
  3846. GGML_ASSERT(ggml_can_repeat(b, a));
  3847. bool is_node = false;
  3848. if (!inplace && (a->grad || b->grad)) {
  3849. // TODO: support backward pass for broadcasting
  3850. GGML_ASSERT(ggml_are_same_shape(a, b));
  3851. is_node = true;
  3852. }
  3853. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3854. result->op = GGML_OP_ADD;
  3855. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3856. result->src[0] = a;
  3857. result->src[1] = b;
  3858. return result;
  3859. }
  3860. struct ggml_tensor * ggml_add(
  3861. struct ggml_context * ctx,
  3862. struct ggml_tensor * a,
  3863. struct ggml_tensor * b) {
  3864. return ggml_add_impl(ctx, a, b, false);
  3865. }
  3866. struct ggml_tensor * ggml_add_inplace(
  3867. struct ggml_context * ctx,
  3868. struct ggml_tensor * a,
  3869. struct ggml_tensor * b) {
  3870. return ggml_add_impl(ctx, a, b, true);
  3871. }
  3872. // ggml_add_cast
  3873. static struct ggml_tensor * ggml_add_cast_impl(
  3874. struct ggml_context * ctx,
  3875. struct ggml_tensor * a,
  3876. struct ggml_tensor * b,
  3877. enum ggml_type type) {
  3878. // TODO: support less-strict constraint
  3879. // GGML_ASSERT(ggml_can_repeat(b, a));
  3880. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3881. // currently only supported for quantized input and f16
  3882. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3883. a->type == GGML_TYPE_F16 ||
  3884. a->type == GGML_TYPE_BF16);
  3885. bool is_node = false;
  3886. if (a->grad || b->grad) {
  3887. // TODO: support backward pass for broadcasting
  3888. GGML_ASSERT(ggml_are_same_shape(a, b));
  3889. is_node = true;
  3890. }
  3891. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3892. result->op = GGML_OP_ADD;
  3893. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3894. result->src[0] = a;
  3895. result->src[1] = b;
  3896. return result;
  3897. }
  3898. struct ggml_tensor * ggml_add_cast(
  3899. struct ggml_context * ctx,
  3900. struct ggml_tensor * a,
  3901. struct ggml_tensor * b,
  3902. enum ggml_type type) {
  3903. return ggml_add_cast_impl(ctx, a, b, type);
  3904. }
  3905. // ggml_add1
  3906. static struct ggml_tensor * ggml_add1_impl(
  3907. struct ggml_context * ctx,
  3908. struct ggml_tensor * a,
  3909. struct ggml_tensor * b,
  3910. bool inplace) {
  3911. GGML_ASSERT(ggml_is_scalar(b));
  3912. GGML_ASSERT(ggml_is_padded_1d(a));
  3913. bool is_node = false;
  3914. if (a->grad || b->grad) {
  3915. is_node = true;
  3916. }
  3917. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3918. result->op = GGML_OP_ADD1;
  3919. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3920. result->src[0] = a;
  3921. result->src[1] = b;
  3922. return result;
  3923. }
  3924. struct ggml_tensor * ggml_add1(
  3925. struct ggml_context * ctx,
  3926. struct ggml_tensor * a,
  3927. struct ggml_tensor * b) {
  3928. return ggml_add1_impl(ctx, a, b, false);
  3929. }
  3930. struct ggml_tensor * ggml_add1_inplace(
  3931. struct ggml_context * ctx,
  3932. struct ggml_tensor * a,
  3933. struct ggml_tensor * b) {
  3934. return ggml_add1_impl(ctx, a, b, true);
  3935. }
  3936. // ggml_acc
  3937. static struct ggml_tensor * ggml_acc_impl(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. struct ggml_tensor * b,
  3941. size_t nb1,
  3942. size_t nb2,
  3943. size_t nb3,
  3944. size_t offset,
  3945. bool inplace) {
  3946. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3947. GGML_ASSERT(ggml_is_contiguous(a));
  3948. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3949. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3950. bool is_node = false;
  3951. if (!inplace && (a->grad || b->grad)) {
  3952. is_node = true;
  3953. }
  3954. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3955. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3956. ggml_set_op_params(result, params, sizeof(params));
  3957. result->op = GGML_OP_ACC;
  3958. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3959. result->src[0] = a;
  3960. result->src[1] = b;
  3961. return result;
  3962. }
  3963. struct ggml_tensor * ggml_acc(
  3964. struct ggml_context * ctx,
  3965. struct ggml_tensor * a,
  3966. struct ggml_tensor * b,
  3967. size_t nb1,
  3968. size_t nb2,
  3969. size_t nb3,
  3970. size_t offset) {
  3971. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3972. }
  3973. struct ggml_tensor * ggml_acc_inplace(
  3974. struct ggml_context * ctx,
  3975. struct ggml_tensor * a,
  3976. struct ggml_tensor * b,
  3977. size_t nb1,
  3978. size_t nb2,
  3979. size_t nb3,
  3980. size_t offset) {
  3981. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3982. }
  3983. // ggml_sub
  3984. static struct ggml_tensor * ggml_sub_impl(
  3985. struct ggml_context * ctx,
  3986. struct ggml_tensor * a,
  3987. struct ggml_tensor * b,
  3988. bool inplace) {
  3989. GGML_ASSERT(ggml_are_same_shape(a, b));
  3990. bool is_node = false;
  3991. if (!inplace && (a->grad || b->grad)) {
  3992. is_node = true;
  3993. }
  3994. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3995. result->op = GGML_OP_SUB;
  3996. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3997. result->src[0] = a;
  3998. result->src[1] = b;
  3999. return result;
  4000. }
  4001. struct ggml_tensor * ggml_sub(
  4002. struct ggml_context * ctx,
  4003. struct ggml_tensor * a,
  4004. struct ggml_tensor * b) {
  4005. return ggml_sub_impl(ctx, a, b, false);
  4006. }
  4007. struct ggml_tensor * ggml_sub_inplace(
  4008. struct ggml_context * ctx,
  4009. struct ggml_tensor * a,
  4010. struct ggml_tensor * b) {
  4011. return ggml_sub_impl(ctx, a, b, true);
  4012. }
  4013. // ggml_mul
  4014. static struct ggml_tensor * ggml_mul_impl(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a,
  4017. struct ggml_tensor * b,
  4018. bool inplace) {
  4019. GGML_ASSERT(ggml_can_repeat(b, a));
  4020. bool is_node = false;
  4021. if (!inplace && (a->grad || b->grad)) {
  4022. // TODO: support backward pass for broadcasting
  4023. GGML_ASSERT(ggml_are_same_shape(a, b));
  4024. is_node = true;
  4025. }
  4026. if (inplace) {
  4027. GGML_ASSERT(!is_node);
  4028. }
  4029. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4030. result->op = GGML_OP_MUL;
  4031. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4032. result->src[0] = a;
  4033. result->src[1] = b;
  4034. return result;
  4035. }
  4036. struct ggml_tensor * ggml_mul(
  4037. struct ggml_context * ctx,
  4038. struct ggml_tensor * a,
  4039. struct ggml_tensor * b) {
  4040. return ggml_mul_impl(ctx, a, b, false);
  4041. }
  4042. struct ggml_tensor * ggml_mul_inplace(
  4043. struct ggml_context * ctx,
  4044. struct ggml_tensor * a,
  4045. struct ggml_tensor * b) {
  4046. return ggml_mul_impl(ctx, a, b, true);
  4047. }
  4048. // ggml_div
  4049. static struct ggml_tensor * ggml_div_impl(
  4050. struct ggml_context * ctx,
  4051. struct ggml_tensor * a,
  4052. struct ggml_tensor * b,
  4053. bool inplace) {
  4054. GGML_ASSERT(ggml_can_repeat(b, a));
  4055. bool is_node = false;
  4056. if (!inplace && (a->grad || b->grad)) {
  4057. is_node = true;
  4058. }
  4059. if (inplace) {
  4060. GGML_ASSERT(!is_node);
  4061. }
  4062. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4063. result->op = GGML_OP_DIV;
  4064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4065. result->src[0] = a;
  4066. result->src[1] = b;
  4067. return result;
  4068. }
  4069. struct ggml_tensor * ggml_div(
  4070. struct ggml_context * ctx,
  4071. struct ggml_tensor * a,
  4072. struct ggml_tensor * b) {
  4073. return ggml_div_impl(ctx, a, b, false);
  4074. }
  4075. struct ggml_tensor * ggml_div_inplace(
  4076. struct ggml_context * ctx,
  4077. struct ggml_tensor * a,
  4078. struct ggml_tensor * b) {
  4079. return ggml_div_impl(ctx, a, b, true);
  4080. }
  4081. // ggml_sqr
  4082. static struct ggml_tensor * ggml_sqr_impl(
  4083. struct ggml_context * ctx,
  4084. struct ggml_tensor * a,
  4085. bool inplace) {
  4086. bool is_node = false;
  4087. if (!inplace && (a->grad)) {
  4088. is_node = true;
  4089. }
  4090. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4091. result->op = GGML_OP_SQR;
  4092. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4093. result->src[0] = a;
  4094. return result;
  4095. }
  4096. struct ggml_tensor * ggml_sqr(
  4097. struct ggml_context * ctx,
  4098. struct ggml_tensor * a) {
  4099. return ggml_sqr_impl(ctx, a, false);
  4100. }
  4101. struct ggml_tensor * ggml_sqr_inplace(
  4102. struct ggml_context * ctx,
  4103. struct ggml_tensor * a) {
  4104. return ggml_sqr_impl(ctx, a, true);
  4105. }
  4106. // ggml_sqrt
  4107. static struct ggml_tensor * ggml_sqrt_impl(
  4108. struct ggml_context * ctx,
  4109. struct ggml_tensor * a,
  4110. bool inplace) {
  4111. bool is_node = false;
  4112. if (!inplace && (a->grad)) {
  4113. is_node = true;
  4114. }
  4115. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4116. result->op = GGML_OP_SQRT;
  4117. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4118. result->src[0] = a;
  4119. return result;
  4120. }
  4121. struct ggml_tensor * ggml_sqrt(
  4122. struct ggml_context * ctx,
  4123. struct ggml_tensor * a) {
  4124. return ggml_sqrt_impl(ctx, a, false);
  4125. }
  4126. struct ggml_tensor * ggml_sqrt_inplace(
  4127. struct ggml_context * ctx,
  4128. struct ggml_tensor * a) {
  4129. return ggml_sqrt_impl(ctx, a, true);
  4130. }
  4131. // ggml_log
  4132. static struct ggml_tensor * ggml_log_impl(
  4133. struct ggml_context * ctx,
  4134. struct ggml_tensor * a,
  4135. bool inplace) {
  4136. bool is_node = false;
  4137. if (!inplace && (a->grad)) {
  4138. is_node = true;
  4139. }
  4140. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4141. result->op = GGML_OP_LOG;
  4142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4143. result->src[0] = a;
  4144. return result;
  4145. }
  4146. struct ggml_tensor * ggml_log(
  4147. struct ggml_context * ctx,
  4148. struct ggml_tensor * a) {
  4149. return ggml_log_impl(ctx, a, false);
  4150. }
  4151. struct ggml_tensor * ggml_log_inplace(
  4152. struct ggml_context * ctx,
  4153. struct ggml_tensor * a) {
  4154. return ggml_log_impl(ctx, a, true);
  4155. }
  4156. // ggml_sum
  4157. struct ggml_tensor * ggml_sum(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a) {
  4160. bool is_node = false;
  4161. if (a->grad) {
  4162. is_node = true;
  4163. }
  4164. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4165. result->op = GGML_OP_SUM;
  4166. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4167. result->src[0] = a;
  4168. return result;
  4169. }
  4170. // ggml_sum_rows
  4171. struct ggml_tensor * ggml_sum_rows(
  4172. struct ggml_context * ctx,
  4173. struct ggml_tensor * a) {
  4174. bool is_node = false;
  4175. if (a->grad) {
  4176. is_node = true;
  4177. }
  4178. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4179. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4180. ne[i] = a->ne[i];
  4181. }
  4182. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4183. result->op = GGML_OP_SUM_ROWS;
  4184. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4185. result->src[0] = a;
  4186. return result;
  4187. }
  4188. // ggml_mean
  4189. struct ggml_tensor * ggml_mean(
  4190. struct ggml_context * ctx,
  4191. struct ggml_tensor * a) {
  4192. bool is_node = false;
  4193. if (a->grad) {
  4194. GGML_ABORT("fatal error"); // TODO: implement
  4195. is_node = true;
  4196. }
  4197. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4198. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4199. result->op = GGML_OP_MEAN;
  4200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4201. result->src[0] = a;
  4202. return result;
  4203. }
  4204. // ggml_argmax
  4205. struct ggml_tensor * ggml_argmax(
  4206. struct ggml_context * ctx,
  4207. struct ggml_tensor * a) {
  4208. GGML_ASSERT(ggml_is_matrix(a));
  4209. bool is_node = false;
  4210. if (a->grad) {
  4211. GGML_ABORT("fatal error");
  4212. is_node = true;
  4213. }
  4214. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4215. result->op = GGML_OP_ARGMAX;
  4216. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4217. result->src[0] = a;
  4218. return result;
  4219. }
  4220. // ggml_repeat
  4221. struct ggml_tensor * ggml_repeat(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * a,
  4224. struct ggml_tensor * b) {
  4225. GGML_ASSERT(ggml_can_repeat(a, b));
  4226. bool is_node = false;
  4227. if (a->grad) {
  4228. is_node = true;
  4229. }
  4230. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4231. result->op = GGML_OP_REPEAT;
  4232. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4233. result->src[0] = a;
  4234. return result;
  4235. }
  4236. // ggml_repeat_back
  4237. struct ggml_tensor * ggml_repeat_back(
  4238. struct ggml_context * ctx,
  4239. struct ggml_tensor * a,
  4240. struct ggml_tensor * b) {
  4241. GGML_ASSERT(ggml_can_repeat(b, a));
  4242. bool is_node = false;
  4243. if (a->grad) {
  4244. is_node = true;
  4245. }
  4246. if (ggml_are_same_shape(a, b) && !is_node) {
  4247. return a;
  4248. }
  4249. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4250. result->op = GGML_OP_REPEAT_BACK;
  4251. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4252. result->src[0] = a;
  4253. return result;
  4254. }
  4255. // ggml_concat
  4256. struct ggml_tensor * ggml_concat(
  4257. struct ggml_context * ctx,
  4258. struct ggml_tensor * a,
  4259. struct ggml_tensor * b,
  4260. int dim) {
  4261. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4262. int64_t ne[GGML_MAX_DIMS];
  4263. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4264. if (d == dim) {
  4265. ne[d] = a->ne[d] + b->ne[d];
  4266. continue;
  4267. }
  4268. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4269. ne[d] = a->ne[d];
  4270. }
  4271. bool is_node = false;
  4272. if (a->grad || b->grad) {
  4273. is_node = true;
  4274. }
  4275. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4276. ggml_set_op_params_i32(result, 0, dim);
  4277. result->op = GGML_OP_CONCAT;
  4278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4279. result->src[0] = a;
  4280. result->src[1] = b;
  4281. return result;
  4282. }
  4283. // ggml_abs
  4284. struct ggml_tensor * ggml_abs(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a) {
  4287. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4288. }
  4289. struct ggml_tensor * ggml_abs_inplace(
  4290. struct ggml_context * ctx,
  4291. struct ggml_tensor * a) {
  4292. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4293. }
  4294. // ggml_sgn
  4295. struct ggml_tensor * ggml_sgn(
  4296. struct ggml_context * ctx,
  4297. struct ggml_tensor * a) {
  4298. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4299. }
  4300. struct ggml_tensor * ggml_sgn_inplace(
  4301. struct ggml_context * ctx,
  4302. struct ggml_tensor * a) {
  4303. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4304. }
  4305. // ggml_neg
  4306. struct ggml_tensor * ggml_neg(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a) {
  4309. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4310. }
  4311. struct ggml_tensor * ggml_neg_inplace(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4315. }
  4316. // ggml_step
  4317. struct ggml_tensor * ggml_step(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a) {
  4320. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4321. }
  4322. struct ggml_tensor * ggml_step_inplace(
  4323. struct ggml_context * ctx,
  4324. struct ggml_tensor * a) {
  4325. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4326. }
  4327. // ggml_tanh
  4328. struct ggml_tensor * ggml_tanh(
  4329. struct ggml_context * ctx,
  4330. struct ggml_tensor * a) {
  4331. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4332. }
  4333. struct ggml_tensor * ggml_tanh_inplace(
  4334. struct ggml_context * ctx,
  4335. struct ggml_tensor * a) {
  4336. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4337. }
  4338. // ggml_elu
  4339. struct ggml_tensor * ggml_elu(
  4340. struct ggml_context * ctx,
  4341. struct ggml_tensor * a) {
  4342. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4343. }
  4344. struct ggml_tensor * ggml_elu_inplace(
  4345. struct ggml_context * ctx,
  4346. struct ggml_tensor * a) {
  4347. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4348. }
  4349. // ggml_relu
  4350. struct ggml_tensor * ggml_relu(
  4351. struct ggml_context * ctx,
  4352. struct ggml_tensor * a) {
  4353. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4354. }
  4355. struct ggml_tensor * ggml_relu_inplace(
  4356. struct ggml_context * ctx,
  4357. struct ggml_tensor * a) {
  4358. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4359. }
  4360. // ggml_leaky_relu
  4361. struct ggml_tensor * ggml_leaky_relu(
  4362. struct ggml_context * ctx,
  4363. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4364. bool is_node = false;
  4365. if (!inplace && (a->grad)) {
  4366. is_node = true;
  4367. }
  4368. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4369. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4370. result->op = GGML_OP_LEAKY_RELU;
  4371. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4372. result->src[0] = a;
  4373. return result;
  4374. }
  4375. // ggml_sigmoid
  4376. struct ggml_tensor * ggml_sigmoid(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a) {
  4379. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4380. }
  4381. struct ggml_tensor * ggml_sigmoid_inplace(
  4382. struct ggml_context * ctx,
  4383. struct ggml_tensor * a) {
  4384. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4385. }
  4386. // ggml_gelu
  4387. struct ggml_tensor * ggml_gelu(
  4388. struct ggml_context * ctx,
  4389. struct ggml_tensor * a) {
  4390. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4391. }
  4392. struct ggml_tensor * ggml_gelu_inplace(
  4393. struct ggml_context * ctx,
  4394. struct ggml_tensor * a) {
  4395. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4396. }
  4397. // ggml_gelu_quick
  4398. struct ggml_tensor * ggml_gelu_quick(
  4399. struct ggml_context * ctx,
  4400. struct ggml_tensor * a) {
  4401. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4402. }
  4403. struct ggml_tensor * ggml_gelu_quick_inplace(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a) {
  4406. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4407. }
  4408. // ggml_silu
  4409. struct ggml_tensor * ggml_silu(
  4410. struct ggml_context * ctx,
  4411. struct ggml_tensor * a) {
  4412. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4413. }
  4414. struct ggml_tensor * ggml_silu_inplace(
  4415. struct ggml_context * ctx,
  4416. struct ggml_tensor * a) {
  4417. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4418. }
  4419. // ggml_silu_back
  4420. struct ggml_tensor * ggml_silu_back(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. struct ggml_tensor * b) {
  4424. bool is_node = false;
  4425. if (a->grad || b->grad) {
  4426. // TODO: implement backward
  4427. is_node = true;
  4428. }
  4429. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4430. result->op = GGML_OP_SILU_BACK;
  4431. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4432. result->src[0] = a;
  4433. result->src[1] = b;
  4434. return result;
  4435. }
  4436. // ggml hardswish
  4437. struct ggml_tensor * ggml_hardswish(
  4438. struct ggml_context * ctx,
  4439. struct ggml_tensor * a) {
  4440. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4441. }
  4442. // ggml hardsigmoid
  4443. struct ggml_tensor * ggml_hardsigmoid(
  4444. struct ggml_context * ctx,
  4445. struct ggml_tensor * a) {
  4446. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4447. }
  4448. // ggml_norm
  4449. static struct ggml_tensor * ggml_norm_impl(
  4450. struct ggml_context * ctx,
  4451. struct ggml_tensor * a,
  4452. float eps,
  4453. bool inplace) {
  4454. bool is_node = false;
  4455. if (!inplace && (a->grad)) {
  4456. GGML_ABORT("fatal error"); // TODO: implement backward
  4457. is_node = true;
  4458. }
  4459. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4460. ggml_set_op_params(result, &eps, sizeof(eps));
  4461. result->op = GGML_OP_NORM;
  4462. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4463. result->src[0] = a;
  4464. return result;
  4465. }
  4466. struct ggml_tensor * ggml_norm(
  4467. struct ggml_context * ctx,
  4468. struct ggml_tensor * a,
  4469. float eps) {
  4470. return ggml_norm_impl(ctx, a, eps, false);
  4471. }
  4472. struct ggml_tensor * ggml_norm_inplace(
  4473. struct ggml_context * ctx,
  4474. struct ggml_tensor * a,
  4475. float eps) {
  4476. return ggml_norm_impl(ctx, a, eps, true);
  4477. }
  4478. // ggml_rms_norm
  4479. static struct ggml_tensor * ggml_rms_norm_impl(
  4480. struct ggml_context * ctx,
  4481. struct ggml_tensor * a,
  4482. float eps,
  4483. bool inplace) {
  4484. bool is_node = false;
  4485. if (!inplace && (a->grad)) {
  4486. is_node = true;
  4487. }
  4488. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4489. ggml_set_op_params(result, &eps, sizeof(eps));
  4490. result->op = GGML_OP_RMS_NORM;
  4491. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4492. result->src[0] = a;
  4493. return result;
  4494. }
  4495. struct ggml_tensor * ggml_rms_norm(
  4496. struct ggml_context * ctx,
  4497. struct ggml_tensor * a,
  4498. float eps) {
  4499. return ggml_rms_norm_impl(ctx, a, eps, false);
  4500. }
  4501. struct ggml_tensor * ggml_rms_norm_inplace(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * a,
  4504. float eps) {
  4505. return ggml_rms_norm_impl(ctx, a, eps, true);
  4506. }
  4507. // ggml_rms_norm_back
  4508. struct ggml_tensor * ggml_rms_norm_back(
  4509. struct ggml_context * ctx,
  4510. struct ggml_tensor * a,
  4511. struct ggml_tensor * b,
  4512. float eps) {
  4513. bool is_node = false;
  4514. if (a->grad) {
  4515. // TODO: implement backward
  4516. is_node = true;
  4517. }
  4518. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4519. ggml_set_op_params(result, &eps, sizeof(eps));
  4520. result->op = GGML_OP_RMS_NORM_BACK;
  4521. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4522. result->src[0] = a;
  4523. result->src[1] = b;
  4524. return result;
  4525. }
  4526. // ggml_group_norm
  4527. static struct ggml_tensor * ggml_group_norm_impl(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a,
  4530. int n_groups,
  4531. float eps,
  4532. bool inplace) {
  4533. bool is_node = false;
  4534. if (!inplace && (a->grad)) {
  4535. GGML_ABORT("fatal error"); // TODO: implement backward
  4536. is_node = true;
  4537. }
  4538. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4539. ggml_set_op_params_i32(result, 0, n_groups);
  4540. ggml_set_op_params_f32(result, 1, eps);
  4541. result->op = GGML_OP_GROUP_NORM;
  4542. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4543. result->src[0] = a;
  4544. return result;
  4545. }
  4546. struct ggml_tensor * ggml_group_norm(
  4547. struct ggml_context * ctx,
  4548. struct ggml_tensor * a,
  4549. int n_groups,
  4550. float eps) {
  4551. return ggml_group_norm_impl(ctx, a, n_groups, eps, false);
  4552. }
  4553. struct ggml_tensor * ggml_group_norm_inplace(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a,
  4556. int n_groups,
  4557. float eps) {
  4558. return ggml_group_norm_impl(ctx, a, n_groups, eps, true);
  4559. }
  4560. // ggml_mul_mat
  4561. struct ggml_tensor * ggml_mul_mat(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b) {
  4565. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4566. GGML_ASSERT(!ggml_is_transposed(a));
  4567. bool is_node = false;
  4568. if (a->grad || b->grad) {
  4569. is_node = true;
  4570. }
  4571. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4572. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4573. result->op = GGML_OP_MUL_MAT;
  4574. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4575. result->src[0] = a;
  4576. result->src[1] = b;
  4577. return result;
  4578. }
  4579. void ggml_mul_mat_set_prec(
  4580. struct ggml_tensor * a,
  4581. enum ggml_prec prec) {
  4582. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4583. const int32_t prec_i32 = (int32_t) prec;
  4584. ggml_set_op_params_i32(a, 0, prec_i32);
  4585. }
  4586. // ggml_mul_mat_id
  4587. /*
  4588. c = ggml_mul_mat_id(ctx, as, b, ids);
  4589. as -> [cols, rows, n_expert]
  4590. ids -> [n_experts_used, n_tokens] (i32)
  4591. b -> [cols, n_expert_used, n_tokens]
  4592. c -> [rows, n_expert_used, n_tokens]
  4593. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4594. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4595. */
  4596. struct ggml_tensor * ggml_mul_mat_id(
  4597. struct ggml_context * ctx,
  4598. struct ggml_tensor * as,
  4599. struct ggml_tensor * b,
  4600. struct ggml_tensor * ids) {
  4601. GGML_ASSERT(!ggml_is_transposed(as));
  4602. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4603. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4604. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4605. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4606. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4607. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4608. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4609. bool is_node = false;
  4610. if (as->grad || b->grad) {
  4611. is_node = true;
  4612. }
  4613. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4614. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4615. result->op = GGML_OP_MUL_MAT_ID;
  4616. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4617. result->src[0] = as;
  4618. result->src[1] = b;
  4619. result->src[2] = ids;
  4620. return result;
  4621. }
  4622. // ggml_out_prod
  4623. struct ggml_tensor * ggml_out_prod(
  4624. struct ggml_context * ctx,
  4625. struct ggml_tensor * a,
  4626. struct ggml_tensor * b) {
  4627. GGML_ASSERT(ggml_can_out_prod(a, b));
  4628. GGML_ASSERT(!ggml_is_transposed(a));
  4629. bool is_node = false;
  4630. if (a->grad || b->grad) {
  4631. is_node = true;
  4632. }
  4633. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4634. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4635. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4636. result->op = GGML_OP_OUT_PROD;
  4637. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4638. result->src[0] = a;
  4639. result->src[1] = b;
  4640. return result;
  4641. }
  4642. // ggml_scale
  4643. static struct ggml_tensor * ggml_scale_impl(
  4644. struct ggml_context * ctx,
  4645. struct ggml_tensor * a,
  4646. float s,
  4647. bool inplace) {
  4648. GGML_ASSERT(ggml_is_padded_1d(a));
  4649. bool is_node = false;
  4650. if (a->grad) {
  4651. is_node = true;
  4652. }
  4653. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4654. ggml_set_op_params(result, &s, sizeof(s));
  4655. result->op = GGML_OP_SCALE;
  4656. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4657. result->src[0] = a;
  4658. return result;
  4659. }
  4660. struct ggml_tensor * ggml_scale(
  4661. struct ggml_context * ctx,
  4662. struct ggml_tensor * a,
  4663. float s) {
  4664. return ggml_scale_impl(ctx, a, s, false);
  4665. }
  4666. struct ggml_tensor * ggml_scale_inplace(
  4667. struct ggml_context * ctx,
  4668. struct ggml_tensor * a,
  4669. float s) {
  4670. return ggml_scale_impl(ctx, a, s, true);
  4671. }
  4672. // ggml_set
  4673. static struct ggml_tensor * ggml_set_impl(
  4674. struct ggml_context * ctx,
  4675. struct ggml_tensor * a,
  4676. struct ggml_tensor * b,
  4677. size_t nb1,
  4678. size_t nb2,
  4679. size_t nb3,
  4680. size_t offset,
  4681. bool inplace) {
  4682. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4683. bool is_node = false;
  4684. if (a->grad || b->grad) {
  4685. is_node = true;
  4686. }
  4687. // make a view of the destination
  4688. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4689. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4690. ggml_set_op_params(result, params, sizeof(params));
  4691. result->op = GGML_OP_SET;
  4692. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4693. result->src[0] = a;
  4694. result->src[1] = b;
  4695. return result;
  4696. }
  4697. struct ggml_tensor * ggml_set(
  4698. struct ggml_context * ctx,
  4699. struct ggml_tensor * a,
  4700. struct ggml_tensor * b,
  4701. size_t nb1,
  4702. size_t nb2,
  4703. size_t nb3,
  4704. size_t offset) {
  4705. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4706. }
  4707. struct ggml_tensor * ggml_set_inplace(
  4708. struct ggml_context * ctx,
  4709. struct ggml_tensor * a,
  4710. struct ggml_tensor * b,
  4711. size_t nb1,
  4712. size_t nb2,
  4713. size_t nb3,
  4714. size_t offset) {
  4715. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4716. }
  4717. struct ggml_tensor * ggml_set_1d(
  4718. struct ggml_context * ctx,
  4719. struct ggml_tensor * a,
  4720. struct ggml_tensor * b,
  4721. size_t offset) {
  4722. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4723. }
  4724. struct ggml_tensor * ggml_set_1d_inplace(
  4725. struct ggml_context * ctx,
  4726. struct ggml_tensor * a,
  4727. struct ggml_tensor * b,
  4728. size_t offset) {
  4729. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4730. }
  4731. struct ggml_tensor * ggml_set_2d(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a,
  4734. struct ggml_tensor * b,
  4735. size_t nb1,
  4736. size_t offset) {
  4737. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4738. }
  4739. struct ggml_tensor * ggml_set_2d_inplace(
  4740. struct ggml_context * ctx,
  4741. struct ggml_tensor * a,
  4742. struct ggml_tensor * b,
  4743. size_t nb1,
  4744. size_t offset) {
  4745. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4746. }
  4747. // ggml_cpy
  4748. static struct ggml_tensor * ggml_cpy_impl(
  4749. struct ggml_context * ctx,
  4750. struct ggml_tensor * a,
  4751. struct ggml_tensor * b) {
  4752. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4753. bool is_node = false;
  4754. if (a->grad || b->grad) {
  4755. // inplace is false and either one have a grad
  4756. is_node = true;
  4757. }
  4758. // make a view of the destination
  4759. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4760. if (strlen(b->name) > 0) {
  4761. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4762. } else {
  4763. ggml_format_name(result, "%s (copy)", a->name);
  4764. }
  4765. result->op = GGML_OP_CPY;
  4766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4767. result->src[0] = a;
  4768. result->src[1] = b;
  4769. return result;
  4770. }
  4771. struct ggml_tensor * ggml_cpy(
  4772. struct ggml_context * ctx,
  4773. struct ggml_tensor * a,
  4774. struct ggml_tensor * b) {
  4775. return ggml_cpy_impl(ctx, a, b);
  4776. }
  4777. struct ggml_tensor * ggml_cast(
  4778. struct ggml_context * ctx,
  4779. struct ggml_tensor * a,
  4780. enum ggml_type type) {
  4781. bool is_node = false;
  4782. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4783. ggml_format_name(result, "%s (copy)", a->name);
  4784. result->op = GGML_OP_CPY;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src[0] = a;
  4787. result->src[1] = result;
  4788. return result;
  4789. }
  4790. // ggml_cont
  4791. static struct ggml_tensor * ggml_cont_impl(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a) {
  4794. bool is_node = false;
  4795. if (a->grad) {
  4796. is_node = true;
  4797. }
  4798. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4799. ggml_format_name(result, "%s (cont)", a->name);
  4800. result->op = GGML_OP_CONT;
  4801. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4802. result->src[0] = a;
  4803. return result;
  4804. }
  4805. struct ggml_tensor * ggml_cont(
  4806. struct ggml_context * ctx,
  4807. struct ggml_tensor * a) {
  4808. return ggml_cont_impl(ctx, a);
  4809. }
  4810. // make contiguous, with new shape
  4811. GGML_API struct ggml_tensor * ggml_cont_1d(
  4812. struct ggml_context * ctx,
  4813. struct ggml_tensor * a,
  4814. int64_t ne0) {
  4815. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4816. }
  4817. GGML_API struct ggml_tensor * ggml_cont_2d(
  4818. struct ggml_context * ctx,
  4819. struct ggml_tensor * a,
  4820. int64_t ne0,
  4821. int64_t ne1) {
  4822. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4823. }
  4824. GGML_API struct ggml_tensor * ggml_cont_3d(
  4825. struct ggml_context * ctx,
  4826. struct ggml_tensor * a,
  4827. int64_t ne0,
  4828. int64_t ne1,
  4829. int64_t ne2) {
  4830. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4831. }
  4832. struct ggml_tensor * ggml_cont_4d(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. int64_t ne0,
  4836. int64_t ne1,
  4837. int64_t ne2,
  4838. int64_t ne3) {
  4839. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4840. bool is_node = false;
  4841. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4842. ggml_format_name(result, "%s (cont)", a->name);
  4843. result->op = GGML_OP_CONT;
  4844. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4845. result->src[0] = a;
  4846. return result;
  4847. }
  4848. // ggml_reshape
  4849. struct ggml_tensor * ggml_reshape(
  4850. struct ggml_context * ctx,
  4851. struct ggml_tensor * a,
  4852. struct ggml_tensor * b) {
  4853. GGML_ASSERT(ggml_is_contiguous(a));
  4854. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4855. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4856. bool is_node = false;
  4857. if (a->grad) {
  4858. is_node = true;
  4859. }
  4860. if (b->grad) {
  4861. // gradient propagation is not supported
  4862. //GGML_ABORT("fatal error");
  4863. }
  4864. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4865. ggml_format_name(result, "%s (reshaped)", a->name);
  4866. result->op = GGML_OP_RESHAPE;
  4867. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4868. result->src[0] = a;
  4869. return result;
  4870. }
  4871. struct ggml_tensor * ggml_reshape_1d(
  4872. struct ggml_context * ctx,
  4873. struct ggml_tensor * a,
  4874. int64_t ne0) {
  4875. GGML_ASSERT(ggml_is_contiguous(a));
  4876. GGML_ASSERT(ggml_nelements(a) == ne0);
  4877. bool is_node = false;
  4878. if (a->grad) {
  4879. is_node = true;
  4880. }
  4881. const int64_t ne[1] = { ne0 };
  4882. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4883. ggml_format_name(result, "%s (reshaped)", a->name);
  4884. result->op = GGML_OP_RESHAPE;
  4885. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4886. result->src[0] = a;
  4887. return result;
  4888. }
  4889. struct ggml_tensor * ggml_reshape_2d(
  4890. struct ggml_context * ctx,
  4891. struct ggml_tensor * a,
  4892. int64_t ne0,
  4893. int64_t ne1) {
  4894. GGML_ASSERT(ggml_is_contiguous(a));
  4895. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4896. bool is_node = false;
  4897. if (a->grad) {
  4898. is_node = true;
  4899. }
  4900. const int64_t ne[2] = { ne0, ne1 };
  4901. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4902. ggml_format_name(result, "%s (reshaped)", a->name);
  4903. result->op = GGML_OP_RESHAPE;
  4904. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4905. result->src[0] = a;
  4906. return result;
  4907. }
  4908. struct ggml_tensor * ggml_reshape_3d(
  4909. struct ggml_context * ctx,
  4910. struct ggml_tensor * a,
  4911. int64_t ne0,
  4912. int64_t ne1,
  4913. int64_t ne2) {
  4914. GGML_ASSERT(ggml_is_contiguous(a));
  4915. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4916. bool is_node = false;
  4917. if (a->grad) {
  4918. is_node = true;
  4919. }
  4920. const int64_t ne[3] = { ne0, ne1, ne2 };
  4921. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4922. ggml_format_name(result, "%s (reshaped)", a->name);
  4923. result->op = GGML_OP_RESHAPE;
  4924. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4925. result->src[0] = a;
  4926. return result;
  4927. }
  4928. struct ggml_tensor * ggml_reshape_4d(
  4929. struct ggml_context * ctx,
  4930. struct ggml_tensor * a,
  4931. int64_t ne0,
  4932. int64_t ne1,
  4933. int64_t ne2,
  4934. int64_t ne3) {
  4935. GGML_ASSERT(ggml_is_contiguous(a));
  4936. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4937. bool is_node = false;
  4938. if (a->grad) {
  4939. is_node = true;
  4940. }
  4941. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4942. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4943. ggml_format_name(result, "%s (reshaped)", a->name);
  4944. result->op = GGML_OP_RESHAPE;
  4945. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4946. result->src[0] = a;
  4947. return result;
  4948. }
  4949. static struct ggml_tensor * ggml_view_impl(
  4950. struct ggml_context * ctx,
  4951. struct ggml_tensor * a,
  4952. int n_dims,
  4953. const int64_t * ne,
  4954. size_t offset) {
  4955. bool is_node = false;
  4956. if (a->grad) {
  4957. is_node = true;
  4958. }
  4959. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4960. ggml_format_name(result, "%s (view)", a->name);
  4961. ggml_set_op_params(result, &offset, sizeof(offset));
  4962. result->op = GGML_OP_VIEW;
  4963. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4964. result->src[0] = a;
  4965. return result;
  4966. }
  4967. // ggml_view_1d
  4968. struct ggml_tensor * ggml_view_1d(
  4969. struct ggml_context * ctx,
  4970. struct ggml_tensor * a,
  4971. int64_t ne0,
  4972. size_t offset) {
  4973. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4974. return result;
  4975. }
  4976. // ggml_view_2d
  4977. struct ggml_tensor * ggml_view_2d(
  4978. struct ggml_context * ctx,
  4979. struct ggml_tensor * a,
  4980. int64_t ne0,
  4981. int64_t ne1,
  4982. size_t nb1,
  4983. size_t offset) {
  4984. const int64_t ne[2] = { ne0, ne1 };
  4985. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4986. result->nb[1] = nb1;
  4987. result->nb[2] = result->nb[1]*ne1;
  4988. result->nb[3] = result->nb[2];
  4989. return result;
  4990. }
  4991. // ggml_view_3d
  4992. struct ggml_tensor * ggml_view_3d(
  4993. struct ggml_context * ctx,
  4994. struct ggml_tensor * a,
  4995. int64_t ne0,
  4996. int64_t ne1,
  4997. int64_t ne2,
  4998. size_t nb1,
  4999. size_t nb2,
  5000. size_t offset) {
  5001. const int64_t ne[3] = { ne0, ne1, ne2 };
  5002. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  5003. result->nb[1] = nb1;
  5004. result->nb[2] = nb2;
  5005. result->nb[3] = result->nb[2]*ne2;
  5006. return result;
  5007. }
  5008. // ggml_view_4d
  5009. struct ggml_tensor * ggml_view_4d(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. int64_t ne0,
  5013. int64_t ne1,
  5014. int64_t ne2,
  5015. int64_t ne3,
  5016. size_t nb1,
  5017. size_t nb2,
  5018. size_t nb3,
  5019. size_t offset) {
  5020. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5021. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  5022. result->nb[1] = nb1;
  5023. result->nb[2] = nb2;
  5024. result->nb[3] = nb3;
  5025. return result;
  5026. }
  5027. // ggml_permute
  5028. struct ggml_tensor * ggml_permute(
  5029. struct ggml_context * ctx,
  5030. struct ggml_tensor * a,
  5031. int axis0,
  5032. int axis1,
  5033. int axis2,
  5034. int axis3) {
  5035. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5036. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5037. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5038. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5039. GGML_ASSERT(axis0 != axis1);
  5040. GGML_ASSERT(axis0 != axis2);
  5041. GGML_ASSERT(axis0 != axis3);
  5042. GGML_ASSERT(axis1 != axis2);
  5043. GGML_ASSERT(axis1 != axis3);
  5044. GGML_ASSERT(axis2 != axis3);
  5045. bool is_node = false;
  5046. if (a->grad) {
  5047. is_node = true;
  5048. }
  5049. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5050. ggml_format_name(result, "%s (permuted)", a->name);
  5051. int ne[GGML_MAX_DIMS];
  5052. int nb[GGML_MAX_DIMS];
  5053. ne[axis0] = a->ne[0];
  5054. ne[axis1] = a->ne[1];
  5055. ne[axis2] = a->ne[2];
  5056. ne[axis3] = a->ne[3];
  5057. nb[axis0] = a->nb[0];
  5058. nb[axis1] = a->nb[1];
  5059. nb[axis2] = a->nb[2];
  5060. nb[axis3] = a->nb[3];
  5061. result->ne[0] = ne[0];
  5062. result->ne[1] = ne[1];
  5063. result->ne[2] = ne[2];
  5064. result->ne[3] = ne[3];
  5065. result->nb[0] = nb[0];
  5066. result->nb[1] = nb[1];
  5067. result->nb[2] = nb[2];
  5068. result->nb[3] = nb[3];
  5069. result->op = GGML_OP_PERMUTE;
  5070. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5071. result->src[0] = a;
  5072. int32_t params[] = { axis0, axis1, axis2, axis3 };
  5073. ggml_set_op_params(result, params, sizeof(params));
  5074. return result;
  5075. }
  5076. // ggml_transpose
  5077. struct ggml_tensor * ggml_transpose(
  5078. struct ggml_context * ctx,
  5079. struct ggml_tensor * a) {
  5080. bool is_node = false;
  5081. if (a->grad) {
  5082. is_node = true;
  5083. }
  5084. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5085. ggml_format_name(result, "%s (transposed)", a->name);
  5086. result->ne[0] = a->ne[1];
  5087. result->ne[1] = a->ne[0];
  5088. result->nb[0] = a->nb[1];
  5089. result->nb[1] = a->nb[0];
  5090. result->op = GGML_OP_TRANSPOSE;
  5091. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5092. result->src[0] = a;
  5093. return result;
  5094. }
  5095. // ggml_get_rows
  5096. struct ggml_tensor * ggml_get_rows(
  5097. struct ggml_context * ctx,
  5098. struct ggml_tensor * a,
  5099. struct ggml_tensor * b) {
  5100. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5101. GGML_ASSERT(b->ne[3] == 1);
  5102. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5103. bool is_node = false;
  5104. if (a->grad || b->grad) {
  5105. is_node = true;
  5106. }
  5107. // TODO: implement non F32 return
  5108. enum ggml_type type = GGML_TYPE_F32;
  5109. if (a->type == GGML_TYPE_I32) {
  5110. type = a->type;
  5111. }
  5112. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  5113. result->op = GGML_OP_GET_ROWS;
  5114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5115. result->src[0] = a;
  5116. result->src[1] = b;
  5117. return result;
  5118. }
  5119. // ggml_get_rows_back
  5120. struct ggml_tensor * ggml_get_rows_back(
  5121. struct ggml_context * ctx,
  5122. struct ggml_tensor * a,
  5123. struct ggml_tensor * b,
  5124. struct ggml_tensor * c) {
  5125. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5126. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5127. bool is_node = false;
  5128. if (a->grad || b->grad) {
  5129. is_node = true;
  5130. }
  5131. // TODO: implement non F32 return
  5132. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5133. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5134. result->op = GGML_OP_GET_ROWS_BACK;
  5135. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5136. result->src[0] = a;
  5137. result->src[1] = b;
  5138. return result;
  5139. }
  5140. // ggml_diag
  5141. struct ggml_tensor * ggml_diag(
  5142. struct ggml_context * ctx,
  5143. struct ggml_tensor * a) {
  5144. GGML_ASSERT(a->ne[1] == 1);
  5145. bool is_node = false;
  5146. if (a->grad) {
  5147. is_node = true;
  5148. }
  5149. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5150. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5151. result->op = GGML_OP_DIAG;
  5152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5153. result->src[0] = a;
  5154. return result;
  5155. }
  5156. // ggml_diag_mask_inf
  5157. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5158. struct ggml_context * ctx,
  5159. struct ggml_tensor * a,
  5160. int n_past,
  5161. bool inplace) {
  5162. bool is_node = false;
  5163. if (a->grad) {
  5164. is_node = true;
  5165. }
  5166. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5167. int32_t params[] = { n_past };
  5168. ggml_set_op_params(result, params, sizeof(params));
  5169. result->op = GGML_OP_DIAG_MASK_INF;
  5170. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5171. result->src[0] = a;
  5172. return result;
  5173. }
  5174. struct ggml_tensor * ggml_diag_mask_inf(
  5175. struct ggml_context * ctx,
  5176. struct ggml_tensor * a,
  5177. int n_past) {
  5178. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5179. }
  5180. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5181. struct ggml_context * ctx,
  5182. struct ggml_tensor * a,
  5183. int n_past) {
  5184. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5185. }
  5186. // ggml_diag_mask_zero
  5187. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5188. struct ggml_context * ctx,
  5189. struct ggml_tensor * a,
  5190. int n_past,
  5191. bool inplace) {
  5192. bool is_node = false;
  5193. if (a->grad) {
  5194. is_node = true;
  5195. }
  5196. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5197. int32_t params[] = { n_past };
  5198. ggml_set_op_params(result, params, sizeof(params));
  5199. result->op = GGML_OP_DIAG_MASK_ZERO;
  5200. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5201. result->src[0] = a;
  5202. return result;
  5203. }
  5204. struct ggml_tensor * ggml_diag_mask_zero(
  5205. struct ggml_context * ctx,
  5206. struct ggml_tensor * a,
  5207. int n_past) {
  5208. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5209. }
  5210. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5211. struct ggml_context * ctx,
  5212. struct ggml_tensor * a,
  5213. int n_past) {
  5214. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5215. }
  5216. // ggml_soft_max
  5217. static struct ggml_tensor * ggml_soft_max_impl(
  5218. struct ggml_context * ctx,
  5219. struct ggml_tensor * a,
  5220. struct ggml_tensor * mask,
  5221. float scale,
  5222. float max_bias,
  5223. bool inplace) {
  5224. GGML_ASSERT(ggml_is_contiguous(a));
  5225. if (mask) {
  5226. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5227. GGML_ASSERT(ggml_is_contiguous(mask));
  5228. GGML_ASSERT(ggml_is_matrix(mask));
  5229. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5230. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5231. }
  5232. if (max_bias > 0.0f) {
  5233. GGML_ASSERT(mask);
  5234. }
  5235. bool is_node = false;
  5236. if (a->grad) {
  5237. is_node = true;
  5238. }
  5239. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5240. float params[] = { scale, max_bias };
  5241. ggml_set_op_params(result, params, sizeof(params));
  5242. result->op = GGML_OP_SOFT_MAX;
  5243. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5244. result->src[0] = a;
  5245. result->src[1] = mask;
  5246. return result;
  5247. }
  5248. struct ggml_tensor * ggml_soft_max(
  5249. struct ggml_context * ctx,
  5250. struct ggml_tensor * a) {
  5251. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5252. }
  5253. struct ggml_tensor * ggml_soft_max_inplace(
  5254. struct ggml_context * ctx,
  5255. struct ggml_tensor * a) {
  5256. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5257. }
  5258. struct ggml_tensor * ggml_soft_max_ext(
  5259. struct ggml_context * ctx,
  5260. struct ggml_tensor * a,
  5261. struct ggml_tensor * mask,
  5262. float scale,
  5263. float max_bias) {
  5264. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5265. }
  5266. // ggml_soft_max_back
  5267. static struct ggml_tensor * ggml_soft_max_back_impl(
  5268. struct ggml_context * ctx,
  5269. struct ggml_tensor * a,
  5270. struct ggml_tensor * b,
  5271. bool inplace) {
  5272. bool is_node = false;
  5273. if (a->grad || b->grad) {
  5274. is_node = true; // TODO : implement backward pass
  5275. }
  5276. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5277. result->op = GGML_OP_SOFT_MAX_BACK;
  5278. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5279. result->src[0] = a;
  5280. result->src[1] = b;
  5281. return result;
  5282. }
  5283. struct ggml_tensor * ggml_soft_max_back(
  5284. struct ggml_context * ctx,
  5285. struct ggml_tensor * a,
  5286. struct ggml_tensor * b) {
  5287. return ggml_soft_max_back_impl(ctx, a, b, false);
  5288. }
  5289. struct ggml_tensor * ggml_soft_max_back_inplace(
  5290. struct ggml_context * ctx,
  5291. struct ggml_tensor * a,
  5292. struct ggml_tensor * b) {
  5293. return ggml_soft_max_back_impl(ctx, a, b, true);
  5294. }
  5295. // ggml_rope
  5296. static struct ggml_tensor * ggml_rope_impl(
  5297. struct ggml_context * ctx,
  5298. struct ggml_tensor * a,
  5299. struct ggml_tensor * b,
  5300. struct ggml_tensor * c,
  5301. int n_dims,
  5302. int mode,
  5303. int n_ctx_orig,
  5304. float freq_base,
  5305. float freq_scale,
  5306. float ext_factor,
  5307. float attn_factor,
  5308. float beta_fast,
  5309. float beta_slow,
  5310. bool inplace) {
  5311. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5312. GGML_ASSERT(ggml_is_vector(b));
  5313. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5314. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5315. if (c) {
  5316. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5317. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5318. }
  5319. bool is_node = false;
  5320. if (a->grad) {
  5321. is_node = true;
  5322. }
  5323. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5324. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5325. memcpy(params + 5, &freq_base, sizeof(float));
  5326. memcpy(params + 6, &freq_scale, sizeof(float));
  5327. memcpy(params + 7, &ext_factor, sizeof(float));
  5328. memcpy(params + 8, &attn_factor, sizeof(float));
  5329. memcpy(params + 9, &beta_fast, sizeof(float));
  5330. memcpy(params + 10, &beta_slow, sizeof(float));
  5331. ggml_set_op_params(result, params, sizeof(params));
  5332. result->op = GGML_OP_ROPE;
  5333. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5334. result->src[0] = a;
  5335. result->src[1] = b;
  5336. result->src[2] = c;
  5337. return result;
  5338. }
  5339. struct ggml_tensor * ggml_rope(
  5340. struct ggml_context * ctx,
  5341. struct ggml_tensor * a,
  5342. struct ggml_tensor * b,
  5343. int n_dims,
  5344. int mode) {
  5345. return ggml_rope_impl(
  5346. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5347. );
  5348. }
  5349. struct ggml_tensor * ggml_rope_inplace(
  5350. struct ggml_context * ctx,
  5351. struct ggml_tensor * a,
  5352. struct ggml_tensor * b,
  5353. int n_dims,
  5354. int mode) {
  5355. return ggml_rope_impl(
  5356. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5357. );
  5358. }
  5359. struct ggml_tensor * ggml_rope_ext(
  5360. struct ggml_context * ctx,
  5361. struct ggml_tensor * a,
  5362. struct ggml_tensor * b,
  5363. struct ggml_tensor * c,
  5364. int n_dims,
  5365. int mode,
  5366. int n_ctx_orig,
  5367. float freq_base,
  5368. float freq_scale,
  5369. float ext_factor,
  5370. float attn_factor,
  5371. float beta_fast,
  5372. float beta_slow) {
  5373. return ggml_rope_impl(
  5374. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5375. ext_factor, attn_factor, beta_fast, beta_slow, false
  5376. );
  5377. }
  5378. struct ggml_tensor * ggml_rope_ext_inplace(
  5379. struct ggml_context * ctx,
  5380. struct ggml_tensor * a,
  5381. struct ggml_tensor * b,
  5382. struct ggml_tensor * c,
  5383. int n_dims,
  5384. int mode,
  5385. int n_ctx_orig,
  5386. float freq_base,
  5387. float freq_scale,
  5388. float ext_factor,
  5389. float attn_factor,
  5390. float beta_fast,
  5391. float beta_slow) {
  5392. return ggml_rope_impl(
  5393. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5394. ext_factor, attn_factor, beta_fast, beta_slow, true
  5395. );
  5396. }
  5397. struct ggml_tensor * ggml_rope_custom(
  5398. struct ggml_context * ctx,
  5399. struct ggml_tensor * a,
  5400. struct ggml_tensor * b,
  5401. int n_dims,
  5402. int mode,
  5403. int n_ctx_orig,
  5404. float freq_base,
  5405. float freq_scale,
  5406. float ext_factor,
  5407. float attn_factor,
  5408. float beta_fast,
  5409. float beta_slow) {
  5410. return ggml_rope_impl(
  5411. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5412. ext_factor, attn_factor, beta_fast, beta_slow, false
  5413. );
  5414. }
  5415. struct ggml_tensor * ggml_rope_custom_inplace(
  5416. struct ggml_context * ctx,
  5417. struct ggml_tensor * a,
  5418. struct ggml_tensor * b,
  5419. int n_dims,
  5420. int mode,
  5421. int n_ctx_orig,
  5422. float freq_base,
  5423. float freq_scale,
  5424. float ext_factor,
  5425. float attn_factor,
  5426. float beta_fast,
  5427. float beta_slow) {
  5428. return ggml_rope_impl(
  5429. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5430. ext_factor, attn_factor, beta_fast, beta_slow, true
  5431. );
  5432. }
  5433. // ggml_rope_back
  5434. struct ggml_tensor * ggml_rope_back(
  5435. struct ggml_context * ctx,
  5436. struct ggml_tensor * a,
  5437. struct ggml_tensor * b,
  5438. struct ggml_tensor * c,
  5439. int n_dims,
  5440. int mode,
  5441. int n_ctx_orig,
  5442. float freq_base,
  5443. float freq_scale,
  5444. float ext_factor,
  5445. float attn_factor,
  5446. float beta_fast,
  5447. float beta_slow) {
  5448. GGML_ASSERT(ggml_is_vector(b));
  5449. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5450. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5451. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5452. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5453. bool is_node = false;
  5454. if (a->grad) {
  5455. is_node = false; // TODO: implement backward
  5456. }
  5457. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5458. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5459. memcpy(params + 5, &freq_base, sizeof(float));
  5460. memcpy(params + 6, &freq_scale, sizeof(float));
  5461. memcpy(params + 7, &ext_factor, sizeof(float));
  5462. memcpy(params + 8, &attn_factor, sizeof(float));
  5463. memcpy(params + 9, &beta_fast, sizeof(float));
  5464. memcpy(params + 10, &beta_slow, sizeof(float));
  5465. ggml_set_op_params(result, params, sizeof(params));
  5466. result->op = GGML_OP_ROPE_BACK;
  5467. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5468. result->src[0] = a;
  5469. result->src[1] = b;
  5470. return result;
  5471. }
  5472. // ggml_clamp
  5473. struct ggml_tensor * ggml_clamp(
  5474. struct ggml_context * ctx,
  5475. struct ggml_tensor * a,
  5476. float min,
  5477. float max) {
  5478. bool is_node = false;
  5479. if (a->grad) {
  5480. GGML_ABORT("fatal error"); // TODO: implement backward
  5481. is_node = true;
  5482. }
  5483. // TODO: when implement backward, fix this:
  5484. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5485. float params[] = { min, max };
  5486. ggml_set_op_params(result, params, sizeof(params));
  5487. result->op = GGML_OP_CLAMP;
  5488. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5489. result->src[0] = a;
  5490. return result;
  5491. }
  5492. // ggml_conv_1d
  5493. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5494. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5495. }
  5496. GGML_API struct ggml_tensor * ggml_conv_1d(
  5497. struct ggml_context * ctx,
  5498. struct ggml_tensor * a,
  5499. struct ggml_tensor * b,
  5500. int s0,
  5501. int p0,
  5502. int d0) {
  5503. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5504. struct ggml_tensor * result =
  5505. ggml_mul_mat(ctx,
  5506. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5507. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5508. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5509. return result;
  5510. }
  5511. // ggml_conv_1d_ph
  5512. struct ggml_tensor* ggml_conv_1d_ph(
  5513. struct ggml_context * ctx,
  5514. struct ggml_tensor * a,
  5515. struct ggml_tensor * b,
  5516. int s,
  5517. int d) {
  5518. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5519. }
  5520. // ggml_conv_transpose_1d
  5521. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5522. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5523. }
  5524. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5525. struct ggml_context * ctx,
  5526. struct ggml_tensor * a,
  5527. struct ggml_tensor * b,
  5528. int s0,
  5529. int p0,
  5530. int d0) {
  5531. GGML_ASSERT(ggml_is_matrix(b));
  5532. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5533. GGML_ASSERT(a->ne[3] == 1);
  5534. GGML_ASSERT(p0 == 0);
  5535. GGML_ASSERT(d0 == 1);
  5536. bool is_node = false;
  5537. if (a->grad || b->grad) {
  5538. GGML_ABORT("fatal error"); // TODO: implement backward
  5539. is_node = true;
  5540. }
  5541. const int64_t ne[4] = {
  5542. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5543. a->ne[1], b->ne[2], 1,
  5544. };
  5545. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5546. int32_t params[] = { s0, p0, d0 };
  5547. ggml_set_op_params(result, params, sizeof(params));
  5548. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5549. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5550. result->src[0] = a;
  5551. result->src[1] = b;
  5552. return result;
  5553. }
  5554. // ggml_conv_depthwise
  5555. struct ggml_tensor * ggml_conv_depthwise_2d(
  5556. struct ggml_context * ctx,
  5557. struct ggml_tensor * a,
  5558. struct ggml_tensor * b,
  5559. int s0,
  5560. int s1,
  5561. int p0,
  5562. int p1,
  5563. int d0,
  5564. int d1) {
  5565. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5566. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5567. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5568. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5569. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5570. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5571. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5572. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5573. return result;
  5574. }
  5575. // ggml_conv_2d
  5576. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5577. // a: [OC,IC, KH, KW]
  5578. // b: [N, IC, IH, IW]
  5579. // result: [N, OH, OW, IC*KH*KW]
  5580. struct ggml_tensor * ggml_im2col(
  5581. struct ggml_context * ctx,
  5582. struct ggml_tensor * a,
  5583. struct ggml_tensor * b,
  5584. int s0,
  5585. int s1,
  5586. int p0,
  5587. int p1,
  5588. int d0,
  5589. int d1,
  5590. bool is_2D,
  5591. enum ggml_type dst_type) {
  5592. if(is_2D) {
  5593. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5594. } else {
  5595. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5596. }
  5597. bool is_node = false;
  5598. if (a->grad || b->grad) {
  5599. GGML_ABORT("fatal error"); // TODO: implement backward
  5600. is_node = true;
  5601. }
  5602. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5603. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5604. const int64_t ne[4] = {
  5605. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5606. OW,
  5607. is_2D ? OH : b->ne[2],
  5608. is_2D ? b->ne[3] : 1,
  5609. };
  5610. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5611. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5612. ggml_set_op_params(result, params, sizeof(params));
  5613. result->op = GGML_OP_IM2COL;
  5614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5615. result->src[0] = a;
  5616. result->src[1] = b;
  5617. return result;
  5618. }
  5619. // a: [OC,IC, KH, KW]
  5620. // b: [N, IC, IH, IW]
  5621. // result: [N, OC, OH, OW]
  5622. struct ggml_tensor * ggml_conv_2d(
  5623. struct ggml_context * ctx,
  5624. struct ggml_tensor * a,
  5625. struct ggml_tensor * b,
  5626. int s0,
  5627. int s1,
  5628. int p0,
  5629. int p1,
  5630. int d0,
  5631. int d1) {
  5632. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5633. struct ggml_tensor * result =
  5634. ggml_mul_mat(ctx,
  5635. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5636. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5637. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5638. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5639. return result;
  5640. }
  5641. // ggml_conv_2d_sk_p0
  5642. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5643. struct ggml_context * ctx,
  5644. struct ggml_tensor * a,
  5645. struct ggml_tensor * b) {
  5646. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5647. }
  5648. // ggml_conv_2d_s1_ph
  5649. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5650. struct ggml_context * ctx,
  5651. struct ggml_tensor * a,
  5652. struct ggml_tensor * b) {
  5653. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5654. }
  5655. // ggml_conv_transpose_2d_p0
  5656. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5657. return (ins - 1) * s - 2 * p + ks;
  5658. }
  5659. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5660. struct ggml_context * ctx,
  5661. struct ggml_tensor * a,
  5662. struct ggml_tensor * b,
  5663. int stride) {
  5664. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5665. bool is_node = false;
  5666. if (a->grad || b->grad) {
  5667. GGML_ABORT("fatal error"); // TODO: implement backward
  5668. is_node = true;
  5669. }
  5670. const int64_t ne[4] = {
  5671. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5672. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5673. a->ne[2], b->ne[3],
  5674. };
  5675. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5676. ggml_set_op_params_i32(result, 0, stride);
  5677. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5678. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5679. result->src[0] = a;
  5680. result->src[1] = b;
  5681. return result;
  5682. }
  5683. // ggml_pool_*
  5684. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5685. return (ins + 2 * p - ks) / s + 1;
  5686. }
  5687. // ggml_pool_1d
  5688. struct ggml_tensor * ggml_pool_1d(
  5689. struct ggml_context * ctx,
  5690. struct ggml_tensor * a,
  5691. enum ggml_op_pool op,
  5692. int k0,
  5693. int s0,
  5694. int p0) {
  5695. bool is_node = false;
  5696. if (a->grad) {
  5697. GGML_ABORT("fatal error"); // TODO: implement backward
  5698. is_node = true;
  5699. }
  5700. const int64_t ne[4] = {
  5701. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5702. a->ne[1],
  5703. a->ne[2],
  5704. a->ne[3],
  5705. };
  5706. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5707. int32_t params[] = { op, k0, s0, p0 };
  5708. ggml_set_op_params(result, params, sizeof(params));
  5709. result->op = GGML_OP_POOL_1D;
  5710. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5711. result->src[0] = a;
  5712. return result;
  5713. }
  5714. // ggml_pool_2d
  5715. struct ggml_tensor * ggml_pool_2d(
  5716. struct ggml_context * ctx,
  5717. struct ggml_tensor * a,
  5718. enum ggml_op_pool op,
  5719. int k0,
  5720. int k1,
  5721. int s0,
  5722. int s1,
  5723. float p0,
  5724. float p1) {
  5725. bool is_node = false;
  5726. if (a->grad) {
  5727. GGML_ABORT("fatal error"); // TODO: implement backward
  5728. is_node = true;
  5729. }
  5730. struct ggml_tensor * result;
  5731. const int64_t ne[3] = {
  5732. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5733. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5734. a->ne[2],
  5735. };
  5736. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5737. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5738. ggml_set_op_params(result, params, sizeof(params));
  5739. result->op = GGML_OP_POOL_2D;
  5740. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5741. result->src[0] = a;
  5742. return result;
  5743. }
  5744. // ggml_upscale
  5745. static struct ggml_tensor * ggml_upscale_impl(
  5746. struct ggml_context * ctx,
  5747. struct ggml_tensor * a,
  5748. int ne0,
  5749. int ne1,
  5750. int ne2,
  5751. int ne3) {
  5752. bool is_node = false;
  5753. if (a->grad) {
  5754. GGML_ABORT("fatal error"); // TODO: implement backward
  5755. is_node = true;
  5756. }
  5757. GGML_ASSERT(a->ne[0] <= ne0);
  5758. GGML_ASSERT(a->ne[1] <= ne1);
  5759. GGML_ASSERT(a->ne[2] <= ne2);
  5760. GGML_ASSERT(a->ne[3] <= ne3);
  5761. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5762. ne0,
  5763. ne1,
  5764. ne2,
  5765. ne3
  5766. );
  5767. result->op = GGML_OP_UPSCALE;
  5768. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5769. result->src[0] = a;
  5770. return result;
  5771. }
  5772. struct ggml_tensor * ggml_upscale(
  5773. struct ggml_context * ctx,
  5774. struct ggml_tensor * a,
  5775. int scale_factor) {
  5776. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5777. }
  5778. struct ggml_tensor * ggml_upscale_ext(
  5779. struct ggml_context * ctx,
  5780. struct ggml_tensor * a,
  5781. int ne0,
  5782. int ne1,
  5783. int ne2,
  5784. int ne3) {
  5785. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5786. }
  5787. // ggml_pad
  5788. struct ggml_tensor * ggml_pad(
  5789. struct ggml_context * ctx,
  5790. struct ggml_tensor * a,
  5791. int p0, int p1, int p2, int p3) {
  5792. bool is_node = false;
  5793. if (a->grad) {
  5794. GGML_ABORT("fatal error"); // TODO: implement backward
  5795. is_node = true;
  5796. }
  5797. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5798. a->ne[0] + p0,
  5799. a->ne[1] + p1,
  5800. a->ne[2] + p2,
  5801. a->ne[3] + p3);
  5802. result->op = GGML_OP_PAD;
  5803. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5804. result->src[0] = a;
  5805. return result;
  5806. }
  5807. // ggml_arange
  5808. struct ggml_tensor * ggml_arange(
  5809. struct ggml_context * ctx,
  5810. float start,
  5811. float stop,
  5812. float step) {
  5813. GGML_ASSERT(stop > start);
  5814. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5815. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5816. result->op = GGML_OP_ARANGE;
  5817. ggml_set_op_params_f32(result, 0, start);
  5818. ggml_set_op_params_f32(result, 1, stop);
  5819. ggml_set_op_params_f32(result, 2, step);
  5820. return result;
  5821. }
  5822. // ggml_timestep_embedding
  5823. struct ggml_tensor * ggml_timestep_embedding(
  5824. struct ggml_context * ctx,
  5825. struct ggml_tensor * timesteps,
  5826. int dim,
  5827. int max_period) {
  5828. bool is_node = false;
  5829. if (timesteps->grad) {
  5830. GGML_ABORT("fatal error"); // TODO: implement backward
  5831. is_node = true;
  5832. }
  5833. int actual_dim = dim;
  5834. if (dim % 2 != 0) {
  5835. actual_dim = dim + 1;
  5836. }
  5837. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5838. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5839. ggml_set_op_params_i32(result, 0, dim);
  5840. ggml_set_op_params_i32(result, 1, max_period);
  5841. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5842. result->src[0] = timesteps;
  5843. return result;
  5844. }
  5845. // ggml_argsort
  5846. struct ggml_tensor * ggml_argsort(
  5847. struct ggml_context * ctx,
  5848. struct ggml_tensor * a,
  5849. enum ggml_sort_order order) {
  5850. bool is_node = false;
  5851. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5852. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5853. result->op = GGML_OP_ARGSORT;
  5854. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5855. result->src[0] = a;
  5856. return result;
  5857. }
  5858. // ggml_top_k
  5859. struct ggml_tensor * ggml_top_k(
  5860. struct ggml_context * ctx,
  5861. struct ggml_tensor * a,
  5862. int k) {
  5863. GGML_ASSERT(a->ne[0] >= k);
  5864. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5865. result = ggml_view_4d(ctx, result,
  5866. k, result->ne[1], result->ne[2], result->ne[3],
  5867. result->nb[1], result->nb[2], result->nb[3],
  5868. 0);
  5869. return result;
  5870. }
  5871. // ggml_flash_attn_ext
  5872. struct ggml_tensor * ggml_flash_attn_ext(
  5873. struct ggml_context * ctx,
  5874. struct ggml_tensor * q,
  5875. struct ggml_tensor * k,
  5876. struct ggml_tensor * v,
  5877. struct ggml_tensor * mask,
  5878. float scale,
  5879. float max_bias) {
  5880. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5881. // TODO: check if vT can be multiplied by (k*qT)
  5882. if (mask) {
  5883. GGML_ASSERT(ggml_is_contiguous(mask));
  5884. GGML_ASSERT(mask->ne[2] == 1);
  5885. GGML_ASSERT(mask->ne[3] == 1);
  5886. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5887. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5888. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5889. }
  5890. if (max_bias > 0.0f) {
  5891. GGML_ASSERT(mask);
  5892. }
  5893. bool is_node = false;
  5894. if (q->grad || k->grad || v->grad) {
  5895. is_node = true;
  5896. }
  5897. // permute(0, 2, 1, 3)
  5898. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5899. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5900. float params[] = { scale, max_bias };
  5901. ggml_set_op_params(result, params, sizeof(params));
  5902. result->op = GGML_OP_FLASH_ATTN_EXT;
  5903. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5904. result->src[0] = q;
  5905. result->src[1] = k;
  5906. result->src[2] = v;
  5907. result->src[3] = mask;
  5908. return result;
  5909. }
  5910. void ggml_flash_attn_ext_set_prec(
  5911. struct ggml_tensor * a,
  5912. enum ggml_prec prec) {
  5913. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5914. const int32_t prec_i32 = (int32_t) prec;
  5915. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5916. }
  5917. // ggml_flash_attn_back
  5918. struct ggml_tensor * ggml_flash_attn_back(
  5919. struct ggml_context * ctx,
  5920. struct ggml_tensor * q,
  5921. struct ggml_tensor * k,
  5922. struct ggml_tensor * v,
  5923. struct ggml_tensor * d,
  5924. bool masked) {
  5925. GGML_ABORT("TODO: adapt to ggml_flash_attn_ext() changes");
  5926. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5927. // TODO: check if vT can be multiplied by (k*qT)
  5928. // d shape [D,N,ne2,ne3]
  5929. // q shape [D,N,ne2,ne3]
  5930. // k shape [D,M,kvne2,ne3]
  5931. // v shape [M,D,kvne2,ne3]
  5932. const int64_t D = q->ne[0];
  5933. const int64_t N = q->ne[1];
  5934. const int64_t M = k->ne[1];
  5935. const int64_t ne2 = q->ne[2];
  5936. const int64_t ne3 = q->ne[3];
  5937. const int64_t kvne2 = k->ne[2];
  5938. GGML_ASSERT(k->ne[0] == D);
  5939. GGML_ASSERT(v->ne[0] == M);
  5940. GGML_ASSERT(v->ne[1] == D);
  5941. GGML_ASSERT(d->ne[0] == D);
  5942. GGML_ASSERT(d->ne[1] == N);
  5943. GGML_ASSERT(k->ne[2] == kvne2);
  5944. GGML_ASSERT(k->ne[3] == ne3);
  5945. GGML_ASSERT(v->ne[2] == kvne2);
  5946. GGML_ASSERT(v->ne[3] == ne3);
  5947. GGML_ASSERT(d->ne[2] == ne2);
  5948. GGML_ASSERT(d->ne[3] == ne3);
  5949. GGML_ASSERT(ne2 % kvne2 == 0);
  5950. bool is_node = false;
  5951. if (q->grad || k->grad || v->grad) {
  5952. // when using this operation (in backwards pass) these grads are set.
  5953. // we don't want to create (big) grad of our result, so is_node is false.
  5954. is_node = false;
  5955. }
  5956. // store gradients of q, k and v as continuous tensors concatenated in result.
  5957. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5958. const int64_t elem_q = ggml_nelements(q);
  5959. const int64_t elem_k = ggml_nelements(k);
  5960. const int64_t elem_v = ggml_nelements(v);
  5961. enum ggml_type result_type = GGML_TYPE_F32;
  5962. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5963. const size_t tsize = ggml_type_size(result_type);
  5964. const size_t offs_q = 0;
  5965. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5966. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5967. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5968. const size_t nelements = (end + tsize - 1)/tsize;
  5969. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5970. int32_t masked_i = masked ? 1 : 0;
  5971. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5972. result->op = GGML_OP_FLASH_ATTN_BACK;
  5973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5974. result->src[0] = q;
  5975. result->src[1] = k;
  5976. result->src[2] = v;
  5977. result->src[3] = d;
  5978. return result;
  5979. }
  5980. // ggml_ssm_conv
  5981. struct ggml_tensor * ggml_ssm_conv(
  5982. struct ggml_context * ctx,
  5983. struct ggml_tensor * s,
  5984. struct ggml_tensor * x,
  5985. struct ggml_tensor * c,
  5986. struct ggml_tensor * sq) {
  5987. GGML_ASSERT(ggml_is_3d(s));
  5988. GGML_ASSERT(ggml_is_matrix(x));
  5989. GGML_ASSERT(ggml_is_matrix(c));
  5990. GGML_ASSERT(ggml_is_matrix(sq));
  5991. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5992. const int64_t d_conv = c->ne[0];
  5993. const int64_t d_inner = c->ne[1];
  5994. const int64_t n_tokens = x->ne[1];
  5995. const int64_t n_kv = s->ne[2];
  5996. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5997. GGML_ASSERT( s->ne[1] == d_inner);
  5998. GGML_ASSERT( x->ne[0] == d_inner);
  5999. GGML_ASSERT(sq->ne[0] == n_kv);
  6000. GGML_ASSERT(sq->ne[1] == n_tokens);
  6001. bool is_node = false;
  6002. if (s->grad || x->grad || c->grad || sq->grad) {
  6003. GGML_ABORT("fatal error"); // TODO: implement
  6004. is_node = true;
  6005. }
  6006. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  6007. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  6008. result->op = GGML_OP_SSM_CONV;
  6009. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6010. result->src[0] = s;
  6011. result->src[1] = x;
  6012. result->src[2] = c;
  6013. result->src[3] = sq;
  6014. return result;
  6015. }
  6016. // ggml_ssm_scan
  6017. struct ggml_tensor * ggml_ssm_scan(
  6018. struct ggml_context * ctx,
  6019. struct ggml_tensor * s,
  6020. struct ggml_tensor * x,
  6021. struct ggml_tensor * dt,
  6022. struct ggml_tensor * A,
  6023. struct ggml_tensor * B,
  6024. struct ggml_tensor * C,
  6025. struct ggml_tensor * sq) {
  6026. GGML_ASSERT(ggml_is_contiguous(s));
  6027. GGML_ASSERT(ggml_is_contiguous(x));
  6028. GGML_ASSERT(ggml_is_contiguous(dt));
  6029. GGML_ASSERT(ggml_is_contiguous(A));
  6030. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  6031. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  6032. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  6033. GGML_ASSERT(ggml_are_same_shape(x, dt));
  6034. {
  6035. const int64_t d_state = s->ne[0];
  6036. const int64_t d_inner = s->ne[1];
  6037. const int64_t n_tokens = x->ne[1];
  6038. GGML_ASSERT(x->ne[0] == d_inner);
  6039. GGML_ASSERT(A->ne[0] == d_state);
  6040. GGML_ASSERT(A->ne[1] == d_inner);
  6041. GGML_ASSERT(B->ne[0] == d_state);
  6042. GGML_ASSERT(B->ne[1] == n_tokens);
  6043. GGML_ASSERT(C->ne[0] == d_state);
  6044. GGML_ASSERT(C->ne[1] == n_tokens);
  6045. }
  6046. bool is_node = false;
  6047. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  6048. GGML_ABORT("fatal error"); // TODO: implement
  6049. is_node = true;
  6050. }
  6051. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  6052. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  6053. result->op = GGML_OP_SSM_SCAN;
  6054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6055. result->src[0] = s;
  6056. result->src[1] = x;
  6057. result->src[2] = dt;
  6058. result->src[3] = A;
  6059. result->src[4] = B;
  6060. result->src[5] = C;
  6061. result->src[6] = sq;
  6062. return result;
  6063. }
  6064. // ggml_win_part
  6065. struct ggml_tensor * ggml_win_part(
  6066. struct ggml_context * ctx,
  6067. struct ggml_tensor * a,
  6068. int w) {
  6069. GGML_ASSERT(a->ne[3] == 1);
  6070. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6071. bool is_node = false;
  6072. if (a->grad) {
  6073. GGML_ABORT("fatal error"); // TODO: implement backward
  6074. is_node = true;
  6075. }
  6076. // padding
  6077. const int px = (w - a->ne[1]%w)%w;
  6078. const int py = (w - a->ne[2]%w)%w;
  6079. const int npx = (px + a->ne[1])/w;
  6080. const int npy = (py + a->ne[2])/w;
  6081. const int np = npx*npy;
  6082. const int64_t ne[4] = { a->ne[0], w, w, np, };
  6083. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  6084. int32_t params[] = { npx, npy, w };
  6085. ggml_set_op_params(result, params, sizeof(params));
  6086. result->op = GGML_OP_WIN_PART;
  6087. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6088. result->src[0] = a;
  6089. return result;
  6090. }
  6091. // ggml_win_unpart
  6092. struct ggml_tensor * ggml_win_unpart(
  6093. struct ggml_context * ctx,
  6094. struct ggml_tensor * a,
  6095. int w0,
  6096. int h0,
  6097. int w) {
  6098. GGML_ASSERT(a->type == GGML_TYPE_F32);
  6099. bool is_node = false;
  6100. if (a->grad) {
  6101. GGML_ABORT("fatal error"); // TODO: implement backward
  6102. is_node = true;
  6103. }
  6104. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  6105. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  6106. int32_t params[] = { w };
  6107. ggml_set_op_params(result, params, sizeof(params));
  6108. result->op = GGML_OP_WIN_UNPART;
  6109. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6110. result->src[0] = a;
  6111. return result;
  6112. }
  6113. // ggml_get_rel_pos
  6114. struct ggml_tensor * ggml_get_rel_pos(
  6115. struct ggml_context * ctx,
  6116. struct ggml_tensor * a,
  6117. int qh,
  6118. int kh) {
  6119. GGML_ASSERT(qh == kh);
  6120. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  6121. bool is_node = false;
  6122. if (a->grad) {
  6123. GGML_ABORT("fatal error"); // TODO: implement backward
  6124. is_node = true;
  6125. }
  6126. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  6127. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  6128. result->op = GGML_OP_GET_REL_POS;
  6129. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6130. result->src[0] = a;
  6131. return result;
  6132. }
  6133. // ggml_add_rel_pos
  6134. static struct ggml_tensor * ggml_add_rel_pos_impl(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. struct ggml_tensor * pw,
  6138. struct ggml_tensor * ph,
  6139. bool inplace) {
  6140. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6141. GGML_ASSERT(ggml_is_contiguous(a));
  6142. GGML_ASSERT(ggml_is_contiguous(pw));
  6143. GGML_ASSERT(ggml_is_contiguous(ph));
  6144. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6145. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6146. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6147. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6148. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6149. bool is_node = false;
  6150. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6151. is_node = true;
  6152. }
  6153. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6154. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6155. result->op = GGML_OP_ADD_REL_POS;
  6156. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6157. result->src[0] = a;
  6158. result->src[1] = pw;
  6159. result->src[2] = ph;
  6160. return result;
  6161. }
  6162. struct ggml_tensor * ggml_add_rel_pos(
  6163. struct ggml_context * ctx,
  6164. struct ggml_tensor * a,
  6165. struct ggml_tensor * pw,
  6166. struct ggml_tensor * ph) {
  6167. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6168. }
  6169. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6170. struct ggml_context * ctx,
  6171. struct ggml_tensor * a,
  6172. struct ggml_tensor * pw,
  6173. struct ggml_tensor * ph) {
  6174. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6175. }
  6176. // ggml_unary
  6177. static struct ggml_tensor * ggml_unary_impl(
  6178. struct ggml_context * ctx,
  6179. struct ggml_tensor * a,
  6180. enum ggml_unary_op op,
  6181. bool inplace) {
  6182. GGML_ASSERT(ggml_is_contiguous_1(a));
  6183. bool is_node = false;
  6184. if (!inplace && (a->grad)) {
  6185. is_node = true;
  6186. }
  6187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6188. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6189. result->op = GGML_OP_UNARY;
  6190. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6191. result->src[0] = a;
  6192. return result;
  6193. }
  6194. struct ggml_tensor * ggml_unary(
  6195. struct ggml_context * ctx,
  6196. struct ggml_tensor * a,
  6197. enum ggml_unary_op op) {
  6198. return ggml_unary_impl(ctx, a, op, false);
  6199. }
  6200. struct ggml_tensor * ggml_unary_inplace(
  6201. struct ggml_context * ctx,
  6202. struct ggml_tensor * a,
  6203. enum ggml_unary_op op) {
  6204. return ggml_unary_impl(ctx, a, op, true);
  6205. }
  6206. // ggml_map_unary
  6207. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6208. struct ggml_context * ctx,
  6209. struct ggml_tensor * a,
  6210. const ggml_unary_op_f32_t fun,
  6211. bool inplace) {
  6212. bool is_node = false;
  6213. if (!inplace && a->grad) {
  6214. is_node = true;
  6215. }
  6216. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6217. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6218. result->op = GGML_OP_MAP_UNARY;
  6219. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6220. result->src[0] = a;
  6221. return result;
  6222. }
  6223. struct ggml_tensor * ggml_map_unary_f32(
  6224. struct ggml_context * ctx,
  6225. struct ggml_tensor * a,
  6226. const ggml_unary_op_f32_t fun) {
  6227. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6228. }
  6229. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6230. struct ggml_context * ctx,
  6231. struct ggml_tensor * a,
  6232. const ggml_unary_op_f32_t fun) {
  6233. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6234. }
  6235. // ggml_map_binary
  6236. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6237. struct ggml_context * ctx,
  6238. struct ggml_tensor * a,
  6239. struct ggml_tensor * b,
  6240. const ggml_binary_op_f32_t fun,
  6241. bool inplace) {
  6242. GGML_ASSERT(ggml_are_same_shape(a, b));
  6243. bool is_node = false;
  6244. if (!inplace && (a->grad || b->grad)) {
  6245. is_node = true;
  6246. }
  6247. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6248. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6249. result->op = GGML_OP_MAP_BINARY;
  6250. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6251. result->src[0] = a;
  6252. result->src[1] = b;
  6253. return result;
  6254. }
  6255. struct ggml_tensor * ggml_map_binary_f32(
  6256. struct ggml_context * ctx,
  6257. struct ggml_tensor * a,
  6258. struct ggml_tensor * b,
  6259. const ggml_binary_op_f32_t fun) {
  6260. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6261. }
  6262. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6263. struct ggml_context * ctx,
  6264. struct ggml_tensor * a,
  6265. struct ggml_tensor * b,
  6266. const ggml_binary_op_f32_t fun) {
  6267. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6268. }
  6269. // ggml_map_custom1_f32
  6270. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6271. struct ggml_context * ctx,
  6272. struct ggml_tensor * a,
  6273. const ggml_custom1_op_f32_t fun,
  6274. bool inplace) {
  6275. bool is_node = false;
  6276. if (!inplace && a->grad) {
  6277. is_node = true;
  6278. }
  6279. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6280. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6281. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6282. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6283. result->src[0] = a;
  6284. return result;
  6285. }
  6286. struct ggml_tensor * ggml_map_custom1_f32(
  6287. struct ggml_context * ctx,
  6288. struct ggml_tensor * a,
  6289. const ggml_custom1_op_f32_t fun) {
  6290. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6291. }
  6292. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6293. struct ggml_context * ctx,
  6294. struct ggml_tensor * a,
  6295. const ggml_custom1_op_f32_t fun) {
  6296. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6297. }
  6298. // ggml_map_custom2_f32
  6299. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6300. struct ggml_context * ctx,
  6301. struct ggml_tensor * a,
  6302. struct ggml_tensor * b,
  6303. const ggml_custom2_op_f32_t fun,
  6304. bool inplace) {
  6305. bool is_node = false;
  6306. if (!inplace && (a->grad || b->grad)) {
  6307. is_node = true;
  6308. }
  6309. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6310. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6311. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6312. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6313. result->src[0] = a;
  6314. result->src[1] = b;
  6315. return result;
  6316. }
  6317. struct ggml_tensor * ggml_map_custom2_f32(
  6318. struct ggml_context * ctx,
  6319. struct ggml_tensor * a,
  6320. struct ggml_tensor * b,
  6321. const ggml_custom2_op_f32_t fun) {
  6322. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6323. }
  6324. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6325. struct ggml_context * ctx,
  6326. struct ggml_tensor * a,
  6327. struct ggml_tensor * b,
  6328. const ggml_custom2_op_f32_t fun) {
  6329. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6330. }
  6331. // ggml_map_custom3_f32
  6332. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6333. struct ggml_context * ctx,
  6334. struct ggml_tensor * a,
  6335. struct ggml_tensor * b,
  6336. struct ggml_tensor * c,
  6337. const ggml_custom3_op_f32_t fun,
  6338. bool inplace) {
  6339. bool is_node = false;
  6340. if (!inplace && (a->grad || b->grad || c->grad)) {
  6341. is_node = true;
  6342. }
  6343. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6344. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6345. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6346. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6347. result->src[0] = a;
  6348. result->src[1] = b;
  6349. result->src[2] = c;
  6350. return result;
  6351. }
  6352. struct ggml_tensor * ggml_map_custom3_f32(
  6353. struct ggml_context * ctx,
  6354. struct ggml_tensor * a,
  6355. struct ggml_tensor * b,
  6356. struct ggml_tensor * c,
  6357. const ggml_custom3_op_f32_t fun) {
  6358. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6359. }
  6360. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6361. struct ggml_context * ctx,
  6362. struct ggml_tensor * a,
  6363. struct ggml_tensor * b,
  6364. struct ggml_tensor * c,
  6365. const ggml_custom3_op_f32_t fun) {
  6366. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6367. }
  6368. // ggml_map_custom1
  6369. struct ggml_map_custom1_op_params {
  6370. ggml_custom1_op_t fun;
  6371. int n_tasks;
  6372. void * userdata;
  6373. };
  6374. static struct ggml_tensor * ggml_map_custom1_impl(
  6375. struct ggml_context * ctx,
  6376. struct ggml_tensor * a,
  6377. const ggml_custom1_op_t fun,
  6378. int n_tasks,
  6379. void * userdata,
  6380. bool inplace) {
  6381. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6382. bool is_node = false;
  6383. if (!inplace && a->grad) {
  6384. is_node = true;
  6385. }
  6386. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6387. struct ggml_map_custom1_op_params params = {
  6388. /*.fun =*/ fun,
  6389. /*.n_tasks =*/ n_tasks,
  6390. /*.userdata =*/ userdata
  6391. };
  6392. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6393. result->op = GGML_OP_MAP_CUSTOM1;
  6394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6395. result->src[0] = a;
  6396. return result;
  6397. }
  6398. struct ggml_tensor * ggml_map_custom1(
  6399. struct ggml_context * ctx,
  6400. struct ggml_tensor * a,
  6401. const ggml_custom1_op_t fun,
  6402. int n_tasks,
  6403. void * userdata) {
  6404. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6405. }
  6406. struct ggml_tensor * ggml_map_custom1_inplace(
  6407. struct ggml_context * ctx,
  6408. struct ggml_tensor * a,
  6409. const ggml_custom1_op_t fun,
  6410. int n_tasks,
  6411. void * userdata) {
  6412. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6413. }
  6414. // ggml_map_custom2
  6415. struct ggml_map_custom2_op_params {
  6416. ggml_custom2_op_t fun;
  6417. int n_tasks;
  6418. void * userdata;
  6419. };
  6420. static struct ggml_tensor * ggml_map_custom2_impl(
  6421. struct ggml_context * ctx,
  6422. struct ggml_tensor * a,
  6423. struct ggml_tensor * b,
  6424. const ggml_custom2_op_t fun,
  6425. int n_tasks,
  6426. void * userdata,
  6427. bool inplace) {
  6428. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6429. bool is_node = false;
  6430. if (!inplace && (a->grad || b->grad)) {
  6431. is_node = true;
  6432. }
  6433. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6434. struct ggml_map_custom2_op_params params = {
  6435. /*.fun =*/ fun,
  6436. /*.n_tasks =*/ n_tasks,
  6437. /*.userdata =*/ userdata
  6438. };
  6439. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6440. result->op = GGML_OP_MAP_CUSTOM2;
  6441. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6442. result->src[0] = a;
  6443. result->src[1] = b;
  6444. return result;
  6445. }
  6446. struct ggml_tensor * ggml_map_custom2(
  6447. struct ggml_context * ctx,
  6448. struct ggml_tensor * a,
  6449. struct ggml_tensor * b,
  6450. const ggml_custom2_op_t fun,
  6451. int n_tasks,
  6452. void * userdata) {
  6453. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6454. }
  6455. struct ggml_tensor * ggml_map_custom2_inplace(
  6456. struct ggml_context * ctx,
  6457. struct ggml_tensor * a,
  6458. struct ggml_tensor * b,
  6459. const ggml_custom2_op_t fun,
  6460. int n_tasks,
  6461. void * userdata) {
  6462. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6463. }
  6464. // ggml_map_custom3
  6465. struct ggml_map_custom3_op_params {
  6466. ggml_custom3_op_t fun;
  6467. int n_tasks;
  6468. void * userdata;
  6469. };
  6470. static struct ggml_tensor * ggml_map_custom3_impl(
  6471. struct ggml_context * ctx,
  6472. struct ggml_tensor * a,
  6473. struct ggml_tensor * b,
  6474. struct ggml_tensor * c,
  6475. const ggml_custom3_op_t fun,
  6476. int n_tasks,
  6477. void * userdata,
  6478. bool inplace) {
  6479. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6480. bool is_node = false;
  6481. if (!inplace && (a->grad || b->grad || c->grad)) {
  6482. is_node = true;
  6483. }
  6484. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6485. struct ggml_map_custom3_op_params params = {
  6486. /*.fun =*/ fun,
  6487. /*.n_tasks =*/ n_tasks,
  6488. /*.userdata =*/ userdata
  6489. };
  6490. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6491. result->op = GGML_OP_MAP_CUSTOM3;
  6492. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6493. result->src[0] = a;
  6494. result->src[1] = b;
  6495. result->src[2] = c;
  6496. return result;
  6497. }
  6498. struct ggml_tensor * ggml_map_custom3(
  6499. struct ggml_context * ctx,
  6500. struct ggml_tensor * a,
  6501. struct ggml_tensor * b,
  6502. struct ggml_tensor * c,
  6503. const ggml_custom3_op_t fun,
  6504. int n_tasks,
  6505. void * userdata) {
  6506. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6507. }
  6508. struct ggml_tensor * ggml_map_custom3_inplace(
  6509. struct ggml_context * ctx,
  6510. struct ggml_tensor * a,
  6511. struct ggml_tensor * b,
  6512. struct ggml_tensor * c,
  6513. const ggml_custom3_op_t fun,
  6514. int n_tasks,
  6515. void * userdata) {
  6516. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6517. }
  6518. // ggml_cross_entropy_loss
  6519. struct ggml_tensor * ggml_cross_entropy_loss(
  6520. struct ggml_context * ctx,
  6521. struct ggml_tensor * a,
  6522. struct ggml_tensor * b) {
  6523. GGML_ASSERT(ggml_are_same_shape(a, b));
  6524. bool is_node = false;
  6525. if (a->grad || b->grad) {
  6526. is_node = true;
  6527. }
  6528. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6529. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6530. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6531. result->src[0] = a;
  6532. result->src[1] = b;
  6533. return result;
  6534. }
  6535. // ggml_cross_entropy_loss_back
  6536. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6537. struct ggml_context * ctx,
  6538. struct ggml_tensor * a,
  6539. struct ggml_tensor * b,
  6540. struct ggml_tensor * c) {
  6541. GGML_ASSERT(ggml_are_same_shape(a, b));
  6542. GGML_ASSERT(ggml_is_scalar(c));
  6543. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6544. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6545. result->grad = NULL;
  6546. result->src[0] = a;
  6547. result->src[1] = b;
  6548. result->src[2] = c;
  6549. return result;
  6550. }
  6551. ////////////////////////////////////////////////////////////////////////////////
  6552. void ggml_set_param(
  6553. struct ggml_context * ctx,
  6554. struct ggml_tensor * tensor) {
  6555. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6556. GGML_ASSERT(tensor->grad == NULL);
  6557. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6558. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6559. }
  6560. // ggml_compute_forward_dup
  6561. static void ggml_compute_forward_dup_same_cont(
  6562. const struct ggml_compute_params * params,
  6563. struct ggml_tensor * dst) {
  6564. const struct ggml_tensor * src0 = dst->src[0];
  6565. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6566. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6567. GGML_ASSERT(src0->type == dst->type);
  6568. const size_t nb00 = src0->nb[0];
  6569. const size_t nb0 = dst->nb[0];
  6570. const int ith = params->ith; // thread index
  6571. const int nth = params->nth; // number of threads
  6572. // parallelize by elements
  6573. const int ne = ggml_nelements(dst);
  6574. const int dr = (ne + nth - 1) / nth;
  6575. const int ie0 = dr * ith;
  6576. const int ie1 = MIN(ie0 + dr, ne);
  6577. if (ie0 < ie1) {
  6578. memcpy(
  6579. ((char *) dst->data + ie0*nb0),
  6580. ((char *) src0->data + ie0*nb00),
  6581. (ie1 - ie0) * ggml_type_size(src0->type));
  6582. }
  6583. }
  6584. static void ggml_compute_forward_dup_f16(
  6585. const struct ggml_compute_params * params,
  6586. struct ggml_tensor * dst) {
  6587. const struct ggml_tensor * src0 = dst->src[0];
  6588. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6589. GGML_TENSOR_UNARY_OP_LOCALS
  6590. const int ith = params->ith; // thread index
  6591. const int nth = params->nth; // number of threads
  6592. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6593. ggml_compute_forward_dup_same_cont(params, dst);
  6594. return;
  6595. }
  6596. // parallelize by rows
  6597. const int nr = ne01;
  6598. // number of rows per thread
  6599. const int dr = (nr + nth - 1) / nth;
  6600. // row range for this thread
  6601. const int ir0 = dr * ith;
  6602. const int ir1 = MIN(ir0 + dr, nr);
  6603. if (src0->type == dst->type &&
  6604. ne00 == ne0 &&
  6605. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6606. // copy by rows
  6607. const size_t rs = ne00*nb00;
  6608. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6609. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6610. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6611. memcpy(
  6612. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6613. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6614. rs);
  6615. }
  6616. }
  6617. }
  6618. return;
  6619. }
  6620. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6621. if (ggml_is_contiguous(dst)) {
  6622. if (nb00 == sizeof(ggml_fp16_t)) {
  6623. if (dst->type == GGML_TYPE_F16) {
  6624. size_t id = 0;
  6625. const size_t rs = ne00 * nb00;
  6626. char * dst_ptr = (char *) dst->data;
  6627. for (int i03 = 0; i03 < ne03; i03++) {
  6628. for (int i02 = 0; i02 < ne02; i02++) {
  6629. id += rs * ir0;
  6630. for (int i01 = ir0; i01 < ir1; i01++) {
  6631. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6632. memcpy(dst_ptr + id, src0_ptr, rs);
  6633. id += rs;
  6634. }
  6635. id += rs * (ne01 - ir1);
  6636. }
  6637. }
  6638. } else if (dst->type == GGML_TYPE_F32) {
  6639. size_t id = 0;
  6640. float * dst_ptr = (float *) dst->data;
  6641. for (int i03 = 0; i03 < ne03; i03++) {
  6642. for (int i02 = 0; i02 < ne02; i02++) {
  6643. id += ne00 * ir0;
  6644. for (int i01 = ir0; i01 < ir1; i01++) {
  6645. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6646. for (int i00 = 0; i00 < ne00; i00++) {
  6647. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6648. id++;
  6649. }
  6650. }
  6651. id += ne00 * (ne01 - ir1);
  6652. }
  6653. }
  6654. } else if (type_traits[dst->type].from_float) {
  6655. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6656. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6657. size_t id = 0;
  6658. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6659. char * dst_ptr = (char *) dst->data;
  6660. for (int i03 = 0; i03 < ne03; i03++) {
  6661. for (int i02 = 0; i02 < ne02; i02++) {
  6662. id += rs * ir0;
  6663. for (int i01 = ir0; i01 < ir1; i01++) {
  6664. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6665. for (int i00 = 0; i00 < ne00; i00++) {
  6666. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6667. }
  6668. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6669. id += rs;
  6670. }
  6671. id += rs * (ne01 - ir1);
  6672. }
  6673. }
  6674. } else {
  6675. GGML_ABORT("fatal error"); // TODO: implement
  6676. }
  6677. } else {
  6678. //printf("%s: this is not optimal - fix me\n", __func__);
  6679. if (dst->type == GGML_TYPE_F32) {
  6680. size_t id = 0;
  6681. float * dst_ptr = (float *) dst->data;
  6682. for (int i03 = 0; i03 < ne03; i03++) {
  6683. for (int i02 = 0; i02 < ne02; i02++) {
  6684. id += ne00 * ir0;
  6685. for (int i01 = ir0; i01 < ir1; i01++) {
  6686. for (int i00 = 0; i00 < ne00; i00++) {
  6687. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6688. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6689. id++;
  6690. }
  6691. }
  6692. id += ne00 * (ne01 - ir1);
  6693. }
  6694. }
  6695. } else if (dst->type == GGML_TYPE_F16) {
  6696. size_t id = 0;
  6697. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6698. for (int i03 = 0; i03 < ne03; i03++) {
  6699. for (int i02 = 0; i02 < ne02; i02++) {
  6700. id += ne00 * ir0;
  6701. for (int i01 = ir0; i01 < ir1; i01++) {
  6702. for (int i00 = 0; i00 < ne00; i00++) {
  6703. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6704. dst_ptr[id] = *src0_ptr;
  6705. id++;
  6706. }
  6707. }
  6708. id += ne00 * (ne01 - ir1);
  6709. }
  6710. }
  6711. } else {
  6712. GGML_ABORT("fatal error"); // TODO: implement
  6713. }
  6714. }
  6715. return;
  6716. }
  6717. // dst counters
  6718. int64_t i10 = 0;
  6719. int64_t i11 = 0;
  6720. int64_t i12 = 0;
  6721. int64_t i13 = 0;
  6722. if (dst->type == GGML_TYPE_F16) {
  6723. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6724. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6725. i10 += ne00 * ir0;
  6726. while (i10 >= ne0) {
  6727. i10 -= ne0;
  6728. if (++i11 == ne1) {
  6729. i11 = 0;
  6730. if (++i12 == ne2) {
  6731. i12 = 0;
  6732. if (++i13 == ne3) {
  6733. i13 = 0;
  6734. }
  6735. }
  6736. }
  6737. }
  6738. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6739. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6740. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6741. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6742. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6743. if (++i10 == ne00) {
  6744. i10 = 0;
  6745. if (++i11 == ne01) {
  6746. i11 = 0;
  6747. if (++i12 == ne02) {
  6748. i12 = 0;
  6749. if (++i13 == ne03) {
  6750. i13 = 0;
  6751. }
  6752. }
  6753. }
  6754. }
  6755. }
  6756. }
  6757. i10 += ne00 * (ne01 - ir1);
  6758. while (i10 >= ne0) {
  6759. i10 -= ne0;
  6760. if (++i11 == ne1) {
  6761. i11 = 0;
  6762. if (++i12 == ne2) {
  6763. i12 = 0;
  6764. if (++i13 == ne3) {
  6765. i13 = 0;
  6766. }
  6767. }
  6768. }
  6769. }
  6770. }
  6771. }
  6772. } else if (dst->type == GGML_TYPE_F32) {
  6773. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6774. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6775. i10 += ne00 * ir0;
  6776. while (i10 >= ne0) {
  6777. i10 -= ne0;
  6778. if (++i11 == ne1) {
  6779. i11 = 0;
  6780. if (++i12 == ne2) {
  6781. i12 = 0;
  6782. if (++i13 == ne3) {
  6783. i13 = 0;
  6784. }
  6785. }
  6786. }
  6787. }
  6788. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6789. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6790. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6791. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6792. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6793. if (++i10 == ne0) {
  6794. i10 = 0;
  6795. if (++i11 == ne1) {
  6796. i11 = 0;
  6797. if (++i12 == ne2) {
  6798. i12 = 0;
  6799. if (++i13 == ne3) {
  6800. i13 = 0;
  6801. }
  6802. }
  6803. }
  6804. }
  6805. }
  6806. }
  6807. i10 += ne00 * (ne01 - ir1);
  6808. while (i10 >= ne0) {
  6809. i10 -= ne0;
  6810. if (++i11 == ne1) {
  6811. i11 = 0;
  6812. if (++i12 == ne2) {
  6813. i12 = 0;
  6814. if (++i13 == ne3) {
  6815. i13 = 0;
  6816. }
  6817. }
  6818. }
  6819. }
  6820. }
  6821. }
  6822. } else {
  6823. GGML_ABORT("fatal error"); // TODO: implement
  6824. }
  6825. }
  6826. static void ggml_compute_forward_dup_bf16(
  6827. const struct ggml_compute_params * params,
  6828. struct ggml_tensor * dst) {
  6829. const struct ggml_tensor * src0 = dst->src[0];
  6830. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6831. GGML_TENSOR_UNARY_OP_LOCALS
  6832. const int ith = params->ith; // thread index
  6833. const int nth = params->nth; // number of threads
  6834. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6835. ggml_compute_forward_dup_same_cont(params, dst);
  6836. return;
  6837. }
  6838. // parallelize by rows
  6839. const int nr = ne01;
  6840. // number of rows per thread
  6841. const int dr = (nr + nth - 1) / nth;
  6842. // row range for this thread
  6843. const int ir0 = dr * ith;
  6844. const int ir1 = MIN(ir0 + dr, nr);
  6845. if (src0->type == dst->type &&
  6846. ne00 == ne0 &&
  6847. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6848. // copy by rows
  6849. const size_t rs = ne00*nb00;
  6850. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6851. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6852. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6853. memcpy(
  6854. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6855. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6856. rs);
  6857. }
  6858. }
  6859. }
  6860. return;
  6861. }
  6862. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6863. if (ggml_is_contiguous(dst)) {
  6864. if (nb00 == sizeof(ggml_bf16_t)) {
  6865. if (dst->type == GGML_TYPE_BF16) {
  6866. size_t id = 0;
  6867. const size_t rs = ne00 * nb00;
  6868. char * dst_ptr = (char *) dst->data;
  6869. for (int i03 = 0; i03 < ne03; i03++) {
  6870. for (int i02 = 0; i02 < ne02; i02++) {
  6871. id += rs * ir0;
  6872. for (int i01 = ir0; i01 < ir1; i01++) {
  6873. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6874. memcpy(dst_ptr + id, src0_ptr, rs);
  6875. id += rs;
  6876. }
  6877. id += rs * (ne01 - ir1);
  6878. }
  6879. }
  6880. } else if (dst->type == GGML_TYPE_F16) {
  6881. size_t id = 0;
  6882. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6883. for (int i03 = 0; i03 < ne03; i03++) {
  6884. for (int i02 = 0; i02 < ne02; i02++) {
  6885. id += ne00 * ir0;
  6886. for (int i01 = ir0; i01 < ir1; i01++) {
  6887. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6888. for (int i00 = 0; i00 < ne00; i00++) {
  6889. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6890. id++;
  6891. }
  6892. }
  6893. id += ne00 * (ne01 - ir1);
  6894. }
  6895. }
  6896. } else if (dst->type == GGML_TYPE_F32) {
  6897. size_t id = 0;
  6898. float * dst_ptr = (float *) dst->data;
  6899. for (int i03 = 0; i03 < ne03; i03++) {
  6900. for (int i02 = 0; i02 < ne02; i02++) {
  6901. id += ne00 * ir0;
  6902. for (int i01 = ir0; i01 < ir1; i01++) {
  6903. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6904. for (int i00 = 0; i00 < ne00; i00++) {
  6905. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6906. id++;
  6907. }
  6908. }
  6909. id += ne00 * (ne01 - ir1);
  6910. }
  6911. }
  6912. } else if (type_traits[dst->type].from_float) {
  6913. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6914. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6915. size_t id = 0;
  6916. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6917. char * dst_ptr = (char *) dst->data;
  6918. for (int i03 = 0; i03 < ne03; i03++) {
  6919. for (int i02 = 0; i02 < ne02; i02++) {
  6920. id += rs * ir0;
  6921. for (int i01 = ir0; i01 < ir1; i01++) {
  6922. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6923. for (int i00 = 0; i00 < ne00; i00++) {
  6924. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6925. }
  6926. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6927. id += rs;
  6928. }
  6929. id += rs * (ne01 - ir1);
  6930. }
  6931. }
  6932. } else {
  6933. GGML_ABORT("fatal error"); // TODO: implement
  6934. }
  6935. } else {
  6936. //printf("%s: this is not optimal - fix me\n", __func__);
  6937. if (dst->type == GGML_TYPE_F32) {
  6938. size_t id = 0;
  6939. float * dst_ptr = (float *) dst->data;
  6940. for (int i03 = 0; i03 < ne03; i03++) {
  6941. for (int i02 = 0; i02 < ne02; i02++) {
  6942. id += ne00 * ir0;
  6943. for (int i01 = ir0; i01 < ir1; i01++) {
  6944. for (int i00 = 0; i00 < ne00; i00++) {
  6945. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6946. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6947. id++;
  6948. }
  6949. }
  6950. id += ne00 * (ne01 - ir1);
  6951. }
  6952. }
  6953. } else if (dst->type == GGML_TYPE_BF16) {
  6954. size_t id = 0;
  6955. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6956. for (int i03 = 0; i03 < ne03; i03++) {
  6957. for (int i02 = 0; i02 < ne02; i02++) {
  6958. id += ne00 * ir0;
  6959. for (int i01 = ir0; i01 < ir1; i01++) {
  6960. for (int i00 = 0; i00 < ne00; i00++) {
  6961. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6962. dst_ptr[id] = *src0_ptr;
  6963. id++;
  6964. }
  6965. }
  6966. id += ne00 * (ne01 - ir1);
  6967. }
  6968. }
  6969. } else if (dst->type == GGML_TYPE_F16) {
  6970. size_t id = 0;
  6971. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6972. for (int i03 = 0; i03 < ne03; i03++) {
  6973. for (int i02 = 0; i02 < ne02; i02++) {
  6974. id += ne00 * ir0;
  6975. for (int i01 = ir0; i01 < ir1; i01++) {
  6976. for (int i00 = 0; i00 < ne00; i00++) {
  6977. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6978. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6979. id++;
  6980. }
  6981. }
  6982. id += ne00 * (ne01 - ir1);
  6983. }
  6984. }
  6985. } else {
  6986. GGML_ABORT("fatal error"); // TODO: implement
  6987. }
  6988. }
  6989. return;
  6990. }
  6991. // dst counters
  6992. int64_t i10 = 0;
  6993. int64_t i11 = 0;
  6994. int64_t i12 = 0;
  6995. int64_t i13 = 0;
  6996. if (dst->type == GGML_TYPE_BF16) {
  6997. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6998. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6999. i10 += ne00 * ir0;
  7000. while (i10 >= ne0) {
  7001. i10 -= ne0;
  7002. if (++i11 == ne1) {
  7003. i11 = 0;
  7004. if (++i12 == ne2) {
  7005. i12 = 0;
  7006. if (++i13 == ne3) {
  7007. i13 = 0;
  7008. }
  7009. }
  7010. }
  7011. }
  7012. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7013. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7014. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7015. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7016. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  7017. if (++i10 == ne00) {
  7018. i10 = 0;
  7019. if (++i11 == ne01) {
  7020. i11 = 0;
  7021. if (++i12 == ne02) {
  7022. i12 = 0;
  7023. if (++i13 == ne03) {
  7024. i13 = 0;
  7025. }
  7026. }
  7027. }
  7028. }
  7029. }
  7030. }
  7031. i10 += ne00 * (ne01 - ir1);
  7032. while (i10 >= ne0) {
  7033. i10 -= ne0;
  7034. if (++i11 == ne1) {
  7035. i11 = 0;
  7036. if (++i12 == ne2) {
  7037. i12 = 0;
  7038. if (++i13 == ne3) {
  7039. i13 = 0;
  7040. }
  7041. }
  7042. }
  7043. }
  7044. }
  7045. }
  7046. } else if (dst->type == GGML_TYPE_F16) {
  7047. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7048. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7049. i10 += ne00 * ir0;
  7050. while (i10 >= ne0) {
  7051. i10 -= ne0;
  7052. if (++i11 == ne1) {
  7053. i11 = 0;
  7054. if (++i12 == ne2) {
  7055. i12 = 0;
  7056. if (++i13 == ne3) {
  7057. i13 = 0;
  7058. }
  7059. }
  7060. }
  7061. }
  7062. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7063. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7064. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7065. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7066. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  7067. if (++i10 == ne0) {
  7068. i10 = 0;
  7069. if (++i11 == ne1) {
  7070. i11 = 0;
  7071. if (++i12 == ne2) {
  7072. i12 = 0;
  7073. if (++i13 == ne3) {
  7074. i13 = 0;
  7075. }
  7076. }
  7077. }
  7078. }
  7079. }
  7080. }
  7081. i10 += ne00 * (ne01 - ir1);
  7082. while (i10 >= ne0) {
  7083. i10 -= ne0;
  7084. if (++i11 == ne1) {
  7085. i11 = 0;
  7086. if (++i12 == ne2) {
  7087. i12 = 0;
  7088. if (++i13 == ne3) {
  7089. i13 = 0;
  7090. }
  7091. }
  7092. }
  7093. }
  7094. }
  7095. }
  7096. } else if (dst->type == GGML_TYPE_F32) {
  7097. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7098. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7099. i10 += ne00 * ir0;
  7100. while (i10 >= ne0) {
  7101. i10 -= ne0;
  7102. if (++i11 == ne1) {
  7103. i11 = 0;
  7104. if (++i12 == ne2) {
  7105. i12 = 0;
  7106. if (++i13 == ne3) {
  7107. i13 = 0;
  7108. }
  7109. }
  7110. }
  7111. }
  7112. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7113. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7114. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7115. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7116. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  7117. if (++i10 == ne0) {
  7118. i10 = 0;
  7119. if (++i11 == ne1) {
  7120. i11 = 0;
  7121. if (++i12 == ne2) {
  7122. i12 = 0;
  7123. if (++i13 == ne3) {
  7124. i13 = 0;
  7125. }
  7126. }
  7127. }
  7128. }
  7129. }
  7130. }
  7131. i10 += ne00 * (ne01 - ir1);
  7132. while (i10 >= ne0) {
  7133. i10 -= ne0;
  7134. if (++i11 == ne1) {
  7135. i11 = 0;
  7136. if (++i12 == ne2) {
  7137. i12 = 0;
  7138. if (++i13 == ne3) {
  7139. i13 = 0;
  7140. }
  7141. }
  7142. }
  7143. }
  7144. }
  7145. }
  7146. } else {
  7147. GGML_ABORT("fatal error"); // TODO: implement
  7148. }
  7149. }
  7150. static void ggml_compute_forward_dup_f32(
  7151. const struct ggml_compute_params * params,
  7152. struct ggml_tensor * dst) {
  7153. const struct ggml_tensor * src0 = dst->src[0];
  7154. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7155. GGML_TENSOR_UNARY_OP_LOCALS
  7156. const int ith = params->ith; // thread index
  7157. const int nth = params->nth; // number of threads
  7158. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7159. ggml_compute_forward_dup_same_cont(params, dst);
  7160. return;
  7161. }
  7162. // parallelize by rows
  7163. const int nr = ne01;
  7164. // number of rows per thread
  7165. const int dr = (nr + nth - 1) / nth;
  7166. // row range for this thread
  7167. const int ir0 = dr * ith;
  7168. const int ir1 = MIN(ir0 + dr, nr);
  7169. if (src0->type == dst->type &&
  7170. ne00 == ne0 &&
  7171. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7172. // copy by rows
  7173. const size_t rs = ne00*nb00;
  7174. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7175. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7176. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7177. memcpy(
  7178. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7179. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7180. rs);
  7181. }
  7182. }
  7183. }
  7184. return;
  7185. }
  7186. if (ggml_is_contiguous(dst)) {
  7187. // TODO: simplify
  7188. if (nb00 == sizeof(float)) {
  7189. if (dst->type == GGML_TYPE_F32) {
  7190. size_t id = 0;
  7191. const size_t rs = ne00 * nb00;
  7192. char * dst_ptr = (char *) dst->data;
  7193. for (int i03 = 0; i03 < ne03; i03++) {
  7194. for (int i02 = 0; i02 < ne02; i02++) {
  7195. id += rs * ir0;
  7196. for (int i01 = ir0; i01 < ir1; i01++) {
  7197. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7198. memcpy(dst_ptr + id, src0_ptr, rs);
  7199. id += rs;
  7200. }
  7201. id += rs * (ne01 - ir1);
  7202. }
  7203. }
  7204. } else if (type_traits[dst->type].from_float) {
  7205. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7206. size_t id = 0;
  7207. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7208. char * dst_ptr = (char *) dst->data;
  7209. for (int i03 = 0; i03 < ne03; i03++) {
  7210. for (int i02 = 0; i02 < ne02; i02++) {
  7211. id += rs * ir0;
  7212. for (int i01 = ir0; i01 < ir1; i01++) {
  7213. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7214. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7215. id += rs;
  7216. }
  7217. id += rs * (ne01 - ir1);
  7218. }
  7219. }
  7220. } else {
  7221. GGML_ABORT("fatal error"); // TODO: implement
  7222. }
  7223. } else {
  7224. //printf("%s: this is not optimal - fix me\n", __func__);
  7225. if (dst->type == GGML_TYPE_F32) {
  7226. size_t id = 0;
  7227. float * dst_ptr = (float *) dst->data;
  7228. for (int i03 = 0; i03 < ne03; i03++) {
  7229. for (int i02 = 0; i02 < ne02; i02++) {
  7230. id += ne00 * ir0;
  7231. for (int i01 = ir0; i01 < ir1; i01++) {
  7232. for (int i00 = 0; i00 < ne00; i00++) {
  7233. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7234. dst_ptr[id] = *src0_ptr;
  7235. id++;
  7236. }
  7237. }
  7238. id += ne00 * (ne01 - ir1);
  7239. }
  7240. }
  7241. } else if (dst->type == GGML_TYPE_F16) {
  7242. size_t id = 0;
  7243. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7244. for (int i03 = 0; i03 < ne03; i03++) {
  7245. for (int i02 = 0; i02 < ne02; i02++) {
  7246. id += ne00 * ir0;
  7247. for (int i01 = ir0; i01 < ir1; i01++) {
  7248. for (int i00 = 0; i00 < ne00; i00++) {
  7249. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7250. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7251. id++;
  7252. }
  7253. }
  7254. id += ne00 * (ne01 - ir1);
  7255. }
  7256. }
  7257. } else if (dst->type == GGML_TYPE_BF16) {
  7258. size_t id = 0;
  7259. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7260. for (int i03 = 0; i03 < ne03; i03++) {
  7261. for (int i02 = 0; i02 < ne02; i02++) {
  7262. id += ne00 * ir0;
  7263. for (int i01 = ir0; i01 < ir1; i01++) {
  7264. for (int i00 = 0; i00 < ne00; i00++) {
  7265. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7266. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7267. id++;
  7268. }
  7269. }
  7270. id += ne00 * (ne01 - ir1);
  7271. }
  7272. }
  7273. } else {
  7274. GGML_ABORT("fatal error"); // TODO: implement
  7275. }
  7276. }
  7277. return;
  7278. }
  7279. // dst counters
  7280. int64_t i10 = 0;
  7281. int64_t i11 = 0;
  7282. int64_t i12 = 0;
  7283. int64_t i13 = 0;
  7284. if (dst->type == GGML_TYPE_F32) {
  7285. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7286. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7287. i10 += ne00 * ir0;
  7288. while (i10 >= ne0) {
  7289. i10 -= ne0;
  7290. if (++i11 == ne1) {
  7291. i11 = 0;
  7292. if (++i12 == ne2) {
  7293. i12 = 0;
  7294. if (++i13 == ne3) {
  7295. i13 = 0;
  7296. }
  7297. }
  7298. }
  7299. }
  7300. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7301. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7302. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7303. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7304. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7305. if (++i10 == ne0) {
  7306. i10 = 0;
  7307. if (++i11 == ne1) {
  7308. i11 = 0;
  7309. if (++i12 == ne2) {
  7310. i12 = 0;
  7311. if (++i13 == ne3) {
  7312. i13 = 0;
  7313. }
  7314. }
  7315. }
  7316. }
  7317. }
  7318. }
  7319. i10 += ne00 * (ne01 - ir1);
  7320. while (i10 >= ne0) {
  7321. i10 -= ne0;
  7322. if (++i11 == ne1) {
  7323. i11 = 0;
  7324. if (++i12 == ne2) {
  7325. i12 = 0;
  7326. if (++i13 == ne3) {
  7327. i13 = 0;
  7328. }
  7329. }
  7330. }
  7331. }
  7332. }
  7333. }
  7334. } else if (dst->type == GGML_TYPE_F16) {
  7335. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7336. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7337. i10 += ne00 * ir0;
  7338. while (i10 >= ne0) {
  7339. i10 -= ne0;
  7340. if (++i11 == ne1) {
  7341. i11 = 0;
  7342. if (++i12 == ne2) {
  7343. i12 = 0;
  7344. if (++i13 == ne3) {
  7345. i13 = 0;
  7346. }
  7347. }
  7348. }
  7349. }
  7350. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7351. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7352. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7353. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7354. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7355. if (++i10 == ne0) {
  7356. i10 = 0;
  7357. if (++i11 == ne1) {
  7358. i11 = 0;
  7359. if (++i12 == ne2) {
  7360. i12 = 0;
  7361. if (++i13 == ne3) {
  7362. i13 = 0;
  7363. }
  7364. }
  7365. }
  7366. }
  7367. }
  7368. }
  7369. i10 += ne00 * (ne01 - ir1);
  7370. while (i10 >= ne0) {
  7371. i10 -= ne0;
  7372. if (++i11 == ne1) {
  7373. i11 = 0;
  7374. if (++i12 == ne2) {
  7375. i12 = 0;
  7376. if (++i13 == ne3) {
  7377. i13 = 0;
  7378. }
  7379. }
  7380. }
  7381. }
  7382. }
  7383. }
  7384. } else if (dst->type == GGML_TYPE_BF16) {
  7385. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7386. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7387. i10 += ne00 * ir0;
  7388. while (i10 >= ne0) {
  7389. i10 -= ne0;
  7390. if (++i11 == ne1) {
  7391. i11 = 0;
  7392. if (++i12 == ne2) {
  7393. i12 = 0;
  7394. if (++i13 == ne3) {
  7395. i13 = 0;
  7396. }
  7397. }
  7398. }
  7399. }
  7400. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7401. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7402. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7403. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7404. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7405. if (++i10 == ne0) {
  7406. i10 = 0;
  7407. if (++i11 == ne1) {
  7408. i11 = 0;
  7409. if (++i12 == ne2) {
  7410. i12 = 0;
  7411. if (++i13 == ne3) {
  7412. i13 = 0;
  7413. }
  7414. }
  7415. }
  7416. }
  7417. }
  7418. }
  7419. i10 += ne00 * (ne01 - ir1);
  7420. while (i10 >= ne0) {
  7421. i10 -= ne0;
  7422. if (++i11 == ne1) {
  7423. i11 = 0;
  7424. if (++i12 == ne2) {
  7425. i12 = 0;
  7426. if (++i13 == ne3) {
  7427. i13 = 0;
  7428. }
  7429. }
  7430. }
  7431. }
  7432. }
  7433. }
  7434. } else {
  7435. GGML_ABORT("fatal error"); // TODO: implement
  7436. }
  7437. }
  7438. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7439. static void ggml_compute_forward_dup_bytes(
  7440. const struct ggml_compute_params * params,
  7441. struct ggml_tensor * dst) {
  7442. const struct ggml_tensor * src0 = dst->src[0];
  7443. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7444. GGML_ASSERT(src0->type == dst->type);
  7445. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7446. ggml_compute_forward_dup_same_cont(params, dst);
  7447. return;
  7448. }
  7449. GGML_TENSOR_UNARY_OP_LOCALS;
  7450. const size_t type_size = ggml_type_size(src0->type);
  7451. const int ith = params->ith; // thread index
  7452. const int nth = params->nth; // number of threads
  7453. // parallelize by rows
  7454. const int nr = ne01;
  7455. // number of rows per thread
  7456. const int dr = (nr + nth - 1) / nth;
  7457. // row range for this thread
  7458. const int ir0 = dr * ith;
  7459. const int ir1 = MIN(ir0 + dr, nr);
  7460. if (src0->type == dst->type &&
  7461. ne00 == ne0 &&
  7462. nb00 == type_size && nb0 == type_size) {
  7463. // copy by rows
  7464. const size_t rs = ne00 * type_size;
  7465. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7466. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7467. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7468. memcpy(
  7469. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7470. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7471. rs);
  7472. }
  7473. }
  7474. }
  7475. return;
  7476. }
  7477. if (ggml_is_contiguous(dst)) {
  7478. size_t id = 0;
  7479. char * dst_ptr = (char *) dst->data;
  7480. const size_t rs = ne00 * type_size;
  7481. if (nb00 == type_size) {
  7482. // src0 is contigous on first dimension, copy by rows
  7483. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7484. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7485. id += rs * ir0;
  7486. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7487. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7488. memcpy(dst_ptr + id, src0_ptr, rs);
  7489. id += rs;
  7490. }
  7491. id += rs * (ne01 - ir1);
  7492. }
  7493. }
  7494. } else {
  7495. //printf("%s: this is not optimal - fix me\n", __func__);
  7496. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7497. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7498. id += rs * ir0;
  7499. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7500. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7501. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7502. memcpy(dst_ptr + id, src0_ptr, type_size);
  7503. id += type_size;
  7504. }
  7505. }
  7506. id += rs * (ne01 - ir1);
  7507. }
  7508. }
  7509. }
  7510. return;
  7511. }
  7512. // dst counters
  7513. int64_t i10 = 0;
  7514. int64_t i11 = 0;
  7515. int64_t i12 = 0;
  7516. int64_t i13 = 0;
  7517. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7518. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7519. i10 += ne00 * ir0;
  7520. while (i10 >= ne0) {
  7521. i10 -= ne0;
  7522. if (++i11 == ne1) {
  7523. i11 = 0;
  7524. if (++i12 == ne2) {
  7525. i12 = 0;
  7526. if (++i13 == ne3) {
  7527. i13 = 0;
  7528. }
  7529. }
  7530. }
  7531. }
  7532. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7533. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7534. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7535. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7536. memcpy(dst_ptr, src0_ptr, type_size);
  7537. if (++i10 == ne0) {
  7538. i10 = 0;
  7539. if (++i11 == ne1) {
  7540. i11 = 0;
  7541. if (++i12 == ne2) {
  7542. i12 = 0;
  7543. if (++i13 == ne3) {
  7544. i13 = 0;
  7545. }
  7546. }
  7547. }
  7548. }
  7549. }
  7550. }
  7551. i10 += ne00 * (ne01 - ir1);
  7552. while (i10 >= ne0) {
  7553. i10 -= ne0;
  7554. if (++i11 == ne1) {
  7555. i11 = 0;
  7556. if (++i12 == ne2) {
  7557. i12 = 0;
  7558. if (++i13 == ne3) {
  7559. i13 = 0;
  7560. }
  7561. }
  7562. }
  7563. }
  7564. }
  7565. }
  7566. }
  7567. static void ggml_compute_forward_dup(
  7568. const struct ggml_compute_params * params,
  7569. struct ggml_tensor * dst) {
  7570. const struct ggml_tensor * src0 = dst->src[0];
  7571. if (src0->type == dst->type) {
  7572. ggml_compute_forward_dup_bytes(params, dst);
  7573. return;
  7574. }
  7575. switch (src0->type) {
  7576. case GGML_TYPE_F16:
  7577. {
  7578. ggml_compute_forward_dup_f16(params, dst);
  7579. } break;
  7580. case GGML_TYPE_BF16:
  7581. {
  7582. ggml_compute_forward_dup_bf16(params, dst);
  7583. } break;
  7584. case GGML_TYPE_F32:
  7585. {
  7586. ggml_compute_forward_dup_f32(params, dst);
  7587. } break;
  7588. default:
  7589. {
  7590. GGML_ABORT("fatal error");
  7591. }
  7592. }
  7593. }
  7594. // ggml_compute_forward_add
  7595. static void ggml_compute_forward_add_f32(
  7596. const struct ggml_compute_params * params,
  7597. struct ggml_tensor * dst) {
  7598. const struct ggml_tensor * src0 = dst->src[0];
  7599. const struct ggml_tensor * src1 = dst->src[1];
  7600. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7601. const int ith = params->ith;
  7602. const int nth = params->nth;
  7603. const int nr = ggml_nrows(src0);
  7604. GGML_TENSOR_BINARY_OP_LOCALS
  7605. GGML_ASSERT( nb0 == sizeof(float));
  7606. GGML_ASSERT(nb00 == sizeof(float));
  7607. // rows per thread
  7608. const int dr = (nr + nth - 1)/nth;
  7609. // row range for this thread
  7610. const int ir0 = dr*ith;
  7611. const int ir1 = MIN(ir0 + dr, nr);
  7612. if (nb10 == sizeof(float)) {
  7613. for (int ir = ir0; ir < ir1; ++ir) {
  7614. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7615. const int64_t i03 = ir/(ne02*ne01);
  7616. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7617. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7618. const int64_t i13 = i03 % ne13;
  7619. const int64_t i12 = i02 % ne12;
  7620. const int64_t i11 = i01 % ne11;
  7621. const int64_t nr0 = ne00 / ne10;
  7622. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7623. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7624. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7625. for (int64_t r = 0; r < nr0; ++r) {
  7626. #ifdef GGML_USE_ACCELERATE
  7627. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7628. #else
  7629. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7630. #endif
  7631. }
  7632. }
  7633. } else {
  7634. // src1 is not contiguous
  7635. for (int ir = ir0; ir < ir1; ++ir) {
  7636. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7637. const int64_t i03 = ir/(ne02*ne01);
  7638. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7639. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7640. const int64_t i13 = i03 % ne13;
  7641. const int64_t i12 = i02 % ne12;
  7642. const int64_t i11 = i01 % ne11;
  7643. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7644. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7645. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7646. const int64_t i10 = i0 % ne10;
  7647. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7648. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7649. }
  7650. }
  7651. }
  7652. }
  7653. static void ggml_compute_forward_add_f16_f32(
  7654. const struct ggml_compute_params * params,
  7655. struct ggml_tensor * dst) {
  7656. const struct ggml_tensor * src0 = dst->src[0];
  7657. const struct ggml_tensor * src1 = dst->src[1];
  7658. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7659. const int ith = params->ith;
  7660. const int nth = params->nth;
  7661. const int nr = ggml_nrows(src0);
  7662. GGML_TENSOR_BINARY_OP_LOCALS
  7663. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7664. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7665. if (dst->type == GGML_TYPE_F32) {
  7666. GGML_ASSERT( nb0 == sizeof(float));
  7667. }
  7668. else {
  7669. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7670. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7671. }
  7672. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7673. // rows per thread
  7674. const int dr = (nr + nth - 1)/nth;
  7675. // row range for this thread
  7676. const int ir0 = dr*ith;
  7677. const int ir1 = MIN(ir0 + dr, nr);
  7678. if (nb10 == sizeof(float)) {
  7679. if (dst->type == GGML_TYPE_F16) {
  7680. for (int ir = ir0; ir < ir1; ++ir) {
  7681. // src0, src1 and dst are same shape => same indices
  7682. const int i3 = ir/(ne2*ne1);
  7683. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7684. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7685. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7686. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7687. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7688. for (int i = 0; i < ne0; i++) {
  7689. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7690. }
  7691. }
  7692. } else {
  7693. for (int ir = ir0; ir < ir1; ++ir) {
  7694. // src0, src1 and dst are same shape => same indices
  7695. const int i3 = ir/(ne2*ne1);
  7696. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7697. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7698. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7699. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7700. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7701. for (int i = 0; i < ne0; i++) {
  7702. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7703. }
  7704. }
  7705. }
  7706. }
  7707. else {
  7708. // src1 is not contiguous
  7709. GGML_ABORT("fatal error");
  7710. }
  7711. }
  7712. static void ggml_compute_forward_add_bf16_f32(
  7713. const struct ggml_compute_params * params,
  7714. struct ggml_tensor * dst) {
  7715. const struct ggml_tensor * src0 = dst->src[0];
  7716. const struct ggml_tensor * src1 = dst->src[1];
  7717. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7718. const int ith = params->ith;
  7719. const int nth = params->nth;
  7720. const int nr = ggml_nrows(src0);
  7721. GGML_TENSOR_BINARY_OP_LOCALS
  7722. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7723. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7724. if (dst->type == GGML_TYPE_F32) {
  7725. GGML_ASSERT( nb0 == sizeof(float));
  7726. }
  7727. else {
  7728. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7729. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7730. }
  7731. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7732. // rows per thread
  7733. const int dr = (nr + nth - 1)/nth;
  7734. // row range for this thread
  7735. const int ir0 = dr*ith;
  7736. const int ir1 = MIN(ir0 + dr, nr);
  7737. if (nb10 == sizeof(float)) {
  7738. if (dst->type == GGML_TYPE_BF16) {
  7739. for (int ir = ir0; ir < ir1; ++ir) {
  7740. // src0, src1 and dst are same shape => same indices
  7741. const int i3 = ir/(ne2*ne1);
  7742. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7743. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7744. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7745. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7746. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7747. for (int i = 0; i < ne0; i++) {
  7748. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7749. }
  7750. }
  7751. } else {
  7752. for (int ir = ir0; ir < ir1; ++ir) {
  7753. // src0, src1 and dst are same shape => same indices
  7754. const int i3 = ir/(ne2*ne1);
  7755. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7756. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7757. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7758. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7759. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7760. for (int i = 0; i < ne0; i++) {
  7761. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7762. }
  7763. }
  7764. }
  7765. }
  7766. else {
  7767. // src1 is not contiguous
  7768. GGML_ABORT("fatal error");
  7769. }
  7770. }
  7771. static void ggml_compute_forward_add_f16_f16(
  7772. const struct ggml_compute_params * params,
  7773. struct ggml_tensor * dst) {
  7774. const struct ggml_tensor * src0 = dst->src[0];
  7775. const struct ggml_tensor * src1 = dst->src[1];
  7776. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7777. const int ith = params->ith;
  7778. const int nth = params->nth;
  7779. const int nr = ggml_nrows(src0);
  7780. GGML_TENSOR_BINARY_OP_LOCALS
  7781. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7782. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7783. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7784. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7785. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7786. // rows per thread
  7787. const int dr = (nr + nth - 1)/nth;
  7788. // row range for this thread
  7789. const int ir0 = dr*ith;
  7790. const int ir1 = MIN(ir0 + dr, nr);
  7791. if (nb10 == sizeof(ggml_fp16_t)) {
  7792. for (int ir = ir0; ir < ir1; ++ir) {
  7793. // src0, src1 and dst are same shape => same indices
  7794. const int i3 = ir/(ne2*ne1);
  7795. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7796. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7797. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7798. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7799. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7800. for (int i = 0; i < ne0; i++) {
  7801. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7802. }
  7803. }
  7804. }
  7805. else {
  7806. // src1 is not contiguous
  7807. GGML_ABORT("fatal error");
  7808. }
  7809. }
  7810. static void ggml_compute_forward_add_bf16_bf16(
  7811. const struct ggml_compute_params * params,
  7812. struct ggml_tensor * dst) {
  7813. const struct ggml_tensor * src0 = dst->src[0];
  7814. const struct ggml_tensor * src1 = dst->src[1];
  7815. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7816. const int ith = params->ith;
  7817. const int nth = params->nth;
  7818. const int nr = ggml_nrows(src0);
  7819. GGML_TENSOR_BINARY_OP_LOCALS
  7820. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7821. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7822. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7823. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7824. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7825. // rows per thread
  7826. const int dr = (nr + nth - 1)/nth;
  7827. // row range for this thread
  7828. const int ir0 = dr*ith;
  7829. const int ir1 = MIN(ir0 + dr, nr);
  7830. if (nb10 == sizeof(ggml_bf16_t)) {
  7831. for (int ir = ir0; ir < ir1; ++ir) {
  7832. // src0, src1 and dst are same shape => same indices
  7833. const int i3 = ir/(ne2*ne1);
  7834. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7835. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7836. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7837. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7838. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7839. for (int i = 0; i < ne0; i++) {
  7840. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7841. }
  7842. }
  7843. }
  7844. else {
  7845. // src1 is not contiguous
  7846. GGML_ABORT("fatal error");
  7847. }
  7848. }
  7849. static void ggml_compute_forward_add_q_f32(
  7850. const struct ggml_compute_params * params,
  7851. struct ggml_tensor * dst) {
  7852. const struct ggml_tensor * src0 = dst->src[0];
  7853. const struct ggml_tensor * src1 = dst->src[1];
  7854. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7855. const int nr = ggml_nrows(src0);
  7856. GGML_TENSOR_BINARY_OP_LOCALS
  7857. const int ith = params->ith;
  7858. const int nth = params->nth;
  7859. const enum ggml_type type = src0->type;
  7860. const enum ggml_type dtype = dst->type;
  7861. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7862. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7863. // we don't support permuted src0 or src1
  7864. GGML_ASSERT(nb00 == ggml_type_size(type));
  7865. GGML_ASSERT(nb10 == sizeof(float));
  7866. // dst cannot be transposed or permuted
  7867. GGML_ASSERT(nb0 <= nb1);
  7868. GGML_ASSERT(nb1 <= nb2);
  7869. GGML_ASSERT(nb2 <= nb3);
  7870. GGML_ASSERT(ggml_is_quantized(src0->type));
  7871. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7872. // rows per thread
  7873. const int dr = (nr + nth - 1)/nth;
  7874. // row range for this thread
  7875. const int ir0 = dr*ith;
  7876. const int ir1 = MIN(ir0 + dr, nr);
  7877. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7878. for (int ir = ir0; ir < ir1; ++ir) {
  7879. // src0 indices
  7880. const int i03 = ir/(ne02*ne01);
  7881. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7882. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7883. // src1 and dst are same shape as src0 => same indices
  7884. const int i13 = i03;
  7885. const int i12 = i02;
  7886. const int i11 = i01;
  7887. const int i3 = i03;
  7888. const int i2 = i02;
  7889. const int i1 = i01;
  7890. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7891. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7892. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7893. assert(ne00 % 32 == 0);
  7894. // unquantize row from src0 to temp buffer
  7895. dequantize_row_q(src0_row, wdata, ne00);
  7896. // add src1
  7897. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7898. // quantize row to dst
  7899. if (quantize_row_q != NULL) {
  7900. quantize_row_q(wdata, dst_row, ne00);
  7901. } else {
  7902. memcpy(dst_row, wdata, ne0*nb0);
  7903. }
  7904. }
  7905. }
  7906. static void ggml_compute_forward_add(
  7907. const struct ggml_compute_params * params,
  7908. struct ggml_tensor * dst) {
  7909. const struct ggml_tensor * src0 = dst->src[0];
  7910. const struct ggml_tensor * src1 = dst->src[1];
  7911. switch (src0->type) {
  7912. case GGML_TYPE_F32:
  7913. {
  7914. if (src1->type == GGML_TYPE_F32) {
  7915. ggml_compute_forward_add_f32(params, dst);
  7916. }
  7917. else {
  7918. GGML_ABORT("fatal error");
  7919. }
  7920. } break;
  7921. case GGML_TYPE_F16:
  7922. {
  7923. if (src1->type == GGML_TYPE_F16) {
  7924. ggml_compute_forward_add_f16_f16(params, dst);
  7925. }
  7926. else if (src1->type == GGML_TYPE_F32) {
  7927. ggml_compute_forward_add_f16_f32(params, dst);
  7928. }
  7929. else {
  7930. GGML_ABORT("fatal error");
  7931. }
  7932. } break;
  7933. case GGML_TYPE_BF16:
  7934. {
  7935. if (src1->type == GGML_TYPE_BF16) {
  7936. ggml_compute_forward_add_bf16_bf16(params, dst);
  7937. }
  7938. else if (src1->type == GGML_TYPE_F32) {
  7939. ggml_compute_forward_add_bf16_f32(params, dst);
  7940. }
  7941. else {
  7942. GGML_ABORT("fatal error");
  7943. }
  7944. } break;
  7945. case GGML_TYPE_Q4_0:
  7946. case GGML_TYPE_Q4_1:
  7947. case GGML_TYPE_Q5_0:
  7948. case GGML_TYPE_Q5_1:
  7949. case GGML_TYPE_Q8_0:
  7950. case GGML_TYPE_Q2_K:
  7951. case GGML_TYPE_Q3_K:
  7952. case GGML_TYPE_Q4_K:
  7953. case GGML_TYPE_Q5_K:
  7954. case GGML_TYPE_Q6_K:
  7955. case GGML_TYPE_IQ2_XXS:
  7956. case GGML_TYPE_IQ2_XS:
  7957. case GGML_TYPE_IQ3_XXS:
  7958. case GGML_TYPE_IQ1_S:
  7959. case GGML_TYPE_IQ1_M:
  7960. case GGML_TYPE_IQ4_NL:
  7961. case GGML_TYPE_IQ4_XS:
  7962. case GGML_TYPE_IQ3_S:
  7963. case GGML_TYPE_IQ2_S:
  7964. case GGML_TYPE_Q4_0_4_4:
  7965. case GGML_TYPE_Q4_0_4_8:
  7966. case GGML_TYPE_Q4_0_8_8:
  7967. {
  7968. ggml_compute_forward_add_q_f32(params, dst);
  7969. } break;
  7970. default:
  7971. {
  7972. GGML_ABORT("fatal error");
  7973. }
  7974. }
  7975. }
  7976. // ggml_compute_forward_add1
  7977. static void ggml_compute_forward_add1_f32(
  7978. const struct ggml_compute_params * params,
  7979. struct ggml_tensor * dst) {
  7980. const struct ggml_tensor * src0 = dst->src[0];
  7981. const struct ggml_tensor * src1 = dst->src[1];
  7982. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7983. GGML_ASSERT(ggml_is_scalar(src1));
  7984. const int ith = params->ith;
  7985. const int nth = params->nth;
  7986. const int nr = ggml_nrows(src0);
  7987. GGML_TENSOR_UNARY_OP_LOCALS
  7988. GGML_ASSERT( nb0 == sizeof(float));
  7989. GGML_ASSERT(nb00 == sizeof(float));
  7990. // rows per thread
  7991. const int dr = (nr + nth - 1)/nth;
  7992. // row range for this thread
  7993. const int ir0 = dr*ith;
  7994. const int ir1 = MIN(ir0 + dr, nr);
  7995. for (int ir = ir0; ir < ir1; ++ir) {
  7996. // src0 and dst are same shape => same indices
  7997. const int i3 = ir/(ne2*ne1);
  7998. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7999. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8000. #ifdef GGML_USE_ACCELERATE
  8001. UNUSED(ggml_vec_add1_f32);
  8002. vDSP_vadd(
  8003. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8004. (float *) ((char *) src1->data), 0,
  8005. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8006. ne0);
  8007. #else
  8008. ggml_vec_add1_f32(ne0,
  8009. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8010. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8011. *(float *) src1->data);
  8012. #endif
  8013. }
  8014. }
  8015. static void ggml_compute_forward_add1_f16_f32(
  8016. const struct ggml_compute_params * params,
  8017. struct ggml_tensor * dst) {
  8018. const struct ggml_tensor * src0 = dst->src[0];
  8019. const struct ggml_tensor * src1 = dst->src[1];
  8020. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8021. GGML_ASSERT(ggml_is_scalar(src1));
  8022. // scalar to add
  8023. const float v = *(float *) src1->data;
  8024. const int ith = params->ith;
  8025. const int nth = params->nth;
  8026. const int nr = ggml_nrows(src0);
  8027. GGML_TENSOR_UNARY_OP_LOCALS
  8028. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8029. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8030. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8031. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8032. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8033. // rows per thread
  8034. const int dr = (nr + nth - 1)/nth;
  8035. // row range for this thread
  8036. const int ir0 = dr*ith;
  8037. const int ir1 = MIN(ir0 + dr, nr);
  8038. for (int ir = ir0; ir < ir1; ++ir) {
  8039. // src0 and dst are same shape => same indices
  8040. const int i3 = ir/(ne2*ne1);
  8041. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8042. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8043. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8044. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8045. for (int i = 0; i < ne0; i++) {
  8046. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8047. }
  8048. }
  8049. }
  8050. static void ggml_compute_forward_add1_f16_f16(
  8051. const struct ggml_compute_params * params,
  8052. struct ggml_tensor * dst) {
  8053. const struct ggml_tensor * src0 = dst->src[0];
  8054. const struct ggml_tensor * src1 = dst->src[1];
  8055. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8056. GGML_ASSERT(ggml_is_scalar(src1));
  8057. // scalar to add
  8058. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  8059. const int ith = params->ith;
  8060. const int nth = params->nth;
  8061. const int nr = ggml_nrows(src0);
  8062. GGML_TENSOR_UNARY_OP_LOCALS
  8063. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  8064. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  8065. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  8066. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  8067. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8068. // rows per thread
  8069. const int dr = (nr + nth - 1)/nth;
  8070. // row range for this thread
  8071. const int ir0 = dr*ith;
  8072. const int ir1 = MIN(ir0 + dr, nr);
  8073. for (int ir = ir0; ir < ir1; ++ir) {
  8074. // src0 and dst are same shape => same indices
  8075. const int i3 = ir/(ne2*ne1);
  8076. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8077. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8078. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8079. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8080. for (int i = 0; i < ne0; i++) {
  8081. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  8082. }
  8083. }
  8084. }
  8085. static void ggml_compute_forward_add1_q_f32(
  8086. const struct ggml_compute_params * params,
  8087. struct ggml_tensor * dst) {
  8088. const struct ggml_tensor * src0 = dst->src[0];
  8089. const struct ggml_tensor * src1 = dst->src[1];
  8090. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8091. GGML_ASSERT(ggml_is_scalar(src1));
  8092. // scalar to add
  8093. const float v = *(float *) src1->data;
  8094. const int ith = params->ith;
  8095. const int nth = params->nth;
  8096. const int nr = ggml_nrows(src0);
  8097. GGML_TENSOR_UNARY_OP_LOCALS
  8098. const enum ggml_type type = src0->type;
  8099. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  8100. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  8101. // we don't support permuted src0
  8102. GGML_ASSERT(nb00 == ggml_type_size(type));
  8103. // dst cannot be transposed or permuted
  8104. GGML_ASSERT(nb0 <= nb1);
  8105. GGML_ASSERT(nb1 <= nb2);
  8106. GGML_ASSERT(nb2 <= nb3);
  8107. GGML_ASSERT(ggml_is_quantized(src0->type));
  8108. GGML_ASSERT(dst->type == src0->type);
  8109. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8110. // rows per thread
  8111. const int dr = (nr + nth - 1)/nth;
  8112. // row range for this thread
  8113. const int ir0 = dr*ith;
  8114. const int ir1 = MIN(ir0 + dr, nr);
  8115. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  8116. for (int ir = ir0; ir < ir1; ++ir) {
  8117. // src0 and dst are same shape => same indices
  8118. const int i3 = ir/(ne2*ne1);
  8119. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8120. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8121. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  8122. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  8123. assert(ne0 % 32 == 0);
  8124. // unquantize row from src0 to temp buffer
  8125. dequantize_row_q(src0_row, wdata, ne0);
  8126. // add src1
  8127. ggml_vec_acc1_f32(ne0, wdata, v);
  8128. // quantize row to dst
  8129. quantize_row_q(wdata, dst_row, ne0);
  8130. }
  8131. }
  8132. static void ggml_compute_forward_add1_bf16_f32(
  8133. const struct ggml_compute_params * params,
  8134. struct ggml_tensor * dst) {
  8135. const struct ggml_tensor * src0 = dst->src[0];
  8136. const struct ggml_tensor * src1 = dst->src[1];
  8137. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8138. GGML_ASSERT(ggml_is_scalar(src1));
  8139. // scalar to add
  8140. const float v = *(float *) src1->data;
  8141. const int ith = params->ith;
  8142. const int nth = params->nth;
  8143. const int nr = ggml_nrows(src0);
  8144. GGML_TENSOR_UNARY_OP_LOCALS
  8145. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8146. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8147. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8148. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8149. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8150. // rows per thread
  8151. const int dr = (nr + nth - 1)/nth;
  8152. // row range for this thread
  8153. const int ir0 = dr*ith;
  8154. const int ir1 = MIN(ir0 + dr, nr);
  8155. for (int ir = ir0; ir < ir1; ++ir) {
  8156. // src0 and dst are same shape => same indices
  8157. const int i3 = ir/(ne2*ne1);
  8158. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8159. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8160. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8161. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8162. for (int i = 0; i < ne0; i++) {
  8163. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8164. }
  8165. }
  8166. }
  8167. static void ggml_compute_forward_add1_bf16_bf16(
  8168. const struct ggml_compute_params * params,
  8169. struct ggml_tensor * dst) {
  8170. const struct ggml_tensor * src0 = dst->src[0];
  8171. const struct ggml_tensor * src1 = dst->src[1];
  8172. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8173. GGML_ASSERT(ggml_is_scalar(src1));
  8174. // scalar to add
  8175. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8176. const int ith = params->ith;
  8177. const int nth = params->nth;
  8178. const int nr = ggml_nrows(src0);
  8179. GGML_TENSOR_UNARY_OP_LOCALS
  8180. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8181. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8182. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8183. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8184. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8185. // rows per thread
  8186. const int dr = (nr + nth - 1)/nth;
  8187. // row range for this thread
  8188. const int ir0 = dr*ith;
  8189. const int ir1 = MIN(ir0 + dr, nr);
  8190. for (int ir = ir0; ir < ir1; ++ir) {
  8191. // src0 and dst are same shape => same indices
  8192. const int i3 = ir/(ne2*ne1);
  8193. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8194. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8195. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8196. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8197. for (int i = 0; i < ne0; i++) {
  8198. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8199. }
  8200. }
  8201. }
  8202. static void ggml_compute_forward_add1(
  8203. const struct ggml_compute_params * params,
  8204. struct ggml_tensor * dst) {
  8205. const struct ggml_tensor * src0 = dst->src[0];
  8206. const struct ggml_tensor * src1 = dst->src[1];
  8207. switch (src0->type) {
  8208. case GGML_TYPE_F32:
  8209. {
  8210. ggml_compute_forward_add1_f32(params, dst);
  8211. } break;
  8212. case GGML_TYPE_F16:
  8213. {
  8214. if (src1->type == GGML_TYPE_F16) {
  8215. ggml_compute_forward_add1_f16_f16(params, dst);
  8216. }
  8217. else if (src1->type == GGML_TYPE_F32) {
  8218. ggml_compute_forward_add1_f16_f32(params, dst);
  8219. }
  8220. else {
  8221. GGML_ABORT("fatal error");
  8222. }
  8223. } break;
  8224. case GGML_TYPE_BF16:
  8225. {
  8226. if (src1->type == GGML_TYPE_BF16) {
  8227. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8228. }
  8229. else if (src1->type == GGML_TYPE_F32) {
  8230. ggml_compute_forward_add1_bf16_f32(params, dst);
  8231. }
  8232. else {
  8233. GGML_ABORT("fatal error");
  8234. }
  8235. } break;
  8236. case GGML_TYPE_Q4_0:
  8237. case GGML_TYPE_Q4_1:
  8238. case GGML_TYPE_Q5_0:
  8239. case GGML_TYPE_Q5_1:
  8240. case GGML_TYPE_Q8_0:
  8241. case GGML_TYPE_Q8_1:
  8242. case GGML_TYPE_Q2_K:
  8243. case GGML_TYPE_Q3_K:
  8244. case GGML_TYPE_Q4_K:
  8245. case GGML_TYPE_Q5_K:
  8246. case GGML_TYPE_Q6_K:
  8247. case GGML_TYPE_IQ2_XXS:
  8248. case GGML_TYPE_IQ2_XS:
  8249. case GGML_TYPE_IQ3_XXS:
  8250. case GGML_TYPE_IQ1_S:
  8251. case GGML_TYPE_IQ1_M:
  8252. case GGML_TYPE_IQ4_NL:
  8253. case GGML_TYPE_IQ4_XS:
  8254. case GGML_TYPE_IQ3_S:
  8255. case GGML_TYPE_IQ2_S:
  8256. case GGML_TYPE_Q4_0_4_4:
  8257. case GGML_TYPE_Q4_0_4_8:
  8258. case GGML_TYPE_Q4_0_8_8:
  8259. {
  8260. ggml_compute_forward_add1_q_f32(params, dst);
  8261. } break;
  8262. default:
  8263. {
  8264. GGML_ABORT("fatal error");
  8265. }
  8266. }
  8267. }
  8268. // ggml_compute_forward_acc
  8269. static void ggml_compute_forward_acc_f32(
  8270. const struct ggml_compute_params * params,
  8271. struct ggml_tensor * dst) {
  8272. const struct ggml_tensor * src0 = dst->src[0];
  8273. const struct ggml_tensor * src1 = dst->src[1];
  8274. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8275. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8276. // view src0 and dst with these strides and data offset inbytes during acc
  8277. // nb0 is implicitly element_size because src0 and dst are contiguous
  8278. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8279. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8280. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8281. size_t offset = ((int32_t *) dst->op_params)[3];
  8282. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8283. if (!inplace) {
  8284. if (params->ith == 0) {
  8285. // memcpy needs to be synchronized across threads to avoid race conditions.
  8286. // => do it in INIT phase
  8287. memcpy(
  8288. ((char *) dst->data),
  8289. ((char *) src0->data),
  8290. ggml_nbytes(dst));
  8291. }
  8292. ggml_barrier(params->shared);
  8293. }
  8294. const int ith = params->ith;
  8295. const int nth = params->nth;
  8296. const int nr = ggml_nrows(src1);
  8297. const int nc = src1->ne[0];
  8298. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8299. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8300. // src0 and dst as viewed during acc
  8301. const size_t nb0 = ggml_element_size(src0);
  8302. const size_t nb00 = nb0;
  8303. const size_t nb01 = nb1;
  8304. const size_t nb02 = nb2;
  8305. const size_t nb03 = nb3;
  8306. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8307. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8308. GGML_ASSERT(nb10 == sizeof(float));
  8309. // rows per thread
  8310. const int dr = (nr + nth - 1)/nth;
  8311. // row range for this thread
  8312. const int ir0 = dr*ith;
  8313. const int ir1 = MIN(ir0 + dr, nr);
  8314. for (int ir = ir0; ir < ir1; ++ir) {
  8315. // src0 and dst are viewed with shape of src1 and offset
  8316. // => same indices
  8317. const int i3 = ir/(ne12*ne11);
  8318. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8319. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8320. #ifdef GGML_USE_ACCELERATE
  8321. vDSP_vadd(
  8322. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8323. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8324. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8325. #else
  8326. ggml_vec_add_f32(nc,
  8327. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8328. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8329. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8330. #endif
  8331. }
  8332. }
  8333. static void ggml_compute_forward_acc(
  8334. const struct ggml_compute_params * params,
  8335. struct ggml_tensor * dst) {
  8336. const struct ggml_tensor * src0 = dst->src[0];
  8337. switch (src0->type) {
  8338. case GGML_TYPE_F32:
  8339. {
  8340. ggml_compute_forward_acc_f32(params, dst);
  8341. } break;
  8342. case GGML_TYPE_F16:
  8343. case GGML_TYPE_BF16:
  8344. case GGML_TYPE_Q4_0:
  8345. case GGML_TYPE_Q4_1:
  8346. case GGML_TYPE_Q5_0:
  8347. case GGML_TYPE_Q5_1:
  8348. case GGML_TYPE_Q8_0:
  8349. case GGML_TYPE_Q8_1:
  8350. case GGML_TYPE_Q2_K:
  8351. case GGML_TYPE_Q3_K:
  8352. case GGML_TYPE_Q4_K:
  8353. case GGML_TYPE_Q5_K:
  8354. case GGML_TYPE_Q6_K:
  8355. case GGML_TYPE_IQ2_XXS:
  8356. case GGML_TYPE_IQ2_XS:
  8357. case GGML_TYPE_IQ3_XXS:
  8358. case GGML_TYPE_IQ1_S:
  8359. case GGML_TYPE_IQ1_M:
  8360. case GGML_TYPE_IQ4_NL:
  8361. case GGML_TYPE_IQ4_XS:
  8362. case GGML_TYPE_IQ3_S:
  8363. case GGML_TYPE_IQ2_S:
  8364. case GGML_TYPE_Q4_0_4_4:
  8365. case GGML_TYPE_Q4_0_4_8:
  8366. case GGML_TYPE_Q4_0_8_8:
  8367. default:
  8368. {
  8369. GGML_ABORT("fatal error");
  8370. }
  8371. }
  8372. }
  8373. // ggml_compute_forward_sub
  8374. static void ggml_compute_forward_sub_f32(
  8375. const struct ggml_compute_params * params,
  8376. struct ggml_tensor * dst) {
  8377. const struct ggml_tensor * src0 = dst->src[0];
  8378. const struct ggml_tensor * src1 = dst->src[1];
  8379. if (params->ith != 0) {
  8380. return;
  8381. }
  8382. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8383. const int nr = ggml_nrows(src0);
  8384. GGML_TENSOR_BINARY_OP_LOCALS
  8385. GGML_ASSERT( nb0 == sizeof(float));
  8386. GGML_ASSERT(nb00 == sizeof(float));
  8387. if (nb10 == sizeof(float)) {
  8388. for (int ir = 0; ir < nr; ++ir) {
  8389. // src0, src1 and dst are same shape => same indices
  8390. const int i3 = ir/(ne2*ne1);
  8391. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8392. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8393. #ifdef GGML_USE_ACCELERATE
  8394. vDSP_vsub(
  8395. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8396. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8397. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8398. ne0);
  8399. #else
  8400. ggml_vec_sub_f32(ne0,
  8401. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8402. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8403. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8404. #endif
  8405. // }
  8406. // }
  8407. }
  8408. } else {
  8409. // src1 is not contiguous
  8410. for (int ir = 0; ir < nr; ++ir) {
  8411. // src0, src1 and dst are same shape => same indices
  8412. const int i3 = ir/(ne2*ne1);
  8413. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8414. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8415. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8416. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8417. for (int i0 = 0; i0 < ne0; i0++) {
  8418. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8419. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8420. }
  8421. }
  8422. }
  8423. }
  8424. static void ggml_compute_forward_sub(
  8425. const struct ggml_compute_params * params,
  8426. struct ggml_tensor * dst) {
  8427. const struct ggml_tensor * src0 = dst->src[0];
  8428. switch (src0->type) {
  8429. case GGML_TYPE_F32:
  8430. {
  8431. ggml_compute_forward_sub_f32(params, dst);
  8432. } break;
  8433. default:
  8434. {
  8435. GGML_ABORT("fatal error");
  8436. }
  8437. }
  8438. }
  8439. // ggml_compute_forward_mul
  8440. static void ggml_compute_forward_mul_f32(
  8441. const struct ggml_compute_params * params,
  8442. struct ggml_tensor * dst) {
  8443. const struct ggml_tensor * src0 = dst->src[0];
  8444. const struct ggml_tensor * src1 = dst->src[1];
  8445. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8446. const int ith = params->ith;
  8447. const int nth = params->nth;
  8448. const int64_t nr = ggml_nrows(src0);
  8449. GGML_TENSOR_BINARY_OP_LOCALS
  8450. GGML_ASSERT( nb0 == sizeof(float));
  8451. GGML_ASSERT(nb00 == sizeof(float));
  8452. if (nb10 == sizeof(float)) {
  8453. for (int64_t ir = ith; ir < nr; ir += nth) {
  8454. // src0 and dst are same shape => same indices
  8455. const int64_t i03 = ir/(ne02*ne01);
  8456. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8457. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8458. const int64_t i13 = i03 % ne13;
  8459. const int64_t i12 = i02 % ne12;
  8460. const int64_t i11 = i01 % ne11;
  8461. const int64_t nr0 = ne00 / ne10;
  8462. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8463. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8464. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8465. for (int64_t r = 0 ; r < nr0; ++r) {
  8466. #ifdef GGML_USE_ACCELERATE
  8467. UNUSED(ggml_vec_mul_f32);
  8468. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8469. #else
  8470. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8471. #endif
  8472. }
  8473. }
  8474. } else {
  8475. // src1 is not contiguous
  8476. for (int64_t ir = ith; ir < nr; ir += nth) {
  8477. // src0 and dst are same shape => same indices
  8478. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8479. const int64_t i03 = ir/(ne02*ne01);
  8480. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8481. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8482. const int64_t i13 = i03 % ne13;
  8483. const int64_t i12 = i02 % ne12;
  8484. const int64_t i11 = i01 % ne11;
  8485. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8486. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8487. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8488. const int64_t i10 = i0 % ne10;
  8489. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8490. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8491. }
  8492. }
  8493. }
  8494. }
  8495. static void ggml_compute_forward_mul(
  8496. const struct ggml_compute_params * params,
  8497. struct ggml_tensor * dst) {
  8498. const struct ggml_tensor * src0 = dst->src[0];
  8499. const struct ggml_tensor * src1 = dst->src[1];
  8500. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8501. switch (src0->type) {
  8502. case GGML_TYPE_F32:
  8503. {
  8504. ggml_compute_forward_mul_f32(params, dst);
  8505. } break;
  8506. default:
  8507. {
  8508. GGML_ABORT("fatal error");
  8509. }
  8510. }
  8511. }
  8512. // ggml_compute_forward_div
  8513. static void ggml_compute_forward_div_f32(
  8514. const struct ggml_compute_params * params,
  8515. struct ggml_tensor * dst) {
  8516. const struct ggml_tensor * src0 = dst->src[0];
  8517. const struct ggml_tensor * src1 = dst->src[1];
  8518. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8519. const int ith = params->ith;
  8520. const int nth = params->nth;
  8521. const int64_t nr = ggml_nrows(src0);
  8522. GGML_TENSOR_BINARY_OP_LOCALS
  8523. GGML_ASSERT( nb0 == sizeof(float));
  8524. GGML_ASSERT(nb00 == sizeof(float));
  8525. if (nb10 == sizeof(float)) {
  8526. for (int64_t ir = ith; ir < nr; ir += nth) {
  8527. // src0 and dst are same shape => same indices
  8528. const int64_t i03 = ir/(ne02*ne01);
  8529. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8530. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8531. const int64_t i13 = i03 % ne13;
  8532. const int64_t i12 = i02 % ne12;
  8533. const int64_t i11 = i01 % ne11;
  8534. const int64_t nr0 = ne00 / ne10;
  8535. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8536. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8537. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8538. for (int64_t r = 0; r < nr0; ++r) {
  8539. #ifdef GGML_USE_ACCELERATE
  8540. UNUSED(ggml_vec_div_f32);
  8541. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8542. #else
  8543. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8544. #endif
  8545. }
  8546. }
  8547. } else {
  8548. // src1 is not contiguous
  8549. for (int64_t ir = ith; ir < nr; ir += nth) {
  8550. // src0 and dst are same shape => same indices
  8551. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8552. const int64_t i03 = ir/(ne02*ne01);
  8553. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8554. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8555. const int64_t i13 = i03 % ne13;
  8556. const int64_t i12 = i02 % ne12;
  8557. const int64_t i11 = i01 % ne11;
  8558. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8559. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8560. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8561. const int64_t i10 = i0 % ne10;
  8562. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8563. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8564. }
  8565. }
  8566. }
  8567. }
  8568. static void ggml_compute_forward_div(
  8569. const struct ggml_compute_params * params,
  8570. struct ggml_tensor * dst) {
  8571. const struct ggml_tensor * src0 = dst->src[0];
  8572. switch (src0->type) {
  8573. case GGML_TYPE_F32:
  8574. {
  8575. ggml_compute_forward_div_f32(params, dst);
  8576. } break;
  8577. default:
  8578. {
  8579. GGML_ABORT("fatal error");
  8580. }
  8581. }
  8582. }
  8583. // ggml_compute_forward_sqr
  8584. static void ggml_compute_forward_sqr_f32(
  8585. const struct ggml_compute_params * params,
  8586. struct ggml_tensor * dst) {
  8587. const struct ggml_tensor * src0 = dst->src[0];
  8588. if (params->ith != 0) {
  8589. return;
  8590. }
  8591. assert(ggml_are_same_shape(src0, dst));
  8592. const int n = ggml_nrows(src0);
  8593. const int nc = src0->ne[0];
  8594. assert( dst->nb[0] == sizeof(float));
  8595. assert(src0->nb[0] == sizeof(float));
  8596. for (int i = 0; i < n; i++) {
  8597. ggml_vec_sqr_f32(nc,
  8598. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8599. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8600. }
  8601. }
  8602. static void ggml_compute_forward_sqr(
  8603. const struct ggml_compute_params * params,
  8604. struct ggml_tensor * dst) {
  8605. const struct ggml_tensor * src0 = dst->src[0];
  8606. switch (src0->type) {
  8607. case GGML_TYPE_F32:
  8608. {
  8609. ggml_compute_forward_sqr_f32(params, dst);
  8610. } break;
  8611. default:
  8612. {
  8613. GGML_ABORT("fatal error");
  8614. }
  8615. }
  8616. }
  8617. // ggml_compute_forward_sqrt
  8618. static void ggml_compute_forward_sqrt_f32(
  8619. const struct ggml_compute_params * params,
  8620. struct ggml_tensor * dst) {
  8621. const struct ggml_tensor * src0 = dst->src[0];
  8622. if (params->ith != 0) {
  8623. return;
  8624. }
  8625. assert(ggml_are_same_shape(src0, dst));
  8626. const int n = ggml_nrows(src0);
  8627. const int nc = src0->ne[0];
  8628. assert( dst->nb[0] == sizeof(float));
  8629. assert(src0->nb[0] == sizeof(float));
  8630. for (int i = 0; i < n; i++) {
  8631. ggml_vec_sqrt_f32(nc,
  8632. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8633. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8634. }
  8635. }
  8636. static void ggml_compute_forward_sqrt(
  8637. const struct ggml_compute_params * params,
  8638. struct ggml_tensor * dst) {
  8639. const struct ggml_tensor * src0 = dst->src[0];
  8640. switch (src0->type) {
  8641. case GGML_TYPE_F32:
  8642. {
  8643. ggml_compute_forward_sqrt_f32(params, dst);
  8644. } break;
  8645. default:
  8646. {
  8647. GGML_ABORT("fatal error");
  8648. }
  8649. }
  8650. }
  8651. // ggml_compute_forward_log
  8652. static void ggml_compute_forward_log_f32(
  8653. const struct ggml_compute_params * params,
  8654. struct ggml_tensor * dst) {
  8655. const struct ggml_tensor * src0 = dst->src[0];
  8656. if (params->ith != 0) {
  8657. return;
  8658. }
  8659. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8660. const int n = ggml_nrows(src0);
  8661. const int nc = src0->ne[0];
  8662. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8663. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8664. for (int i = 0; i < n; i++) {
  8665. ggml_vec_log_f32(nc,
  8666. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8667. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8668. }
  8669. }
  8670. static void ggml_compute_forward_log(
  8671. const struct ggml_compute_params * params,
  8672. struct ggml_tensor * dst) {
  8673. const struct ggml_tensor * src0 = dst->src[0];
  8674. switch (src0->type) {
  8675. case GGML_TYPE_F32:
  8676. {
  8677. ggml_compute_forward_log_f32(params, dst);
  8678. } break;
  8679. default:
  8680. {
  8681. GGML_ABORT("fatal error");
  8682. }
  8683. }
  8684. }
  8685. // ggml_compute_forward_sum
  8686. static void ggml_compute_forward_sum_f32(
  8687. const struct ggml_compute_params * params,
  8688. struct ggml_tensor * dst) {
  8689. const struct ggml_tensor * src0 = dst->src[0];
  8690. if (params->ith != 0) {
  8691. return;
  8692. }
  8693. assert(ggml_is_scalar(dst));
  8694. assert(ggml_is_scalar(dst));
  8695. assert(src0->nb[0] == sizeof(float));
  8696. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8697. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8698. ggml_float sum = 0;
  8699. ggml_float row_sum = 0;
  8700. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8701. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8702. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8703. ggml_vec_sum_f32_ggf(ne00,
  8704. &row_sum,
  8705. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8706. sum += row_sum;
  8707. }
  8708. }
  8709. }
  8710. ((float *) dst->data)[0] = sum;
  8711. }
  8712. static void ggml_compute_forward_sum_f16(
  8713. const struct ggml_compute_params * params,
  8714. struct ggml_tensor * dst) {
  8715. const struct ggml_tensor * src0 = dst->src[0];
  8716. if (params->ith != 0) {
  8717. return;
  8718. }
  8719. assert(ggml_is_scalar(dst));
  8720. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8721. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8722. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8723. float sum = 0;
  8724. float row_sum = 0;
  8725. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8726. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8727. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8728. ggml_vec_sum_f16_ggf(ne00,
  8729. &row_sum,
  8730. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8731. sum += row_sum;
  8732. }
  8733. }
  8734. }
  8735. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8736. }
  8737. static void ggml_compute_forward_sum_bf16(
  8738. const struct ggml_compute_params * params,
  8739. struct ggml_tensor * dst) {
  8740. const struct ggml_tensor * src0 = dst->src[0];
  8741. if (params->ith != 0) {
  8742. return;
  8743. }
  8744. assert(ggml_is_scalar(dst));
  8745. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8746. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8747. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8748. float sum = 0;
  8749. float row_sum = 0;
  8750. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8751. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8752. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8753. ggml_vec_sum_bf16_ggf(ne00,
  8754. &row_sum,
  8755. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8756. sum += row_sum;
  8757. }
  8758. }
  8759. }
  8760. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8761. }
  8762. static void ggml_compute_forward_sum(
  8763. const struct ggml_compute_params * params,
  8764. struct ggml_tensor * dst) {
  8765. const struct ggml_tensor * src0 = dst->src[0];
  8766. switch (src0->type) {
  8767. case GGML_TYPE_F32:
  8768. {
  8769. ggml_compute_forward_sum_f32(params, dst);
  8770. } break;
  8771. case GGML_TYPE_F16:
  8772. {
  8773. ggml_compute_forward_sum_f16(params, dst);
  8774. } break;
  8775. case GGML_TYPE_BF16:
  8776. {
  8777. ggml_compute_forward_sum_bf16(params, dst);
  8778. } break;
  8779. default:
  8780. {
  8781. GGML_ABORT("fatal error");
  8782. }
  8783. }
  8784. }
  8785. // ggml_compute_forward_sum_rows
  8786. static void ggml_compute_forward_sum_rows_f32(
  8787. const struct ggml_compute_params * params,
  8788. struct ggml_tensor * dst) {
  8789. const struct ggml_tensor * src0 = dst->src[0];
  8790. if (params->ith != 0) {
  8791. return;
  8792. }
  8793. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8794. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8795. GGML_TENSOR_UNARY_OP_LOCALS
  8796. GGML_ASSERT(ne0 == 1);
  8797. GGML_ASSERT(ne1 == ne01);
  8798. GGML_ASSERT(ne2 == ne02);
  8799. GGML_ASSERT(ne3 == ne03);
  8800. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8801. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8802. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8803. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8804. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8805. float row_sum = 0;
  8806. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8807. dst_row[0] = row_sum;
  8808. }
  8809. }
  8810. }
  8811. }
  8812. static void ggml_compute_forward_sum_rows(
  8813. const struct ggml_compute_params * params,
  8814. struct ggml_tensor * dst) {
  8815. const struct ggml_tensor * src0 = dst->src[0];
  8816. switch (src0->type) {
  8817. case GGML_TYPE_F32:
  8818. {
  8819. ggml_compute_forward_sum_rows_f32(params, dst);
  8820. } break;
  8821. default:
  8822. {
  8823. GGML_ABORT("fatal error");
  8824. }
  8825. }
  8826. }
  8827. // ggml_compute_forward_mean
  8828. static void ggml_compute_forward_mean_f32(
  8829. const struct ggml_compute_params * params,
  8830. struct ggml_tensor * dst) {
  8831. const struct ggml_tensor * src0 = dst->src[0];
  8832. if (params->ith != 0) {
  8833. return;
  8834. }
  8835. assert(src0->nb[0] == sizeof(float));
  8836. GGML_TENSOR_UNARY_OP_LOCALS
  8837. assert(ne0 == 1);
  8838. assert(ne1 == ne01);
  8839. assert(ne2 == ne02);
  8840. assert(ne3 == ne03);
  8841. UNUSED(ne0);
  8842. UNUSED(ne1);
  8843. UNUSED(ne2);
  8844. UNUSED(ne3);
  8845. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8846. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8847. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8848. ggml_vec_sum_f32(ne00,
  8849. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8850. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8851. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8852. }
  8853. }
  8854. }
  8855. }
  8856. static void ggml_compute_forward_mean(
  8857. const struct ggml_compute_params * params,
  8858. struct ggml_tensor * dst) {
  8859. const struct ggml_tensor * src0 = dst->src[0];
  8860. switch (src0->type) {
  8861. case GGML_TYPE_F32:
  8862. {
  8863. ggml_compute_forward_mean_f32(params, dst);
  8864. } break;
  8865. default:
  8866. {
  8867. GGML_ABORT("fatal error");
  8868. }
  8869. }
  8870. }
  8871. // ggml_compute_forward_argmax
  8872. static void ggml_compute_forward_argmax_f32(
  8873. const struct ggml_compute_params * params,
  8874. struct ggml_tensor * dst) {
  8875. const struct ggml_tensor * src0 = dst->src[0];
  8876. if (params->ith != 0) {
  8877. return;
  8878. }
  8879. assert(src0->nb[0] == sizeof(float));
  8880. assert(dst->nb[0] == sizeof(float));
  8881. const int64_t ne00 = src0->ne[0];
  8882. const int64_t ne01 = src0->ne[1];
  8883. const size_t nb01 = src0->nb[1];
  8884. const size_t nb0 = dst->nb[0];
  8885. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8886. float * src = (float *) ((char *) src0->data + i1*nb01);
  8887. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8888. int v = 0;
  8889. ggml_vec_argmax_f32(ne00, &v, src);
  8890. dst_[0] = v;
  8891. }
  8892. }
  8893. static void ggml_compute_forward_argmax(
  8894. const struct ggml_compute_params * params,
  8895. struct ggml_tensor * dst) {
  8896. const struct ggml_tensor * src0 = dst->src[0];
  8897. switch (src0->type) {
  8898. case GGML_TYPE_F32:
  8899. {
  8900. ggml_compute_forward_argmax_f32(params, dst);
  8901. } break;
  8902. default:
  8903. {
  8904. GGML_ABORT("fatal error");
  8905. }
  8906. }
  8907. }
  8908. // ggml_compute_forward_repeat
  8909. static void ggml_compute_forward_repeat_f32(
  8910. const struct ggml_compute_params * params,
  8911. struct ggml_tensor * dst) {
  8912. const struct ggml_tensor * src0 = dst->src[0];
  8913. if (params->ith != 0) {
  8914. return;
  8915. }
  8916. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8917. GGML_TENSOR_UNARY_OP_LOCALS
  8918. // guaranteed to be an integer due to the check in ggml_can_repeat
  8919. const int nr0 = (int)(ne0/ne00);
  8920. const int nr1 = (int)(ne1/ne01);
  8921. const int nr2 = (int)(ne2/ne02);
  8922. const int nr3 = (int)(ne3/ne03);
  8923. // TODO: support for transposed / permuted tensors
  8924. GGML_ASSERT(nb0 == sizeof(float));
  8925. GGML_ASSERT(nb00 == sizeof(float));
  8926. // TODO: maybe this is not optimal?
  8927. for (int i3 = 0; i3 < nr3; i3++) {
  8928. for (int k3 = 0; k3 < ne03; k3++) {
  8929. for (int i2 = 0; i2 < nr2; i2++) {
  8930. for (int k2 = 0; k2 < ne02; k2++) {
  8931. for (int i1 = 0; i1 < nr1; i1++) {
  8932. for (int k1 = 0; k1 < ne01; k1++) {
  8933. for (int i0 = 0; i0 < nr0; i0++) {
  8934. ggml_vec_cpy_f32(ne00,
  8935. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8936. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8937. }
  8938. }
  8939. }
  8940. }
  8941. }
  8942. }
  8943. }
  8944. }
  8945. static void ggml_compute_forward_repeat_f16(
  8946. const struct ggml_compute_params * params,
  8947. struct ggml_tensor * dst) {
  8948. const struct ggml_tensor * src0 = dst->src[0];
  8949. if (params->ith != 0) {
  8950. return;
  8951. }
  8952. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8953. GGML_TENSOR_UNARY_OP_LOCALS
  8954. // guaranteed to be an integer due to the check in ggml_can_repeat
  8955. const int nr0 = (int)(ne0/ne00);
  8956. const int nr1 = (int)(ne1/ne01);
  8957. const int nr2 = (int)(ne2/ne02);
  8958. const int nr3 = (int)(ne3/ne03);
  8959. // TODO: support for transposed / permuted tensors
  8960. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8961. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8962. // TODO: maybe this is not optimal?
  8963. for (int i3 = 0; i3 < nr3; i3++) {
  8964. for (int k3 = 0; k3 < ne03; k3++) {
  8965. for (int i2 = 0; i2 < nr2; i2++) {
  8966. for (int k2 = 0; k2 < ne02; k2++) {
  8967. for (int i1 = 0; i1 < nr1; i1++) {
  8968. for (int k1 = 0; k1 < ne01; k1++) {
  8969. for (int i0 = 0; i0 < nr0; i0++) {
  8970. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8971. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8972. // ggml_vec_cpy_f16(ne00, y, x)
  8973. for (int i = 0; i < ne00; ++i) {
  8974. y[i] = x[i];
  8975. }
  8976. }
  8977. }
  8978. }
  8979. }
  8980. }
  8981. }
  8982. }
  8983. }
  8984. static void ggml_compute_forward_repeat(
  8985. const struct ggml_compute_params * params,
  8986. struct ggml_tensor * dst) {
  8987. const struct ggml_tensor * src0 = dst->src[0];
  8988. switch (src0->type) {
  8989. case GGML_TYPE_F16:
  8990. case GGML_TYPE_BF16:
  8991. case GGML_TYPE_I16:
  8992. {
  8993. ggml_compute_forward_repeat_f16(params, dst);
  8994. } break;
  8995. case GGML_TYPE_F32:
  8996. case GGML_TYPE_I32:
  8997. {
  8998. ggml_compute_forward_repeat_f32(params, dst);
  8999. } break;
  9000. default:
  9001. {
  9002. GGML_ABORT("fatal error");
  9003. }
  9004. }
  9005. }
  9006. // ggml_compute_forward_repeat_back
  9007. static void ggml_compute_forward_repeat_back_f32(
  9008. const struct ggml_compute_params * params,
  9009. struct ggml_tensor * dst) {
  9010. const struct ggml_tensor * src0 = dst->src[0];
  9011. if (params->ith != 0) {
  9012. return;
  9013. }
  9014. GGML_ASSERT(ggml_can_repeat(dst, src0));
  9015. GGML_TENSOR_UNARY_OP_LOCALS
  9016. // guaranteed to be an integer due to the check in ggml_can_repeat
  9017. const int nr0 = (int)(ne00/ne0);
  9018. const int nr1 = (int)(ne01/ne1);
  9019. const int nr2 = (int)(ne02/ne2);
  9020. const int nr3 = (int)(ne03/ne3);
  9021. // TODO: support for transposed / permuted tensors
  9022. GGML_ASSERT(nb0 == sizeof(float));
  9023. GGML_ASSERT(nb00 == sizeof(float));
  9024. if (ggml_is_contiguous(dst)) {
  9025. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9026. } else {
  9027. for (int k3 = 0; k3 < ne3; k3++) {
  9028. for (int k2 = 0; k2 < ne2; k2++) {
  9029. for (int k1 = 0; k1 < ne1; k1++) {
  9030. ggml_vec_set_f32(ne0,
  9031. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  9032. 0);
  9033. }
  9034. }
  9035. }
  9036. }
  9037. // TODO: maybe this is not optimal?
  9038. for (int i3 = 0; i3 < nr3; i3++) {
  9039. for (int k3 = 0; k3 < ne3; k3++) {
  9040. for (int i2 = 0; i2 < nr2; i2++) {
  9041. for (int k2 = 0; k2 < ne2; k2++) {
  9042. for (int i1 = 0; i1 < nr1; i1++) {
  9043. for (int k1 = 0; k1 < ne1; k1++) {
  9044. for (int i0 = 0; i0 < nr0; i0++) {
  9045. ggml_vec_acc_f32(ne0,
  9046. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  9047. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  9048. }
  9049. }
  9050. }
  9051. }
  9052. }
  9053. }
  9054. }
  9055. }
  9056. static void ggml_compute_forward_repeat_back(
  9057. const struct ggml_compute_params * params,
  9058. struct ggml_tensor * dst) {
  9059. const struct ggml_tensor * src0 = dst->src[0];
  9060. switch (src0->type) {
  9061. case GGML_TYPE_F32:
  9062. {
  9063. ggml_compute_forward_repeat_back_f32(params, dst);
  9064. } break;
  9065. default:
  9066. {
  9067. GGML_ABORT("fatal error");
  9068. }
  9069. }
  9070. }
  9071. // ggml_compute_forward_concat
  9072. static void ggml_compute_forward_concat_f32(
  9073. const struct ggml_compute_params * params,
  9074. struct ggml_tensor * dst) {
  9075. const struct ggml_tensor * src0 = dst->src[0];
  9076. const struct ggml_tensor * src1 = dst->src[1];
  9077. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9078. const int ith = params->ith;
  9079. const int nth = params->nth;
  9080. GGML_TENSOR_BINARY_OP_LOCALS
  9081. // TODO: support for transposed / permuted tensors
  9082. GGML_ASSERT(nb0 == sizeof(float));
  9083. GGML_ASSERT(nb00 == sizeof(float));
  9084. GGML_ASSERT(nb10 == sizeof(float));
  9085. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  9086. GGML_ASSERT(dim >= 0 && dim < 4);
  9087. int64_t o[4] = {0, 0, 0, 0};
  9088. o[dim] = src0->ne[dim];
  9089. const float * x;
  9090. // TODO: smarter multi-theading
  9091. for (int i3 = 0; i3 < ne3; i3++) {
  9092. for (int i2 = ith; i2 < ne2; i2 += nth) {
  9093. for (int i1 = 0; i1 < ne1; i1++) {
  9094. for (int i0 = 0; i0 < ne0; i0++) {
  9095. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  9096. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  9097. } else {
  9098. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  9099. }
  9100. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  9101. *y = *x;
  9102. }
  9103. }
  9104. }
  9105. }
  9106. }
  9107. static void ggml_compute_forward_concat(
  9108. const struct ggml_compute_params * params,
  9109. struct ggml_tensor * dst) {
  9110. const struct ggml_tensor * src0 = dst->src[0];
  9111. switch (src0->type) {
  9112. case GGML_TYPE_F32:
  9113. case GGML_TYPE_I32:
  9114. {
  9115. ggml_compute_forward_concat_f32(params, dst);
  9116. } break;
  9117. default:
  9118. {
  9119. GGML_ABORT("fatal error");
  9120. }
  9121. }
  9122. }
  9123. // ggml_compute_forward_abs
  9124. static void ggml_compute_forward_abs_f32(
  9125. const struct ggml_compute_params * params,
  9126. struct ggml_tensor * dst) {
  9127. const struct ggml_tensor * src0 = dst->src[0];
  9128. if (params->ith != 0) {
  9129. return;
  9130. }
  9131. assert(ggml_is_contiguous_1(src0));
  9132. assert(ggml_is_contiguous_1(dst));
  9133. assert(ggml_are_same_shape(src0, dst));
  9134. const int n = ggml_nrows(src0);
  9135. const int nc = src0->ne[0];
  9136. for (int i = 0; i < n; i++) {
  9137. ggml_vec_abs_f32(nc,
  9138. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9139. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9140. }
  9141. }
  9142. static void ggml_compute_forward_abs(
  9143. const struct ggml_compute_params * params,
  9144. struct ggml_tensor * dst) {
  9145. const struct ggml_tensor * src0 = dst->src[0];
  9146. switch (src0->type) {
  9147. case GGML_TYPE_F32:
  9148. {
  9149. ggml_compute_forward_abs_f32(params, dst);
  9150. } break;
  9151. default:
  9152. {
  9153. GGML_ABORT("fatal error");
  9154. }
  9155. }
  9156. }
  9157. // ggml_compute_forward_sgn
  9158. static void ggml_compute_forward_sgn_f32(
  9159. const struct ggml_compute_params * params,
  9160. struct ggml_tensor * dst) {
  9161. const struct ggml_tensor * src0 = dst->src[0];
  9162. if (params->ith != 0) {
  9163. return;
  9164. }
  9165. assert(ggml_is_contiguous_1(src0));
  9166. assert(ggml_is_contiguous_1(dst));
  9167. assert(ggml_are_same_shape(src0, dst));
  9168. const int n = ggml_nrows(src0);
  9169. const int nc = src0->ne[0];
  9170. for (int i = 0; i < n; i++) {
  9171. ggml_vec_sgn_f32(nc,
  9172. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9173. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9174. }
  9175. }
  9176. static void ggml_compute_forward_sgn(
  9177. const struct ggml_compute_params * params,
  9178. struct ggml_tensor * dst) {
  9179. const struct ggml_tensor * src0 = dst->src[0];
  9180. switch (src0->type) {
  9181. case GGML_TYPE_F32:
  9182. {
  9183. ggml_compute_forward_sgn_f32(params, dst);
  9184. } break;
  9185. default:
  9186. {
  9187. GGML_ABORT("fatal error");
  9188. }
  9189. }
  9190. }
  9191. // ggml_compute_forward_neg
  9192. static void ggml_compute_forward_neg_f32(
  9193. const struct ggml_compute_params * params,
  9194. struct ggml_tensor * dst) {
  9195. const struct ggml_tensor * src0 = dst->src[0];
  9196. if (params->ith != 0) {
  9197. return;
  9198. }
  9199. assert(ggml_is_contiguous_1(src0));
  9200. assert(ggml_is_contiguous_1(dst));
  9201. assert(ggml_are_same_shape(src0, dst));
  9202. const int n = ggml_nrows(src0);
  9203. const int nc = src0->ne[0];
  9204. for (int i = 0; i < n; i++) {
  9205. ggml_vec_neg_f32(nc,
  9206. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9207. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9208. }
  9209. }
  9210. static void ggml_compute_forward_neg(
  9211. const struct ggml_compute_params * params,
  9212. struct ggml_tensor * dst) {
  9213. const struct ggml_tensor * src0 = dst->src[0];
  9214. switch (src0->type) {
  9215. case GGML_TYPE_F32:
  9216. {
  9217. ggml_compute_forward_neg_f32(params, dst);
  9218. } break;
  9219. default:
  9220. {
  9221. GGML_ABORT("fatal error");
  9222. }
  9223. }
  9224. }
  9225. // ggml_compute_forward_step
  9226. static void ggml_compute_forward_step_f32(
  9227. const struct ggml_compute_params * params,
  9228. struct ggml_tensor * dst) {
  9229. const struct ggml_tensor * src0 = dst->src[0];
  9230. if (params->ith != 0) {
  9231. return;
  9232. }
  9233. assert(ggml_is_contiguous_1(src0));
  9234. assert(ggml_is_contiguous_1(dst));
  9235. assert(ggml_are_same_shape(src0, dst));
  9236. const int n = ggml_nrows(src0);
  9237. const int nc = src0->ne[0];
  9238. for (int i = 0; i < n; i++) {
  9239. ggml_vec_step_f32(nc,
  9240. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9241. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9242. }
  9243. }
  9244. static void ggml_compute_forward_step(
  9245. const struct ggml_compute_params * params,
  9246. struct ggml_tensor * dst) {
  9247. const struct ggml_tensor * src0 = dst->src[0];
  9248. switch (src0->type) {
  9249. case GGML_TYPE_F32:
  9250. {
  9251. ggml_compute_forward_step_f32(params, dst);
  9252. } break;
  9253. default:
  9254. {
  9255. GGML_ABORT("fatal error");
  9256. }
  9257. }
  9258. }
  9259. // ggml_compute_forward_tanh
  9260. static void ggml_compute_forward_tanh_f32(
  9261. const struct ggml_compute_params * params,
  9262. struct ggml_tensor * dst) {
  9263. const struct ggml_tensor * src0 = dst->src[0];
  9264. if (params->ith != 0) {
  9265. return;
  9266. }
  9267. assert(ggml_is_contiguous_1(src0));
  9268. assert(ggml_is_contiguous_1(dst));
  9269. assert(ggml_are_same_shape(src0, dst));
  9270. const int n = ggml_nrows(src0);
  9271. const int nc = src0->ne[0];
  9272. for (int i = 0; i < n; i++) {
  9273. ggml_vec_tanh_f32(nc,
  9274. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9275. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9276. }
  9277. }
  9278. static void ggml_compute_forward_tanh(
  9279. const struct ggml_compute_params * params,
  9280. struct ggml_tensor * dst) {
  9281. const struct ggml_tensor * src0 = dst->src[0];
  9282. switch (src0->type) {
  9283. case GGML_TYPE_F32:
  9284. {
  9285. ggml_compute_forward_tanh_f32(params, dst);
  9286. } break;
  9287. default:
  9288. {
  9289. GGML_ABORT("fatal error");
  9290. }
  9291. }
  9292. }
  9293. // ggml_compute_forward_elu
  9294. static void ggml_compute_forward_elu_f32(
  9295. const struct ggml_compute_params * params,
  9296. struct ggml_tensor * dst) {
  9297. const struct ggml_tensor * src0 = dst->src[0];
  9298. if (params->ith != 0) {
  9299. return;
  9300. }
  9301. assert(ggml_is_contiguous_1(src0));
  9302. assert(ggml_is_contiguous_1(dst));
  9303. assert(ggml_are_same_shape(src0, dst));
  9304. const int n = ggml_nrows(src0);
  9305. const int nc = src0->ne[0];
  9306. for (int i = 0; i < n; i++) {
  9307. ggml_vec_elu_f32(nc,
  9308. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9309. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9310. }
  9311. }
  9312. static void ggml_compute_forward_elu(
  9313. const struct ggml_compute_params * params,
  9314. struct ggml_tensor * dst) {
  9315. const struct ggml_tensor * src0 = dst->src[0];
  9316. switch (src0->type) {
  9317. case GGML_TYPE_F32:
  9318. {
  9319. ggml_compute_forward_elu_f32(params, dst);
  9320. } break;
  9321. default:
  9322. {
  9323. GGML_ABORT("fatal error");
  9324. }
  9325. }
  9326. }
  9327. // ggml_compute_forward_relu
  9328. static void ggml_compute_forward_relu_f32(
  9329. const struct ggml_compute_params * params,
  9330. struct ggml_tensor * dst) {
  9331. const struct ggml_tensor * src0 = dst->src[0];
  9332. if (params->ith != 0) {
  9333. return;
  9334. }
  9335. assert(ggml_is_contiguous_1(src0));
  9336. assert(ggml_is_contiguous_1(dst));
  9337. assert(ggml_are_same_shape(src0, dst));
  9338. const int n = ggml_nrows(src0);
  9339. const int nc = src0->ne[0];
  9340. for (int i = 0; i < n; i++) {
  9341. ggml_vec_relu_f32(nc,
  9342. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9343. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9344. }
  9345. }
  9346. static void ggml_compute_forward_relu(
  9347. const struct ggml_compute_params * params,
  9348. struct ggml_tensor * dst) {
  9349. const struct ggml_tensor * src0 = dst->src[0];
  9350. switch (src0->type) {
  9351. case GGML_TYPE_F32:
  9352. {
  9353. ggml_compute_forward_relu_f32(params, dst);
  9354. } break;
  9355. default:
  9356. {
  9357. GGML_ABORT("fatal error");
  9358. }
  9359. }
  9360. }
  9361. // ggml_compute_forward_sigmoid
  9362. static void ggml_compute_forward_sigmoid_f32(
  9363. const struct ggml_compute_params * params,
  9364. struct ggml_tensor * dst) {
  9365. const struct ggml_tensor * src0 = dst->src[0];
  9366. if (params->ith != 0) {
  9367. return;
  9368. }
  9369. assert(ggml_is_contiguous_1(src0));
  9370. assert(ggml_is_contiguous_1(dst));
  9371. assert(ggml_are_same_shape(src0, dst));
  9372. const int n = ggml_nrows(src0);
  9373. const int nc = src0->ne[0];
  9374. for (int i = 0; i < n; i++) {
  9375. ggml_vec_sigmoid_f32(nc,
  9376. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9377. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9378. }
  9379. }
  9380. static void ggml_compute_forward_sigmoid(
  9381. const struct ggml_compute_params * params,
  9382. struct ggml_tensor * dst) {
  9383. const struct ggml_tensor * src0 = dst->src[0];
  9384. switch (src0->type) {
  9385. case GGML_TYPE_F32:
  9386. {
  9387. ggml_compute_forward_sigmoid_f32(params, dst);
  9388. } break;
  9389. default:
  9390. {
  9391. GGML_ABORT("fatal error");
  9392. }
  9393. }
  9394. }
  9395. // ggml_compute_forward_gelu
  9396. static void ggml_compute_forward_gelu_f32(
  9397. const struct ggml_compute_params * params,
  9398. struct ggml_tensor * dst) {
  9399. const struct ggml_tensor * src0 = dst->src[0];
  9400. assert(ggml_is_contiguous_1(src0));
  9401. assert(ggml_is_contiguous_1(dst));
  9402. assert(ggml_are_same_shape(src0, dst));
  9403. const int ith = params->ith;
  9404. const int nth = params->nth;
  9405. const int nc = src0->ne[0];
  9406. const int nr = ggml_nrows(src0);
  9407. // rows per thread
  9408. const int dr = (nr + nth - 1)/nth;
  9409. // row range for this thread
  9410. const int ir0 = dr*ith;
  9411. const int ir1 = MIN(ir0 + dr, nr);
  9412. for (int i1 = ir0; i1 < ir1; i1++) {
  9413. ggml_vec_gelu_f32(nc,
  9414. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9415. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9416. #ifndef NDEBUG
  9417. for (int k = 0; k < nc; k++) {
  9418. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9419. UNUSED(x);
  9420. assert(!isnan(x));
  9421. assert(!isinf(x));
  9422. }
  9423. #endif
  9424. }
  9425. }
  9426. static void ggml_compute_forward_gelu(
  9427. const struct ggml_compute_params * params,
  9428. struct ggml_tensor * dst) {
  9429. const struct ggml_tensor * src0 = dst->src[0];
  9430. switch (src0->type) {
  9431. case GGML_TYPE_F32:
  9432. {
  9433. ggml_compute_forward_gelu_f32(params, dst);
  9434. } break;
  9435. default:
  9436. {
  9437. GGML_ABORT("fatal error");
  9438. }
  9439. }
  9440. }
  9441. // ggml_compute_forward_gelu_quick
  9442. static void ggml_compute_forward_gelu_quick_f32(
  9443. const struct ggml_compute_params * params,
  9444. struct ggml_tensor * dst) {
  9445. const struct ggml_tensor * src0 = dst->src[0];
  9446. assert(ggml_is_contiguous_1(src0));
  9447. assert(ggml_is_contiguous_1(dst));
  9448. assert(ggml_are_same_shape(src0, dst));
  9449. const int ith = params->ith;
  9450. const int nth = params->nth;
  9451. const int nc = src0->ne[0];
  9452. const int nr = ggml_nrows(src0);
  9453. // rows per thread
  9454. const int dr = (nr + nth - 1)/nth;
  9455. // row range for this thread
  9456. const int ir0 = dr*ith;
  9457. const int ir1 = MIN(ir0 + dr, nr);
  9458. for (int i1 = ir0; i1 < ir1; i1++) {
  9459. ggml_vec_gelu_quick_f32(nc,
  9460. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9461. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9462. #ifndef NDEBUG
  9463. for (int k = 0; k < nc; k++) {
  9464. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9465. UNUSED(x);
  9466. assert(!isnan(x));
  9467. assert(!isinf(x));
  9468. }
  9469. #endif
  9470. }
  9471. }
  9472. static void ggml_compute_forward_gelu_quick(
  9473. const struct ggml_compute_params * params,
  9474. struct ggml_tensor * dst) {
  9475. const struct ggml_tensor * src0 = dst->src[0];
  9476. switch (src0->type) {
  9477. case GGML_TYPE_F32:
  9478. {
  9479. ggml_compute_forward_gelu_quick_f32(params, dst);
  9480. } break;
  9481. default:
  9482. {
  9483. GGML_ABORT("fatal error");
  9484. }
  9485. }
  9486. }
  9487. // ggml_compute_forward_silu
  9488. static void ggml_compute_forward_silu_f32(
  9489. const struct ggml_compute_params * params,
  9490. struct ggml_tensor * dst) {
  9491. const struct ggml_tensor * src0 = dst->src[0];
  9492. assert(ggml_is_contiguous_1(src0));
  9493. assert(ggml_is_contiguous_1(dst));
  9494. assert(ggml_are_same_shape(src0, dst));
  9495. const int ith = params->ith;
  9496. const int nth = params->nth;
  9497. const int nc = src0->ne[0];
  9498. const int nr = ggml_nrows(src0);
  9499. // rows per thread
  9500. const int dr = (nr + nth - 1)/nth;
  9501. // row range for this thread
  9502. const int ir0 = dr*ith;
  9503. const int ir1 = MIN(ir0 + dr, nr);
  9504. for (int i1 = ir0; i1 < ir1; i1++) {
  9505. ggml_vec_silu_f32(nc,
  9506. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9507. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9508. #ifndef NDEBUG
  9509. for (int k = 0; k < nc; k++) {
  9510. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9511. UNUSED(x);
  9512. assert(!isnan(x));
  9513. assert(!isinf(x));
  9514. }
  9515. #endif
  9516. }
  9517. }
  9518. static void ggml_compute_forward_silu(
  9519. const struct ggml_compute_params * params,
  9520. struct ggml_tensor * dst) {
  9521. const struct ggml_tensor * src0 = dst->src[0];
  9522. switch (src0->type) {
  9523. case GGML_TYPE_F32:
  9524. {
  9525. ggml_compute_forward_silu_f32(params, dst);
  9526. } break;
  9527. default:
  9528. {
  9529. GGML_ABORT("fatal error");
  9530. }
  9531. }
  9532. }
  9533. // ggml_compute_forward_leaky_relu
  9534. static void ggml_compute_forward_leaky_relu_f32(
  9535. const struct ggml_compute_params * params,
  9536. struct ggml_tensor * dst) {
  9537. const struct ggml_tensor * src0 = dst->src[0];
  9538. if (params->ith != 0) {
  9539. return;
  9540. }
  9541. assert(ggml_is_contiguous_1(src0));
  9542. assert(ggml_is_contiguous_1(dst));
  9543. assert(ggml_are_same_shape(src0, dst));
  9544. const int n = ggml_nrows(src0);
  9545. const int nc = src0->ne[0];
  9546. float negative_slope;
  9547. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9548. assert(dst->nb[0] == sizeof(float));
  9549. assert(src0->nb[0] == sizeof(float));
  9550. for (int i = 0; i < n; i++) {
  9551. ggml_vec_leaky_relu_f32(nc,
  9552. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9553. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9554. }
  9555. }
  9556. static void ggml_compute_forward_leaky_relu(
  9557. const struct ggml_compute_params * params,
  9558. struct ggml_tensor * dst) {
  9559. const struct ggml_tensor * src0 = dst->src[0];
  9560. switch (src0->type) {
  9561. case GGML_TYPE_F32:
  9562. {
  9563. ggml_compute_forward_leaky_relu_f32(params, dst);
  9564. } break;
  9565. default:
  9566. {
  9567. GGML_ABORT("fatal error");
  9568. }
  9569. }
  9570. }
  9571. // ggml_compute_forward_silu_back
  9572. static void ggml_compute_forward_silu_back_f32(
  9573. const struct ggml_compute_params * params,
  9574. struct ggml_tensor * dst) {
  9575. const struct ggml_tensor * src0 = dst->src[0];
  9576. const struct ggml_tensor * grad = dst->src[1];
  9577. assert(ggml_is_contiguous_1(grad));
  9578. assert(ggml_is_contiguous_1(src0));
  9579. assert(ggml_is_contiguous_1(dst));
  9580. assert(ggml_are_same_shape(src0, dst));
  9581. assert(ggml_are_same_shape(src0, grad));
  9582. const int ith = params->ith;
  9583. const int nth = params->nth;
  9584. const int nc = src0->ne[0];
  9585. const int nr = ggml_nrows(src0);
  9586. // rows per thread
  9587. const int dr = (nr + nth - 1)/nth;
  9588. // row range for this thread
  9589. const int ir0 = dr*ith;
  9590. const int ir1 = MIN(ir0 + dr, nr);
  9591. for (int i1 = ir0; i1 < ir1; i1++) {
  9592. ggml_vec_silu_backward_f32(nc,
  9593. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9594. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9595. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9596. #ifndef NDEBUG
  9597. for (int k = 0; k < nc; k++) {
  9598. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9599. UNUSED(x);
  9600. assert(!isnan(x));
  9601. assert(!isinf(x));
  9602. }
  9603. #endif
  9604. }
  9605. }
  9606. static void ggml_compute_forward_silu_back(
  9607. const struct ggml_compute_params * params,
  9608. struct ggml_tensor * dst) {
  9609. const struct ggml_tensor * src0 = dst->src[0];
  9610. switch (src0->type) {
  9611. case GGML_TYPE_F32:
  9612. {
  9613. ggml_compute_forward_silu_back_f32(params, dst);
  9614. } break;
  9615. default:
  9616. {
  9617. GGML_ABORT("fatal error");
  9618. }
  9619. }
  9620. }
  9621. static void ggml_compute_forward_hardswish_f32(
  9622. const struct ggml_compute_params * params,
  9623. struct ggml_tensor * dst) {
  9624. const struct ggml_tensor * src0 = dst->src[0];
  9625. if (params->ith != 0) {
  9626. return;
  9627. }
  9628. assert(ggml_is_contiguous_1(src0));
  9629. assert(ggml_is_contiguous_1(dst));
  9630. assert(ggml_are_same_shape(src0, dst));
  9631. const int n = ggml_nrows(src0);
  9632. const int nc = src0->ne[0];
  9633. for (int i = 0; i < n; i++) {
  9634. ggml_vec_hardswish_f32(nc,
  9635. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9636. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9637. }
  9638. }
  9639. static void ggml_compute_forward_hardswish(
  9640. const struct ggml_compute_params * params,
  9641. struct ggml_tensor * dst) {
  9642. const struct ggml_tensor * src0 = dst->src[0];
  9643. switch (src0->type) {
  9644. case GGML_TYPE_F32:
  9645. {
  9646. ggml_compute_forward_hardswish_f32(params, dst);
  9647. } break;
  9648. default:
  9649. {
  9650. GGML_ABORT("fatal error");
  9651. }
  9652. }
  9653. }
  9654. static void ggml_compute_forward_hardsigmoid_f32(
  9655. const struct ggml_compute_params * params,
  9656. struct ggml_tensor * dst) {
  9657. const struct ggml_tensor * src0 = dst->src[0];
  9658. if (params->ith != 0) {
  9659. return;
  9660. }
  9661. assert(ggml_is_contiguous_1(src0));
  9662. assert(ggml_is_contiguous_1(dst));
  9663. assert(ggml_are_same_shape(src0, dst));
  9664. const int n = ggml_nrows(src0);
  9665. const int nc = src0->ne[0];
  9666. for (int i = 0; i < n; i++) {
  9667. ggml_vec_hardsigmoid_f32(nc,
  9668. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9669. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9670. }
  9671. }
  9672. static void ggml_compute_forward_hardsigmoid(
  9673. const struct ggml_compute_params * params,
  9674. struct ggml_tensor * dst) {
  9675. const struct ggml_tensor * src0 = dst->src[0];
  9676. switch (src0->type) {
  9677. case GGML_TYPE_F32:
  9678. {
  9679. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9680. } break;
  9681. default:
  9682. {
  9683. GGML_ABORT("fatal error");
  9684. }
  9685. }
  9686. }
  9687. // ggml_compute_forward_norm
  9688. static void ggml_compute_forward_norm_f32(
  9689. const struct ggml_compute_params * params,
  9690. struct ggml_tensor * dst) {
  9691. const struct ggml_tensor * src0 = dst->src[0];
  9692. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9693. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9694. const int ith = params->ith;
  9695. const int nth = params->nth;
  9696. GGML_TENSOR_UNARY_OP_LOCALS
  9697. float eps;
  9698. memcpy(&eps, dst->op_params, sizeof(float));
  9699. GGML_ASSERT(eps > 0.0f);
  9700. // TODO: optimize
  9701. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9702. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9703. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9704. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9705. ggml_float sum = 0.0;
  9706. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9707. sum += (ggml_float)x[i00];
  9708. }
  9709. float mean = sum/ne00;
  9710. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9711. ggml_float sum2 = 0.0;
  9712. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9713. float v = x[i00] - mean;
  9714. y[i00] = v;
  9715. sum2 += (ggml_float)(v*v);
  9716. }
  9717. float variance = sum2/ne00;
  9718. const float scale = 1.0f/sqrtf(variance + eps);
  9719. ggml_vec_scale_f32(ne00, y, scale);
  9720. }
  9721. }
  9722. }
  9723. }
  9724. static void ggml_compute_forward_norm(
  9725. const struct ggml_compute_params * params,
  9726. struct ggml_tensor * dst) {
  9727. const struct ggml_tensor * src0 = dst->src[0];
  9728. switch (src0->type) {
  9729. case GGML_TYPE_F32:
  9730. {
  9731. ggml_compute_forward_norm_f32(params, dst);
  9732. } break;
  9733. default:
  9734. {
  9735. GGML_ABORT("fatal error");
  9736. }
  9737. }
  9738. }
  9739. // ggml_compute_forward_group_rms_norm
  9740. static void ggml_compute_forward_rms_norm_f32(
  9741. const struct ggml_compute_params * params,
  9742. struct ggml_tensor * dst) {
  9743. const struct ggml_tensor * src0 = dst->src[0];
  9744. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9745. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9746. const int ith = params->ith;
  9747. const int nth = params->nth;
  9748. GGML_TENSOR_UNARY_OP_LOCALS
  9749. float eps;
  9750. memcpy(&eps, dst->op_params, sizeof(float));
  9751. GGML_ASSERT(eps > 0.0f);
  9752. // TODO: optimize
  9753. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9754. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9755. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9756. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9757. ggml_float sum = 0.0;
  9758. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9759. sum += (ggml_float)(x[i00] * x[i00]);
  9760. }
  9761. const float mean = sum/ne00;
  9762. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9763. memcpy(y, x, ne00 * sizeof(float));
  9764. // for (int i00 = 0; i00 < ne00; i00++) {
  9765. // y[i00] = x[i00];
  9766. // }
  9767. const float scale = 1.0f/sqrtf(mean + eps);
  9768. ggml_vec_scale_f32(ne00, y, scale);
  9769. }
  9770. }
  9771. }
  9772. }
  9773. static void ggml_compute_forward_rms_norm(
  9774. const struct ggml_compute_params * params,
  9775. struct ggml_tensor * dst) {
  9776. const struct ggml_tensor * src0 = dst->src[0];
  9777. switch (src0->type) {
  9778. case GGML_TYPE_F32:
  9779. {
  9780. ggml_compute_forward_rms_norm_f32(params, dst);
  9781. } break;
  9782. default:
  9783. {
  9784. GGML_ABORT("fatal error");
  9785. }
  9786. }
  9787. }
  9788. static void ggml_compute_forward_rms_norm_back_f32(
  9789. const struct ggml_compute_params * params,
  9790. struct ggml_tensor * dst) {
  9791. const struct ggml_tensor * src0 = dst->src[0];
  9792. const struct ggml_tensor * src1 = dst->src[1];
  9793. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9794. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9795. const int ith = params->ith;
  9796. const int nth = params->nth;
  9797. GGML_TENSOR_BINARY_OP_LOCALS
  9798. float eps;
  9799. memcpy(&eps, dst->op_params, sizeof(float));
  9800. // TODO: optimize
  9801. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9802. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9803. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9804. // src1 is same shape as src0 => same indices
  9805. const int64_t i11 = i01;
  9806. const int64_t i12 = i02;
  9807. const int64_t i13 = i03;
  9808. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9809. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9810. ggml_float sum_xx = 0.0;
  9811. ggml_float sum_xdz = 0.0;
  9812. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9813. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9814. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9815. }
  9816. //const float mean = (float)(sum_xx)/ne00;
  9817. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9818. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9819. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9820. // we could cache rms from forward pass to improve performance.
  9821. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9822. //const float rms = sqrtf(mean_eps);
  9823. const float rrms = 1.0f / sqrtf(mean_eps);
  9824. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9825. {
  9826. // z = rms_norm(x)
  9827. //
  9828. // rms_norm(src0) =
  9829. // scale(
  9830. // src0,
  9831. // div(
  9832. // 1,
  9833. // sqrt(
  9834. // add(
  9835. // scale(
  9836. // sum(
  9837. // sqr(
  9838. // src0)),
  9839. // (1.0/N)),
  9840. // eps))));
  9841. // postorder:
  9842. // ## op args grad
  9843. // 00 param src0 grad[#00]
  9844. // 01 const 1
  9845. // 02 sqr (#00) grad[#02]
  9846. // 03 sum (#02) grad[#03]
  9847. // 04 const 1/N
  9848. // 05 scale (#03, #04) grad[#05]
  9849. // 06 const eps
  9850. // 07 add (#05, #06) grad[#07]
  9851. // 08 sqrt (#07) grad[#08]
  9852. // 09 div (#01,#08) grad[#09]
  9853. // 10 scale (#00,#09) grad[#10]
  9854. //
  9855. // backward pass, given grad[#10]
  9856. // #10: scale
  9857. // grad[#00] += scale(grad[#10],#09)
  9858. // grad[#09] += sum(mul(grad[#10],#00))
  9859. // #09: div
  9860. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9861. // #08: sqrt
  9862. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9863. // #07: add
  9864. // grad[#05] += grad[#07]
  9865. // #05: scale
  9866. // grad[#03] += scale(grad[#05],#04)
  9867. // #03: sum
  9868. // grad[#02] += repeat(grad[#03], #02)
  9869. // #02:
  9870. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9871. //
  9872. // substitute and simplify:
  9873. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9874. // grad[#02] = repeat(grad[#03], #02)
  9875. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9876. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9877. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9878. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9879. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9880. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9881. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9882. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9883. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9884. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9885. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9886. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9887. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9888. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9889. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9890. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9891. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9892. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9893. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9894. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9895. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9896. // a = b*c + d*e
  9897. // a = b*c*f/f + d*e*f/f
  9898. // a = (b*c*f + d*e*f)*(1/f)
  9899. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9900. // a = (b + d*e/c)*c
  9901. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9902. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9903. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9904. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9905. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9906. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9907. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9908. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9909. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9910. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9911. }
  9912. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9913. // post-order:
  9914. // dx := x
  9915. // dx := scale(dx,-mean_xdz/mean_eps)
  9916. // dx := add(dx, dz)
  9917. // dx := scale(dx, rrms)
  9918. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9919. ggml_vec_cpy_f32 (ne00, dx, x);
  9920. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9921. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9922. ggml_vec_acc_f32 (ne00, dx, dz);
  9923. ggml_vec_scale_f32(ne00, dx, rrms);
  9924. }
  9925. }
  9926. }
  9927. }
  9928. static void ggml_compute_forward_rms_norm_back(
  9929. const struct ggml_compute_params * params,
  9930. struct ggml_tensor * dst) {
  9931. const struct ggml_tensor * src0 = dst->src[0];
  9932. switch (src0->type) {
  9933. case GGML_TYPE_F32:
  9934. {
  9935. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9936. } break;
  9937. default:
  9938. {
  9939. GGML_ABORT("fatal error");
  9940. }
  9941. }
  9942. }
  9943. // ggml_compute_forward_group_norm
  9944. static void ggml_compute_forward_group_norm_f32(
  9945. const struct ggml_compute_params * params,
  9946. struct ggml_tensor * dst) {
  9947. const struct ggml_tensor * src0 = dst->src[0];
  9948. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9949. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9950. const int ith = params->ith;
  9951. const int nth = params->nth;
  9952. GGML_TENSOR_UNARY_OP_LOCALS
  9953. // TODO: optimize
  9954. float eps;
  9955. memcpy(&eps, dst->op_params + 1, sizeof(float));
  9956. int n_channels = src0->ne[2];
  9957. int n_groups = dst->op_params[0];
  9958. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9959. for (int i = ith; i < n_groups; i += nth) {
  9960. int start = i * n_channels_per_group;
  9961. int end = start + n_channels_per_group;
  9962. if (end > n_channels) {
  9963. end = n_channels;
  9964. }
  9965. int step = end - start;
  9966. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9967. ggml_float sum = 0.0;
  9968. for (int64_t i02 = start; i02 < end; i02++) {
  9969. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9970. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9971. ggml_float sumr = 0.0;
  9972. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9973. sumr += (ggml_float)x[i00];
  9974. }
  9975. sum += sumr;
  9976. }
  9977. }
  9978. const float mean = sum / (ne00 * ne01 * step);
  9979. ggml_float sum2 = 0.0;
  9980. for (int64_t i02 = start; i02 < end; i02++) {
  9981. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9982. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9983. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9984. ggml_float sumr = 0.0;
  9985. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9986. float v = x[i00] - mean;
  9987. y[i00] = v;
  9988. sumr += (ggml_float)(v * v);
  9989. }
  9990. sum2 += sumr;
  9991. }
  9992. }
  9993. const float variance = sum2 / (ne00 * ne01 * step);
  9994. const float scale = 1.0f / sqrtf(variance + eps);
  9995. for (int64_t i02 = start; i02 < end; i02++) {
  9996. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9997. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9998. ggml_vec_scale_f32(ne00, y, scale);
  9999. }
  10000. }
  10001. }
  10002. }
  10003. }
  10004. static void ggml_compute_forward_group_norm(
  10005. const struct ggml_compute_params * params,
  10006. struct ggml_tensor * dst) {
  10007. const struct ggml_tensor * src0 = dst->src[0];
  10008. switch (src0->type) {
  10009. case GGML_TYPE_F32:
  10010. {
  10011. ggml_compute_forward_group_norm_f32(params, dst);
  10012. } break;
  10013. default:
  10014. {
  10015. GGML_ABORT("fatal error");
  10016. }
  10017. }
  10018. }
  10019. // ggml_compute_forward_mul_mat
  10020. static void ggml_compute_forward_mul_mat_one_chunk(
  10021. const struct ggml_compute_params * params,
  10022. struct ggml_tensor * dst,
  10023. const int64_t num_rows_per_vec_dot,
  10024. const int64_t ir0_start,
  10025. const int64_t ir0_end,
  10026. const int64_t ir1_start,
  10027. const int64_t ir1_end) {
  10028. const struct ggml_tensor * src0 = dst->src[0];
  10029. const struct ggml_tensor * src1 = dst->src[1];
  10030. GGML_TENSOR_BINARY_OP_LOCALS
  10031. const enum ggml_type type = src0->type;
  10032. const bool src1_cont = ggml_is_contiguous(src1);
  10033. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10034. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10035. // broadcast factors
  10036. const int64_t r2 = ne12 / ne02;
  10037. const int64_t r3 = ne13 / ne03;
  10038. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  10039. // threads with no work simply yield (not sure if it helps)
  10040. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  10041. return;
  10042. }
  10043. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10044. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10045. assert(ne12 % ne02 == 0);
  10046. assert(ne13 % ne03 == 0);
  10047. // block-tiling attempt
  10048. const int64_t blck_0 = 16;
  10049. const int64_t blck_1 = 16;
  10050. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  10051. // attempt to reduce false-sharing (does not seem to make a difference)
  10052. // 16 * 2, accounting for mmla kernels
  10053. float tmp[32];
  10054. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  10055. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  10056. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  10057. const int64_t i13 = (ir1 / (ne12 * ne1));
  10058. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  10059. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  10060. // broadcast src0 into src1
  10061. const int64_t i03 = i13 / r3;
  10062. const int64_t i02 = i12 / r2;
  10063. const int64_t i1 = i11;
  10064. const int64_t i2 = i12;
  10065. const int64_t i3 = i13;
  10066. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  10067. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10068. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10069. // the original src1 data pointer, so we should index using the indices directly
  10070. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10071. const char * src1_col = (const char*)wdata +
  10072. (src1_cont || src1->type != vec_dot_type
  10073. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  10074. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  10075. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  10076. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  10077. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10078. //}
  10079. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  10080. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  10081. }
  10082. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  10083. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  10084. }
  10085. }
  10086. }
  10087. }
  10088. }
  10089. static void ggml_compute_forward_mul_mat(
  10090. const struct ggml_compute_params * params,
  10091. struct ggml_tensor * dst) {
  10092. const struct ggml_tensor * src0 = dst->src[0];
  10093. const struct ggml_tensor * src1 = dst->src[1];
  10094. GGML_TENSOR_BINARY_OP_LOCALS
  10095. const int ith = params->ith;
  10096. const int nth = params->nth;
  10097. const enum ggml_type type = src0->type;
  10098. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10099. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10100. ggml_from_float_to_mat_t const from_float_to_mat = type_traits[vec_dot_type].from_float_to_mat;
  10101. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  10102. int64_t const matmul_num_cols = type_traits[type].ncols;
  10103. int64_t const blck_size_interleave = type_traits[type].blck_size_interleave;
  10104. ggml_gemv_t const gemv = type_traits[type].gemv;
  10105. ggml_gemm_t const gemm = type_traits[type].gemm;
  10106. GGML_ASSERT(ne0 == ne01);
  10107. GGML_ASSERT(ne1 == ne11);
  10108. GGML_ASSERT(ne2 == ne12);
  10109. GGML_ASSERT(ne3 == ne13);
  10110. // we don't support permuted src0 or src1
  10111. GGML_ASSERT(nb00 == ggml_type_size(type));
  10112. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10113. // dst cannot be transposed or permuted
  10114. GGML_ASSERT(nb0 == sizeof(float));
  10115. GGML_ASSERT(nb0 <= nb1);
  10116. GGML_ASSERT(nb1 <= nb2);
  10117. GGML_ASSERT(nb2 <= nb3);
  10118. // nb01 >= nb00 - src0 is not transposed
  10119. // compute by src0 rows
  10120. #if GGML_USE_LLAMAFILE
  10121. // broadcast factors
  10122. const int64_t r2 = ne12 / ne02;
  10123. const int64_t r3 = ne13 / ne03;
  10124. const bool src1_cont = ggml_is_contiguous(src1);
  10125. if (src1_cont) {
  10126. for (int64_t i13 = 0; i13 < ne13; i13++)
  10127. for (int64_t i12 = 0; i12 < ne12; i12++)
  10128. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10129. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10130. nb01/ggml_type_size(src0->type),
  10131. (const char *)src1->data + i12*nb12 + i13*nb13,
  10132. nb11/ggml_type_size(src1->type),
  10133. (char *)dst->data + i12*nb2 + i13*nb3,
  10134. nb1/ggml_type_size(dst->type),
  10135. ith, nth,
  10136. src0->type,
  10137. src1->type,
  10138. dst->type))
  10139. goto UseGgmlGemm1;
  10140. return;
  10141. }
  10142. UseGgmlGemm1:;
  10143. #endif
  10144. if (src1->type != vec_dot_type) {
  10145. char * wdata = params->wdata;
  10146. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10147. const size_t nbw2 = nbw1*ne11;
  10148. const size_t nbw3 = nbw2*ne12;
  10149. assert(params->wsize >= ne13*nbw3);
  10150. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10151. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10152. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10153. int64_t i11_processed = 0;
  10154. if ((ggml_n_dims(src1) == 2) && from_float_to_mat && gemm) {
  10155. for (int64_t i11 = ith * 4; i11 < ne11 - ne11 % 4; i11 += nth * 4) {
  10156. from_float_to_mat((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10157. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10158. 4, ne10, blck_size_interleave);
  10159. }
  10160. i11_processed = ne11 - ne11 % 4;
  10161. }
  10162. for (int64_t i11 = i11_processed + ith; i11 < ne11; i11 += nth) {
  10163. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10164. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10165. ne10);
  10166. }
  10167. }
  10168. }
  10169. }
  10170. if (ith == 0) {
  10171. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10172. atomic_store(&params->shared->current_chunk, nth);
  10173. }
  10174. ggml_barrier(params->shared);
  10175. #if GGML_USE_LLAMAFILE
  10176. if (src1->type != vec_dot_type) {
  10177. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10178. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10179. for (int64_t i13 = 0; i13 < ne13; i13++)
  10180. for (int64_t i12 = 0; i12 < ne12; i12++)
  10181. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10182. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10183. nb01/ggml_type_size(src0->type),
  10184. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10185. row_size/ggml_type_size(vec_dot_type),
  10186. (char *)dst->data + i12*nb2 + i13*nb3,
  10187. nb1/ggml_type_size(dst->type),
  10188. ith, nth,
  10189. src0->type,
  10190. vec_dot_type,
  10191. dst->type))
  10192. goto UseGgmlGemm2;
  10193. return;
  10194. }
  10195. UseGgmlGemm2:;
  10196. #endif
  10197. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10198. const int64_t nr0 = ne0;
  10199. // This is the size of the rest of the dimensions of the result
  10200. const int64_t nr1 = ne1 * ne2 * ne3;
  10201. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10202. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10203. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10204. // this check can be removed once they are extended to support odd numbered rows/cols too
  10205. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10206. num_rows_per_vec_dot = 1;
  10207. }
  10208. // Now select a reasonable chunk size.
  10209. int chunk_size = 16;
  10210. // We need to step up the size if it's small
  10211. if (nr0 == 1 || nr1 == 1) {
  10212. chunk_size = 64;
  10213. }
  10214. // distribute the work across the inner or outer loop based on which one is larger
  10215. // The number of chunks in the 0/1 dim.
  10216. // CEIL(nr0/chunk_size)
  10217. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10218. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10219. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10220. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10221. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10222. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10223. // distribute the thread work across the inner or outer loop based on which one is larger
  10224. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10225. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10226. }
  10227. // The number of elements in each chunk
  10228. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10229. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10230. if ((ggml_n_dims(src0) == 2) && gemv) {
  10231. const void * src1_wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10232. const size_t src1_col_stride = ggml_is_contiguous(src1) || src1->type != vec_dot_type ? ggml_row_size(vec_dot_type, ne10) : nb11;
  10233. int64_t src0_start = (ith * ne01) / nth;
  10234. int64_t src0_end = ((ith + 1) * ne01) / nth;
  10235. src0_start = (src0_start % matmul_num_cols) ? src0_start + matmul_num_cols - (src0_start % matmul_num_cols): src0_start;
  10236. src0_end = (src0_end % matmul_num_cols) ? src0_end + matmul_num_cols - (src0_end % matmul_num_cols): src0_end;
  10237. if (src0_start >= src0_end) return;
  10238. // If there are more than three rows in src1, use gemm; otherwise, use gemv.
  10239. if (gemm && (ne11 > 3)) {
  10240. gemm(ne00, (float *)((char *) dst->data) + src0_start, ne01, (const char *) src0->data + src0_start * nb01,
  10241. (const char *) src1_wdata, ne11 - ne11 % 4, src0_end - src0_start);
  10242. }
  10243. for (int iter = gemm ? ne11 - ne11 % 4 : 0; iter < ne11; iter++) {
  10244. gemv(ne00, (float *)((char *) dst->data + (iter * nb1)) + src0_start, ne01,
  10245. (const char *) src0->data + src0_start * nb01, (const char *) src1_wdata + (src1_col_stride * iter), 1,
  10246. src0_end - src0_start);
  10247. }
  10248. return;
  10249. }
  10250. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10251. int current_chunk = ith;
  10252. while (current_chunk < nchunk0 * nchunk1) {
  10253. const int64_t ith0 = current_chunk % nchunk0;
  10254. const int64_t ith1 = current_chunk / nchunk0;
  10255. const int64_t ir0_start = dr0 * ith0;
  10256. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10257. const int64_t ir1_start = dr1 * ith1;
  10258. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10259. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10260. if (nth >= nchunk0 * nchunk1) {
  10261. break;
  10262. }
  10263. current_chunk = atomic_fetch_add(&params->shared->current_chunk, 1);
  10264. }
  10265. }
  10266. // ggml_compute_forward_mul_mat_id
  10267. static void ggml_compute_forward_mul_mat_id(
  10268. const struct ggml_compute_params * params,
  10269. struct ggml_tensor * dst) {
  10270. const struct ggml_tensor * src0 = dst->src[0];
  10271. const struct ggml_tensor * src1 = dst->src[1];
  10272. const struct ggml_tensor * ids = dst->src[2];
  10273. GGML_TENSOR_BINARY_OP_LOCALS
  10274. const int ith = params->ith;
  10275. const int nth = params->nth;
  10276. const enum ggml_type type = src0->type;
  10277. const bool src1_cont = ggml_is_contiguous(src1);
  10278. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10279. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10280. ggml_from_float_t const from_float = type_traits[vec_dot_type].from_float;
  10281. int64_t const matmul_num_cols = type_traits[type].ncols;
  10282. ggml_gemv_t const gemv = type_traits[type].gemv;
  10283. // we don't support permuted src0 or src1
  10284. GGML_ASSERT(nb00 == ggml_type_size(type));
  10285. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10286. // dst cannot be transposed or permuted
  10287. GGML_ASSERT(nb0 == sizeof(float));
  10288. GGML_ASSERT(nb0 <= nb1);
  10289. GGML_ASSERT(nb1 <= nb2);
  10290. GGML_ASSERT(nb2 <= nb3);
  10291. // row groups
  10292. const int n_ids = ids->ne[0]; // n_expert_used
  10293. const int n_as = ne02; // n_expert
  10294. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10295. (char *) params->wdata :
  10296. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10297. struct mmid_row_mapping {
  10298. int32_t i1;
  10299. int32_t i2;
  10300. };
  10301. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10302. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10303. if (src1->type != vec_dot_type) {
  10304. char * wdata = params->wdata;
  10305. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10306. const size_t nbw2 = nbw1*ne11;
  10307. const size_t nbw3 = nbw2*ne12;
  10308. assert(params->wsize >= ne13*nbw3);
  10309. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10310. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10311. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10312. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10313. from_float((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10314. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10315. ne10);
  10316. }
  10317. }
  10318. }
  10319. }
  10320. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10321. if (ith == 0) {
  10322. // initialize matrix_row_counts
  10323. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10324. // group rows by src0 matrix
  10325. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10326. for (int id = 0; id < n_ids; ++id) {
  10327. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10328. assert(i02 >= 0 && i02 < n_as);
  10329. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10330. matrix_row_counts[i02] += 1;
  10331. }
  10332. }
  10333. }
  10334. ggml_barrier(params->shared);
  10335. // compute each matrix multiplication in sequence
  10336. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10337. const int64_t cne1 = matrix_row_counts[cur_a];
  10338. if (cne1 == 0) {
  10339. continue;
  10340. }
  10341. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10342. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10343. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10344. const int64_t nr0 = ne01; // src0 rows
  10345. const int64_t nr1 = cne1; // src1 rows
  10346. if (((ggml_n_dims(src0) - 1) == 2) && gemv) {
  10347. int64_t src0_cur_start = (ith * ne01) / nth;
  10348. int64_t src0_cur_end = ((ith + 1) * ne01) / nth;
  10349. src0_cur_start = (src0_cur_start % matmul_num_cols) ? src0_cur_start + matmul_num_cols - (src0_cur_start % matmul_num_cols): src0_cur_start;
  10350. src0_cur_end = (src0_cur_end % matmul_num_cols) ? src0_cur_end + matmul_num_cols - (src0_cur_end % matmul_num_cols): src0_cur_end;
  10351. if (src0_cur_start >= src0_cur_end) return;
  10352. for (int ir1 = 0; ir1 < nr1; ir1++) {
  10353. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, ir1);
  10354. const int id = row_mapping.i1; // selected expert index
  10355. const int64_t i11 = id % ne11;
  10356. const int64_t i12 = row_mapping.i2; // row index in src1
  10357. const int64_t i1 = id; // selected expert index
  10358. const int64_t i2 = i12; // row
  10359. const char * src1_col = (const char *) wdata +
  10360. (src1_cont || src1->type != vec_dot_type
  10361. ? (i11 + i12 * ne11) * row_size
  10362. : (i11 * nb11 + i12 * nb12));
  10363. gemv(ne00, (float *)((char *) dst->data + (i1 * nb1 + i2 * nb2)) + src0_cur_start, ne01,
  10364. (const char *) src0_cur + src0_cur_start * nb01, src1_col, 1, src0_cur_end - src0_cur_start);
  10365. }
  10366. continue;
  10367. }
  10368. // distribute the thread work across the inner or outer loop based on which one is larger
  10369. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10370. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10371. const int64_t ith0 = ith % nth0;
  10372. const int64_t ith1 = ith / nth0;
  10373. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10374. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10375. const int64_t ir010 = dr0*ith0;
  10376. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10377. const int64_t ir110 = dr1*ith1;
  10378. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10379. // threads with no work simply yield (not sure if it helps)
  10380. //if (ir010 >= ir011 || ir110 >= ir111) {
  10381. // sched_yield();
  10382. // continue;
  10383. //}
  10384. // block-tiling attempt
  10385. const int64_t blck_0 = 16;
  10386. const int64_t blck_1 = 16;
  10387. // attempt to reduce false-sharing (does not seem to make a difference)
  10388. float tmp[16];
  10389. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10390. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10391. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10392. const int64_t _i12 = ir1; // logical row index for this expert
  10393. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10394. const int id = row_mapping.i1; // selected expert index
  10395. const int64_t i11 = id % ne11;
  10396. const int64_t i12 = row_mapping.i2; // row index in src1
  10397. const int64_t i1 = id; // selected expert index
  10398. const int64_t i2 = i12; // row
  10399. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10400. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10401. // the original src1 data pointer, so we should index using the indices directly
  10402. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10403. const char * src1_col = (const char *) wdata +
  10404. (src1_cont || src1->type != vec_dot_type
  10405. ? (i11 + i12*ne11)*row_size
  10406. : (i11*nb11 + i12*nb12));
  10407. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10408. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10409. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10410. //}
  10411. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10412. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10413. }
  10414. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10415. }
  10416. }
  10417. }
  10418. }
  10419. #undef MMID_MATRIX_ROW
  10420. }
  10421. // ggml_compute_forward_out_prod
  10422. static void ggml_compute_forward_out_prod_f32(
  10423. const struct ggml_compute_params * params,
  10424. struct ggml_tensor * dst) {
  10425. const struct ggml_tensor * src0 = dst->src[0];
  10426. const struct ggml_tensor * src1 = dst->src[1];
  10427. GGML_TENSOR_BINARY_OP_LOCALS
  10428. const int ith = params->ith;
  10429. const int nth = params->nth;
  10430. GGML_ASSERT(ne0 == ne00);
  10431. GGML_ASSERT(ne1 == ne10);
  10432. GGML_ASSERT(ne2 == ne02);
  10433. GGML_ASSERT(ne02 == ne12);
  10434. GGML_ASSERT(ne3 == ne13);
  10435. GGML_ASSERT(ne03 == ne13);
  10436. // we don't support permuted src0 or src1
  10437. GGML_ASSERT(nb00 == sizeof(float));
  10438. // dst cannot be transposed or permuted
  10439. GGML_ASSERT(nb0 == sizeof(float));
  10440. // GGML_ASSERT(nb0 <= nb1);
  10441. // GGML_ASSERT(nb1 <= nb2);
  10442. // GGML_ASSERT(nb2 <= nb3);
  10443. // nb01 >= nb00 - src0 is not transposed
  10444. // compute by src0 rows
  10445. if (ith == 0) {
  10446. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10447. }
  10448. ggml_barrier(params->shared);
  10449. // dst[:,:,:,:] = 0
  10450. // for i2,i3:
  10451. // for i1:
  10452. // for i01:
  10453. // for i0:
  10454. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10455. // parallelize by last three dimensions
  10456. // total rows in dst
  10457. const int64_t nr = ne1*ne2*ne3;
  10458. // rows per thread
  10459. const int64_t dr = (nr + nth - 1)/nth;
  10460. // row range for this thread
  10461. const int64_t ir0 = dr*ith;
  10462. const int64_t ir1 = MIN(ir0 + dr, nr);
  10463. // block-tiling attempt
  10464. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10465. const int64_t blck_1 = 16;
  10466. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10467. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10468. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10469. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10470. for (int64_t ir = bir; ir < bir1; ++ir) {
  10471. // dst indices
  10472. const int64_t i3 = ir/(ne2*ne1);
  10473. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10474. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10475. const int64_t i02 = i2;
  10476. const int64_t i03 = i3;
  10477. //const int64_t i10 = i1;
  10478. const int64_t i12 = i2;
  10479. const int64_t i13 = i3;
  10480. #if GGML_VEC_MAD_UNROLL > 2
  10481. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10482. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10483. const int64_t i11 = i01;
  10484. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10485. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10486. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10487. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10488. }
  10489. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10490. const int64_t i11 = i01;
  10491. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10492. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10493. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10494. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10495. }
  10496. #else
  10497. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10498. const int64_t i11 = i01;
  10499. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10500. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10501. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10502. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10503. }
  10504. #endif
  10505. }
  10506. }
  10507. }
  10508. }
  10509. static void ggml_compute_forward_out_prod_q_f32(
  10510. const struct ggml_compute_params * params,
  10511. struct ggml_tensor * dst) {
  10512. const struct ggml_tensor * src0 = dst->src[0];
  10513. const struct ggml_tensor * src1 = dst->src[1];
  10514. GGML_TENSOR_BINARY_OP_LOCALS;
  10515. const int ith = params->ith;
  10516. const int nth = params->nth;
  10517. const enum ggml_type type = src0->type;
  10518. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10519. GGML_ASSERT(ne02 == ne12);
  10520. GGML_ASSERT(ne03 == ne13);
  10521. GGML_ASSERT(ne2 == ne12);
  10522. GGML_ASSERT(ne3 == ne13);
  10523. // we don't support permuted src0 dim0
  10524. GGML_ASSERT(nb00 == ggml_type_size(type));
  10525. // dst dim0 cannot be transposed or permuted
  10526. GGML_ASSERT(nb0 == sizeof(float));
  10527. // GGML_ASSERT(nb0 <= nb1);
  10528. // GGML_ASSERT(nb1 <= nb2);
  10529. // GGML_ASSERT(nb2 <= nb3);
  10530. GGML_ASSERT(ne0 == ne00);
  10531. GGML_ASSERT(ne1 == ne10);
  10532. GGML_ASSERT(ne2 == ne02);
  10533. GGML_ASSERT(ne3 == ne03);
  10534. // nb01 >= nb00 - src0 is not transposed
  10535. // compute by src0 rows
  10536. if (ith == 0) {
  10537. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10538. }
  10539. ggml_barrier(params->shared);
  10540. // parallelize by last three dimensions
  10541. // total rows in dst
  10542. const int64_t nr = ne1*ne2*ne3;
  10543. // rows per thread
  10544. const int64_t dr = (nr + nth - 1)/nth;
  10545. // row range for this thread
  10546. const int64_t ir0 = dr*ith;
  10547. const int64_t ir1 = MIN(ir0 + dr, nr);
  10548. // dst[:,:,:,:] = 0
  10549. // for i2,i3:
  10550. // for i1:
  10551. // for i01:
  10552. // for i0:
  10553. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10554. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10555. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10556. // dst indices
  10557. const int64_t i3 = ir/(ne2*ne1);
  10558. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10559. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10560. const int64_t i02 = i2;
  10561. const int64_t i03 = i3;
  10562. //const int64_t i10 = i1;
  10563. const int64_t i12 = i2;
  10564. const int64_t i13 = i3;
  10565. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10566. const int64_t i11 = i01;
  10567. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10568. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10569. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10570. dequantize_row_q(s0, wdata, ne0);
  10571. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10572. }
  10573. }
  10574. }
  10575. static void ggml_compute_forward_out_prod(
  10576. const struct ggml_compute_params * params,
  10577. struct ggml_tensor * dst) {
  10578. const struct ggml_tensor * src0 = dst->src[0];
  10579. switch (src0->type) {
  10580. case GGML_TYPE_Q4_0:
  10581. case GGML_TYPE_Q4_1:
  10582. case GGML_TYPE_Q5_0:
  10583. case GGML_TYPE_Q5_1:
  10584. case GGML_TYPE_Q8_0:
  10585. case GGML_TYPE_Q2_K:
  10586. case GGML_TYPE_Q3_K:
  10587. case GGML_TYPE_Q4_K:
  10588. case GGML_TYPE_Q5_K:
  10589. case GGML_TYPE_Q6_K:
  10590. case GGML_TYPE_IQ2_XXS:
  10591. case GGML_TYPE_IQ2_XS:
  10592. case GGML_TYPE_IQ3_XXS:
  10593. case GGML_TYPE_IQ1_S:
  10594. case GGML_TYPE_IQ1_M:
  10595. case GGML_TYPE_IQ4_NL:
  10596. case GGML_TYPE_IQ4_XS:
  10597. case GGML_TYPE_IQ3_S:
  10598. case GGML_TYPE_IQ2_S:
  10599. case GGML_TYPE_Q4_0_4_4:
  10600. case GGML_TYPE_Q4_0_4_8:
  10601. case GGML_TYPE_Q4_0_8_8:
  10602. {
  10603. ggml_compute_forward_out_prod_q_f32(params, dst);
  10604. } break;
  10605. case GGML_TYPE_F16:
  10606. {
  10607. GGML_ABORT("fatal error"); // todo
  10608. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10609. }
  10610. case GGML_TYPE_F32:
  10611. {
  10612. ggml_compute_forward_out_prod_f32(params, dst);
  10613. } break;
  10614. default:
  10615. {
  10616. GGML_ABORT("fatal error");
  10617. }
  10618. }
  10619. }
  10620. // ggml_compute_forward_scale
  10621. static void ggml_compute_forward_scale_f32(
  10622. const struct ggml_compute_params * params,
  10623. struct ggml_tensor * dst) {
  10624. const struct ggml_tensor * src0 = dst->src[0];
  10625. GGML_ASSERT(ggml_is_contiguous(src0));
  10626. GGML_ASSERT(ggml_is_contiguous(dst));
  10627. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10628. // scale factor
  10629. float v;
  10630. memcpy(&v, dst->op_params, sizeof(float));
  10631. const int ith = params->ith;
  10632. const int nth = params->nth;
  10633. const int nc = src0->ne[0];
  10634. const int nr = ggml_nrows(src0);
  10635. // rows per thread
  10636. const int dr = (nr + nth - 1)/nth;
  10637. // row range for this thread
  10638. const int ir0 = dr*ith;
  10639. const int ir1 = MIN(ir0 + dr, nr);
  10640. const size_t nb01 = src0->nb[1];
  10641. const size_t nb1 = dst->nb[1];
  10642. for (int i1 = ir0; i1 < ir1; i1++) {
  10643. if (dst->data != src0->data) {
  10644. // src0 is same shape as dst => same indices
  10645. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10646. }
  10647. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10648. }
  10649. }
  10650. static void ggml_compute_forward_scale(
  10651. const struct ggml_compute_params * params,
  10652. struct ggml_tensor * dst) {
  10653. const struct ggml_tensor * src0 = dst->src[0];
  10654. switch (src0->type) {
  10655. case GGML_TYPE_F32:
  10656. {
  10657. ggml_compute_forward_scale_f32(params, dst);
  10658. } break;
  10659. default:
  10660. {
  10661. GGML_ABORT("fatal error");
  10662. }
  10663. }
  10664. }
  10665. // ggml_compute_forward_set
  10666. static void ggml_compute_forward_set_f32(
  10667. const struct ggml_compute_params * params,
  10668. struct ggml_tensor * dst) {
  10669. const struct ggml_tensor * src0 = dst->src[0];
  10670. const struct ggml_tensor * src1 = dst->src[1];
  10671. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10672. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10673. // view src0 and dst with these strides and data offset inbytes during set
  10674. // nb0 is implicitly element_size because src0 and dst are contiguous
  10675. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10676. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10677. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10678. size_t offset = ((int32_t *) dst->op_params)[3];
  10679. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10680. if (!inplace) {
  10681. if (params->ith == 0) {
  10682. // memcpy needs to be synchronized across threads to avoid race conditions.
  10683. // => do it in INIT phase
  10684. memcpy(
  10685. ((char *) dst->data),
  10686. ((char *) src0->data),
  10687. ggml_nbytes(dst));
  10688. }
  10689. ggml_barrier(params->shared);
  10690. }
  10691. const int ith = params->ith;
  10692. const int nth = params->nth;
  10693. const int nr = ggml_nrows(src1);
  10694. const int nc = src1->ne[0];
  10695. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10696. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10697. // src0 and dst as viewed during set
  10698. const size_t nb0 = ggml_element_size(src0);
  10699. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10700. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10701. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10702. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10703. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10704. GGML_ASSERT(nb10 == sizeof(float));
  10705. // rows per thread
  10706. const int dr = (nr + nth - 1)/nth;
  10707. // row range for this thread
  10708. const int ir0 = dr*ith;
  10709. const int ir1 = MIN(ir0 + dr, nr);
  10710. for (int ir = ir0; ir < ir1; ++ir) {
  10711. // src0 and dst are viewed with shape of src1 and offset
  10712. // => same indices
  10713. const int i3 = ir/(ne12*ne11);
  10714. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10715. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10716. ggml_vec_cpy_f32(nc,
  10717. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10718. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10719. }
  10720. }
  10721. static void ggml_compute_forward_set(
  10722. const struct ggml_compute_params * params,
  10723. struct ggml_tensor * dst) {
  10724. const struct ggml_tensor * src0 = dst->src[0];
  10725. switch (src0->type) {
  10726. case GGML_TYPE_F32:
  10727. {
  10728. ggml_compute_forward_set_f32(params, dst);
  10729. } break;
  10730. case GGML_TYPE_F16:
  10731. case GGML_TYPE_BF16:
  10732. case GGML_TYPE_Q4_0:
  10733. case GGML_TYPE_Q4_1:
  10734. case GGML_TYPE_Q5_0:
  10735. case GGML_TYPE_Q5_1:
  10736. case GGML_TYPE_Q8_0:
  10737. case GGML_TYPE_Q8_1:
  10738. case GGML_TYPE_Q2_K:
  10739. case GGML_TYPE_Q3_K:
  10740. case GGML_TYPE_Q4_K:
  10741. case GGML_TYPE_Q5_K:
  10742. case GGML_TYPE_Q6_K:
  10743. case GGML_TYPE_IQ2_XXS:
  10744. case GGML_TYPE_IQ2_XS:
  10745. case GGML_TYPE_IQ3_XXS:
  10746. case GGML_TYPE_IQ1_S:
  10747. case GGML_TYPE_IQ1_M:
  10748. case GGML_TYPE_IQ4_NL:
  10749. case GGML_TYPE_IQ4_XS:
  10750. case GGML_TYPE_IQ3_S:
  10751. case GGML_TYPE_IQ2_S:
  10752. case GGML_TYPE_Q4_0_4_4:
  10753. case GGML_TYPE_Q4_0_4_8:
  10754. case GGML_TYPE_Q4_0_8_8:
  10755. default:
  10756. {
  10757. GGML_ABORT("fatal error");
  10758. }
  10759. }
  10760. }
  10761. // ggml_compute_forward_cpy
  10762. static void ggml_compute_forward_cpy(
  10763. const struct ggml_compute_params * params,
  10764. struct ggml_tensor * dst) {
  10765. ggml_compute_forward_dup(params, dst);
  10766. }
  10767. // ggml_compute_forward_cont
  10768. static void ggml_compute_forward_cont(
  10769. const struct ggml_compute_params * params,
  10770. struct ggml_tensor * dst) {
  10771. ggml_compute_forward_dup(params, dst);
  10772. }
  10773. // ggml_compute_forward_reshape
  10774. static void ggml_compute_forward_reshape(
  10775. const struct ggml_compute_params * params,
  10776. struct ggml_tensor * dst) {
  10777. // NOP
  10778. UNUSED(params);
  10779. UNUSED(dst);
  10780. }
  10781. // ggml_compute_forward_view
  10782. static void ggml_compute_forward_view(
  10783. const struct ggml_compute_params * params,
  10784. const struct ggml_tensor * dst) {
  10785. // NOP
  10786. UNUSED(params);
  10787. UNUSED(dst);
  10788. }
  10789. // ggml_compute_forward_permute
  10790. static void ggml_compute_forward_permute(
  10791. const struct ggml_compute_params * params,
  10792. const struct ggml_tensor * dst) {
  10793. // NOP
  10794. UNUSED(params);
  10795. UNUSED(dst);
  10796. }
  10797. // ggml_compute_forward_transpose
  10798. static void ggml_compute_forward_transpose(
  10799. const struct ggml_compute_params * params,
  10800. const struct ggml_tensor * dst) {
  10801. // NOP
  10802. UNUSED(params);
  10803. UNUSED(dst);
  10804. }
  10805. // ggml_compute_forward_get_rows
  10806. static void ggml_compute_forward_get_rows_q(
  10807. const struct ggml_compute_params * params,
  10808. struct ggml_tensor * dst) {
  10809. const struct ggml_tensor * src0 = dst->src[0];
  10810. const struct ggml_tensor * src1 = dst->src[1];
  10811. GGML_TENSOR_BINARY_OP_LOCALS
  10812. const int64_t nc = ne00;
  10813. const int64_t nr = ggml_nelements(src1);
  10814. const enum ggml_type type = src0->type;
  10815. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10816. assert(ne0 == nc);
  10817. assert(ne02 == ne11);
  10818. assert(nb00 == ggml_type_size(type));
  10819. assert(ggml_nrows(dst) == nr);
  10820. const int ith = params->ith;
  10821. const int nth = params->nth;
  10822. // rows per thread
  10823. const int dr = (nr + nth - 1)/nth;
  10824. // row range for this thread
  10825. const int ir0 = dr*ith;
  10826. const int ir1 = MIN(ir0 + dr, nr);
  10827. for (int64_t i = ir0; i < ir1; ++i) {
  10828. const int64_t i12 = i/(ne11*ne10);
  10829. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10830. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10831. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10832. assert(i01 >= 0 && i01 < ne01);
  10833. dequantize_row_q(
  10834. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10835. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10836. }
  10837. }
  10838. static void ggml_compute_forward_get_rows_f16(
  10839. const struct ggml_compute_params * params,
  10840. struct ggml_tensor * dst) {
  10841. const struct ggml_tensor * src0 = dst->src[0];
  10842. const struct ggml_tensor * src1 = dst->src[1];
  10843. GGML_TENSOR_BINARY_OP_LOCALS
  10844. const int64_t nc = ne00;
  10845. const int64_t nr = ggml_nelements(src1);
  10846. assert(ne0 == nc);
  10847. assert(ne02 == ne11);
  10848. assert(nb00 == sizeof(ggml_fp16_t));
  10849. assert(ggml_nrows(dst) == nr);
  10850. const int ith = params->ith;
  10851. const int nth = params->nth;
  10852. // rows per thread
  10853. const int dr = (nr + nth - 1)/nth;
  10854. // row range for this thread
  10855. const int ir0 = dr*ith;
  10856. const int ir1 = MIN(ir0 + dr, nr);
  10857. for (int64_t i = ir0; i < ir1; ++i) {
  10858. const int64_t i12 = i/(ne11*ne10);
  10859. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10860. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10861. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10862. assert(i01 >= 0 && i01 < ne01);
  10863. ggml_fp16_to_fp32_row(
  10864. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10865. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10866. }
  10867. }
  10868. static void ggml_compute_forward_get_rows_bf16(
  10869. const struct ggml_compute_params * params,
  10870. struct ggml_tensor * dst) {
  10871. const struct ggml_tensor * src0 = dst->src[0];
  10872. const struct ggml_tensor * src1 = dst->src[1];
  10873. GGML_TENSOR_BINARY_OP_LOCALS
  10874. const int64_t nc = ne00;
  10875. const int64_t nr = ggml_nelements(src1);
  10876. assert(ne0 == nc);
  10877. assert(ne02 == ne11);
  10878. assert(nb00 == sizeof(ggml_bf16_t));
  10879. assert(ggml_nrows(dst) == nr);
  10880. const int ith = params->ith;
  10881. const int nth = params->nth;
  10882. // rows per thread
  10883. const int dr = (nr + nth - 1)/nth;
  10884. // row range for this thread
  10885. const int ir0 = dr*ith;
  10886. const int ir1 = MIN(ir0 + dr, nr);
  10887. for (int64_t i = ir0; i < ir1; ++i) {
  10888. const int64_t i12 = i/(ne11*ne10);
  10889. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10890. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10891. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10892. assert(i01 >= 0 && i01 < ne01);
  10893. ggml_bf16_to_fp32_row(
  10894. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10895. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10896. }
  10897. }
  10898. static void ggml_compute_forward_get_rows_f32(
  10899. const struct ggml_compute_params * params,
  10900. struct ggml_tensor * dst) {
  10901. const struct ggml_tensor * src0 = dst->src[0];
  10902. const struct ggml_tensor * src1 = dst->src[1];
  10903. GGML_TENSOR_BINARY_OP_LOCALS
  10904. const int64_t nc = ne00;
  10905. const int64_t nr = ggml_nelements(src1);
  10906. assert(ne0 == nc);
  10907. assert(ne02 == ne11);
  10908. assert(nb00 == sizeof(float));
  10909. assert(ggml_nrows(dst) == nr);
  10910. const int ith = params->ith;
  10911. const int nth = params->nth;
  10912. // rows per thread
  10913. const int dr = (nr + nth - 1)/nth;
  10914. // row range for this thread
  10915. const int ir0 = dr*ith;
  10916. const int ir1 = MIN(ir0 + dr, nr);
  10917. for (int64_t i = ir0; i < ir1; ++i) {
  10918. const int64_t i12 = i/(ne11*ne10);
  10919. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10920. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10921. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10922. assert(i01 >= 0 && i01 < ne01);
  10923. ggml_vec_cpy_f32(nc,
  10924. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10925. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10926. }
  10927. }
  10928. static void ggml_compute_forward_get_rows(
  10929. const struct ggml_compute_params * params,
  10930. struct ggml_tensor * dst) {
  10931. const struct ggml_tensor * src0 = dst->src[0];
  10932. switch (src0->type) {
  10933. case GGML_TYPE_Q4_0:
  10934. case GGML_TYPE_Q4_1:
  10935. case GGML_TYPE_Q5_0:
  10936. case GGML_TYPE_Q5_1:
  10937. case GGML_TYPE_Q8_0:
  10938. case GGML_TYPE_Q8_1:
  10939. case GGML_TYPE_Q2_K:
  10940. case GGML_TYPE_Q3_K:
  10941. case GGML_TYPE_Q4_K:
  10942. case GGML_TYPE_Q5_K:
  10943. case GGML_TYPE_Q6_K:
  10944. case GGML_TYPE_IQ2_XXS:
  10945. case GGML_TYPE_IQ2_XS:
  10946. case GGML_TYPE_IQ3_XXS:
  10947. case GGML_TYPE_IQ1_S:
  10948. case GGML_TYPE_IQ1_M:
  10949. case GGML_TYPE_IQ4_NL:
  10950. case GGML_TYPE_IQ4_XS:
  10951. case GGML_TYPE_IQ3_S:
  10952. case GGML_TYPE_IQ2_S:
  10953. case GGML_TYPE_Q4_0_4_4:
  10954. case GGML_TYPE_Q4_0_4_8:
  10955. case GGML_TYPE_Q4_0_8_8:
  10956. {
  10957. ggml_compute_forward_get_rows_q(params, dst);
  10958. } break;
  10959. case GGML_TYPE_F16:
  10960. {
  10961. ggml_compute_forward_get_rows_f16(params, dst);
  10962. } break;
  10963. case GGML_TYPE_BF16:
  10964. {
  10965. ggml_compute_forward_get_rows_bf16(params, dst);
  10966. } break;
  10967. case GGML_TYPE_F32:
  10968. case GGML_TYPE_I32:
  10969. {
  10970. ggml_compute_forward_get_rows_f32(params, dst);
  10971. } break;
  10972. default:
  10973. {
  10974. GGML_ABORT("fatal error");
  10975. }
  10976. }
  10977. //static bool first = true;
  10978. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10979. //if (first) {
  10980. // first = false;
  10981. //} else {
  10982. // for (int k = 0; k < dst->ne[1]; ++k) {
  10983. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10984. // for (int i = 0; i < 16; ++i) {
  10985. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10986. // }
  10987. // printf("\n");
  10988. // }
  10989. // printf("\n");
  10990. // }
  10991. // printf("\n");
  10992. // exit(0);
  10993. //}
  10994. }
  10995. // ggml_compute_forward_get_rows_back
  10996. static void ggml_compute_forward_get_rows_back_f32_f16(
  10997. const struct ggml_compute_params * params,
  10998. struct ggml_tensor * dst) {
  10999. const struct ggml_tensor * src0 = dst->src[0];
  11000. const struct ggml_tensor * src1 = dst->src[1];
  11001. if (params->ith != 0) {
  11002. return;
  11003. }
  11004. GGML_ASSERT(ggml_is_contiguous(dst));
  11005. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11006. memset(dst->data, 0, ggml_nbytes(dst));
  11007. const int nc = src0->ne[0];
  11008. const int nr = ggml_nelements(src1);
  11009. GGML_ASSERT( dst->ne[0] == nc);
  11010. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  11011. for (int i = 0; i < nr; ++i) {
  11012. const int r = ((int32_t *) src1->data)[i];
  11013. for (int j = 0; j < nc; ++j) {
  11014. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  11015. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  11016. }
  11017. }
  11018. }
  11019. static void ggml_compute_forward_get_rows_back_f32(
  11020. const struct ggml_compute_params * params,
  11021. struct ggml_tensor * dst) {
  11022. const struct ggml_tensor * src0 = dst->src[0];
  11023. const struct ggml_tensor * src1 = dst->src[1];
  11024. if (params->ith != 0) {
  11025. return;
  11026. }
  11027. GGML_ASSERT(ggml_is_contiguous(dst));
  11028. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  11029. memset(dst->data, 0, ggml_nbytes(dst));
  11030. const int nc = src0->ne[0];
  11031. const int nr = ggml_nelements(src1);
  11032. GGML_ASSERT( dst->ne[0] == nc);
  11033. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11034. for (int i = 0; i < nr; ++i) {
  11035. const int r = ((int32_t *) src1->data)[i];
  11036. ggml_vec_add_f32(nc,
  11037. (float *) ((char *) dst->data + r*dst->nb[1]),
  11038. (float *) ((char *) dst->data + r*dst->nb[1]),
  11039. (float *) ((char *) src0->data + i*src0->nb[1]));
  11040. }
  11041. }
  11042. static void ggml_compute_forward_get_rows_back(
  11043. const struct ggml_compute_params * params,
  11044. struct ggml_tensor * dst) {
  11045. const struct ggml_tensor * src0 = dst->src[0];
  11046. switch (src0->type) {
  11047. case GGML_TYPE_F16:
  11048. {
  11049. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  11050. } break;
  11051. case GGML_TYPE_F32:
  11052. {
  11053. ggml_compute_forward_get_rows_back_f32(params, dst);
  11054. } break;
  11055. default:
  11056. {
  11057. GGML_ABORT("fatal error");
  11058. }
  11059. }
  11060. //static bool first = true;
  11061. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  11062. //if (first) {
  11063. // first = false;
  11064. //} else {
  11065. // for (int k = 0; k < dst->ne[1]; ++k) {
  11066. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  11067. // for (int i = 0; i < 16; ++i) {
  11068. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  11069. // }
  11070. // printf("\n");
  11071. // }
  11072. // printf("\n");
  11073. // }
  11074. // printf("\n");
  11075. // exit(0);
  11076. //}
  11077. }
  11078. // ggml_compute_forward_diag
  11079. static void ggml_compute_forward_diag_f32(
  11080. const struct ggml_compute_params * params,
  11081. struct ggml_tensor * dst) {
  11082. const struct ggml_tensor * src0 = dst->src[0];
  11083. if (params->ith != 0) {
  11084. return;
  11085. }
  11086. // TODO: handle transposed/permuted matrices
  11087. GGML_TENSOR_UNARY_OP_LOCALS
  11088. GGML_ASSERT(ne00 == ne0);
  11089. GGML_ASSERT(ne00 == ne1);
  11090. GGML_ASSERT(ne01 == 1);
  11091. GGML_ASSERT(ne02 == ne2);
  11092. GGML_ASSERT(ne03 == ne3);
  11093. GGML_ASSERT(nb00 == sizeof(float));
  11094. GGML_ASSERT(nb0 == sizeof(float));
  11095. for (int i3 = 0; i3 < ne3; i3++) {
  11096. for (int i2 = 0; i2 < ne2; i2++) {
  11097. for (int i1 = 0; i1 < ne1; i1++) {
  11098. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  11099. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  11100. for (int i0 = 0; i0 < i1; i0++) {
  11101. d[i0] = 0;
  11102. }
  11103. d[i1] = s[i1];
  11104. for (int i0 = i1+1; i0 < ne0; i0++) {
  11105. d[i0] = 0;
  11106. }
  11107. }
  11108. }
  11109. }
  11110. }
  11111. static void ggml_compute_forward_diag(
  11112. const struct ggml_compute_params * params,
  11113. struct ggml_tensor * dst) {
  11114. const struct ggml_tensor * src0 = dst->src[0];
  11115. switch (src0->type) {
  11116. case GGML_TYPE_F32:
  11117. {
  11118. ggml_compute_forward_diag_f32(params, dst);
  11119. } break;
  11120. default:
  11121. {
  11122. GGML_ABORT("fatal error");
  11123. }
  11124. }
  11125. }
  11126. // ggml_compute_forward_diag_mask_inf
  11127. static void ggml_compute_forward_diag_mask_f32(
  11128. const struct ggml_compute_params * params,
  11129. struct ggml_tensor * dst,
  11130. const float value) {
  11131. const struct ggml_tensor * src0 = dst->src[0];
  11132. const int ith = params->ith;
  11133. const int nth = params->nth;
  11134. const int n_past = ((int32_t *) dst->op_params)[0];
  11135. const bool inplace = src0->data == dst->data;
  11136. GGML_ASSERT(n_past >= 0);
  11137. if (!inplace) {
  11138. if (ith == 0) {
  11139. // memcpy needs to be synchronized across threads to avoid race conditions.
  11140. // => do it in INIT phase
  11141. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  11142. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  11143. memcpy(
  11144. ((char *) dst->data),
  11145. ((char *) src0->data),
  11146. ggml_nbytes(dst));
  11147. }
  11148. ggml_barrier(params->shared);
  11149. }
  11150. // TODO: handle transposed/permuted matrices
  11151. const int n = ggml_nrows(src0);
  11152. const int nc = src0->ne[0];
  11153. const int nr = src0->ne[1];
  11154. const int nz = n/nr;
  11155. GGML_ASSERT( dst->nb[0] == sizeof(float));
  11156. GGML_ASSERT(src0->nb[0] == sizeof(float));
  11157. for (int k = 0; k < nz; k++) {
  11158. for (int j = ith; j < nr; j += nth) {
  11159. for (int i = n_past; i < nc; i++) {
  11160. if (i > n_past + j) {
  11161. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  11162. }
  11163. }
  11164. }
  11165. }
  11166. }
  11167. static void ggml_compute_forward_diag_mask_inf(
  11168. const struct ggml_compute_params * params,
  11169. struct ggml_tensor * dst) {
  11170. const struct ggml_tensor * src0 = dst->src[0];
  11171. switch (src0->type) {
  11172. case GGML_TYPE_F32:
  11173. {
  11174. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  11175. } break;
  11176. default:
  11177. {
  11178. GGML_ABORT("fatal error");
  11179. }
  11180. }
  11181. }
  11182. static void ggml_compute_forward_diag_mask_zero(
  11183. const struct ggml_compute_params * params,
  11184. struct ggml_tensor * dst) {
  11185. const struct ggml_tensor * src0 = dst->src[0];
  11186. switch (src0->type) {
  11187. case GGML_TYPE_F32:
  11188. {
  11189. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  11190. } break;
  11191. default:
  11192. {
  11193. GGML_ABORT("fatal error");
  11194. }
  11195. }
  11196. }
  11197. // ggml_compute_forward_soft_max
  11198. static void ggml_compute_forward_soft_max_f32(
  11199. const struct ggml_compute_params * params,
  11200. struct ggml_tensor * dst) {
  11201. const struct ggml_tensor * src0 = dst->src[0];
  11202. const struct ggml_tensor * src1 = dst->src[1];
  11203. assert(ggml_is_contiguous(dst));
  11204. assert(ggml_are_same_shape(src0, dst));
  11205. float scale = 1.0f;
  11206. float max_bias = 0.0f;
  11207. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  11208. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  11209. // TODO: handle transposed/permuted matrices
  11210. const int ith = params->ith;
  11211. const int nth = params->nth;
  11212. GGML_TENSOR_UNARY_OP_LOCALS
  11213. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11214. // TODO: is this supposed to be ceil instead of floor?
  11215. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11216. const uint32_t n_head = ne02;
  11217. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11218. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11219. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11220. const int nc = src0->ne[0];
  11221. const int nr = ggml_nrows(src0);
  11222. // rows per thread
  11223. const int dr = (nr + nth - 1)/nth;
  11224. // row range for this thread
  11225. const int ir0 = dr*ith;
  11226. const int ir1 = MIN(ir0 + dr, nr);
  11227. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11228. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11229. for (int i1 = ir0; i1 < ir1; i1++) {
  11230. // ALiBi
  11231. const uint32_t h = (i1/ne01)%ne02; // head
  11232. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11233. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11234. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11235. // broadcast the mask across rows
  11236. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11237. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11238. ggml_vec_cpy_f32 (nc, wp, sp);
  11239. ggml_vec_scale_f32(nc, wp, scale);
  11240. if (mp_f32) {
  11241. if (use_f16) {
  11242. for (int i = 0; i < nc; ++i) {
  11243. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11244. }
  11245. } else {
  11246. for (int i = 0; i < nc; ++i) {
  11247. wp[i] += slope*mp_f32[i];
  11248. }
  11249. }
  11250. }
  11251. #ifndef NDEBUG
  11252. for (int i = 0; i < nc; ++i) {
  11253. //printf("p[%d] = %f\n", i, p[i]);
  11254. assert(!isnan(wp[i]));
  11255. }
  11256. #endif
  11257. float max = -INFINITY;
  11258. ggml_vec_max_f32(nc, &max, wp);
  11259. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11260. assert(sum > 0.0);
  11261. sum = 1.0/sum;
  11262. ggml_vec_scale_f32(nc, dp, sum);
  11263. #ifndef NDEBUG
  11264. for (int i = 0; i < nc; ++i) {
  11265. assert(!isnan(dp[i]));
  11266. assert(!isinf(dp[i]));
  11267. }
  11268. #endif
  11269. }
  11270. }
  11271. static void ggml_compute_forward_soft_max(
  11272. const struct ggml_compute_params * params,
  11273. struct ggml_tensor * dst) {
  11274. const struct ggml_tensor * src0 = dst->src[0];
  11275. switch (src0->type) {
  11276. case GGML_TYPE_F32:
  11277. {
  11278. ggml_compute_forward_soft_max_f32(params, dst);
  11279. } break;
  11280. default:
  11281. {
  11282. GGML_ABORT("fatal error");
  11283. }
  11284. }
  11285. }
  11286. // ggml_compute_forward_soft_max_back
  11287. static void ggml_compute_forward_soft_max_back_f32(
  11288. const struct ggml_compute_params * params,
  11289. struct ggml_tensor * dst) {
  11290. const struct ggml_tensor * src0 = dst->src[0];
  11291. const struct ggml_tensor * src1 = dst->src[1];
  11292. GGML_ASSERT(ggml_is_contiguous(src0));
  11293. GGML_ASSERT(ggml_is_contiguous(src1));
  11294. GGML_ASSERT(ggml_is_contiguous(dst));
  11295. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11296. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11297. // TODO: handle transposed/permuted matrices
  11298. const int ith = params->ith;
  11299. const int nth = params->nth;
  11300. const int nc = src0->ne[0];
  11301. const int nr = ggml_nrows(src0);
  11302. // rows per thread
  11303. const int dr = (nr + nth - 1)/nth;
  11304. // row range for this thread
  11305. const int ir0 = dr*ith;
  11306. const int ir1 = MIN(ir0 + dr, nr);
  11307. for (int i1 = ir0; i1 < ir1; i1++) {
  11308. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11309. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11310. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11311. #ifndef NDEBUG
  11312. for (int i = 0; i < nc; ++i) {
  11313. //printf("p[%d] = %f\n", i, p[i]);
  11314. assert(!isnan(dy[i]));
  11315. assert(!isnan(y[i]));
  11316. }
  11317. #endif
  11318. // Jii = yi - yi*yi
  11319. // Jij = -yi*yj
  11320. // J = diag(y)-y.T*y
  11321. // dx = J * dy
  11322. // dxk = sum_i(Jki * dyi)
  11323. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11324. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11325. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11326. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11327. // dxk = -yk * dot(y, dy) + yk*dyk
  11328. // dxk = yk * (- dot(y, dy) + dyk)
  11329. // dxk = yk * (dyk - dot(y, dy))
  11330. //
  11331. // post-order:
  11332. // dot_y_dy := dot(y, dy)
  11333. // dx := dy
  11334. // dx := dx - dot_y_dy
  11335. // dx := dx * y
  11336. // linear runtime, no additional memory
  11337. float dot_y_dy = 0;
  11338. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11339. ggml_vec_cpy_f32 (nc, dx, dy);
  11340. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11341. ggml_vec_mul_f32 (nc, dx, dx, y);
  11342. #ifndef NDEBUG
  11343. for (int i = 0; i < nc; ++i) {
  11344. assert(!isnan(dx[i]));
  11345. assert(!isinf(dx[i]));
  11346. }
  11347. #endif
  11348. }
  11349. }
  11350. static void ggml_compute_forward_soft_max_back(
  11351. const struct ggml_compute_params * params,
  11352. struct ggml_tensor * dst) {
  11353. const struct ggml_tensor * src0 = dst->src[0];
  11354. switch (src0->type) {
  11355. case GGML_TYPE_F32:
  11356. {
  11357. ggml_compute_forward_soft_max_back_f32(params, dst);
  11358. } break;
  11359. default:
  11360. {
  11361. GGML_ABORT("fatal error");
  11362. }
  11363. }
  11364. }
  11365. // ggml_compute_forward_clamp
  11366. static void ggml_compute_forward_clamp_f32(
  11367. const struct ggml_compute_params * params,
  11368. struct ggml_tensor * dst) {
  11369. const struct ggml_tensor * src0 = dst->src[0];
  11370. if (params->ith != 0) {
  11371. return;
  11372. }
  11373. float min;
  11374. float max;
  11375. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11376. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11377. const int ith = params->ith;
  11378. const int nth = params->nth;
  11379. const int n = ggml_nrows(src0);
  11380. const int nc = src0->ne[0];
  11381. const size_t nb00 = src0->nb[0];
  11382. const size_t nb01 = src0->nb[1];
  11383. const size_t nb0 = dst->nb[0];
  11384. const size_t nb1 = dst->nb[1];
  11385. GGML_ASSERT( nb0 == sizeof(float));
  11386. GGML_ASSERT(nb00 == sizeof(float));
  11387. for (int j = ith; j < n; j += nth) {
  11388. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11389. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11390. for (int i = 0; i < nc; i++) {
  11391. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11392. }
  11393. }
  11394. }
  11395. static void ggml_compute_forward_clamp(
  11396. const struct ggml_compute_params * params,
  11397. struct ggml_tensor * dst) {
  11398. const struct ggml_tensor * src0 = dst->src[0];
  11399. switch (src0->type) {
  11400. case GGML_TYPE_F32:
  11401. {
  11402. ggml_compute_forward_clamp_f32(params, dst);
  11403. } break;
  11404. case GGML_TYPE_F16:
  11405. case GGML_TYPE_BF16:
  11406. case GGML_TYPE_Q4_0:
  11407. case GGML_TYPE_Q4_1:
  11408. case GGML_TYPE_Q5_0:
  11409. case GGML_TYPE_Q5_1:
  11410. case GGML_TYPE_Q8_0:
  11411. case GGML_TYPE_Q8_1:
  11412. case GGML_TYPE_Q2_K:
  11413. case GGML_TYPE_Q3_K:
  11414. case GGML_TYPE_Q4_K:
  11415. case GGML_TYPE_Q5_K:
  11416. case GGML_TYPE_Q6_K:
  11417. case GGML_TYPE_IQ2_XXS:
  11418. case GGML_TYPE_IQ2_XS:
  11419. case GGML_TYPE_IQ3_XXS:
  11420. case GGML_TYPE_IQ1_S:
  11421. case GGML_TYPE_IQ1_M:
  11422. case GGML_TYPE_IQ4_NL:
  11423. case GGML_TYPE_IQ4_XS:
  11424. case GGML_TYPE_IQ3_S:
  11425. case GGML_TYPE_IQ2_S:
  11426. case GGML_TYPE_Q8_K:
  11427. case GGML_TYPE_Q4_0_4_4:
  11428. case GGML_TYPE_Q4_0_4_8:
  11429. case GGML_TYPE_Q4_0_8_8:
  11430. case GGML_TYPE_I8:
  11431. case GGML_TYPE_I16:
  11432. case GGML_TYPE_I32:
  11433. case GGML_TYPE_I64:
  11434. case GGML_TYPE_F64:
  11435. case GGML_TYPE_COUNT:
  11436. {
  11437. GGML_ABORT("fatal error");
  11438. }
  11439. }
  11440. }
  11441. // ggml_compute_forward_rope
  11442. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11443. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11444. return 1 - MIN(1, MAX(0, y));
  11445. }
  11446. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11447. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11448. static void rope_yarn(
  11449. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11450. float * cos_theta, float * sin_theta) {
  11451. // Get n-d rotational scaling corrected for extrapolation
  11452. float theta_interp = freq_scale * theta_extrap;
  11453. float theta = theta_interp;
  11454. if (ext_factor != 0.0f) {
  11455. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11456. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11457. // Get n-d magnitude scaling corrected for interpolation
  11458. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11459. }
  11460. *cos_theta = cosf(theta) * mscale;
  11461. *sin_theta = sinf(theta) * mscale;
  11462. }
  11463. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11464. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11465. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11466. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11467. }
  11468. static void ggml_rope_cache_init(
  11469. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11470. float * cache, float sin_sign, float theta_scale) {
  11471. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11472. float theta = theta_base;
  11473. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11474. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11475. rope_yarn(
  11476. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11477. );
  11478. cache[i0 + 1] *= sin_sign;
  11479. theta *= theta_scale;
  11480. }
  11481. }
  11482. GGML_CALL void ggml_rope_yarn_corr_dims(
  11483. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11484. ) {
  11485. // start and end correction dims
  11486. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11487. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11488. dims[0] = MAX(0, start);
  11489. dims[1] = MIN(n_dims - 1, end);
  11490. }
  11491. static void ggml_compute_forward_rope_f32(
  11492. const struct ggml_compute_params * params,
  11493. struct ggml_tensor * dst,
  11494. const bool forward) {
  11495. const struct ggml_tensor * src0 = dst->src[0];
  11496. const struct ggml_tensor * src1 = dst->src[1];
  11497. const struct ggml_tensor * src2 = dst->src[2];
  11498. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11499. //const int n_past = ((int32_t *) dst->op_params)[0];
  11500. const int n_dims = ((int32_t *) dst->op_params)[1];
  11501. const int mode = ((int32_t *) dst->op_params)[2];
  11502. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11503. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11504. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11505. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11506. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11507. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11508. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11509. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11510. GGML_TENSOR_UNARY_OP_LOCALS
  11511. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11512. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11513. GGML_ASSERT(nb00 == sizeof(float));
  11514. const int ith = params->ith;
  11515. const int nth = params->nth;
  11516. const int nr = ggml_nrows(dst);
  11517. GGML_ASSERT(n_dims <= ne0);
  11518. GGML_ASSERT(n_dims % 2 == 0);
  11519. // rows per thread
  11520. const int dr = (nr + nth - 1)/nth;
  11521. // row range for this thread
  11522. const int ir0 = dr*ith;
  11523. const int ir1 = MIN(ir0 + dr, nr);
  11524. // row index used to determine which thread to use
  11525. int ir = 0;
  11526. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11527. float corr_dims[2];
  11528. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11529. const bool is_neox = mode & 2;
  11530. const float * freq_factors = NULL;
  11531. if (src2 != NULL) {
  11532. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11533. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11534. freq_factors = (const float *) src2->data;
  11535. }
  11536. // backward process uses inverse rotation by cos and sin.
  11537. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11538. // this essentially just switches the sign of sin.
  11539. const float sin_sign = forward ? 1.0f : -1.0f;
  11540. const int32_t * pos = (const int32_t *) src1->data;
  11541. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11542. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11543. const int64_t p = pos[i2];
  11544. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11545. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11546. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11547. if (ir++ < ir0) continue;
  11548. if (ir > ir1) break;
  11549. if (!is_neox) {
  11550. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11551. const float cos_theta = cache[i0 + 0];
  11552. const float sin_theta = cache[i0 + 1];
  11553. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11554. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11555. const float x0 = src[0];
  11556. const float x1 = src[1];
  11557. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11558. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11559. }
  11560. } else {
  11561. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11562. const int64_t ic = i0/2;
  11563. const float cos_theta = cache[i0 + 0];
  11564. const float sin_theta = cache[i0 + 1];
  11565. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11566. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11567. const float x0 = src[0];
  11568. const float x1 = src[n_dims/2];
  11569. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11570. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11571. }
  11572. }
  11573. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11574. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11575. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11576. dst_data[0] = src[0];
  11577. dst_data[1] = src[1];
  11578. }
  11579. }
  11580. }
  11581. }
  11582. }
  11583. // TODO: deduplicate f16/f32 code
  11584. static void ggml_compute_forward_rope_f16(
  11585. const struct ggml_compute_params * params,
  11586. struct ggml_tensor * dst,
  11587. const bool forward) {
  11588. const struct ggml_tensor * src0 = dst->src[0];
  11589. const struct ggml_tensor * src1 = dst->src[1];
  11590. const struct ggml_tensor * src2 = dst->src[2];
  11591. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11592. //const int n_past = ((int32_t *) dst->op_params)[0];
  11593. const int n_dims = ((int32_t *) dst->op_params)[1];
  11594. const int mode = ((int32_t *) dst->op_params)[2];
  11595. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11596. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11597. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11598. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11599. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11600. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11601. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11602. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11603. GGML_TENSOR_UNARY_OP_LOCALS
  11604. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11605. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11606. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11607. const int ith = params->ith;
  11608. const int nth = params->nth;
  11609. const int nr = ggml_nrows(dst);
  11610. GGML_ASSERT(n_dims <= ne0);
  11611. GGML_ASSERT(n_dims % 2 == 0);
  11612. // rows per thread
  11613. const int dr = (nr + nth - 1)/nth;
  11614. // row range for this thread
  11615. const int ir0 = dr*ith;
  11616. const int ir1 = MIN(ir0 + dr, nr);
  11617. // row index used to determine which thread to use
  11618. int ir = 0;
  11619. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11620. float corr_dims[2];
  11621. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11622. const bool is_neox = mode & 2;
  11623. const float * freq_factors = NULL;
  11624. if (src2 != NULL) {
  11625. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11626. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11627. freq_factors = (const float *) src2->data;
  11628. }
  11629. // backward process uses inverse rotation by cos and sin.
  11630. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11631. // this essentially just switches the sign of sin.
  11632. const float sin_sign = forward ? 1.0f : -1.0f;
  11633. const int32_t * pos = (const int32_t *) src1->data;
  11634. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11635. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11636. const int64_t p = pos[i2];
  11637. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11638. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11639. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11640. if (ir++ < ir0) continue;
  11641. if (ir > ir1) break;
  11642. if (!is_neox) {
  11643. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11644. const float cos_theta = cache[i0 + 0];
  11645. const float sin_theta = cache[i0 + 1];
  11646. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11647. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11648. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11649. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11650. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11651. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11652. }
  11653. } else {
  11654. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11655. const int64_t ic = i0/2;
  11656. const float cos_theta = cache[i0 + 0];
  11657. const float sin_theta = cache[i0 + 1];
  11658. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11659. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11660. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11661. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11662. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11663. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11664. }
  11665. }
  11666. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11667. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11668. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11669. dst_data[0] = src[0];
  11670. dst_data[1] = src[1];
  11671. }
  11672. }
  11673. }
  11674. }
  11675. }
  11676. static void ggml_compute_forward_rope(
  11677. const struct ggml_compute_params * params,
  11678. struct ggml_tensor * dst) {
  11679. const struct ggml_tensor * src0 = dst->src[0];
  11680. switch (src0->type) {
  11681. case GGML_TYPE_F16:
  11682. {
  11683. ggml_compute_forward_rope_f16(params, dst, true);
  11684. } break;
  11685. case GGML_TYPE_F32:
  11686. {
  11687. ggml_compute_forward_rope_f32(params, dst, true);
  11688. } break;
  11689. default:
  11690. {
  11691. GGML_ABORT("fatal error");
  11692. }
  11693. }
  11694. }
  11695. // ggml_compute_forward_rope_back
  11696. static void ggml_compute_forward_rope_back(
  11697. const struct ggml_compute_params * params,
  11698. struct ggml_tensor * dst) {
  11699. const struct ggml_tensor * src0 = dst->src[0];
  11700. switch (src0->type) {
  11701. case GGML_TYPE_F16:
  11702. {
  11703. ggml_compute_forward_rope_f16(params, dst, false);
  11704. } break;
  11705. case GGML_TYPE_F32:
  11706. {
  11707. ggml_compute_forward_rope_f32(params, dst, false);
  11708. } break;
  11709. default:
  11710. {
  11711. GGML_ABORT("fatal error");
  11712. }
  11713. }
  11714. }
  11715. // ggml_compute_forward_conv_transpose_1d
  11716. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11717. const struct ggml_compute_params * params,
  11718. struct ggml_tensor * dst) {
  11719. const struct ggml_tensor * src0 = dst->src[0];
  11720. const struct ggml_tensor * src1 = dst->src[1];
  11721. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11722. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11723. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11724. GGML_TENSOR_BINARY_OP_LOCALS
  11725. const int ith = params->ith;
  11726. const int nth = params->nth;
  11727. const int nk = ne00*ne01*ne02;
  11728. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11729. GGML_ASSERT(nb10 == sizeof(float));
  11730. if (ith == 0) {
  11731. memset(params->wdata, 0, params->wsize);
  11732. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11733. {
  11734. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11735. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11736. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11737. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11738. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11739. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11740. dst_data[i00*ne02 + i02] = src[i00];
  11741. }
  11742. }
  11743. }
  11744. }
  11745. // permute source data (src1) from (L x Cin) to (Cin x L)
  11746. {
  11747. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11748. ggml_fp16_t * dst_data = wdata;
  11749. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11750. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11751. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11752. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11753. }
  11754. }
  11755. }
  11756. // need to zero dst since we are accumulating into it
  11757. memset(dst->data, 0, ggml_nbytes(dst));
  11758. }
  11759. ggml_barrier(params->shared);
  11760. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11761. // total rows in dst
  11762. const int nr = ne1;
  11763. // rows per thread
  11764. const int dr = (nr + nth - 1)/nth;
  11765. // row range for this thread
  11766. const int ir0 = dr*ith;
  11767. const int ir1 = MIN(ir0 + dr, nr);
  11768. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11769. ggml_fp16_t * const wdata_src = wdata + nk;
  11770. for (int i1 = ir0; i1 < ir1; i1++) {
  11771. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11772. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11773. for (int i10 = 0; i10 < ne10; i10++) {
  11774. const int i1n = i10*ne11;
  11775. for (int i00 = 0; i00 < ne00; i00++) {
  11776. float v = 0;
  11777. ggml_vec_dot_f16(ne02, &v, 0,
  11778. (ggml_fp16_t *) wdata_src + i1n, 0,
  11779. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11780. dst_data[i10*s0 + i00] += v;
  11781. }
  11782. }
  11783. }
  11784. }
  11785. static void ggml_compute_forward_conv_transpose_1d_f32(
  11786. const struct ggml_compute_params * params,
  11787. struct ggml_tensor * dst) {
  11788. const struct ggml_tensor * src0 = dst->src[0];
  11789. const struct ggml_tensor * src1 = dst->src[1];
  11790. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11791. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11792. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11793. GGML_TENSOR_BINARY_OP_LOCALS
  11794. const int ith = params->ith;
  11795. const int nth = params->nth;
  11796. const int nk = ne00*ne01*ne02;
  11797. GGML_ASSERT(nb00 == sizeof(float));
  11798. GGML_ASSERT(nb10 == sizeof(float));
  11799. if (ith == 0) {
  11800. memset(params->wdata, 0, params->wsize);
  11801. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11802. {
  11803. float * const wdata = (float *) params->wdata + 0;
  11804. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11805. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11806. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11807. float * dst_data = wdata + i01*ne00*ne02;
  11808. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11809. dst_data[i00*ne02 + i02] = src[i00];
  11810. }
  11811. }
  11812. }
  11813. }
  11814. // prepare source data (src1)
  11815. {
  11816. float * const wdata = (float *) params->wdata + nk;
  11817. float * dst_data = wdata;
  11818. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11819. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11820. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11821. dst_data[i10*ne11 + i11] = src[i10];
  11822. }
  11823. }
  11824. }
  11825. // need to zero dst since we are accumulating into it
  11826. memset(dst->data, 0, ggml_nbytes(dst));
  11827. }
  11828. ggml_barrier(params->shared);
  11829. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11830. // total rows in dst
  11831. const int nr = ne1;
  11832. // rows per thread
  11833. const int dr = (nr + nth - 1)/nth;
  11834. // row range for this thread
  11835. const int ir0 = dr*ith;
  11836. const int ir1 = MIN(ir0 + dr, nr);
  11837. float * const wdata = (float *) params->wdata + 0;
  11838. float * const wdata_src = wdata + nk;
  11839. for (int i1 = ir0; i1 < ir1; i1++) {
  11840. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11841. float * wdata_kernel = wdata + i1*ne02*ne00;
  11842. for (int i10 = 0; i10 < ne10; i10++) {
  11843. const int i1n = i10*ne11;
  11844. for (int i00 = 0; i00 < ne00; i00++) {
  11845. float v = 0;
  11846. ggml_vec_dot_f32(ne02, &v, 0,
  11847. wdata_src + i1n, 0,
  11848. wdata_kernel + i00*ne02, 0, 1);
  11849. dst_data[i10*s0 + i00] += v;
  11850. }
  11851. }
  11852. }
  11853. }
  11854. static void ggml_compute_forward_conv_transpose_1d(
  11855. const struct ggml_compute_params * params,
  11856. struct ggml_tensor * dst) {
  11857. const struct ggml_tensor * src0 = dst->src[0];
  11858. switch (src0->type) {
  11859. case GGML_TYPE_F16:
  11860. {
  11861. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11862. } break;
  11863. case GGML_TYPE_F32:
  11864. {
  11865. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11866. } break;
  11867. default:
  11868. {
  11869. GGML_ABORT("fatal error");
  11870. }
  11871. }
  11872. }
  11873. // src0: kernel [OC, IC, KH, KW]
  11874. // src1: image [N, IC, IH, IW]
  11875. // dst: result [N, OH, OW, IC*KH*KW]
  11876. static void ggml_compute_forward_im2col_f32(
  11877. const struct ggml_compute_params * params,
  11878. struct ggml_tensor * dst) {
  11879. const struct ggml_tensor * src0 = dst->src[0];
  11880. const struct ggml_tensor * src1 = dst->src[1];
  11881. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11882. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11883. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11884. GGML_TENSOR_BINARY_OP_LOCALS;
  11885. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11886. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11887. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11888. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11889. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11890. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11891. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11892. const int ith = params->ith;
  11893. const int nth = params->nth;
  11894. const int64_t N = is_2D ? ne13 : ne12;
  11895. const int64_t IC = is_2D ? ne12 : ne11;
  11896. const int64_t IH = is_2D ? ne11 : 1;
  11897. const int64_t IW = ne10;
  11898. const int64_t KH = is_2D ? ne01 : 1;
  11899. const int64_t KW = ne00;
  11900. const int64_t OH = is_2D ? ne2 : 1;
  11901. const int64_t OW = ne1;
  11902. int ofs0 = is_2D ? nb13 : nb12;
  11903. int ofs1 = is_2D ? nb12 : nb11;
  11904. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11905. GGML_ASSERT(nb10 == sizeof(float));
  11906. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11907. {
  11908. float * const wdata = (float *) dst->data;
  11909. for (int64_t in = 0; in < N; in++) {
  11910. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11911. for (int64_t iow = 0; iow < OW; iow++) {
  11912. for (int64_t iic = ith; iic < IC; iic += nth) {
  11913. // micro kernel
  11914. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11915. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11916. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11917. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11918. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11919. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11920. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11921. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11922. } else {
  11923. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11924. }
  11925. }
  11926. }
  11927. }
  11928. }
  11929. }
  11930. }
  11931. }
  11932. }
  11933. // src0: kernel [OC, IC, KH, KW]
  11934. // src1: image [N, IC, IH, IW]
  11935. // dst: result [N, OH, OW, IC*KH*KW]
  11936. static void ggml_compute_forward_im2col_f16(
  11937. const struct ggml_compute_params * params,
  11938. struct ggml_tensor * dst) {
  11939. const struct ggml_tensor * src0 = dst->src[0];
  11940. const struct ggml_tensor * src1 = dst->src[1];
  11941. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11942. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11943. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11944. GGML_TENSOR_BINARY_OP_LOCALS;
  11945. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11946. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11947. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11948. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11949. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11950. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11951. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11952. const int ith = params->ith;
  11953. const int nth = params->nth;
  11954. const int64_t N = is_2D ? ne13 : ne12;
  11955. const int64_t IC = is_2D ? ne12 : ne11;
  11956. const int64_t IH = is_2D ? ne11 : 1;
  11957. const int64_t IW = ne10;
  11958. const int64_t KH = is_2D ? ne01 : 1;
  11959. const int64_t KW = ne00;
  11960. const int64_t OH = is_2D ? ne2 : 1;
  11961. const int64_t OW = ne1;
  11962. int ofs0 = is_2D ? nb13 : nb12;
  11963. int ofs1 = is_2D ? nb12 : nb11;
  11964. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11965. GGML_ASSERT(nb10 == sizeof(float));
  11966. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11967. {
  11968. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11969. for (int64_t in = 0; in < N; in++) {
  11970. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11971. for (int64_t iow = 0; iow < OW; iow++) {
  11972. for (int64_t iic = ith; iic < IC; iic += nth) {
  11973. // micro kernel
  11974. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11975. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11976. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11977. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11978. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11979. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11980. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11981. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11982. } else {
  11983. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11984. }
  11985. }
  11986. }
  11987. }
  11988. }
  11989. }
  11990. }
  11991. }
  11992. }
  11993. static void ggml_compute_forward_im2col(
  11994. const struct ggml_compute_params * params,
  11995. struct ggml_tensor * dst) {
  11996. switch (dst->type) {
  11997. case GGML_TYPE_F16:
  11998. {
  11999. ggml_compute_forward_im2col_f16(params, dst);
  12000. } break;
  12001. case GGML_TYPE_F32:
  12002. {
  12003. ggml_compute_forward_im2col_f32(params, dst);
  12004. } break;
  12005. default:
  12006. {
  12007. GGML_ABORT("fatal error");
  12008. }
  12009. }
  12010. }
  12011. // ggml_compute_forward_conv_transpose_2d
  12012. static void ggml_compute_forward_conv_transpose_2d(
  12013. const struct ggml_compute_params * params,
  12014. struct ggml_tensor * dst) {
  12015. const struct ggml_tensor * src0 = dst->src[0];
  12016. const struct ggml_tensor * src1 = dst->src[1];
  12017. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  12018. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  12019. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  12020. GGML_TENSOR_BINARY_OP_LOCALS
  12021. const int ith = params->ith;
  12022. const int nth = params->nth;
  12023. const int nk = ne00*ne01*ne02*ne03;
  12024. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  12025. GGML_ASSERT(nb10 == sizeof(float));
  12026. if (ith == 0) {
  12027. memset(params->wdata, 0, params->wsize);
  12028. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  12029. {
  12030. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12031. for (int64_t i03 = 0; i03 < ne03; i03++) {
  12032. for (int64_t i02 = 0; i02 < ne02; i02++) {
  12033. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  12034. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  12035. for (int64_t i01 = 0; i01 < ne01; i01++) {
  12036. for (int64_t i00 = 0; i00 < ne00; i00++) {
  12037. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  12038. }
  12039. }
  12040. }
  12041. }
  12042. }
  12043. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  12044. {
  12045. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  12046. for (int i12 = 0; i12 < ne12; i12++) {
  12047. for (int i11 = 0; i11 < ne11; i11++) {
  12048. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  12049. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  12050. for (int i10 = 0; i10 < ne10; i10++) {
  12051. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  12052. }
  12053. }
  12054. }
  12055. }
  12056. memset(dst->data, 0, ggml_nbytes(dst));
  12057. }
  12058. ggml_barrier(params->shared);
  12059. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  12060. // total patches in dst
  12061. const int np = ne2;
  12062. // patches per thread
  12063. const int dp = (np + nth - 1)/nth;
  12064. // patch range for this thread
  12065. const int ip0 = dp*ith;
  12066. const int ip1 = MIN(ip0 + dp, np);
  12067. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  12068. ggml_fp16_t * const wdata_src = wdata + nk;
  12069. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  12070. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  12071. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  12072. for (int i11 = 0; i11 < ne11; i11++) {
  12073. for (int i10 = 0; i10 < ne10; i10++) {
  12074. const int i1n = i11*ne10*ne12 + i10*ne12;
  12075. for (int i01 = 0; i01 < ne01; i01++) {
  12076. for (int i00 = 0; i00 < ne00; i00++) {
  12077. float v = 0;
  12078. ggml_vec_dot_f16(ne03, &v, 0,
  12079. wdata_src + i1n, 0,
  12080. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  12081. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  12082. }
  12083. }
  12084. }
  12085. }
  12086. }
  12087. }
  12088. // ggml_compute_forward_pool_1d_sk_p0
  12089. static void ggml_compute_forward_pool_1d_sk_p0(
  12090. const struct ggml_compute_params * params,
  12091. const enum ggml_op_pool op,
  12092. const int k,
  12093. struct ggml_tensor * dst) {
  12094. const struct ggml_tensor * src = dst->src[0];
  12095. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12096. if (params->ith != 0) {
  12097. return;
  12098. }
  12099. const char * cdata = (const char *)src->data;
  12100. const char * const data_end = cdata + ggml_nbytes(src);
  12101. float * drow = (float *)dst->data;
  12102. const int64_t rs = dst->ne[0];
  12103. while (cdata < data_end) {
  12104. const void * srow = (const void *)cdata;
  12105. int j = 0;
  12106. for (int64_t i = 0; i < rs; ++i) {
  12107. switch (op) {
  12108. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  12109. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  12110. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12111. }
  12112. for (int ki = 0; ki < k; ++ki) {
  12113. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12114. switch (op) {
  12115. case GGML_OP_POOL_AVG: drow[i] += srow_j; break;
  12116. case GGML_OP_POOL_MAX: if (srow_j > drow[i]) drow[i] = srow_j; break;
  12117. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12118. }
  12119. ++j;
  12120. }
  12121. switch (op) {
  12122. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  12123. case GGML_OP_POOL_MAX: break;
  12124. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12125. }
  12126. }
  12127. cdata += src->nb[1];
  12128. drow += rs;
  12129. }
  12130. }
  12131. // ggml_compute_forward_pool_1d
  12132. static void ggml_compute_forward_pool_1d(
  12133. const struct ggml_compute_params * params,
  12134. struct ggml_tensor * dst) {
  12135. const int32_t * opts = (const int32_t *)dst->op_params;
  12136. enum ggml_op_pool op = opts[0];
  12137. const int k0 = opts[1];
  12138. const int s0 = opts[2];
  12139. const int p0 = opts[3];
  12140. GGML_ASSERT(p0 == 0); // padding not supported
  12141. GGML_ASSERT(k0 == s0); // only s = k supported
  12142. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  12143. }
  12144. // ggml_compute_forward_pool_2d
  12145. static void ggml_compute_forward_pool_2d(
  12146. const struct ggml_compute_params * params,
  12147. struct ggml_tensor * dst) {
  12148. const struct ggml_tensor * src = dst->src[0];
  12149. assert(src->type == GGML_TYPE_F32 || src->type == GGML_TYPE_F16);
  12150. if (params->ith != 0) {
  12151. return;
  12152. }
  12153. const int32_t * opts = (const int32_t *)dst->op_params;
  12154. enum ggml_op_pool op = opts[0];
  12155. const int k0 = opts[1];
  12156. const int k1 = opts[2];
  12157. const int s0 = opts[3];
  12158. const int s1 = opts[4];
  12159. const int p0 = opts[5];
  12160. const int p1 = opts[6];
  12161. const char * cdata = (const char*)src->data;
  12162. const char * const data_end = cdata + ggml_nbytes(src);
  12163. const int64_t px = dst->ne[0];
  12164. const int64_t py = dst->ne[1];
  12165. const int64_t pa = px * py;
  12166. float * dplane = (float *)dst->data;
  12167. const int ka = k0 * k1;
  12168. const int offset0 = -p0;
  12169. const int offset1 = -p1;
  12170. while (cdata < data_end) {
  12171. for (int oy = 0; oy < py; ++oy) {
  12172. float * const drow = dplane + oy * px;
  12173. for (int ox = 0; ox < px; ++ox) {
  12174. float * const out = drow + ox;
  12175. switch (op) {
  12176. case GGML_OP_POOL_AVG: *out = 0; break;
  12177. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  12178. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12179. }
  12180. const int ix = offset0 + ox * s0;
  12181. const int iy = offset1 + oy * s1;
  12182. for (int ky = 0; ky < k1; ++ky) {
  12183. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  12184. const void * srow = (const void *)(cdata + src->nb[1] * (iy + ky));
  12185. for (int kx = 0; kx < k0; ++kx) {
  12186. int j = ix + kx;
  12187. if (j < 0 || j >= src->ne[0]) continue;
  12188. const float srow_j = (src->type == GGML_TYPE_F32) ? ((const float*)srow)[j] : GGML_FP16_TO_FP32(((const ggml_fp16_t*)srow)[j]);
  12189. switch (op) {
  12190. case GGML_OP_POOL_AVG: *out += srow_j; break;
  12191. case GGML_OP_POOL_MAX: if (srow_j > *out) *out = srow_j; break;
  12192. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12193. }
  12194. }
  12195. }
  12196. switch (op) {
  12197. case GGML_OP_POOL_AVG: *out /= ka; break;
  12198. case GGML_OP_POOL_MAX: break;
  12199. case GGML_OP_POOL_COUNT: GGML_ABORT("fatal error");
  12200. }
  12201. }
  12202. }
  12203. cdata += src->nb[2];
  12204. dplane += pa;
  12205. }
  12206. }
  12207. // ggml_compute_forward_upscale
  12208. static void ggml_compute_forward_upscale_f32(
  12209. const struct ggml_compute_params * params,
  12210. struct ggml_tensor * dst) {
  12211. const struct ggml_tensor * src0 = dst->src[0];
  12212. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  12213. const int ith = params->ith;
  12214. const int nth = params->nth;
  12215. GGML_TENSOR_UNARY_OP_LOCALS
  12216. const float sf0 = (float)ne0/src0->ne[0];
  12217. const float sf1 = (float)ne1/src0->ne[1];
  12218. const float sf2 = (float)ne2/src0->ne[2];
  12219. const float sf3 = (float)ne3/src0->ne[3];
  12220. // TODO: optimize
  12221. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12222. const int64_t i03 = i3 / sf3;
  12223. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12224. const int64_t i02 = i2 / sf2;
  12225. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12226. const int64_t i01 = i1 / sf1;
  12227. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12228. const int64_t i00 = i0 / sf0;
  12229. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12230. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12231. *y = *x;
  12232. }
  12233. }
  12234. }
  12235. }
  12236. }
  12237. static void ggml_compute_forward_upscale(
  12238. const struct ggml_compute_params * params,
  12239. struct ggml_tensor * dst) {
  12240. const struct ggml_tensor * src0 = dst->src[0];
  12241. switch (src0->type) {
  12242. case GGML_TYPE_F32:
  12243. {
  12244. ggml_compute_forward_upscale_f32(params, dst);
  12245. } break;
  12246. default:
  12247. {
  12248. GGML_ABORT("fatal error");
  12249. }
  12250. }
  12251. }
  12252. // ggml_compute_forward_pad
  12253. static void ggml_compute_forward_pad_f32(
  12254. const struct ggml_compute_params * params,
  12255. struct ggml_tensor * dst) {
  12256. const struct ggml_tensor * src0 = dst->src[0];
  12257. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12258. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12259. const int ith = params->ith;
  12260. const int nth = params->nth;
  12261. GGML_TENSOR_UNARY_OP_LOCALS
  12262. float * dst_ptr = (float *) dst->data;
  12263. // TODO: optimize
  12264. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12265. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12266. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12267. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12268. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12269. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12270. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12271. dst_ptr[dst_idx] = *src_ptr;
  12272. } else {
  12273. dst_ptr[dst_idx] = 0;
  12274. }
  12275. }
  12276. }
  12277. }
  12278. }
  12279. }
  12280. static void ggml_compute_forward_pad(
  12281. const struct ggml_compute_params * params,
  12282. struct ggml_tensor * dst) {
  12283. const struct ggml_tensor * src0 = dst->src[0];
  12284. switch (src0->type) {
  12285. case GGML_TYPE_F32:
  12286. {
  12287. ggml_compute_forward_pad_f32(params, dst);
  12288. } break;
  12289. default:
  12290. {
  12291. GGML_ABORT("fatal error");
  12292. }
  12293. }
  12294. }
  12295. // ggml_compute_forward_arange
  12296. static void ggml_compute_forward_arange_f32(
  12297. const struct ggml_compute_params * params,
  12298. struct ggml_tensor * dst) {
  12299. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12300. const int ith = params->ith;
  12301. const int nth = params->nth;
  12302. const float start = ggml_get_op_params_f32(dst, 0);
  12303. const float stop = ggml_get_op_params_f32(dst, 1);
  12304. const float step = ggml_get_op_params_f32(dst, 2);
  12305. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12306. GGML_ASSERT(ggml_nelements(dst) == steps);
  12307. for (int64_t i = ith; i < steps; i+= nth) {
  12308. float value = start + step * i;
  12309. ((float *)dst->data)[i] = value;
  12310. }
  12311. }
  12312. static void ggml_compute_forward_arange(
  12313. const struct ggml_compute_params * params,
  12314. struct ggml_tensor * dst) {
  12315. switch (dst->type) {
  12316. case GGML_TYPE_F32:
  12317. {
  12318. ggml_compute_forward_arange_f32(params, dst);
  12319. } break;
  12320. default:
  12321. {
  12322. GGML_ABORT("fatal error");
  12323. }
  12324. }
  12325. }
  12326. static void ggml_compute_forward_timestep_embedding_f32(
  12327. const struct ggml_compute_params * params,
  12328. struct ggml_tensor * dst) {
  12329. const struct ggml_tensor * src0 = dst->src[0];
  12330. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12331. const int ith = params->ith;
  12332. const int nth = params->nth;
  12333. GGML_TENSOR_UNARY_OP_LOCALS
  12334. const int dim = ggml_get_op_params_i32(dst, 0);
  12335. const int max_period = ggml_get_op_params_i32(dst, 1);
  12336. int half = dim / 2;
  12337. for (int64_t i = 0; i < ne00; i++) {
  12338. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12339. for (int64_t j = ith; j < half; j += nth) {
  12340. float timestep = ((float *)src0->data)[i];
  12341. float freq = (float)expf(-logf(max_period) * j / half);
  12342. float arg = timestep * freq;
  12343. embed_data[j] = cosf(arg);
  12344. embed_data[j + half] = sinf(arg);
  12345. }
  12346. if (dim % 2 != 0 && ith == 0) {
  12347. embed_data[dim] = 0.f;
  12348. }
  12349. }
  12350. }
  12351. static void ggml_compute_forward_timestep_embedding(
  12352. const struct ggml_compute_params * params,
  12353. struct ggml_tensor * dst) {
  12354. const struct ggml_tensor * src0 = dst->src[0];
  12355. switch (src0->type) {
  12356. case GGML_TYPE_F32:
  12357. {
  12358. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12359. } break;
  12360. default:
  12361. {
  12362. GGML_ABORT("fatal error");
  12363. }
  12364. }
  12365. }
  12366. // ggml_compute_forward_argsort
  12367. static void ggml_compute_forward_argsort_f32(
  12368. const struct ggml_compute_params * params,
  12369. struct ggml_tensor * dst) {
  12370. const struct ggml_tensor * src0 = dst->src[0];
  12371. GGML_TENSOR_UNARY_OP_LOCALS
  12372. GGML_ASSERT(nb0 == sizeof(float));
  12373. const int ith = params->ith;
  12374. const int nth = params->nth;
  12375. const int64_t nr = ggml_nrows(src0);
  12376. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12377. for (int64_t i = ith; i < nr; i += nth) {
  12378. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12379. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12380. for (int64_t j = 0; j < ne0; j++) {
  12381. dst_data[j] = j;
  12382. }
  12383. // C doesn't have a functional sort, so we do a bubble sort instead
  12384. for (int64_t j = 0; j < ne0; j++) {
  12385. for (int64_t k = j + 1; k < ne0; k++) {
  12386. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12387. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12388. int32_t tmp = dst_data[j];
  12389. dst_data[j] = dst_data[k];
  12390. dst_data[k] = tmp;
  12391. }
  12392. }
  12393. }
  12394. }
  12395. }
  12396. static void ggml_compute_forward_argsort(
  12397. const struct ggml_compute_params * params,
  12398. struct ggml_tensor * dst) {
  12399. const struct ggml_tensor * src0 = dst->src[0];
  12400. switch (src0->type) {
  12401. case GGML_TYPE_F32:
  12402. {
  12403. ggml_compute_forward_argsort_f32(params, dst);
  12404. } break;
  12405. default:
  12406. {
  12407. GGML_ABORT("fatal error");
  12408. }
  12409. }
  12410. }
  12411. // ggml_compute_forward_flash_attn_ext
  12412. static void ggml_compute_forward_flash_attn_ext_f16(
  12413. const struct ggml_compute_params * params,
  12414. const struct ggml_tensor * q,
  12415. const struct ggml_tensor * k,
  12416. const struct ggml_tensor * v,
  12417. const struct ggml_tensor * mask,
  12418. struct ggml_tensor * dst) {
  12419. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12420. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12421. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12422. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12423. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12424. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12425. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12426. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12427. const int ith = params->ith;
  12428. const int nth = params->nth;
  12429. const int64_t D = neq0;
  12430. const int64_t N = neq1;
  12431. GGML_ASSERT(ne0 == D);
  12432. GGML_ASSERT(ne2 == N);
  12433. // input tensor rows must be contiguous
  12434. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12435. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12436. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12437. GGML_ASSERT(neq0 == D);
  12438. GGML_ASSERT(nek0 == D);
  12439. GGML_ASSERT(nev0 == D);
  12440. GGML_ASSERT(neq1 == N);
  12441. GGML_ASSERT(nev0 == D);
  12442. // dst cannot be transposed or permuted
  12443. GGML_ASSERT(nb0 == sizeof(float));
  12444. GGML_ASSERT(nb0 <= nb1);
  12445. GGML_ASSERT(nb1 <= nb2);
  12446. GGML_ASSERT(nb2 <= nb3);
  12447. // broadcast factors
  12448. const int64_t rk2 = neq2/nek2;
  12449. const int64_t rk3 = neq3/nek3;
  12450. const int64_t rv2 = neq2/nev2;
  12451. const int64_t rv3 = neq3/nev3;
  12452. // parallelize by q rows using ggml_vec_dot_f32
  12453. // total rows in q
  12454. const int nr = neq1*neq2*neq3;
  12455. // rows per thread
  12456. const int dr = (nr + nth - 1)/nth;
  12457. // row range for this thread
  12458. const int ir0 = dr*ith;
  12459. const int ir1 = MIN(ir0 + dr, nr);
  12460. float scale = 1.0f;
  12461. float max_bias = 0.0f;
  12462. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12463. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12464. const uint32_t n_head = neq2;
  12465. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12466. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12467. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12468. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12469. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12470. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12471. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12472. // loop over n_batch and n_head
  12473. for (int ir = ir0; ir < ir1; ++ir) {
  12474. // q indices
  12475. const int iq3 = ir/(neq2*neq1);
  12476. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12477. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12478. const uint32_t h = iq2; // head index
  12479. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12480. float S = 0.0f; // sum
  12481. float M = -INFINITY; // maximum KQ value
  12482. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12483. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12484. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12485. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12486. if (v->type == GGML_TYPE_F16) {
  12487. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12488. } else {
  12489. memset(VKQ32, 0, D*sizeof(float));
  12490. }
  12491. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12492. // k indices
  12493. const int ik3 = iq3 / rk3;
  12494. const int ik2 = iq2 / rk2;
  12495. // v indices
  12496. const int iv3 = iq3 / rv3;
  12497. const int iv2 = iq2 / rv2;
  12498. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12499. q_to_vec_dot(pq, Q_q, D);
  12500. // online softmax / attention
  12501. // loop over n_kv and n_head_kv
  12502. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12503. for (int64_t ic = 0; ic < nek1; ++ic) {
  12504. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12505. if (mv == -INFINITY) {
  12506. continue;
  12507. }
  12508. float s; // KQ value
  12509. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12510. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12511. s = s*scale + mv; // scale KQ value and apply mask
  12512. const float Mold = M;
  12513. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12514. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12515. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12516. if (v->type== GGML_TYPE_F16) {
  12517. if (s > M) {
  12518. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12519. M = s;
  12520. ms = expf(Mold - M);
  12521. // V = V*expf(Mold - M)
  12522. ggml_vec_scale_f16(D, VKQ16, ms);
  12523. } else {
  12524. // no new maximum, ms == 1.0f, vs != 1.0f
  12525. vs = expf(s - M);
  12526. }
  12527. // V += v*expf(s - M)
  12528. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12529. } else {
  12530. if (s > M) {
  12531. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12532. M = s;
  12533. ms = expf(Mold - M);
  12534. // V = V*expf(Mold - M)
  12535. ggml_vec_scale_f32(D, VKQ32, ms);
  12536. } else {
  12537. // no new maximum, ms == 1.0f, vs != 1.0f
  12538. vs = expf(s - M);
  12539. }
  12540. v_to_float(v_data, V32, D);
  12541. // V += v*expf(s - M)
  12542. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12543. }
  12544. S = S*ms + vs; // scale and increment sum with partial sum
  12545. }
  12546. if (v->type == GGML_TYPE_F16) {
  12547. for (int64_t d = 0; d < D; ++d) {
  12548. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12549. }
  12550. }
  12551. // V /= S
  12552. const float S_inv = 1.0f/S;
  12553. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12554. // dst indices
  12555. const int i1 = iq1;
  12556. const int i2 = iq2;
  12557. const int i3 = iq3;
  12558. // original
  12559. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12560. // permute(0, 2, 1, 3)
  12561. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12562. }
  12563. }
  12564. static void ggml_compute_forward_flash_attn_ext(
  12565. const struct ggml_compute_params * params,
  12566. const struct ggml_tensor * q,
  12567. const struct ggml_tensor * k,
  12568. const struct ggml_tensor * v,
  12569. const struct ggml_tensor * mask,
  12570. struct ggml_tensor * dst) {
  12571. switch (dst->op_params[2]) {
  12572. case GGML_PREC_DEFAULT:
  12573. case GGML_PREC_F32:
  12574. {
  12575. // uses F32 accumulators
  12576. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12577. } break;
  12578. default:
  12579. {
  12580. GGML_ABORT("fatal error");
  12581. }
  12582. }
  12583. }
  12584. // ggml_compute_forward_flash_attn_back
  12585. static void ggml_compute_forward_flash_attn_back_f32(
  12586. const struct ggml_compute_params * params,
  12587. const bool masked,
  12588. struct ggml_tensor * dst) {
  12589. const struct ggml_tensor * q = dst->src[0];
  12590. const struct ggml_tensor * k = dst->src[1];
  12591. const struct ggml_tensor * v = dst->src[2];
  12592. const struct ggml_tensor * d = dst->src[3];
  12593. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12594. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12595. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12596. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12597. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12598. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12599. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12600. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12601. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12602. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12603. const int ith = params->ith;
  12604. const int nth = params->nth;
  12605. const int64_t D = neq0;
  12606. const int64_t N = neq1;
  12607. const int64_t P = nek1 - N;
  12608. const int64_t M = P + N;
  12609. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12610. const int mxDM = MAX(D, Mup);
  12611. // GGML_ASSERT(ne0 == D);
  12612. // GGML_ASSERT(ne1 == N);
  12613. GGML_ASSERT(P >= 0);
  12614. GGML_ASSERT(nbq0 == sizeof(float));
  12615. GGML_ASSERT(nbk0 == sizeof(float));
  12616. GGML_ASSERT(nbv0 == sizeof(float));
  12617. GGML_ASSERT(neq0 == D);
  12618. GGML_ASSERT(nek0 == D);
  12619. GGML_ASSERT(nev1 == D);
  12620. GGML_ASSERT(ned0 == D);
  12621. GGML_ASSERT(neq1 == N);
  12622. GGML_ASSERT(nek1 == N + P);
  12623. GGML_ASSERT(nev1 == D);
  12624. GGML_ASSERT(ned1 == N);
  12625. // dst cannot be transposed or permuted
  12626. GGML_ASSERT(nb0 == sizeof(float));
  12627. GGML_ASSERT(nb0 <= nb1);
  12628. GGML_ASSERT(nb1 <= nb2);
  12629. GGML_ASSERT(nb2 <= nb3);
  12630. if (ith == 0) {
  12631. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12632. }
  12633. ggml_barrier(params->shared);
  12634. const int64_t elem_q = ggml_nelements(q);
  12635. const int64_t elem_k = ggml_nelements(k);
  12636. enum ggml_type result_type = dst->type;
  12637. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12638. const size_t tsize = ggml_type_size(result_type);
  12639. const size_t offs_q = 0;
  12640. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12641. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12642. void * grad_q = (char *) dst->data;
  12643. void * grad_k = (char *) dst->data + offs_k;
  12644. void * grad_v = (char *) dst->data + offs_v;
  12645. const size_t nbgq1 = nb0*neq0;
  12646. const size_t nbgq2 = nb0*neq0*neq1;
  12647. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12648. const size_t nbgk1 = nb0*nek0;
  12649. const size_t nbgk2 = nb0*nek0*nek1;
  12650. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12651. const size_t nbgv1 = nb0*nev0;
  12652. const size_t nbgv2 = nb0*nev0*nev1;
  12653. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12654. // parallelize by k rows using ggml_vec_dot_f32
  12655. // total rows in k
  12656. const int nr = nek2*nek3;
  12657. // rows per thread
  12658. const int dr = (nr + nth - 1)/nth;
  12659. // row range for this thread
  12660. const int ir0 = dr*ith;
  12661. const int ir1 = MIN(ir0 + dr, nr);
  12662. const float scale = 1.0f/sqrtf(D);
  12663. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12664. // how often k2 (and v2) is repeated in q2
  12665. int nrep = neq2/nek2;
  12666. for (int ir = ir0; ir < ir1; ++ir) {
  12667. // q indices
  12668. const int ik3 = ir/(nek2);
  12669. const int ik2 = ir - ik3*nek2;
  12670. const int iq3 = ik3;
  12671. const int id3 = ik3;
  12672. const int iv3 = ik3;
  12673. const int iv2 = ik2;
  12674. for (int irep = 0; irep < nrep; ++irep) {
  12675. const int iq2 = ik2 + irep*nek2;
  12676. const int id2 = iq2;
  12677. // (ik2 + irep*nek2) % nek2 == ik2
  12678. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12679. const int id1 = iq1;
  12680. // not sure about CACHE_LINE_SIZE_F32..
  12681. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12682. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12683. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12684. for (int i = M; i < Mup; ++i) {
  12685. S[i] = -INFINITY;
  12686. }
  12687. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12688. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12689. // k indices
  12690. const int ik1 = ic;
  12691. // S indices
  12692. const int i1 = ik1;
  12693. ggml_vec_dot_f32(neq0,
  12694. S + i1, 0,
  12695. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12696. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12697. }
  12698. // scale
  12699. ggml_vec_scale_f32(masked_begin, S, scale);
  12700. for (int64_t i = masked_begin; i < M; i++) {
  12701. S[i] = -INFINITY;
  12702. }
  12703. // softmax
  12704. // exclude known -INF S[..] values from max and loop
  12705. // dont forget to set their SM values to zero
  12706. {
  12707. float max = -INFINITY;
  12708. ggml_vec_max_f32(masked_begin, &max, S);
  12709. ggml_float sum = 0.0;
  12710. {
  12711. #ifdef GGML_SOFT_MAX_ACCELERATE
  12712. max = -max;
  12713. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12714. vvexpf(SM, SM, &Mup);
  12715. ggml_vec_sum_f32(Mup, &sum, SM);
  12716. #else
  12717. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12718. #endif
  12719. }
  12720. assert(sum > 0.0);
  12721. sum = 1.0/sum;
  12722. ggml_vec_scale_f32(masked_begin, SM, sum);
  12723. }
  12724. // step-by-step explanation
  12725. {
  12726. // forward-process shape grads from backward process
  12727. // parallel_for ik2,ik3:
  12728. // for irep:
  12729. // iq2 = ik2 + irep*nek2
  12730. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12731. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12732. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12733. // for iq1:
  12734. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12735. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12736. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12737. // S0 = -Inf [D,1,1,1]
  12738. // ~S1[i] = dot(kcur[:D,i], qcur)
  12739. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12740. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12741. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12742. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12743. // ~S5[i] = dot(vcur[:,i], S4)
  12744. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12745. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12746. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12747. // dst backward-/ grad[dst] = d
  12748. //
  12749. // output gradients with their dependencies:
  12750. //
  12751. // grad[kcur] = grad[S1].T @ qcur
  12752. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12753. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12754. // grad[S4] = grad[S5] @ vcur
  12755. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12756. // grad[qcur] = grad[S1] @ kcur
  12757. // grad[vcur] = grad[S5].T @ S4
  12758. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12759. //
  12760. // in post-order:
  12761. //
  12762. // S1 = qcur @ kcur.T
  12763. // S2 = S1 * scale
  12764. // S3 = diag_mask_inf(S2, P)
  12765. // S4 = softmax(S3)
  12766. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12767. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12768. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12769. // grad[qcur] = grad[S1] @ kcur
  12770. // grad[kcur] = grad[S1].T @ qcur
  12771. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12772. //
  12773. // using less variables (SM=S4):
  12774. //
  12775. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12776. // SM = softmax(S)
  12777. // S = d[:D,iq1,iq2,iq3] @ vcur
  12778. // dot_SM_gradSM = dot(SM, S)
  12779. // S = SM * (S - dot(SM, S))
  12780. // S = diag_mask_zero(S, P) * scale
  12781. //
  12782. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12783. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12784. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12785. }
  12786. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12787. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12788. // for ic:
  12789. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12790. // exclude known future zero S[..] values from operation
  12791. ggml_vec_set_f32(masked_begin, S, 0);
  12792. for (int64_t ic = 0; ic < D; ++ic) {
  12793. ggml_vec_mad_f32(masked_begin,
  12794. S,
  12795. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12796. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12797. }
  12798. // S = SM * (S - dot(SM, S))
  12799. float dot_SM_gradSM = 0;
  12800. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12801. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12802. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12803. // S = diag_mask_zero(S, P) * scale
  12804. // already done by above ggml_vec_set_f32
  12805. // exclude known zero S[..] values from operation
  12806. ggml_vec_scale_f32(masked_begin, S, scale);
  12807. // S shape [M,1]
  12808. // SM shape [M,1]
  12809. // kcur shape [D,M]
  12810. // qcur shape [D,1]
  12811. // vcur shape [M,D]
  12812. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12813. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12814. // for ic:
  12815. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12816. // exclude known zero S[..] values from loop
  12817. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12818. ggml_vec_mad_f32(D,
  12819. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12820. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12821. S[ic]);
  12822. }
  12823. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12824. // for ic:
  12825. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12826. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12827. // exclude known zero S[..] values from loop
  12828. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12829. ggml_vec_mad_f32(D,
  12830. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12831. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12832. S[ic]);
  12833. }
  12834. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12835. // for ic:
  12836. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12837. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12838. // exclude known zero SM[..] values from mad
  12839. for (int64_t ic = 0; ic < D; ++ic) {
  12840. ggml_vec_mad_f32(masked_begin,
  12841. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12842. SM,
  12843. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12844. }
  12845. }
  12846. }
  12847. }
  12848. }
  12849. static void ggml_compute_forward_flash_attn_back(
  12850. const struct ggml_compute_params * params,
  12851. const bool masked,
  12852. struct ggml_tensor * dst) {
  12853. const struct ggml_tensor * q = dst->src[0];
  12854. switch (q->type) {
  12855. case GGML_TYPE_F32:
  12856. {
  12857. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12858. } break;
  12859. default:
  12860. {
  12861. GGML_ABORT("fatal error");
  12862. }
  12863. }
  12864. }
  12865. // ggml_compute_forward_ssm_conv
  12866. static void ggml_compute_forward_ssm_conv_f32(
  12867. const struct ggml_compute_params * params,
  12868. struct ggml_tensor * dst) {
  12869. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12870. const struct ggml_tensor * src1 = dst->src[1]; // x
  12871. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12872. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12873. const int ith = params->ith;
  12874. const int nth = params->nth;
  12875. const int nc = src2->ne[0]; // d_conv
  12876. const int nr = src0->ne[1]; // d_inner
  12877. const int n_t = src1->ne[1]; // n_tokens
  12878. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12879. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12880. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12881. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12882. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12883. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12884. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12885. // for use with the destination state offset between sequences
  12886. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12887. // rows per thread
  12888. const int dr = (nr + nth - 1)/nth;
  12889. // row range for this thread
  12890. const int ir0 = dr*ith;
  12891. const int ir1 = MIN(ir0 + dr, nr);
  12892. const int ir = ir1 - ir0;
  12893. if (n_kv > 1) {
  12894. // multiple sequences means it's hard to know when it's the first time a state is read,
  12895. // so copy them all over to the destination, just to be sure.
  12896. for (int i3 = 0; i3 < n_kv; ++i3) {
  12897. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12898. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12899. // can't use memcpy because of d_conv vs d_conv - 1
  12900. for (int i1 = 0; i1 < ir; ++i1) {
  12901. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12902. // copy s0 to last (d_conv - 1) columns of s
  12903. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12904. }
  12905. }
  12906. }
  12907. }
  12908. for (int i2 = 0; i2 < n_t; ++i2) {
  12909. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12910. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12911. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12912. float * s0; // {d_conv - 1, d_inner, n_kv}
  12913. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12914. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12915. int ne0s0;
  12916. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12917. // avoid needing to copy the state for the first token
  12918. if (i2 == 0) {
  12919. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12920. ne0s0 = src0->ne[0];
  12921. } else {
  12922. // the source is the last (d_conv - 1) columns of the destination
  12923. s0 = s + 1;
  12924. ne0s0 = nc;
  12925. }
  12926. // d_inner
  12927. for (int i1 = 0; i1 < ir; ++i1) {
  12928. // shift state left
  12929. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12930. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12931. }
  12932. // insert x on the last column
  12933. s[(nc - 1) + i1*nc] = x0[i1];
  12934. }
  12935. // handle copies when there are multiple output states
  12936. for (int i3 = 1; i3 < n_kv; ++i3) {
  12937. int32_t seq = sq[i3];
  12938. if (0 <= seq && seq < n_kv) {
  12939. float * s1 = s + (seq - sq[0])*nc*nr;
  12940. memcpy(s1, s, nc*ir*sizeof(float));
  12941. } else {
  12942. // stop at negative or too big seq_ids
  12943. break;
  12944. }
  12945. }
  12946. // it seems a little faster when this is separate from the state shift
  12947. for (int i1 = 0; i1 < ir; ++i1) {
  12948. // rowwise dot product
  12949. float sumf = 0.0f;
  12950. for (int i0 = 0; i0 < nc; ++i0) {
  12951. int i = i0 + i1*nc;
  12952. sumf += s[i] * c[i];
  12953. }
  12954. x[i1] = sumf;
  12955. }
  12956. }
  12957. }
  12958. static void ggml_compute_forward_ssm_conv(
  12959. const struct ggml_compute_params * params,
  12960. struct ggml_tensor * dst) {
  12961. switch (dst->src[0]->type) {
  12962. case GGML_TYPE_F32:
  12963. {
  12964. ggml_compute_forward_ssm_conv_f32(params, dst);
  12965. } break;
  12966. default:
  12967. {
  12968. GGML_ABORT("fatal error");
  12969. }
  12970. }
  12971. }
  12972. // ggml_compute_forward_ssm_scan
  12973. static void ggml_compute_forward_ssm_scan_f32(
  12974. const struct ggml_compute_params * params,
  12975. struct ggml_tensor * dst) {
  12976. const struct ggml_tensor * src0 = dst->src[0]; // s
  12977. const struct ggml_tensor * src1 = dst->src[1]; // x
  12978. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12979. const struct ggml_tensor * src3 = dst->src[3]; // A
  12980. const struct ggml_tensor * src4 = dst->src[4]; // B
  12981. const struct ggml_tensor * src5 = dst->src[5]; // C
  12982. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12983. const int ith = params->ith;
  12984. const int nth = params->nth;
  12985. const int64_t nc = src0->ne[0]; // d_state
  12986. const int64_t nr = src0->ne[1]; // d_inner
  12987. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12988. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12989. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12990. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12991. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12992. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12993. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12994. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12995. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12996. // required for the dot product between s and C, and when copying the states
  12997. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12998. // required for per-sequence offsets for states
  12999. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  13000. // required to get correct offset for state destination (i.e. src1->nb[2])
  13001. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  13002. // rows per thread
  13003. const int dr = (nr + nth - 1)/nth;
  13004. // row range for this thread
  13005. const int ir0 = dr*ith;
  13006. const int ir1 = MIN(ir0 + dr, nr);
  13007. const int ir = ir1 - ir0;
  13008. if (n_kv > 1) {
  13009. // it's hard to know if the source states have already been copied
  13010. // when there are multiple, so copy them already.
  13011. for (int i3 = 0; i3 < n_kv; ++i3) {
  13012. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  13013. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  13014. memcpy(s, s0, nc*ir*sizeof(float));
  13015. }
  13016. }
  13017. for (int i2 = 0; i2 < n_t; ++i2) {
  13018. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  13019. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13020. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  13021. float * s0;
  13022. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  13023. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  13024. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  13025. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  13026. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  13027. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  13028. // avoid needing to copy the state for the first token
  13029. if (i2 == 0) {
  13030. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  13031. } else {
  13032. // otherwise the source is the same as the destination
  13033. s0 = s;
  13034. }
  13035. // d_inner
  13036. for (int i1 = 0; i1 < ir; ++i1) {
  13037. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  13038. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  13039. float x_dt = x[i1] * dt_soft_plus;
  13040. float sumf = 0.0f;
  13041. // d_state
  13042. for (int i0 = 0; i0 < nc; ++i0) {
  13043. int i = i0 + i1*nc;
  13044. // state = prev_state * dA + dB * x
  13045. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  13046. // y = rowwise_dotprod(state, C)
  13047. sumf += state * C[i0];
  13048. s[i] = state;
  13049. }
  13050. y[i1] = sumf;
  13051. }
  13052. // handle copies when there are multiple output states
  13053. for (int i3 = 1; i3 < n_kv; ++i3) {
  13054. int32_t seq = sq[i3];
  13055. if (0 <= seq && seq < n_kv) {
  13056. float * s1 = s + (seq - sq[0])*nc*nr;
  13057. memcpy(s1, s, nc*ir*sizeof(float));
  13058. } else {
  13059. // stop at negative or too big seq_ids
  13060. break;
  13061. }
  13062. }
  13063. }
  13064. }
  13065. static void ggml_compute_forward_ssm_scan(
  13066. const struct ggml_compute_params * params,
  13067. struct ggml_tensor * dst) {
  13068. switch (dst->src[0]->type) {
  13069. case GGML_TYPE_F32:
  13070. {
  13071. ggml_compute_forward_ssm_scan_f32(params, dst);
  13072. } break;
  13073. default:
  13074. {
  13075. GGML_ABORT("fatal error");
  13076. }
  13077. }
  13078. }
  13079. // ggml_compute_forward_win_part
  13080. static void ggml_compute_forward_win_part_f32(
  13081. const struct ggml_compute_params * params,
  13082. struct ggml_tensor * dst) {
  13083. UNUSED(params);
  13084. const struct ggml_tensor * src0 = dst->src[0];
  13085. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13086. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13087. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  13088. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  13089. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  13090. assert(ne00 == ne0);
  13091. assert(ne3 == nep0*nep1);
  13092. // TODO: optimize / multi-thread
  13093. for (int py = 0; py < nep1; ++py) {
  13094. for (int px = 0; px < nep0; ++px) {
  13095. const int64_t i3 = py*nep0 + px;
  13096. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13097. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13098. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13099. const int64_t i02 = py*w + i2;
  13100. const int64_t i01 = px*w + i1;
  13101. const int64_t i00 = i0;
  13102. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  13103. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  13104. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  13105. ((float *) dst->data)[i] = 0.0f;
  13106. } else {
  13107. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  13108. }
  13109. }
  13110. }
  13111. }
  13112. }
  13113. }
  13114. }
  13115. static void ggml_compute_forward_win_part(
  13116. const struct ggml_compute_params * params,
  13117. struct ggml_tensor * dst) {
  13118. const struct ggml_tensor * src0 = dst->src[0];
  13119. switch (src0->type) {
  13120. case GGML_TYPE_F32:
  13121. {
  13122. ggml_compute_forward_win_part_f32(params, dst);
  13123. } break;
  13124. default:
  13125. {
  13126. GGML_ABORT("fatal error");
  13127. }
  13128. }
  13129. }
  13130. // ggml_compute_forward_win_unpart
  13131. static void ggml_compute_forward_win_unpart_f32(
  13132. const struct ggml_compute_params * params,
  13133. struct ggml_tensor * dst) {
  13134. UNUSED(params);
  13135. const struct ggml_tensor * src0 = dst->src[0];
  13136. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  13137. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  13138. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  13139. // padding
  13140. const int px = (w - ne1%w)%w;
  13141. //const int py = (w - ne2%w)%w;
  13142. const int npx = (px + ne1)/w;
  13143. //const int npy = (py + ne2)/w;
  13144. assert(ne0 == ne00);
  13145. // TODO: optimize / multi-thread
  13146. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13147. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13148. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13149. const int ip2 = i2/w;
  13150. const int ip1 = i1/w;
  13151. const int64_t i02 = i2%w;
  13152. const int64_t i01 = i1%w;
  13153. const int64_t i00 = i0;
  13154. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  13155. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  13156. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  13157. }
  13158. }
  13159. }
  13160. }
  13161. static void ggml_compute_forward_win_unpart(
  13162. const struct ggml_compute_params * params,
  13163. struct ggml_tensor * dst) {
  13164. const struct ggml_tensor * src0 = dst->src[0];
  13165. switch (src0->type) {
  13166. case GGML_TYPE_F32:
  13167. {
  13168. ggml_compute_forward_win_unpart_f32(params, dst);
  13169. } break;
  13170. default:
  13171. {
  13172. GGML_ABORT("fatal error");
  13173. }
  13174. }
  13175. }
  13176. //gmml_compute_forward_unary
  13177. static void ggml_compute_forward_unary(
  13178. const struct ggml_compute_params * params,
  13179. struct ggml_tensor * dst) {
  13180. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  13181. switch (op) {
  13182. case GGML_UNARY_OP_ABS:
  13183. {
  13184. ggml_compute_forward_abs(params, dst);
  13185. } break;
  13186. case GGML_UNARY_OP_SGN:
  13187. {
  13188. ggml_compute_forward_sgn(params, dst);
  13189. } break;
  13190. case GGML_UNARY_OP_NEG:
  13191. {
  13192. ggml_compute_forward_neg(params, dst);
  13193. } break;
  13194. case GGML_UNARY_OP_STEP:
  13195. {
  13196. ggml_compute_forward_step(params, dst);
  13197. } break;
  13198. case GGML_UNARY_OP_TANH:
  13199. {
  13200. ggml_compute_forward_tanh(params, dst);
  13201. } break;
  13202. case GGML_UNARY_OP_ELU:
  13203. {
  13204. ggml_compute_forward_elu(params, dst);
  13205. } break;
  13206. case GGML_UNARY_OP_RELU:
  13207. {
  13208. ggml_compute_forward_relu(params, dst);
  13209. } break;
  13210. case GGML_UNARY_OP_SIGMOID:
  13211. {
  13212. ggml_compute_forward_sigmoid(params, dst);
  13213. } break;
  13214. case GGML_UNARY_OP_GELU:
  13215. {
  13216. ggml_compute_forward_gelu(params, dst);
  13217. } break;
  13218. case GGML_UNARY_OP_GELU_QUICK:
  13219. {
  13220. ggml_compute_forward_gelu_quick(params, dst);
  13221. } break;
  13222. case GGML_UNARY_OP_SILU:
  13223. {
  13224. ggml_compute_forward_silu(params, dst);
  13225. } break;
  13226. case GGML_UNARY_OP_HARDSWISH:
  13227. {
  13228. ggml_compute_forward_hardswish(params, dst);
  13229. } break;
  13230. case GGML_UNARY_OP_HARDSIGMOID:
  13231. {
  13232. ggml_compute_forward_hardsigmoid(params, dst);
  13233. } break;
  13234. default:
  13235. {
  13236. GGML_ABORT("fatal error");
  13237. }
  13238. }
  13239. }
  13240. // ggml_compute_forward_get_rel_pos
  13241. static void ggml_compute_forward_get_rel_pos_f16(
  13242. const struct ggml_compute_params * params,
  13243. struct ggml_tensor * dst) {
  13244. UNUSED(params);
  13245. const struct ggml_tensor * src0 = dst->src[0];
  13246. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13247. GGML_TENSOR_UNARY_OP_LOCALS
  13248. const int64_t w = ne1;
  13249. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13250. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13251. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13252. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13253. const int64_t pos = (w - i1 - 1) + i2;
  13254. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13255. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13256. }
  13257. }
  13258. }
  13259. }
  13260. static void ggml_compute_forward_get_rel_pos(
  13261. const struct ggml_compute_params * params,
  13262. struct ggml_tensor * dst) {
  13263. const struct ggml_tensor * src0 = dst->src[0];
  13264. switch (src0->type) {
  13265. case GGML_TYPE_F16:
  13266. case GGML_TYPE_BF16:
  13267. {
  13268. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13269. } break;
  13270. default:
  13271. {
  13272. GGML_ABORT("fatal error");
  13273. }
  13274. }
  13275. }
  13276. // ggml_compute_forward_add_rel_pos
  13277. static void ggml_compute_forward_add_rel_pos_f32(
  13278. const struct ggml_compute_params * params,
  13279. struct ggml_tensor * dst) {
  13280. const struct ggml_tensor * src0 = dst->src[0];
  13281. const struct ggml_tensor * src1 = dst->src[1];
  13282. const struct ggml_tensor * src2 = dst->src[2];
  13283. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13284. if (!inplace) {
  13285. if (params->ith == 0) {
  13286. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13287. }
  13288. ggml_barrier(params->shared);
  13289. }
  13290. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13291. float * src1_data = (float *) src1->data;
  13292. float * src2_data = (float *) src2->data;
  13293. float * dst_data = (float *) dst->data;
  13294. const int64_t ne10 = src1->ne[0];
  13295. const int64_t ne11 = src1->ne[1];
  13296. const int64_t ne12 = src1->ne[2];
  13297. const int64_t ne13 = src1->ne[3];
  13298. const int ith = params->ith;
  13299. const int nth = params->nth;
  13300. // total patches in dst
  13301. const int np = ne13;
  13302. // patches per thread
  13303. const int dp = (np + nth - 1)/nth;
  13304. // patch range for this thread
  13305. const int ip0 = dp*ith;
  13306. const int ip1 = MIN(ip0 + dp, np);
  13307. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13308. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13309. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13310. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13311. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13312. const int64_t jp0 = jp1 + i10;
  13313. const float src1_e = src1_data[jp0];
  13314. const float src2_e = src2_data[jp0];
  13315. const int64_t jdh = jp0 * ne10;
  13316. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13317. for (int64_t j = 0; j < ne10; ++j) {
  13318. dst_data[jdh + j ] += src2_e;
  13319. dst_data[jdw + j*ne10] += src1_e;
  13320. }
  13321. }
  13322. }
  13323. }
  13324. }
  13325. }
  13326. static void ggml_compute_forward_add_rel_pos(
  13327. const struct ggml_compute_params * params,
  13328. struct ggml_tensor * dst) {
  13329. const struct ggml_tensor * src0 = dst->src[0];
  13330. switch (src0->type) {
  13331. case GGML_TYPE_F32:
  13332. {
  13333. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13334. } break;
  13335. default:
  13336. {
  13337. GGML_ABORT("fatal error");
  13338. }
  13339. }
  13340. }
  13341. // ggml_compute_forward_map_unary
  13342. static void ggml_compute_forward_map_unary_f32(
  13343. const struct ggml_compute_params * params,
  13344. struct ggml_tensor * dst,
  13345. const ggml_unary_op_f32_t fun) {
  13346. const struct ggml_tensor * src0 = dst->src[0];
  13347. if (params->ith != 0) {
  13348. return;
  13349. }
  13350. assert(ggml_is_contiguous_1(src0));
  13351. assert(ggml_is_contiguous_1(dst));
  13352. assert(ggml_are_same_shape(src0, dst));
  13353. const int n = ggml_nrows(src0);
  13354. const int nc = src0->ne[0];
  13355. for (int i = 0; i < n; i++) {
  13356. fun(nc,
  13357. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13358. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13359. }
  13360. }
  13361. static void ggml_compute_forward_map_unary(
  13362. const struct ggml_compute_params * params,
  13363. struct ggml_tensor * dst,
  13364. const ggml_unary_op_f32_t fun) {
  13365. const struct ggml_tensor * src0 = dst->src[0];
  13366. switch (src0->type) {
  13367. case GGML_TYPE_F32:
  13368. {
  13369. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13370. } break;
  13371. default:
  13372. {
  13373. GGML_ABORT("fatal error");
  13374. }
  13375. }
  13376. }
  13377. // ggml_compute_forward_map_binary
  13378. static void ggml_compute_forward_map_binary_f32(
  13379. const struct ggml_compute_params * params,
  13380. struct ggml_tensor * dst,
  13381. const ggml_binary_op_f32_t fun) {
  13382. const struct ggml_tensor * src0 = dst->src[0];
  13383. const struct ggml_tensor * src1 = dst->src[1];
  13384. if (params->ith != 0) {
  13385. return;
  13386. }
  13387. assert(ggml_is_contiguous_1(src0));
  13388. assert(ggml_is_contiguous_1(src1));
  13389. assert(ggml_is_contiguous_1(dst));
  13390. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13391. const int n = ggml_nrows(src0);
  13392. const int nc = src0->ne[0];
  13393. for (int i = 0; i < n; i++) {
  13394. fun(nc,
  13395. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13396. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13397. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13398. }
  13399. }
  13400. static void ggml_compute_forward_map_binary(
  13401. const struct ggml_compute_params * params,
  13402. struct ggml_tensor * dst,
  13403. const ggml_binary_op_f32_t fun) {
  13404. const struct ggml_tensor * src0 = dst->src[0];
  13405. switch (src0->type) {
  13406. case GGML_TYPE_F32:
  13407. {
  13408. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13409. } break;
  13410. default:
  13411. {
  13412. GGML_ABORT("fatal error");
  13413. }
  13414. }
  13415. }
  13416. // ggml_compute_forward_map_custom1
  13417. static void ggml_compute_forward_map_custom1_f32(
  13418. const struct ggml_compute_params * params,
  13419. struct ggml_tensor * dst,
  13420. const ggml_custom1_op_f32_t fun) {
  13421. const struct ggml_tensor * a = dst->src[0];
  13422. if (params->ith != 0) {
  13423. return;
  13424. }
  13425. fun(dst, a);
  13426. }
  13427. // ggml_compute_forward_map_custom2
  13428. static void ggml_compute_forward_map_custom2_f32(
  13429. const struct ggml_compute_params * params,
  13430. struct ggml_tensor * dst,
  13431. const ggml_custom2_op_f32_t fun) {
  13432. const struct ggml_tensor * a = dst->src[0];
  13433. const struct ggml_tensor * b = dst->src[1];
  13434. if (params->ith != 0) {
  13435. return;
  13436. }
  13437. fun(dst, a, b);
  13438. }
  13439. // ggml_compute_forward_map_custom3
  13440. static void ggml_compute_forward_map_custom3_f32(
  13441. const struct ggml_compute_params * params,
  13442. struct ggml_tensor * dst,
  13443. const ggml_custom3_op_f32_t fun) {
  13444. const struct ggml_tensor * a = dst->src[0];
  13445. const struct ggml_tensor * b = dst->src[1];
  13446. const struct ggml_tensor * c = dst->src[1];
  13447. if (params->ith != 0) {
  13448. return;
  13449. }
  13450. fun(dst, a, b, c);
  13451. }
  13452. // ggml_compute_forward_map_custom1
  13453. static void ggml_compute_forward_map_custom1(
  13454. const struct ggml_compute_params * params,
  13455. struct ggml_tensor * dst) {
  13456. const struct ggml_tensor * a = dst->src[0];
  13457. struct ggml_map_custom1_op_params p;
  13458. memcpy(&p, dst->op_params, sizeof(p));
  13459. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13460. }
  13461. // ggml_compute_forward_map_custom2
  13462. static void ggml_compute_forward_map_custom2(
  13463. const struct ggml_compute_params * params,
  13464. struct ggml_tensor * dst) {
  13465. const struct ggml_tensor * a = dst->src[0];
  13466. const struct ggml_tensor * b = dst->src[1];
  13467. struct ggml_map_custom2_op_params p;
  13468. memcpy(&p, dst->op_params, sizeof(p));
  13469. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13470. }
  13471. // ggml_compute_forward_map_custom3
  13472. static void ggml_compute_forward_map_custom3(
  13473. const struct ggml_compute_params * params,
  13474. struct ggml_tensor * dst) {
  13475. const struct ggml_tensor * a = dst->src[0];
  13476. const struct ggml_tensor * b = dst->src[1];
  13477. const struct ggml_tensor * c = dst->src[2];
  13478. struct ggml_map_custom3_op_params p;
  13479. memcpy(&p, dst->op_params, sizeof(p));
  13480. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13481. }
  13482. // ggml_compute_forward_cross_entropy_loss
  13483. static void ggml_compute_forward_cross_entropy_loss_f32(
  13484. const struct ggml_compute_params * params,
  13485. struct ggml_tensor * dst) {
  13486. const struct ggml_tensor * src0 = dst->src[0];
  13487. const struct ggml_tensor * src1 = dst->src[1];
  13488. GGML_ASSERT(ggml_is_contiguous(src0));
  13489. GGML_ASSERT(ggml_is_contiguous(src1));
  13490. GGML_ASSERT(ggml_is_scalar(dst));
  13491. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13492. const int ith = params->ith;
  13493. const int nth = params->nth;
  13494. float * sums = (float *) params->wdata;
  13495. // TODO: handle transposed/permuted matrices
  13496. const int nc = src0->ne[0];
  13497. const int nr = ggml_nrows(src0);
  13498. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13499. if (ith == 0) {
  13500. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13501. }
  13502. ggml_barrier(params->shared);
  13503. const double eps = 1e-9;
  13504. // rows per thread
  13505. const int dr = (nr + nth - 1)/nth;
  13506. // row range for this thread
  13507. const int ir0 = dr*ith;
  13508. const int ir1 = MIN(ir0 + dr, nr);
  13509. for (int i1 = ir0; i1 < ir1; i1++) {
  13510. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13511. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13512. float * st = ((float *) params->wdata) + nth + ith*nc;
  13513. #ifndef NDEBUG
  13514. for (int i = 0; i < nc; ++i) {
  13515. //printf("p[%d] = %f\n", i, p[i]);
  13516. assert(!isnan(s0[i]));
  13517. assert(!isnan(s1[i]));
  13518. }
  13519. #endif
  13520. // soft_max
  13521. float max = -INFINITY;
  13522. ggml_vec_max_f32(nc, &max, s0);
  13523. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13524. assert(sum > 0.0);
  13525. sum = (1.0 - eps) / sum;
  13526. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13527. ggml_vec_scale_f32(nc, st, sum);
  13528. ggml_vec_add1_f32(nc, st, st, eps);
  13529. ggml_vec_log_f32(nc, st, st);
  13530. ggml_vec_mul_f32(nc, st, st, s1);
  13531. float st_sum = 0;
  13532. ggml_vec_sum_f32(nc, &st_sum, st);
  13533. sums[ith] += st_sum;
  13534. #ifndef NDEBUG
  13535. for (int i = 0; i < nc; ++i) {
  13536. assert(!isnan(st[i]));
  13537. assert(!isinf(st[i]));
  13538. }
  13539. #endif
  13540. }
  13541. ggml_barrier(params->shared);
  13542. if (ith == 0) {
  13543. float * dp = (float *) dst->data;
  13544. ggml_vec_sum_f32(nth, dp, sums);
  13545. dp[0] *= -1.0f / (float) nr;
  13546. }
  13547. }
  13548. static void ggml_compute_forward_cross_entropy_loss(
  13549. const struct ggml_compute_params * params,
  13550. struct ggml_tensor * dst) {
  13551. const struct ggml_tensor * src0 = dst->src[0];
  13552. switch (src0->type) {
  13553. case GGML_TYPE_F32:
  13554. {
  13555. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13556. } break;
  13557. default:
  13558. {
  13559. GGML_ABORT("fatal error");
  13560. }
  13561. }
  13562. }
  13563. // ggml_compute_forward_cross_entropy_loss_back
  13564. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13565. const struct ggml_compute_params * params,
  13566. struct ggml_tensor * dst) {
  13567. const struct ggml_tensor * src0 = dst->src[0];
  13568. const struct ggml_tensor * src1 = dst->src[1];
  13569. const struct ggml_tensor * opt0 = dst->src[2];
  13570. GGML_ASSERT(ggml_is_contiguous(dst));
  13571. GGML_ASSERT(ggml_is_contiguous(src0));
  13572. GGML_ASSERT(ggml_is_contiguous(src1));
  13573. GGML_ASSERT(ggml_is_contiguous(opt0));
  13574. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13575. const int64_t ith = params->ith;
  13576. const int64_t nth = params->nth;
  13577. const double eps = 1e-9;
  13578. // TODO: handle transposed/permuted matrices
  13579. const int64_t nc = src0->ne[0];
  13580. const int64_t nr = ggml_nrows(src0);
  13581. // rows per thread
  13582. const int64_t dr = (nr + nth - 1)/nth;
  13583. // row range for this thread
  13584. const int64_t ir0 = dr*ith;
  13585. const int64_t ir1 = MIN(ir0 + dr, nr);
  13586. float * d = (float *) opt0->data;
  13587. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13588. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13589. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13590. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13591. #ifndef NDEBUG
  13592. for (int i = 0; i < nc; ++i) {
  13593. //printf("p[%d] = %f\n", i, p[i]);
  13594. assert(!isnan(s0[i]));
  13595. assert(!isnan(s1[i]));
  13596. }
  13597. #endif
  13598. // soft_max
  13599. float max = -INFINITY;
  13600. ggml_vec_max_f32(nc, &max, s0);
  13601. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13602. assert(sum > 0.0);
  13603. sum = (1.0 - eps) / sum;
  13604. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13605. ggml_vec_scale_f32(nc, ds0, sum);
  13606. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13607. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13608. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13609. #ifndef NDEBUG
  13610. for (int i = 0; i < nc; ++i) {
  13611. assert(!isnan(ds0[i]));
  13612. assert(!isinf(ds0[i]));
  13613. }
  13614. #endif
  13615. }
  13616. }
  13617. static void ggml_compute_forward_cross_entropy_loss_back(
  13618. const struct ggml_compute_params * params,
  13619. struct ggml_tensor * dst) {
  13620. const struct ggml_tensor * src0 = dst->src[0];
  13621. switch (src0->type) {
  13622. case GGML_TYPE_F32:
  13623. {
  13624. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13625. } break;
  13626. default:
  13627. {
  13628. GGML_ABORT("fatal error");
  13629. }
  13630. }
  13631. }
  13632. /////////////////////////////////
  13633. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13634. GGML_ASSERT(params);
  13635. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13636. return;
  13637. }
  13638. switch (tensor->op) {
  13639. case GGML_OP_DUP:
  13640. {
  13641. ggml_compute_forward_dup(params, tensor);
  13642. } break;
  13643. case GGML_OP_ADD:
  13644. {
  13645. ggml_compute_forward_add(params, tensor);
  13646. } break;
  13647. case GGML_OP_ADD1:
  13648. {
  13649. ggml_compute_forward_add1(params, tensor);
  13650. } break;
  13651. case GGML_OP_ACC:
  13652. {
  13653. ggml_compute_forward_acc(params, tensor);
  13654. } break;
  13655. case GGML_OP_SUB:
  13656. {
  13657. ggml_compute_forward_sub(params, tensor);
  13658. } break;
  13659. case GGML_OP_MUL:
  13660. {
  13661. ggml_compute_forward_mul(params, tensor);
  13662. } break;
  13663. case GGML_OP_DIV:
  13664. {
  13665. ggml_compute_forward_div(params, tensor);
  13666. } break;
  13667. case GGML_OP_SQR:
  13668. {
  13669. ggml_compute_forward_sqr(params, tensor);
  13670. } break;
  13671. case GGML_OP_SQRT:
  13672. {
  13673. ggml_compute_forward_sqrt(params, tensor);
  13674. } break;
  13675. case GGML_OP_LOG:
  13676. {
  13677. ggml_compute_forward_log(params, tensor);
  13678. } break;
  13679. case GGML_OP_SUM:
  13680. {
  13681. ggml_compute_forward_sum(params, tensor);
  13682. } break;
  13683. case GGML_OP_SUM_ROWS:
  13684. {
  13685. ggml_compute_forward_sum_rows(params, tensor);
  13686. } break;
  13687. case GGML_OP_MEAN:
  13688. {
  13689. ggml_compute_forward_mean(params, tensor);
  13690. } break;
  13691. case GGML_OP_ARGMAX:
  13692. {
  13693. ggml_compute_forward_argmax(params, tensor);
  13694. } break;
  13695. case GGML_OP_REPEAT:
  13696. {
  13697. ggml_compute_forward_repeat(params, tensor);
  13698. } break;
  13699. case GGML_OP_REPEAT_BACK:
  13700. {
  13701. ggml_compute_forward_repeat_back(params, tensor);
  13702. } break;
  13703. case GGML_OP_CONCAT:
  13704. {
  13705. ggml_compute_forward_concat(params, tensor);
  13706. } break;
  13707. case GGML_OP_SILU_BACK:
  13708. {
  13709. ggml_compute_forward_silu_back(params, tensor);
  13710. } break;
  13711. case GGML_OP_NORM:
  13712. {
  13713. ggml_compute_forward_norm(params, tensor);
  13714. } break;
  13715. case GGML_OP_RMS_NORM:
  13716. {
  13717. ggml_compute_forward_rms_norm(params, tensor);
  13718. } break;
  13719. case GGML_OP_RMS_NORM_BACK:
  13720. {
  13721. ggml_compute_forward_rms_norm_back(params, tensor);
  13722. } break;
  13723. case GGML_OP_GROUP_NORM:
  13724. {
  13725. ggml_compute_forward_group_norm(params, tensor);
  13726. } break;
  13727. case GGML_OP_MUL_MAT:
  13728. {
  13729. ggml_compute_forward_mul_mat(params, tensor);
  13730. } break;
  13731. case GGML_OP_MUL_MAT_ID:
  13732. {
  13733. ggml_compute_forward_mul_mat_id(params, tensor);
  13734. } break;
  13735. case GGML_OP_OUT_PROD:
  13736. {
  13737. ggml_compute_forward_out_prod(params, tensor);
  13738. } break;
  13739. case GGML_OP_SCALE:
  13740. {
  13741. ggml_compute_forward_scale(params, tensor);
  13742. } break;
  13743. case GGML_OP_SET:
  13744. {
  13745. ggml_compute_forward_set(params, tensor);
  13746. } break;
  13747. case GGML_OP_CPY:
  13748. {
  13749. ggml_compute_forward_cpy(params, tensor);
  13750. } break;
  13751. case GGML_OP_CONT:
  13752. {
  13753. ggml_compute_forward_cont(params, tensor);
  13754. } break;
  13755. case GGML_OP_RESHAPE:
  13756. {
  13757. ggml_compute_forward_reshape(params, tensor);
  13758. } break;
  13759. case GGML_OP_VIEW:
  13760. {
  13761. ggml_compute_forward_view(params, tensor);
  13762. } break;
  13763. case GGML_OP_PERMUTE:
  13764. {
  13765. ggml_compute_forward_permute(params, tensor);
  13766. } break;
  13767. case GGML_OP_TRANSPOSE:
  13768. {
  13769. ggml_compute_forward_transpose(params, tensor);
  13770. } break;
  13771. case GGML_OP_GET_ROWS:
  13772. {
  13773. ggml_compute_forward_get_rows(params, tensor);
  13774. } break;
  13775. case GGML_OP_GET_ROWS_BACK:
  13776. {
  13777. ggml_compute_forward_get_rows_back(params, tensor);
  13778. } break;
  13779. case GGML_OP_DIAG:
  13780. {
  13781. ggml_compute_forward_diag(params, tensor);
  13782. } break;
  13783. case GGML_OP_DIAG_MASK_INF:
  13784. {
  13785. ggml_compute_forward_diag_mask_inf(params, tensor);
  13786. } break;
  13787. case GGML_OP_DIAG_MASK_ZERO:
  13788. {
  13789. ggml_compute_forward_diag_mask_zero(params, tensor);
  13790. } break;
  13791. case GGML_OP_SOFT_MAX:
  13792. {
  13793. ggml_compute_forward_soft_max(params, tensor);
  13794. } break;
  13795. case GGML_OP_SOFT_MAX_BACK:
  13796. {
  13797. ggml_compute_forward_soft_max_back(params, tensor);
  13798. } break;
  13799. case GGML_OP_ROPE:
  13800. {
  13801. ggml_compute_forward_rope(params, tensor);
  13802. } break;
  13803. case GGML_OP_ROPE_BACK:
  13804. {
  13805. ggml_compute_forward_rope_back(params, tensor);
  13806. } break;
  13807. case GGML_OP_CLAMP:
  13808. {
  13809. ggml_compute_forward_clamp(params, tensor);
  13810. } break;
  13811. case GGML_OP_CONV_TRANSPOSE_1D:
  13812. {
  13813. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13814. } break;
  13815. case GGML_OP_IM2COL:
  13816. {
  13817. ggml_compute_forward_im2col(params, tensor);
  13818. } break;
  13819. case GGML_OP_CONV_TRANSPOSE_2D:
  13820. {
  13821. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13822. } break;
  13823. case GGML_OP_POOL_1D:
  13824. {
  13825. ggml_compute_forward_pool_1d(params, tensor);
  13826. } break;
  13827. case GGML_OP_POOL_2D:
  13828. {
  13829. ggml_compute_forward_pool_2d(params, tensor);
  13830. } break;
  13831. case GGML_OP_UPSCALE:
  13832. {
  13833. ggml_compute_forward_upscale(params, tensor);
  13834. } break;
  13835. case GGML_OP_PAD:
  13836. {
  13837. ggml_compute_forward_pad(params, tensor);
  13838. } break;
  13839. case GGML_OP_ARANGE:
  13840. {
  13841. ggml_compute_forward_arange(params, tensor);
  13842. } break;
  13843. case GGML_OP_TIMESTEP_EMBEDDING:
  13844. {
  13845. ggml_compute_forward_timestep_embedding(params, tensor);
  13846. } break;
  13847. case GGML_OP_ARGSORT:
  13848. {
  13849. ggml_compute_forward_argsort(params, tensor);
  13850. } break;
  13851. case GGML_OP_LEAKY_RELU:
  13852. {
  13853. ggml_compute_forward_leaky_relu(params, tensor);
  13854. } break;
  13855. case GGML_OP_FLASH_ATTN_EXT:
  13856. {
  13857. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  13858. } break;
  13859. case GGML_OP_FLASH_ATTN_BACK:
  13860. {
  13861. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13862. GGML_ASSERT(t == 0 || t == 1);
  13863. bool masked = t != 0;
  13864. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13865. } break;
  13866. case GGML_OP_SSM_CONV:
  13867. {
  13868. ggml_compute_forward_ssm_conv(params, tensor);
  13869. } break;
  13870. case GGML_OP_SSM_SCAN:
  13871. {
  13872. ggml_compute_forward_ssm_scan(params, tensor);
  13873. } break;
  13874. case GGML_OP_WIN_PART:
  13875. {
  13876. ggml_compute_forward_win_part(params, tensor);
  13877. } break;
  13878. case GGML_OP_WIN_UNPART:
  13879. {
  13880. ggml_compute_forward_win_unpart(params, tensor);
  13881. } break;
  13882. case GGML_OP_UNARY:
  13883. {
  13884. ggml_compute_forward_unary(params, tensor);
  13885. } break;
  13886. case GGML_OP_GET_REL_POS:
  13887. {
  13888. ggml_compute_forward_get_rel_pos(params, tensor);
  13889. } break;
  13890. case GGML_OP_ADD_REL_POS:
  13891. {
  13892. ggml_compute_forward_add_rel_pos(params, tensor);
  13893. } break;
  13894. case GGML_OP_MAP_UNARY:
  13895. {
  13896. ggml_unary_op_f32_t fun;
  13897. memcpy(&fun, tensor->op_params, sizeof(fun));
  13898. ggml_compute_forward_map_unary(params, tensor, fun);
  13899. }
  13900. break;
  13901. case GGML_OP_MAP_BINARY:
  13902. {
  13903. ggml_binary_op_f32_t fun;
  13904. memcpy(&fun, tensor->op_params, sizeof(fun));
  13905. ggml_compute_forward_map_binary(params, tensor, fun);
  13906. }
  13907. break;
  13908. case GGML_OP_MAP_CUSTOM1_F32:
  13909. {
  13910. ggml_custom1_op_f32_t fun;
  13911. memcpy(&fun, tensor->op_params, sizeof(fun));
  13912. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13913. }
  13914. break;
  13915. case GGML_OP_MAP_CUSTOM2_F32:
  13916. {
  13917. ggml_custom2_op_f32_t fun;
  13918. memcpy(&fun, tensor->op_params, sizeof(fun));
  13919. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13920. }
  13921. break;
  13922. case GGML_OP_MAP_CUSTOM3_F32:
  13923. {
  13924. ggml_custom3_op_f32_t fun;
  13925. memcpy(&fun, tensor->op_params, sizeof(fun));
  13926. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13927. }
  13928. break;
  13929. case GGML_OP_MAP_CUSTOM1:
  13930. {
  13931. ggml_compute_forward_map_custom1(params, tensor);
  13932. }
  13933. break;
  13934. case GGML_OP_MAP_CUSTOM2:
  13935. {
  13936. ggml_compute_forward_map_custom2(params, tensor);
  13937. }
  13938. break;
  13939. case GGML_OP_MAP_CUSTOM3:
  13940. {
  13941. ggml_compute_forward_map_custom3(params, tensor);
  13942. }
  13943. break;
  13944. case GGML_OP_CROSS_ENTROPY_LOSS:
  13945. {
  13946. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13947. }
  13948. break;
  13949. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13950. {
  13951. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13952. }
  13953. break;
  13954. case GGML_OP_NONE:
  13955. {
  13956. // nop
  13957. } break;
  13958. case GGML_OP_COUNT:
  13959. {
  13960. GGML_ABORT("fatal error");
  13961. }
  13962. }
  13963. }
  13964. ////////////////////////////////////////////////////////////////////////////////
  13965. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13966. size = ggml_hash_size(size);
  13967. struct ggml_hash_set result;
  13968. result.size = size;
  13969. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13970. result.used = GGML_CALLOC(ggml_bitset_size(size), sizeof(ggml_bitset_t));
  13971. return result;
  13972. }
  13973. void ggml_hash_set_reset(struct ggml_hash_set * hash_set) {
  13974. memset(hash_set->used, 0, sizeof(ggml_bitset_t) * ggml_bitset_size(hash_set->size));
  13975. }
  13976. void ggml_hash_set_free(struct ggml_hash_set * hash_set) {
  13977. GGML_FREE(hash_set->used);
  13978. GGML_FREE(hash_set->keys);
  13979. }
  13980. size_t ggml_hash_size(size_t min_sz) {
  13981. // next primes after powers of two
  13982. static const size_t primes[] = {
  13983. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13984. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13985. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13986. 16777259, 33554467, 67108879, 134217757, 268435459,
  13987. 536870923, 1073741827, 2147483659
  13988. };
  13989. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13990. // find the smallest prime that is larger or equal than min_sz
  13991. size_t l = 0;
  13992. size_t r = n_primes;
  13993. while (l < r) {
  13994. size_t m = (l + r)/2;
  13995. if (primes[m] < min_sz) {
  13996. l = m + 1;
  13997. } else {
  13998. r = m;
  13999. }
  14000. }
  14001. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  14002. return sz;
  14003. }
  14004. struct hash_map {
  14005. struct ggml_hash_set set;
  14006. struct ggml_tensor ** vals;
  14007. };
  14008. static struct hash_map * ggml_new_hash_map(size_t size) {
  14009. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  14010. result->set = ggml_hash_set_new(size);
  14011. result->vals = GGML_CALLOC(result->set.size, sizeof(struct ggml_tensor *));
  14012. return result;
  14013. }
  14014. static void ggml_hash_map_free(struct hash_map * map) {
  14015. ggml_hash_set_free(&map->set);
  14016. GGML_FREE(map->vals);
  14017. GGML_FREE(map);
  14018. }
  14019. // gradient checkpointing
  14020. static struct ggml_tensor * ggml_recompute_graph_node(
  14021. struct ggml_context * ctx,
  14022. struct ggml_cgraph * graph,
  14023. struct hash_map * replacements,
  14024. struct ggml_tensor * node) {
  14025. if (node == NULL) {
  14026. return NULL;
  14027. }
  14028. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14029. return node;
  14030. }
  14031. if (!ggml_hash_contains(&graph->visited_hash_set, node)) {
  14032. return node;
  14033. }
  14034. int count_children = 0;
  14035. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14036. if (node->src[k]) {
  14037. ++count_children;
  14038. }
  14039. }
  14040. if (count_children == 0) {
  14041. return node;
  14042. }
  14043. size_t i = ggml_hash_find(&replacements->set, node);
  14044. GGML_ASSERT(i != GGML_HASHSET_FULL); // assert that not full
  14045. if (replacements->set.keys[i] == node) {
  14046. return replacements->vals[i];
  14047. }
  14048. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  14049. // insert clone into replacements
  14050. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  14051. replacements->set.keys[i] = node;
  14052. replacements->vals[i] = clone;
  14053. clone->op = node->op;
  14054. clone->grad = node->grad;
  14055. clone->flags = node->flags;
  14056. clone->extra = node->extra;
  14057. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  14058. clone->nb[k] = node->nb[k];
  14059. }
  14060. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14061. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  14062. }
  14063. if (node->view_src != NULL) {
  14064. clone->data = (node->view_src->data == NULL)
  14065. ? NULL // view_src not yet allocated
  14066. : (char *) node->view_src->data // view_src already allocated
  14067. + node->view_offs;
  14068. clone->view_src = node->view_src;
  14069. clone->view_offs = node->view_offs;
  14070. }
  14071. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  14072. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  14073. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  14074. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  14075. return clone;
  14076. }
  14077. void ggml_build_backward_gradient_checkpointing(
  14078. struct ggml_context * ctx,
  14079. struct ggml_cgraph * gf,
  14080. struct ggml_cgraph * gb,
  14081. struct ggml_cgraph * gb_tmp,
  14082. struct ggml_tensor * * checkpoints,
  14083. int n_checkpoints) {
  14084. ggml_graph_cpy(gf, gb_tmp);
  14085. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  14086. if (n_checkpoints <= 0) {
  14087. ggml_graph_cpy(gb_tmp, gb);
  14088. return;
  14089. }
  14090. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  14091. // insert checkpoints in replacements
  14092. for (int i = 0; i < n_checkpoints; ++i) {
  14093. size_t k = ggml_hash_find(&replacements->set, checkpoints[i]);
  14094. GGML_ASSERT(k != GGML_HASHSET_FULL); // assert that not full
  14095. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  14096. replacements->set.keys[k] = checkpoints[i];
  14097. replacements->vals[k] = checkpoints[i];
  14098. }
  14099. ggml_graph_cpy(gf, gb);
  14100. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  14101. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  14102. // by recomputing them from checkpoints
  14103. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  14104. struct ggml_tensor * node = gb_tmp->nodes[i];
  14105. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  14106. // insert new tensors recomputing src, reusing already made replacements,
  14107. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  14108. // recurse for input tensors,
  14109. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  14110. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  14111. }
  14112. // insert rewritten backward node with replacements made into resulting backward graph gb
  14113. ggml_build_forward_expand(gb, node);
  14114. }
  14115. ggml_hash_map_free(replacements);
  14116. }
  14117. // functions to change gradients considering the case that input a might be initial gradient with zero value
  14118. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14119. if (ggml_hash_contains(zero_table, a)) {
  14120. return b;
  14121. } else {
  14122. return ggml_add_impl(ctx, a, b, false);
  14123. }
  14124. }
  14125. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set * zero_table) {
  14126. if (ggml_hash_contains(zero_table, a)) {
  14127. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  14128. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  14129. } else {
  14130. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  14131. }
  14132. }
  14133. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14134. if (ggml_hash_contains(zero_table, a)) {
  14135. return ggml_repeat(ctx, b, a);
  14136. } else {
  14137. return ggml_add1_impl(ctx, a, b, false);
  14138. }
  14139. }
  14140. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set * zero_table) {
  14141. if (ggml_hash_contains(zero_table, a)) {
  14142. return ggml_neg(ctx, b);
  14143. } else {
  14144. return ggml_sub_impl(ctx, a, b, false);
  14145. }
  14146. }
  14147. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set * zero_table) {
  14148. struct ggml_tensor * src0 = tensor->src[0];
  14149. struct ggml_tensor * src1 = tensor->src[1];
  14150. struct ggml_tensor * src2 = tensor->src[2];
  14151. switch (tensor->op) {
  14152. case GGML_OP_DUP:
  14153. {
  14154. if (src0->grad) {
  14155. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14156. }
  14157. } break;
  14158. case GGML_OP_ADD:
  14159. {
  14160. if (src0->grad) {
  14161. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14162. }
  14163. if (src1->grad) {
  14164. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14165. }
  14166. } break;
  14167. case GGML_OP_ADD1:
  14168. {
  14169. if (src0->grad) {
  14170. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14171. }
  14172. if (src1->grad) {
  14173. src1->grad = ggml_add_or_set(ctx,
  14174. src1->grad,
  14175. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  14176. zero_table);
  14177. }
  14178. } break;
  14179. case GGML_OP_ACC:
  14180. {
  14181. if (src0->grad) {
  14182. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14183. }
  14184. if (src1->grad) {
  14185. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14186. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14187. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14188. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14189. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14190. tensor->grad,
  14191. src1->grad->ne[0],
  14192. src1->grad->ne[1],
  14193. src1->grad->ne[2],
  14194. src1->grad->ne[3],
  14195. nb1, nb2, nb3, offset);
  14196. src1->grad =
  14197. ggml_add_or_set(ctx,
  14198. src1->grad,
  14199. ggml_reshape(ctx,
  14200. ggml_cont(ctx, tensor_grad_view),
  14201. src1->grad),
  14202. zero_table);
  14203. }
  14204. } break;
  14205. case GGML_OP_SUB:
  14206. {
  14207. if (src0->grad) {
  14208. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14209. }
  14210. if (src1->grad) {
  14211. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14212. }
  14213. } break;
  14214. case GGML_OP_MUL:
  14215. {
  14216. if (src0->grad) {
  14217. src0->grad =
  14218. ggml_add_or_set(ctx,
  14219. src0->grad,
  14220. ggml_mul(ctx, src1, tensor->grad),
  14221. zero_table);
  14222. }
  14223. if (src1->grad) {
  14224. src1->grad =
  14225. ggml_add_or_set(ctx,
  14226. src1->grad,
  14227. ggml_mul(ctx, src0, tensor->grad),
  14228. zero_table);
  14229. }
  14230. } break;
  14231. case GGML_OP_DIV:
  14232. {
  14233. if (src0->grad) {
  14234. src0->grad =
  14235. ggml_add_or_set(ctx,
  14236. src0->grad,
  14237. ggml_div(ctx, tensor->grad, src1),
  14238. zero_table);
  14239. }
  14240. if (src1->grad) {
  14241. src1->grad =
  14242. ggml_sub_or_set(ctx,
  14243. src1->grad,
  14244. ggml_mul(ctx,
  14245. tensor->grad,
  14246. ggml_div(ctx, tensor, src1)),
  14247. zero_table);
  14248. }
  14249. } break;
  14250. case GGML_OP_SQR:
  14251. {
  14252. if (src0->grad) {
  14253. src0->grad =
  14254. ggml_add_or_set(ctx,
  14255. src0->grad,
  14256. ggml_scale(ctx,
  14257. ggml_mul(ctx, src0, tensor->grad),
  14258. 2.0f),
  14259. zero_table);
  14260. }
  14261. } break;
  14262. case GGML_OP_SQRT:
  14263. {
  14264. if (src0->grad) {
  14265. src0->grad =
  14266. ggml_add_or_set(ctx,
  14267. src0->grad,
  14268. ggml_scale(ctx,
  14269. ggml_div(ctx,
  14270. tensor->grad,
  14271. tensor),
  14272. 0.5f),
  14273. zero_table);
  14274. }
  14275. } break;
  14276. case GGML_OP_LOG:
  14277. {
  14278. if (src0->grad) {
  14279. src0->grad =
  14280. ggml_add_or_set(ctx,
  14281. src0->grad,
  14282. ggml_div(ctx,
  14283. tensor->grad,
  14284. src0),
  14285. zero_table);
  14286. }
  14287. } break;
  14288. case GGML_OP_SUM:
  14289. {
  14290. if (src0->grad) {
  14291. src0->grad =
  14292. ggml_add1_or_set(ctx,
  14293. src0->grad,
  14294. tensor->grad,
  14295. zero_table);
  14296. }
  14297. } break;
  14298. case GGML_OP_SUM_ROWS:
  14299. {
  14300. if (src0->grad) {
  14301. src0->grad =
  14302. ggml_add_or_set(ctx,
  14303. src0->grad,
  14304. ggml_repeat(ctx,
  14305. tensor->grad,
  14306. src0->grad),
  14307. zero_table);
  14308. }
  14309. } break;
  14310. case GGML_OP_MEAN:
  14311. case GGML_OP_ARGMAX:
  14312. {
  14313. GGML_ABORT("fatal error"); // TODO: implement
  14314. }
  14315. case GGML_OP_REPEAT:
  14316. {
  14317. // necessary for llama
  14318. if (src0->grad) {
  14319. src0->grad = ggml_add_or_set(ctx,
  14320. src0->grad,
  14321. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14322. zero_table);
  14323. }
  14324. } break;
  14325. case GGML_OP_REPEAT_BACK:
  14326. {
  14327. if (src0->grad) {
  14328. // TODO: test this
  14329. src0->grad = ggml_add_or_set(ctx,
  14330. src0->grad,
  14331. ggml_repeat(ctx, tensor->grad, src0->grad),
  14332. zero_table);
  14333. }
  14334. } break;
  14335. case GGML_OP_CONCAT:
  14336. {
  14337. GGML_ABORT("fatal error"); // TODO: implement
  14338. }
  14339. case GGML_OP_SILU_BACK:
  14340. {
  14341. GGML_ABORT("fatal error"); // TODO: not implemented
  14342. }
  14343. case GGML_OP_NORM:
  14344. {
  14345. GGML_ABORT("fatal error"); // TODO: not implemented
  14346. }
  14347. case GGML_OP_RMS_NORM:
  14348. {
  14349. // necessary for llama
  14350. if (src0->grad) {
  14351. float eps;
  14352. memcpy(&eps, tensor->op_params, sizeof(float));
  14353. src0->grad = ggml_add_or_set(ctx,
  14354. src0->grad,
  14355. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14356. zero_table);
  14357. }
  14358. } break;
  14359. case GGML_OP_RMS_NORM_BACK:
  14360. {
  14361. GGML_ABORT("fatal error"); // TODO: not implemented
  14362. }
  14363. case GGML_OP_GROUP_NORM:
  14364. {
  14365. GGML_ABORT("fatal error"); // TODO: not implemented
  14366. }
  14367. case GGML_OP_MUL_MAT:
  14368. {
  14369. // https://cs231n.github.io/optimization-2/#staged
  14370. // # forward pass
  14371. // s0 = np.random.randn(5, 10)
  14372. // s1 = np.random.randn(10, 3)
  14373. // t = s0.dot(s1)
  14374. // # now suppose we had the gradient on t from above in the circuit
  14375. // dt = np.random.randn(*t.shape) # same shape as t
  14376. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14377. // ds1 = t.T.dot(dt)
  14378. // tensor.shape [m,p,qq,rr]
  14379. // src0.shape [n,m,q1,r1]
  14380. // src1.shape [n,p,qq,rr]
  14381. // necessary for llama
  14382. if (src0->grad) {
  14383. struct ggml_tensor * s1_tg =
  14384. ggml_out_prod(ctx, // [n,m,qq,rr]
  14385. src1, // [n,p,qq,rr]
  14386. tensor->grad); // [m,p,qq,rr]
  14387. const int64_t qq = s1_tg->ne[2];
  14388. const int64_t rr = s1_tg->ne[3];
  14389. const int64_t q1 = src0->ne[2];
  14390. const int64_t r1 = src0->ne[3];
  14391. const bool ne2_broadcasted = qq > q1;
  14392. const bool ne3_broadcasted = rr > r1;
  14393. if (ne2_broadcasted || ne3_broadcasted) {
  14394. // sum broadcast repetitions of s1_tg into shape of src0
  14395. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14396. }
  14397. src0->grad =
  14398. ggml_add_or_set(ctx,
  14399. src0->grad, // [n,m,q1,r1]
  14400. s1_tg, // [n,m,q1,r1]
  14401. zero_table);
  14402. }
  14403. if (src1->grad) {
  14404. src1->grad =
  14405. ggml_add_or_set(ctx,
  14406. src1->grad, // [n,p,qq,rr]
  14407. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14408. // ggml_cont(ctx, // [m,n,q1,r1]
  14409. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14410. // tensor->grad), // [m,p,qq,rr]
  14411. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14412. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14413. // // and then use ggml_out_prod
  14414. ggml_out_prod(ctx, // [n,p,qq,rr]
  14415. src0, // [n,m,q1,r1]
  14416. ggml_transpose(ctx, // [p,m,qq,rr]
  14417. tensor->grad)), // [m,p,qq,rr]
  14418. zero_table);
  14419. }
  14420. } break;
  14421. case GGML_OP_MUL_MAT_ID:
  14422. {
  14423. GGML_ABORT("fatal error"); // TODO: not implemented
  14424. }
  14425. case GGML_OP_OUT_PROD:
  14426. {
  14427. GGML_ABORT("fatal error"); // TODO: not implemented
  14428. }
  14429. case GGML_OP_SCALE:
  14430. {
  14431. // necessary for llama
  14432. if (src0->grad) {
  14433. float s;
  14434. memcpy(&s, tensor->op_params, sizeof(float));
  14435. src0->grad =
  14436. ggml_add_or_set(ctx,
  14437. src0->grad,
  14438. ggml_scale_impl(ctx, tensor->grad, s, false),
  14439. zero_table);
  14440. }
  14441. } break;
  14442. case GGML_OP_SET:
  14443. {
  14444. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14445. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14446. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14447. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14448. struct ggml_tensor * tensor_grad_view = NULL;
  14449. if (src0->grad || src1->grad) {
  14450. GGML_ASSERT(src0->type == tensor->type);
  14451. GGML_ASSERT(tensor->grad->type == tensor->type);
  14452. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14453. tensor_grad_view = ggml_view_4d(ctx,
  14454. tensor->grad,
  14455. src1->grad->ne[0],
  14456. src1->grad->ne[1],
  14457. src1->grad->ne[2],
  14458. src1->grad->ne[3],
  14459. nb1, nb2, nb3, offset);
  14460. }
  14461. if (src0->grad) {
  14462. src0->grad = ggml_add_or_set(ctx,
  14463. src0->grad,
  14464. ggml_acc_impl(ctx,
  14465. tensor->grad,
  14466. ggml_neg(ctx, tensor_grad_view),
  14467. nb1, nb2, nb3, offset, false),
  14468. zero_table);
  14469. }
  14470. if (src1->grad) {
  14471. src1->grad =
  14472. ggml_add_or_set(ctx,
  14473. src1->grad,
  14474. ggml_reshape(ctx,
  14475. ggml_cont(ctx, tensor_grad_view),
  14476. src1->grad),
  14477. zero_table);
  14478. }
  14479. } break;
  14480. case GGML_OP_CPY:
  14481. {
  14482. // necessary for llama
  14483. // cpy overwrites value of src1 by src0 and returns view(src1)
  14484. // the overwriting is mathematically equivalent to:
  14485. // tensor = src0 * 1 + src1 * 0
  14486. if (src0->grad) {
  14487. // dsrc0 = dtensor * 1
  14488. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14489. }
  14490. if (src1->grad) {
  14491. // dsrc1 = dtensor * 0 -> noop
  14492. }
  14493. } break;
  14494. case GGML_OP_CONT:
  14495. {
  14496. // same as cpy
  14497. if (src0->grad) {
  14498. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14499. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14500. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14501. }
  14502. } break;
  14503. case GGML_OP_RESHAPE:
  14504. {
  14505. // necessary for llama
  14506. if (src0->grad) {
  14507. src0->grad =
  14508. ggml_add_or_set(ctx, src0->grad,
  14509. ggml_reshape(ctx,
  14510. ggml_is_contiguous(tensor->grad)
  14511. ? tensor->grad
  14512. : ggml_cont(ctx, tensor->grad),
  14513. src0->grad),
  14514. zero_table);
  14515. }
  14516. } break;
  14517. case GGML_OP_VIEW:
  14518. {
  14519. // necessary for llama
  14520. if (src0->grad) {
  14521. size_t offset;
  14522. memcpy(&offset, tensor->op_params, sizeof(offset));
  14523. size_t nb1 = tensor->nb[1];
  14524. size_t nb2 = tensor->nb[2];
  14525. size_t nb3 = tensor->nb[3];
  14526. if (src0->type != src0->grad->type) {
  14527. // gradient is typically F32, but src0 could be other type
  14528. size_t ng = ggml_element_size(src0->grad);
  14529. size_t n0 = ggml_element_size(src0);
  14530. GGML_ASSERT(offset % n0 == 0);
  14531. GGML_ASSERT(nb1 % n0 == 0);
  14532. GGML_ASSERT(nb2 % n0 == 0);
  14533. GGML_ASSERT(nb3 % n0 == 0);
  14534. offset = (offset / n0) * ng;
  14535. nb1 = (nb1 / n0) * ng;
  14536. nb2 = (nb2 / n0) * ng;
  14537. nb3 = (nb3 / n0) * ng;
  14538. }
  14539. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14540. }
  14541. } break;
  14542. case GGML_OP_PERMUTE:
  14543. {
  14544. // necessary for llama
  14545. if (src0->grad) {
  14546. int32_t * axes = (int32_t *) tensor->op_params;
  14547. int axis0 = axes[0] & 0x3;
  14548. int axis1 = axes[1] & 0x3;
  14549. int axis2 = axes[2] & 0x3;
  14550. int axis3 = axes[3] & 0x3;
  14551. int axes_backward[4] = {0,0,0,0};
  14552. axes_backward[axis0] = 0;
  14553. axes_backward[axis1] = 1;
  14554. axes_backward[axis2] = 2;
  14555. axes_backward[axis3] = 3;
  14556. src0->grad =
  14557. ggml_add_or_set(ctx, src0->grad,
  14558. ggml_permute(ctx,
  14559. tensor->grad,
  14560. axes_backward[0],
  14561. axes_backward[1],
  14562. axes_backward[2],
  14563. axes_backward[3]),
  14564. zero_table);
  14565. }
  14566. } break;
  14567. case GGML_OP_TRANSPOSE:
  14568. {
  14569. // necessary for llama
  14570. if (src0->grad) {
  14571. src0->grad =
  14572. ggml_add_or_set(ctx, src0->grad,
  14573. ggml_transpose(ctx, tensor->grad),
  14574. zero_table);
  14575. }
  14576. } break;
  14577. case GGML_OP_GET_ROWS:
  14578. {
  14579. // necessary for llama (only for tokenizer)
  14580. if (src0->grad) {
  14581. src0->grad =
  14582. ggml_add_or_set(ctx, src0->grad,
  14583. // last ggml_get_rows_back argument src0->grad is only
  14584. // necessary to setup correct output shape
  14585. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14586. zero_table);
  14587. }
  14588. if (src1->grad) {
  14589. // noop
  14590. }
  14591. } break;
  14592. case GGML_OP_GET_ROWS_BACK:
  14593. {
  14594. GGML_ABORT("fatal error"); // TODO: not implemented
  14595. }
  14596. case GGML_OP_DIAG:
  14597. {
  14598. GGML_ABORT("fatal error"); // TODO: not implemented
  14599. }
  14600. case GGML_OP_DIAG_MASK_INF:
  14601. {
  14602. // necessary for llama
  14603. if (src0->grad) {
  14604. const int n_past = ((int32_t *) tensor->op_params)[0];
  14605. src0->grad =
  14606. ggml_add_or_set(ctx, src0->grad,
  14607. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14608. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14609. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14610. zero_table);
  14611. }
  14612. } break;
  14613. case GGML_OP_DIAG_MASK_ZERO:
  14614. {
  14615. // necessary for llama
  14616. if (src0->grad) {
  14617. const int n_past = ((int32_t *) tensor->op_params)[0];
  14618. src0->grad =
  14619. ggml_add_or_set(ctx, src0->grad,
  14620. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14621. zero_table);
  14622. }
  14623. } break;
  14624. case GGML_OP_SOFT_MAX:
  14625. {
  14626. // necessary for llama
  14627. if (src0->grad) {
  14628. src0->grad =
  14629. ggml_add_or_set(ctx, src0->grad,
  14630. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14631. zero_table);
  14632. }
  14633. } break;
  14634. case GGML_OP_SOFT_MAX_BACK:
  14635. {
  14636. GGML_ABORT("fatal error"); // TODO: not implemented
  14637. }
  14638. case GGML_OP_ROPE:
  14639. {
  14640. // necessary for llama
  14641. if (src0->grad) {
  14642. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14643. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14644. const int mode = ((int32_t *) tensor->op_params)[2];
  14645. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14646. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14647. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14648. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14649. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14650. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14651. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14652. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14653. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14654. src0->grad = ggml_add_or_set(ctx,
  14655. src0->grad,
  14656. ggml_rope_back(ctx,
  14657. tensor->grad,
  14658. src1,
  14659. src2,
  14660. n_dims,
  14661. mode,
  14662. n_ctx_orig,
  14663. freq_base,
  14664. freq_scale,
  14665. ext_factor,
  14666. attn_factor,
  14667. beta_fast,
  14668. beta_slow),
  14669. zero_table);
  14670. }
  14671. } break;
  14672. case GGML_OP_ROPE_BACK:
  14673. {
  14674. if (src0->grad) {
  14675. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14676. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14677. const int mode = ((int32_t *) tensor->op_params)[2];
  14678. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14679. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14680. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14681. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14682. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14683. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14684. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14685. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14686. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14687. src0->grad = ggml_add_or_set(ctx,
  14688. src0->grad,
  14689. ggml_rope_impl(ctx,
  14690. tensor->grad,
  14691. src1,
  14692. src2,
  14693. n_dims,
  14694. mode,
  14695. n_ctx_orig,
  14696. freq_base,
  14697. freq_scale,
  14698. ext_factor,
  14699. attn_factor,
  14700. beta_fast,
  14701. beta_slow,
  14702. false),
  14703. zero_table);
  14704. }
  14705. } break;
  14706. case GGML_OP_CLAMP:
  14707. {
  14708. GGML_ABORT("fatal error"); // TODO: not implemented
  14709. }
  14710. case GGML_OP_CONV_TRANSPOSE_1D:
  14711. {
  14712. GGML_ABORT("fatal error"); // TODO: not implemented
  14713. }
  14714. case GGML_OP_IM2COL:
  14715. {
  14716. GGML_ABORT("fatal error"); // TODO: not implemented
  14717. }
  14718. case GGML_OP_CONV_TRANSPOSE_2D:
  14719. {
  14720. GGML_ABORT("fatal error"); // TODO: not implemented
  14721. }
  14722. case GGML_OP_POOL_1D:
  14723. {
  14724. GGML_ABORT("fatal error"); // TODO: not implemented
  14725. }
  14726. case GGML_OP_POOL_2D:
  14727. {
  14728. GGML_ABORT("fatal error"); // TODO: not implemented
  14729. }
  14730. case GGML_OP_UPSCALE:
  14731. {
  14732. GGML_ABORT("fatal error"); // TODO: not implemented
  14733. }
  14734. case GGML_OP_PAD:
  14735. {
  14736. GGML_ABORT("fatal error"); // TODO: not implemented
  14737. }
  14738. case GGML_OP_ARANGE:
  14739. {
  14740. GGML_ABORT("fatal error"); // TODO: not implemented
  14741. }
  14742. case GGML_OP_TIMESTEP_EMBEDDING:
  14743. {
  14744. GGML_ABORT("fatal error"); // TODO: not implemented
  14745. }
  14746. case GGML_OP_ARGSORT:
  14747. {
  14748. GGML_ABORT("fatal error"); // TODO: not implemented
  14749. }
  14750. case GGML_OP_LEAKY_RELU:
  14751. {
  14752. GGML_ABORT("fatal error"); // TODO: not implemented
  14753. }
  14754. case GGML_OP_FLASH_ATTN_EXT:
  14755. {
  14756. struct ggml_tensor * flash_grad = NULL;
  14757. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14758. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14759. GGML_ASSERT(t == 0 || t == 1);
  14760. bool masked = t != 0;
  14761. flash_grad =
  14762. ggml_flash_attn_back(ctx,
  14763. src0,
  14764. src1,
  14765. tensor->src[2],
  14766. tensor->grad,
  14767. masked);
  14768. }
  14769. const int64_t elem_q = ggml_nelements(src0);
  14770. const int64_t elem_k = ggml_nelements(src1);
  14771. const int64_t elem_v = ggml_nelements(src2);
  14772. enum ggml_type result_type = flash_grad->type;
  14773. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14774. const size_t tsize = ggml_type_size(result_type);
  14775. const size_t offs_q = 0;
  14776. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14777. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14778. if (src0->grad) {
  14779. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14780. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14781. src0->grad = ggml_add_or_set(ctx,
  14782. src0->grad,
  14783. grad_q,
  14784. zero_table);
  14785. }
  14786. if (src1->grad) {
  14787. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14788. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14789. src1->grad = ggml_add_or_set(ctx,
  14790. src1->grad,
  14791. grad_k,
  14792. zero_table);
  14793. }
  14794. if (src2->grad) {
  14795. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14796. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14797. src2->grad = ggml_add_or_set(ctx,
  14798. src2->grad,
  14799. grad_v,
  14800. zero_table);
  14801. }
  14802. } break;
  14803. case GGML_OP_FLASH_ATTN_BACK:
  14804. {
  14805. GGML_ABORT("fatal error"); // not supported
  14806. }
  14807. case GGML_OP_SSM_CONV:
  14808. case GGML_OP_SSM_SCAN:
  14809. {
  14810. GGML_ABORT("fatal error"); // TODO: not implemented
  14811. }
  14812. case GGML_OP_WIN_PART:
  14813. case GGML_OP_WIN_UNPART:
  14814. case GGML_OP_UNARY:
  14815. {
  14816. switch (ggml_get_unary_op(tensor)) {
  14817. case GGML_UNARY_OP_ABS:
  14818. {
  14819. if (src0->grad) {
  14820. src0->grad =
  14821. ggml_add_or_set(ctx,
  14822. src0->grad,
  14823. ggml_mul(ctx,
  14824. ggml_sgn(ctx, src0),
  14825. tensor->grad),
  14826. zero_table);
  14827. }
  14828. } break;
  14829. case GGML_UNARY_OP_SGN:
  14830. {
  14831. if (src0->grad) {
  14832. // noop
  14833. }
  14834. } break;
  14835. case GGML_UNARY_OP_NEG:
  14836. {
  14837. if (src0->grad) {
  14838. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14839. }
  14840. } break;
  14841. case GGML_UNARY_OP_STEP:
  14842. {
  14843. if (src0->grad) {
  14844. // noop
  14845. }
  14846. } break;
  14847. case GGML_UNARY_OP_TANH:
  14848. {
  14849. GGML_ABORT("fatal error"); // TODO: not implemented
  14850. }
  14851. case GGML_UNARY_OP_ELU:
  14852. {
  14853. GGML_ABORT("fatal error"); // TODO: not implemented
  14854. }
  14855. case GGML_UNARY_OP_RELU:
  14856. {
  14857. if (src0->grad) {
  14858. src0->grad = ggml_add_or_set(ctx,
  14859. src0->grad,
  14860. ggml_mul(ctx,
  14861. ggml_step(ctx, src0),
  14862. tensor->grad),
  14863. zero_table);
  14864. }
  14865. } break;
  14866. case GGML_UNARY_OP_SIGMOID:
  14867. {
  14868. GGML_ABORT("fatal error"); // TODO: not implemented
  14869. }
  14870. case GGML_UNARY_OP_GELU:
  14871. {
  14872. GGML_ABORT("fatal error"); // TODO: not implemented
  14873. }
  14874. case GGML_UNARY_OP_GELU_QUICK:
  14875. {
  14876. GGML_ABORT("fatal error"); // TODO: not implemented
  14877. }
  14878. case GGML_UNARY_OP_SILU:
  14879. {
  14880. // necessary for llama
  14881. if (src0->grad) {
  14882. src0->grad = ggml_add_or_set(ctx,
  14883. src0->grad,
  14884. ggml_silu_back(ctx, src0, tensor->grad),
  14885. zero_table);
  14886. }
  14887. } break;
  14888. default:
  14889. GGML_ABORT("fatal error");
  14890. }
  14891. } break;
  14892. case GGML_OP_GET_REL_POS:
  14893. case GGML_OP_ADD_REL_POS:
  14894. case GGML_OP_MAP_UNARY:
  14895. case GGML_OP_MAP_BINARY:
  14896. case GGML_OP_MAP_CUSTOM1_F32:
  14897. case GGML_OP_MAP_CUSTOM2_F32:
  14898. case GGML_OP_MAP_CUSTOM3_F32:
  14899. case GGML_OP_MAP_CUSTOM1:
  14900. case GGML_OP_MAP_CUSTOM2:
  14901. case GGML_OP_MAP_CUSTOM3:
  14902. {
  14903. GGML_ABORT("fatal error"); // not supported
  14904. }
  14905. case GGML_OP_CROSS_ENTROPY_LOSS:
  14906. {
  14907. if (src0->grad) {
  14908. src0->grad = ggml_add_or_set(ctx,
  14909. src0->grad,
  14910. ggml_cross_entropy_loss_back(ctx,
  14911. src0,
  14912. src1,
  14913. tensor->grad),
  14914. zero_table);
  14915. }
  14916. } break;
  14917. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14918. {
  14919. GGML_ABORT("fatal error"); // not supported
  14920. }
  14921. case GGML_OP_NONE:
  14922. {
  14923. // nop
  14924. } break;
  14925. case GGML_OP_COUNT:
  14926. {
  14927. GGML_ABORT("fatal error");
  14928. }
  14929. }
  14930. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14931. if (tensor->src[i] && tensor->src[i]->grad) {
  14932. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14933. }
  14934. }
  14935. }
  14936. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14937. if (node->grad == NULL) {
  14938. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14939. // it can also happen during forward pass, if the user performs computations with constants
  14940. if (node->op != GGML_OP_NONE) {
  14941. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14942. }
  14943. }
  14944. // check if already visited
  14945. if (ggml_hash_insert(&cgraph->visited_hash_set, node) == GGML_HASHSET_ALREADY_EXISTS) {
  14946. return;
  14947. }
  14948. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14949. const int k =
  14950. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14951. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14952. /* unknown order, just fall back to using i*/ i;
  14953. if (node->src[k]) {
  14954. ggml_visit_parents(cgraph, node->src[k]);
  14955. }
  14956. }
  14957. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14958. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14959. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14960. if (strlen(node->name) == 0) {
  14961. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14962. }
  14963. cgraph->leafs[cgraph->n_leafs] = node;
  14964. cgraph->n_leafs++;
  14965. } else {
  14966. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14967. if (strlen(node->name) == 0) {
  14968. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14969. }
  14970. cgraph->nodes[cgraph->n_nodes] = node;
  14971. if (cgraph->grads) {
  14972. cgraph->grads[cgraph->n_nodes] = node->grad;
  14973. }
  14974. cgraph->n_nodes++;
  14975. }
  14976. }
  14977. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14978. if (!expand) {
  14979. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14980. ggml_graph_clear(cgraph);
  14981. }
  14982. const int n0 = cgraph->n_nodes;
  14983. ggml_visit_parents(cgraph, tensor);
  14984. const int n_new = cgraph->n_nodes - n0;
  14985. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14986. if (n_new > 0) {
  14987. // the last added node should always be starting point
  14988. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14989. }
  14990. }
  14991. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14992. ggml_build_forward_impl(cgraph, tensor, true);
  14993. }
  14994. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14995. GGML_ASSERT(gf->n_nodes > 0);
  14996. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14997. if (keep) {
  14998. for (int i = 0; i < gf->n_nodes; i++) {
  14999. struct ggml_tensor * node = gf->nodes[i];
  15000. if (node->grad) {
  15001. node->grad = ggml_dup_tensor(ctx, node);
  15002. gf->grads[i] = node->grad;
  15003. }
  15004. }
  15005. }
  15006. // remember original gradients which start with zero values
  15007. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  15008. for (int i = 0; i < gf->n_nodes; i++) {
  15009. if (gf->grads[i]) {
  15010. ggml_hash_insert(&zero_table, gf->grads[i]);
  15011. }
  15012. }
  15013. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  15014. struct ggml_tensor * node = gf->nodes[i];
  15015. // inplace operations to add gradients are not created by ggml_compute_backward
  15016. // use allocator to automatically make inplace operations
  15017. if (node->grad) {
  15018. ggml_compute_backward(ctx, node, &zero_table);
  15019. }
  15020. }
  15021. for (int i = 0; i < gf->n_nodes; i++) {
  15022. struct ggml_tensor * node = gf->nodes[i];
  15023. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15024. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  15025. ggml_build_forward_expand(gb, node->grad);
  15026. }
  15027. }
  15028. ggml_hash_set_free(&zero_table);
  15029. }
  15030. static void * incr_ptr_aligned(void ** p, size_t size, size_t align) {
  15031. void * ptr = *p;
  15032. ptr = (void *) GGML_PAD((uintptr_t) ptr, align);
  15033. *p = (void *) ((char *) ptr + size);
  15034. return ptr;
  15035. }
  15036. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  15037. size_t hash_size = ggml_hash_size(size * 2);
  15038. void * p = 0;
  15039. incr_ptr_aligned(&p, sizeof(struct ggml_cgraph), 1);
  15040. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // nodes
  15041. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // leafs
  15042. incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // hash keys
  15043. if (grads) {
  15044. incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)); // grads
  15045. }
  15046. incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15047. size_t nbytes = (size_t) p;
  15048. return nbytes;
  15049. }
  15050. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  15051. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  15052. }
  15053. size_t ggml_graph_overhead(void) {
  15054. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  15055. }
  15056. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  15057. const size_t obj_size = ggml_graph_nbytes(size, grads);
  15058. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  15059. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  15060. // the size of the hash table is doubled since it needs to hold both nodes and leafs
  15061. size_t hash_size = ggml_hash_size(size * 2);
  15062. void * p = cgraph + 1;
  15063. struct ggml_tensor ** nodes_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15064. struct ggml_tensor ** leafs_ptr = incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15065. struct ggml_tensor ** hash_keys_ptr = incr_ptr_aligned(&p, hash_size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *));
  15066. struct ggml_tensor ** grads_ptr = grads ? incr_ptr_aligned(&p, size * sizeof(struct ggml_tensor *), sizeof(struct ggml_tensor *)) : NULL;
  15067. ggml_bitset_t * hash_used = incr_ptr_aligned(&p, ggml_bitset_size(hash_size) * sizeof(ggml_bitset_t), sizeof(ggml_bitset_t));
  15068. // check that we allocated the correct amount of memory
  15069. assert(obj_size == (size_t)((char *)p - (char *)cgraph));
  15070. *cgraph = (struct ggml_cgraph) {
  15071. /*.size =*/ size,
  15072. /*.n_nodes =*/ 0,
  15073. /*.n_leafs =*/ 0,
  15074. /*.nodes =*/ nodes_ptr,
  15075. /*.grads =*/ grads_ptr,
  15076. /*.leafs =*/ leafs_ptr,
  15077. /*.hash_table =*/ { hash_size, hash_used, hash_keys_ptr },
  15078. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  15079. };
  15080. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15081. return cgraph;
  15082. }
  15083. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  15084. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  15085. }
  15086. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  15087. struct ggml_cgraph cgraph = {
  15088. /*.size =*/ 0,
  15089. /*.n_nodes =*/ i1 - i0,
  15090. /*.n_leafs =*/ 0,
  15091. /*.nodes =*/ cgraph0->nodes + i0,
  15092. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  15093. /*.leafs =*/ NULL,
  15094. /*.hash_table =*/ { 0, NULL, NULL },
  15095. /*.order =*/ cgraph0->order,
  15096. };
  15097. return cgraph;
  15098. }
  15099. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  15100. GGML_ASSERT(dst->size >= src->n_leafs);
  15101. GGML_ASSERT(dst->size >= src->n_nodes);
  15102. GGML_ASSERT(dst->visited_hash_set.size >= src->visited_hash_set.size);
  15103. dst->n_leafs = src->n_leafs;
  15104. dst->n_nodes = src->n_nodes;
  15105. dst->order = src->order;
  15106. for (int i = 0; i < src->n_leafs; ++i) {
  15107. dst->leafs[i] = src->leafs[i];
  15108. }
  15109. for (int i = 0; i < src->n_nodes; ++i) {
  15110. dst->nodes[i] = src->nodes[i];
  15111. }
  15112. if (src->grads) {
  15113. GGML_ASSERT(dst->grads != NULL);
  15114. for (int i = 0; i < src->n_nodes; ++i) {
  15115. dst->grads[i] = src->grads[i];
  15116. }
  15117. }
  15118. for (size_t i = 0; i < src->visited_hash_set.size; ++i) {
  15119. if (src->visited_hash_set.keys[i]) {
  15120. ggml_hash_insert(&dst->visited_hash_set, src->visited_hash_set.keys[i]);
  15121. }
  15122. }
  15123. }
  15124. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  15125. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  15126. ggml_graph_cpy(cgraph, result);
  15127. return result;
  15128. }
  15129. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  15130. GGML_ASSERT(cgraph->grads != NULL);
  15131. for (int i = 0; i < cgraph->n_nodes; i++) {
  15132. struct ggml_tensor * grad = cgraph->grads[i];
  15133. if (grad) {
  15134. ggml_set_zero(grad);
  15135. }
  15136. }
  15137. }
  15138. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  15139. cgraph->n_leafs = 0;
  15140. cgraph->n_nodes = 0;
  15141. ggml_hash_set_reset(&cgraph->visited_hash_set);
  15142. }
  15143. //
  15144. // thread data
  15145. //
  15146. // synchronization is done via busy loops
  15147. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  15148. //
  15149. #ifdef __APPLE__
  15150. //#include <os/lock.h>
  15151. //
  15152. //typedef os_unfair_lock ggml_lock_t;
  15153. //
  15154. //#define ggml_lock_init(x) UNUSED(x)
  15155. //#define ggml_lock_destroy(x) UNUSED(x)
  15156. //#define ggml_lock_lock os_unfair_lock_lock
  15157. //#define ggml_lock_unlock os_unfair_lock_unlock
  15158. //
  15159. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  15160. typedef int ggml_lock_t;
  15161. #define ggml_lock_init(x) UNUSED(x)
  15162. #define ggml_lock_destroy(x) UNUSED(x)
  15163. #define ggml_lock_lock(x) UNUSED(x)
  15164. #define ggml_lock_unlock(x) UNUSED(x)
  15165. #define GGML_LOCK_INITIALIZER 0
  15166. #define ggml_thread_create pthread_create
  15167. #define ggml_thread_join pthread_join
  15168. #else
  15169. //typedef pthread_spinlock_t ggml_lock_t;
  15170. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  15171. //#define ggml_lock_destroy pthread_spin_destroy
  15172. //#define ggml_lock_lock pthread_spin_lock
  15173. //#define ggml_lock_unlock pthread_spin_unlock
  15174. typedef int ggml_lock_t;
  15175. #define ggml_lock_init(x) UNUSED(x)
  15176. #define ggml_lock_destroy(x) UNUSED(x)
  15177. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  15178. #define ggml_lock_lock(x) _mm_pause()
  15179. #else
  15180. #define ggml_lock_lock(x) UNUSED(x)
  15181. #endif
  15182. #define ggml_lock_unlock(x) UNUSED(x)
  15183. #define GGML_LOCK_INITIALIZER 0
  15184. #define ggml_thread_create pthread_create
  15185. #define ggml_thread_join pthread_join
  15186. #endif
  15187. // Android's libc implementation "bionic" does not support setting affinity
  15188. #if defined(__gnu_linux__)
  15189. static void set_numa_thread_affinity(int thread_n) {
  15190. if (!ggml_is_numa()) {
  15191. return;
  15192. }
  15193. int node_num;
  15194. int rv;
  15195. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15196. switch(g_state.numa.numa_strategy) {
  15197. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15198. // run thread on node_num thread_n / (threads per node)
  15199. node_num = thread_n % g_state.numa.n_nodes;
  15200. break;
  15201. case GGML_NUMA_STRATEGY_ISOLATE:
  15202. // run thread on current_node
  15203. node_num = g_state.numa.current_node;
  15204. break;
  15205. case GGML_NUMA_STRATEGY_NUMACTL:
  15206. // use the cpuset that numactl gave us
  15207. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15208. if (rv) {
  15209. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15210. }
  15211. return;
  15212. default:
  15213. return;
  15214. }
  15215. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15216. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15217. CPU_ZERO_S(setsize, cpus);
  15218. for (size_t i = 0; i < node->n_cpus; ++i) {
  15219. CPU_SET_S(node->cpus[i], setsize, cpus);
  15220. }
  15221. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15222. if (rv) {
  15223. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15224. }
  15225. CPU_FREE(cpus);
  15226. }
  15227. static void clear_numa_thread_affinity(void) {
  15228. if (!ggml_is_numa()) {
  15229. return;
  15230. }
  15231. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15232. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15233. CPU_ZERO_S(setsize, cpus);
  15234. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15235. CPU_SET_S(i, setsize, cpus);
  15236. }
  15237. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15238. if (rv) {
  15239. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15240. }
  15241. CPU_FREE(cpus);
  15242. }
  15243. #else
  15244. // TODO: Windows etc.
  15245. // (the linux implementation may also work on BSD, someone should test)
  15246. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15247. static void clear_numa_thread_affinity(void) {}
  15248. #endif
  15249. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15250. int n_tasks = 0;
  15251. if (ggml_is_empty(node)) {
  15252. // no need to multi-thread a no-op
  15253. n_tasks = 1;
  15254. return n_tasks;
  15255. }
  15256. switch (node->op) {
  15257. case GGML_OP_CPY:
  15258. case GGML_OP_DUP:
  15259. case GGML_OP_CONT:
  15260. case GGML_OP_ADD:
  15261. case GGML_OP_ADD1:
  15262. case GGML_OP_ACC:
  15263. {
  15264. n_tasks = n_threads;
  15265. } break;
  15266. case GGML_OP_SUB:
  15267. case GGML_OP_SQR:
  15268. case GGML_OP_SQRT:
  15269. case GGML_OP_LOG:
  15270. case GGML_OP_SUM:
  15271. case GGML_OP_SUM_ROWS:
  15272. case GGML_OP_MEAN:
  15273. case GGML_OP_ARGMAX:
  15274. case GGML_OP_REPEAT:
  15275. case GGML_OP_REPEAT_BACK:
  15276. case GGML_OP_LEAKY_RELU:
  15277. {
  15278. n_tasks = 1;
  15279. } break;
  15280. case GGML_OP_UNARY:
  15281. switch (ggml_get_unary_op(node)) {
  15282. case GGML_UNARY_OP_ABS:
  15283. case GGML_UNARY_OP_SGN:
  15284. case GGML_UNARY_OP_NEG:
  15285. case GGML_UNARY_OP_STEP:
  15286. case GGML_UNARY_OP_TANH:
  15287. case GGML_UNARY_OP_ELU:
  15288. case GGML_UNARY_OP_RELU:
  15289. case GGML_UNARY_OP_SIGMOID:
  15290. case GGML_UNARY_OP_HARDSWISH:
  15291. case GGML_UNARY_OP_HARDSIGMOID:
  15292. {
  15293. n_tasks = 1;
  15294. } break;
  15295. case GGML_UNARY_OP_GELU:
  15296. case GGML_UNARY_OP_GELU_QUICK:
  15297. case GGML_UNARY_OP_SILU:
  15298. {
  15299. n_tasks = n_threads;
  15300. } break;
  15301. default:
  15302. GGML_ABORT("fatal error");
  15303. }
  15304. break;
  15305. case GGML_OP_SILU_BACK:
  15306. case GGML_OP_MUL:
  15307. case GGML_OP_DIV:
  15308. case GGML_OP_NORM:
  15309. case GGML_OP_RMS_NORM:
  15310. case GGML_OP_RMS_NORM_BACK:
  15311. case GGML_OP_GROUP_NORM:
  15312. case GGML_OP_CONCAT:
  15313. case GGML_OP_MUL_MAT:
  15314. case GGML_OP_MUL_MAT_ID:
  15315. case GGML_OP_OUT_PROD:
  15316. {
  15317. n_tasks = n_threads;
  15318. } break;
  15319. case GGML_OP_GET_ROWS:
  15320. {
  15321. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  15322. // decreases performance with GPU offloading
  15323. //n_tasks = n_threads;
  15324. n_tasks = 1;
  15325. } break;
  15326. case GGML_OP_SCALE:
  15327. case GGML_OP_SET:
  15328. case GGML_OP_RESHAPE:
  15329. case GGML_OP_VIEW:
  15330. case GGML_OP_PERMUTE:
  15331. case GGML_OP_TRANSPOSE:
  15332. case GGML_OP_GET_ROWS_BACK:
  15333. case GGML_OP_DIAG:
  15334. {
  15335. n_tasks = 1;
  15336. } break;
  15337. case GGML_OP_DIAG_MASK_ZERO:
  15338. case GGML_OP_DIAG_MASK_INF:
  15339. case GGML_OP_SOFT_MAX_BACK:
  15340. case GGML_OP_ROPE:
  15341. case GGML_OP_ROPE_BACK:
  15342. case GGML_OP_ADD_REL_POS:
  15343. {
  15344. n_tasks = n_threads;
  15345. } break;
  15346. case GGML_OP_CLAMP:
  15347. {
  15348. n_tasks = 1; //TODO
  15349. } break;
  15350. case GGML_OP_SOFT_MAX:
  15351. {
  15352. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15353. } break;
  15354. case GGML_OP_IM2COL:
  15355. case GGML_OP_CONV_TRANSPOSE_1D:
  15356. case GGML_OP_CONV_TRANSPOSE_2D:
  15357. {
  15358. n_tasks = n_threads;
  15359. } break;
  15360. case GGML_OP_POOL_1D:
  15361. case GGML_OP_POOL_2D:
  15362. {
  15363. n_tasks = 1;
  15364. } break;
  15365. case GGML_OP_UPSCALE:
  15366. case GGML_OP_PAD:
  15367. case GGML_OP_ARANGE:
  15368. case GGML_OP_TIMESTEP_EMBEDDING:
  15369. case GGML_OP_ARGSORT:
  15370. case GGML_OP_FLASH_ATTN_EXT:
  15371. case GGML_OP_FLASH_ATTN_BACK:
  15372. case GGML_OP_SSM_CONV:
  15373. case GGML_OP_SSM_SCAN:
  15374. {
  15375. n_tasks = n_threads;
  15376. } break;
  15377. case GGML_OP_WIN_PART:
  15378. case GGML_OP_WIN_UNPART:
  15379. case GGML_OP_GET_REL_POS:
  15380. case GGML_OP_MAP_UNARY:
  15381. case GGML_OP_MAP_BINARY:
  15382. case GGML_OP_MAP_CUSTOM1_F32:
  15383. case GGML_OP_MAP_CUSTOM2_F32:
  15384. case GGML_OP_MAP_CUSTOM3_F32:
  15385. {
  15386. n_tasks = 1;
  15387. } break;
  15388. case GGML_OP_MAP_CUSTOM1:
  15389. {
  15390. struct ggml_map_custom1_op_params p;
  15391. memcpy(&p, node->op_params, sizeof(p));
  15392. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15393. n_tasks = n_threads;
  15394. } else {
  15395. n_tasks = MIN(p.n_tasks, n_threads);
  15396. }
  15397. } break;
  15398. case GGML_OP_MAP_CUSTOM2:
  15399. {
  15400. struct ggml_map_custom2_op_params p;
  15401. memcpy(&p, node->op_params, sizeof(p));
  15402. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15403. n_tasks = n_threads;
  15404. } else {
  15405. n_tasks = MIN(p.n_tasks, n_threads);
  15406. }
  15407. } break;
  15408. case GGML_OP_MAP_CUSTOM3:
  15409. {
  15410. struct ggml_map_custom3_op_params p;
  15411. memcpy(&p, node->op_params, sizeof(p));
  15412. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15413. n_tasks = n_threads;
  15414. } else {
  15415. n_tasks = MIN(p.n_tasks, n_threads);
  15416. }
  15417. } break;
  15418. case GGML_OP_CROSS_ENTROPY_LOSS:
  15419. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15420. {
  15421. n_tasks = n_threads;
  15422. } break;
  15423. case GGML_OP_NONE:
  15424. {
  15425. n_tasks = 1;
  15426. } break;
  15427. case GGML_OP_COUNT:
  15428. {
  15429. GGML_ABORT("fatal error");
  15430. }
  15431. default:
  15432. {
  15433. fprintf(stderr, "%s: op not implemented: ", __func__);
  15434. if (node->op < GGML_OP_COUNT) {
  15435. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15436. } else {
  15437. fprintf(stderr, "%d\n", node->op);
  15438. }
  15439. GGML_ABORT("fatal error");
  15440. }
  15441. }
  15442. assert(n_tasks > 0);
  15443. return n_tasks;
  15444. }
  15445. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15446. if (n_threads <= 0) {
  15447. n_threads = GGML_DEFAULT_N_THREADS;
  15448. }
  15449. size_t work_size = 0;
  15450. struct ggml_cplan cplan;
  15451. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15452. int max_tasks = 1;
  15453. // thread scheduling for the different operations + work buffer size estimation
  15454. for (int i = 0; i < cgraph->n_nodes; i++) {
  15455. struct ggml_tensor * node = cgraph->nodes[i];
  15456. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  15457. max_tasks = MAX(max_tasks, n_tasks);
  15458. size_t cur = 0;
  15459. switch (node->op) {
  15460. case GGML_OP_CPY:
  15461. case GGML_OP_DUP:
  15462. {
  15463. if (ggml_is_quantized(node->type) ||
  15464. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15465. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15466. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15467. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15468. }
  15469. } break;
  15470. case GGML_OP_ADD:
  15471. case GGML_OP_ADD1:
  15472. {
  15473. if (ggml_is_quantized(node->src[0]->type)) {
  15474. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15475. }
  15476. } break;
  15477. case GGML_OP_ACC:
  15478. {
  15479. if (ggml_is_quantized(node->src[0]->type)) {
  15480. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15481. }
  15482. } break;
  15483. case GGML_OP_MUL_MAT:
  15484. {
  15485. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15486. if (node->src[1]->type != vec_dot_type) {
  15487. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15488. }
  15489. } break;
  15490. case GGML_OP_MUL_MAT_ID:
  15491. {
  15492. cur = 0;
  15493. const struct ggml_tensor * src0 = node->src[0];
  15494. const struct ggml_tensor * src1 = node->src[1];
  15495. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15496. if (src1->type != vec_dot_type) {
  15497. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15498. }
  15499. const int n_as = src0->ne[2];
  15500. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15501. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15502. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15503. } break;
  15504. case GGML_OP_OUT_PROD:
  15505. {
  15506. if (ggml_is_quantized(node->src[0]->type)) {
  15507. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15508. }
  15509. } break;
  15510. case GGML_OP_SOFT_MAX:
  15511. case GGML_OP_ROPE:
  15512. {
  15513. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15514. } break;
  15515. case GGML_OP_CONV_TRANSPOSE_1D:
  15516. {
  15517. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15518. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15519. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15520. const int64_t ne00 = node->src[0]->ne[0]; // K
  15521. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15522. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15523. const int64_t ne10 = node->src[1]->ne[0]; // L
  15524. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15525. if ((node->src[0]->type == GGML_TYPE_F16 ||
  15526. node->src[0]->type == GGML_TYPE_BF16) &&
  15527. node->src[1]->type == GGML_TYPE_F32) {
  15528. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15529. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15530. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15531. node->src[1]->type == GGML_TYPE_F32) {
  15532. cur += sizeof(float)*ne00*ne01*ne02;
  15533. cur += sizeof(float)*ne10*ne11;
  15534. } else {
  15535. GGML_ABORT("fatal error");
  15536. }
  15537. } break;
  15538. case GGML_OP_CONV_TRANSPOSE_2D:
  15539. {
  15540. const int64_t ne00 = node->src[0]->ne[0]; // W
  15541. const int64_t ne01 = node->src[0]->ne[1]; // H
  15542. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15543. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15544. const int64_t ne10 = node->src[1]->ne[0]; // W
  15545. const int64_t ne11 = node->src[1]->ne[1]; // H
  15546. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15547. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15548. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15549. } break;
  15550. case GGML_OP_FLASH_ATTN_EXT:
  15551. {
  15552. const int64_t ne00 = node->src[0]->ne[0]; // D
  15553. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  15554. } break;
  15555. case GGML_OP_FLASH_ATTN_BACK:
  15556. {
  15557. const int64_t D = node->src[0]->ne[0];
  15558. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15559. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15560. if (node->src[1]->type == GGML_TYPE_F32) {
  15561. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15562. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15563. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15564. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15565. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15566. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  15567. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15568. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15569. }
  15570. } break;
  15571. case GGML_OP_CROSS_ENTROPY_LOSS:
  15572. {
  15573. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15574. } break;
  15575. case GGML_OP_COUNT:
  15576. {
  15577. GGML_ABORT("fatal error");
  15578. }
  15579. default:
  15580. break;
  15581. }
  15582. work_size = MAX(work_size, cur);
  15583. }
  15584. if (work_size > 0) {
  15585. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15586. }
  15587. cplan.n_threads = MIN(max_tasks, n_threads);
  15588. cplan.work_size = work_size;
  15589. cplan.work_data = NULL;
  15590. return cplan;
  15591. }
  15592. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15593. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15594. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15595. const struct ggml_cplan * cplan = state->shared->cplan;
  15596. set_numa_thread_affinity(state->ith);
  15597. struct ggml_compute_params params = {
  15598. /*.ith =*/ state->ith,
  15599. /*.nth =*/ state->shared->n_threads,
  15600. /*.wsize =*/ cplan->work_size,
  15601. /*.wdata =*/ cplan->work_data,
  15602. /*.shared=*/ state->shared,
  15603. };
  15604. for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
  15605. struct ggml_tensor * node = cgraph->nodes[node_n];
  15606. ggml_compute_forward(&params, node);
  15607. if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15608. state->shared->ec = GGML_STATUS_ABORTED;
  15609. }
  15610. ggml_barrier(state->shared);
  15611. if (state->shared->ec != GGML_STATUS_SUCCESS) {
  15612. break;
  15613. }
  15614. }
  15615. return 0;
  15616. }
  15617. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15618. GGML_ASSERT(cplan);
  15619. GGML_ASSERT(cplan->n_threads > 0);
  15620. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  15621. int n_threads = cplan->n_threads;
  15622. struct ggml_compute_state_shared state_shared = {
  15623. /*.cgraph =*/ cgraph,
  15624. /*.cgraph_plan =*/ cplan,
  15625. /*.n_threads =*/ n_threads,
  15626. /*.n_barrier =*/ 0,
  15627. /*.n_barrier_passed =*/ 0,
  15628. /*.abort_callback =*/ NULL,
  15629. /*.abort_callback_data =*/ NULL,
  15630. /*.current_chunk =*/ 0,
  15631. /*.ec =*/ GGML_STATUS_SUCCESS,
  15632. };
  15633. #ifdef GGML_USE_OPENMP
  15634. if (n_threads > 1) {
  15635. #pragma omp parallel num_threads(n_threads)
  15636. {
  15637. #pragma omp single
  15638. {
  15639. // update the number of threads from the actual number of threads that we got from OpenMP
  15640. n_threads = omp_get_num_threads();
  15641. state_shared.n_threads = n_threads;
  15642. }
  15643. struct ggml_compute_state worker = {
  15644. .thrd = 0,
  15645. .ith = omp_get_thread_num(),
  15646. .shared = &state_shared,
  15647. };
  15648. ggml_graph_compute_thread(&worker);
  15649. }
  15650. } else {
  15651. struct ggml_compute_state worker = {
  15652. .thrd = 0,
  15653. .ith = 0,
  15654. .shared = &state_shared,
  15655. };
  15656. ggml_graph_compute_thread(&worker);
  15657. }
  15658. #else
  15659. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15660. for (int j = 0; j < n_threads; ++j) {
  15661. workers[j] = (struct ggml_compute_state) {
  15662. .thrd = 0,
  15663. .ith = j,
  15664. .shared = &state_shared,
  15665. };
  15666. }
  15667. // create thread pool
  15668. for (int j = 1; j < n_threads; ++j) {
  15669. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15670. GGML_ASSERT(rc == 0);
  15671. UNUSED(rc);
  15672. }
  15673. // this is a work thread too
  15674. ggml_graph_compute_thread(&workers[0]);
  15675. // join or kill thread pool
  15676. if (n_threads > 1) {
  15677. for (int j = 1; j < n_threads; j++) {
  15678. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15679. GGML_ASSERT(rc == 0);
  15680. UNUSED(rc);
  15681. }
  15682. }
  15683. #endif
  15684. // don't leave affinity set on the main thread
  15685. clear_numa_thread_affinity();
  15686. return state_shared.ec;
  15687. }
  15688. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15689. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15690. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15691. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15692. return ggml_graph_compute(cgraph, &cplan);
  15693. }
  15694. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15695. for (int i = 0; i < cgraph->n_leafs; i++) {
  15696. struct ggml_tensor * leaf = cgraph->leafs[i];
  15697. if (strcmp(leaf->name, name) == 0) {
  15698. return leaf;
  15699. }
  15700. }
  15701. for (int i = 0; i < cgraph->n_nodes; i++) {
  15702. struct ggml_tensor * node = cgraph->nodes[i];
  15703. if (strcmp(node->name, name) == 0) {
  15704. return node;
  15705. }
  15706. }
  15707. return NULL;
  15708. }
  15709. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15710. const int64_t * ne = tensor->ne;
  15711. const size_t * nb = tensor->nb;
  15712. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15713. ggml_type_name(tensor->type),
  15714. ggml_op_name (tensor->op),
  15715. ggml_n_dims(tensor),
  15716. ne[0], ne[1], ne[2], ne[3],
  15717. nb[0], nb[1], nb[2], nb[3],
  15718. tensor->data,
  15719. tensor->name);
  15720. }
  15721. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15722. const int64_t * ne = tensor->ne;
  15723. const size_t * nb = tensor->nb;
  15724. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15725. arg,
  15726. ggml_type_name(tensor->type),
  15727. ggml_op_name (tensor->op),
  15728. ggml_n_dims(tensor),
  15729. ne[0], ne[1], ne[2], ne[3],
  15730. nb[0], nb[1], nb[2], nb[3],
  15731. tensor->data,
  15732. tensor->name);
  15733. }
  15734. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15735. uint64_t size_eval = 0;
  15736. // compute size of intermediate results
  15737. // TODO: does not take into account scratch buffers !!!!
  15738. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15739. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15740. }
  15741. // print
  15742. {
  15743. FILE * fout = stdout;
  15744. fprintf(fout, "\n");
  15745. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15746. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15747. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15748. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15749. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15750. // header
  15751. fprintf(fout, "\n");
  15752. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15753. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15754. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15755. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15756. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15757. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15758. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15759. }
  15760. // header
  15761. fprintf(fout, "\n");
  15762. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15763. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15764. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15765. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15766. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15767. if (cgraph->nodes[i]->src[j]) {
  15768. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15769. }
  15770. }
  15771. fprintf(fout, "\n");
  15772. }
  15773. fprintf(fout, "\n");
  15774. }
  15775. // write binary data
  15776. {
  15777. FILE * fout = ggml_fopen(fname, "wb");
  15778. if (!fout) {
  15779. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  15780. return;
  15781. }
  15782. // header
  15783. {
  15784. const uint32_t magic = GGML_FILE_MAGIC;
  15785. const uint32_t version = GGML_FILE_VERSION;
  15786. const uint32_t n_leafs = cgraph->n_leafs;
  15787. const uint32_t n_nodes = cgraph->n_nodes;
  15788. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15789. fwrite(&version, sizeof(uint32_t), 1, fout);
  15790. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15791. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15792. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15793. }
  15794. // leafs
  15795. {
  15796. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15797. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15798. const uint32_t type = tensor->type;
  15799. const uint32_t op = tensor->op;
  15800. fwrite(&type, sizeof(uint32_t), 1, fout);
  15801. fwrite(&op, sizeof(uint32_t), 1, fout);
  15802. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15803. const uint64_t ne = tensor->ne[j];
  15804. const uint64_t nb = tensor->nb[j];
  15805. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15806. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15807. }
  15808. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15809. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15810. // dump the data
  15811. // TODO: pad this to 32 byte boundary
  15812. {
  15813. const size_t size = ggml_nbytes(tensor);
  15814. fwrite(tensor->data, sizeof(char), size, fout);
  15815. }
  15816. }
  15817. }
  15818. // nodes
  15819. {
  15820. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15821. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15822. const uint32_t type = tensor->type;
  15823. const uint32_t op = tensor->op;
  15824. fwrite(&type, sizeof(uint32_t), 1, fout);
  15825. fwrite(&op, sizeof(uint32_t), 1, fout);
  15826. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15827. const uint64_t ne = tensor->ne[j];
  15828. const uint64_t nb = tensor->nb[j];
  15829. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15830. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15831. }
  15832. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15833. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15834. // output the op arguments
  15835. {
  15836. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15837. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15838. args[j] = tensor->src[j];
  15839. }
  15840. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15841. if (args[j]) {
  15842. int32_t idx = -1;
  15843. // check if leaf
  15844. {
  15845. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15846. if (args[j] == cgraph->leafs[k]) {
  15847. idx = k;
  15848. break;
  15849. }
  15850. }
  15851. }
  15852. // check if node
  15853. if (idx == -1) {
  15854. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15855. if (args[j] == cgraph->nodes[k]) {
  15856. idx = cgraph->n_leafs + k;
  15857. break;
  15858. }
  15859. }
  15860. }
  15861. if (idx == -1) {
  15862. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15863. fclose(fout);
  15864. return;
  15865. }
  15866. fwrite(&idx, sizeof(int32_t), 1, fout);
  15867. } else {
  15868. const int32_t nul = -1;
  15869. fwrite(&nul, sizeof(int32_t), 1, fout);
  15870. }
  15871. }
  15872. }
  15873. }
  15874. }
  15875. fclose(fout);
  15876. }
  15877. }
  15878. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15879. assert(*ctx_data == NULL);
  15880. assert(*ctx_eval == NULL);
  15881. struct ggml_cgraph * result = NULL;
  15882. struct ggml_tensor * data = NULL;
  15883. // read file into data
  15884. {
  15885. FILE * fin = ggml_fopen(fname, "rb");
  15886. if (!fin) {
  15887. fprintf(stderr, "%s: failed to open %s: %s\n", __func__, fname, strerror(errno));
  15888. return result;
  15889. }
  15890. size_t fsize = 0;
  15891. fseek(fin, 0, SEEK_END);
  15892. fsize = ftell(fin);
  15893. fseek(fin, 0, SEEK_SET);
  15894. // create the data context
  15895. {
  15896. const size_t overhead = 1*ggml_tensor_overhead();
  15897. struct ggml_init_params params = {
  15898. .mem_size = fsize + overhead,
  15899. .mem_buffer = NULL,
  15900. .no_alloc = false,
  15901. };
  15902. *ctx_data = ggml_init(params);
  15903. if (!*ctx_data) {
  15904. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15905. fclose(fin);
  15906. return result;
  15907. }
  15908. }
  15909. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15910. {
  15911. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15912. if (ret != fsize) {
  15913. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15914. fclose(fin);
  15915. return result;
  15916. }
  15917. }
  15918. fclose(fin);
  15919. }
  15920. // populate result
  15921. {
  15922. char * ptr = (char *) data->data;
  15923. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15924. if (magic != GGML_FILE_MAGIC) {
  15925. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15926. return result;
  15927. }
  15928. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15929. if (version != GGML_FILE_VERSION) {
  15930. fprintf(stderr, "%s: invalid version number\n", __func__);
  15931. return result;
  15932. }
  15933. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15934. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15935. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15936. const int graph_size = MAX(n_leafs, n_nodes);
  15937. // create the data context
  15938. {
  15939. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15940. struct ggml_init_params params = {
  15941. .mem_size = size_eval + overhead,
  15942. .mem_buffer = NULL,
  15943. .no_alloc = true,
  15944. };
  15945. *ctx_eval = ggml_init(params);
  15946. if (!*ctx_eval) {
  15947. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15948. return result;
  15949. }
  15950. }
  15951. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15952. result->n_leafs = n_leafs;
  15953. result->n_nodes = n_nodes;
  15954. // leafs
  15955. {
  15956. uint32_t type;
  15957. uint32_t op;
  15958. for (uint32_t i = 0; i < n_leafs; ++i) {
  15959. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15960. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15961. int64_t ne[GGML_MAX_DIMS];
  15962. size_t nb[GGML_MAX_DIMS];
  15963. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15964. uint64_t ne_cur;
  15965. uint64_t nb_cur;
  15966. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15967. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15968. ne[j] = ne_cur;
  15969. nb[j] = nb_cur;
  15970. }
  15971. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15972. tensor->op = (enum ggml_op) op;
  15973. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15974. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15975. tensor->data = (void *) ptr;
  15976. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15977. tensor->nb[j] = nb[j];
  15978. }
  15979. result->leafs[i] = tensor;
  15980. ptr += ggml_nbytes(tensor);
  15981. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15982. }
  15983. }
  15984. ggml_set_no_alloc(*ctx_eval, false);
  15985. // nodes
  15986. {
  15987. uint32_t type;
  15988. uint32_t op;
  15989. for (uint32_t i = 0; i < n_nodes; ++i) {
  15990. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15991. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15992. enum ggml_op eop = (enum ggml_op) op;
  15993. int64_t ne[GGML_MAX_DIMS];
  15994. size_t nb[GGML_MAX_DIMS];
  15995. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15996. uint64_t ne_cur;
  15997. uint64_t nb_cur;
  15998. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15999. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  16000. ne[j] = ne_cur;
  16001. nb[j] = nb_cur;
  16002. }
  16003. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  16004. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  16005. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  16006. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  16007. // parse args
  16008. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16009. const int32_t arg_idx = ptr_arg_idx[j];
  16010. if (arg_idx == -1) {
  16011. continue;
  16012. }
  16013. if (arg_idx < result->n_leafs) {
  16014. args[j] = result->leafs[arg_idx];
  16015. } else {
  16016. args[j] = result->nodes[arg_idx - result->n_leafs];
  16017. }
  16018. }
  16019. // create the tensor
  16020. // "view" operations are handled differently
  16021. // TODO: handle inplace ops - currently a copy is always made
  16022. struct ggml_tensor * tensor = NULL;
  16023. switch (eop) {
  16024. // TODO: implement other view ops
  16025. case GGML_OP_RESHAPE:
  16026. {
  16027. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  16028. } break;
  16029. case GGML_OP_VIEW:
  16030. {
  16031. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16032. size_t offs;
  16033. memcpy(&offs, ptr_op_params, sizeof(offs));
  16034. tensor->data = ((char *) tensor->data) + offs;
  16035. } break;
  16036. case GGML_OP_TRANSPOSE:
  16037. {
  16038. tensor = ggml_transpose(*ctx_eval, args[0]);
  16039. } break;
  16040. case GGML_OP_PERMUTE:
  16041. {
  16042. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  16043. } break;
  16044. default:
  16045. {
  16046. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  16047. tensor->op = eop;
  16048. } break;
  16049. }
  16050. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  16051. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  16052. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  16053. tensor->nb[j] = nb[j];
  16054. }
  16055. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  16056. tensor->src[j] = args[j];
  16057. }
  16058. result->nodes[i] = tensor;
  16059. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  16060. }
  16061. }
  16062. }
  16063. return result;
  16064. }
  16065. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  16066. GGML_PRINT("=== GRAPH ===\n");
  16067. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  16068. for (int i = 0; i < cgraph->n_nodes; i++) {
  16069. struct ggml_tensor * node = cgraph->nodes[i];
  16070. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  16071. i,
  16072. node->ne[0], node->ne[1], node->ne[2],
  16073. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  16074. }
  16075. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  16076. for (int i = 0; i < cgraph->n_leafs; i++) {
  16077. struct ggml_tensor * node = cgraph->leafs[i];
  16078. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  16079. i,
  16080. node->ne[0], node->ne[1],
  16081. ggml_op_name(node->op),
  16082. ggml_get_name(node));
  16083. }
  16084. GGML_PRINT("========================================\n");
  16085. }
  16086. // check if node is part of the graph
  16087. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16088. if (cgraph == NULL) {
  16089. return true;
  16090. }
  16091. for (int i = 0; i < cgraph->n_nodes; i++) {
  16092. if (cgraph->nodes[i] == node) {
  16093. return true;
  16094. }
  16095. }
  16096. return false;
  16097. }
  16098. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  16099. for (int i = 0; i < cgraph->n_nodes; i++) {
  16100. struct ggml_tensor * parent = cgraph->nodes[i];
  16101. if (parent->grad == node) {
  16102. return parent;
  16103. }
  16104. }
  16105. return NULL;
  16106. }
  16107. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16108. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  16109. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  16110. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  16111. gparent0 ? (void *) gparent0 : (void *) parent,
  16112. gparent0 ? "g" : "x",
  16113. gparent ? (void *) gparent : (void *) node,
  16114. gparent ? "g" : "x",
  16115. gparent ? "empty" : "vee",
  16116. gparent ? "dashed" : "solid",
  16117. label);
  16118. }
  16119. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  16120. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  16121. (void *) parent, "x",
  16122. (void *) node, "x",
  16123. label);
  16124. }
  16125. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  16126. char color[16];
  16127. FILE * fp = ggml_fopen(filename, "w");
  16128. GGML_ASSERT(fp);
  16129. fprintf(fp, "digraph G {\n");
  16130. fprintf(fp, " newrank = true;\n");
  16131. fprintf(fp, " rankdir = TB;\n");
  16132. for (int i = 0; i < gb->n_nodes; i++) {
  16133. struct ggml_tensor * node = gb->nodes[i];
  16134. if (ggml_graph_get_parent(gb, node) != NULL) {
  16135. continue;
  16136. }
  16137. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  16138. snprintf(color, sizeof(color), "yellow");
  16139. } else if (node->grad) {
  16140. if (ggml_graph_find(gf, node)) {
  16141. snprintf(color, sizeof(color), "green");
  16142. } else {
  16143. snprintf(color, sizeof(color), "lightblue");
  16144. }
  16145. } else {
  16146. snprintf(color, sizeof(color), "white");
  16147. }
  16148. fprintf(fp, " \"%p\" [ "
  16149. "style = filled; fillcolor = %s; shape = record; "
  16150. "label=\"",
  16151. (void *) node, color);
  16152. if (strlen(node->name) > 0) {
  16153. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16154. } else {
  16155. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16156. }
  16157. if (ggml_is_matrix(node)) {
  16158. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  16159. } else {
  16160. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  16161. }
  16162. if (node->grad) {
  16163. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  16164. } else {
  16165. fprintf(fp, "\"; ]\n");
  16166. }
  16167. }
  16168. for (int i = 0; i < gb->n_leafs; i++) {
  16169. struct ggml_tensor * node = gb->leafs[i];
  16170. snprintf(color, sizeof(color), "pink");
  16171. fprintf(fp, " \"%p\" [ "
  16172. "style = filled; fillcolor = %s; shape = record; "
  16173. "label=\"<x>",
  16174. (void *) node, color);
  16175. if (strlen(node->name) > 0) {
  16176. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  16177. } else {
  16178. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  16179. }
  16180. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  16181. if (ggml_nelements(node) < 5 && node->data != NULL) {
  16182. fprintf(fp, " | (");
  16183. for (int j = 0; j < ggml_nelements(node); j++) {
  16184. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  16185. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  16186. }
  16187. else if (node->type == GGML_TYPE_F32 ||
  16188. node->type == GGML_TYPE_F16 ||
  16189. node->type == GGML_TYPE_BF16) {
  16190. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  16191. }
  16192. else {
  16193. fprintf(fp, "#");
  16194. }
  16195. if (j < ggml_nelements(node) - 1) {
  16196. fprintf(fp, ", ");
  16197. }
  16198. }
  16199. fprintf(fp, ")");
  16200. }
  16201. fprintf(fp, "\"; ]\n");
  16202. }
  16203. for (int i = 0; i < gb->n_nodes; i++) {
  16204. struct ggml_tensor * node = gb->nodes[i];
  16205. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16206. if (node->src[j]) {
  16207. char label[16];
  16208. snprintf(label, sizeof(label), "src %d", j);
  16209. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16210. }
  16211. }
  16212. }
  16213. for (int i = 0; i < gb->n_leafs; i++) {
  16214. struct ggml_tensor * node = gb->leafs[i];
  16215. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16216. if (node->src[j]) {
  16217. char label[16];
  16218. snprintf(label, sizeof(label), "src %d", j);
  16219. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16220. }
  16221. }
  16222. }
  16223. fprintf(fp, "}\n");
  16224. fclose(fp);
  16225. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16226. }
  16227. ////////////////////////////////////////////////////////////////////////////////
  16228. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16229. int i = 0;
  16230. for (int p = 0; p < np; ++p) {
  16231. const int64_t ne = ggml_nelements(ps[p]) ;
  16232. // TODO: add function to set tensor from array
  16233. for (int64_t j = 0; j < ne; ++j) {
  16234. ggml_set_f32_1d(ps[p], j, x[i++]);
  16235. }
  16236. }
  16237. }
  16238. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16239. int i = 0;
  16240. for (int p = 0; p < np; ++p) {
  16241. const int64_t ne = ggml_nelements(ps[p]) ;
  16242. // TODO: add function to get all elements at once
  16243. for (int64_t j = 0; j < ne; ++j) {
  16244. x[i++] = ggml_get_f32_1d(ps[p], j);
  16245. }
  16246. }
  16247. }
  16248. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16249. int64_t i = 0;
  16250. for (int p = 0; p < np; ++p) {
  16251. const int64_t ne = ggml_nelements(ps[p]) ;
  16252. // TODO: add function to get all elements at once
  16253. for (int64_t j = 0; j < ne; ++j) {
  16254. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16255. }
  16256. }
  16257. }
  16258. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16259. int64_t i = 0;
  16260. for (int p = 0; p < np; ++p) {
  16261. const int64_t ne = ggml_nelements(ps[p]) ;
  16262. // TODO: add function to get all elements at once
  16263. for (int64_t j = 0; j < ne; ++j) {
  16264. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16265. }
  16266. }
  16267. }
  16268. //
  16269. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16270. //
  16271. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16272. //
  16273. static enum ggml_opt_result ggml_opt_adam(
  16274. struct ggml_context * ctx,
  16275. struct ggml_opt_context * opt,
  16276. struct ggml_opt_params params,
  16277. struct ggml_tensor * f,
  16278. struct ggml_cgraph * gf,
  16279. struct ggml_cgraph * gb,
  16280. ggml_opt_callback callback,
  16281. void * callback_data) {
  16282. GGML_ASSERT(ggml_is_scalar(f));
  16283. // these will store the parameters we want to optimize
  16284. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16285. int np = 0;
  16286. int64_t nx = 0;
  16287. for (int i = 0; i < gf->n_nodes; ++i) {
  16288. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16289. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16290. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16291. ps[np++] = gf->nodes[i];
  16292. nx += ggml_nelements(gf->nodes[i]);
  16293. }
  16294. }
  16295. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16296. int iter = opt->iter;
  16297. ggml_opt_init(opt->ctx, opt, params, nx);
  16298. opt->iter = iter;
  16299. }
  16300. // constants
  16301. float sched = params.adam.sched;
  16302. const float alpha = params.adam.alpha;
  16303. const float decay = params.adam.decay * alpha;
  16304. const float beta1 = params.adam.beta1;
  16305. const float beta2 = params.adam.beta2;
  16306. const float eps = params.adam.eps;
  16307. const float gclip = params.adam.gclip;
  16308. const int decay_min_ndim = params.adam.decay_min_ndim;
  16309. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16310. const float accum_norm = 1.0f / (float) n_accum;
  16311. float * g = opt->adam.g->data; // gradients
  16312. float * m = opt->adam.m->data; // first moment
  16313. float * v = opt->adam.v->data; // second moment
  16314. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16315. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16316. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16317. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16318. bool cancel = false;
  16319. // compute the function value
  16320. float fx = 0;
  16321. ggml_set_zero(opt->adam.g);
  16322. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16323. if (callback) {
  16324. callback(callback_data, accum_step, &sched, &cancel);
  16325. if (cancel) {
  16326. return GGML_OPT_RESULT_CANCEL;
  16327. }
  16328. }
  16329. // ggml_graph_reset (gf);
  16330. ggml_set_f32 (f->grad, 1.0f);
  16331. ggml_graph_compute(gb, &cplan);
  16332. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16333. fx += ggml_get_f32_1d(f, 0);
  16334. }
  16335. fx *= accum_norm;
  16336. opt->adam.fx_prev = fx;
  16337. opt->adam.fx_best = opt->adam.fx_prev;
  16338. if (pf) {
  16339. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16340. }
  16341. opt->loss_before = opt->adam.fx_prev;
  16342. opt->loss_after = opt->adam.fx_prev;
  16343. // initialize
  16344. if (opt->just_initialized) {
  16345. opt->adam.n_no_improvement = 0;
  16346. opt->just_initialized = false;
  16347. }
  16348. float * fx_best = &opt->adam.fx_best;
  16349. float * fx_prev = &opt->adam.fx_prev;
  16350. int * n_no_improvement = &opt->adam.n_no_improvement;
  16351. int iter0 = opt->iter;
  16352. // run the optimizer
  16353. for (int t = 0; t < params.adam.n_iter; ++t) {
  16354. opt->iter = iter0 + t + 1;
  16355. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16356. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16357. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16358. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16359. for (int i = 0; i < np; ++i) {
  16360. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16361. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16362. }
  16363. const int64_t t_start_wall = ggml_time_us();
  16364. const int64_t t_start_cpu = ggml_cycles();
  16365. UNUSED(t_start_wall);
  16366. UNUSED(t_start_cpu);
  16367. {
  16368. float gnorm = 1.0f;
  16369. if (gclip > 0.0f) {
  16370. // gradient clipping
  16371. ggml_float sum = 0.0;
  16372. for (int64_t i = 0; i < nx; ++i) {
  16373. sum += (ggml_float)(g[i]*g[i]);
  16374. }
  16375. ggml_float norm = sqrt(sum);
  16376. if (norm > (ggml_float) gclip) {
  16377. gnorm = (float) ((ggml_float) gclip / norm);
  16378. }
  16379. }
  16380. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16381. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16382. int64_t i = 0;
  16383. for (int p = 0; p < np; ++p) {
  16384. const int64_t ne = ggml_nelements(ps[p]);
  16385. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16386. for (int64_t j = 0; j < ne; ++j) {
  16387. float x = ggml_get_f32_1d(ps[p], j);
  16388. float g_ = g[i]*gnorm;
  16389. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16390. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16391. float mh = m[i]*beta1h;
  16392. float vh = v[i]*beta2h;
  16393. vh = sqrtf(vh) + eps;
  16394. x = x*(1.0f - p_decay) - mh/vh;
  16395. ggml_set_f32_1d(ps[p], j, x);
  16396. ++i;
  16397. }
  16398. }
  16399. }
  16400. fx = 0;
  16401. ggml_set_zero(opt->adam.g);
  16402. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16403. if (callback) {
  16404. callback(callback_data, accum_step, &sched, &cancel);
  16405. if (cancel) {
  16406. return GGML_OPT_RESULT_CANCEL;;
  16407. }
  16408. }
  16409. // ggml_graph_reset (gf);
  16410. ggml_set_f32 (f->grad, 1.0f);
  16411. ggml_graph_compute(gb, &cplan);
  16412. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16413. fx += ggml_get_f32_1d(f, 0);
  16414. }
  16415. fx *= accum_norm;
  16416. opt->loss_after = fx;
  16417. // check convergence
  16418. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16419. GGML_PRINT_DEBUG("converged\n");
  16420. return GGML_OPT_RESULT_OK;
  16421. }
  16422. // delta-based convergence test
  16423. if (pf != NULL) {
  16424. // need at least params.past iterations to start checking for convergence
  16425. if (params.past <= iter0 + t) {
  16426. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16427. if (fabsf(rate) < params.delta) {
  16428. return GGML_OPT_RESULT_OK;
  16429. }
  16430. }
  16431. pf[(iter0 + t)%params.past] = fx;
  16432. }
  16433. // check for improvement
  16434. if (params.max_no_improvement > 0) {
  16435. if (fx_best[0] > fx) {
  16436. fx_best[0] = fx;
  16437. n_no_improvement[0] = 0;
  16438. } else {
  16439. ++n_no_improvement[0];
  16440. if (n_no_improvement[0] >= params.max_no_improvement) {
  16441. return GGML_OPT_RESULT_OK;
  16442. }
  16443. }
  16444. }
  16445. fx_prev[0] = fx;
  16446. {
  16447. const int64_t t_end_cpu = ggml_cycles();
  16448. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16449. UNUSED(t_end_cpu);
  16450. const int64_t t_end_wall = ggml_time_us();
  16451. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16452. UNUSED(t_end_wall);
  16453. }
  16454. }
  16455. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16456. }
  16457. //
  16458. // L-BFGS
  16459. //
  16460. // the L-BFGS implementation below is based on the following implementation:
  16461. //
  16462. // https://github.com/chokkan/liblbfgs
  16463. //
  16464. struct ggml_lbfgs_iteration_data {
  16465. float alpha;
  16466. float ys;
  16467. float * s;
  16468. float * y;
  16469. };
  16470. static enum ggml_opt_result linesearch_backtracking(
  16471. const struct ggml_opt_params * params,
  16472. int nx,
  16473. float * x,
  16474. float * fx,
  16475. float * g,
  16476. float * d,
  16477. float * step,
  16478. const float * xp,
  16479. struct ggml_tensor * f,
  16480. struct ggml_cgraph * gb,
  16481. struct ggml_cplan * cplan,
  16482. const int np,
  16483. struct ggml_tensor * ps[],
  16484. bool * cancel,
  16485. ggml_opt_callback callback,
  16486. void * callback_data) {
  16487. int count = 0;
  16488. float width = 0.0f;
  16489. float dg = 0.0f;
  16490. float finit = 0.0f;
  16491. float dginit = 0.0f;
  16492. float dgtest = 0.0f;
  16493. const float dec = 0.5f;
  16494. const float inc = 2.1f;
  16495. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16496. const float accum_norm = 1.0f / (float) n_accum;
  16497. if (*step <= 0.f) {
  16498. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16499. }
  16500. // compute the initial gradient in the search direction
  16501. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16502. // make sure that d points to a descent direction
  16503. if (0 < dginit) {
  16504. return GGML_LINESEARCH_FAIL;
  16505. }
  16506. // initialize local variables
  16507. finit = *fx;
  16508. dgtest = params->lbfgs.ftol*dginit;
  16509. while (true) {
  16510. ggml_vec_cpy_f32(nx, x, xp);
  16511. ggml_vec_mad_f32(nx, x, d, *step);
  16512. // evaluate the function and gradient values
  16513. {
  16514. ggml_opt_set_params(np, ps, x);
  16515. *fx = 0;
  16516. memset(g, 0, sizeof(float)*nx);
  16517. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16518. if (callback) {
  16519. // LBFG-S does not support learning rate -> ignore learning schedule
  16520. float sched = 0;
  16521. callback(callback_data, accum_step, &sched, cancel);
  16522. if (*cancel) {
  16523. return GGML_OPT_RESULT_CANCEL;
  16524. }
  16525. }
  16526. // ggml_graph_reset (gf);
  16527. ggml_set_f32 (f->grad, 1.0f);
  16528. ggml_graph_compute(gb, cplan);
  16529. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16530. *fx += ggml_get_f32_1d(f, 0);
  16531. }
  16532. *fx *= accum_norm;
  16533. }
  16534. ++count;
  16535. if (*fx > finit + (*step)*dgtest) {
  16536. width = dec;
  16537. } else {
  16538. // Armijo condition is satisfied
  16539. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16540. return count;
  16541. }
  16542. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16543. // check the Wolfe condition
  16544. if (dg < params->lbfgs.wolfe * dginit) {
  16545. width = inc;
  16546. } else {
  16547. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16548. // regular Wolfe conditions
  16549. return count;
  16550. }
  16551. if(dg > -params->lbfgs.wolfe*dginit) {
  16552. width = dec;
  16553. } else {
  16554. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16555. return count;
  16556. }
  16557. }
  16558. }
  16559. if (*step < params->lbfgs.min_step) {
  16560. return GGML_LINESEARCH_MINIMUM_STEP;
  16561. }
  16562. if (*step > params->lbfgs.max_step) {
  16563. return GGML_LINESEARCH_MAXIMUM_STEP;
  16564. }
  16565. if (params->lbfgs.max_linesearch <= count) {
  16566. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16567. }
  16568. (*step) *= width;
  16569. }
  16570. GGML_ABORT("line search failed");
  16571. //return GGML_LINESEARCH_FAIL;
  16572. }
  16573. static enum ggml_opt_result ggml_opt_lbfgs(
  16574. struct ggml_context * ctx,
  16575. struct ggml_opt_context * opt,
  16576. struct ggml_opt_params params,
  16577. struct ggml_tensor * f,
  16578. struct ggml_cgraph * gf,
  16579. struct ggml_cgraph * gb,
  16580. ggml_opt_callback callback,
  16581. void * callback_data) {
  16582. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16583. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16584. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16585. return GGML_OPT_RESULT_INVALID_WOLFE;
  16586. }
  16587. }
  16588. const int m = params.lbfgs.m;
  16589. // these will store the parameters we want to optimize
  16590. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16591. int np = 0;
  16592. int nx = 0;
  16593. for (int i = 0; i < gf->n_nodes; ++i) {
  16594. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16595. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16596. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16597. ps[np++] = gf->nodes[i];
  16598. nx += ggml_nelements(gf->nodes[i]);
  16599. }
  16600. }
  16601. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16602. int iter = opt->iter;
  16603. ggml_opt_init(ctx, opt, params, nx);
  16604. opt->iter = iter;
  16605. }
  16606. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16607. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16608. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16609. float * x = opt->lbfgs.x->data; // current parameters
  16610. float * xp = opt->lbfgs.xp->data; // previous parameters
  16611. float * g = opt->lbfgs.g->data; // current gradient
  16612. float * gp = opt->lbfgs.gp->data; // previous gradient
  16613. float * d = opt->lbfgs.d->data; // search direction
  16614. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16615. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16616. const float accum_norm = 1.0f / (float) n_accum;
  16617. float fx = 0.0f; // cost function value
  16618. float xnorm = 0.0f; // ||x||
  16619. float gnorm = 0.0f; // ||g||
  16620. // initialize x from the graph nodes
  16621. ggml_opt_get_params(np, ps, x);
  16622. // the L-BFGS memory
  16623. float * lm_alpha = opt->lbfgs.lmal->data;
  16624. float * lm_ys = opt->lbfgs.lmys->data;
  16625. float * lm_s = opt->lbfgs.lms->data;
  16626. float * lm_y = opt->lbfgs.lmy->data;
  16627. bool cancel = false;
  16628. // evaluate the function value and its gradient
  16629. {
  16630. ggml_opt_set_params(np, ps, x);
  16631. fx = 0;
  16632. memset(g, 0, sizeof(float)*nx);
  16633. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16634. if (callback) {
  16635. // LBFG-S does not support learning rate -> ignore learning schedule
  16636. float sched = 0;
  16637. callback(callback_data, accum_step, &sched, &cancel);
  16638. if (cancel) {
  16639. return GGML_OPT_RESULT_CANCEL;
  16640. }
  16641. }
  16642. // ggml_graph_reset (gf);
  16643. ggml_set_f32 (f->grad, 1.0f);
  16644. ggml_graph_compute(gb, &cplan);
  16645. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16646. fx += ggml_get_f32_1d(f, 0);
  16647. }
  16648. fx *= accum_norm;
  16649. opt->loss_before = fx;
  16650. opt->loss_after = fx;
  16651. }
  16652. // search direction = -gradient
  16653. ggml_vec_neg_f32(nx, d, g);
  16654. // ||x||, ||g||
  16655. ggml_vec_norm_f32(nx, &xnorm, x);
  16656. ggml_vec_norm_f32(nx, &gnorm, g);
  16657. if (xnorm < 1.0f) {
  16658. xnorm = 1.0f;
  16659. }
  16660. // already optimized
  16661. if (gnorm/xnorm <= params.lbfgs.eps) {
  16662. return GGML_OPT_RESULT_OK;
  16663. }
  16664. if (opt->just_initialized) {
  16665. if (pf) {
  16666. pf[0] = fx;
  16667. }
  16668. opt->lbfgs.fx_best = fx;
  16669. // initial step
  16670. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16671. opt->lbfgs.j = 0;
  16672. opt->lbfgs.k = 1;
  16673. opt->lbfgs.end = 0;
  16674. opt->lbfgs.n_no_improvement = 0;
  16675. opt->just_initialized = false;
  16676. }
  16677. float * fx_best = &opt->lbfgs.fx_best;
  16678. float * step = &opt->lbfgs.step;
  16679. int * j = &opt->lbfgs.j;
  16680. int * k = &opt->lbfgs.k;
  16681. int * end = &opt->lbfgs.end;
  16682. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16683. int ls = 0;
  16684. int bound = 0;
  16685. float ys = 0.0f;
  16686. float yy = 0.0f;
  16687. float beta = 0.0f;
  16688. int it = 0;
  16689. while (true) {
  16690. // store the current position and gradient vectors
  16691. ggml_vec_cpy_f32(nx, xp, x);
  16692. ggml_vec_cpy_f32(nx, gp, g);
  16693. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16694. // to determine if the optimization should be cancelled
  16695. // this is a simple change, but not doing this atm, since I don't have a nice
  16696. // way to test and don't want to break something with so many changes lined up
  16697. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16698. if (cancel) {
  16699. return GGML_OPT_RESULT_CANCEL;
  16700. }
  16701. if (ls < 0) {
  16702. // linesearch failed - go back to the previous point and return
  16703. ggml_vec_cpy_f32(nx, x, xp);
  16704. ggml_vec_cpy_f32(nx, g, gp);
  16705. return ls;
  16706. }
  16707. opt->loss_after = fx;
  16708. ggml_vec_norm_f32(nx, &xnorm, x);
  16709. ggml_vec_norm_f32(nx, &gnorm, g);
  16710. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16711. if (xnorm < 1.0f) {
  16712. xnorm = 1.0f;
  16713. }
  16714. if (gnorm/xnorm <= params.lbfgs.eps) {
  16715. // converged
  16716. return GGML_OPT_RESULT_OK;
  16717. }
  16718. // delta-based convergence test
  16719. if (pf != NULL) {
  16720. // need at least params.past iterations to start checking for convergence
  16721. if (params.past <= k[0]) {
  16722. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16723. if (fabsf(rate) < params.delta) {
  16724. return GGML_OPT_RESULT_OK;
  16725. }
  16726. }
  16727. pf[k[0]%params.past] = fx;
  16728. }
  16729. // check for improvement
  16730. if (params.max_no_improvement > 0) {
  16731. if (fx < fx_best[0]) {
  16732. fx_best[0] = fx;
  16733. n_no_improvement[0] = 0;
  16734. } else {
  16735. n_no_improvement[0]++;
  16736. if (n_no_improvement[0] >= params.max_no_improvement) {
  16737. return GGML_OPT_RESULT_OK;
  16738. }
  16739. }
  16740. }
  16741. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16742. // reached the maximum number of iterations
  16743. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16744. }
  16745. // update vectors s and y:
  16746. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16747. // y_{k+1} = g_{k+1} - g_{k}.
  16748. //
  16749. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16750. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16751. // compute scalars ys and yy:
  16752. // ys = y^t \cdot s -> 1 / \rho.
  16753. // yy = y^t \cdot y.
  16754. //
  16755. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16756. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16757. lm_ys[end[0]] = ys;
  16758. // find new search direction
  16759. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16760. bound = (m <= k[0]) ? m : k[0];
  16761. k[0]++;
  16762. it++;
  16763. end[0] = (end[0] + 1)%m;
  16764. // initialize search direction with -g
  16765. ggml_vec_neg_f32(nx, d, g);
  16766. j[0] = end[0];
  16767. for (int i = 0; i < bound; ++i) {
  16768. j[0] = (j[0] + m - 1) % m;
  16769. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16770. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16771. lm_alpha[j[0]] /= lm_ys[j[0]];
  16772. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16773. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16774. }
  16775. ggml_vec_scale_f32(nx, d, ys/yy);
  16776. for (int i = 0; i < bound; ++i) {
  16777. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16778. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16779. beta /= lm_ys[j[0]];
  16780. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16781. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16782. j[0] = (j[0] + 1)%m;
  16783. }
  16784. step[0] = 1.0;
  16785. }
  16786. GGML_ABORT("lbfgs failed");
  16787. //return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16788. }
  16789. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16790. struct ggml_opt_params result;
  16791. switch (type) {
  16792. case GGML_OPT_TYPE_ADAM:
  16793. {
  16794. result = (struct ggml_opt_params) {
  16795. .type = GGML_OPT_TYPE_ADAM,
  16796. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16797. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16798. .past = 0,
  16799. .delta = 1e-5f,
  16800. .max_no_improvement = 100,
  16801. .print_forward_graph = true,
  16802. .print_backward_graph = true,
  16803. .n_gradient_accumulation = 1,
  16804. .adam = {
  16805. .n_iter = 10000,
  16806. .sched = 1.000f,
  16807. .decay = 0.0f,
  16808. .decay_min_ndim = 2,
  16809. .alpha = 0.001f,
  16810. .beta1 = 0.9f,
  16811. .beta2 = 0.999f,
  16812. .eps = 1e-8f,
  16813. .eps_f = 1e-5f,
  16814. .eps_g = 1e-3f,
  16815. .gclip = 0.0f,
  16816. },
  16817. };
  16818. } break;
  16819. case GGML_OPT_TYPE_LBFGS:
  16820. {
  16821. result = (struct ggml_opt_params) {
  16822. .type = GGML_OPT_TYPE_LBFGS,
  16823. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16824. .n_threads = 1,
  16825. .past = 0,
  16826. .delta = 1e-5f,
  16827. .max_no_improvement = 0,
  16828. .print_forward_graph = true,
  16829. .print_backward_graph = true,
  16830. .n_gradient_accumulation = 1,
  16831. .lbfgs = {
  16832. .m = 6,
  16833. .n_iter = 100,
  16834. .max_linesearch = 20,
  16835. .eps = 1e-5f,
  16836. .ftol = 1e-4f,
  16837. .wolfe = 0.9f,
  16838. .min_step = 1e-20f,
  16839. .max_step = 1e+20f,
  16840. .linesearch = GGML_LINESEARCH_DEFAULT,
  16841. },
  16842. };
  16843. } break;
  16844. }
  16845. return result;
  16846. }
  16847. GGML_API void ggml_opt_init(
  16848. struct ggml_context * ctx,
  16849. struct ggml_opt_context * opt,
  16850. struct ggml_opt_params params,
  16851. int64_t nx) {
  16852. opt->ctx = ctx;
  16853. opt->params = params;
  16854. opt->iter = 0;
  16855. opt->nx = nx;
  16856. opt->just_initialized = true;
  16857. if (opt->ctx == NULL) {
  16858. struct ggml_init_params ctx_opt_params;
  16859. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16860. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16861. if (opt->params.past > 0) {
  16862. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16863. }
  16864. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16865. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16866. if (opt->params.past > 0) {
  16867. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16868. }
  16869. }
  16870. ctx_opt_params.mem_buffer = NULL;
  16871. ctx_opt_params.no_alloc = false;
  16872. opt->ctx = ggml_init(ctx_opt_params);
  16873. }
  16874. switch (opt->params.type) {
  16875. case GGML_OPT_TYPE_ADAM:
  16876. {
  16877. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16878. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16879. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16880. opt->adam.pf = params.past > 0
  16881. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16882. : NULL;
  16883. ggml_set_zero(opt->adam.m);
  16884. ggml_set_zero(opt->adam.v);
  16885. if (opt->adam.pf) {
  16886. ggml_set_zero(opt->adam.pf);
  16887. }
  16888. } break;
  16889. case GGML_OPT_TYPE_LBFGS:
  16890. {
  16891. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16892. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16893. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16894. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16895. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16896. opt->lbfgs.pf = params.past > 0
  16897. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16898. : NULL;
  16899. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16900. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16901. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16902. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16903. ggml_set_zero(opt->lbfgs.x);
  16904. ggml_set_zero(opt->lbfgs.xp);
  16905. ggml_set_zero(opt->lbfgs.g);
  16906. ggml_set_zero(opt->lbfgs.gp);
  16907. ggml_set_zero(opt->lbfgs.d);
  16908. if (opt->lbfgs.pf) {
  16909. ggml_set_zero(opt->lbfgs.pf);
  16910. }
  16911. ggml_set_zero(opt->lbfgs.lmal);
  16912. ggml_set_zero(opt->lbfgs.lmys);
  16913. ggml_set_zero(opt->lbfgs.lms);
  16914. ggml_set_zero(opt->lbfgs.lmy);
  16915. } break;
  16916. }
  16917. }
  16918. enum ggml_opt_result ggml_opt(
  16919. struct ggml_context * ctx,
  16920. struct ggml_opt_params params,
  16921. struct ggml_tensor * f) {
  16922. bool free_ctx = false;
  16923. if (ctx == NULL) {
  16924. struct ggml_init_params params_ctx = {
  16925. .mem_size = 16*1024*1024,
  16926. .mem_buffer = NULL,
  16927. .no_alloc = false,
  16928. };
  16929. ctx = ggml_init(params_ctx);
  16930. if (ctx == NULL) {
  16931. return GGML_OPT_RESULT_NO_CONTEXT;
  16932. }
  16933. free_ctx = true;
  16934. }
  16935. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16936. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16937. ggml_opt_init(ctx, opt, params, 0);
  16938. result = ggml_opt_resume(ctx, opt, f);
  16939. if (free_ctx) {
  16940. ggml_free(ctx);
  16941. }
  16942. return result;
  16943. }
  16944. enum ggml_opt_result ggml_opt_resume(
  16945. struct ggml_context * ctx,
  16946. struct ggml_opt_context * opt,
  16947. struct ggml_tensor * f) {
  16948. // build forward + backward compute graphs
  16949. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16950. ggml_build_forward_expand(gf, f);
  16951. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16952. ggml_build_backward_expand(ctx, gf, gb, true);
  16953. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16954. }
  16955. enum ggml_opt_result ggml_opt_resume_g(
  16956. struct ggml_context * ctx,
  16957. struct ggml_opt_context * opt,
  16958. struct ggml_tensor * f,
  16959. struct ggml_cgraph * gf,
  16960. struct ggml_cgraph * gb,
  16961. ggml_opt_callback callback,
  16962. void * callback_data) {
  16963. // build forward + backward compute graphs
  16964. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16965. switch (opt->params.type) {
  16966. case GGML_OPT_TYPE_ADAM:
  16967. {
  16968. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16969. } break;
  16970. case GGML_OPT_TYPE_LBFGS:
  16971. {
  16972. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16973. } break;
  16974. }
  16975. if (opt->params.print_forward_graph) {
  16976. ggml_graph_print (gf);
  16977. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16978. }
  16979. if (opt->params.print_backward_graph) {
  16980. ggml_graph_print (gb);
  16981. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16982. }
  16983. return result;
  16984. }
  16985. ////////////////////////////////////////////////////////////////////////////////
  16986. void ggml_set_input(struct ggml_tensor * tensor) {
  16987. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16988. }
  16989. void ggml_set_output(struct ggml_tensor * tensor) {
  16990. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16991. }
  16992. ////////////////////////////////////////////////////////////////////////////////
  16993. void ggml_quantize_init(enum ggml_type type) {
  16994. ggml_critical_section_start();
  16995. switch (type) {
  16996. case GGML_TYPE_IQ2_XXS:
  16997. case GGML_TYPE_IQ2_XS:
  16998. case GGML_TYPE_IQ2_S:
  16999. case GGML_TYPE_IQ1_S:
  17000. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  17001. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  17002. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  17003. default: // nothing
  17004. break;
  17005. }
  17006. ggml_critical_section_end();
  17007. }
  17008. void ggml_quantize_free(void) {
  17009. ggml_critical_section_start();
  17010. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  17011. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  17012. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  17013. iq3xs_free_impl(256);
  17014. ggml_critical_section_end();
  17015. }
  17016. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  17017. return
  17018. type == GGML_TYPE_IQ2_XXS ||
  17019. type == GGML_TYPE_IQ2_XS ||
  17020. type == GGML_TYPE_IQ1_S;// ||
  17021. //type == GGML_TYPE_IQ1_M;
  17022. }
  17023. size_t ggml_quantize_chunk(
  17024. enum ggml_type type,
  17025. const float * src,
  17026. void * dst,
  17027. int64_t start,
  17028. int64_t nrows,
  17029. int64_t n_per_row,
  17030. const float * imatrix) {
  17031. const int64_t n = (int64_t) nrows * n_per_row;
  17032. if (ggml_quantize_requires_imatrix(type)) {
  17033. GGML_ASSERT(imatrix != NULL);
  17034. }
  17035. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  17036. GGML_ASSERT(start % n_per_row == 0);
  17037. ggml_quantize_init(type); // this is noop if already initialized
  17038. const size_t start_row = start / n_per_row;
  17039. const size_t row_size = ggml_row_size(type, n_per_row);
  17040. size_t result = 0;
  17041. switch (type) {
  17042. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17043. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17044. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17045. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17046. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17047. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17048. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17049. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17050. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17051. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17052. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17053. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17054. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17055. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17056. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17057. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17058. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17059. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17060. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17061. case GGML_TYPE_Q4_0_4_4: result = quantize_q4_0_4x4(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17062. case GGML_TYPE_Q4_0_4_8: result = quantize_q4_0_4x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17063. case GGML_TYPE_Q4_0_8_8: result = quantize_q4_0_8x8(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  17064. case GGML_TYPE_F16:
  17065. {
  17066. size_t elemsize = sizeof(ggml_fp16_t);
  17067. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  17068. result = n * elemsize;
  17069. } break;
  17070. case GGML_TYPE_BF16:
  17071. {
  17072. size_t elemsize = sizeof(ggml_bf16_t);
  17073. ggml_fp32_to_bf16_row_ref(src + start, (ggml_bf16_t *)dst + start, n);
  17074. result = n * elemsize;
  17075. } break;
  17076. case GGML_TYPE_F32:
  17077. {
  17078. size_t elemsize = sizeof(float);
  17079. result = n * elemsize;
  17080. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  17081. } break;
  17082. default:
  17083. assert(false);
  17084. }
  17085. GGML_ASSERT(result == nrows * row_size);
  17086. return result;
  17087. }
  17088. ////////////////////////////////////////////////////////////////////////////////
  17089. struct gguf_str {
  17090. uint64_t n; // GGUFv2
  17091. char * data;
  17092. };
  17093. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  17094. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  17095. [GGUF_TYPE_INT8] = sizeof(int8_t),
  17096. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  17097. [GGUF_TYPE_INT16] = sizeof(int16_t),
  17098. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  17099. [GGUF_TYPE_INT32] = sizeof(int32_t),
  17100. [GGUF_TYPE_FLOAT32] = sizeof(float),
  17101. [GGUF_TYPE_BOOL] = sizeof(bool),
  17102. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  17103. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  17104. [GGUF_TYPE_INT64] = sizeof(int64_t),
  17105. [GGUF_TYPE_FLOAT64] = sizeof(double),
  17106. [GGUF_TYPE_ARRAY] = 0, // undefined
  17107. };
  17108. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17109. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  17110. [GGUF_TYPE_UINT8] = "u8",
  17111. [GGUF_TYPE_INT8] = "i8",
  17112. [GGUF_TYPE_UINT16] = "u16",
  17113. [GGUF_TYPE_INT16] = "i16",
  17114. [GGUF_TYPE_UINT32] = "u32",
  17115. [GGUF_TYPE_INT32] = "i32",
  17116. [GGUF_TYPE_FLOAT32] = "f32",
  17117. [GGUF_TYPE_BOOL] = "bool",
  17118. [GGUF_TYPE_STRING] = "str",
  17119. [GGUF_TYPE_ARRAY] = "arr",
  17120. [GGUF_TYPE_UINT64] = "u64",
  17121. [GGUF_TYPE_INT64] = "i64",
  17122. [GGUF_TYPE_FLOAT64] = "f64",
  17123. };
  17124. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  17125. union gguf_value {
  17126. uint8_t uint8;
  17127. int8_t int8;
  17128. uint16_t uint16;
  17129. int16_t int16;
  17130. uint32_t uint32;
  17131. int32_t int32;
  17132. float float32;
  17133. uint64_t uint64;
  17134. int64_t int64;
  17135. double float64;
  17136. bool bool_;
  17137. struct gguf_str str;
  17138. struct {
  17139. enum gguf_type type;
  17140. uint64_t n; // GGUFv2
  17141. void * data;
  17142. } arr;
  17143. };
  17144. struct gguf_kv {
  17145. struct gguf_str key;
  17146. enum gguf_type type;
  17147. union gguf_value value;
  17148. };
  17149. struct gguf_header {
  17150. char magic[4];
  17151. uint32_t version;
  17152. uint64_t n_tensors; // GGUFv2
  17153. uint64_t n_kv; // GGUFv2
  17154. };
  17155. struct gguf_tensor_info {
  17156. struct gguf_str name;
  17157. uint32_t n_dims;
  17158. uint64_t ne[GGML_MAX_DIMS];
  17159. enum ggml_type type;
  17160. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  17161. // for writing API
  17162. const void * data;
  17163. size_t size;
  17164. };
  17165. struct gguf_context {
  17166. struct gguf_header header;
  17167. struct gguf_kv * kv;
  17168. struct gguf_tensor_info * infos;
  17169. size_t alignment;
  17170. size_t offset; // offset of `data` from beginning of file
  17171. size_t size; // size of `data` in bytes
  17172. //uint8_t * padding;
  17173. void * data;
  17174. };
  17175. static size_t gguf_type_size(enum gguf_type type) {
  17176. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  17177. return GGUF_TYPE_SIZE[type];
  17178. }
  17179. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  17180. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  17181. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  17182. for (uint32_t i = 0; i < info->n_dims; ++i) {
  17183. GGML_ASSERT(info->ne[i] > 0);
  17184. }
  17185. // prevent overflow for total number of elements
  17186. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  17187. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  17188. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  17189. }
  17190. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  17191. const size_t n = fread(dst, 1, size, file);
  17192. *offset += n;
  17193. return n == size;
  17194. }
  17195. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  17196. p->n = 0;
  17197. p->data = NULL;
  17198. bool ok = true;
  17199. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17200. // early exit if string length is invalid, prevents from integer overflow
  17201. if (p->n == SIZE_MAX) {
  17202. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17203. return false;
  17204. }
  17205. p->data = GGML_CALLOC(p->n + 1, 1);
  17206. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17207. return ok;
  17208. }
  17209. static void gguf_free_kv(struct gguf_kv * kv) {
  17210. if (kv->key.data) {
  17211. GGML_FREE(kv->key.data);
  17212. }
  17213. if (kv->type == GGUF_TYPE_STRING) {
  17214. if (kv->value.str.data) {
  17215. GGML_FREE(kv->value.str.data);
  17216. }
  17217. }
  17218. if (kv->type == GGUF_TYPE_ARRAY) {
  17219. if (kv->value.arr.data) {
  17220. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17221. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17222. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17223. if (str->data) {
  17224. GGML_FREE(str->data);
  17225. }
  17226. }
  17227. }
  17228. GGML_FREE(kv->value.arr.data);
  17229. }
  17230. }
  17231. }
  17232. struct gguf_context * gguf_init_empty(void) {
  17233. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17234. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17235. ctx->header.version = GGUF_VERSION;
  17236. ctx->header.n_tensors = 0;
  17237. ctx->header.n_kv = 0;
  17238. ctx->kv = NULL;
  17239. ctx->infos = NULL;
  17240. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17241. ctx->offset = 0;
  17242. ctx->size = 0;
  17243. ctx->data = NULL;
  17244. return ctx;
  17245. }
  17246. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17247. FILE * file = ggml_fopen(fname, "rb");
  17248. if (!file) {
  17249. fprintf(stderr, "%s: failed to open '%s': '%s'\n", __func__, fname, strerror(errno));
  17250. return NULL;
  17251. }
  17252. // offset from start of file
  17253. size_t offset = 0;
  17254. char magic[4];
  17255. // check the magic before making allocations
  17256. {
  17257. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17258. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17259. if (magic[i] != GGUF_MAGIC[i]) {
  17260. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17261. fclose(file);
  17262. return NULL;
  17263. }
  17264. }
  17265. }
  17266. bool ok = true;
  17267. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17268. // read the header
  17269. {
  17270. strncpy(ctx->header.magic, magic, 4);
  17271. ctx->kv = NULL;
  17272. ctx->infos = NULL;
  17273. ctx->data = NULL;
  17274. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17275. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17276. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17277. if (ctx->header.version == 1) {
  17278. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17279. fclose(file);
  17280. gguf_free(ctx);
  17281. return NULL;
  17282. }
  17283. // sanity-checks to prevent from integer/buffer overflows
  17284. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17285. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17286. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17287. if (!ok) {
  17288. fprintf(stderr, "%s: failed to read header\n", __func__);
  17289. fclose(file);
  17290. gguf_free(ctx);
  17291. return NULL;
  17292. }
  17293. }
  17294. // read the kv pairs
  17295. {
  17296. const uint64_t n_kv = ctx->header.n_kv;
  17297. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17298. ctx->header.n_kv = 0;
  17299. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17300. for (uint64_t i = 0; i < n_kv; ++i) {
  17301. struct gguf_kv * kv = &ctx->kv[i];
  17302. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17303. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17304. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17305. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17306. switch (kv->type) {
  17307. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17308. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17309. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17310. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17311. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17312. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17313. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17314. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17315. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17316. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17317. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17318. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17319. case GGUF_TYPE_ARRAY:
  17320. {
  17321. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17322. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17323. switch (kv->value.arr.type) {
  17324. case GGUF_TYPE_UINT8:
  17325. case GGUF_TYPE_INT8:
  17326. case GGUF_TYPE_UINT16:
  17327. case GGUF_TYPE_INT16:
  17328. case GGUF_TYPE_UINT32:
  17329. case GGUF_TYPE_INT32:
  17330. case GGUF_TYPE_FLOAT32:
  17331. case GGUF_TYPE_UINT64:
  17332. case GGUF_TYPE_INT64:
  17333. case GGUF_TYPE_FLOAT64:
  17334. case GGUF_TYPE_BOOL:
  17335. {
  17336. // prevent from integer overflow in the malloc below
  17337. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17338. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17339. fclose(file);
  17340. gguf_free(ctx);
  17341. return NULL;
  17342. }
  17343. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17344. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17345. } break;
  17346. case GGUF_TYPE_STRING:
  17347. {
  17348. // prevent from integer overflow in the malloc below
  17349. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17350. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17351. fclose(file);
  17352. gguf_free(ctx);
  17353. return NULL;
  17354. }
  17355. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17356. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17357. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17358. }
  17359. } break;
  17360. case GGUF_TYPE_ARRAY:
  17361. default: GGML_ABORT("invalid type");
  17362. }
  17363. } break;
  17364. default: GGML_ABORT("invalid type");
  17365. }
  17366. if (!ok) {
  17367. break;
  17368. }
  17369. ctx->header.n_kv++;
  17370. }
  17371. if (!ok) {
  17372. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17373. fclose(file);
  17374. gguf_free(ctx);
  17375. return NULL;
  17376. }
  17377. }
  17378. // read the tensor infos
  17379. if (ctx->header.n_tensors > 0) {
  17380. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17381. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17382. struct gguf_tensor_info * info = &ctx->infos[i];
  17383. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17384. info->ne[j] = 1;
  17385. }
  17386. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17387. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17388. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17389. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17390. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17391. }
  17392. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17393. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17394. // TODO: return an error instead of crashing with GGML_ASSERT
  17395. gguf_tensor_info_sanitize(info);
  17396. // make sure there is no duplicated tensor names
  17397. for (uint64_t j = 0; j < i && ok; ++j) {
  17398. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17399. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17400. ok = false;
  17401. }
  17402. }
  17403. if (!ok) {
  17404. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17405. fclose(file);
  17406. gguf_free(ctx);
  17407. return NULL;
  17408. }
  17409. }
  17410. }
  17411. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17412. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17413. if (alignment_idx != -1) {
  17414. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17415. }
  17416. // we require the data section to be aligned, so take into account any padding
  17417. {
  17418. const size_t offset_pad = offset % ctx->alignment;
  17419. if (offset_pad != 0) {
  17420. offset += ctx->alignment - offset_pad;
  17421. fseek(file, offset, SEEK_SET);
  17422. }
  17423. }
  17424. // store the current file offset - this is where the data section starts
  17425. ctx->offset = offset;
  17426. // compute the total size of the data section, taking into account the alignment
  17427. {
  17428. ctx->size = 0;
  17429. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17430. struct gguf_tensor_info * info = &ctx->infos[i];
  17431. const int64_t ne =
  17432. (int64_t) info->ne[0] *
  17433. (int64_t) info->ne[1] *
  17434. (int64_t) info->ne[2] *
  17435. (int64_t) info->ne[3];
  17436. if (ne % ggml_blck_size(info->type) != 0) {
  17437. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%" PRId64 ")\n",
  17438. __func__, info->name.data, (int) info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17439. fclose(file);
  17440. gguf_free(ctx);
  17441. return NULL;
  17442. }
  17443. const size_t size_cur = ggml_row_size(info->type, ne);
  17444. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17445. }
  17446. }
  17447. // load the tensor data only if requested
  17448. if (params.ctx != NULL) {
  17449. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17450. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17451. // the ggml_tensor structs to the appropriate locations in the binary blob
  17452. // compute the exact size needed for the new ggml_context
  17453. const size_t mem_size =
  17454. params.no_alloc ?
  17455. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17456. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17457. struct ggml_init_params pdata = {
  17458. .mem_size = mem_size,
  17459. .mem_buffer = NULL,
  17460. .no_alloc = params.no_alloc,
  17461. };
  17462. *params.ctx = ggml_init(pdata);
  17463. if (*params.ctx == NULL) {
  17464. fprintf(stderr, "%s: failed to initialize context\n", __func__);
  17465. fclose(file);
  17466. gguf_free(ctx);
  17467. return NULL;
  17468. }
  17469. struct ggml_context * ctx_data = *params.ctx;
  17470. struct ggml_tensor * data = NULL;
  17471. if (!params.no_alloc) {
  17472. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17473. ok = ok && data != NULL;
  17474. // read the binary blob with the tensor data
  17475. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17476. if (!ok) {
  17477. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17478. fclose(file);
  17479. ggml_free(ctx_data);
  17480. gguf_free(ctx);
  17481. return NULL;
  17482. }
  17483. ctx->data = data->data;
  17484. }
  17485. ggml_set_no_alloc(ctx_data, true);
  17486. // create the tensors
  17487. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17488. const int64_t ne[GGML_MAX_DIMS] = {
  17489. ctx->infos[i].ne[0],
  17490. ctx->infos[i].ne[1],
  17491. ctx->infos[i].ne[2],
  17492. ctx->infos[i].ne[3],
  17493. };
  17494. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17495. ok = ok && cur != NULL;
  17496. if (!ok) {
  17497. break;
  17498. }
  17499. ggml_set_name(cur, ctx->infos[i].name.data);
  17500. // point the data member to the appropriate location in the binary blob using the tensor infos
  17501. if (!params.no_alloc) {
  17502. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17503. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17504. }
  17505. }
  17506. if (!ok) {
  17507. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17508. fclose(file);
  17509. ggml_free(ctx_data);
  17510. gguf_free(ctx);
  17511. return NULL;
  17512. }
  17513. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17514. }
  17515. fclose(file);
  17516. return ctx;
  17517. }
  17518. void gguf_free(struct gguf_context * ctx) {
  17519. if (ctx == NULL) {
  17520. return;
  17521. }
  17522. if (ctx->kv) {
  17523. // free string memory - not great..
  17524. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17525. gguf_free_kv(&ctx->kv[i]);
  17526. }
  17527. GGML_FREE(ctx->kv);
  17528. }
  17529. if (ctx->infos) {
  17530. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17531. struct gguf_tensor_info * info = &ctx->infos[i];
  17532. if (info->name.data) {
  17533. GGML_FREE(info->name.data);
  17534. }
  17535. }
  17536. GGML_FREE(ctx->infos);
  17537. }
  17538. GGML_FREE(ctx);
  17539. }
  17540. const char * gguf_type_name(enum gguf_type type) {
  17541. return GGUF_TYPE_NAME[type];
  17542. }
  17543. int gguf_get_version(const struct gguf_context * ctx) {
  17544. return ctx->header.version;
  17545. }
  17546. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17547. return ctx->alignment;
  17548. }
  17549. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17550. return ctx->offset;
  17551. }
  17552. void * gguf_get_data(const struct gguf_context * ctx) {
  17553. return ctx->data;
  17554. }
  17555. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17556. return ctx->header.n_kv;
  17557. }
  17558. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17559. // return -1 if key not found
  17560. int keyfound = -1;
  17561. const int n_kv = gguf_get_n_kv(ctx);
  17562. for (int i = 0; i < n_kv; ++i) {
  17563. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17564. keyfound = i;
  17565. break;
  17566. }
  17567. }
  17568. return keyfound;
  17569. }
  17570. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17571. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17572. return ctx->kv[key_id].key.data;
  17573. }
  17574. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17575. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17576. return ctx->kv[key_id].type;
  17577. }
  17578. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17579. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17580. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17581. return ctx->kv[key_id].value.arr.type;
  17582. }
  17583. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17584. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17585. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17586. return ctx->kv[key_id].value.arr.data;
  17587. }
  17588. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17589. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17590. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17591. struct gguf_kv * kv = &ctx->kv[key_id];
  17592. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17593. return str->data;
  17594. }
  17595. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17596. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17597. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17598. return ctx->kv[key_id].value.arr.n;
  17599. }
  17600. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17601. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17602. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17603. return ctx->kv[key_id].value.uint8;
  17604. }
  17605. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17606. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17607. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17608. return ctx->kv[key_id].value.int8;
  17609. }
  17610. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17611. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17612. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17613. return ctx->kv[key_id].value.uint16;
  17614. }
  17615. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17616. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17617. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17618. return ctx->kv[key_id].value.int16;
  17619. }
  17620. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17621. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17622. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17623. return ctx->kv[key_id].value.uint32;
  17624. }
  17625. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17626. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17627. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17628. return ctx->kv[key_id].value.int32;
  17629. }
  17630. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17631. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17632. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17633. return ctx->kv[key_id].value.float32;
  17634. }
  17635. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17636. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17637. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17638. return ctx->kv[key_id].value.uint64;
  17639. }
  17640. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17641. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17642. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17643. return ctx->kv[key_id].value.int64;
  17644. }
  17645. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17646. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17647. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17648. return ctx->kv[key_id].value.float64;
  17649. }
  17650. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17651. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17652. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17653. return ctx->kv[key_id].value.bool_;
  17654. }
  17655. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17656. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17657. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17658. return ctx->kv[key_id].value.str.data;
  17659. }
  17660. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17661. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17662. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17663. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17664. return &ctx->kv[key_id].value;
  17665. }
  17666. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17667. return ctx->header.n_tensors;
  17668. }
  17669. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17670. // return -1 if tensor not found
  17671. int tensorfound = -1;
  17672. const int n_tensors = gguf_get_n_tensors(ctx);
  17673. for (int i = 0; i < n_tensors; ++i) {
  17674. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17675. tensorfound = i;
  17676. break;
  17677. }
  17678. }
  17679. return tensorfound;
  17680. }
  17681. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17682. return ctx->infos[i].offset;
  17683. }
  17684. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17685. return ctx->infos[i].name.data;
  17686. }
  17687. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17688. return ctx->infos[i].type;
  17689. }
  17690. // returns the index
  17691. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17692. const int idx = gguf_find_key(ctx, key);
  17693. if (idx >= 0) {
  17694. return idx;
  17695. }
  17696. const int n_kv = gguf_get_n_kv(ctx);
  17697. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17698. ctx->kv[n_kv].key.n = strlen(key);
  17699. ctx->kv[n_kv].key.data = strdup(key);
  17700. ctx->header.n_kv++;
  17701. return n_kv;
  17702. }
  17703. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17704. const int idx = gguf_find_key(ctx, key);
  17705. if (idx >= 0) {
  17706. const int n_kv = gguf_get_n_kv(ctx);
  17707. gguf_free_kv(&ctx->kv[idx]);
  17708. for (int i = idx; i < n_kv-1; ++i) {
  17709. ctx->kv[i] = ctx->kv[i+1];
  17710. }
  17711. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17712. ctx->header.n_kv--;
  17713. }
  17714. }
  17715. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17716. const int idx = gguf_get_or_add_key(ctx, key);
  17717. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17718. ctx->kv[idx].value.uint8 = val;
  17719. }
  17720. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17721. const int idx = gguf_get_or_add_key(ctx, key);
  17722. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17723. ctx->kv[idx].value.int8 = val;
  17724. }
  17725. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17726. const int idx = gguf_get_or_add_key(ctx, key);
  17727. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17728. ctx->kv[idx].value.uint16 = val;
  17729. }
  17730. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17731. const int idx = gguf_get_or_add_key(ctx, key);
  17732. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17733. ctx->kv[idx].value.int16 = val;
  17734. }
  17735. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17736. const int idx = gguf_get_or_add_key(ctx, key);
  17737. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17738. ctx->kv[idx].value.uint32 = val;
  17739. }
  17740. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17741. const int idx = gguf_get_or_add_key(ctx, key);
  17742. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17743. ctx->kv[idx].value.int32 = val;
  17744. }
  17745. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17746. const int idx = gguf_get_or_add_key(ctx, key);
  17747. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17748. ctx->kv[idx].value.float32 = val;
  17749. }
  17750. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17751. const int idx = gguf_get_or_add_key(ctx, key);
  17752. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17753. ctx->kv[idx].value.uint64 = val;
  17754. }
  17755. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17756. const int idx = gguf_get_or_add_key(ctx, key);
  17757. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17758. ctx->kv[idx].value.int64 = val;
  17759. }
  17760. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17761. const int idx = gguf_get_or_add_key(ctx, key);
  17762. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17763. ctx->kv[idx].value.float64 = val;
  17764. }
  17765. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17766. const int idx = gguf_get_or_add_key(ctx, key);
  17767. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17768. ctx->kv[idx].value.bool_ = val;
  17769. }
  17770. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17771. const int idx = gguf_get_or_add_key(ctx, key);
  17772. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17773. ctx->kv[idx].value.str.n = strlen(val);
  17774. ctx->kv[idx].value.str.data = strdup(val);
  17775. }
  17776. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17777. const int idx = gguf_get_or_add_key(ctx, key);
  17778. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17779. ctx->kv[idx].value.arr.type = type;
  17780. ctx->kv[idx].value.arr.n = n;
  17781. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  17782. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17783. }
  17784. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17785. const int idx = gguf_get_or_add_key(ctx, key);
  17786. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17787. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17788. ctx->kv[idx].value.arr.n = n;
  17789. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  17790. for (int i = 0; i < n; i++) {
  17791. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17792. str->n = strlen(data[i]);
  17793. str->data = strdup(data[i]);
  17794. }
  17795. }
  17796. // set or add KV pairs from another context
  17797. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17798. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17799. switch (src->kv[i].type) {
  17800. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17801. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17802. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17803. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17804. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17805. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17806. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17807. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17808. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17809. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17810. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17811. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17812. case GGUF_TYPE_ARRAY:
  17813. {
  17814. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17815. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  17816. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17817. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17818. }
  17819. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17820. GGML_FREE((void *)data);
  17821. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17822. GGML_ABORT("nested arrays not supported");
  17823. } else {
  17824. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17825. }
  17826. } break;
  17827. default: GGML_ABORT("invalid type");
  17828. }
  17829. }
  17830. }
  17831. void gguf_add_tensor(
  17832. struct gguf_context * ctx,
  17833. const struct ggml_tensor * tensor) {
  17834. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  17835. GGML_ABORT("duplicated tensor name");
  17836. }
  17837. const int idx = ctx->header.n_tensors;
  17838. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17839. ctx->infos[idx].name.n = strlen(tensor->name);
  17840. ctx->infos[idx].name.data = strdup(tensor->name);
  17841. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17842. ctx->infos[idx].ne[i] = 1;
  17843. }
  17844. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17845. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17846. ctx->infos[idx].ne[i] = tensor->ne[i];
  17847. }
  17848. ctx->infos[idx].type = tensor->type;
  17849. ctx->infos[idx].offset = 0;
  17850. ctx->infos[idx].data = tensor->data;
  17851. ctx->infos[idx].size = ggml_nbytes(tensor);
  17852. if (ctx->header.n_tensors > 0) {
  17853. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17854. }
  17855. ctx->header.n_tensors++;
  17856. }
  17857. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17858. const int idx = gguf_find_tensor(ctx, name);
  17859. if (idx < 0) {
  17860. GGML_ABORT("tensor not found");
  17861. }
  17862. ctx->infos[idx].type = type;
  17863. }
  17864. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17865. const int idx = gguf_find_tensor(ctx, name);
  17866. if (idx < 0) {
  17867. GGML_ABORT("tensor not found");
  17868. }
  17869. ctx->infos[idx].data = data;
  17870. ctx->infos[idx].size = size;
  17871. // update offsets
  17872. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17873. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17874. }
  17875. }
  17876. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17877. // fwrite(&val->n, sizeof(val->n), 1, file);
  17878. // fwrite(val->data, sizeof(char), val->n, file);
  17879. //}
  17880. //
  17881. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17882. // fwrite(val, sizeof(char), size, file);
  17883. //}
  17884. struct gguf_buf {
  17885. void * data;
  17886. size_t size;
  17887. size_t offset;
  17888. };
  17889. static struct gguf_buf gguf_buf_init(size_t size) {
  17890. struct gguf_buf buf = {
  17891. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  17892. /*buf.size =*/ size,
  17893. /*buf.offset =*/ 0,
  17894. };
  17895. return buf;
  17896. }
  17897. static void gguf_buf_free(struct gguf_buf buf) {
  17898. if (buf.data) {
  17899. GGML_FREE(buf.data);
  17900. }
  17901. }
  17902. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17903. if (buf->offset + size > buf->size) {
  17904. buf->size = 1.5*(buf->offset + size);
  17905. if (buf->data) {
  17906. buf->data = realloc(buf->data, buf->size);
  17907. }
  17908. }
  17909. }
  17910. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17911. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17912. if (buf->data) {
  17913. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17914. }
  17915. buf->offset += sizeof(val->n);
  17916. if (buf->data) {
  17917. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17918. }
  17919. buf->offset += val->n;
  17920. }
  17921. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17922. gguf_buf_grow(buf, el_size);
  17923. if (buf->data) {
  17924. memcpy((char *) buf->data + buf->offset, val, el_size);
  17925. }
  17926. buf->offset += el_size;
  17927. }
  17928. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17929. // write header
  17930. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17931. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17932. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17933. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17934. // write key-value pairs
  17935. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17936. struct gguf_kv * kv = &ctx->kv[i];
  17937. gguf_bwrite_str(buf, &kv->key);
  17938. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17939. switch (kv->type) {
  17940. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17941. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17942. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17943. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17944. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17945. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17946. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17947. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17948. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17949. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17950. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17951. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17952. case GGUF_TYPE_ARRAY:
  17953. {
  17954. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17955. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17956. switch (kv->value.arr.type) {
  17957. case GGUF_TYPE_UINT8:
  17958. case GGUF_TYPE_INT8:
  17959. case GGUF_TYPE_UINT16:
  17960. case GGUF_TYPE_INT16:
  17961. case GGUF_TYPE_UINT32:
  17962. case GGUF_TYPE_INT32:
  17963. case GGUF_TYPE_FLOAT32:
  17964. case GGUF_TYPE_UINT64:
  17965. case GGUF_TYPE_INT64:
  17966. case GGUF_TYPE_FLOAT64:
  17967. case GGUF_TYPE_BOOL:
  17968. {
  17969. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17970. } break;
  17971. case GGUF_TYPE_STRING:
  17972. {
  17973. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17974. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17975. }
  17976. } break;
  17977. case GGUF_TYPE_ARRAY:
  17978. default: GGML_ABORT("invalid type");
  17979. }
  17980. } break;
  17981. default: GGML_ABORT("invalid type");
  17982. }
  17983. }
  17984. // write tensor infos
  17985. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17986. struct gguf_tensor_info * info = &ctx->infos[i];
  17987. gguf_bwrite_str(buf, &info->name);
  17988. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17989. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17990. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17991. }
  17992. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17993. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17994. }
  17995. // we require the data section to be aligned, so take into account any padding
  17996. {
  17997. const size_t offset = buf->offset;
  17998. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17999. if (offset_pad != offset) {
  18000. uint8_t pad = 0;
  18001. for (size_t i = 0; i < offset_pad - offset; ++i) {
  18002. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18003. }
  18004. }
  18005. }
  18006. if (only_meta) {
  18007. return;
  18008. }
  18009. size_t offset = 0;
  18010. // write tensor data
  18011. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  18012. struct gguf_tensor_info * info = &ctx->infos[i];
  18013. const size_t size = info->size;
  18014. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  18015. gguf_bwrite_el(buf, info->data, size);
  18016. if (size_pad != size) {
  18017. uint8_t pad = 0;
  18018. for (size_t j = 0; j < size_pad - size; ++j) {
  18019. gguf_bwrite_el(buf, &pad, sizeof(pad));
  18020. }
  18021. }
  18022. GGML_ASSERT(offset == info->offset);
  18023. offset += size_pad;
  18024. }
  18025. }
  18026. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  18027. FILE * file = ggml_fopen(fname, "wb");
  18028. if (!file) {
  18029. GGML_ABORT("failed to open file for writing");
  18030. }
  18031. struct gguf_buf buf = gguf_buf_init(16*1024);
  18032. gguf_write_to_buf(ctx, &buf, only_meta);
  18033. fwrite(buf.data, 1, buf.offset, file);
  18034. gguf_buf_free(buf);
  18035. fclose(file);
  18036. }
  18037. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  18038. // no allocs - only compute size
  18039. struct gguf_buf buf = gguf_buf_init(0);
  18040. gguf_write_to_buf(ctx, &buf, true);
  18041. return buf.offset;
  18042. }
  18043. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  18044. struct gguf_buf buf = gguf_buf_init(16*1024);
  18045. gguf_write_to_buf(ctx, &buf, true);
  18046. memcpy(data, buf.data, buf.offset);
  18047. gguf_buf_free(buf);
  18048. }
  18049. ////////////////////////////////////////////////////////////////////////////////
  18050. int ggml_cpu_has_avx(void) {
  18051. #if defined(__AVX__)
  18052. return 1;
  18053. #else
  18054. return 0;
  18055. #endif
  18056. }
  18057. int ggml_cpu_has_avx_vnni(void) {
  18058. #if defined(__AVXVNNI__)
  18059. return 1;
  18060. #else
  18061. return 0;
  18062. #endif
  18063. }
  18064. int ggml_cpu_has_avx2(void) {
  18065. #if defined(__AVX2__)
  18066. return 1;
  18067. #else
  18068. return 0;
  18069. #endif
  18070. }
  18071. int ggml_cpu_has_avx512(void) {
  18072. #if defined(__AVX512F__)
  18073. return 1;
  18074. #else
  18075. return 0;
  18076. #endif
  18077. }
  18078. int ggml_cpu_has_avx512_vbmi(void) {
  18079. #if defined(__AVX512VBMI__)
  18080. return 1;
  18081. #else
  18082. return 0;
  18083. #endif
  18084. }
  18085. int ggml_cpu_has_avx512_vnni(void) {
  18086. #if defined(__AVX512VNNI__)
  18087. return 1;
  18088. #else
  18089. return 0;
  18090. #endif
  18091. }
  18092. int ggml_cpu_has_avx512_bf16(void) {
  18093. #if defined(__AVX512BF16__)
  18094. return 1;
  18095. #else
  18096. return 0;
  18097. #endif
  18098. }
  18099. int ggml_cpu_has_fma(void) {
  18100. #if defined(__FMA__)
  18101. return 1;
  18102. #else
  18103. return 0;
  18104. #endif
  18105. }
  18106. int ggml_cpu_has_neon(void) {
  18107. #if defined(__ARM_NEON)
  18108. return 1;
  18109. #else
  18110. return 0;
  18111. #endif
  18112. }
  18113. int ggml_cpu_has_sve(void) {
  18114. #if defined(__ARM_FEATURE_SVE)
  18115. return 1;
  18116. #else
  18117. return 0;
  18118. #endif
  18119. }
  18120. int ggml_cpu_has_arm_fma(void) {
  18121. #if defined(__ARM_FEATURE_FMA)
  18122. return 1;
  18123. #else
  18124. return 0;
  18125. #endif
  18126. }
  18127. int ggml_cpu_has_metal(void) {
  18128. #if defined(GGML_USE_METAL)
  18129. return 1;
  18130. #else
  18131. return 0;
  18132. #endif
  18133. }
  18134. int ggml_cpu_has_f16c(void) {
  18135. #if defined(__F16C__)
  18136. return 1;
  18137. #else
  18138. return 0;
  18139. #endif
  18140. }
  18141. int ggml_cpu_has_fp16_va(void) {
  18142. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  18143. return 1;
  18144. #else
  18145. return 0;
  18146. #endif
  18147. }
  18148. int ggml_cpu_has_wasm_simd(void) {
  18149. #if defined(__wasm_simd128__)
  18150. return 1;
  18151. #else
  18152. return 0;
  18153. #endif
  18154. }
  18155. int ggml_cpu_has_blas(void) {
  18156. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  18157. return 1;
  18158. #else
  18159. return 0;
  18160. #endif
  18161. }
  18162. int ggml_cpu_has_cuda(void) {
  18163. #if defined(GGML_USE_CUDA)
  18164. return 1;
  18165. #else
  18166. return 0;
  18167. #endif
  18168. }
  18169. int ggml_cpu_has_vulkan(void) {
  18170. #if defined(GGML_USE_VULKAN)
  18171. return 1;
  18172. #else
  18173. return 0;
  18174. #endif
  18175. }
  18176. int ggml_cpu_has_kompute(void) {
  18177. #if defined(GGML_USE_KOMPUTE)
  18178. return 1;
  18179. #else
  18180. return 0;
  18181. #endif
  18182. }
  18183. int ggml_cpu_has_sycl(void) {
  18184. #if defined(GGML_USE_SYCL)
  18185. return 1;
  18186. #else
  18187. return 0;
  18188. #endif
  18189. }
  18190. int ggml_cpu_has_rpc(void) {
  18191. #if defined(GGML_USE_RPC)
  18192. return 1;
  18193. #else
  18194. return 0;
  18195. #endif
  18196. }
  18197. int ggml_cpu_has_cann(void) {
  18198. #if defined(GGML_USE_CANN)
  18199. return 1;
  18200. #else
  18201. return 0;
  18202. #endif
  18203. }
  18204. int ggml_cpu_has_llamafile(void) {
  18205. #if defined(GGML_USE_LLAMAFILE)
  18206. return 1;
  18207. #else
  18208. return 0;
  18209. #endif
  18210. }
  18211. int ggml_cpu_has_gpublas(void) {
  18212. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  18213. }
  18214. int ggml_cpu_has_sse3(void) {
  18215. #if defined(__SSE3__)
  18216. return 1;
  18217. #else
  18218. return 0;
  18219. #endif
  18220. }
  18221. int ggml_cpu_has_ssse3(void) {
  18222. #if defined(__SSSE3__)
  18223. return 1;
  18224. #else
  18225. return 0;
  18226. #endif
  18227. }
  18228. int ggml_cpu_has_vsx(void) {
  18229. #if defined(__POWER9_VECTOR__)
  18230. return 1;
  18231. #else
  18232. return 0;
  18233. #endif
  18234. }
  18235. int ggml_cpu_has_matmul_int8(void) {
  18236. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18237. return 1;
  18238. #else
  18239. return 0;
  18240. #endif
  18241. }
  18242. ////////////////////////////////////////////////////////////////////////////////