| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326 |
- #!/usr/bin/env python
- import argparse
- import concurrent.futures
- import copy
- import enum
- import faulthandler
- import functools
- import io
- import itertools
- import json
- import math
- import mmap
- import pickle
- import re
- import signal
- import struct
- import sys
- import zipfile
- from abc import ABCMeta, abstractmethod
- from dataclasses import dataclass
- from pathlib import Path
- from typing import (IO, TYPE_CHECKING, Any, Callable, Dict, Iterable, List,
- Literal, Optional, Sequence, Tuple, TypeVar, Union)
- import numpy as np
- from sentencepiece import SentencePieceProcessor # type: ignore
- if TYPE_CHECKING:
- from typing_extensions import TypeAlias
- if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
- faulthandler.register(signal.SIGUSR1)
- NDArray: 'TypeAlias' = 'np.ndarray[Any, Any]'
- @dataclass(frozen=True)
- class UnquantizedDataType:
- name: str
- DT_F16 = UnquantizedDataType('F16')
- DT_F32 = UnquantizedDataType('F32')
- DT_I32 = UnquantizedDataType('I32')
- DT_BF16 = UnquantizedDataType('BF16')
- @dataclass(frozen=True)
- class QuantizedDataType:
- groupsize: int
- have_addends: bool
- have_g_idx: bool
- DT_Q4_0 = QuantizedDataType(groupsize=32, have_addends=False, have_g_idx=False)
- DT_Q4_1 = QuantizedDataType(groupsize=32, have_addends=True, have_g_idx=False)
- DataType = Union[UnquantizedDataType, QuantizedDataType]
- DATA_TYPE_TO_FTYPE: Dict[DataType, int] = {
- DT_F32: 0,
- DT_F16: 1,
- DT_Q4_0: 2,
- DT_Q4_1: 3,
- }
- FTYPE_TO_DATA_TYPE: Dict[int, DataType] = \
- {ftype: dtype for (dtype, ftype) in DATA_TYPE_TO_FTYPE.items()}
- DATA_TYPE_TO_NUMPY: Dict[DataType, 'np.dtype[Any]'] = {
- DT_BF16: np.dtype(np.uint16),
- DT_F16: np.dtype(np.float16),
- DT_F32: np.dtype(np.float32),
- DT_I32: np.dtype(np.int32),
- }
- NUMPY_TYPE_TO_DATA_TYPE: Dict['np.dtype[Any]', DataType] = \
- {dtype: data_type for (data_type, dtype) in DATA_TYPE_TO_NUMPY.items()}
- class GGMLFileType(enum.Enum):
- AllF32 = 0
- MostlyF16 = 1 # except 1d tensors
- MostlyQ4_0 = 2 # except 1d tensors
- MostlyQ4_1 = 3 # except 1d tensors
- PerLayerIsQ4_1 = 4 # but tok_embeddings.weight and output.weight are F16
- def type_for_tensor(self, name: str, tensor: 'LazyTensor') -> DataType:
- if len(tensor.shape) == 1:
- # 1D tensors are always F32.
- return DT_F32
- elif self == GGMLFileType.AllF32:
- return DT_F32
- elif self == GGMLFileType.MostlyF16:
- return DT_F16
- elif self == GGMLFileType.MostlyQ4_0:
- return DT_Q4_0
- elif self == GGMLFileType.MostlyQ4_1:
- return DT_Q4_1
- elif self == GGMLFileType.PerLayerIsQ4_1:
- if name in ('output.weight', 'tok_embeddings.weight'):
- return DT_F16
- else:
- return DT_Q4_1
- else:
- raise ValueError(self)
- def make_tensors_list() -> List[str]:
- ret = [
- 'tok_embeddings.weight',
- 'norm.weight',
- 'output.weight',
- ]
- for i in range(80): # maximum number of layer
- ret += [
- f'layers.{i}.attention.wq.weight',
- f'layers.{i}.attention.wk.weight',
- f'layers.{i}.attention.wv.weight',
- f'layers.{i}.attention.wo.weight',
- f'layers.{i}.attention_norm.weight',
- f'layers.{i}.feed_forward.w1.weight',
- f'layers.{i}.feed_forward.w2.weight',
- f'layers.{i}.feed_forward.w3.weight',
- f'layers.{i}.ffn_norm.weight',
- ]
- return ret
- TENSORS_LIST = make_tensors_list()
- TENSORS_SET = set(TENSORS_LIST)
- def find_n_mult(n_ff: int, n_embd: int) -> int:
- # hardcoded magic range
- for n_mult in range(8192, 1, -1):
- calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
- if calc_ff == n_ff:
- return n_mult
- raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
- @dataclass
- class Params:
- n_vocab: int
- n_embd: int
- n_mult: int
- n_head: int
- n_layer: int
- n_kv_head: Optional[int] # This parameter is only used for Llama 2
- @staticmethod
- def guessed(model: 'LazyModel') -> 'Params':
- # try transformer naming first
- n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape
- # try transformer naming first
- if "model.layers.0.self_attn.q_proj.weight" in model:
- n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
- elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming
- n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model)
- else:
- n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)
- if n_layer < 1:
- raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n"
- "Suggestion: provide 'config.json' of the model in the same directory containing model files.")
- n_head=n_embd // 128 # guessed
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = 256,
- n_head = n_head,
- n_layer = n_layer,
- n_kv_head = None,
- )
- @staticmethod
- def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
- config = json.load(open(config_path))
- n_vocab = config["vocab_size"];
- n_embd = config["hidden_size"];
- n_head = config["num_attention_heads"];
- n_layer = config["num_hidden_layers"];
- n_ff = config["intermediate_size"];
- n_kv_head = config.get("num_key_value_heads")
- n_mult = find_n_mult(n_ff, n_embd);
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_head = n_head,
- n_layer = n_layer,
- n_kv_head = n_kv_head,
- )
- # LLaMA v2 70B params.json
- # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
- @staticmethod
- def loadOriginalParamsJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
- config = json.load(open(config_path))
- n_vocab = config["vocab_size"];
- n_embd = config["dim"];
- n_head = config["n_heads"];
- n_layer = config["n_layers"];
- n_mult = config["multiple_of"];
- if n_vocab == -1:
- n_vocab = model["tok_embeddings.weight"].shape[0]
- return Params(
- n_vocab = n_vocab,
- n_embd = n_embd,
- n_mult = n_mult,
- n_head = n_head,
- n_layer = n_layer,
- n_kv_head = None,
- )
- @staticmethod
- def load(model_plus: 'ModelPlus') -> 'Params':
- hf_config_path = model_plus.paths[0].parent / "config.json"
- orig_config_path = model_plus.paths[0].parent / "params.json"
- if hf_config_path.exists():
- params = Params.loadHFTransformerJson(model_plus.model, hf_config_path)
- elif orig_config_path.exists():
- params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path)
- else:
- params = Params.guessed(model_plus.model)
- print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}')
- return params
- class SentencePieceVocab:
- def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path], vocabtype: Optional[str]) -> None:
- self.vocabtype = vocabtype
- if self.vocabtype == "bpe":
- self.sentencepiece_tokenizer = json.loads(open(str(fname_tokenizer)).read())
- else:
- self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer))
- added_tokens: Dict[str, int]
- if fname_added_tokens is not None:
- added_tokens = json.load(open(fname_added_tokens))
- else:
- added_tokens = {}
- if self.vocabtype == "bpe":
- vocab_size: int = len(self.sentencepiece_tokenizer)
- else:
- vocab_size: int = self.sentencepiece_tokenizer.vocab_size()
- expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
- actual_ids = sorted(added_tokens.values())
- if expected_ids != actual_ids:
- raise Exception(f"Expected added token IDs to be sequential and start at {len(added_tokens)}; got {actual_ids}")
- items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
- self.added_tokens_list = [text for (text, idx) in items]
- self.vocab_size_base: int = vocab_size
- self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list)
- self.fname_tokenizer = fname_tokenizer
- self.fname_added_tokens = fname_added_tokens
- def sentencepiece_tokens(self) -> Iterable[Tuple[bytes, float]]:
- tokenizer = self.sentencepiece_tokenizer
- if self.vocabtype == "bpe":
- from transformers.models.gpt2 import tokenization_gpt2
- byte_encoder = tokenization_gpt2.bytes_to_unicode()
- byte_decoder = {v: k for k, v in byte_encoder.items()}
- for i, item in enumerate(tokenizer):
- text: bytes
- text = b''.join([x.to_bytes(1, byteorder='big') for x in [byte_decoder[y] for y in item]])
- score: float = -i
- yield text, score
- else:
- for i in range(tokenizer.vocab_size()):
- text: bytes
- if tokenizer.is_unknown(i):
- text = " \u2047 ".encode("utf-8")
- elif tokenizer.is_control(i):
- text = b""
- elif tokenizer.is_byte(i):
- piece = tokenizer.id_to_piece(i)
- if len(piece) != 6:
- raise Exception(f"Invalid token: {piece}")
- byte_value = int(piece[3:-1], 16)
- text = struct.pack("B", byte_value)
- else:
- text = tokenizer.id_to_piece(i).replace("\u2581", " ").encode("utf-8")
- score: float = tokenizer.get_score(i)
- yield text, score
- def added_tokens(self) -> Iterable[Tuple[bytes, float]]:
- for text in self.added_tokens_list:
- score = -1000.0
- yield text.encode("utf-8"), score
- def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
- yield from self.sentencepiece_tokens()
- yield from self.added_tokens()
- def __repr__(self) -> str:
- return f"<SentencePieceVocab with {self.vocab_size_base} base tokens and {len(self.added_tokens_list)} added tokens>"
- class GGMLVocab:
- def __init__(self, tokens: List[Tuple[bytes, float]]):
- self.tokens = tokens
- self.vocab_size = len(tokens)
- def all_tokens(self) -> Iterable[Tuple[bytes, float]]:
- return self.tokens
- def __repr__(self) -> str:
- return f"<GGMLVocab with {self.vocab_size} tokens>"
- Vocab = Union[SentencePieceVocab, GGMLVocab]
- def permute(weights: NDArray, n_head: int, n_kv_head: Optional[int] = None) -> NDArray:
- if n_kv_head is not None and n_head != n_kv_head:
- n_head //= n_kv_head
- return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
- .swapaxes(1, 2)
- .reshape(weights.shape))
- def dequantize_q4(qvalues_pack32: NDArray, scales: NDArray, addends: Optional[NDArray], g_idx: Optional[NDArray]) -> NDArray:
- # First reinterpret each row from a list of int32s containing 8 values each
- # to a list of uint8s containing 2 values each.
- qvalues_pack8 = qvalues_pack32.view(np.uint8)
- # Then split out the two values per int8 (which requires an actual
- # conversion because numpy doesn't natively support int4s).
- qvalues = np.zeros([qvalues_pack8.shape[0], qvalues_pack8.shape[1] * 2], dtype=np.uint8)
- qvalues[:, 0::2] = qvalues_pack8 & 0xf
- qvalues[:, 1::2] = qvalues_pack8 >> 4
- assert addends is None or addends.shape == scales.shape
- assert qvalues.shape[0] == scales.shape[0]
- assert qvalues.shape[1] % scales.shape[1] == 0
- if g_idx is None:
- repeat_count = qvalues.shape[1] // scales.shape[1]
- scales = scales[:, :, np.newaxis]
- if addends is not None:
- addends = addends[:, :, np.newaxis]
- # Reshape so that the below computation broadcasts over scales and addends:
- qvalues.shape = (qvalues.shape[0], scales.shape[1], int(repeat_count))
- else:
- # In this case the scale and addend is selected for each column by g_idx:
- assert addends is not None
- scales = scales[:, g_idx]
- addends = addends[:, g_idx]
- if addends is None:
- # Q4_0
- qvalues = qvalues.view(np.int8)
- qvalues -= 8
- # And do the actual 'value = scale * qvalue + addend' computation.
- values = scales * qvalues
- if addends is not None:
- values += addends
- if g_idx is None:
- values.shape = (values.shape[0], values.shape[1] * values.shape[2])
- return values
- class Tensor(metaclass=ABCMeta):
- data_type: DataType
- @abstractmethod
- def astype(self, data_type: DataType) -> 'Tensor': ...
- @abstractmethod
- def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'Tensor': ...
- @abstractmethod
- def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor': ...
- @abstractmethod
- def part(self, n_part: int) -> 'UnquantizedTensor': ...
- @abstractmethod
- def to_ggml(self) -> 'GGMLCompatibleTensor': ...
- def bf16_to_fp32(bf16_arr: np.ndarray) -> np.ndarray:
- assert bf16_arr.dtype == np.uint16, f"Input array should be of dtype uint16, but got {bf16_arr.dtype}"
- fp32_arr = bf16_arr.astype(np.uint32) << 16
- return fp32_arr.view(np.float32)
- class UnquantizedTensor(Tensor):
- def __init__(self, ndarray: NDArray) -> None:
- assert isinstance(ndarray, np.ndarray)
- self.ndarray = ndarray
- self.data_type = NUMPY_TYPE_TO_DATA_TYPE[ndarray.dtype]
- def astype(self, data_type: DataType) -> Tensor:
- dtype = DATA_TYPE_TO_NUMPY[data_type]
- if self.data_type == DT_BF16:
- self.ndarray = bf16_to_fp32(self.ndarray)
- return UnquantizedTensor(self.ndarray.astype(dtype))
- def to_ggml(self) -> 'UnquantizedTensor':
- return self
- def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head))
- def part(self, n_part: int) -> 'UnquantizedTensor':
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
- def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'UnquantizedTensor':
- return UnquantizedTensor(permute(self.ndarray, n_head, n_kv_head))
- def load_unquantized(lazy_tensor: 'LazyTensor', expected_dtype: Any = None, convert: bool = False) -> NDArray:
- tensor = lazy_tensor.load()
- assert isinstance(tensor, UnquantizedTensor)
- # double-check:
- actual_shape = list(tensor.ndarray.shape)
- assert actual_shape == lazy_tensor.shape, (actual_shape, lazy_tensor.shape)
- if expected_dtype is not None and expected_dtype != tensor.ndarray.dtype:
- if convert:
- tensor.ndarray = tensor.ndarray.astype(expected_dtype)
- else:
- raise ValueError(f'expected this tensor to have dtype {expected_dtype}, got {tensor.ndarray.dtype}')
- return tensor.ndarray
- class GGMLQuantizedTensor(Tensor):
- data_type: QuantizedDataType
- def __init__(self, ndarray: NDArray, shape: List[int], data_type: DataType) -> None:
- rows, columns = shape
- assert data_type in (DT_Q4_1, DT_Q4_0) # for now
- assert isinstance(data_type, QuantizedDataType) # redundant, but mypy complains without this
- assert columns % data_type.groupsize == 0
- words_in_block = 6 if data_type == DT_Q4_1 else 5
- self.ndarray = ndarray.view(dtype=np.uint32).reshape((rows, columns // data_type.groupsize, words_in_block))
- self.shape = shape[:]
- self.data_type = data_type
- def astype(self, data_type: DataType) -> Tensor:
- if data_type == self.data_type:
- return self
- scales = self.ndarray[:, :, 0].view(np.float32)
- if self.data_type.have_addends:
- addends = self.ndarray[:, :, 1].view(np.float32)
- else:
- addends = None
- qweights = self.ndarray[:, :, -4:].reshape([self.shape[0], self.shape[1] // 8])
- dq = dequantize_q4(qweights, scales, addends, g_idx=None)
- return UnquantizedTensor(dq).astype(data_type)
- def to_ggml(self) -> 'GGMLQuantizedTensor':
- return self
- def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'GGMLQuantizedTensor':
- return GGMLQuantizedTensor(permute(self.ndarray, n_head, n_kv_head), self.shape, self.data_type)
- def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head))
- def part(self, n_part: int) -> 'UnquantizedTensor':
- r = self.ndarray.shape[0] // 3
- return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
- GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor]
- class DeferredPermutedTensor(Tensor):
- def __init__(self, base: Tensor, n_head: int, n_kv_head: Optional[int] = None) -> None:
- self.base = base
- self.n_head = n_head
- self.n_kv_head = n_kv_head
- self.data_type = self.base.data_type
- def astype(self, data_type: DataType) -> Tensor:
- return self.base.astype(data_type).permute(self.n_head, self.n_kv_head)
- def to_ggml(self) -> GGMLCompatibleTensor:
- return self.base.to_ggml().permute(self.n_head, self.n_kv_head)
- def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
- raise Exception("shouldn't permute twice")
- class GPTQForLLaMaQuantizedTensor(Tensor):
- def __init__(self, model: 'LazyModel', namebase: str) -> None:
- qweight = load_unquantized(model[f"{namebase}.qweight"], np.int32)
- scales = load_unquantized(model[f"{namebase}.scales"], np.float32, convert=True)
- bias = model.get(f"{namebase}.bias")
- if bias is not None:
- # Q4_1 does not support bias; good thing the bias is always all zeros.
- assert not np.any(load_unquantized(bias))
- if f"{namebase}.zeros" in model:
- zeros = load_unquantized(model[f"{namebase}.zeros"], np.float32)
- else:
- qzeros = load_unquantized(model[f"{namebase}.qzeros"], np.int32)
- assert qzeros.dtype == np.int32
- zeros = dequantize_q4(qzeros, scales, scales, g_idx=None)
- assert zeros.dtype == np.float32
- assert zeros.shape == scales.shape
- # Output is transposed compared to the input, and addends have their sign flipped.
- # Scales and zeros similarly must be transposed but only for newer
- # versions of GPTQ-for-LLaMa; the older versions can be identified by
- # having shape (n_embd, 1).
- qweight = qweight.T
- if scales.shape[1] != 1:
- scales = scales.T
- zeros = zeros.T
- # Output also has signs flipped for the addends.
- self.qweight = qweight
- self.scales = scales
- self.addends = -zeros
- self.g_idx: Optional[NDArray]
- if f"{namebase}.g_idx" in model:
- self.g_idx = load_unquantized(model[f"{namebase}.g_idx"], np.int32)
- assert self.g_idx.shape == (qweight.shape[1] * 8,)
- else:
- self.g_idx = None
- self.shape = [self.qweight.shape[0], self.qweight.shape[1] * 8]
- self.data_type = QuantizedDataType(groupsize=self.groupsize(), have_addends=True,
- have_g_idx=(self.g_idx is not None))
- def inspect(self, row: int, col: int) -> None:
- '''For debugging.'''
- qweight = (self.qweight[row, col // 8] >> (4 * (col & 7))) & 0xf
- if self.g_idx is not None:
- group = self.g_idx[col]
- else:
- group = int(col // self.groupsize())
- scale = self.scales[row, group]
- addend = self.addends[row, group]
- with np.printoptions(precision=None, suppress=True):
- print(f'scale:{scale} addend:{addend} qweight:{qweight}')
- print('possible values:', np.arange(16) * scale + addend)
- print('actual value:', qweight * scale + addend)
- def astype(self, data_type: DataType) -> Tensor:
- if isinstance(data_type, QuantizedDataType):
- assert self.g_idx is None and data_type.have_addends is True and data_type.have_g_idx is False
- return self.regroup(data_type.groupsize)
- dequantized = dequantize_q4(np.ascontiguousarray(self.qweight), self.scales, self.addends, self.g_idx)
- return UnquantizedTensor(dequantized).astype(data_type)
- def groupsize(self) -> int:
- assert self.addends.shape == self.scales.shape
- assert self.shape[1] % self.scales.shape[1] == 0
- return self.shape[1] // self.scales.shape[1]
- def regroup(self, new_groupsize: int = 32) -> 'GPTQForLLaMaQuantizedTensor':
- # Old versions of GPTQ-for-LLaMa shared scales and addends between all the
- # columns in a row. Newer versions share them between every set of N
- # columns in a row, where N is the `groupsize` parameter, usually 128. The
- # output format shares them between every set of 32 columns. To handle
- # this, duplicate scales and addends for every smaller group.
- # (In the above, 'row' and 'column' are in the sense of the output.)
- assert self.g_idx is None
- old_groupsize = self.groupsize()
- assert old_groupsize >= new_groupsize and old_groupsize % new_groupsize == 0, old_groupsize
- ret = copy.copy(self)
- ret.addends = self.addends.repeat(old_groupsize // new_groupsize, axis=1)
- ret.scales = self.scales.repeat(old_groupsize // new_groupsize, axis=1)
- ret.data_type = QuantizedDataType(groupsize=new_groupsize, have_addends=True, have_g_idx=False)
- return ret
- def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> Tensor:
- return DeferredPermutedTensor(self, n_head, n_kv_head)
- def to_ggml(self) -> GGMLQuantizedTensor:
- # The output format looks like this:
- # For each row:
- # For each group of 32 columns:
- # - addend (float32, 4 bytes)
- # - scale (float32, 4 bytes)
- # - weights (int4 * 32, 16 bytes)
- if self.groupsize() != 32:
- raise Exception("should have been regrouped before converting to ggml")
- # Since the output format is mixed between integers and floats, we have
- # to hackily view the floats as int32s just so numpy will let us
- # concatenate them.
- addends_view = self.addends.view(dtype=np.int32)[:, :, np.newaxis]
- scales_view = self.scales.view(dtype=np.int32)[:, :, np.newaxis]
- # Split into groups of 4 columns (i.e. 32 columns of quantized data):
- grouped = self.qweight.reshape([self.qweight.shape[0], self.qweight.shape[1] // 4, 4])
- # And concatenate:
- grouped = np.concatenate([scales_view, addends_view, grouped], axis=2, casting='no')
- return GGMLQuantizedTensor(grouped, self.shape, DT_Q4_1)
- @dataclass
- class LazyTensor:
- _load: Callable[[], Tensor]
- shape: List[int]
- data_type: DataType
- description: str
- def load(self) -> Tensor:
- ret = self._load()
- assert ret.data_type == self.data_type, (self.data_type, ret.data_type, self.description)
- return ret
- def astype(self, data_type: DataType) -> 'LazyTensor':
- self.validate_conversion_to(data_type)
- def load() -> Tensor:
- return self.load().astype(data_type)
- return LazyTensor(load, self.shape, data_type, f'convert({data_type}) {self.description}')
- def validate_conversion_to(self, data_type: DataType) -> None:
- if data_type == self.data_type:
- return
- if isinstance(data_type, QuantizedDataType):
- if not isinstance(self.data_type, QuantizedDataType):
- raise Exception(f"Can't turn an unquantized tensor into a quantized type ({data_type})")
- if self.data_type.have_g_idx:
- sys.stderr.write(
- "Error: Input uses the newer GPTQ-for-LLaMa format (using g_idx), "
- "which is not yet natively supported by GGML. "
- "For now you can still convert this model by passing `--outtype f16` to dequantize, "
- "but that will result in a much larger output file for no quality benefit.\n")
- sys.exit(1)
- assert not data_type.have_g_idx and self.data_type.have_addends and data_type.have_addends
- LazyModel = Dict[str, LazyTensor]
- @dataclass
- class ModelPlus:
- model: LazyModel
- paths: List[Path] # Where this was read from.
- format: Literal['ggml', 'torch', 'safetensors']
- vocab: Optional[Vocab] # For GGML models (which have vocab built in), the vocab.
- def merge_sharded(models: List[LazyModel]) -> LazyModel:
- # Original LLaMA models have each file contain one part of each tensor.
- # Use a dict instead of a set to preserve order.
- names = {name: None for model in models for name in model}
- def convert(name: str) -> LazyTensor:
- lazy_tensors: List[LazyTensor] = [model[name] for model in models]
- if len(lazy_tensors) == 1:
- # only one file; don't go through this procedure since there might
- # be quantized tensors
- return lazy_tensors[0]
- if len(lazy_tensors[0].shape) == 1:
- # the tensor is just duplicated in every file
- return lazy_tensors[0]
- if name.startswith('tok_embeddings.') or \
- name.endswith('.attention.wo.weight') or \
- name.endswith('.feed_forward.w2.weight'):
- # split by columns
- axis = 1
- else:
- # split by rows
- axis = 0
- concatenated_shape = list(lazy_tensors[0].shape)
- concatenated_shape[axis] = sum(tensor.shape[axis] for tensor in lazy_tensors)
- def load() -> UnquantizedTensor:
- ndarrays = [load_unquantized(tensor) for tensor in lazy_tensors]
- concatenated: NDArray = np.concatenate(ndarrays, axis=axis)
- return UnquantizedTensor(concatenated)
- description = 'concatenated[[' + '] | ['.join(lt.description for lt in lazy_tensors) + ']]'
- return LazyTensor(load, concatenated_shape, lazy_tensors[0].data_type, description)
- return {name: convert(name) for name in names}
- def merge_multifile_models(models_plus: List[ModelPlus]) -> ModelPlus:
- formats = set(mp.format for mp in models_plus)
- assert len(formats) == 1, "different formats?"
- format = formats.pop()
- paths = [path for mp in models_plus for path in mp.paths]
- # Use the first non-None vocab, if any.
- try:
- vocab = next(mp.vocab for mp in models_plus if mp.vocab is not None)
- except StopIteration:
- vocab = None
- if any("model.embed_tokens.weight" in mp.model for mp in models_plus):
- # Transformers models put different tensors in different files, but
- # don't split indivdual tensors between files.
- model: LazyModel = {}
- for mp in models_plus:
- model.update(mp.model)
- else:
- model = merge_sharded([mp.model for mp in models_plus])
- return ModelPlus(model, paths, format, vocab)
- def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_kv_head: Optional[int] = None) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().permute(n_head, n_kv_head)
- return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}, {n_kv_head}) ' + lazy_tensor.description)
- def permute_part_lazy(lazy_tensor: LazyTensor, n_part: int, n_head: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().permute_part(n_part, n_head)
- s = lazy_tensor.shape.copy()
- s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)
- def part_lazy(lazy_tensor: LazyTensor, n_part: int) -> LazyTensor:
- def load() -> Tensor:
- return lazy_tensor.load().part(n_part)
- s = lazy_tensor.shape.copy()
- s[0] = s[0] // 3
- return LazyTensor(load, s, lazy_tensor.data_type, 'part ' + lazy_tensor.description)
- def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
- out: LazyModel = {}
- out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
- out["norm.weight"] = model["model.norm.weight"]
- out["output.weight"] = model["lm_head.weight"]
- for i in itertools.count():
- if f"model.layers.{i}.self_attn.q_proj.weight" in model:
- out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
- out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head, params.n_kv_head)
- out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
- elif f"model.layers.{i}.self_attn.W_pack.weight" in model:
- out[f"layers.{i}.attention.wq.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 0, params.n_head)
- out[f"layers.{i}.attention.wk.weight"] = permute_part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 1, params.n_head)
- out[f"layers.{i}.attention.wv.weight"] = part_lazy(model[f"model.layers.{i}.self_attn.W_pack.weight"], 2)
- else:
- break
- out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]
- out[f"layers.{i}.feed_forward.w1.weight"] = model[f"model.layers.{i}.mlp.gate_proj.weight"]
- out[f"layers.{i}.feed_forward.w2.weight"] = model[f"model.layers.{i}.mlp.down_proj.weight"]
- out[f"layers.{i}.feed_forward.w3.weight"] = model[f"model.layers.{i}.mlp.up_proj.weight"]
- out[f"layers.{i}.attention_norm.weight"] = model[f"model.layers.{i}.input_layernorm.weight"]
- out[f"layers.{i}.ffn_norm.weight"] = model[f"model.layers.{i}.post_attention_layernorm.weight"]
- return out
- def handle_quantization(model: LazyModel) -> LazyModel:
- '''Convert a model with entries for 'foo.qweight', 'foo.scales', etc.
- (which resolve to UnquantizedTensors with the raw data) to one with entries
- for 'foo.weight' (which resolve to QuantizedTensors).
- '''
- def convert(name: str) -> Tuple[str, LazyTensor]:
- if name.endswith(".qweight"):
- namebase = name.rsplit('.', 1)[0]
- orig_name = namebase + ".weight"
- lazy_tensor = model[name]
- assert len(lazy_tensor.shape) == 2
- real_shape = [lazy_tensor.shape[1], lazy_tensor.shape[0] * 8]
- # Calculate type. This replicates the logic in
- # GPTQForLLaMaQuantizedTensor (which is executed when the modelis
- # actually loaded).
- lazy_scales = model[f"{namebase}.scales"]
- scales_width = 1 if lazy_scales.shape[1] == 1 else lazy_scales.shape[0]
- assert real_shape[1] % scales_width == 0
- groupsize = real_shape[1] // scales_width
- have_g_idx = f"{namebase}.g_idx" in model
- data_type = QuantizedDataType(groupsize=groupsize, have_addends=True, have_g_idx=have_g_idx)
- def load() -> Tensor:
- return GPTQForLLaMaQuantizedTensor(model, namebase)
- return (orig_name, LazyTensor(load, real_shape, data_type, '[quantized]'))
- else:
- return (name, model[name])
- return dict(convert(name) for name in model)
- # Functionality that simulates `torch.load` but where individual tensors are
- # only loaded into memory on demand, not all at once.
- # PyTorch can't do this natively as of time of writing:
- # - https://github.com/pytorch/pytorch/issues/64327
- # This allows us to de-shard without multiplying RAM usage, and also
- # conveniently drops the PyTorch dependency (though we still need numpy).
- @dataclass
- class LazyStorageKind:
- data_type: DataType
- @dataclass
- class LazyStorage:
- load: Callable[[int, int], NDArray]
- kind: LazyStorageKind
- description: str
- class LazyUnpickler(pickle.Unpickler):
- def __init__(self, fp: IO[bytes], data_base_path: str, zip_file: zipfile.ZipFile):
- super().__init__(fp)
- self.data_base_path = data_base_path
- self.zip_file = zip_file
- def persistent_load(self, pid: Any) -> Any:
- assert pid[0] == 'storage'
- assert isinstance(pid[1], LazyStorageKind)
- data_type = pid[1].data_type
- filename_stem = pid[2]
- filename = self.data_base_path + '/' + filename_stem
- info = self.zip_file.getinfo(filename)
- def load(offset: int, elm_count: int) -> NDArray:
- dtype = DATA_TYPE_TO_NUMPY.get(data_type)
- if dtype is None:
- raise Exception("tensor stored in unsupported format")
- fp = self.zip_file.open(info)
- fp.seek(offset * dtype.itemsize)
- size = elm_count * dtype.itemsize
- data = fp.read(size)
- assert len(data) == size
- return np.frombuffer(data, dtype)
- description = f'storage data_type={data_type} path-in-zip={filename} path={self.zip_file.filename}'
- return LazyStorage(load=load, kind=pid[1], description=description)
- # @staticmethod
- def lazy_rebuild_tensor_v2(storage: Any, storage_offset: Any, size: Any, stride: Any,
- # pyright: ignore[reportSelfClsParameterName]
- requires_grad: Any, backward_hooks: Any, metadata: Any = None) -> LazyTensor:
- assert isinstance(storage, LazyStorage)
- def load() -> UnquantizedTensor:
- elm_count = stride[0] * size[0]
- return UnquantizedTensor(storage.load(storage_offset, elm_count).reshape(size))
- description = f'pickled storage_offset={storage_offset} in {storage.description}'
- return LazyTensor(load, list(size), storage.kind.data_type, description)
- # @staticmethod
- def rebuild_from_type_v2(func, new_type, args, state):
- return func(*args)
- CLASSES: Dict[Any, Any] = {
- ('torch._tensor', '_rebuild_from_type_v2'): rebuild_from_type_v2,
- ('torch._utils', '_rebuild_tensor_v2'): lazy_rebuild_tensor_v2,
- ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16),
- ('torch', 'HalfStorage'): LazyStorageKind(DT_F16),
- ('torch', 'FloatStorage'): LazyStorageKind(DT_F32),
- ('torch', 'IntStorage'): LazyStorageKind(DT_I32),
- ('torch', 'Tensor'): LazyTensor,
- }
- def find_class(self, module: str, name: str) -> Any:
- if not module.startswith('torch'):
- return super().find_class(module, name)
- return self.CLASSES[(module, name)]
- def lazy_load_torch_file(outer_fp: IO[bytes], path: Path) -> ModelPlus:
- zf = zipfile.ZipFile(outer_fp)
- pickle_paths = [name for name in zf.namelist() if name.endswith('.pkl')]
- assert len(pickle_paths) == 1, pickle_paths
- pickle_fp = zf.open(pickle_paths[0], 'r')
- unpickler = LazyUnpickler(pickle_fp,
- data_base_path=pickle_paths[0][:-4],
- zip_file=zf)
- model = unpickler.load()
- as_dict = dict(model.items())
- return ModelPlus(model=as_dict, paths=[path], format='torch', vocab=None)
- SAFETENSORS_DATA_TYPES: Dict[str, DataType] = {
- 'BF16': DT_BF16,
- 'F16': DT_F16,
- 'F32': DT_F32,
- 'I32': DT_I32,
- }
- def lazy_load_safetensors_file(fp: IO[bytes], path: Path) -> ModelPlus:
- header_size, = struct.unpack('<Q', fp.read(8))
- header: Dict[str, Dict[str, Any]] = json.loads(fp.read(header_size))
- # Use mmap for the actual data to avoid race conditions with the file offset.
- mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
- byte_buf = mapped[8 + header_size:]
- def convert(info: Dict[str, Any]) -> LazyTensor:
- data_type = SAFETENSORS_DATA_TYPES[info['dtype']]
- numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
- shape: List[int] = info['shape']
- begin, end = info['data_offsets']
- assert 0 <= begin <= end <= len(byte_buf)
- assert end - begin == math.prod(shape) * numpy_dtype.itemsize
- buf = byte_buf[begin:end]
- def load() -> UnquantizedTensor:
- return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
- description = f'safetensors begin={begin} end={end} type={data_type} path={path}'
- return LazyTensor(load, shape, data_type, description)
- model = {name: convert(info) for (name, info) in header.items() if name != '__metadata__'}
- return ModelPlus(model=model, paths=[path], format='safetensors', vocab=None)
- def must_read(fp: IO[bytes], length: int) -> bytes:
- ret = fp.read(length)
- if len(ret) < length:
- raise Exception("unexpectedly reached end of file")
- return ret
- def lazy_load_ggml_file(fp: io.BufferedReader, path: Path) -> ModelPlus:
- magic = must_read(fp, 4)[::-1]
- if magic in (b'ggmf', b'ggjt'):
- version, = struct.unpack("i", must_read(fp, 4))
- assert version == 1
- else:
- assert magic == b'ggml'
- version = None
- n_vocab, n_embd, n_mult, n_head, n_layer, rot, file_type = struct.unpack('<7i', must_read(fp, 28))
- tokens: List[Tuple[bytes, float]] = []
- for i in range(n_vocab):
- if i == 32000:
- # HACK: GPT4All messed with the format without changing the magic
- # number. Specifically, they changed the vocab section to contain
- # `n_vocab - 1` tokens instead of `n_vocab` (i.e. omitting the
- # extra pad token). Try to detect if we're reading a file like
- # this.
- orig_pos = fp.tell()
- fp.seek(20, io.SEEK_CUR)
- is_gpt4all = fp.read(21) == b'tok_embeddings.weight'
- fp.seek(orig_pos)
- if is_gpt4all:
- break
- length, = struct.unpack("i", must_read(fp, 4))
- text = must_read(fp, length)
- if magic != b'ggml':
- score, = struct.unpack("f", must_read(fp, 4))
- tokens.append((text, score))
- vocab = GGMLVocab(tokens) if magic != b'ggml' else None
- model: LazyModel = {}
- # Use mmap for the actual data to avoid race conditions with the file offset.
- off = fp.raw.tell()
- mapped = memoryview(mmap.mmap(fp.fileno(), 0, access=mmap.ACCESS_READ))
- fp.raw.seek(off) # needed on Windows
- def read_tensor() -> None: # this is a function so that variables captured in `load` don't change
- shape_len, name_len, ftype = struct.unpack("iii", must_read(fp, 12))
- assert 0 <= shape_len <= 3
- shape: List[int] = list(struct.unpack(f"{shape_len}i", must_read(fp, 4 * shape_len)))
- shape = shape[::-1]
- name = must_read(fp, name_len).decode('utf-8')
- data_type = FTYPE_TO_DATA_TYPE[ftype]
- if magic == b'ggjt':
- fp.seek((fp.tell() + 31) & -32)
- if data_type == DT_Q4_1:
- # See GPTQForLLaMaQuantizedTensor.ggml_ndarray()
- size = 24 * (shape[1] // 32) * shape[0]
- elif data_type == DT_Q4_0:
- size = 20 * (shape[1] // 32) * shape[0]
- else:
- numpy_dtype = DATA_TYPE_TO_NUMPY[data_type]
- elm_count = math.prod(shape)
- size = elm_count * numpy_dtype.itemsize
- offset = fp.tell()
- buf = mapped[offset:offset+size]
- fp.seek(size, io.SEEK_CUR)
- def load() -> Tensor:
- if isinstance(data_type, QuantizedDataType):
- ndarray = np.frombuffer(buf, dtype=np.uint32)
- return GGMLQuantizedTensor(ndarray, shape, data_type)
- else:
- return UnquantizedTensor(np.frombuffer(buf, dtype=numpy_dtype).reshape(shape))
- description = f'ggml offset={offset} type={data_type} path={path}'
- model[name] = LazyTensor(load, shape, data_type, description)
- while fp.read(1) != b'':
- fp.seek(-1, io.SEEK_CUR)
- read_tensor()
- return ModelPlus(model=model, paths=[path], format='ggml', vocab=vocab)
- @functools.lru_cache(maxsize=None)
- def lazy_load_file(path: Path) -> ModelPlus:
- fp = open(path, 'rb')
- first8 = fp.read(8)
- fp.seek(0)
- if first8[:2] == b'PK':
- # A zip file, i.e. PyTorch format
- return lazy_load_torch_file(fp, path)
- elif first8[2:4] == b'gg':
- # GGML format
- return lazy_load_ggml_file(fp, path)
- elif struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024:
- # Probably safetensors
- return lazy_load_safetensors_file(fp, path)
- else:
- raise ValueError(f"unknown format: {path}")
- In = TypeVar('In')
- Out = TypeVar('Out')
- def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], concurrency: int) -> Iterable[Out]:
- '''Parallel map, but with backpressure. If the caller doesn't call `next`
- fast enough, this will stop calling `func` at some point rather than
- letting results pile up in memory. Specifically, there is a max of one
- output value buffered per thread.'''
- with concurrent.futures.ThreadPoolExecutor() as executor:
- futures: List[concurrent.futures.Future[Out]] = []
- items_rev = list(iterable)[::-1]
- for i in range(min(concurrency, len(items_rev))):
- futures.append(executor.submit(func, items_rev.pop()))
- while futures:
- result = futures.pop(0).result()
- if items_rev:
- futures.append(executor.submit(func, items_rev.pop()))
- yield result
- def check_vocab_size(params: Params, vocab: Vocab) -> None:
- if params.n_vocab != vocab.vocab_size:
- # GGMLVocab comes from the same file as the model so shouldn't mismatch:
- assert isinstance(vocab, SentencePieceVocab)
- if params.n_vocab == vocab.vocab_size_base:
- print("Ignoring added_tokens.json since model matches vocab size without it.")
- vocab.added_tokens_list = []
- vocab.vocab_size = vocab.vocab_size_base
- return
- msg = f"Vocab size mismatch (model has {params.n_vocab}, but {vocab.fname_tokenizer}"
- if vocab.fname_added_tokens is not None:
- msg += f" combined with {vocab.fname_added_tokens}"
- msg += f" has {vocab.vocab_size})."
- if vocab.vocab_size < params.n_vocab < vocab.vocab_size + 20 and vocab.fname_added_tokens is None:
- msg += f" Most likely you are missing added_tokens.json (should be in {vocab.fname_tokenizer.parent})."
- raise Exception(msg)
- class OutputFile:
- def __init__(self, fname_out: Path) -> None:
- self.fout = open(fname_out, "wb")
- def write_file_header(self, params: Params, file_type: GGMLFileType) -> None:
- self.fout.write(b"ggjt"[::-1]) # magic
- values = [
- 1, # file version
- params.n_vocab,
- params.n_embd,
- params.n_mult,
- params.n_head,
- params.n_layer,
- params.n_embd // params.n_head, # rot (obsolete)
- file_type.value,
- ]
- self.fout.write(struct.pack("i" * len(values), *values))
- def write_tensor_header(self, name: str, shape: Sequence[int], data_type: DataType) -> None:
- sname = name.encode('utf-8')
- self.fout.write(struct.pack("iii", len(shape), len(sname), DATA_TYPE_TO_FTYPE[data_type]))
- self.fout.write(struct.pack("i" * len(shape), *shape[::-1]))
- self.fout.write(sname)
- self.fout.seek((self.fout.tell() + 31) & -32)
- def write_vocab(self, vocab: Vocab) -> None:
- for text, score in vocab.all_tokens():
- self.fout.write(struct.pack("i", len(text)))
- self.fout.write(text)
- self.fout.write(struct.pack("f", score))
- @staticmethod
- def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
- of = OutputFile(fname_out)
- params = Params(n_vocab=vocab.vocab_size, n_embd=0, n_mult=0, n_head=1, n_layer=0)
- of = OutputFile(fname_out)
- of.write_file_header(params, file_type=GGMLFileType.AllF32)
- of.write_vocab(vocab)
- of.fout.close()
- @staticmethod
- def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None:
- check_vocab_size(params, vocab)
- of = OutputFile(fname_out)
- of.write_file_header(params, file_type)
- print("Writing vocab...")
- of.write_vocab(vocab)
- def do_item(item: Tuple[str, LazyTensor]) -> NDArray:
- name, lazy_tensor = item
- return lazy_tensor.load().to_ggml().ndarray
- ndarrays = bounded_parallel_map(do_item, model.items(), concurrency=8)
- for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)):
- size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape)
- padi = len(str(len(model)))
- print(f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type}")
- of.write_tensor_header(name, lazy_tensor.shape, lazy_tensor.data_type)
- ndarray.tofile(of.fout)
- of.fout.close()
- def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFileType:
- wq_type = model["layers.0.attention.wq.weight"].data_type
- if output_type_str == "f32" or (output_type_str is None and wq_type in (DT_F32, DT_BF16)):
- return GGMLFileType.AllF32
- if output_type_str == "f16" or (output_type_str is None and wq_type == DT_F16):
- return GGMLFileType.MostlyF16
- if output_type_str == "q4_1" or (output_type_str is None and isinstance(wq_type, QuantizedDataType) and
- wq_type.have_addends):
- if isinstance(model["output.weight"].data_type, QuantizedDataType):
- return GGMLFileType.MostlyQ4_1
- else:
- return GGMLFileType.PerLayerIsQ4_1
- if output_type_str == "q4_0" or (output_type_str is None and isinstance(wq_type, QuantizedDataType)):
- return GGMLFileType.MostlyQ4_0
- name_to_type = {name: lazy_tensor.data_type for (name, lazy_tensor) in model.items()}
- raise Exception(f"Unexpected combination of types: {name_to_type}")
- def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
- model = handle_quantization(model)
- if "lm_head.weight" in model:
- model = convert_transformers_to_orig(model, params)
- model = filter_and_sort_tensors(model)
- return model
- def convert_to_output_type(model: LazyModel, output_type: GGMLFileType) -> LazyModel:
- return {name: tensor.astype(output_type.type_for_tensor(name, tensor))
- for (name, tensor) in model.items()}
- def nth_multifile_path(path: Path, n: int) -> Optional[Path]:
- '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
- the nth path in the model.
- '''
- # Support the following patterns:
- patterns: List[Tuple[str, str]] = [
- # - x.00.pth, x.01.pth, etc.
- (r'\.[0-9]{2}\.pth$', f'.{n:02}.pth'),
- # - x-00001-of-00002.bin, x-00002-of-00002.bin, etc.
- (r'-[0-9]{5}-of-(.*)$', fr'-{n:05}-of-\1'),
- # x.bin, x.bin.1, etc.
- (r'(\.[0-9]+)?$', r'\1' if n == 0 else fr'\1.{n}')
- ]
- for regex, replacement in patterns:
- if re.search(regex, path.name):
- new_path = path.with_name(re.sub(regex, replacement, path.name))
- if new_path.exists():
- return new_path
- return None
- def find_multifile_paths(path: Path) -> List[Path]:
- '''Given any path belonging to a multi-file model (e.g. foo.bin.1), return
- the whole list of paths in the model.
- '''
- ret: List[Path] = []
- for i in itertools.count():
- nth_path = nth_multifile_path(path, i)
- if nth_path is None:
- break
- ret.append(nth_path)
- if not ret:
- # No matches. This should only happen if the file was named, e.g.,
- # foo.0, and there was no file named foo. Oh well, try to process it
- # as a single file.
- return [path]
- return ret
- def load_some_model(path: Path) -> ModelPlus:
- '''Load a model of any supported format.'''
- # Be extra-friendly and accept either a file or a directory:
- if path.is_dir():
- # Check if it's a set of safetensors files first
- files = list(path.glob("model-00001-of-*.safetensors"))
- if not files:
- # Try the PyTorch patterns too, with lower priority
- globs = ["consolidated.00.pth", "pytorch_model-00001-of-*.bin", "*.pt", "pytorch_model.bin"]
- files = [file for glob in globs for file in path.glob(glob)]
- if not files:
- # Try GGML too, but with lower priority, since if both a non-GGML
- # model and a GGML model exist in the same directory, we assume the
- # latter was converted from the former.
- files = list(path.glob("ggml-model*.bin*"))
- if not files:
- raise Exception(f"Can't find model in directory {path}")
- if len(files) > 1:
- raise Exception(f"Found multiple models in {path}, not sure which to pick: {files}")
- path = files[0]
- paths = find_multifile_paths(path)
- models_plus: List[ModelPlus] = []
- for path in paths:
- print(f"Loading model file {path}")
- models_plus.append(lazy_load_file(path))
- model_plus = merge_multifile_models(models_plus)
- return model_plus
- def filter_and_sort_tensors(model: LazyModel) -> LazyModel:
- return {name: model[name] for name in TENSORS_LIST if name in model}
- def load_vocab(path: Path, vocabtype: Optional[str]) -> SentencePieceVocab:
- print(f"vocabtype: {vocabtype}")
- # Be extra-friendly and accept either a file or a directory. Also, if it's
- # a directory, it might be the model directory, and tokenizer.model might
- # be in the parent of that.
- if path.is_dir():
- vocab_file = "tokenizer.model"
- if vocabtype == 'bpe':
- vocab_file = "vocab.json"
- path2 = path / vocab_file
- # Use `.parent` instead of /.. to handle the symlink case better.
- path3 = path.parent / vocab_file
- if path2.exists():
- path = path2
- elif path3.exists():
- path = path3
- else:
- raise FileNotFoundError(
- f"Could not find tokenizer.model in {path} or its parent; "
- "if it's in another directory, pass the directory as --vocab-dir")
- added_tokens_path = path.parent / "added_tokens.json"
- print(f"Loading vocab file {path}")
- return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None,
- vocabtype)
- def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
- namestr = {
- GGMLFileType.AllF32: "f32",
- GGMLFileType.MostlyF16: "f16",
- GGMLFileType.MostlyQ4_0: "q4_0",
- GGMLFileType.MostlyQ4_1: "q4_1",
- GGMLFileType.PerLayerIsQ4_1: "q4_1",
- }[file_type]
- ret = model_paths[0].parent / f"ggml-model-{namestr}.bin"
- if ret in model_paths:
- sys.stderr.write(
- f"Error: Default output path ({ret}) would overwrite the input. "
- "Please explicitly specify a path using --outfile.\n")
- sys.exit(1)
- return ret
- def do_dump_model(model_plus: ModelPlus) -> None:
- print(f"model_plus.paths = {model_plus.paths!r}")
- print(f"model_plus.format = {model_plus.format!r}")
- print(f"model_plus.vocab = {model_plus.vocab!r}")
- for name, lazy_tensor in model_plus.model.items():
- print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}")
- def main(args_in: Optional[List[str]] = None) -> None:
- parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
- parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
- parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
- parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
- parser.add_argument("--outtype", choices=["f32", "f16", "q4_1", "q4_0"], help="output format (default: based on input)")
- parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file")
- parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
- parser.add_argument("model", type=Path,
- help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)")
- parser.add_argument("--vocabtype", default='spm', choices=["spm", "bpe"], help="vocab format (default: spm)")
- args = parser.parse_args(args_in)
- vocab: Vocab
- if args.dump_single:
- model_plus = lazy_load_file(args.model)
- do_dump_model(model_plus)
- elif args.vocab_only:
- vocab = load_vocab(args.vocab_dir or args.model, args.vocabtype)
- assert args.outfile, "need --outfile if using --vocab-only"
- outfile = args.outfile
- OutputFile.write_vocab_only(outfile, vocab)
- print(f"Wrote {outfile}")
- else:
- model_plus = load_some_model(args.model)
- if args.dump:
- do_dump_model(model_plus)
- return
- if model_plus.vocab is not None and args.vocab_dir is None:
- vocab = model_plus.vocab
- else:
- vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
- vocab = load_vocab(vocab_dir, args.vocabtype)
- params = Params.load(model_plus)
- model = model_plus.model
- model = do_necessary_conversions(model, params)
- output_type = pick_output_type(model, args.outtype)
- model = convert_to_output_type(model, output_type)
- outfile = args.outfile or default_outfile(model_plus.paths, output_type)
- OutputFile.write_all(outfile, params, output_type, model, vocab)
- print(f"Wrote {outfile}")
- if __name__ == '__main__':
- main()
|