1
0

finetune.cpp 3.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596
  1. #include "arg.h"
  2. #include "common.h"
  3. #include "log.h"
  4. #include "llama.h"
  5. #include <cmath>
  6. #include <cstdio>
  7. #include <cstring>
  8. #include <ctime>
  9. #include <vector>
  10. #if defined(_MSC_VER)
  11. #pragma warning(disable: 4244 4267) // possible loss of data
  12. #endif
  13. int main(int argc, char ** argv) {
  14. common_params params;
  15. params.escape = false;
  16. if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_FINETUNE)) {
  17. return 1;
  18. }
  19. if (params.use_mmap) {
  20. LOG_INF("%s: force disabling memory mapping because it would result in-read-only pointers to the weights\n",
  21. __func__);
  22. params.use_mmap = false;
  23. }
  24. if (params.cache_type_k != GGML_TYPE_F32) {
  25. LOG_INF("%s: force changing k cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
  26. params.cache_type_k = GGML_TYPE_F32;
  27. }
  28. if (params.cache_type_v != GGML_TYPE_F32) {
  29. LOG_INF("%s: force changing v cache type to f32 due to a lack of f16 support for OUT_PROD\n", __func__);
  30. params.cache_type_v = GGML_TYPE_F32;
  31. }
  32. common_init();
  33. llama_backend_init();
  34. llama_numa_init(params.numa);
  35. // load the model and apply lora adapter, if any
  36. common_init_result llama_init = common_init_from_params(params);
  37. llama_model_ptr & model = llama_init.model;
  38. llama_context_ptr & ctx = llama_init.context;
  39. if (model == NULL) {
  40. LOG_ERR("%s: unable to load model\n", __func__);
  41. return 1;
  42. }
  43. // print system information
  44. {
  45. LOG_INF("\n");
  46. LOG_INF("%s\n", common_params_get_system_info(params).c_str());
  47. }
  48. std::vector<llama_token> tokens = common_tokenize(ctx.get(), params.prompt, true);
  49. ggml_opt_dataset_t dataset = common_opt_dataset_init(ctx.get(), tokens, llama_n_ctx(ctx.get()) / 2);
  50. struct lr_opt & lr = params.lr;
  51. LOG_INF("-optimizer %s -lr0 %.2g -wd %.2g -lr-min %.2g -min-epochs %.2g -epochs %d -period %.2g -val %.2g\n",
  52. ggml_opt_optimizer_name(params.optimizer), (double) lr.lr0, (double) lr.wd, (double) lr.lr_min, (double) lr.decay_epochs,
  53. (unsigned) lr.epochs, (double) params.n_batch / params.n_ubatch, (double) params.val_split);
  54. struct llama_opt_params lopt_params{
  55. /*n_ctx_train =*/0,
  56. /*param_filter =*/llama_opt_param_filter_all,
  57. /*param_filter_ud =*/nullptr,
  58. /*get_opt_pars =*/common_opt_lr_pars,
  59. /*get_opt_pars_ud =*/&params.lr,
  60. /*optimizer_type =*/params.optimizer,
  61. };
  62. llama_opt_init(ctx.get(), model.get(), lopt_params);
  63. const int64_t idata_split = ggml_opt_dataset_ndata(dataset) * (1.0f - params.val_split);
  64. ggml_opt_result_t result_train = ggml_opt_result_init();
  65. ggml_opt_result_t result_eval = ggml_opt_result_init();
  66. for (lr.epoch = 0; lr.epoch < lr.epochs; ++lr.epoch) {
  67. llama_opt_epoch(ctx.get(), dataset, result_train, result_eval, idata_split,
  68. ggml_opt_epoch_callback_progress_bar, ggml_opt_epoch_callback_progress_bar);
  69. fprintf(stderr, "\n");
  70. ggml_opt_result_reset(result_train);
  71. ggml_opt_result_reset(result_eval);
  72. }
  73. ggml_opt_result_free(result_train);
  74. ggml_opt_result_free(result_eval);
  75. llama_model_save_to_file(model.get(), params.out_file.c_str());
  76. llama_backend_free();
  77. return 0;
  78. }