convert_hf_to_gguf.py 427 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933893489358936893789388939894089418942894389448945894689478948894989508951895289538954895589568957895889598960896189628963896489658966896789688969897089718972897389748975897689778978897989808981898289838984898589868987898889898990899189928993899489958996899789988999900090019002900390049005900690079008900990109011901290139014901590169017901890199020902190229023902490259026902790289029903090319032903390349035903690379038903990409041904290439044904590469047904890499050905190529053905490559056905790589059906090619062906390649065906690679068906990709071907290739074907590769077907890799080908190829083908490859086908790889089909090919092909390949095909690979098909991009101910291039104910591069107910891099110911191129113911491159116911791189119912091219122912391249125912691279128912991309131913291339134913591369137913891399140914191429143914491459146914791489149915091519152915391549155915691579158915991609161916291639164916591669167916891699170917191729173917491759176917791789179918091819182918391849185918691879188918991909191919291939194919591969197919891999200920192029203920492059206920792089209921092119212921392149215921692179218921992209221922292239224922592269227922892299230923192329233923492359236923792389239924092419242924392449245924692479248924992509251925292539254925592569257925892599260926192629263926492659266926792689269927092719272927392749275927692779278927992809281928292839284928592869287928892899290929192929293929492959296929792989299930093019302930393049305930693079308930993109311931293139314931593169317931893199320932193229323932493259326932793289329933093319332933393349335933693379338933993409341934293439344934593469347934893499350935193529353935493559356935793589359936093619362936393649365
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. from mistral_common.tokens.tokenizers.base import TokenizerVersion
  28. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN, DATASET_STD
  29. from mistral_common.tokens.tokenizers.tekken import Tekkenizer
  30. from mistral_common.tokens.tokenizers.sentencepiece import (
  31. SentencePieceTokenizer,
  32. )
  33. logger = logging.getLogger("hf-to-gguf")
  34. ###### MODEL DEFINITIONS ######
  35. class SentencePieceTokenTypes(IntEnum):
  36. NORMAL = 1
  37. UNKNOWN = 2
  38. CONTROL = 3
  39. USER_DEFINED = 4
  40. UNUSED = 5
  41. BYTE = 6
  42. class ModelType(IntEnum):
  43. TEXT = 1
  44. MMPROJ = 2
  45. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  46. class ModelBase:
  47. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  48. ModelType.TEXT: {},
  49. ModelType.MMPROJ: {},
  50. }
  51. dir_model: Path
  52. ftype: gguf.LlamaFileType
  53. fname_out: Path
  54. is_big_endian: bool
  55. endianess: gguf.GGUFEndian
  56. use_temp_file: bool
  57. lazy: bool
  58. dry_run: bool
  59. part_names: list[str]
  60. is_safetensors: bool
  61. hparams: dict[str, Any]
  62. tensor_names: set[str] | None
  63. gguf_writer: gguf.GGUFWriter
  64. model_name: str | None
  65. metadata_override: Path | None
  66. dir_model_card: Path
  67. remote_hf_model_id: str | None
  68. # subclasses should define this!
  69. model_arch: gguf.MODEL_ARCH
  70. # subclasses should initialize this!
  71. block_count: int
  72. tensor_map: gguf.TensorNameMap
  73. # Mistral format specifics
  74. is_mistral_format: bool = False
  75. disable_mistral_community_chat_template: bool = False
  76. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  77. use_temp_file: bool = False, eager: bool = False,
  78. metadata_override: Path | None = None, model_name: str | None = None,
  79. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  80. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  81. disable_mistral_community_chat_template: bool = False):
  82. if type(self) is ModelBase or \
  83. type(self) is TextModel or \
  84. type(self) is MmprojModel:
  85. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  86. self.dir_model = dir_model
  87. self.ftype = ftype
  88. self.fname_out = fname_out
  89. self.is_big_endian = is_big_endian
  90. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  91. self.use_temp_file = use_temp_file
  92. self.lazy = not eager or (remote_hf_model_id is not None)
  93. self.dry_run = dry_run
  94. self.remote_hf_model_id = remote_hf_model_id
  95. if remote_hf_model_id is not None:
  96. self.is_safetensors = True
  97. def get_remote_tensors() -> Iterator[tuple[str, Tensor]]:
  98. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  99. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  100. self.tensor_names = set(name for name in remote_tensors.keys())
  101. for name, remote_tensor in remote_tensors.items():
  102. yield (name, LazyTorchTensor.from_remote_tensor(remote_tensor))
  103. self.get_tensors = get_remote_tensors
  104. else:
  105. prefix = "model" if not self.is_mistral_format else "consolidated"
  106. self.part_names = ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors")
  107. self.is_safetensors = len(self.part_names) > 0
  108. if not self.is_safetensors:
  109. self.part_names = ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  110. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  111. self.tensor_names = None
  112. self.metadata_override = metadata_override
  113. self.model_name = model_name
  114. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  115. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  116. if self.ftype == gguf.LlamaFileType.GUESSED:
  117. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  118. _, first_tensor = next(self.get_tensors())
  119. if first_tensor.dtype == torch.float16:
  120. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  121. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  122. else:
  123. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  124. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  125. # Configure GGUF Writer
  126. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  127. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  128. # Mistral specific
  129. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  130. @classmethod
  131. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  132. stem, suffix = path.stem, path.suffix
  133. new_name = f"{prefix}{stem}{suffix}"
  134. return path.with_name(new_name)
  135. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  136. key = next((k for k in keys if k in self.hparams), None)
  137. if key is not None:
  138. return self.hparams[key]
  139. if optional:
  140. return None
  141. raise KeyError(f"could not find any of: {keys}")
  142. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  143. tensor_names_from_parts: set[str] = set()
  144. if not self.is_mistral_format:
  145. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  146. index_name += ".index.json"
  147. index_file = self.dir_model / index_name
  148. if index_file.is_file():
  149. self.tensor_names = set()
  150. logger.info(f"gguf: loading model weight map from '{index_name}'")
  151. with open(index_file, "r", encoding="utf-8") as f:
  152. index: dict[str, Any] = json.load(f)
  153. weight_map = index.get("weight_map")
  154. if weight_map is None or not isinstance(weight_map, dict):
  155. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  156. self.tensor_names.update(weight_map.keys())
  157. else:
  158. self.tensor_names = tensor_names_from_parts
  159. weight_map = {}
  160. else:
  161. self.tensor_names = tensor_names_from_parts
  162. weight_map = {}
  163. for part_name in self.part_names:
  164. logger.info(f"gguf: loading model part '{part_name}'")
  165. ctx: ContextManager[Any]
  166. if self.is_safetensors:
  167. from safetensors import safe_open
  168. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  169. else:
  170. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  171. with ctx as model_part:
  172. tensor_names_from_parts.update(model_part.keys())
  173. for name in model_part.keys():
  174. if self.is_safetensors:
  175. if self.lazy:
  176. data = model_part.get_slice(name)
  177. data = LazyTorchTensor.from_safetensors_slice(data)
  178. else:
  179. data = model_part.get_tensor(name)
  180. else:
  181. data = model_part[name]
  182. if self.lazy:
  183. data = LazyTorchTensor.from_eager(data)
  184. yield name, data
  185. # verify tensor name presence and identify potentially missing files
  186. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  187. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  188. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  189. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  190. if len(extra) == 0 and len(missing_files) > 0:
  191. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  192. f"Missing tensors: {missing}")
  193. else:
  194. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  195. f"Missing tensors: {missing}\n"
  196. f"Extra tensors: {extra}")
  197. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  198. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  199. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  200. name: str = gguf.TENSOR_NAMES[key]
  201. if "{bid}" in name:
  202. assert bid is not None
  203. name = name.format(bid=bid)
  204. return name + suffix
  205. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  206. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  207. return False
  208. key_name: str = gguf.TENSOR_NAMES[key]
  209. if "{bid}" in key_name:
  210. if bid is None:
  211. return False
  212. key_name = key_name.format(bid=bid)
  213. else:
  214. if bid is not None:
  215. return False
  216. return name == (key_name + suffix)
  217. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  218. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  219. if new_name is None:
  220. raise ValueError(f"Can not map tensor {name!r}")
  221. return new_name
  222. def set_gguf_parameters(self):
  223. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  225. del bid # unused
  226. return [(self.map_tensor_name(name), data_torch)]
  227. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  228. del name, new_name, bid, n_dims # unused
  229. return False
  230. # some models need extra generated tensors (like rope_freqs)
  231. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  232. return ()
  233. def prepare_tensors(self):
  234. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  235. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  236. # we don't need these
  237. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  238. continue
  239. old_dtype = data_torch.dtype
  240. # convert any unsupported data types to float32
  241. if data_torch.dtype not in (torch.float16, torch.float32):
  242. data_torch = data_torch.to(torch.float32)
  243. # use the first number-like part of the tensor name as the block id
  244. bid = None
  245. for part in name.split("."):
  246. if part.isdecimal():
  247. bid = int(part)
  248. break
  249. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  250. # TODO: why do we squeeze here?
  251. # data = data_torch.squeeze().numpy()
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  278. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  279. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  280. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  281. )
  282. )
  283. or not new_name.endswith(".weight")
  284. ):
  285. data_qtype = gguf.GGMLQuantizationType.F32
  286. if data_qtype is False and any(
  287. self.match_model_tensor_name(new_name, key, bid)
  288. for key in (
  289. gguf.MODEL_TENSOR.TOKEN_EMBD,
  290. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  291. gguf.MODEL_TENSOR.OUTPUT,
  292. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  293. gguf.MODEL_TENSOR.LAUREL_L,
  294. gguf.MODEL_TENSOR.LAUREL_R,
  295. )
  296. ):
  297. if self.ftype in (
  298. gguf.LlamaFileType.MOSTLY_TQ1_0,
  299. gguf.LlamaFileType.MOSTLY_TQ2_0,
  300. ):
  301. # TODO: use Q4_K and Q6_K
  302. data_qtype = gguf.GGMLQuantizationType.F16
  303. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  304. if isinstance(data_qtype, bool):
  305. if self.ftype == gguf.LlamaFileType.ALL_F32:
  306. data_qtype = gguf.GGMLQuantizationType.F32
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  308. data_qtype = gguf.GGMLQuantizationType.F16
  309. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  310. data_qtype = gguf.GGMLQuantizationType.BF16
  311. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  312. data_qtype = gguf.GGMLQuantizationType.Q8_0
  313. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  314. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  315. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  316. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  317. else:
  318. raise ValueError(f"Unknown file type: {self.ftype.name}")
  319. try:
  320. data = gguf.quants.quantize(data, data_qtype)
  321. except gguf.QuantError as e:
  322. logger.warning("%s, %s", e, "falling back to F16")
  323. data_qtype = gguf.GGMLQuantizationType.F16
  324. data = gguf.quants.quantize(data, data_qtype)
  325. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  326. # reverse shape to make it similar to the internal ggml dimension order
  327. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  328. # n_dims is implicit in the shape
  329. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  330. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  331. def set_type(self):
  332. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  333. def prepare_metadata(self, vocab_only: bool):
  334. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  335. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  336. # If we are using HF model id, set the metadata name to the model id
  337. if self.remote_hf_model_id:
  338. self.metadata.name = self.remote_hf_model_id
  339. # Fallback to model directory name if metadata name is still missing
  340. if self.metadata.name is None:
  341. self.metadata.name = self.dir_model.name
  342. # Generate parameter weight class (useful for leader boards) if not yet determined
  343. if self.metadata.size_label is None and total_params > 0:
  344. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  345. self.set_type()
  346. logger.info("Set meta model")
  347. self.metadata.set_gguf_meta_model(self.gguf_writer)
  348. logger.info("Set model parameters")
  349. self.set_gguf_parameters()
  350. logger.info("Set model quantization version")
  351. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  352. def write_vocab(self):
  353. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  354. def write(self):
  355. self.prepare_tensors()
  356. self.prepare_metadata(vocab_only=False)
  357. self.gguf_writer.write_header_to_file(path=self.fname_out)
  358. self.gguf_writer.write_kv_data_to_file()
  359. self.gguf_writer.write_tensors_to_file(progress=True)
  360. self.gguf_writer.close()
  361. @staticmethod
  362. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  363. part_names: list[str] = []
  364. for filename in os.listdir(dir_model):
  365. if filename.startswith(prefix) and filename.endswith(suffix):
  366. part_names.append(filename)
  367. part_names.sort()
  368. return part_names
  369. @staticmethod
  370. def load_hparams(dir_model: Path, is_mistral_format: bool):
  371. if is_mistral_format:
  372. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  373. config = json.load(f)
  374. return config
  375. try:
  376. # for security reason, we don't allow loading remote code by default
  377. # if a model need remote code, we will fallback to config.json
  378. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  379. except Exception as e:
  380. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  381. logger.warning("Trying to load config.json instead")
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. config = json.load(f)
  384. if "llm_config" in config:
  385. # rename for InternVL
  386. config["text_config"] = config["llm_config"]
  387. if "thinker_config" in config:
  388. # rename for Qwen2.5-Omni
  389. config["text_config"] = config["thinker_config"]["text_config"]
  390. return config
  391. @classmethod
  392. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  393. assert names
  394. def func(modelcls: AnyModel) -> AnyModel:
  395. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  396. for name in names:
  397. cls._model_classes[model_type][name] = modelcls
  398. return modelcls
  399. return func
  400. @classmethod
  401. def print_registered_models(cls):
  402. for model_type, model_classes in cls._model_classes.items():
  403. logger.error(f"{model_type.name} models:")
  404. for name in sorted(model_classes.keys()):
  405. logger.error(f" - {name}")
  406. @classmethod
  407. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  408. try:
  409. return cls._model_classes[model_type][arch]
  410. except KeyError:
  411. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  412. class TextModel(ModelBase):
  413. model_type = ModelType.TEXT
  414. hf_arch: str
  415. def __init__(self, *args, **kwargs):
  416. super().__init__(*args, **kwargs)
  417. if not self.is_mistral_format:
  418. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  419. else:
  420. self.hf_arch = ""
  421. if "text_config" in self.hparams:
  422. # move the text_config to the root level
  423. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  424. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  425. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  426. @classmethod
  427. def __init_subclass__(cls):
  428. # can't use an abstract property, because overriding it without type errors
  429. # would require using decorated functions instead of simply defining the property
  430. if "model_arch" not in cls.__dict__:
  431. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  432. def set_vocab(self):
  433. self._set_vocab_gpt2()
  434. def prepare_metadata(self, vocab_only: bool):
  435. super().prepare_metadata(vocab_only=vocab_only)
  436. total_params = self.gguf_writer.get_total_parameter_count()[0]
  437. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  438. output_type: str = self.ftype.name.partition("_")[2]
  439. # Filename Output
  440. if self.fname_out.is_dir():
  441. # Generate default filename based on model specification and available metadata
  442. if not vocab_only:
  443. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  444. else:
  445. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  446. # Use the default filename
  447. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  448. else:
  449. # Output path is a custom defined templated filename
  450. # Note: `not is_dir()` is used because `.is_file()` will not detect
  451. # file template strings as it doesn't actually exist as a file
  452. # Process templated file name with the output ftype, useful with the "auto" ftype
  453. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  454. logger.info("Set model tokenizer")
  455. self.set_vocab()
  456. def set_gguf_parameters(self):
  457. self.gguf_writer.add_block_count(self.block_count)
  458. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  459. self.gguf_writer.add_context_length(n_ctx)
  460. logger.info(f"gguf: context length = {n_ctx}")
  461. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  462. self.gguf_writer.add_embedding_length(n_embd)
  463. logger.info(f"gguf: embedding length = {n_embd}")
  464. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  465. self.gguf_writer.add_feed_forward_length(n_ff)
  466. logger.info(f"gguf: feed forward length = {n_ff}")
  467. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  468. self.gguf_writer.add_head_count(n_head)
  469. logger.info(f"gguf: head count = {n_head}")
  470. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  471. self.gguf_writer.add_head_count_kv(n_head_kv)
  472. logger.info(f"gguf: key-value head count = {n_head_kv}")
  473. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  474. self.gguf_writer.add_rope_freq_base(rope_theta)
  475. logger.info(f"gguf: rope theta = {rope_theta}")
  476. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  477. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  478. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  479. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  480. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  481. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  482. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  483. self.gguf_writer.add_expert_count(n_experts)
  484. logger.info(f"gguf: expert count = {n_experts}")
  485. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  486. self.gguf_writer.add_expert_used_count(n_experts_used)
  487. logger.info(f"gguf: experts used count = {n_experts_used}")
  488. if (head_dim := self.hparams.get("head_dim")) is not None:
  489. self.gguf_writer.add_key_length(head_dim)
  490. self.gguf_writer.add_value_length(head_dim)
  491. self.gguf_writer.add_file_type(self.ftype)
  492. logger.info(f"gguf: file type = {self.ftype}")
  493. def write_vocab(self):
  494. if len(self.gguf_writer.tensors) != 1:
  495. raise ValueError('Splitting the vocabulary is not supported')
  496. self.prepare_metadata(vocab_only=True)
  497. self.gguf_writer.write_header_to_file(path=self.fname_out)
  498. self.gguf_writer.write_kv_data_to_file()
  499. self.gguf_writer.close()
  500. def does_token_look_special(self, token: str | bytes) -> bool:
  501. if isinstance(token, (bytes, bytearray)):
  502. token_text = token.decode(encoding="utf-8")
  503. elif isinstance(token, memoryview):
  504. token_text = token.tobytes().decode(encoding="utf-8")
  505. else:
  506. token_text = token
  507. # Some models mark some added tokens which ought to be control tokens as not special.
  508. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  509. seems_special = token_text in (
  510. "<pad>", # deepseek-coder
  511. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  512. )
  513. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  514. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  515. # TODO: should these be marked as UNUSED instead? (maybe not)
  516. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  517. return seems_special
  518. # used for GPT-2 BPE and WordPiece vocabs
  519. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  520. tokens: list[str] = []
  521. toktypes: list[int] = []
  522. from transformers import AutoTokenizer
  523. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  524. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  525. assert max(tokenizer.vocab.values()) < vocab_size
  526. tokpre = self.get_vocab_base_pre(tokenizer)
  527. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  528. added_vocab = tokenizer.get_added_vocab()
  529. added_tokens_decoder = tokenizer.added_tokens_decoder
  530. for i in range(vocab_size):
  531. if i not in reverse_vocab:
  532. tokens.append(f"[PAD{i}]")
  533. toktypes.append(gguf.TokenType.UNUSED)
  534. else:
  535. token: str = reverse_vocab[i]
  536. if token in added_vocab:
  537. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  538. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  539. if not added_tokens_decoder[i].normalized:
  540. previous_token = token
  541. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  542. if previous_token != token:
  543. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  544. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  545. toktypes.append(gguf.TokenType.CONTROL)
  546. else:
  547. # NOTE: this was added for Gemma.
  548. # Encoding and decoding the tokens above isn't sufficient for this case.
  549. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  550. toktypes.append(gguf.TokenType.USER_DEFINED)
  551. else:
  552. toktypes.append(gguf.TokenType.NORMAL)
  553. tokens.append(token)
  554. return tokens, toktypes, tokpre
  555. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  556. # do not modify it manually!
  557. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  558. # Marker: Start get_vocab_base_pre
  559. def get_vocab_base_pre(self, tokenizer) -> str:
  560. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  561. # is specific for the BPE pre-tokenizer used by the model
  562. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  563. # use in llama.cpp to implement the same pre-tokenizer
  564. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  565. chktok = tokenizer.encode(chktxt)
  566. chkhsh = sha256(str(chktok).encode()).hexdigest()
  567. logger.debug(f"chktok: {chktok}")
  568. logger.debug(f"chkhsh: {chkhsh}")
  569. res = None
  570. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  571. # or pull the latest version of the model from Huggingface
  572. # don't edit the hashes manually!
  573. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  574. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  575. res = "chatglm-bpe"
  576. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  577. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  578. res = "chatglm-bpe"
  579. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  580. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  581. res = "glm4"
  582. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  583. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  584. res = "glm4"
  585. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  586. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  587. res = "minerva-7b"
  588. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  589. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  590. res = "hunyuan"
  591. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  592. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  593. res = "hunyuan-dense"
  594. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  595. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  596. res = "falcon-h1"
  597. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  598. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  599. res = "falcon-h1"
  600. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  601. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  602. res = "falcon-h1"
  603. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  604. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  605. res = "falcon-h1"
  606. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  607. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  608. res = "kimi-k2"
  609. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  610. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  611. res = "qwen2"
  612. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  613. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  614. res = "grok-2"
  615. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  616. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  617. res = "llama-bpe"
  618. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  619. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  620. res = "deepseek-llm"
  621. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  622. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  623. res = "deepseek-coder"
  624. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  625. # ref: https://huggingface.co/tiiuae/falcon-7b
  626. res = "falcon"
  627. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  628. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  629. res = "bert-bge"
  630. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  631. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  632. res = "falcon3"
  633. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  634. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  635. res = "bert-bge-large"
  636. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  637. # ref: https://huggingface.co/mosaicml/mpt-7b
  638. res = "mpt"
  639. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  640. # ref: https://huggingface.co/bigcode/starcoder2-3b
  641. res = "starcoder"
  642. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  643. # ref: https://huggingface.co/openai-community/gpt2
  644. res = "gpt-2"
  645. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  646. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  647. res = "stablelm2"
  648. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  649. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  650. res = "refact"
  651. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  652. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  653. res = "command-r"
  654. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  655. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  656. res = "qwen2"
  657. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  658. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  659. res = "olmo"
  660. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  661. # ref: https://huggingface.co/databricks/dbrx-base
  662. res = "dbrx"
  663. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  664. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  665. res = "jina-v1-en"
  666. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  667. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  668. res = "jina-v2-en"
  669. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  670. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  671. res = "jina-v2-es"
  672. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  673. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  674. res = "jina-v2-de"
  675. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  676. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  677. res = "smaug-bpe"
  678. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  679. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  680. res = "poro-chat"
  681. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  682. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  683. res = "jina-v2-code"
  684. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  685. # ref: https://huggingface.co/LumiOpen/Viking-7B
  686. res = "viking"
  687. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  688. # ref: https://huggingface.co/core42/jais-13b
  689. res = "jais"
  690. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  691. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  692. res = "codeshell"
  693. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  694. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  695. res = "tekken"
  696. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  697. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  698. res = "smollm"
  699. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  700. # ref: https://huggingface.co/bigscience/bloom
  701. res = "bloom"
  702. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  703. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  704. res = "gpt3-finnish"
  705. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  706. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  707. res = "exaone"
  708. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  709. # ref: https://huggingface.co/microsoft/phi-2
  710. res = "phi-2"
  711. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  712. # ref: https://huggingface.co/facebook/chameleon-7b
  713. res = "chameleon"
  714. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  715. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  716. res = "roberta-bpe"
  717. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  718. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  719. res = "gigachat"
  720. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  721. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  722. res = "megrez"
  723. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  724. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  725. res = "deepseek-v3"
  726. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  727. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  728. res = "deepseek-r1-qwen"
  729. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  730. # ref: https://huggingface.co/Xenova/gpt-4o
  731. res = "gpt-4o"
  732. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  733. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  734. res = "superbpe"
  735. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  736. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  737. res = "trillion"
  738. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  739. # ref: https://huggingface.co/inclusionAI/Ling-lite
  740. res = "bailingmoe"
  741. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  742. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  743. res = "llama4"
  744. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  745. # ref: https://huggingface.co/mistral-community/pixtral-12b
  746. res = "pixtral"
  747. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  748. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  749. res = "seed-coder"
  750. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  751. # ref: https://huggingface.co/skt/A.X-4.0
  752. res = "a.x-4.0"
  753. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  754. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  755. res = "midm-2.0"
  756. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  757. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  758. res = "lfm2"
  759. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  760. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  761. res = "exaone4"
  762. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  763. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  764. res = "mellum"
  765. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  766. # ref: https://huggingface.co/inclusionAI/LLaDA-MoE-7B-A1B-Base
  767. res = "llada-moe"
  768. if res is None:
  769. logger.warning("\n")
  770. logger.warning("**************************************************************************************")
  771. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  772. logger.warning("** There are 2 possible reasons for this:")
  773. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  774. logger.warning("** - the pre-tokenization config has changed upstream")
  775. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  776. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  777. logger.warning("**")
  778. logger.warning(f"** chkhsh: {chkhsh}")
  779. logger.warning("**************************************************************************************")
  780. logger.warning("\n")
  781. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  782. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  783. logger.debug(f"chkhsh: {chkhsh}")
  784. return res
  785. # Marker: End get_vocab_base_pre
  786. def _set_vocab_none(self) -> None:
  787. self.gguf_writer.add_tokenizer_model("none")
  788. def _set_vocab_gpt2(self) -> None:
  789. tokens, toktypes, tokpre = self.get_vocab_base()
  790. self.gguf_writer.add_tokenizer_model("gpt2")
  791. self.gguf_writer.add_tokenizer_pre(tokpre)
  792. self.gguf_writer.add_token_list(tokens)
  793. self.gguf_writer.add_token_types(toktypes)
  794. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  795. special_vocab.add_to_gguf(self.gguf_writer)
  796. def _set_vocab_qwen(self):
  797. dir_model = self.dir_model
  798. hparams = self.hparams
  799. tokens: list[str] = []
  800. toktypes: list[int] = []
  801. from transformers import AutoTokenizer
  802. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  803. vocab_size = hparams["vocab_size"]
  804. assert max(tokenizer.get_vocab().values()) < vocab_size
  805. tokpre = self.get_vocab_base_pre(tokenizer)
  806. merges = []
  807. vocab = {}
  808. mergeable_ranks = tokenizer.mergeable_ranks
  809. for token, rank in mergeable_ranks.items():
  810. vocab[QwenModel.token_bytes_to_string(token)] = rank
  811. if len(token) == 1:
  812. continue
  813. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  814. assert len(merged) == 2
  815. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  816. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  817. added_vocab = tokenizer.special_tokens
  818. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  819. for i in range(vocab_size):
  820. if i not in reverse_vocab:
  821. tokens.append(f"[PAD{i}]")
  822. toktypes.append(gguf.TokenType.UNUSED)
  823. elif reverse_vocab[i] in added_vocab:
  824. tokens.append(reverse_vocab[i])
  825. toktypes.append(gguf.TokenType.CONTROL)
  826. else:
  827. tokens.append(reverse_vocab[i])
  828. toktypes.append(gguf.TokenType.NORMAL)
  829. self.gguf_writer.add_tokenizer_model("gpt2")
  830. self.gguf_writer.add_tokenizer_pre(tokpre)
  831. self.gguf_writer.add_token_list(tokens)
  832. self.gguf_writer.add_token_types(toktypes)
  833. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  834. special_vocab.merges = merges
  835. # only add special tokens when they were not already loaded from config.json
  836. if len(special_vocab.special_token_ids) == 0:
  837. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  838. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  839. # this one is usually not in config.json anyway
  840. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  841. special_vocab.add_to_gguf(self.gguf_writer)
  842. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  843. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  844. self.gguf_writer.add_tokenizer_model("llama")
  845. self.gguf_writer.add_tokenizer_pre("default")
  846. self.gguf_writer.add_token_list(tokens)
  847. self.gguf_writer.add_token_scores(scores)
  848. self.gguf_writer.add_token_types(toktypes)
  849. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  850. special_vocab.add_to_gguf(self.gguf_writer)
  851. def _create_vocab_sentencepiece(self):
  852. from sentencepiece import SentencePieceProcessor
  853. tokenizer_path = self.dir_model / 'tokenizer.model'
  854. if not tokenizer_path.is_file():
  855. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  856. tokenizer = SentencePieceProcessor()
  857. tokenizer.LoadFromFile(str(tokenizer_path))
  858. vocab_size = self.find_hparam([
  859. "vocab_size_per_layer_input", # gemma3n
  860. "vocab_size",
  861. ], optional=True) or tokenizer.vocab_size()
  862. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  863. scores: list[float] = [-10000.0] * vocab_size
  864. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  865. for token_id in range(tokenizer.vocab_size()):
  866. if token_id >= vocab_size:
  867. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  868. break
  869. piece = tokenizer.IdToPiece(token_id)
  870. text = piece.encode("utf-8")
  871. score = tokenizer.GetScore(token_id)
  872. toktype = SentencePieceTokenTypes.NORMAL
  873. if tokenizer.IsUnknown(token_id):
  874. toktype = SentencePieceTokenTypes.UNKNOWN
  875. elif tokenizer.IsControl(token_id):
  876. toktype = SentencePieceTokenTypes.CONTROL
  877. elif tokenizer.IsUnused(token_id):
  878. toktype = SentencePieceTokenTypes.UNUSED
  879. elif tokenizer.IsByte(token_id):
  880. toktype = SentencePieceTokenTypes.BYTE
  881. tokens[token_id] = text
  882. scores[token_id] = score
  883. toktypes[token_id] = toktype
  884. added_tokens_file = self.dir_model / 'added_tokens.json'
  885. if added_tokens_file.is_file():
  886. with open(added_tokens_file, "r", encoding="utf-8") as f:
  887. added_tokens_json = json.load(f)
  888. for key in added_tokens_json:
  889. token_id = added_tokens_json[key]
  890. if token_id >= vocab_size:
  891. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  892. continue
  893. tokens[token_id] = key.encode("utf-8")
  894. scores[token_id] = -1000.0
  895. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  896. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  897. if tokenizer_config_file.is_file():
  898. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  899. tokenizer_config_json = json.load(f)
  900. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  901. for token_id, token_data in added_tokens_decoder.items():
  902. token_id = int(token_id)
  903. token: str = token_data["content"]
  904. if token_id >= vocab_size:
  905. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  906. continue
  907. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  908. if tokens[token_id] != token.encode("utf-8"):
  909. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  910. if token_data.get("special") or self.does_token_look_special(token):
  911. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  912. else:
  913. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  914. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  915. scores[token_id] = -1000.0
  916. tokens[token_id] = token.encode("utf-8")
  917. if vocab_size > len(tokens):
  918. pad_count = vocab_size - len(tokens)
  919. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  920. for i in range(1, pad_count + 1):
  921. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  922. scores.append(-1000.0)
  923. toktypes.append(SentencePieceTokenTypes.UNUSED)
  924. return tokens, scores, toktypes
  925. def _set_vocab_llama_hf(self):
  926. vocab = gguf.LlamaHfVocab(self.dir_model)
  927. tokens = []
  928. scores = []
  929. toktypes = []
  930. for text, score, toktype in vocab.all_tokens():
  931. tokens.append(text)
  932. scores.append(score)
  933. toktypes.append(toktype)
  934. assert len(tokens) == vocab.vocab_size
  935. self.gguf_writer.add_tokenizer_model("llama")
  936. self.gguf_writer.add_tokenizer_pre("default")
  937. self.gguf_writer.add_token_list(tokens)
  938. self.gguf_writer.add_token_scores(scores)
  939. self.gguf_writer.add_token_types(toktypes)
  940. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  941. special_vocab.add_to_gguf(self.gguf_writer)
  942. def _set_vocab_rwkv_world(self):
  943. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  944. vocab_size = self.hparams.get("vocab_size", 65536)
  945. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  946. toktypes: list[int] = [gguf.TokenType.CONTROL]
  947. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  948. lines = f.readlines()
  949. for line in lines:
  950. parts = line.split(' ')
  951. assert len(parts) >= 3
  952. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  953. token = token.encode("utf-8") if isinstance(token, str) else token
  954. assert isinstance(token, bytes)
  955. assert len(token) == token_len
  956. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  957. tokens.append(token_text.encode("utf-8"))
  958. toktypes.append(gguf.TokenType.NORMAL)
  959. remainder = vocab_size - len(tokens)
  960. assert remainder >= 0
  961. for i in range(len(tokens), vocab_size):
  962. tokens.append(f"[PAD{i}]".encode("utf-8"))
  963. toktypes.append(gguf.TokenType.UNUSED)
  964. self.gguf_writer.add_tokenizer_model("rwkv")
  965. self.gguf_writer.add_token_list(tokens)
  966. self.gguf_writer.add_token_types(toktypes)
  967. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  968. if special_vocab.chat_template is None:
  969. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  970. if template_path.is_file():
  971. with open(template_path, "r", encoding="utf-8") as f:
  972. template = f.read()
  973. else:
  974. template = "rwkv-world"
  975. special_vocab.chat_template = template
  976. # hack: Add '\n\n' as the EOT token to make it chat normally
  977. special_vocab._set_special_token("eot", 261)
  978. # hack: Override these as they have already been set (incorrectly)
  979. special_vocab.special_token_ids["bos"] = 0
  980. special_vocab.special_token_ids["eos"] = 0
  981. special_vocab.add_to_gguf(self.gguf_writer)
  982. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  983. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  984. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  985. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  986. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  987. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  988. assert field # tokenizer model
  989. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  990. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  991. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  992. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  993. assert field # token list
  994. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  995. if model_name == "llama-spm":
  996. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  997. assert field # token scores
  998. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  999. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1000. assert field # token types
  1001. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1002. if model_name != "llama-spm":
  1003. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1004. assert field # token merges
  1005. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1006. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1007. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1008. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1009. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1010. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1011. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1012. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1013. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1014. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1015. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1016. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1017. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1018. def _try_set_pooling_type(self) -> None:
  1019. # get pooling path
  1020. pooling_path = None
  1021. module_path = self.dir_model / "modules.json"
  1022. if module_path.is_file():
  1023. with open(module_path, encoding="utf-8") as f:
  1024. modules = json.load(f)
  1025. for mod in modules:
  1026. if mod["type"] == "sentence_transformers.models.Pooling":
  1027. pooling_path = mod["path"]
  1028. break
  1029. # get pooling type
  1030. if pooling_path is not None:
  1031. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1032. pooling = json.load(f)
  1033. if pooling["pooling_mode_mean_tokens"]:
  1034. pooling_type = gguf.PoolingType.MEAN
  1035. elif pooling["pooling_mode_cls_token"]:
  1036. pooling_type = gguf.PoolingType.CLS
  1037. elif pooling["pooling_mode_lasttoken"]:
  1038. pooling_type = gguf.PoolingType.LAST
  1039. else:
  1040. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1041. self.gguf_writer.add_pooling_type(pooling_type)
  1042. def _set_vocab_interns1(self):
  1043. tokens: list[str] = []
  1044. toktypes: list[int] = []
  1045. from transformers import AutoTokenizer
  1046. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1047. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1048. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1049. assert max(vocab.values()) < vocab_size
  1050. tokpre = self.get_vocab_base_pre(tokenizer)
  1051. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1052. added_vocab = tokenizer.get_added_vocab()
  1053. added_tokens_decoder = tokenizer.added_tokens_decoder
  1054. for i in range(vocab_size):
  1055. if i not in reverse_vocab:
  1056. tokens.append(f"[PAD{i}]")
  1057. toktypes.append(gguf.TokenType.UNUSED)
  1058. else:
  1059. token: str = reverse_vocab[i]
  1060. if token in added_vocab:
  1061. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1062. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1063. if not added_tokens_decoder[i].normalized:
  1064. previous_token = token
  1065. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1066. if previous_token != token:
  1067. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1068. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1069. toktypes.append(gguf.TokenType.CONTROL)
  1070. else:
  1071. toktypes.append(gguf.TokenType.USER_DEFINED)
  1072. else:
  1073. toktypes.append(gguf.TokenType.NORMAL)
  1074. tokens.append(token)
  1075. self.gguf_writer.add_tokenizer_model("gpt2")
  1076. self.gguf_writer.add_tokenizer_pre(tokpre)
  1077. self.gguf_writer.add_token_list(tokens)
  1078. self.gguf_writer.add_token_types(toktypes)
  1079. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1080. special_vocab._set_special_token("bos", 151643)
  1081. special_vocab.add_to_gguf(self.gguf_writer)
  1082. class MmprojModel(ModelBase):
  1083. model_type = ModelType.MMPROJ
  1084. model_arch = gguf.MODEL_ARCH.MMPROJ
  1085. preprocessor_config: dict[str, Any]
  1086. global_config: dict[str, Any]
  1087. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1088. has_vision_encoder: bool = True # by default
  1089. has_audio_encoder: bool = False
  1090. # for models having multiple encoders, we need to separate their hparams
  1091. hparams_vision: dict[str, Any] | None = None
  1092. hparams_audio: dict[str, Any] | None = None
  1093. def __init__(self, *args, **kwargs):
  1094. super().__init__(*args, **kwargs)
  1095. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1096. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1097. # get n_embd of the text model
  1098. if not self.is_mistral_format:
  1099. if "text_config" not in self.hparams:
  1100. self.hparams["text_config"] = {}
  1101. if "audio_config" not in self.hparams:
  1102. self.hparams["audio_config"] = {}
  1103. text_config = {**self.hparams, **self.hparams["text_config"]}
  1104. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1105. else:
  1106. text_config = {
  1107. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1108. }
  1109. self.n_embd_text = text_config.get("hidden_dim", 0)
  1110. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1111. # move vision config to the top level, while preserving the original hparams in global_config
  1112. import copy
  1113. self.global_config = copy.deepcopy(self.hparams)
  1114. self.hparams_vision = self.get_vision_config()
  1115. self.hparams_audio = self.get_audio_config()
  1116. if self.hparams_vision is None and self.hparams_audio is None:
  1117. raise ValueError("vision_config / audio_config not found in hparams")
  1118. # for compat with vision-only models
  1119. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1120. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1121. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1122. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1123. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1124. # load preprocessor config
  1125. if not self.is_mistral_format:
  1126. with open(self.dir_model / "preprocessor_config.json", "r", encoding="utf-8") as f:
  1127. self.preprocessor_config = json.load(f)
  1128. def get_vision_config(self) -> dict[str, Any] | None:
  1129. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1130. return self.global_config.get(config_name)
  1131. def get_audio_config(self) -> dict[str, Any] | None:
  1132. return self.global_config.get("audio_config")
  1133. def set_type(self):
  1134. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1135. def set_gguf_parameters(self):
  1136. self.gguf_writer.add_file_type(self.ftype)
  1137. if self.has_vision_encoder:
  1138. self.gguf_writer.add_clip_has_vision_encoder(True)
  1139. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1140. # vision config
  1141. self.gguf_writer.add_vision_image_size(self.find_vparam(["image_size"]))
  1142. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1143. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1144. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1145. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1146. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads"]))
  1147. # preprocessor config
  1148. image_mean = DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1149. image_std = DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1150. self.gguf_writer.add_vision_image_mean(image_mean)
  1151. self.gguf_writer.add_vision_image_std(image_std)
  1152. if self.has_audio_encoder:
  1153. self.gguf_writer.add_clip_has_audio_encoder(True)
  1154. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1155. # audio config
  1156. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1157. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1158. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1159. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1160. if not self.has_vision_encoder and not self.has_audio_encoder:
  1161. raise ValueError("MmprojModel must have either vision or audio encoder")
  1162. def write_vocab(self):
  1163. raise ValueError("MmprojModel does not support vocab writing")
  1164. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1165. assert self.hparams_vision is not None
  1166. return self._find_param(self.hparams_vision, keys, optional)
  1167. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1168. assert self.hparams_audio is not None
  1169. return self._find_param(self.hparams_audio, keys, optional)
  1170. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1171. key = next((k for k in keys if k in obj), None)
  1172. if key is not None:
  1173. return obj[key]
  1174. if optional:
  1175. return None
  1176. raise KeyError(f"could not find any of: {keys}")
  1177. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1178. del bid, name, n_dims # unused
  1179. if ".patch_embd.weight" in new_name:
  1180. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1181. return False
  1182. @ModelBase.register("GPTNeoXForCausalLM")
  1183. class GPTNeoXModel(TextModel):
  1184. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1185. def set_gguf_parameters(self):
  1186. block_count = self.hparams["num_hidden_layers"]
  1187. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1188. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1189. self.gguf_writer.add_block_count(block_count)
  1190. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1191. self.gguf_writer.add_rope_dimension_count(
  1192. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1193. )
  1194. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1195. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1196. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1197. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1198. del bid # unused
  1199. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1200. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1201. tensors: list[tuple[str, Tensor]] = []
  1202. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1203. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1204. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1205. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1206. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1207. data_torch = torch.cat(
  1208. (
  1209. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1210. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1211. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1212. ),
  1213. dim=0,
  1214. )
  1215. logger.info("re-format attention.linear_qkv.weight")
  1216. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1217. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1218. data_torch = torch.cat(
  1219. (
  1220. qkv_bias[:, 0, :].reshape((n_embed,)),
  1221. qkv_bias[:, 1, :].reshape((n_embed,)),
  1222. qkv_bias[:, 2, :].reshape((n_embed,)),
  1223. ),
  1224. dim=0,
  1225. )
  1226. logger.info("re-format attention.linear_qkv.bias")
  1227. tensors.append((self.map_tensor_name(name), data_torch))
  1228. return tensors
  1229. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1230. class BloomModel(TextModel):
  1231. model_arch = gguf.MODEL_ARCH.BLOOM
  1232. def set_gguf_parameters(self):
  1233. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1234. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1235. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1236. self.gguf_writer.add_embedding_length(n_embed)
  1237. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1238. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1239. self.gguf_writer.add_head_count(n_head)
  1240. self.gguf_writer.add_head_count_kv(n_head)
  1241. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1242. self.gguf_writer.add_file_type(self.ftype)
  1243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1244. del bid # unused
  1245. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1246. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1247. name = re.sub(r'transformer\.', '', name)
  1248. tensors: list[tuple[str, Tensor]] = []
  1249. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1250. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1251. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1252. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1253. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1254. data_torch = torch.cat(
  1255. (
  1256. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1257. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1258. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1259. ),
  1260. dim=0,
  1261. )
  1262. logger.info("re-format attention.linear_qkv.weight")
  1263. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1264. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1265. data_torch = torch.cat(
  1266. (
  1267. qkv_bias[:, 0, :].reshape((n_embed,)),
  1268. qkv_bias[:, 1, :].reshape((n_embed,)),
  1269. qkv_bias[:, 2, :].reshape((n_embed,)),
  1270. ),
  1271. dim=0,
  1272. )
  1273. logger.info("re-format attention.linear_qkv.bias")
  1274. tensors.append((self.map_tensor_name(name), data_torch))
  1275. return tensors
  1276. @ModelBase.register("MPTForCausalLM")
  1277. class MPTModel(TextModel):
  1278. model_arch = gguf.MODEL_ARCH.MPT
  1279. def set_vocab(self):
  1280. try:
  1281. self._set_vocab_gpt2()
  1282. except Exception:
  1283. # Fallback for SEA-LION model
  1284. self._set_vocab_sentencepiece()
  1285. self.gguf_writer.add_add_bos_token(False)
  1286. self.gguf_writer.add_pad_token_id(3)
  1287. self.gguf_writer.add_eos_token_id(1)
  1288. self.gguf_writer.add_unk_token_id(0)
  1289. def set_gguf_parameters(self):
  1290. block_count = self.hparams["n_layers"]
  1291. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1292. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1293. self.gguf_writer.add_block_count(block_count)
  1294. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1295. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1296. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1297. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1298. self.gguf_writer.add_layer_norm_eps(1e-5)
  1299. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1300. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1301. if self.hparams["attn_config"]["alibi"]:
  1302. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1303. else:
  1304. self.gguf_writer.add_max_alibi_bias(0.0)
  1305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1306. del bid # unused
  1307. if "scales" in name:
  1308. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1309. new_name = new_name.replace("scales", "act.scales")
  1310. else:
  1311. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1312. return [(new_name, data_torch)]
  1313. @ModelBase.register("OrionForCausalLM")
  1314. class OrionModel(TextModel):
  1315. model_arch = gguf.MODEL_ARCH.ORION
  1316. def set_vocab(self):
  1317. self._set_vocab_sentencepiece()
  1318. def set_gguf_parameters(self):
  1319. block_count = self.hparams["num_hidden_layers"]
  1320. head_count = self.hparams["num_attention_heads"]
  1321. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1322. ctx_length = 0
  1323. if "max_sequence_length" in self.hparams:
  1324. ctx_length = self.hparams["max_sequence_length"]
  1325. elif "max_position_embeddings" in self.hparams:
  1326. ctx_length = self.hparams["max_position_embeddings"]
  1327. elif "model_max_length" in self.hparams:
  1328. ctx_length = self.hparams["model_max_length"]
  1329. else:
  1330. raise ValueError("gguf: can not find ctx length parameter.")
  1331. self.gguf_writer.add_file_type(self.ftype)
  1332. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1333. self.gguf_writer.add_context_length(ctx_length)
  1334. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1335. self.gguf_writer.add_block_count(block_count)
  1336. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1337. self.gguf_writer.add_head_count(head_count)
  1338. self.gguf_writer.add_head_count_kv(head_count_kv)
  1339. # note: config provides rms norm but it is actually layer norm
  1340. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1341. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1342. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1343. class BaichuanModel(TextModel):
  1344. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1345. def set_vocab(self):
  1346. self._set_vocab_sentencepiece()
  1347. def set_gguf_parameters(self):
  1348. block_count = self.hparams["num_hidden_layers"]
  1349. head_count = self.hparams["num_attention_heads"]
  1350. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1351. ctx_length = 0
  1352. if "max_sequence_length" in self.hparams:
  1353. ctx_length = self.hparams["max_sequence_length"]
  1354. elif "max_position_embeddings" in self.hparams:
  1355. ctx_length = self.hparams["max_position_embeddings"]
  1356. elif "model_max_length" in self.hparams:
  1357. ctx_length = self.hparams["model_max_length"]
  1358. else:
  1359. raise ValueError("gguf: can not find ctx length parameter.")
  1360. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1361. self.gguf_writer.add_context_length(ctx_length)
  1362. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1363. self.gguf_writer.add_block_count(block_count)
  1364. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1365. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1366. self.gguf_writer.add_head_count(head_count)
  1367. self.gguf_writer.add_head_count_kv(head_count_kv)
  1368. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1369. self.gguf_writer.add_file_type(self.ftype)
  1370. rope_scaling = self.hparams.get("rope_scaling") or {}
  1371. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1372. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1373. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1374. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1375. head_count = self.hparams["num_attention_heads"]
  1376. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1377. tensors: list[tuple[str, Tensor]] = []
  1378. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1379. logger.info(f"Unpacking and permuting layer {bid}")
  1380. tensors = [
  1381. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1382. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1383. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1384. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1385. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1386. self._reverse_hf_part(data_torch, 2)),
  1387. ]
  1388. else:
  1389. tensors = [(self.map_tensor_name(name), data_torch)]
  1390. return tensors
  1391. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1392. if n_kv_head is not None and n_head != n_kv_head:
  1393. n_head //= n_kv_head
  1394. return (
  1395. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1396. .swapaxes(1, 2)
  1397. .reshape(weights.shape)
  1398. )
  1399. def _reverse_hf_permute_part(
  1400. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1401. ) -> Tensor:
  1402. r = weights.shape[0] // 3
  1403. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1404. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1405. r = weights.shape[0] // 3
  1406. return weights[r * n_part:r * n_part + r, ...]
  1407. @ModelBase.register("XverseForCausalLM")
  1408. class XverseModel(TextModel):
  1409. model_arch = gguf.MODEL_ARCH.XVERSE
  1410. def set_vocab(self):
  1411. assert (self.dir_model / "tokenizer.json").is_file()
  1412. dir_model = self.dir_model
  1413. hparams = self.hparams
  1414. tokens: list[bytes] = []
  1415. toktypes: list[int] = []
  1416. from transformers import AutoTokenizer
  1417. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1418. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1419. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1420. # because vocab_size is the count of items, and indexes start at 0.
  1421. max_vocab_index = max(tokenizer.get_vocab().values())
  1422. if max_vocab_index >= vocab_size:
  1423. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1424. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1425. added_vocab = tokenizer.get_added_vocab()
  1426. for token_id in range(vocab_size):
  1427. token_text = reverse_vocab[token_id].encode('utf-8')
  1428. # replace "\x00" to string with length > 0
  1429. if token_text == b"\x00":
  1430. toktype = gguf.TokenType.BYTE # special
  1431. token_text = f"<{token_text}>".encode('utf-8')
  1432. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1433. toktype = gguf.TokenType.BYTE # special
  1434. elif reverse_vocab[token_id] in added_vocab:
  1435. if tokenizer.added_tokens_decoder[token_id].special:
  1436. toktype = gguf.TokenType.CONTROL
  1437. else:
  1438. toktype = gguf.TokenType.USER_DEFINED
  1439. else:
  1440. toktype = gguf.TokenType.NORMAL
  1441. tokens.append(token_text)
  1442. toktypes.append(toktype)
  1443. self.gguf_writer.add_tokenizer_model("llama")
  1444. self.gguf_writer.add_tokenizer_pre("default")
  1445. self.gguf_writer.add_token_list(tokens)
  1446. self.gguf_writer.add_token_types(toktypes)
  1447. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1448. special_vocab.add_to_gguf(self.gguf_writer)
  1449. def set_gguf_parameters(self):
  1450. block_count = self.hparams["num_hidden_layers"]
  1451. head_count = self.hparams["num_attention_heads"]
  1452. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1453. ctx_length = 0
  1454. if "max_sequence_length" in self.hparams:
  1455. ctx_length = self.hparams["max_sequence_length"]
  1456. elif "max_position_embeddings" in self.hparams:
  1457. ctx_length = self.hparams["max_position_embeddings"]
  1458. elif "model_max_length" in self.hparams:
  1459. ctx_length = self.hparams["model_max_length"]
  1460. else:
  1461. raise ValueError("gguf: can not find ctx length parameter.")
  1462. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1463. self.gguf_writer.add_context_length(ctx_length)
  1464. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1465. self.gguf_writer.add_block_count(block_count)
  1466. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1467. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1468. self.gguf_writer.add_head_count(head_count)
  1469. self.gguf_writer.add_head_count_kv(head_count_kv)
  1470. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1471. self.gguf_writer.add_file_type(self.ftype)
  1472. rope_scaling = self.hparams.get("rope_scaling") or {}
  1473. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1474. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1475. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1476. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1477. del bid # unused
  1478. head_count = self.hparams["num_attention_heads"]
  1479. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1480. # HF models permute some of the tensors, so we need to undo that
  1481. if name.endswith("q_proj.weight"):
  1482. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1483. if name.endswith("k_proj.weight"):
  1484. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1485. return [(self.map_tensor_name(name), data_torch)]
  1486. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1487. if n_kv_head is not None and n_head != n_kv_head:
  1488. n_head //= n_kv_head
  1489. return (
  1490. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1491. .swapaxes(1, 2)
  1492. .reshape(weights.shape)
  1493. )
  1494. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1495. class FalconModel(TextModel):
  1496. model_arch = gguf.MODEL_ARCH.FALCON
  1497. def set_gguf_parameters(self):
  1498. block_count = self.hparams.get("num_hidden_layers")
  1499. if block_count is None:
  1500. block_count = self.hparams["n_layer"] # old name
  1501. n_head = self.hparams.get("num_attention_heads")
  1502. if n_head is None:
  1503. n_head = self.hparams["n_head"] # old name
  1504. n_head_kv = self.hparams.get("num_kv_heads")
  1505. if n_head_kv is None:
  1506. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1507. self.gguf_writer.add_context_length(2048) # not in config.json
  1508. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1509. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1510. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1511. self.gguf_writer.add_block_count(block_count)
  1512. self.gguf_writer.add_head_count(n_head)
  1513. self.gguf_writer.add_head_count_kv(n_head_kv)
  1514. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1515. self.gguf_writer.add_file_type(self.ftype)
  1516. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1517. del bid # unused
  1518. # QKV tensor transform
  1519. # The original query_key_value tensor contains n_head_kv "kv groups",
  1520. # each consisting of n_head/n_head_kv query weights followed by one key
  1521. # and one value weight (shared by all query heads in the kv group).
  1522. # This layout makes it a big pain to work with in GGML.
  1523. # So we rearrange them here,, so that we have n_head query weights
  1524. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1525. # in contiguous fashion.
  1526. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1527. if "query_key_value" in name:
  1528. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1529. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1530. head_dim = self.hparams["hidden_size"] // n_head
  1531. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1532. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1533. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1534. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1535. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1536. return [(self.map_tensor_name(name), data_torch)]
  1537. @ModelBase.register("GPTBigCodeForCausalLM")
  1538. class StarCoderModel(TextModel):
  1539. model_arch = gguf.MODEL_ARCH.STARCODER
  1540. def set_gguf_parameters(self):
  1541. block_count = self.hparams["n_layer"]
  1542. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1543. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1544. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1545. self.gguf_writer.add_block_count(block_count)
  1546. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1547. self.gguf_writer.add_head_count_kv(1)
  1548. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1549. self.gguf_writer.add_file_type(self.ftype)
  1550. @ModelBase.register("GPTRefactForCausalLM")
  1551. class RefactModel(TextModel):
  1552. model_arch = gguf.MODEL_ARCH.REFACT
  1553. def set_vocab(self):
  1554. super().set_vocab()
  1555. # TODO: how to determine special FIM tokens automatically?
  1556. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1557. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1558. special_vocab._set_special_token("prefix", 1)
  1559. special_vocab._set_special_token("suffix", 3)
  1560. special_vocab._set_special_token("middle", 2)
  1561. special_vocab.chat_template = None # do not add it twice
  1562. special_vocab.add_to_gguf(self.gguf_writer)
  1563. def set_gguf_parameters(self):
  1564. hidden_dim = self.hparams["n_embd"]
  1565. inner_dim = 4 * hidden_dim
  1566. hidden_dim = int(2 * inner_dim / 3)
  1567. multiple_of = 256
  1568. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1569. block_count = self.hparams["n_layer"]
  1570. # refact uses Alibi. So this is from config.json which might be used by training.
  1571. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1572. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1573. self.gguf_writer.add_feed_forward_length(ff_dim)
  1574. self.gguf_writer.add_block_count(block_count)
  1575. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1576. self.gguf_writer.add_head_count_kv(1)
  1577. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1578. self.gguf_writer.add_file_type(self.ftype)
  1579. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1580. hidden_dim = self.hparams["n_embd"]
  1581. inner_dim = 4 * hidden_dim
  1582. hidden_dim = int(2 * inner_dim / 3)
  1583. multiple_of = 256
  1584. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1585. n_head = self.hparams["n_head"]
  1586. n_head_kv = 1
  1587. head_dim = self.hparams["n_embd"] // n_head
  1588. tensors: list[tuple[str, Tensor]] = []
  1589. if bid is not None:
  1590. if name == f"transformer.h.{bid}.attn.kv.weight":
  1591. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1592. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1593. elif name == f"transformer.h.{bid}.attn.q.weight":
  1594. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1595. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1596. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1597. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1598. if len(tensors) == 0:
  1599. tensors.append((self.map_tensor_name(name), data_torch))
  1600. return tensors
  1601. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1602. class StableLMModel(TextModel):
  1603. model_arch = gguf.MODEL_ARCH.STABLELM
  1604. def set_vocab(self):
  1605. if (self.dir_model / "tokenizer.json").is_file():
  1606. self._set_vocab_gpt2()
  1607. else:
  1608. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1609. self._set_vocab_qwen()
  1610. def set_gguf_parameters(self):
  1611. hparams = self.hparams
  1612. block_count = hparams["num_hidden_layers"]
  1613. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1614. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1615. self.gguf_writer.add_block_count(block_count)
  1616. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1617. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1618. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1619. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1620. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1621. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1622. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1623. self.gguf_writer.add_file_type(self.ftype)
  1624. _q_norms: list[dict[str, Tensor]] | None = None
  1625. _k_norms: list[dict[str, Tensor]] | None = None
  1626. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1627. n_head = self.hparams["num_attention_heads"]
  1628. n_kv_head = self.hparams["num_key_value_heads"]
  1629. if name.find("q_layernorm.norms") != -1:
  1630. assert bid is not None
  1631. if self._q_norms is None:
  1632. self._q_norms = [{} for _ in range(self.block_count)]
  1633. self._q_norms[bid][name] = data_torch
  1634. if len(self._q_norms[bid]) >= n_head:
  1635. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1636. else:
  1637. return []
  1638. if name.find("k_layernorm.norms") != -1:
  1639. assert bid is not None
  1640. if self._k_norms is None:
  1641. self._k_norms = [{} for _ in range(self.block_count)]
  1642. self._k_norms[bid][name] = data_torch
  1643. if len(self._k_norms[bid]) >= n_kv_head:
  1644. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1645. else:
  1646. return []
  1647. return [(self.map_tensor_name(name), data_torch)]
  1648. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1649. datas: list[Tensor] = []
  1650. # extract the norms in order
  1651. for xid in range(n_head):
  1652. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1653. datas.append(norms[ename])
  1654. del norms[ename]
  1655. data_torch = torch.stack(datas, dim=0)
  1656. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1657. new_name = self.map_tensor_name(merged_name)
  1658. return [(new_name, data_torch)]
  1659. def prepare_tensors(self):
  1660. super().prepare_tensors()
  1661. if self._q_norms is not None or self._k_norms is not None:
  1662. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1663. norms = (
  1664. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1665. ) + (
  1666. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1667. )
  1668. if len(norms) > 0:
  1669. raise ValueError(f"Unprocessed norms: {norms}")
  1670. @ModelBase.register(
  1671. "LLaMAForCausalLM",
  1672. "LlamaForCausalLM",
  1673. "MistralForCausalLM",
  1674. "MixtralForCausalLM",
  1675. "VLlama3ForCausalLM",
  1676. "LlavaForConditionalGeneration",
  1677. "VoxtralForConditionalGeneration",
  1678. "LlamaModel")
  1679. class LlamaModel(TextModel):
  1680. model_arch = gguf.MODEL_ARCH.LLAMA
  1681. undo_permute = True
  1682. def __init__(self, *args, **kwargs):
  1683. super().__init__(*args, **kwargs)
  1684. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1685. if self.hf_arch == "VLlama3ForCausalLM":
  1686. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1687. def _set_vocab_mistral(self):
  1688. vocab = MistralVocab(self.dir_model)
  1689. logger.info(
  1690. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1691. )
  1692. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1693. tokens = []
  1694. scores = []
  1695. toktypes = []
  1696. for text, score, toktype in vocab.all_tokens():
  1697. tokens.append(text)
  1698. scores.append(score)
  1699. toktypes.append(toktype)
  1700. assert len(tokens) == vocab.vocab_size, (
  1701. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1702. )
  1703. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1704. self.gguf_writer.add_tokenizer_pre("tekken")
  1705. self.gguf_writer.add_token_merges(
  1706. vocab.extract_vocab_merges_from_model()
  1707. )
  1708. logger.info(
  1709. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1710. )
  1711. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1712. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1713. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1714. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1715. self.gguf_writer.add_token_list(tokens)
  1716. self.gguf_writer.add_token_scores(scores)
  1717. self.gguf_writer.add_token_types(toktypes)
  1718. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1719. self.gguf_writer.add_add_bos_token(True)
  1720. self.gguf_writer.add_add_eos_token(False)
  1721. template_dir = Path(__file__).parent / "models/templates/"
  1722. if not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1723. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1724. if self.is_mistral_format:
  1725. logger.info(
  1726. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1727. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1728. )
  1729. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1730. self.gguf_writer.add_chat_template(template)
  1731. else:
  1732. logger.info("Not using a Mistral community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1733. def set_vocab(self):
  1734. if self.is_mistral_format:
  1735. return self._set_vocab_mistral()
  1736. path_tekken_json = self.dir_model / "tekken.json"
  1737. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1738. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1739. self._set_vocab_mistral()
  1740. try:
  1741. self._set_vocab_sentencepiece()
  1742. except FileNotFoundError:
  1743. try:
  1744. self._set_vocab_llama_hf()
  1745. except (FileNotFoundError, TypeError):
  1746. # Llama 3
  1747. self._set_vocab_gpt2()
  1748. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1749. if self.hparams.get("vocab_size", 32000) == 32016:
  1750. special_vocab = gguf.SpecialVocab(
  1751. self.dir_model, load_merges=False,
  1752. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1753. )
  1754. special_vocab._set_special_token("prefix", 32007)
  1755. special_vocab._set_special_token("suffix", 32008)
  1756. special_vocab._set_special_token("middle", 32009)
  1757. special_vocab._set_special_token("eot", 32010)
  1758. special_vocab.add_to_gguf(self.gguf_writer)
  1759. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1760. if tokenizer_config_file.is_file():
  1761. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1762. tokenizer_config_json = json.load(f)
  1763. if "add_prefix_space" in tokenizer_config_json:
  1764. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1765. # Apply to granite small models only
  1766. if self.hparams.get("vocab_size", 32000) == 49152:
  1767. self.gguf_writer.add_add_bos_token(False)
  1768. def set_gguf_parameters(self):
  1769. super().set_gguf_parameters()
  1770. hparams = self.hparams
  1771. if not self.is_mistral_format:
  1772. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1773. if (rope_dim := hparams.get("head_dim")) is None:
  1774. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1775. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1776. rope_scaling = self.hparams.get("rope_scaling") or {}
  1777. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1778. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1779. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1780. @staticmethod
  1781. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1782. if n_head_kv is not None and n_head != n_head_kv:
  1783. n_head = n_head_kv
  1784. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1785. .swapaxes(1, 2)
  1786. .reshape(weights.shape))
  1787. _experts: list[dict[str, Tensor]] | None = None
  1788. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1789. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  1790. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  1791. vision_prefixes = [
  1792. "vision_encoder.",
  1793. "vision_language_adapter.",
  1794. "patch_merger.",
  1795. "pre_mm_projector_norm",
  1796. ]
  1797. is_multimodal_tensor = "vision_tower" in name \
  1798. or "vision_model" in name \
  1799. or "audio_tower" in name \
  1800. or "model.connector" in name \
  1801. or "multi_modal_projector" in name \
  1802. or any(
  1803. name.startswith(prefix)
  1804. for prefix in vision_prefixes
  1805. )
  1806. if is_multimodal_tensor:
  1807. return [] # skip vision tensors
  1808. elif self.hf_arch == "LlamaModel":
  1809. name = "model." + name
  1810. elif name.startswith("model.text_model"):
  1811. name = name.replace("text_model.", "") # for SmolVLM
  1812. elif name.startswith("language_model."):
  1813. name = name.replace("language_model.", "") # for the rest
  1814. if self.undo_permute:
  1815. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1816. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1817. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1818. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1819. # process the experts separately
  1820. if name.find("block_sparse_moe.experts") != -1:
  1821. n_experts = self.hparams["num_local_experts"]
  1822. assert bid is not None
  1823. if self._experts is None:
  1824. self._experts = [{} for _ in range(self.block_count)]
  1825. self._experts[bid][name] = data_torch
  1826. if len(self._experts[bid]) >= n_experts * 3:
  1827. tensors: list[tuple[str, Tensor]] = []
  1828. # merge the experts into a single 3d tensor
  1829. for wid in ["w1", "w2", "w3"]:
  1830. datas: list[Tensor] = []
  1831. for xid in range(n_experts):
  1832. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1833. datas.append(self._experts[bid][ename])
  1834. del self._experts[bid][ename]
  1835. data_torch = torch.stack(datas, dim=0)
  1836. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1837. new_name = self.map_tensor_name(merged_name)
  1838. tensors.append((new_name, data_torch))
  1839. return tensors
  1840. else:
  1841. return []
  1842. return [(self.map_tensor_name(name), data_torch)]
  1843. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1844. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1845. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1846. base = self.hparams.get("rope_theta", 10000.0)
  1847. if (dim := self.hparams.get("head_dim")) is None:
  1848. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1849. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1850. factor = rope_scaling.get("factor", 8.0)
  1851. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1852. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1853. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1854. low_freq_wavelen = old_context_len / low_freq_factor
  1855. high_freq_wavelen = old_context_len / high_freq_factor
  1856. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  1857. rope_factors = []
  1858. for freq in freqs:
  1859. wavelen = 2 * math.pi / freq
  1860. if wavelen < high_freq_wavelen:
  1861. rope_factors.append(1)
  1862. elif wavelen > low_freq_wavelen:
  1863. rope_factors.append(factor)
  1864. else:
  1865. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1866. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1867. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1868. def prepare_tensors(self):
  1869. super().prepare_tensors()
  1870. if self._experts is not None:
  1871. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1872. experts = [k for d in self._experts for k in d.keys()]
  1873. if len(experts) > 0:
  1874. raise ValueError(f"Unprocessed experts: {experts}")
  1875. @ModelBase.register("ArceeForCausalLM")
  1876. class ArceeModel(LlamaModel):
  1877. model_arch = gguf.MODEL_ARCH.ARCEE
  1878. def set_gguf_parameters(self):
  1879. super().set_gguf_parameters()
  1880. self._try_set_pooling_type()
  1881. rope_scaling = self.hparams.get("rope_scaling") or {}
  1882. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  1883. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1884. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1885. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  1886. @ModelBase.register(
  1887. "LlavaForConditionalGeneration", # pixtral
  1888. "Mistral3ForConditionalGeneration", # mistral small 3.1
  1889. )
  1890. class LlavaVisionModel(MmprojModel):
  1891. img_break_tok_id = -1
  1892. def __init__(self, *args, **kwargs):
  1893. super().__init__(*args, **kwargs)
  1894. if self.hparams.get("model_type") == "pixtral":
  1895. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  1896. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  1897. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  1898. elif self.is_mistral_format:
  1899. # hparams is already vision config here so norm_eps is only defined in global_config.
  1900. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  1901. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  1902. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  1903. else:
  1904. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  1905. logger.info(f"Image break token id: {self.img_break_tok_id}")
  1906. def get_token_id(self, token: str) -> int:
  1907. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1908. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1909. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  1910. for id_, token_data in added_tokens_decoder.items():
  1911. if token_data["content"] == token:
  1912. return int(id_)
  1913. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  1914. def set_gguf_parameters(self):
  1915. super().set_gguf_parameters()
  1916. hparams = self.hparams
  1917. if hparams.get("model_type") == "pixtral":
  1918. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  1919. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  1920. # hidden_act
  1921. if hparams["hidden_act"] == "silu":
  1922. self.gguf_writer.add_vision_use_silu(True)
  1923. elif hparams["hidden_act"] == "gelu":
  1924. self.gguf_writer.add_vision_use_gelu(True)
  1925. else:
  1926. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  1927. # spatial_merge_size
  1928. if "spatial_merge_size" in self.global_config:
  1929. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  1930. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1931. del bid # unused
  1932. n_head = (
  1933. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  1934. )
  1935. n_kv_head = n_head
  1936. valid_prefixes = (
  1937. "multi_modal_projector.",
  1938. "vision_tower.",
  1939. "vision_encoder.",
  1940. "vision_language_adapter.",
  1941. "patch_merger.",
  1942. "pre_mm_projector_norm",
  1943. )
  1944. if any(name.startswith(prefix) for prefix in valid_prefixes):
  1945. # process vision tensors
  1946. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  1947. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1948. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  1949. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1950. return [(self.map_tensor_name(name), data_torch)]
  1951. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  1952. if self.img_break_tok_id > 0 and embed_key in name:
  1953. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  1954. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  1955. img_break_embd = data_torch[self.img_break_tok_id]
  1956. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  1957. return [(self.map_tensor_name(name), img_break_embd)]
  1958. return [] # skip other tensors
  1959. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  1960. class SmolVLMModel(MmprojModel):
  1961. def __init__(self, *args, **kwargs):
  1962. super().__init__(*args, **kwargs)
  1963. if self.hparams["model_type"] == "smolvlm_vision":
  1964. # fix for SmolVLM2, missing some keys in config.json
  1965. # default values are taken from transformers code
  1966. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  1967. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  1968. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  1969. def set_gguf_parameters(self):
  1970. super().set_gguf_parameters()
  1971. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  1972. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  1973. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  1974. self.gguf_writer.add_vision_use_gelu(True)
  1975. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1976. if ".embeddings." in name:
  1977. return gguf.GGMLQuantizationType.F32
  1978. return super().tensor_force_quant(name, new_name, bid, n_dims)
  1979. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1980. del bid # unused
  1981. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  1982. if is_vision_tensor:
  1983. return [(self.map_tensor_name(name), data_torch)]
  1984. return [] # skip other tensors
  1985. @ModelBase.register(
  1986. "Llama4ForConditionalGeneration",
  1987. "Llama4ForCausalLM",
  1988. )
  1989. class Llama4Model(LlamaModel):
  1990. model_arch = gguf.MODEL_ARCH.LLAMA4
  1991. undo_permute = False
  1992. def __init__(self, *args, **kwargs):
  1993. super().__init__(*args, **kwargs)
  1994. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1995. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1996. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1997. def set_vocab(self):
  1998. self._set_vocab_gpt2()
  1999. def set_gguf_parameters(self):
  2000. super().set_gguf_parameters()
  2001. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2002. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2003. if "layer_types" in self.hparams:
  2004. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2005. # all layers are full attention (for MobileLLM), disable swa
  2006. self.gguf_writer.add_sliding_window(0)
  2007. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2008. if name.startswith("language_model."):
  2009. name = name.replace("language_model.", "")
  2010. # split the gate_up into gate and up
  2011. if "gate_up_proj" in name:
  2012. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2013. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2014. dim_half = data_torch.shape[-1] // 2
  2015. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2016. return [
  2017. (self.map_tensor_name(name_gate), gate_proj_weight),
  2018. (self.map_tensor_name(name_up), up_proj_weight)
  2019. ]
  2020. if name.endswith("down_proj"):
  2021. name += ".weight"
  2022. data_torch = data_torch.transpose(-1, -2)
  2023. if "multi_modal_projector" in name or "vision_model" in name:
  2024. return []
  2025. return super().modify_tensors(data_torch, name, bid)
  2026. @ModelBase.register("Llama4ForConditionalGeneration")
  2027. class Llama4VisionModel(MmprojModel):
  2028. def set_gguf_parameters(self):
  2029. super().set_gguf_parameters()
  2030. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2031. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2032. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2033. assert self.hparams["hidden_act"] == "gelu"
  2034. self.gguf_writer.add_vision_use_gelu(True)
  2035. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2036. del bid # unused
  2037. if "multi_modal_projector" in name or "vision_model" in name:
  2038. # process vision tensors
  2039. if "positional_embedding_vlm" in name and ".weight" not in name:
  2040. name += ".weight"
  2041. if "multi_modal_projector.linear_1" in name:
  2042. # despite the name with number postfix, this is a single fully connected layer
  2043. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2044. return [(self.map_tensor_name(name), data_torch)]
  2045. return []
  2046. @ModelBase.register("Mistral3ForConditionalGeneration")
  2047. class Mistral3Model(LlamaModel):
  2048. model_arch = gguf.MODEL_ARCH.LLAMA
  2049. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2050. name = name.replace("language_model.", "")
  2051. if "multi_modal_projector" in name or "vision_tower" in name:
  2052. return []
  2053. return super().modify_tensors(data_torch, name, bid)
  2054. @ModelBase.register("DeciLMForCausalLM")
  2055. class DeciModel(TextModel):
  2056. model_arch = gguf.MODEL_ARCH.DECI
  2057. @staticmethod
  2058. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2059. # DeciLM-specific code
  2060. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2061. return DeciModel._find_multiple(intermediate_size, 256)
  2062. @staticmethod
  2063. def _find_multiple(n: int, k: int) -> int:
  2064. # DeciLM-specific code
  2065. if n % k == 0:
  2066. return n
  2067. return n + k - (n % k)
  2068. def __init__(self, *args, **kwargs):
  2069. super().__init__(*args, **kwargs)
  2070. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2071. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2072. assert self.block_count == len(_block_configs)
  2073. self._num_kv_heads = list()
  2074. self._num_heads = list()
  2075. _ffn_multipliers = list()
  2076. # ***linear attention layer***
  2077. # if n_heads_in_group is None and replace_with_linear is True
  2078. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2079. # ***attention-free layer***
  2080. # if n_heads_in_group is None and replace_with_linear is False
  2081. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2082. # ***normal attention-layer***
  2083. # if n_heads_in_group is not None, then
  2084. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2085. # _num_heads[il] is num_attention_head
  2086. # ***dummy layer*** for nemotron 253B
  2087. # if n_heads_in_group is None and ffn_mult is None
  2088. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2089. for il in range(len(_block_configs)):
  2090. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2091. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2092. self._num_kv_heads.append(0)
  2093. self._num_heads.append(self.hparams["num_attention_heads"])
  2094. else:
  2095. self._num_kv_heads.append(0)
  2096. self._num_heads.append(0)
  2097. else:
  2098. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2099. self._num_heads.append(self.hparams["num_attention_heads"])
  2100. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2101. _ffn_multipliers.append(0.0)
  2102. else:
  2103. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2104. assert self.block_count == len(self._num_kv_heads)
  2105. assert self.block_count == len(self._num_heads)
  2106. assert self.block_count == len(_ffn_multipliers)
  2107. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2108. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2109. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2110. self._ffn_dims: list[int] = [
  2111. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2112. for multiplier in _ffn_multipliers
  2113. ]
  2114. def set_vocab(self):
  2115. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2116. # eos_token from '|eot_id|' to '|end_of_text|'
  2117. if self.hparams.get("vocab_size", 128256) == 128256:
  2118. tokens, toktypes, tokpre = self.get_vocab_base()
  2119. self.gguf_writer.add_tokenizer_model("gpt2")
  2120. self.gguf_writer.add_tokenizer_pre(tokpre)
  2121. self.gguf_writer.add_token_list(tokens)
  2122. self.gguf_writer.add_token_types(toktypes)
  2123. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2124. special_vocab.add_to_gguf(self.gguf_writer)
  2125. else:
  2126. # DeciLM-7B
  2127. self._set_vocab_llama_hf()
  2128. def set_gguf_parameters(self):
  2129. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2130. assert self.block_count == len(self._num_kv_heads)
  2131. assert self.block_count == len(self._num_heads)
  2132. assert self.block_count == len(self._ffn_dims)
  2133. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2134. self.gguf_writer.add_rope_freq_base(rope_theta)
  2135. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2136. self.gguf_writer.add_head_count(self._num_heads)
  2137. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2138. self.gguf_writer.add_block_count(self.block_count)
  2139. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2140. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2141. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2142. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2143. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2144. self.gguf_writer.add_file_type(self.ftype)
  2145. else: # DeciLM-7B
  2146. super().set_gguf_parameters()
  2147. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2148. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2149. assert self.block_count == len(self._num_kv_heads)
  2150. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2151. hparams = self.hparams
  2152. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2153. if (rope_dim := hparams.get("head_dim")) is None:
  2154. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2155. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2156. rope_scaling = self.hparams.get("rope_scaling") or {}
  2157. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2158. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2159. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2160. @staticmethod
  2161. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2162. if n_head_kv is not None and n_head != n_head_kv:
  2163. n_head = n_head_kv
  2164. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2165. .swapaxes(1, 2)
  2166. .reshape(weights.shape))
  2167. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2168. n_head = self.hparams["num_attention_heads"]
  2169. if bid is not None:
  2170. if "num_key_value_heads_per_layer" in self.hparams:
  2171. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2172. elif "block_configs" in self.hparams:
  2173. n_kv_head = self._num_kv_heads[bid]
  2174. n_head = self._num_heads[bid]
  2175. else:
  2176. n_kv_head = self.hparams.get("num_key_value_heads")
  2177. else:
  2178. n_kv_head = self.hparams.get("num_key_value_heads")
  2179. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2180. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2181. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2182. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2183. return [(self.map_tensor_name(name), data_torch)]
  2184. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2185. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2186. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2187. base = self.hparams.get("rope_theta", 10000.0)
  2188. if (dim := self.hparams.get("head_dim")) is None:
  2189. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2190. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2191. factor = rope_scaling.get("factor", 8.0)
  2192. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2193. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2194. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2195. low_freq_wavelen = old_context_len / low_freq_factor
  2196. high_freq_wavelen = old_context_len / high_freq_factor
  2197. assert low_freq_wavelen != high_freq_wavelen
  2198. rope_factors = []
  2199. for freq in freqs:
  2200. wavelen = 2 * math.pi / freq
  2201. if wavelen < high_freq_wavelen:
  2202. rope_factors.append(1)
  2203. elif wavelen > low_freq_wavelen:
  2204. rope_factors.append(factor)
  2205. else:
  2206. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2207. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2208. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2209. def prepare_tensors(self):
  2210. super().prepare_tensors()
  2211. @ModelBase.register("BitnetForCausalLM")
  2212. class BitnetModel(TextModel):
  2213. model_arch = gguf.MODEL_ARCH.BITNET
  2214. def set_vocab(self):
  2215. self._set_vocab_sentencepiece()
  2216. def set_gguf_parameters(self):
  2217. super().set_gguf_parameters()
  2218. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2219. self.gguf_writer.add_rope_scaling_factor(1.0)
  2220. def weight_quant(self, weight: Tensor) -> Tensor:
  2221. dtype = weight.dtype
  2222. weight = weight.float()
  2223. scale = weight.abs().mean().clamp(min=1e-5)
  2224. iscale = 1 / scale
  2225. # TODO: multiply by the scale directly instead of inverting it twice
  2226. # (this is also unnecessarily doubly inverted upstream)
  2227. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2228. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2229. return result.type(dtype)
  2230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2231. new_name = self.map_tensor_name(name)
  2232. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2233. gguf.MODEL_TENSOR.ATTN_Q,
  2234. gguf.MODEL_TENSOR.ATTN_K,
  2235. gguf.MODEL_TENSOR.ATTN_V,
  2236. gguf.MODEL_TENSOR.ATTN_OUT,
  2237. gguf.MODEL_TENSOR.FFN_UP,
  2238. gguf.MODEL_TENSOR.FFN_DOWN,
  2239. gguf.MODEL_TENSOR.FFN_GATE,
  2240. ]):
  2241. # transform weight into 1/0/-1 (in fp32)
  2242. data_torch = self.weight_quant(data_torch)
  2243. yield (new_name, data_torch)
  2244. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2245. class GrokModel(TextModel):
  2246. model_arch = gguf.MODEL_ARCH.GROK
  2247. def set_vocab(self):
  2248. if (self.dir_model / 'tokenizer.model').is_file():
  2249. self._set_vocab_sentencepiece()
  2250. return
  2251. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2252. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2253. sys.exit(1)
  2254. self._set_vocab_gpt2()
  2255. def __init__(self, *args, **kwargs):
  2256. super().__init__(*args, **kwargs)
  2257. def set_gguf_parameters(self):
  2258. super().set_gguf_parameters()
  2259. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2260. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2261. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2262. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2263. if (rope_dim := self.hparams.get("head_dim")) is None:
  2264. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2265. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2266. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2267. # Treat "original" as "yarn", seems to have been a mistake
  2268. if self.hparams.get("rope_type") in ("yarn", "original"):
  2269. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2270. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2271. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2272. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2273. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2274. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2275. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2276. if temp_len := self.hparams.get("attn_temperature_len"):
  2277. self.gguf_writer.add_attn_temperature_length(temp_len)
  2278. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2279. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2280. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2281. _experts: list[dict[str, list[Tensor]]] | None = None
  2282. _cur_expert = ""
  2283. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2284. tensors: list[tuple[str, Tensor]] = []
  2285. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2286. if not is_expert:
  2287. tensors.append((self.map_tensor_name(name), data_torch))
  2288. # process the experts separately
  2289. if is_expert or self._cur_expert:
  2290. n_experts = self.hparams["num_local_experts"]
  2291. assert bid is not None
  2292. if self._experts is None:
  2293. self._experts = [{} for _ in range(self.block_count)]
  2294. # concatenate split tensors
  2295. if name in self._experts[bid]:
  2296. self._cur_expert = name
  2297. self._experts[bid][name].append(data_torch)
  2298. return []
  2299. elif is_expert:
  2300. self._cur_expert = name
  2301. self._experts[bid][name] = [data_torch]
  2302. return []
  2303. else:
  2304. self._cur_expert = ""
  2305. for bid in range(self.block_count):
  2306. if len(self._experts[bid]) >= n_experts * 3:
  2307. # merge the experts into a single 3d tensor
  2308. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2309. datas: list[Tensor] = []
  2310. for xid in range(n_experts):
  2311. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2312. if ename not in self._experts[bid]:
  2313. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2314. tensor_list = self._experts[bid][ename]
  2315. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2316. del self._experts[bid][ename]
  2317. data_torch = torch.stack(datas, dim=0)
  2318. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2319. new_name = self.map_tensor_name(merged_name)
  2320. yield (new_name, data_torch)
  2321. yield from tensors
  2322. @ModelBase.register("DbrxForCausalLM")
  2323. class DbrxModel(TextModel):
  2324. model_arch = gguf.MODEL_ARCH.DBRX
  2325. def set_gguf_parameters(self):
  2326. ffn_config = self.hparams["ffn_config"]
  2327. attn_config = self.hparams["attn_config"]
  2328. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  2329. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2330. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2331. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2332. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2333. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2334. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2335. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2336. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2337. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2338. self.gguf_writer.add_layer_norm_eps(1e-5)
  2339. self.gguf_writer.add_file_type(self.ftype)
  2340. logger.info(f"gguf: file type = {self.ftype}")
  2341. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2342. del bid # unused
  2343. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2344. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2345. n_embd = self.hparams["d_model"]
  2346. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2347. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2348. # But llama.cpp moe graph works differently
  2349. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2350. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2351. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2352. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2353. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2354. experts = False
  2355. for exp_tensor_name in exp_tensor_names.keys():
  2356. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2357. experts = True
  2358. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2359. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2360. data_torch = data_torch.permute(*permute_tensor)
  2361. break
  2362. # map tensor names
  2363. # In MoE models the ffn tensors are typically most of the model weights,
  2364. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2365. # Every other model has the weight names ending in .weight,
  2366. # let's assume that is the convention which is not the case for dbrx:
  2367. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2368. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2369. return [(new_name, data_torch)]
  2370. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2371. del name, new_name, bid # unused
  2372. return n_dims > 1
  2373. @ModelBase.register("MiniCPMForCausalLM")
  2374. class MiniCPMModel(TextModel):
  2375. model_arch = gguf.MODEL_ARCH.MINICPM
  2376. def set_gguf_parameters(self):
  2377. super().set_gguf_parameters()
  2378. embedding_scale = float(self.hparams["scale_emb"])
  2379. self.gguf_writer.add_embedding_scale(embedding_scale)
  2380. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2381. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2382. self.gguf_writer.add_residual_scale(residual_scale)
  2383. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2384. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2385. self.gguf_writer.add_logit_scale(logit_scale)
  2386. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2387. rope_scaling = self.hparams.get("rope_scaling") or {}
  2388. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2389. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2390. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2391. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2392. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2393. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2394. if rope_scaling is not None:
  2395. long_factors = rope_scaling.get('long_factor', None)
  2396. short_factors = rope_scaling.get('short_factor', None)
  2397. if long_factors is None or short_factors is None:
  2398. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2399. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2400. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2401. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2402. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2403. def set_vocab(self):
  2404. self._set_vocab_sentencepiece()
  2405. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2406. del bid # unused
  2407. n_head = self.hparams["num_attention_heads"]
  2408. n_kv_head = self.hparams.get("num_key_value_heads")
  2409. # HF models permute some of the tensors, so we need to undo that
  2410. if name.endswith(("q_proj.weight")):
  2411. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2412. if name.endswith(("k_proj.weight")):
  2413. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2414. return [(self.map_tensor_name(name), data_torch)]
  2415. @ModelBase.register("MiniCPM3ForCausalLM")
  2416. class MiniCPM3Model(TextModel):
  2417. model_arch = gguf.MODEL_ARCH.MINICPM3
  2418. def set_gguf_parameters(self):
  2419. hparams = self.hparams
  2420. self.gguf_writer.add_file_type(self.ftype)
  2421. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2422. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2423. self.gguf_writer.add_block_count(self.block_count)
  2424. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2425. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2426. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2427. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2428. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2429. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2430. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2431. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2432. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2433. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2434. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2435. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2436. if rope_scaling is not None:
  2437. rope_dims = self.hparams["qk_rope_head_dim"]
  2438. long_factors = rope_scaling.get('long_factor', None)
  2439. short_factors = rope_scaling.get('short_factor', None)
  2440. if long_factors is None or short_factors is None:
  2441. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2442. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2443. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2444. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2445. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2446. def set_vocab(self):
  2447. self._set_vocab_sentencepiece()
  2448. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2449. if n_kv_head is not None and n_head != n_kv_head:
  2450. n_head //= n_kv_head
  2451. return (
  2452. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2453. .swapaxes(1, 2)
  2454. .reshape(weights.shape)
  2455. )
  2456. @ModelBase.register("QWenLMHeadModel")
  2457. class QwenModel(TextModel):
  2458. model_arch = gguf.MODEL_ARCH.QWEN
  2459. @staticmethod
  2460. def token_bytes_to_string(b):
  2461. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2462. byte_encoder = bytes_to_unicode()
  2463. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2464. @staticmethod
  2465. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2466. parts = [bytes([b]) for b in token]
  2467. while True:
  2468. min_idx = None
  2469. min_rank = None
  2470. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2471. rank = mergeable_ranks.get(pair[0] + pair[1])
  2472. if rank is not None and (min_rank is None or rank < min_rank):
  2473. min_idx = i
  2474. min_rank = rank
  2475. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2476. break
  2477. assert min_idx is not None
  2478. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2479. return parts
  2480. def set_vocab(self):
  2481. self._set_vocab_qwen()
  2482. def set_gguf_parameters(self):
  2483. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2484. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2485. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2486. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2487. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2488. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2489. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2490. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2491. self.gguf_writer.add_file_type(self.ftype)
  2492. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2493. class Qwen2Model(TextModel):
  2494. model_arch = gguf.MODEL_ARCH.QWEN2
  2495. def set_vocab(self):
  2496. try:
  2497. self._set_vocab_sentencepiece()
  2498. except FileNotFoundError:
  2499. self._set_vocab_gpt2()
  2500. def set_gguf_parameters(self):
  2501. super().set_gguf_parameters()
  2502. self._try_set_pooling_type()
  2503. rope_scaling = self.hparams.get("rope_scaling") or {}
  2504. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2505. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2506. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2507. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2508. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2509. if self.hf_arch == "Qwen2Model":
  2510. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2511. if "language_model." in name:
  2512. name = name.replace("language_model.", "") # for InternVL
  2513. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2514. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2515. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2516. # skip vision and audio tensors
  2517. return []
  2518. yield from super().modify_tensors(data_torch, name, bid)
  2519. @ModelBase.register("DreamModel")
  2520. class DreamModel(TextModel):
  2521. model_arch = gguf.MODEL_ARCH.DREAM
  2522. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2523. tokens: list[str] = []
  2524. toktypes: list[int] = []
  2525. from transformers import AutoTokenizer
  2526. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2527. vocab_dict = tokenizer.get_vocab()
  2528. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2529. assert max(vocab_dict.values()) < vocab_size
  2530. tokpre = self.get_vocab_base_pre(tokenizer)
  2531. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2532. added_vocab = tokenizer.get_added_vocab()
  2533. for i in range(vocab_size):
  2534. if i not in reverse_vocab:
  2535. tokens.append(f"[PAD{i}]")
  2536. toktypes.append(gguf.TokenType.UNUSED)
  2537. elif reverse_vocab[i] in added_vocab:
  2538. tokens.append(reverse_vocab[i])
  2539. # Check if it's a special token - treat special tokens as CONTROL tokens
  2540. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2541. if tokenizer.added_tokens_decoder[i].special:
  2542. toktypes.append(gguf.TokenType.CONTROL)
  2543. else:
  2544. toktypes.append(gguf.TokenType.USER_DEFINED)
  2545. else:
  2546. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2547. toktypes.append(gguf.TokenType.CONTROL)
  2548. else:
  2549. tokens.append(reverse_vocab[i])
  2550. toktypes.append(gguf.TokenType.NORMAL)
  2551. return tokens, toktypes, tokpre
  2552. def set_vocab(self):
  2553. try:
  2554. self._set_vocab_sentencepiece()
  2555. except FileNotFoundError:
  2556. self._set_vocab_gpt2()
  2557. def set_gguf_parameters(self):
  2558. super().set_gguf_parameters()
  2559. self._try_set_pooling_type()
  2560. # Dream models use non-causal attention for diffusion
  2561. self.gguf_writer.add_causal_attention(False)
  2562. # Handle RoPE scaling similar to Qwen2
  2563. rope_scaling = self.hparams.get("rope_scaling") or {}
  2564. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2565. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2566. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2567. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2568. # Add Dream-specific parameters
  2569. mask_token_id = self.hparams.get("mask_token_id")
  2570. if mask_token_id is not None:
  2571. self.gguf_writer.add_mask_token_id(mask_token_id)
  2572. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2573. # Dream model tensors should be mapped directly since it's the base model
  2574. yield from super().modify_tensors(data_torch, name, bid)
  2575. @ModelBase.register("LLaDAModelLM")
  2576. class LLaDAModel(TextModel):
  2577. model_arch = gguf.MODEL_ARCH.LLADA
  2578. undo_permute = True
  2579. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2580. tokens: list[str] = []
  2581. toktypes: list[int] = []
  2582. from transformers import AutoTokenizer
  2583. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2584. vocab_dict = tokenizer.get_vocab()
  2585. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2586. assert max(vocab_dict.values()) < vocab_size
  2587. tokpre = self.get_vocab_base_pre(tokenizer)
  2588. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2589. added_vocab = tokenizer.get_added_vocab()
  2590. for i in range(vocab_size):
  2591. if i not in reverse_vocab:
  2592. tokens.append(f"[PAD{i}]")
  2593. toktypes.append(gguf.TokenType.UNUSED)
  2594. elif reverse_vocab[i] in added_vocab:
  2595. tokens.append(reverse_vocab[i])
  2596. # Check if it's a special token - treat special tokens as CONTROL tokens
  2597. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2598. if tokenizer.added_tokens_decoder[i].special:
  2599. toktypes.append(gguf.TokenType.CONTROL)
  2600. else:
  2601. toktypes.append(gguf.TokenType.USER_DEFINED)
  2602. else:
  2603. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2604. toktypes.append(gguf.TokenType.CONTROL)
  2605. else:
  2606. tokens.append(reverse_vocab[i])
  2607. toktypes.append(gguf.TokenType.NORMAL)
  2608. return tokens, toktypes, tokpre
  2609. def set_vocab(self):
  2610. self._set_vocab_gpt2()
  2611. # LLaDA specific parameters
  2612. self.gguf_writer.add_add_bos_token(True)
  2613. def set_gguf_parameters(self):
  2614. super().set_gguf_parameters()
  2615. self._try_set_pooling_type()
  2616. # Add parameters similar to LlamaModel
  2617. hparams = self.hparams
  2618. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2619. if (rope_dim := hparams.get("head_dim")) is None:
  2620. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2621. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2622. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2623. # Set context length for LLaDA
  2624. context_length = self.hparams.get("max_sequence_length", 4096)
  2625. self.gguf_writer.add_context_length(context_length)
  2626. # Set embedding length (dimension size)
  2627. embedding_length = self.hparams.get("d_model", 4096)
  2628. self.gguf_writer.add_embedding_length(embedding_length)
  2629. # Set feed forward length (MLP hidden size)
  2630. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2631. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2632. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2633. self.gguf_writer.add_causal_attention(False)
  2634. # LLaDA models don't shift their logits
  2635. self.gguf_writer.add_diffusion_shift_logits(False)
  2636. @staticmethod
  2637. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2638. if n_head_kv is not None and n_head != n_head_kv:
  2639. n_head = n_head_kv
  2640. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2641. .swapaxes(1, 2)
  2642. .reshape(weights.shape))
  2643. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2644. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2645. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2646. if self.undo_permute:
  2647. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2648. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2649. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2650. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2651. # LLaDA model tensors should be mapped directly since it's the base model
  2652. yield from super().modify_tensors(data_torch, name, bid)
  2653. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2654. class Ernie4_5Model(TextModel):
  2655. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2656. def set_vocab(self):
  2657. self._set_vocab_sentencepiece()
  2658. def set_gguf_parameters(self):
  2659. super().set_gguf_parameters()
  2660. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2661. num_heads = self.hparams["num_attention_heads"]
  2662. num_kv_heads = self.hparams["num_key_value_heads"]
  2663. if (head_dim := self.hparams.get("head_dim")) is None:
  2664. head_dim = self.hparams["hidden_size"] // num_heads
  2665. if "ernie." in name:
  2666. name = name.replace("ernie.", "model.")
  2667. # split the qkv weights
  2668. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2669. if "qkv_proj" in name:
  2670. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2671. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2672. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2673. total_q_dim = num_heads * head_dim
  2674. total_k_dim = num_kv_heads * head_dim
  2675. total_v_dim = num_kv_heads * head_dim
  2676. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  2677. return [
  2678. (self.map_tensor_name(name_q), q_proj_weight),
  2679. (self.map_tensor_name(name_k), k_proj_weight),
  2680. (self.map_tensor_name(name_v), v_proj_weight)
  2681. ]
  2682. # split the up_gate_proj into gate and up
  2683. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  2684. if "up_gate_proj" in name:
  2685. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  2686. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  2687. dim_half = data_torch.shape[0] // 2
  2688. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  2689. return [
  2690. (self.map_tensor_name(name_gate), gate_proj_weight),
  2691. (self.map_tensor_name(name_up), up_proj_weight)
  2692. ]
  2693. return [(self.map_tensor_name(name), data_torch)]
  2694. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  2695. class Ernie4_5MoeModel(Ernie4_5Model):
  2696. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  2697. _experts: list[dict[str, Tensor]] | None = None
  2698. def __init__(self, *args, **kwargs):
  2699. super().__init__(*args, **kwargs)
  2700. self._experts = [{} for _ in range(self.block_count)]
  2701. def set_gguf_parameters(self):
  2702. super().set_gguf_parameters()
  2703. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  2704. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  2705. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  2706. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  2707. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2708. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2709. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  2710. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  2711. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  2712. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  2713. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2714. # Modify correction bias name as in DeepseekV2
  2715. if name.endswith("e_score_correction_bias"):
  2716. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  2717. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  2718. match = re.match(r"model.mtp_block.(\d+)", name)
  2719. if match:
  2720. return []
  2721. # skip all other MTP tensors for now
  2722. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  2723. if match:
  2724. return []
  2725. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  2726. if match:
  2727. return []
  2728. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  2729. if match:
  2730. return []
  2731. # process the experts separately
  2732. if name.find("mlp.experts") != -1:
  2733. n_experts = self.hparams["moe_num_experts"]
  2734. assert bid is not None
  2735. if self._experts is None:
  2736. self._experts = [{} for _ in range(self.block_count)]
  2737. self._experts[bid][name] = data_torch
  2738. if len(self._experts[bid]) >= n_experts * 3:
  2739. tensors: list[tuple[str, Tensor]] = []
  2740. # merge the experts into a single 3d tensor
  2741. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2742. datas: list[Tensor] = []
  2743. for xid in range(n_experts):
  2744. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2745. datas.append(self._experts[bid][ename_to_retrieve])
  2746. del self._experts[bid][ename_to_retrieve]
  2747. data_torch = torch.stack(datas, dim=0)
  2748. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2749. new_name = self.map_tensor_name(merged_name)
  2750. tensors.append((new_name, data_torch))
  2751. return tensors
  2752. else:
  2753. return []
  2754. return [(self.map_tensor_name(name), data_torch)]
  2755. def prepare_tensors(self):
  2756. super().prepare_tensors()
  2757. if self._experts is not None:
  2758. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2759. experts = [k for d in self._experts for k in d.keys()]
  2760. if len(experts) > 0:
  2761. raise ValueError(f"Unprocessed experts: {experts}")
  2762. @ModelBase.register(
  2763. "Qwen2VLModel",
  2764. "Qwen2VLForConditionalGeneration",
  2765. "Qwen2_5_VLForConditionalGeneration",
  2766. "Qwen2_5OmniModel",
  2767. )
  2768. class Qwen2VLModel(TextModel):
  2769. model_arch = gguf.MODEL_ARCH.QWEN2VL
  2770. def set_gguf_parameters(self):
  2771. super().set_gguf_parameters()
  2772. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  2773. mrope_section += [0] * max(0, 4 - len(mrope_section))
  2774. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  2775. def set_vocab(self):
  2776. try:
  2777. self._set_vocab_sentencepiece()
  2778. except FileNotFoundError:
  2779. self._set_vocab_gpt2()
  2780. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2781. del bid # unused
  2782. if name.startswith("thinker."):
  2783. name = name.replace("thinker.", "")
  2784. if name.startswith("visual") or name.startswith("audio") or \
  2785. name.startswith("talker") or name.startswith("token2wav"):
  2786. # skip multimodal tensors
  2787. return []
  2788. return [(self.map_tensor_name(name), data_torch)]
  2789. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  2790. class Qwen2VLVisionModel(MmprojModel):
  2791. def __init__(self, *args, **kwargs):
  2792. super().__init__(*args, **kwargs)
  2793. assert self.hparams_vision is not None
  2794. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  2795. # rename config.json values
  2796. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  2797. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  2798. if "embed_dim" in self.hparams_vision: # qwen2vl
  2799. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  2800. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  2801. def set_gguf_parameters(self):
  2802. super().set_gguf_parameters()
  2803. assert self.hparams_vision is not None
  2804. hparams = self.hparams_vision
  2805. model_type = self.global_config['model_type']
  2806. if model_type == 'qwen2_vl':
  2807. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  2808. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  2809. if model_type == 'qwen2_5_omni':
  2810. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  2811. else:
  2812. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  2813. self.gguf_writer.add_vision_use_silu(True)
  2814. # find n_wa_pattern (window attention pattern)
  2815. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  2816. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  2817. n_wa_pattern = fullatt_block_indexes[0] + 1
  2818. # validate n_wa_pattern
  2819. for i in range(1, len(fullatt_block_indexes)):
  2820. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  2821. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  2822. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  2823. else:
  2824. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  2825. # default values below are taken from HF tranformers code
  2826. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  2827. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2828. if ".position_embd." in new_name:
  2829. return gguf.GGMLQuantizationType.F32
  2830. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2832. del bid # unused
  2833. if name.startswith("visual."):
  2834. # process visual tensors
  2835. # split QKV tensors if needed
  2836. if ".qkv." in name:
  2837. if data_torch.ndim == 2: # weight
  2838. c3, _ = data_torch.shape
  2839. else: # bias
  2840. c3 = data_torch.shape[0]
  2841. assert c3 % 3 == 0
  2842. c = c3 // 3
  2843. wq = data_torch[:c]
  2844. wk = data_torch[c: c * 2]
  2845. wv = data_torch[c * 2:]
  2846. return [
  2847. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  2848. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  2849. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  2850. ]
  2851. elif 'patch_embed.proj.weight' in name:
  2852. # split Conv3D into Conv2Ds
  2853. c1, c2, kt, kh, kw = data_torch.shape
  2854. del c1, c2, kh, kw # unused
  2855. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  2856. return [
  2857. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  2858. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  2859. ]
  2860. else:
  2861. return [(self.map_tensor_name(name), data_torch)]
  2862. return [] # skip other tensors
  2863. @ModelBase.register("Qwen2_5OmniModel")
  2864. class Qwen25OmniModel(Qwen2VLVisionModel):
  2865. has_vision_encoder = True
  2866. has_audio_encoder = True
  2867. def __init__(self, *args, **kwargs):
  2868. super().__init__(*args, **kwargs)
  2869. assert self.hparams_audio is not None
  2870. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  2871. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  2872. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  2873. def set_gguf_parameters(self):
  2874. super().set_gguf_parameters()
  2875. assert self.hparams_audio is not None
  2876. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  2877. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  2878. def get_vision_config(self) -> dict[str, Any] | None:
  2879. return self.global_config["thinker_config"].get("vision_config")
  2880. def get_audio_config(self) -> dict[str, Any] | None:
  2881. return self.global_config["thinker_config"].get("audio_config")
  2882. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2883. # SinusoidsPositionEmbedding
  2884. assert self.hparams_audio is not None
  2885. max_timescale = 10000
  2886. length = 1500
  2887. channels = self.hparams_audio["hidden_size"]
  2888. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  2889. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  2890. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  2891. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  2892. yield ("audio_tower.embed_positions.weight", pos_embd)
  2893. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2894. if ".conv" in name and ".weight" in name:
  2895. return gguf.GGMLQuantizationType.F16
  2896. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2897. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2898. if name.startswith("thinker."):
  2899. name = name.replace("thinker.", "")
  2900. if name.startswith("audio_tower"):
  2901. # process audio tensors
  2902. if "conv1.bias" in name or "conv2.bias" in name:
  2903. # transpose conv1 and conv2 bias
  2904. data_torch = data_torch.unsqueeze(-1)
  2905. if "audio_bos_eos_token" in name:
  2906. # this tensor is left unused in transformers code
  2907. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  2908. return []
  2909. return [(self.map_tensor_name(name), data_torch)]
  2910. return super().modify_tensors(data_torch, name, bid)
  2911. @ModelBase.register("InternVisionModel")
  2912. class InternVisionModel(MmprojModel):
  2913. def set_gguf_parameters(self):
  2914. assert self.hparams_vision is not None
  2915. if isinstance(self.hparams_vision['image_size'], list):
  2916. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  2917. if isinstance(self.hparams_vision['patch_size'], list):
  2918. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  2919. super().set_gguf_parameters()
  2920. hparams = self.hparams
  2921. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  2922. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2923. # hidden_act
  2924. if hparams["hidden_act"] == "silu":
  2925. self.gguf_writer.add_vision_use_silu(True)
  2926. elif hparams["hidden_act"] == "gelu":
  2927. self.gguf_writer.add_vision_use_gelu(True)
  2928. else:
  2929. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2930. # downsample_ratio
  2931. downsample_ratio = self.global_config.get("downsample_ratio")
  2932. assert downsample_ratio is not None
  2933. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  2934. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2935. if ".position_embd." in new_name:
  2936. return gguf.GGMLQuantizationType.F32
  2937. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2938. def _mapping_interns1_name(self, name):
  2939. names_map = {
  2940. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  2941. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  2942. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  2943. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  2944. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  2945. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  2946. }
  2947. if name in names_map:
  2948. name = names_map[name]
  2949. return name
  2950. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2951. del bid # unused
  2952. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  2953. # deal with intern-s1 special case
  2954. name = self._mapping_interns1_name(name)
  2955. if any([name.startswith(prefix) for prefix in vision_prefix]):
  2956. # process visual tensors
  2957. # correct name
  2958. if name.startswith("vision_model"):
  2959. name = "vision_tower." + name
  2960. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  2961. name += ".weight"
  2962. # split QKV tensors if needed
  2963. if ".qkv." in name:
  2964. if data_torch.ndim == 2: # weight
  2965. c3, _ = data_torch.shape
  2966. else: # bias
  2967. c3 = data_torch.shape[0]
  2968. assert c3 % 3 == 0
  2969. c = c3 // 3
  2970. wq = data_torch[:c]
  2971. wk = data_torch[c: c * 2]
  2972. wv = data_torch[c * 2:]
  2973. return [
  2974. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  2975. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  2976. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  2977. ]
  2978. return [(self.map_tensor_name(name), data_torch)]
  2979. return [] # skip other tensors
  2980. @ModelBase.register("WavTokenizerDec")
  2981. class WavTokenizerDecModel(TextModel):
  2982. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  2983. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2984. del bid # unused
  2985. if \
  2986. name.endswith("codebook.cluster_size") or \
  2987. name.endswith("codebook.embed_avg") or \
  2988. name.endswith("codebook.inited"):
  2989. logger.debug(f"Skipping {name!r}")
  2990. return []
  2991. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  2992. return [(self.map_tensor_name(name), data_torch)]
  2993. def set_vocab(self):
  2994. self._set_vocab_none()
  2995. def set_gguf_parameters(self):
  2996. super().set_gguf_parameters()
  2997. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  2998. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  2999. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3000. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3001. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3002. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3003. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3004. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3005. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3006. self.gguf_writer.add_causal_attention(False)
  3007. @ModelBase.register("Qwen2MoeForCausalLM")
  3008. class Qwen2MoeModel(TextModel):
  3009. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3010. def set_gguf_parameters(self):
  3011. super().set_gguf_parameters()
  3012. if (n_experts := self.hparams.get("num_experts")) is not None:
  3013. self.gguf_writer.add_expert_count(n_experts)
  3014. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3015. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3016. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3017. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3018. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3019. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3020. # YaRN is not enabled by default
  3021. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3022. rope_scaling = self.hparams.get("rope_scaling") or {}
  3023. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3024. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3025. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3026. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3027. _experts: list[dict[str, Tensor]] | None = None
  3028. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3029. # process the experts separately
  3030. name = name.replace("language_model.", "") # InternVL
  3031. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  3032. # skip visual tensors
  3033. return []
  3034. if name.find("experts") != -1:
  3035. n_experts = self.hparams["num_experts"]
  3036. assert bid is not None
  3037. if self._experts is None:
  3038. self._experts = [{} for _ in range(self.block_count)]
  3039. self._experts[bid][name] = data_torch
  3040. if len(self._experts[bid]) >= n_experts * 3:
  3041. tensors: list[tuple[str, Tensor]] = []
  3042. # merge the experts into a single 3d tensor
  3043. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3044. datas: list[Tensor] = []
  3045. for xid in range(n_experts):
  3046. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3047. datas.append(self._experts[bid][ename])
  3048. del self._experts[bid][ename]
  3049. data_torch = torch.stack(datas, dim=0)
  3050. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3051. new_name = self.map_tensor_name(merged_name)
  3052. tensors.append((new_name, data_torch))
  3053. return tensors
  3054. else:
  3055. return []
  3056. return [(self.map_tensor_name(name), data_torch)]
  3057. def prepare_tensors(self):
  3058. super().prepare_tensors()
  3059. if self._experts is not None:
  3060. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3061. experts = [k for d in self._experts for k in d.keys()]
  3062. if len(experts) > 0:
  3063. raise ValueError(f"Unprocessed experts: {experts}")
  3064. @ModelBase.register("Qwen3ForCausalLM")
  3065. class Qwen3Model(Qwen2Model):
  3066. model_arch = gguf.MODEL_ARCH.QWEN3
  3067. # extra logic for rerank models
  3068. is_rerank: bool = False
  3069. is_tied_embeddings: bool = False
  3070. token_false_id: int | None = None
  3071. token_true_id: int | None = None
  3072. def __init__(self, *args, **kwargs):
  3073. super().__init__(*args, **kwargs)
  3074. # track for intern-s1-mini
  3075. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3076. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3077. # a bit hacky, but currently the only way to detect if this is a rerank model
  3078. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3079. readme_path = self.dir_model / "README.md"
  3080. readme_text = ""
  3081. if readme_path.exists():
  3082. with readme_path.open("r", encoding="utf-8") as f:
  3083. readme_text = f.read()
  3084. if "# Qwen3-Reranker" in readme_text:
  3085. self._find_rerank_config()
  3086. def set_vocab(self):
  3087. # deal with intern-s1-mini
  3088. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3089. self._set_vocab_interns1()
  3090. return
  3091. super().set_vocab()
  3092. def _find_rerank_config(self):
  3093. from transformers import AutoTokenizer
  3094. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3095. self.is_rerank = True
  3096. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3097. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3098. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3099. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3100. assert self.token_false_id is not None and self.token_true_id is not None
  3101. def set_gguf_parameters(self):
  3102. super().set_gguf_parameters()
  3103. if self.is_rerank:
  3104. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3105. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3106. self.gguf_writer.add_chat_template([{
  3107. "name": "rerank",
  3108. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3109. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3110. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3111. }])
  3112. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3113. # extract "yes" and "no" tokens from the output lm_head tensor
  3114. false_row = data_torch[self.token_false_id]
  3115. true_row = data_torch[self.token_true_id]
  3116. return torch.stack([true_row, false_row], dim=0)
  3117. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3118. if self.is_rerank:
  3119. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3120. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3121. if is_tied_head or is_real_head:
  3122. cls_out_head = (
  3123. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3124. self._get_cls_out_tensor(data_torch),
  3125. )
  3126. if is_tied_head:
  3127. embed = (self.map_tensor_name(name), data_torch)
  3128. return [cls_out_head, embed]
  3129. if is_real_head:
  3130. return [cls_out_head]
  3131. return super().modify_tensors(data_torch, name, bid)
  3132. @ModelBase.register("Qwen3MoeForCausalLM")
  3133. class Qwen3MoeModel(Qwen2MoeModel):
  3134. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3135. def __init__(self, *args, **kwargs):
  3136. super().__init__(*args, **kwargs)
  3137. hparams = ModelBase.load_hparams(self.dir_model, False)
  3138. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3139. def set_vocab(self):
  3140. # deal with intern-s1
  3141. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3142. self._set_vocab_interns1()
  3143. return
  3144. super().set_vocab()
  3145. @ModelBase.register("GPT2LMHeadModel")
  3146. class GPT2Model(TextModel):
  3147. model_arch = gguf.MODEL_ARCH.GPT2
  3148. def set_gguf_parameters(self):
  3149. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3150. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3151. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3152. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3153. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3154. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3155. self.gguf_writer.add_file_type(self.ftype)
  3156. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3157. del bid # unused
  3158. tensors: list[tuple[str, Tensor]] = []
  3159. # we don't need these
  3160. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3161. return tensors
  3162. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3163. data_torch = data_torch.transpose(1, 0)
  3164. new_name = self.map_tensor_name(name)
  3165. tensors.append((new_name, data_torch))
  3166. return tensors
  3167. @ModelBase.register("PhiForCausalLM")
  3168. class Phi2Model(TextModel):
  3169. model_arch = gguf.MODEL_ARCH.PHI2
  3170. def set_gguf_parameters(self):
  3171. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3172. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3173. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3174. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3175. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3176. self.gguf_writer.add_embedding_length(n_embd)
  3177. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3178. self.gguf_writer.add_block_count(block_count)
  3179. self.gguf_writer.add_head_count(n_head)
  3180. self.gguf_writer.add_head_count_kv(n_head)
  3181. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3182. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3183. self.gguf_writer.add_file_type(self.ftype)
  3184. self.gguf_writer.add_add_bos_token(False)
  3185. @ModelBase.register("Phi3ForCausalLM")
  3186. class Phi3MiniModel(TextModel):
  3187. model_arch = gguf.MODEL_ARCH.PHI3
  3188. def set_vocab(self):
  3189. # Phi-4 model uses GPT2Tokenizer
  3190. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3191. if tokenizer_config_file.is_file():
  3192. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3193. tokenizer_config_json = json.load(f)
  3194. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3195. if tokenizer_class == 'GPT2Tokenizer':
  3196. return self._set_vocab_gpt2()
  3197. from sentencepiece import SentencePieceProcessor
  3198. tokenizer_path = self.dir_model / 'tokenizer.model'
  3199. if not tokenizer_path.is_file():
  3200. raise ValueError(f'Error: Missing {tokenizer_path}')
  3201. tokenizer = SentencePieceProcessor()
  3202. tokenizer.LoadFromFile(str(tokenizer_path))
  3203. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3204. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3205. scores: list[float] = [-10000.0] * vocab_size
  3206. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3207. for token_id in range(tokenizer.vocab_size()):
  3208. piece = tokenizer.IdToPiece(token_id)
  3209. text = piece.encode("utf-8")
  3210. score = tokenizer.GetScore(token_id)
  3211. toktype = SentencePieceTokenTypes.NORMAL
  3212. if tokenizer.IsUnknown(token_id):
  3213. toktype = SentencePieceTokenTypes.UNKNOWN
  3214. elif tokenizer.IsControl(token_id):
  3215. toktype = SentencePieceTokenTypes.CONTROL
  3216. elif tokenizer.IsUnused(token_id):
  3217. toktype = SentencePieceTokenTypes.UNUSED
  3218. elif tokenizer.IsByte(token_id):
  3219. toktype = SentencePieceTokenTypes.BYTE
  3220. tokens[token_id] = text
  3221. scores[token_id] = score
  3222. toktypes[token_id] = toktype
  3223. added_tokens_file = self.dir_model / 'added_tokens.json'
  3224. if added_tokens_file.is_file():
  3225. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3226. added_tokens_json = json.load(f)
  3227. for key in added_tokens_json:
  3228. token_id = added_tokens_json[key]
  3229. if token_id >= vocab_size:
  3230. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3231. continue
  3232. tokens[token_id] = key.encode("utf-8")
  3233. scores[token_id] = -1000.0
  3234. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3235. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3236. if tokenizer_config_file.is_file():
  3237. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3238. tokenizer_config_json = json.load(f)
  3239. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3240. for token_id, foken_data in added_tokens_decoder.items():
  3241. token_id = int(token_id)
  3242. token = foken_data["content"].encode("utf-8")
  3243. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3244. if tokens[token_id] != token:
  3245. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3246. tokens[token_id] = token
  3247. scores[token_id] = -1000.0
  3248. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3249. if foken_data.get("special"):
  3250. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3251. tokenizer_file = self.dir_model / 'tokenizer.json'
  3252. if tokenizer_file.is_file():
  3253. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3254. tokenizer_json = json.load(f)
  3255. added_tokens = tokenizer_json.get("added_tokens", [])
  3256. for foken_data in added_tokens:
  3257. token_id = int(foken_data["id"])
  3258. token = foken_data["content"].encode("utf-8")
  3259. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3260. if tokens[token_id] != token:
  3261. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3262. tokens[token_id] = token
  3263. scores[token_id] = -1000.0
  3264. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3265. if foken_data.get("special"):
  3266. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3267. self.gguf_writer.add_tokenizer_model("llama")
  3268. self.gguf_writer.add_tokenizer_pre("default")
  3269. self.gguf_writer.add_token_list(tokens)
  3270. self.gguf_writer.add_token_scores(scores)
  3271. self.gguf_writer.add_token_types(toktypes)
  3272. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3273. special_vocab.add_to_gguf(self.gguf_writer)
  3274. def set_gguf_parameters(self):
  3275. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  3276. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3277. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3278. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3279. rms_eps = self.find_hparam(["rms_norm_eps"])
  3280. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3281. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3282. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3283. rope_dims = int(rot_pct * n_embd) // n_head
  3284. self.gguf_writer.add_context_length(max_pos_embds)
  3285. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3286. self.gguf_writer.add_embedding_length(n_embd)
  3287. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3288. self.gguf_writer.add_block_count(block_count)
  3289. self.gguf_writer.add_head_count(n_head)
  3290. self.gguf_writer.add_head_count_kv(n_head_kv)
  3291. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3292. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3293. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3294. self.gguf_writer.add_file_type(self.ftype)
  3295. sliding_window = self.hparams.get("sliding_window")
  3296. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3297. if sliding_window is None:
  3298. sliding_window = 0
  3299. self.gguf_writer.add_sliding_window(sliding_window)
  3300. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3301. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3302. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3303. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3304. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3305. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3306. rope_dims = int(rot_pct * n_embd) // n_head
  3307. # write rope scaling for long context (128k) model
  3308. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3309. if rope_scaling is None:
  3310. return
  3311. scale = max_pos_embds / orig_max_pos_embds
  3312. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3313. if len(rope_scaling_type) == 0:
  3314. raise KeyError('Missing the required key rope_scaling.type')
  3315. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3316. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3317. elif rope_scaling_type == 'yarn':
  3318. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3319. else:
  3320. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3321. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3322. long_factors = rope_scaling.get('long_factor', None)
  3323. short_factors = rope_scaling.get('short_factor', None)
  3324. if long_factors is None or short_factors is None:
  3325. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3326. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3327. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3328. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3329. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3330. @ModelBase.register("PhiMoEForCausalLM")
  3331. class PhiMoeModel(Phi3MiniModel):
  3332. model_arch = gguf.MODEL_ARCH.PHIMOE
  3333. _experts: list[dict[str, Tensor]] | None = None
  3334. def set_gguf_parameters(self):
  3335. super().set_gguf_parameters()
  3336. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3337. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3338. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3339. # process the experts separately
  3340. if name.find("block_sparse_moe.experts") != -1:
  3341. n_experts = self.hparams["num_local_experts"]
  3342. assert bid is not None
  3343. if self._experts is None:
  3344. self._experts = [{} for _ in range(self.block_count)]
  3345. self._experts[bid][name] = data_torch
  3346. if len(self._experts[bid]) >= n_experts * 3:
  3347. tensors: list[tuple[str, Tensor]] = []
  3348. # merge the experts into a single 3d tensor
  3349. for w_name in ["w1", "w2", "w3"]:
  3350. datas: list[Tensor] = []
  3351. for xid in range(n_experts):
  3352. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3353. datas.append(self._experts[bid][ename])
  3354. del self._experts[bid][ename]
  3355. data_torch = torch.stack(datas, dim=0)
  3356. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3357. new_name = self.map_tensor_name(merged_name)
  3358. tensors.append((new_name, data_torch))
  3359. return tensors
  3360. else:
  3361. return []
  3362. return [(self.map_tensor_name(name), data_torch)]
  3363. def prepare_tensors(self):
  3364. super().prepare_tensors()
  3365. if self._experts is not None:
  3366. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3367. experts = [k for d in self._experts for k in d.keys()]
  3368. if len(experts) > 0:
  3369. raise ValueError(f"Unprocessed experts: {experts}")
  3370. @ModelBase.register("PlamoForCausalLM")
  3371. class PlamoModel(TextModel):
  3372. model_arch = gguf.MODEL_ARCH.PLAMO
  3373. def set_vocab(self):
  3374. self._set_vocab_sentencepiece()
  3375. def set_gguf_parameters(self):
  3376. hparams = self.hparams
  3377. block_count = hparams["num_hidden_layers"]
  3378. self.gguf_writer.add_context_length(4096) # not in config.json
  3379. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3380. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3381. self.gguf_writer.add_block_count(block_count)
  3382. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3383. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3384. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3385. self.gguf_writer.add_file_type(self.ftype)
  3386. def shuffle_attn_q_weight(self, data_torch):
  3387. assert data_torch.size() == (5120, 5120)
  3388. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3389. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3390. data_torch = torch.reshape(data_torch, (5120, 5120))
  3391. return data_torch
  3392. def shuffle_attn_output_weight(self, data_torch):
  3393. assert data_torch.size() == (5120, 5120)
  3394. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3395. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3396. data_torch = torch.reshape(data_torch, (5120, 5120))
  3397. return data_torch
  3398. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3399. del bid # unused
  3400. new_name = self.map_tensor_name(name)
  3401. # shuffle for broadcasting of gqa in ggml_mul_mat
  3402. if new_name.endswith("attn_q.weight"):
  3403. data_torch = self.shuffle_attn_q_weight(data_torch)
  3404. elif new_name.endswith("attn_output.weight"):
  3405. data_torch = self.shuffle_attn_output_weight(data_torch)
  3406. return [(new_name, data_torch)]
  3407. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3408. class Plamo2Model(TextModel):
  3409. model_arch = gguf.MODEL_ARCH.PLAMO2
  3410. def set_vocab(self):
  3411. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3412. # We need to handle this specially
  3413. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3414. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3415. if not tokenizer_jsonl_path.is_file():
  3416. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3417. # Load tokenizer config
  3418. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3419. tokenizer_config = json.load(f)
  3420. # Load tokens from JSONL file (actually a list format)
  3421. tokens = []
  3422. scores = []
  3423. toktypes = []
  3424. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3425. for line_num, line in enumerate(f):
  3426. if line.strip():
  3427. token_data = json.loads(line)
  3428. # Format: [token, score, type, ?, ?, ?, ?]
  3429. token = token_data[0].encode("utf-8")
  3430. score = float(token_data[1])
  3431. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3432. tokens.append(token)
  3433. scores.append(score)
  3434. # Map token type strings to GGUF token types
  3435. if token_type_str == "UNKNOWN":
  3436. toktypes.append(gguf.TokenType.UNKNOWN)
  3437. elif token_type_str == "CONTROL":
  3438. toktypes.append(gguf.TokenType.CONTROL)
  3439. elif token_type_str == "BYTE":
  3440. toktypes.append(gguf.TokenType.BYTE)
  3441. else:
  3442. # Check for PLaMo-2 special tokens
  3443. token_str = token_data[0]
  3444. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3445. toktypes.append(gguf.TokenType.CONTROL)
  3446. else:
  3447. toktypes.append(gguf.TokenType.NORMAL)
  3448. vocab_size = self.hparams["vocab_size"]
  3449. if vocab_size > len(tokens):
  3450. pad_count = vocab_size - len(tokens)
  3451. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3452. for i in range(1, pad_count + 1):
  3453. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3454. scores.append(-1000.0)
  3455. toktypes.append(gguf.TokenType.UNUSED)
  3456. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3457. self.gguf_writer.add_tokenizer_model("plamo2")
  3458. self.gguf_writer.add_tokenizer_pre("default")
  3459. self.gguf_writer.add_token_list(tokens)
  3460. self.gguf_writer.add_token_scores(scores)
  3461. self.gguf_writer.add_token_types(toktypes)
  3462. # Add special tokens from config
  3463. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  3464. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  3465. self.gguf_writer.add_bos_token_id(token_id)
  3466. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  3467. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  3468. self.gguf_writer.add_eos_token_id(token_id)
  3469. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  3470. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  3471. self.gguf_writer.add_pad_token_id(token_id)
  3472. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  3473. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  3474. self.gguf_writer.add_sep_token_id(token_id)
  3475. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  3476. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  3477. self.gguf_writer.add_unk_token_id(token_id)
  3478. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  3479. self.gguf_writer.add_eot_token_id(4)
  3480. self.gguf_writer.add_add_space_prefix(False)
  3481. def set_gguf_parameters(self):
  3482. hparams = self.hparams
  3483. block_count = hparams["num_hidden_layers"]
  3484. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3485. # Which layers are Mamba layers
  3486. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  3487. # This logic matches modeling_plamo.py's is_mamba function
  3488. mamba_step = hparams.get("mamba_step", 2)
  3489. mamba_enabled = hparams.get("mamba_enabled", True)
  3490. mamba_layers = []
  3491. if mamba_enabled:
  3492. for i in range(block_count):
  3493. if block_count <= (mamba_step // 2):
  3494. # use attention in last layer
  3495. is_mamba = (i != block_count - 1)
  3496. else:
  3497. is_mamba = (i % mamba_step) != (mamba_step // 2)
  3498. if is_mamba:
  3499. mamba_layers.append(0)
  3500. else:
  3501. mamba_layers.append(hparams.get("num_key_value_heads", 4))
  3502. if mamba_layers:
  3503. self.gguf_writer.add_head_count_kv(mamba_layers)
  3504. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  3505. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  3506. self.gguf_writer.add_block_count(block_count)
  3507. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 32))
  3508. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  3509. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  3510. # Mamba parameters
  3511. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  3512. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  3513. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  3514. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  3515. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  3516. self.gguf_writer.add_ssm_group_count(0)
  3517. # MLP feed forward parameters (for attention layers)
  3518. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  3519. self.gguf_writer.add_file_type(self.ftype)
  3520. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3521. del bid # unused
  3522. if name.endswith(".A_log"):
  3523. data_torch = -torch.exp(data_torch)
  3524. elif name.endswith(".dt_bias"):
  3525. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3526. elif name.endswith(".dt_norm_weight"):
  3527. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  3528. elif name.endswith(".B_norm_weight"):
  3529. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  3530. elif name.endswith(".C_norm_weight"):
  3531. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  3532. elif name.endswith(".k_weight"):
  3533. name = name.rpartition(".k_weight")[0] + ".k.weight"
  3534. elif name.endswith(".q_weight"):
  3535. name = name.rpartition(".q_weight")[0] + ".q.weight"
  3536. elif name.endswith(".conv1d.weight"):
  3537. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  3538. assert data_torch.ndim == 2
  3539. elif name.endswith(".pre_mixer_norm.weight"):
  3540. data_torch += 1.0
  3541. elif name.endswith(".post_mixer_norm.weight"):
  3542. data_torch += 1.0 / 5
  3543. elif name.endswith(".pre_mlp_norm.weight"):
  3544. data_torch += 1.0
  3545. elif name.endswith(".post_mlp_norm.weight"):
  3546. data_torch += 1.0 / (5**1.5)
  3547. elif name.endswith(".norm.weight"):
  3548. data_torch += 1.0
  3549. new_name = self.map_tensor_name(name)
  3550. return [(new_name, data_torch)]
  3551. @ModelBase.register("CodeShellForCausalLM")
  3552. class CodeShellModel(TextModel):
  3553. model_arch = gguf.MODEL_ARCH.CODESHELL
  3554. def set_gguf_parameters(self):
  3555. block_count = self.hparams["n_layer"]
  3556. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3557. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3558. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3559. self.gguf_writer.add_block_count(block_count)
  3560. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3561. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  3562. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3563. self.gguf_writer.add_file_type(self.ftype)
  3564. self.gguf_writer.add_rope_freq_base(10000.0)
  3565. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3566. self.gguf_writer.add_rope_scaling_factor(1.0)
  3567. _has_tok_embd = False
  3568. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3569. del bid # unused
  3570. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3571. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3572. new_name = self.map_tensor_name(name)
  3573. # assuming token_embd.weight is seen before output.weight
  3574. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3575. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  3576. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  3577. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  3578. self.tensor_names.remove("transformer.wte.weight")
  3579. elif new_name == tok_embd_name:
  3580. self._has_tok_embd = True
  3581. return [(new_name, data_torch)]
  3582. @ModelBase.register("InternLM2ForCausalLM")
  3583. class InternLM2Model(TextModel):
  3584. model_arch = gguf.MODEL_ARCH.INTERNLM2
  3585. def set_vocab(self):
  3586. # (TODO): Is there a better way?
  3587. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  3588. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  3589. # recognized as an empty string in C++.
  3590. from sentencepiece import SentencePieceProcessor
  3591. from sentencepiece import sentencepiece_model_pb2 as model
  3592. tokenizer_path = self.dir_model / 'tokenizer.model'
  3593. tokens: list[bytes] = []
  3594. scores: list[float] = []
  3595. toktypes: list[int] = []
  3596. if not tokenizer_path.is_file():
  3597. logger.error(f'Error: Missing {tokenizer_path}')
  3598. sys.exit(1)
  3599. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3600. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3601. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3602. tokenizer = SentencePieceProcessor()
  3603. tokenizer.LoadFromFile(str(tokenizer_path))
  3604. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3605. for token_id in range(vocab_size):
  3606. piece = tokenizer.IdToPiece(token_id)
  3607. text = piece.encode("utf-8")
  3608. score = tokenizer.GetScore(token_id)
  3609. if text == b"\x00":
  3610. # (TODO): fixme
  3611. # Hack here and replace the \x00 characters.
  3612. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  3613. text = "🐉".encode("utf-8")
  3614. toktype = SentencePieceTokenTypes.NORMAL
  3615. if tokenizer.IsUnknown(token_id):
  3616. toktype = SentencePieceTokenTypes.UNKNOWN
  3617. elif tokenizer.IsControl(token_id):
  3618. toktype = SentencePieceTokenTypes.CONTROL
  3619. elif tokenizer.IsUnused(token_id):
  3620. toktype = SentencePieceTokenTypes.UNUSED
  3621. elif tokenizer.IsByte(token_id):
  3622. toktype = SentencePieceTokenTypes.BYTE
  3623. # take care of ununsed raw token
  3624. if piece.startswith('[UNUSED'):
  3625. toktype = SentencePieceTokenTypes.UNUSED
  3626. tokens.append(text)
  3627. scores.append(score)
  3628. toktypes.append(toktype)
  3629. added_tokens_file = self.dir_model / 'added_tokens.json'
  3630. if added_tokens_file.is_file():
  3631. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3632. added_tokens_json = json.load(f)
  3633. for key in added_tokens_json:
  3634. tokens.append(key.encode("utf-8"))
  3635. scores.append(-1000.0)
  3636. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  3637. chat_eos_token = '<|im_end|>'
  3638. chat_eos_token_id = None
  3639. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3640. if tokenizer_config_file.is_file():
  3641. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3642. tokenizer_config_json = json.load(f)
  3643. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3644. for token_id, foken_data in added_tokens_decoder.items():
  3645. token_id = int(token_id)
  3646. token = foken_data["content"]
  3647. if token == chat_eos_token:
  3648. chat_eos_token_id = token_id
  3649. token = token.encode("utf-8")
  3650. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3651. if tokens[token_id] != token:
  3652. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3653. tokens[token_id] = token
  3654. scores[token_id] = -1000.0
  3655. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3656. if foken_data.get("special"):
  3657. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3658. tokenizer_file = self.dir_model / 'tokenizer.json'
  3659. if tokenizer_file.is_file():
  3660. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3661. tokenizer_json = json.load(f)
  3662. added_tokens = tokenizer_json.get("added_tokens", [])
  3663. for foken_data in added_tokens:
  3664. token_id = int(foken_data["id"])
  3665. token = foken_data["content"]
  3666. if token == chat_eos_token:
  3667. chat_eos_token_id = token_id
  3668. token = token.encode("utf-8")
  3669. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3670. if tokens[token_id] != token:
  3671. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3672. tokens[token_id] = token
  3673. scores[token_id] = -1000.0
  3674. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3675. if foken_data.get("special"):
  3676. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3677. self.gguf_writer.add_tokenizer_model("llama")
  3678. self.gguf_writer.add_tokenizer_pre("default")
  3679. self.gguf_writer.add_token_list(tokens)
  3680. self.gguf_writer.add_token_scores(scores)
  3681. self.gguf_writer.add_token_types(toktypes)
  3682. self.gguf_writer.add_add_space_prefix(add_prefix)
  3683. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3684. old_eos = special_vocab.special_token_ids["eos"]
  3685. if chat_eos_token_id is not None:
  3686. # For the chat model, we replace the eos with '<|im_end|>'.
  3687. # TODO: this is a hack, should be fixed
  3688. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  3689. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  3690. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  3691. " in chat mode so that the conversation can end normally.")
  3692. special_vocab.add_to_gguf(self.gguf_writer)
  3693. def set_gguf_parameters(self):
  3694. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  3695. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  3696. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  3697. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  3698. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  3699. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  3700. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  3701. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  3702. self.gguf_writer.add_file_type(self.ftype)
  3703. rope_scaling = self.hparams.get("rope_scaling") or {}
  3704. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3705. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3706. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3708. num_heads = self.hparams["num_attention_heads"]
  3709. num_kv_heads = self.hparams["num_key_value_heads"]
  3710. n_embd = self.hparams["hidden_size"]
  3711. q_per_kv = num_heads // num_kv_heads
  3712. head_dim = n_embd // num_heads
  3713. num_groups = num_heads // q_per_kv
  3714. name = name.replace("language_model.", "") # InternVL
  3715. if name.startswith("mlp") or name.startswith("vision_model"):
  3716. # skip visual tensors
  3717. return []
  3718. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  3719. qkv = data_torch
  3720. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  3721. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  3722. # The model weights of q and k equire additional reshape.
  3723. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  3724. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  3725. v = v.reshape((-1, v.shape[-1]))
  3726. return [
  3727. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  3728. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  3729. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  3730. ]
  3731. else:
  3732. return [(self.map_tensor_name(name), data_torch)]
  3733. @ModelBase.register("InternLM3ForCausalLM")
  3734. class InternLM3Model(TextModel):
  3735. model_arch = gguf.MODEL_ARCH.LLAMA
  3736. def set_vocab(self):
  3737. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  3738. self.gguf_writer.add_tokenizer_model("llama")
  3739. self.gguf_writer.add_tokenizer_pre("default")
  3740. self.gguf_writer.add_token_list(tokens)
  3741. self.gguf_writer.add_token_scores(scores)
  3742. self.gguf_writer.add_token_types(toktypes)
  3743. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3744. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3745. if tokenizer_config_file.is_file():
  3746. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3747. tokenizer_config_json = json.load(f)
  3748. if "add_prefix_space" in tokenizer_config_json:
  3749. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  3750. if "added_tokens_decoder" in tokenizer_config_json:
  3751. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  3752. if token_data.get("special"):
  3753. token_id = int(token_id)
  3754. token = token_data["content"]
  3755. special_vocab._set_special_token(token, token_id)
  3756. # update eos token
  3757. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  3758. special_vocab.special_token_ids["eos"] = token_id
  3759. special_vocab.add_to_gguf(self.gguf_writer)
  3760. def set_gguf_parameters(self):
  3761. super().set_gguf_parameters()
  3762. hparams = self.hparams
  3763. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3764. if (rope_dim := hparams.get("head_dim")) is None:
  3765. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3766. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3767. rope_scaling = self.hparams.get("rope_scaling") or {}
  3768. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  3769. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3770. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3771. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3772. n_head = self.hparams["num_attention_heads"]
  3773. n_kv_head = self.hparams.get("num_key_value_heads")
  3774. name = name.replace("language_model.", "") # InternVL
  3775. if name.startswith("mlp") or name.startswith("vision_model"):
  3776. # skip visual tensors
  3777. return []
  3778. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3779. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3780. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3781. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3782. return [(self.map_tensor_name(name), data_torch)]
  3783. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  3784. class BertModel(TextModel):
  3785. model_arch = gguf.MODEL_ARCH.BERT
  3786. def __init__(self, *args, **kwargs):
  3787. super().__init__(*args, **kwargs)
  3788. self.vocab_size = None
  3789. if cls_out_labels := self.hparams.get("id2label"):
  3790. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  3791. # Remove dummy labels added by AutoConfig
  3792. cls_out_labels = None
  3793. self.cls_out_labels = cls_out_labels
  3794. def set_gguf_parameters(self):
  3795. super().set_gguf_parameters()
  3796. self.gguf_writer.add_causal_attention(False)
  3797. self._try_set_pooling_type()
  3798. if self.cls_out_labels:
  3799. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  3800. def set_vocab(self):
  3801. tokens, toktypes, tokpre = self.get_vocab_base()
  3802. self.vocab_size = len(tokens)
  3803. # we need this to validate the size of the token_type embeddings
  3804. # though currently we are passing all zeros to the token_type embeddings
  3805. # "Sequence A" or "Sequence B"
  3806. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3807. # convert to phantom space vocab
  3808. def phantom(tok):
  3809. if tok.startswith("[") and tok.endswith("]"):
  3810. return tok
  3811. if tok.startswith("##"):
  3812. return tok[2:]
  3813. return "\u2581" + tok
  3814. tokens = list(map(phantom, tokens))
  3815. # add vocab to gguf
  3816. self.gguf_writer.add_tokenizer_model("bert")
  3817. self.gguf_writer.add_tokenizer_pre(tokpre)
  3818. self.gguf_writer.add_token_list(tokens)
  3819. self.gguf_writer.add_token_types(toktypes)
  3820. # handle special tokens
  3821. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3822. special_vocab.add_to_gguf(self.gguf_writer)
  3823. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3824. del bid # unused
  3825. if name.startswith("bert."):
  3826. name = name[5:]
  3827. if name.endswith(".gamma"):
  3828. name = name[:-6] + ".weight"
  3829. if name.endswith(".beta"):
  3830. name = name[:-5] + ".bias"
  3831. # we are only using BERT for embeddings so we don't need the pooling layer
  3832. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  3833. return [] # we don't need these
  3834. if name.startswith("cls.predictions"):
  3835. return []
  3836. if name.startswith("cls.seq_relationship"):
  3837. return []
  3838. if self.cls_out_labels:
  3839. # For BertForSequenceClassification (direct projection layer)
  3840. if name == "classifier.weight":
  3841. name = "classifier.out_proj.weight"
  3842. if name == "classifier.bias":
  3843. name = "classifier.out_proj.bias"
  3844. return [(self.map_tensor_name(name), data_torch)]
  3845. def _xlmroberta_tokenizer_init(self) -> None:
  3846. # we need the pad_token_id to know how to chop down position_embd matrix
  3847. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3848. self._position_offset = 1 + pad_token_id
  3849. if "max_position_embeddings" in self.hparams:
  3850. self.hparams["max_position_embeddings"] -= self._position_offset
  3851. else:
  3852. self._position_offset = None
  3853. def _xlmroberta_set_vocab(self) -> None:
  3854. # to avoid TypeError: Descriptors cannot be created directly
  3855. # exception when importing sentencepiece_model_pb2
  3856. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3857. from sentencepiece import SentencePieceProcessor
  3858. from sentencepiece import sentencepiece_model_pb2 as model
  3859. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  3860. tokenizer_json = {}
  3861. tokenizer_config_json = {}
  3862. if not tokenizer_path.is_file():
  3863. tokenizer_path = self.dir_model / 'tokenizer.json'
  3864. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  3865. if not tokenizer_path.is_file():
  3866. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3867. from base64 import b64decode
  3868. from transformers import AutoTokenizer
  3869. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3870. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  3871. tokenizer_json = json.load(fp)
  3872. if tokenizer_config_path.is_file():
  3873. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  3874. tokenizer_config_json = json.load(fp)
  3875. add_prefix = tokenizer.add_prefix_space
  3876. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  3877. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  3878. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  3879. else:
  3880. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3881. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3882. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3883. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3884. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3885. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3886. tokenizer = SentencePieceProcessor()
  3887. tokenizer.LoadFromFile(str(tokenizer_path))
  3888. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  3889. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3890. scores: list[float] = [-10000.0] * vocab_size
  3891. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3892. if isinstance(tokenizer, SentencePieceProcessor):
  3893. for token_id in range(tokenizer.vocab_size()):
  3894. piece = tokenizer.IdToPiece(token_id)
  3895. text = piece.encode("utf-8")
  3896. score = tokenizer.GetScore(token_id)
  3897. toktype = SentencePieceTokenTypes.NORMAL
  3898. if tokenizer.IsUnknown(token_id):
  3899. toktype = SentencePieceTokenTypes.UNKNOWN
  3900. elif tokenizer.IsControl(token_id):
  3901. toktype = SentencePieceTokenTypes.CONTROL
  3902. elif tokenizer.IsUnused(token_id):
  3903. toktype = SentencePieceTokenTypes.UNUSED
  3904. elif tokenizer.IsByte(token_id):
  3905. toktype = SentencePieceTokenTypes.BYTE
  3906. tokens[token_id] = text
  3907. scores[token_id] = score
  3908. toktypes[token_id] = toktype
  3909. else:
  3910. added_vocab = tokenizer.get_added_vocab()
  3911. unk_token = tokenizer_config_json.get("unk_token")
  3912. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  3913. for token_id in range(tokenizer.vocab_size):
  3914. piece = tokenizer._convert_id_to_token(token_id)
  3915. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  3916. text = piece.encode("utf-8")
  3917. score = tokenizer_json["model"]["vocab"][token_id][1]
  3918. toktype = SentencePieceTokenTypes.NORMAL
  3919. if token_id == unk_token_id:
  3920. toktype = SentencePieceTokenTypes.UNKNOWN
  3921. elif token_id in tokenizer.all_special_ids:
  3922. toktype = SentencePieceTokenTypes.CONTROL
  3923. elif token_id in added_vocab.values():
  3924. toktype = SentencePieceTokenTypes.USER_DEFINED
  3925. # No reliable way to detect this, but jina doesn't have any
  3926. # elif tokenizer.IsByte(token_id):
  3927. # toktype = SentencePieceTokenTypes.BYTE
  3928. tokens[token_id] = text
  3929. scores[token_id] = score
  3930. toktypes[token_id] = toktype
  3931. if isinstance(tokenizer, SentencePieceProcessor):
  3932. # realign tokens (see HF tokenizer code)
  3933. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  3934. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  3935. toktypes = [
  3936. SentencePieceTokenTypes.CONTROL,
  3937. SentencePieceTokenTypes.CONTROL,
  3938. SentencePieceTokenTypes.CONTROL,
  3939. SentencePieceTokenTypes.UNKNOWN,
  3940. ] + toktypes[3:-1]
  3941. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  3942. # Add mask token missing from sentencepiece.bpe.model
  3943. tokens[250001] = b'<mask>'
  3944. scores[250001] = 0.0
  3945. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  3946. self.gguf_writer.add_tokenizer_model("t5")
  3947. self.gguf_writer.add_tokenizer_pre("default")
  3948. self.gguf_writer.add_token_list(tokens)
  3949. self.gguf_writer.add_token_scores(scores)
  3950. self.gguf_writer.add_token_types(toktypes)
  3951. self.gguf_writer.add_add_space_prefix(add_prefix)
  3952. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3953. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3954. if precompiled_charsmap:
  3955. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3956. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3957. special_vocab.add_to_gguf(self.gguf_writer)
  3958. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  3959. class DistilBertModel(BertModel):
  3960. model_arch = gguf.MODEL_ARCH.BERT
  3961. def set_gguf_parameters(self):
  3962. self.gguf_writer.add_layer_norm_eps(1e-12)
  3963. logger.info("gguf: layer norm epsilon = 1e-12")
  3964. super().set_gguf_parameters()
  3965. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3966. if name.startswith("distilbert."):
  3967. name = name[11:]
  3968. # These layers act as MLM head, so we don't need them
  3969. if name.startswith("vocab_"):
  3970. return []
  3971. return super().modify_tensors(data_torch, name, bid)
  3972. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  3973. class RobertaModel(BertModel):
  3974. model_arch = gguf.MODEL_ARCH.BERT
  3975. def __init__(self, *args, **kwargs):
  3976. super().__init__(*args, **kwargs)
  3977. # we need the pad_token_id to know how to chop down position_embd matrix
  3978. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  3979. self._position_offset = 1 + pad_token_id
  3980. if "max_position_embeddings" in self.hparams:
  3981. self.hparams["max_position_embeddings"] -= self._position_offset
  3982. else:
  3983. self._position_offset = None
  3984. def set_vocab(self):
  3985. """Support BPE tokenizers for roberta models"""
  3986. bpe_tok_path = self.dir_model / "tokenizer.json"
  3987. if bpe_tok_path.exists():
  3988. self._set_vocab_gpt2()
  3989. # we need this to validate the size of the token_type embeddings
  3990. # though currently we are passing all zeros to the token_type embeddings
  3991. # "Sequence A" or "Sequence B"
  3992. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  3993. else:
  3994. return super().set_vocab()
  3995. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3996. # if name starts with "roberta.", remove the prefix
  3997. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  3998. if name.startswith("roberta."):
  3999. name = name[8:]
  4000. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4001. if name == "embeddings.position_embeddings.weight":
  4002. if self._position_offset is not None:
  4003. data_torch = data_torch[self._position_offset:,:]
  4004. return super().modify_tensors(data_torch, name, bid)
  4005. @ModelBase.register("NomicBertModel")
  4006. class NomicBertModel(BertModel):
  4007. model_arch = gguf.MODEL_ARCH.BERT
  4008. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4009. hparams = kwargs.pop("hparams", None)
  4010. if hparams is None:
  4011. hparams = ModelBase.load_hparams(dir_model, False)
  4012. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4013. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4014. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4015. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4016. if self._tokenizer_is_xlmroberta:
  4017. self._xlmroberta_tokenizer_init()
  4018. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4019. if npos == 8192 and mtp == 2048:
  4020. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4021. elif npos == 2048 and mtp == 2048:
  4022. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4023. else:
  4024. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4025. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4026. # this doesn't do anything in the HF version
  4027. assert self.hparams["causal"] is False
  4028. # no bias tensors unless MoE
  4029. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4030. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4031. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4032. # norm at end of layer
  4033. assert self.hparams["prenorm"] is False
  4034. # standard RoPE
  4035. assert self.hparams["rotary_emb_fraction"] == 1.0
  4036. assert self.hparams["rotary_emb_interleaved"] is False
  4037. assert self.hparams["rotary_emb_scale_base"] is None
  4038. def set_vocab(self) -> None:
  4039. if self._tokenizer_is_xlmroberta:
  4040. return self._xlmroberta_set_vocab()
  4041. return super().set_vocab()
  4042. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4043. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4044. if "mlp.experts.bias" in name:
  4045. return [] # Explicitly return an empty list.
  4046. if "mlp.experts.mlp.w1" in name:
  4047. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4048. name += ".weight"
  4049. if "mlp.experts.mlp.w2" in name:
  4050. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4051. data_torch = data_torch.transpose(1, 2)
  4052. name += ".weight"
  4053. return [(self.map_tensor_name(name), data_torch)]
  4054. def set_gguf_parameters(self):
  4055. super().set_gguf_parameters()
  4056. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4057. if self.is_moe:
  4058. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4059. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4060. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4061. def _is_tokenizer_xlmroberta(self) -> bool:
  4062. with open(self.dir_model / "tokenizer.json") as f:
  4063. tokenizer_json = json.load(f)
  4064. toktyp = tokenizer_json["model"]["type"]
  4065. if toktyp == "Unigram":
  4066. return True
  4067. if toktyp == "WordPiece":
  4068. return False
  4069. raise ValueError(f"unknown tokenizer: {toktyp}")
  4070. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4071. class NeoBert(BertModel):
  4072. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4073. def set_gguf_parameters(self):
  4074. super().set_gguf_parameters()
  4075. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4076. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4077. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4078. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4079. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4080. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4081. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4082. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4083. def modify_tensors(self, data_torch, name, bid):
  4084. if name.startswith("decoder."):
  4085. return []
  4086. if name.startswith("model."):
  4087. name = name[6:]
  4088. return super().modify_tensors(data_torch, name, bid)
  4089. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4090. class XLMRobertaModel(BertModel):
  4091. model_arch = gguf.MODEL_ARCH.BERT
  4092. _lora_files = {}
  4093. _lora_names = []
  4094. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4095. hparams = kwargs.pop("hparams", None)
  4096. if hparams is None:
  4097. hparams = ModelBase.load_hparams(dir_model, False)
  4098. if lora_names := hparams.get("lora_adaptations"):
  4099. self._lora_names = lora_names
  4100. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4101. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4102. self._xlmroberta_tokenizer_init()
  4103. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4104. if self._lora_names:
  4105. for name in self._lora_names:
  4106. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4107. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4108. return super().generate_extra_tensors()
  4109. def set_type(self):
  4110. for lora_writer in self._lora_files.values():
  4111. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4112. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4113. super().set_type()
  4114. def set_vocab(self):
  4115. self._xlmroberta_set_vocab()
  4116. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4117. # if name starts with "roberta.", remove the prefix
  4118. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4119. if name.startswith("roberta."):
  4120. name = name[8:]
  4121. # jina-embeddings-v3
  4122. if ".parametrizations." in name:
  4123. name = name.replace(".parametrizations.", ".")
  4124. if name.endswith(".original"):
  4125. name = name[:-9]
  4126. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4127. if name == "embeddings.position_embeddings.weight":
  4128. if self._position_offset is not None:
  4129. data_torch = data_torch[self._position_offset:,:]
  4130. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4131. if name.startswith("pooler.dense"):
  4132. return []
  4133. num_loras = data_torch.size(0)
  4134. assert num_loras == len(self._lora_names)
  4135. # Split out each LoRA in their own GGUF
  4136. for i, lora_writer in enumerate(self._lora_files.values()):
  4137. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4138. data = data_torch[i, :, :]
  4139. # Transpose/flip token_embd/types into correct shape
  4140. if new_name == "token_embd.weight.lora_b":
  4141. data = data.T
  4142. elif new_name.startswith("token_types.weight."):
  4143. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4144. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4145. return []
  4146. return super().modify_tensors(data_torch, name, bid)
  4147. def set_gguf_parameters(self):
  4148. super().set_gguf_parameters()
  4149. # jina-embeddings-v3
  4150. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4151. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4152. lora_alpha = self.hparams.get("lora_alpha")
  4153. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4154. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4155. for lora_name, lora_writer in self._lora_files.items():
  4156. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4157. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4158. if lora_prompt_prefixes:
  4159. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4160. def write(self):
  4161. super().write()
  4162. for lora_writer in self._lora_files.values():
  4163. lora_writer.write_header_to_file()
  4164. lora_writer.write_kv_data_to_file()
  4165. lora_writer.write_tensors_to_file(progress=True)
  4166. lora_writer.close()
  4167. @ModelBase.register("GemmaForCausalLM")
  4168. class GemmaModel(TextModel):
  4169. model_arch = gguf.MODEL_ARCH.GEMMA
  4170. def set_vocab(self):
  4171. self._set_vocab_sentencepiece()
  4172. # TODO: these special tokens should be exported only for the CodeGemma family
  4173. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4174. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4175. special_vocab._set_special_token("prefix", 67)
  4176. special_vocab._set_special_token("suffix", 69)
  4177. special_vocab._set_special_token("middle", 68)
  4178. special_vocab._set_special_token("fsep", 70)
  4179. special_vocab._set_special_token("eot", 107)
  4180. special_vocab.chat_template = None # do not add it twice
  4181. special_vocab.add_to_gguf(self.gguf_writer)
  4182. self.gguf_writer.add_add_space_prefix(False)
  4183. def set_gguf_parameters(self):
  4184. hparams = self.hparams
  4185. block_count = hparams["num_hidden_layers"]
  4186. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4187. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4188. self.gguf_writer.add_block_count(block_count)
  4189. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4190. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4191. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4192. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4193. self.gguf_writer.add_key_length(hparams["head_dim"])
  4194. self.gguf_writer.add_value_length(hparams["head_dim"])
  4195. self.gguf_writer.add_file_type(self.ftype)
  4196. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4197. del bid # unused
  4198. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4199. # To prevent errors, skip loading lm_head.weight.
  4200. if name == "lm_head.weight":
  4201. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4202. return []
  4203. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4204. if name.endswith("norm.weight"):
  4205. data_torch = data_torch + 1
  4206. return [(self.map_tensor_name(name), data_torch)]
  4207. @ModelBase.register("Gemma2ForCausalLM")
  4208. class Gemma2Model(TextModel):
  4209. model_arch = gguf.MODEL_ARCH.GEMMA2
  4210. def set_vocab(self):
  4211. self._set_vocab_sentencepiece()
  4212. self.gguf_writer.add_add_space_prefix(False)
  4213. def set_gguf_parameters(self):
  4214. hparams = self.hparams
  4215. block_count = hparams["num_hidden_layers"]
  4216. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4217. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4218. self.gguf_writer.add_block_count(block_count)
  4219. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4220. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4221. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4222. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4223. self.gguf_writer.add_key_length(hparams["head_dim"])
  4224. self.gguf_writer.add_value_length(hparams["head_dim"])
  4225. self.gguf_writer.add_file_type(self.ftype)
  4226. self.gguf_writer.add_attn_logit_softcapping(
  4227. self.hparams["attn_logit_softcapping"]
  4228. )
  4229. self.gguf_writer.add_final_logit_softcapping(
  4230. self.hparams["final_logit_softcapping"]
  4231. )
  4232. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4233. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4234. del bid # unused
  4235. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4236. # To prevent errors, skip loading lm_head.weight.
  4237. if name == "lm_head.weight":
  4238. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4239. return []
  4240. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4241. if name.endswith("norm.weight"):
  4242. data_torch = data_torch + 1
  4243. return [(self.map_tensor_name(name), data_torch)]
  4244. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4245. class Gemma3Model(TextModel):
  4246. model_arch = gguf.MODEL_ARCH.GEMMA3
  4247. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4248. def set_vocab(self):
  4249. self._set_vocab_sentencepiece()
  4250. self.gguf_writer.add_add_space_prefix(False)
  4251. def set_gguf_parameters(self):
  4252. hparams = self.hparams
  4253. block_count = hparams["num_hidden_layers"]
  4254. # some default values are not specified in the hparams
  4255. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4256. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4257. self.gguf_writer.add_block_count(block_count)
  4258. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4259. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4260. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4261. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4262. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4263. self.gguf_writer.add_file_type(self.ftype)
  4264. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4265. # attn_logit_softcapping is removed in Gemma3
  4266. assert hparams.get("attn_logit_softcapping") is None
  4267. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4268. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4269. if hparams.get("rope_scaling") is not None:
  4270. assert hparams["rope_scaling"]["rope_type"] == "linear"
  4271. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4272. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4273. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4274. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4275. del bid # unused
  4276. if "language_model." in name:
  4277. name = name.replace("language_model.", "")
  4278. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4279. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4280. return [] # skip vision tensors
  4281. # remove OOV (out-of-vocabulary) rows in token_embd
  4282. if "embed_tokens.weight" in name:
  4283. vocab = self._create_vocab_sentencepiece()
  4284. tokens = vocab[0]
  4285. data_torch = data_torch[:len(tokens)]
  4286. # ref code in Gemma3RMSNorm
  4287. # output = output * (1.0 + self.weight.float())
  4288. # note: this is not the case on gemma3n
  4289. if name.endswith("norm.weight"):
  4290. data_torch = data_torch + self.norm_shift
  4291. return [(self.map_tensor_name(name), data_torch)]
  4292. @ModelBase.register("Gemma3TextModel")
  4293. class EmbeddingGemma(Gemma3Model):
  4294. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4295. def set_gguf_parameters(self):
  4296. super().set_gguf_parameters()
  4297. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4298. # constructor. We want to use the value from the original model's config.json.
  4299. # ref: https://github.com/huggingface/transformers/pull/40700
  4300. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4301. config = json.load(f)
  4302. orig_sliding_window = config.get("sliding_window")
  4303. if orig_sliding_window is None:
  4304. raise ValueError("sliding_window not found in model config - this is required for the model")
  4305. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4306. f"instead of {self.hparams['sliding_window']}")
  4307. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4308. self._try_set_pooling_type()
  4309. @ModelBase.register("Gemma3ForConditionalGeneration")
  4310. class Gemma3VisionModel(MmprojModel):
  4311. def set_gguf_parameters(self):
  4312. super().set_gguf_parameters()
  4313. hparams = self.hparams
  4314. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4315. # default values below are taken from HF tranformers code
  4316. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4317. self.gguf_writer.add_vision_use_gelu(True)
  4318. # calculate proj_scale_factor (used by tinygemma3 test model)
  4319. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4320. n_per_side = int(image_seq_length ** 0.5)
  4321. image_size = self.hparams["image_size"]
  4322. patch_size = self.hparams["patch_size"]
  4323. proj_scale_factor = (image_size // patch_size) // n_per_side
  4324. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4325. # we only need to write this if it's not the default value
  4326. # in this case, we are converting a test model
  4327. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4328. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4329. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4330. if "input_projection" in name:
  4331. return gguf.GGMLQuantizationType.F16
  4332. if ".embeddings." in name:
  4333. return gguf.GGMLQuantizationType.F32
  4334. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4335. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4336. del bid # unused
  4337. if "vision_model.head." in name:
  4338. return [] # skip redundant tensors for tinygemma3
  4339. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4340. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4341. # process vision tensors
  4342. name = name.replace("_weight", ".weight")
  4343. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4344. # the other norm values are part of SigLIP model, and they are already correct
  4345. # ref code: Gemma3RMSNorm
  4346. if "soft_emb_norm.weight" in name:
  4347. logger.info(f"Correcting norm value for '{name}'")
  4348. data_torch = data_torch + 1
  4349. return [(self.map_tensor_name(name), data_torch)]
  4350. return [] # skip other tensors
  4351. @ModelBase.register("Gemma3nForConditionalGeneration")
  4352. class Gemma3NModel(Gemma3Model):
  4353. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4354. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4355. _altup_proj: list[Tensor] = []
  4356. _altup_unembd: list[Tensor] = []
  4357. def __init__(self, *args, **kwargs):
  4358. super().__init__(*args, **kwargs)
  4359. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4360. self._altup_proj = [
  4361. torch.Tensor(), # to be replaced
  4362. torch.Tensor(), # to be replaced
  4363. torch.Tensor(), # to be replaced
  4364. ]
  4365. self._altup_unembd = [
  4366. torch.Tensor(), # to be replaced
  4367. torch.Tensor(), # to be replaced
  4368. torch.Tensor(), # to be replaced
  4369. ]
  4370. def set_vocab(self):
  4371. super().set_vocab()
  4372. def set_gguf_parameters(self):
  4373. super().set_gguf_parameters()
  4374. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4375. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4376. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4377. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4378. activation_sparsity_scale = []
  4379. for s in self.hparams["activation_sparsity_pattern"]:
  4380. normal_dist = torch.distributions.normal.Normal(0, 1)
  4381. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4382. activation_sparsity_scale.append(std_multiplier.item())
  4383. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4384. sliding_window_pattern = []
  4385. for t in self.hparams["layer_types"]:
  4386. sliding_window_pattern.append(t == "sliding_attention")
  4387. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4388. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4389. has_all = all(m.numel() > 0 for m in matrices)
  4390. if not has_all:
  4391. return None
  4392. else:
  4393. return torch.stack(matrices, dim=0)
  4394. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4395. if name.endswith("_scale"):
  4396. name = name + ".weight"
  4397. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4398. if "language_model." not in name:
  4399. return [] # skip non-language model tensors
  4400. if "altup_unembed_projections" in name:
  4401. data_torch = data_torch.to(device="cpu")
  4402. if ".0." in name:
  4403. self._altup_unembd[0] = data_torch
  4404. elif ".1." in name:
  4405. self._altup_unembd[1] = data_torch
  4406. elif ".2." in name:
  4407. self._altup_unembd[2] = data_torch
  4408. else:
  4409. raise ValueError(f"Unknown name: {name}")
  4410. out = self._stack_matrices(self._altup_unembd)
  4411. if out is not None:
  4412. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4413. else:
  4414. return []
  4415. if "altup_projections" in name:
  4416. data_torch = data_torch.to(device="cpu")
  4417. if ".0." in name:
  4418. self._altup_proj[0] = data_torch
  4419. elif ".1." in name:
  4420. self._altup_proj[1] = data_torch
  4421. elif ".2." in name:
  4422. self._altup_proj[2] = data_torch
  4423. else:
  4424. raise ValueError(f"Unknown name: {name}")
  4425. out = self._stack_matrices(self._altup_proj)
  4426. if out is not None:
  4427. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  4428. else:
  4429. return []
  4430. return super().modify_tensors(data_torch, name, bid)
  4431. @ModelBase.register("Starcoder2ForCausalLM")
  4432. class StarCoder2Model(TextModel):
  4433. model_arch = gguf.MODEL_ARCH.STARCODER2
  4434. @ModelBase.register("Rwkv6ForCausalLM")
  4435. class Rwkv6Model(TextModel):
  4436. model_arch = gguf.MODEL_ARCH.RWKV6
  4437. def set_vocab(self):
  4438. self._set_vocab_rwkv_world()
  4439. def set_gguf_parameters(self):
  4440. block_count = self.hparams["num_hidden_layers"]
  4441. head_size = self.hparams["head_size"]
  4442. hidden_size = self.hparams["hidden_size"]
  4443. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4444. rescale_every_n_layers = self.hparams["rescale_every"]
  4445. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  4446. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  4447. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  4448. # RWKV isn't context limited
  4449. self.gguf_writer.add_context_length(1048576)
  4450. self.gguf_writer.add_embedding_length(hidden_size)
  4451. self.gguf_writer.add_block_count(block_count)
  4452. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4453. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  4454. self.gguf_writer.add_wkv_head_size(head_size)
  4455. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4456. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4457. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4458. self.gguf_writer.add_file_type(self.ftype)
  4459. # required by llama.cpp, unused
  4460. self.gguf_writer.add_head_count(0)
  4461. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4462. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4463. new_name = self.map_tensor_name(name)
  4464. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4465. new_name += ".weight"
  4466. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  4467. data_torch = data_torch.transpose(0, 1)
  4468. if new_name.endswith("time_mix_w2.weight"):
  4469. data_torch = data_torch.permute(0, 2, 1)
  4470. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  4471. data_torch = data_torch.squeeze()
  4472. try:
  4473. rescale_every_n_layers = self.hparams["rescale_every"]
  4474. if rescale_every_n_layers > 0:
  4475. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  4476. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  4477. except KeyError:
  4478. pass
  4479. # concat time_mix_lerp weights to reduce some cpu overhead
  4480. # also reduces the number of tensors in the model
  4481. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  4482. try:
  4483. self.lerp_weights[bid][new_name] = data_torch
  4484. except KeyError:
  4485. self.lerp_weights[bid] = {new_name: data_torch}
  4486. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  4487. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4488. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  4489. yield (new_name, data)
  4490. return
  4491. yield (new_name, data_torch)
  4492. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  4493. class RWKV6Qwen2Model(Rwkv6Model):
  4494. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  4495. def set_vocab(self):
  4496. try:
  4497. self._set_vocab_sentencepiece()
  4498. except FileNotFoundError:
  4499. self._set_vocab_gpt2()
  4500. def set_gguf_parameters(self):
  4501. block_count = self.hparams["num_hidden_layers"]
  4502. num_attention_heads = self.hparams["num_attention_heads"]
  4503. num_key_value_heads = self.hparams["num_key_value_heads"]
  4504. hidden_size = self.hparams["hidden_size"]
  4505. head_size = hidden_size // num_attention_heads
  4506. rms_norm_eps = self.hparams["rms_norm_eps"]
  4507. intermediate_size = self.hparams["intermediate_size"]
  4508. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  4509. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  4510. # RWKV isn't context limited
  4511. self.gguf_writer.add_context_length(1048576)
  4512. self.gguf_writer.add_embedding_length(hidden_size)
  4513. self.gguf_writer.add_block_count(block_count)
  4514. self.gguf_writer.add_wkv_head_size(head_size)
  4515. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  4516. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  4517. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4518. self.gguf_writer.add_file_type(self.ftype)
  4519. # special parameters for time_mixing in RWKV6QWEN2
  4520. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4521. self.gguf_writer.add_token_shift_count(1)
  4522. # RWKV6QWEN2 use grouped key/value like GQA
  4523. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4524. # required by llama.cpp, unused
  4525. self.gguf_writer.add_head_count(0)
  4526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4527. for new_name, data in super().modify_tensors(data_torch, name, bid):
  4528. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  4529. data = data.view(5, -1, data.shape[-1])
  4530. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  4531. # permute them here to avoid code changes
  4532. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  4533. if "w2" in new_name:
  4534. data = data.view(5, -1, data.shape[-1])
  4535. yield (new_name, data)
  4536. continue
  4537. yield (new_name, data)
  4538. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  4539. class Rwkv7Model(TextModel):
  4540. model_arch = gguf.MODEL_ARCH.RWKV7
  4541. def set_vocab(self):
  4542. self._set_vocab_rwkv_world()
  4543. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  4544. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  4545. def set_gguf_parameters(self):
  4546. block_count = self.hparams["num_hidden_layers"]
  4547. try:
  4548. head_size = self.hparams["head_size"]
  4549. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  4550. except KeyError:
  4551. head_size = self.hparams["head_dim"]
  4552. layer_norm_eps = self.hparams["norm_eps"]
  4553. hidden_size = self.hparams["hidden_size"]
  4554. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  4555. # ICLR: In-Context-Learning-Rate
  4556. try:
  4557. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4558. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4559. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4560. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4561. except KeyError:
  4562. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4563. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  4564. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  4565. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  4566. # RWKV isn't context limited
  4567. self.gguf_writer.add_context_length(1048576)
  4568. self.gguf_writer.add_embedding_length(hidden_size)
  4569. self.gguf_writer.add_block_count(block_count)
  4570. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  4571. self.gguf_writer.add_wkv_head_size(head_size)
  4572. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4573. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4574. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4575. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4576. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4577. self.gguf_writer.add_file_type(self.ftype)
  4578. # required by llama.cpp, unused
  4579. self.gguf_writer.add_head_count(0)
  4580. lerp_weights: dict[int, dict[str, Tensor]] = {}
  4581. lora_needs_transpose: bool = True
  4582. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4583. # unify tensor names here to make life easier
  4584. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  4585. name = name.replace("self_attn", "attention").replace("attn", "attention")
  4586. name = name.replace("time_mixer.", "")
  4587. # lora layer names in fla-hub's impl
  4588. if "_lora.lora" in name:
  4589. self.lora_needs_transpose = False
  4590. name = name.replace("_lora.lora.0.weight", "1.weight")
  4591. name = name.replace("_lora.lora.2.weight", "2.weight")
  4592. name = name.replace("_lora.lora.2.bias", "0.weight")
  4593. name = name.replace("feed_forward_norm", "ln2")
  4594. name = name.replace("g_norm", "ln_x")
  4595. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  4596. # some models have dummy v0/v1/v2 on first layer while others don't
  4597. # ignore them all since they are not used
  4598. return
  4599. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  4600. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  4601. if bid is not None and "attention.x_" in name:
  4602. if "attention.x_x" in name:
  4603. # already concatenated
  4604. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4605. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  4606. yield (new_name, data)
  4607. else:
  4608. try:
  4609. self.lerp_weights[bid][name] = data_torch
  4610. except KeyError:
  4611. self.lerp_weights[bid] = {name: data_torch}
  4612. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  4613. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  4614. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  4615. yield (new_name, data)
  4616. return
  4617. else:
  4618. data_torch = data_torch.squeeze()
  4619. new_name = self.map_tensor_name(name)
  4620. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  4621. new_name += ".weight"
  4622. if self.lora_needs_transpose and any(
  4623. new_name.endswith(t) for t in [
  4624. "time_mix_w1.weight", "time_mix_w2.weight",
  4625. "time_mix_a1.weight", "time_mix_a2.weight",
  4626. "time_mix_v1.weight", "time_mix_v2.weight",
  4627. "time_mix_g1.weight", "time_mix_g2.weight",
  4628. ]
  4629. ):
  4630. data_torch = data_torch.transpose(0, 1)
  4631. if 'r_k' in new_name:
  4632. data_torch = data_torch.flatten()
  4633. if bid == 0 and "time_mix_a" in new_name:
  4634. # dummy v0/v1/v2 on first layer
  4635. # easist way to make llama happy
  4636. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  4637. yield (new_name, data_torch)
  4638. @ModelBase.register("RwkvHybridForCausalLM")
  4639. class ARwkv7Model(Rwkv7Model):
  4640. model_arch = gguf.MODEL_ARCH.ARWKV7
  4641. def set_vocab(self):
  4642. try:
  4643. self._set_vocab_sentencepiece()
  4644. except FileNotFoundError:
  4645. self._set_vocab_gpt2()
  4646. def set_gguf_parameters(self):
  4647. block_count = self.hparams["num_hidden_layers"]
  4648. hidden_size = self.hparams["hidden_size"]
  4649. head_size = self.hparams["head_size"]
  4650. rms_norm_eps = self.hparams["rms_norm_eps"]
  4651. intermediate_size = self.hparams["intermediate_size"]
  4652. wkv_has_gate = self.hparams["wkv_has_gate"]
  4653. assert self.hparams["wkv_version"] == 7
  4654. # ICLR: In-Context-Learning-Rate
  4655. lora_rank_decay = 64
  4656. lora_rank_iclr = 64
  4657. lora_rank_value_residual_mix = 32
  4658. lora_rank_gate = 128 if wkv_has_gate else 0
  4659. # RWKV isn't context limited
  4660. self.gguf_writer.add_context_length(1048576)
  4661. self.gguf_writer.add_embedding_length(hidden_size)
  4662. self.gguf_writer.add_block_count(block_count)
  4663. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4664. self.gguf_writer.add_wkv_head_size(head_size)
  4665. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  4666. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  4667. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  4668. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  4669. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4670. self.gguf_writer.add_file_type(self.ftype)
  4671. self.gguf_writer.add_token_shift_count(1)
  4672. # required by llama.cpp, unused
  4673. self.gguf_writer.add_head_count(0)
  4674. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  4675. class MambaModel(TextModel):
  4676. model_arch = gguf.MODEL_ARCH.MAMBA
  4677. def __init__(self, dir_model: Path, *args, **kwargs):
  4678. # Avoid using AutoConfig for hparams
  4679. hparams = kwargs.pop("hparams", None)
  4680. if hparams is None:
  4681. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4682. hparams = json.load(f)
  4683. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4684. def set_vocab(self):
  4685. vocab_size = self.hparams["vocab_size"]
  4686. # Round vocab size to next multiple of 8
  4687. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  4688. # pad using ceiling division
  4689. # ref: https://stackoverflow.com/a/17511341/22827863
  4690. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4691. self.hparams["vocab_size"] = vocab_size
  4692. if (self.dir_model / "tokenizer.json").is_file():
  4693. self._set_vocab_gpt2()
  4694. elif (self.dir_model / "tokenizer.model").is_file():
  4695. self._set_vocab_sentencepiece()
  4696. else:
  4697. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4698. self._set_vocab_builtin("gpt-neox", vocab_size)
  4699. def set_gguf_parameters(self):
  4700. d_model = self.find_hparam(["hidden_size", "d_model"])
  4701. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4702. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  4703. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  4704. # ceiling division
  4705. # ref: https://stackoverflow.com/a/17511341/22827863
  4706. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4707. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  4708. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4709. use_dt_b_c_norm = False
  4710. # For falconmamba we do apply RMS norm on B / DT and C layers
  4711. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  4712. use_dt_b_c_norm = True
  4713. # Fail early for models which don't have a block expansion factor of 2
  4714. assert d_inner == 2 * d_model
  4715. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4716. self.gguf_writer.add_embedding_length(d_model)
  4717. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4718. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4719. self.gguf_writer.add_block_count(self.block_count)
  4720. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4721. self.gguf_writer.add_ssm_inner_size(d_inner)
  4722. self.gguf_writer.add_ssm_state_size(d_state)
  4723. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4724. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4725. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  4726. self.gguf_writer.add_file_type(self.ftype)
  4727. _tok_embd = None
  4728. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4729. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4730. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  4731. new_name = self.map_tensor_name(name)
  4732. if name.endswith(".A_log"):
  4733. logger.debug("A_log --> A ==> " + new_name)
  4734. data_torch = -torch.exp(data_torch)
  4735. # [4 1 8192 1] -> [4 8192 1 1]
  4736. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4737. data_torch = data_torch.squeeze()
  4738. # assuming token_embd.weight is seen before output.weight
  4739. if self._tok_embd is not None and new_name == output_name:
  4740. if torch.equal(self._tok_embd, data_torch):
  4741. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  4742. return []
  4743. elif new_name == tok_embd_name:
  4744. self._tok_embd = data_torch
  4745. return [(new_name, data_torch)]
  4746. @ModelBase.register("Mamba2ForCausalLM")
  4747. class Mamba2Model(TextModel):
  4748. model_arch = gguf.MODEL_ARCH.MAMBA2
  4749. def __init__(self, dir_model: Path, *args, **kwargs):
  4750. # Avoid using AutoConfig for hparams
  4751. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  4752. hparams = kwargs.pop("hparams", None)
  4753. if hparams is None:
  4754. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  4755. hparams = json.load(f)
  4756. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  4757. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  4758. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  4759. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  4760. def set_vocab(self):
  4761. vocab_size = self.hparams["vocab_size"]
  4762. # Round vocab size to next multiple of 16
  4763. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  4764. # pad using ceiling division
  4765. # ref: https://stackoverflow.com/a/17511341/22827863
  4766. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  4767. self.hparams["vocab_size"] = vocab_size
  4768. if (self.dir_model / "tokenizer.model").is_file():
  4769. self._set_vocab_sentencepiece()
  4770. elif (self.dir_model / "tokenizer.model.v3").is_file():
  4771. # mamba-codestral
  4772. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  4773. elif (self.dir_model / "tokenizer.json").is_file():
  4774. self._set_vocab_gpt2()
  4775. else:
  4776. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  4777. self._set_vocab_builtin("gpt-neox", vocab_size)
  4778. def set_gguf_parameters(self):
  4779. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  4780. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  4781. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  4782. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  4783. # Fail early for models which don't have a block expansion factor of 2
  4784. # TODO: does this really matter?
  4785. # skip the assertion for FalconH1 Model
  4786. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  4787. assert self.d_inner == 2 * self.d_model
  4788. assert self.d_inner % head_dim == 0
  4789. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  4790. self.gguf_writer.add_embedding_length(self.d_model)
  4791. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  4792. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  4793. self.gguf_writer.add_block_count(self.block_count)
  4794. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4795. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  4796. self.gguf_writer.add_ssm_state_size(d_state)
  4797. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  4798. self.gguf_writer.add_ssm_group_count(self.n_group)
  4799. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4800. self.gguf_writer.add_file_type(self.ftype)
  4801. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4802. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  4803. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  4804. name = name.removeprefix("model.")
  4805. if name.endswith(".dt_bias"):
  4806. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4807. new_name = self.map_tensor_name(name)
  4808. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4809. data_torch = data_torch.squeeze()
  4810. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  4811. gguf.MODEL_TENSOR.SSM_A,
  4812. gguf.MODEL_TENSOR.SSM_D,
  4813. ]):
  4814. # unsqueeze A to use similar shape semantics as Mamba-1
  4815. # (D is also unsqueezed, but for more straightforward broadcast internally)
  4816. data_torch = data_torch.reshape((*data_torch.shape, 1))
  4817. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  4818. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  4819. if name.endswith(".A_log"):
  4820. logger.debug("A_log --> A ==> " + new_name)
  4821. data_torch = -torch.exp(data_torch)
  4822. yield (new_name, data_torch)
  4823. @ModelBase.register("JambaForCausalLM")
  4824. class JambaModel(TextModel):
  4825. model_arch = gguf.MODEL_ARCH.JAMBA
  4826. def get_vocab_base_pre(self, tokenizer) -> str:
  4827. del tokenizer # unused
  4828. return "gpt-2"
  4829. def set_vocab(self):
  4830. if (self.dir_model / "tokenizer.model").is_file():
  4831. # Using Jamba's tokenizer.json causes errors on model load
  4832. # (something about "byte not found in vocab"),
  4833. # but there's a working tokenizer.model
  4834. self._set_vocab_sentencepiece()
  4835. else:
  4836. # Some Jamba models only have a tokenizer.json, which works.
  4837. self._set_vocab_gpt2()
  4838. def set_gguf_parameters(self):
  4839. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  4840. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  4841. d_inner = self.hparams["mamba_expand"] * d_model
  4842. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  4843. # ceiling division
  4844. # ref: https://stackoverflow.com/a/17511341/22827863
  4845. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  4846. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  4847. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  4848. n_kv_head = self.hparams["num_key_value_heads"]
  4849. attn_offset = self.hparams["attn_layer_offset"]
  4850. attn_period = self.hparams["attn_layer_period"]
  4851. n_kv_vec = [0 for _ in range(attn_offset)] + [
  4852. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  4853. ]
  4854. self.gguf_writer.add_block_count(self.block_count)
  4855. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  4856. self.gguf_writer.add_embedding_length(d_model)
  4857. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4858. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4859. self.gguf_writer.add_head_count_kv(n_kv_vec)
  4860. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  4861. self.gguf_writer.add_ssm_inner_size(d_inner)
  4862. self.gguf_writer.add_ssm_state_size(d_state)
  4863. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  4864. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  4865. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4866. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  4867. self.gguf_writer.add_file_type(self.ftype)
  4868. _experts: list[dict[str, Tensor]] | None = None
  4869. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4870. # Mini-Jamba
  4871. name = name.replace(".moe.", ".feed_forward.")
  4872. if bid is not None:
  4873. moe_offset = self.hparams["expert_layer_offset"]
  4874. moe_period = self.hparams["expert_layer_period"]
  4875. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  4876. name = name.replace(".experts.0.", ".")
  4877. # process the experts separately
  4878. if ".feed_forward.experts." in name:
  4879. n_experts = self.hparams["num_experts"]
  4880. assert bid is not None
  4881. if self._experts is None:
  4882. self._experts = [{} for _ in range(self.block_count)]
  4883. self._experts[bid][name] = data_torch
  4884. if len(self._experts[bid]) >= n_experts * 3:
  4885. # merge the experts into a single 3d tensor
  4886. for wid in ["down_proj", "gate_proj", "up_proj"]:
  4887. datas: list[Tensor] = []
  4888. for xid in range(n_experts):
  4889. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  4890. datas.append(self._experts[bid][ename])
  4891. del self._experts[bid][ename]
  4892. data_torch = torch.stack(datas, dim=0)
  4893. # using the same merged name as qwen2moe
  4894. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  4895. new_name = self.map_tensor_name(merged_name)
  4896. yield new_name, data_torch
  4897. return
  4898. new_name = self.map_tensor_name(name)
  4899. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  4900. data_torch = data_torch.squeeze()
  4901. if name.endswith(".A_log"):
  4902. logger.debug("A_log --> A ==> " + new_name)
  4903. data_torch = -torch.exp(data_torch)
  4904. yield (new_name, data_torch)
  4905. def prepare_tensors(self):
  4906. super().prepare_tensors()
  4907. if self._experts is not None:
  4908. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4909. experts = [k for d in self._experts for k in d.keys()]
  4910. if len(experts) > 0:
  4911. raise ValueError(f"Unprocessed experts: {experts}")
  4912. @ModelBase.register("CohereForCausalLM")
  4913. class CommandR2Model(TextModel):
  4914. model_arch = gguf.MODEL_ARCH.COMMAND_R
  4915. def __init__(self, *args, **kwargs):
  4916. super().__init__(*args, **kwargs)
  4917. # max_position_embeddings = 8192 in config.json but model was actually
  4918. # trained on 128k context length
  4919. # aya-23 models don't have model_max_length specified
  4920. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  4921. def set_gguf_parameters(self):
  4922. super().set_gguf_parameters()
  4923. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4924. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4925. @ModelBase.register("Cohere2ForCausalLM")
  4926. class Cohere2Model(TextModel):
  4927. model_arch = gguf.MODEL_ARCH.COHERE2
  4928. def set_gguf_parameters(self):
  4929. super().set_gguf_parameters()
  4930. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  4931. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4932. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4933. rotary_pct = self.hparams["rotary_pct"]
  4934. hidden_size = self.hparams["hidden_size"]
  4935. num_attention_heads = self.hparams["num_attention_heads"]
  4936. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  4937. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4938. @ModelBase.register("OlmoForCausalLM")
  4939. @ModelBase.register("OLMoForCausalLM")
  4940. class OlmoModel(TextModel):
  4941. model_arch = gguf.MODEL_ARCH.OLMO
  4942. def set_gguf_parameters(self):
  4943. super().set_gguf_parameters()
  4944. self.gguf_writer.add_layer_norm_eps(1e-5)
  4945. clip_qkv = self.hparams.get("clip_qkv")
  4946. if clip_qkv is not None:
  4947. self.gguf_writer.add_clamp_kqv(clip_qkv)
  4948. # Same as super class, but permuting q_proj, k_proj
  4949. # Copied from: LlamaModel
  4950. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4951. del bid # unused
  4952. n_head = self.hparams["num_attention_heads"]
  4953. n_kv_head = self.hparams.get("num_key_value_heads")
  4954. if name.endswith("q_proj.weight"):
  4955. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4956. if name.endswith("k_proj.weight"):
  4957. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4958. return [(self.map_tensor_name(name), data_torch)]
  4959. @ModelBase.register("SeedOssForCausalLM")
  4960. class SeedOssModel(TextModel):
  4961. model_arch = gguf.MODEL_ARCH.SEED_OSS
  4962. @ModelBase.register("Olmo2ForCausalLM")
  4963. @ModelBase.register("Olmo3ForCausalLM")
  4964. class Olmo2Model(TextModel):
  4965. model_arch = gguf.MODEL_ARCH.OLMO2
  4966. def set_gguf_parameters(self):
  4967. super().set_gguf_parameters()
  4968. rope_scaling = self.hparams.get("rope_scaling") or {}
  4969. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  4970. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4971. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4972. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  4973. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4974. if "sliding_window" in self.hparams:
  4975. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4976. sliding_window_pattern = []
  4977. if "layer_types" in self.hparams:
  4978. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  4979. else:
  4980. # Olmo2 does not use sliding window attention.
  4981. # Olmo3 defaults to using sliding window for all layers except every 4th.
  4982. for i in range(self.hparams["num_hidden_layers"]):
  4983. sliding_window_pattern.append((i + 1) % 4 != 0)
  4984. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4985. @ModelBase.register("OlmoeForCausalLM")
  4986. class OlmoeModel(TextModel):
  4987. model_arch = gguf.MODEL_ARCH.OLMOE
  4988. def set_gguf_parameters(self):
  4989. super().set_gguf_parameters()
  4990. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  4991. if (n_experts := self.hparams.get("num_experts")) is not None:
  4992. self.gguf_writer.add_expert_count(n_experts)
  4993. _experts: list[dict[str, Tensor]] | None = None
  4994. # Copied from: Qwen2MoeModel
  4995. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4996. # process the experts separately
  4997. if name.find("experts") != -1:
  4998. n_experts = self.hparams["num_experts"]
  4999. assert bid is not None
  5000. if self._experts is None:
  5001. self._experts = [{} for _ in range(self.block_count)]
  5002. self._experts[bid][name] = data_torch
  5003. if len(self._experts[bid]) >= n_experts * 3:
  5004. tensors: list[tuple[str, Tensor]] = []
  5005. # merge the experts into a single 3d tensor
  5006. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5007. datas: list[Tensor] = []
  5008. for xid in range(n_experts):
  5009. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5010. datas.append(self._experts[bid][ename])
  5011. del self._experts[bid][ename]
  5012. data_torch = torch.stack(datas, dim=0)
  5013. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5014. new_name = self.map_tensor_name(merged_name)
  5015. tensors.append((new_name, data_torch))
  5016. return tensors
  5017. else:
  5018. return []
  5019. return [(self.map_tensor_name(name), data_torch)]
  5020. # Copied from: Qwen2MoeModel
  5021. def prepare_tensors(self):
  5022. super().prepare_tensors()
  5023. if self._experts is not None:
  5024. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5025. experts = [k for d in self._experts for k in d.keys()]
  5026. if len(experts) > 0:
  5027. raise ValueError(f"Unprocessed experts: {experts}")
  5028. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5029. class JinaBertV2Model(BertModel):
  5030. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5031. def set_vocab(self):
  5032. tokenizer_class = 'BertTokenizer'
  5033. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5034. tokenizer_class = json.load(f)['tokenizer_class']
  5035. if tokenizer_class == 'BertTokenizer':
  5036. super().set_vocab()
  5037. elif tokenizer_class == 'RobertaTokenizer':
  5038. self._set_vocab_gpt2()
  5039. self.gguf_writer.add_token_type_count(2)
  5040. else:
  5041. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5042. @ModelBase.register("OpenELMForCausalLM")
  5043. class OpenELMModel(TextModel):
  5044. model_arch = gguf.MODEL_ARCH.OPENELM
  5045. @staticmethod
  5046. def _make_divisible(v: float | int, divisor: int) -> int:
  5047. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5048. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5049. # Make sure that round down does not go down by more than 10%.
  5050. if new_v < 0.9 * v:
  5051. new_v += divisor
  5052. return new_v
  5053. def __init__(self, *args, **kwargs):
  5054. super().__init__(*args, **kwargs)
  5055. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5056. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5057. self._n_embd: int = self.hparams["model_dim"]
  5058. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5059. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5060. self._ffn_dims: list[int] = [
  5061. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5062. for multiplier in ffn_multipliers
  5063. ]
  5064. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5065. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5066. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5067. def set_vocab(self):
  5068. try:
  5069. self._set_vocab_sentencepiece()
  5070. except FileNotFoundError:
  5071. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5072. def set_gguf_parameters(self):
  5073. n_embd = self._n_embd
  5074. head_dim = self.hparams["head_dim"]
  5075. rot_pct = 1.0
  5076. assert self.block_count == len(self._num_kv_heads)
  5077. assert self.block_count == len(self._num_query_heads)
  5078. assert self.block_count == len(self._ffn_dims)
  5079. self.gguf_writer.add_block_count(self.block_count)
  5080. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5081. self.gguf_writer.add_embedding_length(n_embd)
  5082. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5083. self.gguf_writer.add_head_count(self._num_query_heads)
  5084. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5085. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5086. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5087. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5088. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5089. self.gguf_writer.add_key_length(head_dim)
  5090. self.gguf_writer.add_value_length(head_dim)
  5091. self.gguf_writer.add_file_type(self.ftype)
  5092. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5093. if "n_layers" in keys:
  5094. return self.hparams["num_transformer_layers"]
  5095. return super().find_hparam(keys, optional)
  5096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5097. # split ff
  5098. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5099. ff_dim = self._ffn_dims[bid]
  5100. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5101. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5102. return
  5103. yield (self.map_tensor_name(name), data_torch)
  5104. @ModelBase.register("ArcticForCausalLM")
  5105. class ArcticModel(TextModel):
  5106. model_arch = gguf.MODEL_ARCH.ARCTIC
  5107. def set_vocab(self):
  5108. # The reason for using a custom implementation here is that the
  5109. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5110. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5111. from sentencepiece import SentencePieceProcessor
  5112. tokenizer_path = self.dir_model / 'tokenizer.model'
  5113. if not tokenizer_path.is_file():
  5114. logger.error(f'Error: Missing {tokenizer_path}')
  5115. sys.exit(1)
  5116. # Read the whole vocabulary from the tokenizer.model file
  5117. tokenizer = SentencePieceProcessor()
  5118. tokenizer.LoadFromFile(str(tokenizer_path))
  5119. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5120. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5121. scores: list[float] = [-10000.0] * vocab_size
  5122. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5123. for token_id in range(tokenizer.vocab_size()):
  5124. piece = tokenizer.IdToPiece(token_id)
  5125. text = piece.encode("utf-8")
  5126. score = tokenizer.GetScore(token_id)
  5127. toktype = SentencePieceTokenTypes.NORMAL
  5128. if tokenizer.IsUnknown(token_id):
  5129. toktype = SentencePieceTokenTypes.UNKNOWN
  5130. elif tokenizer.IsControl(token_id):
  5131. toktype = SentencePieceTokenTypes.CONTROL
  5132. elif tokenizer.IsUnused(token_id):
  5133. toktype = SentencePieceTokenTypes.UNUSED
  5134. elif tokenizer.IsByte(token_id):
  5135. toktype = SentencePieceTokenTypes.BYTE
  5136. tokens[token_id] = text
  5137. scores[token_id] = score
  5138. toktypes[token_id] = toktype
  5139. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5140. # of information about added/redefined tokens and modify them accordingly.
  5141. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5142. if tokenizer_config_file.is_file():
  5143. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5144. tokenizer_config_json = json.load(f)
  5145. if "added_tokens_decoder" in tokenizer_config_json:
  5146. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5147. for token_id, token_json in added_tokens_decoder.items():
  5148. token_id = int(token_id)
  5149. if token_id >= vocab_size:
  5150. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5151. continue
  5152. token_content = token_json["content"]
  5153. token_type = SentencePieceTokenTypes.USER_DEFINED
  5154. token_score = -10000.0
  5155. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5156. # Set the score to 0.0 as in the original tokenizer.model
  5157. if ("special" in token_json) and token_json["special"]:
  5158. if token_content == tokenizer_config_json["unk_token"]:
  5159. token_type = SentencePieceTokenTypes.UNKNOWN
  5160. else:
  5161. token_type = SentencePieceTokenTypes.CONTROL
  5162. token_score = 0.0
  5163. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5164. tokens[token_id] = token_content.encode("utf-8")
  5165. toktypes[token_id] = token_type
  5166. scores[token_id] = token_score
  5167. self.gguf_writer.add_tokenizer_model("llama")
  5168. self.gguf_writer.add_tokenizer_pre("default")
  5169. self.gguf_writer.add_token_list(tokens)
  5170. self.gguf_writer.add_token_scores(scores)
  5171. self.gguf_writer.add_token_types(toktypes)
  5172. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5173. special_vocab.add_to_gguf(self.gguf_writer)
  5174. def set_gguf_parameters(self):
  5175. super().set_gguf_parameters()
  5176. hparams = self.hparams
  5177. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5178. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5179. _experts: list[dict[str, Tensor]] | None = None
  5180. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5181. n_head = self.hparams["num_attention_heads"]
  5182. n_kv_head = self.hparams.get("num_key_value_heads")
  5183. if name.endswith("q_proj.weight"):
  5184. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5185. if name.endswith("k_proj.weight"):
  5186. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5187. # process the experts separately
  5188. if name.find("block_sparse_moe.experts") != -1:
  5189. n_experts = self.hparams["num_local_experts"]
  5190. assert bid is not None
  5191. if self._experts is None:
  5192. self._experts = [{} for _ in range(self.block_count)]
  5193. self._experts[bid][name] = data_torch
  5194. if len(self._experts[bid]) >= n_experts * 3:
  5195. tensors: list[tuple[str, Tensor]] = []
  5196. # merge the experts into a single 3d tensor
  5197. for wid in ["w1", "w2", "w3"]:
  5198. datas: list[Tensor] = []
  5199. for xid in range(n_experts):
  5200. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5201. datas.append(self._experts[bid][ename])
  5202. del self._experts[bid][ename]
  5203. data_torch = torch.stack(datas, dim=0)
  5204. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5205. new_name = self.map_tensor_name(merged_name)
  5206. tensors.append((new_name, data_torch))
  5207. return tensors
  5208. else:
  5209. return []
  5210. return [(self.map_tensor_name(name), data_torch)]
  5211. def prepare_tensors(self):
  5212. super().prepare_tensors()
  5213. if self._experts is not None:
  5214. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5215. experts = [k for d in self._experts for k in d.keys()]
  5216. if len(experts) > 0:
  5217. raise ValueError(f"Unprocessed experts: {experts}")
  5218. @ModelBase.register("DeepseekForCausalLM")
  5219. class DeepseekModel(TextModel):
  5220. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5221. def set_vocab(self):
  5222. try:
  5223. self._set_vocab_sentencepiece()
  5224. except FileNotFoundError:
  5225. self._set_vocab_gpt2()
  5226. def set_gguf_parameters(self):
  5227. super().set_gguf_parameters()
  5228. hparams = self.hparams
  5229. if (rope_dim := hparams.get("head_dim")) is None:
  5230. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5231. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5232. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5233. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5234. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5235. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5236. self.gguf_writer.add_expert_weights_scale(1.0)
  5237. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5238. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5239. _experts: list[dict[str, Tensor]] | None = None
  5240. @staticmethod
  5241. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5242. if n_head_kv is not None and n_head != n_head_kv:
  5243. n_head = n_head_kv
  5244. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5245. .swapaxes(1, 2)
  5246. .reshape(weights.shape))
  5247. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5248. n_head = self.hparams["num_attention_heads"]
  5249. n_kv_head = self.hparams.get("num_key_value_heads")
  5250. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5251. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5252. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5253. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5254. # process the experts separately
  5255. if name.find("mlp.experts") != -1:
  5256. n_experts = self.hparams["n_routed_experts"]
  5257. assert bid is not None
  5258. if self._experts is None:
  5259. self._experts = [{} for _ in range(self.block_count)]
  5260. self._experts[bid][name] = data_torch
  5261. if len(self._experts[bid]) >= n_experts * 3:
  5262. tensors: list[tuple[str, Tensor]] = []
  5263. # merge the experts into a single 3d tensor
  5264. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5265. datas: list[Tensor] = []
  5266. for xid in range(n_experts):
  5267. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5268. datas.append(self._experts[bid][ename])
  5269. del self._experts[bid][ename]
  5270. data_torch = torch.stack(datas, dim=0)
  5271. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5272. new_name = self.map_tensor_name(merged_name)
  5273. tensors.append((new_name, data_torch))
  5274. return tensors
  5275. else:
  5276. return []
  5277. return [(self.map_tensor_name(name), data_torch)]
  5278. def prepare_tensors(self):
  5279. super().prepare_tensors()
  5280. if self._experts is not None:
  5281. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5282. experts = [k for d in self._experts for k in d.keys()]
  5283. if len(experts) > 0:
  5284. raise ValueError(f"Unprocessed experts: {experts}")
  5285. @ModelBase.register(
  5286. "DeepseekV2ForCausalLM",
  5287. "DeepseekV3ForCausalLM",
  5288. "KimiVLForConditionalGeneration",
  5289. )
  5290. class DeepseekV2Model(TextModel):
  5291. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5292. def set_vocab(self):
  5293. try:
  5294. self._set_vocab_gpt2()
  5295. return
  5296. except Exception:
  5297. pass
  5298. from transformers import AutoTokenizer
  5299. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5300. tokpre = self.get_vocab_base_pre(tokenizer)
  5301. if tokpre == "kimi-k2":
  5302. # Build merges list using the approach similar to HunYuanMoE
  5303. merges = []
  5304. vocab = {}
  5305. mergeable_ranks = tokenizer.model._mergeable_ranks
  5306. for token, rank in mergeable_ranks.items():
  5307. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5308. if len(token) == 1:
  5309. continue
  5310. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5311. if len(merged) == 2:
  5312. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5313. # Build token list
  5314. vocab_size = self.hparams["vocab_size"]
  5315. special_tokens = tokenizer.special_tokens
  5316. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5317. tokens: list[str] = []
  5318. toktypes: list[int] = []
  5319. for i in range(vocab_size):
  5320. if i not in reverse_vocab:
  5321. tokens.append(f"[PAD{i}]")
  5322. toktypes.append(gguf.TokenType.UNUSED)
  5323. else:
  5324. token = reverse_vocab[i]
  5325. tokens.append(token)
  5326. if i in special_tokens.values():
  5327. toktypes.append(gguf.TokenType.CONTROL)
  5328. else:
  5329. toktypes.append(gguf.TokenType.NORMAL)
  5330. self.gguf_writer.add_tokenizer_model("gpt2")
  5331. self.gguf_writer.add_tokenizer_pre(tokpre)
  5332. self.gguf_writer.add_token_list(tokens)
  5333. self.gguf_writer.add_token_types(toktypes)
  5334. self.gguf_writer.add_token_merges(merges)
  5335. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5336. special_vocab.add_to_gguf(self.gguf_writer)
  5337. else:
  5338. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5339. def set_gguf_parameters(self):
  5340. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5341. self.hparams["num_key_value_heads"] = 1
  5342. super().set_gguf_parameters()
  5343. hparams = self.hparams
  5344. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5345. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5346. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5347. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5348. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5349. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5350. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5351. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5352. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5353. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5354. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5355. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5356. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5357. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5358. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5359. if hparams["scoring_func"] == "sigmoid":
  5360. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5361. elif hparams["scoring_func"] == "softmax":
  5362. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  5363. else:
  5364. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  5365. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5366. rope_scaling = self.hparams.get("rope_scaling") or {}
  5367. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5368. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5369. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5370. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5371. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5372. _experts: list[dict[str, Tensor]] | None = None
  5373. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5374. # skip vision tensors and remove "language_model." for Kimi-VL
  5375. if "vision_tower" in name or "multi_modal_projector" in name:
  5376. return []
  5377. if name.startswith("language_model."):
  5378. name = name.replace("language_model.", "")
  5379. # rename e_score_correction_bias tensors
  5380. if name.endswith("e_score_correction_bias"):
  5381. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5382. # skip Multi-Token Prediction (MTP) layers
  5383. block_count = self.hparams["num_hidden_layers"]
  5384. match = re.match(r"model.layers.(\d+)", name)
  5385. if match and int(match.group(1)) >= block_count:
  5386. return []
  5387. # process the experts separately
  5388. if name.find("mlp.experts") != -1:
  5389. n_experts = self.hparams["n_routed_experts"]
  5390. assert bid is not None
  5391. if self._experts is None:
  5392. self._experts = [{} for _ in range(self.block_count)]
  5393. self._experts[bid][name] = data_torch
  5394. if len(self._experts[bid]) >= n_experts * 3:
  5395. tensors: list[tuple[str, Tensor]] = []
  5396. # merge the experts into a single 3d tensor
  5397. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5398. datas: list[Tensor] = []
  5399. for xid in range(n_experts):
  5400. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5401. datas.append(self._experts[bid][ename])
  5402. del self._experts[bid][ename]
  5403. data_torch = torch.stack(datas, dim=0)
  5404. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5405. new_name = self.map_tensor_name(merged_name)
  5406. tensors.append((new_name, data_torch))
  5407. return tensors
  5408. else:
  5409. return []
  5410. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5411. if name.endswith("kv_b_proj.weight"):
  5412. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5413. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5414. n_head_kv = self.hparams["num_key_value_heads"]
  5415. v_head_dim = self.hparams["v_head_dim"]
  5416. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5417. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5418. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5419. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5420. k_b = k_b.transpose(1, 2)
  5421. return [
  5422. (self.map_tensor_name(name_kb), k_b),
  5423. (self.map_tensor_name(name_vb), v_b)
  5424. ]
  5425. return [(self.map_tensor_name(name), data_torch)]
  5426. def prepare_tensors(self):
  5427. super().prepare_tensors()
  5428. if self._experts is not None:
  5429. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5430. experts = [k for d in self._experts for k in d.keys()]
  5431. if len(experts) > 0:
  5432. raise ValueError(f"Unprocessed experts: {experts}")
  5433. @ModelBase.register("Dots1ForCausalLM")
  5434. class Dots1Model(Qwen2MoeModel):
  5435. model_arch = gguf.MODEL_ARCH.DOTS1
  5436. def __init__(self, *args, **kwargs):
  5437. super().__init__(*args, **kwargs)
  5438. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  5439. def set_gguf_parameters(self):
  5440. super().set_gguf_parameters()
  5441. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  5442. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  5443. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  5444. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  5445. if self.hparams["scoring_func"] == "noaux_tc":
  5446. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5447. else:
  5448. raise ValueError(f"Unsupported scoring_func value: {self.hparams['scoring_func']}")
  5449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  5450. if name.endswith("e_score_correction_bias"):
  5451. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5452. if "shared_experts" in name:
  5453. return [(self.map_tensor_name(name), data_torch)]
  5454. return super().modify_tensors(data_torch, name, bid)
  5455. @ModelBase.register("PLMForCausalLM")
  5456. class PLMModel(TextModel):
  5457. model_arch = gguf.MODEL_ARCH.PLM
  5458. def set_vocab(self):
  5459. self._set_vocab_gpt2()
  5460. def set_gguf_parameters(self):
  5461. super().set_gguf_parameters()
  5462. hparams = self.hparams
  5463. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5464. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5465. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5466. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  5467. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5468. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5469. return [(self.map_tensor_name(name), data_torch)]
  5470. def prepare_tensors(self):
  5471. super().prepare_tensors()
  5472. @ModelBase.register("T5WithLMHeadModel")
  5473. @ModelBase.register("T5ForConditionalGeneration")
  5474. @ModelBase.register("MT5ForConditionalGeneration")
  5475. @ModelBase.register("UMT5ForConditionalGeneration")
  5476. class T5Model(TextModel):
  5477. model_arch = gguf.MODEL_ARCH.T5
  5478. def __init__(self, *args, **kwargs):
  5479. super().__init__(*args, **kwargs)
  5480. self.shared_token_embeddings_found = False
  5481. def set_vocab(self):
  5482. # to avoid TypeError: Descriptors cannot be created directly
  5483. # exception when importing sentencepiece_model_pb2
  5484. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5485. from sentencepiece import SentencePieceProcessor
  5486. from sentencepiece import sentencepiece_model_pb2 as model
  5487. tokenizer_path = self.dir_model / 'tokenizer.model'
  5488. # many older models use spiece.model tokenizer model filename
  5489. if not tokenizer_path.is_file():
  5490. tokenizer_path = self.dir_model / 'spiece.model'
  5491. if not tokenizer_path.is_file():
  5492. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5493. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5494. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5495. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5496. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5497. # assure the tokenizer model file name is correct
  5498. assert tokenizer_path.name == 'tokenizer.model'
  5499. return self._set_vocab_sentencepiece()
  5500. else:
  5501. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5502. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5503. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5504. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5505. tokenizer = SentencePieceProcessor()
  5506. tokenizer.LoadFromFile(str(tokenizer_path))
  5507. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5508. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5509. scores: list[float] = [-10000.0] * vocab_size
  5510. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5511. for token_id in range(tokenizer.vocab_size()):
  5512. piece = tokenizer.IdToPiece(token_id)
  5513. text = piece.encode("utf-8")
  5514. score = tokenizer.GetScore(token_id)
  5515. toktype = SentencePieceTokenTypes.NORMAL
  5516. if tokenizer.IsUnknown(token_id):
  5517. toktype = SentencePieceTokenTypes.UNKNOWN
  5518. elif tokenizer.IsControl(token_id):
  5519. toktype = SentencePieceTokenTypes.CONTROL
  5520. elif tokenizer.IsUnused(token_id):
  5521. toktype = SentencePieceTokenTypes.UNUSED
  5522. elif tokenizer.IsByte(token_id):
  5523. toktype = SentencePieceTokenTypes.BYTE
  5524. tokens[token_id] = text
  5525. scores[token_id] = score
  5526. toktypes[token_id] = toktype
  5527. added_tokens_file = self.dir_model / 'added_tokens.json'
  5528. if added_tokens_file.is_file():
  5529. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5530. added_tokens_json = json.load(f)
  5531. for key in added_tokens_json:
  5532. token_id = added_tokens_json[key]
  5533. if token_id >= vocab_size:
  5534. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5535. continue
  5536. tokens[token_id] = key.encode("utf-8")
  5537. scores[token_id] = -1000.0
  5538. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5539. if vocab_size > len(tokens):
  5540. pad_count = vocab_size - len(tokens)
  5541. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5542. for i in range(1, pad_count + 1):
  5543. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5544. scores.append(-1000.0)
  5545. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5546. self.gguf_writer.add_tokenizer_model("t5")
  5547. self.gguf_writer.add_tokenizer_pre("default")
  5548. self.gguf_writer.add_token_list(tokens)
  5549. self.gguf_writer.add_token_scores(scores)
  5550. self.gguf_writer.add_token_types(toktypes)
  5551. self.gguf_writer.add_add_space_prefix(add_prefix)
  5552. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5553. if precompiled_charsmap:
  5554. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5555. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5556. special_vocab.add_to_gguf(self.gguf_writer)
  5557. def set_gguf_parameters(self):
  5558. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5559. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5560. n_ctx = 512
  5561. self.gguf_writer.add_context_length(n_ctx)
  5562. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5563. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5564. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5565. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  5566. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  5567. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5568. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5569. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5570. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5571. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5572. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5573. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  5574. self.gguf_writer.add_file_type(self.ftype)
  5575. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5576. del bid # unused
  5577. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5578. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5579. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5580. # and decoder and ignore the remaining ones.
  5581. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5582. if not self.shared_token_embeddings_found:
  5583. name = "shared.weight"
  5584. self.shared_token_embeddings_found = True
  5585. else:
  5586. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5587. return []
  5588. return [(self.map_tensor_name(name), data_torch)]
  5589. @ModelBase.register("T5EncoderModel")
  5590. class T5EncoderModel(TextModel):
  5591. model_arch = gguf.MODEL_ARCH.T5ENCODER
  5592. def __init__(self, *args, **kwargs):
  5593. super().__init__(*args, **kwargs)
  5594. self.shared_token_embeddings_found = False
  5595. def set_vocab(self):
  5596. # to avoid TypeError: Descriptors cannot be created directly
  5597. # exception when importing sentencepiece_model_pb2
  5598. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  5599. from sentencepiece import SentencePieceProcessor
  5600. from sentencepiece import sentencepiece_model_pb2 as model
  5601. tokenizer_path = self.dir_model / 'tokenizer.model'
  5602. # many older models use spiece.model tokenizer model filename
  5603. if not tokenizer_path.is_file():
  5604. tokenizer_path = self.dir_model / 'spiece.model'
  5605. if not tokenizer_path.is_file():
  5606. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  5607. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  5608. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  5609. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  5610. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  5611. # assure the tokenizer model file name is correct
  5612. assert tokenizer_path.name == 'tokenizer.model'
  5613. return self._set_vocab_sentencepiece()
  5614. else:
  5615. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  5616. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  5617. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  5618. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  5619. tokenizer = SentencePieceProcessor()
  5620. tokenizer.LoadFromFile(str(tokenizer_path))
  5621. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5622. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5623. scores: list[float] = [-10000.0] * vocab_size
  5624. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5625. for token_id in range(tokenizer.vocab_size()):
  5626. piece = tokenizer.IdToPiece(token_id)
  5627. text = piece.encode("utf-8")
  5628. score = tokenizer.GetScore(token_id)
  5629. toktype = SentencePieceTokenTypes.NORMAL
  5630. if tokenizer.IsUnknown(token_id):
  5631. toktype = SentencePieceTokenTypes.UNKNOWN
  5632. elif tokenizer.IsControl(token_id):
  5633. toktype = SentencePieceTokenTypes.CONTROL
  5634. elif tokenizer.IsUnused(token_id):
  5635. toktype = SentencePieceTokenTypes.UNUSED
  5636. elif tokenizer.IsByte(token_id):
  5637. toktype = SentencePieceTokenTypes.BYTE
  5638. tokens[token_id] = text
  5639. scores[token_id] = score
  5640. toktypes[token_id] = toktype
  5641. added_tokens_file = self.dir_model / 'added_tokens.json'
  5642. if added_tokens_file.is_file():
  5643. with open(added_tokens_file, "r", encoding="utf-8") as f:
  5644. added_tokens_json = json.load(f)
  5645. for key in added_tokens_json:
  5646. token_id = added_tokens_json[key]
  5647. if token_id >= vocab_size:
  5648. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5649. continue
  5650. tokens[token_id] = key.encode("utf-8")
  5651. scores[token_id] = -1000.0
  5652. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  5653. if vocab_size > len(tokens):
  5654. pad_count = vocab_size - len(tokens)
  5655. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  5656. for i in range(1, pad_count + 1):
  5657. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  5658. scores.append(-1000.0)
  5659. toktypes.append(SentencePieceTokenTypes.UNUSED)
  5660. self.gguf_writer.add_tokenizer_model("t5")
  5661. self.gguf_writer.add_tokenizer_pre("default")
  5662. self.gguf_writer.add_token_list(tokens)
  5663. self.gguf_writer.add_token_scores(scores)
  5664. self.gguf_writer.add_token_types(toktypes)
  5665. self.gguf_writer.add_add_space_prefix(add_prefix)
  5666. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  5667. if precompiled_charsmap:
  5668. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  5669. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5670. special_vocab.add_to_gguf(self.gguf_writer)
  5671. def set_gguf_parameters(self):
  5672. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  5673. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  5674. n_ctx = 512
  5675. self.gguf_writer.add_context_length(n_ctx)
  5676. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  5677. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  5678. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  5679. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  5680. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  5681. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  5682. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5683. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  5684. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  5685. self.gguf_writer.add_file_type(self.ftype)
  5686. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5687. del bid # unused
  5688. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  5689. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  5690. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  5691. # and decoder and ignore the remaining ones.
  5692. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  5693. if not self.shared_token_embeddings_found:
  5694. name = "shared.weight"
  5695. self.shared_token_embeddings_found = True
  5696. else:
  5697. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  5698. return []
  5699. return [(self.map_tensor_name(name), data_torch)]
  5700. @ModelBase.register("JAISLMHeadModel")
  5701. class JaisModel(TextModel):
  5702. model_arch = gguf.MODEL_ARCH.JAIS
  5703. def __init__(self, *args, **kwargs):
  5704. super().__init__(*args, **kwargs)
  5705. # SwigLU activation
  5706. assert self.hparams["activation_function"] == "swiglu"
  5707. # ALiBi position embedding
  5708. assert self.hparams["position_embedding_type"] == "alibi"
  5709. # Embeddings scale
  5710. self.embeddings_scale = 1.0
  5711. if 'mup_embeddings_scale' in self.hparams:
  5712. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  5713. elif 'embeddings_scale' in self.hparams:
  5714. self.embeddings_scale = self.hparams['embeddings_scale']
  5715. else:
  5716. assert False
  5717. self.width_scale = 1.0
  5718. if 'mup_output_alpha' in self.hparams:
  5719. assert 'mup_width_scale' in self.hparams
  5720. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  5721. elif 'width_scale' in self.hparams:
  5722. self.width_scale = self.hparams['width_scale']
  5723. else:
  5724. assert False
  5725. self.max_alibi_bias = 8.0
  5726. def set_vocab(self):
  5727. self._set_vocab_gpt2()
  5728. def set_gguf_parameters(self):
  5729. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  5730. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  5731. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  5732. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  5733. self.gguf_writer.add_head_count(self.hparams["n_head"])
  5734. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  5735. self.gguf_writer.add_file_type(self.ftype)
  5736. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5737. del bid # unused
  5738. tensors: list[tuple[str, Tensor]] = []
  5739. # we don't need these
  5740. if name.endswith((".attn.bias")):
  5741. return tensors
  5742. if name.endswith(("relative_pe.slopes")):
  5743. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  5744. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  5745. # but Jais's PyTorch model simply precalculates the slope values and places them
  5746. # in relative_pes.slopes
  5747. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  5748. first_val = float(data_torch[0].item())
  5749. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  5750. return tensors
  5751. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  5752. data_torch = data_torch.transpose(1, 0)
  5753. new_name = self.map_tensor_name(name)
  5754. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  5755. tensors.append((new_name, data_torch * self.embeddings_scale))
  5756. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  5757. tensors.append((new_name, data_torch * self.width_scale))
  5758. else:
  5759. tensors.append((new_name, data_torch))
  5760. return tensors
  5761. def prepare_tensors(self):
  5762. super().prepare_tensors()
  5763. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  5764. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  5765. class Glm4Model(TextModel):
  5766. model_arch = gguf.MODEL_ARCH.GLM4
  5767. def set_vocab(self):
  5768. from transformers import AutoTokenizer
  5769. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5770. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5771. tokens, toktypes, tokpre = self.get_vocab_base()
  5772. self.gguf_writer.add_tokenizer_model("gpt2")
  5773. self.gguf_writer.add_tokenizer_pre(tokpre)
  5774. self.gguf_writer.add_token_list(tokens)
  5775. self.gguf_writer.add_token_types(toktypes)
  5776. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5777. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5778. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  5779. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  5780. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  5781. special_vocab.add_to_gguf(self.gguf_writer)
  5782. def set_gguf_parameters(self):
  5783. super().set_gguf_parameters()
  5784. if (rope_dim := self.hparams.get("head_dim")) is None:
  5785. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5786. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  5787. rope_scaling = self.hparams.get("rope_scaling") or {}
  5788. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5789. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5790. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5791. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5793. if name.startswith("model.visual."): # ignore visual part of Glm4v
  5794. return []
  5795. elif name.startswith("model.language_model."):
  5796. name = name.replace("language_model.", "") # for Glm4v
  5797. return super().modify_tensors(data_torch, name, bid)
  5798. @ModelBase.register("Glm4MoeForCausalLM")
  5799. class Glm4MoeModel(TextModel):
  5800. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  5801. def __init__(self, *args, **kwargs):
  5802. super().__init__(*args, **kwargs)
  5803. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  5804. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  5805. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  5806. def set_vocab(self):
  5807. from transformers import AutoTokenizer
  5808. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  5809. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  5810. tokens, toktypes, tokpre = self.get_vocab_base()
  5811. self.gguf_writer.add_tokenizer_model("gpt2")
  5812. self.gguf_writer.add_tokenizer_pre(tokpre)
  5813. self.gguf_writer.add_token_list(tokens)
  5814. self.gguf_writer.add_token_types(toktypes)
  5815. # Special tokens
  5816. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  5817. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  5818. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  5819. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  5820. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  5821. # Patch broken chat template
  5822. if isinstance(special_vocab.chat_template, str) and "visible_text(m.content).endswith" in special_vocab.chat_template:
  5823. special_vocab.chat_template = special_vocab.chat_template.replace(
  5824. """{{ visible_text(m.content) }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not visible_text(m.content).endswith("/nothink")) else '' -}}""",
  5825. """{% set content = visible_text(m.content) %}{{ content }}\n{{- '/nothink' if (enable_thinking is defined and not enable_thinking and not content.endswith("/nothink")) else '' -}}""")
  5826. special_vocab.add_to_gguf(self.gguf_writer)
  5827. def set_gguf_parameters(self):
  5828. super().set_gguf_parameters()
  5829. if (rope_dim := self.hparams.get("head_dim")) is None:
  5830. rope_dim = (
  5831. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  5832. )
  5833. self.gguf_writer.add_rope_dimension_count(
  5834. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  5835. )
  5836. # MoE parameters - Use only routed expert count (shared experts handled separately)
  5837. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  5838. self.gguf_writer.add_expert_count(n_routed_experts)
  5839. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  5840. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  5841. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  5842. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  5843. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  5844. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  5845. # Expert gating function (sigmoid for GLM4_MOE)
  5846. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  5847. # Routed scaling factor
  5848. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  5849. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  5850. # Normalise topk probabilities
  5851. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  5852. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  5853. # NextN/MTP prediction layers
  5854. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  5855. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  5856. _experts: list[dict[str, Tensor]] | None = None
  5857. def modify_tensors(
  5858. self, data_torch: Tensor, name: str, bid: int | None
  5859. ) -> Iterable[tuple[str, Tensor]]:
  5860. if name.startswith("model.visual."): # ignore visual part
  5861. return []
  5862. elif name.startswith("model.language_model."):
  5863. name = name.replace("language_model.", "") # for multimodal variants
  5864. # Handle main token embedding (but not layer-specific NextN embeddings)
  5865. if name == "model.embed_tokens.weight" and ".layers." not in name:
  5866. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  5867. # Handle routed experts
  5868. if name.find("mlp.experts") != -1:
  5869. n_experts = self.hparams["n_routed_experts"]
  5870. assert bid is not None
  5871. if self._experts is None:
  5872. self._experts = [{} for _ in range(self.block_count)]
  5873. self._experts[bid][name] = data_torch
  5874. if len(self._experts[bid]) >= n_experts * 3:
  5875. tensors: list[tuple[str, Tensor]] = []
  5876. # merge the experts into a single 3d tensor
  5877. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5878. datas: list[Tensor] = []
  5879. for xid in range(n_experts):
  5880. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5881. datas.append(self._experts[bid][ename])
  5882. del self._experts[bid][ename]
  5883. data_torch = torch.stack(datas, dim=0)
  5884. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5885. new_name = self.map_tensor_name(merged_name)
  5886. tensors.append((new_name, data_torch))
  5887. return tensors
  5888. else:
  5889. return []
  5890. if name.endswith("e_score_correction_bias"):
  5891. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5892. new_name = self.map_tensor_name(name)
  5893. return [(new_name, data_torch)]
  5894. def prepare_tensors(self):
  5895. super().prepare_tensors()
  5896. if self._experts is not None:
  5897. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5898. experts = [k for d in self._experts for k in d.keys()]
  5899. if len(experts) > 0:
  5900. raise ValueError(f"Unprocessed experts: {experts}")
  5901. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  5902. class ChatGLMModel(TextModel):
  5903. model_arch = gguf.MODEL_ARCH.CHATGLM
  5904. def set_vocab_chatglm3(self):
  5905. dir_model = self.dir_model
  5906. hparams = self.hparams
  5907. tokens: list[bytes] = []
  5908. toktypes: list[int] = []
  5909. scores: list[float] = []
  5910. from transformers import AutoTokenizer
  5911. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5912. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  5913. assert max(tokenizer.get_vocab().values()) < vocab_size
  5914. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  5915. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  5916. for token_id in range(vocab_size):
  5917. piece = tokenizer._convert_id_to_token(token_id)
  5918. if token_id == 0:
  5919. piece = "<unk>"
  5920. elif token_id == 1:
  5921. piece = "<bos>"
  5922. elif token_id == 2:
  5923. piece = "<eos>"
  5924. text = piece.encode("utf-8")
  5925. score = 0.0
  5926. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  5927. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  5928. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  5929. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  5930. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  5931. if piece in special_tokens:
  5932. toktype = SentencePieceTokenTypes.CONTROL
  5933. elif len(piece) == 0:
  5934. text = f"[PAD{token_id}]".encode("utf-8")
  5935. toktype = SentencePieceTokenTypes.UNUSED
  5936. else:
  5937. toktype = SentencePieceTokenTypes.USER_DEFINED
  5938. tokens.append(text)
  5939. scores.append(score)
  5940. toktypes.append(toktype)
  5941. continue
  5942. toktype = SentencePieceTokenTypes.NORMAL
  5943. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  5944. toktype = SentencePieceTokenTypes.UNKNOWN
  5945. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  5946. toktype = SentencePieceTokenTypes.CONTROL
  5947. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  5948. toktype = SentencePieceTokenTypes.UNUSED
  5949. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  5950. toktype = SentencePieceTokenTypes.BYTE
  5951. tokens.append(text)
  5952. scores.append(score)
  5953. toktypes.append(toktype)
  5954. self.gguf_writer.add_tokenizer_model("llama")
  5955. # glm3 needs prefix and suffix formatted as:
  5956. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  5957. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  5958. self.gguf_writer.add_token_list(tokens)
  5959. self.gguf_writer.add_token_scores(scores)
  5960. self.gguf_writer.add_token_types(toktypes)
  5961. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5962. special_vocab.add_to_gguf(self.gguf_writer)
  5963. @staticmethod
  5964. def token_bytes_to_string(b):
  5965. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  5966. byte_encoder = bytes_to_unicode()
  5967. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  5968. @staticmethod
  5969. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  5970. parts = [bytes([b]) for b in token]
  5971. while True:
  5972. min_idx = None
  5973. min_rank = None
  5974. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  5975. rank = mergeable_ranks.get(pair[0] + pair[1])
  5976. if rank is not None and (min_rank is None or rank < min_rank):
  5977. min_idx = i
  5978. min_rank = rank
  5979. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  5980. break
  5981. assert min_idx is not None
  5982. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  5983. return parts
  5984. def set_vocab(self):
  5985. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  5986. self.set_vocab_chatglm3()
  5987. return
  5988. dir_model = self.dir_model
  5989. hparams = self.hparams
  5990. tokens: list[str] = []
  5991. toktypes: list[int] = []
  5992. from transformers import AutoTokenizer
  5993. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  5994. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  5995. assert max(tokenizer.get_vocab().values()) < vocab_size
  5996. tokens, toktypes, tokpre = self.get_vocab_base()
  5997. self.gguf_writer.add_tokenizer_model("gpt2")
  5998. self.gguf_writer.add_tokenizer_pre(tokpre)
  5999. self.gguf_writer.add_token_list(tokens)
  6000. self.gguf_writer.add_token_types(toktypes)
  6001. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6002. # only add special tokens when they were not already loaded from config.json
  6003. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6004. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6005. # this one is usually not in config.json anyway
  6006. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6007. special_vocab.add_to_gguf(self.gguf_writer)
  6008. def set_gguf_parameters(self):
  6009. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6010. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6011. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6012. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6013. self.gguf_writer.add_embedding_length(n_embed)
  6014. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6015. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  6016. self.gguf_writer.add_head_count(n_head)
  6017. self.gguf_writer.add_head_count_kv(n_head_kv)
  6018. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6019. self.gguf_writer.add_file_type(self.ftype)
  6020. if "attention_dim" in self.hparams:
  6021. rope_dim = self.hparams["attention_dim"]
  6022. else:
  6023. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6024. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6025. self.gguf_writer.add_add_bos_token(False)
  6026. rope_freq = 10000
  6027. if "rope_ratio" in self.hparams:
  6028. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6029. self.gguf_writer.add_rope_freq_base(rope_freq)
  6030. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6031. del bid # unused
  6032. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6033. return []
  6034. name = name.removeprefix("transformer.")
  6035. return [(self.map_tensor_name(name), data_torch)]
  6036. @ModelBase.register("NemotronForCausalLM")
  6037. class NemotronModel(TextModel):
  6038. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6039. def set_vocab(self):
  6040. self._set_vocab_sentencepiece()
  6041. self.gguf_writer.add_pad_token_id(0)
  6042. self.gguf_writer.add_unk_token_id(1)
  6043. def set_gguf_parameters(self):
  6044. super().set_gguf_parameters()
  6045. hparams = self.hparams
  6046. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6047. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6048. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6049. # * Partial RoPE
  6050. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6051. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6052. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6053. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6054. # * RopeScaling for Nemotron
  6055. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6056. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6057. else:
  6058. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6059. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6060. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6061. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6062. # model.layers.{l}.input_layernorm.weight
  6063. # model.layers.{l}.post_attention_layernorm.weight
  6064. # model.norm.weight
  6065. if name.endswith("norm.weight"):
  6066. data_torch = data_torch + 1
  6067. return [(self.map_tensor_name(name), data_torch)]
  6068. @ModelBase.register("ExaoneForCausalLM")
  6069. class ExaoneModel(TextModel):
  6070. model_arch = gguf.MODEL_ARCH.EXAONE
  6071. def set_gguf_parameters(self):
  6072. hparams = self.hparams
  6073. assert (hparams["activation_function"] == "silu")
  6074. max_position_embeddings = hparams["max_position_embeddings"]
  6075. embed_dim = hparams["hidden_size"]
  6076. num_heads = hparams["num_attention_heads"]
  6077. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6078. layer_norm_eps = hparams["layer_norm_epsilon"]
  6079. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6080. num_layers = hparams["num_layers"]
  6081. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6082. # attention_dropout_rate = hparams["attention_dropout"]
  6083. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6084. # embed_dropout_rate = hparams["embed_dropout"]
  6085. self.gguf_writer.add_embedding_length(embed_dim)
  6086. self.gguf_writer.add_head_count(num_heads)
  6087. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6088. self.gguf_writer.add_context_length(max_position_embeddings)
  6089. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6090. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6091. self.gguf_writer.add_block_count(num_layers)
  6092. self.gguf_writer.add_file_type(self.ftype)
  6093. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6094. self.gguf_writer.add_rope_freq_base(rope_theta)
  6095. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6096. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6097. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6098. rope_scaling = self.hparams.get("rope_scaling") or {}
  6099. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6100. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6101. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6102. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6103. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6104. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6105. base = self.hparams.get("rope_theta", 10000.0)
  6106. if (dim := self.hparams.get("head_dim")) is None:
  6107. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6108. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6109. factor = rope_scaling.get("factor", 8.0)
  6110. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6111. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6112. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6113. low_freq_wavelen = old_context_len / low_freq_factor
  6114. high_freq_wavelen = old_context_len / high_freq_factor
  6115. assert low_freq_wavelen != high_freq_wavelen
  6116. rope_factors = []
  6117. for freq in freqs:
  6118. wavelen = 2 * math.pi / freq
  6119. if wavelen < high_freq_wavelen:
  6120. rope_factors.append(1)
  6121. elif wavelen > low_freq_wavelen:
  6122. rope_factors.append(factor)
  6123. else:
  6124. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6125. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6126. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6127. @ModelBase.register("Exaone4ForCausalLM")
  6128. class Exaone4Model(TextModel):
  6129. model_arch = gguf.MODEL_ARCH.EXAONE4
  6130. def set_vocab(self):
  6131. tokens, toktypes, tokpre = self.get_vocab_base()
  6132. self.gguf_writer.add_tokenizer_model("gpt2")
  6133. self.gguf_writer.add_tokenizer_pre(tokpre)
  6134. self.gguf_writer.add_token_list(tokens)
  6135. self.gguf_writer.add_token_types(toktypes)
  6136. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6137. special_vocab.add_to_gguf(self.gguf_writer)
  6138. def set_gguf_parameters(self):
  6139. super().set_gguf_parameters()
  6140. hparams = self.hparams
  6141. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6142. if hparams.get("sliding_window") is not None:
  6143. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6144. if "layer_types" in hparams:
  6145. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6146. elif "sliding_window_pattern" in hparams:
  6147. sliding_window_pattern = []
  6148. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6149. for i in range(hparams["num_hidden_layers"]):
  6150. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6151. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6152. for i in range(hparams["num_hidden_layers"]):
  6153. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6154. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6155. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6156. rope_scaling = self.hparams.get("rope_scaling") or {}
  6157. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6158. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6159. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6160. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6161. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6162. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6163. base = self.hparams.get("rope_theta", 10_000.0)
  6164. if (dim := self.hparams.get("head_dim")) is None:
  6165. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6166. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6167. factor = rope_scaling.get("factor", 16.0)
  6168. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6169. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6170. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6171. low_freq_wavelen = old_context_len / low_freq_factor
  6172. high_freq_wavelen = old_context_len / high_freq_factor
  6173. rope_factors = []
  6174. for freq in freqs:
  6175. wavelen = 2 * math.pi / freq
  6176. if wavelen < high_freq_wavelen:
  6177. rope_factors.append(1)
  6178. elif wavelen > low_freq_wavelen:
  6179. rope_factors.append(factor)
  6180. else:
  6181. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6182. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6183. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6184. @ModelBase.register("GraniteForCausalLM")
  6185. class GraniteModel(LlamaModel):
  6186. """Conversion for IBM's GraniteForCausalLM"""
  6187. model_arch = gguf.MODEL_ARCH.GRANITE
  6188. def set_gguf_parameters(self):
  6189. """Granite uses standard llama parameters with the following differences:
  6190. - No head_dim support
  6191. - New multiplier params:
  6192. - attention_scale
  6193. - embedding_scale
  6194. - residual_scale
  6195. - logits_scaling
  6196. """
  6197. if head_dim := self.hparams.pop("head_dim", None):
  6198. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6199. super().set_gguf_parameters()
  6200. # NOTE: Convert _multiplier params to _scale params for naming
  6201. # consistency
  6202. if attention_scale := self.hparams.get("attention_multiplier"):
  6203. self.gguf_writer.add_attention_scale(attention_scale)
  6204. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6205. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6206. self.gguf_writer.add_embedding_scale(embedding_scale)
  6207. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6208. if residual_scale := self.hparams.get("residual_multiplier"):
  6209. self.gguf_writer.add_residual_scale(residual_scale)
  6210. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6211. if logits_scale := self.hparams.get("logits_scaling"):
  6212. self.gguf_writer.add_logit_scale(logits_scale)
  6213. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6214. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6215. class GraniteMoeModel(GraniteModel):
  6216. """Conversion for IBM's GraniteMoeForCausalLM"""
  6217. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6218. def set_gguf_parameters(self):
  6219. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6220. - shared_intermediate_size
  6221. """
  6222. super().set_gguf_parameters()
  6223. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6224. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6225. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6226. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6227. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6228. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6229. the hidden size that is then split during forward. To keep compatibility
  6230. with existing mixtral support, we pull them apart here.
  6231. """
  6232. if name.endswith("block_sparse_moe.input_linear.weight"):
  6233. ffn_dim = self.hparams["intermediate_size"]
  6234. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6235. gate, up = data_torch.split(ffn_dim, dim=-2)
  6236. return [
  6237. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6238. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6239. ]
  6240. has_experts = bool(self.hparams.get('num_local_experts'))
  6241. if name.endswith("shared_mlp.input_linear.weight"):
  6242. ffn_dim = self.hparams["shared_intermediate_size"]
  6243. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6244. gate, up = data_torch.split(ffn_dim, dim=-2)
  6245. if has_experts:
  6246. return [
  6247. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6248. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6249. ]
  6250. return [
  6251. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6252. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6253. ]
  6254. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6255. return [
  6256. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6257. ]
  6258. return super().modify_tensors(data_torch, name, bid)
  6259. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6260. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6261. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6262. layers and optionally uses MoE w/ a shared expert"""
  6263. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6264. undo_permute = True
  6265. def __init__(self, *args, **kwargs):
  6266. # Hybrid mamba models use a prefix for the mamba-specific params.
  6267. # TODO: Extend this if the prefix(es) need to be configurable
  6268. self.hparam_prefixes = ["mamba"]
  6269. super().__init__(*args, **kwargs)
  6270. # Lists of which layers use ssm vs attention
  6271. self._attn_layers = self.get_attn_layers()
  6272. self._ssm_layers = [
  6273. i for i in range(self.block_count)
  6274. if i not in self._attn_layers
  6275. ]
  6276. # There are some models in this family that are non-hybrid, but keep the
  6277. # same parent class by setting all layers to "attention." If this is the
  6278. # case, the model architecture needs to be updated to a standard
  6279. # "granite" or "granitemoe" model
  6280. if not self._ssm_layers:
  6281. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6282. new_arch = (
  6283. gguf.MODEL_ARCH.GRANITE_MOE
  6284. if has_experts else
  6285. gguf.MODEL_ARCH.GRANITE
  6286. )
  6287. self.model_arch = new_arch
  6288. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6289. self.gguf_writer.add_architecture()
  6290. # n_group and d_inner are used during reshape_tensors for mamba2
  6291. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6292. # disambiguate with top-level head_dim
  6293. # NOTE 2: If needed for future models, this can be isolated in a method
  6294. # to separate the prefix setting and teh keys used
  6295. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6296. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6297. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6298. def get_attn_layers(self):
  6299. # Explicit list of layer type names
  6300. if layer_types := self.hparams.get("layer_types"):
  6301. return [
  6302. i for i, typ in enumerate(layer_types)
  6303. if typ == "attention"
  6304. ]
  6305. # Layer types indicated by index or period
  6306. attn_layers = self.hparams.get("attn_layer_indices", [])
  6307. if not attn_layers:
  6308. attn_period = self.hparams.get("attn_layer_period")
  6309. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6310. attn_offset = self.hparams.get("attn_layer_offset")
  6311. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6312. attn_layers = [
  6313. i for i in range(self.block_count)
  6314. if i % attn_period == attn_offset
  6315. ]
  6316. return attn_layers
  6317. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6318. prefixed = []
  6319. for pfx in self.hparam_prefixes:
  6320. prefixed.extend(
  6321. "_".join([pfx, k])
  6322. for k in keys
  6323. )
  6324. keys = list(keys) + prefixed
  6325. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6326. def modify_tensors(
  6327. self, data_torch: Tensor, name: str, bid: int | None
  6328. ) -> Iterable[tuple[str, Tensor]]:
  6329. if (
  6330. name.endswith("block_sparse_moe.input_linear.weight")
  6331. or "shared_mlp" in name
  6332. ):
  6333. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6334. # Determine whether this is a mamba layer or an attention layer
  6335. if bid in self._ssm_layers:
  6336. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6337. elif bid in self._attn_layers:
  6338. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6339. return [(self.map_tensor_name(name), data_torch)]
  6340. def set_gguf_parameters(self):
  6341. """This method merges params from both parents and some that are
  6342. specific to this model. The result is some duplication of how the params
  6343. get set. The following warnings are expected during conversion:
  6344. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6345. WARNING:Duplicated key name 'granitehybrid.context_length'
  6346. """
  6347. GraniteMoeModel.set_gguf_parameters(self)
  6348. ## Mamba mixer params ##
  6349. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6350. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6351. self.gguf_writer.add_ssm_group_count(self.n_group)
  6352. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6353. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6354. # in llama.cpp
  6355. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6356. ## Attention params ##
  6357. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6358. head_count_kv_vec = [
  6359. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6360. ]
  6361. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6362. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6363. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6364. ## If Bamba or non-hybrid, use rope, otherwise don't
  6365. use_rope = (
  6366. "BambaForCausalLM" in self.hparams["architectures"]
  6367. or not self._ssm_layers
  6368. )
  6369. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6370. if not use_rope:
  6371. self.gguf_writer.add_context_length(2**20)
  6372. ## Validation ##
  6373. d_head = self.find_hparam(["d_head"], optional=True) or 64
  6374. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6375. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  6376. def set_vocab(self):
  6377. self.hparams["pad_vocab_size_multiple"] = 8
  6378. Mamba2Model.set_vocab(self)
  6379. @ModelBase.register("NemotronHForCausalLM")
  6380. class NemotronHModel(GraniteHybridModel):
  6381. """Hybrid mamba2/attention model from NVIDIA"""
  6382. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  6383. def __init__(self, *args, **kwargs):
  6384. super().__init__(*args, **kwargs)
  6385. # Save the top-level head_dim for later
  6386. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  6387. assert self.head_dim is not None, "Could not find the attention head dim in config"
  6388. # Don't use expand to calculate d_inner
  6389. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  6390. # Update the ssm / attn / mlp layers
  6391. # M: Mamba2, *: Attention, -: MLP
  6392. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6393. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  6394. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  6395. def get_attn_layers(self):
  6396. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  6397. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  6398. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  6399. def set_gguf_parameters(self):
  6400. super().set_gguf_parameters()
  6401. self.gguf_writer.add_key_length(self.head_dim)
  6402. self.gguf_writer.add_value_length(self.head_dim)
  6403. # Set feed_forward_length
  6404. # NOTE: This will trigger an override warning. This is preferrable to
  6405. # duplicating all the parent logic
  6406. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  6407. self.gguf_writer.add_feed_forward_length([
  6408. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  6409. ])
  6410. def set_vocab(self):
  6411. super().set_vocab()
  6412. # The tokenizer _does_ add a BOS token (via post_processor type
  6413. # TemplateProcessing) but does not set add_bos_token to true in the
  6414. # config, so we need to explicitly override it here.
  6415. self.gguf_writer.add_add_bos_token(True)
  6416. @ModelBase.register("BailingMoeForCausalLM")
  6417. class BailingMoeModel(TextModel):
  6418. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  6419. def set_vocab(self):
  6420. self._set_vocab_gpt2()
  6421. def set_gguf_parameters(self):
  6422. super().set_gguf_parameters()
  6423. hparams = self.hparams
  6424. if (rope_dim := hparams.get("head_dim")) is None:
  6425. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6426. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6427. rope_scaling = self.hparams.get("rope_scaling") or {}
  6428. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6429. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6430. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6431. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6432. else:
  6433. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6434. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  6435. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6436. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  6437. self.gguf_writer.add_expert_weights_scale(1.0)
  6438. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6439. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  6440. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  6441. _experts: list[dict[str, Tensor]] | None = None
  6442. @staticmethod
  6443. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  6444. if n_head_kv is not None and n_head != n_head_kv:
  6445. n_head = n_head_kv
  6446. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  6447. .swapaxes(1, 2)
  6448. .reshape(weights.shape))
  6449. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6450. n_head = self.hparams["num_attention_heads"]
  6451. n_kv_head = self.hparams.get("num_key_value_heads")
  6452. n_embd = self.hparams["hidden_size"]
  6453. if (head_dim := self.hparams.get("head_dim")) is None:
  6454. head_dim = n_embd // n_head
  6455. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  6456. if name.endswith("attention.dense.weight"):
  6457. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  6458. elif name.endswith("query_key_value.weight"):
  6459. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  6460. return [
  6461. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  6462. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  6463. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  6464. ]
  6465. elif name.find("mlp.experts") != -1:
  6466. n_experts = self.hparams["num_experts"]
  6467. assert bid is not None
  6468. tensors: list[tuple[str, Tensor]] = []
  6469. if self._experts is None:
  6470. self._experts = [{} for _ in range(self.block_count)]
  6471. self._experts[bid][name] = data_torch
  6472. if len(self._experts[bid]) >= n_experts * 3:
  6473. # merge the experts into a single 3d tensor
  6474. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6475. datas: list[Tensor] = []
  6476. for xid in range(n_experts):
  6477. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6478. datas.append(self._experts[bid][ename])
  6479. del self._experts[bid][ename]
  6480. data_torch = torch.stack(datas, dim=0)
  6481. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6482. new_name = self.map_tensor_name(merged_name)
  6483. tensors.append((new_name, data_torch))
  6484. return tensors
  6485. new_name = self.map_tensor_name(name)
  6486. if new_name == output_name and self.hparams.get("norm_head"):
  6487. data_torch = data_torch.float()
  6488. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  6489. return [(new_name, data_torch)]
  6490. def prepare_tensors(self):
  6491. super().prepare_tensors()
  6492. if self._experts is not None:
  6493. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6494. experts = [k for d in self._experts for k in d.keys()]
  6495. if len(experts) > 0:
  6496. raise ValueError(f"Unprocessed experts: {experts}")
  6497. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  6498. class GroveMoeModel(TextModel):
  6499. model_arch = gguf.MODEL_ARCH.GROVEMOE
  6500. def set_gguf_parameters(self):
  6501. super().set_gguf_parameters()
  6502. if (n_experts := self.hparams.get("num_experts")) is not None:
  6503. self.gguf_writer.add_expert_count(n_experts)
  6504. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6505. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6506. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  6507. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  6508. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  6509. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  6510. self.gguf_writer.add_experts_per_group(2)
  6511. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  6512. self.gguf_writer.add_expert_group_scale(0.05)
  6513. # YaRN is not enabled by default
  6514. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  6515. rope_scaling = self.hparams.get("rope_scaling") or {}
  6516. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6517. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6518. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6519. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6520. _experts: list[dict[str, Tensor]] | None = None
  6521. _chunk_experts: list[dict[str, Tensor]] | None = None
  6522. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6523. if name.endswith(".expert_bias"):
  6524. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  6525. return []
  6526. # process the experts separately
  6527. if name.find("chunk_experts") != -1:
  6528. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  6529. assert bid is not None
  6530. if self._chunk_experts is None:
  6531. self._chunk_experts = [{} for _ in range(self.block_count)]
  6532. self._chunk_experts[bid][name] = data_torch
  6533. if len(self._chunk_experts[bid]) >= n_experts * 3:
  6534. tensors: list[tuple[str, Tensor]] = []
  6535. # merge the experts into a single 3d tensor
  6536. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6537. datas: list[Tensor] = []
  6538. for xid in range(n_experts):
  6539. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  6540. datas.append(self._chunk_experts[bid][ename])
  6541. del self._chunk_experts[bid][ename]
  6542. data_torch = torch.stack(datas, dim=0)
  6543. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  6544. new_name = self.map_tensor_name(merged_name)
  6545. tensors.append((new_name, data_torch))
  6546. return tensors
  6547. else:
  6548. return []
  6549. elif name.find("experts") != -1:
  6550. n_experts = self.hparams["num_experts"]
  6551. assert bid is not None
  6552. if self._experts is None:
  6553. self._experts = [{} for _ in range(self.block_count)]
  6554. self._experts[bid][name] = data_torch
  6555. if len(self._experts[bid]) >= n_experts * 3:
  6556. tensors: list[tuple[str, Tensor]] = []
  6557. # merge the experts into a single 3d tensor
  6558. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6559. datas: list[Tensor] = []
  6560. for xid in range(n_experts):
  6561. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6562. datas.append(self._experts[bid][ename])
  6563. del self._experts[bid][ename]
  6564. data_torch = torch.stack(datas, dim=0)
  6565. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6566. new_name = self.map_tensor_name(merged_name)
  6567. tensors.append((new_name, data_torch))
  6568. return tensors
  6569. else:
  6570. return []
  6571. return [(self.map_tensor_name(name), data_torch)]
  6572. def prepare_tensors(self):
  6573. super().prepare_tensors()
  6574. if self._chunk_experts is not None:
  6575. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6576. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  6577. if len(chunk_experts) > 0:
  6578. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  6579. if self._experts is not None:
  6580. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6581. experts = [k for d in self._experts for k in d.keys()]
  6582. if len(experts) > 0:
  6583. raise ValueError(f"Unprocessed experts: {experts}")
  6584. @ModelBase.register("ChameleonForConditionalGeneration")
  6585. @ModelBase.register("ChameleonForCausalLM") # obsolete
  6586. class ChameleonModel(TextModel):
  6587. model_arch = gguf.MODEL_ARCH.CHAMELEON
  6588. def set_gguf_parameters(self):
  6589. super().set_gguf_parameters()
  6590. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  6591. def set_vocab(self):
  6592. self._set_vocab_gpt2()
  6593. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6594. # ignore image tokenizer for now
  6595. # TODO: remove this once image support is implemented for Chameleon
  6596. if name.startswith("model.vqmodel"):
  6597. return []
  6598. n_head = self.hparams["num_attention_heads"]
  6599. n_kv_head = self.hparams.get("num_key_value_heads")
  6600. hidden_dim = self.hparams.get("hidden_size")
  6601. if name.endswith(("q_proj.weight", "q_proj.bias")):
  6602. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  6603. if name.endswith(("k_proj.weight", "k_proj.bias")):
  6604. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  6605. if name.endswith(("q_norm.weight", "q_norm.bias")):
  6606. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  6607. if name.endswith(("k_norm.weight", "k_norm.bias")):
  6608. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  6609. return [(self.map_tensor_name(name), data_torch)]
  6610. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  6611. @staticmethod
  6612. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  6613. head_dim = hidden_dim // n_heads
  6614. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  6615. data_torch = data_torch.repeat_interleave(n_heads, 0)
  6616. return data_torch
  6617. @ModelBase.register("UltravoxModel")
  6618. class UltravoxModel(TextModel):
  6619. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  6620. def __init__(self, *args, **kwargs):
  6621. super().__init__(*args, **kwargs)
  6622. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  6623. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  6624. class WhisperEncoderModel(MmprojModel):
  6625. has_vision_encoder = False # no vision encoder
  6626. has_audio_encoder = True
  6627. def __init__(self, *args, **kwargs):
  6628. super().__init__(*args, **kwargs)
  6629. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  6630. self.hparams["hidden_size"] = self.hparams["d_model"]
  6631. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  6632. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  6633. def set_gguf_parameters(self):
  6634. super().set_gguf_parameters()
  6635. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  6636. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  6637. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  6638. def tensor_force_quant(self, name, new_name, bid, n_dims):
  6639. if ".conv" in name and ".weight" in name:
  6640. return gguf.GGMLQuantizationType.F16
  6641. return super().tensor_force_quant(name, new_name, bid, n_dims)
  6642. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6643. del bid # unused
  6644. if name.startswith("language_model."):
  6645. # skip language model tensors
  6646. return []
  6647. # prevent clash naming with vision tensors
  6648. if name.startswith("multi_modal_projector"):
  6649. name = "audio." + name
  6650. if "conv1.bias" in name or "conv2.bias" in name:
  6651. # transpose conv1 and conv2 bias
  6652. data_torch = data_torch.unsqueeze(-1)
  6653. return [(self.map_tensor_name(name), data_torch)]
  6654. @ModelBase.register("UltravoxModel")
  6655. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  6656. has_vision_encoder = False # no vision encoder
  6657. has_audio_encoder = True
  6658. def set_gguf_parameters(self):
  6659. super().set_gguf_parameters()
  6660. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  6661. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  6662. @ModelBase.register("VoxtralForConditionalGeneration")
  6663. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  6664. has_vision_encoder = False # no vision encoder
  6665. has_audio_encoder = True
  6666. def set_gguf_parameters(self):
  6667. super().set_gguf_parameters()
  6668. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  6669. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  6670. @ModelBase.register("FalconH1ForCausalLM")
  6671. class FalconH1Model(Mamba2Model):
  6672. model_arch = gguf.MODEL_ARCH.FALCON_H1
  6673. def __init__(self, *args, **kwargs):
  6674. # Set the hparam prefixes for Falcon Mamba2
  6675. self.hparam_prefixes = ["mamba"]
  6676. # Initialize the base Mamba2Model
  6677. super().__init__(*args, **kwargs)
  6678. # Use Llama conversion for attention
  6679. self._transformer_model_class = LlamaModel
  6680. # n_group and d_inner are used during reshape_tensors for mamba2
  6681. self.n_group = self.find_hparam(["n_groups"])
  6682. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  6683. self.d_head = self.find_hparam(["d_head"])
  6684. # Initialize any Falcon Mamba2 specific attributes
  6685. self.has_attention = True # Falcon Mamba2 has attention components
  6686. # Load Falcon-H1 multipliers from hyperparameters
  6687. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  6688. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  6689. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  6690. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  6691. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  6692. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  6693. self.intermediate_size = self.find_hparam(["intermediate_size"])
  6694. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  6695. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6696. prefixed = []
  6697. for pfx in self.hparam_prefixes:
  6698. prefixed.extend(
  6699. "_".join([pfx, k])
  6700. for k in keys
  6701. )
  6702. keys = list(keys) + prefixed
  6703. return super().find_hparam(keys, *args, **kwargs)
  6704. def set_vocab(self):
  6705. self._set_vocab_gpt2()
  6706. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6707. tensors = list(super().modify_tensors(data_torch, name, bid))
  6708. tensor = tensors[0][1]
  6709. if "down_proj" in name:
  6710. tensor = tensor * self.mlp_multipliers[1]
  6711. elif "gate_proj" in name:
  6712. tensor = tensor * self.mlp_multipliers[0]
  6713. elif "k_proj" in name:
  6714. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  6715. elif "q_proj" in name:
  6716. tensor = tensor * self.attention_in_multiplier
  6717. elif "v_proj" in name:
  6718. tensor = tensor * self.attention_in_multiplier
  6719. elif "o_proj" in name:
  6720. tensor = tensor * self.attention_out_multiplier
  6721. elif "out_proj" in name:
  6722. tensor = tensor * self.ssm_out_multiplier
  6723. elif "in_proj" in name:
  6724. tensor = tensor * self.ssm_in_multiplier
  6725. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  6726. intermediate_size = self.hparams["mamba_d_ssm"]
  6727. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  6728. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  6729. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  6730. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  6731. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  6732. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  6733. elif "lm_head" in name:
  6734. tensor = tensor * self.hparams["lm_head_multiplier"]
  6735. elif "embed_tokens" in name:
  6736. tensor = tensor * self.hparams["embedding_multiplier"]
  6737. elif "mamba.norm" in name:
  6738. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  6739. tensors = [(tensors[0][0], tensor)]
  6740. return tensors
  6741. def set_gguf_parameters(self):
  6742. super().set_gguf_parameters()
  6743. ## General Params ##
  6744. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  6745. # Override some Mamba2 defaults
  6746. self.gguf_writer.add_block_count(self.block_count)
  6747. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  6748. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  6749. ## Attention params ##
  6750. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  6751. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  6752. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  6753. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  6754. ## Validation ##
  6755. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  6756. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  6757. # Add any other Falcon Mamba2 specific configuration
  6758. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  6759. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  6760. class HunYuanMoEModel(TextModel):
  6761. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  6762. def set_vocab(self):
  6763. from transformers import AutoTokenizer
  6764. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6765. # 1. Get the pre-tokenizer identifier hash
  6766. tokpre = self.get_vocab_base_pre(tokenizer)
  6767. # 2. Reverse-engineer the merges list from mergeable_ranks
  6768. merges = []
  6769. vocab = {}
  6770. mergeable_ranks = tokenizer.mergeable_ranks
  6771. for token, rank in mergeable_ranks.items():
  6772. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6773. if len(token) == 1:
  6774. continue
  6775. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6776. if len(merged) == 2: # todo this is an assert in Qwen, why?
  6777. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6778. # 3. Generate the tokens and toktypes lists
  6779. vocab_size = self.hparams["vocab_size"]
  6780. assert tokenizer.vocab_size == vocab_size
  6781. special_tokens = tokenizer.special_tokens
  6782. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6783. tokens: list[str] = []
  6784. toktypes: list[int] = []
  6785. for i in range(vocab_size):
  6786. if i not in reverse_vocab:
  6787. tokens.append(f"[PAD{i}]")
  6788. toktypes.append(gguf.TokenType.UNUSED)
  6789. else:
  6790. token = reverse_vocab[i]
  6791. tokens.append(token)
  6792. if i in special_tokens.values():
  6793. toktypes.append(gguf.TokenType.CONTROL)
  6794. else:
  6795. toktypes.append(gguf.TokenType.NORMAL)
  6796. # 4. Write all vocab-related fields to the GGUF writer
  6797. self.gguf_writer.add_tokenizer_model("gpt2")
  6798. self.gguf_writer.add_tokenizer_pre(tokpre)
  6799. self.gguf_writer.add_token_list(tokens)
  6800. self.gguf_writer.add_token_types(toktypes)
  6801. self.gguf_writer.add_token_merges(merges)
  6802. # 5. Add special tokens and chat templates
  6803. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6804. special_vocab.add_to_gguf(self.gguf_writer)
  6805. # FIX for BOS token: Overwrite incorrect id read from config.json
  6806. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  6807. def set_gguf_parameters(self):
  6808. super().set_gguf_parameters()
  6809. hparams = self.hparams
  6810. self.gguf_writer.add_expert_count(hparams["num_experts"])
  6811. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  6812. moe_intermediate_size = hparams["moe_intermediate_size"]
  6813. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  6814. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  6815. moe_topk = hparams["moe_topk"]
  6816. assert all(topk == moe_topk[0] for topk in moe_topk)
  6817. self.gguf_writer.add_expert_used_count(moe_topk[0])
  6818. moe_shared_expert = hparams["num_shared_expert"]
  6819. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  6820. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  6821. # Rope
  6822. rope_scaling = hparams.get("rope_scaling", {})
  6823. if rope_scaling.get("type") == "dynamic":
  6824. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6825. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6826. alpha = rope_scaling.get("alpha", 1000)
  6827. base = hparams.get("rope_theta", 10000.0)
  6828. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  6829. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  6830. self.gguf_writer.add_rope_freq_base(scaled_base)
  6831. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6832. self.gguf_writer.add_rope_scaling_factor(1)
  6833. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6834. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6835. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6836. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6837. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6838. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6839. _experts: list[dict[str, Tensor]] | None = None
  6840. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6841. if name == "lm_head.weight":
  6842. if self.hparams.get("tie_word_embeddings", False):
  6843. logger.info("Skipping tied output layer 'lm_head.weight'")
  6844. return []
  6845. if name.find("mlp.experts") != -1:
  6846. n_experts = self.hparams["num_experts"]
  6847. assert bid is not None
  6848. if self._experts is None:
  6849. self._experts = [{} for _ in range(self.block_count)]
  6850. self._experts[bid][name] = data_torch
  6851. if len(self._experts[bid]) >= n_experts * 3:
  6852. # merge the experts into a single 3d tensor
  6853. tensors: list[tuple[str, Tensor]] = []
  6854. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6855. datas: list[Tensor] = []
  6856. for xid in range(n_experts):
  6857. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6858. datas.append(self._experts[bid][ename])
  6859. del self._experts[bid][ename]
  6860. data_torch = torch.stack(datas, dim=0)
  6861. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6862. new_name = self.map_tensor_name(merged_name)
  6863. tensors.append((new_name, data_torch))
  6864. return tensors
  6865. else:
  6866. return []
  6867. return [(self.map_tensor_name(name), data_torch)]
  6868. def prepare_tensors(self):
  6869. super().prepare_tensors()
  6870. if self._experts is not None:
  6871. experts = [k for d in self._experts for k in d.keys()]
  6872. if len(experts) > 0:
  6873. raise ValueError(f"Unprocessed experts: {experts}")
  6874. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  6875. class LLaDAMoEModel(TextModel):
  6876. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  6877. def set_gguf_parameters(self):
  6878. super().set_gguf_parameters()
  6879. if (n_experts := self.hparams.get("num_experts")) is not None:
  6880. self.gguf_writer.add_expert_count(n_experts)
  6881. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  6882. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  6883. # number of experts used per token (top-k)
  6884. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  6885. self.gguf_writer.add_expert_used_count(n_experts_used)
  6886. self.gguf_writer.add_mask_token_id(156895)
  6887. self.gguf_writer.add_causal_attention(False)
  6888. self.gguf_writer.add_diffusion_shift_logits(False)
  6889. _experts: list[dict[str, Tensor]] | None = None
  6890. # Copied from: Qwen2MoeModel
  6891. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6892. # process the experts separately
  6893. if name.find("experts") != -1:
  6894. n_experts = self.hparams["num_experts"]
  6895. assert bid is not None
  6896. if self._experts is None:
  6897. self._experts = [{} for _ in range(self.block_count)]
  6898. self._experts[bid][name] = data_torch
  6899. if len(self._experts[bid]) >= n_experts * 3:
  6900. tensors: list[tuple[str, Tensor]] = []
  6901. # merge the experts into a single 3d tensor
  6902. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6903. datas: list[Tensor] = []
  6904. for xid in range(n_experts):
  6905. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6906. datas.append(self._experts[bid][ename])
  6907. del self._experts[bid][ename]
  6908. data_torch = torch.stack(datas, dim=0)
  6909. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6910. new_name = self.map_tensor_name(merged_name)
  6911. tensors.append((new_name, data_torch))
  6912. return tensors
  6913. else:
  6914. return []
  6915. return [(self.map_tensor_name(name), data_torch)]
  6916. # Copied from: Qwen2MoeModel
  6917. def prepare_tensors(self):
  6918. super().prepare_tensors()
  6919. if self._experts is not None:
  6920. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6921. experts = [k for d in self._experts for k in d.keys()]
  6922. if len(experts) > 0:
  6923. raise ValueError(f"Unprocessed experts: {experts}")
  6924. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  6925. class HunYuanModel(TextModel):
  6926. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  6927. def set_vocab(self):
  6928. if (self.dir_model / "tokenizer.json").is_file():
  6929. self._set_vocab_gpt2()
  6930. else:
  6931. from transformers import AutoTokenizer
  6932. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6933. # 1. Get the pre-tokenizer identifier hash
  6934. tokpre = self.get_vocab_base_pre(tokenizer)
  6935. # 2. Reverse-engineer the merges list from mergeable_ranks
  6936. merges = []
  6937. vocab = {}
  6938. mergeable_ranks = tokenizer.mergeable_ranks
  6939. for token, rank in mergeable_ranks.items():
  6940. vocab[QwenModel.token_bytes_to_string(token)] = rank
  6941. if len(token) == 1:
  6942. continue
  6943. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  6944. if len(merged) == 2:
  6945. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  6946. # 3. Generate the tokens and toktypes lists
  6947. vocab_size = self.hparams["vocab_size"]
  6948. assert tokenizer.vocab_size == vocab_size
  6949. special_tokens = tokenizer.special_tokens
  6950. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  6951. tokens: list[str] = []
  6952. toktypes: list[int] = []
  6953. for i in range(vocab_size):
  6954. if i not in reverse_vocab:
  6955. tokens.append(f"[PAD{i}]")
  6956. toktypes.append(gguf.TokenType.UNUSED)
  6957. else:
  6958. token = reverse_vocab[i]
  6959. tokens.append(token)
  6960. if i in special_tokens.values():
  6961. toktypes.append(gguf.TokenType.CONTROL)
  6962. else:
  6963. toktypes.append(gguf.TokenType.NORMAL)
  6964. # 4. Write all vocab-related fields to the GGUF writer
  6965. self.gguf_writer.add_tokenizer_model("gpt2")
  6966. self.gguf_writer.add_tokenizer_pre(tokpre)
  6967. self.gguf_writer.add_token_list(tokens)
  6968. self.gguf_writer.add_token_types(toktypes)
  6969. self.gguf_writer.add_token_merges(merges)
  6970. # 5. Add special tokens and chat templates
  6971. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  6972. special_vocab.add_to_gguf(self.gguf_writer)
  6973. # FIX for BOS token: Overwrite incorrect id read from config.json
  6974. if self.hparams['hidden_size'] == 4096:
  6975. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  6976. def set_gguf_parameters(self):
  6977. super().set_gguf_parameters()
  6978. hparams = self.hparams
  6979. # Rope
  6980. rope_scaling = hparams.get("rope_scaling", {})
  6981. if rope_scaling.get("type") == "dynamic":
  6982. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  6983. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  6984. alpha = rope_scaling.get("alpha", 50)
  6985. base = hparams.get("rope_theta", 10000.0)
  6986. dim = hparams["head_dim"]
  6987. scaled_base = base * (alpha ** (dim / (dim - 2)))
  6988. self.gguf_writer.add_rope_freq_base(scaled_base)
  6989. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6990. self.gguf_writer.add_rope_scaling_factor(1)
  6991. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  6992. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  6993. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  6994. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  6995. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  6996. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  6997. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6998. if name == "lm_head.weight":
  6999. if self.hparams.get("tie_word_embeddings", False):
  7000. logger.info("Skipping tied output layer 'lm_head.weight'")
  7001. return []
  7002. return [(self.map_tensor_name(name), data_torch)]
  7003. @ModelBase.register("SmolLM3ForCausalLM")
  7004. class SmolLM3Model(LlamaModel):
  7005. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7006. def set_vocab(self):
  7007. super().set_vocab()
  7008. # remove unsupported array slicing in chat template
  7009. # ref: https://huggingface.co/ggml-org/SmolLM3-3B-GGUF/discussions/1
  7010. from transformers import AutoTokenizer
  7011. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  7012. if tokenizer.chat_template is not None:
  7013. chat_template = tokenizer.chat_template.replace("[:]", "")
  7014. self.gguf_writer.add_chat_template(chat_template)
  7015. @ModelBase.register("GptOssForCausalLM")
  7016. class GptOssModel(TextModel):
  7017. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7018. def transform_nibble_layout(self, tensor):
  7019. assert tensor.dtype == torch.uint8
  7020. assert tensor.shape[-1] == 16
  7021. # swap nibbles
  7022. t_lo = tensor & 0x0F
  7023. t_hi = tensor & 0xF0
  7024. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7025. tensor = t_swapped
  7026. # transform aaaa...bbbb... to abababab...
  7027. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7028. # get a_
  7029. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7030. blk_a1 = (blk_a << 4).view(-1, 1)
  7031. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7032. # get _b
  7033. blk_b0 = (blk_b >> 4).view(-1, 1)
  7034. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7035. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7036. # swap once more
  7037. out = blk_a | blk_b
  7038. out_h = out & 0xF0
  7039. out_l = out & 0x0F
  7040. out = (out_h >> 4) | (out_l << 4)
  7041. return out
  7042. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7043. assert blocks.dtype == torch.uint8
  7044. assert scales.dtype == torch.uint8
  7045. scales = scales.unsqueeze(-1)
  7046. assert len(blocks.shape) == 4
  7047. assert len(scales.shape) == 4
  7048. blocks = self.transform_nibble_layout(blocks)
  7049. new_data = torch.concat((scales, blocks), dim=-1)
  7050. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7051. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7052. # flatten last dim
  7053. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7054. new_data = new_data.numpy()
  7055. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7056. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7057. blocks0: Tensor = torch.zeros(1)
  7058. blocks1: Tensor = torch.zeros(1)
  7059. # we assume that tensors are loaded in the correct order
  7060. for name, data_torch in self.get_tensors():
  7061. if "mlp.experts.down_proj_blocks" in name:
  7062. blocks0 = data_torch
  7063. elif "mlp.experts.down_proj_scales" in name:
  7064. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7065. self.repack_mxfp4(new_name, blocks0, data_torch)
  7066. elif "mlp.experts.gate_up_proj_blocks" in name:
  7067. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7068. elif "mlp.experts.gate_up_proj_scales" in name:
  7069. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7070. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7071. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7072. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7073. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7074. return []
  7075. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7076. del bid # unused
  7077. if "sinks" in name:
  7078. name += ".weight"
  7079. # correct naming for down_proj
  7080. if "down_proj" in name:
  7081. if name.endswith("_bias"):
  7082. name = name.replace("down_proj_bias", "down_proj.bias")
  7083. elif "_blocks" not in name and "_scales" not in name:
  7084. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7085. name = name.replace("down_proj", "down_proj.weight")
  7086. data_torch = data_torch.transpose(-1, -2)
  7087. else:
  7088. # otherwise, it should already be repacked to ggml MXFP4 format
  7089. return []
  7090. # split the gate_up into gate and up
  7091. if "gate_up_proj" in name:
  7092. if name.endswith("_bias"):
  7093. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7094. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7095. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7096. return [
  7097. (self.map_tensor_name(name_gate), gate_proj_bias),
  7098. (self.map_tensor_name(name_up), up_proj_bias)
  7099. ]
  7100. elif "_blocks" not in name and "_scales" not in name:
  7101. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7102. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7103. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7104. data_torch = data_torch.transpose(-1, -2)
  7105. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7106. return [
  7107. (self.map_tensor_name(name_gate), gate_proj_weight),
  7108. (self.map_tensor_name(name_up), up_proj_weight)
  7109. ]
  7110. else:
  7111. # otherwise, it should already be repacked to ggml MXFP4 format
  7112. return []
  7113. return [(self.map_tensor_name(name), data_torch)]
  7114. def set_vocab(self):
  7115. self._set_vocab_gpt2()
  7116. def set_gguf_parameters(self):
  7117. super().set_gguf_parameters()
  7118. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7119. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7120. rope_scaling = self.hparams.get("rope_scaling") or {}
  7121. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7122. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7123. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7124. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7125. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7126. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7127. class LFM2Model(TextModel):
  7128. model_arch = gguf.MODEL_ARCH.LFM2
  7129. def _add_feed_forward_length(self):
  7130. ff_dim = self.hparams["block_ff_dim"]
  7131. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7132. ff_dim = self.hparams["block_ff_dim"]
  7133. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7134. multiple_of = self.hparams["block_multiple_of"]
  7135. if auto_adjust_ff_dim:
  7136. ff_dim = int(2 * ff_dim / 3)
  7137. # custom dim factor multiplier
  7138. if ffn_dim_multiplier is not None:
  7139. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7140. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7141. self.gguf_writer.add_feed_forward_length(ff_dim)
  7142. def set_gguf_parameters(self):
  7143. # set num_key_value_heads only for attention layers
  7144. self.hparams["num_key_value_heads"] = [
  7145. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7146. for layer_type in self.hparams["layer_types"]
  7147. ]
  7148. super().set_gguf_parameters()
  7149. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7150. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7151. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7152. self._add_feed_forward_length()
  7153. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7154. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7155. if is_vision_tensor:
  7156. # skip vision tensors
  7157. return []
  7158. name = name.replace("language_model.", "")
  7159. # conv op requires 2d tensor
  7160. if 'conv.conv' in name:
  7161. data_torch = data_torch.squeeze(1)
  7162. return [(self.map_tensor_name(name), data_torch)]
  7163. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7164. class LFM2VLModel(MmprojModel):
  7165. def __init__(self, *args, **kwargs):
  7166. super().__init__(*args, **kwargs)
  7167. assert self.hparams_vision is not None
  7168. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7169. self.hparams_vision["image_size"] = 256
  7170. def set_gguf_parameters(self):
  7171. super().set_gguf_parameters()
  7172. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7173. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7174. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7175. self.gguf_writer.add_vision_use_gelu(True)
  7176. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7177. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7178. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7179. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7180. del bid # unused
  7181. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7182. if is_vision_tensor:
  7183. # remove "model." prefix
  7184. name = name.replace("model.vision_tower.", "vision_tower.")
  7185. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7186. if "patch_embedding.weight" in name:
  7187. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7188. return [(self.map_tensor_name(name), data_torch)]
  7189. return [] # skip other tensors
  7190. @ModelBase.register("SmallThinkerForCausalLM")
  7191. class SmallThinkerModel(TextModel):
  7192. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7193. def set_gguf_parameters(self):
  7194. super().set_gguf_parameters()
  7195. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7196. self.gguf_writer.add_expert_count(n_experts)
  7197. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7198. self.gguf_writer.add_expert_used_count(n_experts_used)
  7199. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7200. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7201. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7202. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7203. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7204. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7205. else:
  7206. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7207. # YaRN is not enabled by default
  7208. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7209. rope_scaling = self.hparams.get("rope_scaling") or {}
  7210. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7211. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7212. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7213. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7214. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7215. if sliding_window_layout:
  7216. for i in sliding_window_layout:
  7217. if i != 0:
  7218. sliding_window = self.hparams.get("sliding_window_size")
  7219. if sliding_window:
  7220. self.gguf_writer.add_sliding_window(sliding_window)
  7221. break
  7222. _experts: list[dict[str, Tensor]] | None = None
  7223. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7224. # process the experts separately
  7225. if name.find("experts") != -1:
  7226. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7227. assert bid is not None
  7228. if self._experts is None:
  7229. self._experts = [{} for _ in range(self.block_count)]
  7230. self._experts[bid][name] = data_torch
  7231. if len(self._experts[bid]) >= n_experts * 3:
  7232. tensors: list[tuple[str, Tensor]] = []
  7233. # merge the experts into a single 3d tensor
  7234. for w_name in ["down", "gate", "up"]:
  7235. datas: list[Tensor] = []
  7236. for xid in range(n_experts):
  7237. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7238. datas.append(self._experts[bid][ename])
  7239. del self._experts[bid][ename]
  7240. data_torch = torch.stack(datas, dim=0)
  7241. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7242. new_name = self.map_tensor_name(merged_name)
  7243. tensors.append((new_name, data_torch))
  7244. return tensors
  7245. else:
  7246. return []
  7247. return [(self.map_tensor_name(name), data_torch)]
  7248. def prepare_tensors(self):
  7249. super().prepare_tensors()
  7250. if self._experts is not None:
  7251. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7252. experts = [k for d in self._experts for k in d.keys()]
  7253. if len(experts) > 0:
  7254. raise ValueError(f"Unprocessed experts: {experts}")
  7255. class MistralModel(LlamaModel):
  7256. model_arch = gguf.MODEL_ARCH.LLAMA
  7257. model_name = "Mistral"
  7258. hf_arch = ""
  7259. is_mistral_format = True
  7260. undo_permute = False
  7261. @staticmethod
  7262. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  7263. assert TokenizerVersion is not None, "mistral_common is not installed"
  7264. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  7265. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  7266. )
  7267. if vocab.tokenizer.version == TokenizerVersion.v1:
  7268. return "mistral-v1"
  7269. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7270. return "mistral-v3"
  7271. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7272. return "mistral-v3-tekken"
  7273. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  7274. return "mistral-v7"
  7275. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  7276. return "mistral-v7-tekken"
  7277. elif vocab.tokenizer.version == TokenizerVersion.v11:
  7278. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  7279. elif vocab.tokenizer.version == TokenizerVersion.v13:
  7280. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  7281. else:
  7282. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  7283. if is_mistral_format:
  7284. err_message += (
  7285. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  7286. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  7287. )
  7288. raise ValueError(err_message)
  7289. template_path = templates_dir / template_file
  7290. if not template_path.exists():
  7291. raise FileNotFoundError(f"Template file not found: {template_path}")
  7292. with open(template_path, "r", encoding="utf-8") as f:
  7293. template = f.read()
  7294. return template
  7295. class PixtralModel(LlavaVisionModel):
  7296. model_name = "Pixtral"
  7297. hf_arch = ""
  7298. is_mistral_format = True
  7299. def set_gguf_parameters(self):
  7300. super().set_gguf_parameters()
  7301. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  7302. self.gguf_writer.add_vision_attention_layernorm_eps(
  7303. self.find_hparam(["norm_eps"])
  7304. )
  7305. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  7306. self.gguf_writer.add_vision_use_silu(True)
  7307. # spatial_merge_size
  7308. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  7309. self.gguf_writer.add_vision_spatial_merge_size(
  7310. self.find_vparam(["spatial_merge_size"])
  7311. )
  7312. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  7313. if name == "vision_language_adapter.w_in.weight":
  7314. return "mm.1.weight"
  7315. elif name == "vision_language_adapter.w_out.weight":
  7316. return "mm.2.weight"
  7317. return super().map_tensor_name(name, try_suffixes)
  7318. @ModelBase.register("KimiVLForConditionalGeneration")
  7319. class KimiVLModel(MmprojModel):
  7320. def __init__(self, *args, **kwargs):
  7321. super().__init__(*args, **kwargs)
  7322. assert self.hparams_vision is not None
  7323. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  7324. def set_gguf_parameters(self):
  7325. super().set_gguf_parameters()
  7326. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  7327. self.gguf_writer.add_vision_use_gelu(True)
  7328. self.gguf_writer.add_vision_projector_scale_factor(2)
  7329. # eps is the same as pytorch's default value
  7330. assert self.hparams_vision is not None
  7331. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  7332. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7333. del bid # unused
  7334. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7335. if is_vision_tensor:
  7336. if "pos_emb.weight" in name:
  7337. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  7338. elif "wqkv" in name:
  7339. split_dim = 0 if "weight" in name else -1
  7340. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  7341. return [
  7342. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  7343. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  7344. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  7345. ]
  7346. return [(self.map_tensor_name(name), data_torch)]
  7347. return [] # skip other tensors
  7348. ###### CONVERSION LOGIC ######
  7349. # tree of lazy tensors
  7350. class LazyTorchTensor(gguf.LazyBase):
  7351. _tensor_type = torch.Tensor
  7352. # to keep the type-checker happy
  7353. dtype: torch.dtype
  7354. shape: torch.Size
  7355. # only used when converting a torch.Tensor to a np.ndarray
  7356. _dtype_map: dict[torch.dtype, type] = {
  7357. torch.float16: np.float16,
  7358. torch.float32: np.float32,
  7359. torch.uint8: np.uint8,
  7360. }
  7361. # used for safetensors slices
  7362. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  7363. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  7364. _dtype_str_map: dict[str, torch.dtype] = {
  7365. "F64": torch.float64,
  7366. "F32": torch.float32,
  7367. "BF16": torch.bfloat16,
  7368. "F16": torch.float16,
  7369. # "U64": torch.uint64,
  7370. "I64": torch.int64,
  7371. # "U32": torch.uint32,
  7372. "I32": torch.int32,
  7373. # "U16": torch.uint16,
  7374. "I16": torch.int16,
  7375. "U8": torch.uint8,
  7376. "I8": torch.int8,
  7377. "BOOL": torch.bool,
  7378. "F8_E4M3": torch.float8_e4m3fn,
  7379. "F8_E5M2": torch.float8_e5m2,
  7380. }
  7381. def numpy(self) -> gguf.LazyNumpyTensor:
  7382. dtype = self._dtype_map[self.dtype]
  7383. return gguf.LazyNumpyTensor(
  7384. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  7385. args=(self,),
  7386. func=(lambda s: s.numpy())
  7387. )
  7388. @classmethod
  7389. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  7390. return torch.empty(size=shape, dtype=dtype, device="meta")
  7391. @classmethod
  7392. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  7393. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  7394. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  7395. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  7396. return cast(torch.Tensor, lazy)
  7397. @classmethod
  7398. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  7399. dtype = cls._dtype_str_map[remote_tensor.dtype]
  7400. shape = remote_tensor.shape
  7401. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  7402. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.frombuffer(r.data(), dtype=dtype).reshape(shape))
  7403. return cast(torch.Tensor, lazy)
  7404. @classmethod
  7405. def __torch_function__(cls, func, types, args=(), kwargs=None):
  7406. del types # unused
  7407. if kwargs is None:
  7408. kwargs = {}
  7409. if func is torch.Tensor.numpy:
  7410. return args[0].numpy()
  7411. return cls._wrap_fn(func)(*args, **kwargs)
  7412. def parse_args() -> argparse.Namespace:
  7413. parser = argparse.ArgumentParser(
  7414. description="Convert a huggingface model to a GGML compatible file")
  7415. parser.add_argument(
  7416. "--vocab-only", action="store_true",
  7417. help="extract only the vocab",
  7418. )
  7419. parser.add_argument(
  7420. "--outfile", type=Path,
  7421. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  7422. )
  7423. parser.add_argument(
  7424. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  7425. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  7426. )
  7427. parser.add_argument(
  7428. "--bigendian", action="store_true",
  7429. help="model is executed on big endian machine",
  7430. )
  7431. parser.add_argument(
  7432. "model", type=str,
  7433. help="directory containing model file or huggingface repository ID (if --remote)",
  7434. nargs="?",
  7435. )
  7436. parser.add_argument(
  7437. "--use-temp-file", action="store_true",
  7438. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  7439. )
  7440. parser.add_argument(
  7441. "--no-lazy", action="store_true",
  7442. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  7443. )
  7444. parser.add_argument(
  7445. "--model-name", type=str, default=None,
  7446. help="name of the model",
  7447. )
  7448. parser.add_argument(
  7449. "--verbose", action="store_true",
  7450. help="increase output verbosity",
  7451. )
  7452. parser.add_argument(
  7453. "--split-max-tensors", type=int, default=0,
  7454. help="max tensors in each split",
  7455. )
  7456. parser.add_argument(
  7457. "--split-max-size", type=str, default="0",
  7458. help="max size per split N(M|G)",
  7459. )
  7460. parser.add_argument(
  7461. "--dry-run", action="store_true",
  7462. help="only print out a split plan and exit, without writing any new files",
  7463. )
  7464. parser.add_argument(
  7465. "--no-tensor-first-split", action="store_true",
  7466. help="do not add tensors to the first split (disabled by default)"
  7467. )
  7468. parser.add_argument(
  7469. "--metadata", type=Path,
  7470. help="Specify the path for an authorship metadata override file"
  7471. )
  7472. parser.add_argument(
  7473. "--print-supported-models", action="store_true",
  7474. help="Print the supported models"
  7475. )
  7476. parser.add_argument(
  7477. "--remote", action="store_true",
  7478. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  7479. )
  7480. parser.add_argument(
  7481. "--mmproj", action="store_true",
  7482. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  7483. )
  7484. parser.add_argument(
  7485. "--mistral-format", action="store_true",
  7486. help="Whether the model is stored following the Mistral format.",
  7487. )
  7488. parser.add_argument(
  7489. "--disable-mistral-community-chat-template", action="store_true",
  7490. help=(
  7491. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  7492. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  7493. )
  7494. )
  7495. args = parser.parse_args()
  7496. if not args.print_supported_models and args.model is None:
  7497. parser.error("the following arguments are required: model")
  7498. return args
  7499. def split_str_to_n_bytes(split_str: str) -> int:
  7500. if split_str.endswith("K"):
  7501. n = int(split_str[:-1]) * 1000
  7502. elif split_str.endswith("M"):
  7503. n = int(split_str[:-1]) * 1000 * 1000
  7504. elif split_str.endswith("G"):
  7505. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  7506. elif split_str.isnumeric():
  7507. n = int(split_str)
  7508. else:
  7509. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  7510. if n < 0:
  7511. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  7512. return n
  7513. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  7514. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  7515. # maybe we should fallback to text model's arch in that case, since not many models have both
  7516. text_config = hparams.get("text_config", {})
  7517. vision_config = hparams.get("vision_config", {})
  7518. arch = None
  7519. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  7520. arch = arches[0]
  7521. elif "ssm_cfg" in hparams:
  7522. # For non-hf Mamba and Mamba2 models
  7523. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  7524. # if "architectures" is found in the sub-config, use that instead
  7525. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  7526. arch = text_config["architectures"][0]
  7527. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  7528. arch = vision_config["architectures"][0]
  7529. if arch is None:
  7530. raise ValueError("Failed to detect model architecture")
  7531. return arch
  7532. def main() -> None:
  7533. args = parse_args()
  7534. if args.print_supported_models:
  7535. logger.error("Supported models:")
  7536. ModelBase.print_registered_models()
  7537. sys.exit(0)
  7538. if args.verbose:
  7539. logging.basicConfig(level=logging.DEBUG)
  7540. else:
  7541. logging.basicConfig(level=logging.INFO)
  7542. if args.remote:
  7543. hf_repo_id = args.model
  7544. from huggingface_hub import snapshot_download
  7545. local_dir = snapshot_download(
  7546. repo_id=hf_repo_id,
  7547. allow_patterns=["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"])
  7548. dir_model = Path(local_dir)
  7549. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  7550. else:
  7551. hf_repo_id = None
  7552. dir_model = Path(args.model)
  7553. if not dir_model.is_dir():
  7554. logger.error(f'Error: {dir_model} is not a directory')
  7555. sys.exit(1)
  7556. ftype_map: dict[str, gguf.LlamaFileType] = {
  7557. "f32": gguf.LlamaFileType.ALL_F32,
  7558. "f16": gguf.LlamaFileType.MOSTLY_F16,
  7559. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  7560. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  7561. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  7562. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  7563. "auto": gguf.LlamaFileType.GUESSED,
  7564. }
  7565. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  7566. if args.use_temp_file and is_split:
  7567. logger.error("Error: Cannot use temp file when splitting")
  7568. sys.exit(1)
  7569. if args.outfile is not None:
  7570. fname_out = args.outfile
  7571. elif hf_repo_id:
  7572. # if remote, use the model ID as the output file name
  7573. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  7574. else:
  7575. fname_out = dir_model
  7576. logger.info(f"Loading model: {dir_model.name}")
  7577. if args.mmproj:
  7578. if "mmproj" not in fname_out.name:
  7579. fname_out = ModelBase.add_prefix_to_filename(fname_out, "mmproj-")
  7580. is_mistral_format = args.mistral_format
  7581. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  7582. with torch.inference_mode():
  7583. output_type = ftype_map[args.outtype]
  7584. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  7585. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  7586. if not is_mistral_format:
  7587. model_architecture = get_model_architecture(hparams, model_type)
  7588. logger.info(f"Model architecture: {model_architecture}")
  7589. try:
  7590. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  7591. except NotImplementedError:
  7592. logger.error(f"Model {model_architecture} is not supported")
  7593. sys.exit(1)
  7594. elif args.mmproj:
  7595. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  7596. model_class = PixtralModel
  7597. else:
  7598. model_class = MistralModel
  7599. model_instance = model_class(dir_model, output_type, fname_out,
  7600. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  7601. eager=args.no_lazy,
  7602. metadata_override=args.metadata, model_name=args.model_name,
  7603. split_max_tensors=args.split_max_tensors,
  7604. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  7605. small_first_shard=args.no_tensor_first_split,
  7606. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template
  7607. )
  7608. if args.vocab_only:
  7609. logger.info("Exporting model vocab...")
  7610. model_instance.write_vocab()
  7611. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  7612. else:
  7613. logger.info("Exporting model...")
  7614. model_instance.write()
  7615. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  7616. logger.info(f"Model successfully exported to {out_path}")
  7617. if __name__ == '__main__':
  7618. main()