ggml.c 703 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894
  1. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnings on Windows
  2. #define _USE_MATH_DEFINES // For M_PI on MSVC
  3. #include "ggml-impl.h"
  4. #include "ggml-quants.h"
  5. #include "ggml.h"
  6. #if defined(_MSC_VER) || defined(__MINGW32__)
  7. #include <malloc.h> // using malloc.h with MSC/MINGW
  8. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  9. #include <alloca.h>
  10. #endif
  11. #include <assert.h>
  12. #include <errno.h>
  13. #include <time.h>
  14. #include <math.h>
  15. #include <stdlib.h>
  16. #include <string.h>
  17. #include <stdint.h>
  18. #include <inttypes.h>
  19. #include <stdio.h>
  20. #include <float.h>
  21. #include <limits.h>
  22. #include <stdarg.h>
  23. #include <signal.h>
  24. #if defined(__gnu_linux__)
  25. #include <syscall.h>
  26. #endif
  27. #ifdef GGML_USE_OPENMP
  28. #include <omp.h>
  29. #endif
  30. #ifdef GGML_USE_METAL
  31. #include <unistd.h>
  32. #endif
  33. #ifdef __ARM_FEATURE_MATMUL_INT8
  34. #undef GGML_USE_LLAMAFILE
  35. #endif
  36. #ifdef GGML_USE_LLAMAFILE
  37. #include "sgemm.h"
  38. #endif
  39. #if defined(_MSC_VER)
  40. // disable "possible loss of data" to avoid hundreds of casts
  41. // we should just be careful :)
  42. #pragma warning(disable: 4244 4267)
  43. // disable POSIX deprecation warnings
  44. // these functions are never going away, anyway
  45. #pragma warning(disable: 4996)
  46. #endif
  47. #if defined(_WIN32)
  48. #define WIN32_LEAN_AND_MEAN
  49. #ifndef NOMINMAX
  50. #define NOMINMAX
  51. #endif
  52. #include <windows.h>
  53. typedef volatile LONG atomic_int;
  54. typedef atomic_int atomic_bool;
  55. typedef atomic_int atomic_flag;
  56. #define ATOMIC_FLAG_INIT 0
  57. static void atomic_store(atomic_int * ptr, LONG val) {
  58. InterlockedExchange(ptr, val);
  59. }
  60. static LONG atomic_load(atomic_int * ptr) {
  61. return InterlockedCompareExchange(ptr, 0, 0);
  62. }
  63. static LONG atomic_fetch_add(atomic_int * ptr, LONG inc) {
  64. return InterlockedExchangeAdd(ptr, inc);
  65. }
  66. static LONG atomic_fetch_sub(atomic_int * ptr, LONG dec) {
  67. return atomic_fetch_add(ptr, -(dec));
  68. }
  69. static atomic_bool atomic_flag_test_and_set(atomic_flag * ptr) {
  70. return InterlockedExchange(ptr, 1);
  71. }
  72. static void atomic_flag_clear(atomic_flag * ptr) {
  73. InterlockedExchange(ptr, 0);
  74. }
  75. typedef HANDLE pthread_t;
  76. typedef DWORD thread_ret_t;
  77. static int pthread_create(pthread_t * out, void * unused, thread_ret_t(*func)(void *), void * arg) {
  78. (void) unused;
  79. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  80. if (handle == NULL)
  81. {
  82. return EAGAIN;
  83. }
  84. *out = handle;
  85. return 0;
  86. }
  87. static int pthread_join(pthread_t thread, void * unused) {
  88. (void) unused;
  89. int ret = (int) WaitForSingleObject(thread, INFINITE);
  90. CloseHandle(thread);
  91. return ret;
  92. }
  93. static int sched_yield (void) {
  94. Sleep (0);
  95. return 0;
  96. }
  97. #else
  98. #include <pthread.h>
  99. #include <stdatomic.h>
  100. typedef void * thread_ret_t;
  101. #include <sys/types.h>
  102. #include <sys/stat.h>
  103. #include <unistd.h>
  104. #endif
  105. typedef pthread_t ggml_thread_t;
  106. #ifdef GGML_USE_CPU_HBM
  107. #include <hbwmalloc.h>
  108. #endif
  109. #if defined(__APPLE__)
  110. #include <TargetConditionals.h>
  111. #endif
  112. #if (defined(__linux__) || defined(__APPLE__) || defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)) && \
  113. (!defined(TARGET_OS_TV) && !defined(TARGET_OS_WATCH))
  114. #include <sys/wait.h>
  115. void ggml_print_backtrace(void) {
  116. /*
  117. #include <execinfo.h>
  118. #include <dlfcn.h>
  119. void * trace[100];
  120. int nptrs = backtrace(trace, sizeof(trace)/sizeof(trace[0]));
  121. backtrace_symbols_fd(trace, nptrs, STDERR_FILENO);
  122. */
  123. // backtrack_symbols does not show line numbers, use gdb instead
  124. char attach[32];
  125. snprintf(attach, sizeof(attach), "attach %d", getpid());
  126. int pid = fork();
  127. if (pid == 0) {
  128. execlp("gdb", "gdb", "--batch",
  129. "-ex", "set style enabled on",
  130. "-ex", attach,
  131. "-ex", "bt -frame-info source-and-location",
  132. "-ex", "detach",
  133. "-ex", "quit",
  134. (char *) NULL);
  135. } else {
  136. waitpid(pid, NULL, 0);
  137. }
  138. }
  139. #else
  140. void ggml_print_backtrace(void) {
  141. // platform not supported
  142. }
  143. #endif
  144. #define GGML_DEBUG 0
  145. #define GGML_GELU_FP16
  146. #define GGML_GELU_QUICK_FP16
  147. #define GGML_SOFT_MAX_UNROLL 4
  148. #define GGML_VEC_DOT_UNROLL 2
  149. #define GGML_VEC_MAD_UNROLL 32
  150. //
  151. // logging
  152. //
  153. #if (GGML_DEBUG >= 1)
  154. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  155. #else
  156. #define GGML_PRINT_DEBUG(...)
  157. #endif
  158. #if (GGML_DEBUG >= 5)
  159. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  160. #else
  161. #define GGML_PRINT_DEBUG_5(...)
  162. #endif
  163. #if (GGML_DEBUG >= 10)
  164. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  165. #else
  166. #define GGML_PRINT_DEBUG_10(...)
  167. #endif
  168. #define GGML_PRINT(...) printf(__VA_ARGS__)
  169. //
  170. // end of logging block
  171. //
  172. #ifdef GGML_USE_ACCELERATE
  173. // uncomment to use vDSP for soft max computation
  174. // note: not sure if it is actually faster
  175. //#define GGML_SOFT_MAX_ACCELERATE
  176. #endif
  177. #if defined(_MSC_VER) || defined(__MINGW32__)
  178. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  179. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  180. #else
  181. inline static void * ggml_aligned_malloc(size_t size) {
  182. if (size == 0) {
  183. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
  184. return NULL;
  185. }
  186. void * aligned_memory = NULL;
  187. #ifdef GGML_USE_CPU_HBM
  188. int result = hbw_posix_memalign(&aligned_memory, 16, size);
  189. #elif GGML_USE_METAL
  190. int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
  191. #else
  192. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  193. #endif
  194. if (result != 0) {
  195. // Handle allocation failure
  196. const char *error_desc = "unknown allocation error";
  197. switch (result) {
  198. case EINVAL:
  199. error_desc = "invalid alignment value";
  200. break;
  201. case ENOMEM:
  202. error_desc = "insufficient memory";
  203. break;
  204. }
  205. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n", __func__, error_desc, size/(1024.0*1024.0));
  206. GGML_ASSERT(false);
  207. return NULL;
  208. }
  209. return aligned_memory;
  210. }
  211. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  212. #ifdef GGML_USE_CPU_HBM
  213. #define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
  214. #else
  215. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  216. #endif
  217. #endif
  218. inline static void * ggml_malloc(size_t size) {
  219. if (size == 0) {
  220. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_malloc!\n");
  221. return NULL;
  222. }
  223. void * result = malloc(size);
  224. if (result == NULL) {
  225. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  226. GGML_ASSERT(false);
  227. }
  228. return result;
  229. }
  230. // calloc
  231. inline static void * ggml_calloc(size_t num, size_t size) {
  232. if (num == 0 || size == 0) {
  233. GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_calloc!\n");
  234. return NULL;
  235. }
  236. void * result = calloc(num, size);
  237. if (result == NULL) {
  238. GGML_PRINT("%s: failed to allocate %6.2f MB\n", __func__, size/(1024.0*1024.0));
  239. GGML_ASSERT(false);
  240. }
  241. return result;
  242. }
  243. #define GGML_MALLOC(size) ggml_malloc(size)
  244. #define GGML_CALLOC(num, size) ggml_calloc(num, size)
  245. #define GGML_FREE(ptr) free(ptr)
  246. #define UNUSED GGML_UNUSED
  247. #define SWAP(x, y, T) do { T SWAP = x; (x) = y; (y) = SWAP; } while (0)
  248. #if defined(GGML_USE_ACCELERATE)
  249. #include <Accelerate/Accelerate.h>
  250. #endif
  251. // floating point type used to accumulate sums
  252. typedef double ggml_float;
  253. #undef MIN
  254. #undef MAX
  255. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  256. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  257. //
  258. // global data
  259. //
  260. // precomputed gelu table for f16 (128 KB)
  261. static ggml_fp16_t ggml_table_gelu_f16[1 << 16];
  262. // precomputed quick gelu table for f16 (128 KB)
  263. static ggml_fp16_t ggml_table_gelu_quick_f16[1 << 16];
  264. // precomputed f32 table for f16 (256 KB) (ggml-impl.h)
  265. float ggml_table_f32_f16[1 << 16];
  266. GGML_CALL const char * ggml_status_to_string(enum ggml_status status) {
  267. switch (status) {
  268. case GGML_STATUS_ALLOC_FAILED: return "GGML status: error (failed to allocate memory)";
  269. case GGML_STATUS_FAILED: return "GGML status: error (operation failed)";
  270. case GGML_STATUS_SUCCESS: return "GGML status: success";
  271. case GGML_STATUS_ABORTED: return "GGML status: warning (operation aborted)";
  272. }
  273. return "GGML status: unknown";
  274. }
  275. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  276. #define ggml_fp16_to_fp32 do_not_use__ggml_fp16_to_fp32__in_ggml
  277. return GGML_FP16_TO_FP32(x);
  278. }
  279. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  280. #define ggml_fp32_to_fp16 do_not_use__ggml_fp32_to_fp16__in_ggml
  281. return GGML_FP32_TO_FP16(x);
  282. }
  283. float ggml_bf16_to_fp32(ggml_bf16_t x) {
  284. #define ggml_bf16_to_fp32 do_not_use__ggml_bf16_to_fp32__in_ggml
  285. return GGML_BF16_TO_FP32(x); // it just left shifts
  286. }
  287. ggml_bf16_t ggml_fp32_to_bf16(float x) {
  288. #define ggml_fp32_to_bf16 do_not_use__ggml_fp32_to_bf16__in_ggml
  289. return GGML_FP32_TO_BF16(x);
  290. }
  291. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, int64_t n) {
  292. for (int64_t i = 0; i < n; i++) {
  293. y[i] = GGML_FP16_TO_FP32(x[i]);
  294. }
  295. }
  296. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, int64_t n) {
  297. int64_t i = 0;
  298. #if defined(__F16C__)
  299. for (; i + 7 < n; i += 8) {
  300. __m256 x_vec = _mm256_loadu_ps(x + i);
  301. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  302. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  303. }
  304. for(; i + 3 < n; i += 4) {
  305. __m128 x_vec = _mm_loadu_ps(x + i);
  306. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  307. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  308. }
  309. #endif
  310. for (; i < n; i++) {
  311. y[i] = GGML_FP32_TO_FP16(x[i]);
  312. }
  313. }
  314. void ggml_bf16_to_fp32_row(const ggml_bf16_t * x, float * y, int64_t n) {
  315. int64_t i = 0;
  316. #if defined(__AVX512F__)
  317. for (; i + 16 <= n; i += 16) {
  318. _mm512_storeu_ps(y + i,
  319. _mm512_castsi512_ps(
  320. _mm512_slli_epi32(
  321. _mm512_cvtepu16_epi32(
  322. _mm256_loadu_si256(
  323. (const __m256i *)(x + i))),
  324. 16)));
  325. }
  326. #elif defined(__AVX2__)
  327. for (; i + 8 <= n; i += 8) {
  328. _mm256_storeu_ps(y + i,
  329. _mm256_castsi256_ps(
  330. _mm256_slli_epi32(
  331. _mm256_cvtepu16_epi32(
  332. _mm_loadu_si128(
  333. (const __m128i *)(x + i))),
  334. 16)));
  335. }
  336. #endif
  337. for (; i < n; i++) {
  338. y[i] = GGML_BF16_TO_FP32(x[i]);
  339. }
  340. }
  341. void ggml_fp32_to_bf16_row(const float * x, ggml_bf16_t * y, int64_t n) {
  342. int i = 0;
  343. #if defined(__AVX512BF16__)
  344. for (; i + 32 <= n; i += 32) {
  345. _mm512_storeu_si512(
  346. (__m512i *)(y + i),
  347. m512i(_mm512_cvtne2ps_pbh(_mm512_loadu_ps(x + i + 16),
  348. _mm512_loadu_ps(x + i))));
  349. }
  350. #endif
  351. for (; i < n; i++) {
  352. y[i] = GGML_FP32_TO_BF16(x[i]);
  353. }
  354. }
  355. bool ggml_guid_matches(ggml_guid_t guid_a, ggml_guid_t guid_b) {
  356. return memcmp(guid_a, guid_b, sizeof(ggml_guid)) == 0;
  357. }
  358. //
  359. // timing
  360. //
  361. #if defined(_MSC_VER) || defined(__MINGW32__)
  362. static int64_t timer_freq, timer_start;
  363. void ggml_time_init(void) {
  364. LARGE_INTEGER t;
  365. QueryPerformanceFrequency(&t);
  366. timer_freq = t.QuadPart;
  367. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  368. // and the uptime is high enough.
  369. // We subtract the program start time to reduce the likelihood of that happening.
  370. QueryPerformanceCounter(&t);
  371. timer_start = t.QuadPart;
  372. }
  373. int64_t ggml_time_ms(void) {
  374. LARGE_INTEGER t;
  375. QueryPerformanceCounter(&t);
  376. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  377. }
  378. int64_t ggml_time_us(void) {
  379. LARGE_INTEGER t;
  380. QueryPerformanceCounter(&t);
  381. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  382. }
  383. #else
  384. void ggml_time_init(void) {}
  385. int64_t ggml_time_ms(void) {
  386. struct timespec ts;
  387. clock_gettime(CLOCK_MONOTONIC, &ts);
  388. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  389. }
  390. int64_t ggml_time_us(void) {
  391. struct timespec ts;
  392. clock_gettime(CLOCK_MONOTONIC, &ts);
  393. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  394. }
  395. #endif
  396. int64_t ggml_cycles(void) {
  397. return clock();
  398. }
  399. int64_t ggml_cycles_per_ms(void) {
  400. return CLOCKS_PER_SEC/1000;
  401. }
  402. //
  403. // cross-platform UTF-8 file paths
  404. //
  405. #ifdef _WIN32
  406. static wchar_t * ggml_mbstowcs(const char * mbs) {
  407. int wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, NULL, 0);
  408. if (!wlen) {
  409. errno = EINVAL;
  410. return NULL;
  411. }
  412. wchar_t * wbuf = GGML_MALLOC(wlen * sizeof(wchar_t));
  413. wlen = MultiByteToWideChar(CP_UTF8, 0, mbs, -1, wbuf, wlen);
  414. if (!wlen) {
  415. GGML_FREE(wbuf);
  416. errno = EINVAL;
  417. return NULL;
  418. }
  419. return wbuf;
  420. }
  421. #endif
  422. FILE * ggml_fopen(const char * fname, const char * mode) {
  423. #ifdef _WIN32
  424. FILE * file = NULL;
  425. // convert fname (UTF-8)
  426. wchar_t * wfname = ggml_mbstowcs(fname);
  427. if (wfname) {
  428. // convert mode (ANSI)
  429. wchar_t * wmode = GGML_MALLOC((strlen(mode) + 1) * sizeof(wchar_t));
  430. wchar_t * wmode_p = wmode;
  431. do {
  432. *wmode_p++ = (wchar_t)*mode;
  433. } while (*mode++);
  434. // open file
  435. file = _wfopen(wfname, wmode);
  436. GGML_FREE(wfname);
  437. GGML_FREE(wmode);
  438. }
  439. return file;
  440. #else
  441. return fopen(fname, mode);
  442. #endif
  443. }
  444. //
  445. // cache line
  446. //
  447. #if defined(__cpp_lib_hardware_interference_size)
  448. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  449. #else
  450. #if defined(__POWER9_VECTOR__)
  451. #define CACHE_LINE_SIZE 128
  452. #else
  453. #define CACHE_LINE_SIZE 64
  454. #endif
  455. #endif
  456. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  457. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc);
  458. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc);
  459. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc);
  460. static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
  461. [GGML_TYPE_I8] = {
  462. .type_name = "i8",
  463. .blck_size = 1,
  464. .type_size = sizeof(int8_t),
  465. .is_quantized = false,
  466. },
  467. [GGML_TYPE_I16] = {
  468. .type_name = "i16",
  469. .blck_size = 1,
  470. .type_size = sizeof(int16_t),
  471. .is_quantized = false,
  472. },
  473. [GGML_TYPE_I32] = {
  474. .type_name = "i32",
  475. .blck_size = 1,
  476. .type_size = sizeof(int32_t),
  477. .is_quantized = false,
  478. },
  479. [GGML_TYPE_I64] = {
  480. .type_name = "i64",
  481. .blck_size = 1,
  482. .type_size = sizeof(int64_t),
  483. .is_quantized = false,
  484. },
  485. [GGML_TYPE_F64] = {
  486. .type_name = "f64",
  487. .blck_size = 1,
  488. .type_size = sizeof(double),
  489. .is_quantized = false,
  490. .nrows = 1,
  491. },
  492. [GGML_TYPE_F32] = {
  493. .type_name = "f32",
  494. .blck_size = 1,
  495. .type_size = sizeof(float),
  496. .is_quantized = false,
  497. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f32,
  498. .vec_dot_type = GGML_TYPE_F32,
  499. .nrows = 1,
  500. },
  501. [GGML_TYPE_F16] = {
  502. .type_name = "f16",
  503. .blck_size = 1,
  504. .type_size = sizeof(ggml_fp16_t),
  505. .is_quantized = false,
  506. .to_float = (ggml_to_float_t) ggml_fp16_to_fp32_row,
  507. .from_float = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  508. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_fp16_row,
  509. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_f16,
  510. .vec_dot_type = GGML_TYPE_F16,
  511. .nrows = 1,
  512. },
  513. [GGML_TYPE_Q4_0] = {
  514. .type_name = "q4_0",
  515. .blck_size = QK4_0,
  516. .type_size = sizeof(block_q4_0),
  517. .is_quantized = true,
  518. .to_float = (ggml_to_float_t) dequantize_row_q4_0,
  519. .from_float = quantize_row_q4_0,
  520. .from_float_reference = (ggml_from_float_t) quantize_row_q4_0_reference,
  521. .vec_dot = ggml_vec_dot_q4_0_q8_0,
  522. .vec_dot_type = GGML_TYPE_Q8_0,
  523. #if defined (__ARM_FEATURE_MATMUL_INT8)
  524. .nrows = 2,
  525. #else
  526. .nrows = 1,
  527. #endif
  528. },
  529. [GGML_TYPE_Q4_1] = {
  530. .type_name = "q4_1",
  531. .blck_size = QK4_1,
  532. .type_size = sizeof(block_q4_1),
  533. .is_quantized = true,
  534. .to_float = (ggml_to_float_t) dequantize_row_q4_1,
  535. .from_float = quantize_row_q4_1,
  536. .from_float_reference = (ggml_from_float_t) quantize_row_q4_1_reference,
  537. .vec_dot = ggml_vec_dot_q4_1_q8_1,
  538. .vec_dot_type = GGML_TYPE_Q8_1,
  539. #if defined (__ARM_FEATURE_MATMUL_INT8)
  540. .nrows = 2,
  541. #else
  542. .nrows = 1,
  543. #endif
  544. },
  545. [4] = { // GGML_TYPE_Q4_2
  546. .type_name = "DEPRECATED",
  547. .blck_size = 0,
  548. .type_size = 0,
  549. .is_quantized = false,
  550. .to_float = NULL,
  551. .from_float = NULL,
  552. .from_float_reference = NULL,
  553. .vec_dot = NULL,
  554. .vec_dot_type = GGML_TYPE_COUNT,
  555. .nrows = 1,
  556. },
  557. [5] = { // GGML_TYPE_Q4_3
  558. .type_name = "DEPRECATED",
  559. .blck_size = 0,
  560. .type_size = 0,
  561. .is_quantized = false,
  562. .to_float = NULL,
  563. .from_float = NULL,
  564. .from_float_reference = NULL,
  565. .vec_dot = NULL,
  566. .vec_dot_type = GGML_TYPE_COUNT,
  567. .nrows = 1,
  568. },
  569. [GGML_TYPE_Q5_0] = {
  570. .type_name = "q5_0",
  571. .blck_size = QK5_0,
  572. .type_size = sizeof(block_q5_0),
  573. .is_quantized = true,
  574. .to_float = (ggml_to_float_t) dequantize_row_q5_0,
  575. .from_float = quantize_row_q5_0,
  576. .from_float_reference = (ggml_from_float_t) quantize_row_q5_0_reference,
  577. .vec_dot = ggml_vec_dot_q5_0_q8_0,
  578. .vec_dot_type = GGML_TYPE_Q8_0,
  579. .nrows = 1,
  580. },
  581. [GGML_TYPE_Q5_1] = {
  582. .type_name = "q5_1",
  583. .blck_size = QK5_1,
  584. .type_size = sizeof(block_q5_1),
  585. .is_quantized = true,
  586. .to_float = (ggml_to_float_t) dequantize_row_q5_1,
  587. .from_float = quantize_row_q5_1,
  588. .from_float_reference = (ggml_from_float_t) quantize_row_q5_1_reference,
  589. .vec_dot = ggml_vec_dot_q5_1_q8_1,
  590. .vec_dot_type = GGML_TYPE_Q8_1,
  591. .nrows = 1,
  592. },
  593. [GGML_TYPE_Q8_0] = {
  594. .type_name = "q8_0",
  595. .blck_size = QK8_0,
  596. .type_size = sizeof(block_q8_0),
  597. .is_quantized = true,
  598. .to_float = (ggml_to_float_t) dequantize_row_q8_0,
  599. .from_float = quantize_row_q8_0,
  600. .from_float_reference = (ggml_from_float_t) quantize_row_q8_0_reference,
  601. .vec_dot = ggml_vec_dot_q8_0_q8_0,
  602. .vec_dot_type = GGML_TYPE_Q8_0,
  603. #if defined (__ARM_FEATURE_MATMUL_INT8)
  604. .nrows = 2,
  605. #else
  606. .nrows = 1,
  607. #endif
  608. },
  609. [GGML_TYPE_Q8_1] = {
  610. .type_name = "q8_1",
  611. .blck_size = QK8_1,
  612. .type_size = sizeof(block_q8_1),
  613. .is_quantized = true,
  614. .from_float = quantize_row_q8_1,
  615. .from_float_reference = (ggml_from_float_t) quantize_row_q8_1_reference,
  616. .vec_dot_type = GGML_TYPE_Q8_1,
  617. .nrows = 1,
  618. },
  619. [GGML_TYPE_Q2_K] = {
  620. .type_name = "q2_K",
  621. .blck_size = QK_K,
  622. .type_size = sizeof(block_q2_K),
  623. .is_quantized = true,
  624. .to_float = (ggml_to_float_t) dequantize_row_q2_K,
  625. .from_float = quantize_row_q2_K,
  626. .from_float_reference = (ggml_from_float_t) quantize_row_q2_K_reference,
  627. .vec_dot = ggml_vec_dot_q2_K_q8_K,
  628. .vec_dot_type = GGML_TYPE_Q8_K,
  629. .nrows = 1,
  630. },
  631. [GGML_TYPE_Q3_K] = {
  632. .type_name = "q3_K",
  633. .blck_size = QK_K,
  634. .type_size = sizeof(block_q3_K),
  635. .is_quantized = true,
  636. .to_float = (ggml_to_float_t) dequantize_row_q3_K,
  637. .from_float = quantize_row_q3_K,
  638. .from_float_reference = (ggml_from_float_t) quantize_row_q3_K_reference,
  639. .vec_dot = ggml_vec_dot_q3_K_q8_K,
  640. .vec_dot_type = GGML_TYPE_Q8_K,
  641. .nrows = 1,
  642. },
  643. [GGML_TYPE_Q4_K] = {
  644. .type_name = "q4_K",
  645. .blck_size = QK_K,
  646. .type_size = sizeof(block_q4_K),
  647. .is_quantized = true,
  648. .to_float = (ggml_to_float_t) dequantize_row_q4_K,
  649. .from_float = quantize_row_q4_K,
  650. .from_float_reference = (ggml_from_float_t) quantize_row_q4_K_reference,
  651. .vec_dot = ggml_vec_dot_q4_K_q8_K,
  652. .vec_dot_type = GGML_TYPE_Q8_K,
  653. .nrows = 1,
  654. },
  655. [GGML_TYPE_Q5_K] = {
  656. .type_name = "q5_K",
  657. .blck_size = QK_K,
  658. .type_size = sizeof(block_q5_K),
  659. .is_quantized = true,
  660. .to_float = (ggml_to_float_t) dequantize_row_q5_K,
  661. .from_float = quantize_row_q5_K,
  662. .from_float_reference = (ggml_from_float_t) quantize_row_q5_K_reference,
  663. .vec_dot = ggml_vec_dot_q5_K_q8_K,
  664. .vec_dot_type = GGML_TYPE_Q8_K,
  665. .nrows = 1,
  666. },
  667. [GGML_TYPE_Q6_K] = {
  668. .type_name = "q6_K",
  669. .blck_size = QK_K,
  670. .type_size = sizeof(block_q6_K),
  671. .is_quantized = true,
  672. .to_float = (ggml_to_float_t) dequantize_row_q6_K,
  673. .from_float = quantize_row_q6_K,
  674. .from_float_reference = (ggml_from_float_t) quantize_row_q6_K_reference,
  675. .vec_dot = ggml_vec_dot_q6_K_q8_K,
  676. .vec_dot_type = GGML_TYPE_Q8_K,
  677. .nrows = 1,
  678. },
  679. [GGML_TYPE_IQ2_XXS] = {
  680. .type_name = "iq2_xxs",
  681. .blck_size = QK_K,
  682. .type_size = sizeof(block_iq2_xxs),
  683. .is_quantized = true,
  684. .to_float = (ggml_to_float_t) dequantize_row_iq2_xxs,
  685. .from_float = NULL,
  686. .from_float_reference = NULL,
  687. .vec_dot = ggml_vec_dot_iq2_xxs_q8_K,
  688. .vec_dot_type = GGML_TYPE_Q8_K,
  689. .nrows = 1,
  690. },
  691. [GGML_TYPE_IQ2_XS] = {
  692. .type_name = "iq2_xs",
  693. .blck_size = QK_K,
  694. .type_size = sizeof(block_iq2_xs),
  695. .is_quantized = true,
  696. .to_float = (ggml_to_float_t) dequantize_row_iq2_xs,
  697. .from_float = NULL,
  698. .from_float_reference = NULL,
  699. .vec_dot = ggml_vec_dot_iq2_xs_q8_K,
  700. .vec_dot_type = GGML_TYPE_Q8_K,
  701. .nrows = 1,
  702. },
  703. [GGML_TYPE_IQ3_XXS] = {
  704. .type_name = "iq3_xxs",
  705. .blck_size = QK_K,
  706. .type_size = sizeof(block_iq3_xxs),
  707. .is_quantized = true,
  708. .to_float = (ggml_to_float_t) dequantize_row_iq3_xxs,
  709. .from_float = quantize_row_iq3_xxs,
  710. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_xxs_reference,
  711. .vec_dot = ggml_vec_dot_iq3_xxs_q8_K,
  712. .vec_dot_type = GGML_TYPE_Q8_K,
  713. .nrows = 1,
  714. },
  715. [GGML_TYPE_IQ3_S] = {
  716. .type_name = "iq3_s",
  717. .blck_size = QK_K,
  718. .type_size = sizeof(block_iq3_s),
  719. .is_quantized = true,
  720. .to_float = (ggml_to_float_t) dequantize_row_iq3_s,
  721. .from_float = quantize_row_iq3_s,
  722. .from_float_reference = (ggml_from_float_t)quantize_row_iq3_s_reference,
  723. .vec_dot = ggml_vec_dot_iq3_s_q8_K,
  724. .vec_dot_type = GGML_TYPE_Q8_K,
  725. .nrows = 1,
  726. },
  727. [GGML_TYPE_IQ2_S] = {
  728. .type_name = "iq2_s",
  729. .blck_size = QK_K,
  730. .type_size = sizeof(block_iq2_s),
  731. .is_quantized = true,
  732. .to_float = (ggml_to_float_t) dequantize_row_iq2_s,
  733. .from_float = quantize_row_iq2_s,
  734. .from_float_reference = (ggml_from_float_t)quantize_row_iq2_s_reference,
  735. .vec_dot = ggml_vec_dot_iq2_s_q8_K,
  736. .vec_dot_type = GGML_TYPE_Q8_K,
  737. .nrows = 1,
  738. },
  739. [GGML_TYPE_IQ1_S] = {
  740. .type_name = "iq1_s",
  741. .blck_size = QK_K,
  742. .type_size = sizeof(block_iq1_s),
  743. .is_quantized = true,
  744. .to_float = (ggml_to_float_t) dequantize_row_iq1_s,
  745. .from_float = NULL,
  746. .from_float_reference = NULL,
  747. .vec_dot = ggml_vec_dot_iq1_s_q8_K,
  748. .vec_dot_type = GGML_TYPE_Q8_K,
  749. .nrows = 1,
  750. },
  751. [GGML_TYPE_IQ1_M] = {
  752. .type_name = "iq1_m",
  753. .blck_size = QK_K,
  754. .type_size = sizeof(block_iq1_m),
  755. .is_quantized = true,
  756. .to_float = (ggml_to_float_t) dequantize_row_iq1_m,
  757. .from_float = NULL,
  758. .from_float_reference = NULL,
  759. .vec_dot = ggml_vec_dot_iq1_m_q8_K,
  760. .vec_dot_type = GGML_TYPE_Q8_K,
  761. .nrows = 1,
  762. },
  763. [GGML_TYPE_IQ4_NL] = {
  764. .type_name = "iq4_nl",
  765. .blck_size = QK4_NL,
  766. .type_size = sizeof(block_iq4_nl),
  767. .is_quantized = true,
  768. .to_float = (ggml_to_float_t) dequantize_row_iq4_nl,
  769. .from_float = quantize_row_iq4_nl,
  770. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_nl_reference,
  771. .vec_dot = ggml_vec_dot_iq4_nl_q8_0,
  772. .vec_dot_type = GGML_TYPE_Q8_0,
  773. .nrows = 1,
  774. },
  775. [GGML_TYPE_IQ4_XS] = {
  776. .type_name = "iq4_xs",
  777. .blck_size = QK_K,
  778. .type_size = sizeof(block_iq4_xs),
  779. .is_quantized = true,
  780. .to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
  781. .from_float = quantize_row_iq4_xs,
  782. .from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
  783. .vec_dot = ggml_vec_dot_iq4_xs_q8_K,
  784. .vec_dot_type = GGML_TYPE_Q8_K,
  785. .nrows = 1,
  786. },
  787. [GGML_TYPE_Q8_K] = {
  788. .type_name = "q8_K",
  789. .blck_size = QK_K,
  790. .type_size = sizeof(block_q8_K),
  791. .is_quantized = true,
  792. .from_float = quantize_row_q8_K,
  793. },
  794. [GGML_TYPE_BF16] = {
  795. .type_name = "bf16",
  796. .blck_size = 1,
  797. .type_size = sizeof(ggml_bf16_t),
  798. .is_quantized = false,
  799. .to_float = (ggml_to_float_t) ggml_bf16_to_fp32_row,
  800. .from_float = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  801. .from_float_reference = (ggml_from_float_t) ggml_fp32_to_bf16_row,
  802. .vec_dot = (ggml_vec_dot_t) ggml_vec_dot_bf16,
  803. .vec_dot_type = GGML_TYPE_BF16,
  804. .nrows = 1,
  805. }
  806. };
  807. // For internal test use
  808. ggml_type_traits_t ggml_internal_get_type_traits(enum ggml_type type) {
  809. GGML_ASSERT(type < GGML_TYPE_COUNT);
  810. return type_traits[type];
  811. }
  812. //
  813. // simd mappings
  814. //
  815. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  816. // we then implement the fundamental computation operations below using only these macros
  817. // adding support for new architectures requires to define the corresponding SIMD macros
  818. //
  819. // GGML_F32_STEP / GGML_F16_STEP
  820. // number of elements to process in a single step
  821. //
  822. // GGML_F32_EPR / GGML_F16_EPR
  823. // number of elements to fit in a single register
  824. //
  825. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  826. #define GGML_SIMD
  827. // F32 NEON
  828. #define GGML_F32_STEP 16
  829. #define GGML_F32_EPR 4
  830. #define GGML_F32x4 float32x4_t
  831. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  832. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  833. #define GGML_F32x4_LOAD vld1q_f32
  834. #define GGML_F32x4_STORE vst1q_f32
  835. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  836. #define GGML_F32x4_ADD vaddq_f32
  837. #define GGML_F32x4_MUL vmulq_f32
  838. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  839. #define GGML_F32x4_REDUCE(res, x) \
  840. { \
  841. int offset = GGML_F32_ARR >> 1; \
  842. for (int i = 0; i < offset; ++i) { \
  843. x[i] = vaddq_f32(x[i], x[offset+i]); \
  844. } \
  845. offset >>= 1; \
  846. for (int i = 0; i < offset; ++i) { \
  847. x[i] = vaddq_f32(x[i], x[offset+i]); \
  848. } \
  849. offset >>= 1; \
  850. for (int i = 0; i < offset; ++i) { \
  851. x[i] = vaddq_f32(x[i], x[offset+i]); \
  852. } \
  853. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  854. }
  855. #define GGML_F32_VEC GGML_F32x4
  856. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  857. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  858. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  859. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  860. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  861. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  862. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  863. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  864. // F16 NEON
  865. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  866. #define GGML_F16_STEP 32
  867. #define GGML_F16_EPR 8
  868. #define GGML_F16x8 float16x8_t
  869. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  870. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  871. #define GGML_F16x8_LOAD(x) vld1q_f16((const ggml_fp16_internal_t *)(x))
  872. #define GGML_F16x8_STORE vst1q_f16
  873. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  874. #define GGML_F16x8_ADD vaddq_f16
  875. #define GGML_F16x8_MUL vmulq_f16
  876. #define GGML_F16x8_REDUCE(res, x) \
  877. do { \
  878. int offset = GGML_F16_ARR >> 1; \
  879. for (int i = 0; i < offset; ++i) { \
  880. x[i] = vaddq_f16(x[i], x[offset+i]); \
  881. } \
  882. offset >>= 1; \
  883. for (int i = 0; i < offset; ++i) { \
  884. x[i] = vaddq_f16(x[i], x[offset+i]); \
  885. } \
  886. offset >>= 1; \
  887. for (int i = 0; i < offset; ++i) { \
  888. x[i] = vaddq_f16(x[i], x[offset+i]); \
  889. } \
  890. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  891. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  892. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  893. } while (0)
  894. #define GGML_F16_VEC GGML_F16x8
  895. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  896. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  897. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  898. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE((ggml_fp16_internal_t *)(p), r[i])
  899. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  900. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  901. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  902. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  903. #else
  904. // if FP16 vector arithmetic is not supported, we use FP32 instead
  905. // and take advantage of the vcvt_ functions to convert to/from FP16
  906. #define GGML_F16_STEP 16
  907. #define GGML_F16_EPR 4
  908. #define GGML_F32Cx4 float32x4_t
  909. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  910. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  911. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16((const ggml_fp16_internal_t *)(x)))
  912. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  913. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  914. #define GGML_F32Cx4_ADD vaddq_f32
  915. #define GGML_F32Cx4_MUL vmulq_f32
  916. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  917. #define GGML_F16_VEC GGML_F32Cx4
  918. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  919. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  920. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  921. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE((ggml_fp16_internal_t *)(p), r[i])
  922. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  923. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  924. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  925. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  926. #endif
  927. #elif defined(__AVX512F__)
  928. #define GGML_SIMD
  929. // F32 AVX512
  930. #define GGML_F32_STEP 64
  931. #define GGML_F32_EPR 16
  932. #define GGML_F32x16 __m512
  933. #define GGML_F32x16_ZERO _mm512_setzero_ps()
  934. #define GGML_F32x16_SET1(x) _mm512_set1_ps(x)
  935. #define GGML_F32x16_LOAD _mm512_loadu_ps
  936. #define GGML_F32x16_STORE _mm512_storeu_ps
  937. // _mm512_fmadd_ps is defined in AVX512F so no guard is required
  938. #define GGML_F32x16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  939. #define GGML_F32x16_ADD _mm512_add_ps
  940. #define GGML_F32x16_MUL _mm512_mul_ps
  941. #define GGML_F32x16_REDUCE(res, x) \
  942. do { \
  943. int offset = GGML_F32_ARR >> 1; \
  944. for (int i = 0; i < offset; ++i) { \
  945. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  946. } \
  947. offset >>= 1; \
  948. for (int i = 0; i < offset; ++i) { \
  949. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  950. } \
  951. offset >>= 1; \
  952. for (int i = 0; i < offset; ++i) { \
  953. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  954. } \
  955. res = _mm512_reduce_add_ps(x[0]); \
  956. } while (0)
  957. // TODO: is this optimal ?
  958. #define GGML_F32_VEC GGML_F32x16
  959. #define GGML_F32_VEC_ZERO GGML_F32x16_ZERO
  960. #define GGML_F32_VEC_SET1 GGML_F32x16_SET1
  961. #define GGML_F32_VEC_LOAD GGML_F32x16_LOAD
  962. #define GGML_F32_VEC_STORE GGML_F32x16_STORE
  963. #define GGML_F32_VEC_FMA GGML_F32x16_FMA
  964. #define GGML_F32_VEC_ADD GGML_F32x16_ADD
  965. #define GGML_F32_VEC_MUL GGML_F32x16_MUL
  966. #define GGML_F32_VEC_REDUCE GGML_F32x16_REDUCE
  967. // F16 AVX512
  968. // F16 AVX
  969. #define GGML_F16_STEP 64
  970. #define GGML_F16_EPR 16
  971. // AVX512 has FP16 extension (AVX512_FP16) but I don't have it on my machine so I use FP32 instead
  972. #define GGML_F32Cx16 __m512
  973. #define GGML_F32Cx16_ZERO _mm512_setzero_ps()
  974. #define GGML_F32Cx16_SET1(x) _mm512_set1_ps(x)
  975. // unlike _mm256_cvt intrinsics that require F16C, _mm512_cvt is defined in AVX512F
  976. // so F16C guard isn't required
  977. #define GGML_F32Cx16_LOAD(x) _mm512_cvtph_ps(_mm256_loadu_si256((const __m256i *)(x)))
  978. #define GGML_F32Cx16_STORE(x, y) _mm256_storeu_si256((__m256i *)(x), _mm512_cvtps_ph(y, 0))
  979. #define GGML_F32Cx16_FMA(a, b, c) _mm512_fmadd_ps(b, c, a)
  980. #define GGML_F32Cx16_ADD _mm512_add_ps
  981. #define GGML_F32Cx16_MUL _mm512_mul_ps
  982. #define GGML_F32Cx16_REDUCE(res, x) \
  983. do { \
  984. int offset = GGML_F32_ARR >> 1; \
  985. for (int i = 0; i < offset; ++i) { \
  986. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  987. } \
  988. offset >>= 1; \
  989. for (int i = 0; i < offset; ++i) { \
  990. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  991. } \
  992. offset >>= 1; \
  993. for (int i = 0; i < offset; ++i) { \
  994. x[i] = _mm512_add_ps(x[i], x[offset+i]); \
  995. } \
  996. res = _mm512_reduce_add_ps(x[0]); \
  997. } while (0)
  998. #define GGML_F16_VEC GGML_F32Cx16
  999. #define GGML_F16_VEC_ZERO GGML_F32Cx16_ZERO
  1000. #define GGML_F16_VEC_SET1 GGML_F32Cx16_SET1
  1001. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx16_LOAD(p)
  1002. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx16_STORE(p, r[i])
  1003. #define GGML_F16_VEC_FMA GGML_F32Cx16_FMA
  1004. #define GGML_F16_VEC_ADD GGML_F32Cx16_ADD
  1005. #define GGML_F16_VEC_MUL GGML_F32Cx16_MUL
  1006. #define GGML_F16_VEC_REDUCE GGML_F32Cx16_REDUCE
  1007. #elif defined(__AVX__)
  1008. #define GGML_SIMD
  1009. // F32 AVX
  1010. #define GGML_F32_STEP 32
  1011. #define GGML_F32_EPR 8
  1012. #define GGML_F32x8 __m256
  1013. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1014. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1015. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1016. #define GGML_F32x8_STORE _mm256_storeu_ps
  1017. #if defined(__FMA__)
  1018. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1019. #else
  1020. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1021. #endif
  1022. #define GGML_F32x8_ADD _mm256_add_ps
  1023. #define GGML_F32x8_MUL _mm256_mul_ps
  1024. #define GGML_F32x8_REDUCE(res, x) \
  1025. do { \
  1026. int offset = GGML_F32_ARR >> 1; \
  1027. for (int i = 0; i < offset; ++i) { \
  1028. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1029. } \
  1030. offset >>= 1; \
  1031. for (int i = 0; i < offset; ++i) { \
  1032. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1033. } \
  1034. offset >>= 1; \
  1035. for (int i = 0; i < offset; ++i) { \
  1036. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1037. } \
  1038. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1039. _mm256_extractf128_ps(x[0], 1)); \
  1040. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1041. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1042. } while (0)
  1043. // TODO: is this optimal ?
  1044. #define GGML_F32_VEC GGML_F32x8
  1045. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1046. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1047. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1048. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1049. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1050. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1051. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1052. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1053. // F16 AVX
  1054. #define GGML_F16_STEP 32
  1055. #define GGML_F16_EPR 8
  1056. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1057. #define GGML_F32Cx8 __m256
  1058. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1059. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1060. #if defined(__F16C__)
  1061. // the _mm256_cvt intrinsics require F16C
  1062. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((const __m128i *)(x)))
  1063. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1064. #else
  1065. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1066. float tmp[8];
  1067. for (int i = 0; i < 8; i++) {
  1068. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1069. }
  1070. return _mm256_loadu_ps(tmp);
  1071. }
  1072. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1073. float arr[8];
  1074. _mm256_storeu_ps(arr, y);
  1075. for (int i = 0; i < 8; i++)
  1076. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1077. }
  1078. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1079. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1080. #endif
  1081. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1082. #define GGML_F32Cx8_ADD _mm256_add_ps
  1083. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1084. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1085. #define GGML_F16_VEC GGML_F32Cx8
  1086. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1087. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1088. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1089. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1090. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1091. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1092. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1093. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1094. #elif defined(__POWER9_VECTOR__)
  1095. #define GGML_SIMD
  1096. // F32 POWER9
  1097. #define GGML_F32_STEP 32
  1098. #define GGML_F32_EPR 4
  1099. #define GGML_F32x4 vector float
  1100. #define GGML_F32x4_ZERO 0.0f
  1101. #define GGML_F32x4_SET1 vec_splats
  1102. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1103. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1104. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1105. #define GGML_F32x4_ADD vec_add
  1106. #define GGML_F32x4_MUL vec_mul
  1107. #define GGML_F32x4_REDUCE(res, x) \
  1108. { \
  1109. int offset = GGML_F32_ARR >> 1; \
  1110. for (int i = 0; i < offset; ++i) { \
  1111. x[i] = vec_add(x[i], x[offset+i]); \
  1112. } \
  1113. offset >>= 1; \
  1114. for (int i = 0; i < offset; ++i) { \
  1115. x[i] = vec_add(x[i], x[offset+i]); \
  1116. } \
  1117. offset >>= 1; \
  1118. for (int i = 0; i < offset; ++i) { \
  1119. x[i] = vec_add(x[i], x[offset+i]); \
  1120. } \
  1121. res = vec_extract(x[0], 0) + \
  1122. vec_extract(x[0], 1) + \
  1123. vec_extract(x[0], 2) + \
  1124. vec_extract(x[0], 3); \
  1125. }
  1126. #define GGML_F32_VEC GGML_F32x4
  1127. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1128. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1129. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1130. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1131. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1132. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1133. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1134. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1135. // F16 POWER9
  1136. #define GGML_F16_STEP GGML_F32_STEP
  1137. #define GGML_F16_EPR GGML_F32_EPR
  1138. #define GGML_F16_VEC GGML_F32x4
  1139. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1140. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1141. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1142. #define GGML_F16_VEC_ADD GGML_F32x4_ADD
  1143. #define GGML_F16_VEC_MUL GGML_F32x4_MUL
  1144. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1145. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1146. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1147. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1148. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1149. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1150. #define GGML_F16_VEC_STORE(p, r, i) \
  1151. if (i & 0x1) \
  1152. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1153. r[i - GGML_ENDIAN_BYTE(0)]), \
  1154. 0, p - GGML_F16_EPR)
  1155. #elif defined(__wasm_simd128__)
  1156. #define GGML_SIMD
  1157. // F32 WASM
  1158. #define GGML_F32_STEP 16
  1159. #define GGML_F32_EPR 4
  1160. #define GGML_F32x4 v128_t
  1161. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1162. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1163. #define GGML_F32x4_LOAD wasm_v128_load
  1164. #define GGML_F32x4_STORE wasm_v128_store
  1165. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1166. #define GGML_F32x4_ADD wasm_f32x4_add
  1167. #define GGML_F32x4_MUL wasm_f32x4_mul
  1168. #define GGML_F32x4_REDUCE(res, x) \
  1169. { \
  1170. int offset = GGML_F32_ARR >> 1; \
  1171. for (int i = 0; i < offset; ++i) { \
  1172. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1173. } \
  1174. offset >>= 1; \
  1175. for (int i = 0; i < offset; ++i) { \
  1176. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1177. } \
  1178. offset >>= 1; \
  1179. for (int i = 0; i < offset; ++i) { \
  1180. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1181. } \
  1182. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1183. wasm_f32x4_extract_lane(x[0], 1) + \
  1184. wasm_f32x4_extract_lane(x[0], 2) + \
  1185. wasm_f32x4_extract_lane(x[0], 3); \
  1186. }
  1187. #define GGML_F32_VEC GGML_F32x4
  1188. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1189. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1190. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1191. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1192. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1193. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1194. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1195. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1196. // F16 WASM
  1197. #define GGML_F16_STEP 16
  1198. #define GGML_F16_EPR 4
  1199. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1200. float tmp[4];
  1201. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1202. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1203. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1204. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1205. return wasm_v128_load(tmp);
  1206. }
  1207. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1208. float tmp[4];
  1209. wasm_v128_store(tmp, x);
  1210. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1211. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1212. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1213. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1214. }
  1215. #define GGML_F16x4 v128_t
  1216. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1217. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1218. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1219. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1220. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1221. #define GGML_F16x4_ADD wasm_f32x4_add
  1222. #define GGML_F16x4_MUL wasm_f32x4_mul
  1223. #define GGML_F16x4_REDUCE(res, x) \
  1224. { \
  1225. int offset = GGML_F16_ARR >> 1; \
  1226. for (int i = 0; i < offset; ++i) { \
  1227. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1228. } \
  1229. offset >>= 1; \
  1230. for (int i = 0; i < offset; ++i) { \
  1231. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1232. } \
  1233. offset >>= 1; \
  1234. for (int i = 0; i < offset; ++i) { \
  1235. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1236. } \
  1237. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1238. wasm_f32x4_extract_lane(x[0], 1) + \
  1239. wasm_f32x4_extract_lane(x[0], 2) + \
  1240. wasm_f32x4_extract_lane(x[0], 3); \
  1241. }
  1242. #define GGML_F16_VEC GGML_F16x4
  1243. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1244. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1245. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1246. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1247. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1248. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1249. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1250. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1251. #elif defined(__SSE3__)
  1252. #define GGML_SIMD
  1253. // F32 SSE
  1254. #define GGML_F32_STEP 32
  1255. #define GGML_F32_EPR 4
  1256. #define GGML_F32x4 __m128
  1257. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1258. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1259. #define GGML_F32x4_LOAD _mm_loadu_ps
  1260. #define GGML_F32x4_STORE _mm_storeu_ps
  1261. #if defined(__FMA__)
  1262. // TODO: Does this work?
  1263. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1264. #else
  1265. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1266. #endif
  1267. #define GGML_F32x4_ADD _mm_add_ps
  1268. #define GGML_F32x4_MUL _mm_mul_ps
  1269. #define GGML_F32x4_REDUCE(res, x) \
  1270. { \
  1271. int offset = GGML_F32_ARR >> 1; \
  1272. for (int i = 0; i < offset; ++i) { \
  1273. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1274. } \
  1275. offset >>= 1; \
  1276. for (int i = 0; i < offset; ++i) { \
  1277. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1278. } \
  1279. offset >>= 1; \
  1280. for (int i = 0; i < offset; ++i) { \
  1281. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1282. } \
  1283. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1284. res = (ggml_float) _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1285. }
  1286. // TODO: is this optimal ?
  1287. #define GGML_F32_VEC GGML_F32x4
  1288. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1289. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1290. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1291. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1292. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1293. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1294. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1295. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1296. // F16 SSE
  1297. #define GGML_F16_STEP 32
  1298. #define GGML_F16_EPR 4
  1299. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1300. float tmp[4];
  1301. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1302. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1303. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1304. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1305. return _mm_loadu_ps(tmp);
  1306. }
  1307. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1308. float arr[4];
  1309. _mm_storeu_ps(arr, y);
  1310. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1311. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1312. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1313. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1314. }
  1315. #define GGML_F32Cx4 __m128
  1316. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1317. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1318. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1319. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1320. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1321. #define GGML_F32Cx4_ADD _mm_add_ps
  1322. #define GGML_F32Cx4_MUL _mm_mul_ps
  1323. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1324. #define GGML_F16_VEC GGML_F32Cx4
  1325. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1326. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1327. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1328. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1329. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1330. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1331. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1332. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1333. #elif defined(__loongarch_asx)
  1334. #define GGML_SIMD
  1335. // F32 LASX
  1336. #define GGML_F32_STEP 32
  1337. #define GGML_F32_EPR 8
  1338. #define GGML_F32x8 __m256
  1339. #define GGML_F32x8_ZERO (__m256)__lasx_xvldi(0)
  1340. #define GGML_F32x8_SET1(x) (__m256)__lasx_xvreplfr2vr_s((x))
  1341. #define GGML_F32x8_LOAD(x) (__m256)__lasx_xvld((x), 0)
  1342. #define GGML_F32x8_STORE(x,y) __lasx_xvst((y), (x), 0)
  1343. #define GGML_F32x8_FMA(a, b, c) __lasx_xvfmadd_s(b, c, a)
  1344. #define GGML_F32x8_ADD __lasx_xvfadd_s
  1345. #define GGML_F32x8_MUL __lasx_xvfmul_s
  1346. #define GGML_F32x8_REDUCE(res, x) \
  1347. do { \
  1348. int offset = GGML_F32_ARR >> 1; \
  1349. for (int i = 0; i < offset; ++i) { \
  1350. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1351. } \
  1352. offset >>= 1; \
  1353. for (int i = 0; i < offset; ++i) { \
  1354. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1355. } \
  1356. offset >>= 1; \
  1357. for (int i = 0; i < offset; ++i) { \
  1358. x[i] = __lasx_xvfadd_s(x[i], x[offset+i]); \
  1359. } \
  1360. float *tmp_p = (float *)&x[0]; \
  1361. res = tmp_p[0] + tmp_p[1] + tmp_p[2] + tmp_p[3] + tmp_p[4] + tmp_p[5] + tmp_p[6] + tmp_p[7]; \
  1362. } while (0)
  1363. // TODO: is this optimal ?
  1364. #define GGML_F32_VEC GGML_F32x8
  1365. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1366. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1367. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1368. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1369. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1370. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1371. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1372. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1373. // F16 LASX
  1374. #define GGML_F16_STEP 32
  1375. #define GGML_F16_EPR 8
  1376. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1377. #define GGML_F32Cx8 __m256
  1378. #define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
  1379. #define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
  1380. static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
  1381. float tmp[8];
  1382. for (int i = 0; i < 8; i++) {
  1383. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1384. }
  1385. return (__m256)__lasx_xvld(tmp, 0);
  1386. }
  1387. static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
  1388. float arr[8];
  1389. __lasx_xvst(y, arr, 0);
  1390. for (int i = 0; i < 8; i++) {
  1391. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1392. }
  1393. }
  1394. #define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
  1395. #define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
  1396. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1397. #define GGML_F32Cx8_ADD __lasx_xvfadd_s
  1398. #define GGML_F32Cx8_MUL __lasx_xvfmul_s
  1399. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1400. #define GGML_F16_VEC GGML_F32Cx8
  1401. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1402. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1403. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1404. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1405. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1406. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1407. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1408. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1409. #elif defined(__loongarch_sx)
  1410. #define GGML_SIMD
  1411. // F32 LSX
  1412. #define GGML_F32_STEP 32
  1413. #define GGML_F32_EPR 4
  1414. #define GGML_F32x4 __m128
  1415. #define GGML_F32x4_ZERO __lsx_vldi(0)
  1416. #define GGML_F32x4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1417. #define GGML_F32x4_LOAD(x) __lsx_vld((x), 0)
  1418. #define GGML_F32x4_STORE((x),(y)) __lsx_vst((y), (x), 0)
  1419. #define GGML_F32x4_FMA(a, b, c) __lsx_vfmadd_s(b, c, a)
  1420. #define GGML_F32x4_ADD __lsx_vfadd_s
  1421. #define GGML_F32x4_MUL __lsx_vfmul_s
  1422. #define GGML_F32x4_REDUCE(res, x) \
  1423. { \
  1424. int offset = GGML_F32_ARR >> 1; \
  1425. for (int i = 0; i < offset; ++i) { \
  1426. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1427. } \
  1428. offset >>= 1; \
  1429. for (int i = 0; i < offset; ++i) { \
  1430. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1431. } \
  1432. offset >>= 1; \
  1433. for (int i = 0; i < offset; ++i) { \
  1434. x[i] = __lsx_vfadd_s(x[i], x[offset+i]); \
  1435. } \
  1436. __m128i tmp = __lsx_vsrli_d((__m128i)x[0], 32); \
  1437. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, x[0]); \
  1438. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1439. const __m128 t0 = __lsx_vshuf4i_w(tmp, 0x88); \
  1440. tmp = __lsx_vsrli_d((__m128i)t0, 32); \
  1441. tmp = (__m128i)__lsx_vfadd_s((__m128)tmp, t0); \
  1442. tmp = __lsx_vpickev_w(__lsx_vldi(0), tmp); \
  1443. res = (ggml_float) __lsx_vpickve2gr_w(__lsx_vshuf4i_w(tmp, 0x88), 0); \
  1444. }
  1445. #define GGML_F32_VEC GGML_F32x4
  1446. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1447. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1448. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1449. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1450. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1451. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1452. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1453. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1454. // F16 LSX
  1455. #define GGML_F16_STEP 32
  1456. #define GGML_F16_EPR 4
  1457. static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
  1458. float tmp[4];
  1459. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1460. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1461. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1462. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1463. return __lsx_vld(tmp, 0);
  1464. }
  1465. static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
  1466. float arr[4];
  1467. __lsx_vst(y, arr, 0);
  1468. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1469. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1470. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1471. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1472. }
  1473. #define GGML_F32Cx4 __m128
  1474. #define GGML_F32Cx4_ZERO __lsx_vldi(0)
  1475. #define GGML_F32Cx4_SET1(x) __lsx_vinsgr2vr_w(__lsx_vldi(0),(x), 0)
  1476. #define GGML_F32Cx4_LOAD(x) __lsx_f16x4_load(x)
  1477. #define GGML_F32Cx4_STORE(x, y) __lsx_f16x4_store(x, y)
  1478. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1479. #define GGML_F32Cx4_ADD __lsx_vfadd_s
  1480. #define GGML_F32Cx4_MUL __lsx_vfmul_s
  1481. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1482. #define GGML_F16_VEC GGML_F32Cx4
  1483. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1484. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1485. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1486. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1487. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1488. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1489. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1490. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1491. #endif
  1492. // GGML_F32_ARR / GGML_F16_ARR
  1493. // number of registers to use per step
  1494. #ifdef GGML_SIMD
  1495. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1496. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1497. #endif
  1498. //
  1499. // ggml context
  1500. //
  1501. struct ggml_context {
  1502. size_t mem_size;
  1503. void* mem_buffer;
  1504. bool mem_buffer_owned;
  1505. bool no_alloc;
  1506. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  1507. int n_objects;
  1508. struct ggml_object * objects_begin;
  1509. struct ggml_object * objects_end;
  1510. struct ggml_scratch scratch;
  1511. struct ggml_scratch scratch_save;
  1512. };
  1513. struct ggml_context_container {
  1514. bool used;
  1515. struct ggml_context context;
  1516. };
  1517. struct ggml_compute_state_shared {
  1518. const struct ggml_cgraph * cgraph;
  1519. const struct ggml_cplan * cplan;
  1520. int n_threads;
  1521. // synchronization primitives
  1522. atomic_int n_barrier;
  1523. atomic_int n_barrier_passed;
  1524. ggml_abort_callback abort_callback; // abort ggml_graph_compute when true
  1525. void * abort_callback_data;
  1526. atomic_int current_chunk; // currently processing chunk during mul_mat, shared between all the threads
  1527. enum ggml_status ec;
  1528. };
  1529. struct ggml_compute_state {
  1530. ggml_thread_t thrd;
  1531. int ith;
  1532. struct ggml_compute_state_shared * shared;
  1533. };
  1534. struct ggml_compute_params {
  1535. // ith = thread index, nth = number of threads
  1536. int ith, nth;
  1537. // work buffer for all threads
  1538. size_t wsize;
  1539. void * wdata;
  1540. struct ggml_compute_state_shared * shared;
  1541. };
  1542. //
  1543. // fundamental operations
  1544. //
  1545. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1546. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1547. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1548. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1549. inline static void ggml_vec_set_bf16(const int n, ggml_bf16_t * x, const ggml_bf16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1550. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1551. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1552. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1553. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1554. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1555. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1556. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1557. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1558. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1559. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1560. static void ggml_vec_dot_f32(int n, float * restrict s, size_t bs, const float * restrict x, size_t bx, const float * restrict y, size_t by, int nrc) {
  1561. assert(nrc == 1);
  1562. UNUSED(nrc);
  1563. UNUSED(bx);
  1564. UNUSED(by);
  1565. UNUSED(bs);
  1566. #if defined(GGML_SIMD)
  1567. float sumf = 0.0f;
  1568. const int np = (n & ~(GGML_F32_STEP - 1));
  1569. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1570. GGML_F32_VEC ax[GGML_F32_ARR];
  1571. GGML_F32_VEC ay[GGML_F32_ARR];
  1572. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1573. for (int j = 0; j < GGML_F32_ARR; j++) {
  1574. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1575. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1576. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1577. }
  1578. }
  1579. // reduce sum0..sum3 to sum0
  1580. GGML_F32_VEC_REDUCE(sumf, sum);
  1581. // leftovers
  1582. for (int i = np; i < n; ++i) {
  1583. sumf += x[i]*y[i];
  1584. }
  1585. #else
  1586. // scalar
  1587. ggml_float sumf = 0.0;
  1588. for (int i = 0; i < n; ++i) {
  1589. sumf += (ggml_float)(x[i]*y[i]);
  1590. }
  1591. #endif
  1592. *s = sumf;
  1593. }
  1594. static void ggml_vec_dot_bf16(int n, float * restrict s, size_t bs, ggml_bf16_t * restrict x, size_t bx, ggml_bf16_t * restrict y, size_t by, int nrc) {
  1595. assert(nrc == 1);
  1596. UNUSED(nrc);
  1597. UNUSED(bx);
  1598. UNUSED(by);
  1599. UNUSED(bs);
  1600. int i = 0;
  1601. ggml_float sumf = 0;
  1602. #if defined(__AVX512BF16__)
  1603. __m512 c1 = _mm512_setzero_ps();
  1604. __m512 c2 = _mm512_setzero_ps();
  1605. for (; i + 64 <= n; i += 64) {
  1606. c1 = _mm512_dpbf16_ps(c1, m512bh(_mm512_loadu_si512((x + i))),
  1607. m512bh(_mm512_loadu_si512((y + i))));
  1608. c2 = _mm512_dpbf16_ps(c2, m512bh(_mm512_loadu_si512((x + i + 32))),
  1609. m512bh(_mm512_loadu_si512((y + i + 32))));
  1610. }
  1611. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1612. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1613. #elif defined(__AVX512F__)
  1614. #define LOAD(p) _mm512_castsi512_ps(_mm512_slli_epi32(_mm512_cvtepu16_epi32(_mm256_loadu_si256((const __m256i *)(p))), 16))
  1615. __m512 c1 = _mm512_setzero_ps();
  1616. __m512 c2 = _mm512_setzero_ps();
  1617. for (; i + 32 <= n; i += 32) {
  1618. c1 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1619. c2 = _mm512_add_ps(_mm512_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c2);
  1620. }
  1621. sumf += (ggml_float)_mm512_reduce_add_ps(c1);
  1622. sumf += (ggml_float)_mm512_reduce_add_ps(c2);
  1623. #undef LOAD
  1624. #elif defined(__AVX2__)
  1625. #define LOAD(p) _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_cvtepu16_epi32(_mm_loadu_si128((const __m128i *)(p))), 16))
  1626. __m256 c1 = _mm256_setzero_ps();
  1627. __m256 c2 = _mm256_setzero_ps();
  1628. __m256 c3 = _mm256_setzero_ps();
  1629. __m256 c4 = _mm256_setzero_ps();
  1630. for (; i + 32 <= n; i += 32) {
  1631. c1 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i), LOAD(y + i)), c1);
  1632. c2 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 8), LOAD(y + i + 8)), c2);
  1633. c3 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 16), LOAD(y + i + 16)), c3);
  1634. c4 = _mm256_add_ps(_mm256_mul_ps(LOAD(x + i + 24), LOAD(y + i + 24)), c4);
  1635. }
  1636. __m128 g;
  1637. c1 = _mm256_add_ps(_mm256_add_ps(c1, c3),
  1638. _mm256_add_ps(c2, c4));
  1639. g = _mm_add_ps(_mm256_extractf128_ps(c1, 1),
  1640. _mm256_castps256_ps128(c1));
  1641. g = _mm_add_ps(g, _mm_movehl_ps(g, g));
  1642. g = _mm_add_ss(g, _mm_movehdup_ps(g));
  1643. sumf += (ggml_float)_mm_cvtss_f32(g);
  1644. #undef LOAD
  1645. #endif
  1646. for (; i < n; ++i) {
  1647. sumf += (ggml_float)(GGML_BF16_TO_FP32(x[i]) *
  1648. GGML_BF16_TO_FP32(y[i]));
  1649. }
  1650. *s = sumf;
  1651. }
  1652. static void ggml_vec_dot_f16(int n, float * restrict s, size_t bs, ggml_fp16_t * restrict x, size_t bx, ggml_fp16_t * restrict y, size_t by, int nrc) {
  1653. assert(nrc == 1);
  1654. UNUSED(nrc);
  1655. UNUSED(bx);
  1656. UNUSED(by);
  1657. UNUSED(bs);
  1658. ggml_float sumf = 0.0;
  1659. #if defined(GGML_SIMD)
  1660. const int np = (n & ~(GGML_F16_STEP - 1));
  1661. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1662. GGML_F16_VEC ax[GGML_F16_ARR];
  1663. GGML_F16_VEC ay[GGML_F16_ARR];
  1664. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1665. for (int j = 0; j < GGML_F16_ARR; j++) {
  1666. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1667. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1668. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1669. }
  1670. }
  1671. // reduce sum0..sum3 to sum0
  1672. GGML_F16_VEC_REDUCE(sumf, sum);
  1673. // leftovers
  1674. for (int i = np; i < n; ++i) {
  1675. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1676. }
  1677. #else
  1678. for (int i = 0; i < n; ++i) {
  1679. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1680. }
  1681. #endif
  1682. *s = sumf;
  1683. }
  1684. // compute GGML_VEC_DOT_UNROLL dot products at once
  1685. // xs - x row stride in bytes
  1686. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  1687. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  1688. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  1689. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1690. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  1691. }
  1692. #if defined(GGML_SIMD)
  1693. const int np = (n & ~(GGML_F16_STEP - 1));
  1694. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  1695. GGML_F16_VEC ax[GGML_F16_ARR];
  1696. GGML_F16_VEC ay[GGML_F16_ARR];
  1697. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1698. for (int j = 0; j < GGML_F16_ARR; j++) {
  1699. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1700. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1701. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  1702. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  1703. }
  1704. }
  1705. }
  1706. // reduce sum0..sum3 to sum0
  1707. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  1708. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  1709. }
  1710. // leftovers
  1711. for (int i = np; i < n; ++i) {
  1712. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1713. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1714. }
  1715. }
  1716. #else
  1717. for (int i = 0; i < n; ++i) {
  1718. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  1719. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  1720. }
  1721. }
  1722. #endif
  1723. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  1724. s[i] = sumf[i];
  1725. }
  1726. }
  1727. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  1728. #if defined(GGML_SIMD)
  1729. const int np = (n & ~(GGML_F32_STEP - 1));
  1730. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1731. GGML_F32_VEC ax[GGML_F32_ARR];
  1732. GGML_F32_VEC ay[GGML_F32_ARR];
  1733. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1734. for (int j = 0; j < GGML_F32_ARR; j++) {
  1735. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1736. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1737. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  1738. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1739. }
  1740. }
  1741. // leftovers
  1742. for (int i = np; i < n; ++i) {
  1743. y[i] += x[i]*v;
  1744. }
  1745. #else
  1746. // scalar
  1747. for (int i = 0; i < n; ++i) {
  1748. y[i] += x[i]*v;
  1749. }
  1750. #endif
  1751. }
  1752. inline static void ggml_vec_mad_f16(const int n, ggml_fp16_t * restrict y, const ggml_fp16_t * restrict x, const float v) {
  1753. #if defined(GGML_SIMD)
  1754. const int np = (n & ~(GGML_F16_STEP - 1));
  1755. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1756. GGML_F16_VEC ax[GGML_F16_ARR];
  1757. GGML_F16_VEC ay[GGML_F16_ARR];
  1758. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1759. for (int j = 0; j < GGML_F16_ARR; j++) {
  1760. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1761. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1762. ay[j] = GGML_F16_VEC_FMA(ay[j], ax[j], vx);
  1763. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1764. }
  1765. }
  1766. // leftovers
  1767. for (int i = np; i < n; ++i) {
  1768. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1769. }
  1770. #else
  1771. // scalar
  1772. for (int i = 0; i < n; ++i) {
  1773. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i]) + GGML_FP16_TO_FP32(x[i])*v);
  1774. }
  1775. #endif
  1776. }
  1777. // xs and vs are byte strides of x and v
  1778. inline static void ggml_vec_mad_f32_unroll(const int n, const int xs, const int vs, float * restrict y, const float * restrict xv, const float * restrict vv) {
  1779. const float * restrict x[GGML_VEC_MAD_UNROLL];
  1780. const float * restrict v[GGML_VEC_MAD_UNROLL];
  1781. for (int i = 0; i < GGML_VEC_MAD_UNROLL; ++i) {
  1782. x[i] = (const float *) ((const char *) xv + i*xs);
  1783. v[i] = (const float *) ((const char *) vv + i*vs);
  1784. }
  1785. #if defined(GGML_SIMD)
  1786. const int np = (n & ~(GGML_F32_STEP - 1));
  1787. GGML_F32_VEC vx[GGML_VEC_MAD_UNROLL];
  1788. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1789. vx[k] = GGML_F32_VEC_SET1(v[k][0]);
  1790. }
  1791. GGML_F32_VEC ax[GGML_VEC_MAD_UNROLL][GGML_F32_ARR];
  1792. GGML_F32_VEC ay[GGML_F32_ARR];
  1793. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1794. for (int j = 0; j < GGML_F32_ARR; j++) {
  1795. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1796. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1797. ax[k][j] = GGML_F32_VEC_LOAD(x[k] + i + j*GGML_F32_EPR);
  1798. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[k][j], vx[k]);
  1799. }
  1800. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1801. }
  1802. }
  1803. // leftovers
  1804. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1805. for (int i = np; i < n; ++i) {
  1806. y[i] += x[k][i]*v[k][0];
  1807. }
  1808. }
  1809. #else
  1810. // scalar
  1811. for (int k = 0; k < GGML_VEC_MAD_UNROLL; ++k) {
  1812. for (int i = 0; i < n; ++i) {
  1813. y[i] += x[k][i]*v[k][0];
  1814. }
  1815. }
  1816. #endif
  1817. }
  1818. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  1819. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  1820. #if defined(GGML_USE_ACCELERATE)
  1821. vDSP_vsmul(y, 1, &v, y, 1, n);
  1822. #elif defined(GGML_SIMD)
  1823. const int np = (n & ~(GGML_F32_STEP - 1));
  1824. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  1825. GGML_F32_VEC ay[GGML_F32_ARR];
  1826. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1827. for (int j = 0; j < GGML_F32_ARR; j++) {
  1828. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1829. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  1830. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  1831. }
  1832. }
  1833. // leftovers
  1834. for (int i = np; i < n; ++i) {
  1835. y[i] *= v;
  1836. }
  1837. #else
  1838. // scalar
  1839. for (int i = 0; i < n; ++i) {
  1840. y[i] *= v;
  1841. }
  1842. #endif
  1843. }
  1844. inline static void ggml_vec_scale_f16(const int n, ggml_fp16_t * y, const float v) {
  1845. #if defined(GGML_SIMD)
  1846. const int np = (n & ~(GGML_F16_STEP - 1));
  1847. GGML_F16_VEC vx = GGML_F16_VEC_SET1(v);
  1848. GGML_F16_VEC ay[GGML_F16_ARR];
  1849. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1850. for (int j = 0; j < GGML_F16_ARR; j++) {
  1851. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1852. ay[j] = GGML_F16_VEC_MUL(ay[j], vx);
  1853. GGML_F16_VEC_STORE(y + i + j*GGML_F16_EPR, ay, j);
  1854. }
  1855. }
  1856. // leftovers
  1857. for (int i = np; i < n; ++i) {
  1858. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1859. }
  1860. #else
  1861. // scalar
  1862. for (int i = 0; i < n; ++i) {
  1863. y[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(y[i])*v);
  1864. }
  1865. #endif
  1866. }
  1867. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, 0, x, 0, x, 0, 1); *s = sqrtf(*s); }
  1868. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  1869. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  1870. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  1871. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  1872. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  1873. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  1874. inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = tanhf(x[i]); }
  1875. inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; }
  1876. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  1877. inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); }
  1878. inline static void ggml_vec_sigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = 1.f / (1.f + expf(-x[i])); }
  1879. // TODO: optimize performance
  1880. inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1881. inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); }
  1882. static const float GELU_COEF_A = 0.044715f;
  1883. static const float GELU_QUICK_COEF = -1.702f;
  1884. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  1885. inline static float ggml_gelu_f32(float x) {
  1886. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  1887. }
  1888. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1889. const uint16_t * i16 = (const uint16_t *) x;
  1890. for (int i = 0; i < n; ++i) {
  1891. y[i] = ggml_table_gelu_f16[i16[i]];
  1892. }
  1893. }
  1894. #ifdef GGML_GELU_FP16
  1895. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1896. uint16_t t;
  1897. for (int i = 0; i < n; ++i) {
  1898. if (x[i] <= -10.0f) {
  1899. y[i] = 0.0f;
  1900. } else if (x[i] >= 10.0f) {
  1901. y[i] = x[i];
  1902. } else {
  1903. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1904. memcpy(&t, &fp16, sizeof(uint16_t));
  1905. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_f16[t]);
  1906. }
  1907. }
  1908. }
  1909. #else
  1910. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  1911. for (int i = 0; i < n; ++i) {
  1912. y[i] = ggml_gelu_f32(x[i]);
  1913. }
  1914. }
  1915. #endif
  1916. inline static float ggml_gelu_quick_f32(float x) {
  1917. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  1918. }
  1919. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  1920. // const uint16_t * i16 = (const uint16_t *) x;
  1921. // for (int i = 0; i < n; ++i) {
  1922. // y[i] = ggml_table_gelu_quick_f16[i16[i]];
  1923. // }
  1924. //}
  1925. #ifdef GGML_GELU_QUICK_FP16
  1926. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1927. uint16_t t;
  1928. for (int i = 0; i < n; ++i) {
  1929. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  1930. memcpy(&t, &fp16, sizeof(uint16_t));
  1931. y[i] = GGML_FP16_TO_FP32(ggml_table_gelu_quick_f16[t]);
  1932. }
  1933. }
  1934. #else
  1935. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  1936. for (int i = 0; i < n; ++i) {
  1937. y[i] = ggml_gelu_quick_f32(x[i]);
  1938. }
  1939. }
  1940. #endif
  1941. // Sigmoid Linear Unit (SiLU) function
  1942. inline static float ggml_silu_f32(float x) {
  1943. return x/(1.0f + expf(-x));
  1944. }
  1945. #if __FINITE_MATH_ONLY__
  1946. #error "some routines in ggml.c require non-finite math arithmetics -- pass -fno-finite-math-only to the compiler to fix"
  1947. #error "ref: https://github.com/ggerganov/llama.cpp/pull/7154#issuecomment-2143844461"
  1948. #endif
  1949. #if defined(__ARM_NEON) && defined(__aarch64__)
  1950. // adapted from arm limited optimized routine
  1951. // the maximum error is 1.45358 plus 0.5 ulps
  1952. // numbers above 88.38 will flush to infinity
  1953. // numbers beneath -103.97 will flush to zero
  1954. inline static float32x4_t ggml_v_expf(float32x4_t x) {
  1955. const float32x4_t r = vdupq_n_f32(0x1.8p23f);
  1956. const float32x4_t z = vfmaq_f32(r, x, vdupq_n_f32(0x1.715476p+0f));
  1957. const float32x4_t n = vsubq_f32(z, r);
  1958. const float32x4_t b = vfmsq_f32(vfmsq_f32(x, n, vdupq_n_f32(0x1.62e4p-1f)), n,
  1959. vdupq_n_f32(0x1.7f7d1cp-20f));
  1960. const uint32x4_t e = vshlq_n_u32(vreinterpretq_u32_f32(z), 23);
  1961. const float32x4_t k = vreinterpretq_f32_u32(vaddq_u32(e, vreinterpretq_u32_f32(vdupq_n_f32(1))));
  1962. const uint32x4_t c = vcagtq_f32(n, vdupq_n_f32(126));
  1963. const float32x4_t u = vmulq_f32(b, b);
  1964. const float32x4_t j = vfmaq_f32(
  1965. vmulq_f32(vdupq_n_f32(0x1.ffffecp-1f), b),
  1966. vfmaq_f32(vfmaq_f32(vdupq_n_f32(0x1.fffdb6p-2f), vdupq_n_f32(0x1.555e66p-3f), b),
  1967. vfmaq_f32(vdupq_n_f32(0x1.573e2ep-5f), vdupq_n_f32(0x1.0e4020p-7f), b), u), u);
  1968. if (!vpaddd_u64(vreinterpretq_u64_u32(c)))
  1969. return vfmaq_f32(k, j, k);
  1970. const uint32x4_t d = vandq_u32(vclezq_f32(n), vdupq_n_u32(0x82000000));
  1971. const float32x4_t s1 = vreinterpretq_f32_u32(vaddq_u32(d, vdupq_n_u32(0x7f000000)));
  1972. const float32x4_t s2 = vreinterpretq_f32_u32(vsubq_u32(e, d));
  1973. return vbslq_f32(vcagtq_f32(n, vdupq_n_f32(192)), vmulq_f32(s1, s1),
  1974. vbslq_f32(c, vmulq_f32(vfmaq_f32(s2, s2, j), s1), vfmaq_f32(k, k, j)));
  1975. }
  1976. // computes silu x/(1+exp(-x)) in single precision vector
  1977. inline static float32x4_t ggml_v_silu(float32x4_t x) {
  1978. const float32x4_t one = vdupq_n_f32(1.0f);
  1979. const float32x4_t zero = vdupq_n_f32(0.0f);
  1980. const float32x4_t neg_x = vsubq_f32(zero, x);
  1981. const float32x4_t exp_neg_x = ggml_v_expf(neg_x);
  1982. const float32x4_t one_plus_exp_neg_x = vaddq_f32(one, exp_neg_x);
  1983. return vdivq_f32(x, one_plus_exp_neg_x);
  1984. }
  1985. #elif defined(__AVX512F__) && defined(__AVX512DQ__)
  1986. // adapted from arm limited optimized routine
  1987. // the maximum error is 1.45358 plus 0.5 ulps
  1988. // numbers above 88.38 will flush to infinity
  1989. // numbers beneath -103.97 will flush to zero
  1990. inline static __m512 ggml_v_expf(__m512 x) {
  1991. const __m512 r = _mm512_set1_ps(0x1.8p23f);
  1992. const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
  1993. const __m512 n = _mm512_sub_ps(z, r);
  1994. const __m512 b =
  1995. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
  1996. _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
  1997. const __mmask16 d =
  1998. _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
  1999. const __m512 u = _mm512_mul_ps(b, b);
  2000. const __m512 j = _mm512_fmadd_ps(
  2001. _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
  2002. _mm512_set1_ps(0x1.573e2ep-5f)),
  2003. u,
  2004. _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
  2005. _mm512_set1_ps(0x1.fffdb6p-2f))),
  2006. u,
  2007. _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
  2008. const __m512 res = _mm512_scalef_ps(j, n);
  2009. if (_mm512_kortestz(d, d))
  2010. return res;
  2011. const __m512 zero = _mm512_setzero_ps();
  2012. const __m512 alt = _mm512_mask_blend_ps(
  2013. _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
  2014. return _mm512_mask_blend_ps(d, res, alt);
  2015. }
  2016. // computes silu x/(1+exp(-x)) in single precision vector
  2017. inline static __m512 ggml_v_silu(__m512 x) {
  2018. const __m512 one = _mm512_set1_ps(1);
  2019. const __m512 zero = _mm512_setzero_ps();
  2020. const __m512 neg_x = _mm512_sub_ps(zero, x);
  2021. const __m512 exp_neg_x = ggml_v_expf(neg_x);
  2022. const __m512 one_plus_exp_neg_x = _mm512_add_ps(one, exp_neg_x);
  2023. return _mm512_div_ps(x, one_plus_exp_neg_x);
  2024. }
  2025. #elif defined(__AVX2__) && defined(__FMA__)
  2026. // adapted from arm limited optimized routine
  2027. // the maximum error is 1.45358 plus 0.5 ulps
  2028. // numbers above 88.38 will flush to infinity
  2029. // numbers beneath -103.97 will flush to zero
  2030. inline static __m256 ggml_v_expf(__m256 x) {
  2031. const __m256 r = _mm256_set1_ps(0x1.8p23f);
  2032. const __m256 z = _mm256_fmadd_ps(x, _mm256_set1_ps(0x1.715476p+0f), r);
  2033. const __m256 n = _mm256_sub_ps(z, r);
  2034. const __m256 b = _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.7f7d1cp-20f),
  2035. _mm256_fnmadd_ps(n, _mm256_set1_ps(0x1.62e4p-1f), x));
  2036. const __m256i e = _mm256_slli_epi32(_mm256_castps_si256(z), 23);
  2037. const __m256 k = _mm256_castsi256_ps(
  2038. _mm256_add_epi32(e, _mm256_castps_si256(_mm256_set1_ps(1))));
  2039. const __m256i c = _mm256_castps_si256(
  2040. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2041. _mm256_set1_ps(126), _CMP_GT_OQ));
  2042. const __m256 u = _mm256_mul_ps(b, b);
  2043. const __m256 j = _mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_fmadd_ps(_mm256_set1_ps(0x1.0e4020p-7f), b,
  2044. _mm256_set1_ps(0x1.573e2ep-5f)), u,
  2045. _mm256_fmadd_ps(_mm256_set1_ps(0x1.555e66p-3f), b,
  2046. _mm256_set1_ps(0x1.fffdb6p-2f))),
  2047. u, _mm256_mul_ps(_mm256_set1_ps(0x1.ffffecp-1f), b));
  2048. if (!_mm256_movemask_ps(_mm256_castsi256_ps(c)))
  2049. return _mm256_fmadd_ps(j, k, k);
  2050. const __m256i g = _mm256_and_si256(
  2051. _mm256_castps_si256(_mm256_cmp_ps(n, _mm256_setzero_ps(), _CMP_LE_OQ)),
  2052. _mm256_set1_epi32(0x82000000u));
  2053. const __m256 s1 =
  2054. _mm256_castsi256_ps(_mm256_add_epi32(g, _mm256_set1_epi32(0x7f000000u)));
  2055. const __m256 s2 = _mm256_castsi256_ps(_mm256_sub_epi32(e, g));
  2056. const __m256i d = _mm256_castps_si256(
  2057. _mm256_cmp_ps(_mm256_andnot_ps(_mm256_set1_ps(-0.f), n),
  2058. _mm256_set1_ps(192), _CMP_GT_OQ));
  2059. return _mm256_or_ps(
  2060. _mm256_and_ps(_mm256_castsi256_ps(d), _mm256_mul_ps(s1, s1)),
  2061. _mm256_andnot_ps(
  2062. _mm256_castsi256_ps(d),
  2063. _mm256_or_ps(
  2064. _mm256_and_ps(_mm256_castsi256_ps(c),
  2065. _mm256_mul_ps(_mm256_fmadd_ps(s2, j, s2), s1)),
  2066. _mm256_andnot_ps(_mm256_castsi256_ps(c), _mm256_fmadd_ps(k, j, k)))));
  2067. }
  2068. // computes silu x/(1+exp(-x)) in single precision vector
  2069. inline static __m256 ggml_v_silu(__m256 x) {
  2070. const __m256 one = _mm256_set1_ps(1);
  2071. const __m256 zero = _mm256_setzero_ps();
  2072. const __m256 neg_x = _mm256_sub_ps(zero, x);
  2073. const __m256 exp_neg_x = ggml_v_expf(neg_x);
  2074. const __m256 one_plus_exp_neg_x = _mm256_add_ps(one, exp_neg_x);
  2075. return _mm256_div_ps(x, one_plus_exp_neg_x);
  2076. }
  2077. #elif defined(__SSE2__) // __AVX2__ / __ARM_NEON
  2078. #if defined(__FMA__)
  2079. #define MADD128(x, y, z) _mm_fmadd_ps(x, y, z)
  2080. #define NMADD128(x, y, z) _mm_fnmadd_ps(x, y, z)
  2081. #else
  2082. #define MADD128(x, y, z) _mm_add_ps(_mm_mul_ps(x, y), z)
  2083. #define NMADD128(x, y, z) _mm_sub_ps(z, _mm_mul_ps(x, y))
  2084. #endif
  2085. // adapted from arm limited optimized routine
  2086. // the maximum error is 1.45358 plus 0.5 ulps
  2087. // numbers above 88.38 will flush to infinity
  2088. // numbers beneath -103.97 will flush to zero
  2089. inline static __m128 ggml_v_expf(__m128 x) {
  2090. const __m128 r = _mm_set1_ps(0x1.8p23f);
  2091. const __m128 z = MADD128(x, _mm_set1_ps(0x1.715476p+0f), r);
  2092. const __m128 n = _mm_sub_ps(z, r);
  2093. const __m128 b =
  2094. NMADD128(n, _mm_set1_ps(0x1.7f7d1cp-20f), NMADD128(n, _mm_set1_ps(0x1.62e4p-1f), x));
  2095. const __m128i e = _mm_slli_epi32(_mm_castps_si128(z), 23);
  2096. const __m128 k = _mm_castsi128_ps(_mm_add_epi32(e, _mm_castps_si128(_mm_set1_ps(1))));
  2097. const __m128i c =
  2098. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(126)));
  2099. const __m128 u = _mm_mul_ps(b, b);
  2100. const __m128 j =
  2101. MADD128(MADD128(MADD128(_mm_set1_ps(0x1.0e4020p-7f), b, _mm_set1_ps(0x1.573e2ep-5f)), u,
  2102. MADD128(_mm_set1_ps(0x1.555e66p-3f), b, _mm_set1_ps(0x1.fffdb6p-2f))),
  2103. u, _mm_mul_ps(_mm_set1_ps(0x1.ffffecp-1f), b));
  2104. if (!_mm_movemask_epi8(c))
  2105. return MADD128(j, k, k);
  2106. const __m128i g = _mm_and_si128(_mm_castps_si128(_mm_cmple_ps(n, _mm_setzero_ps())),
  2107. _mm_set1_epi32(0x82000000u));
  2108. const __m128 s1 = _mm_castsi128_ps(_mm_add_epi32(g, _mm_set1_epi32(0x7f000000u)));
  2109. const __m128 s2 = _mm_castsi128_ps(_mm_sub_epi32(e, g));
  2110. const __m128i d =
  2111. _mm_castps_si128(_mm_cmpgt_ps(_mm_andnot_ps(_mm_set1_ps(-0.f), n), _mm_set1_ps(192)));
  2112. return _mm_or_ps(
  2113. _mm_and_ps(_mm_castsi128_ps(d), _mm_mul_ps(s1, s1)),
  2114. _mm_andnot_ps(_mm_castsi128_ps(d),
  2115. _mm_or_ps(_mm_and_ps(_mm_castsi128_ps(c), _mm_mul_ps(MADD128(s2, j, s2), s1)),
  2116. _mm_andnot_ps(_mm_castsi128_ps(c), MADD128(k, j, k)))));
  2117. }
  2118. // computes silu x/(1+exp(-x)) in single precision vector
  2119. inline static __m128 ggml_v_silu(__m128 x) {
  2120. const __m128 one = _mm_set1_ps(1);
  2121. const __m128 zero = _mm_setzero_ps();
  2122. const __m128 neg_x = _mm_sub_ps(zero, x);
  2123. const __m128 exp_neg_x = ggml_v_expf(neg_x);
  2124. const __m128 one_plus_exp_neg_x = _mm_add_ps(one, exp_neg_x);
  2125. return _mm_div_ps(x, one_plus_exp_neg_x);
  2126. }
  2127. #endif // __ARM_NEON / __AVX2__ / __SSE2__
  2128. static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2129. int i = 0;
  2130. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2131. for (; i + 15 < n; i += 16) {
  2132. _mm512_storeu_ps(y + i, ggml_v_silu(_mm512_loadu_ps(x + i)));
  2133. }
  2134. #elif defined(__AVX2__) && defined(__FMA__)
  2135. for (; i + 7 < n; i += 8) {
  2136. _mm256_storeu_ps(y + i, ggml_v_silu(_mm256_loadu_ps(x + i)));
  2137. }
  2138. #elif defined(__SSE2__)
  2139. for (; i + 3 < n; i += 4) {
  2140. _mm_storeu_ps(y + i, ggml_v_silu(_mm_loadu_ps(x + i)));
  2141. }
  2142. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2143. for (; i + 3 < n; i += 4) {
  2144. vst1q_f32(y + i, ggml_v_silu(vld1q_f32(x + i)));
  2145. }
  2146. #endif
  2147. for (; i < n; ++i) {
  2148. y[i] = ggml_silu_f32(x[i]);
  2149. }
  2150. }
  2151. static ggml_float ggml_vec_soft_max_f32(const int n, float * y, const float * x, float max) {
  2152. int i = 0;
  2153. ggml_float sum = 0;
  2154. #if defined(__AVX512F__) && defined(__AVX512DQ__)
  2155. for (; i + 15 < n; i += 16) {
  2156. __m512 val = ggml_v_expf(_mm512_sub_ps(_mm512_loadu_ps(x + i),
  2157. _mm512_set1_ps(max)));
  2158. _mm512_storeu_ps(y + i, val);
  2159. sum += (ggml_float)_mm512_reduce_add_ps(val);
  2160. }
  2161. #elif defined(__AVX2__) && defined(__FMA__)
  2162. for (; i + 7 < n; i += 8) {
  2163. __m256 val = ggml_v_expf(_mm256_sub_ps(_mm256_loadu_ps(x + i),
  2164. _mm256_set1_ps(max)));
  2165. _mm256_storeu_ps(y + i, val);
  2166. __m128 val2 = _mm_add_ps(_mm256_extractf128_ps(val, 1),
  2167. _mm256_castps256_ps128(val));
  2168. val2 = _mm_add_ps(val2, _mm_movehl_ps(val2, val2));
  2169. val2 = _mm_add_ss(val2, _mm_movehdup_ps(val2));
  2170. sum += (ggml_float)_mm_cvtss_f32(val2);
  2171. }
  2172. #elif defined(__SSE2__)
  2173. for (; i + 3 < n; i += 4) {
  2174. __m128 val = ggml_v_expf(_mm_sub_ps(_mm_loadu_ps(x + i),
  2175. _mm_set1_ps(max)));
  2176. _mm_storeu_ps(y + i, val);
  2177. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__)
  2178. val = _mm_add_ps(val, _mm_movehl_ps(val, val));
  2179. val = _mm_add_ss(val, _mm_movehdup_ps(val));
  2180. #else
  2181. __m128 tmp = _mm_shuffle_ps(val, val, _MM_SHUFFLE(2, 3, 0, 1));
  2182. val = _mm_add_ps(val, tmp);
  2183. tmp = _mm_movehl_ps(tmp, val);
  2184. val = _mm_add_ss(val, tmp);
  2185. #endif
  2186. sum += (ggml_float)_mm_cvtss_f32(val);
  2187. }
  2188. #elif defined(__ARM_NEON) && defined(__aarch64__)
  2189. for (; i + 3 < n; i += 4) {
  2190. float32x4_t val = ggml_v_expf(vsubq_f32(vld1q_f32(x + i),
  2191. vdupq_n_f32(max)));
  2192. vst1q_f32(y + i, val);
  2193. sum += (ggml_float)vaddvq_f32(val);
  2194. }
  2195. #endif
  2196. for (; i < n; ++i) {
  2197. float val = expf(x[i] - max);
  2198. sum += (ggml_float)val;
  2199. y[i] = val;
  2200. }
  2201. return sum;
  2202. }
  2203. inline static float ggml_silu_backward_f32(float x, float dy) {
  2204. const float s = 1.0f/(1.0f + expf(-x));
  2205. return dy*s*(1.0f + x*(1.0f - s));
  2206. }
  2207. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2208. for (int i = 0; i < n; ++i) {
  2209. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2210. }
  2211. }
  2212. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2213. #ifndef GGML_USE_ACCELERATE
  2214. ggml_float sum = 0.0;
  2215. for (int i = 0; i < n; ++i) {
  2216. sum += (ggml_float)x[i];
  2217. }
  2218. *s = sum;
  2219. #else
  2220. vDSP_sve(x, 1, s, n);
  2221. #endif
  2222. }
  2223. inline static void ggml_vec_sum_f32_ggf(const int n, ggml_float * s, const float * x) {
  2224. ggml_float sum = 0.0;
  2225. for (int i = 0; i < n; ++i) {
  2226. sum += (ggml_float)x[i];
  2227. }
  2228. *s = sum;
  2229. }
  2230. inline static void ggml_vec_sum_f16_ggf(const int n, float * s, const ggml_fp16_t * x) {
  2231. float sum = 0.0f;
  2232. for (int i = 0; i < n; ++i) {
  2233. sum += GGML_FP16_TO_FP32(x[i]);
  2234. }
  2235. *s = sum;
  2236. }
  2237. inline static void ggml_vec_sum_bf16_ggf(const int n, float * s, const ggml_bf16_t * x) {
  2238. float sum = 0.0f;
  2239. for (int i = 0; i < n; ++i) {
  2240. sum += GGML_BF16_TO_FP32(x[i]);
  2241. }
  2242. *s = sum;
  2243. }
  2244. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2245. #ifndef GGML_USE_ACCELERATE
  2246. float max = -INFINITY;
  2247. for (int i = 0; i < n; ++i) {
  2248. max = MAX(max, x[i]);
  2249. }
  2250. *s = max;
  2251. #else
  2252. vDSP_maxv(x, 1, s, n);
  2253. #endif
  2254. }
  2255. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2256. ggml_vec_norm_f32(n, s, x);
  2257. *s = 1.f/(*s);
  2258. }
  2259. inline static void ggml_vec_argmax_f32(const int n, int * s, const float * x) {
  2260. float max = -INFINITY;
  2261. int idx = 0;
  2262. for (int i = 0; i < n; ++i) {
  2263. max = MAX(max, x[i]);
  2264. if (max == x[i]) { idx = i; }
  2265. }
  2266. *s = idx;
  2267. }
  2268. //
  2269. // data types
  2270. //
  2271. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  2272. "NONE",
  2273. "DUP",
  2274. "ADD",
  2275. "ADD1",
  2276. "ACC",
  2277. "SUB",
  2278. "MUL",
  2279. "DIV",
  2280. "SQR",
  2281. "SQRT",
  2282. "LOG",
  2283. "SUM",
  2284. "SUM_ROWS",
  2285. "MEAN",
  2286. "ARGMAX",
  2287. "REPEAT",
  2288. "REPEAT_BACK",
  2289. "CONCAT",
  2290. "SILU_BACK",
  2291. "NORM",
  2292. "RMS_NORM",
  2293. "RMS_NORM_BACK",
  2294. "GROUP_NORM",
  2295. "MUL_MAT",
  2296. "MUL_MAT_ID",
  2297. "OUT_PROD",
  2298. "SCALE",
  2299. "SET",
  2300. "CPY",
  2301. "CONT",
  2302. "RESHAPE",
  2303. "VIEW",
  2304. "PERMUTE",
  2305. "TRANSPOSE",
  2306. "GET_ROWS",
  2307. "GET_ROWS_BACK",
  2308. "DIAG",
  2309. "DIAG_MASK_INF",
  2310. "DIAG_MASK_ZERO",
  2311. "SOFT_MAX",
  2312. "SOFT_MAX_BACK",
  2313. "ROPE",
  2314. "ROPE_BACK",
  2315. "CLAMP",
  2316. "CONV_TRANSPOSE_1D",
  2317. "IM2COL",
  2318. "CONV_TRANSPOSE_2D",
  2319. "POOL_1D",
  2320. "POOL_2D",
  2321. "UPSCALE",
  2322. "PAD",
  2323. "ARANGE",
  2324. "TIMESTEP_EMBEDDING",
  2325. "ARGSORT",
  2326. "LEAKY_RELU",
  2327. "FLASH_ATTN_EXT",
  2328. "FLASH_ATTN_BACK",
  2329. "SSM_CONV",
  2330. "SSM_SCAN",
  2331. "WIN_PART",
  2332. "WIN_UNPART",
  2333. "GET_REL_POS",
  2334. "ADD_REL_POS",
  2335. "UNARY",
  2336. "MAP_UNARY",
  2337. "MAP_BINARY",
  2338. "MAP_CUSTOM1_F32",
  2339. "MAP_CUSTOM2_F32",
  2340. "MAP_CUSTOM3_F32",
  2341. "MAP_CUSTOM1",
  2342. "MAP_CUSTOM2",
  2343. "MAP_CUSTOM3",
  2344. "CROSS_ENTROPY_LOSS",
  2345. "CROSS_ENTROPY_LOSS_BACK",
  2346. };
  2347. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2348. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  2349. "none",
  2350. "x",
  2351. "x+y",
  2352. "x+y",
  2353. "view(x,nb,offset)+=y->x",
  2354. "x-y",
  2355. "x*y",
  2356. "x/y",
  2357. "x^2",
  2358. "√x",
  2359. "log(x)",
  2360. "Σx",
  2361. "Σx_k",
  2362. "Σx/n",
  2363. "argmax(x)",
  2364. "repeat(x)",
  2365. "repeat_back(x)",
  2366. "concat(x, y)",
  2367. "silu_back(x)",
  2368. "norm(x)",
  2369. "rms_norm(x)",
  2370. "rms_norm_back(x)",
  2371. "group_norm(x)",
  2372. "X*Y",
  2373. "X[i]*Y",
  2374. "X*Y",
  2375. "x*v",
  2376. "y-\\>view(x)",
  2377. "x-\\>y",
  2378. "cont(x)",
  2379. "reshape(x)",
  2380. "view(x)",
  2381. "permute(x)",
  2382. "transpose(x)",
  2383. "get_rows(x)",
  2384. "get_rows_back(x)",
  2385. "diag(x)",
  2386. "diag_mask_inf(x)",
  2387. "diag_mask_zero(x)",
  2388. "soft_max(x)",
  2389. "soft_max_back(x)",
  2390. "rope(x)",
  2391. "rope_back(x)",
  2392. "clamp(x)",
  2393. "conv_transpose_1d(x)",
  2394. "im2col(x)",
  2395. "conv_transpose_2d(x)",
  2396. "pool_1d(x)",
  2397. "pool_2d(x)",
  2398. "upscale(x)",
  2399. "pad(x)",
  2400. "arange(start, stop, step)",
  2401. "timestep_embedding(timesteps, dim, max_period)",
  2402. "argsort(x)",
  2403. "leaky_relu(x)",
  2404. "flash_attn_ext(x)",
  2405. "flash_attn_back(x)",
  2406. "ssm_conv(x)",
  2407. "ssm_scan(x)",
  2408. "win_part(x)",
  2409. "win_unpart(x)",
  2410. "get_rel_pos(x)",
  2411. "add_rel_pos(x)",
  2412. "unary(x)",
  2413. "f(x)",
  2414. "f(x,y)",
  2415. "custom_f32(x)",
  2416. "custom_f32(x,y)",
  2417. "custom_f32(x,y,z)",
  2418. "custom(x)",
  2419. "custom(x,y)",
  2420. "custom(x,y,z)",
  2421. "cross_entropy_loss(x,y)",
  2422. "cross_entropy_loss_back(x,y)",
  2423. };
  2424. static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
  2425. static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
  2426. static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = {
  2427. "ABS",
  2428. "SGN",
  2429. "NEG",
  2430. "STEP",
  2431. "TANH",
  2432. "ELU",
  2433. "RELU",
  2434. "SIGMOID",
  2435. "GELU",
  2436. "GELU_QUICK",
  2437. "SILU",
  2438. "HARDSWISH",
  2439. "HARDSIGMOID",
  2440. };
  2441. static_assert(GGML_UNARY_OP_COUNT == 13, "GGML_UNARY_OP_COUNT != 13");
  2442. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  2443. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  2444. //
  2445. // NUMA support
  2446. //
  2447. #define GGML_NUMA_MAX_NODES 8
  2448. #define GGML_NUMA_MAX_CPUS 512
  2449. struct ggml_numa_node {
  2450. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  2451. uint32_t n_cpus;
  2452. };
  2453. struct ggml_numa_nodes {
  2454. enum ggml_numa_strategy numa_strategy;
  2455. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  2456. uint32_t n_nodes;
  2457. uint32_t total_cpus; // hardware threads on system
  2458. uint32_t current_node; // node on which main process is execting
  2459. #if defined(__gnu_linux__)
  2460. cpu_set_t cpuset; // cpuset from numactl
  2461. #else
  2462. uint32_t cpuset; // no NUMA support outside of Linux at this time. Use a portable datatype
  2463. #endif
  2464. };
  2465. //
  2466. // ggml state
  2467. //
  2468. struct ggml_state {
  2469. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  2470. struct ggml_numa_nodes numa;
  2471. };
  2472. // global state
  2473. static struct ggml_state g_state;
  2474. static atomic_flag g_state_critical = ATOMIC_FLAG_INIT;
  2475. // critical section via spin lock
  2476. inline static void ggml_critical_section_start(void) {
  2477. while (atomic_flag_test_and_set(&g_state_critical)) {
  2478. // spin
  2479. sched_yield();
  2480. }
  2481. }
  2482. #ifdef GGML_USE_OPENMP
  2483. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2484. if (shared->n_threads == 1) {
  2485. return;
  2486. }
  2487. #pragma omp barrier
  2488. }
  2489. #else
  2490. static void ggml_barrier(struct ggml_compute_state_shared * shared) {
  2491. if (shared->n_threads == 1) {
  2492. return;
  2493. }
  2494. atomic_int * n_barrier = &shared->n_barrier;
  2495. atomic_int * n_barrier_passed = &shared->n_barrier_passed;
  2496. int n_threads = shared->n_threads;
  2497. int passed_old = atomic_load(n_barrier_passed);
  2498. if (atomic_fetch_add(n_barrier, 1) == n_threads - 1) {
  2499. // last thread
  2500. atomic_store(n_barrier, 0);
  2501. atomic_fetch_add(n_barrier_passed, 1);
  2502. } else {
  2503. // wait for other threads
  2504. const int n_spin_before_sleep = 100000;
  2505. while (true) {
  2506. for (int i = 0; i < n_spin_before_sleep; i++) {
  2507. if (atomic_load(n_barrier_passed) != passed_old) {
  2508. return;
  2509. }
  2510. #if defined(__SSE3__)
  2511. _mm_pause();
  2512. #endif
  2513. }
  2514. sched_yield();
  2515. }
  2516. }
  2517. }
  2518. #endif
  2519. // TODO: make this somehow automatically executed
  2520. // some sort of "sentry" mechanism
  2521. inline static void ggml_critical_section_end(void) {
  2522. atomic_flag_clear(&g_state_critical);
  2523. }
  2524. #if defined(__gnu_linux__)
  2525. static cpu_set_t ggml_get_numa_affinity(void) {
  2526. cpu_set_t cpuset;
  2527. pthread_t thread;
  2528. thread = pthread_self();
  2529. CPU_ZERO(&cpuset);
  2530. pthread_getaffinity_np(thread, sizeof(cpu_set_t), &cpuset);
  2531. return cpuset;
  2532. }
  2533. #else
  2534. static uint32_t ggml_get_numa_affinity(void) {
  2535. return 0; // no NUMA support
  2536. }
  2537. #endif
  2538. void ggml_numa_init(enum ggml_numa_strategy numa_flag) {
  2539. if (g_state.numa.n_nodes > 0) {
  2540. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  2541. return;
  2542. }
  2543. #if defined(__gnu_linux__)
  2544. struct stat st;
  2545. char path[256];
  2546. int rv;
  2547. // set numa scheme
  2548. g_state.numa.numa_strategy = numa_flag;
  2549. GGML_PRINT_DEBUG("numa strategy %u\n",g_state.numa.numa_strategy);
  2550. g_state.numa.cpuset = ggml_get_numa_affinity();
  2551. // enumerate nodes
  2552. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  2553. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  2554. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2555. if (stat(path, &st) != 0) { break; }
  2556. ++g_state.numa.n_nodes;
  2557. }
  2558. // enumerate CPUs
  2559. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  2560. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  2561. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2562. if (stat(path, &st) != 0) { break; }
  2563. ++g_state.numa.total_cpus;
  2564. }
  2565. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  2566. // figure out which node we're on
  2567. uint current_cpu;
  2568. int getcpu_ret = 0;
  2569. #if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ > 28) || defined(__COSMOPOLITAN__)
  2570. getcpu_ret = getcpu(&current_cpu, &g_state.numa.current_node);
  2571. #else
  2572. // old glibc doesn't have a wrapper for this call. Fall back on direct syscall
  2573. # if !defined(SYS_getcpu) && defined(SYS_get_cpu)
  2574. # define SYS_getcpu SYS_get_cpu // some older glibc versions use this name
  2575. # endif
  2576. getcpu_ret = syscall(SYS_getcpu, &current_cpu, &g_state.numa.current_node);
  2577. #endif
  2578. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1 || getcpu_ret != 0) {
  2579. g_state.numa.n_nodes = 0;
  2580. return;
  2581. }
  2582. GGML_PRINT_DEBUG("found our process on numa node %u, CPU %u\n", g_state.numa.current_node, current_cpu);
  2583. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  2584. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  2585. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  2586. node->n_cpus = 0;
  2587. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  2588. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  2589. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  2590. if (stat(path, &st) == 0) {
  2591. node->cpus[node->n_cpus++] = c;
  2592. GGML_PRINT_DEBUG(" %u", c);
  2593. }
  2594. }
  2595. GGML_PRINT_DEBUG("\n");
  2596. }
  2597. if (ggml_is_numa()) {
  2598. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  2599. if (fptr != NULL) {
  2600. char buf[42];
  2601. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  2602. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  2603. }
  2604. fclose(fptr);
  2605. }
  2606. }
  2607. #else
  2608. UNUSED(numa_flag);
  2609. // TODO
  2610. #endif
  2611. }
  2612. bool ggml_is_numa(void) {
  2613. return g_state.numa.n_nodes > 1;
  2614. }
  2615. ////////////////////////////////////////////////////////////////////////////////
  2616. void ggml_print_object(const struct ggml_object * obj) {
  2617. GGML_PRINT(" - ggml_object: type = %d, offset = %zu, size = %zu, next = %p\n",
  2618. obj->type, obj->offs, obj->size, (const void *) obj->next);
  2619. }
  2620. void ggml_print_objects(const struct ggml_context * ctx) {
  2621. struct ggml_object * obj = ctx->objects_begin;
  2622. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  2623. while (obj != NULL) {
  2624. ggml_print_object(obj);
  2625. obj = obj->next;
  2626. }
  2627. GGML_PRINT("%s: --- end ---\n", __func__);
  2628. }
  2629. GGML_CALL int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  2630. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2631. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2632. }
  2633. GGML_CALL int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  2634. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2635. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  2636. }
  2637. GGML_CALL size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  2638. size_t nbytes;
  2639. size_t blck_size = ggml_blck_size(tensor->type);
  2640. if (blck_size == 1) {
  2641. nbytes = ggml_type_size(tensor->type);
  2642. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2643. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2644. }
  2645. }
  2646. else {
  2647. nbytes = tensor->ne[0]*tensor->nb[0]/blck_size;
  2648. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  2649. nbytes += (tensor->ne[i] - 1)*tensor->nb[i];
  2650. }
  2651. }
  2652. return nbytes;
  2653. }
  2654. size_t ggml_nbytes_pad(const struct ggml_tensor * tensor) {
  2655. return GGML_PAD(ggml_nbytes(tensor), GGML_MEM_ALIGN);
  2656. }
  2657. GGML_CALL int ggml_blck_size(enum ggml_type type) {
  2658. return type_traits[type].blck_size;
  2659. }
  2660. GGML_CALL size_t ggml_type_size(enum ggml_type type) {
  2661. return type_traits[type].type_size;
  2662. }
  2663. GGML_CALL size_t ggml_row_size(enum ggml_type type, int64_t ne) {
  2664. assert(ne % ggml_blck_size(type) == 0);
  2665. return ggml_type_size(type)*ne/ggml_blck_size(type);
  2666. }
  2667. double ggml_type_sizef(enum ggml_type type) {
  2668. return ((double)(type_traits[type].type_size))/type_traits[type].blck_size;
  2669. }
  2670. GGML_CALL const char * ggml_type_name(enum ggml_type type) {
  2671. return type_traits[type].type_name;
  2672. }
  2673. GGML_CALL bool ggml_is_quantized(enum ggml_type type) {
  2674. return type_traits[type].is_quantized;
  2675. }
  2676. GGML_CALL const char * ggml_op_name(enum ggml_op op) {
  2677. return GGML_OP_NAME[op];
  2678. }
  2679. const char * ggml_op_symbol(enum ggml_op op) {
  2680. return GGML_OP_SYMBOL[op];
  2681. }
  2682. const char * ggml_unary_op_name(enum ggml_unary_op op) {
  2683. return GGML_UNARY_OP_NAME[op];
  2684. }
  2685. GGML_CALL const char * ggml_op_desc(const struct ggml_tensor * t) {
  2686. if (t->op == GGML_OP_UNARY) {
  2687. enum ggml_unary_op uop = ggml_get_unary_op(t);
  2688. return ggml_unary_op_name(uop);
  2689. }
  2690. return ggml_op_name(t->op);
  2691. }
  2692. GGML_CALL size_t ggml_element_size(const struct ggml_tensor * tensor) {
  2693. return ggml_type_size(tensor->type);
  2694. }
  2695. bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  2696. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2697. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2698. }
  2699. bool ggml_is_vector(const struct ggml_tensor * tensor) {
  2700. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2701. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2702. }
  2703. bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  2704. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2705. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  2706. }
  2707. bool ggml_is_3d(const struct ggml_tensor * tensor) {
  2708. return tensor->ne[3] == 1;
  2709. }
  2710. int ggml_n_dims(const struct ggml_tensor * tensor) {
  2711. for (int i = GGML_MAX_DIMS - 1; i >= 1; --i) {
  2712. if (tensor->ne[i] > 1) {
  2713. return i + 1;
  2714. }
  2715. }
  2716. return 1;
  2717. }
  2718. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2719. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2720. return (t0->ne[0] == t1->ne[0]) &&
  2721. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2722. (t1->ne[3]%t0->ne[3] == 0);
  2723. }
  2724. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2725. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2726. return (t0->ne[1] == t1->ne[1]) &&
  2727. (t1->ne[2]%t0->ne[2] == 0) && // verify t0 is broadcastable
  2728. (t1->ne[3]%t0->ne[3] == 0);
  2729. }
  2730. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  2731. enum ggml_type wtype = GGML_TYPE_COUNT;
  2732. switch (ftype) {
  2733. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  2734. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  2735. case GGML_FTYPE_MOSTLY_BF16: wtype = GGML_TYPE_BF16; break;
  2736. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  2737. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  2738. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  2739. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  2740. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  2741. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  2742. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  2743. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  2744. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  2745. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  2746. case GGML_FTYPE_MOSTLY_IQ2_XXS: wtype = GGML_TYPE_IQ2_XXS; break;
  2747. case GGML_FTYPE_MOSTLY_IQ2_XS: wtype = GGML_TYPE_IQ2_XS; break;
  2748. case GGML_FTYPE_MOSTLY_IQ3_XXS: wtype = GGML_TYPE_IQ3_XXS; break;
  2749. case GGML_FTYPE_MOSTLY_IQ1_S: wtype = GGML_TYPE_IQ1_S; break;
  2750. case GGML_FTYPE_MOSTLY_IQ1_M: wtype = GGML_TYPE_IQ1_M; break;
  2751. case GGML_FTYPE_MOSTLY_IQ4_NL: wtype = GGML_TYPE_IQ4_NL; break;
  2752. case GGML_FTYPE_MOSTLY_IQ4_XS: wtype = GGML_TYPE_IQ4_XS; break;
  2753. case GGML_FTYPE_MOSTLY_IQ3_S: wtype = GGML_TYPE_IQ3_S; break;
  2754. case GGML_FTYPE_MOSTLY_IQ2_S: wtype = GGML_TYPE_IQ2_S; break;
  2755. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  2756. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  2757. }
  2758. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  2759. return wtype;
  2760. }
  2761. size_t ggml_tensor_overhead(void) {
  2762. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE;
  2763. }
  2764. GGML_CALL bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  2765. return tensor->nb[0] > tensor->nb[1];
  2766. }
  2767. static bool ggml_is_contiguous_n(const struct ggml_tensor * tensor, int n) {
  2768. size_t next_nb = ggml_type_size(tensor->type);
  2769. if (tensor->ne[0] != ggml_blck_size(tensor->type) && tensor->nb[0] != next_nb) {
  2770. return false;
  2771. }
  2772. next_nb *= tensor->ne[0]/ggml_blck_size(tensor->type);
  2773. for (int i = 1; i < GGML_MAX_DIMS; i++) {
  2774. if (tensor->ne[i] != 1) {
  2775. if (i > n) {
  2776. if (tensor->nb[i] != next_nb) {
  2777. return false;
  2778. }
  2779. next_nb *= tensor->ne[i];
  2780. } else {
  2781. // this dimension does not need to be contiguous
  2782. next_nb = tensor->ne[i]*tensor->nb[i];
  2783. }
  2784. }
  2785. }
  2786. return true;
  2787. }
  2788. GGML_CALL bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  2789. return ggml_is_contiguous_0(tensor);
  2790. }
  2791. GGML_CALL bool ggml_is_contiguous_0(const struct ggml_tensor * tensor) {
  2792. return ggml_is_contiguous_n(tensor, 0);
  2793. }
  2794. GGML_CALL bool ggml_is_contiguous_1(const struct ggml_tensor * tensor) {
  2795. return ggml_is_contiguous_n(tensor, 1);
  2796. }
  2797. GGML_CALL bool ggml_is_contiguous_2(const struct ggml_tensor * tensor) {
  2798. return ggml_is_contiguous_n(tensor, 2);
  2799. }
  2800. GGML_CALL bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  2801. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2802. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  2803. }
  2804. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  2805. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2806. return
  2807. tensor->nb[0] == ggml_type_size(tensor->type) &&
  2808. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  2809. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  2810. }
  2811. GGML_CALL bool ggml_is_empty(const struct ggml_tensor * tensor) {
  2812. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  2813. if (tensor->ne[i] == 0) {
  2814. // empty if any dimension has no elements
  2815. return true;
  2816. }
  2817. }
  2818. return false;
  2819. }
  2820. bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2821. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2822. return
  2823. (t0->ne[0] == t1->ne[0]) &&
  2824. (t0->ne[1] == t1->ne[1]) &&
  2825. (t0->ne[2] == t1->ne[2]) &&
  2826. (t0->ne[3] == t1->ne[3]);
  2827. }
  2828. bool ggml_are_same_stride(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2829. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2830. return
  2831. (t0->nb[0] == t1->nb[0]) &&
  2832. (t0->nb[1] == t1->nb[1]) &&
  2833. (t0->nb[2] == t1->nb[2]) &&
  2834. (t0->nb[3] == t1->nb[3]);
  2835. }
  2836. // check if t1 can be represented as a repeatition of t0
  2837. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2838. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2839. return ggml_is_empty(t0) ? ggml_is_empty(t1) :
  2840. (t1->ne[0]%t0->ne[0] == 0) &&
  2841. (t1->ne[1]%t0->ne[1] == 0) &&
  2842. (t1->ne[2]%t0->ne[2] == 0) &&
  2843. (t1->ne[3]%t0->ne[3] == 0);
  2844. }
  2845. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  2846. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  2847. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  2848. }
  2849. static inline int ggml_up32(int n) {
  2850. return (n + 31) & ~31;
  2851. }
  2852. //static inline int ggml_up64(int n) {
  2853. // return (n + 63) & ~63;
  2854. //}
  2855. static inline int ggml_up(int n, int m) {
  2856. // assert m is a power of 2
  2857. GGML_ASSERT((m & (m - 1)) == 0);
  2858. return (n + m - 1) & ~(m - 1);
  2859. }
  2860. // assert that pointer is aligned to GGML_MEM_ALIGN
  2861. #define ggml_assert_aligned(ptr) \
  2862. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  2863. ////////////////////////////////////////////////////////////////////////////////
  2864. struct ggml_context * ggml_init(struct ggml_init_params params) {
  2865. // make this function thread safe
  2866. ggml_critical_section_start();
  2867. static bool is_first_call = true;
  2868. if (is_first_call) {
  2869. // initialize time system (required on Windows)
  2870. ggml_time_init();
  2871. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  2872. {
  2873. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2874. for (int i = 0; i < (1 << 16); ++i) {
  2875. union {
  2876. uint16_t u16;
  2877. ggml_fp16_t fp16;
  2878. } u = {i};
  2879. float f = ggml_table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(u.fp16);
  2880. ggml_table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  2881. ggml_table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  2882. }
  2883. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2884. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2885. }
  2886. // initialize g_state
  2887. {
  2888. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  2889. g_state = (struct ggml_state) {
  2890. /*.contexts =*/ { { 0 } },
  2891. /*.numa =*/ {
  2892. .n_nodes = 0,
  2893. .total_cpus = 0,
  2894. },
  2895. };
  2896. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  2897. g_state.contexts[i].used = false;
  2898. }
  2899. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  2900. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  2901. }
  2902. is_first_call = false;
  2903. }
  2904. // find non-used context in g_state
  2905. struct ggml_context * ctx = NULL;
  2906. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2907. if (!g_state.contexts[i].used) {
  2908. g_state.contexts[i].used = true;
  2909. ctx = &g_state.contexts[i].context;
  2910. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  2911. break;
  2912. }
  2913. }
  2914. if (ctx == NULL) {
  2915. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  2916. ggml_critical_section_end();
  2917. return NULL;
  2918. }
  2919. // allow to call ggml_init with 0 size
  2920. if (params.mem_size == 0) {
  2921. params.mem_size = GGML_MEM_ALIGN;
  2922. }
  2923. const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
  2924. *ctx = (struct ggml_context) {
  2925. /*.mem_size =*/ mem_size,
  2926. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  2927. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  2928. /*.no_alloc =*/ params.no_alloc,
  2929. /*.no_alloc_save =*/ params.no_alloc,
  2930. /*.n_objects =*/ 0,
  2931. /*.objects_begin =*/ NULL,
  2932. /*.objects_end =*/ NULL,
  2933. /*.scratch =*/ { 0, 0, NULL, },
  2934. /*.scratch_save =*/ { 0, 0, NULL, },
  2935. };
  2936. GGML_ASSERT(ctx->mem_buffer != NULL);
  2937. ggml_assert_aligned(ctx->mem_buffer);
  2938. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  2939. ggml_critical_section_end();
  2940. return ctx;
  2941. }
  2942. void ggml_free(struct ggml_context * ctx) {
  2943. if (ctx == NULL) {
  2944. return;
  2945. }
  2946. // make this function thread safe
  2947. ggml_critical_section_start();
  2948. bool found = false;
  2949. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  2950. if (&g_state.contexts[i].context == ctx) {
  2951. g_state.contexts[i].used = false;
  2952. GGML_PRINT_DEBUG("%s: context %d has been freed. memory used = %zu\n",
  2953. __func__, i, ggml_used_mem(ctx));
  2954. if (ctx->mem_buffer_owned) {
  2955. GGML_ALIGNED_FREE(ctx->mem_buffer);
  2956. }
  2957. found = true;
  2958. break;
  2959. }
  2960. }
  2961. if (!found) {
  2962. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  2963. }
  2964. ggml_critical_section_end();
  2965. }
  2966. size_t ggml_used_mem(const struct ggml_context * ctx) {
  2967. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  2968. }
  2969. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  2970. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  2971. ctx->scratch = scratch;
  2972. return result;
  2973. }
  2974. bool ggml_get_no_alloc(struct ggml_context * ctx) {
  2975. return ctx->no_alloc;
  2976. }
  2977. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  2978. ctx->no_alloc = no_alloc;
  2979. }
  2980. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  2981. return ctx->mem_buffer;
  2982. }
  2983. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  2984. return ctx->mem_size;
  2985. }
  2986. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  2987. size_t max_size = 0;
  2988. for (struct ggml_tensor * tensor = ggml_get_first_tensor(ctx); tensor != NULL; tensor = ggml_get_next_tensor(ctx, tensor)) {
  2989. size_t bytes = ggml_nbytes(tensor);
  2990. max_size = MAX(max_size, bytes);
  2991. }
  2992. return max_size;
  2993. }
  2994. // IMPORTANT:
  2995. // when creating "opt" tensors, always save and load the scratch buffer
  2996. // this is an error prone process, but it is necessary to support inplace
  2997. // operators when using scratch buffers
  2998. // TODO: implement a better way
  2999. static void ggml_scratch_save(struct ggml_context * ctx) {
  3000. // this is needed to allow opt tensors to store their data
  3001. // TODO: again, need to find a better way
  3002. ctx->no_alloc_save = ctx->no_alloc;
  3003. ctx->no_alloc = false;
  3004. ctx->scratch_save = ctx->scratch;
  3005. ctx->scratch.data = NULL;
  3006. }
  3007. static void ggml_scratch_load(struct ggml_context * ctx) {
  3008. ctx->no_alloc = ctx->no_alloc_save;
  3009. ctx->scratch = ctx->scratch_save;
  3010. }
  3011. ////////////////////////////////////////////////////////////////////////////////
  3012. static struct ggml_object * ggml_new_object(struct ggml_context * ctx, enum ggml_object_type type, size_t size) {
  3013. // always insert objects at the end of the context's memory pool
  3014. struct ggml_object * obj_cur = ctx->objects_end;
  3015. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3016. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3017. const size_t cur_end = cur_offs + cur_size;
  3018. // align to GGML_MEM_ALIGN
  3019. size_t size_needed = GGML_PAD(size, GGML_MEM_ALIGN);
  3020. char * const mem_buffer = ctx->mem_buffer;
  3021. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3022. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3023. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3024. __func__, cur_end + size_needed, ctx->mem_size);
  3025. assert(false);
  3026. return NULL;
  3027. }
  3028. *obj_new = (struct ggml_object) {
  3029. .offs = cur_end + GGML_OBJECT_SIZE,
  3030. .size = size_needed,
  3031. .next = NULL,
  3032. .type = type,
  3033. };
  3034. ggml_assert_aligned(mem_buffer + obj_new->offs);
  3035. if (obj_cur != NULL) {
  3036. obj_cur->next = obj_new;
  3037. } else {
  3038. // this is the first object in this context
  3039. ctx->objects_begin = obj_new;
  3040. }
  3041. ctx->objects_end = obj_new;
  3042. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3043. return obj_new;
  3044. }
  3045. static struct ggml_tensor * ggml_new_tensor_impl(
  3046. struct ggml_context * ctx,
  3047. enum ggml_type type,
  3048. int n_dims,
  3049. const int64_t * ne,
  3050. struct ggml_tensor * view_src,
  3051. size_t view_offs) {
  3052. assert(n_dims >= 1 && n_dims <= GGML_MAX_DIMS);
  3053. // find the base tensor and absolute offset
  3054. if (view_src != NULL && view_src->view_src != NULL) {
  3055. view_offs += view_src->view_offs;
  3056. view_src = view_src->view_src;
  3057. }
  3058. size_t data_size = ggml_row_size(type, ne[0]);
  3059. for (int i = 1; i < n_dims; i++) {
  3060. data_size *= ne[i];
  3061. }
  3062. GGML_ASSERT(view_src == NULL || data_size == 0 || data_size + view_offs <= ggml_nbytes(view_src));
  3063. void * data = view_src != NULL ? view_src->data : NULL;
  3064. if (data != NULL) {
  3065. data = (char *) data + view_offs;
  3066. }
  3067. size_t obj_alloc_size = 0;
  3068. if (view_src == NULL && !ctx->no_alloc) {
  3069. if (ctx->scratch.data != NULL) {
  3070. // allocate tensor data in the scratch buffer
  3071. if (ctx->scratch.offs + data_size > ctx->scratch.size) {
  3072. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3073. __func__, ctx->scratch.offs + data_size, ctx->scratch.size);
  3074. assert(false);
  3075. return NULL;
  3076. }
  3077. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3078. ctx->scratch.offs += data_size;
  3079. } else {
  3080. // allocate tensor data in the context's memory pool
  3081. obj_alloc_size = data_size;
  3082. }
  3083. }
  3084. struct ggml_object * const obj_new = ggml_new_object(ctx, GGML_OBJECT_TYPE_TENSOR, GGML_TENSOR_SIZE + obj_alloc_size);
  3085. // TODO: for recoverable errors, we would need to free the data allocated from the scratch buffer here
  3086. struct ggml_tensor * const result = (struct ggml_tensor *)((char *)ctx->mem_buffer + obj_new->offs);
  3087. #ifdef __clang__
  3088. // temporary until ggml_tensor::backend is removed
  3089. #pragma clang diagnostic push
  3090. #pragma clang diagnostic ignored "-Wdeprecated-declarations"
  3091. #endif
  3092. *result = (struct ggml_tensor) {
  3093. /*.type =*/ type,
  3094. /*.backend =*/ GGML_BACKEND_TYPE_CPU,
  3095. /*.buffer =*/ NULL,
  3096. /*.ne =*/ { 1, 1, 1, 1 },
  3097. /*.nb =*/ { 0, 0, 0, 0 },
  3098. /*.op =*/ GGML_OP_NONE,
  3099. /*.op_params =*/ { 0 },
  3100. /*.flags =*/ 0,
  3101. /*.grad =*/ NULL,
  3102. /*.src =*/ { NULL },
  3103. /*.view_src =*/ view_src,
  3104. /*.view_offs =*/ view_offs,
  3105. /*.data =*/ obj_alloc_size > 0 ? (void *)(result + 1) : data,
  3106. /*.name =*/ { 0 },
  3107. /*.extra =*/ NULL,
  3108. ///*.padding =*/ { 0 },
  3109. };
  3110. #ifdef __clang__
  3111. #pragma clang diagnostic pop
  3112. #endif
  3113. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3114. //ggml_assert_aligned(result->data);
  3115. for (int i = 0; i < n_dims; i++) {
  3116. result->ne[i] = ne[i];
  3117. }
  3118. result->nb[0] = ggml_type_size(type);
  3119. result->nb[1] = result->nb[0]*(result->ne[0]/ggml_blck_size(type));
  3120. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3121. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3122. }
  3123. ctx->n_objects++;
  3124. return result;
  3125. }
  3126. struct ggml_tensor * ggml_new_tensor(
  3127. struct ggml_context * ctx,
  3128. enum ggml_type type,
  3129. int n_dims,
  3130. const int64_t * ne) {
  3131. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL, 0);
  3132. }
  3133. struct ggml_tensor * ggml_new_tensor_1d(
  3134. struct ggml_context * ctx,
  3135. enum ggml_type type,
  3136. int64_t ne0) {
  3137. return ggml_new_tensor(ctx, type, 1, &ne0);
  3138. }
  3139. struct ggml_tensor * ggml_new_tensor_2d(
  3140. struct ggml_context * ctx,
  3141. enum ggml_type type,
  3142. int64_t ne0,
  3143. int64_t ne1) {
  3144. const int64_t ne[2] = { ne0, ne1 };
  3145. return ggml_new_tensor(ctx, type, 2, ne);
  3146. }
  3147. struct ggml_tensor * ggml_new_tensor_3d(
  3148. struct ggml_context * ctx,
  3149. enum ggml_type type,
  3150. int64_t ne0,
  3151. int64_t ne1,
  3152. int64_t ne2) {
  3153. const int64_t ne[3] = { ne0, ne1, ne2 };
  3154. return ggml_new_tensor(ctx, type, 3, ne);
  3155. }
  3156. struct ggml_tensor * ggml_new_tensor_4d(
  3157. struct ggml_context * ctx,
  3158. enum ggml_type type,
  3159. int64_t ne0,
  3160. int64_t ne1,
  3161. int64_t ne2,
  3162. int64_t ne3) {
  3163. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3164. return ggml_new_tensor(ctx, type, 4, ne);
  3165. }
  3166. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3167. ggml_scratch_save(ctx);
  3168. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3169. ggml_scratch_load(ctx);
  3170. ggml_set_i32(result, value);
  3171. return result;
  3172. }
  3173. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3174. ggml_scratch_save(ctx);
  3175. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3176. ggml_scratch_load(ctx);
  3177. ggml_set_f32(result, value);
  3178. return result;
  3179. }
  3180. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3181. return ggml_new_tensor(ctx, src->type, GGML_MAX_DIMS, src->ne);
  3182. }
  3183. static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
  3184. GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
  3185. assert(params_size <= GGML_MAX_OP_PARAMS);
  3186. memcpy(tensor->op_params, params, params_size);
  3187. }
  3188. static int32_t ggml_get_op_params_i32(const struct ggml_tensor * tensor, uint32_t i) {
  3189. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3190. return ((const int32_t *)(tensor->op_params))[i];
  3191. }
  3192. static float ggml_get_op_params_f32(const struct ggml_tensor * tensor, uint32_t i) {
  3193. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3194. return ((const float *)(tensor->op_params))[i];
  3195. }
  3196. static void ggml_set_op_params_i32(struct ggml_tensor * tensor, uint32_t i, int32_t value) {
  3197. assert(i < GGML_MAX_OP_PARAMS / sizeof(int32_t));
  3198. ((int32_t *)(tensor->op_params))[i] = value;
  3199. }
  3200. static void ggml_set_op_params_f32(struct ggml_tensor * tensor, uint32_t i, float value) {
  3201. assert(i < GGML_MAX_OP_PARAMS / sizeof(float));
  3202. ((float *)(tensor->op_params))[i] = value;
  3203. }
  3204. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3205. memset(tensor->data, 0, ggml_nbytes(tensor));
  3206. return tensor;
  3207. }
  3208. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3209. const int n = ggml_nrows(tensor);
  3210. const int nc = tensor->ne[0];
  3211. const size_t n1 = tensor->nb[1];
  3212. char * const data = tensor->data;
  3213. switch (tensor->type) {
  3214. case GGML_TYPE_I8:
  3215. {
  3216. assert(tensor->nb[0] == sizeof(int8_t));
  3217. for (int i = 0; i < n; i++) {
  3218. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3219. }
  3220. } break;
  3221. case GGML_TYPE_I16:
  3222. {
  3223. assert(tensor->nb[0] == sizeof(int16_t));
  3224. for (int i = 0; i < n; i++) {
  3225. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3226. }
  3227. } break;
  3228. case GGML_TYPE_I32:
  3229. {
  3230. assert(tensor->nb[0] == sizeof(int32_t));
  3231. for (int i = 0; i < n; i++) {
  3232. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3233. }
  3234. } break;
  3235. case GGML_TYPE_F16:
  3236. {
  3237. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3238. for (int i = 0; i < n; i++) {
  3239. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3240. }
  3241. } break;
  3242. case GGML_TYPE_BF16:
  3243. {
  3244. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3245. for (int i = 0; i < n; i++) {
  3246. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3247. }
  3248. } break;
  3249. case GGML_TYPE_F32:
  3250. {
  3251. assert(tensor->nb[0] == sizeof(float));
  3252. for (int i = 0; i < n; i++) {
  3253. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3254. }
  3255. } break;
  3256. default:
  3257. {
  3258. GGML_ASSERT(false);
  3259. } break;
  3260. }
  3261. return tensor;
  3262. }
  3263. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3264. const int n = ggml_nrows(tensor);
  3265. const int nc = tensor->ne[0];
  3266. const size_t n1 = tensor->nb[1];
  3267. char * const data = tensor->data;
  3268. switch (tensor->type) {
  3269. case GGML_TYPE_I8:
  3270. {
  3271. assert(tensor->nb[0] == sizeof(int8_t));
  3272. for (int i = 0; i < n; i++) {
  3273. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3274. }
  3275. } break;
  3276. case GGML_TYPE_I16:
  3277. {
  3278. assert(tensor->nb[0] == sizeof(int16_t));
  3279. for (int i = 0; i < n; i++) {
  3280. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3281. }
  3282. } break;
  3283. case GGML_TYPE_I32:
  3284. {
  3285. assert(tensor->nb[0] == sizeof(int32_t));
  3286. for (int i = 0; i < n; i++) {
  3287. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3288. }
  3289. } break;
  3290. case GGML_TYPE_F16:
  3291. {
  3292. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3293. for (int i = 0; i < n; i++) {
  3294. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), GGML_FP32_TO_FP16(value));
  3295. }
  3296. } break;
  3297. case GGML_TYPE_BF16:
  3298. {
  3299. assert(tensor->nb[0] == sizeof(ggml_bf16_t));
  3300. for (int i = 0; i < n; i++) {
  3301. ggml_vec_set_bf16(nc, (ggml_bf16_t *)(data + i*n1), GGML_FP32_TO_BF16(value));
  3302. }
  3303. } break;
  3304. case GGML_TYPE_F32:
  3305. {
  3306. assert(tensor->nb[0] == sizeof(float));
  3307. for (int i = 0; i < n; i++) {
  3308. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3309. }
  3310. } break;
  3311. default:
  3312. {
  3313. GGML_ASSERT(false);
  3314. } break;
  3315. }
  3316. return tensor;
  3317. }
  3318. void ggml_unravel_index(const struct ggml_tensor * tensor, int64_t i, int64_t * i0, int64_t * i1, int64_t * i2, int64_t * i3) {
  3319. const int64_t ne2 = tensor->ne[2];
  3320. const int64_t ne1 = tensor->ne[1];
  3321. const int64_t ne0 = tensor->ne[0];
  3322. const int64_t i3_ = (i/(ne2*ne1*ne0));
  3323. const int64_t i2_ = (i - i3_*ne2*ne1*ne0)/(ne1*ne0);
  3324. const int64_t i1_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0)/ne0;
  3325. const int64_t i0_ = (i - i3_*ne2*ne1*ne0 - i2_*ne1*ne0 - i1_*ne0);
  3326. if (i0) {
  3327. * i0 = i0_;
  3328. }
  3329. if (i1) {
  3330. * i1 = i1_;
  3331. }
  3332. if (i2) {
  3333. * i2 = i2_;
  3334. }
  3335. if (i3) {
  3336. * i3 = i3_;
  3337. }
  3338. }
  3339. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3340. if (!ggml_is_contiguous(tensor)) {
  3341. int64_t id[4] = { 0, 0, 0, 0 };
  3342. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3343. return ggml_get_i32_nd(tensor, id[0], id[1], id[2], id[3]);
  3344. }
  3345. switch (tensor->type) {
  3346. case GGML_TYPE_I8:
  3347. {
  3348. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3349. return ((int8_t *)(tensor->data))[i];
  3350. }
  3351. case GGML_TYPE_I16:
  3352. {
  3353. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3354. return ((int16_t *)(tensor->data))[i];
  3355. }
  3356. case GGML_TYPE_I32:
  3357. {
  3358. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3359. return ((int32_t *)(tensor->data))[i];
  3360. }
  3361. case GGML_TYPE_F16:
  3362. {
  3363. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3364. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3365. }
  3366. case GGML_TYPE_BF16:
  3367. {
  3368. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3369. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3370. }
  3371. case GGML_TYPE_F32:
  3372. {
  3373. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3374. return ((float *)(tensor->data))[i];
  3375. }
  3376. default:
  3377. {
  3378. GGML_ASSERT(false);
  3379. }
  3380. }
  3381. return 0.0f;
  3382. }
  3383. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3384. if (!ggml_is_contiguous(tensor)) {
  3385. int64_t id[4] = { 0, 0, 0, 0 };
  3386. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3387. ggml_set_i32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3388. return;
  3389. }
  3390. switch (tensor->type) {
  3391. case GGML_TYPE_I8:
  3392. {
  3393. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3394. ((int8_t *)(tensor->data))[i] = value;
  3395. } break;
  3396. case GGML_TYPE_I16:
  3397. {
  3398. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3399. ((int16_t *)(tensor->data))[i] = value;
  3400. } break;
  3401. case GGML_TYPE_I32:
  3402. {
  3403. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3404. ((int32_t *)(tensor->data))[i] = value;
  3405. } break;
  3406. case GGML_TYPE_F16:
  3407. {
  3408. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3409. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3410. } break;
  3411. case GGML_TYPE_BF16:
  3412. {
  3413. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_bf16_t));
  3414. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3415. } break;
  3416. case GGML_TYPE_F32:
  3417. {
  3418. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3419. ((float *)(tensor->data))[i] = value;
  3420. } break;
  3421. default:
  3422. {
  3423. GGML_ASSERT(false);
  3424. } break;
  3425. }
  3426. }
  3427. int32_t ggml_get_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3428. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3429. switch (tensor->type) {
  3430. case GGML_TYPE_I8:
  3431. return ((int8_t *) data)[0];
  3432. case GGML_TYPE_I16:
  3433. return ((int16_t *) data)[0];
  3434. case GGML_TYPE_I32:
  3435. return ((int32_t *) data)[0];
  3436. case GGML_TYPE_F16:
  3437. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3438. case GGML_TYPE_BF16:
  3439. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3440. case GGML_TYPE_F32:
  3441. return ((float *) data)[0];
  3442. default:
  3443. GGML_ASSERT(false);
  3444. }
  3445. return 0.0f;
  3446. }
  3447. void ggml_set_i32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, int32_t value) {
  3448. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3449. switch (tensor->type) {
  3450. case GGML_TYPE_I8:
  3451. {
  3452. ((int8_t *)(data))[0] = value;
  3453. } break;
  3454. case GGML_TYPE_I16:
  3455. {
  3456. ((int16_t *)(data))[0] = value;
  3457. } break;
  3458. case GGML_TYPE_I32:
  3459. {
  3460. ((int32_t *)(data))[0] = value;
  3461. } break;
  3462. case GGML_TYPE_F16:
  3463. {
  3464. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3465. } break;
  3466. case GGML_TYPE_BF16:
  3467. {
  3468. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3469. } break;
  3470. case GGML_TYPE_F32:
  3471. {
  3472. ((float *)(data))[0] = value;
  3473. } break;
  3474. default:
  3475. {
  3476. GGML_ASSERT(false);
  3477. } break;
  3478. }
  3479. }
  3480. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3481. if (!ggml_is_contiguous(tensor)) {
  3482. int64_t id[4] = { 0, 0, 0, 0 };
  3483. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3484. return ggml_get_f32_nd(tensor, id[0], id[1], id[2], id[3]);
  3485. }
  3486. switch (tensor->type) {
  3487. case GGML_TYPE_I8:
  3488. {
  3489. return ((int8_t *)(tensor->data))[i];
  3490. }
  3491. case GGML_TYPE_I16:
  3492. {
  3493. return ((int16_t *)(tensor->data))[i];
  3494. }
  3495. case GGML_TYPE_I32:
  3496. {
  3497. return ((int32_t *)(tensor->data))[i];
  3498. }
  3499. case GGML_TYPE_F16:
  3500. {
  3501. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3502. }
  3503. case GGML_TYPE_BF16:
  3504. {
  3505. return GGML_BF16_TO_FP32(((ggml_bf16_t *)(tensor->data))[i]);
  3506. }
  3507. case GGML_TYPE_F32:
  3508. {
  3509. return ((float *)(tensor->data))[i];
  3510. }
  3511. default:
  3512. {
  3513. GGML_ASSERT(false);
  3514. }
  3515. }
  3516. return 0.0f;
  3517. }
  3518. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3519. if (!ggml_is_contiguous(tensor)) {
  3520. int64_t id[4] = { 0, 0, 0, 0 };
  3521. ggml_unravel_index(tensor, i, &id[0], &id[1], &id[2], &id[3]);
  3522. ggml_set_f32_nd(tensor, id[0], id[1], id[2], id[3], value);
  3523. return;
  3524. }
  3525. switch (tensor->type) {
  3526. case GGML_TYPE_I8:
  3527. {
  3528. ((int8_t *)(tensor->data))[i] = value;
  3529. } break;
  3530. case GGML_TYPE_I16:
  3531. {
  3532. ((int16_t *)(tensor->data))[i] = value;
  3533. } break;
  3534. case GGML_TYPE_I32:
  3535. {
  3536. ((int32_t *)(tensor->data))[i] = value;
  3537. } break;
  3538. case GGML_TYPE_F16:
  3539. {
  3540. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3541. } break;
  3542. case GGML_TYPE_BF16:
  3543. {
  3544. ((ggml_bf16_t *)(tensor->data))[i] = GGML_FP32_TO_BF16(value);
  3545. } break;
  3546. case GGML_TYPE_F32:
  3547. {
  3548. ((float *)(tensor->data))[i] = value;
  3549. } break;
  3550. default:
  3551. {
  3552. GGML_ASSERT(false);
  3553. } break;
  3554. }
  3555. }
  3556. float ggml_get_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3) {
  3557. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3558. switch (tensor->type) {
  3559. case GGML_TYPE_I8:
  3560. return ((int8_t *) data)[0];
  3561. case GGML_TYPE_I16:
  3562. return ((int16_t *) data)[0];
  3563. case GGML_TYPE_I32:
  3564. return ((int32_t *) data)[0];
  3565. case GGML_TYPE_F16:
  3566. return GGML_FP16_TO_FP32(((ggml_fp16_t *) data)[0]);
  3567. case GGML_TYPE_BF16:
  3568. return GGML_BF16_TO_FP32(((ggml_bf16_t *) data)[0]);
  3569. case GGML_TYPE_F32:
  3570. return ((float *) data)[0];
  3571. default:
  3572. GGML_ASSERT(false);
  3573. }
  3574. return 0.0f;
  3575. }
  3576. void ggml_set_f32_nd(const struct ggml_tensor * tensor, int i0, int i1, int i2, int i3, float value) {
  3577. void * data = (char *) tensor->data + i0*tensor->nb[0] + i1*tensor->nb[1] + i2*tensor->nb[2] + i3*tensor->nb[3];
  3578. switch (tensor->type) {
  3579. case GGML_TYPE_I8:
  3580. {
  3581. ((int8_t *)(data))[0] = value;
  3582. } break;
  3583. case GGML_TYPE_I16:
  3584. {
  3585. ((int16_t *)(data))[0] = value;
  3586. } break;
  3587. case GGML_TYPE_I32:
  3588. {
  3589. ((int32_t *)(data))[0] = value;
  3590. } break;
  3591. case GGML_TYPE_F16:
  3592. {
  3593. ((ggml_fp16_t *)(data))[0] = GGML_FP32_TO_FP16(value);
  3594. } break;
  3595. case GGML_TYPE_BF16:
  3596. {
  3597. ((ggml_bf16_t *)(data))[0] = GGML_FP32_TO_BF16(value);
  3598. } break;
  3599. case GGML_TYPE_F32:
  3600. {
  3601. ((float *)(data))[0] = value;
  3602. } break;
  3603. default:
  3604. {
  3605. GGML_ASSERT(false);
  3606. } break;
  3607. }
  3608. }
  3609. void * ggml_get_data(const struct ggml_tensor * tensor) {
  3610. return tensor->data;
  3611. }
  3612. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  3613. assert(tensor->type == GGML_TYPE_F32);
  3614. return (float *)(tensor->data);
  3615. }
  3616. GGML_CALL enum ggml_unary_op ggml_get_unary_op(const struct ggml_tensor * tensor) {
  3617. GGML_ASSERT(tensor->op == GGML_OP_UNARY);
  3618. return (enum ggml_unary_op) ggml_get_op_params_i32(tensor, 0);
  3619. }
  3620. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  3621. return tensor->name;
  3622. }
  3623. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  3624. strncpy(tensor->name, name, sizeof(tensor->name) - 1);
  3625. tensor->name[sizeof(tensor->name) - 1] = '\0';
  3626. return tensor;
  3627. }
  3628. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  3629. va_list args;
  3630. va_start(args, fmt);
  3631. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  3632. va_end(args);
  3633. return tensor;
  3634. }
  3635. struct ggml_tensor * ggml_view_tensor(
  3636. struct ggml_context * ctx,
  3637. struct ggml_tensor * src) {
  3638. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, GGML_MAX_DIMS, src->ne, src, 0);
  3639. ggml_format_name(result, "%s (view)", src->name);
  3640. for (int i = 0; i < GGML_MAX_DIMS; i++) {
  3641. result->nb[i] = src->nb[i];
  3642. }
  3643. return result;
  3644. }
  3645. struct ggml_tensor * ggml_get_first_tensor(const struct ggml_context * ctx) {
  3646. struct ggml_object * obj = ctx->objects_begin;
  3647. char * const mem_buffer = ctx->mem_buffer;
  3648. while (obj != NULL) {
  3649. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3650. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3651. }
  3652. obj = obj->next;
  3653. }
  3654. return NULL;
  3655. }
  3656. struct ggml_tensor * ggml_get_next_tensor(const struct ggml_context * ctx, struct ggml_tensor * tensor) {
  3657. struct ggml_object * obj = (struct ggml_object *) ((char *)tensor - GGML_OBJECT_SIZE);
  3658. obj = obj->next;
  3659. char * const mem_buffer = ctx->mem_buffer;
  3660. while (obj != NULL) {
  3661. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3662. return (struct ggml_tensor *)(mem_buffer + obj->offs);
  3663. }
  3664. obj = obj->next;
  3665. }
  3666. return NULL;
  3667. }
  3668. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  3669. struct ggml_object * obj = ctx->objects_begin;
  3670. char * const mem_buffer = ctx->mem_buffer;
  3671. while (obj != NULL) {
  3672. if (obj->type == GGML_OBJECT_TYPE_TENSOR) {
  3673. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  3674. if (strcmp(cur->name, name) == 0) {
  3675. return cur;
  3676. }
  3677. }
  3678. obj = obj->next;
  3679. }
  3680. return NULL;
  3681. }
  3682. ////////////////////////////////////////////////////////////////////////////////
  3683. // ggml_dup
  3684. static struct ggml_tensor * ggml_dup_impl(
  3685. struct ggml_context * ctx,
  3686. struct ggml_tensor * a,
  3687. bool inplace) {
  3688. bool is_node = false;
  3689. if (!inplace && (a->grad)) {
  3690. is_node = true;
  3691. }
  3692. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3693. result->op = GGML_OP_DUP;
  3694. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3695. result->src[0] = a;
  3696. return result;
  3697. }
  3698. struct ggml_tensor * ggml_dup(
  3699. struct ggml_context * ctx,
  3700. struct ggml_tensor * a) {
  3701. return ggml_dup_impl(ctx, a, false);
  3702. }
  3703. struct ggml_tensor * ggml_dup_inplace(
  3704. struct ggml_context * ctx,
  3705. struct ggml_tensor * a) {
  3706. return ggml_dup_impl(ctx, a, true);
  3707. }
  3708. // ggml_add
  3709. static struct ggml_tensor * ggml_add_impl(
  3710. struct ggml_context * ctx,
  3711. struct ggml_tensor * a,
  3712. struct ggml_tensor * b,
  3713. bool inplace) {
  3714. GGML_ASSERT(ggml_can_repeat(b, a));
  3715. bool is_node = false;
  3716. if (!inplace && (a->grad || b->grad)) {
  3717. // TODO: support backward pass for broadcasting
  3718. GGML_ASSERT(ggml_are_same_shape(a, b));
  3719. is_node = true;
  3720. }
  3721. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3722. result->op = GGML_OP_ADD;
  3723. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3724. result->src[0] = a;
  3725. result->src[1] = b;
  3726. return result;
  3727. }
  3728. struct ggml_tensor * ggml_add(
  3729. struct ggml_context * ctx,
  3730. struct ggml_tensor * a,
  3731. struct ggml_tensor * b) {
  3732. return ggml_add_impl(ctx, a, b, false);
  3733. }
  3734. struct ggml_tensor * ggml_add_inplace(
  3735. struct ggml_context * ctx,
  3736. struct ggml_tensor * a,
  3737. struct ggml_tensor * b) {
  3738. return ggml_add_impl(ctx, a, b, true);
  3739. }
  3740. // ggml_add_cast
  3741. static struct ggml_tensor * ggml_add_cast_impl(
  3742. struct ggml_context * ctx,
  3743. struct ggml_tensor * a,
  3744. struct ggml_tensor * b,
  3745. enum ggml_type type) {
  3746. // TODO: support less-strict constraint
  3747. // GGML_ASSERT(ggml_can_repeat(b, a));
  3748. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  3749. // currently only supported for quantized input and f16
  3750. GGML_ASSERT(ggml_is_quantized(a->type) ||
  3751. a->type == GGML_TYPE_F16 ||
  3752. a->type == GGML_TYPE_BF16);
  3753. bool is_node = false;
  3754. if (a->grad || b->grad) {
  3755. // TODO: support backward pass for broadcasting
  3756. GGML_ASSERT(ggml_are_same_shape(a, b));
  3757. is_node = true;
  3758. }
  3759. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  3760. result->op = GGML_OP_ADD;
  3761. result->grad = is_node ? ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne) : NULL;
  3762. result->src[0] = a;
  3763. result->src[1] = b;
  3764. return result;
  3765. }
  3766. struct ggml_tensor * ggml_add_cast(
  3767. struct ggml_context * ctx,
  3768. struct ggml_tensor * a,
  3769. struct ggml_tensor * b,
  3770. enum ggml_type type) {
  3771. return ggml_add_cast_impl(ctx, a, b, type);
  3772. }
  3773. // ggml_add1
  3774. static struct ggml_tensor * ggml_add1_impl(
  3775. struct ggml_context * ctx,
  3776. struct ggml_tensor * a,
  3777. struct ggml_tensor * b,
  3778. bool inplace) {
  3779. GGML_ASSERT(ggml_is_scalar(b));
  3780. GGML_ASSERT(ggml_is_padded_1d(a));
  3781. bool is_node = false;
  3782. if (a->grad || b->grad) {
  3783. is_node = true;
  3784. }
  3785. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3786. result->op = GGML_OP_ADD1;
  3787. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3788. result->src[0] = a;
  3789. result->src[1] = b;
  3790. return result;
  3791. }
  3792. struct ggml_tensor * ggml_add1(
  3793. struct ggml_context * ctx,
  3794. struct ggml_tensor * a,
  3795. struct ggml_tensor * b) {
  3796. return ggml_add1_impl(ctx, a, b, false);
  3797. }
  3798. struct ggml_tensor * ggml_add1_inplace(
  3799. struct ggml_context * ctx,
  3800. struct ggml_tensor * a,
  3801. struct ggml_tensor * b) {
  3802. return ggml_add1_impl(ctx, a, b, true);
  3803. }
  3804. // ggml_acc
  3805. static struct ggml_tensor * ggml_acc_impl(
  3806. struct ggml_context * ctx,
  3807. struct ggml_tensor * a,
  3808. struct ggml_tensor * b,
  3809. size_t nb1,
  3810. size_t nb2,
  3811. size_t nb3,
  3812. size_t offset,
  3813. bool inplace) {
  3814. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  3815. GGML_ASSERT(ggml_is_contiguous(a));
  3816. GGML_ASSERT(a->type == GGML_TYPE_F32);
  3817. GGML_ASSERT(b->type == GGML_TYPE_F32);
  3818. bool is_node = false;
  3819. if (!inplace && (a->grad || b->grad)) {
  3820. is_node = true;
  3821. }
  3822. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3823. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  3824. ggml_set_op_params(result, params, sizeof(params));
  3825. result->op = GGML_OP_ACC;
  3826. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3827. result->src[0] = a;
  3828. result->src[1] = b;
  3829. return result;
  3830. }
  3831. struct ggml_tensor * ggml_acc(
  3832. struct ggml_context * ctx,
  3833. struct ggml_tensor * a,
  3834. struct ggml_tensor * b,
  3835. size_t nb1,
  3836. size_t nb2,
  3837. size_t nb3,
  3838. size_t offset) {
  3839. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  3840. }
  3841. struct ggml_tensor * ggml_acc_inplace(
  3842. struct ggml_context * ctx,
  3843. struct ggml_tensor * a,
  3844. struct ggml_tensor * b,
  3845. size_t nb1,
  3846. size_t nb2,
  3847. size_t nb3,
  3848. size_t offset) {
  3849. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  3850. }
  3851. // ggml_sub
  3852. static struct ggml_tensor * ggml_sub_impl(
  3853. struct ggml_context * ctx,
  3854. struct ggml_tensor * a,
  3855. struct ggml_tensor * b,
  3856. bool inplace) {
  3857. GGML_ASSERT(ggml_are_same_shape(a, b));
  3858. bool is_node = false;
  3859. if (!inplace && (a->grad || b->grad)) {
  3860. is_node = true;
  3861. }
  3862. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3863. result->op = GGML_OP_SUB;
  3864. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3865. result->src[0] = a;
  3866. result->src[1] = b;
  3867. return result;
  3868. }
  3869. struct ggml_tensor * ggml_sub(
  3870. struct ggml_context * ctx,
  3871. struct ggml_tensor * a,
  3872. struct ggml_tensor * b) {
  3873. return ggml_sub_impl(ctx, a, b, false);
  3874. }
  3875. struct ggml_tensor * ggml_sub_inplace(
  3876. struct ggml_context * ctx,
  3877. struct ggml_tensor * a,
  3878. struct ggml_tensor * b) {
  3879. return ggml_sub_impl(ctx, a, b, true);
  3880. }
  3881. // ggml_mul
  3882. static struct ggml_tensor * ggml_mul_impl(
  3883. struct ggml_context * ctx,
  3884. struct ggml_tensor * a,
  3885. struct ggml_tensor * b,
  3886. bool inplace) {
  3887. GGML_ASSERT(ggml_can_repeat(b, a));
  3888. bool is_node = false;
  3889. if (!inplace && (a->grad || b->grad)) {
  3890. // TODO: support backward pass for broadcasting
  3891. GGML_ASSERT(ggml_are_same_shape(a, b));
  3892. is_node = true;
  3893. }
  3894. if (inplace) {
  3895. GGML_ASSERT(!is_node);
  3896. }
  3897. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3898. result->op = GGML_OP_MUL;
  3899. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3900. result->src[0] = a;
  3901. result->src[1] = b;
  3902. return result;
  3903. }
  3904. struct ggml_tensor * ggml_mul(
  3905. struct ggml_context * ctx,
  3906. struct ggml_tensor * a,
  3907. struct ggml_tensor * b) {
  3908. return ggml_mul_impl(ctx, a, b, false);
  3909. }
  3910. struct ggml_tensor * ggml_mul_inplace(
  3911. struct ggml_context * ctx,
  3912. struct ggml_tensor * a,
  3913. struct ggml_tensor * b) {
  3914. return ggml_mul_impl(ctx, a, b, true);
  3915. }
  3916. // ggml_div
  3917. static struct ggml_tensor * ggml_div_impl(
  3918. struct ggml_context * ctx,
  3919. struct ggml_tensor * a,
  3920. struct ggml_tensor * b,
  3921. bool inplace) {
  3922. GGML_ASSERT(ggml_can_repeat(b, a));
  3923. bool is_node = false;
  3924. if (!inplace && (a->grad || b->grad)) {
  3925. is_node = true;
  3926. }
  3927. if (inplace) {
  3928. GGML_ASSERT(!is_node);
  3929. }
  3930. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3931. result->op = GGML_OP_DIV;
  3932. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3933. result->src[0] = a;
  3934. result->src[1] = b;
  3935. return result;
  3936. }
  3937. struct ggml_tensor * ggml_div(
  3938. struct ggml_context * ctx,
  3939. struct ggml_tensor * a,
  3940. struct ggml_tensor * b) {
  3941. return ggml_div_impl(ctx, a, b, false);
  3942. }
  3943. struct ggml_tensor * ggml_div_inplace(
  3944. struct ggml_context * ctx,
  3945. struct ggml_tensor * a,
  3946. struct ggml_tensor * b) {
  3947. return ggml_div_impl(ctx, a, b, true);
  3948. }
  3949. // ggml_sqr
  3950. static struct ggml_tensor * ggml_sqr_impl(
  3951. struct ggml_context * ctx,
  3952. struct ggml_tensor * a,
  3953. bool inplace) {
  3954. bool is_node = false;
  3955. if (!inplace && (a->grad)) {
  3956. is_node = true;
  3957. }
  3958. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3959. result->op = GGML_OP_SQR;
  3960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3961. result->src[0] = a;
  3962. return result;
  3963. }
  3964. struct ggml_tensor * ggml_sqr(
  3965. struct ggml_context * ctx,
  3966. struct ggml_tensor * a) {
  3967. return ggml_sqr_impl(ctx, a, false);
  3968. }
  3969. struct ggml_tensor * ggml_sqr_inplace(
  3970. struct ggml_context * ctx,
  3971. struct ggml_tensor * a) {
  3972. return ggml_sqr_impl(ctx, a, true);
  3973. }
  3974. // ggml_sqrt
  3975. static struct ggml_tensor * ggml_sqrt_impl(
  3976. struct ggml_context * ctx,
  3977. struct ggml_tensor * a,
  3978. bool inplace) {
  3979. bool is_node = false;
  3980. if (!inplace && (a->grad)) {
  3981. is_node = true;
  3982. }
  3983. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  3984. result->op = GGML_OP_SQRT;
  3985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  3986. result->src[0] = a;
  3987. return result;
  3988. }
  3989. struct ggml_tensor * ggml_sqrt(
  3990. struct ggml_context * ctx,
  3991. struct ggml_tensor * a) {
  3992. return ggml_sqrt_impl(ctx, a, false);
  3993. }
  3994. struct ggml_tensor * ggml_sqrt_inplace(
  3995. struct ggml_context * ctx,
  3996. struct ggml_tensor * a) {
  3997. return ggml_sqrt_impl(ctx, a, true);
  3998. }
  3999. // ggml_log
  4000. static struct ggml_tensor * ggml_log_impl(
  4001. struct ggml_context * ctx,
  4002. struct ggml_tensor * a,
  4003. bool inplace) {
  4004. bool is_node = false;
  4005. if (!inplace && (a->grad)) {
  4006. is_node = true;
  4007. }
  4008. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4009. result->op = GGML_OP_LOG;
  4010. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4011. result->src[0] = a;
  4012. return result;
  4013. }
  4014. struct ggml_tensor * ggml_log(
  4015. struct ggml_context * ctx,
  4016. struct ggml_tensor * a) {
  4017. return ggml_log_impl(ctx, a, false);
  4018. }
  4019. struct ggml_tensor * ggml_log_inplace(
  4020. struct ggml_context * ctx,
  4021. struct ggml_tensor * a) {
  4022. return ggml_log_impl(ctx, a, true);
  4023. }
  4024. // ggml_sum
  4025. struct ggml_tensor * ggml_sum(
  4026. struct ggml_context * ctx,
  4027. struct ggml_tensor * a) {
  4028. bool is_node = false;
  4029. if (a->grad) {
  4030. is_node = true;
  4031. }
  4032. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4033. result->op = GGML_OP_SUM;
  4034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4035. result->src[0] = a;
  4036. return result;
  4037. }
  4038. // ggml_sum_rows
  4039. struct ggml_tensor * ggml_sum_rows(
  4040. struct ggml_context * ctx,
  4041. struct ggml_tensor * a) {
  4042. bool is_node = false;
  4043. if (a->grad) {
  4044. is_node = true;
  4045. }
  4046. int64_t ne[GGML_MAX_DIMS] = { 1 };
  4047. for (int i = 1; i < GGML_MAX_DIMS; ++i) {
  4048. ne[i] = a->ne[i];
  4049. }
  4050. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4051. result->op = GGML_OP_SUM_ROWS;
  4052. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4053. result->src[0] = a;
  4054. return result;
  4055. }
  4056. // ggml_mean
  4057. struct ggml_tensor * ggml_mean(
  4058. struct ggml_context * ctx,
  4059. struct ggml_tensor * a) {
  4060. bool is_node = false;
  4061. if (a->grad) {
  4062. GGML_ASSERT(false); // TODO: implement
  4063. is_node = true;
  4064. }
  4065. int64_t ne[4] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4066. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4067. result->op = GGML_OP_MEAN;
  4068. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4069. result->src[0] = a;
  4070. return result;
  4071. }
  4072. // ggml_argmax
  4073. struct ggml_tensor * ggml_argmax(
  4074. struct ggml_context * ctx,
  4075. struct ggml_tensor * a) {
  4076. GGML_ASSERT(ggml_is_matrix(a));
  4077. bool is_node = false;
  4078. if (a->grad) {
  4079. GGML_ASSERT(false);
  4080. is_node = true;
  4081. }
  4082. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, a->ne[1]);
  4083. result->op = GGML_OP_ARGMAX;
  4084. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4085. result->src[0] = a;
  4086. return result;
  4087. }
  4088. // ggml_repeat
  4089. struct ggml_tensor * ggml_repeat(
  4090. struct ggml_context * ctx,
  4091. struct ggml_tensor * a,
  4092. struct ggml_tensor * b) {
  4093. GGML_ASSERT(ggml_can_repeat(a, b));
  4094. bool is_node = false;
  4095. if (a->grad) {
  4096. is_node = true;
  4097. }
  4098. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4099. result->op = GGML_OP_REPEAT;
  4100. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4101. result->src[0] = a;
  4102. return result;
  4103. }
  4104. // ggml_repeat_back
  4105. struct ggml_tensor * ggml_repeat_back(
  4106. struct ggml_context * ctx,
  4107. struct ggml_tensor * a,
  4108. struct ggml_tensor * b) {
  4109. GGML_ASSERT(ggml_can_repeat(b, a));
  4110. bool is_node = false;
  4111. if (a->grad) {
  4112. is_node = true;
  4113. }
  4114. if (ggml_are_same_shape(a, b) && !is_node) {
  4115. return a;
  4116. }
  4117. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, b->ne);
  4118. result->op = GGML_OP_REPEAT_BACK;
  4119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4120. result->src[0] = a;
  4121. return result;
  4122. }
  4123. // ggml_concat
  4124. struct ggml_tensor * ggml_concat(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b,
  4128. int dim) {
  4129. GGML_ASSERT(dim >= 0 && dim < GGML_MAX_DIMS);
  4130. int64_t ne[GGML_MAX_DIMS];
  4131. for (int d = 0; d < GGML_MAX_DIMS; ++d) {
  4132. if (d == dim) {
  4133. ne[d] = a->ne[d] + b->ne[d];
  4134. continue;
  4135. }
  4136. GGML_ASSERT(a->ne[d] == b->ne[d]);
  4137. ne[d] = a->ne[d];
  4138. }
  4139. bool is_node = false;
  4140. if (a->grad || b->grad) {
  4141. is_node = true;
  4142. }
  4143. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, GGML_MAX_DIMS, ne);
  4144. ggml_set_op_params_i32(result, 0, dim);
  4145. result->op = GGML_OP_CONCAT;
  4146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4147. result->src[0] = a;
  4148. result->src[1] = b;
  4149. return result;
  4150. }
  4151. // ggml_abs
  4152. struct ggml_tensor * ggml_abs(
  4153. struct ggml_context * ctx,
  4154. struct ggml_tensor * a) {
  4155. return ggml_unary(ctx, a, GGML_UNARY_OP_ABS);
  4156. }
  4157. struct ggml_tensor * ggml_abs_inplace(
  4158. struct ggml_context * ctx,
  4159. struct ggml_tensor * a) {
  4160. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ABS);
  4161. }
  4162. // ggml_sgn
  4163. struct ggml_tensor * ggml_sgn(
  4164. struct ggml_context * ctx,
  4165. struct ggml_tensor * a) {
  4166. return ggml_unary(ctx, a, GGML_UNARY_OP_SGN);
  4167. }
  4168. struct ggml_tensor * ggml_sgn_inplace(
  4169. struct ggml_context * ctx,
  4170. struct ggml_tensor * a) {
  4171. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SGN);
  4172. }
  4173. // ggml_neg
  4174. struct ggml_tensor * ggml_neg(
  4175. struct ggml_context * ctx,
  4176. struct ggml_tensor * a) {
  4177. return ggml_unary(ctx, a, GGML_UNARY_OP_NEG);
  4178. }
  4179. struct ggml_tensor * ggml_neg_inplace(
  4180. struct ggml_context * ctx,
  4181. struct ggml_tensor * a) {
  4182. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_NEG);
  4183. }
  4184. // ggml_step
  4185. struct ggml_tensor * ggml_step(
  4186. struct ggml_context * ctx,
  4187. struct ggml_tensor * a) {
  4188. return ggml_unary(ctx, a, GGML_UNARY_OP_STEP);
  4189. }
  4190. struct ggml_tensor * ggml_step_inplace(
  4191. struct ggml_context * ctx,
  4192. struct ggml_tensor * a) {
  4193. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_STEP);
  4194. }
  4195. // ggml_tanh
  4196. struct ggml_tensor * ggml_tanh(
  4197. struct ggml_context * ctx,
  4198. struct ggml_tensor * a) {
  4199. return ggml_unary(ctx, a, GGML_UNARY_OP_TANH);
  4200. }
  4201. struct ggml_tensor * ggml_tanh_inplace(
  4202. struct ggml_context * ctx,
  4203. struct ggml_tensor * a) {
  4204. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_TANH);
  4205. }
  4206. // ggml_elu
  4207. struct ggml_tensor * ggml_elu(
  4208. struct ggml_context * ctx,
  4209. struct ggml_tensor * a) {
  4210. return ggml_unary(ctx, a, GGML_UNARY_OP_ELU);
  4211. }
  4212. struct ggml_tensor * ggml_elu_inplace(
  4213. struct ggml_context * ctx,
  4214. struct ggml_tensor * a) {
  4215. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_ELU);
  4216. }
  4217. // ggml_relu
  4218. struct ggml_tensor * ggml_relu(
  4219. struct ggml_context * ctx,
  4220. struct ggml_tensor * a) {
  4221. return ggml_unary(ctx, a, GGML_UNARY_OP_RELU);
  4222. }
  4223. struct ggml_tensor * ggml_relu_inplace(
  4224. struct ggml_context * ctx,
  4225. struct ggml_tensor * a) {
  4226. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_RELU);
  4227. }
  4228. // ggml_leaky_relu
  4229. struct ggml_tensor * ggml_leaky_relu(
  4230. struct ggml_context * ctx,
  4231. struct ggml_tensor * a, float negative_slope, bool inplace) {
  4232. bool is_node = false;
  4233. if (!inplace && (a->grad)) {
  4234. is_node = true;
  4235. }
  4236. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4237. ggml_set_op_params(result, &negative_slope, sizeof(negative_slope));
  4238. result->op = GGML_OP_LEAKY_RELU;
  4239. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4240. result->src[0] = a;
  4241. return result;
  4242. }
  4243. // ggml_sigmoid
  4244. struct ggml_tensor * ggml_sigmoid(
  4245. struct ggml_context * ctx,
  4246. struct ggml_tensor * a) {
  4247. return ggml_unary(ctx, a, GGML_UNARY_OP_SIGMOID);
  4248. }
  4249. struct ggml_tensor * ggml_sigmoid_inplace(
  4250. struct ggml_context * ctx,
  4251. struct ggml_tensor * a) {
  4252. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SIGMOID);
  4253. }
  4254. // ggml_gelu
  4255. struct ggml_tensor * ggml_gelu(
  4256. struct ggml_context * ctx,
  4257. struct ggml_tensor * a) {
  4258. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU);
  4259. }
  4260. struct ggml_tensor * ggml_gelu_inplace(
  4261. struct ggml_context * ctx,
  4262. struct ggml_tensor * a) {
  4263. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU);
  4264. }
  4265. // ggml_gelu_quick
  4266. struct ggml_tensor * ggml_gelu_quick(
  4267. struct ggml_context * ctx,
  4268. struct ggml_tensor * a) {
  4269. return ggml_unary(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4270. }
  4271. struct ggml_tensor * ggml_gelu_quick_inplace(
  4272. struct ggml_context * ctx,
  4273. struct ggml_tensor * a) {
  4274. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_GELU_QUICK);
  4275. }
  4276. // ggml_silu
  4277. struct ggml_tensor * ggml_silu(
  4278. struct ggml_context * ctx,
  4279. struct ggml_tensor * a) {
  4280. return ggml_unary(ctx, a, GGML_UNARY_OP_SILU);
  4281. }
  4282. struct ggml_tensor * ggml_silu_inplace(
  4283. struct ggml_context * ctx,
  4284. struct ggml_tensor * a) {
  4285. return ggml_unary_inplace(ctx, a, GGML_UNARY_OP_SILU);
  4286. }
  4287. // ggml_silu_back
  4288. struct ggml_tensor * ggml_silu_back(
  4289. struct ggml_context * ctx,
  4290. struct ggml_tensor * a,
  4291. struct ggml_tensor * b) {
  4292. bool is_node = false;
  4293. if (a->grad || b->grad) {
  4294. // TODO: implement backward
  4295. is_node = true;
  4296. }
  4297. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4298. result->op = GGML_OP_SILU_BACK;
  4299. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4300. result->src[0] = a;
  4301. result->src[1] = b;
  4302. return result;
  4303. }
  4304. // ggml hardswish
  4305. struct ggml_tensor * ggml_hardswish(
  4306. struct ggml_context * ctx,
  4307. struct ggml_tensor * a) {
  4308. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH);
  4309. }
  4310. // ggml hardsigmoid
  4311. struct ggml_tensor * ggml_hardsigmoid(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID);
  4315. }
  4316. // ggml_norm
  4317. static struct ggml_tensor * ggml_norm_impl(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. float eps,
  4321. bool inplace) {
  4322. bool is_node = false;
  4323. if (!inplace && (a->grad)) {
  4324. GGML_ASSERT(false); // TODO: implement backward
  4325. is_node = true;
  4326. }
  4327. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4328. ggml_set_op_params(result, &eps, sizeof(eps));
  4329. result->op = GGML_OP_NORM;
  4330. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4331. result->src[0] = a;
  4332. return result;
  4333. }
  4334. struct ggml_tensor * ggml_norm(
  4335. struct ggml_context * ctx,
  4336. struct ggml_tensor * a,
  4337. float eps) {
  4338. return ggml_norm_impl(ctx, a, eps, false);
  4339. }
  4340. struct ggml_tensor * ggml_norm_inplace(
  4341. struct ggml_context * ctx,
  4342. struct ggml_tensor * a,
  4343. float eps) {
  4344. return ggml_norm_impl(ctx, a, eps, true);
  4345. }
  4346. // ggml_rms_norm
  4347. static struct ggml_tensor * ggml_rms_norm_impl(
  4348. struct ggml_context * ctx,
  4349. struct ggml_tensor * a,
  4350. float eps,
  4351. bool inplace) {
  4352. bool is_node = false;
  4353. if (!inplace && (a->grad)) {
  4354. is_node = true;
  4355. }
  4356. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4357. ggml_set_op_params(result, &eps, sizeof(eps));
  4358. result->op = GGML_OP_RMS_NORM;
  4359. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4360. result->src[0] = a;
  4361. return result;
  4362. }
  4363. struct ggml_tensor * ggml_rms_norm(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a,
  4366. float eps) {
  4367. return ggml_rms_norm_impl(ctx, a, eps, false);
  4368. }
  4369. struct ggml_tensor * ggml_rms_norm_inplace(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a,
  4372. float eps) {
  4373. return ggml_rms_norm_impl(ctx, a, eps, true);
  4374. }
  4375. // ggml_rms_norm_back
  4376. struct ggml_tensor * ggml_rms_norm_back(
  4377. struct ggml_context * ctx,
  4378. struct ggml_tensor * a,
  4379. struct ggml_tensor * b,
  4380. float eps) {
  4381. bool is_node = false;
  4382. if (a->grad) {
  4383. // TODO: implement backward
  4384. is_node = true;
  4385. }
  4386. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4387. ggml_set_op_params(result, &eps, sizeof(eps));
  4388. result->op = GGML_OP_RMS_NORM_BACK;
  4389. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4390. result->src[0] = a;
  4391. result->src[1] = b;
  4392. return result;
  4393. }
  4394. // ggml_group_norm
  4395. static struct ggml_tensor * ggml_group_norm_impl(
  4396. struct ggml_context * ctx,
  4397. struct ggml_tensor * a,
  4398. int n_groups,
  4399. bool inplace) {
  4400. bool is_node = false;
  4401. if (!inplace && (a->grad)) {
  4402. GGML_ASSERT(false); // TODO: implement backward
  4403. is_node = true;
  4404. }
  4405. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4406. result->op_params[0] = n_groups;
  4407. result->op = GGML_OP_GROUP_NORM;
  4408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4409. result->src[0] = a;
  4410. return result;
  4411. }
  4412. struct ggml_tensor * ggml_group_norm(
  4413. struct ggml_context * ctx,
  4414. struct ggml_tensor * a,
  4415. int n_groups) {
  4416. return ggml_group_norm_impl(ctx, a, n_groups, false);
  4417. }
  4418. struct ggml_tensor * ggml_group_norm_inplace(
  4419. struct ggml_context * ctx,
  4420. struct ggml_tensor * a,
  4421. int n_groups) {
  4422. return ggml_group_norm_impl(ctx, a, n_groups, true);
  4423. }
  4424. // ggml_mul_mat
  4425. struct ggml_tensor * ggml_mul_mat(
  4426. struct ggml_context * ctx,
  4427. struct ggml_tensor * a,
  4428. struct ggml_tensor * b) {
  4429. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4430. GGML_ASSERT(!ggml_is_transposed(a));
  4431. bool is_node = false;
  4432. if (a->grad || b->grad) {
  4433. is_node = true;
  4434. }
  4435. const int64_t ne[4] = { a->ne[1], b->ne[1], b->ne[2], b->ne[3] };
  4436. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4437. result->op = GGML_OP_MUL_MAT;
  4438. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4439. result->src[0] = a;
  4440. result->src[1] = b;
  4441. return result;
  4442. }
  4443. void ggml_mul_mat_set_prec(
  4444. struct ggml_tensor * a,
  4445. enum ggml_prec prec) {
  4446. GGML_ASSERT(a->op == GGML_OP_MUL_MAT);
  4447. const int32_t prec_i32 = (int32_t) prec;
  4448. ggml_set_op_params_i32(a, 0, prec_i32);
  4449. }
  4450. // ggml_mul_mat_id
  4451. /*
  4452. c = ggml_mul_mat_id(ctx, as, b, ids);
  4453. as -> [cols, rows, n_expert]
  4454. ids -> [n_experts_used, n_tokens] (i32)
  4455. b -> [cols, n_expert_used, n_tokens]
  4456. c -> [cols, n_expert_used, n_tokens]
  4457. in b, n_experts_used can be broadcasted to match the n_expert_used of ids
  4458. c ~= as[:,:,i] @ b[:,i%r,t], i = ids[e,t] for all e,t in ids
  4459. */
  4460. struct ggml_tensor * ggml_mul_mat_id(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * as,
  4463. struct ggml_tensor * b,
  4464. struct ggml_tensor * ids) {
  4465. GGML_ASSERT(!ggml_is_transposed(as));
  4466. GGML_ASSERT(ids->type == GGML_TYPE_I32);
  4467. GGML_ASSERT(as->ne[3] == 1); // as is 3d (one matrix per expert)
  4468. GGML_ASSERT(b->ne[3] == 1); // b is 3d
  4469. GGML_ASSERT(ids->ne[2] == 1 && ids->ne[3] == 1); // ids is 2d
  4470. GGML_ASSERT(ids->ne[1] == b->ne[2]); // must have an expert list per b row
  4471. GGML_ASSERT(as->ne[0] == b->ne[0]); // can_mul_mat
  4472. GGML_ASSERT(ids->ne[0] % b->ne[1] == 0); // can broadcast
  4473. bool is_node = false;
  4474. if (as->grad || b->grad) {
  4475. is_node = true;
  4476. }
  4477. const int64_t ne[4] = { as->ne[1], ids->ne[0], b->ne[2], 1 };
  4478. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4479. result->op = GGML_OP_MUL_MAT_ID;
  4480. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4481. result->src[0] = as;
  4482. result->src[1] = b;
  4483. result->src[2] = ids;
  4484. return result;
  4485. }
  4486. // ggml_out_prod
  4487. struct ggml_tensor * ggml_out_prod(
  4488. struct ggml_context * ctx,
  4489. struct ggml_tensor * a,
  4490. struct ggml_tensor * b) {
  4491. GGML_ASSERT(ggml_can_out_prod(a, b));
  4492. GGML_ASSERT(!ggml_is_transposed(a));
  4493. bool is_node = false;
  4494. if (a->grad || b->grad) {
  4495. is_node = true;
  4496. }
  4497. // a is broadcastable to b for ne[2] and ne[3] -> use b->ne[2] and b->ne[3]
  4498. const int64_t ne[4] = { a->ne[0], b->ne[0], b->ne[2], b->ne[3] };
  4499. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  4500. result->op = GGML_OP_OUT_PROD;
  4501. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4502. result->src[0] = a;
  4503. result->src[1] = b;
  4504. return result;
  4505. }
  4506. // ggml_scale
  4507. static struct ggml_tensor * ggml_scale_impl(
  4508. struct ggml_context * ctx,
  4509. struct ggml_tensor * a,
  4510. float s,
  4511. bool inplace) {
  4512. GGML_ASSERT(ggml_is_padded_1d(a));
  4513. bool is_node = false;
  4514. if (a->grad) {
  4515. is_node = true;
  4516. }
  4517. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4518. ggml_set_op_params(result, &s, sizeof(s));
  4519. result->op = GGML_OP_SCALE;
  4520. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4521. result->src[0] = a;
  4522. return result;
  4523. }
  4524. struct ggml_tensor * ggml_scale(
  4525. struct ggml_context * ctx,
  4526. struct ggml_tensor * a,
  4527. float s) {
  4528. return ggml_scale_impl(ctx, a, s, false);
  4529. }
  4530. struct ggml_tensor * ggml_scale_inplace(
  4531. struct ggml_context * ctx,
  4532. struct ggml_tensor * a,
  4533. float s) {
  4534. return ggml_scale_impl(ctx, a, s, true);
  4535. }
  4536. // ggml_set
  4537. static struct ggml_tensor * ggml_set_impl(
  4538. struct ggml_context * ctx,
  4539. struct ggml_tensor * a,
  4540. struct ggml_tensor * b,
  4541. size_t nb1,
  4542. size_t nb2,
  4543. size_t nb3,
  4544. size_t offset,
  4545. bool inplace) {
  4546. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4547. bool is_node = false;
  4548. if (a->grad || b->grad) {
  4549. is_node = true;
  4550. }
  4551. // make a view of the destination
  4552. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4553. int32_t params[] = { nb1, nb2, nb3, offset, inplace ? 1 : 0 };
  4554. ggml_set_op_params(result, params, sizeof(params));
  4555. result->op = GGML_OP_SET;
  4556. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4557. result->src[0] = a;
  4558. result->src[1] = b;
  4559. return result;
  4560. }
  4561. struct ggml_tensor * ggml_set(
  4562. struct ggml_context * ctx,
  4563. struct ggml_tensor * a,
  4564. struct ggml_tensor * b,
  4565. size_t nb1,
  4566. size_t nb2,
  4567. size_t nb3,
  4568. size_t offset) {
  4569. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4570. }
  4571. struct ggml_tensor * ggml_set_inplace(
  4572. struct ggml_context * ctx,
  4573. struct ggml_tensor * a,
  4574. struct ggml_tensor * b,
  4575. size_t nb1,
  4576. size_t nb2,
  4577. size_t nb3,
  4578. size_t offset) {
  4579. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4580. }
  4581. struct ggml_tensor * ggml_set_1d(
  4582. struct ggml_context * ctx,
  4583. struct ggml_tensor * a,
  4584. struct ggml_tensor * b,
  4585. size_t offset) {
  4586. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4587. }
  4588. struct ggml_tensor * ggml_set_1d_inplace(
  4589. struct ggml_context * ctx,
  4590. struct ggml_tensor * a,
  4591. struct ggml_tensor * b,
  4592. size_t offset) {
  4593. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4594. }
  4595. struct ggml_tensor * ggml_set_2d(
  4596. struct ggml_context * ctx,
  4597. struct ggml_tensor * a,
  4598. struct ggml_tensor * b,
  4599. size_t nb1,
  4600. size_t offset) {
  4601. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4602. }
  4603. struct ggml_tensor * ggml_set_2d_inplace(
  4604. struct ggml_context * ctx,
  4605. struct ggml_tensor * a,
  4606. struct ggml_tensor * b,
  4607. size_t nb1,
  4608. size_t offset) {
  4609. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, true);
  4610. }
  4611. // ggml_cpy
  4612. static struct ggml_tensor * ggml_cpy_impl(
  4613. struct ggml_context * ctx,
  4614. struct ggml_tensor * a,
  4615. struct ggml_tensor * b) {
  4616. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4617. bool is_node = false;
  4618. if (a->grad || b->grad) {
  4619. // inplace is false and either one have a grad
  4620. is_node = true;
  4621. }
  4622. // make a view of the destination
  4623. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4624. if (strlen(b->name) > 0) {
  4625. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4626. } else {
  4627. ggml_format_name(result, "%s (copy)", a->name);
  4628. }
  4629. result->op = GGML_OP_CPY;
  4630. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4631. result->src[0] = a;
  4632. result->src[1] = b;
  4633. return result;
  4634. }
  4635. struct ggml_tensor * ggml_cpy(
  4636. struct ggml_context * ctx,
  4637. struct ggml_tensor * a,
  4638. struct ggml_tensor * b) {
  4639. return ggml_cpy_impl(ctx, a, b);
  4640. }
  4641. struct ggml_tensor * ggml_cast(
  4642. struct ggml_context * ctx,
  4643. struct ggml_tensor * a,
  4644. enum ggml_type type) {
  4645. bool is_node = false;
  4646. struct ggml_tensor * result = ggml_new_tensor(ctx, type, GGML_MAX_DIMS, a->ne);
  4647. ggml_format_name(result, "%s (copy)", a->name);
  4648. result->op = GGML_OP_CPY;
  4649. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4650. result->src[0] = a;
  4651. result->src[1] = result;
  4652. return result;
  4653. }
  4654. // ggml_cont
  4655. static struct ggml_tensor * ggml_cont_impl(
  4656. struct ggml_context * ctx,
  4657. struct ggml_tensor * a) {
  4658. bool is_node = false;
  4659. if (a->grad) {
  4660. is_node = true;
  4661. }
  4662. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4663. ggml_format_name(result, "%s (cont)", a->name);
  4664. result->op = GGML_OP_CONT;
  4665. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4666. result->src[0] = a;
  4667. return result;
  4668. }
  4669. struct ggml_tensor * ggml_cont(
  4670. struct ggml_context * ctx,
  4671. struct ggml_tensor * a) {
  4672. return ggml_cont_impl(ctx, a);
  4673. }
  4674. // make contiguous, with new shape
  4675. GGML_API struct ggml_tensor * ggml_cont_1d(
  4676. struct ggml_context * ctx,
  4677. struct ggml_tensor * a,
  4678. int64_t ne0) {
  4679. return ggml_cont_4d(ctx, a, ne0, 1, 1, 1);
  4680. }
  4681. GGML_API struct ggml_tensor * ggml_cont_2d(
  4682. struct ggml_context * ctx,
  4683. struct ggml_tensor * a,
  4684. int64_t ne0,
  4685. int64_t ne1) {
  4686. return ggml_cont_4d(ctx, a, ne0, ne1, 1, 1);
  4687. }
  4688. GGML_API struct ggml_tensor * ggml_cont_3d(
  4689. struct ggml_context * ctx,
  4690. struct ggml_tensor * a,
  4691. int64_t ne0,
  4692. int64_t ne1,
  4693. int64_t ne2) {
  4694. return ggml_cont_4d(ctx, a, ne0, ne1, ne2, 1);
  4695. }
  4696. struct ggml_tensor * ggml_cont_4d(
  4697. struct ggml_context * ctx,
  4698. struct ggml_tensor * a,
  4699. int64_t ne0,
  4700. int64_t ne1,
  4701. int64_t ne2,
  4702. int64_t ne3) {
  4703. GGML_ASSERT(ggml_nelements(a) == (ne0*ne1*ne2*ne3));
  4704. bool is_node = false;
  4705. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type, ne0, ne1, ne2, ne3);
  4706. ggml_format_name(result, "%s (cont)", a->name);
  4707. result->op = GGML_OP_CONT;
  4708. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4709. result->src[0] = a;
  4710. return result;
  4711. }
  4712. // ggml_reshape
  4713. struct ggml_tensor * ggml_reshape(
  4714. struct ggml_context * ctx,
  4715. struct ggml_tensor * a,
  4716. struct ggml_tensor * b) {
  4717. GGML_ASSERT(ggml_is_contiguous(a));
  4718. // as only the shape of b is relevant, and not its memory layout, b is allowed to be non contiguous.
  4719. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4720. bool is_node = false;
  4721. if (a->grad) {
  4722. is_node = true;
  4723. }
  4724. if (b->grad) {
  4725. // gradient propagation is not supported
  4726. //GGML_ASSERT(false);
  4727. }
  4728. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, GGML_MAX_DIMS, b->ne, a, 0);
  4729. ggml_format_name(result, "%s (reshaped)", a->name);
  4730. result->op = GGML_OP_RESHAPE;
  4731. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4732. result->src[0] = a;
  4733. return result;
  4734. }
  4735. struct ggml_tensor * ggml_reshape_1d(
  4736. struct ggml_context * ctx,
  4737. struct ggml_tensor * a,
  4738. int64_t ne0) {
  4739. GGML_ASSERT(ggml_is_contiguous(a));
  4740. GGML_ASSERT(ggml_nelements(a) == ne0);
  4741. bool is_node = false;
  4742. if (a->grad) {
  4743. is_node = true;
  4744. }
  4745. const int64_t ne[1] = { ne0 };
  4746. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a, 0);
  4747. ggml_format_name(result, "%s (reshaped)", a->name);
  4748. result->op = GGML_OP_RESHAPE;
  4749. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4750. result->src[0] = a;
  4751. return result;
  4752. }
  4753. struct ggml_tensor * ggml_reshape_2d(
  4754. struct ggml_context * ctx,
  4755. struct ggml_tensor * a,
  4756. int64_t ne0,
  4757. int64_t ne1) {
  4758. GGML_ASSERT(ggml_is_contiguous(a));
  4759. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  4760. bool is_node = false;
  4761. if (a->grad) {
  4762. is_node = true;
  4763. }
  4764. const int64_t ne[2] = { ne0, ne1 };
  4765. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a, 0);
  4766. ggml_format_name(result, "%s (reshaped)", a->name);
  4767. result->op = GGML_OP_RESHAPE;
  4768. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4769. result->src[0] = a;
  4770. return result;
  4771. }
  4772. struct ggml_tensor * ggml_reshape_3d(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. int64_t ne0,
  4776. int64_t ne1,
  4777. int64_t ne2) {
  4778. GGML_ASSERT(ggml_is_contiguous(a));
  4779. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  4780. bool is_node = false;
  4781. if (a->grad) {
  4782. is_node = true;
  4783. }
  4784. const int64_t ne[3] = { ne0, ne1, ne2 };
  4785. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a, 0);
  4786. ggml_format_name(result, "%s (reshaped)", a->name);
  4787. result->op = GGML_OP_RESHAPE;
  4788. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4789. result->src[0] = a;
  4790. return result;
  4791. }
  4792. struct ggml_tensor * ggml_reshape_4d(
  4793. struct ggml_context * ctx,
  4794. struct ggml_tensor * a,
  4795. int64_t ne0,
  4796. int64_t ne1,
  4797. int64_t ne2,
  4798. int64_t ne3) {
  4799. GGML_ASSERT(ggml_is_contiguous(a));
  4800. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  4801. bool is_node = false;
  4802. if (a->grad) {
  4803. is_node = true;
  4804. }
  4805. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4806. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a, 0);
  4807. ggml_format_name(result, "%s (reshaped)", a->name);
  4808. result->op = GGML_OP_RESHAPE;
  4809. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4810. result->src[0] = a;
  4811. return result;
  4812. }
  4813. static struct ggml_tensor * ggml_view_impl(
  4814. struct ggml_context * ctx,
  4815. struct ggml_tensor * a,
  4816. int n_dims,
  4817. const int64_t * ne,
  4818. size_t offset) {
  4819. bool is_node = false;
  4820. if (a->grad) {
  4821. is_node = true;
  4822. }
  4823. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, n_dims, ne, a, offset);
  4824. ggml_format_name(result, "%s (view)", a->name);
  4825. ggml_set_op_params(result, &offset, sizeof(offset));
  4826. result->op = GGML_OP_VIEW;
  4827. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4828. result->src[0] = a;
  4829. return result;
  4830. }
  4831. // ggml_view_1d
  4832. struct ggml_tensor * ggml_view_1d(
  4833. struct ggml_context * ctx,
  4834. struct ggml_tensor * a,
  4835. int64_t ne0,
  4836. size_t offset) {
  4837. struct ggml_tensor * result = ggml_view_impl(ctx, a, 1, &ne0, offset);
  4838. return result;
  4839. }
  4840. // ggml_view_2d
  4841. struct ggml_tensor * ggml_view_2d(
  4842. struct ggml_context * ctx,
  4843. struct ggml_tensor * a,
  4844. int64_t ne0,
  4845. int64_t ne1,
  4846. size_t nb1,
  4847. size_t offset) {
  4848. const int64_t ne[2] = { ne0, ne1 };
  4849. struct ggml_tensor * result = ggml_view_impl(ctx, a, 2, ne, offset);
  4850. result->nb[1] = nb1;
  4851. result->nb[2] = result->nb[1]*ne1;
  4852. result->nb[3] = result->nb[2];
  4853. return result;
  4854. }
  4855. // ggml_view_3d
  4856. struct ggml_tensor * ggml_view_3d(
  4857. struct ggml_context * ctx,
  4858. struct ggml_tensor * a,
  4859. int64_t ne0,
  4860. int64_t ne1,
  4861. int64_t ne2,
  4862. size_t nb1,
  4863. size_t nb2,
  4864. size_t offset) {
  4865. const int64_t ne[3] = { ne0, ne1, ne2 };
  4866. struct ggml_tensor * result = ggml_view_impl(ctx, a, 3, ne, offset);
  4867. result->nb[1] = nb1;
  4868. result->nb[2] = nb2;
  4869. result->nb[3] = result->nb[2]*ne2;
  4870. return result;
  4871. }
  4872. // ggml_view_4d
  4873. struct ggml_tensor * ggml_view_4d(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. int64_t ne0,
  4877. int64_t ne1,
  4878. int64_t ne2,
  4879. int64_t ne3,
  4880. size_t nb1,
  4881. size_t nb2,
  4882. size_t nb3,
  4883. size_t offset) {
  4884. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  4885. struct ggml_tensor * result = ggml_view_impl(ctx, a, 4, ne, offset);
  4886. result->nb[1] = nb1;
  4887. result->nb[2] = nb2;
  4888. result->nb[3] = nb3;
  4889. return result;
  4890. }
  4891. // ggml_permute
  4892. struct ggml_tensor * ggml_permute(
  4893. struct ggml_context * ctx,
  4894. struct ggml_tensor * a,
  4895. int axis0,
  4896. int axis1,
  4897. int axis2,
  4898. int axis3) {
  4899. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  4900. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  4901. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  4902. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  4903. GGML_ASSERT(axis0 != axis1);
  4904. GGML_ASSERT(axis0 != axis2);
  4905. GGML_ASSERT(axis0 != axis3);
  4906. GGML_ASSERT(axis1 != axis2);
  4907. GGML_ASSERT(axis1 != axis3);
  4908. GGML_ASSERT(axis2 != axis3);
  4909. bool is_node = false;
  4910. if (a->grad) {
  4911. is_node = true;
  4912. }
  4913. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4914. ggml_format_name(result, "%s (permuted)", a->name);
  4915. int ne[GGML_MAX_DIMS];
  4916. int nb[GGML_MAX_DIMS];
  4917. ne[axis0] = a->ne[0];
  4918. ne[axis1] = a->ne[1];
  4919. ne[axis2] = a->ne[2];
  4920. ne[axis3] = a->ne[3];
  4921. nb[axis0] = a->nb[0];
  4922. nb[axis1] = a->nb[1];
  4923. nb[axis2] = a->nb[2];
  4924. nb[axis3] = a->nb[3];
  4925. result->ne[0] = ne[0];
  4926. result->ne[1] = ne[1];
  4927. result->ne[2] = ne[2];
  4928. result->ne[3] = ne[3];
  4929. result->nb[0] = nb[0];
  4930. result->nb[1] = nb[1];
  4931. result->nb[2] = nb[2];
  4932. result->nb[3] = nb[3];
  4933. result->op = GGML_OP_PERMUTE;
  4934. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4935. result->src[0] = a;
  4936. int32_t params[] = { axis0, axis1, axis2, axis3 };
  4937. ggml_set_op_params(result, params, sizeof(params));
  4938. return result;
  4939. }
  4940. // ggml_transpose
  4941. struct ggml_tensor * ggml_transpose(
  4942. struct ggml_context * ctx,
  4943. struct ggml_tensor * a) {
  4944. bool is_node = false;
  4945. if (a->grad) {
  4946. is_node = true;
  4947. }
  4948. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  4949. ggml_format_name(result, "%s (transposed)", a->name);
  4950. result->ne[0] = a->ne[1];
  4951. result->ne[1] = a->ne[0];
  4952. result->nb[0] = a->nb[1];
  4953. result->nb[1] = a->nb[0];
  4954. result->op = GGML_OP_TRANSPOSE;
  4955. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4956. result->src[0] = a;
  4957. return result;
  4958. }
  4959. // ggml_get_rows
  4960. struct ggml_tensor * ggml_get_rows(
  4961. struct ggml_context * ctx,
  4962. struct ggml_tensor * a,
  4963. struct ggml_tensor * b) {
  4964. GGML_ASSERT(a->ne[2] == b->ne[1]);
  4965. GGML_ASSERT(b->ne[3] == 1);
  4966. GGML_ASSERT(b->type == GGML_TYPE_I32);
  4967. bool is_node = false;
  4968. if (a->grad || b->grad) {
  4969. is_node = true;
  4970. }
  4971. // TODO: implement non F32 return
  4972. enum ggml_type type = GGML_TYPE_F32;
  4973. if (a->type == GGML_TYPE_I32) {
  4974. type = a->type;
  4975. }
  4976. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, type, a->ne[0], b->ne[0], b->ne[1], b->ne[2]);
  4977. result->op = GGML_OP_GET_ROWS;
  4978. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4979. result->src[0] = a;
  4980. result->src[1] = b;
  4981. return result;
  4982. }
  4983. // ggml_get_rows_back
  4984. struct ggml_tensor * ggml_get_rows_back(
  4985. struct ggml_context * ctx,
  4986. struct ggml_tensor * a,
  4987. struct ggml_tensor * b,
  4988. struct ggml_tensor * c) {
  4989. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  4990. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  4991. bool is_node = false;
  4992. if (a->grad || b->grad) {
  4993. is_node = true;
  4994. }
  4995. // TODO: implement non F32 return
  4996. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  4997. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  4998. result->op = GGML_OP_GET_ROWS_BACK;
  4999. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5000. result->src[0] = a;
  5001. result->src[1] = b;
  5002. return result;
  5003. }
  5004. // ggml_diag
  5005. struct ggml_tensor * ggml_diag(
  5006. struct ggml_context * ctx,
  5007. struct ggml_tensor * a) {
  5008. GGML_ASSERT(a->ne[1] == 1);
  5009. bool is_node = false;
  5010. if (a->grad) {
  5011. is_node = true;
  5012. }
  5013. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5014. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, 4, ne);
  5015. result->op = GGML_OP_DIAG;
  5016. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5017. result->src[0] = a;
  5018. return result;
  5019. }
  5020. // ggml_diag_mask_inf
  5021. static struct ggml_tensor * ggml_diag_mask_inf_impl(
  5022. struct ggml_context * ctx,
  5023. struct ggml_tensor * a,
  5024. int n_past,
  5025. bool inplace) {
  5026. bool is_node = false;
  5027. if (a->grad) {
  5028. is_node = true;
  5029. }
  5030. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5031. int32_t params[] = { n_past };
  5032. ggml_set_op_params(result, params, sizeof(params));
  5033. result->op = GGML_OP_DIAG_MASK_INF;
  5034. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5035. result->src[0] = a;
  5036. return result;
  5037. }
  5038. struct ggml_tensor * ggml_diag_mask_inf(
  5039. struct ggml_context * ctx,
  5040. struct ggml_tensor * a,
  5041. int n_past) {
  5042. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5043. }
  5044. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5045. struct ggml_context * ctx,
  5046. struct ggml_tensor * a,
  5047. int n_past) {
  5048. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5049. }
  5050. // ggml_diag_mask_zero
  5051. static struct ggml_tensor * ggml_diag_mask_zero_impl(
  5052. struct ggml_context * ctx,
  5053. struct ggml_tensor * a,
  5054. int n_past,
  5055. bool inplace) {
  5056. bool is_node = false;
  5057. if (a->grad) {
  5058. is_node = true;
  5059. }
  5060. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5061. int32_t params[] = { n_past };
  5062. ggml_set_op_params(result, params, sizeof(params));
  5063. result->op = GGML_OP_DIAG_MASK_ZERO;
  5064. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5065. result->src[0] = a;
  5066. return result;
  5067. }
  5068. struct ggml_tensor * ggml_diag_mask_zero(
  5069. struct ggml_context * ctx,
  5070. struct ggml_tensor * a,
  5071. int n_past) {
  5072. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5073. }
  5074. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5075. struct ggml_context * ctx,
  5076. struct ggml_tensor * a,
  5077. int n_past) {
  5078. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5079. }
  5080. // ggml_soft_max
  5081. static struct ggml_tensor * ggml_soft_max_impl(
  5082. struct ggml_context * ctx,
  5083. struct ggml_tensor * a,
  5084. struct ggml_tensor * mask,
  5085. float scale,
  5086. float max_bias,
  5087. bool inplace) {
  5088. GGML_ASSERT(ggml_is_contiguous(a));
  5089. if (mask) {
  5090. GGML_ASSERT(mask->type == GGML_TYPE_F16 || mask->type == GGML_TYPE_F32);
  5091. GGML_ASSERT(ggml_is_contiguous(mask));
  5092. GGML_ASSERT(ggml_is_matrix(mask));
  5093. GGML_ASSERT(mask->ne[0] == a->ne[0]);
  5094. GGML_ASSERT(mask->ne[1] >= a->ne[1]);
  5095. }
  5096. if (max_bias > 0.0f) {
  5097. GGML_ASSERT(mask);
  5098. }
  5099. bool is_node = false;
  5100. if (a->grad) {
  5101. is_node = true;
  5102. }
  5103. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5104. float params[] = { scale, max_bias };
  5105. ggml_set_op_params(result, params, sizeof(params));
  5106. result->op = GGML_OP_SOFT_MAX;
  5107. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5108. result->src[0] = a;
  5109. result->src[1] = mask;
  5110. return result;
  5111. }
  5112. struct ggml_tensor * ggml_soft_max(
  5113. struct ggml_context * ctx,
  5114. struct ggml_tensor * a) {
  5115. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, false);
  5116. }
  5117. struct ggml_tensor * ggml_soft_max_inplace(
  5118. struct ggml_context * ctx,
  5119. struct ggml_tensor * a) {
  5120. return ggml_soft_max_impl(ctx, a, NULL, 1.0f, 0.0f, true);
  5121. }
  5122. struct ggml_tensor * ggml_soft_max_ext(
  5123. struct ggml_context * ctx,
  5124. struct ggml_tensor * a,
  5125. struct ggml_tensor * mask,
  5126. float scale,
  5127. float max_bias) {
  5128. return ggml_soft_max_impl(ctx, a, mask, scale, max_bias, false);
  5129. }
  5130. // ggml_soft_max_back
  5131. static struct ggml_tensor * ggml_soft_max_back_impl(
  5132. struct ggml_context * ctx,
  5133. struct ggml_tensor * a,
  5134. struct ggml_tensor * b,
  5135. bool inplace) {
  5136. bool is_node = false;
  5137. if (a->grad || b->grad) {
  5138. is_node = true; // TODO : implement backward pass
  5139. }
  5140. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5141. result->op = GGML_OP_SOFT_MAX_BACK;
  5142. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5143. result->src[0] = a;
  5144. result->src[1] = b;
  5145. return result;
  5146. }
  5147. struct ggml_tensor * ggml_soft_max_back(
  5148. struct ggml_context * ctx,
  5149. struct ggml_tensor * a,
  5150. struct ggml_tensor * b) {
  5151. return ggml_soft_max_back_impl(ctx, a, b, false);
  5152. }
  5153. struct ggml_tensor * ggml_soft_max_back_inplace(
  5154. struct ggml_context * ctx,
  5155. struct ggml_tensor * a,
  5156. struct ggml_tensor * b) {
  5157. return ggml_soft_max_back_impl(ctx, a, b, true);
  5158. }
  5159. // ggml_rope
  5160. static struct ggml_tensor * ggml_rope_impl(
  5161. struct ggml_context * ctx,
  5162. struct ggml_tensor * a,
  5163. struct ggml_tensor * b,
  5164. struct ggml_tensor * c,
  5165. int n_dims,
  5166. int mode,
  5167. int n_ctx_orig,
  5168. float freq_base,
  5169. float freq_scale,
  5170. float ext_factor,
  5171. float attn_factor,
  5172. float beta_fast,
  5173. float beta_slow,
  5174. bool inplace) {
  5175. GGML_ASSERT((mode & 1) == 0 && "mode & 1 == 1 is no longer supported");
  5176. GGML_ASSERT(ggml_is_vector(b));
  5177. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5178. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5179. if (c) {
  5180. GGML_ASSERT(c->type == GGML_TYPE_F32);
  5181. GGML_ASSERT(c->ne[0] >= n_dims / 2);
  5182. }
  5183. bool is_node = false;
  5184. if (a->grad) {
  5185. is_node = true;
  5186. }
  5187. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5188. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5189. memcpy(params + 5, &freq_base, sizeof(float));
  5190. memcpy(params + 6, &freq_scale, sizeof(float));
  5191. memcpy(params + 7, &ext_factor, sizeof(float));
  5192. memcpy(params + 8, &attn_factor, sizeof(float));
  5193. memcpy(params + 9, &beta_fast, sizeof(float));
  5194. memcpy(params + 10, &beta_slow, sizeof(float));
  5195. ggml_set_op_params(result, params, sizeof(params));
  5196. result->op = GGML_OP_ROPE;
  5197. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5198. result->src[0] = a;
  5199. result->src[1] = b;
  5200. result->src[2] = c;
  5201. return result;
  5202. }
  5203. struct ggml_tensor * ggml_rope(
  5204. struct ggml_context * ctx,
  5205. struct ggml_tensor * a,
  5206. struct ggml_tensor * b,
  5207. int n_dims,
  5208. int mode) {
  5209. return ggml_rope_impl(
  5210. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, false
  5211. );
  5212. }
  5213. struct ggml_tensor * ggml_rope_inplace(
  5214. struct ggml_context * ctx,
  5215. struct ggml_tensor * a,
  5216. struct ggml_tensor * b,
  5217. int n_dims,
  5218. int mode) {
  5219. return ggml_rope_impl(
  5220. ctx, a, b, NULL, n_dims, mode, 0, 10000.0f, 1.0f, 0.0f, 1.0f, 0.0f, 0.0f, true
  5221. );
  5222. }
  5223. struct ggml_tensor * ggml_rope_ext(
  5224. struct ggml_context * ctx,
  5225. struct ggml_tensor * a,
  5226. struct ggml_tensor * b,
  5227. struct ggml_tensor * c,
  5228. int n_dims,
  5229. int mode,
  5230. int n_ctx_orig,
  5231. float freq_base,
  5232. float freq_scale,
  5233. float ext_factor,
  5234. float attn_factor,
  5235. float beta_fast,
  5236. float beta_slow) {
  5237. return ggml_rope_impl(
  5238. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5239. ext_factor, attn_factor, beta_fast, beta_slow, false
  5240. );
  5241. }
  5242. struct ggml_tensor * ggml_rope_ext_inplace(
  5243. struct ggml_context * ctx,
  5244. struct ggml_tensor * a,
  5245. struct ggml_tensor * b,
  5246. struct ggml_tensor * c,
  5247. int n_dims,
  5248. int mode,
  5249. int n_ctx_orig,
  5250. float freq_base,
  5251. float freq_scale,
  5252. float ext_factor,
  5253. float attn_factor,
  5254. float beta_fast,
  5255. float beta_slow) {
  5256. return ggml_rope_impl(
  5257. ctx, a, b, c, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5258. ext_factor, attn_factor, beta_fast, beta_slow, true
  5259. );
  5260. }
  5261. struct ggml_tensor * ggml_rope_custom(
  5262. struct ggml_context * ctx,
  5263. struct ggml_tensor * a,
  5264. struct ggml_tensor * b,
  5265. int n_dims,
  5266. int mode,
  5267. int n_ctx_orig,
  5268. float freq_base,
  5269. float freq_scale,
  5270. float ext_factor,
  5271. float attn_factor,
  5272. float beta_fast,
  5273. float beta_slow) {
  5274. return ggml_rope_impl(
  5275. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5276. ext_factor, attn_factor, beta_fast, beta_slow, false
  5277. );
  5278. }
  5279. struct ggml_tensor * ggml_rope_custom_inplace(
  5280. struct ggml_context * ctx,
  5281. struct ggml_tensor * a,
  5282. struct ggml_tensor * b,
  5283. int n_dims,
  5284. int mode,
  5285. int n_ctx_orig,
  5286. float freq_base,
  5287. float freq_scale,
  5288. float ext_factor,
  5289. float attn_factor,
  5290. float beta_fast,
  5291. float beta_slow) {
  5292. return ggml_rope_impl(
  5293. ctx, a, b, NULL, n_dims, mode, n_ctx_orig, freq_base, freq_scale,
  5294. ext_factor, attn_factor, beta_fast, beta_slow, true
  5295. );
  5296. }
  5297. // ggml_rope_back
  5298. struct ggml_tensor * ggml_rope_back(
  5299. struct ggml_context * ctx,
  5300. struct ggml_tensor * a,
  5301. struct ggml_tensor * b,
  5302. struct ggml_tensor * c,
  5303. int n_dims,
  5304. int mode,
  5305. int n_ctx_orig,
  5306. float freq_base,
  5307. float freq_scale,
  5308. float ext_factor,
  5309. float attn_factor,
  5310. float beta_fast,
  5311. float beta_slow) {
  5312. GGML_ASSERT(ggml_is_vector(b));
  5313. GGML_ASSERT(b->type == GGML_TYPE_I32);
  5314. GGML_ASSERT(a->ne[2] == b->ne[0]);
  5315. GGML_ASSERT(c == NULL && "freq factors not implemented yet");
  5316. GGML_ASSERT((mode & 4) == 0 && "ggml_rope_back() for ChatGLM not implemented yet");
  5317. bool is_node = false;
  5318. if (a->grad) {
  5319. is_node = false; // TODO: implement backward
  5320. }
  5321. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5322. int32_t params[11] = { /*n_past*/ 0, n_dims, mode, /*n_ctx*/ 0, n_ctx_orig };
  5323. memcpy(params + 5, &freq_base, sizeof(float));
  5324. memcpy(params + 6, &freq_scale, sizeof(float));
  5325. memcpy(params + 7, &ext_factor, sizeof(float));
  5326. memcpy(params + 8, &attn_factor, sizeof(float));
  5327. memcpy(params + 9, &beta_fast, sizeof(float));
  5328. memcpy(params + 10, &beta_slow, sizeof(float));
  5329. ggml_set_op_params(result, params, sizeof(params));
  5330. result->op = GGML_OP_ROPE_BACK;
  5331. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5332. result->src[0] = a;
  5333. result->src[1] = b;
  5334. return result;
  5335. }
  5336. // ggml_clamp
  5337. struct ggml_tensor * ggml_clamp(
  5338. struct ggml_context * ctx,
  5339. struct ggml_tensor * a,
  5340. float min,
  5341. float max) {
  5342. bool is_node = false;
  5343. if (a->grad) {
  5344. GGML_ASSERT(false); // TODO: implement backward
  5345. is_node = true;
  5346. }
  5347. // TODO: when implement backward, fix this:
  5348. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5349. float params[] = { min, max };
  5350. ggml_set_op_params(result, params, sizeof(params));
  5351. result->op = GGML_OP_CLAMP;
  5352. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5353. result->src[0] = a;
  5354. return result;
  5355. }
  5356. // ggml_conv_1d
  5357. static int64_t ggml_calc_conv_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5358. return (ins + 2 * p - d * (ks - 1) - 1) / s + 1;
  5359. }
  5360. GGML_API struct ggml_tensor * ggml_conv_1d(
  5361. struct ggml_context * ctx,
  5362. struct ggml_tensor * a,
  5363. struct ggml_tensor * b,
  5364. int s0,
  5365. int p0,
  5366. int d0) {
  5367. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
  5368. struct ggml_tensor * result =
  5369. ggml_mul_mat(ctx,
  5370. ggml_reshape_2d(ctx, im2col, im2col->ne[0], (im2col->ne[2] * im2col->ne[1])), // [N, OL, IC * K] => [N*OL, IC * K]
  5371. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1]), a->ne[2])); // [OC,IC, K] => [OC, IC * K]
  5372. result = ggml_reshape_3d(ctx, result, im2col->ne[1], a->ne[2], im2col->ne[2]); // [N, OC, OL]
  5373. return result;
  5374. }
  5375. // ggml_conv_1d_ph
  5376. struct ggml_tensor* ggml_conv_1d_ph(
  5377. struct ggml_context * ctx,
  5378. struct ggml_tensor * a,
  5379. struct ggml_tensor * b,
  5380. int s,
  5381. int d) {
  5382. return ggml_conv_1d(ctx, a, b, s, a->ne[0] / 2, d);
  5383. }
  5384. // ggml_conv_transpose_1d
  5385. static int64_t ggml_calc_conv_transpose_1d_output_size(int64_t ins, int64_t ks, int s, int p, int d) {
  5386. return (ins - 1) * s - 2 * p + d * (ks - 1) + 1;
  5387. }
  5388. GGML_API struct ggml_tensor * ggml_conv_transpose_1d(
  5389. struct ggml_context * ctx,
  5390. struct ggml_tensor * a,
  5391. struct ggml_tensor * b,
  5392. int s0,
  5393. int p0,
  5394. int d0) {
  5395. GGML_ASSERT(ggml_is_matrix(b));
  5396. GGML_ASSERT(a->ne[2] == b->ne[1]);
  5397. GGML_ASSERT(a->ne[3] == 1);
  5398. GGML_ASSERT(p0 == 0);
  5399. GGML_ASSERT(d0 == 1);
  5400. bool is_node = false;
  5401. if (a->grad || b->grad) {
  5402. GGML_ASSERT(false); // TODO: implement backward
  5403. is_node = true;
  5404. }
  5405. const int64_t ne[4] = {
  5406. ggml_calc_conv_transpose_1d_output_size(b->ne[0], a->ne[0], s0, 0 /*p0*/, 1 /*d0*/),
  5407. a->ne[1], b->ne[2], 1,
  5408. };
  5409. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5410. int32_t params[] = { s0, p0, d0 };
  5411. ggml_set_op_params(result, params, sizeof(params));
  5412. result->op = GGML_OP_CONV_TRANSPOSE_1D;
  5413. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5414. result->src[0] = a;
  5415. result->src[1] = b;
  5416. return result;
  5417. }
  5418. // ggml_conv_depthwise
  5419. struct ggml_tensor * ggml_conv_depthwise_2d(
  5420. struct ggml_context * ctx,
  5421. struct ggml_tensor * a,
  5422. struct ggml_tensor * b,
  5423. int s0,
  5424. int s1,
  5425. int p0,
  5426. int p1,
  5427. int d0,
  5428. int d1) {
  5429. struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
  5430. struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
  5431. ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
  5432. s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
  5433. struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
  5434. new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
  5435. struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
  5436. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
  5437. return result;
  5438. }
  5439. // ggml_conv_2d
  5440. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  5441. // a: [OC,IC, KH, KW]
  5442. // b: [N, IC, IH, IW]
  5443. // result: [N, OH, OW, IC*KH*KW]
  5444. struct ggml_tensor * ggml_im2col(
  5445. struct ggml_context * ctx,
  5446. struct ggml_tensor * a,
  5447. struct ggml_tensor * b,
  5448. int s0,
  5449. int s1,
  5450. int p0,
  5451. int p1,
  5452. int d0,
  5453. int d1,
  5454. bool is_2D,
  5455. enum ggml_type dst_type) {
  5456. if(is_2D) {
  5457. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5458. } else {
  5459. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5460. }
  5461. bool is_node = false;
  5462. if (a->grad || b->grad) {
  5463. GGML_ASSERT(false); // TODO: implement backward
  5464. is_node = true;
  5465. }
  5466. const int64_t OH = is_2D ? ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1) : 0;
  5467. const int64_t OW = ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0);
  5468. const int64_t ne[4] = {
  5469. is_2D ? (a->ne[2] * a->ne[1] * a->ne[0]) : a->ne[1] * a->ne[0],
  5470. OW,
  5471. is_2D ? OH : b->ne[2],
  5472. is_2D ? b->ne[3] : 1,
  5473. };
  5474. struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
  5475. int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
  5476. ggml_set_op_params(result, params, sizeof(params));
  5477. result->op = GGML_OP_IM2COL;
  5478. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5479. result->src[0] = a;
  5480. result->src[1] = b;
  5481. return result;
  5482. }
  5483. // a: [OC,IC, KH, KW]
  5484. // b: [N, IC, IH, IW]
  5485. // result: [N, OC, OH, OW]
  5486. struct ggml_tensor * ggml_conv_2d(
  5487. struct ggml_context * ctx,
  5488. struct ggml_tensor * a,
  5489. struct ggml_tensor * b,
  5490. int s0,
  5491. int s1,
  5492. int p0,
  5493. int p1,
  5494. int d0,
  5495. int d1) {
  5496. struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
  5497. struct ggml_tensor * result =
  5498. ggml_mul_mat(ctx,
  5499. ggml_reshape_2d(ctx, im2col, im2col->ne[0], im2col->ne[3] * im2col->ne[2] * im2col->ne[1]), // [N, OH, OW, IC * KH * KW] => [N*OH*OW, IC * KH * KW]
  5500. ggml_reshape_2d(ctx, a, (a->ne[0] * a->ne[1] * a->ne[2]), a->ne[3])); // [OC,IC, KH, KW] => [OC, IC * KH * KW]
  5501. result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], im2col->ne[3], a->ne[3]); // [OC, N, OH, OW]
  5502. result = ggml_cont(ctx, ggml_permute(ctx, result, 0, 1, 3, 2)); // [N, OC, OH, OW]
  5503. return result;
  5504. }
  5505. // ggml_conv_2d_sk_p0
  5506. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5507. struct ggml_context * ctx,
  5508. struct ggml_tensor * a,
  5509. struct ggml_tensor * b) {
  5510. return ggml_conv_2d(ctx, a, b, a->ne[0], a->ne[1], 0, 0, 1, 1);
  5511. }
  5512. // ggml_conv_2d_s1_ph
  5513. struct ggml_tensor * ggml_conv_2d_s1_ph(
  5514. struct ggml_context * ctx,
  5515. struct ggml_tensor * a,
  5516. struct ggml_tensor * b) {
  5517. return ggml_conv_2d(ctx, a, b, 1, 1, a->ne[0] / 2, a->ne[1] / 2, 1, 1);
  5518. }
  5519. // ggml_conv_transpose_2d_p0
  5520. static int64_t ggml_calc_conv_transpose_output_size(int64_t ins, int64_t ks, int s, int p) {
  5521. return (ins - 1) * s - 2 * p + ks;
  5522. }
  5523. struct ggml_tensor * ggml_conv_transpose_2d_p0(
  5524. struct ggml_context * ctx,
  5525. struct ggml_tensor * a,
  5526. struct ggml_tensor * b,
  5527. int stride) {
  5528. GGML_ASSERT(a->ne[3] == b->ne[2]);
  5529. bool is_node = false;
  5530. if (a->grad || b->grad) {
  5531. GGML_ASSERT(false); // TODO: implement backward
  5532. is_node = true;
  5533. }
  5534. const int64_t ne[4] = {
  5535. ggml_calc_conv_transpose_output_size(b->ne[0], a->ne[0], stride, 0 /*p0*/),
  5536. ggml_calc_conv_transpose_output_size(b->ne[1], a->ne[1], stride, 0 /*p1*/),
  5537. a->ne[2], b->ne[3],
  5538. };
  5539. struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5540. ggml_set_op_params_i32(result, 0, stride);
  5541. result->op = GGML_OP_CONV_TRANSPOSE_2D;
  5542. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5543. result->src[0] = a;
  5544. result->src[1] = b;
  5545. return result;
  5546. }
  5547. // ggml_pool_*
  5548. static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, float p) {
  5549. return (ins + 2 * p - ks) / s + 1;
  5550. }
  5551. // ggml_pool_1d
  5552. struct ggml_tensor * ggml_pool_1d(
  5553. struct ggml_context * ctx,
  5554. struct ggml_tensor * a,
  5555. enum ggml_op_pool op,
  5556. int k0,
  5557. int s0,
  5558. int p0) {
  5559. bool is_node = false;
  5560. if (a->grad) {
  5561. GGML_ASSERT(false); // TODO: implement backward
  5562. is_node = true;
  5563. }
  5564. const int64_t ne[4] = {
  5565. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5566. a->ne[1],
  5567. a->ne[2],
  5568. a->ne[3],
  5569. };
  5570. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5571. int32_t params[] = { op, k0, s0, p0 };
  5572. ggml_set_op_params(result, params, sizeof(params));
  5573. result->op = GGML_OP_POOL_1D;
  5574. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5575. result->src[0] = a;
  5576. return result;
  5577. }
  5578. // ggml_pool_2d
  5579. struct ggml_tensor * ggml_pool_2d(
  5580. struct ggml_context * ctx,
  5581. struct ggml_tensor * a,
  5582. enum ggml_op_pool op,
  5583. int k0,
  5584. int k1,
  5585. int s0,
  5586. int s1,
  5587. float p0,
  5588. float p1) {
  5589. bool is_node = false;
  5590. if (a->grad) {
  5591. GGML_ASSERT(false); // TODO: implement backward
  5592. is_node = true;
  5593. }
  5594. struct ggml_tensor * result;
  5595. const int64_t ne[3] = {
  5596. ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
  5597. ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
  5598. a->ne[2],
  5599. };
  5600. result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5601. int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
  5602. ggml_set_op_params(result, params, sizeof(params));
  5603. result->op = GGML_OP_POOL_2D;
  5604. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5605. result->src[0] = a;
  5606. return result;
  5607. }
  5608. // ggml_upscale
  5609. static struct ggml_tensor * ggml_upscale_impl(
  5610. struct ggml_context * ctx,
  5611. struct ggml_tensor * a,
  5612. int ne0,
  5613. int ne1,
  5614. int ne2,
  5615. int ne3) {
  5616. bool is_node = false;
  5617. if (a->grad) {
  5618. GGML_ASSERT(false); // TODO: implement backward
  5619. is_node = true;
  5620. }
  5621. GGML_ASSERT(a->ne[0] <= ne0);
  5622. GGML_ASSERT(a->ne[1] <= ne1);
  5623. GGML_ASSERT(a->ne[2] <= ne2);
  5624. GGML_ASSERT(a->ne[3] <= ne3);
  5625. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5626. ne0,
  5627. ne1,
  5628. ne2,
  5629. ne3
  5630. );
  5631. result->op = GGML_OP_UPSCALE;
  5632. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5633. result->src[0] = a;
  5634. return result;
  5635. }
  5636. struct ggml_tensor * ggml_upscale(
  5637. struct ggml_context * ctx,
  5638. struct ggml_tensor * a,
  5639. int scale_factor) {
  5640. return ggml_upscale_impl(ctx, a, a->ne[0] * scale_factor, a->ne[1] * scale_factor, a->ne[2], a->ne[3]);
  5641. }
  5642. struct ggml_tensor * ggml_upscale_ext(
  5643. struct ggml_context * ctx,
  5644. struct ggml_tensor * a,
  5645. int ne0,
  5646. int ne1,
  5647. int ne2,
  5648. int ne3) {
  5649. return ggml_upscale_impl(ctx, a, ne0, ne1, ne2, ne3);
  5650. }
  5651. // ggml_pad
  5652. struct ggml_tensor * ggml_pad(
  5653. struct ggml_context * ctx,
  5654. struct ggml_tensor * a,
  5655. int p0, int p1, int p2, int p3) {
  5656. bool is_node = false;
  5657. if (a->grad) {
  5658. GGML_ASSERT(false); // TODO: implement backward
  5659. is_node = true;
  5660. }
  5661. struct ggml_tensor * result = ggml_new_tensor_4d(ctx, a->type,
  5662. a->ne[0] + p0,
  5663. a->ne[1] + p1,
  5664. a->ne[2] + p2,
  5665. a->ne[3] + p3);
  5666. result->op = GGML_OP_PAD;
  5667. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5668. result->src[0] = a;
  5669. return result;
  5670. }
  5671. // ggml_arange
  5672. struct ggml_tensor * ggml_arange(
  5673. struct ggml_context * ctx,
  5674. float start,
  5675. float stop,
  5676. float step) {
  5677. GGML_ASSERT(stop > start);
  5678. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  5679. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, steps);
  5680. result->op = GGML_OP_ARANGE;
  5681. ggml_set_op_params_f32(result, 0, start);
  5682. ggml_set_op_params_f32(result, 1, stop);
  5683. ggml_set_op_params_f32(result, 2, step);
  5684. return result;
  5685. }
  5686. // ggml_timestep_embedding
  5687. struct ggml_tensor * ggml_timestep_embedding(
  5688. struct ggml_context * ctx,
  5689. struct ggml_tensor * timesteps,
  5690. int dim,
  5691. int max_period) {
  5692. bool is_node = false;
  5693. if (timesteps->grad) {
  5694. GGML_ASSERT(false); // TODO: implement backward
  5695. is_node = true;
  5696. }
  5697. int actual_dim = dim;
  5698. if (dim % 2 != 0) {
  5699. actual_dim = dim + 1;
  5700. }
  5701. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, actual_dim, timesteps->ne[0]);
  5702. result->op = GGML_OP_TIMESTEP_EMBEDDING;
  5703. ggml_set_op_params_i32(result, 0, dim);
  5704. ggml_set_op_params_i32(result, 1, max_period);
  5705. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5706. result->src[0] = timesteps;
  5707. return result;
  5708. }
  5709. // ggml_argsort
  5710. struct ggml_tensor * ggml_argsort(
  5711. struct ggml_context * ctx,
  5712. struct ggml_tensor * a,
  5713. enum ggml_sort_order order) {
  5714. bool is_node = false;
  5715. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_I32, GGML_MAX_DIMS, a->ne);
  5716. ggml_set_op_params_i32(result, 0, (int32_t) order);
  5717. result->op = GGML_OP_ARGSORT;
  5718. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5719. result->src[0] = a;
  5720. return result;
  5721. }
  5722. // ggml_top_k
  5723. struct ggml_tensor * ggml_top_k(
  5724. struct ggml_context * ctx,
  5725. struct ggml_tensor * a,
  5726. int k) {
  5727. GGML_ASSERT(a->ne[0] >= k);
  5728. struct ggml_tensor * result = ggml_argsort(ctx, a, GGML_SORT_ORDER_DESC);
  5729. result = ggml_view_4d(ctx, result,
  5730. k, result->ne[1], result->ne[2], result->ne[3],
  5731. result->nb[1], result->nb[2], result->nb[3],
  5732. 0);
  5733. return result;
  5734. }
  5735. // ggml_flash_attn_ext
  5736. struct ggml_tensor * ggml_flash_attn_ext(
  5737. struct ggml_context * ctx,
  5738. struct ggml_tensor * q,
  5739. struct ggml_tensor * k,
  5740. struct ggml_tensor * v,
  5741. struct ggml_tensor * mask,
  5742. float scale,
  5743. float max_bias) {
  5744. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5745. // TODO: check if vT can be multiplied by (k*qT)
  5746. if (mask) {
  5747. GGML_ASSERT(ggml_is_contiguous(mask));
  5748. GGML_ASSERT(mask->ne[2] == 1);
  5749. GGML_ASSERT(mask->ne[3] == 1);
  5750. GGML_ASSERT(mask->ne[1] >= GGML_PAD(q->ne[1], GGML_KQ_MASK_PAD) &&
  5751. "the Flash-Attention kernel requires the mask to be padded to GGML_KQ_MASK_PAD and at least n_queries big");
  5752. //GGML_ASSERT(ggml_can_repeat_rows(mask, qk));
  5753. }
  5754. if (max_bias > 0.0f) {
  5755. GGML_ASSERT(mask);
  5756. }
  5757. bool is_node = false;
  5758. if (q->grad || k->grad || v->grad) {
  5759. is_node = true;
  5760. }
  5761. // permute(0, 2, 1, 3)
  5762. int64_t ne[4] = { q->ne[0], q->ne[2], q->ne[1], q->ne[3] };
  5763. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5764. float params[] = { scale, max_bias };
  5765. ggml_set_op_params(result, params, sizeof(params));
  5766. result->op = GGML_OP_FLASH_ATTN_EXT;
  5767. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5768. result->src[0] = q;
  5769. result->src[1] = k;
  5770. result->src[2] = v;
  5771. result->src[3] = mask;
  5772. return result;
  5773. }
  5774. void ggml_flash_attn_ext_set_prec(
  5775. struct ggml_tensor * a,
  5776. enum ggml_prec prec) {
  5777. GGML_ASSERT(a->op == GGML_OP_FLASH_ATTN_EXT);
  5778. const int32_t prec_i32 = (int32_t) prec;
  5779. ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
  5780. }
  5781. // ggml_flash_attn_back
  5782. struct ggml_tensor * ggml_flash_attn_back(
  5783. struct ggml_context * ctx,
  5784. struct ggml_tensor * q,
  5785. struct ggml_tensor * k,
  5786. struct ggml_tensor * v,
  5787. struct ggml_tensor * d,
  5788. bool masked) {
  5789. GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
  5790. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5791. // TODO: check if vT can be multiplied by (k*qT)
  5792. // d shape [D,N,ne2,ne3]
  5793. // q shape [D,N,ne2,ne3]
  5794. // k shape [D,M,kvne2,ne3]
  5795. // v shape [M,D,kvne2,ne3]
  5796. const int64_t D = q->ne[0];
  5797. const int64_t N = q->ne[1];
  5798. const int64_t M = k->ne[1];
  5799. const int64_t ne2 = q->ne[2];
  5800. const int64_t ne3 = q->ne[3];
  5801. const int64_t kvne2 = k->ne[2];
  5802. GGML_ASSERT(k->ne[0] == D);
  5803. GGML_ASSERT(v->ne[0] == M);
  5804. GGML_ASSERT(v->ne[1] == D);
  5805. GGML_ASSERT(d->ne[0] == D);
  5806. GGML_ASSERT(d->ne[1] == N);
  5807. GGML_ASSERT(k->ne[2] == kvne2);
  5808. GGML_ASSERT(k->ne[3] == ne3);
  5809. GGML_ASSERT(v->ne[2] == kvne2);
  5810. GGML_ASSERT(v->ne[3] == ne3);
  5811. GGML_ASSERT(d->ne[2] == ne2);
  5812. GGML_ASSERT(d->ne[3] == ne3);
  5813. GGML_ASSERT(ne2 % kvne2 == 0);
  5814. bool is_node = false;
  5815. if (q->grad || k->grad || v->grad) {
  5816. // when using this operation (in backwards pass) these grads are set.
  5817. // we don't want to create (big) grad of our result, so is_node is false.
  5818. is_node = false;
  5819. }
  5820. // store gradients of q, k and v as continuous tensors concatenated in result.
  5821. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5822. const int64_t elem_q = ggml_nelements(q);
  5823. const int64_t elem_k = ggml_nelements(k);
  5824. const int64_t elem_v = ggml_nelements(v);
  5825. enum ggml_type result_type = GGML_TYPE_F32;
  5826. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  5827. const size_t tsize = ggml_type_size(result_type);
  5828. const size_t offs_q = 0;
  5829. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  5830. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  5831. const size_t end = offs_v + GGML_PAD(elem_v * tsize, GGML_MEM_ALIGN);
  5832. const size_t nelements = (end + tsize - 1)/tsize;
  5833. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nelements);
  5834. int32_t masked_i = masked ? 1 : 0;
  5835. ggml_set_op_params(result, &masked_i, sizeof(masked_i));
  5836. result->op = GGML_OP_FLASH_ATTN_BACK;
  5837. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5838. result->src[0] = q;
  5839. result->src[1] = k;
  5840. result->src[2] = v;
  5841. result->src[3] = d;
  5842. return result;
  5843. }
  5844. // ggml_ssm_conv
  5845. struct ggml_tensor * ggml_ssm_conv(
  5846. struct ggml_context * ctx,
  5847. struct ggml_tensor * s,
  5848. struct ggml_tensor * x,
  5849. struct ggml_tensor * c,
  5850. struct ggml_tensor * sq) {
  5851. GGML_ASSERT(ggml_is_3d(s));
  5852. GGML_ASSERT(ggml_is_matrix(x));
  5853. GGML_ASSERT(ggml_is_matrix(c));
  5854. GGML_ASSERT(ggml_is_matrix(sq));
  5855. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5856. const int64_t d_conv = c->ne[0];
  5857. const int64_t d_inner = c->ne[1];
  5858. const int64_t n_tokens = x->ne[1];
  5859. const int64_t n_kv = s->ne[2];
  5860. GGML_ASSERT( s->ne[0] == d_conv - 1);
  5861. GGML_ASSERT( s->ne[1] == d_inner);
  5862. GGML_ASSERT( x->ne[0] == d_inner);
  5863. GGML_ASSERT(sq->ne[0] == n_kv);
  5864. GGML_ASSERT(sq->ne[1] == n_tokens);
  5865. bool is_node = false;
  5866. if (s->grad || x->grad || c->grad || sq->grad) {
  5867. GGML_ASSERT(false); // TODO: implement
  5868. is_node = true;
  5869. }
  5870. // 2-in-1 concatenated x and conv_states, {d_inner, n_tokens} with {d_conv, d_inner, n_kv}
  5871. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, (d_inner*n_tokens) + (d_conv*d_inner*n_kv));
  5872. result->op = GGML_OP_SSM_CONV;
  5873. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5874. result->src[0] = s;
  5875. result->src[1] = x;
  5876. result->src[2] = c;
  5877. result->src[3] = sq;
  5878. return result;
  5879. }
  5880. // ggml_ssm_scan
  5881. struct ggml_tensor * ggml_ssm_scan(
  5882. struct ggml_context * ctx,
  5883. struct ggml_tensor * s,
  5884. struct ggml_tensor * x,
  5885. struct ggml_tensor * dt,
  5886. struct ggml_tensor * A,
  5887. struct ggml_tensor * B,
  5888. struct ggml_tensor * C,
  5889. struct ggml_tensor * sq) {
  5890. GGML_ASSERT(ggml_is_contiguous(s));
  5891. GGML_ASSERT(ggml_is_contiguous(x));
  5892. GGML_ASSERT(ggml_is_contiguous(dt));
  5893. GGML_ASSERT(ggml_is_contiguous(A));
  5894. GGML_ASSERT(sq->type == GGML_TYPE_I32);
  5895. GGML_ASSERT(B->nb[0] == ggml_type_size(B->type));
  5896. GGML_ASSERT(C->nb[0] == ggml_type_size(C->type));
  5897. GGML_ASSERT(ggml_are_same_shape(x, dt));
  5898. {
  5899. const int64_t d_state = s->ne[0];
  5900. const int64_t d_inner = s->ne[1];
  5901. const int64_t n_tokens = x->ne[1];
  5902. GGML_ASSERT(x->ne[0] == d_inner);
  5903. GGML_ASSERT(A->ne[0] == d_state);
  5904. GGML_ASSERT(A->ne[1] == d_inner);
  5905. GGML_ASSERT(B->ne[0] == d_state);
  5906. GGML_ASSERT(B->ne[1] == n_tokens);
  5907. GGML_ASSERT(C->ne[0] == d_state);
  5908. GGML_ASSERT(C->ne[1] == n_tokens);
  5909. }
  5910. bool is_node = false;
  5911. if (s->grad || x->grad || dt->grad || A->grad || B->grad || C->grad || sq->grad) {
  5912. GGML_ASSERT(false); // TODO: implement
  5913. is_node = true;
  5914. }
  5915. // 2-in-1 concatenated y and ssm_states, {d_inner, n_tokens} with {d_state, d_inner, n_kv}
  5916. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, ggml_nelements(x) + ggml_nelements(s));
  5917. result->op = GGML_OP_SSM_SCAN;
  5918. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5919. result->src[0] = s;
  5920. result->src[1] = x;
  5921. result->src[2] = dt;
  5922. result->src[3] = A;
  5923. result->src[4] = B;
  5924. result->src[5] = C;
  5925. result->src[6] = sq;
  5926. return result;
  5927. }
  5928. // ggml_win_part
  5929. struct ggml_tensor * ggml_win_part(
  5930. struct ggml_context * ctx,
  5931. struct ggml_tensor * a,
  5932. int w) {
  5933. GGML_ASSERT(a->ne[3] == 1);
  5934. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5935. bool is_node = false;
  5936. if (a->grad) {
  5937. GGML_ASSERT(false); // TODO: implement backward
  5938. is_node = true;
  5939. }
  5940. // padding
  5941. const int px = (w - a->ne[1]%w)%w;
  5942. const int py = (w - a->ne[2]%w)%w;
  5943. const int npx = (px + a->ne[1])/w;
  5944. const int npy = (py + a->ne[2])/w;
  5945. const int np = npx*npy;
  5946. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5947. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5948. int32_t params[] = { npx, npy, w };
  5949. ggml_set_op_params(result, params, sizeof(params));
  5950. result->op = GGML_OP_WIN_PART;
  5951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5952. result->src[0] = a;
  5953. return result;
  5954. }
  5955. // ggml_win_unpart
  5956. struct ggml_tensor * ggml_win_unpart(
  5957. struct ggml_context * ctx,
  5958. struct ggml_tensor * a,
  5959. int w0,
  5960. int h0,
  5961. int w) {
  5962. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5963. bool is_node = false;
  5964. if (a->grad) {
  5965. GGML_ASSERT(false); // TODO: implement backward
  5966. is_node = true;
  5967. }
  5968. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5969. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5970. int32_t params[] = { w };
  5971. ggml_set_op_params(result, params, sizeof(params));
  5972. result->op = GGML_OP_WIN_UNPART;
  5973. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5974. result->src[0] = a;
  5975. return result;
  5976. }
  5977. // ggml_get_rel_pos
  5978. struct ggml_tensor * ggml_get_rel_pos(
  5979. struct ggml_context * ctx,
  5980. struct ggml_tensor * a,
  5981. int qh,
  5982. int kh) {
  5983. GGML_ASSERT(qh == kh);
  5984. GGML_ASSERT(2*MAX(qh, kh) - 1 == a->ne[1]);
  5985. bool is_node = false;
  5986. if (a->grad) {
  5987. GGML_ASSERT(false); // TODO: implement backward
  5988. is_node = true;
  5989. }
  5990. const int64_t ne[4] = { a->ne[0], kh, qh, 1, };
  5991. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 3, ne);
  5992. result->op = GGML_OP_GET_REL_POS;
  5993. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5994. result->src[0] = a;
  5995. return result;
  5996. }
  5997. // ggml_add_rel_pos
  5998. static struct ggml_tensor * ggml_add_rel_pos_impl(
  5999. struct ggml_context * ctx,
  6000. struct ggml_tensor * a,
  6001. struct ggml_tensor * pw,
  6002. struct ggml_tensor * ph,
  6003. bool inplace) {
  6004. GGML_ASSERT(ggml_are_same_shape(pw, ph));
  6005. GGML_ASSERT(ggml_is_contiguous(a));
  6006. GGML_ASSERT(ggml_is_contiguous(pw));
  6007. GGML_ASSERT(ggml_is_contiguous(ph));
  6008. GGML_ASSERT(ph->type == GGML_TYPE_F32);
  6009. GGML_ASSERT(pw->type == GGML_TYPE_F32);
  6010. GGML_ASSERT(pw->ne[3] == a->ne[2]);
  6011. GGML_ASSERT(pw->ne[0]*pw->ne[0] == a->ne[0]);
  6012. GGML_ASSERT(pw->ne[1]*pw->ne[2] == a->ne[1]);
  6013. bool is_node = false;
  6014. if (!inplace && (a->grad || pw->grad || ph->grad)) {
  6015. is_node = true;
  6016. }
  6017. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6018. ggml_set_op_params_i32(result, 0, inplace ? 1 : 0);
  6019. result->op = GGML_OP_ADD_REL_POS;
  6020. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6021. result->src[0] = a;
  6022. result->src[1] = pw;
  6023. result->src[2] = ph;
  6024. return result;
  6025. }
  6026. struct ggml_tensor * ggml_add_rel_pos(
  6027. struct ggml_context * ctx,
  6028. struct ggml_tensor * a,
  6029. struct ggml_tensor * pw,
  6030. struct ggml_tensor * ph) {
  6031. return ggml_add_rel_pos_impl(ctx, a, pw, ph, false);
  6032. }
  6033. struct ggml_tensor * ggml_add_rel_pos_inplace(
  6034. struct ggml_context * ctx,
  6035. struct ggml_tensor * a,
  6036. struct ggml_tensor * pw,
  6037. struct ggml_tensor * ph) {
  6038. return ggml_add_rel_pos_impl(ctx, a, pw, ph, true);
  6039. }
  6040. // ggml_unary
  6041. static struct ggml_tensor * ggml_unary_impl(
  6042. struct ggml_context * ctx,
  6043. struct ggml_tensor * a,
  6044. enum ggml_unary_op op,
  6045. bool inplace) {
  6046. GGML_ASSERT(ggml_is_contiguous_1(a));
  6047. bool is_node = false;
  6048. if (!inplace && (a->grad)) {
  6049. is_node = true;
  6050. }
  6051. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6052. ggml_set_op_params_i32(result, 0, (int32_t) op);
  6053. result->op = GGML_OP_UNARY;
  6054. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6055. result->src[0] = a;
  6056. return result;
  6057. }
  6058. struct ggml_tensor * ggml_unary(
  6059. struct ggml_context * ctx,
  6060. struct ggml_tensor * a,
  6061. enum ggml_unary_op op) {
  6062. return ggml_unary_impl(ctx, a, op, false);
  6063. }
  6064. struct ggml_tensor * ggml_unary_inplace(
  6065. struct ggml_context * ctx,
  6066. struct ggml_tensor * a,
  6067. enum ggml_unary_op op) {
  6068. return ggml_unary_impl(ctx, a, op, true);
  6069. }
  6070. // ggml_map_unary
  6071. static struct ggml_tensor * ggml_map_unary_impl_f32(
  6072. struct ggml_context * ctx,
  6073. struct ggml_tensor * a,
  6074. const ggml_unary_op_f32_t fun,
  6075. bool inplace) {
  6076. bool is_node = false;
  6077. if (!inplace && a->grad) {
  6078. is_node = true;
  6079. }
  6080. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6081. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6082. result->op = GGML_OP_MAP_UNARY;
  6083. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6084. result->src[0] = a;
  6085. return result;
  6086. }
  6087. struct ggml_tensor * ggml_map_unary_f32(
  6088. struct ggml_context * ctx,
  6089. struct ggml_tensor * a,
  6090. const ggml_unary_op_f32_t fun) {
  6091. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  6092. }
  6093. struct ggml_tensor * ggml_map_unary_inplace_f32(
  6094. struct ggml_context * ctx,
  6095. struct ggml_tensor * a,
  6096. const ggml_unary_op_f32_t fun) {
  6097. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  6098. }
  6099. // ggml_map_binary
  6100. static struct ggml_tensor * ggml_map_binary_impl_f32(
  6101. struct ggml_context * ctx,
  6102. struct ggml_tensor * a,
  6103. struct ggml_tensor * b,
  6104. const ggml_binary_op_f32_t fun,
  6105. bool inplace) {
  6106. GGML_ASSERT(ggml_are_same_shape(a, b));
  6107. bool is_node = false;
  6108. if (!inplace && (a->grad || b->grad)) {
  6109. is_node = true;
  6110. }
  6111. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6112. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6113. result->op = GGML_OP_MAP_BINARY;
  6114. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6115. result->src[0] = a;
  6116. result->src[1] = b;
  6117. return result;
  6118. }
  6119. struct ggml_tensor * ggml_map_binary_f32(
  6120. struct ggml_context * ctx,
  6121. struct ggml_tensor * a,
  6122. struct ggml_tensor * b,
  6123. const ggml_binary_op_f32_t fun) {
  6124. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  6125. }
  6126. struct ggml_tensor * ggml_map_binary_inplace_f32(
  6127. struct ggml_context * ctx,
  6128. struct ggml_tensor * a,
  6129. struct ggml_tensor * b,
  6130. const ggml_binary_op_f32_t fun) {
  6131. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  6132. }
  6133. // ggml_map_custom1_f32
  6134. static struct ggml_tensor * ggml_map_custom1_impl_f32(
  6135. struct ggml_context * ctx,
  6136. struct ggml_tensor * a,
  6137. const ggml_custom1_op_f32_t fun,
  6138. bool inplace) {
  6139. bool is_node = false;
  6140. if (!inplace && a->grad) {
  6141. is_node = true;
  6142. }
  6143. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6144. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6145. result->op = GGML_OP_MAP_CUSTOM1_F32;
  6146. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6147. result->src[0] = a;
  6148. return result;
  6149. }
  6150. struct ggml_tensor * ggml_map_custom1_f32(
  6151. struct ggml_context * ctx,
  6152. struct ggml_tensor * a,
  6153. const ggml_custom1_op_f32_t fun) {
  6154. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  6155. }
  6156. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  6157. struct ggml_context * ctx,
  6158. struct ggml_tensor * a,
  6159. const ggml_custom1_op_f32_t fun) {
  6160. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  6161. }
  6162. // ggml_map_custom2_f32
  6163. static struct ggml_tensor * ggml_map_custom2_impl_f32(
  6164. struct ggml_context * ctx,
  6165. struct ggml_tensor * a,
  6166. struct ggml_tensor * b,
  6167. const ggml_custom2_op_f32_t fun,
  6168. bool inplace) {
  6169. bool is_node = false;
  6170. if (!inplace && (a->grad || b->grad)) {
  6171. is_node = true;
  6172. }
  6173. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6174. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6175. result->op = GGML_OP_MAP_CUSTOM2_F32;
  6176. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6177. result->src[0] = a;
  6178. result->src[1] = b;
  6179. return result;
  6180. }
  6181. struct ggml_tensor * ggml_map_custom2_f32(
  6182. struct ggml_context * ctx,
  6183. struct ggml_tensor * a,
  6184. struct ggml_tensor * b,
  6185. const ggml_custom2_op_f32_t fun) {
  6186. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  6187. }
  6188. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  6189. struct ggml_context * ctx,
  6190. struct ggml_tensor * a,
  6191. struct ggml_tensor * b,
  6192. const ggml_custom2_op_f32_t fun) {
  6193. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  6194. }
  6195. // ggml_map_custom3_f32
  6196. static struct ggml_tensor * ggml_map_custom3_impl_f32(
  6197. struct ggml_context * ctx,
  6198. struct ggml_tensor * a,
  6199. struct ggml_tensor * b,
  6200. struct ggml_tensor * c,
  6201. const ggml_custom3_op_f32_t fun,
  6202. bool inplace) {
  6203. bool is_node = false;
  6204. if (!inplace && (a->grad || b->grad || c->grad)) {
  6205. is_node = true;
  6206. }
  6207. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6208. ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
  6209. result->op = GGML_OP_MAP_CUSTOM3_F32;
  6210. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6211. result->src[0] = a;
  6212. result->src[1] = b;
  6213. result->src[2] = c;
  6214. return result;
  6215. }
  6216. struct ggml_tensor * ggml_map_custom3_f32(
  6217. struct ggml_context * ctx,
  6218. struct ggml_tensor * a,
  6219. struct ggml_tensor * b,
  6220. struct ggml_tensor * c,
  6221. const ggml_custom3_op_f32_t fun) {
  6222. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  6223. }
  6224. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  6225. struct ggml_context * ctx,
  6226. struct ggml_tensor * a,
  6227. struct ggml_tensor * b,
  6228. struct ggml_tensor * c,
  6229. const ggml_custom3_op_f32_t fun) {
  6230. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  6231. }
  6232. // ggml_map_custom1
  6233. struct ggml_map_custom1_op_params {
  6234. ggml_custom1_op_t fun;
  6235. int n_tasks;
  6236. void * userdata;
  6237. };
  6238. static struct ggml_tensor * ggml_map_custom1_impl(
  6239. struct ggml_context * ctx,
  6240. struct ggml_tensor * a,
  6241. const ggml_custom1_op_t fun,
  6242. int n_tasks,
  6243. void * userdata,
  6244. bool inplace) {
  6245. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6246. bool is_node = false;
  6247. if (!inplace && a->grad) {
  6248. is_node = true;
  6249. }
  6250. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6251. struct ggml_map_custom1_op_params params = {
  6252. /*.fun =*/ fun,
  6253. /*.n_tasks =*/ n_tasks,
  6254. /*.userdata =*/ userdata
  6255. };
  6256. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6257. result->op = GGML_OP_MAP_CUSTOM1;
  6258. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6259. result->src[0] = a;
  6260. return result;
  6261. }
  6262. struct ggml_tensor * ggml_map_custom1(
  6263. struct ggml_context * ctx,
  6264. struct ggml_tensor * a,
  6265. const ggml_custom1_op_t fun,
  6266. int n_tasks,
  6267. void * userdata) {
  6268. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
  6269. }
  6270. struct ggml_tensor * ggml_map_custom1_inplace(
  6271. struct ggml_context * ctx,
  6272. struct ggml_tensor * a,
  6273. const ggml_custom1_op_t fun,
  6274. int n_tasks,
  6275. void * userdata) {
  6276. return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
  6277. }
  6278. // ggml_map_custom2
  6279. struct ggml_map_custom2_op_params {
  6280. ggml_custom2_op_t fun;
  6281. int n_tasks;
  6282. void * userdata;
  6283. };
  6284. static struct ggml_tensor * ggml_map_custom2_impl(
  6285. struct ggml_context * ctx,
  6286. struct ggml_tensor * a,
  6287. struct ggml_tensor * b,
  6288. const ggml_custom2_op_t fun,
  6289. int n_tasks,
  6290. void * userdata,
  6291. bool inplace) {
  6292. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6293. bool is_node = false;
  6294. if (!inplace && (a->grad || b->grad)) {
  6295. is_node = true;
  6296. }
  6297. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6298. struct ggml_map_custom2_op_params params = {
  6299. /*.fun =*/ fun,
  6300. /*.n_tasks =*/ n_tasks,
  6301. /*.userdata =*/ userdata
  6302. };
  6303. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6304. result->op = GGML_OP_MAP_CUSTOM2;
  6305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6306. result->src[0] = a;
  6307. result->src[1] = b;
  6308. return result;
  6309. }
  6310. struct ggml_tensor * ggml_map_custom2(
  6311. struct ggml_context * ctx,
  6312. struct ggml_tensor * a,
  6313. struct ggml_tensor * b,
  6314. const ggml_custom2_op_t fun,
  6315. int n_tasks,
  6316. void * userdata) {
  6317. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
  6318. }
  6319. struct ggml_tensor * ggml_map_custom2_inplace(
  6320. struct ggml_context * ctx,
  6321. struct ggml_tensor * a,
  6322. struct ggml_tensor * b,
  6323. const ggml_custom2_op_t fun,
  6324. int n_tasks,
  6325. void * userdata) {
  6326. return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
  6327. }
  6328. // ggml_map_custom3
  6329. struct ggml_map_custom3_op_params {
  6330. ggml_custom3_op_t fun;
  6331. int n_tasks;
  6332. void * userdata;
  6333. };
  6334. static struct ggml_tensor * ggml_map_custom3_impl(
  6335. struct ggml_context * ctx,
  6336. struct ggml_tensor * a,
  6337. struct ggml_tensor * b,
  6338. struct ggml_tensor * c,
  6339. const ggml_custom3_op_t fun,
  6340. int n_tasks,
  6341. void * userdata,
  6342. bool inplace) {
  6343. GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
  6344. bool is_node = false;
  6345. if (!inplace && (a->grad || b->grad || c->grad)) {
  6346. is_node = true;
  6347. }
  6348. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  6349. struct ggml_map_custom3_op_params params = {
  6350. /*.fun =*/ fun,
  6351. /*.n_tasks =*/ n_tasks,
  6352. /*.userdata =*/ userdata
  6353. };
  6354. ggml_set_op_params(result, (const void *) &params, sizeof(params));
  6355. result->op = GGML_OP_MAP_CUSTOM3;
  6356. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6357. result->src[0] = a;
  6358. result->src[1] = b;
  6359. result->src[2] = c;
  6360. return result;
  6361. }
  6362. struct ggml_tensor * ggml_map_custom3(
  6363. struct ggml_context * ctx,
  6364. struct ggml_tensor * a,
  6365. struct ggml_tensor * b,
  6366. struct ggml_tensor * c,
  6367. const ggml_custom3_op_t fun,
  6368. int n_tasks,
  6369. void * userdata) {
  6370. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
  6371. }
  6372. struct ggml_tensor * ggml_map_custom3_inplace(
  6373. struct ggml_context * ctx,
  6374. struct ggml_tensor * a,
  6375. struct ggml_tensor * b,
  6376. struct ggml_tensor * c,
  6377. const ggml_custom3_op_t fun,
  6378. int n_tasks,
  6379. void * userdata) {
  6380. return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
  6381. }
  6382. // ggml_cross_entropy_loss
  6383. struct ggml_tensor * ggml_cross_entropy_loss(
  6384. struct ggml_context * ctx,
  6385. struct ggml_tensor * a,
  6386. struct ggml_tensor * b) {
  6387. GGML_ASSERT(ggml_are_same_shape(a, b));
  6388. bool is_node = false;
  6389. if (a->grad || b->grad) {
  6390. is_node = true;
  6391. }
  6392. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  6393. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  6394. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  6395. result->src[0] = a;
  6396. result->src[1] = b;
  6397. return result;
  6398. }
  6399. // ggml_cross_entropy_loss_back
  6400. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6401. struct ggml_context * ctx,
  6402. struct ggml_tensor * a,
  6403. struct ggml_tensor * b,
  6404. struct ggml_tensor * c) {
  6405. GGML_ASSERT(ggml_are_same_shape(a, b));
  6406. GGML_ASSERT(ggml_is_scalar(c));
  6407. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6408. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6409. result->grad = NULL;
  6410. result->src[0] = a;
  6411. result->src[1] = b;
  6412. result->src[2] = c;
  6413. return result;
  6414. }
  6415. ////////////////////////////////////////////////////////////////////////////////
  6416. void ggml_set_param(
  6417. struct ggml_context * ctx,
  6418. struct ggml_tensor * tensor) {
  6419. tensor->flags |= GGML_TENSOR_FLAG_PARAM;
  6420. GGML_ASSERT(tensor->grad == NULL);
  6421. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6422. ggml_format_name(tensor->grad, "%s (grad)", tensor->name);
  6423. }
  6424. // ggml_compute_forward_dup
  6425. static void ggml_compute_forward_dup_same_cont(
  6426. const struct ggml_compute_params * params,
  6427. struct ggml_tensor * dst) {
  6428. const struct ggml_tensor * src0 = dst->src[0];
  6429. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6430. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6431. GGML_ASSERT(src0->type == dst->type);
  6432. const size_t nb00 = src0->nb[0];
  6433. const size_t nb0 = dst->nb[0];
  6434. const int ith = params->ith; // thread index
  6435. const int nth = params->nth; // number of threads
  6436. // parallelize by elements
  6437. const int ne = ggml_nelements(dst);
  6438. const int dr = (ne + nth - 1) / nth;
  6439. const int ie0 = dr * ith;
  6440. const int ie1 = MIN(ie0 + dr, ne);
  6441. if (ie0 < ie1) {
  6442. memcpy(
  6443. ((char *) dst->data + ie0*nb0),
  6444. ((char *) src0->data + ie0*nb00),
  6445. (ie1 - ie0) * ggml_type_size(src0->type));
  6446. }
  6447. }
  6448. static void ggml_compute_forward_dup_f16(
  6449. const struct ggml_compute_params * params,
  6450. struct ggml_tensor * dst) {
  6451. const struct ggml_tensor * src0 = dst->src[0];
  6452. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6453. GGML_TENSOR_UNARY_OP_LOCALS
  6454. const int ith = params->ith; // thread index
  6455. const int nth = params->nth; // number of threads
  6456. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6457. ggml_compute_forward_dup_same_cont(params, dst);
  6458. return;
  6459. }
  6460. // parallelize by rows
  6461. const int nr = ne01;
  6462. // number of rows per thread
  6463. const int dr = (nr + nth - 1) / nth;
  6464. // row range for this thread
  6465. const int ir0 = dr * ith;
  6466. const int ir1 = MIN(ir0 + dr, nr);
  6467. if (src0->type == dst->type &&
  6468. ne00 == ne0 &&
  6469. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6470. // copy by rows
  6471. const size_t rs = ne00*nb00;
  6472. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6473. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6474. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6475. memcpy(
  6476. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6477. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6478. rs);
  6479. }
  6480. }
  6481. }
  6482. return;
  6483. }
  6484. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6485. if (ggml_is_contiguous(dst)) {
  6486. if (nb00 == sizeof(ggml_fp16_t)) {
  6487. if (dst->type == GGML_TYPE_F16) {
  6488. size_t id = 0;
  6489. const size_t rs = ne00 * nb00;
  6490. char * dst_ptr = (char *) dst->data;
  6491. for (int i03 = 0; i03 < ne03; i03++) {
  6492. for (int i02 = 0; i02 < ne02; i02++) {
  6493. id += rs * ir0;
  6494. for (int i01 = ir0; i01 < ir1; i01++) {
  6495. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6496. memcpy(dst_ptr + id, src0_ptr, rs);
  6497. id += rs;
  6498. }
  6499. id += rs * (ne01 - ir1);
  6500. }
  6501. }
  6502. } else if (dst->type == GGML_TYPE_F32) {
  6503. size_t id = 0;
  6504. float * dst_ptr = (float *) dst->data;
  6505. for (int i03 = 0; i03 < ne03; i03++) {
  6506. for (int i02 = 0; i02 < ne02; i02++) {
  6507. id += ne00 * ir0;
  6508. for (int i01 = ir0; i01 < ir1; i01++) {
  6509. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6510. for (int i00 = 0; i00 < ne00; i00++) {
  6511. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6512. id++;
  6513. }
  6514. }
  6515. id += ne00 * (ne01 - ir1);
  6516. }
  6517. }
  6518. } else if (type_traits[dst->type].from_float) {
  6519. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6520. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6521. size_t id = 0;
  6522. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6523. char * dst_ptr = (char *) dst->data;
  6524. for (int i03 = 0; i03 < ne03; i03++) {
  6525. for (int i02 = 0; i02 < ne02; i02++) {
  6526. id += rs * ir0;
  6527. for (int i01 = ir0; i01 < ir1; i01++) {
  6528. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6529. for (int i00 = 0; i00 < ne00; i00++) {
  6530. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6531. }
  6532. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6533. id += rs;
  6534. }
  6535. id += rs * (ne01 - ir1);
  6536. }
  6537. }
  6538. } else {
  6539. GGML_ASSERT(false); // TODO: implement
  6540. }
  6541. } else {
  6542. //printf("%s: this is not optimal - fix me\n", __func__);
  6543. if (dst->type == GGML_TYPE_F32) {
  6544. size_t id = 0;
  6545. float * dst_ptr = (float *) dst->data;
  6546. for (int i03 = 0; i03 < ne03; i03++) {
  6547. for (int i02 = 0; i02 < ne02; i02++) {
  6548. id += ne00 * ir0;
  6549. for (int i01 = ir0; i01 < ir1; i01++) {
  6550. for (int i00 = 0; i00 < ne00; i00++) {
  6551. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6552. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6553. id++;
  6554. }
  6555. }
  6556. id += ne00 * (ne01 - ir1);
  6557. }
  6558. }
  6559. } else if (dst->type == GGML_TYPE_F16) {
  6560. size_t id = 0;
  6561. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6562. for (int i03 = 0; i03 < ne03; i03++) {
  6563. for (int i02 = 0; i02 < ne02; i02++) {
  6564. id += ne00 * ir0;
  6565. for (int i01 = ir0; i01 < ir1; i01++) {
  6566. for (int i00 = 0; i00 < ne00; i00++) {
  6567. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6568. dst_ptr[id] = *src0_ptr;
  6569. id++;
  6570. }
  6571. }
  6572. id += ne00 * (ne01 - ir1);
  6573. }
  6574. }
  6575. } else {
  6576. GGML_ASSERT(false); // TODO: implement
  6577. }
  6578. }
  6579. return;
  6580. }
  6581. // dst counters
  6582. int64_t i10 = 0;
  6583. int64_t i11 = 0;
  6584. int64_t i12 = 0;
  6585. int64_t i13 = 0;
  6586. if (dst->type == GGML_TYPE_F16) {
  6587. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6588. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6589. i10 += ne00 * ir0;
  6590. while (i10 >= ne0) {
  6591. i10 -= ne0;
  6592. if (++i11 == ne1) {
  6593. i11 = 0;
  6594. if (++i12 == ne2) {
  6595. i12 = 0;
  6596. if (++i13 == ne3) {
  6597. i13 = 0;
  6598. }
  6599. }
  6600. }
  6601. }
  6602. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6603. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6604. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6605. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6606. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6607. if (++i10 == ne00) {
  6608. i10 = 0;
  6609. if (++i11 == ne01) {
  6610. i11 = 0;
  6611. if (++i12 == ne02) {
  6612. i12 = 0;
  6613. if (++i13 == ne03) {
  6614. i13 = 0;
  6615. }
  6616. }
  6617. }
  6618. }
  6619. }
  6620. }
  6621. i10 += ne00 * (ne01 - ir1);
  6622. while (i10 >= ne0) {
  6623. i10 -= ne0;
  6624. if (++i11 == ne1) {
  6625. i11 = 0;
  6626. if (++i12 == ne2) {
  6627. i12 = 0;
  6628. if (++i13 == ne3) {
  6629. i13 = 0;
  6630. }
  6631. }
  6632. }
  6633. }
  6634. }
  6635. }
  6636. } else if (dst->type == GGML_TYPE_F32) {
  6637. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6638. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6639. i10 += ne00 * ir0;
  6640. while (i10 >= ne0) {
  6641. i10 -= ne0;
  6642. if (++i11 == ne1) {
  6643. i11 = 0;
  6644. if (++i12 == ne2) {
  6645. i12 = 0;
  6646. if (++i13 == ne3) {
  6647. i13 = 0;
  6648. }
  6649. }
  6650. }
  6651. }
  6652. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6653. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6654. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6655. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6656. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6657. if (++i10 == ne0) {
  6658. i10 = 0;
  6659. if (++i11 == ne1) {
  6660. i11 = 0;
  6661. if (++i12 == ne2) {
  6662. i12 = 0;
  6663. if (++i13 == ne3) {
  6664. i13 = 0;
  6665. }
  6666. }
  6667. }
  6668. }
  6669. }
  6670. }
  6671. i10 += ne00 * (ne01 - ir1);
  6672. while (i10 >= ne0) {
  6673. i10 -= ne0;
  6674. if (++i11 == ne1) {
  6675. i11 = 0;
  6676. if (++i12 == ne2) {
  6677. i12 = 0;
  6678. if (++i13 == ne3) {
  6679. i13 = 0;
  6680. }
  6681. }
  6682. }
  6683. }
  6684. }
  6685. }
  6686. } else {
  6687. GGML_ASSERT(false); // TODO: implement
  6688. }
  6689. }
  6690. static void ggml_compute_forward_dup_bf16(
  6691. const struct ggml_compute_params * params,
  6692. struct ggml_tensor * dst) {
  6693. const struct ggml_tensor * src0 = dst->src[0];
  6694. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6695. GGML_TENSOR_UNARY_OP_LOCALS
  6696. const int ith = params->ith; // thread index
  6697. const int nth = params->nth; // number of threads
  6698. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6699. ggml_compute_forward_dup_same_cont(params, dst);
  6700. return;
  6701. }
  6702. // parallelize by rows
  6703. const int nr = ne01;
  6704. // number of rows per thread
  6705. const int dr = (nr + nth - 1) / nth;
  6706. // row range for this thread
  6707. const int ir0 = dr * ith;
  6708. const int ir1 = MIN(ir0 + dr, nr);
  6709. if (src0->type == dst->type &&
  6710. ne00 == ne0 &&
  6711. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  6712. // copy by rows
  6713. const size_t rs = ne00*nb00;
  6714. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6715. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6716. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6717. memcpy(
  6718. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6719. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6720. rs);
  6721. }
  6722. }
  6723. }
  6724. return;
  6725. }
  6726. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6727. if (ggml_is_contiguous(dst)) {
  6728. if (nb00 == sizeof(ggml_bf16_t)) {
  6729. if (dst->type == GGML_TYPE_BF16) {
  6730. size_t id = 0;
  6731. const size_t rs = ne00 * nb00;
  6732. char * dst_ptr = (char *) dst->data;
  6733. for (int i03 = 0; i03 < ne03; i03++) {
  6734. for (int i02 = 0; i02 < ne02; i02++) {
  6735. id += rs * ir0;
  6736. for (int i01 = ir0; i01 < ir1; i01++) {
  6737. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6738. memcpy(dst_ptr + id, src0_ptr, rs);
  6739. id += rs;
  6740. }
  6741. id += rs * (ne01 - ir1);
  6742. }
  6743. }
  6744. } else if (dst->type == GGML_TYPE_F16) {
  6745. size_t id = 0;
  6746. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6747. for (int i03 = 0; i03 < ne03; i03++) {
  6748. for (int i02 = 0; i02 < ne02; i02++) {
  6749. id += ne00 * ir0;
  6750. for (int i01 = ir0; i01 < ir1; i01++) {
  6751. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6752. for (int i00 = 0; i00 < ne00; i00++) {
  6753. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(src0_ptr[i00]));
  6754. id++;
  6755. }
  6756. }
  6757. id += ne00 * (ne01 - ir1);
  6758. }
  6759. }
  6760. } else if (dst->type == GGML_TYPE_F32) {
  6761. size_t id = 0;
  6762. float * dst_ptr = (float *) dst->data;
  6763. for (int i03 = 0; i03 < ne03; i03++) {
  6764. for (int i02 = 0; i02 < ne02; i02++) {
  6765. id += ne00 * ir0;
  6766. for (int i01 = ir0; i01 < ir1; i01++) {
  6767. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6768. for (int i00 = 0; i00 < ne00; i00++) {
  6769. dst_ptr[id] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6770. id++;
  6771. }
  6772. }
  6773. id += ne00 * (ne01 - ir1);
  6774. }
  6775. }
  6776. } else if (type_traits[dst->type].from_float) {
  6777. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  6778. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6779. size_t id = 0;
  6780. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  6781. char * dst_ptr = (char *) dst->data;
  6782. for (int i03 = 0; i03 < ne03; i03++) {
  6783. for (int i02 = 0; i02 < ne02; i02++) {
  6784. id += rs * ir0;
  6785. for (int i01 = ir0; i01 < ir1; i01++) {
  6786. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6787. for (int i00 = 0; i00 < ne00; i00++) {
  6788. src0_f32[i00] = GGML_BF16_TO_FP32(src0_ptr[i00]);
  6789. }
  6790. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6791. id += rs;
  6792. }
  6793. id += rs * (ne01 - ir1);
  6794. }
  6795. }
  6796. } else {
  6797. GGML_ASSERT(false); // TODO: implement
  6798. }
  6799. } else {
  6800. //printf("%s: this is not optimal - fix me\n", __func__);
  6801. if (dst->type == GGML_TYPE_F32) {
  6802. size_t id = 0;
  6803. float * dst_ptr = (float *) dst->data;
  6804. for (int i03 = 0; i03 < ne03; i03++) {
  6805. for (int i02 = 0; i02 < ne02; i02++) {
  6806. id += ne00 * ir0;
  6807. for (int i01 = ir0; i01 < ir1; i01++) {
  6808. for (int i00 = 0; i00 < ne00; i00++) {
  6809. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6810. dst_ptr[id] = GGML_BF16_TO_FP32(*src0_ptr);
  6811. id++;
  6812. }
  6813. }
  6814. id += ne00 * (ne01 - ir1);
  6815. }
  6816. }
  6817. } else if (dst->type == GGML_TYPE_BF16) {
  6818. size_t id = 0;
  6819. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  6820. for (int i03 = 0; i03 < ne03; i03++) {
  6821. for (int i02 = 0; i02 < ne02; i02++) {
  6822. id += ne00 * ir0;
  6823. for (int i01 = ir0; i01 < ir1; i01++) {
  6824. for (int i00 = 0; i00 < ne00; i00++) {
  6825. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6826. dst_ptr[id] = *src0_ptr;
  6827. id++;
  6828. }
  6829. }
  6830. id += ne00 * (ne01 - ir1);
  6831. }
  6832. }
  6833. } else if (dst->type == GGML_TYPE_F16) {
  6834. size_t id = 0;
  6835. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6836. for (int i03 = 0; i03 < ne03; i03++) {
  6837. for (int i02 = 0; i02 < ne02; i02++) {
  6838. id += ne00 * ir0;
  6839. for (int i01 = ir0; i01 < ir1; i01++) {
  6840. for (int i00 = 0; i00 < ne00; i00++) {
  6841. const ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6842. dst_ptr[id] = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*src0_ptr));
  6843. id++;
  6844. }
  6845. }
  6846. id += ne00 * (ne01 - ir1);
  6847. }
  6848. }
  6849. } else {
  6850. GGML_ASSERT(false); // TODO: implement
  6851. }
  6852. }
  6853. return;
  6854. }
  6855. // dst counters
  6856. int64_t i10 = 0;
  6857. int64_t i11 = 0;
  6858. int64_t i12 = 0;
  6859. int64_t i13 = 0;
  6860. if (dst->type == GGML_TYPE_BF16) {
  6861. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6862. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6863. i10 += ne00 * ir0;
  6864. while (i10 >= ne0) {
  6865. i10 -= ne0;
  6866. if (++i11 == ne1) {
  6867. i11 = 0;
  6868. if (++i12 == ne2) {
  6869. i12 = 0;
  6870. if (++i13 == ne3) {
  6871. i13 = 0;
  6872. }
  6873. }
  6874. }
  6875. }
  6876. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6877. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6878. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6879. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6880. memcpy(dst_ptr, src0_ptr, sizeof(ggml_bf16_t));
  6881. if (++i10 == ne00) {
  6882. i10 = 0;
  6883. if (++i11 == ne01) {
  6884. i11 = 0;
  6885. if (++i12 == ne02) {
  6886. i12 = 0;
  6887. if (++i13 == ne03) {
  6888. i13 = 0;
  6889. }
  6890. }
  6891. }
  6892. }
  6893. }
  6894. }
  6895. i10 += ne00 * (ne01 - ir1);
  6896. while (i10 >= ne0) {
  6897. i10 -= ne0;
  6898. if (++i11 == ne1) {
  6899. i11 = 0;
  6900. if (++i12 == ne2) {
  6901. i12 = 0;
  6902. if (++i13 == ne3) {
  6903. i13 = 0;
  6904. }
  6905. }
  6906. }
  6907. }
  6908. }
  6909. }
  6910. } else if (dst->type == GGML_TYPE_F16) {
  6911. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6912. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6913. i10 += ne00 * ir0;
  6914. while (i10 >= ne0) {
  6915. i10 -= ne0;
  6916. if (++i11 == ne1) {
  6917. i11 = 0;
  6918. if (++i12 == ne2) {
  6919. i12 = 0;
  6920. if (++i13 == ne3) {
  6921. i13 = 0;
  6922. }
  6923. }
  6924. }
  6925. }
  6926. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6927. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6928. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6929. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6930. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr));
  6931. if (++i10 == ne0) {
  6932. i10 = 0;
  6933. if (++i11 == ne1) {
  6934. i11 = 0;
  6935. if (++i12 == ne2) {
  6936. i12 = 0;
  6937. if (++i13 == ne3) {
  6938. i13 = 0;
  6939. }
  6940. }
  6941. }
  6942. }
  6943. }
  6944. }
  6945. i10 += ne00 * (ne01 - ir1);
  6946. while (i10 >= ne0) {
  6947. i10 -= ne0;
  6948. if (++i11 == ne1) {
  6949. i11 = 0;
  6950. if (++i12 == ne2) {
  6951. i12 = 0;
  6952. if (++i13 == ne3) {
  6953. i13 = 0;
  6954. }
  6955. }
  6956. }
  6957. }
  6958. }
  6959. }
  6960. } else if (dst->type == GGML_TYPE_F32) {
  6961. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6962. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6963. i10 += ne00 * ir0;
  6964. while (i10 >= ne0) {
  6965. i10 -= ne0;
  6966. if (++i11 == ne1) {
  6967. i11 = 0;
  6968. if (++i12 == ne2) {
  6969. i12 = 0;
  6970. if (++i13 == ne3) {
  6971. i13 = 0;
  6972. }
  6973. }
  6974. }
  6975. }
  6976. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6977. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6978. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6979. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6980. *(float *) dst_ptr = GGML_BF16_TO_FP32(*(const ggml_bf16_t *) src0_ptr);
  6981. if (++i10 == ne0) {
  6982. i10 = 0;
  6983. if (++i11 == ne1) {
  6984. i11 = 0;
  6985. if (++i12 == ne2) {
  6986. i12 = 0;
  6987. if (++i13 == ne3) {
  6988. i13 = 0;
  6989. }
  6990. }
  6991. }
  6992. }
  6993. }
  6994. }
  6995. i10 += ne00 * (ne01 - ir1);
  6996. while (i10 >= ne0) {
  6997. i10 -= ne0;
  6998. if (++i11 == ne1) {
  6999. i11 = 0;
  7000. if (++i12 == ne2) {
  7001. i12 = 0;
  7002. if (++i13 == ne3) {
  7003. i13 = 0;
  7004. }
  7005. }
  7006. }
  7007. }
  7008. }
  7009. }
  7010. } else {
  7011. GGML_ASSERT(false); // TODO: implement
  7012. }
  7013. }
  7014. static void ggml_compute_forward_dup_f32(
  7015. const struct ggml_compute_params * params,
  7016. struct ggml_tensor * dst) {
  7017. const struct ggml_tensor * src0 = dst->src[0];
  7018. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7019. GGML_TENSOR_UNARY_OP_LOCALS
  7020. const int ith = params->ith; // thread index
  7021. const int nth = params->nth; // number of threads
  7022. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  7023. ggml_compute_forward_dup_same_cont(params, dst);
  7024. return;
  7025. }
  7026. // parallelize by rows
  7027. const int nr = ne01;
  7028. // number of rows per thread
  7029. const int dr = (nr + nth - 1) / nth;
  7030. // row range for this thread
  7031. const int ir0 = dr * ith;
  7032. const int ir1 = MIN(ir0 + dr, nr);
  7033. if (src0->type == dst->type &&
  7034. ne00 == ne0 &&
  7035. nb00 == ggml_type_size(src0->type) && nb0 == ggml_type_size(dst->type)) {
  7036. // copy by rows
  7037. const size_t rs = ne00*nb00;
  7038. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7039. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7040. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7041. memcpy(
  7042. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7043. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7044. rs);
  7045. }
  7046. }
  7047. }
  7048. return;
  7049. }
  7050. if (ggml_is_contiguous(dst)) {
  7051. // TODO: simplify
  7052. if (nb00 == sizeof(float)) {
  7053. if (dst->type == GGML_TYPE_F32) {
  7054. size_t id = 0;
  7055. const size_t rs = ne00 * nb00;
  7056. char * dst_ptr = (char *) dst->data;
  7057. for (int i03 = 0; i03 < ne03; i03++) {
  7058. for (int i02 = 0; i02 < ne02; i02++) {
  7059. id += rs * ir0;
  7060. for (int i01 = ir0; i01 < ir1; i01++) {
  7061. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7062. memcpy(dst_ptr + id, src0_ptr, rs);
  7063. id += rs;
  7064. }
  7065. id += rs * (ne01 - ir1);
  7066. }
  7067. }
  7068. } else if (type_traits[dst->type].from_float) {
  7069. ggml_from_float_t const quantize_row_q = type_traits[dst->type].from_float;
  7070. size_t id = 0;
  7071. size_t rs = nb0 * (ne00 / ggml_blck_size(dst->type));
  7072. char * dst_ptr = (char *) dst->data;
  7073. for (int i03 = 0; i03 < ne03; i03++) {
  7074. for (int i02 = 0; i02 < ne02; i02++) {
  7075. id += rs * ir0;
  7076. for (int i01 = ir0; i01 < ir1; i01++) {
  7077. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  7078. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  7079. id += rs;
  7080. }
  7081. id += rs * (ne01 - ir1);
  7082. }
  7083. }
  7084. } else {
  7085. GGML_ASSERT(false); // TODO: implement
  7086. }
  7087. } else {
  7088. //printf("%s: this is not optimal - fix me\n", __func__);
  7089. if (dst->type == GGML_TYPE_F32) {
  7090. size_t id = 0;
  7091. float * dst_ptr = (float *) dst->data;
  7092. for (int i03 = 0; i03 < ne03; i03++) {
  7093. for (int i02 = 0; i02 < ne02; i02++) {
  7094. id += ne00 * ir0;
  7095. for (int i01 = ir0; i01 < ir1; i01++) {
  7096. for (int i00 = 0; i00 < ne00; i00++) {
  7097. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7098. dst_ptr[id] = *src0_ptr;
  7099. id++;
  7100. }
  7101. }
  7102. id += ne00 * (ne01 - ir1);
  7103. }
  7104. }
  7105. } else if (dst->type == GGML_TYPE_F16) {
  7106. size_t id = 0;
  7107. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  7108. for (int i03 = 0; i03 < ne03; i03++) {
  7109. for (int i02 = 0; i02 < ne02; i02++) {
  7110. id += ne00 * ir0;
  7111. for (int i01 = ir0; i01 < ir1; i01++) {
  7112. for (int i00 = 0; i00 < ne00; i00++) {
  7113. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7114. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  7115. id++;
  7116. }
  7117. }
  7118. id += ne00 * (ne01 - ir1);
  7119. }
  7120. }
  7121. } else if (dst->type == GGML_TYPE_BF16) {
  7122. size_t id = 0;
  7123. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) dst->data;
  7124. for (int i03 = 0; i03 < ne03; i03++) {
  7125. for (int i02 = 0; i02 < ne02; i02++) {
  7126. id += ne00 * ir0;
  7127. for (int i01 = ir0; i01 < ir1; i01++) {
  7128. for (int i00 = 0; i00 < ne00; i00++) {
  7129. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7130. dst_ptr[id] = GGML_FP32_TO_BF16(*src0_ptr);
  7131. id++;
  7132. }
  7133. }
  7134. id += ne00 * (ne01 - ir1);
  7135. }
  7136. }
  7137. } else {
  7138. GGML_ASSERT(false); // TODO: implement
  7139. }
  7140. }
  7141. return;
  7142. }
  7143. // dst counters
  7144. int64_t i10 = 0;
  7145. int64_t i11 = 0;
  7146. int64_t i12 = 0;
  7147. int64_t i13 = 0;
  7148. if (dst->type == GGML_TYPE_F32) {
  7149. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7150. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7151. i10 += ne00 * ir0;
  7152. while (i10 >= ne0) {
  7153. i10 -= ne0;
  7154. if (++i11 == ne1) {
  7155. i11 = 0;
  7156. if (++i12 == ne2) {
  7157. i12 = 0;
  7158. if (++i13 == ne3) {
  7159. i13 = 0;
  7160. }
  7161. }
  7162. }
  7163. }
  7164. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7165. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7166. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7167. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7168. memcpy(dst_ptr, src0_ptr, sizeof(float));
  7169. if (++i10 == ne0) {
  7170. i10 = 0;
  7171. if (++i11 == ne1) {
  7172. i11 = 0;
  7173. if (++i12 == ne2) {
  7174. i12 = 0;
  7175. if (++i13 == ne3) {
  7176. i13 = 0;
  7177. }
  7178. }
  7179. }
  7180. }
  7181. }
  7182. }
  7183. i10 += ne00 * (ne01 - ir1);
  7184. while (i10 >= ne0) {
  7185. i10 -= ne0;
  7186. if (++i11 == ne1) {
  7187. i11 = 0;
  7188. if (++i12 == ne2) {
  7189. i12 = 0;
  7190. if (++i13 == ne3) {
  7191. i13 = 0;
  7192. }
  7193. }
  7194. }
  7195. }
  7196. }
  7197. }
  7198. } else if (dst->type == GGML_TYPE_F16) {
  7199. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7200. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7201. i10 += ne00 * ir0;
  7202. while (i10 >= ne0) {
  7203. i10 -= ne0;
  7204. if (++i11 == ne1) {
  7205. i11 = 0;
  7206. if (++i12 == ne2) {
  7207. i12 = 0;
  7208. if (++i13 == ne3) {
  7209. i13 = 0;
  7210. }
  7211. }
  7212. }
  7213. }
  7214. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7215. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7216. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7217. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7218. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  7219. if (++i10 == ne0) {
  7220. i10 = 0;
  7221. if (++i11 == ne1) {
  7222. i11 = 0;
  7223. if (++i12 == ne2) {
  7224. i12 = 0;
  7225. if (++i13 == ne3) {
  7226. i13 = 0;
  7227. }
  7228. }
  7229. }
  7230. }
  7231. }
  7232. }
  7233. i10 += ne00 * (ne01 - ir1);
  7234. while (i10 >= ne0) {
  7235. i10 -= ne0;
  7236. if (++i11 == ne1) {
  7237. i11 = 0;
  7238. if (++i12 == ne2) {
  7239. i12 = 0;
  7240. if (++i13 == ne3) {
  7241. i13 = 0;
  7242. }
  7243. }
  7244. }
  7245. }
  7246. }
  7247. }
  7248. } else if (dst->type == GGML_TYPE_BF16) {
  7249. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7250. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7251. i10 += ne00 * ir0;
  7252. while (i10 >= ne0) {
  7253. i10 -= ne0;
  7254. if (++i11 == ne1) {
  7255. i11 = 0;
  7256. if (++i12 == ne2) {
  7257. i12 = 0;
  7258. if (++i13 == ne3) {
  7259. i13 = 0;
  7260. }
  7261. }
  7262. }
  7263. }
  7264. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7265. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7266. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7267. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7268. *(ggml_bf16_t *) dst_ptr = GGML_FP32_TO_BF16(*(const float *) src0_ptr);
  7269. if (++i10 == ne0) {
  7270. i10 = 0;
  7271. if (++i11 == ne1) {
  7272. i11 = 0;
  7273. if (++i12 == ne2) {
  7274. i12 = 0;
  7275. if (++i13 == ne3) {
  7276. i13 = 0;
  7277. }
  7278. }
  7279. }
  7280. }
  7281. }
  7282. }
  7283. i10 += ne00 * (ne01 - ir1);
  7284. while (i10 >= ne0) {
  7285. i10 -= ne0;
  7286. if (++i11 == ne1) {
  7287. i11 = 0;
  7288. if (++i12 == ne2) {
  7289. i12 = 0;
  7290. if (++i13 == ne3) {
  7291. i13 = 0;
  7292. }
  7293. }
  7294. }
  7295. }
  7296. }
  7297. }
  7298. } else {
  7299. GGML_ASSERT(false); // TODO: implement
  7300. }
  7301. }
  7302. // A simplified version of ggml_compute_forward_dup that doesn't do float upcasting, and just plain old memcpy.
  7303. static void ggml_compute_forward_dup_bytes(
  7304. const struct ggml_compute_params * params,
  7305. struct ggml_tensor * dst) {
  7306. const struct ggml_tensor * src0 = dst->src[0];
  7307. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  7308. GGML_ASSERT(src0->type == dst->type);
  7309. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst)) {
  7310. ggml_compute_forward_dup_same_cont(params, dst);
  7311. return;
  7312. }
  7313. GGML_TENSOR_UNARY_OP_LOCALS;
  7314. const size_t type_size = ggml_type_size(src0->type);
  7315. const int ith = params->ith; // thread index
  7316. const int nth = params->nth; // number of threads
  7317. // parallelize by rows
  7318. const int nr = ne01;
  7319. // number of rows per thread
  7320. const int dr = (nr + nth - 1) / nth;
  7321. // row range for this thread
  7322. const int ir0 = dr * ith;
  7323. const int ir1 = MIN(ir0 + dr, nr);
  7324. if (src0->type == dst->type &&
  7325. ne00 == ne0 &&
  7326. nb00 == type_size && nb0 == type_size) {
  7327. // copy by rows
  7328. const size_t rs = ne00 * type_size;
  7329. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7330. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7331. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7332. memcpy(
  7333. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7334. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  7335. rs);
  7336. }
  7337. }
  7338. }
  7339. return;
  7340. }
  7341. if (ggml_is_contiguous(dst)) {
  7342. size_t id = 0;
  7343. char * dst_ptr = (char *) dst->data;
  7344. const size_t rs = ne00 * type_size;
  7345. if (nb00 == type_size) {
  7346. // src0 is contigous on first dimension, copy by rows
  7347. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7348. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7349. id += rs * ir0;
  7350. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7351. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  7352. memcpy(dst_ptr + id, src0_ptr, rs);
  7353. id += rs;
  7354. }
  7355. id += rs * (ne01 - ir1);
  7356. }
  7357. }
  7358. } else {
  7359. //printf("%s: this is not optimal - fix me\n", __func__);
  7360. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7361. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7362. id += rs * ir0;
  7363. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7364. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7365. const char * src0_ptr = (char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03;
  7366. memcpy(dst_ptr + id, src0_ptr, type_size);
  7367. id += type_size;
  7368. }
  7369. }
  7370. id += rs * (ne01 - ir1);
  7371. }
  7372. }
  7373. }
  7374. return;
  7375. }
  7376. // dst counters
  7377. int64_t i10 = 0;
  7378. int64_t i11 = 0;
  7379. int64_t i12 = 0;
  7380. int64_t i13 = 0;
  7381. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7382. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7383. i10 += ne00 * ir0;
  7384. while (i10 >= ne0) {
  7385. i10 -= ne0;
  7386. if (++i11 == ne1) {
  7387. i11 = 0;
  7388. if (++i12 == ne2) {
  7389. i12 = 0;
  7390. if (++i13 == ne3) {
  7391. i13 = 0;
  7392. }
  7393. }
  7394. }
  7395. }
  7396. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  7397. for (int64_t i00 = 0; i00 < ne00; i00++) {
  7398. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  7399. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  7400. memcpy(dst_ptr, src0_ptr, type_size);
  7401. if (++i10 == ne0) {
  7402. i10 = 0;
  7403. if (++i11 == ne1) {
  7404. i11 = 0;
  7405. if (++i12 == ne2) {
  7406. i12 = 0;
  7407. if (++i13 == ne3) {
  7408. i13 = 0;
  7409. }
  7410. }
  7411. }
  7412. }
  7413. }
  7414. }
  7415. i10 += ne00 * (ne01 - ir1);
  7416. while (i10 >= ne0) {
  7417. i10 -= ne0;
  7418. if (++i11 == ne1) {
  7419. i11 = 0;
  7420. if (++i12 == ne2) {
  7421. i12 = 0;
  7422. if (++i13 == ne3) {
  7423. i13 = 0;
  7424. }
  7425. }
  7426. }
  7427. }
  7428. }
  7429. }
  7430. }
  7431. static void ggml_compute_forward_dup(
  7432. const struct ggml_compute_params * params,
  7433. struct ggml_tensor * dst) {
  7434. const struct ggml_tensor * src0 = dst->src[0];
  7435. if (src0->type == dst->type) {
  7436. ggml_compute_forward_dup_bytes(params, dst);
  7437. return;
  7438. }
  7439. switch (src0->type) {
  7440. case GGML_TYPE_F16:
  7441. {
  7442. ggml_compute_forward_dup_f16(params, dst);
  7443. } break;
  7444. case GGML_TYPE_BF16:
  7445. {
  7446. ggml_compute_forward_dup_bf16(params, dst);
  7447. } break;
  7448. case GGML_TYPE_F32:
  7449. {
  7450. ggml_compute_forward_dup_f32(params, dst);
  7451. } break;
  7452. default:
  7453. {
  7454. GGML_ASSERT(false);
  7455. } break;
  7456. }
  7457. }
  7458. // ggml_compute_forward_add
  7459. static void ggml_compute_forward_add_f32(
  7460. const struct ggml_compute_params * params,
  7461. struct ggml_tensor * dst) {
  7462. const struct ggml_tensor * src0 = dst->src[0];
  7463. const struct ggml_tensor * src1 = dst->src[1];
  7464. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  7465. const int ith = params->ith;
  7466. const int nth = params->nth;
  7467. const int nr = ggml_nrows(src0);
  7468. GGML_TENSOR_BINARY_OP_LOCALS
  7469. GGML_ASSERT( nb0 == sizeof(float));
  7470. GGML_ASSERT(nb00 == sizeof(float));
  7471. // rows per thread
  7472. const int dr = (nr + nth - 1)/nth;
  7473. // row range for this thread
  7474. const int ir0 = dr*ith;
  7475. const int ir1 = MIN(ir0 + dr, nr);
  7476. if (nb10 == sizeof(float)) {
  7477. for (int ir = ir0; ir < ir1; ++ir) {
  7478. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7479. const int64_t i03 = ir/(ne02*ne01);
  7480. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7481. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7482. const int64_t i13 = i03 % ne13;
  7483. const int64_t i12 = i02 % ne12;
  7484. const int64_t i11 = i01 % ne11;
  7485. const int64_t nr0 = ne00 / ne10;
  7486. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7487. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7488. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7489. for (int64_t r = 0; r < nr0; ++r) {
  7490. #ifdef GGML_USE_ACCELERATE
  7491. vDSP_vadd(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  7492. #else
  7493. ggml_vec_add_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  7494. #endif
  7495. }
  7496. }
  7497. } else {
  7498. // src1 is not contiguous
  7499. for (int ir = ir0; ir < ir1; ++ir) {
  7500. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7501. const int64_t i03 = ir/(ne02*ne01);
  7502. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7503. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7504. const int64_t i13 = i03 % ne13;
  7505. const int64_t i12 = i02 % ne12;
  7506. const int64_t i11 = i01 % ne11;
  7507. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7508. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7509. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  7510. const int64_t i10 = i0 % ne10;
  7511. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  7512. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  7513. }
  7514. }
  7515. }
  7516. }
  7517. static void ggml_compute_forward_add_f16_f32(
  7518. const struct ggml_compute_params * params,
  7519. struct ggml_tensor * dst) {
  7520. const struct ggml_tensor * src0 = dst->src[0];
  7521. const struct ggml_tensor * src1 = dst->src[1];
  7522. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7523. const int ith = params->ith;
  7524. const int nth = params->nth;
  7525. const int nr = ggml_nrows(src0);
  7526. GGML_TENSOR_BINARY_OP_LOCALS
  7527. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7528. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7529. if (dst->type == GGML_TYPE_F32) {
  7530. GGML_ASSERT( nb0 == sizeof(float));
  7531. }
  7532. else {
  7533. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7534. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7535. }
  7536. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7537. // rows per thread
  7538. const int dr = (nr + nth - 1)/nth;
  7539. // row range for this thread
  7540. const int ir0 = dr*ith;
  7541. const int ir1 = MIN(ir0 + dr, nr);
  7542. if (nb10 == sizeof(float)) {
  7543. if (dst->type == GGML_TYPE_F16) {
  7544. for (int ir = ir0; ir < ir1; ++ir) {
  7545. // src0, src1 and dst are same shape => same indices
  7546. const int i3 = ir/(ne2*ne1);
  7547. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7548. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7549. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7550. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7551. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7552. for (int i = 0; i < ne0; i++) {
  7553. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7554. }
  7555. }
  7556. } else {
  7557. for (int ir = ir0; ir < ir1; ++ir) {
  7558. // src0, src1 and dst are same shape => same indices
  7559. const int i3 = ir/(ne2*ne1);
  7560. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7561. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7562. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7563. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7564. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7565. for (int i = 0; i < ne0; i++) {
  7566. dst_ptr[i] = GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7567. }
  7568. }
  7569. }
  7570. }
  7571. else {
  7572. // src1 is not contiguous
  7573. GGML_ASSERT(false);
  7574. }
  7575. }
  7576. static void ggml_compute_forward_add_bf16_f32(
  7577. const struct ggml_compute_params * params,
  7578. struct ggml_tensor * dst) {
  7579. const struct ggml_tensor * src0 = dst->src[0];
  7580. const struct ggml_tensor * src1 = dst->src[1];
  7581. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7582. const int ith = params->ith;
  7583. const int nth = params->nth;
  7584. const int nr = ggml_nrows(src0);
  7585. GGML_TENSOR_BINARY_OP_LOCALS
  7586. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7587. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7588. if (dst->type == GGML_TYPE_F32) {
  7589. GGML_ASSERT( nb0 == sizeof(float));
  7590. }
  7591. else {
  7592. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7593. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7594. }
  7595. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7596. // rows per thread
  7597. const int dr = (nr + nth - 1)/nth;
  7598. // row range for this thread
  7599. const int ir0 = dr*ith;
  7600. const int ir1 = MIN(ir0 + dr, nr);
  7601. if (nb10 == sizeof(float)) {
  7602. if (dst->type == GGML_TYPE_BF16) {
  7603. for (int ir = ir0; ir < ir1; ++ir) {
  7604. // src0, src1 and dst are same shape => same indices
  7605. const int i3 = ir/(ne2*ne1);
  7606. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7607. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7608. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7609. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7610. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7611. for (int i = 0; i < ne0; i++) {
  7612. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  7613. }
  7614. }
  7615. } else {
  7616. for (int ir = ir0; ir < ir1; ++ir) {
  7617. // src0, src1 and dst are same shape => same indices
  7618. const int i3 = ir/(ne2*ne1);
  7619. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7620. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7621. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7622. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7623. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7624. for (int i = 0; i < ne0; i++) {
  7625. dst_ptr[i] = GGML_BF16_TO_FP32(src0_ptr[i]) + src1_ptr[i];
  7626. }
  7627. }
  7628. }
  7629. }
  7630. else {
  7631. // src1 is not contiguous
  7632. GGML_ASSERT(false);
  7633. }
  7634. }
  7635. static void ggml_compute_forward_add_f16_f16(
  7636. const struct ggml_compute_params * params,
  7637. struct ggml_tensor * dst) {
  7638. const struct ggml_tensor * src0 = dst->src[0];
  7639. const struct ggml_tensor * src1 = dst->src[1];
  7640. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7641. const int ith = params->ith;
  7642. const int nth = params->nth;
  7643. const int nr = ggml_nrows(src0);
  7644. GGML_TENSOR_BINARY_OP_LOCALS
  7645. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7646. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7647. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7648. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7649. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7650. // rows per thread
  7651. const int dr = (nr + nth - 1)/nth;
  7652. // row range for this thread
  7653. const int ir0 = dr*ith;
  7654. const int ir1 = MIN(ir0 + dr, nr);
  7655. if (nb10 == sizeof(ggml_fp16_t)) {
  7656. for (int ir = ir0; ir < ir1; ++ir) {
  7657. // src0, src1 and dst are same shape => same indices
  7658. const int i3 = ir/(ne2*ne1);
  7659. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7660. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7661. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7662. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7663. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7664. for (int i = 0; i < ne0; i++) {
  7665. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  7666. }
  7667. }
  7668. }
  7669. else {
  7670. // src1 is not contiguous
  7671. GGML_ASSERT(false);
  7672. }
  7673. }
  7674. static void ggml_compute_forward_add_bf16_bf16(
  7675. const struct ggml_compute_params * params,
  7676. struct ggml_tensor * dst) {
  7677. const struct ggml_tensor * src0 = dst->src[0];
  7678. const struct ggml_tensor * src1 = dst->src[1];
  7679. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7680. const int ith = params->ith;
  7681. const int nth = params->nth;
  7682. const int nr = ggml_nrows(src0);
  7683. GGML_TENSOR_BINARY_OP_LOCALS
  7684. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  7685. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  7686. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  7687. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  7688. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  7689. // rows per thread
  7690. const int dr = (nr + nth - 1)/nth;
  7691. // row range for this thread
  7692. const int ir0 = dr*ith;
  7693. const int ir1 = MIN(ir0 + dr, nr);
  7694. if (nb10 == sizeof(ggml_bf16_t)) {
  7695. for (int ir = ir0; ir < ir1; ++ir) {
  7696. // src0, src1 and dst are same shape => same indices
  7697. const int i3 = ir/(ne2*ne1);
  7698. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7699. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7700. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  7701. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7702. ggml_bf16_t * src1_ptr = (ggml_bf16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  7703. for (int i = 0; i < ne0; i++) {
  7704. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + GGML_BF16_TO_FP32(src1_ptr[i]));
  7705. }
  7706. }
  7707. }
  7708. else {
  7709. // src1 is not contiguous
  7710. GGML_ASSERT(false);
  7711. }
  7712. }
  7713. static void ggml_compute_forward_add_q_f32(
  7714. const struct ggml_compute_params * params,
  7715. struct ggml_tensor * dst) {
  7716. const struct ggml_tensor * src0 = dst->src[0];
  7717. const struct ggml_tensor * src1 = dst->src[1];
  7718. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7719. const int nr = ggml_nrows(src0);
  7720. GGML_TENSOR_BINARY_OP_LOCALS
  7721. const int ith = params->ith;
  7722. const int nth = params->nth;
  7723. const enum ggml_type type = src0->type;
  7724. const enum ggml_type dtype = dst->type;
  7725. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7726. ggml_from_float_t const quantize_row_q = type_traits[dtype].from_float;
  7727. // we don't support permuted src0 or src1
  7728. GGML_ASSERT(nb00 == ggml_type_size(type));
  7729. GGML_ASSERT(nb10 == sizeof(float));
  7730. // dst cannot be transposed or permuted
  7731. GGML_ASSERT(nb0 <= nb1);
  7732. GGML_ASSERT(nb1 <= nb2);
  7733. GGML_ASSERT(nb2 <= nb3);
  7734. GGML_ASSERT(ggml_is_quantized(src0->type));
  7735. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7736. // rows per thread
  7737. const int dr = (nr + nth - 1)/nth;
  7738. // row range for this thread
  7739. const int ir0 = dr*ith;
  7740. const int ir1 = MIN(ir0 + dr, nr);
  7741. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  7742. for (int ir = ir0; ir < ir1; ++ir) {
  7743. // src0 indices
  7744. const int i03 = ir/(ne02*ne01);
  7745. const int i02 = (ir - i03*ne02*ne01)/ne01;
  7746. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7747. // src1 and dst are same shape as src0 => same indices
  7748. const int i13 = i03;
  7749. const int i12 = i02;
  7750. const int i11 = i01;
  7751. const int i3 = i03;
  7752. const int i2 = i02;
  7753. const int i1 = i01;
  7754. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  7755. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  7756. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  7757. assert(ne00 % 32 == 0);
  7758. // unquantize row from src0 to temp buffer
  7759. dequantize_row_q(src0_row, wdata, ne00);
  7760. // add src1
  7761. ggml_vec_acc_f32(ne00, wdata, src1_row);
  7762. // quantize row to dst
  7763. if (quantize_row_q != NULL) {
  7764. quantize_row_q(wdata, dst_row, ne00);
  7765. } else {
  7766. memcpy(dst_row, wdata, ne0*nb0);
  7767. }
  7768. }
  7769. }
  7770. static void ggml_compute_forward_add(
  7771. const struct ggml_compute_params * params,
  7772. struct ggml_tensor * dst) {
  7773. const struct ggml_tensor * src0 = dst->src[0];
  7774. const struct ggml_tensor * src1 = dst->src[1];
  7775. switch (src0->type) {
  7776. case GGML_TYPE_F32:
  7777. {
  7778. if (src1->type == GGML_TYPE_F32) {
  7779. ggml_compute_forward_add_f32(params, dst);
  7780. }
  7781. else {
  7782. GGML_ASSERT(false);
  7783. }
  7784. } break;
  7785. case GGML_TYPE_F16:
  7786. {
  7787. if (src1->type == GGML_TYPE_F16) {
  7788. ggml_compute_forward_add_f16_f16(params, dst);
  7789. }
  7790. else if (src1->type == GGML_TYPE_F32) {
  7791. ggml_compute_forward_add_f16_f32(params, dst);
  7792. }
  7793. else {
  7794. GGML_ASSERT(false);
  7795. }
  7796. } break;
  7797. case GGML_TYPE_BF16:
  7798. {
  7799. if (src1->type == GGML_TYPE_BF16) {
  7800. ggml_compute_forward_add_bf16_bf16(params, dst);
  7801. }
  7802. else if (src1->type == GGML_TYPE_F32) {
  7803. ggml_compute_forward_add_bf16_f32(params, dst);
  7804. }
  7805. else {
  7806. GGML_ASSERT(false);
  7807. }
  7808. } break;
  7809. case GGML_TYPE_Q4_0:
  7810. case GGML_TYPE_Q4_1:
  7811. case GGML_TYPE_Q5_0:
  7812. case GGML_TYPE_Q5_1:
  7813. case GGML_TYPE_Q8_0:
  7814. case GGML_TYPE_Q2_K:
  7815. case GGML_TYPE_Q3_K:
  7816. case GGML_TYPE_Q4_K:
  7817. case GGML_TYPE_Q5_K:
  7818. case GGML_TYPE_Q6_K:
  7819. case GGML_TYPE_IQ2_XXS:
  7820. case GGML_TYPE_IQ2_XS:
  7821. case GGML_TYPE_IQ3_XXS:
  7822. case GGML_TYPE_IQ1_S:
  7823. case GGML_TYPE_IQ1_M:
  7824. case GGML_TYPE_IQ4_NL:
  7825. case GGML_TYPE_IQ4_XS:
  7826. case GGML_TYPE_IQ3_S:
  7827. case GGML_TYPE_IQ2_S:
  7828. {
  7829. ggml_compute_forward_add_q_f32(params, dst);
  7830. } break;
  7831. default:
  7832. {
  7833. GGML_ASSERT(false);
  7834. } break;
  7835. }
  7836. }
  7837. // ggml_compute_forward_add1
  7838. static void ggml_compute_forward_add1_f32(
  7839. const struct ggml_compute_params * params,
  7840. struct ggml_tensor * dst) {
  7841. const struct ggml_tensor * src0 = dst->src[0];
  7842. const struct ggml_tensor * src1 = dst->src[1];
  7843. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7844. GGML_ASSERT(ggml_is_scalar(src1));
  7845. const int ith = params->ith;
  7846. const int nth = params->nth;
  7847. const int nr = ggml_nrows(src0);
  7848. GGML_TENSOR_UNARY_OP_LOCALS
  7849. GGML_ASSERT( nb0 == sizeof(float));
  7850. GGML_ASSERT(nb00 == sizeof(float));
  7851. // rows per thread
  7852. const int dr = (nr + nth - 1)/nth;
  7853. // row range for this thread
  7854. const int ir0 = dr*ith;
  7855. const int ir1 = MIN(ir0 + dr, nr);
  7856. for (int ir = ir0; ir < ir1; ++ir) {
  7857. // src0 and dst are same shape => same indices
  7858. const int i3 = ir/(ne2*ne1);
  7859. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7860. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7861. #ifdef GGML_USE_ACCELERATE
  7862. UNUSED(ggml_vec_add1_f32);
  7863. vDSP_vadd(
  7864. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7865. (float *) ((char *) src1->data), 0,
  7866. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7867. ne0);
  7868. #else
  7869. ggml_vec_add1_f32(ne0,
  7870. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7871. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7872. *(float *) src1->data);
  7873. #endif
  7874. }
  7875. }
  7876. static void ggml_compute_forward_add1_f16_f32(
  7877. const struct ggml_compute_params * params,
  7878. struct ggml_tensor * dst) {
  7879. const struct ggml_tensor * src0 = dst->src[0];
  7880. const struct ggml_tensor * src1 = dst->src[1];
  7881. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7882. GGML_ASSERT(ggml_is_scalar(src1));
  7883. // scalar to add
  7884. const float v = *(float *) src1->data;
  7885. const int ith = params->ith;
  7886. const int nth = params->nth;
  7887. const int nr = ggml_nrows(src0);
  7888. GGML_TENSOR_UNARY_OP_LOCALS
  7889. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7890. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7891. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7892. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7893. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7894. // rows per thread
  7895. const int dr = (nr + nth - 1)/nth;
  7896. // row range for this thread
  7897. const int ir0 = dr*ith;
  7898. const int ir1 = MIN(ir0 + dr, nr);
  7899. for (int ir = ir0; ir < ir1; ++ir) {
  7900. // src0 and dst are same shape => same indices
  7901. const int i3 = ir/(ne2*ne1);
  7902. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7903. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7904. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7905. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7906. for (int i = 0; i < ne0; i++) {
  7907. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7908. }
  7909. }
  7910. }
  7911. static void ggml_compute_forward_add1_f16_f16(
  7912. const struct ggml_compute_params * params,
  7913. struct ggml_tensor * dst) {
  7914. const struct ggml_tensor * src0 = dst->src[0];
  7915. const struct ggml_tensor * src1 = dst->src[1];
  7916. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7917. GGML_ASSERT(ggml_is_scalar(src1));
  7918. // scalar to add
  7919. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  7920. const int ith = params->ith;
  7921. const int nth = params->nth;
  7922. const int nr = ggml_nrows(src0);
  7923. GGML_TENSOR_UNARY_OP_LOCALS
  7924. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7925. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7926. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7927. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7928. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7929. // rows per thread
  7930. const int dr = (nr + nth - 1)/nth;
  7931. // row range for this thread
  7932. const int ir0 = dr*ith;
  7933. const int ir1 = MIN(ir0 + dr, nr);
  7934. for (int ir = ir0; ir < ir1; ++ir) {
  7935. // src0 and dst are same shape => same indices
  7936. const int i3 = ir/(ne2*ne1);
  7937. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7938. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7939. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7940. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7941. for (int i = 0; i < ne0; i++) {
  7942. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7943. }
  7944. }
  7945. }
  7946. static void ggml_compute_forward_add1_q_f32(
  7947. const struct ggml_compute_params * params,
  7948. struct ggml_tensor * dst) {
  7949. const struct ggml_tensor * src0 = dst->src[0];
  7950. const struct ggml_tensor * src1 = dst->src[1];
  7951. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7952. GGML_ASSERT(ggml_is_scalar(src1));
  7953. // scalar to add
  7954. const float v = *(float *) src1->data;
  7955. const int ith = params->ith;
  7956. const int nth = params->nth;
  7957. const int nr = ggml_nrows(src0);
  7958. GGML_TENSOR_UNARY_OP_LOCALS
  7959. const enum ggml_type type = src0->type;
  7960. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  7961. ggml_from_float_t const quantize_row_q = type_traits[type].from_float;
  7962. // we don't support permuted src0
  7963. GGML_ASSERT(nb00 == ggml_type_size(type));
  7964. // dst cannot be transposed or permuted
  7965. GGML_ASSERT(nb0 <= nb1);
  7966. GGML_ASSERT(nb1 <= nb2);
  7967. GGML_ASSERT(nb2 <= nb3);
  7968. GGML_ASSERT(ggml_is_quantized(src0->type));
  7969. GGML_ASSERT(dst->type == src0->type);
  7970. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7971. // rows per thread
  7972. const int dr = (nr + nth - 1)/nth;
  7973. // row range for this thread
  7974. const int ir0 = dr*ith;
  7975. const int ir1 = MIN(ir0 + dr, nr);
  7976. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7977. for (int ir = ir0; ir < ir1; ++ir) {
  7978. // src0 and dst are same shape => same indices
  7979. const int i3 = ir/(ne2*ne1);
  7980. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7981. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7982. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7983. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7984. assert(ne0 % 32 == 0);
  7985. // unquantize row from src0 to temp buffer
  7986. dequantize_row_q(src0_row, wdata, ne0);
  7987. // add src1
  7988. ggml_vec_acc1_f32(ne0, wdata, v);
  7989. // quantize row to dst
  7990. quantize_row_q(wdata, dst_row, ne0);
  7991. }
  7992. }
  7993. static void ggml_compute_forward_add1_bf16_f32(
  7994. const struct ggml_compute_params * params,
  7995. struct ggml_tensor * dst) {
  7996. const struct ggml_tensor * src0 = dst->src[0];
  7997. const struct ggml_tensor * src1 = dst->src[1];
  7998. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7999. GGML_ASSERT(ggml_is_scalar(src1));
  8000. // scalar to add
  8001. const float v = *(float *) src1->data;
  8002. const int ith = params->ith;
  8003. const int nth = params->nth;
  8004. const int nr = ggml_nrows(src0);
  8005. GGML_TENSOR_UNARY_OP_LOCALS
  8006. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8007. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  8008. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8009. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8010. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8011. // rows per thread
  8012. const int dr = (nr + nth - 1)/nth;
  8013. // row range for this thread
  8014. const int ir0 = dr*ith;
  8015. const int ir1 = MIN(ir0 + dr, nr);
  8016. for (int ir = ir0; ir < ir1; ++ir) {
  8017. // src0 and dst are same shape => same indices
  8018. const int i3 = ir/(ne2*ne1);
  8019. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8020. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8021. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8022. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8023. for (int i = 0; i < ne0; i++) {
  8024. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8025. }
  8026. }
  8027. }
  8028. static void ggml_compute_forward_add1_bf16_bf16(
  8029. const struct ggml_compute_params * params,
  8030. struct ggml_tensor * dst) {
  8031. const struct ggml_tensor * src0 = dst->src[0];
  8032. const struct ggml_tensor * src1 = dst->src[1];
  8033. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8034. GGML_ASSERT(ggml_is_scalar(src1));
  8035. // scalar to add
  8036. const float v = GGML_BF16_TO_FP32(*(ggml_bf16_t *) src1->data);
  8037. const int ith = params->ith;
  8038. const int nth = params->nth;
  8039. const int nr = ggml_nrows(src0);
  8040. GGML_TENSOR_UNARY_OP_LOCALS
  8041. GGML_ASSERT(src0->type == GGML_TYPE_BF16);
  8042. GGML_ASSERT(src1->type == GGML_TYPE_BF16);
  8043. GGML_ASSERT(dst->type == GGML_TYPE_BF16);
  8044. GGML_ASSERT( nb0 == sizeof(ggml_bf16_t));
  8045. GGML_ASSERT(nb00 == sizeof(ggml_bf16_t));
  8046. // rows per thread
  8047. const int dr = (nr + nth - 1)/nth;
  8048. // row range for this thread
  8049. const int ir0 = dr*ith;
  8050. const int ir1 = MIN(ir0 + dr, nr);
  8051. for (int ir = ir0; ir < ir1; ++ir) {
  8052. // src0 and dst are same shape => same indices
  8053. const int i3 = ir/(ne2*ne1);
  8054. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8055. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8056. ggml_bf16_t * dst_ptr = (ggml_bf16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8057. ggml_bf16_t * src0_ptr = (ggml_bf16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8058. for (int i = 0; i < ne0; i++) {
  8059. dst_ptr[i] = GGML_FP32_TO_BF16(GGML_BF16_TO_FP32(src0_ptr[i]) + v);
  8060. }
  8061. }
  8062. }
  8063. static void ggml_compute_forward_add1(
  8064. const struct ggml_compute_params * params,
  8065. struct ggml_tensor * dst) {
  8066. const struct ggml_tensor * src0 = dst->src[0];
  8067. const struct ggml_tensor * src1 = dst->src[1];
  8068. switch (src0->type) {
  8069. case GGML_TYPE_F32:
  8070. {
  8071. ggml_compute_forward_add1_f32(params, dst);
  8072. } break;
  8073. case GGML_TYPE_F16:
  8074. {
  8075. if (src1->type == GGML_TYPE_F16) {
  8076. ggml_compute_forward_add1_f16_f16(params, dst);
  8077. }
  8078. else if (src1->type == GGML_TYPE_F32) {
  8079. ggml_compute_forward_add1_f16_f32(params, dst);
  8080. }
  8081. else {
  8082. GGML_ASSERT(false);
  8083. }
  8084. } break;
  8085. case GGML_TYPE_BF16:
  8086. {
  8087. if (src1->type == GGML_TYPE_BF16) {
  8088. ggml_compute_forward_add1_bf16_bf16(params, dst);
  8089. }
  8090. else if (src1->type == GGML_TYPE_F32) {
  8091. ggml_compute_forward_add1_bf16_f32(params, dst);
  8092. }
  8093. else {
  8094. GGML_ASSERT(false);
  8095. }
  8096. } break;
  8097. case GGML_TYPE_Q4_0:
  8098. case GGML_TYPE_Q4_1:
  8099. case GGML_TYPE_Q5_0:
  8100. case GGML_TYPE_Q5_1:
  8101. case GGML_TYPE_Q8_0:
  8102. case GGML_TYPE_Q8_1:
  8103. case GGML_TYPE_Q2_K:
  8104. case GGML_TYPE_Q3_K:
  8105. case GGML_TYPE_Q4_K:
  8106. case GGML_TYPE_Q5_K:
  8107. case GGML_TYPE_Q6_K:
  8108. case GGML_TYPE_IQ2_XXS:
  8109. case GGML_TYPE_IQ2_XS:
  8110. case GGML_TYPE_IQ3_XXS:
  8111. case GGML_TYPE_IQ1_S:
  8112. case GGML_TYPE_IQ1_M:
  8113. case GGML_TYPE_IQ4_NL:
  8114. case GGML_TYPE_IQ4_XS:
  8115. case GGML_TYPE_IQ3_S:
  8116. case GGML_TYPE_IQ2_S:
  8117. {
  8118. ggml_compute_forward_add1_q_f32(params, dst);
  8119. } break;
  8120. default:
  8121. {
  8122. GGML_ASSERT(false);
  8123. } break;
  8124. }
  8125. }
  8126. // ggml_compute_forward_acc
  8127. static void ggml_compute_forward_acc_f32(
  8128. const struct ggml_compute_params * params,
  8129. struct ggml_tensor * dst) {
  8130. const struct ggml_tensor * src0 = dst->src[0];
  8131. const struct ggml_tensor * src1 = dst->src[1];
  8132. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8133. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  8134. // view src0 and dst with these strides and data offset inbytes during acc
  8135. // nb0 is implicitly element_size because src0 and dst are contiguous
  8136. size_t nb1 = ((int32_t *) dst->op_params)[0];
  8137. size_t nb2 = ((int32_t *) dst->op_params)[1];
  8138. size_t nb3 = ((int32_t *) dst->op_params)[2];
  8139. size_t offset = ((int32_t *) dst->op_params)[3];
  8140. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  8141. if (!inplace) {
  8142. if (params->ith == 0) {
  8143. // memcpy needs to be synchronized across threads to avoid race conditions.
  8144. // => do it in INIT phase
  8145. memcpy(
  8146. ((char *) dst->data),
  8147. ((char *) src0->data),
  8148. ggml_nbytes(dst));
  8149. }
  8150. ggml_barrier(params->shared);
  8151. }
  8152. const int ith = params->ith;
  8153. const int nth = params->nth;
  8154. const int nr = ggml_nrows(src1);
  8155. const int nc = src1->ne[0];
  8156. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  8157. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  8158. // src0 and dst as viewed during acc
  8159. const size_t nb0 = ggml_element_size(src0);
  8160. const size_t nb00 = nb0;
  8161. const size_t nb01 = nb1;
  8162. const size_t nb02 = nb2;
  8163. const size_t nb03 = nb3;
  8164. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  8165. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  8166. GGML_ASSERT(nb10 == sizeof(float));
  8167. // rows per thread
  8168. const int dr = (nr + nth - 1)/nth;
  8169. // row range for this thread
  8170. const int ir0 = dr*ith;
  8171. const int ir1 = MIN(ir0 + dr, nr);
  8172. for (int ir = ir0; ir < ir1; ++ir) {
  8173. // src0 and dst are viewed with shape of src1 and offset
  8174. // => same indices
  8175. const int i3 = ir/(ne12*ne11);
  8176. const int i2 = (ir - i3*ne12*ne11)/ne11;
  8177. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  8178. #ifdef GGML_USE_ACCELERATE
  8179. vDSP_vadd(
  8180. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  8181. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8182. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  8183. #else
  8184. ggml_vec_add_f32(nc,
  8185. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  8186. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  8187. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8188. #endif
  8189. }
  8190. }
  8191. static void ggml_compute_forward_acc(
  8192. const struct ggml_compute_params * params,
  8193. struct ggml_tensor * dst) {
  8194. const struct ggml_tensor * src0 = dst->src[0];
  8195. switch (src0->type) {
  8196. case GGML_TYPE_F32:
  8197. {
  8198. ggml_compute_forward_acc_f32(params, dst);
  8199. } break;
  8200. case GGML_TYPE_F16:
  8201. case GGML_TYPE_BF16:
  8202. case GGML_TYPE_Q4_0:
  8203. case GGML_TYPE_Q4_1:
  8204. case GGML_TYPE_Q5_0:
  8205. case GGML_TYPE_Q5_1:
  8206. case GGML_TYPE_Q8_0:
  8207. case GGML_TYPE_Q8_1:
  8208. case GGML_TYPE_Q2_K:
  8209. case GGML_TYPE_Q3_K:
  8210. case GGML_TYPE_Q4_K:
  8211. case GGML_TYPE_Q5_K:
  8212. case GGML_TYPE_Q6_K:
  8213. case GGML_TYPE_IQ2_XXS:
  8214. case GGML_TYPE_IQ2_XS:
  8215. case GGML_TYPE_IQ3_XXS:
  8216. case GGML_TYPE_IQ1_S:
  8217. case GGML_TYPE_IQ1_M:
  8218. case GGML_TYPE_IQ4_NL:
  8219. case GGML_TYPE_IQ4_XS:
  8220. case GGML_TYPE_IQ3_S:
  8221. case GGML_TYPE_IQ2_S:
  8222. default:
  8223. {
  8224. GGML_ASSERT(false);
  8225. } break;
  8226. }
  8227. }
  8228. // ggml_compute_forward_sub
  8229. static void ggml_compute_forward_sub_f32(
  8230. const struct ggml_compute_params * params,
  8231. struct ggml_tensor * dst) {
  8232. const struct ggml_tensor * src0 = dst->src[0];
  8233. const struct ggml_tensor * src1 = dst->src[1];
  8234. if (params->ith != 0) {
  8235. return;
  8236. }
  8237. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  8238. const int nr = ggml_nrows(src0);
  8239. GGML_TENSOR_BINARY_OP_LOCALS
  8240. GGML_ASSERT( nb0 == sizeof(float));
  8241. GGML_ASSERT(nb00 == sizeof(float));
  8242. if (nb10 == sizeof(float)) {
  8243. for (int ir = 0; ir < nr; ++ir) {
  8244. // src0, src1 and dst are same shape => same indices
  8245. const int i3 = ir/(ne2*ne1);
  8246. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8247. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8248. #ifdef GGML_USE_ACCELERATE
  8249. vDSP_vsub(
  8250. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  8251. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  8252. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  8253. ne0);
  8254. #else
  8255. ggml_vec_sub_f32(ne0,
  8256. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  8257. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  8258. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  8259. #endif
  8260. // }
  8261. // }
  8262. }
  8263. } else {
  8264. // src1 is not contiguous
  8265. for (int ir = 0; ir < nr; ++ir) {
  8266. // src0, src1 and dst are same shape => same indices
  8267. const int i3 = ir/(ne2*ne1);
  8268. const int i2 = (ir - i3*ne2*ne1)/ne1;
  8269. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  8270. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  8271. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  8272. for (int i0 = 0; i0 < ne0; i0++) {
  8273. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  8274. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  8275. }
  8276. }
  8277. }
  8278. }
  8279. static void ggml_compute_forward_sub(
  8280. const struct ggml_compute_params * params,
  8281. struct ggml_tensor * dst) {
  8282. const struct ggml_tensor * src0 = dst->src[0];
  8283. switch (src0->type) {
  8284. case GGML_TYPE_F32:
  8285. {
  8286. ggml_compute_forward_sub_f32(params, dst);
  8287. } break;
  8288. default:
  8289. {
  8290. GGML_ASSERT(false);
  8291. } break;
  8292. }
  8293. }
  8294. // ggml_compute_forward_mul
  8295. static void ggml_compute_forward_mul_f32(
  8296. const struct ggml_compute_params * params,
  8297. struct ggml_tensor * dst) {
  8298. const struct ggml_tensor * src0 = dst->src[0];
  8299. const struct ggml_tensor * src1 = dst->src[1];
  8300. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8301. const int ith = params->ith;
  8302. const int nth = params->nth;
  8303. const int64_t nr = ggml_nrows(src0);
  8304. GGML_TENSOR_BINARY_OP_LOCALS
  8305. GGML_ASSERT( nb0 == sizeof(float));
  8306. GGML_ASSERT(nb00 == sizeof(float));
  8307. if (nb10 == sizeof(float)) {
  8308. for (int64_t ir = ith; ir < nr; ir += nth) {
  8309. // src0 and dst are same shape => same indices
  8310. const int64_t i03 = ir/(ne02*ne01);
  8311. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8312. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8313. const int64_t i13 = i03 % ne13;
  8314. const int64_t i12 = i02 % ne12;
  8315. const int64_t i11 = i01 % ne11;
  8316. const int64_t nr0 = ne00 / ne10;
  8317. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8318. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8319. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8320. for (int64_t r = 0 ; r < nr0; ++r) {
  8321. #ifdef GGML_USE_ACCELERATE
  8322. UNUSED(ggml_vec_mul_f32);
  8323. vDSP_vmul(src0_ptr + r*ne10, 1, src1_ptr, 1, dst_ptr + r*ne10, 1, ne10);
  8324. #else
  8325. ggml_vec_mul_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8326. #endif
  8327. }
  8328. }
  8329. } else {
  8330. // src1 is not contiguous
  8331. for (int64_t ir = ith; ir < nr; ir += nth) {
  8332. // src0 and dst are same shape => same indices
  8333. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8334. const int64_t i03 = ir/(ne02*ne01);
  8335. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8336. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8337. const int64_t i13 = i03 % ne13;
  8338. const int64_t i12 = i02 % ne12;
  8339. const int64_t i11 = i01 % ne11;
  8340. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8341. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8342. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8343. const int64_t i10 = i0 % ne10;
  8344. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8345. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  8346. }
  8347. }
  8348. }
  8349. }
  8350. static void ggml_compute_forward_mul(
  8351. const struct ggml_compute_params * params,
  8352. struct ggml_tensor * dst) {
  8353. const struct ggml_tensor * src0 = dst->src[0];
  8354. const struct ggml_tensor * src1 = dst->src[1];
  8355. GGML_ASSERT(src1->type == GGML_TYPE_F32 && "only f32 src1 supported for now");
  8356. switch (src0->type) {
  8357. case GGML_TYPE_F32:
  8358. {
  8359. ggml_compute_forward_mul_f32(params, dst);
  8360. } break;
  8361. default:
  8362. {
  8363. GGML_ASSERT(false);
  8364. } break;
  8365. }
  8366. }
  8367. // ggml_compute_forward_div
  8368. static void ggml_compute_forward_div_f32(
  8369. const struct ggml_compute_params * params,
  8370. struct ggml_tensor * dst) {
  8371. const struct ggml_tensor * src0 = dst->src[0];
  8372. const struct ggml_tensor * src1 = dst->src[1];
  8373. GGML_ASSERT(ggml_can_repeat(src1, src0) && ggml_are_same_shape(src0, dst));
  8374. const int ith = params->ith;
  8375. const int nth = params->nth;
  8376. const int64_t nr = ggml_nrows(src0);
  8377. GGML_TENSOR_BINARY_OP_LOCALS
  8378. GGML_ASSERT( nb0 == sizeof(float));
  8379. GGML_ASSERT(nb00 == sizeof(float));
  8380. if (nb10 == sizeof(float)) {
  8381. for (int64_t ir = ith; ir < nr; ir += nth) {
  8382. // src0 and dst are same shape => same indices
  8383. const int64_t i03 = ir/(ne02*ne01);
  8384. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8385. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8386. const int64_t i13 = i03 % ne13;
  8387. const int64_t i12 = i02 % ne12;
  8388. const int64_t i11 = i01 % ne11;
  8389. const int64_t nr0 = ne00 / ne10;
  8390. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8391. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8392. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  8393. for (int64_t r = 0; r < nr0; ++r) {
  8394. #ifdef GGML_USE_ACCELERATE
  8395. UNUSED(ggml_vec_div_f32);
  8396. vDSP_vdiv(src1_ptr, 1, src0_ptr + r*ne10, 1, dst_ptr + r*ne10, 1, ne10);
  8397. #else
  8398. ggml_vec_div_f32(ne10, dst_ptr + r*ne10, src0_ptr + r*ne10, src1_ptr);
  8399. #endif
  8400. }
  8401. }
  8402. } else {
  8403. // src1 is not contiguous
  8404. for (int64_t ir = ith; ir < nr; ir += nth) {
  8405. // src0 and dst are same shape => same indices
  8406. // src1 is broadcastable across src0 and dst in i1, i2, i3
  8407. const int64_t i03 = ir/(ne02*ne01);
  8408. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  8409. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8410. const int64_t i13 = i03 % ne13;
  8411. const int64_t i12 = i02 % ne12;
  8412. const int64_t i11 = i01 % ne11;
  8413. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  8414. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  8415. for (int64_t i0 = 0; i0 < ne00; ++i0) {
  8416. const int64_t i10 = i0 % ne10;
  8417. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10);
  8418. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  8419. }
  8420. }
  8421. }
  8422. }
  8423. static void ggml_compute_forward_div(
  8424. const struct ggml_compute_params * params,
  8425. struct ggml_tensor * dst) {
  8426. const struct ggml_tensor * src0 = dst->src[0];
  8427. switch (src0->type) {
  8428. case GGML_TYPE_F32:
  8429. {
  8430. ggml_compute_forward_div_f32(params, dst);
  8431. } break;
  8432. default:
  8433. {
  8434. GGML_ASSERT(false);
  8435. } break;
  8436. }
  8437. }
  8438. // ggml_compute_forward_sqr
  8439. static void ggml_compute_forward_sqr_f32(
  8440. const struct ggml_compute_params * params,
  8441. struct ggml_tensor * dst) {
  8442. const struct ggml_tensor * src0 = dst->src[0];
  8443. if (params->ith != 0) {
  8444. return;
  8445. }
  8446. assert(ggml_are_same_shape(src0, dst));
  8447. const int n = ggml_nrows(src0);
  8448. const int nc = src0->ne[0];
  8449. assert( dst->nb[0] == sizeof(float));
  8450. assert(src0->nb[0] == sizeof(float));
  8451. for (int i = 0; i < n; i++) {
  8452. ggml_vec_sqr_f32(nc,
  8453. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8454. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8455. }
  8456. }
  8457. static void ggml_compute_forward_sqr(
  8458. const struct ggml_compute_params * params,
  8459. struct ggml_tensor * dst) {
  8460. const struct ggml_tensor * src0 = dst->src[0];
  8461. switch (src0->type) {
  8462. case GGML_TYPE_F32:
  8463. {
  8464. ggml_compute_forward_sqr_f32(params, dst);
  8465. } break;
  8466. default:
  8467. {
  8468. GGML_ASSERT(false);
  8469. } break;
  8470. }
  8471. }
  8472. // ggml_compute_forward_sqrt
  8473. static void ggml_compute_forward_sqrt_f32(
  8474. const struct ggml_compute_params * params,
  8475. struct ggml_tensor * dst) {
  8476. const struct ggml_tensor * src0 = dst->src[0];
  8477. if (params->ith != 0) {
  8478. return;
  8479. }
  8480. assert(ggml_are_same_shape(src0, dst));
  8481. const int n = ggml_nrows(src0);
  8482. const int nc = src0->ne[0];
  8483. assert( dst->nb[0] == sizeof(float));
  8484. assert(src0->nb[0] == sizeof(float));
  8485. for (int i = 0; i < n; i++) {
  8486. ggml_vec_sqrt_f32(nc,
  8487. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8488. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8489. }
  8490. }
  8491. static void ggml_compute_forward_sqrt(
  8492. const struct ggml_compute_params * params,
  8493. struct ggml_tensor * dst) {
  8494. const struct ggml_tensor * src0 = dst->src[0];
  8495. switch (src0->type) {
  8496. case GGML_TYPE_F32:
  8497. {
  8498. ggml_compute_forward_sqrt_f32(params, dst);
  8499. } break;
  8500. default:
  8501. {
  8502. GGML_ASSERT(false);
  8503. } break;
  8504. }
  8505. }
  8506. // ggml_compute_forward_log
  8507. static void ggml_compute_forward_log_f32(
  8508. const struct ggml_compute_params * params,
  8509. struct ggml_tensor * dst) {
  8510. const struct ggml_tensor * src0 = dst->src[0];
  8511. if (params->ith != 0) {
  8512. return;
  8513. }
  8514. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8515. const int n = ggml_nrows(src0);
  8516. const int nc = src0->ne[0];
  8517. GGML_ASSERT( dst->nb[0] == sizeof(float));
  8518. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8519. for (int i = 0; i < n; i++) {
  8520. ggml_vec_log_f32(nc,
  8521. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8522. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8523. }
  8524. }
  8525. static void ggml_compute_forward_log(
  8526. const struct ggml_compute_params * params,
  8527. struct ggml_tensor * dst) {
  8528. const struct ggml_tensor * src0 = dst->src[0];
  8529. switch (src0->type) {
  8530. case GGML_TYPE_F32:
  8531. {
  8532. ggml_compute_forward_log_f32(params, dst);
  8533. } break;
  8534. default:
  8535. {
  8536. GGML_ASSERT(false);
  8537. } break;
  8538. }
  8539. }
  8540. // ggml_compute_forward_sum
  8541. static void ggml_compute_forward_sum_f32(
  8542. const struct ggml_compute_params * params,
  8543. struct ggml_tensor * dst) {
  8544. const struct ggml_tensor * src0 = dst->src[0];
  8545. if (params->ith != 0) {
  8546. return;
  8547. }
  8548. assert(ggml_is_scalar(dst));
  8549. assert(ggml_is_scalar(dst));
  8550. assert(src0->nb[0] == sizeof(float));
  8551. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8552. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8553. ggml_float sum = 0;
  8554. ggml_float row_sum = 0;
  8555. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8556. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8557. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8558. ggml_vec_sum_f32_ggf(ne00,
  8559. &row_sum,
  8560. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8561. sum += row_sum;
  8562. }
  8563. }
  8564. }
  8565. ((float *) dst->data)[0] = sum;
  8566. }
  8567. static void ggml_compute_forward_sum_f16(
  8568. const struct ggml_compute_params * params,
  8569. struct ggml_tensor * dst) {
  8570. const struct ggml_tensor * src0 = dst->src[0];
  8571. if (params->ith != 0) {
  8572. return;
  8573. }
  8574. assert(ggml_is_scalar(dst));
  8575. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  8576. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8577. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8578. float sum = 0;
  8579. float row_sum = 0;
  8580. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8581. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8582. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8583. ggml_vec_sum_f16_ggf(ne00,
  8584. &row_sum,
  8585. (ggml_fp16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8586. sum += row_sum;
  8587. }
  8588. }
  8589. }
  8590. ((ggml_fp16_t *) dst->data)[0] = GGML_FP32_TO_FP16(sum);
  8591. }
  8592. static void ggml_compute_forward_sum_bf16(
  8593. const struct ggml_compute_params * params,
  8594. struct ggml_tensor * dst) {
  8595. const struct ggml_tensor * src0 = dst->src[0];
  8596. if (params->ith != 0) {
  8597. return;
  8598. }
  8599. assert(ggml_is_scalar(dst));
  8600. assert(src0->nb[0] == sizeof(ggml_bf16_t));
  8601. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  8602. GGML_TENSOR_LOCALS(size_t, nb0, src0, nb)
  8603. float sum = 0;
  8604. float row_sum = 0;
  8605. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8606. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8607. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8608. ggml_vec_sum_bf16_ggf(ne00,
  8609. &row_sum,
  8610. (ggml_bf16_t *) ((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03));
  8611. sum += row_sum;
  8612. }
  8613. }
  8614. }
  8615. ((ggml_bf16_t *) dst->data)[0] = GGML_FP32_TO_BF16(sum);
  8616. }
  8617. static void ggml_compute_forward_sum(
  8618. const struct ggml_compute_params * params,
  8619. struct ggml_tensor * dst) {
  8620. const struct ggml_tensor * src0 = dst->src[0];
  8621. switch (src0->type) {
  8622. case GGML_TYPE_F32:
  8623. {
  8624. ggml_compute_forward_sum_f32(params, dst);
  8625. } break;
  8626. case GGML_TYPE_F16:
  8627. {
  8628. ggml_compute_forward_sum_f16(params, dst);
  8629. } break;
  8630. case GGML_TYPE_BF16:
  8631. {
  8632. ggml_compute_forward_sum_bf16(params, dst);
  8633. } break;
  8634. default:
  8635. {
  8636. GGML_ASSERT(false);
  8637. } break;
  8638. }
  8639. }
  8640. // ggml_compute_forward_sum_rows
  8641. static void ggml_compute_forward_sum_rows_f32(
  8642. const struct ggml_compute_params * params,
  8643. struct ggml_tensor * dst) {
  8644. const struct ggml_tensor * src0 = dst->src[0];
  8645. if (params->ith != 0) {
  8646. return;
  8647. }
  8648. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8649. GGML_ASSERT(dst->nb[0] == sizeof(float));
  8650. GGML_TENSOR_UNARY_OP_LOCALS
  8651. GGML_ASSERT(ne0 == 1);
  8652. GGML_ASSERT(ne1 == ne01);
  8653. GGML_ASSERT(ne2 == ne02);
  8654. GGML_ASSERT(ne3 == ne03);
  8655. for (int64_t i3 = 0; i3 < ne03; i3++) {
  8656. for (int64_t i2 = 0; i2 < ne02; i2++) {
  8657. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8658. float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  8659. float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  8660. float row_sum = 0;
  8661. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  8662. dst_row[0] = row_sum;
  8663. }
  8664. }
  8665. }
  8666. }
  8667. static void ggml_compute_forward_sum_rows(
  8668. const struct ggml_compute_params * params,
  8669. struct ggml_tensor * dst) {
  8670. const struct ggml_tensor * src0 = dst->src[0];
  8671. switch (src0->type) {
  8672. case GGML_TYPE_F32:
  8673. {
  8674. ggml_compute_forward_sum_rows_f32(params, dst);
  8675. } break;
  8676. default:
  8677. {
  8678. GGML_ASSERT(false);
  8679. } break;
  8680. }
  8681. }
  8682. // ggml_compute_forward_mean
  8683. static void ggml_compute_forward_mean_f32(
  8684. const struct ggml_compute_params * params,
  8685. struct ggml_tensor * dst) {
  8686. const struct ggml_tensor * src0 = dst->src[0];
  8687. if (params->ith != 0) {
  8688. return;
  8689. }
  8690. assert(src0->nb[0] == sizeof(float));
  8691. GGML_TENSOR_UNARY_OP_LOCALS
  8692. assert(ne0 == 1);
  8693. assert(ne1 == ne01);
  8694. assert(ne2 == ne02);
  8695. assert(ne3 == ne03);
  8696. UNUSED(ne0);
  8697. UNUSED(ne1);
  8698. UNUSED(ne2);
  8699. UNUSED(ne3);
  8700. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8701. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8702. for (int64_t i01 = 0; i01 < ne01; i01++) {
  8703. ggml_vec_sum_f32(ne00,
  8704. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  8705. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  8706. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  8707. }
  8708. }
  8709. }
  8710. }
  8711. static void ggml_compute_forward_mean(
  8712. const struct ggml_compute_params * params,
  8713. struct ggml_tensor * dst) {
  8714. const struct ggml_tensor * src0 = dst->src[0];
  8715. switch (src0->type) {
  8716. case GGML_TYPE_F32:
  8717. {
  8718. ggml_compute_forward_mean_f32(params, dst);
  8719. } break;
  8720. default:
  8721. {
  8722. GGML_ASSERT(false);
  8723. } break;
  8724. }
  8725. }
  8726. // ggml_compute_forward_argmax
  8727. static void ggml_compute_forward_argmax_f32(
  8728. const struct ggml_compute_params * params,
  8729. struct ggml_tensor * dst) {
  8730. const struct ggml_tensor * src0 = dst->src[0];
  8731. if (params->ith != 0) {
  8732. return;
  8733. }
  8734. assert(src0->nb[0] == sizeof(float));
  8735. assert(dst->nb[0] == sizeof(float));
  8736. const int64_t ne00 = src0->ne[0];
  8737. const int64_t ne01 = src0->ne[1];
  8738. const size_t nb01 = src0->nb[1];
  8739. const size_t nb0 = dst->nb[0];
  8740. for (int64_t i1 = 0; i1 < ne01; i1++) {
  8741. float * src = (float *) ((char *) src0->data + i1*nb01);
  8742. int32_t * dst_ = (int32_t *) ((char *) dst->data + i1*nb0);
  8743. int v = 0;
  8744. ggml_vec_argmax_f32(ne00, &v, src);
  8745. dst_[0] = v;
  8746. }
  8747. }
  8748. static void ggml_compute_forward_argmax(
  8749. const struct ggml_compute_params * params,
  8750. struct ggml_tensor * dst) {
  8751. const struct ggml_tensor * src0 = dst->src[0];
  8752. switch (src0->type) {
  8753. case GGML_TYPE_F32:
  8754. {
  8755. ggml_compute_forward_argmax_f32(params, dst);
  8756. } break;
  8757. default:
  8758. {
  8759. GGML_ASSERT(false);
  8760. } break;
  8761. }
  8762. }
  8763. // ggml_compute_forward_repeat
  8764. static void ggml_compute_forward_repeat_f32(
  8765. const struct ggml_compute_params * params,
  8766. struct ggml_tensor * dst) {
  8767. const struct ggml_tensor * src0 = dst->src[0];
  8768. if (params->ith != 0) {
  8769. return;
  8770. }
  8771. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8772. GGML_TENSOR_UNARY_OP_LOCALS
  8773. // guaranteed to be an integer due to the check in ggml_can_repeat
  8774. const int nr0 = (int)(ne0/ne00);
  8775. const int nr1 = (int)(ne1/ne01);
  8776. const int nr2 = (int)(ne2/ne02);
  8777. const int nr3 = (int)(ne3/ne03);
  8778. // TODO: support for transposed / permuted tensors
  8779. GGML_ASSERT(nb0 == sizeof(float));
  8780. GGML_ASSERT(nb00 == sizeof(float));
  8781. // TODO: maybe this is not optimal?
  8782. for (int i3 = 0; i3 < nr3; i3++) {
  8783. for (int k3 = 0; k3 < ne03; k3++) {
  8784. for (int i2 = 0; i2 < nr2; i2++) {
  8785. for (int k2 = 0; k2 < ne02; k2++) {
  8786. for (int i1 = 0; i1 < nr1; i1++) {
  8787. for (int k1 = 0; k1 < ne01; k1++) {
  8788. for (int i0 = 0; i0 < nr0; i0++) {
  8789. ggml_vec_cpy_f32(ne00,
  8790. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  8791. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  8792. }
  8793. }
  8794. }
  8795. }
  8796. }
  8797. }
  8798. }
  8799. }
  8800. static void ggml_compute_forward_repeat_f16(
  8801. const struct ggml_compute_params * params,
  8802. struct ggml_tensor * dst) {
  8803. const struct ggml_tensor * src0 = dst->src[0];
  8804. if (params->ith != 0) {
  8805. return;
  8806. }
  8807. GGML_ASSERT(ggml_can_repeat(src0, dst));
  8808. GGML_TENSOR_UNARY_OP_LOCALS
  8809. // guaranteed to be an integer due to the check in ggml_can_repeat
  8810. const int nr0 = (int)(ne0/ne00);
  8811. const int nr1 = (int)(ne1/ne01);
  8812. const int nr2 = (int)(ne2/ne02);
  8813. const int nr3 = (int)(ne3/ne03);
  8814. // TODO: support for transposed / permuted tensors
  8815. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  8816. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8817. // TODO: maybe this is not optimal?
  8818. for (int i3 = 0; i3 < nr3; i3++) {
  8819. for (int k3 = 0; k3 < ne03; k3++) {
  8820. for (int i2 = 0; i2 < nr2; i2++) {
  8821. for (int k2 = 0; k2 < ne02; k2++) {
  8822. for (int i1 = 0; i1 < nr1; i1++) {
  8823. for (int k1 = 0; k1 < ne01; k1++) {
  8824. for (int i0 = 0; i0 < nr0; i0++) {
  8825. ggml_fp16_t * y = (ggml_fp16_t *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0);
  8826. ggml_fp16_t * x = (ggml_fp16_t *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01);
  8827. // ggml_vec_cpy_f16(ne00, y, x)
  8828. for (int i = 0; i < ne00; ++i) {
  8829. y[i] = x[i];
  8830. }
  8831. }
  8832. }
  8833. }
  8834. }
  8835. }
  8836. }
  8837. }
  8838. }
  8839. static void ggml_compute_forward_repeat(
  8840. const struct ggml_compute_params * params,
  8841. struct ggml_tensor * dst) {
  8842. const struct ggml_tensor * src0 = dst->src[0];
  8843. switch (src0->type) {
  8844. case GGML_TYPE_F16:
  8845. case GGML_TYPE_BF16:
  8846. case GGML_TYPE_I16:
  8847. {
  8848. ggml_compute_forward_repeat_f16(params, dst);
  8849. } break;
  8850. case GGML_TYPE_F32:
  8851. case GGML_TYPE_I32:
  8852. {
  8853. ggml_compute_forward_repeat_f32(params, dst);
  8854. } break;
  8855. default:
  8856. {
  8857. GGML_ASSERT(false);
  8858. } break;
  8859. }
  8860. }
  8861. // ggml_compute_forward_repeat_back
  8862. static void ggml_compute_forward_repeat_back_f32(
  8863. const struct ggml_compute_params * params,
  8864. struct ggml_tensor * dst) {
  8865. const struct ggml_tensor * src0 = dst->src[0];
  8866. if (params->ith != 0) {
  8867. return;
  8868. }
  8869. GGML_ASSERT(ggml_can_repeat(dst, src0));
  8870. GGML_TENSOR_UNARY_OP_LOCALS
  8871. // guaranteed to be an integer due to the check in ggml_can_repeat
  8872. const int nr0 = (int)(ne00/ne0);
  8873. const int nr1 = (int)(ne01/ne1);
  8874. const int nr2 = (int)(ne02/ne2);
  8875. const int nr3 = (int)(ne03/ne3);
  8876. // TODO: support for transposed / permuted tensors
  8877. GGML_ASSERT(nb0 == sizeof(float));
  8878. GGML_ASSERT(nb00 == sizeof(float));
  8879. if (ggml_is_contiguous(dst)) {
  8880. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  8881. } else {
  8882. for (int k3 = 0; k3 < ne3; k3++) {
  8883. for (int k2 = 0; k2 < ne2; k2++) {
  8884. for (int k1 = 0; k1 < ne1; k1++) {
  8885. ggml_vec_set_f32(ne0,
  8886. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  8887. 0);
  8888. }
  8889. }
  8890. }
  8891. }
  8892. // TODO: maybe this is not optimal?
  8893. for (int i3 = 0; i3 < nr3; i3++) {
  8894. for (int k3 = 0; k3 < ne3; k3++) {
  8895. for (int i2 = 0; i2 < nr2; i2++) {
  8896. for (int k2 = 0; k2 < ne2; k2++) {
  8897. for (int i1 = 0; i1 < nr1; i1++) {
  8898. for (int k1 = 0; k1 < ne1; k1++) {
  8899. for (int i0 = 0; i0 < nr0; i0++) {
  8900. ggml_vec_acc_f32(ne0,
  8901. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  8902. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  8903. }
  8904. }
  8905. }
  8906. }
  8907. }
  8908. }
  8909. }
  8910. }
  8911. static void ggml_compute_forward_repeat_back(
  8912. const struct ggml_compute_params * params,
  8913. struct ggml_tensor * dst) {
  8914. const struct ggml_tensor * src0 = dst->src[0];
  8915. switch (src0->type) {
  8916. case GGML_TYPE_F32:
  8917. {
  8918. ggml_compute_forward_repeat_back_f32(params, dst);
  8919. } break;
  8920. default:
  8921. {
  8922. GGML_ASSERT(false);
  8923. } break;
  8924. }
  8925. }
  8926. // ggml_compute_forward_concat
  8927. static void ggml_compute_forward_concat_f32(
  8928. const struct ggml_compute_params * params,
  8929. struct ggml_tensor * dst) {
  8930. const struct ggml_tensor * src0 = dst->src[0];
  8931. const struct ggml_tensor * src1 = dst->src[1];
  8932. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8933. const int ith = params->ith;
  8934. const int nth = params->nth;
  8935. GGML_TENSOR_BINARY_OP_LOCALS
  8936. // TODO: support for transposed / permuted tensors
  8937. GGML_ASSERT(nb0 == sizeof(float));
  8938. GGML_ASSERT(nb00 == sizeof(float));
  8939. GGML_ASSERT(nb10 == sizeof(float));
  8940. const int32_t dim = ggml_get_op_params_i32(dst, 0);
  8941. GGML_ASSERT(dim >= 0 && dim < 4);
  8942. int64_t o[4] = {0, 0, 0, 0};
  8943. o[dim] = src0->ne[dim];
  8944. const float * x;
  8945. // TODO: smarter multi-theading
  8946. for (int i3 = 0; i3 < ne3; i3++) {
  8947. for (int i2 = ith; i2 < ne2; i2 += nth) {
  8948. for (int i1 = 0; i1 < ne1; i1++) {
  8949. for (int i0 = 0; i0 < ne0; i0++) {
  8950. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  8951. x = (const float *) ((const char *)src0->data + (i0 )*nb00 + (i1 )*nb01 + (i2 )*nb02 + (i3 )*nb03);
  8952. } else {
  8953. x = (const float *) ((const char *)src1->data + (i0 - o[0])*nb10 + (i1 - o[1])*nb11 + (i2 - o[2])*nb12 + (i3 - o[3])*nb13);
  8954. }
  8955. float * y = (float *)((char *)dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  8956. *y = *x;
  8957. }
  8958. }
  8959. }
  8960. }
  8961. }
  8962. static void ggml_compute_forward_concat(
  8963. const struct ggml_compute_params * params,
  8964. struct ggml_tensor * dst) {
  8965. const struct ggml_tensor * src0 = dst->src[0];
  8966. switch (src0->type) {
  8967. case GGML_TYPE_F32:
  8968. case GGML_TYPE_I32:
  8969. {
  8970. ggml_compute_forward_concat_f32(params, dst);
  8971. } break;
  8972. default:
  8973. {
  8974. GGML_ASSERT(false);
  8975. } break;
  8976. }
  8977. }
  8978. // ggml_compute_forward_abs
  8979. static void ggml_compute_forward_abs_f32(
  8980. const struct ggml_compute_params * params,
  8981. struct ggml_tensor * dst) {
  8982. const struct ggml_tensor * src0 = dst->src[0];
  8983. if (params->ith != 0) {
  8984. return;
  8985. }
  8986. assert(ggml_is_contiguous_1(src0));
  8987. assert(ggml_is_contiguous_1(dst));
  8988. assert(ggml_are_same_shape(src0, dst));
  8989. const int n = ggml_nrows(src0);
  8990. const int nc = src0->ne[0];
  8991. for (int i = 0; i < n; i++) {
  8992. ggml_vec_abs_f32(nc,
  8993. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8994. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8995. }
  8996. }
  8997. static void ggml_compute_forward_abs(
  8998. const struct ggml_compute_params * params,
  8999. struct ggml_tensor * dst) {
  9000. const struct ggml_tensor * src0 = dst->src[0];
  9001. switch (src0->type) {
  9002. case GGML_TYPE_F32:
  9003. {
  9004. ggml_compute_forward_abs_f32(params, dst);
  9005. } break;
  9006. default:
  9007. {
  9008. GGML_ASSERT(false);
  9009. } break;
  9010. }
  9011. }
  9012. // ggml_compute_forward_sgn
  9013. static void ggml_compute_forward_sgn_f32(
  9014. const struct ggml_compute_params * params,
  9015. struct ggml_tensor * dst) {
  9016. const struct ggml_tensor * src0 = dst->src[0];
  9017. if (params->ith != 0) {
  9018. return;
  9019. }
  9020. assert(ggml_is_contiguous_1(src0));
  9021. assert(ggml_is_contiguous_1(dst));
  9022. assert(ggml_are_same_shape(src0, dst));
  9023. const int n = ggml_nrows(src0);
  9024. const int nc = src0->ne[0];
  9025. for (int i = 0; i < n; i++) {
  9026. ggml_vec_sgn_f32(nc,
  9027. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9028. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9029. }
  9030. }
  9031. static void ggml_compute_forward_sgn(
  9032. const struct ggml_compute_params * params,
  9033. struct ggml_tensor * dst) {
  9034. const struct ggml_tensor * src0 = dst->src[0];
  9035. switch (src0->type) {
  9036. case GGML_TYPE_F32:
  9037. {
  9038. ggml_compute_forward_sgn_f32(params, dst);
  9039. } break;
  9040. default:
  9041. {
  9042. GGML_ASSERT(false);
  9043. } break;
  9044. }
  9045. }
  9046. // ggml_compute_forward_neg
  9047. static void ggml_compute_forward_neg_f32(
  9048. const struct ggml_compute_params * params,
  9049. struct ggml_tensor * dst) {
  9050. const struct ggml_tensor * src0 = dst->src[0];
  9051. if (params->ith != 0) {
  9052. return;
  9053. }
  9054. assert(ggml_is_contiguous_1(src0));
  9055. assert(ggml_is_contiguous_1(dst));
  9056. assert(ggml_are_same_shape(src0, dst));
  9057. const int n = ggml_nrows(src0);
  9058. const int nc = src0->ne[0];
  9059. for (int i = 0; i < n; i++) {
  9060. ggml_vec_neg_f32(nc,
  9061. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9062. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9063. }
  9064. }
  9065. static void ggml_compute_forward_neg(
  9066. const struct ggml_compute_params * params,
  9067. struct ggml_tensor * dst) {
  9068. const struct ggml_tensor * src0 = dst->src[0];
  9069. switch (src0->type) {
  9070. case GGML_TYPE_F32:
  9071. {
  9072. ggml_compute_forward_neg_f32(params, dst);
  9073. } break;
  9074. default:
  9075. {
  9076. GGML_ASSERT(false);
  9077. } break;
  9078. }
  9079. }
  9080. // ggml_compute_forward_step
  9081. static void ggml_compute_forward_step_f32(
  9082. const struct ggml_compute_params * params,
  9083. struct ggml_tensor * dst) {
  9084. const struct ggml_tensor * src0 = dst->src[0];
  9085. if (params->ith != 0) {
  9086. return;
  9087. }
  9088. assert(ggml_is_contiguous_1(src0));
  9089. assert(ggml_is_contiguous_1(dst));
  9090. assert(ggml_are_same_shape(src0, dst));
  9091. const int n = ggml_nrows(src0);
  9092. const int nc = src0->ne[0];
  9093. for (int i = 0; i < n; i++) {
  9094. ggml_vec_step_f32(nc,
  9095. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9096. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9097. }
  9098. }
  9099. static void ggml_compute_forward_step(
  9100. const struct ggml_compute_params * params,
  9101. struct ggml_tensor * dst) {
  9102. const struct ggml_tensor * src0 = dst->src[0];
  9103. switch (src0->type) {
  9104. case GGML_TYPE_F32:
  9105. {
  9106. ggml_compute_forward_step_f32(params, dst);
  9107. } break;
  9108. default:
  9109. {
  9110. GGML_ASSERT(false);
  9111. } break;
  9112. }
  9113. }
  9114. // ggml_compute_forward_tanh
  9115. static void ggml_compute_forward_tanh_f32(
  9116. const struct ggml_compute_params * params,
  9117. struct ggml_tensor * dst) {
  9118. const struct ggml_tensor * src0 = dst->src[0];
  9119. if (params->ith != 0) {
  9120. return;
  9121. }
  9122. assert(ggml_is_contiguous_1(src0));
  9123. assert(ggml_is_contiguous_1(dst));
  9124. assert(ggml_are_same_shape(src0, dst));
  9125. const int n = ggml_nrows(src0);
  9126. const int nc = src0->ne[0];
  9127. for (int i = 0; i < n; i++) {
  9128. ggml_vec_tanh_f32(nc,
  9129. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9130. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9131. }
  9132. }
  9133. static void ggml_compute_forward_tanh(
  9134. const struct ggml_compute_params * params,
  9135. struct ggml_tensor * dst) {
  9136. const struct ggml_tensor * src0 = dst->src[0];
  9137. switch (src0->type) {
  9138. case GGML_TYPE_F32:
  9139. {
  9140. ggml_compute_forward_tanh_f32(params, dst);
  9141. } break;
  9142. default:
  9143. {
  9144. GGML_ASSERT(false);
  9145. } break;
  9146. }
  9147. }
  9148. // ggml_compute_forward_elu
  9149. static void ggml_compute_forward_elu_f32(
  9150. const struct ggml_compute_params * params,
  9151. struct ggml_tensor * dst) {
  9152. const struct ggml_tensor * src0 = dst->src[0];
  9153. if (params->ith != 0) {
  9154. return;
  9155. }
  9156. assert(ggml_is_contiguous_1(src0));
  9157. assert(ggml_is_contiguous_1(dst));
  9158. assert(ggml_are_same_shape(src0, dst));
  9159. const int n = ggml_nrows(src0);
  9160. const int nc = src0->ne[0];
  9161. for (int i = 0; i < n; i++) {
  9162. ggml_vec_elu_f32(nc,
  9163. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9164. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9165. }
  9166. }
  9167. static void ggml_compute_forward_elu(
  9168. const struct ggml_compute_params * params,
  9169. struct ggml_tensor * dst) {
  9170. const struct ggml_tensor * src0 = dst->src[0];
  9171. switch (src0->type) {
  9172. case GGML_TYPE_F32:
  9173. {
  9174. ggml_compute_forward_elu_f32(params, dst);
  9175. } break;
  9176. default:
  9177. {
  9178. GGML_ASSERT(false);
  9179. } break;
  9180. }
  9181. }
  9182. // ggml_compute_forward_relu
  9183. static void ggml_compute_forward_relu_f32(
  9184. const struct ggml_compute_params * params,
  9185. struct ggml_tensor * dst) {
  9186. const struct ggml_tensor * src0 = dst->src[0];
  9187. if (params->ith != 0) {
  9188. return;
  9189. }
  9190. assert(ggml_is_contiguous_1(src0));
  9191. assert(ggml_is_contiguous_1(dst));
  9192. assert(ggml_are_same_shape(src0, dst));
  9193. const int n = ggml_nrows(src0);
  9194. const int nc = src0->ne[0];
  9195. for (int i = 0; i < n; i++) {
  9196. ggml_vec_relu_f32(nc,
  9197. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9198. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9199. }
  9200. }
  9201. static void ggml_compute_forward_relu(
  9202. const struct ggml_compute_params * params,
  9203. struct ggml_tensor * dst) {
  9204. const struct ggml_tensor * src0 = dst->src[0];
  9205. switch (src0->type) {
  9206. case GGML_TYPE_F32:
  9207. {
  9208. ggml_compute_forward_relu_f32(params, dst);
  9209. } break;
  9210. default:
  9211. {
  9212. GGML_ASSERT(false);
  9213. } break;
  9214. }
  9215. }
  9216. // ggml_compute_forward_sigmoid
  9217. static void ggml_compute_forward_sigmoid_f32(
  9218. const struct ggml_compute_params * params,
  9219. struct ggml_tensor * dst) {
  9220. const struct ggml_tensor * src0 = dst->src[0];
  9221. if (params->ith != 0) {
  9222. return;
  9223. }
  9224. assert(ggml_is_contiguous_1(src0));
  9225. assert(ggml_is_contiguous_1(dst));
  9226. assert(ggml_are_same_shape(src0, dst));
  9227. const int n = ggml_nrows(src0);
  9228. const int nc = src0->ne[0];
  9229. for (int i = 0; i < n; i++) {
  9230. ggml_vec_sigmoid_f32(nc,
  9231. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9232. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9233. }
  9234. }
  9235. static void ggml_compute_forward_sigmoid(
  9236. const struct ggml_compute_params * params,
  9237. struct ggml_tensor * dst) {
  9238. const struct ggml_tensor * src0 = dst->src[0];
  9239. switch (src0->type) {
  9240. case GGML_TYPE_F32:
  9241. {
  9242. ggml_compute_forward_sigmoid_f32(params, dst);
  9243. } break;
  9244. default:
  9245. {
  9246. GGML_ASSERT(false);
  9247. } break;
  9248. }
  9249. }
  9250. // ggml_compute_forward_gelu
  9251. static void ggml_compute_forward_gelu_f32(
  9252. const struct ggml_compute_params * params,
  9253. struct ggml_tensor * dst) {
  9254. const struct ggml_tensor * src0 = dst->src[0];
  9255. assert(ggml_is_contiguous_1(src0));
  9256. assert(ggml_is_contiguous_1(dst));
  9257. assert(ggml_are_same_shape(src0, dst));
  9258. const int ith = params->ith;
  9259. const int nth = params->nth;
  9260. const int nc = src0->ne[0];
  9261. const int nr = ggml_nrows(src0);
  9262. // rows per thread
  9263. const int dr = (nr + nth - 1)/nth;
  9264. // row range for this thread
  9265. const int ir0 = dr*ith;
  9266. const int ir1 = MIN(ir0 + dr, nr);
  9267. for (int i1 = ir0; i1 < ir1; i1++) {
  9268. ggml_vec_gelu_f32(nc,
  9269. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9270. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9271. #ifndef NDEBUG
  9272. for (int k = 0; k < nc; k++) {
  9273. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9274. UNUSED(x);
  9275. assert(!isnan(x));
  9276. assert(!isinf(x));
  9277. }
  9278. #endif
  9279. }
  9280. }
  9281. static void ggml_compute_forward_gelu(
  9282. const struct ggml_compute_params * params,
  9283. struct ggml_tensor * dst) {
  9284. const struct ggml_tensor * src0 = dst->src[0];
  9285. switch (src0->type) {
  9286. case GGML_TYPE_F32:
  9287. {
  9288. ggml_compute_forward_gelu_f32(params, dst);
  9289. } break;
  9290. default:
  9291. {
  9292. GGML_ASSERT(false);
  9293. } break;
  9294. }
  9295. }
  9296. // ggml_compute_forward_gelu_quick
  9297. static void ggml_compute_forward_gelu_quick_f32(
  9298. const struct ggml_compute_params * params,
  9299. struct ggml_tensor * dst) {
  9300. const struct ggml_tensor * src0 = dst->src[0];
  9301. assert(ggml_is_contiguous_1(src0));
  9302. assert(ggml_is_contiguous_1(dst));
  9303. assert(ggml_are_same_shape(src0, dst));
  9304. const int ith = params->ith;
  9305. const int nth = params->nth;
  9306. const int nc = src0->ne[0];
  9307. const int nr = ggml_nrows(src0);
  9308. // rows per thread
  9309. const int dr = (nr + nth - 1)/nth;
  9310. // row range for this thread
  9311. const int ir0 = dr*ith;
  9312. const int ir1 = MIN(ir0 + dr, nr);
  9313. for (int i1 = ir0; i1 < ir1; i1++) {
  9314. ggml_vec_gelu_quick_f32(nc,
  9315. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9316. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9317. #ifndef NDEBUG
  9318. for (int k = 0; k < nc; k++) {
  9319. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9320. UNUSED(x);
  9321. assert(!isnan(x));
  9322. assert(!isinf(x));
  9323. }
  9324. #endif
  9325. }
  9326. }
  9327. static void ggml_compute_forward_gelu_quick(
  9328. const struct ggml_compute_params * params,
  9329. struct ggml_tensor * dst) {
  9330. const struct ggml_tensor * src0 = dst->src[0];
  9331. switch (src0->type) {
  9332. case GGML_TYPE_F32:
  9333. {
  9334. ggml_compute_forward_gelu_quick_f32(params, dst);
  9335. } break;
  9336. default:
  9337. {
  9338. GGML_ASSERT(false);
  9339. } break;
  9340. }
  9341. }
  9342. // ggml_compute_forward_silu
  9343. static void ggml_compute_forward_silu_f32(
  9344. const struct ggml_compute_params * params,
  9345. struct ggml_tensor * dst) {
  9346. const struct ggml_tensor * src0 = dst->src[0];
  9347. assert(ggml_is_contiguous_1(src0));
  9348. assert(ggml_is_contiguous_1(dst));
  9349. assert(ggml_are_same_shape(src0, dst));
  9350. const int ith = params->ith;
  9351. const int nth = params->nth;
  9352. const int nc = src0->ne[0];
  9353. const int nr = ggml_nrows(src0);
  9354. // rows per thread
  9355. const int dr = (nr + nth - 1)/nth;
  9356. // row range for this thread
  9357. const int ir0 = dr*ith;
  9358. const int ir1 = MIN(ir0 + dr, nr);
  9359. for (int i1 = ir0; i1 < ir1; i1++) {
  9360. ggml_vec_silu_f32(nc,
  9361. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9362. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  9363. #ifndef NDEBUG
  9364. for (int k = 0; k < nc; k++) {
  9365. const float x = ((float *) ((char *) dst->data + i1*(dst->nb[1])))[k];
  9366. UNUSED(x);
  9367. assert(!isnan(x));
  9368. assert(!isinf(x));
  9369. }
  9370. #endif
  9371. }
  9372. }
  9373. static void ggml_compute_forward_silu(
  9374. const struct ggml_compute_params * params,
  9375. struct ggml_tensor * dst) {
  9376. const struct ggml_tensor * src0 = dst->src[0];
  9377. switch (src0->type) {
  9378. case GGML_TYPE_F32:
  9379. {
  9380. ggml_compute_forward_silu_f32(params, dst);
  9381. } break;
  9382. default:
  9383. {
  9384. GGML_ASSERT(false);
  9385. } break;
  9386. }
  9387. }
  9388. // ggml_compute_forward_leaky_relu
  9389. static void ggml_compute_forward_leaky_relu_f32(
  9390. const struct ggml_compute_params * params,
  9391. struct ggml_tensor * dst) {
  9392. const struct ggml_tensor * src0 = dst->src[0];
  9393. if (params->ith != 0) {
  9394. return;
  9395. }
  9396. assert(ggml_is_contiguous_1(src0));
  9397. assert(ggml_is_contiguous_1(dst));
  9398. assert(ggml_are_same_shape(src0, dst));
  9399. const int n = ggml_nrows(src0);
  9400. const int nc = src0->ne[0];
  9401. float negative_slope;
  9402. memcpy(&negative_slope, dst->op_params, sizeof(float));
  9403. assert(dst->nb[0] == sizeof(float));
  9404. assert(src0->nb[0] == sizeof(float));
  9405. for (int i = 0; i < n; i++) {
  9406. ggml_vec_leaky_relu_f32(nc,
  9407. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9408. (float *) ((char *) src0->data + i*(src0->nb[1])), negative_slope);
  9409. }
  9410. }
  9411. static void ggml_compute_forward_leaky_relu(
  9412. const struct ggml_compute_params * params,
  9413. struct ggml_tensor * dst) {
  9414. const struct ggml_tensor * src0 = dst->src[0];
  9415. switch (src0->type) {
  9416. case GGML_TYPE_F32:
  9417. {
  9418. ggml_compute_forward_leaky_relu_f32(params, dst);
  9419. } break;
  9420. default:
  9421. {
  9422. GGML_ASSERT(false);
  9423. } break;
  9424. }
  9425. }
  9426. // ggml_compute_forward_silu_back
  9427. static void ggml_compute_forward_silu_back_f32(
  9428. const struct ggml_compute_params * params,
  9429. struct ggml_tensor * dst) {
  9430. const struct ggml_tensor * src0 = dst->src[0];
  9431. const struct ggml_tensor * grad = dst->src[1];
  9432. assert(ggml_is_contiguous_1(grad));
  9433. assert(ggml_is_contiguous_1(src0));
  9434. assert(ggml_is_contiguous_1(dst));
  9435. assert(ggml_are_same_shape(src0, dst));
  9436. assert(ggml_are_same_shape(src0, grad));
  9437. const int ith = params->ith;
  9438. const int nth = params->nth;
  9439. const int nc = src0->ne[0];
  9440. const int nr = ggml_nrows(src0);
  9441. // rows per thread
  9442. const int dr = (nr + nth - 1)/nth;
  9443. // row range for this thread
  9444. const int ir0 = dr*ith;
  9445. const int ir1 = MIN(ir0 + dr, nr);
  9446. for (int i1 = ir0; i1 < ir1; i1++) {
  9447. ggml_vec_silu_backward_f32(nc,
  9448. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  9449. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  9450. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  9451. #ifndef NDEBUG
  9452. for (int k = 0; k < nc; k++) {
  9453. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  9454. UNUSED(x);
  9455. assert(!isnan(x));
  9456. assert(!isinf(x));
  9457. }
  9458. #endif
  9459. }
  9460. }
  9461. static void ggml_compute_forward_silu_back(
  9462. const struct ggml_compute_params * params,
  9463. struct ggml_tensor * dst) {
  9464. const struct ggml_tensor * src0 = dst->src[0];
  9465. switch (src0->type) {
  9466. case GGML_TYPE_F32:
  9467. {
  9468. ggml_compute_forward_silu_back_f32(params, dst);
  9469. } break;
  9470. default:
  9471. {
  9472. GGML_ASSERT(false);
  9473. } break;
  9474. }
  9475. }
  9476. static void ggml_compute_forward_hardswish_f32(
  9477. const struct ggml_compute_params * params,
  9478. struct ggml_tensor * dst) {
  9479. const struct ggml_tensor * src0 = dst->src[0];
  9480. if (params->ith != 0) {
  9481. return;
  9482. }
  9483. assert(ggml_is_contiguous_1(src0));
  9484. assert(ggml_is_contiguous_1(dst));
  9485. assert(ggml_are_same_shape(src0, dst));
  9486. const int n = ggml_nrows(src0);
  9487. const int nc = src0->ne[0];
  9488. for (int i = 0; i < n; i++) {
  9489. ggml_vec_hardswish_f32(nc,
  9490. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9491. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9492. }
  9493. }
  9494. static void ggml_compute_forward_hardswish(
  9495. const struct ggml_compute_params * params,
  9496. struct ggml_tensor * dst) {
  9497. const struct ggml_tensor * src0 = dst->src[0];
  9498. switch (src0->type) {
  9499. case GGML_TYPE_F32:
  9500. {
  9501. ggml_compute_forward_hardswish_f32(params, dst);
  9502. } break;
  9503. default:
  9504. {
  9505. GGML_ASSERT(false);
  9506. } break;
  9507. }
  9508. }
  9509. static void ggml_compute_forward_hardsigmoid_f32(
  9510. const struct ggml_compute_params * params,
  9511. struct ggml_tensor * dst) {
  9512. const struct ggml_tensor * src0 = dst->src[0];
  9513. if (params->ith != 0) {
  9514. return;
  9515. }
  9516. assert(ggml_is_contiguous_1(src0));
  9517. assert(ggml_is_contiguous_1(dst));
  9518. assert(ggml_are_same_shape(src0, dst));
  9519. const int n = ggml_nrows(src0);
  9520. const int nc = src0->ne[0];
  9521. for (int i = 0; i < n; i++) {
  9522. ggml_vec_hardsigmoid_f32(nc,
  9523. (float *) ((char *) dst->data + i*( dst->nb[1])),
  9524. (float *) ((char *) src0->data + i*(src0->nb[1])));
  9525. }
  9526. }
  9527. static void ggml_compute_forward_hardsigmoid(
  9528. const struct ggml_compute_params * params,
  9529. struct ggml_tensor * dst) {
  9530. const struct ggml_tensor * src0 = dst->src[0];
  9531. switch (src0->type) {
  9532. case GGML_TYPE_F32:
  9533. {
  9534. ggml_compute_forward_hardsigmoid_f32(params, dst);
  9535. } break;
  9536. default:
  9537. {
  9538. GGML_ASSERT(false);
  9539. } break;
  9540. }
  9541. }
  9542. // ggml_compute_forward_norm
  9543. static void ggml_compute_forward_norm_f32(
  9544. const struct ggml_compute_params * params,
  9545. struct ggml_tensor * dst) {
  9546. const struct ggml_tensor * src0 = dst->src[0];
  9547. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9548. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9549. const int ith = params->ith;
  9550. const int nth = params->nth;
  9551. GGML_TENSOR_UNARY_OP_LOCALS
  9552. float eps;
  9553. memcpy(&eps, dst->op_params, sizeof(float));
  9554. GGML_ASSERT(eps > 0.0f);
  9555. // TODO: optimize
  9556. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9557. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9558. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9559. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9560. ggml_float sum = 0.0;
  9561. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9562. sum += (ggml_float)x[i00];
  9563. }
  9564. float mean = sum/ne00;
  9565. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9566. ggml_float sum2 = 0.0;
  9567. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9568. float v = x[i00] - mean;
  9569. y[i00] = v;
  9570. sum2 += (ggml_float)(v*v);
  9571. }
  9572. float variance = sum2/ne00;
  9573. const float scale = 1.0f/sqrtf(variance + eps);
  9574. ggml_vec_scale_f32(ne00, y, scale);
  9575. }
  9576. }
  9577. }
  9578. }
  9579. static void ggml_compute_forward_norm(
  9580. const struct ggml_compute_params * params,
  9581. struct ggml_tensor * dst) {
  9582. const struct ggml_tensor * src0 = dst->src[0];
  9583. switch (src0->type) {
  9584. case GGML_TYPE_F32:
  9585. {
  9586. ggml_compute_forward_norm_f32(params, dst);
  9587. } break;
  9588. default:
  9589. {
  9590. GGML_ASSERT(false);
  9591. } break;
  9592. }
  9593. }
  9594. // ggml_compute_forward_group_rms_norm
  9595. static void ggml_compute_forward_rms_norm_f32(
  9596. const struct ggml_compute_params * params,
  9597. struct ggml_tensor * dst) {
  9598. const struct ggml_tensor * src0 = dst->src[0];
  9599. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9600. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9601. const int ith = params->ith;
  9602. const int nth = params->nth;
  9603. GGML_TENSOR_UNARY_OP_LOCALS
  9604. float eps;
  9605. memcpy(&eps, dst->op_params, sizeof(float));
  9606. GGML_ASSERT(eps > 0.0f);
  9607. // TODO: optimize
  9608. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9609. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9610. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9611. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9612. ggml_float sum = 0.0;
  9613. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9614. sum += (ggml_float)(x[i00] * x[i00]);
  9615. }
  9616. const float mean = sum/ne00;
  9617. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9618. memcpy(y, x, ne00 * sizeof(float));
  9619. // for (int i00 = 0; i00 < ne00; i00++) {
  9620. // y[i00] = x[i00];
  9621. // }
  9622. const float scale = 1.0f/sqrtf(mean + eps);
  9623. ggml_vec_scale_f32(ne00, y, scale);
  9624. }
  9625. }
  9626. }
  9627. }
  9628. static void ggml_compute_forward_rms_norm(
  9629. const struct ggml_compute_params * params,
  9630. struct ggml_tensor * dst) {
  9631. const struct ggml_tensor * src0 = dst->src[0];
  9632. switch (src0->type) {
  9633. case GGML_TYPE_F32:
  9634. {
  9635. ggml_compute_forward_rms_norm_f32(params, dst);
  9636. } break;
  9637. default:
  9638. {
  9639. GGML_ASSERT(false);
  9640. } break;
  9641. }
  9642. }
  9643. static void ggml_compute_forward_rms_norm_back_f32(
  9644. const struct ggml_compute_params * params,
  9645. struct ggml_tensor * dst) {
  9646. const struct ggml_tensor * src0 = dst->src[0];
  9647. const struct ggml_tensor * src1 = dst->src[1];
  9648. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  9649. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9650. const int ith = params->ith;
  9651. const int nth = params->nth;
  9652. GGML_TENSOR_BINARY_OP_LOCALS
  9653. float eps;
  9654. memcpy(&eps, dst->op_params, sizeof(float));
  9655. // TODO: optimize
  9656. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9657. for (int64_t i02 = 0; i02 < ne02; i02++) {
  9658. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  9659. // src1 is same shape as src0 => same indices
  9660. const int64_t i11 = i01;
  9661. const int64_t i12 = i02;
  9662. const int64_t i13 = i03;
  9663. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  9664. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  9665. ggml_float sum_xx = 0.0;
  9666. ggml_float sum_xdz = 0.0;
  9667. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9668. sum_xx += (ggml_float)(x[i00] * x[i00]);
  9669. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  9670. }
  9671. //const float mean = (float)(sum_xx)/ne00;
  9672. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  9673. const float sum_eps = (float)(sum_xx) + eps*ne00;
  9674. //const float mean_xdz = (float)(sum_xdz)/ne00;
  9675. // we could cache rms from forward pass to improve performance.
  9676. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  9677. //const float rms = sqrtf(mean_eps);
  9678. const float rrms = 1.0f / sqrtf(mean_eps);
  9679. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  9680. {
  9681. // z = rms_norm(x)
  9682. //
  9683. // rms_norm(src0) =
  9684. // scale(
  9685. // src0,
  9686. // div(
  9687. // 1,
  9688. // sqrt(
  9689. // add(
  9690. // scale(
  9691. // sum(
  9692. // sqr(
  9693. // src0)),
  9694. // (1.0/N)),
  9695. // eps))));
  9696. // postorder:
  9697. // ## op args grad
  9698. // 00 param src0 grad[#00]
  9699. // 01 const 1
  9700. // 02 sqr (#00) grad[#02]
  9701. // 03 sum (#02) grad[#03]
  9702. // 04 const 1/N
  9703. // 05 scale (#03, #04) grad[#05]
  9704. // 06 const eps
  9705. // 07 add (#05, #06) grad[#07]
  9706. // 08 sqrt (#07) grad[#08]
  9707. // 09 div (#01,#08) grad[#09]
  9708. // 10 scale (#00,#09) grad[#10]
  9709. //
  9710. // backward pass, given grad[#10]
  9711. // #10: scale
  9712. // grad[#00] += scale(grad[#10],#09)
  9713. // grad[#09] += sum(mul(grad[#10],#00))
  9714. // #09: div
  9715. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  9716. // #08: sqrt
  9717. // grad[#07] += mul(grad[#08], div(0.5, #08))
  9718. // #07: add
  9719. // grad[#05] += grad[#07]
  9720. // #05: scale
  9721. // grad[#03] += scale(grad[#05],#04)
  9722. // #03: sum
  9723. // grad[#02] += repeat(grad[#03], #02)
  9724. // #02:
  9725. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  9726. //
  9727. // substitute and simplify:
  9728. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9729. // grad[#02] = repeat(grad[#03], #02)
  9730. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  9731. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  9732. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  9733. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  9734. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  9735. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  9736. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  9737. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  9738. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  9739. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  9740. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  9741. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  9742. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  9743. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9744. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  9745. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  9746. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  9747. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  9748. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  9749. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  9750. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  9751. // a = b*c + d*e
  9752. // a = b*c*f/f + d*e*f/f
  9753. // a = (b*c*f + d*e*f)*(1/f)
  9754. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  9755. // a = (b + d*e/c)*c
  9756. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  9757. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  9758. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  9759. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  9760. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  9761. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  9762. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  9763. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  9764. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9765. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9766. }
  9767. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  9768. // post-order:
  9769. // dx := x
  9770. // dx := scale(dx,-mean_xdz/mean_eps)
  9771. // dx := add(dx, dz)
  9772. // dx := scale(dx, rrms)
  9773. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  9774. ggml_vec_cpy_f32 (ne00, dx, x);
  9775. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  9776. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  9777. ggml_vec_acc_f32 (ne00, dx, dz);
  9778. ggml_vec_scale_f32(ne00, dx, rrms);
  9779. }
  9780. }
  9781. }
  9782. }
  9783. static void ggml_compute_forward_rms_norm_back(
  9784. const struct ggml_compute_params * params,
  9785. struct ggml_tensor * dst) {
  9786. const struct ggml_tensor * src0 = dst->src[0];
  9787. switch (src0->type) {
  9788. case GGML_TYPE_F32:
  9789. {
  9790. ggml_compute_forward_rms_norm_back_f32(params, dst);
  9791. } break;
  9792. default:
  9793. {
  9794. GGML_ASSERT(false);
  9795. } break;
  9796. }
  9797. }
  9798. // ggml_compute_forward_group_norm
  9799. static void ggml_compute_forward_group_norm_f32(
  9800. const struct ggml_compute_params * params,
  9801. struct ggml_tensor * dst) {
  9802. const struct ggml_tensor * src0 = dst->src[0];
  9803. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9804. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9805. const int ith = params->ith;
  9806. const int nth = params->nth;
  9807. GGML_TENSOR_UNARY_OP_LOCALS
  9808. const float eps = 1e-6f; // TODO: make this a parameter
  9809. // TODO: optimize
  9810. int n_channels = src0->ne[2];
  9811. int n_groups = dst->op_params[0];
  9812. int n_channels_per_group = (n_channels + n_groups - 1) / n_groups;
  9813. for (int i = ith; i < n_groups; i += nth) {
  9814. int start = i * n_channels_per_group;
  9815. int end = start + n_channels_per_group;
  9816. if (end > n_channels) {
  9817. end = n_channels;
  9818. }
  9819. int step = end - start;
  9820. for (int64_t i03 = 0; i03 < ne03; i03++) {
  9821. ggml_float sum = 0.0;
  9822. for (int64_t i02 = start; i02 < end; i02++) {
  9823. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9824. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9825. ggml_float sumr = 0.0;
  9826. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9827. sumr += (ggml_float)x[i00];
  9828. }
  9829. sum += sumr;
  9830. }
  9831. }
  9832. const float mean = sum / (ne00 * ne01 * step);
  9833. ggml_float sum2 = 0.0;
  9834. for (int64_t i02 = start; i02 < end; i02++) {
  9835. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9836. const float * x = (float *)((char *) src0->data + i01 * nb01 + i02 * nb02 + i03 * nb03);
  9837. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9838. ggml_float sumr = 0.0;
  9839. for (int64_t i00 = 0; i00 < ne00; i00++) {
  9840. float v = x[i00] - mean;
  9841. y[i00] = v;
  9842. sumr += (ggml_float)(v * v);
  9843. }
  9844. sum2 += sumr;
  9845. }
  9846. }
  9847. const float variance = sum2 / (ne00 * ne01 * step);
  9848. const float scale = 1.0f / sqrtf(variance + eps);
  9849. for (int64_t i02 = start; i02 < end; i02++) {
  9850. for (int64_t i01 = 0; i01 < ne01; i01++) {
  9851. float * y = (float *)((char *) dst->data + i01 * nb1 + i02 * nb2 + i03 * nb3);
  9852. ggml_vec_scale_f32(ne00, y, scale);
  9853. }
  9854. }
  9855. }
  9856. }
  9857. }
  9858. static void ggml_compute_forward_group_norm(
  9859. const struct ggml_compute_params * params,
  9860. struct ggml_tensor * dst) {
  9861. const struct ggml_tensor * src0 = dst->src[0];
  9862. switch (src0->type) {
  9863. case GGML_TYPE_F32:
  9864. {
  9865. ggml_compute_forward_group_norm_f32(params, dst);
  9866. } break;
  9867. default:
  9868. {
  9869. GGML_ASSERT(false);
  9870. } break;
  9871. }
  9872. }
  9873. // ggml_compute_forward_mul_mat
  9874. static void ggml_compute_forward_mul_mat_one_chunk(
  9875. const struct ggml_compute_params * params,
  9876. struct ggml_tensor * dst,
  9877. const int64_t num_rows_per_vec_dot,
  9878. const int64_t ir0_start,
  9879. const int64_t ir0_end,
  9880. const int64_t ir1_start,
  9881. const int64_t ir1_end) {
  9882. const struct ggml_tensor * src0 = dst->src[0];
  9883. const struct ggml_tensor * src1 = dst->src[1];
  9884. GGML_TENSOR_BINARY_OP_LOCALS
  9885. const enum ggml_type type = src0->type;
  9886. const bool src1_cont = ggml_is_contiguous(src1);
  9887. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  9888. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9889. // broadcast factors
  9890. const int64_t r2 = ne12 / ne02;
  9891. const int64_t r3 = ne13 / ne03;
  9892. //printf("ir0_start = %6lld, ir0_end = %6lld, ir1_start = %6lld, ir1_end = %6lld\n", ir0_start, ir0_end, ir1_start, ir1_end);
  9893. // threads with no work simply yield (not sure if it helps)
  9894. if (ir0_start >= ir0_end || ir1_start >= ir1_end) {
  9895. return;
  9896. }
  9897. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  9898. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  9899. assert(ne12 % ne02 == 0);
  9900. assert(ne13 % ne03 == 0);
  9901. // block-tiling attempt
  9902. const int64_t blck_0 = 16;
  9903. const int64_t blck_1 = 16;
  9904. const size_t src1_col_stride = src1_cont || src1->type != vec_dot_type ? row_size : nb11;
  9905. // attempt to reduce false-sharing (does not seem to make a difference)
  9906. // 16 * 2, accounting for mmla kernels
  9907. float tmp[32];
  9908. for (int64_t iir1 = ir1_start; iir1 < ir1_end; iir1 += blck_1) {
  9909. for (int64_t iir0 = ir0_start; iir0 < ir0_end; iir0 += blck_0) {
  9910. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir1_end; ir1 += num_rows_per_vec_dot) {
  9911. const int64_t i13 = (ir1 / (ne12 * ne1));
  9912. const int64_t i12 = (ir1 - i13 * ne12 * ne1) / ne1;
  9913. const int64_t i11 = (ir1 - i13 * ne12 * ne1 - i12 * ne1);
  9914. // broadcast src0 into src1
  9915. const int64_t i03 = i13 / r3;
  9916. const int64_t i02 = i12 / r2;
  9917. const int64_t i1 = i11;
  9918. const int64_t i2 = i12;
  9919. const int64_t i3 = i13;
  9920. const char * src0_row = (const char*)src0->data + (0 + i02 * nb02 + i03 * nb03);
  9921. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  9922. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  9923. // the original src1 data pointer, so we should index using the indices directly
  9924. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  9925. const char * src1_col = (const char*)wdata +
  9926. (src1_cont || src1->type != vec_dot_type
  9927. ? (i11 + i12 * ne11 + i13 * ne12 * ne11) * row_size
  9928. : (i11 * nb11 + i12 * nb12 + i13 * nb13));
  9929. float * dst_col = (float*)((char*)dst->data + (i1 * nb1 + i2 * nb2 + i3 * nb3));
  9930. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ++ir0) {
  9931. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  9932. //}
  9933. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir0_end; ir0 += num_rows_per_vec_dot) {
  9934. vec_dot(ne00, &tmp[ir0 - iir0], (num_rows_per_vec_dot > 1 ? 16 : 0), src0_row + ir0 * nb01, (num_rows_per_vec_dot > 1 ? nb01 : 0), src1_col, (num_rows_per_vec_dot > 1 ? src1_col_stride : 0), num_rows_per_vec_dot);
  9935. }
  9936. for (int cn = 0; cn < num_rows_per_vec_dot; ++cn) {
  9937. memcpy(&dst_col[iir0 + cn * nb1 / nb0], tmp + (cn * 16), (MIN(iir0 + blck_0, ir0_end) - iir0) * sizeof(float));
  9938. }
  9939. }
  9940. }
  9941. }
  9942. }
  9943. static void ggml_compute_forward_mul_mat(
  9944. const struct ggml_compute_params * params,
  9945. struct ggml_tensor * dst) {
  9946. const struct ggml_tensor * src0 = dst->src[0];
  9947. const struct ggml_tensor * src1 = dst->src[1];
  9948. GGML_TENSOR_BINARY_OP_LOCALS
  9949. const int ith = params->ith;
  9950. const int nth = params->nth;
  9951. const enum ggml_type type = src0->type;
  9952. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  9953. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  9954. int64_t const vec_dot_num_rows = type_traits[type].nrows;
  9955. GGML_ASSERT(ne0 == ne01);
  9956. GGML_ASSERT(ne1 == ne11);
  9957. GGML_ASSERT(ne2 == ne12);
  9958. GGML_ASSERT(ne3 == ne13);
  9959. // we don't support permuted src0 or src1
  9960. GGML_ASSERT(nb00 == ggml_type_size(type));
  9961. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  9962. // dst cannot be transposed or permuted
  9963. GGML_ASSERT(nb0 == sizeof(float));
  9964. GGML_ASSERT(nb0 <= nb1);
  9965. GGML_ASSERT(nb1 <= nb2);
  9966. GGML_ASSERT(nb2 <= nb3);
  9967. // nb01 >= nb00 - src0 is not transposed
  9968. // compute by src0 rows
  9969. #if GGML_USE_LLAMAFILE
  9970. // broadcast factors
  9971. const int64_t r2 = ne12 / ne02;
  9972. const int64_t r3 = ne13 / ne03;
  9973. const bool src1_cont = ggml_is_contiguous(src1);
  9974. if (src1_cont) {
  9975. for (int64_t i13 = 0; i13 < ne13; i13++)
  9976. for (int64_t i12 = 0; i12 < ne12; i12++)
  9977. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  9978. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  9979. nb01/ggml_type_size(src0->type),
  9980. (const char *)src1->data + i12*nb12 + i13*nb13,
  9981. nb11/ggml_type_size(src1->type),
  9982. (char *)dst->data + i12*nb2 + i13*nb3,
  9983. nb1/ggml_type_size(dst->type),
  9984. ith, nth,
  9985. src0->type,
  9986. src1->type,
  9987. dst->type))
  9988. goto UseGgmlGemm1;
  9989. return;
  9990. }
  9991. UseGgmlGemm1:;
  9992. #endif
  9993. if (src1->type != vec_dot_type) {
  9994. char * wdata = params->wdata;
  9995. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  9996. const size_t nbw2 = nbw1*ne11;
  9997. const size_t nbw3 = nbw2*ne12;
  9998. assert(params->wsize >= ne13*nbw3);
  9999. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10000. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10001. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10002. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10003. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10004. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10005. ne10);
  10006. }
  10007. }
  10008. }
  10009. }
  10010. if (ith == 0) {
  10011. // Every thread starts at ith, so the first unprocessed chunk is nth. This save a bit of coordination right at the start.
  10012. atomic_store(&params->shared->current_chunk, nth);
  10013. }
  10014. ggml_barrier(params->shared);
  10015. #if GGML_USE_LLAMAFILE
  10016. if (src1->type != vec_dot_type) {
  10017. const void* wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10018. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10019. for (int64_t i13 = 0; i13 < ne13; i13++)
  10020. for (int64_t i12 = 0; i12 < ne12; i12++)
  10021. if (!llamafile_sgemm(ne01, ne11, ne00/ggml_blck_size(src0->type),
  10022. (const char *)src0->data + i12/r2*nb02 + i13/r3*nb03,
  10023. nb01/ggml_type_size(src0->type),
  10024. (const char *)wdata + (i12*ne11 + i13*ne12*ne11)*row_size,
  10025. row_size/ggml_type_size(vec_dot_type),
  10026. (char *)dst->data + i12*nb2 + i13*nb3,
  10027. nb1/ggml_type_size(dst->type),
  10028. ith, nth,
  10029. src0->type,
  10030. vec_dot_type,
  10031. dst->type))
  10032. goto UseGgmlGemm2;
  10033. return;
  10034. }
  10035. UseGgmlGemm2:;
  10036. #endif
  10037. // This is the size of the first dimension of the result, so we can iterate that way. (see the ASSERT above, these are the same numbers)
  10038. const int64_t nr0 = ne0;
  10039. // This is the size of the rest of the dimensions of the result
  10040. const int64_t nr1 = ne1 * ne2 * ne3;
  10041. // dot kernels can handle 1 row and col at a time, but mmla kernels can process 2 rows and cols
  10042. int64_t num_rows_per_vec_dot = vec_dot_num_rows;
  10043. // TODO: currently the mmla kernels support only even numbered rows/cols.
  10044. // this check can be removed once they are extended to support odd numbered rows/cols too
  10045. if ((nr0 % 2 != 0) || (ne11 % 2 != 0)) {
  10046. num_rows_per_vec_dot = 1;
  10047. }
  10048. // Now select a reasonable chunk size.
  10049. int chunk_size = 16;
  10050. // We need to step up the size if it's small
  10051. if (nr0 == 1 || nr1 == 1) {
  10052. chunk_size = 64;
  10053. }
  10054. // distribute the work across the inner or outer loop based on which one is larger
  10055. // The number of chunks in the 0/1 dim.
  10056. // CEIL(nr0/chunk_size)
  10057. int64_t nchunk0 = (nr0 + chunk_size - 1) / chunk_size;
  10058. int64_t nchunk1 = (nr1 + chunk_size - 1) / chunk_size;
  10059. // If the chunking is poor for the number of threads on this setup, scrap the whole plan. Re-chunk it by thread.
  10060. // Also, chunking by thread was measured to have perform better on NUMA systems. See https://github.com/ggerganov/llama.cpp/pull/6915
  10061. // In theory, chunking should be just as useful on NUMA and non NUMA systems, but testing disagreed with that.
  10062. if (nchunk0 * nchunk1 < nth * 4 || ggml_is_numa()) {
  10063. // distribute the thread work across the inner or outer loop based on which one is larger
  10064. nchunk0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10065. nchunk1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10066. }
  10067. // The number of elements in each chunk
  10068. const int64_t dr0 = (nr0 + nchunk0 - 1) / nchunk0;
  10069. const int64_t dr1 = (nr1 + nchunk1 - 1) / nchunk1;
  10070. // The first chunk comes from our thread_id, the rest will get auto-assigned.
  10071. int current_chunk = ith;
  10072. while (current_chunk < nchunk0 * nchunk1) {
  10073. const int64_t ith0 = current_chunk % nchunk0;
  10074. const int64_t ith1 = current_chunk / nchunk0;
  10075. const int64_t ir0_start = dr0 * ith0;
  10076. const int64_t ir0_end = MIN(ir0_start + dr0, nr0);
  10077. const int64_t ir1_start = dr1 * ith1;
  10078. const int64_t ir1_end = MIN(ir1_start + dr1, nr1);
  10079. ggml_compute_forward_mul_mat_one_chunk(params, dst, num_rows_per_vec_dot, ir0_start, ir0_end, ir1_start, ir1_end);
  10080. if (nth >= nchunk0 * nchunk1) {
  10081. break;
  10082. }
  10083. current_chunk = atomic_fetch_add(&params->shared->current_chunk, 1);
  10084. }
  10085. }
  10086. // ggml_compute_forward_mul_mat_id
  10087. static void ggml_compute_forward_mul_mat_id(
  10088. const struct ggml_compute_params * params,
  10089. struct ggml_tensor * dst) {
  10090. const struct ggml_tensor * src0 = dst->src[0];
  10091. const struct ggml_tensor * src1 = dst->src[1];
  10092. const struct ggml_tensor * ids = dst->src[2];
  10093. GGML_TENSOR_BINARY_OP_LOCALS
  10094. const int ith = params->ith;
  10095. const int nth = params->nth;
  10096. const enum ggml_type type = src0->type;
  10097. const bool src1_cont = ggml_is_contiguous(src1);
  10098. ggml_vec_dot_t const vec_dot = type_traits[type].vec_dot;
  10099. enum ggml_type const vec_dot_type = type_traits[type].vec_dot_type;
  10100. ggml_from_float_t const from_float_to_vec_dot = type_traits[vec_dot_type].from_float;
  10101. // we don't support permuted src0 or src1
  10102. GGML_ASSERT(nb00 == ggml_type_size(type));
  10103. GGML_ASSERT(nb10 == ggml_type_size(src1->type));
  10104. // dst cannot be transposed or permuted
  10105. GGML_ASSERT(nb0 == sizeof(float));
  10106. GGML_ASSERT(nb0 <= nb1);
  10107. GGML_ASSERT(nb1 <= nb2);
  10108. GGML_ASSERT(nb2 <= nb3);
  10109. // row groups
  10110. const int n_ids = ids->ne[0]; // n_expert_used
  10111. const int n_as = ne02; // n_expert
  10112. char * wdata_src1_end = (src1->type == vec_dot_type) ?
  10113. (char *) params->wdata :
  10114. (char *) params->wdata + GGML_PAD(ggml_row_size(vec_dot_type, ggml_nelements(src1)), sizeof(int64_t));
  10115. struct mmid_row_mapping {
  10116. int32_t i1;
  10117. int32_t i2;
  10118. };
  10119. int64_t * matrix_row_counts = (int64_t *) (wdata_src1_end); // [n_as]
  10120. struct mmid_row_mapping * matrix_rows = (struct mmid_row_mapping *)(matrix_row_counts + n_as); // [n_as][ne11]
  10121. if (src1->type != vec_dot_type) {
  10122. char * wdata = params->wdata;
  10123. const size_t nbw1 = ggml_row_size(vec_dot_type, ne10);
  10124. const size_t nbw2 = nbw1*ne11;
  10125. const size_t nbw3 = nbw2*ne12;
  10126. assert(params->wsize >= ne13*nbw3);
  10127. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10128. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  10129. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  10130. for (int64_t i11 = ith; i11 < ne11; i11 += nth) {
  10131. from_float_to_vec_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11),
  10132. (void *) (wdata + i13*nbw3 + i12*nbw2 + i11*nbw1),
  10133. ne10);
  10134. }
  10135. }
  10136. }
  10137. }
  10138. #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne12 + (i1)]
  10139. if (ith == 0) {
  10140. // initialize matrix_row_counts
  10141. memset(matrix_row_counts, 0, n_as*sizeof(int64_t));
  10142. // group rows by src0 matrix
  10143. for (int64_t iid1 = 0; iid1 < ids->ne[1]; ++iid1) {
  10144. for (int id = 0; id < n_ids; ++id) {
  10145. const int32_t i02 = *(const int32_t *) ((const char *) ids->data + iid1*ids->nb[1] + id*ids->nb[0]);
  10146. assert(i02 >= 0 && i02 < n_as);
  10147. MMID_MATRIX_ROW(i02, matrix_row_counts[i02]) = (struct mmid_row_mapping) {id, iid1};
  10148. matrix_row_counts[i02] += 1;
  10149. }
  10150. }
  10151. }
  10152. ggml_barrier(params->shared);
  10153. // compute each matrix multiplication in sequence
  10154. for (int cur_a = 0; cur_a < n_as; ++cur_a) {
  10155. const int64_t cne1 = matrix_row_counts[cur_a];
  10156. if (cne1 == 0) {
  10157. continue;
  10158. }
  10159. const char * src0_cur = (const char *) src0->data + cur_a*nb02;
  10160. const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
  10161. const size_t row_size = ggml_row_size(vec_dot_type, ne10);
  10162. const int64_t nr0 = ne01; // src0 rows
  10163. const int64_t nr1 = cne1; // src1 rows
  10164. // distribute the thread work across the inner or outer loop based on which one is larger
  10165. const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
  10166. const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
  10167. const int64_t ith0 = ith % nth0;
  10168. const int64_t ith1 = ith / nth0;
  10169. const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
  10170. const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
  10171. const int64_t ir010 = dr0*ith0;
  10172. const int64_t ir011 = MIN(ir010 + dr0, nr0);
  10173. const int64_t ir110 = dr1*ith1;
  10174. const int64_t ir111 = MIN(ir110 + dr1, nr1);
  10175. // threads with no work simply yield (not sure if it helps)
  10176. //if (ir010 >= ir011 || ir110 >= ir111) {
  10177. // sched_yield();
  10178. // continue;
  10179. //}
  10180. // block-tiling attempt
  10181. const int64_t blck_0 = 16;
  10182. const int64_t blck_1 = 16;
  10183. // attempt to reduce false-sharing (does not seem to make a difference)
  10184. float tmp[16];
  10185. for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
  10186. for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
  10187. for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
  10188. const int64_t _i12 = ir1; // logical row index for this expert
  10189. struct mmid_row_mapping row_mapping = MMID_MATRIX_ROW(cur_a, _i12);
  10190. const int id = row_mapping.i1; // selected expert index
  10191. const int64_t i11 = id % ne11;
  10192. const int64_t i12 = row_mapping.i2; // row index in src1
  10193. const int64_t i1 = id; // selected expert index
  10194. const int64_t i2 = i12; // row
  10195. // desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
  10196. // if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
  10197. // the original src1 data pointer, so we should index using the indices directly
  10198. // TODO: this is a bit of a hack, we should probably have a better way to handle this
  10199. const char * src1_col = (const char *) wdata +
  10200. (src1_cont || src1->type != vec_dot_type
  10201. ? (i11 + i12*ne11)*row_size
  10202. : (i11*nb11 + i12*nb12));
  10203. float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2));
  10204. //for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10205. // vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
  10206. //}
  10207. for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
  10208. vec_dot(ne00, &tmp[ir0 - iir0], 0, src0_cur + ir0*nb01, 0, src1_col, 0, 1);
  10209. }
  10210. memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
  10211. }
  10212. }
  10213. }
  10214. }
  10215. #undef MMID_MATRIX_ROW
  10216. }
  10217. // ggml_compute_forward_out_prod
  10218. static void ggml_compute_forward_out_prod_f32(
  10219. const struct ggml_compute_params * params,
  10220. struct ggml_tensor * dst) {
  10221. const struct ggml_tensor * src0 = dst->src[0];
  10222. const struct ggml_tensor * src1 = dst->src[1];
  10223. GGML_TENSOR_BINARY_OP_LOCALS
  10224. const int ith = params->ith;
  10225. const int nth = params->nth;
  10226. GGML_ASSERT(ne0 == ne00);
  10227. GGML_ASSERT(ne1 == ne10);
  10228. GGML_ASSERT(ne2 == ne02);
  10229. GGML_ASSERT(ne02 == ne12);
  10230. GGML_ASSERT(ne3 == ne13);
  10231. GGML_ASSERT(ne03 == ne13);
  10232. // we don't support permuted src0 or src1
  10233. GGML_ASSERT(nb00 == sizeof(float));
  10234. // dst cannot be transposed or permuted
  10235. GGML_ASSERT(nb0 == sizeof(float));
  10236. // GGML_ASSERT(nb0 <= nb1);
  10237. // GGML_ASSERT(nb1 <= nb2);
  10238. // GGML_ASSERT(nb2 <= nb3);
  10239. // nb01 >= nb00 - src0 is not transposed
  10240. // compute by src0 rows
  10241. if (ith == 0) {
  10242. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10243. }
  10244. ggml_barrier(params->shared);
  10245. // dst[:,:,:,:] = 0
  10246. // for i2,i3:
  10247. // for i1:
  10248. // for i01:
  10249. // for i0:
  10250. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10251. // parallelize by last three dimensions
  10252. // total rows in dst
  10253. const int64_t nr = ne1*ne2*ne3;
  10254. // rows per thread
  10255. const int64_t dr = (nr + nth - 1)/nth;
  10256. // row range for this thread
  10257. const int64_t ir0 = dr*ith;
  10258. const int64_t ir1 = MIN(ir0 + dr, nr);
  10259. // block-tiling attempt
  10260. const int64_t blck_0 = MAX(GGML_VEC_MAD_UNROLL, 32);
  10261. const int64_t blck_1 = 16;
  10262. for (int64_t bir = ir0; bir < ir1; bir += blck_1) {
  10263. const int64_t bir1 = MIN(bir + blck_1, ir1);
  10264. for (int64_t bi01 = 0; bi01 < ne01; bi01 += blck_0) {
  10265. const int64_t bne01 = MIN(bi01 + blck_0, ne01);
  10266. for (int64_t ir = bir; ir < bir1; ++ir) {
  10267. // dst indices
  10268. const int64_t i3 = ir/(ne2*ne1);
  10269. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10270. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10271. const int64_t i02 = i2;
  10272. const int64_t i03 = i3;
  10273. //const int64_t i10 = i1;
  10274. const int64_t i12 = i2;
  10275. const int64_t i13 = i3;
  10276. #if GGML_VEC_MAD_UNROLL > 2
  10277. const int64_t bne01_unroll = bne01 - (bne01 % GGML_VEC_MAD_UNROLL);
  10278. for (int64_t i01 = bi01; i01 < bne01_unroll; i01 += GGML_VEC_MAD_UNROLL) {
  10279. const int64_t i11 = i01;
  10280. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10281. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10282. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10283. ggml_vec_mad_f32_unroll(ne0, nb01, nb11, d, s0, s1);
  10284. }
  10285. for (int64_t i01 = bne01_unroll; i01 < bne01; ++i01) {
  10286. const int64_t i11 = i01;
  10287. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10288. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10289. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10290. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10291. }
  10292. #else
  10293. for (int64_t i01 = bi01; i01 < bne01; ++i01) {
  10294. const int64_t i11 = i01;
  10295. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10296. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10297. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10298. ggml_vec_mad_f32(ne0, d, s0, *s1);
  10299. }
  10300. #endif
  10301. }
  10302. }
  10303. }
  10304. }
  10305. static void ggml_compute_forward_out_prod_q_f32(
  10306. const struct ggml_compute_params * params,
  10307. struct ggml_tensor * dst) {
  10308. const struct ggml_tensor * src0 = dst->src[0];
  10309. const struct ggml_tensor * src1 = dst->src[1];
  10310. GGML_TENSOR_BINARY_OP_LOCALS;
  10311. const int ith = params->ith;
  10312. const int nth = params->nth;
  10313. const enum ggml_type type = src0->type;
  10314. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10315. GGML_ASSERT(ne02 == ne12);
  10316. GGML_ASSERT(ne03 == ne13);
  10317. GGML_ASSERT(ne2 == ne12);
  10318. GGML_ASSERT(ne3 == ne13);
  10319. // we don't support permuted src0 dim0
  10320. GGML_ASSERT(nb00 == ggml_type_size(type));
  10321. // dst dim0 cannot be transposed or permuted
  10322. GGML_ASSERT(nb0 == sizeof(float));
  10323. // GGML_ASSERT(nb0 <= nb1);
  10324. // GGML_ASSERT(nb1 <= nb2);
  10325. // GGML_ASSERT(nb2 <= nb3);
  10326. GGML_ASSERT(ne0 == ne00);
  10327. GGML_ASSERT(ne1 == ne10);
  10328. GGML_ASSERT(ne2 == ne02);
  10329. GGML_ASSERT(ne3 == ne03);
  10330. // nb01 >= nb00 - src0 is not transposed
  10331. // compute by src0 rows
  10332. if (ith == 0) {
  10333. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  10334. }
  10335. ggml_barrier(params->shared);
  10336. // parallelize by last three dimensions
  10337. // total rows in dst
  10338. const int64_t nr = ne1*ne2*ne3;
  10339. // rows per thread
  10340. const int64_t dr = (nr + nth - 1)/nth;
  10341. // row range for this thread
  10342. const int64_t ir0 = dr*ith;
  10343. const int64_t ir1 = MIN(ir0 + dr, nr);
  10344. // dst[:,:,:,:] = 0
  10345. // for i2,i3:
  10346. // for i1:
  10347. // for i01:
  10348. // for i0:
  10349. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  10350. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  10351. for (int64_t ir = ir0; ir < ir1; ++ir) {
  10352. // dst indices
  10353. const int64_t i3 = ir/(ne2*ne1);
  10354. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  10355. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  10356. const int64_t i02 = i2;
  10357. const int64_t i03 = i3;
  10358. //const int64_t i10 = i1;
  10359. const int64_t i12 = i2;
  10360. const int64_t i13 = i3;
  10361. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  10362. const int64_t i11 = i01;
  10363. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  10364. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  10365. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  10366. dequantize_row_q(s0, wdata, ne0);
  10367. ggml_vec_mad_f32(ne0, d, wdata, *s1);
  10368. }
  10369. }
  10370. }
  10371. static void ggml_compute_forward_out_prod(
  10372. const struct ggml_compute_params * params,
  10373. struct ggml_tensor * dst) {
  10374. const struct ggml_tensor * src0 = dst->src[0];
  10375. switch (src0->type) {
  10376. case GGML_TYPE_Q4_0:
  10377. case GGML_TYPE_Q4_1:
  10378. case GGML_TYPE_Q5_0:
  10379. case GGML_TYPE_Q5_1:
  10380. case GGML_TYPE_Q8_0:
  10381. case GGML_TYPE_Q2_K:
  10382. case GGML_TYPE_Q3_K:
  10383. case GGML_TYPE_Q4_K:
  10384. case GGML_TYPE_Q5_K:
  10385. case GGML_TYPE_Q6_K:
  10386. case GGML_TYPE_IQ2_XXS:
  10387. case GGML_TYPE_IQ2_XS:
  10388. case GGML_TYPE_IQ3_XXS:
  10389. case GGML_TYPE_IQ1_S:
  10390. case GGML_TYPE_IQ1_M:
  10391. case GGML_TYPE_IQ4_NL:
  10392. case GGML_TYPE_IQ4_XS:
  10393. case GGML_TYPE_IQ3_S:
  10394. case GGML_TYPE_IQ2_S:
  10395. {
  10396. ggml_compute_forward_out_prod_q_f32(params, dst);
  10397. } break;
  10398. case GGML_TYPE_F16:
  10399. {
  10400. GGML_ASSERT(false); // todo
  10401. // ggml_compute_forward_out_prod_f16_f32(params, dst);
  10402. } break;
  10403. case GGML_TYPE_F32:
  10404. {
  10405. ggml_compute_forward_out_prod_f32(params, dst);
  10406. } break;
  10407. default:
  10408. {
  10409. GGML_ASSERT(false);
  10410. } break;
  10411. }
  10412. }
  10413. // ggml_compute_forward_scale
  10414. static void ggml_compute_forward_scale_f32(
  10415. const struct ggml_compute_params * params,
  10416. struct ggml_tensor * dst) {
  10417. const struct ggml_tensor * src0 = dst->src[0];
  10418. GGML_ASSERT(ggml_is_contiguous(src0));
  10419. GGML_ASSERT(ggml_is_contiguous(dst));
  10420. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10421. // scale factor
  10422. float v;
  10423. memcpy(&v, dst->op_params, sizeof(float));
  10424. const int ith = params->ith;
  10425. const int nth = params->nth;
  10426. const int nc = src0->ne[0];
  10427. const int nr = ggml_nrows(src0);
  10428. // rows per thread
  10429. const int dr = (nr + nth - 1)/nth;
  10430. // row range for this thread
  10431. const int ir0 = dr*ith;
  10432. const int ir1 = MIN(ir0 + dr, nr);
  10433. const size_t nb01 = src0->nb[1];
  10434. const size_t nb1 = dst->nb[1];
  10435. for (int i1 = ir0; i1 < ir1; i1++) {
  10436. if (dst->data != src0->data) {
  10437. // src0 is same shape as dst => same indices
  10438. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  10439. }
  10440. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  10441. }
  10442. }
  10443. static void ggml_compute_forward_scale(
  10444. const struct ggml_compute_params * params,
  10445. struct ggml_tensor * dst) {
  10446. const struct ggml_tensor * src0 = dst->src[0];
  10447. switch (src0->type) {
  10448. case GGML_TYPE_F32:
  10449. {
  10450. ggml_compute_forward_scale_f32(params, dst);
  10451. } break;
  10452. default:
  10453. {
  10454. GGML_ASSERT(false);
  10455. } break;
  10456. }
  10457. }
  10458. // ggml_compute_forward_set
  10459. static void ggml_compute_forward_set_f32(
  10460. const struct ggml_compute_params * params,
  10461. struct ggml_tensor * dst) {
  10462. const struct ggml_tensor * src0 = dst->src[0];
  10463. const struct ggml_tensor * src1 = dst->src[1];
  10464. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  10465. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10466. // view src0 and dst with these strides and data offset inbytes during set
  10467. // nb0 is implicitly element_size because src0 and dst are contiguous
  10468. size_t nb1 = ((int32_t *) dst->op_params)[0];
  10469. size_t nb2 = ((int32_t *) dst->op_params)[1];
  10470. size_t nb3 = ((int32_t *) dst->op_params)[2];
  10471. size_t offset = ((int32_t *) dst->op_params)[3];
  10472. bool inplace = (bool) ((int32_t *) dst->op_params)[4];
  10473. if (!inplace) {
  10474. if (params->ith == 0) {
  10475. // memcpy needs to be synchronized across threads to avoid race conditions.
  10476. // => do it in INIT phase
  10477. memcpy(
  10478. ((char *) dst->data),
  10479. ((char *) src0->data),
  10480. ggml_nbytes(dst));
  10481. }
  10482. ggml_barrier(params->shared);
  10483. }
  10484. const int ith = params->ith;
  10485. const int nth = params->nth;
  10486. const int nr = ggml_nrows(src1);
  10487. const int nc = src1->ne[0];
  10488. GGML_TENSOR_LOCALS(int64_t, ne1, src1, ne)
  10489. GGML_TENSOR_LOCALS(size_t, nb1, src1, nb)
  10490. // src0 and dst as viewed during set
  10491. const size_t nb0 = ggml_element_size(src0);
  10492. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  10493. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  10494. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  10495. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  10496. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  10497. GGML_ASSERT(nb10 == sizeof(float));
  10498. // rows per thread
  10499. const int dr = (nr + nth - 1)/nth;
  10500. // row range for this thread
  10501. const int ir0 = dr*ith;
  10502. const int ir1 = MIN(ir0 + dr, nr);
  10503. for (int ir = ir0; ir < ir1; ++ir) {
  10504. // src0 and dst are viewed with shape of src1 and offset
  10505. // => same indices
  10506. const int i3 = ir/(ne12*ne11);
  10507. const int i2 = (ir - i3*ne12*ne11)/ne11;
  10508. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  10509. ggml_vec_cpy_f32(nc,
  10510. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  10511. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  10512. }
  10513. }
  10514. static void ggml_compute_forward_set(
  10515. const struct ggml_compute_params * params,
  10516. struct ggml_tensor * dst) {
  10517. const struct ggml_tensor * src0 = dst->src[0];
  10518. switch (src0->type) {
  10519. case GGML_TYPE_F32:
  10520. {
  10521. ggml_compute_forward_set_f32(params, dst);
  10522. } break;
  10523. case GGML_TYPE_F16:
  10524. case GGML_TYPE_BF16:
  10525. case GGML_TYPE_Q4_0:
  10526. case GGML_TYPE_Q4_1:
  10527. case GGML_TYPE_Q5_0:
  10528. case GGML_TYPE_Q5_1:
  10529. case GGML_TYPE_Q8_0:
  10530. case GGML_TYPE_Q8_1:
  10531. case GGML_TYPE_Q2_K:
  10532. case GGML_TYPE_Q3_K:
  10533. case GGML_TYPE_Q4_K:
  10534. case GGML_TYPE_Q5_K:
  10535. case GGML_TYPE_Q6_K:
  10536. case GGML_TYPE_IQ2_XXS:
  10537. case GGML_TYPE_IQ2_XS:
  10538. case GGML_TYPE_IQ3_XXS:
  10539. case GGML_TYPE_IQ1_S:
  10540. case GGML_TYPE_IQ1_M:
  10541. case GGML_TYPE_IQ4_NL:
  10542. case GGML_TYPE_IQ4_XS:
  10543. case GGML_TYPE_IQ3_S:
  10544. case GGML_TYPE_IQ2_S:
  10545. default:
  10546. {
  10547. GGML_ASSERT(false);
  10548. } break;
  10549. }
  10550. }
  10551. // ggml_compute_forward_cpy
  10552. static void ggml_compute_forward_cpy(
  10553. const struct ggml_compute_params * params,
  10554. struct ggml_tensor * dst) {
  10555. ggml_compute_forward_dup(params, dst);
  10556. }
  10557. // ggml_compute_forward_cont
  10558. static void ggml_compute_forward_cont(
  10559. const struct ggml_compute_params * params,
  10560. struct ggml_tensor * dst) {
  10561. ggml_compute_forward_dup(params, dst);
  10562. }
  10563. // ggml_compute_forward_reshape
  10564. static void ggml_compute_forward_reshape(
  10565. const struct ggml_compute_params * params,
  10566. struct ggml_tensor * dst) {
  10567. // NOP
  10568. UNUSED(params);
  10569. UNUSED(dst);
  10570. }
  10571. // ggml_compute_forward_view
  10572. static void ggml_compute_forward_view(
  10573. const struct ggml_compute_params * params,
  10574. const struct ggml_tensor * dst) {
  10575. // NOP
  10576. UNUSED(params);
  10577. UNUSED(dst);
  10578. }
  10579. // ggml_compute_forward_permute
  10580. static void ggml_compute_forward_permute(
  10581. const struct ggml_compute_params * params,
  10582. const struct ggml_tensor * dst) {
  10583. // NOP
  10584. UNUSED(params);
  10585. UNUSED(dst);
  10586. }
  10587. // ggml_compute_forward_transpose
  10588. static void ggml_compute_forward_transpose(
  10589. const struct ggml_compute_params * params,
  10590. const struct ggml_tensor * dst) {
  10591. // NOP
  10592. UNUSED(params);
  10593. UNUSED(dst);
  10594. }
  10595. // ggml_compute_forward_get_rows
  10596. static void ggml_compute_forward_get_rows_q(
  10597. const struct ggml_compute_params * params,
  10598. struct ggml_tensor * dst) {
  10599. const struct ggml_tensor * src0 = dst->src[0];
  10600. const struct ggml_tensor * src1 = dst->src[1];
  10601. GGML_TENSOR_BINARY_OP_LOCALS
  10602. const int64_t nc = ne00;
  10603. const int64_t nr = ggml_nelements(src1);
  10604. const enum ggml_type type = src0->type;
  10605. ggml_to_float_t const dequantize_row_q = type_traits[type].to_float;
  10606. assert(ne0 == nc);
  10607. assert(ne02 == ne11);
  10608. assert(nb00 == ggml_type_size(type));
  10609. assert(ggml_nrows(dst) == nr);
  10610. const int ith = params->ith;
  10611. const int nth = params->nth;
  10612. // rows per thread
  10613. const int dr = (nr + nth - 1)/nth;
  10614. // row range for this thread
  10615. const int ir0 = dr*ith;
  10616. const int ir1 = MIN(ir0 + dr, nr);
  10617. for (int64_t i = ir0; i < ir1; ++i) {
  10618. const int64_t i12 = i/(ne11*ne10);
  10619. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10620. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10621. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10622. assert(i01 >= 0 && i01 < ne01);
  10623. dequantize_row_q(
  10624. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10625. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10626. }
  10627. }
  10628. static void ggml_compute_forward_get_rows_f16(
  10629. const struct ggml_compute_params * params,
  10630. struct ggml_tensor * dst) {
  10631. const struct ggml_tensor * src0 = dst->src[0];
  10632. const struct ggml_tensor * src1 = dst->src[1];
  10633. GGML_TENSOR_BINARY_OP_LOCALS
  10634. const int64_t nc = ne00;
  10635. const int64_t nr = ggml_nelements(src1);
  10636. assert(ne0 == nc);
  10637. assert(ne02 == ne11);
  10638. assert(nb00 == sizeof(ggml_fp16_t));
  10639. assert(ggml_nrows(dst) == nr);
  10640. const int ith = params->ith;
  10641. const int nth = params->nth;
  10642. // rows per thread
  10643. const int dr = (nr + nth - 1)/nth;
  10644. // row range for this thread
  10645. const int ir0 = dr*ith;
  10646. const int ir1 = MIN(ir0 + dr, nr);
  10647. for (int64_t i = ir0; i < ir1; ++i) {
  10648. const int64_t i12 = i/(ne11*ne10);
  10649. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10650. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10651. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10652. assert(i01 >= 0 && i01 < ne01);
  10653. ggml_fp16_to_fp32_row(
  10654. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10655. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10656. }
  10657. }
  10658. static void ggml_compute_forward_get_rows_bf16(
  10659. const struct ggml_compute_params * params,
  10660. struct ggml_tensor * dst) {
  10661. const struct ggml_tensor * src0 = dst->src[0];
  10662. const struct ggml_tensor * src1 = dst->src[1];
  10663. GGML_TENSOR_BINARY_OP_LOCALS
  10664. const int64_t nc = ne00;
  10665. const int64_t nr = ggml_nelements(src1);
  10666. assert(ne0 == nc);
  10667. assert(ne02 == ne11);
  10668. assert(nb00 == sizeof(ggml_bf16_t));
  10669. assert(ggml_nrows(dst) == nr);
  10670. const int ith = params->ith;
  10671. const int nth = params->nth;
  10672. // rows per thread
  10673. const int dr = (nr + nth - 1)/nth;
  10674. // row range for this thread
  10675. const int ir0 = dr*ith;
  10676. const int ir1 = MIN(ir0 + dr, nr);
  10677. for (int64_t i = ir0; i < ir1; ++i) {
  10678. const int64_t i12 = i/(ne11*ne10);
  10679. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10680. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10681. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10682. assert(i01 >= 0 && i01 < ne01);
  10683. ggml_bf16_to_fp32_row(
  10684. (const void *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03),
  10685. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3), nc);
  10686. }
  10687. }
  10688. static void ggml_compute_forward_get_rows_f32(
  10689. const struct ggml_compute_params * params,
  10690. struct ggml_tensor * dst) {
  10691. const struct ggml_tensor * src0 = dst->src[0];
  10692. const struct ggml_tensor * src1 = dst->src[1];
  10693. GGML_TENSOR_BINARY_OP_LOCALS
  10694. const int64_t nc = ne00;
  10695. const int64_t nr = ggml_nelements(src1);
  10696. assert(ne0 == nc);
  10697. assert(ne02 == ne11);
  10698. assert(nb00 == sizeof(float));
  10699. assert(ggml_nrows(dst) == nr);
  10700. const int ith = params->ith;
  10701. const int nth = params->nth;
  10702. // rows per thread
  10703. const int dr = (nr + nth - 1)/nth;
  10704. // row range for this thread
  10705. const int ir0 = dr*ith;
  10706. const int ir1 = MIN(ir0 + dr, nr);
  10707. for (int64_t i = ir0; i < ir1; ++i) {
  10708. const int64_t i12 = i/(ne11*ne10);
  10709. const int64_t i11 = (i - i12*ne11*ne10)/ne10;
  10710. const int64_t i10 = (i - i12*ne11*ne10 - i11*ne10);
  10711. const int64_t i01 = *(int32_t *) ((char *) src1->data + i10*nb10 + i11*nb11 + i12*nb12);
  10712. assert(i01 >= 0 && i01 < ne01);
  10713. ggml_vec_cpy_f32(nc,
  10714. (float *) ((char *) dst->data + i10*nb1 + i11*nb2 + i12*nb3),
  10715. (float *) ((char *) src0->data + i01*nb01 + i11*nb02 + i12*nb03));
  10716. }
  10717. }
  10718. static void ggml_compute_forward_get_rows(
  10719. const struct ggml_compute_params * params,
  10720. struct ggml_tensor * dst) {
  10721. const struct ggml_tensor * src0 = dst->src[0];
  10722. switch (src0->type) {
  10723. case GGML_TYPE_Q4_0:
  10724. case GGML_TYPE_Q4_1:
  10725. case GGML_TYPE_Q5_0:
  10726. case GGML_TYPE_Q5_1:
  10727. case GGML_TYPE_Q8_0:
  10728. case GGML_TYPE_Q8_1:
  10729. case GGML_TYPE_Q2_K:
  10730. case GGML_TYPE_Q3_K:
  10731. case GGML_TYPE_Q4_K:
  10732. case GGML_TYPE_Q5_K:
  10733. case GGML_TYPE_Q6_K:
  10734. case GGML_TYPE_IQ2_XXS:
  10735. case GGML_TYPE_IQ2_XS:
  10736. case GGML_TYPE_IQ3_XXS:
  10737. case GGML_TYPE_IQ1_S:
  10738. case GGML_TYPE_IQ1_M:
  10739. case GGML_TYPE_IQ4_NL:
  10740. case GGML_TYPE_IQ4_XS:
  10741. case GGML_TYPE_IQ3_S:
  10742. case GGML_TYPE_IQ2_S:
  10743. {
  10744. ggml_compute_forward_get_rows_q(params, dst);
  10745. } break;
  10746. case GGML_TYPE_F16:
  10747. {
  10748. ggml_compute_forward_get_rows_f16(params, dst);
  10749. } break;
  10750. case GGML_TYPE_BF16:
  10751. {
  10752. ggml_compute_forward_get_rows_bf16(params, dst);
  10753. } break;
  10754. case GGML_TYPE_F32:
  10755. case GGML_TYPE_I32:
  10756. {
  10757. ggml_compute_forward_get_rows_f32(params, dst);
  10758. } break;
  10759. default:
  10760. {
  10761. GGML_ASSERT(false);
  10762. } break;
  10763. }
  10764. //static bool first = true;
  10765. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10766. //if (first) {
  10767. // first = false;
  10768. //} else {
  10769. // for (int k = 0; k < dst->ne[1]; ++k) {
  10770. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10771. // for (int i = 0; i < 16; ++i) {
  10772. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10773. // }
  10774. // printf("\n");
  10775. // }
  10776. // printf("\n");
  10777. // }
  10778. // printf("\n");
  10779. // exit(0);
  10780. //}
  10781. }
  10782. // ggml_compute_forward_get_rows_back
  10783. static void ggml_compute_forward_get_rows_back_f32_f16(
  10784. const struct ggml_compute_params * params,
  10785. struct ggml_tensor * dst) {
  10786. const struct ggml_tensor * src0 = dst->src[0];
  10787. const struct ggml_tensor * src1 = dst->src[1];
  10788. if (params->ith != 0) {
  10789. return;
  10790. }
  10791. GGML_ASSERT(ggml_is_contiguous(dst));
  10792. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10793. memset(dst->data, 0, ggml_nbytes(dst));
  10794. const int nc = src0->ne[0];
  10795. const int nr = ggml_nelements(src1);
  10796. GGML_ASSERT( dst->ne[0] == nc);
  10797. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  10798. for (int i = 0; i < nr; ++i) {
  10799. const int r = ((int32_t *) src1->data)[i];
  10800. for (int j = 0; j < nc; ++j) {
  10801. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  10802. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  10803. }
  10804. }
  10805. }
  10806. static void ggml_compute_forward_get_rows_back_f32(
  10807. const struct ggml_compute_params * params,
  10808. struct ggml_tensor * dst) {
  10809. const struct ggml_tensor * src0 = dst->src[0];
  10810. const struct ggml_tensor * src1 = dst->src[1];
  10811. if (params->ith != 0) {
  10812. return;
  10813. }
  10814. GGML_ASSERT(ggml_is_contiguous(dst));
  10815. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  10816. memset(dst->data, 0, ggml_nbytes(dst));
  10817. const int nc = src0->ne[0];
  10818. const int nr = ggml_nelements(src1);
  10819. GGML_ASSERT( dst->ne[0] == nc);
  10820. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10821. for (int i = 0; i < nr; ++i) {
  10822. const int r = ((int32_t *) src1->data)[i];
  10823. ggml_vec_add_f32(nc,
  10824. (float *) ((char *) dst->data + r*dst->nb[1]),
  10825. (float *) ((char *) dst->data + r*dst->nb[1]),
  10826. (float *) ((char *) src0->data + i*src0->nb[1]));
  10827. }
  10828. }
  10829. static void ggml_compute_forward_get_rows_back(
  10830. const struct ggml_compute_params * params,
  10831. struct ggml_tensor * dst) {
  10832. const struct ggml_tensor * src0 = dst->src[0];
  10833. switch (src0->type) {
  10834. case GGML_TYPE_F16:
  10835. {
  10836. ggml_compute_forward_get_rows_back_f32_f16(params, dst);
  10837. } break;
  10838. case GGML_TYPE_F32:
  10839. {
  10840. ggml_compute_forward_get_rows_back_f32(params, dst);
  10841. } break;
  10842. default:
  10843. {
  10844. GGML_ASSERT(false);
  10845. } break;
  10846. }
  10847. //static bool first = true;
  10848. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  10849. //if (first) {
  10850. // first = false;
  10851. //} else {
  10852. // for (int k = 0; k < dst->ne[1]; ++k) {
  10853. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  10854. // for (int i = 0; i < 16; ++i) {
  10855. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  10856. // }
  10857. // printf("\n");
  10858. // }
  10859. // printf("\n");
  10860. // }
  10861. // printf("\n");
  10862. // exit(0);
  10863. //}
  10864. }
  10865. // ggml_compute_forward_diag
  10866. static void ggml_compute_forward_diag_f32(
  10867. const struct ggml_compute_params * params,
  10868. struct ggml_tensor * dst) {
  10869. const struct ggml_tensor * src0 = dst->src[0];
  10870. if (params->ith != 0) {
  10871. return;
  10872. }
  10873. // TODO: handle transposed/permuted matrices
  10874. GGML_TENSOR_UNARY_OP_LOCALS
  10875. GGML_ASSERT(ne00 == ne0);
  10876. GGML_ASSERT(ne00 == ne1);
  10877. GGML_ASSERT(ne01 == 1);
  10878. GGML_ASSERT(ne02 == ne2);
  10879. GGML_ASSERT(ne03 == ne3);
  10880. GGML_ASSERT(nb00 == sizeof(float));
  10881. GGML_ASSERT(nb0 == sizeof(float));
  10882. for (int i3 = 0; i3 < ne3; i3++) {
  10883. for (int i2 = 0; i2 < ne2; i2++) {
  10884. for (int i1 = 0; i1 < ne1; i1++) {
  10885. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  10886. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  10887. for (int i0 = 0; i0 < i1; i0++) {
  10888. d[i0] = 0;
  10889. }
  10890. d[i1] = s[i1];
  10891. for (int i0 = i1+1; i0 < ne0; i0++) {
  10892. d[i0] = 0;
  10893. }
  10894. }
  10895. }
  10896. }
  10897. }
  10898. static void ggml_compute_forward_diag(
  10899. const struct ggml_compute_params * params,
  10900. struct ggml_tensor * dst) {
  10901. const struct ggml_tensor * src0 = dst->src[0];
  10902. switch (src0->type) {
  10903. case GGML_TYPE_F32:
  10904. {
  10905. ggml_compute_forward_diag_f32(params, dst);
  10906. } break;
  10907. default:
  10908. {
  10909. GGML_ASSERT(false);
  10910. } break;
  10911. }
  10912. }
  10913. // ggml_compute_forward_diag_mask_inf
  10914. static void ggml_compute_forward_diag_mask_f32(
  10915. const struct ggml_compute_params * params,
  10916. struct ggml_tensor * dst,
  10917. const float value) {
  10918. const struct ggml_tensor * src0 = dst->src[0];
  10919. const int ith = params->ith;
  10920. const int nth = params->nth;
  10921. const int n_past = ((int32_t *) dst->op_params)[0];
  10922. const bool inplace = src0->data == dst->data;
  10923. GGML_ASSERT(n_past >= 0);
  10924. if (!inplace) {
  10925. if (ith == 0) {
  10926. // memcpy needs to be synchronized across threads to avoid race conditions.
  10927. // => do it in INIT phase
  10928. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  10929. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  10930. memcpy(
  10931. ((char *) dst->data),
  10932. ((char *) src0->data),
  10933. ggml_nbytes(dst));
  10934. }
  10935. ggml_barrier(params->shared);
  10936. }
  10937. // TODO: handle transposed/permuted matrices
  10938. const int n = ggml_nrows(src0);
  10939. const int nc = src0->ne[0];
  10940. const int nr = src0->ne[1];
  10941. const int nz = n/nr;
  10942. GGML_ASSERT( dst->nb[0] == sizeof(float));
  10943. GGML_ASSERT(src0->nb[0] == sizeof(float));
  10944. for (int k = 0; k < nz; k++) {
  10945. for (int j = ith; j < nr; j += nth) {
  10946. for (int i = n_past; i < nc; i++) {
  10947. if (i > n_past + j) {
  10948. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  10949. }
  10950. }
  10951. }
  10952. }
  10953. }
  10954. static void ggml_compute_forward_diag_mask_inf(
  10955. const struct ggml_compute_params * params,
  10956. struct ggml_tensor * dst) {
  10957. const struct ggml_tensor * src0 = dst->src[0];
  10958. switch (src0->type) {
  10959. case GGML_TYPE_F32:
  10960. {
  10961. ggml_compute_forward_diag_mask_f32(params, dst, -INFINITY);
  10962. } break;
  10963. default:
  10964. {
  10965. GGML_ASSERT(false);
  10966. } break;
  10967. }
  10968. }
  10969. static void ggml_compute_forward_diag_mask_zero(
  10970. const struct ggml_compute_params * params,
  10971. struct ggml_tensor * dst) {
  10972. const struct ggml_tensor * src0 = dst->src[0];
  10973. switch (src0->type) {
  10974. case GGML_TYPE_F32:
  10975. {
  10976. ggml_compute_forward_diag_mask_f32(params, dst, 0);
  10977. } break;
  10978. default:
  10979. {
  10980. GGML_ASSERT(false);
  10981. } break;
  10982. }
  10983. }
  10984. // ggml_compute_forward_soft_max
  10985. static void ggml_compute_forward_soft_max_f32(
  10986. const struct ggml_compute_params * params,
  10987. struct ggml_tensor * dst) {
  10988. const struct ggml_tensor * src0 = dst->src[0];
  10989. const struct ggml_tensor * src1 = dst->src[1];
  10990. assert(ggml_is_contiguous(dst));
  10991. assert(ggml_are_same_shape(src0, dst));
  10992. float scale = 1.0f;
  10993. float max_bias = 0.0f;
  10994. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  10995. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  10996. // TODO: handle transposed/permuted matrices
  10997. const int ith = params->ith;
  10998. const int nth = params->nth;
  10999. GGML_TENSOR_UNARY_OP_LOCALS
  11000. //const int64_t ne11 = src1 ? src1->ne[1] : 1;
  11001. // TODO: is this supposed to be ceil instead of floor?
  11002. // https://huggingface.co/mosaicml/mpt-7b/blob/main/attention.py#L370
  11003. const uint32_t n_head = ne02;
  11004. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  11005. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  11006. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  11007. const int nc = src0->ne[0];
  11008. const int nr = ggml_nrows(src0);
  11009. // rows per thread
  11010. const int dr = (nr + nth - 1)/nth;
  11011. // row range for this thread
  11012. const int ir0 = dr*ith;
  11013. const int ir1 = MIN(ir0 + dr, nr);
  11014. float * wp = (float *) params->wdata + (nc + CACHE_LINE_SIZE_F32) * ith;
  11015. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  11016. for (int i1 = ir0; i1 < ir1; i1++) {
  11017. // ALiBi
  11018. const uint32_t h = (i1/ne01)%ne02; // head
  11019. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  11020. float * sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  11021. float * dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  11022. // broadcast the mask across rows
  11023. ggml_fp16_t * mp_f16 = src1 ? (ggml_fp16_t *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11024. float * mp_f32 = src1 ? (float *)((char *) src1->data) + (i1%ne01)*ne00 : NULL;
  11025. ggml_vec_cpy_f32 (nc, wp, sp);
  11026. ggml_vec_scale_f32(nc, wp, scale);
  11027. if (mp_f32) {
  11028. if (use_f16) {
  11029. for (int i = 0; i < nc; ++i) {
  11030. wp[i] += slope*GGML_FP16_TO_FP32(mp_f16[i]);
  11031. }
  11032. } else {
  11033. for (int i = 0; i < nc; ++i) {
  11034. wp[i] += slope*mp_f32[i];
  11035. }
  11036. }
  11037. }
  11038. #ifndef NDEBUG
  11039. for (int i = 0; i < nc; ++i) {
  11040. //printf("p[%d] = %f\n", i, p[i]);
  11041. assert(!isnan(wp[i]));
  11042. }
  11043. #endif
  11044. float max = -INFINITY;
  11045. ggml_vec_max_f32(nc, &max, wp);
  11046. ggml_float sum = ggml_vec_soft_max_f32(nc, dp, wp, max);
  11047. assert(sum > 0.0);
  11048. sum = 1.0/sum;
  11049. ggml_vec_scale_f32(nc, dp, sum);
  11050. #ifndef NDEBUG
  11051. for (int i = 0; i < nc; ++i) {
  11052. assert(!isnan(dp[i]));
  11053. assert(!isinf(dp[i]));
  11054. }
  11055. #endif
  11056. }
  11057. }
  11058. static void ggml_compute_forward_soft_max(
  11059. const struct ggml_compute_params * params,
  11060. struct ggml_tensor * dst) {
  11061. const struct ggml_tensor * src0 = dst->src[0];
  11062. switch (src0->type) {
  11063. case GGML_TYPE_F32:
  11064. {
  11065. ggml_compute_forward_soft_max_f32(params, dst);
  11066. } break;
  11067. default:
  11068. {
  11069. GGML_ASSERT(false);
  11070. } break;
  11071. }
  11072. }
  11073. // ggml_compute_forward_soft_max_back
  11074. static void ggml_compute_forward_soft_max_back_f32(
  11075. const struct ggml_compute_params * params,
  11076. struct ggml_tensor * dst) {
  11077. const struct ggml_tensor * src0 = dst->src[0];
  11078. const struct ggml_tensor * src1 = dst->src[1];
  11079. GGML_ASSERT(ggml_is_contiguous(src0));
  11080. GGML_ASSERT(ggml_is_contiguous(src1));
  11081. GGML_ASSERT(ggml_is_contiguous(dst));
  11082. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  11083. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  11084. // TODO: handle transposed/permuted matrices
  11085. const int ith = params->ith;
  11086. const int nth = params->nth;
  11087. const int nc = src0->ne[0];
  11088. const int nr = ggml_nrows(src0);
  11089. // rows per thread
  11090. const int dr = (nr + nth - 1)/nth;
  11091. // row range for this thread
  11092. const int ir0 = dr*ith;
  11093. const int ir1 = MIN(ir0 + dr, nr);
  11094. for (int i1 = ir0; i1 < ir1; i1++) {
  11095. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  11096. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  11097. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  11098. #ifndef NDEBUG
  11099. for (int i = 0; i < nc; ++i) {
  11100. //printf("p[%d] = %f\n", i, p[i]);
  11101. assert(!isnan(dy[i]));
  11102. assert(!isnan(y[i]));
  11103. }
  11104. #endif
  11105. // Jii = yi - yi*yi
  11106. // Jij = -yi*yj
  11107. // J = diag(y)-y.T*y
  11108. // dx = J * dy
  11109. // dxk = sum_i(Jki * dyi)
  11110. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  11111. // dxk = sum_i(-yk*yi * dyi) + yk*yk*dyk + yk*dyk - yk*yk*dyk
  11112. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  11113. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  11114. // dxk = -yk * dot(y, dy) + yk*dyk
  11115. // dxk = yk * (- dot(y, dy) + dyk)
  11116. // dxk = yk * (dyk - dot(y, dy))
  11117. //
  11118. // post-order:
  11119. // dot_y_dy := dot(y, dy)
  11120. // dx := dy
  11121. // dx := dx - dot_y_dy
  11122. // dx := dx * y
  11123. // linear runtime, no additional memory
  11124. float dot_y_dy = 0;
  11125. ggml_vec_dot_f32 (nc, &dot_y_dy, 0, y, 0, dy, 0, 1);
  11126. ggml_vec_cpy_f32 (nc, dx, dy);
  11127. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  11128. ggml_vec_mul_f32 (nc, dx, dx, y);
  11129. #ifndef NDEBUG
  11130. for (int i = 0; i < nc; ++i) {
  11131. assert(!isnan(dx[i]));
  11132. assert(!isinf(dx[i]));
  11133. }
  11134. #endif
  11135. }
  11136. }
  11137. static void ggml_compute_forward_soft_max_back(
  11138. const struct ggml_compute_params * params,
  11139. struct ggml_tensor * dst) {
  11140. const struct ggml_tensor * src0 = dst->src[0];
  11141. switch (src0->type) {
  11142. case GGML_TYPE_F32:
  11143. {
  11144. ggml_compute_forward_soft_max_back_f32(params, dst);
  11145. } break;
  11146. default:
  11147. {
  11148. GGML_ASSERT(false);
  11149. } break;
  11150. }
  11151. }
  11152. // ggml_compute_forward_clamp
  11153. static void ggml_compute_forward_clamp_f32(
  11154. const struct ggml_compute_params * params,
  11155. struct ggml_tensor * dst) {
  11156. const struct ggml_tensor * src0 = dst->src[0];
  11157. if (params->ith != 0) {
  11158. return;
  11159. }
  11160. float min;
  11161. float max;
  11162. memcpy(&min, (float *) dst->op_params + 0, sizeof(float));
  11163. memcpy(&max, (float *) dst->op_params + 1, sizeof(float));
  11164. const int ith = params->ith;
  11165. const int nth = params->nth;
  11166. const int n = ggml_nrows(src0);
  11167. const int nc = src0->ne[0];
  11168. const size_t nb00 = src0->nb[0];
  11169. const size_t nb01 = src0->nb[1];
  11170. const size_t nb0 = dst->nb[0];
  11171. const size_t nb1 = dst->nb[1];
  11172. GGML_ASSERT( nb0 == sizeof(float));
  11173. GGML_ASSERT(nb00 == sizeof(float));
  11174. for (int j = ith; j < n; j += nth) {
  11175. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  11176. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  11177. for (int i = 0; i < nc; i++) {
  11178. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  11179. }
  11180. }
  11181. }
  11182. static void ggml_compute_forward_clamp(
  11183. const struct ggml_compute_params * params,
  11184. struct ggml_tensor * dst) {
  11185. const struct ggml_tensor * src0 = dst->src[0];
  11186. switch (src0->type) {
  11187. case GGML_TYPE_F32:
  11188. {
  11189. ggml_compute_forward_clamp_f32(params, dst);
  11190. } break;
  11191. case GGML_TYPE_F16:
  11192. case GGML_TYPE_BF16:
  11193. case GGML_TYPE_Q4_0:
  11194. case GGML_TYPE_Q4_1:
  11195. case GGML_TYPE_Q5_0:
  11196. case GGML_TYPE_Q5_1:
  11197. case GGML_TYPE_Q8_0:
  11198. case GGML_TYPE_Q8_1:
  11199. case GGML_TYPE_Q2_K:
  11200. case GGML_TYPE_Q3_K:
  11201. case GGML_TYPE_Q4_K:
  11202. case GGML_TYPE_Q5_K:
  11203. case GGML_TYPE_Q6_K:
  11204. case GGML_TYPE_IQ2_XXS:
  11205. case GGML_TYPE_IQ2_XS:
  11206. case GGML_TYPE_IQ3_XXS:
  11207. case GGML_TYPE_IQ1_S:
  11208. case GGML_TYPE_IQ1_M:
  11209. case GGML_TYPE_IQ4_NL:
  11210. case GGML_TYPE_IQ4_XS:
  11211. case GGML_TYPE_IQ3_S:
  11212. case GGML_TYPE_IQ2_S:
  11213. case GGML_TYPE_Q8_K:
  11214. case GGML_TYPE_I8:
  11215. case GGML_TYPE_I16:
  11216. case GGML_TYPE_I32:
  11217. case GGML_TYPE_I64:
  11218. case GGML_TYPE_F64:
  11219. case GGML_TYPE_COUNT:
  11220. {
  11221. GGML_ASSERT(false);
  11222. } break;
  11223. }
  11224. }
  11225. // ggml_compute_forward_rope
  11226. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  11227. const float y = (i0 / 2 - low) / MAX(0.001f, high - low);
  11228. return 1 - MIN(1, MAX(0, y));
  11229. }
  11230. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  11231. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  11232. static void rope_yarn(
  11233. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  11234. float * cos_theta, float * sin_theta) {
  11235. // Get n-d rotational scaling corrected for extrapolation
  11236. float theta_interp = freq_scale * theta_extrap;
  11237. float theta = theta_interp;
  11238. if (ext_factor != 0.0f) {
  11239. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  11240. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  11241. // Get n-d magnitude scaling corrected for interpolation
  11242. mscale *= 1.0f + 0.1f * logf(1.0f / freq_scale);
  11243. }
  11244. *cos_theta = cosf(theta) * mscale;
  11245. *sin_theta = sinf(theta) * mscale;
  11246. }
  11247. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  11248. // `corr_dim(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  11249. static float ggml_rope_yarn_corr_dim(int n_dims, int n_ctx_orig, float n_rot, float base) {
  11250. return n_dims * logf(n_ctx_orig / (n_rot * 2 * (float)M_PI)) / (2 * logf(base));
  11251. }
  11252. static void ggml_rope_cache_init(
  11253. float theta_base, float freq_scale, const float * freq_factors, float corr_dims[2], int64_t ne0, float ext_factor, float mscale,
  11254. float * cache, float sin_sign, float theta_scale) {
  11255. // ref: https://github.com/jquesnelle/yarn/blob/master/scaled_rope/LlamaYaRNScaledRotaryEmbedding.py
  11256. float theta = theta_base;
  11257. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  11258. const float ff = freq_factors ? freq_factors[i0/2] : 1.0f;
  11259. rope_yarn(
  11260. theta/ff, freq_scale, corr_dims, i0, ext_factor, mscale, &cache[i0 + 0], &cache[i0 + 1]
  11261. );
  11262. cache[i0 + 1] *= sin_sign;
  11263. theta *= theta_scale;
  11264. }
  11265. }
  11266. GGML_CALL void ggml_rope_yarn_corr_dims(
  11267. int n_dims, int n_ctx_orig, float freq_base, float beta_fast, float beta_slow, float dims[2]
  11268. ) {
  11269. // start and end correction dims
  11270. float start = floorf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_fast, freq_base));
  11271. float end = ceilf(ggml_rope_yarn_corr_dim(n_dims, n_ctx_orig, beta_slow, freq_base));
  11272. dims[0] = MAX(0, start);
  11273. dims[1] = MIN(n_dims - 1, end);
  11274. }
  11275. static void ggml_compute_forward_rope_f32(
  11276. const struct ggml_compute_params * params,
  11277. struct ggml_tensor * dst,
  11278. const bool forward) {
  11279. const struct ggml_tensor * src0 = dst->src[0];
  11280. const struct ggml_tensor * src1 = dst->src[1];
  11281. const struct ggml_tensor * src2 = dst->src[2];
  11282. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11283. //const int n_past = ((int32_t *) dst->op_params)[0];
  11284. const int n_dims = ((int32_t *) dst->op_params)[1];
  11285. const int mode = ((int32_t *) dst->op_params)[2];
  11286. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11287. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11288. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11289. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11290. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11291. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11292. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11293. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11294. GGML_TENSOR_UNARY_OP_LOCALS
  11295. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11296. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11297. GGML_ASSERT(nb00 == sizeof(float));
  11298. const int ith = params->ith;
  11299. const int nth = params->nth;
  11300. const int nr = ggml_nrows(dst);
  11301. GGML_ASSERT(n_dims <= ne0);
  11302. GGML_ASSERT(n_dims % 2 == 0);
  11303. // rows per thread
  11304. const int dr = (nr + nth - 1)/nth;
  11305. // row range for this thread
  11306. const int ir0 = dr*ith;
  11307. const int ir1 = MIN(ir0 + dr, nr);
  11308. // row index used to determine which thread to use
  11309. int ir = 0;
  11310. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11311. float corr_dims[2];
  11312. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11313. const bool is_neox = mode & 2;
  11314. const float * freq_factors = NULL;
  11315. if (src2 != NULL) {
  11316. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11317. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11318. freq_factors = (const float *) src2->data;
  11319. }
  11320. // backward process uses inverse rotation by cos and sin.
  11321. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11322. // this essentially just switches the sign of sin.
  11323. const float sin_sign = forward ? 1.0f : -1.0f;
  11324. const int32_t * pos = (const int32_t *) src1->data;
  11325. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11326. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11327. const int64_t p = pos[i2];
  11328. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11329. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11330. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11331. if (ir++ < ir0) continue;
  11332. if (ir > ir1) break;
  11333. if (!is_neox) {
  11334. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11335. const float cos_theta = cache[i0 + 0];
  11336. const float sin_theta = cache[i0 + 1];
  11337. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11338. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11339. const float x0 = src[0];
  11340. const float x1 = src[1];
  11341. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11342. dst_data[1] = x0*sin_theta + x1*cos_theta;
  11343. }
  11344. } else {
  11345. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11346. const int64_t ic = i0/2;
  11347. const float cos_theta = cache[i0 + 0];
  11348. const float sin_theta = cache[i0 + 1];
  11349. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11350. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11351. const float x0 = src[0];
  11352. const float x1 = src[n_dims/2];
  11353. dst_data[0] = x0*cos_theta - x1*sin_theta;
  11354. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  11355. }
  11356. }
  11357. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11358. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11359. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11360. dst_data[0] = src[0];
  11361. dst_data[1] = src[1];
  11362. }
  11363. }
  11364. }
  11365. }
  11366. }
  11367. // TODO: deduplicate f16/f32 code
  11368. static void ggml_compute_forward_rope_f16(
  11369. const struct ggml_compute_params * params,
  11370. struct ggml_tensor * dst,
  11371. const bool forward) {
  11372. const struct ggml_tensor * src0 = dst->src[0];
  11373. const struct ggml_tensor * src1 = dst->src[1];
  11374. const struct ggml_tensor * src2 = dst->src[2];
  11375. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  11376. //const int n_past = ((int32_t *) dst->op_params)[0];
  11377. const int n_dims = ((int32_t *) dst->op_params)[1];
  11378. const int mode = ((int32_t *) dst->op_params)[2];
  11379. //const int n_ctx = ((int32_t *) dst->op_params)[3];
  11380. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  11381. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  11382. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  11383. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  11384. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  11385. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  11386. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  11387. GGML_TENSOR_UNARY_OP_LOCALS
  11388. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  11389. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  11390. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  11391. const int ith = params->ith;
  11392. const int nth = params->nth;
  11393. const int nr = ggml_nrows(dst);
  11394. GGML_ASSERT(n_dims <= ne0);
  11395. GGML_ASSERT(n_dims % 2 == 0);
  11396. // rows per thread
  11397. const int dr = (nr + nth - 1)/nth;
  11398. // row range for this thread
  11399. const int ir0 = dr*ith;
  11400. const int ir1 = MIN(ir0 + dr, nr);
  11401. // row index used to determine which thread to use
  11402. int ir = 0;
  11403. const float theta_scale = powf(freq_base, -2.0f/n_dims);
  11404. float corr_dims[2];
  11405. ggml_rope_yarn_corr_dims(n_dims, n_ctx_orig, freq_base, beta_fast, beta_slow, corr_dims);
  11406. const bool is_neox = mode & 2;
  11407. const float * freq_factors = NULL;
  11408. if (src2 != NULL) {
  11409. GGML_ASSERT(src2->type == GGML_TYPE_F32);
  11410. GGML_ASSERT(src2->ne[0] >= n_dims / 2);
  11411. freq_factors = (const float *) src2->data;
  11412. }
  11413. // backward process uses inverse rotation by cos and sin.
  11414. // cos and sin build a rotation matrix, where the inverse is the transpose.
  11415. // this essentially just switches the sign of sin.
  11416. const float sin_sign = forward ? 1.0f : -1.0f;
  11417. const int32_t * pos = (const int32_t *) src1->data;
  11418. for (int64_t i3 = 0; i3 < ne3; i3++) {
  11419. for (int64_t i2 = 0; i2 < ne2; i2++) {
  11420. const int64_t p = pos[i2];
  11421. float * cache = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32)*ith;
  11422. ggml_rope_cache_init(p, freq_scale, freq_factors, corr_dims, ne0, ext_factor, attn_factor, cache, sin_sign, theta_scale);
  11423. for (int64_t i1 = 0; i1 < ne1; i1++) {
  11424. if (ir++ < ir0) continue;
  11425. if (ir > ir1) break;
  11426. if (!is_neox) {
  11427. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11428. const float cos_theta = cache[i0 + 0];
  11429. const float sin_theta = cache[i0 + 1];
  11430. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11431. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11432. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11433. const float x1 = GGML_FP16_TO_FP32(src[1]);
  11434. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11435. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11436. }
  11437. } else {
  11438. for (int64_t i0 = 0; i0 < n_dims; i0 += 2) {
  11439. const int64_t ic = i0/2;
  11440. const float cos_theta = cache[i0 + 0];
  11441. const float sin_theta = cache[i0 + 1];
  11442. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + ic*nb00);
  11443. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + ic*nb0);
  11444. const float x0 = GGML_FP16_TO_FP32(src[0]);
  11445. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  11446. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  11447. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  11448. }
  11449. }
  11450. for (int64_t i0 = n_dims; i0 < ne0; i0 += 2) {
  11451. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  11452. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  11453. dst_data[0] = src[0];
  11454. dst_data[1] = src[1];
  11455. }
  11456. }
  11457. }
  11458. }
  11459. }
  11460. static void ggml_compute_forward_rope(
  11461. const struct ggml_compute_params * params,
  11462. struct ggml_tensor * dst) {
  11463. const struct ggml_tensor * src0 = dst->src[0];
  11464. switch (src0->type) {
  11465. case GGML_TYPE_F16:
  11466. {
  11467. ggml_compute_forward_rope_f16(params, dst, true);
  11468. } break;
  11469. case GGML_TYPE_F32:
  11470. {
  11471. ggml_compute_forward_rope_f32(params, dst, true);
  11472. } break;
  11473. default:
  11474. {
  11475. GGML_ASSERT(false);
  11476. } break;
  11477. }
  11478. }
  11479. // ggml_compute_forward_rope_back
  11480. static void ggml_compute_forward_rope_back(
  11481. const struct ggml_compute_params * params,
  11482. struct ggml_tensor * dst) {
  11483. const struct ggml_tensor * src0 = dst->src[0];
  11484. switch (src0->type) {
  11485. case GGML_TYPE_F16:
  11486. {
  11487. ggml_compute_forward_rope_f16(params, dst, false);
  11488. } break;
  11489. case GGML_TYPE_F32:
  11490. {
  11491. ggml_compute_forward_rope_f32(params, dst, false);
  11492. } break;
  11493. default:
  11494. {
  11495. GGML_ASSERT(false);
  11496. } break;
  11497. }
  11498. }
  11499. // ggml_compute_forward_conv_transpose_1d
  11500. static void ggml_compute_forward_conv_transpose_1d_f16_f32(
  11501. const struct ggml_compute_params * params,
  11502. struct ggml_tensor * dst) {
  11503. const struct ggml_tensor * src0 = dst->src[0];
  11504. const struct ggml_tensor * src1 = dst->src[1];
  11505. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11506. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11507. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11508. GGML_TENSOR_BINARY_OP_LOCALS
  11509. const int ith = params->ith;
  11510. const int nth = params->nth;
  11511. const int nk = ne00*ne01*ne02;
  11512. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11513. GGML_ASSERT(nb10 == sizeof(float));
  11514. if (ith == 0) {
  11515. memset(params->wdata, 0, params->wsize);
  11516. // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11517. {
  11518. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11519. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11520. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11521. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  11522. ggml_fp16_t * dst_data = wdata + i01*ne00*ne02;
  11523. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11524. dst_data[i00*ne02 + i02] = src[i00];
  11525. }
  11526. }
  11527. }
  11528. }
  11529. // permute source data (src1) from (L x Cin) to (Cin x L)
  11530. {
  11531. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11532. ggml_fp16_t * dst_data = wdata;
  11533. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11534. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11535. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11536. dst_data[i10*ne11 + i11] = GGML_FP32_TO_FP16(src[i10]);
  11537. }
  11538. }
  11539. }
  11540. // need to zero dst since we are accumulating into it
  11541. memset(dst->data, 0, ggml_nbytes(dst));
  11542. }
  11543. ggml_barrier(params->shared);
  11544. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11545. // total rows in dst
  11546. const int nr = ne1;
  11547. // rows per thread
  11548. const int dr = (nr + nth - 1)/nth;
  11549. // row range for this thread
  11550. const int ir0 = dr*ith;
  11551. const int ir1 = MIN(ir0 + dr, nr);
  11552. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11553. ggml_fp16_t * const wdata_src = wdata + nk;
  11554. for (int i1 = ir0; i1 < ir1; i1++) {
  11555. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11556. ggml_fp16_t * wdata_kernel = wdata + i1*ne02*ne00;
  11557. for (int i10 = 0; i10 < ne10; i10++) {
  11558. const int i1n = i10*ne11;
  11559. for (int i00 = 0; i00 < ne00; i00++) {
  11560. float v = 0;
  11561. ggml_vec_dot_f16(ne02, &v, 0,
  11562. (ggml_fp16_t *) wdata_src + i1n, 0,
  11563. (ggml_fp16_t *) wdata_kernel + i00*ne02, 0, 1);
  11564. dst_data[i10*s0 + i00] += v;
  11565. }
  11566. }
  11567. }
  11568. }
  11569. static void ggml_compute_forward_conv_transpose_1d_f32(
  11570. const struct ggml_compute_params * params,
  11571. struct ggml_tensor * dst) {
  11572. const struct ggml_tensor * src0 = dst->src[0];
  11573. const struct ggml_tensor * src1 = dst->src[1];
  11574. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11575. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11576. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11577. GGML_TENSOR_BINARY_OP_LOCALS
  11578. const int ith = params->ith;
  11579. const int nth = params->nth;
  11580. const int nk = ne00*ne01*ne02;
  11581. GGML_ASSERT(nb00 == sizeof(float));
  11582. GGML_ASSERT(nb10 == sizeof(float));
  11583. if (ith == 0) {
  11584. memset(params->wdata, 0, params->wsize);
  11585. // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout)
  11586. {
  11587. float * const wdata = (float *) params->wdata + 0;
  11588. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11589. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11590. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  11591. float * dst_data = wdata + i01*ne00*ne02;
  11592. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11593. dst_data[i00*ne02 + i02] = src[i00];
  11594. }
  11595. }
  11596. }
  11597. }
  11598. // prepare source data (src1)
  11599. {
  11600. float * const wdata = (float *) params->wdata + nk;
  11601. float * dst_data = wdata;
  11602. for (int64_t i11 = 0; i11 < ne11; i11++) {
  11603. const float * const src = (float *)((char *) src1->data + i11*nb11);
  11604. for (int64_t i10 = 0; i10 < ne10; i10++) {
  11605. dst_data[i10*ne11 + i11] = src[i10];
  11606. }
  11607. }
  11608. }
  11609. // need to zero dst since we are accumulating into it
  11610. memset(dst->data, 0, ggml_nbytes(dst));
  11611. }
  11612. ggml_barrier(params->shared);
  11613. const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
  11614. // total rows in dst
  11615. const int nr = ne1;
  11616. // rows per thread
  11617. const int dr = (nr + nth - 1)/nth;
  11618. // row range for this thread
  11619. const int ir0 = dr*ith;
  11620. const int ir1 = MIN(ir0 + dr, nr);
  11621. float * const wdata = (float *) params->wdata + 0;
  11622. float * const wdata_src = wdata + nk;
  11623. for (int i1 = ir0; i1 < ir1; i1++) {
  11624. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  11625. float * wdata_kernel = wdata + i1*ne02*ne00;
  11626. for (int i10 = 0; i10 < ne10; i10++) {
  11627. const int i1n = i10*ne11;
  11628. for (int i00 = 0; i00 < ne00; i00++) {
  11629. float v = 0;
  11630. ggml_vec_dot_f32(ne02, &v, 0,
  11631. wdata_src + i1n, 0,
  11632. wdata_kernel + i00*ne02, 0, 1);
  11633. dst_data[i10*s0 + i00] += v;
  11634. }
  11635. }
  11636. }
  11637. }
  11638. static void ggml_compute_forward_conv_transpose_1d(
  11639. const struct ggml_compute_params * params,
  11640. struct ggml_tensor * dst) {
  11641. const struct ggml_tensor * src0 = dst->src[0];
  11642. switch (src0->type) {
  11643. case GGML_TYPE_F16:
  11644. {
  11645. ggml_compute_forward_conv_transpose_1d_f16_f32(params, dst);
  11646. } break;
  11647. case GGML_TYPE_F32:
  11648. {
  11649. ggml_compute_forward_conv_transpose_1d_f32(params, dst);
  11650. } break;
  11651. default:
  11652. {
  11653. GGML_ASSERT(false);
  11654. } break;
  11655. }
  11656. }
  11657. // src0: kernel [OC, IC, KH, KW]
  11658. // src1: image [N, IC, IH, IW]
  11659. // dst: result [N, OH, OW, IC*KH*KW]
  11660. static void ggml_compute_forward_im2col_f32(
  11661. const struct ggml_compute_params * params,
  11662. struct ggml_tensor * dst) {
  11663. const struct ggml_tensor * src0 = dst->src[0];
  11664. const struct ggml_tensor * src1 = dst->src[1];
  11665. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11666. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11667. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11668. GGML_TENSOR_BINARY_OP_LOCALS;
  11669. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11670. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11671. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11672. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11673. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11674. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11675. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11676. const int ith = params->ith;
  11677. const int nth = params->nth;
  11678. const int64_t N = is_2D ? ne13 : ne12;
  11679. const int64_t IC = is_2D ? ne12 : ne11;
  11680. const int64_t IH = is_2D ? ne11 : 1;
  11681. const int64_t IW = ne10;
  11682. const int64_t KH = is_2D ? ne01 : 1;
  11683. const int64_t KW = ne00;
  11684. const int64_t OH = is_2D ? ne2 : 1;
  11685. const int64_t OW = ne1;
  11686. int ofs0 = is_2D ? nb13 : nb12;
  11687. int ofs1 = is_2D ? nb12 : nb11;
  11688. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11689. GGML_ASSERT(nb10 == sizeof(float));
  11690. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11691. {
  11692. float * const wdata = (float *) dst->data;
  11693. for (int64_t in = 0; in < N; in++) {
  11694. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11695. for (int64_t iow = 0; iow < OW; iow++) {
  11696. for (int64_t iic = ith; iic < IC; iic += nth) {
  11697. // micro kernel
  11698. float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11699. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11700. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11701. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11702. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11703. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11704. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11705. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11706. } else {
  11707. dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
  11708. }
  11709. }
  11710. }
  11711. }
  11712. }
  11713. }
  11714. }
  11715. }
  11716. }
  11717. // src0: kernel [OC, IC, KH, KW]
  11718. // src1: image [N, IC, IH, IW]
  11719. // dst: result [N, OH, OW, IC*KH*KW]
  11720. static void ggml_compute_forward_im2col_f16(
  11721. const struct ggml_compute_params * params,
  11722. struct ggml_tensor * dst) {
  11723. const struct ggml_tensor * src0 = dst->src[0];
  11724. const struct ggml_tensor * src1 = dst->src[1];
  11725. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11726. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11727. GGML_ASSERT( dst->type == GGML_TYPE_F16);
  11728. GGML_TENSOR_BINARY_OP_LOCALS;
  11729. const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
  11730. const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
  11731. const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
  11732. const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
  11733. const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
  11734. const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
  11735. const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
  11736. const int ith = params->ith;
  11737. const int nth = params->nth;
  11738. const int64_t N = is_2D ? ne13 : ne12;
  11739. const int64_t IC = is_2D ? ne12 : ne11;
  11740. const int64_t IH = is_2D ? ne11 : 1;
  11741. const int64_t IW = ne10;
  11742. const int64_t KH = is_2D ? ne01 : 1;
  11743. const int64_t KW = ne00;
  11744. const int64_t OH = is_2D ? ne2 : 1;
  11745. const int64_t OW = ne1;
  11746. int ofs0 = is_2D ? nb13 : nb12;
  11747. int ofs1 = is_2D ? nb12 : nb11;
  11748. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11749. GGML_ASSERT(nb10 == sizeof(float));
  11750. // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
  11751. {
  11752. ggml_fp16_t * const wdata = (ggml_fp16_t *) dst->data;
  11753. for (int64_t in = 0; in < N; in++) {
  11754. for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
  11755. for (int64_t iow = 0; iow < OW; iow++) {
  11756. for (int64_t iic = ith; iic < IC; iic += nth) {
  11757. // micro kernel
  11758. ggml_fp16_t * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
  11759. const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
  11760. for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
  11761. for (int64_t ikw = 0; ikw < KW; ikw++) {
  11762. const int64_t iiw = iow*s0 + ikw*d0 - p0;
  11763. const int64_t iih = ioh*s1 + ikh*d1 - p1;
  11764. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  11765. dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
  11766. } else {
  11767. dst_data[iic*(KH*KW) + ikh*KW + ikw] = GGML_FP32_TO_FP16(src_data[iih*IW + iiw]);
  11768. }
  11769. }
  11770. }
  11771. }
  11772. }
  11773. }
  11774. }
  11775. }
  11776. }
  11777. static void ggml_compute_forward_im2col(
  11778. const struct ggml_compute_params * params,
  11779. struct ggml_tensor * dst) {
  11780. switch (dst->type) {
  11781. case GGML_TYPE_F16:
  11782. {
  11783. ggml_compute_forward_im2col_f16(params, dst);
  11784. } break;
  11785. case GGML_TYPE_F32:
  11786. {
  11787. ggml_compute_forward_im2col_f32(params, dst);
  11788. } break;
  11789. default:
  11790. {
  11791. GGML_ASSERT(false);
  11792. } break;
  11793. }
  11794. }
  11795. // ggml_compute_forward_conv_transpose_2d
  11796. static void ggml_compute_forward_conv_transpose_2d(
  11797. const struct ggml_compute_params * params,
  11798. struct ggml_tensor * dst) {
  11799. const struct ggml_tensor * src0 = dst->src[0];
  11800. const struct ggml_tensor * src1 = dst->src[1];
  11801. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  11802. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  11803. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  11804. GGML_TENSOR_BINARY_OP_LOCALS
  11805. const int ith = params->ith;
  11806. const int nth = params->nth;
  11807. const int nk = ne00*ne01*ne02*ne03;
  11808. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11809. GGML_ASSERT(nb10 == sizeof(float));
  11810. if (ith == 0) {
  11811. memset(params->wdata, 0, params->wsize);
  11812. // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout)
  11813. {
  11814. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11815. for (int64_t i03 = 0; i03 < ne03; i03++) {
  11816. for (int64_t i02 = 0; i02 < ne02; i02++) {
  11817. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i03*nb03 + i02*nb02);
  11818. ggml_fp16_t * dst_data = wdata + i02*ne01*ne00*ne03;
  11819. for (int64_t i01 = 0; i01 < ne01; i01++) {
  11820. for (int64_t i00 = 0; i00 < ne00; i00++) {
  11821. dst_data[i01*ne00*ne03 + i00*ne03 + i03] = src[i01 * ne00 + i00];
  11822. }
  11823. }
  11824. }
  11825. }
  11826. }
  11827. // permute source data (src1) from (Sw x Sh x Cin) to (Cin x Sw x Sh)
  11828. {
  11829. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + nk;
  11830. for (int i12 = 0; i12 < ne12; i12++) {
  11831. for (int i11 = 0; i11 < ne11; i11++) {
  11832. const float * const src = (float *)((char *) src1->data + i12*nb12 + i11*nb11);
  11833. ggml_fp16_t * dst_data = wdata + i11*ne10*ne12;
  11834. for (int i10 = 0; i10 < ne10; i10++) {
  11835. dst_data[i10*ne12 + i12] = GGML_FP32_TO_FP16(src[i10]);
  11836. }
  11837. }
  11838. }
  11839. }
  11840. memset(dst->data, 0, ggml_nbytes(dst));
  11841. }
  11842. ggml_barrier(params->shared);
  11843. const int32_t stride = ggml_get_op_params_i32(dst, 0);
  11844. // total patches in dst
  11845. const int np = ne2;
  11846. // patches per thread
  11847. const int dp = (np + nth - 1)/nth;
  11848. // patch range for this thread
  11849. const int ip0 = dp*ith;
  11850. const int ip1 = MIN(ip0 + dp, np);
  11851. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11852. ggml_fp16_t * const wdata_src = wdata + nk;
  11853. for (int i2 = ip0; i2 < ip1; i2++) { // Cout
  11854. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11855. ggml_fp16_t * wdata_kernel = wdata + i2*ne01*ne00*ne03;
  11856. for (int i11 = 0; i11 < ne11; i11++) {
  11857. for (int i10 = 0; i10 < ne10; i10++) {
  11858. const int i1n = i11*ne10*ne12 + i10*ne12;
  11859. for (int i01 = 0; i01 < ne01; i01++) {
  11860. for (int i00 = 0; i00 < ne00; i00++) {
  11861. float v = 0;
  11862. ggml_vec_dot_f16(ne03, &v, 0,
  11863. wdata_src + i1n, 0,
  11864. wdata_kernel + i01*ne00*ne03 + i00*ne03, 0, 1);
  11865. dst_data[(i11*stride + i01)*ne0 + i10*stride + i00] += v;
  11866. }
  11867. }
  11868. }
  11869. }
  11870. }
  11871. }
  11872. // ggml_compute_forward_pool_1d_sk_p0
  11873. static void ggml_compute_forward_pool_1d_sk_p0(
  11874. const struct ggml_compute_params * params,
  11875. const enum ggml_op_pool op,
  11876. const int k,
  11877. struct ggml_tensor * dst) {
  11878. const struct ggml_tensor * src = dst->src[0];
  11879. assert(src->type == GGML_TYPE_F32);
  11880. if (params->ith != 0) {
  11881. return;
  11882. }
  11883. const char * cdata = (const char *)src->data;
  11884. const char * const data_end = cdata + ggml_nbytes(src);
  11885. float * drow = (float *)dst->data;
  11886. const int64_t rs = dst->ne[0];
  11887. while (cdata < data_end) {
  11888. const float * const srow = (const float *)cdata;
  11889. int j = 0;
  11890. for (int64_t i = 0; i < rs; ++i) {
  11891. switch (op) {
  11892. case GGML_OP_POOL_AVG: drow[i] = 0; break;
  11893. case GGML_OP_POOL_MAX: drow[i] = -FLT_MAX; break;
  11894. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11895. }
  11896. for (int ki = 0; ki < k; ++ki) {
  11897. switch (op) {
  11898. case GGML_OP_POOL_AVG: drow[i] += srow[j]; break;
  11899. case GGML_OP_POOL_MAX: if (srow[j] > drow[i]) drow[i] = srow[j]; break;
  11900. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11901. }
  11902. ++j;
  11903. }
  11904. switch (op) {
  11905. case GGML_OP_POOL_AVG: drow[i] /= k; break;
  11906. case GGML_OP_POOL_MAX: break;
  11907. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11908. }
  11909. }
  11910. cdata += src->nb[1];
  11911. drow += rs;
  11912. }
  11913. }
  11914. // ggml_compute_forward_pool_1d
  11915. static void ggml_compute_forward_pool_1d(
  11916. const struct ggml_compute_params * params,
  11917. struct ggml_tensor * dst) {
  11918. const int32_t * opts = (const int32_t *)dst->op_params;
  11919. enum ggml_op_pool op = opts[0];
  11920. const int k0 = opts[1];
  11921. const int s0 = opts[2];
  11922. const int p0 = opts[3];
  11923. GGML_ASSERT(p0 == 0); // padding not supported
  11924. GGML_ASSERT(k0 == s0); // only s = k supported
  11925. ggml_compute_forward_pool_1d_sk_p0(params, op, k0, dst);
  11926. }
  11927. // ggml_compute_forward_pool_2d
  11928. static void ggml_compute_forward_pool_2d(
  11929. const struct ggml_compute_params * params,
  11930. struct ggml_tensor * dst) {
  11931. const struct ggml_tensor * src = dst->src[0];
  11932. GGML_ASSERT(src->type == GGML_TYPE_F32);
  11933. if (params->ith != 0) {
  11934. return;
  11935. }
  11936. const int32_t * opts = (const int32_t *)dst->op_params;
  11937. enum ggml_op_pool op = opts[0];
  11938. const int k0 = opts[1];
  11939. const int k1 = opts[2];
  11940. const int s0 = opts[3];
  11941. const int s1 = opts[4];
  11942. const int p0 = opts[5];
  11943. const int p1 = opts[6];
  11944. const char * cdata = (const char*)src->data;
  11945. const char * const data_end = cdata + ggml_nbytes(src);
  11946. const int64_t px = dst->ne[0];
  11947. const int64_t py = dst->ne[1];
  11948. const int64_t pa = px * py;
  11949. float * dplane = (float *)dst->data;
  11950. const int ka = k0 * k1;
  11951. const int offset0 = -p0;
  11952. const int offset1 = -p1;
  11953. while (cdata < data_end) {
  11954. for (int oy = 0; oy < py; ++oy) {
  11955. float * const drow = dplane + oy * px;
  11956. for (int ox = 0; ox < px; ++ox) {
  11957. float * const out = drow + ox;
  11958. switch (op) {
  11959. case GGML_OP_POOL_AVG: *out = 0; break;
  11960. case GGML_OP_POOL_MAX: *out = -FLT_MAX; break;
  11961. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11962. }
  11963. const int ix = offset0 + ox * s0;
  11964. const int iy = offset1 + oy * s1;
  11965. for (int ky = 0; ky < k1; ++ky) {
  11966. if (iy + ky < 0 || iy + ky >= src->ne[1]) continue;
  11967. const float * const srow = (const float *)(cdata + src->nb[1] * (iy + ky));
  11968. for (int kx = 0; kx < k0; ++kx) {
  11969. int j = ix + kx;
  11970. if (j < 0 || j >= src->ne[0]) continue;
  11971. switch (op) {
  11972. case GGML_OP_POOL_AVG: *out += srow[j]; break;
  11973. case GGML_OP_POOL_MAX: if (srow[j] > *out) *out = srow[j]; break;
  11974. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11975. }
  11976. }
  11977. }
  11978. switch (op) {
  11979. case GGML_OP_POOL_AVG: *out /= ka; break;
  11980. case GGML_OP_POOL_MAX: break;
  11981. case GGML_OP_POOL_COUNT: GGML_ASSERT(false); break;
  11982. }
  11983. }
  11984. }
  11985. cdata += src->nb[2];
  11986. dplane += pa;
  11987. }
  11988. }
  11989. // ggml_compute_forward_upscale
  11990. static void ggml_compute_forward_upscale_f32(
  11991. const struct ggml_compute_params * params,
  11992. struct ggml_tensor * dst) {
  11993. const struct ggml_tensor * src0 = dst->src[0];
  11994. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  11995. const int ith = params->ith;
  11996. const int nth = params->nth;
  11997. GGML_TENSOR_UNARY_OP_LOCALS
  11998. const float sf0 = (float)ne0/src0->ne[0];
  11999. const float sf1 = (float)ne1/src0->ne[1];
  12000. const float sf2 = (float)ne2/src0->ne[2];
  12001. const float sf3 = (float)ne3/src0->ne[3];
  12002. // TODO: optimize
  12003. for (int64_t i3 = 0; i3 < ne3; i3++) {
  12004. const int64_t i03 = i3 / sf3;
  12005. for (int64_t i2 = ith; i2 < ne2; i2 += nth) {
  12006. const int64_t i02 = i2 / sf2;
  12007. for (int64_t i1 = 0; i1 < ne1; i1++) {
  12008. const int64_t i01 = i1 / sf1;
  12009. for (int64_t i0 = 0; i0 < ne0; i0++) {
  12010. const int64_t i00 = i0 / sf0;
  12011. const float * x = (float *)((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  12012. float * y = (float *)((char *) dst->data + i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3);
  12013. *y = *x;
  12014. }
  12015. }
  12016. }
  12017. }
  12018. }
  12019. static void ggml_compute_forward_upscale(
  12020. const struct ggml_compute_params * params,
  12021. struct ggml_tensor * dst) {
  12022. const struct ggml_tensor * src0 = dst->src[0];
  12023. switch (src0->type) {
  12024. case GGML_TYPE_F32:
  12025. {
  12026. ggml_compute_forward_upscale_f32(params, dst);
  12027. } break;
  12028. default:
  12029. {
  12030. GGML_ASSERT(false);
  12031. } break;
  12032. }
  12033. }
  12034. // ggml_compute_forward_pad
  12035. static void ggml_compute_forward_pad_f32(
  12036. const struct ggml_compute_params * params,
  12037. struct ggml_tensor * dst) {
  12038. const struct ggml_tensor * src0 = dst->src[0];
  12039. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12040. GGML_ASSERT( dst->nb[0] == sizeof(float));
  12041. const int ith = params->ith;
  12042. const int nth = params->nth;
  12043. GGML_TENSOR_UNARY_OP_LOCALS
  12044. float * dst_ptr = (float *) dst->data;
  12045. // TODO: optimize
  12046. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12047. for (int64_t i1 = ith; i1 < ne1; i1 += nth) {
  12048. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12049. for (int64_t i3 = 0; i3 < ne3; ++i3) {
  12050. const int64_t dst_idx = i3*(ne0*ne1*ne2) + i2*(ne0*ne1) + i1*ne0 + i0;
  12051. const float * src_ptr = (const float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  12052. if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
  12053. dst_ptr[dst_idx] = *src_ptr;
  12054. } else {
  12055. dst_ptr[dst_idx] = 0;
  12056. }
  12057. }
  12058. }
  12059. }
  12060. }
  12061. }
  12062. static void ggml_compute_forward_pad(
  12063. const struct ggml_compute_params * params,
  12064. struct ggml_tensor * dst) {
  12065. const struct ggml_tensor * src0 = dst->src[0];
  12066. switch (src0->type) {
  12067. case GGML_TYPE_F32:
  12068. {
  12069. ggml_compute_forward_pad_f32(params, dst);
  12070. } break;
  12071. default:
  12072. {
  12073. GGML_ASSERT(false);
  12074. } break;
  12075. }
  12076. }
  12077. // ggml_compute_forward_arange
  12078. static void ggml_compute_forward_arange_f32(
  12079. const struct ggml_compute_params * params,
  12080. struct ggml_tensor * dst) {
  12081. GGML_ASSERT(dst->nb[0] == sizeof(float));
  12082. const int ith = params->ith;
  12083. const int nth = params->nth;
  12084. const float start = ggml_get_op_params_f32(dst, 0);
  12085. const float stop = ggml_get_op_params_f32(dst, 1);
  12086. const float step = ggml_get_op_params_f32(dst, 2);
  12087. const int64_t steps = (int64_t) ceilf((stop - start) / step);
  12088. GGML_ASSERT(ggml_nelements(dst) == steps);
  12089. for (int64_t i = ith; i < steps; i+= nth) {
  12090. float value = start + step * i;
  12091. ((float *)dst->data)[i] = value;
  12092. }
  12093. }
  12094. static void ggml_compute_forward_arange(
  12095. const struct ggml_compute_params * params,
  12096. struct ggml_tensor * dst) {
  12097. switch (dst->type) {
  12098. case GGML_TYPE_F32:
  12099. {
  12100. ggml_compute_forward_arange_f32(params, dst);
  12101. } break;
  12102. default:
  12103. {
  12104. GGML_ASSERT(false);
  12105. } break;
  12106. }
  12107. }
  12108. static void ggml_compute_forward_timestep_embedding_f32(
  12109. const struct ggml_compute_params * params,
  12110. struct ggml_tensor * dst) {
  12111. const struct ggml_tensor * src0 = dst->src[0];
  12112. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12113. const int ith = params->ith;
  12114. const int nth = params->nth;
  12115. GGML_TENSOR_UNARY_OP_LOCALS
  12116. const int dim = ggml_get_op_params_i32(dst, 0);
  12117. const int max_period = ggml_get_op_params_i32(dst, 1);
  12118. int half = dim / 2;
  12119. for (int64_t i = 0; i < ne00; i++) {
  12120. float * embed_data = (float *)((char *) dst->data + i*nb1);
  12121. for (int64_t j = ith; j < half; j += nth) {
  12122. float timestep = ((float *)src0->data)[i];
  12123. float freq = (float)expf(-logf(max_period) * j / half);
  12124. float arg = timestep * freq;
  12125. embed_data[j] = cosf(arg);
  12126. embed_data[j + half] = sinf(arg);
  12127. }
  12128. if (dim % 2 != 0 && ith == 0) {
  12129. embed_data[dim] = 0.f;
  12130. }
  12131. }
  12132. }
  12133. static void ggml_compute_forward_timestep_embedding(
  12134. const struct ggml_compute_params * params,
  12135. struct ggml_tensor * dst) {
  12136. const struct ggml_tensor * src0 = dst->src[0];
  12137. switch (src0->type) {
  12138. case GGML_TYPE_F32:
  12139. {
  12140. ggml_compute_forward_timestep_embedding_f32(params, dst);
  12141. } break;
  12142. default:
  12143. {
  12144. GGML_ASSERT(false);
  12145. } break;
  12146. }
  12147. }
  12148. // ggml_compute_forward_argsort
  12149. static void ggml_compute_forward_argsort_f32(
  12150. const struct ggml_compute_params * params,
  12151. struct ggml_tensor * dst) {
  12152. const struct ggml_tensor * src0 = dst->src[0];
  12153. GGML_TENSOR_UNARY_OP_LOCALS
  12154. GGML_ASSERT(nb0 == sizeof(float));
  12155. const int ith = params->ith;
  12156. const int nth = params->nth;
  12157. const int64_t nr = ggml_nrows(src0);
  12158. enum ggml_sort_order order = (enum ggml_sort_order) ggml_get_op_params_i32(dst, 0);
  12159. for (int64_t i = ith; i < nr; i += nth) {
  12160. int32_t * dst_data = (int32_t *)((char *) dst->data + i*nb1);
  12161. const float * src_data = (float *)((char *) src0->data + i*nb01);
  12162. for (int64_t j = 0; j < ne0; j++) {
  12163. dst_data[j] = j;
  12164. }
  12165. // C doesn't have a functional sort, so we do a bubble sort instead
  12166. for (int64_t j = 0; j < ne0; j++) {
  12167. for (int64_t k = j + 1; k < ne0; k++) {
  12168. if ((order == GGML_SORT_ORDER_ASC && src_data[dst_data[j]] > src_data[dst_data[k]]) ||
  12169. (order == GGML_SORT_ORDER_DESC && src_data[dst_data[j]] < src_data[dst_data[k]])) {
  12170. int32_t tmp = dst_data[j];
  12171. dst_data[j] = dst_data[k];
  12172. dst_data[k] = tmp;
  12173. }
  12174. }
  12175. }
  12176. }
  12177. }
  12178. static void ggml_compute_forward_argsort(
  12179. const struct ggml_compute_params * params,
  12180. struct ggml_tensor * dst) {
  12181. const struct ggml_tensor * src0 = dst->src[0];
  12182. switch (src0->type) {
  12183. case GGML_TYPE_F32:
  12184. {
  12185. ggml_compute_forward_argsort_f32(params, dst);
  12186. } break;
  12187. default:
  12188. {
  12189. GGML_ASSERT(false);
  12190. } break;
  12191. }
  12192. }
  12193. // ggml_compute_forward_flash_attn_ext
  12194. static void ggml_compute_forward_flash_attn_ext_f16(
  12195. const struct ggml_compute_params * params,
  12196. const struct ggml_tensor * q,
  12197. const struct ggml_tensor * k,
  12198. const struct ggml_tensor * v,
  12199. const struct ggml_tensor * mask,
  12200. struct ggml_tensor * dst) {
  12201. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12202. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12203. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12204. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12205. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12206. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12207. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12208. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12209. const int ith = params->ith;
  12210. const int nth = params->nth;
  12211. const int64_t D = neq0;
  12212. const int64_t N = neq1;
  12213. GGML_ASSERT(ne0 == D);
  12214. GGML_ASSERT(ne2 == N);
  12215. // input tensor rows must be contiguous
  12216. GGML_ASSERT(nbq0 == ggml_type_size(q->type));
  12217. GGML_ASSERT(nbk0 == ggml_type_size(k->type));
  12218. GGML_ASSERT(nbv0 == ggml_type_size(v->type));
  12219. GGML_ASSERT(neq0 == D);
  12220. GGML_ASSERT(nek0 == D);
  12221. GGML_ASSERT(nev0 == D);
  12222. GGML_ASSERT(neq1 == N);
  12223. GGML_ASSERT(nev0 == D);
  12224. // dst cannot be transposed or permuted
  12225. GGML_ASSERT(nb0 == sizeof(float));
  12226. GGML_ASSERT(nb0 <= nb1);
  12227. GGML_ASSERT(nb1 <= nb2);
  12228. GGML_ASSERT(nb2 <= nb3);
  12229. // broadcast factors
  12230. const int64_t rk2 = neq2/nek2;
  12231. const int64_t rk3 = neq3/nek3;
  12232. const int64_t rv2 = neq2/nev2;
  12233. const int64_t rv3 = neq3/nev3;
  12234. // parallelize by q rows using ggml_vec_dot_f32
  12235. // total rows in q
  12236. const int nr = neq1*neq2*neq3;
  12237. // rows per thread
  12238. const int dr = (nr + nth - 1)/nth;
  12239. // row range for this thread
  12240. const int ir0 = dr*ith;
  12241. const int ir1 = MIN(ir0 + dr, nr);
  12242. float scale = 1.0f;
  12243. float max_bias = 0.0f;
  12244. memcpy(&scale, (float *) dst->op_params + 0, sizeof(float));
  12245. memcpy(&max_bias, (float *) dst->op_params + 1, sizeof(float));
  12246. const uint32_t n_head = neq2;
  12247. const uint32_t n_head_log2 = 1u << (uint32_t) floor(log2(n_head));
  12248. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  12249. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  12250. enum ggml_type const k_vec_dot_type = type_traits[k->type].vec_dot_type;
  12251. ggml_from_float_t const q_to_vec_dot = type_traits[k_vec_dot_type].from_float;
  12252. ggml_vec_dot_t const kq_vec_dot = type_traits[k->type].vec_dot;
  12253. ggml_to_float_t const v_to_float = type_traits[v->type].to_float;
  12254. // loop over n_batch and n_head
  12255. for (int ir = ir0; ir < ir1; ++ir) {
  12256. // q indices
  12257. const int iq3 = ir/(neq2*neq1);
  12258. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  12259. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  12260. const uint32_t h = iq2; // head index
  12261. const float slope = (max_bias > 0.0f) ? h < n_head_log2 ? powf(m0, h + 1) : powf(m1, 2*(h - n_head_log2) + 1) : 1.0f;
  12262. float S = 0.0f; // sum
  12263. float M = -INFINITY; // maximum KQ value
  12264. float * VKQ32 = (float *) params->wdata + ith*(3*D + CACHE_LINE_SIZE_F32); // FP32 VKQ accumulator
  12265. float * V32 = (VKQ32 + 1*D); // (temporary) FP32 V buffer
  12266. ggml_fp16_t * VKQ16 = (ggml_fp16_t *) (VKQ32 + 1*D); // (temporary) FP16 VKQ accumulator
  12267. ggml_fp16_t * Q_q = (ggml_fp16_t *) (VKQ32 + 2*D); // (temporary) buffer for Q converted to quantized/FP16
  12268. if (v->type == GGML_TYPE_F16) {
  12269. memset(VKQ16, 0, D*sizeof(ggml_fp16_t));
  12270. } else {
  12271. memset(VKQ32, 0, D*sizeof(float));
  12272. }
  12273. const ggml_fp16_t * mp = mask ? (ggml_fp16_t *)((char *) mask->data + iq1*mask->nb[1]) : NULL;
  12274. // k indices
  12275. const int ik3 = iq3 / rk3;
  12276. const int ik2 = iq2 / rk2;
  12277. // v indices
  12278. const int iv3 = iq3 / rv3;
  12279. const int iv2 = iq2 / rv2;
  12280. const float * pq = (const float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3));
  12281. q_to_vec_dot(pq, Q_q, D);
  12282. // online softmax / attention
  12283. // loop over n_kv and n_head_kv
  12284. // ref: https://arxiv.org/pdf/2112.05682.pdf
  12285. for (int64_t ic = 0; ic < nek1; ++ic) {
  12286. const float mv = mp ? slope*GGML_FP16_TO_FP32(mp[ic]) : 0.0f;
  12287. if (mv == -INFINITY) {
  12288. continue;
  12289. }
  12290. float s; // KQ value
  12291. const char * k_data = (const char *) k->data + ( ic*nbk1 + ik2*nbk2 + ik3*nbk3);
  12292. kq_vec_dot(D, &s, 0, k_data, 0, Q_q, 0, 1);
  12293. s = s*scale + mv; // scale KQ value and apply mask
  12294. const float Mold = M;
  12295. float ms = 1.0f; // upon new higher max val, scale VKQ and KQ sum with this value
  12296. float vs = 1.0f; // post-softmax KQ value, expf(s - M)
  12297. const char * v_data = ((const char *) v->data + (ic*nbv1 + iv2*nbv2 + iv3*nbv3));
  12298. if (v->type== GGML_TYPE_F16) {
  12299. if (s > M) {
  12300. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12301. M = s;
  12302. ms = expf(Mold - M);
  12303. // V = V*expf(Mold - M)
  12304. ggml_vec_scale_f16(D, VKQ16, ms);
  12305. } else {
  12306. // no new maximum, ms == 1.0f, vs != 1.0f
  12307. vs = expf(s - M);
  12308. }
  12309. // V += v*expf(s - M)
  12310. ggml_vec_mad_f16(D, VKQ16, (const ggml_fp16_t *) v_data, vs);
  12311. } else {
  12312. if (s > M) {
  12313. // s is new maximum, ms < 1.0f, vs == expf(s - s) == 1.0f
  12314. M = s;
  12315. ms = expf(Mold - M);
  12316. // V = V*expf(Mold - M)
  12317. ggml_vec_scale_f32(D, VKQ32, ms);
  12318. } else {
  12319. // no new maximum, ms == 1.0f, vs != 1.0f
  12320. vs = expf(s - M);
  12321. }
  12322. v_to_float(v_data, V32, D);
  12323. // V += v*expf(s - M)
  12324. ggml_vec_mad_f32(D, VKQ32, V32, vs);
  12325. }
  12326. S = S*ms + vs; // scale and increment sum with partial sum
  12327. }
  12328. if (v->type == GGML_TYPE_F16) {
  12329. for (int64_t d = 0; d < D; ++d) {
  12330. VKQ32[d] = GGML_FP16_TO_FP32(VKQ16[d]);
  12331. }
  12332. }
  12333. // V /= S
  12334. const float S_inv = 1.0f/S;
  12335. ggml_vec_scale_f32(D, VKQ32, S_inv);
  12336. // dst indices
  12337. const int i1 = iq1;
  12338. const int i2 = iq2;
  12339. const int i3 = iq3;
  12340. // original
  12341. //memcpy((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3), V, nev0*sizeof(float));
  12342. // permute(0, 2, 1, 3)
  12343. memcpy((char *) dst->data + (i3*ne2*ne1 + i2 + i1*ne1)*nb1, VKQ32, nb1);
  12344. }
  12345. }
  12346. static void ggml_compute_forward_flash_attn_ext(
  12347. const struct ggml_compute_params * params,
  12348. const struct ggml_tensor * q,
  12349. const struct ggml_tensor * k,
  12350. const struct ggml_tensor * v,
  12351. const struct ggml_tensor * mask,
  12352. struct ggml_tensor * dst) {
  12353. switch (dst->op_params[2]) {
  12354. case GGML_PREC_DEFAULT:
  12355. case GGML_PREC_F32:
  12356. {
  12357. // uses F32 accumulators
  12358. ggml_compute_forward_flash_attn_ext_f16(params, q, k, v, mask, dst);
  12359. } break;
  12360. default:
  12361. {
  12362. GGML_ASSERT(false);
  12363. } break;
  12364. }
  12365. }
  12366. // ggml_compute_forward_flash_attn_back
  12367. static void ggml_compute_forward_flash_attn_back_f32(
  12368. const struct ggml_compute_params * params,
  12369. const bool masked,
  12370. struct ggml_tensor * dst) {
  12371. const struct ggml_tensor * q = dst->src[0];
  12372. const struct ggml_tensor * k = dst->src[1];
  12373. const struct ggml_tensor * v = dst->src[2];
  12374. const struct ggml_tensor * d = dst->src[3];
  12375. GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
  12376. GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
  12377. GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
  12378. GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
  12379. GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
  12380. GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
  12381. GGML_TENSOR_LOCALS(int64_t, ned, d, ne)
  12382. GGML_TENSOR_LOCALS(size_t, nbd, d, nb)
  12383. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12384. GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
  12385. const int ith = params->ith;
  12386. const int nth = params->nth;
  12387. const int64_t D = neq0;
  12388. const int64_t N = neq1;
  12389. const int64_t P = nek1 - N;
  12390. const int64_t M = P + N;
  12391. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  12392. const int mxDM = MAX(D, Mup);
  12393. // GGML_ASSERT(ne0 == D);
  12394. // GGML_ASSERT(ne1 == N);
  12395. GGML_ASSERT(P >= 0);
  12396. GGML_ASSERT(nbq0 == sizeof(float));
  12397. GGML_ASSERT(nbk0 == sizeof(float));
  12398. GGML_ASSERT(nbv0 == sizeof(float));
  12399. GGML_ASSERT(neq0 == D);
  12400. GGML_ASSERT(nek0 == D);
  12401. GGML_ASSERT(nev1 == D);
  12402. GGML_ASSERT(ned0 == D);
  12403. GGML_ASSERT(neq1 == N);
  12404. GGML_ASSERT(nek1 == N + P);
  12405. GGML_ASSERT(nev1 == D);
  12406. GGML_ASSERT(ned1 == N);
  12407. // dst cannot be transposed or permuted
  12408. GGML_ASSERT(nb0 == sizeof(float));
  12409. GGML_ASSERT(nb0 <= nb1);
  12410. GGML_ASSERT(nb1 <= nb2);
  12411. GGML_ASSERT(nb2 <= nb3);
  12412. if (ith == 0) {
  12413. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  12414. }
  12415. ggml_barrier(params->shared);
  12416. const int64_t elem_q = ggml_nelements(q);
  12417. const int64_t elem_k = ggml_nelements(k);
  12418. enum ggml_type result_type = dst->type;
  12419. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  12420. const size_t tsize = ggml_type_size(result_type);
  12421. const size_t offs_q = 0;
  12422. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  12423. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  12424. void * grad_q = (char *) dst->data;
  12425. void * grad_k = (char *) dst->data + offs_k;
  12426. void * grad_v = (char *) dst->data + offs_v;
  12427. const size_t nbgq1 = nb0*neq0;
  12428. const size_t nbgq2 = nb0*neq0*neq1;
  12429. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  12430. const size_t nbgk1 = nb0*nek0;
  12431. const size_t nbgk2 = nb0*nek0*nek1;
  12432. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  12433. const size_t nbgv1 = nb0*nev0;
  12434. const size_t nbgv2 = nb0*nev0*nev1;
  12435. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  12436. // parallelize by k rows using ggml_vec_dot_f32
  12437. // total rows in k
  12438. const int nr = nek2*nek3;
  12439. // rows per thread
  12440. const int dr = (nr + nth - 1)/nth;
  12441. // row range for this thread
  12442. const int ir0 = dr*ith;
  12443. const int ir1 = MIN(ir0 + dr, nr);
  12444. const float scale = 1.0f/sqrtf(D);
  12445. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  12446. // how often k2 (and v2) is repeated in q2
  12447. int nrep = neq2/nek2;
  12448. for (int ir = ir0; ir < ir1; ++ir) {
  12449. // q indices
  12450. const int ik3 = ir/(nek2);
  12451. const int ik2 = ir - ik3*nek2;
  12452. const int iq3 = ik3;
  12453. const int id3 = ik3;
  12454. const int iv3 = ik3;
  12455. const int iv2 = ik2;
  12456. for (int irep = 0; irep < nrep; ++irep) {
  12457. const int iq2 = ik2 + irep*nek2;
  12458. const int id2 = iq2;
  12459. // (ik2 + irep*nek2) % nek2 == ik2
  12460. for (int iq1 = 0; iq1 < neq1; ++iq1) {
  12461. const int id1 = iq1;
  12462. // not sure about CACHE_LINE_SIZE_F32..
  12463. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  12464. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  12465. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  12466. for (int i = M; i < Mup; ++i) {
  12467. S[i] = -INFINITY;
  12468. }
  12469. const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
  12470. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12471. // k indices
  12472. const int ik1 = ic;
  12473. // S indices
  12474. const int i1 = ik1;
  12475. ggml_vec_dot_f32(neq0,
  12476. S + i1, 0,
  12477. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
  12478. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
  12479. }
  12480. // scale
  12481. ggml_vec_scale_f32(masked_begin, S, scale);
  12482. for (int64_t i = masked_begin; i < M; i++) {
  12483. S[i] = -INFINITY;
  12484. }
  12485. // softmax
  12486. // exclude known -INF S[..] values from max and loop
  12487. // dont forget to set their SM values to zero
  12488. {
  12489. float max = -INFINITY;
  12490. ggml_vec_max_f32(masked_begin, &max, S);
  12491. ggml_float sum = 0.0;
  12492. {
  12493. #ifdef GGML_SOFT_MAX_ACCELERATE
  12494. max = -max;
  12495. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  12496. vvexpf(SM, SM, &Mup);
  12497. ggml_vec_sum_f32(Mup, &sum, SM);
  12498. #else
  12499. sum = ggml_vec_soft_max_f32(Mup, SM, S, max);
  12500. #endif
  12501. }
  12502. assert(sum > 0.0);
  12503. sum = 1.0/sum;
  12504. ggml_vec_scale_f32(masked_begin, SM, sum);
  12505. }
  12506. // step-by-step explanation
  12507. {
  12508. // forward-process shape grads from backward process
  12509. // parallel_for ik2,ik3:
  12510. // for irep:
  12511. // iq2 = ik2 + irep*nek2
  12512. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,ik2,ik3] += grad[kcur]
  12513. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  12514. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iv2,iv3] += grad[vcur]
  12515. // for iq1:
  12516. // kcur = k[:D,:M,ik2,ik3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  12517. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  12518. // vcur = v[:M,:D,iv2,iv3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  12519. // S0 = -Inf [D,1,1,1]
  12520. // ~S1[i] = dot(kcur[:D,i], qcur)
  12521. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  12522. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  12523. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12524. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  12525. // ~S5[i] = dot(vcur[:,i], S4)
  12526. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,id1,id2,id3]
  12527. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  12528. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,id1,id2,id3]
  12529. // dst backward-/ grad[dst] = d
  12530. //
  12531. // output gradients with their dependencies:
  12532. //
  12533. // grad[kcur] = grad[S1].T @ qcur
  12534. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12535. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12536. // grad[S4] = grad[S5] @ vcur
  12537. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12538. // grad[qcur] = grad[S1] @ kcur
  12539. // grad[vcur] = grad[S5].T @ S4
  12540. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12541. //
  12542. // in post-order:
  12543. //
  12544. // S1 = qcur @ kcur.T
  12545. // S2 = S1 * scale
  12546. // S3 = diag_mask_inf(S2, P)
  12547. // S4 = softmax(S3)
  12548. // grad[S4] = d[:D,id1,id2,id3] @ vcur
  12549. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  12550. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  12551. // grad[qcur] = grad[S1] @ kcur
  12552. // grad[kcur] = grad[S1].T @ qcur
  12553. // grad[vcur] = d[:D,id1,id2,id3].T @ S4
  12554. //
  12555. // using less variables (SM=S4):
  12556. //
  12557. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  12558. // SM = softmax(S)
  12559. // S = d[:D,iq1,iq2,iq3] @ vcur
  12560. // dot_SM_gradSM = dot(SM, S)
  12561. // S = SM * (S - dot(SM, S))
  12562. // S = diag_mask_zero(S, P) * scale
  12563. //
  12564. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12565. // grad[k][:D,:M,ik2,ik3] += S.T @ qcur
  12566. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12567. }
  12568. // S = gradSM = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12569. // S = d[:D,id1,id2,id3] @ vcur[:,:,iv2,iv3]
  12570. // for ic:
  12571. // S[:M] += vcur[:M,ic,iv2,iv3] * d[ic,id1,id2,id3]
  12572. // exclude known future zero S[..] values from operation
  12573. ggml_vec_set_f32(masked_begin, S, 0);
  12574. for (int64_t ic = 0; ic < D; ++ic) {
  12575. ggml_vec_mad_f32(masked_begin,
  12576. S,
  12577. (float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
  12578. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12579. }
  12580. // S = SM * (S - dot(SM, S))
  12581. float dot_SM_gradSM = 0;
  12582. ggml_vec_dot_f32 (masked_begin, &dot_SM_gradSM, 0, SM, 0, S, 0, 1);
  12583. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  12584. ggml_vec_mul_f32 (masked_begin, S, S, SM);
  12585. // S = diag_mask_zero(S, P) * scale
  12586. // already done by above ggml_vec_set_f32
  12587. // exclude known zero S[..] values from operation
  12588. ggml_vec_scale_f32(masked_begin, S, scale);
  12589. // S shape [M,1]
  12590. // SM shape [M,1]
  12591. // kcur shape [D,M]
  12592. // qcur shape [D,1]
  12593. // vcur shape [M,D]
  12594. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  12595. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  12596. // for ic:
  12597. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic,ik2,ik3]
  12598. // exclude known zero S[..] values from loop
  12599. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12600. ggml_vec_mad_f32(D,
  12601. (float *) ((char *) grad_q + (iq1*nbgq1 + iq2*nbgq2 + iq3*nbgq3)),
  12602. (float *) ((char *) k->data + (ic*nbk1 + ik2*nbk2 + ik3*nbk3)),
  12603. S[ic]);
  12604. }
  12605. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  12606. // for ic:
  12607. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  12608. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  12609. // exclude known zero S[..] values from loop
  12610. for (int64_t ic = 0; ic < masked_begin; ++ic) {
  12611. ggml_vec_mad_f32(D,
  12612. (float *) ((char *) grad_k + (ic*nbgk1 + ik2*nbgk2 + ik3*nbgk3)),
  12613. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)),
  12614. S[ic]);
  12615. }
  12616. // grad[v][:M,:D,iv2,iv3] += d[:D,id1,id2,id3].T @ SM
  12617. // for ic:
  12618. // grad[v][:M,ic,iv2,iv3] += d[:D,id1,id2,id3].T[0,ic] * SM[:M]
  12619. // grad[v][:M,ic,iv2,iv3] += d[ic,id1,id2,id3] * SM[:M]
  12620. // exclude known zero SM[..] values from mad
  12621. for (int64_t ic = 0; ic < D; ++ic) {
  12622. ggml_vec_mad_f32(masked_begin,
  12623. (float *) ((char *) grad_v + ( ic*nbgv1 + iv2*nbgv2 + iv3*nbgv3)),
  12624. SM,
  12625. *(float *) ((char *) d->data + (ic*nbd0 + id1*nbd1 + id2*nbd2 + id3*nbd3)));
  12626. }
  12627. }
  12628. }
  12629. }
  12630. }
  12631. static void ggml_compute_forward_flash_attn_back(
  12632. const struct ggml_compute_params * params,
  12633. const bool masked,
  12634. struct ggml_tensor * dst) {
  12635. const struct ggml_tensor * q = dst->src[0];
  12636. switch (q->type) {
  12637. case GGML_TYPE_F32:
  12638. {
  12639. ggml_compute_forward_flash_attn_back_f32(params, masked, dst);
  12640. } break;
  12641. default:
  12642. {
  12643. GGML_ASSERT(false);
  12644. } break;
  12645. }
  12646. }
  12647. // ggml_compute_forward_ssm_conv
  12648. static void ggml_compute_forward_ssm_conv_f32(
  12649. const struct ggml_compute_params * params,
  12650. struct ggml_tensor * dst) {
  12651. const struct ggml_tensor * src0 = dst->src[0]; // conv_state
  12652. const struct ggml_tensor * src1 = dst->src[1]; // x
  12653. const struct ggml_tensor * src2 = dst->src[2]; // conv1d.weight
  12654. const struct ggml_tensor * src3 = dst->src[3]; // state_seq
  12655. const int ith = params->ith;
  12656. const int nth = params->nth;
  12657. const int nc = src2->ne[0]; // d_conv
  12658. const int nr = src0->ne[1]; // d_inner
  12659. const int n_t = src1->ne[1]; // n_tokens
  12660. const int n_kv = src0->ne[2]; // max number of sequences in the batch
  12661. GGML_ASSERT((nr*n_t) + (nc*nr*n_kv) == ggml_nelements(dst));
  12662. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12663. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12664. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12665. GGML_ASSERT(src3->nb[0] == sizeof(int32_t));
  12666. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12667. // for use with the destination state offset between sequences
  12668. GGML_ASSERT(src2->nb[2] == src2->ne[1]*src2->ne[0]*sizeof(float));
  12669. // rows per thread
  12670. const int dr = (nr + nth - 1)/nth;
  12671. // row range for this thread
  12672. const int ir0 = dr*ith;
  12673. const int ir1 = MIN(ir0 + dr, nr);
  12674. const int ir = ir1 - ir0;
  12675. if (n_kv > 1) {
  12676. // multiple sequences means it's hard to know when it's the first time a state is read,
  12677. // so copy them all over to the destination, just to be sure.
  12678. for (int i3 = 0; i3 < n_kv; ++i3) {
  12679. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12680. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + i3*(src2->nb[2]) + nr*n_t*sizeof(float));
  12681. // can't use memcpy because of d_conv vs d_conv - 1
  12682. for (int i1 = 0; i1 < ir; ++i1) {
  12683. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12684. // copy s0 to last (d_conv - 1) columns of s
  12685. s[1 + i0 + i1*nc] = s0[i0 + i1*(nc - 1)];
  12686. }
  12687. }
  12688. }
  12689. }
  12690. for (int i2 = 0; i2 < n_t; ++i2) {
  12691. int32_t * sq = (int32_t *) ((char *) src3->data + i2*(src3->nb[1])); // {n_kv, n_tokens}
  12692. float * x = (float *) ((char *) dst->data + ir0*sizeof(float) + i2*(nr*sizeof(float))); // {d_inner, n_tokens}
  12693. float * s = (float *) ((char *) dst->data + ir0*(src2->nb[1]) + sq[0]*(src2->nb[2]) + nr*n_t*sizeof(float)); // {d_conv, d_inner, n_kv}
  12694. float * s0; // {d_conv - 1, d_inner, n_kv}
  12695. float * x0 = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12696. float * c = (float *) ((char *) src2->data + ir0*(src2->nb[1])); // {d_conv, d_inner}
  12697. int ne0s0;
  12698. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12699. // avoid needing to copy the state for the first token
  12700. if (i2 == 0) {
  12701. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_conv - 1, d_inner, n_kv}
  12702. ne0s0 = src0->ne[0];
  12703. } else {
  12704. // the source is the last (d_conv - 1) columns of the destination
  12705. s0 = s + 1;
  12706. ne0s0 = nc;
  12707. }
  12708. // d_inner
  12709. for (int i1 = 0; i1 < ir; ++i1) {
  12710. // shift state left
  12711. for (int i0 = 0; i0 < nc - 1; ++i0) {
  12712. s[i0 + i1*nc] = s0[i0 + i1*ne0s0];
  12713. }
  12714. // insert x on the last column
  12715. s[(nc - 1) + i1*nc] = x0[i1];
  12716. }
  12717. // handle copies when there are multiple output states
  12718. for (int i3 = 1; i3 < n_kv; ++i3) {
  12719. int32_t seq = sq[i3];
  12720. if (0 <= seq && seq < n_kv) {
  12721. float * s1 = s + (seq - sq[0])*nc*nr;
  12722. memcpy(s1, s, nc*ir*sizeof(float));
  12723. } else {
  12724. // stop at negative or too big seq_ids
  12725. break;
  12726. }
  12727. }
  12728. // it seems a little faster when this is separate from the state shift
  12729. for (int i1 = 0; i1 < ir; ++i1) {
  12730. // rowwise dot product
  12731. float sumf = 0.0f;
  12732. for (int i0 = 0; i0 < nc; ++i0) {
  12733. int i = i0 + i1*nc;
  12734. sumf += s[i] * c[i];
  12735. }
  12736. x[i1] = sumf;
  12737. }
  12738. }
  12739. }
  12740. static void ggml_compute_forward_ssm_conv(
  12741. const struct ggml_compute_params * params,
  12742. struct ggml_tensor * dst) {
  12743. switch (dst->src[0]->type) {
  12744. case GGML_TYPE_F32:
  12745. {
  12746. ggml_compute_forward_ssm_conv_f32(params, dst);
  12747. } break;
  12748. default:
  12749. {
  12750. GGML_ASSERT(false);
  12751. } break;
  12752. }
  12753. }
  12754. // ggml_compute_forward_ssm_scan
  12755. static void ggml_compute_forward_ssm_scan_f32(
  12756. const struct ggml_compute_params * params,
  12757. struct ggml_tensor * dst) {
  12758. const struct ggml_tensor * src0 = dst->src[0]; // s
  12759. const struct ggml_tensor * src1 = dst->src[1]; // x
  12760. const struct ggml_tensor * src2 = dst->src[2]; // dt
  12761. const struct ggml_tensor * src3 = dst->src[3]; // A
  12762. const struct ggml_tensor * src4 = dst->src[4]; // B
  12763. const struct ggml_tensor * src5 = dst->src[5]; // C
  12764. const struct ggml_tensor * src6 = dst->src[6]; // sq
  12765. const int ith = params->ith;
  12766. const int nth = params->nth;
  12767. const int64_t nc = src0->ne[0]; // d_state
  12768. const int64_t nr = src0->ne[1]; // d_inner
  12769. const int64_t n_t = src1->ne[1]; // number of tokens in the batch
  12770. const int64_t n_kv = src0->ne[2]; // max number of sequences in the batch
  12771. GGML_ASSERT(ggml_nelements(src1) + ggml_nelements(src0) == ggml_nelements(dst));
  12772. GGML_ASSERT(src0->nb[0] == sizeof(float));
  12773. GGML_ASSERT(src1->nb[0] == sizeof(float));
  12774. GGML_ASSERT(src2->nb[0] == sizeof(float));
  12775. GGML_ASSERT(src3->nb[0] == sizeof(float));
  12776. GGML_ASSERT(src4->nb[0] == sizeof(float));
  12777. GGML_ASSERT(src5->nb[0] == sizeof(float));
  12778. // required for the dot product between s and C, and when copying the states
  12779. GGML_ASSERT(src0->nb[1] == src0->ne[0]*sizeof(float));
  12780. // required for per-sequence offsets for states
  12781. GGML_ASSERT(src0->nb[2] == src0->ne[0]*src0->ne[1]*sizeof(float));
  12782. // required to get correct offset for state destination (i.e. src1->nb[2])
  12783. GGML_ASSERT(src1->nb[2] == src1->ne[0]*src1->ne[1]*sizeof(float));
  12784. // rows per thread
  12785. const int dr = (nr + nth - 1)/nth;
  12786. // row range for this thread
  12787. const int ir0 = dr*ith;
  12788. const int ir1 = MIN(ir0 + dr, nr);
  12789. const int ir = ir1 - ir0;
  12790. if (n_kv > 1) {
  12791. // it's hard to know if the source states have already been copied
  12792. // when there are multiple, so copy them already.
  12793. for (int i3 = 0; i3 < n_kv; ++i3) {
  12794. float * s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]));
  12795. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + i3*(src0->nb[2]) + src1->nb[2]);
  12796. memcpy(s, s0, nc*ir*sizeof(float));
  12797. }
  12798. }
  12799. for (int i2 = 0; i2 < n_t; ++i2) {
  12800. int32_t * sq = (int32_t *) ((char *) src6->data + i2*(src6->nb[1])); // {n_kv, n_tokens}
  12801. float * y = (float *) ((char *) dst->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12802. float * s = (float *) ((char *) dst->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2]) + src1->nb[2]); // {d_state, d_inner, n_kv}
  12803. float * s0;
  12804. float * x = (float *) ((char *) src1->data + ir0*(src1->nb[0]) + i2*(src1->nb[1])); // {d_inner, n_tokens}
  12805. float * dt = (float *) ((char *) src2->data + ir0*(src2->nb[0]) + i2*(src2->nb[1])); // {d_inner, n_tokens}
  12806. float * A = (float *) ((char *) src3->data + ir0*(src3->nb[1])); // {d_state, d_inner}
  12807. float * B = (float *) ((char *) src4->data + i2*(src4->nb[1])); // {d_state, n_tokens}
  12808. float * C = (float *) ((char *) src5->data + i2*(src5->nb[1])); // {d_state, n_tokens}
  12809. GGML_ASSERT(0 <= sq[0] && sq[0] < n_kv);
  12810. // avoid needing to copy the state for the first token
  12811. if (i2 == 0) {
  12812. s0 = (float *) ((char *) src0->data + ir0*(src0->nb[1]) + sq[0]*(src0->nb[2])); // {d_state, d_inner, n_kv}
  12813. } else {
  12814. // otherwise the source is the same as the destination
  12815. s0 = s;
  12816. }
  12817. // d_inner
  12818. for (int i1 = 0; i1 < ir; ++i1) {
  12819. // ref: https://github.com/state-spaces/mamba/blob/34076d664838588a3c97727b263478ab9f621a07/mamba_ssm/ops/triton/selective_state_update.py#L78
  12820. float dt_soft_plus = dt[i1] <= 20.0f ? log1pf(expf(dt[i1])) : dt[i1];
  12821. float x_dt = x[i1] * dt_soft_plus;
  12822. float sumf = 0.0f;
  12823. // d_state
  12824. for (int i0 = 0; i0 < nc; ++i0) {
  12825. int i = i0 + i1*nc;
  12826. // state = prev_state * dA + dB * x
  12827. float state = (s0[i] * expf(dt_soft_plus * A[i])) + (B[i0] * x_dt);
  12828. // y = rowwise_dotprod(state, C)
  12829. sumf += state * C[i0];
  12830. s[i] = state;
  12831. }
  12832. y[i1] = sumf;
  12833. }
  12834. // handle copies when there are multiple output states
  12835. for (int i3 = 1; i3 < n_kv; ++i3) {
  12836. int32_t seq = sq[i3];
  12837. if (0 <= seq && seq < n_kv) {
  12838. float * s1 = s + (seq - sq[0])*nc*nr;
  12839. memcpy(s1, s, nc*ir*sizeof(float));
  12840. } else {
  12841. // stop at negative or too big seq_ids
  12842. break;
  12843. }
  12844. }
  12845. }
  12846. }
  12847. static void ggml_compute_forward_ssm_scan(
  12848. const struct ggml_compute_params * params,
  12849. struct ggml_tensor * dst) {
  12850. switch (dst->src[0]->type) {
  12851. case GGML_TYPE_F32:
  12852. {
  12853. ggml_compute_forward_ssm_scan_f32(params, dst);
  12854. } break;
  12855. default:
  12856. {
  12857. GGML_ASSERT(false);
  12858. } break;
  12859. }
  12860. }
  12861. // ggml_compute_forward_win_part
  12862. static void ggml_compute_forward_win_part_f32(
  12863. const struct ggml_compute_params * params,
  12864. struct ggml_tensor * dst) {
  12865. UNUSED(params);
  12866. const struct ggml_tensor * src0 = dst->src[0];
  12867. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12868. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12869. const int32_t nep0 = ((const int32_t *)(dst->op_params))[0];
  12870. const int32_t nep1 = ((const int32_t *)(dst->op_params))[1];
  12871. const int32_t w = ((const int32_t *)(dst->op_params))[2];
  12872. assert(ne00 == ne0);
  12873. assert(ne3 == nep0*nep1);
  12874. // TODO: optimize / multi-thread
  12875. for (int py = 0; py < nep1; ++py) {
  12876. for (int px = 0; px < nep0; ++px) {
  12877. const int64_t i3 = py*nep0 + px;
  12878. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12879. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12880. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12881. const int64_t i02 = py*w + i2;
  12882. const int64_t i01 = px*w + i1;
  12883. const int64_t i00 = i0;
  12884. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12885. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12886. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12887. ((float *) dst->data)[i] = 0.0f;
  12888. } else {
  12889. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12890. }
  12891. }
  12892. }
  12893. }
  12894. }
  12895. }
  12896. }
  12897. static void ggml_compute_forward_win_part(
  12898. const struct ggml_compute_params * params,
  12899. struct ggml_tensor * dst) {
  12900. const struct ggml_tensor * src0 = dst->src[0];
  12901. switch (src0->type) {
  12902. case GGML_TYPE_F32:
  12903. {
  12904. ggml_compute_forward_win_part_f32(params, dst);
  12905. } break;
  12906. default:
  12907. {
  12908. GGML_ASSERT(false);
  12909. } break;
  12910. }
  12911. }
  12912. // ggml_compute_forward_win_unpart
  12913. static void ggml_compute_forward_win_unpart_f32(
  12914. const struct ggml_compute_params * params,
  12915. struct ggml_tensor * dst) {
  12916. UNUSED(params);
  12917. const struct ggml_tensor * src0 = dst->src[0];
  12918. GGML_TENSOR_LOCALS(int64_t, ne0, src0, ne)
  12919. GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
  12920. const int32_t w = ((const int32_t *)(dst->op_params))[0];
  12921. // padding
  12922. const int px = (w - ne1%w)%w;
  12923. //const int py = (w - ne2%w)%w;
  12924. const int npx = (px + ne1)/w;
  12925. //const int npy = (py + ne2)/w;
  12926. assert(ne0 == ne00);
  12927. // TODO: optimize / multi-thread
  12928. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12929. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12930. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12931. const int ip2 = i2/w;
  12932. const int ip1 = i1/w;
  12933. const int64_t i02 = i2%w;
  12934. const int64_t i01 = i1%w;
  12935. const int64_t i00 = i0;
  12936. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12937. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12938. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12939. }
  12940. }
  12941. }
  12942. }
  12943. static void ggml_compute_forward_win_unpart(
  12944. const struct ggml_compute_params * params,
  12945. struct ggml_tensor * dst) {
  12946. const struct ggml_tensor * src0 = dst->src[0];
  12947. switch (src0->type) {
  12948. case GGML_TYPE_F32:
  12949. {
  12950. ggml_compute_forward_win_unpart_f32(params, dst);
  12951. } break;
  12952. default:
  12953. {
  12954. GGML_ASSERT(false);
  12955. } break;
  12956. }
  12957. }
  12958. //gmml_compute_forward_unary
  12959. static void ggml_compute_forward_unary(
  12960. const struct ggml_compute_params * params,
  12961. struct ggml_tensor * dst) {
  12962. const enum ggml_unary_op op = ggml_get_unary_op(dst);
  12963. switch (op) {
  12964. case GGML_UNARY_OP_ABS:
  12965. {
  12966. ggml_compute_forward_abs(params, dst);
  12967. } break;
  12968. case GGML_UNARY_OP_SGN:
  12969. {
  12970. ggml_compute_forward_sgn(params, dst);
  12971. } break;
  12972. case GGML_UNARY_OP_NEG:
  12973. {
  12974. ggml_compute_forward_neg(params, dst);
  12975. } break;
  12976. case GGML_UNARY_OP_STEP:
  12977. {
  12978. ggml_compute_forward_step(params, dst);
  12979. } break;
  12980. case GGML_UNARY_OP_TANH:
  12981. {
  12982. ggml_compute_forward_tanh(params, dst);
  12983. } break;
  12984. case GGML_UNARY_OP_ELU:
  12985. {
  12986. ggml_compute_forward_elu(params, dst);
  12987. } break;
  12988. case GGML_UNARY_OP_RELU:
  12989. {
  12990. ggml_compute_forward_relu(params, dst);
  12991. } break;
  12992. case GGML_UNARY_OP_SIGMOID:
  12993. {
  12994. ggml_compute_forward_sigmoid(params, dst);
  12995. } break;
  12996. case GGML_UNARY_OP_GELU:
  12997. {
  12998. ggml_compute_forward_gelu(params, dst);
  12999. } break;
  13000. case GGML_UNARY_OP_GELU_QUICK:
  13001. {
  13002. ggml_compute_forward_gelu_quick(params, dst);
  13003. } break;
  13004. case GGML_UNARY_OP_SILU:
  13005. {
  13006. ggml_compute_forward_silu(params, dst);
  13007. } break;
  13008. case GGML_UNARY_OP_HARDSWISH:
  13009. {
  13010. ggml_compute_forward_hardswish(params, dst);
  13011. } break;
  13012. case GGML_UNARY_OP_HARDSIGMOID:
  13013. {
  13014. ggml_compute_forward_hardsigmoid(params, dst);
  13015. } break;
  13016. default:
  13017. {
  13018. GGML_ASSERT(false);
  13019. } break;
  13020. }
  13021. }
  13022. // ggml_compute_forward_get_rel_pos
  13023. static void ggml_compute_forward_get_rel_pos_f16(
  13024. const struct ggml_compute_params * params,
  13025. struct ggml_tensor * dst) {
  13026. UNUSED(params);
  13027. const struct ggml_tensor * src0 = dst->src[0];
  13028. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L292-L322
  13029. GGML_TENSOR_UNARY_OP_LOCALS
  13030. const int64_t w = ne1;
  13031. ggml_fp16_t * src0_data = (ggml_fp16_t *) src0->data;
  13032. ggml_fp16_t * dst_data = (ggml_fp16_t *) dst->data;
  13033. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  13034. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  13035. const int64_t pos = (w - i1 - 1) + i2;
  13036. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  13037. dst_data[i2*ne1*ne0 + i1*ne0 + i0] = src0_data[pos*ne00 + i0];
  13038. }
  13039. }
  13040. }
  13041. }
  13042. static void ggml_compute_forward_get_rel_pos(
  13043. const struct ggml_compute_params * params,
  13044. struct ggml_tensor * dst) {
  13045. const struct ggml_tensor * src0 = dst->src[0];
  13046. switch (src0->type) {
  13047. case GGML_TYPE_F16:
  13048. case GGML_TYPE_BF16:
  13049. {
  13050. ggml_compute_forward_get_rel_pos_f16(params, dst);
  13051. } break;
  13052. default:
  13053. {
  13054. GGML_ASSERT(false);
  13055. } break;
  13056. }
  13057. }
  13058. // ggml_compute_forward_add_rel_pos
  13059. static void ggml_compute_forward_add_rel_pos_f32(
  13060. const struct ggml_compute_params * params,
  13061. struct ggml_tensor * dst) {
  13062. const struct ggml_tensor * src0 = dst->src[0];
  13063. const struct ggml_tensor * src1 = dst->src[1];
  13064. const struct ggml_tensor * src2 = dst->src[2];
  13065. const bool inplace = (bool) ((int32_t *) dst->op_params)[0];
  13066. if (!inplace) {
  13067. if (params->ith == 0) {
  13068. memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst));
  13069. }
  13070. ggml_barrier(params->shared);
  13071. }
  13072. // ref: https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/modeling/image_encoder.py#L357-L359
  13073. float * src1_data = (float *) src1->data;
  13074. float * src2_data = (float *) src2->data;
  13075. float * dst_data = (float *) dst->data;
  13076. const int64_t ne10 = src1->ne[0];
  13077. const int64_t ne11 = src1->ne[1];
  13078. const int64_t ne12 = src1->ne[2];
  13079. const int64_t ne13 = src1->ne[3];
  13080. const int ith = params->ith;
  13081. const int nth = params->nth;
  13082. // total patches in dst
  13083. const int np = ne13;
  13084. // patches per thread
  13085. const int dp = (np + nth - 1)/nth;
  13086. // patch range for this thread
  13087. const int ip0 = dp*ith;
  13088. const int ip1 = MIN(ip0 + dp, np);
  13089. for (int64_t i13 = ip0; i13 < ip1; ++i13) {
  13090. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  13091. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  13092. const int64_t jp1 = i13*ne12*ne11*ne10 + i12*ne11*ne10 + i11*ne10;
  13093. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  13094. const int64_t jp0 = jp1 + i10;
  13095. const float src1_e = src1_data[jp0];
  13096. const float src2_e = src2_data[jp0];
  13097. const int64_t jdh = jp0 * ne10;
  13098. const int64_t jdw = jdh - (ne10 - 1) * i10;
  13099. for (int64_t j = 0; j < ne10; ++j) {
  13100. dst_data[jdh + j ] += src2_e;
  13101. dst_data[jdw + j*ne10] += src1_e;
  13102. }
  13103. }
  13104. }
  13105. }
  13106. }
  13107. }
  13108. static void ggml_compute_forward_add_rel_pos(
  13109. const struct ggml_compute_params * params,
  13110. struct ggml_tensor * dst) {
  13111. const struct ggml_tensor * src0 = dst->src[0];
  13112. switch (src0->type) {
  13113. case GGML_TYPE_F32:
  13114. {
  13115. ggml_compute_forward_add_rel_pos_f32(params, dst);
  13116. } break;
  13117. default:
  13118. {
  13119. GGML_ASSERT(false);
  13120. } break;
  13121. }
  13122. }
  13123. // ggml_compute_forward_map_unary
  13124. static void ggml_compute_forward_map_unary_f32(
  13125. const struct ggml_compute_params * params,
  13126. struct ggml_tensor * dst,
  13127. const ggml_unary_op_f32_t fun) {
  13128. const struct ggml_tensor * src0 = dst->src[0];
  13129. if (params->ith != 0) {
  13130. return;
  13131. }
  13132. assert(ggml_is_contiguous_1(src0));
  13133. assert(ggml_is_contiguous_1(dst));
  13134. assert(ggml_are_same_shape(src0, dst));
  13135. const int n = ggml_nrows(src0);
  13136. const int nc = src0->ne[0];
  13137. for (int i = 0; i < n; i++) {
  13138. fun(nc,
  13139. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13140. (float *) ((char *) src0->data + i*(src0->nb[1])));
  13141. }
  13142. }
  13143. static void ggml_compute_forward_map_unary(
  13144. const struct ggml_compute_params * params,
  13145. struct ggml_tensor * dst,
  13146. const ggml_unary_op_f32_t fun) {
  13147. const struct ggml_tensor * src0 = dst->src[0];
  13148. switch (src0->type) {
  13149. case GGML_TYPE_F32:
  13150. {
  13151. ggml_compute_forward_map_unary_f32(params, dst, fun);
  13152. } break;
  13153. default:
  13154. {
  13155. GGML_ASSERT(false);
  13156. } break;
  13157. }
  13158. }
  13159. // ggml_compute_forward_map_binary
  13160. static void ggml_compute_forward_map_binary_f32(
  13161. const struct ggml_compute_params * params,
  13162. struct ggml_tensor * dst,
  13163. const ggml_binary_op_f32_t fun) {
  13164. const struct ggml_tensor * src0 = dst->src[0];
  13165. const struct ggml_tensor * src1 = dst->src[1];
  13166. if (params->ith != 0) {
  13167. return;
  13168. }
  13169. assert(ggml_is_contiguous_1(src0));
  13170. assert(ggml_is_contiguous_1(src1));
  13171. assert(ggml_is_contiguous_1(dst));
  13172. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13173. const int n = ggml_nrows(src0);
  13174. const int nc = src0->ne[0];
  13175. for (int i = 0; i < n; i++) {
  13176. fun(nc,
  13177. (float *) ((char *) dst->data + i*( dst->nb[1])),
  13178. (float *) ((char *) src0->data + i*(src0->nb[1])),
  13179. (float *) ((char *) src1->data + i*(src1->nb[1])));
  13180. }
  13181. }
  13182. static void ggml_compute_forward_map_binary(
  13183. const struct ggml_compute_params * params,
  13184. struct ggml_tensor * dst,
  13185. const ggml_binary_op_f32_t fun) {
  13186. const struct ggml_tensor * src0 = dst->src[0];
  13187. switch (src0->type) {
  13188. case GGML_TYPE_F32:
  13189. {
  13190. ggml_compute_forward_map_binary_f32(params, dst, fun);
  13191. } break;
  13192. default:
  13193. {
  13194. GGML_ASSERT(false);
  13195. } break;
  13196. }
  13197. }
  13198. // ggml_compute_forward_map_custom1
  13199. static void ggml_compute_forward_map_custom1_f32(
  13200. const struct ggml_compute_params * params,
  13201. struct ggml_tensor * dst,
  13202. const ggml_custom1_op_f32_t fun) {
  13203. const struct ggml_tensor * a = dst->src[0];
  13204. if (params->ith != 0) {
  13205. return;
  13206. }
  13207. fun(dst, a);
  13208. }
  13209. // ggml_compute_forward_map_custom2
  13210. static void ggml_compute_forward_map_custom2_f32(
  13211. const struct ggml_compute_params * params,
  13212. struct ggml_tensor * dst,
  13213. const ggml_custom2_op_f32_t fun) {
  13214. const struct ggml_tensor * a = dst->src[0];
  13215. const struct ggml_tensor * b = dst->src[1];
  13216. if (params->ith != 0) {
  13217. return;
  13218. }
  13219. fun(dst, a, b);
  13220. }
  13221. // ggml_compute_forward_map_custom3
  13222. static void ggml_compute_forward_map_custom3_f32(
  13223. const struct ggml_compute_params * params,
  13224. struct ggml_tensor * dst,
  13225. const ggml_custom3_op_f32_t fun) {
  13226. const struct ggml_tensor * a = dst->src[0];
  13227. const struct ggml_tensor * b = dst->src[1];
  13228. const struct ggml_tensor * c = dst->src[1];
  13229. if (params->ith != 0) {
  13230. return;
  13231. }
  13232. fun(dst, a, b, c);
  13233. }
  13234. // ggml_compute_forward_map_custom1
  13235. static void ggml_compute_forward_map_custom1(
  13236. const struct ggml_compute_params * params,
  13237. struct ggml_tensor * dst) {
  13238. const struct ggml_tensor * a = dst->src[0];
  13239. struct ggml_map_custom1_op_params p;
  13240. memcpy(&p, dst->op_params, sizeof(p));
  13241. p.fun(dst, a, params->ith, params->nth, p.userdata);
  13242. }
  13243. // ggml_compute_forward_map_custom2
  13244. static void ggml_compute_forward_map_custom2(
  13245. const struct ggml_compute_params * params,
  13246. struct ggml_tensor * dst) {
  13247. const struct ggml_tensor * a = dst->src[0];
  13248. const struct ggml_tensor * b = dst->src[1];
  13249. struct ggml_map_custom2_op_params p;
  13250. memcpy(&p, dst->op_params, sizeof(p));
  13251. p.fun(dst, a, b, params->ith, params->nth, p.userdata);
  13252. }
  13253. // ggml_compute_forward_map_custom3
  13254. static void ggml_compute_forward_map_custom3(
  13255. const struct ggml_compute_params * params,
  13256. struct ggml_tensor * dst) {
  13257. const struct ggml_tensor * a = dst->src[0];
  13258. const struct ggml_tensor * b = dst->src[1];
  13259. const struct ggml_tensor * c = dst->src[2];
  13260. struct ggml_map_custom3_op_params p;
  13261. memcpy(&p, dst->op_params, sizeof(p));
  13262. p.fun(dst, a, b, c, params->ith, params->nth, p.userdata);
  13263. }
  13264. // ggml_compute_forward_cross_entropy_loss
  13265. static void ggml_compute_forward_cross_entropy_loss_f32(
  13266. const struct ggml_compute_params * params,
  13267. struct ggml_tensor * dst) {
  13268. const struct ggml_tensor * src0 = dst->src[0];
  13269. const struct ggml_tensor * src1 = dst->src[1];
  13270. GGML_ASSERT(ggml_is_contiguous(src0));
  13271. GGML_ASSERT(ggml_is_contiguous(src1));
  13272. GGML_ASSERT(ggml_is_scalar(dst));
  13273. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  13274. const int ith = params->ith;
  13275. const int nth = params->nth;
  13276. float * sums = (float *) params->wdata;
  13277. // TODO: handle transposed/permuted matrices
  13278. const int nc = src0->ne[0];
  13279. const int nr = ggml_nrows(src0);
  13280. GGML_ASSERT(params->wsize >= sizeof(float) * (nth + nth * nc));
  13281. if (ith == 0) {
  13282. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  13283. }
  13284. ggml_barrier(params->shared);
  13285. const double eps = 1e-9;
  13286. // rows per thread
  13287. const int dr = (nr + nth - 1)/nth;
  13288. // row range for this thread
  13289. const int ir0 = dr*ith;
  13290. const int ir1 = MIN(ir0 + dr, nr);
  13291. for (int i1 = ir0; i1 < ir1; i1++) {
  13292. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13293. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13294. float * st = ((float *) params->wdata) + nth + ith*nc;
  13295. #ifndef NDEBUG
  13296. for (int i = 0; i < nc; ++i) {
  13297. //printf("p[%d] = %f\n", i, p[i]);
  13298. assert(!isnan(s0[i]));
  13299. assert(!isnan(s1[i]));
  13300. }
  13301. #endif
  13302. // soft_max
  13303. float max = -INFINITY;
  13304. ggml_vec_max_f32(nc, &max, s0);
  13305. ggml_float sum = ggml_vec_soft_max_f32(nc, st, s0, max);
  13306. assert(sum > 0.0);
  13307. sum = (1.0 - eps) / sum;
  13308. // avoid log(0) by rescaling from [0..1] to [eps..1]
  13309. ggml_vec_scale_f32(nc, st, sum);
  13310. ggml_vec_add1_f32(nc, st, st, eps);
  13311. ggml_vec_log_f32(nc, st, st);
  13312. ggml_vec_mul_f32(nc, st, st, s1);
  13313. float st_sum = 0;
  13314. ggml_vec_sum_f32(nc, &st_sum, st);
  13315. sums[ith] += st_sum;
  13316. #ifndef NDEBUG
  13317. for (int i = 0; i < nc; ++i) {
  13318. assert(!isnan(st[i]));
  13319. assert(!isinf(st[i]));
  13320. }
  13321. #endif
  13322. }
  13323. ggml_barrier(params->shared);
  13324. if (ith == 0) {
  13325. float * dp = (float *) dst->data;
  13326. ggml_vec_sum_f32(nth, dp, sums);
  13327. dp[0] *= -1.0f / (float) nr;
  13328. }
  13329. }
  13330. static void ggml_compute_forward_cross_entropy_loss(
  13331. const struct ggml_compute_params * params,
  13332. struct ggml_tensor * dst) {
  13333. const struct ggml_tensor * src0 = dst->src[0];
  13334. switch (src0->type) {
  13335. case GGML_TYPE_F32:
  13336. {
  13337. ggml_compute_forward_cross_entropy_loss_f32(params, dst);
  13338. } break;
  13339. default:
  13340. {
  13341. GGML_ASSERT(false);
  13342. } break;
  13343. }
  13344. }
  13345. // ggml_compute_forward_cross_entropy_loss_back
  13346. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  13347. const struct ggml_compute_params * params,
  13348. struct ggml_tensor * dst) {
  13349. const struct ggml_tensor * src0 = dst->src[0];
  13350. const struct ggml_tensor * src1 = dst->src[1];
  13351. const struct ggml_tensor * opt0 = dst->src[2];
  13352. GGML_ASSERT(ggml_is_contiguous(dst));
  13353. GGML_ASSERT(ggml_is_contiguous(src0));
  13354. GGML_ASSERT(ggml_is_contiguous(src1));
  13355. GGML_ASSERT(ggml_is_contiguous(opt0));
  13356. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  13357. const int64_t ith = params->ith;
  13358. const int64_t nth = params->nth;
  13359. const double eps = 1e-9;
  13360. // TODO: handle transposed/permuted matrices
  13361. const int64_t nc = src0->ne[0];
  13362. const int64_t nr = ggml_nrows(src0);
  13363. // rows per thread
  13364. const int64_t dr = (nr + nth - 1)/nth;
  13365. // row range for this thread
  13366. const int64_t ir0 = dr*ith;
  13367. const int64_t ir1 = MIN(ir0 + dr, nr);
  13368. float * d = (float *) opt0->data;
  13369. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  13370. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  13371. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  13372. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  13373. #ifndef NDEBUG
  13374. for (int i = 0; i < nc; ++i) {
  13375. //printf("p[%d] = %f\n", i, p[i]);
  13376. assert(!isnan(s0[i]));
  13377. assert(!isnan(s1[i]));
  13378. }
  13379. #endif
  13380. // soft_max
  13381. float max = -INFINITY;
  13382. ggml_vec_max_f32(nc, &max, s0);
  13383. ggml_float sum = ggml_vec_soft_max_f32(nc, ds0, s0, max);
  13384. assert(sum > 0.0);
  13385. sum = (1.0 - eps) / sum;
  13386. // grad(src0) = (softmax(src0) - src1) * grad(cross_entropy_loss(src0, src1)) / nr
  13387. ggml_vec_scale_f32(nc, ds0, sum);
  13388. ggml_vec_add1_f32(nc, ds0, ds0, eps);
  13389. ggml_vec_sub_f32(nc, ds0, ds0, s1);
  13390. ggml_vec_scale_f32(nc, ds0, d[0] / (float) nr);
  13391. #ifndef NDEBUG
  13392. for (int i = 0; i < nc; ++i) {
  13393. assert(!isnan(ds0[i]));
  13394. assert(!isinf(ds0[i]));
  13395. }
  13396. #endif
  13397. }
  13398. }
  13399. static void ggml_compute_forward_cross_entropy_loss_back(
  13400. const struct ggml_compute_params * params,
  13401. struct ggml_tensor * dst) {
  13402. const struct ggml_tensor * src0 = dst->src[0];
  13403. switch (src0->type) {
  13404. case GGML_TYPE_F32:
  13405. {
  13406. ggml_compute_forward_cross_entropy_loss_back_f32(params, dst);
  13407. } break;
  13408. default:
  13409. {
  13410. GGML_ASSERT(false);
  13411. } break;
  13412. }
  13413. }
  13414. /////////////////////////////////
  13415. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  13416. GGML_ASSERT(params);
  13417. if (tensor->op == GGML_OP_NONE || ggml_is_empty(tensor)) {
  13418. return;
  13419. }
  13420. switch (tensor->op) {
  13421. case GGML_OP_DUP:
  13422. {
  13423. ggml_compute_forward_dup(params, tensor);
  13424. } break;
  13425. case GGML_OP_ADD:
  13426. {
  13427. ggml_compute_forward_add(params, tensor);
  13428. } break;
  13429. case GGML_OP_ADD1:
  13430. {
  13431. ggml_compute_forward_add1(params, tensor);
  13432. } break;
  13433. case GGML_OP_ACC:
  13434. {
  13435. ggml_compute_forward_acc(params, tensor);
  13436. } break;
  13437. case GGML_OP_SUB:
  13438. {
  13439. ggml_compute_forward_sub(params, tensor);
  13440. } break;
  13441. case GGML_OP_MUL:
  13442. {
  13443. ggml_compute_forward_mul(params, tensor);
  13444. } break;
  13445. case GGML_OP_DIV:
  13446. {
  13447. ggml_compute_forward_div(params, tensor);
  13448. } break;
  13449. case GGML_OP_SQR:
  13450. {
  13451. ggml_compute_forward_sqr(params, tensor);
  13452. } break;
  13453. case GGML_OP_SQRT:
  13454. {
  13455. ggml_compute_forward_sqrt(params, tensor);
  13456. } break;
  13457. case GGML_OP_LOG:
  13458. {
  13459. ggml_compute_forward_log(params, tensor);
  13460. } break;
  13461. case GGML_OP_SUM:
  13462. {
  13463. ggml_compute_forward_sum(params, tensor);
  13464. } break;
  13465. case GGML_OP_SUM_ROWS:
  13466. {
  13467. ggml_compute_forward_sum_rows(params, tensor);
  13468. } break;
  13469. case GGML_OP_MEAN:
  13470. {
  13471. ggml_compute_forward_mean(params, tensor);
  13472. } break;
  13473. case GGML_OP_ARGMAX:
  13474. {
  13475. ggml_compute_forward_argmax(params, tensor);
  13476. } break;
  13477. case GGML_OP_REPEAT:
  13478. {
  13479. ggml_compute_forward_repeat(params, tensor);
  13480. } break;
  13481. case GGML_OP_REPEAT_BACK:
  13482. {
  13483. ggml_compute_forward_repeat_back(params, tensor);
  13484. } break;
  13485. case GGML_OP_CONCAT:
  13486. {
  13487. ggml_compute_forward_concat(params, tensor);
  13488. } break;
  13489. case GGML_OP_SILU_BACK:
  13490. {
  13491. ggml_compute_forward_silu_back(params, tensor);
  13492. } break;
  13493. case GGML_OP_NORM:
  13494. {
  13495. ggml_compute_forward_norm(params, tensor);
  13496. } break;
  13497. case GGML_OP_RMS_NORM:
  13498. {
  13499. ggml_compute_forward_rms_norm(params, tensor);
  13500. } break;
  13501. case GGML_OP_RMS_NORM_BACK:
  13502. {
  13503. ggml_compute_forward_rms_norm_back(params, tensor);
  13504. } break;
  13505. case GGML_OP_GROUP_NORM:
  13506. {
  13507. ggml_compute_forward_group_norm(params, tensor);
  13508. } break;
  13509. case GGML_OP_MUL_MAT:
  13510. {
  13511. ggml_compute_forward_mul_mat(params, tensor);
  13512. } break;
  13513. case GGML_OP_MUL_MAT_ID:
  13514. {
  13515. ggml_compute_forward_mul_mat_id(params, tensor);
  13516. } break;
  13517. case GGML_OP_OUT_PROD:
  13518. {
  13519. ggml_compute_forward_out_prod(params, tensor);
  13520. } break;
  13521. case GGML_OP_SCALE:
  13522. {
  13523. ggml_compute_forward_scale(params, tensor);
  13524. } break;
  13525. case GGML_OP_SET:
  13526. {
  13527. ggml_compute_forward_set(params, tensor);
  13528. } break;
  13529. case GGML_OP_CPY:
  13530. {
  13531. ggml_compute_forward_cpy(params, tensor);
  13532. } break;
  13533. case GGML_OP_CONT:
  13534. {
  13535. ggml_compute_forward_cont(params, tensor);
  13536. } break;
  13537. case GGML_OP_RESHAPE:
  13538. {
  13539. ggml_compute_forward_reshape(params, tensor);
  13540. } break;
  13541. case GGML_OP_VIEW:
  13542. {
  13543. ggml_compute_forward_view(params, tensor);
  13544. } break;
  13545. case GGML_OP_PERMUTE:
  13546. {
  13547. ggml_compute_forward_permute(params, tensor);
  13548. } break;
  13549. case GGML_OP_TRANSPOSE:
  13550. {
  13551. ggml_compute_forward_transpose(params, tensor);
  13552. } break;
  13553. case GGML_OP_GET_ROWS:
  13554. {
  13555. ggml_compute_forward_get_rows(params, tensor);
  13556. } break;
  13557. case GGML_OP_GET_ROWS_BACK:
  13558. {
  13559. ggml_compute_forward_get_rows_back(params, tensor);
  13560. } break;
  13561. case GGML_OP_DIAG:
  13562. {
  13563. ggml_compute_forward_diag(params, tensor);
  13564. } break;
  13565. case GGML_OP_DIAG_MASK_INF:
  13566. {
  13567. ggml_compute_forward_diag_mask_inf(params, tensor);
  13568. } break;
  13569. case GGML_OP_DIAG_MASK_ZERO:
  13570. {
  13571. ggml_compute_forward_diag_mask_zero(params, tensor);
  13572. } break;
  13573. case GGML_OP_SOFT_MAX:
  13574. {
  13575. ggml_compute_forward_soft_max(params, tensor);
  13576. } break;
  13577. case GGML_OP_SOFT_MAX_BACK:
  13578. {
  13579. ggml_compute_forward_soft_max_back(params, tensor);
  13580. } break;
  13581. case GGML_OP_ROPE:
  13582. {
  13583. ggml_compute_forward_rope(params, tensor);
  13584. } break;
  13585. case GGML_OP_ROPE_BACK:
  13586. {
  13587. ggml_compute_forward_rope_back(params, tensor);
  13588. } break;
  13589. case GGML_OP_CLAMP:
  13590. {
  13591. ggml_compute_forward_clamp(params, tensor);
  13592. } break;
  13593. case GGML_OP_CONV_TRANSPOSE_1D:
  13594. {
  13595. ggml_compute_forward_conv_transpose_1d(params, tensor);
  13596. } break;
  13597. case GGML_OP_IM2COL:
  13598. {
  13599. ggml_compute_forward_im2col(params, tensor);
  13600. } break;
  13601. case GGML_OP_CONV_TRANSPOSE_2D:
  13602. {
  13603. ggml_compute_forward_conv_transpose_2d(params, tensor);
  13604. } break;
  13605. case GGML_OP_POOL_1D:
  13606. {
  13607. ggml_compute_forward_pool_1d(params, tensor);
  13608. } break;
  13609. case GGML_OP_POOL_2D:
  13610. {
  13611. ggml_compute_forward_pool_2d(params, tensor);
  13612. } break;
  13613. case GGML_OP_UPSCALE:
  13614. {
  13615. ggml_compute_forward_upscale(params, tensor);
  13616. } break;
  13617. case GGML_OP_PAD:
  13618. {
  13619. ggml_compute_forward_pad(params, tensor);
  13620. } break;
  13621. case GGML_OP_ARANGE:
  13622. {
  13623. ggml_compute_forward_arange(params, tensor);
  13624. } break;
  13625. case GGML_OP_TIMESTEP_EMBEDDING:
  13626. {
  13627. ggml_compute_forward_timestep_embedding(params, tensor);
  13628. } break;
  13629. case GGML_OP_ARGSORT:
  13630. {
  13631. ggml_compute_forward_argsort(params, tensor);
  13632. } break;
  13633. case GGML_OP_LEAKY_RELU:
  13634. {
  13635. ggml_compute_forward_leaky_relu(params, tensor);
  13636. } break;
  13637. case GGML_OP_FLASH_ATTN_EXT:
  13638. {
  13639. ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
  13640. } break;
  13641. case GGML_OP_FLASH_ATTN_BACK:
  13642. {
  13643. int32_t t = ggml_get_op_params_i32(tensor, 0);
  13644. GGML_ASSERT(t == 0 || t == 1);
  13645. bool masked = t != 0;
  13646. ggml_compute_forward_flash_attn_back(params, masked, tensor);
  13647. } break;
  13648. case GGML_OP_SSM_CONV:
  13649. {
  13650. ggml_compute_forward_ssm_conv(params, tensor);
  13651. } break;
  13652. case GGML_OP_SSM_SCAN:
  13653. {
  13654. ggml_compute_forward_ssm_scan(params, tensor);
  13655. } break;
  13656. case GGML_OP_WIN_PART:
  13657. {
  13658. ggml_compute_forward_win_part(params, tensor);
  13659. } break;
  13660. case GGML_OP_WIN_UNPART:
  13661. {
  13662. ggml_compute_forward_win_unpart(params, tensor);
  13663. } break;
  13664. case GGML_OP_UNARY:
  13665. {
  13666. ggml_compute_forward_unary(params, tensor);
  13667. } break;
  13668. case GGML_OP_GET_REL_POS:
  13669. {
  13670. ggml_compute_forward_get_rel_pos(params, tensor);
  13671. } break;
  13672. case GGML_OP_ADD_REL_POS:
  13673. {
  13674. ggml_compute_forward_add_rel_pos(params, tensor);
  13675. } break;
  13676. case GGML_OP_MAP_UNARY:
  13677. {
  13678. ggml_unary_op_f32_t fun;
  13679. memcpy(&fun, tensor->op_params, sizeof(fun));
  13680. ggml_compute_forward_map_unary(params, tensor, fun);
  13681. }
  13682. break;
  13683. case GGML_OP_MAP_BINARY:
  13684. {
  13685. ggml_binary_op_f32_t fun;
  13686. memcpy(&fun, tensor->op_params, sizeof(fun));
  13687. ggml_compute_forward_map_binary(params, tensor, fun);
  13688. }
  13689. break;
  13690. case GGML_OP_MAP_CUSTOM1_F32:
  13691. {
  13692. ggml_custom1_op_f32_t fun;
  13693. memcpy(&fun, tensor->op_params, sizeof(fun));
  13694. ggml_compute_forward_map_custom1_f32(params, tensor, fun);
  13695. }
  13696. break;
  13697. case GGML_OP_MAP_CUSTOM2_F32:
  13698. {
  13699. ggml_custom2_op_f32_t fun;
  13700. memcpy(&fun, tensor->op_params, sizeof(fun));
  13701. ggml_compute_forward_map_custom2_f32(params, tensor, fun);
  13702. }
  13703. break;
  13704. case GGML_OP_MAP_CUSTOM3_F32:
  13705. {
  13706. ggml_custom3_op_f32_t fun;
  13707. memcpy(&fun, tensor->op_params, sizeof(fun));
  13708. ggml_compute_forward_map_custom3_f32(params, tensor, fun);
  13709. }
  13710. break;
  13711. case GGML_OP_MAP_CUSTOM1:
  13712. {
  13713. ggml_compute_forward_map_custom1(params, tensor);
  13714. }
  13715. break;
  13716. case GGML_OP_MAP_CUSTOM2:
  13717. {
  13718. ggml_compute_forward_map_custom2(params, tensor);
  13719. }
  13720. break;
  13721. case GGML_OP_MAP_CUSTOM3:
  13722. {
  13723. ggml_compute_forward_map_custom3(params, tensor);
  13724. }
  13725. break;
  13726. case GGML_OP_CROSS_ENTROPY_LOSS:
  13727. {
  13728. ggml_compute_forward_cross_entropy_loss(params, tensor);
  13729. }
  13730. break;
  13731. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13732. {
  13733. ggml_compute_forward_cross_entropy_loss_back(params, tensor);
  13734. }
  13735. break;
  13736. case GGML_OP_NONE:
  13737. {
  13738. // nop
  13739. } break;
  13740. case GGML_OP_COUNT:
  13741. {
  13742. GGML_ASSERT(false);
  13743. } break;
  13744. }
  13745. }
  13746. ////////////////////////////////////////////////////////////////////////////////
  13747. static size_t ggml_hash_size(size_t min_sz) {
  13748. // next primes after powers of two
  13749. static const size_t primes[] = {
  13750. 2, 3, 5, 11, 17, 37, 67, 131, 257, 521, 1031,
  13751. 2053, 4099, 8209, 16411, 32771, 65537, 131101,
  13752. 262147, 524309, 1048583, 2097169, 4194319, 8388617,
  13753. 16777259, 33554467, 67108879, 134217757, 268435459,
  13754. 536870923, 1073741827, 2147483659
  13755. };
  13756. static const size_t n_primes = sizeof(primes)/sizeof(primes[0]);
  13757. // find the smallest prime that is larger or equal to min_sz
  13758. size_t l = 0;
  13759. size_t r = n_primes;
  13760. while (l < r) {
  13761. size_t m = (l + r)/2;
  13762. if (primes[m] < min_sz) {
  13763. l = m + 1;
  13764. } else {
  13765. r = m;
  13766. }
  13767. }
  13768. size_t sz = l < n_primes ? primes[l] : min_sz | 1;
  13769. return sz;
  13770. }
  13771. static size_t ggml_hash(const void * p) {
  13772. return (size_t)p;
  13773. }
  13774. size_t ggml_hash_find(const struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13775. size_t h = ggml_hash(key) % hash_set.size;
  13776. // linear probing
  13777. size_t i = h;
  13778. while (hash_set.keys[i] != NULL && hash_set.keys[i] != key) {
  13779. i = (i + 1) % hash_set.size;
  13780. if (i == h) {
  13781. // visited all hash table entries -> not found
  13782. return GGML_HASHTABLE_FULL;
  13783. }
  13784. }
  13785. return i;
  13786. }
  13787. bool ggml_hash_contains(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13788. size_t i = ggml_hash_find(hash_set, key);
  13789. return i != GGML_HASHTABLE_FULL && hash_set.keys[i] == key;
  13790. }
  13791. size_t ggml_hash_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13792. size_t i = ggml_hash_find(hash_set, key);
  13793. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13794. if (hash_set.keys[i] == key) {
  13795. return GGML_HASHTABLE_ALREADY_EXISTS;
  13796. }
  13797. // insert
  13798. GGML_ASSERT(hash_set.keys[i] == NULL);
  13799. hash_set.keys[i] = key;
  13800. return i;
  13801. }
  13802. size_t ggml_hash_find_or_insert(struct ggml_hash_set hash_set, struct ggml_tensor * key) {
  13803. size_t i = ggml_hash_find(hash_set, key);
  13804. GGML_ASSERT(i != GGML_HASHTABLE_FULL);
  13805. hash_set.keys[i] = key;
  13806. return i;
  13807. }
  13808. struct ggml_hash_set ggml_hash_set_new(size_t size) {
  13809. size = ggml_hash_size(size);
  13810. struct ggml_hash_set result;
  13811. result.size = size;
  13812. result.keys = GGML_MALLOC(sizeof(struct ggml_tensor *) * size);
  13813. memset(result.keys, 0, sizeof(struct ggml_tensor *) * size);
  13814. return result;
  13815. }
  13816. static void ggml_hash_set_free(struct ggml_hash_set hash_set) {
  13817. GGML_FREE(hash_set.keys);
  13818. }
  13819. struct hash_map {
  13820. struct ggml_hash_set set;
  13821. struct ggml_tensor ** vals;
  13822. };
  13823. static struct hash_map * ggml_new_hash_map(size_t size) {
  13824. struct hash_map * result = GGML_MALLOC(sizeof(struct hash_map));
  13825. result->set = ggml_hash_set_new(size);
  13826. result->vals = GGML_MALLOC(sizeof(struct ggml_tensor *) * result->set.size);
  13827. memset(result->vals, 0, sizeof(struct ggml_tensor *) * result->set.size);
  13828. return result;
  13829. }
  13830. static void ggml_hash_map_free(struct hash_map * map) {
  13831. ggml_hash_set_free(map->set);
  13832. GGML_FREE(map->vals);
  13833. GGML_FREE(map);
  13834. }
  13835. // gradient checkpointing
  13836. static struct ggml_tensor * ggml_recompute_graph_node(
  13837. struct ggml_context * ctx,
  13838. struct ggml_cgraph * graph,
  13839. struct hash_map * replacements,
  13840. struct ggml_tensor * node) {
  13841. if (node == NULL) {
  13842. return NULL;
  13843. }
  13844. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  13845. return node;
  13846. }
  13847. if (!ggml_hash_contains(graph->visited_hash_table, node)) {
  13848. return node;
  13849. }
  13850. int count_children = 0;
  13851. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13852. if (node->src[k]) {
  13853. ++count_children;
  13854. }
  13855. }
  13856. if (count_children == 0) {
  13857. return node;
  13858. }
  13859. size_t i = ggml_hash_find(replacements->set, node);
  13860. GGML_ASSERT(i != GGML_HASHTABLE_FULL); // assert that not full
  13861. if (replacements->set.keys[i] == node) {
  13862. return replacements->vals[i];
  13863. }
  13864. struct ggml_tensor * clone = ggml_new_tensor(ctx, node->type, GGML_MAX_DIMS, node->ne);
  13865. // insert clone into replacements
  13866. GGML_ASSERT(replacements->set.keys[i] == NULL); // assert that we don't overwrite
  13867. replacements->set.keys[i] = node;
  13868. replacements->vals[i] = clone;
  13869. clone->op = node->op;
  13870. clone->grad = node->grad;
  13871. clone->flags = node->flags;
  13872. clone->extra = node->extra;
  13873. for (int k = 0; k < GGML_MAX_DIMS; ++k) {
  13874. clone->nb[k] = node->nb[k];
  13875. }
  13876. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13877. clone->src[k] = ggml_recompute_graph_node(ctx, graph, replacements, node->src[k]);
  13878. }
  13879. if (node->view_src != NULL) {
  13880. clone->data = (node->view_src->data == NULL)
  13881. ? NULL // view_src not yet allocated
  13882. : (char *) node->view_src->data // view_src already allocated
  13883. + node->view_offs;
  13884. clone->view_src = node->view_src;
  13885. clone->view_offs = node->view_offs;
  13886. }
  13887. GGML_ASSERT(sizeof(node->op_params) == sizeof(int32_t) * (GGML_MAX_OP_PARAMS / sizeof(int32_t)));
  13888. GGML_ASSERT(sizeof(node->name) == GGML_MAX_NAME);
  13889. memcpy(clone->op_params, node->op_params, sizeof(node->op_params));
  13890. ggml_format_name(clone, "%s (clone)", ggml_get_name(node));
  13891. return clone;
  13892. }
  13893. void ggml_build_backward_gradient_checkpointing(
  13894. struct ggml_context * ctx,
  13895. struct ggml_cgraph * gf,
  13896. struct ggml_cgraph * gb,
  13897. struct ggml_cgraph * gb_tmp,
  13898. struct ggml_tensor * * checkpoints,
  13899. int n_checkpoints) {
  13900. ggml_graph_cpy(gf, gb_tmp);
  13901. ggml_build_backward_expand(ctx, gf, gb_tmp, true);
  13902. if (n_checkpoints <= 0) {
  13903. ggml_graph_cpy(gb_tmp, gb);
  13904. return;
  13905. }
  13906. struct hash_map * replacements = ggml_new_hash_map(gf->n_nodes + gf->n_leafs + n_checkpoints);
  13907. // insert checkpoints in replacements
  13908. for (int i = 0; i < n_checkpoints; ++i) {
  13909. size_t k = ggml_hash_find(replacements->set, checkpoints[i]);
  13910. GGML_ASSERT(k != GGML_HASHTABLE_FULL); // assert that not full
  13911. GGML_ASSERT(replacements->set.keys[k] == NULL); // assert that we don't overwrite
  13912. replacements->set.keys[k] = checkpoints[i];
  13913. replacements->vals[k] = checkpoints[i];
  13914. }
  13915. ggml_graph_cpy(gf, gb);
  13916. // rewrite gb_tmp->nodes[gf->n_nodes:gb_tmp->n_nodes],
  13917. // replacing references to gb_tmp->nodes[0:gf->n_nodes] ( == gf->nodes[0:gf->n_nodes]),
  13918. // by recomputing them from checkpoints
  13919. for (int i = gf->n_nodes; i<gb_tmp->n_nodes; ++i) {
  13920. struct ggml_tensor * node = gb_tmp->nodes[i];
  13921. for (int k = 0; k < GGML_MAX_SRC; ++k) {
  13922. // insert new tensors recomputing src, reusing already made replacements,
  13923. // remember replacements: remember new tensors with mapping from corresponding gf nodes
  13924. // recurse for input tensors,
  13925. // unless (i.e. terminating when) input tensors are replacements (like checkpoints)
  13926. node->src[k] = ggml_recompute_graph_node(ctx, gf, replacements, node->src[k]);
  13927. }
  13928. // insert rewritten backward node with replacements made into resulting backward graph gb
  13929. ggml_build_forward_expand(gb, node);
  13930. }
  13931. ggml_hash_map_free(replacements);
  13932. }
  13933. // functions to change gradients considering the case that input a might be initial gradient with zero value
  13934. static struct ggml_tensor * ggml_add_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13935. if (ggml_hash_contains(zero_table, a)) {
  13936. return b;
  13937. } else {
  13938. return ggml_add_impl(ctx, a, b, false);
  13939. }
  13940. }
  13941. static struct ggml_tensor * ggml_acc_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, size_t nb1, size_t nb2, size_t nb3, size_t offset, struct ggml_hash_set zero_table) {
  13942. if (ggml_hash_contains(zero_table, a)) {
  13943. struct ggml_tensor * a_zero = ggml_scale(ctx, a, 0.0f);
  13944. return ggml_acc_impl(ctx, a_zero, b, nb1, nb2, nb3, offset, false);
  13945. } else {
  13946. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  13947. }
  13948. }
  13949. static struct ggml_tensor * ggml_add1_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13950. if (ggml_hash_contains(zero_table, a)) {
  13951. return ggml_repeat(ctx, b, a);
  13952. } else {
  13953. return ggml_add1_impl(ctx, a, b, false);
  13954. }
  13955. }
  13956. static struct ggml_tensor * ggml_sub_or_set(struct ggml_context * ctx, struct ggml_tensor * a, struct ggml_tensor * b, struct ggml_hash_set zero_table) {
  13957. if (ggml_hash_contains(zero_table, a)) {
  13958. return ggml_neg(ctx, b);
  13959. } else {
  13960. return ggml_sub_impl(ctx, a, b, false);
  13961. }
  13962. }
  13963. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, struct ggml_hash_set zero_table) {
  13964. struct ggml_tensor * src0 = tensor->src[0];
  13965. struct ggml_tensor * src1 = tensor->src[1];
  13966. struct ggml_tensor * src2 = tensor->src[2];
  13967. switch (tensor->op) {
  13968. case GGML_OP_DUP:
  13969. {
  13970. if (src0->grad) {
  13971. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13972. }
  13973. } break;
  13974. case GGML_OP_ADD:
  13975. {
  13976. if (src0->grad) {
  13977. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13978. }
  13979. if (src1->grad) {
  13980. src1->grad = ggml_add_or_set(ctx, src1->grad, tensor->grad, zero_table);
  13981. }
  13982. } break;
  13983. case GGML_OP_ADD1:
  13984. {
  13985. if (src0->grad) {
  13986. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13987. }
  13988. if (src1->grad) {
  13989. src1->grad = ggml_add_or_set(ctx,
  13990. src1->grad,
  13991. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  13992. zero_table);
  13993. }
  13994. } break;
  13995. case GGML_OP_ACC:
  13996. {
  13997. if (src0->grad) {
  13998. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  13999. }
  14000. if (src1->grad) {
  14001. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14002. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14003. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14004. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14005. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  14006. tensor->grad,
  14007. src1->grad->ne[0],
  14008. src1->grad->ne[1],
  14009. src1->grad->ne[2],
  14010. src1->grad->ne[3],
  14011. nb1, nb2, nb3, offset);
  14012. src1->grad =
  14013. ggml_add_or_set(ctx,
  14014. src1->grad,
  14015. ggml_reshape(ctx,
  14016. ggml_cont(ctx, tensor_grad_view),
  14017. src1->grad),
  14018. zero_table);
  14019. }
  14020. } break;
  14021. case GGML_OP_SUB:
  14022. {
  14023. if (src0->grad) {
  14024. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14025. }
  14026. if (src1->grad) {
  14027. src1->grad = ggml_sub_or_set(ctx, src1->grad, tensor->grad, zero_table);
  14028. }
  14029. } break;
  14030. case GGML_OP_MUL:
  14031. {
  14032. if (src0->grad) {
  14033. src0->grad =
  14034. ggml_add_or_set(ctx,
  14035. src0->grad,
  14036. ggml_mul(ctx, src1, tensor->grad),
  14037. zero_table);
  14038. }
  14039. if (src1->grad) {
  14040. src1->grad =
  14041. ggml_add_or_set(ctx,
  14042. src1->grad,
  14043. ggml_mul(ctx, src0, tensor->grad),
  14044. zero_table);
  14045. }
  14046. } break;
  14047. case GGML_OP_DIV:
  14048. {
  14049. if (src0->grad) {
  14050. src0->grad =
  14051. ggml_add_or_set(ctx,
  14052. src0->grad,
  14053. ggml_div(ctx, tensor->grad, src1),
  14054. zero_table);
  14055. }
  14056. if (src1->grad) {
  14057. src1->grad =
  14058. ggml_sub_or_set(ctx,
  14059. src1->grad,
  14060. ggml_mul(ctx,
  14061. tensor->grad,
  14062. ggml_div(ctx, tensor, src1)),
  14063. zero_table);
  14064. }
  14065. } break;
  14066. case GGML_OP_SQR:
  14067. {
  14068. if (src0->grad) {
  14069. src0->grad =
  14070. ggml_add_or_set(ctx,
  14071. src0->grad,
  14072. ggml_scale(ctx,
  14073. ggml_mul(ctx, src0, tensor->grad),
  14074. 2.0f),
  14075. zero_table);
  14076. }
  14077. } break;
  14078. case GGML_OP_SQRT:
  14079. {
  14080. if (src0->grad) {
  14081. src0->grad =
  14082. ggml_add_or_set(ctx,
  14083. src0->grad,
  14084. ggml_scale(ctx,
  14085. ggml_div(ctx,
  14086. tensor->grad,
  14087. tensor),
  14088. 0.5f),
  14089. zero_table);
  14090. }
  14091. } break;
  14092. case GGML_OP_LOG:
  14093. {
  14094. if (src0->grad) {
  14095. src0->grad =
  14096. ggml_add_or_set(ctx,
  14097. src0->grad,
  14098. ggml_div(ctx,
  14099. tensor->grad,
  14100. src0),
  14101. zero_table);
  14102. }
  14103. } break;
  14104. case GGML_OP_SUM:
  14105. {
  14106. if (src0->grad) {
  14107. src0->grad =
  14108. ggml_add1_or_set(ctx,
  14109. src0->grad,
  14110. tensor->grad,
  14111. zero_table);
  14112. }
  14113. } break;
  14114. case GGML_OP_SUM_ROWS:
  14115. {
  14116. if (src0->grad) {
  14117. src0->grad =
  14118. ggml_add_or_set(ctx,
  14119. src0->grad,
  14120. ggml_repeat(ctx,
  14121. tensor->grad,
  14122. src0->grad),
  14123. zero_table);
  14124. }
  14125. } break;
  14126. case GGML_OP_MEAN:
  14127. case GGML_OP_ARGMAX:
  14128. {
  14129. GGML_ASSERT(false); // TODO: implement
  14130. } break;
  14131. case GGML_OP_REPEAT:
  14132. {
  14133. // necessary for llama
  14134. if (src0->grad) {
  14135. src0->grad = ggml_add_or_set(ctx,
  14136. src0->grad,
  14137. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  14138. zero_table);
  14139. }
  14140. } break;
  14141. case GGML_OP_REPEAT_BACK:
  14142. {
  14143. if (src0->grad) {
  14144. // TODO: test this
  14145. src0->grad = ggml_add_or_set(ctx,
  14146. src0->grad,
  14147. ggml_repeat(ctx, tensor->grad, src0->grad),
  14148. zero_table);
  14149. }
  14150. } break;
  14151. case GGML_OP_CONCAT:
  14152. {
  14153. GGML_ASSERT(false); // TODO: implement
  14154. } break;
  14155. case GGML_OP_SILU_BACK:
  14156. {
  14157. GGML_ASSERT(false); // TODO: not implemented
  14158. } break;
  14159. case GGML_OP_NORM:
  14160. {
  14161. GGML_ASSERT(false); // TODO: not implemented
  14162. } break;
  14163. case GGML_OP_RMS_NORM:
  14164. {
  14165. // necessary for llama
  14166. if (src0->grad) {
  14167. float eps;
  14168. memcpy(&eps, tensor->op_params, sizeof(float));
  14169. src0->grad = ggml_add_or_set(ctx,
  14170. src0->grad,
  14171. ggml_rms_norm_back(ctx, src0, tensor->grad, eps),
  14172. zero_table);
  14173. }
  14174. } break;
  14175. case GGML_OP_RMS_NORM_BACK:
  14176. {
  14177. GGML_ASSERT(false); // TODO: not implemented
  14178. } break;
  14179. case GGML_OP_GROUP_NORM:
  14180. {
  14181. GGML_ASSERT(false); // TODO: not implemented
  14182. } break;
  14183. case GGML_OP_MUL_MAT:
  14184. {
  14185. // https://cs231n.github.io/optimization-2/#staged
  14186. // # forward pass
  14187. // s0 = np.random.randn(5, 10)
  14188. // s1 = np.random.randn(10, 3)
  14189. // t = s0.dot(s1)
  14190. // # now suppose we had the gradient on t from above in the circuit
  14191. // dt = np.random.randn(*t.shape) # same shape as t
  14192. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  14193. // ds1 = t.T.dot(dt)
  14194. // tensor.shape [m,p,qq,rr]
  14195. // src0.shape [n,m,q1,r1]
  14196. // src1.shape [n,p,qq,rr]
  14197. // necessary for llama
  14198. if (src0->grad) {
  14199. struct ggml_tensor * s1_tg =
  14200. ggml_out_prod(ctx, // [n,m,qq,rr]
  14201. src1, // [n,p,qq,rr]
  14202. tensor->grad); // [m,p,qq,rr]
  14203. const int64_t qq = s1_tg->ne[2];
  14204. const int64_t rr = s1_tg->ne[3];
  14205. const int64_t q1 = src0->ne[2];
  14206. const int64_t r1 = src0->ne[3];
  14207. const bool ne2_broadcasted = qq > q1;
  14208. const bool ne3_broadcasted = rr > r1;
  14209. if (ne2_broadcasted || ne3_broadcasted) {
  14210. // sum broadcast repetitions of s1_tg into shape of src0
  14211. s1_tg = ggml_repeat_back(ctx, s1_tg, src0);
  14212. }
  14213. src0->grad =
  14214. ggml_add_or_set(ctx,
  14215. src0->grad, // [n,m,q1,r1]
  14216. s1_tg, // [n,m,q1,r1]
  14217. zero_table);
  14218. }
  14219. if (src1->grad) {
  14220. src1->grad =
  14221. ggml_add_or_set(ctx,
  14222. src1->grad, // [n,p,qq,rr]
  14223. // ggml_mul_mat(ctx, // [n,p,qq,rr]
  14224. // ggml_cont(ctx, // [m,n,q1,r1]
  14225. // ggml_transpose(ctx, src0)), // [m,n,q1,r1]
  14226. // tensor->grad), // [m,p,qq,rr]
  14227. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  14228. // // avoid transpose of src0, rather transpose smaller tensor->grad
  14229. // // and then use ggml_out_prod
  14230. ggml_out_prod(ctx, // [n,p,qq,rr]
  14231. src0, // [n,m,q1,r1]
  14232. ggml_transpose(ctx, // [p,m,qq,rr]
  14233. tensor->grad)), // [m,p,qq,rr]
  14234. zero_table);
  14235. }
  14236. } break;
  14237. case GGML_OP_MUL_MAT_ID:
  14238. {
  14239. GGML_ASSERT(false); // TODO: not implemented
  14240. } break;
  14241. case GGML_OP_OUT_PROD:
  14242. {
  14243. GGML_ASSERT(false); // TODO: not implemented
  14244. } break;
  14245. case GGML_OP_SCALE:
  14246. {
  14247. // necessary for llama
  14248. if (src0->grad) {
  14249. float s;
  14250. memcpy(&s, tensor->op_params, sizeof(float));
  14251. src0->grad =
  14252. ggml_add_or_set(ctx,
  14253. src0->grad,
  14254. ggml_scale_impl(ctx, tensor->grad, s, false),
  14255. zero_table);
  14256. }
  14257. } break;
  14258. case GGML_OP_SET:
  14259. {
  14260. const size_t nb1 = ((int32_t *) tensor->op_params)[0];
  14261. const size_t nb2 = ((int32_t *) tensor->op_params)[1];
  14262. const size_t nb3 = ((int32_t *) tensor->op_params)[2];
  14263. const size_t offset = ((int32_t *) tensor->op_params)[3];
  14264. struct ggml_tensor * tensor_grad_view = NULL;
  14265. if (src0->grad || src1->grad) {
  14266. GGML_ASSERT(src0->type == tensor->type);
  14267. GGML_ASSERT(tensor->grad->type == tensor->type);
  14268. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  14269. tensor_grad_view = ggml_view_4d(ctx,
  14270. tensor->grad,
  14271. src1->grad->ne[0],
  14272. src1->grad->ne[1],
  14273. src1->grad->ne[2],
  14274. src1->grad->ne[3],
  14275. nb1, nb2, nb3, offset);
  14276. }
  14277. if (src0->grad) {
  14278. src0->grad = ggml_add_or_set(ctx,
  14279. src0->grad,
  14280. ggml_acc_impl(ctx,
  14281. tensor->grad,
  14282. ggml_neg(ctx, tensor_grad_view),
  14283. nb1, nb2, nb3, offset, false),
  14284. zero_table);
  14285. }
  14286. if (src1->grad) {
  14287. src1->grad =
  14288. ggml_add_or_set(ctx,
  14289. src1->grad,
  14290. ggml_reshape(ctx,
  14291. ggml_cont(ctx, tensor_grad_view),
  14292. src1->grad),
  14293. zero_table);
  14294. }
  14295. } break;
  14296. case GGML_OP_CPY:
  14297. {
  14298. // necessary for llama
  14299. // cpy overwrites value of src1 by src0 and returns view(src1)
  14300. // the overwriting is mathematically equivalent to:
  14301. // tensor = src0 * 1 + src1 * 0
  14302. if (src0->grad) {
  14303. // dsrc0 = dtensor * 1
  14304. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14305. }
  14306. if (src1->grad) {
  14307. // dsrc1 = dtensor * 0 -> noop
  14308. }
  14309. } break;
  14310. case GGML_OP_CONT:
  14311. {
  14312. // same as cpy
  14313. if (src0->grad) {
  14314. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  14315. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  14316. src0->grad = ggml_add_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14317. }
  14318. } break;
  14319. case GGML_OP_RESHAPE:
  14320. {
  14321. // necessary for llama
  14322. if (src0->grad) {
  14323. src0->grad =
  14324. ggml_add_or_set(ctx, src0->grad,
  14325. ggml_reshape(ctx,
  14326. ggml_is_contiguous(tensor->grad)
  14327. ? tensor->grad
  14328. : ggml_cont(ctx, tensor->grad),
  14329. src0->grad),
  14330. zero_table);
  14331. }
  14332. } break;
  14333. case GGML_OP_VIEW:
  14334. {
  14335. // necessary for llama
  14336. if (src0->grad) {
  14337. size_t offset;
  14338. memcpy(&offset, tensor->op_params, sizeof(offset));
  14339. size_t nb1 = tensor->nb[1];
  14340. size_t nb2 = tensor->nb[2];
  14341. size_t nb3 = tensor->nb[3];
  14342. if (src0->type != src0->grad->type) {
  14343. // gradient is typically F32, but src0 could be other type
  14344. size_t ng = ggml_element_size(src0->grad);
  14345. size_t n0 = ggml_element_size(src0);
  14346. GGML_ASSERT(offset % n0 == 0);
  14347. GGML_ASSERT(nb1 % n0 == 0);
  14348. GGML_ASSERT(nb2 % n0 == 0);
  14349. GGML_ASSERT(nb3 % n0 == 0);
  14350. offset = (offset / n0) * ng;
  14351. nb1 = (nb1 / n0) * ng;
  14352. nb2 = (nb2 / n0) * ng;
  14353. nb3 = (nb3 / n0) * ng;
  14354. }
  14355. src0->grad = ggml_acc_or_set(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, zero_table);
  14356. }
  14357. } break;
  14358. case GGML_OP_PERMUTE:
  14359. {
  14360. // necessary for llama
  14361. if (src0->grad) {
  14362. int32_t * axes = (int32_t *) tensor->op_params;
  14363. int axis0 = axes[0] & 0x3;
  14364. int axis1 = axes[1] & 0x3;
  14365. int axis2 = axes[2] & 0x3;
  14366. int axis3 = axes[3] & 0x3;
  14367. int axes_backward[4] = {0,0,0,0};
  14368. axes_backward[axis0] = 0;
  14369. axes_backward[axis1] = 1;
  14370. axes_backward[axis2] = 2;
  14371. axes_backward[axis3] = 3;
  14372. src0->grad =
  14373. ggml_add_or_set(ctx, src0->grad,
  14374. ggml_permute(ctx,
  14375. tensor->grad,
  14376. axes_backward[0],
  14377. axes_backward[1],
  14378. axes_backward[2],
  14379. axes_backward[3]),
  14380. zero_table);
  14381. }
  14382. } break;
  14383. case GGML_OP_TRANSPOSE:
  14384. {
  14385. // necessary for llama
  14386. if (src0->grad) {
  14387. src0->grad =
  14388. ggml_add_or_set(ctx, src0->grad,
  14389. ggml_transpose(ctx, tensor->grad),
  14390. zero_table);
  14391. }
  14392. } break;
  14393. case GGML_OP_GET_ROWS:
  14394. {
  14395. // necessary for llama (only for tokenizer)
  14396. if (src0->grad) {
  14397. src0->grad =
  14398. ggml_add_or_set(ctx, src0->grad,
  14399. // last ggml_get_rows_back argument src0->grad is only
  14400. // necessary to setup correct output shape
  14401. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  14402. zero_table);
  14403. }
  14404. if (src1->grad) {
  14405. // noop
  14406. }
  14407. } break;
  14408. case GGML_OP_GET_ROWS_BACK:
  14409. {
  14410. GGML_ASSERT(false); // TODO: not implemented
  14411. } break;
  14412. case GGML_OP_DIAG:
  14413. {
  14414. GGML_ASSERT(false); // TODO: not implemented
  14415. } break;
  14416. case GGML_OP_DIAG_MASK_INF:
  14417. {
  14418. // necessary for llama
  14419. if (src0->grad) {
  14420. const int n_past = ((int32_t *) tensor->op_params)[0];
  14421. src0->grad =
  14422. ggml_add_or_set(ctx, src0->grad,
  14423. /* ggml_diag_mask_inf_impl() shouldn't be here */
  14424. /* ref: https://github.com/ggerganov/llama.cpp/pull/4203#discussion_r1412377992 */
  14425. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14426. zero_table);
  14427. }
  14428. } break;
  14429. case GGML_OP_DIAG_MASK_ZERO:
  14430. {
  14431. // necessary for llama
  14432. if (src0->grad) {
  14433. const int n_past = ((int32_t *) tensor->op_params)[0];
  14434. src0->grad =
  14435. ggml_add_or_set(ctx, src0->grad,
  14436. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  14437. zero_table);
  14438. }
  14439. } break;
  14440. case GGML_OP_SOFT_MAX:
  14441. {
  14442. // necessary for llama
  14443. if (src0->grad) {
  14444. src0->grad =
  14445. ggml_add_or_set(ctx, src0->grad,
  14446. ggml_soft_max_back(ctx, tensor->grad, tensor),
  14447. zero_table);
  14448. }
  14449. } break;
  14450. case GGML_OP_SOFT_MAX_BACK:
  14451. {
  14452. GGML_ASSERT(false); // TODO: not implemented
  14453. } break;
  14454. case GGML_OP_ROPE:
  14455. {
  14456. // necessary for llama
  14457. if (src0->grad) {
  14458. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14459. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14460. const int mode = ((int32_t *) tensor->op_params)[2];
  14461. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14462. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14463. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14464. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14465. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14466. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14467. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14468. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14469. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14470. src0->grad = ggml_add_or_set(ctx,
  14471. src0->grad,
  14472. ggml_rope_back(ctx,
  14473. tensor->grad,
  14474. src1,
  14475. src2,
  14476. n_dims,
  14477. mode,
  14478. n_ctx_orig,
  14479. freq_base,
  14480. freq_scale,
  14481. ext_factor,
  14482. attn_factor,
  14483. beta_fast,
  14484. beta_slow),
  14485. zero_table);
  14486. }
  14487. } break;
  14488. case GGML_OP_ROPE_BACK:
  14489. {
  14490. if (src0->grad) {
  14491. //const int n_past = ((int32_t *) tensor->op_params)[0];
  14492. const int n_dims = ((int32_t *) tensor->op_params)[1];
  14493. const int mode = ((int32_t *) tensor->op_params)[2];
  14494. //const int n_ctx = ((int32_t *) tensor->op_params)[3];
  14495. const int n_ctx_orig = ((int32_t *) tensor->op_params)[4];
  14496. float freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow;
  14497. memcpy(&freq_base, (int32_t *) tensor->op_params + 5, sizeof(float));
  14498. memcpy(&freq_scale, (int32_t *) tensor->op_params + 6, sizeof(float));
  14499. memcpy(&ext_factor, (int32_t *) tensor->op_params + 7, sizeof(float));
  14500. memcpy(&attn_factor, (int32_t *) tensor->op_params + 8, sizeof(float));
  14501. memcpy(&beta_fast, (int32_t *) tensor->op_params + 9, sizeof(float));
  14502. memcpy(&beta_slow, (int32_t *) tensor->op_params + 10, sizeof(float));
  14503. src0->grad = ggml_add_or_set(ctx,
  14504. src0->grad,
  14505. ggml_rope_impl(ctx,
  14506. tensor->grad,
  14507. src1,
  14508. src2,
  14509. n_dims,
  14510. mode,
  14511. n_ctx_orig,
  14512. freq_base,
  14513. freq_scale,
  14514. ext_factor,
  14515. attn_factor,
  14516. beta_fast,
  14517. beta_slow,
  14518. false),
  14519. zero_table);
  14520. }
  14521. } break;
  14522. case GGML_OP_CLAMP:
  14523. {
  14524. GGML_ASSERT(false); // TODO: not implemented
  14525. } break;
  14526. case GGML_OP_CONV_TRANSPOSE_1D:
  14527. {
  14528. GGML_ASSERT(false); // TODO: not implemented
  14529. } break;
  14530. case GGML_OP_IM2COL:
  14531. {
  14532. GGML_ASSERT(false); // TODO: not implemented
  14533. } break;
  14534. case GGML_OP_CONV_TRANSPOSE_2D:
  14535. {
  14536. GGML_ASSERT(false); // TODO: not implemented
  14537. } break;
  14538. case GGML_OP_POOL_1D:
  14539. {
  14540. GGML_ASSERT(false); // TODO: not implemented
  14541. } break;
  14542. case GGML_OP_POOL_2D:
  14543. {
  14544. GGML_ASSERT(false); // TODO: not implemented
  14545. } break;
  14546. case GGML_OP_UPSCALE:
  14547. {
  14548. GGML_ASSERT(false); // TODO: not implemented
  14549. } break;
  14550. case GGML_OP_PAD:
  14551. {
  14552. GGML_ASSERT(false); // TODO: not implemented
  14553. } break;
  14554. case GGML_OP_ARANGE:
  14555. {
  14556. GGML_ASSERT(false); // TODO: not implemented
  14557. } break;
  14558. case GGML_OP_TIMESTEP_EMBEDDING:
  14559. {
  14560. GGML_ASSERT(false); // TODO: not implemented
  14561. } break;
  14562. case GGML_OP_ARGSORT:
  14563. {
  14564. GGML_ASSERT(false); // TODO: not implemented
  14565. } break;
  14566. case GGML_OP_LEAKY_RELU:
  14567. {
  14568. GGML_ASSERT(false); // TODO: not implemented
  14569. } break;
  14570. case GGML_OP_FLASH_ATTN_EXT:
  14571. {
  14572. struct ggml_tensor * flash_grad = NULL;
  14573. if (src0->grad || src1->grad || tensor->src[2]->grad) {
  14574. int32_t t = ggml_get_op_params_i32(tensor, 0);
  14575. GGML_ASSERT(t == 0 || t == 1);
  14576. bool masked = t != 0;
  14577. flash_grad =
  14578. ggml_flash_attn_back(ctx,
  14579. src0,
  14580. src1,
  14581. tensor->src[2],
  14582. tensor->grad,
  14583. masked);
  14584. }
  14585. const int64_t elem_q = ggml_nelements(src0);
  14586. const int64_t elem_k = ggml_nelements(src1);
  14587. const int64_t elem_v = ggml_nelements(src2);
  14588. enum ggml_type result_type = flash_grad->type;
  14589. GGML_ASSERT(ggml_blck_size(result_type) == 1);
  14590. const size_t tsize = ggml_type_size(result_type);
  14591. const size_t offs_q = 0;
  14592. const size_t offs_k = offs_q + GGML_PAD(elem_q * tsize, GGML_MEM_ALIGN);
  14593. const size_t offs_v = offs_k + GGML_PAD(elem_k * tsize, GGML_MEM_ALIGN);
  14594. if (src0->grad) {
  14595. struct ggml_tensor * view_q = ggml_view_1d(ctx, flash_grad, elem_q, offs_q);
  14596. struct ggml_tensor * grad_q = ggml_reshape(ctx, view_q, src0);
  14597. src0->grad = ggml_add_or_set(ctx,
  14598. src0->grad,
  14599. grad_q,
  14600. zero_table);
  14601. }
  14602. if (src1->grad) {
  14603. struct ggml_tensor * view_k = ggml_view_1d(ctx, flash_grad, elem_k, offs_k);
  14604. struct ggml_tensor * grad_k = ggml_reshape(ctx, view_k, src1);
  14605. src1->grad = ggml_add_or_set(ctx,
  14606. src1->grad,
  14607. grad_k,
  14608. zero_table);
  14609. }
  14610. if (src2->grad) {
  14611. struct ggml_tensor * view_v = ggml_view_1d(ctx, flash_grad, elem_v, offs_v);
  14612. struct ggml_tensor * grad_v = ggml_reshape(ctx, view_v, src2);
  14613. src2->grad = ggml_add_or_set(ctx,
  14614. src2->grad,
  14615. grad_v,
  14616. zero_table);
  14617. }
  14618. } break;
  14619. case GGML_OP_FLASH_ATTN_BACK:
  14620. {
  14621. GGML_ASSERT(false); // not supported
  14622. } break;
  14623. case GGML_OP_SSM_CONV:
  14624. case GGML_OP_SSM_SCAN:
  14625. {
  14626. GGML_ASSERT(false); // TODO: not implemented
  14627. } break;
  14628. case GGML_OP_WIN_PART:
  14629. case GGML_OP_WIN_UNPART:
  14630. case GGML_OP_UNARY:
  14631. {
  14632. switch (ggml_get_unary_op(tensor)) {
  14633. case GGML_UNARY_OP_ABS:
  14634. {
  14635. if (src0->grad) {
  14636. src0->grad =
  14637. ggml_add_or_set(ctx,
  14638. src0->grad,
  14639. ggml_mul(ctx,
  14640. ggml_sgn(ctx, src0),
  14641. tensor->grad),
  14642. zero_table);
  14643. }
  14644. } break;
  14645. case GGML_UNARY_OP_SGN:
  14646. {
  14647. if (src0->grad) {
  14648. // noop
  14649. }
  14650. } break;
  14651. case GGML_UNARY_OP_NEG:
  14652. {
  14653. if (src0->grad) {
  14654. src0->grad = ggml_sub_or_set(ctx, src0->grad, tensor->grad, zero_table);
  14655. }
  14656. } break;
  14657. case GGML_UNARY_OP_STEP:
  14658. {
  14659. if (src0->grad) {
  14660. // noop
  14661. }
  14662. } break;
  14663. case GGML_UNARY_OP_TANH:
  14664. {
  14665. GGML_ASSERT(false); // TODO: not implemented
  14666. } break;
  14667. case GGML_UNARY_OP_ELU:
  14668. {
  14669. GGML_ASSERT(false); // TODO: not implemented
  14670. } break;
  14671. case GGML_UNARY_OP_RELU:
  14672. {
  14673. if (src0->grad) {
  14674. src0->grad = ggml_add_or_set(ctx,
  14675. src0->grad,
  14676. ggml_mul(ctx,
  14677. ggml_step(ctx, src0),
  14678. tensor->grad),
  14679. zero_table);
  14680. }
  14681. } break;
  14682. case GGML_UNARY_OP_SIGMOID:
  14683. {
  14684. GGML_ASSERT(false); // TODO: not implemented
  14685. } break;
  14686. case GGML_UNARY_OP_GELU:
  14687. {
  14688. GGML_ASSERT(false); // TODO: not implemented
  14689. } break;
  14690. case GGML_UNARY_OP_GELU_QUICK:
  14691. {
  14692. GGML_ASSERT(false); // TODO: not implemented
  14693. } break;
  14694. case GGML_UNARY_OP_SILU:
  14695. {
  14696. // necessary for llama
  14697. if (src0->grad) {
  14698. src0->grad = ggml_add_or_set(ctx,
  14699. src0->grad,
  14700. ggml_silu_back(ctx, src0, tensor->grad),
  14701. zero_table);
  14702. }
  14703. } break;
  14704. default:
  14705. GGML_ASSERT(false);
  14706. }
  14707. } break;
  14708. case GGML_OP_GET_REL_POS:
  14709. case GGML_OP_ADD_REL_POS:
  14710. case GGML_OP_MAP_UNARY:
  14711. case GGML_OP_MAP_BINARY:
  14712. case GGML_OP_MAP_CUSTOM1_F32:
  14713. case GGML_OP_MAP_CUSTOM2_F32:
  14714. case GGML_OP_MAP_CUSTOM3_F32:
  14715. case GGML_OP_MAP_CUSTOM1:
  14716. case GGML_OP_MAP_CUSTOM2:
  14717. case GGML_OP_MAP_CUSTOM3:
  14718. {
  14719. GGML_ASSERT(false); // not supported
  14720. } break;
  14721. case GGML_OP_CROSS_ENTROPY_LOSS:
  14722. {
  14723. if (src0->grad) {
  14724. src0->grad = ggml_add_or_set(ctx,
  14725. src0->grad,
  14726. ggml_cross_entropy_loss_back(ctx,
  14727. src0,
  14728. src1,
  14729. tensor->grad),
  14730. zero_table);
  14731. }
  14732. } break;
  14733. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14734. {
  14735. GGML_ASSERT(false); // not supported
  14736. } break;
  14737. case GGML_OP_NONE:
  14738. {
  14739. // nop
  14740. } break;
  14741. case GGML_OP_COUNT:
  14742. {
  14743. GGML_ASSERT(false);
  14744. } break;
  14745. }
  14746. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14747. if (tensor->src[i] && tensor->src[i]->grad) {
  14748. GGML_ASSERT(ggml_are_same_shape(tensor->src[i], tensor->src[i]->grad));
  14749. }
  14750. }
  14751. }
  14752. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  14753. if (node->grad == NULL) {
  14754. // this usually happens when we generate intermediate nodes from constants in the backward pass
  14755. // it can also happen during forward pass, if the user performs computations with constants
  14756. if (node->op != GGML_OP_NONE) {
  14757. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  14758. }
  14759. }
  14760. // check if already visited
  14761. if (ggml_hash_insert(cgraph->visited_hash_table, node) == GGML_HASHTABLE_ALREADY_EXISTS) {
  14762. return;
  14763. }
  14764. for (int i = 0; i < GGML_MAX_SRC; ++i) {
  14765. const int k =
  14766. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT) ? i :
  14767. (cgraph->order == GGML_CGRAPH_EVAL_ORDER_RIGHT_TO_LEFT) ? (GGML_MAX_SRC-1-i) :
  14768. /* unknown order, just fall back to using i*/ i;
  14769. if (node->src[k]) {
  14770. ggml_visit_parents(cgraph, node->src[k]);
  14771. }
  14772. }
  14773. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  14774. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  14775. GGML_ASSERT(cgraph->n_leafs < cgraph->size);
  14776. if (strlen(node->name) == 0) {
  14777. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  14778. }
  14779. cgraph->leafs[cgraph->n_leafs] = node;
  14780. cgraph->n_leafs++;
  14781. } else {
  14782. GGML_ASSERT(cgraph->n_nodes < cgraph->size);
  14783. if (strlen(node->name) == 0) {
  14784. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  14785. }
  14786. cgraph->nodes[cgraph->n_nodes] = node;
  14787. if (cgraph->grads) {
  14788. cgraph->grads[cgraph->n_nodes] = node->grad;
  14789. }
  14790. cgraph->n_nodes++;
  14791. }
  14792. }
  14793. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  14794. if (!expand) {
  14795. // TODO: this branch isn't accessible anymore, maybe move this to ggml_build_forward_expand
  14796. ggml_graph_clear(cgraph);
  14797. }
  14798. const int n0 = cgraph->n_nodes;
  14799. UNUSED(n0);
  14800. ggml_visit_parents(cgraph, tensor);
  14801. const int n_new = cgraph->n_nodes - n0;
  14802. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  14803. if (n_new > 0) {
  14804. // the last added node should always be starting point
  14805. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  14806. }
  14807. }
  14808. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  14809. ggml_build_forward_impl(cgraph, tensor, true);
  14810. }
  14811. void ggml_build_backward_expand(struct ggml_context * ctx, struct ggml_cgraph * gf, struct ggml_cgraph * gb, bool keep) {
  14812. GGML_ASSERT(gf->n_nodes > 0);
  14813. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  14814. if (keep) {
  14815. for (int i = 0; i < gf->n_nodes; i++) {
  14816. struct ggml_tensor * node = gf->nodes[i];
  14817. if (node->grad) {
  14818. node->grad = ggml_dup_tensor(ctx, node);
  14819. gf->grads[i] = node->grad;
  14820. }
  14821. }
  14822. }
  14823. // remember original gradients which start with zero values
  14824. struct ggml_hash_set zero_table = ggml_hash_set_new(gf->size);
  14825. for (int i = 0; i < gf->n_nodes; i++) {
  14826. if (gf->grads[i]) {
  14827. ggml_hash_insert(zero_table, gf->grads[i]);
  14828. }
  14829. }
  14830. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  14831. struct ggml_tensor * node = gf->nodes[i];
  14832. // inplace operations to add gradients are not created by ggml_compute_backward
  14833. // use allocator to automatically make inplace operations
  14834. if (node->grad) {
  14835. ggml_compute_backward(ctx, node, zero_table);
  14836. }
  14837. }
  14838. for (int i = 0; i < gf->n_nodes; i++) {
  14839. struct ggml_tensor * node = gf->nodes[i];
  14840. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  14841. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  14842. ggml_build_forward_expand(gb, node->grad);
  14843. }
  14844. }
  14845. ggml_hash_set_free(zero_table);
  14846. }
  14847. static size_t ggml_graph_nbytes(size_t size, bool grads) {
  14848. size_t nbytes = sizeof(struct ggml_cgraph);
  14849. nbytes += size * sizeof(struct ggml_tensor *) * 2; // leafs + nodes
  14850. if (grads) {
  14851. nbytes += size * sizeof(struct ggml_tensor *); // grads
  14852. }
  14853. nbytes += ggml_hash_size(size * 2) * sizeof(struct ggml_tensor *); // hash set
  14854. return nbytes;
  14855. }
  14856. size_t ggml_graph_overhead_custom(size_t size, bool grads) {
  14857. return GGML_OBJECT_SIZE + GGML_PAD(ggml_graph_nbytes(size, grads), GGML_MEM_ALIGN);
  14858. }
  14859. size_t ggml_graph_overhead(void) {
  14860. return ggml_graph_overhead_custom(GGML_DEFAULT_GRAPH_SIZE, false);
  14861. }
  14862. struct ggml_cgraph * ggml_new_graph_custom(struct ggml_context * ctx, size_t size, bool grads) {
  14863. const size_t obj_size = ggml_graph_nbytes(size, grads);
  14864. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_GRAPH, obj_size);
  14865. struct ggml_cgraph * cgraph = (struct ggml_cgraph *) ((char *) ctx->mem_buffer + obj->offs);
  14866. struct ggml_tensor ** data_start = (struct ggml_tensor **) (cgraph + 1);
  14867. size_t hash_size = ggml_hash_size(size * 2);
  14868. struct ggml_tensor ** nodes_ptr = data_start;
  14869. struct ggml_tensor ** leafs_ptr = nodes_ptr + size;
  14870. struct ggml_tensor ** hash_keys_ptr = leafs_ptr + size;
  14871. struct ggml_tensor ** grads_ptr = grads ? hash_keys_ptr + hash_size : NULL;
  14872. // check that we allocated the correct amount of memory
  14873. assert(obj_size == (size_t) (
  14874. (grads ? (char *)(grads_ptr + size) : (char *)(hash_keys_ptr + hash_size)) - (char *)cgraph));
  14875. memset(hash_keys_ptr, 0, hash_size * sizeof(struct ggml_tensor *));
  14876. *cgraph = (struct ggml_cgraph) {
  14877. /*.size =*/ size,
  14878. /*.n_nodes =*/ 0,
  14879. /*.n_leafs =*/ 0,
  14880. /*.nodes =*/ nodes_ptr,
  14881. /*.grads =*/ grads_ptr,
  14882. /*.leafs =*/ leafs_ptr,
  14883. /*.hash_table =*/ { hash_size, hash_keys_ptr },
  14884. /*.order =*/ GGML_CGRAPH_EVAL_ORDER_LEFT_TO_RIGHT,
  14885. };
  14886. return cgraph;
  14887. }
  14888. struct ggml_cgraph * ggml_new_graph(struct ggml_context * ctx) {
  14889. return ggml_new_graph_custom(ctx, GGML_DEFAULT_GRAPH_SIZE, false);
  14890. }
  14891. struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph0, int i0, int i1) {
  14892. struct ggml_cgraph cgraph = {
  14893. /*.size =*/ 0,
  14894. /*.n_nodes =*/ i1 - i0,
  14895. /*.n_leafs =*/ 0,
  14896. /*.nodes =*/ cgraph0->nodes + i0,
  14897. /*.grads =*/ cgraph0->grads ? cgraph0->grads + i0 : NULL,
  14898. /*.leafs =*/ NULL,
  14899. /*.hash_table =*/ { 0, NULL },
  14900. /*.order =*/ cgraph0->order,
  14901. };
  14902. return cgraph;
  14903. }
  14904. void ggml_graph_cpy(struct ggml_cgraph * src, struct ggml_cgraph * dst) {
  14905. GGML_ASSERT(dst->size >= src->n_leafs);
  14906. GGML_ASSERT(dst->size >= src->n_nodes);
  14907. GGML_ASSERT(dst->visited_hash_table.size >= src->visited_hash_table.size);
  14908. dst->n_leafs = src->n_leafs;
  14909. dst->n_nodes = src->n_nodes;
  14910. dst->order = src->order;
  14911. for (int i = 0; i < src->n_leafs; ++i) {
  14912. dst->leafs[i] = src->leafs[i];
  14913. }
  14914. for (int i = 0; i < src->n_nodes; ++i) {
  14915. dst->nodes[i] = src->nodes[i];
  14916. }
  14917. if (src->grads) {
  14918. GGML_ASSERT(dst->grads != NULL);
  14919. for (int i = 0; i < src->n_nodes; ++i) {
  14920. dst->grads[i] = src->grads[i];
  14921. }
  14922. }
  14923. for (size_t i = 0; i < src->visited_hash_table.size; ++i) {
  14924. if (src->visited_hash_table.keys[i]) {
  14925. ggml_hash_insert(dst->visited_hash_table, src->visited_hash_table.keys[i]);
  14926. }
  14927. }
  14928. }
  14929. struct ggml_cgraph * ggml_graph_dup(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  14930. struct ggml_cgraph * result = ggml_new_graph_custom(ctx, cgraph->size, cgraph->grads != NULL);
  14931. ggml_graph_cpy(cgraph, result);
  14932. return result;
  14933. }
  14934. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14935. GGML_ASSERT(cgraph->grads != NULL);
  14936. for (int i = 0; i < cgraph->n_nodes; i++) {
  14937. struct ggml_tensor * grad = cgraph->grads[i];
  14938. if (grad) {
  14939. ggml_set_zero(grad);
  14940. }
  14941. }
  14942. }
  14943. void ggml_graph_clear(struct ggml_cgraph * cgraph) {
  14944. cgraph->n_leafs = 0;
  14945. cgraph->n_nodes = 0;
  14946. memset(cgraph->visited_hash_table.keys, 0, cgraph->visited_hash_table.size * sizeof(struct ggml_tensor *));
  14947. }
  14948. //
  14949. // thread data
  14950. //
  14951. // synchronization is done via busy loops
  14952. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  14953. //
  14954. #ifdef __APPLE__
  14955. //#include <os/lock.h>
  14956. //
  14957. //typedef os_unfair_lock ggml_lock_t;
  14958. //
  14959. //#define ggml_lock_init(x) UNUSED(x)
  14960. //#define ggml_lock_destroy(x) UNUSED(x)
  14961. //#define ggml_lock_lock os_unfair_lock_lock
  14962. //#define ggml_lock_unlock os_unfair_lock_unlock
  14963. //
  14964. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  14965. typedef int ggml_lock_t;
  14966. #define ggml_lock_init(x) UNUSED(x)
  14967. #define ggml_lock_destroy(x) UNUSED(x)
  14968. #define ggml_lock_lock(x) UNUSED(x)
  14969. #define ggml_lock_unlock(x) UNUSED(x)
  14970. #define GGML_LOCK_INITIALIZER 0
  14971. #define ggml_thread_create pthread_create
  14972. #define ggml_thread_join pthread_join
  14973. #else
  14974. //typedef pthread_spinlock_t ggml_lock_t;
  14975. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  14976. //#define ggml_lock_destroy pthread_spin_destroy
  14977. //#define ggml_lock_lock pthread_spin_lock
  14978. //#define ggml_lock_unlock pthread_spin_unlock
  14979. typedef int ggml_lock_t;
  14980. #define ggml_lock_init(x) UNUSED(x)
  14981. #define ggml_lock_destroy(x) UNUSED(x)
  14982. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  14983. #define ggml_lock_lock(x) _mm_pause()
  14984. #else
  14985. #define ggml_lock_lock(x) UNUSED(x)
  14986. #endif
  14987. #define ggml_lock_unlock(x) UNUSED(x)
  14988. #define GGML_LOCK_INITIALIZER 0
  14989. #define ggml_thread_create pthread_create
  14990. #define ggml_thread_join pthread_join
  14991. #endif
  14992. // Android's libc implementation "bionic" does not support setting affinity
  14993. #if defined(__gnu_linux__)
  14994. static void set_numa_thread_affinity(int thread_n) {
  14995. if (!ggml_is_numa()) {
  14996. return;
  14997. }
  14998. int node_num;
  14999. int rv;
  15000. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15001. switch(g_state.numa.numa_strategy) {
  15002. case GGML_NUMA_STRATEGY_DISTRIBUTE:
  15003. // run thread on node_num thread_n / (threads per node)
  15004. node_num = thread_n % g_state.numa.n_nodes;
  15005. break;
  15006. case GGML_NUMA_STRATEGY_ISOLATE:
  15007. // run thread on current_node
  15008. node_num = g_state.numa.current_node;
  15009. break;
  15010. case GGML_NUMA_STRATEGY_NUMACTL:
  15011. // use the cpuset that numactl gave us
  15012. rv = pthread_setaffinity_np(pthread_self(), setsize, &g_state.numa.cpuset);
  15013. if (rv) {
  15014. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",strerror(rv));
  15015. }
  15016. return;
  15017. default:
  15018. return;
  15019. }
  15020. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  15021. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15022. CPU_ZERO_S(setsize, cpus);
  15023. for (size_t i = 0; i < node->n_cpus; ++i) {
  15024. CPU_SET_S(node->cpus[i], setsize, cpus);
  15025. }
  15026. rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15027. if (rv) {
  15028. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15029. }
  15030. CPU_FREE(cpus);
  15031. }
  15032. static void clear_numa_thread_affinity(void) {
  15033. if (!ggml_is_numa()) {
  15034. return;
  15035. }
  15036. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  15037. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  15038. CPU_ZERO_S(setsize, cpus);
  15039. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  15040. CPU_SET_S(i, setsize, cpus);
  15041. }
  15042. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  15043. if (rv) {
  15044. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n", strerror(rv));
  15045. }
  15046. CPU_FREE(cpus);
  15047. }
  15048. #else
  15049. // TODO: Windows etc.
  15050. // (the linux implementation may also work on BSD, someone should test)
  15051. static void set_numa_thread_affinity(int thread_n) { UNUSED(thread_n); }
  15052. static void clear_numa_thread_affinity(void) {}
  15053. #endif
  15054. static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) {
  15055. int n_tasks = 0;
  15056. if (ggml_is_empty(node)) {
  15057. // no need to multi-thread a no-op
  15058. n_tasks = 1;
  15059. return n_tasks;
  15060. }
  15061. switch (node->op) {
  15062. case GGML_OP_CPY:
  15063. case GGML_OP_DUP:
  15064. case GGML_OP_CONT:
  15065. case GGML_OP_ADD:
  15066. case GGML_OP_ADD1:
  15067. case GGML_OP_ACC:
  15068. {
  15069. n_tasks = n_threads;
  15070. } break;
  15071. case GGML_OP_SUB:
  15072. case GGML_OP_SQR:
  15073. case GGML_OP_SQRT:
  15074. case GGML_OP_LOG:
  15075. case GGML_OP_SUM:
  15076. case GGML_OP_SUM_ROWS:
  15077. case GGML_OP_MEAN:
  15078. case GGML_OP_ARGMAX:
  15079. case GGML_OP_REPEAT:
  15080. case GGML_OP_REPEAT_BACK:
  15081. case GGML_OP_LEAKY_RELU:
  15082. {
  15083. n_tasks = 1;
  15084. } break;
  15085. case GGML_OP_UNARY:
  15086. switch (ggml_get_unary_op(node)) {
  15087. case GGML_UNARY_OP_ABS:
  15088. case GGML_UNARY_OP_SGN:
  15089. case GGML_UNARY_OP_NEG:
  15090. case GGML_UNARY_OP_STEP:
  15091. case GGML_UNARY_OP_TANH:
  15092. case GGML_UNARY_OP_ELU:
  15093. case GGML_UNARY_OP_RELU:
  15094. case GGML_UNARY_OP_SIGMOID:
  15095. case GGML_UNARY_OP_HARDSWISH:
  15096. case GGML_UNARY_OP_HARDSIGMOID:
  15097. {
  15098. n_tasks = 1;
  15099. } break;
  15100. case GGML_UNARY_OP_GELU:
  15101. case GGML_UNARY_OP_GELU_QUICK:
  15102. case GGML_UNARY_OP_SILU:
  15103. {
  15104. n_tasks = n_threads;
  15105. } break;
  15106. default:
  15107. GGML_ASSERT(false);
  15108. }
  15109. break;
  15110. case GGML_OP_SILU_BACK:
  15111. case GGML_OP_MUL:
  15112. case GGML_OP_DIV:
  15113. case GGML_OP_NORM:
  15114. case GGML_OP_RMS_NORM:
  15115. case GGML_OP_RMS_NORM_BACK:
  15116. case GGML_OP_GROUP_NORM:
  15117. case GGML_OP_CONCAT:
  15118. case GGML_OP_MUL_MAT:
  15119. case GGML_OP_MUL_MAT_ID:
  15120. case GGML_OP_OUT_PROD:
  15121. {
  15122. n_tasks = n_threads;
  15123. } break;
  15124. case GGML_OP_GET_ROWS:
  15125. {
  15126. // FIXME: get_rows can use additional threads, but the cost of launching additional threads
  15127. // decreases performance with GPU offloading
  15128. //n_tasks = n_threads;
  15129. n_tasks = 1;
  15130. } break;
  15131. case GGML_OP_SCALE:
  15132. case GGML_OP_SET:
  15133. case GGML_OP_RESHAPE:
  15134. case GGML_OP_VIEW:
  15135. case GGML_OP_PERMUTE:
  15136. case GGML_OP_TRANSPOSE:
  15137. case GGML_OP_GET_ROWS_BACK:
  15138. case GGML_OP_DIAG:
  15139. {
  15140. n_tasks = 1;
  15141. } break;
  15142. case GGML_OP_DIAG_MASK_ZERO:
  15143. case GGML_OP_DIAG_MASK_INF:
  15144. case GGML_OP_SOFT_MAX_BACK:
  15145. case GGML_OP_ROPE:
  15146. case GGML_OP_ROPE_BACK:
  15147. case GGML_OP_ADD_REL_POS:
  15148. {
  15149. n_tasks = n_threads;
  15150. } break;
  15151. case GGML_OP_CLAMP:
  15152. {
  15153. n_tasks = 1; //TODO
  15154. } break;
  15155. case GGML_OP_SOFT_MAX:
  15156. {
  15157. n_tasks = MIN(n_threads, ggml_nrows(node->src[0]));
  15158. } break;
  15159. case GGML_OP_IM2COL:
  15160. case GGML_OP_CONV_TRANSPOSE_1D:
  15161. case GGML_OP_CONV_TRANSPOSE_2D:
  15162. {
  15163. n_tasks = n_threads;
  15164. } break;
  15165. case GGML_OP_POOL_1D:
  15166. case GGML_OP_POOL_2D:
  15167. {
  15168. n_tasks = 1;
  15169. } break;
  15170. case GGML_OP_UPSCALE:
  15171. case GGML_OP_PAD:
  15172. case GGML_OP_ARANGE:
  15173. case GGML_OP_TIMESTEP_EMBEDDING:
  15174. case GGML_OP_ARGSORT:
  15175. case GGML_OP_FLASH_ATTN_EXT:
  15176. case GGML_OP_FLASH_ATTN_BACK:
  15177. case GGML_OP_SSM_CONV:
  15178. case GGML_OP_SSM_SCAN:
  15179. {
  15180. n_tasks = n_threads;
  15181. } break;
  15182. case GGML_OP_WIN_PART:
  15183. case GGML_OP_WIN_UNPART:
  15184. case GGML_OP_GET_REL_POS:
  15185. case GGML_OP_MAP_UNARY:
  15186. case GGML_OP_MAP_BINARY:
  15187. case GGML_OP_MAP_CUSTOM1_F32:
  15188. case GGML_OP_MAP_CUSTOM2_F32:
  15189. case GGML_OP_MAP_CUSTOM3_F32:
  15190. {
  15191. n_tasks = 1;
  15192. } break;
  15193. case GGML_OP_MAP_CUSTOM1:
  15194. {
  15195. struct ggml_map_custom1_op_params p;
  15196. memcpy(&p, node->op_params, sizeof(p));
  15197. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15198. n_tasks = n_threads;
  15199. } else {
  15200. n_tasks = MIN(p.n_tasks, n_threads);
  15201. }
  15202. } break;
  15203. case GGML_OP_MAP_CUSTOM2:
  15204. {
  15205. struct ggml_map_custom2_op_params p;
  15206. memcpy(&p, node->op_params, sizeof(p));
  15207. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15208. n_tasks = n_threads;
  15209. } else {
  15210. n_tasks = MIN(p.n_tasks, n_threads);
  15211. }
  15212. } break;
  15213. case GGML_OP_MAP_CUSTOM3:
  15214. {
  15215. struct ggml_map_custom3_op_params p;
  15216. memcpy(&p, node->op_params, sizeof(p));
  15217. if (p.n_tasks == GGML_N_TASKS_MAX) {
  15218. n_tasks = n_threads;
  15219. } else {
  15220. n_tasks = MIN(p.n_tasks, n_threads);
  15221. }
  15222. } break;
  15223. case GGML_OP_CROSS_ENTROPY_LOSS:
  15224. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  15225. {
  15226. n_tasks = n_threads;
  15227. } break;
  15228. case GGML_OP_NONE:
  15229. {
  15230. n_tasks = 1;
  15231. } break;
  15232. case GGML_OP_COUNT:
  15233. {
  15234. GGML_ASSERT(false);
  15235. } break;
  15236. default:
  15237. {
  15238. fprintf(stderr, "%s: op not implemented: ", __func__);
  15239. if (node->op < GGML_OP_COUNT) {
  15240. fprintf(stderr, "%s\n", ggml_op_name(node->op));
  15241. } else {
  15242. fprintf(stderr, "%d\n", node->op);
  15243. }
  15244. GGML_ASSERT(false);
  15245. } break;
  15246. }
  15247. assert(n_tasks > 0);
  15248. return n_tasks;
  15249. }
  15250. struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threads) {
  15251. if (n_threads <= 0) {
  15252. n_threads = GGML_DEFAULT_N_THREADS;
  15253. }
  15254. size_t work_size = 0;
  15255. struct ggml_cplan cplan;
  15256. memset(&cplan, 0, sizeof(struct ggml_cplan));
  15257. int max_tasks = 1;
  15258. // thread scheduling for the different operations + work buffer size estimation
  15259. for (int i = 0; i < cgraph->n_nodes; i++) {
  15260. struct ggml_tensor * node = cgraph->nodes[i];
  15261. const int n_tasks = ggml_get_n_tasks(node, n_threads);
  15262. max_tasks = MAX(max_tasks, n_tasks);
  15263. size_t cur = 0;
  15264. switch (node->op) {
  15265. case GGML_OP_CPY:
  15266. case GGML_OP_DUP:
  15267. {
  15268. if (ggml_is_quantized(node->type) ||
  15269. // F16 -> BF16 and BF16 -> F16 copies go through intermediate F32
  15270. (node->src[0]->type == GGML_TYPE_F16 && node->src[1] && node->src[1]->type == GGML_TYPE_BF16) ||
  15271. (node->src[0]->type == GGML_TYPE_BF16 && node->src[1] && node->src[1]->type == GGML_TYPE_F16)) {
  15272. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15273. }
  15274. } break;
  15275. case GGML_OP_ADD:
  15276. case GGML_OP_ADD1:
  15277. {
  15278. if (ggml_is_quantized(node->src[0]->type)) {
  15279. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15280. }
  15281. } break;
  15282. case GGML_OP_ACC:
  15283. {
  15284. if (ggml_is_quantized(node->src[0]->type)) {
  15285. cur = ggml_type_size(GGML_TYPE_F32) * node->src[1]->ne[0] * n_tasks;
  15286. }
  15287. } break;
  15288. case GGML_OP_MUL_MAT:
  15289. {
  15290. const enum ggml_type vec_dot_type = type_traits[node->src[0]->type].vec_dot_type;
  15291. if (node->src[1]->type != vec_dot_type) {
  15292. cur = ggml_row_size(vec_dot_type, ggml_nelements(node->src[1]));
  15293. }
  15294. } break;
  15295. case GGML_OP_MUL_MAT_ID:
  15296. {
  15297. cur = 0;
  15298. const struct ggml_tensor * src0 = node->src[0];
  15299. const struct ggml_tensor * src1 = node->src[1];
  15300. const enum ggml_type vec_dot_type = type_traits[src0->type].vec_dot_type;
  15301. if (src1->type != vec_dot_type) {
  15302. cur += ggml_row_size(vec_dot_type, ggml_nelements(src1));
  15303. }
  15304. const int n_as = src0->ne[2];
  15305. cur += GGML_PAD(cur, sizeof(int64_t)); // align
  15306. cur += n_as * sizeof(int64_t); // matrix_row_counts
  15307. cur += n_as * src1->ne[2] * sizeof(int64_t); // matrix_rows
  15308. } break;
  15309. case GGML_OP_OUT_PROD:
  15310. {
  15311. if (ggml_is_quantized(node->src[0]->type)) {
  15312. cur = ggml_type_size(GGML_TYPE_F32) * node->src[0]->ne[0] * n_tasks;
  15313. }
  15314. } break;
  15315. case GGML_OP_SOFT_MAX:
  15316. case GGML_OP_ROPE:
  15317. {
  15318. cur = ggml_type_size(GGML_TYPE_F32) * node->ne[0] * n_tasks;
  15319. } break;
  15320. case GGML_OP_CONV_TRANSPOSE_1D:
  15321. {
  15322. GGML_ASSERT(node->src[0]->ne[3] == 1);
  15323. GGML_ASSERT(node->src[1]->ne[2] == 1);
  15324. GGML_ASSERT(node->src[1]->ne[3] == 1);
  15325. const int64_t ne00 = node->src[0]->ne[0]; // K
  15326. const int64_t ne01 = node->src[0]->ne[1]; // Cout
  15327. const int64_t ne02 = node->src[0]->ne[2]; // Cin
  15328. const int64_t ne10 = node->src[1]->ne[0]; // L
  15329. const int64_t ne11 = node->src[1]->ne[1]; // Cin
  15330. if ((node->src[0]->type == GGML_TYPE_F16 ||
  15331. node->src[0]->type == GGML_TYPE_BF16) &&
  15332. node->src[1]->type == GGML_TYPE_F32) {
  15333. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02;
  15334. cur += sizeof(ggml_fp16_t)*ne10*ne11;
  15335. } else if (node->src[0]->type == GGML_TYPE_F32 &&
  15336. node->src[1]->type == GGML_TYPE_F32) {
  15337. cur += sizeof(float)*ne00*ne01*ne02;
  15338. cur += sizeof(float)*ne10*ne11;
  15339. } else {
  15340. GGML_ASSERT(false);
  15341. }
  15342. } break;
  15343. case GGML_OP_CONV_TRANSPOSE_2D:
  15344. {
  15345. const int64_t ne00 = node->src[0]->ne[0]; // W
  15346. const int64_t ne01 = node->src[0]->ne[1]; // H
  15347. const int64_t ne02 = node->src[0]->ne[2]; // Channels Out
  15348. const int64_t ne03 = node->src[0]->ne[3]; // Channels In
  15349. const int64_t ne10 = node->src[1]->ne[0]; // W
  15350. const int64_t ne11 = node->src[1]->ne[1]; // H
  15351. const int64_t ne12 = node->src[1]->ne[2]; // Channels In
  15352. cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
  15353. cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
  15354. } break;
  15355. case GGML_OP_FLASH_ATTN_EXT:
  15356. {
  15357. const int64_t ne00 = node->src[0]->ne[0]; // D
  15358. cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
  15359. } break;
  15360. case GGML_OP_FLASH_ATTN_BACK:
  15361. {
  15362. const int64_t D = node->src[0]->ne[0];
  15363. const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
  15364. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  15365. if (node->src[1]->type == GGML_TYPE_F32) {
  15366. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15367. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15368. } else if (node->src[1]->type == GGML_TYPE_F16) {
  15369. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15370. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15371. } else if (node->src[1]->type == GGML_TYPE_BF16) {
  15372. cur = sizeof(float)*mxDn*n_tasks; // TODO: this can become (n_tasks-1)
  15373. cur += sizeof(float)*mxDn*n_tasks; // this is overestimated by x2
  15374. }
  15375. } break;
  15376. case GGML_OP_CROSS_ENTROPY_LOSS:
  15377. {
  15378. cur = ggml_type_size(node->type)*(n_tasks + node->src[0]->ne[0]*n_tasks);
  15379. } break;
  15380. case GGML_OP_COUNT:
  15381. {
  15382. GGML_ASSERT(false);
  15383. } break;
  15384. default:
  15385. break;
  15386. }
  15387. work_size = MAX(work_size, cur);
  15388. }
  15389. if (work_size > 0) {
  15390. work_size += CACHE_LINE_SIZE*(n_threads - 1);
  15391. }
  15392. cplan.n_threads = MIN(max_tasks, n_threads);
  15393. cplan.work_size = work_size;
  15394. cplan.work_data = NULL;
  15395. return cplan;
  15396. }
  15397. static thread_ret_t ggml_graph_compute_thread(void * data) {
  15398. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  15399. const struct ggml_cgraph * cgraph = state->shared->cgraph;
  15400. const struct ggml_cplan * cplan = state->shared->cplan;
  15401. set_numa_thread_affinity(state->ith);
  15402. struct ggml_compute_params params = {
  15403. /*.ith =*/ state->ith,
  15404. /*.nth =*/ state->shared->n_threads,
  15405. /*.wsize =*/ cplan->work_size,
  15406. /*.wdata =*/ cplan->work_data,
  15407. /*.shared=*/ state->shared,
  15408. };
  15409. for (int node_n = 0; node_n < cgraph->n_nodes; node_n++) {
  15410. struct ggml_tensor * node = cgraph->nodes[node_n];
  15411. ggml_compute_forward(&params, node);
  15412. if (state->ith == 0 && cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) {
  15413. state->shared->ec = GGML_STATUS_ABORTED;
  15414. }
  15415. ggml_barrier(state->shared);
  15416. if (state->shared->ec != GGML_STATUS_SUCCESS) {
  15417. break;
  15418. }
  15419. }
  15420. return 0;
  15421. }
  15422. enum ggml_status ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) {
  15423. GGML_ASSERT(cplan);
  15424. GGML_ASSERT(cplan->n_threads > 0);
  15425. GGML_ASSERT(cplan->work_size == 0 || cplan->work_data != NULL);
  15426. int n_threads = cplan->n_threads;
  15427. struct ggml_compute_state_shared state_shared = {
  15428. /*.cgraph =*/ cgraph,
  15429. /*.cgraph_plan =*/ cplan,
  15430. /*.n_threads =*/ n_threads,
  15431. /*.n_barrier =*/ 0,
  15432. /*.n_barrier_passed =*/ 0,
  15433. /*.abort_callback =*/ NULL,
  15434. /*.abort_callback_data =*/ NULL,
  15435. /*.current_chunk =*/ 0,
  15436. /*.ec =*/ GGML_STATUS_SUCCESS,
  15437. };
  15438. #ifdef GGML_USE_OPENMP
  15439. if (n_threads > 1) {
  15440. #pragma omp parallel num_threads(n_threads)
  15441. {
  15442. #pragma omp single
  15443. {
  15444. // update the number of threads from the actual number of threads that we got from OpenMP
  15445. n_threads = omp_get_num_threads();
  15446. state_shared.n_threads = n_threads;
  15447. }
  15448. struct ggml_compute_state worker = {
  15449. .thrd = 0,
  15450. .ith = omp_get_thread_num(),
  15451. .shared = &state_shared,
  15452. };
  15453. ggml_graph_compute_thread(&worker);
  15454. }
  15455. } else {
  15456. struct ggml_compute_state worker = {
  15457. .thrd = 0,
  15458. .ith = 0,
  15459. .shared = &state_shared,
  15460. };
  15461. ggml_graph_compute_thread(&worker);
  15462. }
  15463. #else
  15464. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  15465. for (int j = 0; j < n_threads; ++j) {
  15466. workers[j] = (struct ggml_compute_state) {
  15467. .thrd = 0,
  15468. .ith = j,
  15469. .shared = &state_shared,
  15470. };
  15471. }
  15472. // create thread pool
  15473. for (int j = 1; j < n_threads; ++j) {
  15474. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  15475. GGML_ASSERT(rc == 0);
  15476. UNUSED(rc);
  15477. }
  15478. // this is a work thread too
  15479. ggml_graph_compute_thread(&workers[0]);
  15480. // join or kill thread pool
  15481. if (n_threads > 1) {
  15482. for (int j = 1; j < n_threads; j++) {
  15483. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  15484. GGML_ASSERT(rc == 0);
  15485. UNUSED(rc);
  15486. }
  15487. }
  15488. #endif
  15489. // don't leave affinity set on the main thread
  15490. clear_numa_thread_affinity();
  15491. return state_shared.ec;
  15492. }
  15493. enum ggml_status ggml_graph_compute_with_ctx(struct ggml_context * ctx, struct ggml_cgraph * cgraph, int n_threads) {
  15494. struct ggml_cplan cplan = ggml_graph_plan(cgraph, n_threads);
  15495. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  15496. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  15497. return ggml_graph_compute(cgraph, &cplan);
  15498. }
  15499. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  15500. for (int i = 0; i < cgraph->n_leafs; i++) {
  15501. struct ggml_tensor * leaf = cgraph->leafs[i];
  15502. if (strcmp(leaf->name, name) == 0) {
  15503. return leaf;
  15504. }
  15505. }
  15506. for (int i = 0; i < cgraph->n_nodes; i++) {
  15507. struct ggml_tensor * node = cgraph->nodes[i];
  15508. if (strcmp(node->name, name) == 0) {
  15509. return node;
  15510. }
  15511. }
  15512. return NULL;
  15513. }
  15514. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  15515. const int64_t * ne = tensor->ne;
  15516. const size_t * nb = tensor->nb;
  15517. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15518. ggml_type_name(tensor->type),
  15519. ggml_op_name (tensor->op),
  15520. ggml_n_dims(tensor),
  15521. ne[0], ne[1], ne[2], ne[3],
  15522. nb[0], nb[1], nb[2], nb[3],
  15523. tensor->data,
  15524. tensor->name);
  15525. }
  15526. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  15527. const int64_t * ne = tensor->ne;
  15528. const size_t * nb = tensor->nb;
  15529. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  15530. arg,
  15531. ggml_type_name(tensor->type),
  15532. ggml_op_name (tensor->op),
  15533. ggml_n_dims(tensor),
  15534. ne[0], ne[1], ne[2], ne[3],
  15535. nb[0], nb[1], nb[2], nb[3],
  15536. tensor->data,
  15537. tensor->name);
  15538. }
  15539. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  15540. uint64_t size_eval = 0;
  15541. // compute size of intermediate results
  15542. // TODO: does not take into account scratch buffers !!!!
  15543. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15544. size_eval += ggml_nbytes_pad(cgraph->nodes[i]);
  15545. }
  15546. // print
  15547. {
  15548. FILE * fout = stdout;
  15549. fprintf(fout, "\n");
  15550. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  15551. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  15552. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  15553. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  15554. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  15555. // header
  15556. fprintf(fout, "\n");
  15557. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  15558. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  15559. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15560. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  15561. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  15562. GGML_ASSERT(cgraph->leafs[i]->src[0] == NULL);
  15563. GGML_ASSERT(cgraph->leafs[i]->src[1] == NULL);
  15564. }
  15565. // header
  15566. fprintf(fout, "\n");
  15567. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  15568. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  15569. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15570. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  15571. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15572. if (cgraph->nodes[i]->src[j]) {
  15573. ggml_graph_export_node(cgraph->nodes[i]->src[j], "SRC", fout);
  15574. }
  15575. }
  15576. fprintf(fout, "\n");
  15577. }
  15578. fprintf(fout, "\n");
  15579. }
  15580. // write binary data
  15581. {
  15582. FILE * fout = ggml_fopen(fname, "wb");
  15583. if (!fout) {
  15584. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15585. return;
  15586. }
  15587. // header
  15588. {
  15589. const uint32_t magic = GGML_FILE_MAGIC;
  15590. const uint32_t version = GGML_FILE_VERSION;
  15591. const uint32_t n_leafs = cgraph->n_leafs;
  15592. const uint32_t n_nodes = cgraph->n_nodes;
  15593. fwrite(&magic, sizeof(uint32_t), 1, fout);
  15594. fwrite(&version, sizeof(uint32_t), 1, fout);
  15595. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  15596. fwrite(&n_nodes, sizeof(uint32_t), 1, fout);
  15597. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  15598. }
  15599. // leafs
  15600. {
  15601. for (int i = 0; i < cgraph->n_leafs; ++i) {
  15602. const struct ggml_tensor * tensor = cgraph->leafs[i];
  15603. const uint32_t type = tensor->type;
  15604. const uint32_t op = tensor->op;
  15605. fwrite(&type, sizeof(uint32_t), 1, fout);
  15606. fwrite(&op, sizeof(uint32_t), 1, fout);
  15607. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15608. const uint64_t ne = tensor->ne[j];
  15609. const uint64_t nb = tensor->nb[j];
  15610. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15611. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15612. }
  15613. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15614. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15615. // dump the data
  15616. // TODO: pad this to 32 byte boundary
  15617. {
  15618. const size_t size = ggml_nbytes(tensor);
  15619. fwrite(tensor->data, sizeof(char), size, fout);
  15620. }
  15621. }
  15622. }
  15623. // nodes
  15624. {
  15625. for (int i = 0; i < cgraph->n_nodes; ++i) {
  15626. const struct ggml_tensor * tensor = cgraph->nodes[i];
  15627. const uint32_t type = tensor->type;
  15628. const uint32_t op = tensor->op;
  15629. fwrite(&type, sizeof(uint32_t), 1, fout);
  15630. fwrite(&op, sizeof(uint32_t), 1, fout);
  15631. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15632. const uint64_t ne = tensor->ne[j];
  15633. const uint64_t nb = tensor->nb[j];
  15634. fwrite(&ne, sizeof(uint64_t), 1, fout);
  15635. fwrite(&nb, sizeof(uint64_t), 1, fout);
  15636. }
  15637. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  15638. fwrite(tensor->op_params, sizeof(char), GGML_MAX_OP_PARAMS, fout);
  15639. // output the op arguments
  15640. {
  15641. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15642. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15643. args[j] = tensor->src[j];
  15644. }
  15645. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15646. if (args[j]) {
  15647. int32_t idx = -1;
  15648. // check if leaf
  15649. {
  15650. for (int k = 0; k < cgraph->n_leafs; ++k) {
  15651. if (args[j] == cgraph->leafs[k]) {
  15652. idx = k;
  15653. break;
  15654. }
  15655. }
  15656. }
  15657. // check if node
  15658. if (idx == -1) {
  15659. for (int k = 0; k < cgraph->n_nodes; ++k) {
  15660. if (args[j] == cgraph->nodes[k]) {
  15661. idx = cgraph->n_leafs + k;
  15662. break;
  15663. }
  15664. }
  15665. }
  15666. if (idx == -1) {
  15667. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  15668. fclose(fout);
  15669. return;
  15670. }
  15671. fwrite(&idx, sizeof(int32_t), 1, fout);
  15672. } else {
  15673. const int32_t nul = -1;
  15674. fwrite(&nul, sizeof(int32_t), 1, fout);
  15675. }
  15676. }
  15677. }
  15678. }
  15679. }
  15680. fclose(fout);
  15681. }
  15682. }
  15683. struct ggml_cgraph * ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  15684. assert(*ctx_data == NULL);
  15685. assert(*ctx_eval == NULL);
  15686. struct ggml_cgraph * result = NULL;
  15687. struct ggml_tensor * data = NULL;
  15688. // read file into data
  15689. {
  15690. FILE * fin = ggml_fopen(fname, "rb");
  15691. if (!fin) {
  15692. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  15693. return result;
  15694. }
  15695. size_t fsize = 0;
  15696. fseek(fin, 0, SEEK_END);
  15697. fsize = ftell(fin);
  15698. fseek(fin, 0, SEEK_SET);
  15699. // create the data context
  15700. {
  15701. const size_t overhead = 1*ggml_tensor_overhead();
  15702. struct ggml_init_params params = {
  15703. .mem_size = fsize + overhead,
  15704. .mem_buffer = NULL,
  15705. .no_alloc = false,
  15706. };
  15707. *ctx_data = ggml_init(params);
  15708. if (!*ctx_data) {
  15709. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15710. fclose(fin);
  15711. return result;
  15712. }
  15713. }
  15714. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  15715. {
  15716. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  15717. if (ret != fsize) {
  15718. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  15719. fclose(fin);
  15720. return result;
  15721. }
  15722. }
  15723. fclose(fin);
  15724. }
  15725. // populate result
  15726. {
  15727. char * ptr = (char *) data->data;
  15728. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  15729. if (magic != GGML_FILE_MAGIC) {
  15730. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  15731. return result;
  15732. }
  15733. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  15734. if (version != GGML_FILE_VERSION) {
  15735. fprintf(stderr, "%s: invalid version number\n", __func__);
  15736. return result;
  15737. }
  15738. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  15739. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  15740. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  15741. const int graph_size = MAX(n_leafs, n_nodes);
  15742. // create the data context
  15743. {
  15744. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead() + ggml_graph_overhead_custom(graph_size, false);
  15745. struct ggml_init_params params = {
  15746. .mem_size = size_eval + overhead,
  15747. .mem_buffer = NULL,
  15748. .no_alloc = true,
  15749. };
  15750. *ctx_eval = ggml_init(params);
  15751. if (!*ctx_eval) {
  15752. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  15753. return result;
  15754. }
  15755. }
  15756. result = ggml_new_graph_custom(*ctx_eval, graph_size, false);
  15757. result->n_leafs = n_leafs;
  15758. result->n_nodes = n_nodes;
  15759. // leafs
  15760. {
  15761. uint32_t type;
  15762. uint32_t op;
  15763. for (uint32_t i = 0; i < n_leafs; ++i) {
  15764. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15765. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15766. int64_t ne[GGML_MAX_DIMS];
  15767. size_t nb[GGML_MAX_DIMS];
  15768. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15769. uint64_t ne_cur;
  15770. uint64_t nb_cur;
  15771. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15772. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15773. ne[j] = ne_cur;
  15774. nb[j] = nb_cur;
  15775. }
  15776. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15777. tensor->op = (enum ggml_op) op;
  15778. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  15779. memcpy(tensor->op_params, ptr, GGML_MAX_OP_PARAMS); ptr += GGML_MAX_OP_PARAMS;
  15780. tensor->data = (void *) ptr;
  15781. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15782. tensor->nb[j] = nb[j];
  15783. }
  15784. result->leafs[i] = tensor;
  15785. ptr += ggml_nbytes(tensor);
  15786. fprintf(stderr, "%s: loaded leaf %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15787. }
  15788. }
  15789. ggml_set_no_alloc(*ctx_eval, false);
  15790. // nodes
  15791. {
  15792. uint32_t type;
  15793. uint32_t op;
  15794. for (uint32_t i = 0; i < n_nodes; ++i) {
  15795. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  15796. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  15797. enum ggml_op eop = (enum ggml_op) op;
  15798. int64_t ne[GGML_MAX_DIMS];
  15799. size_t nb[GGML_MAX_DIMS];
  15800. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15801. uint64_t ne_cur;
  15802. uint64_t nb_cur;
  15803. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  15804. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  15805. ne[j] = ne_cur;
  15806. nb[j] = nb_cur;
  15807. }
  15808. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  15809. const char * ptr_op_params = ptr; ptr += GGML_MAX_OP_PARAMS;
  15810. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += GGML_MAX_SRC*sizeof(int32_t);
  15811. struct ggml_tensor * args[GGML_MAX_SRC] = { NULL };
  15812. // parse args
  15813. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15814. const int32_t arg_idx = ptr_arg_idx[j];
  15815. if (arg_idx == -1) {
  15816. continue;
  15817. }
  15818. if (arg_idx < result->n_leafs) {
  15819. args[j] = result->leafs[arg_idx];
  15820. } else {
  15821. args[j] = result->nodes[arg_idx - result->n_leafs];
  15822. }
  15823. }
  15824. // create the tensor
  15825. // "view" operations are handled differently
  15826. // TODO: handle inplace ops - currently a copy is always made
  15827. struct ggml_tensor * tensor = NULL;
  15828. switch (eop) {
  15829. // TODO: implement other view ops
  15830. case GGML_OP_RESHAPE:
  15831. {
  15832. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  15833. } break;
  15834. case GGML_OP_VIEW:
  15835. {
  15836. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15837. size_t offs;
  15838. memcpy(&offs, ptr_op_params, sizeof(offs));
  15839. tensor->data = ((char *) tensor->data) + offs;
  15840. } break;
  15841. case GGML_OP_TRANSPOSE:
  15842. {
  15843. tensor = ggml_transpose(*ctx_eval, args[0]);
  15844. } break;
  15845. case GGML_OP_PERMUTE:
  15846. {
  15847. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  15848. } break;
  15849. default:
  15850. {
  15851. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, GGML_MAX_DIMS, ne);
  15852. tensor->op = eop;
  15853. } break;
  15854. }
  15855. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  15856. memcpy(tensor->op_params, ptr_op_params, GGML_MAX_OP_PARAMS);
  15857. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  15858. tensor->nb[j] = nb[j];
  15859. }
  15860. for (int j = 0; j < GGML_MAX_SRC; ++j) {
  15861. tensor->src[j] = args[j];
  15862. }
  15863. result->nodes[i] = tensor;
  15864. fprintf(stderr, "%s: loaded node %u: '%16s', %9zu bytes\n", __func__, i, tensor->name, ggml_nbytes(tensor));
  15865. }
  15866. }
  15867. }
  15868. return result;
  15869. }
  15870. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  15871. GGML_PRINT("=== GRAPH ===\n");
  15872. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  15873. for (int i = 0; i < cgraph->n_nodes; i++) {
  15874. struct ggml_tensor * node = cgraph->nodes[i];
  15875. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s\n",
  15876. i,
  15877. node->ne[0], node->ne[1], node->ne[2],
  15878. ggml_op_name(node->op), (node->flags & GGML_TENSOR_FLAG_PARAM) ? "x" : node->grad ? "g" : " ");
  15879. }
  15880. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  15881. for (int i = 0; i < cgraph->n_leafs; i++) {
  15882. struct ggml_tensor * node = cgraph->leafs[i];
  15883. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s %16s\n",
  15884. i,
  15885. node->ne[0], node->ne[1],
  15886. ggml_op_name(node->op),
  15887. ggml_get_name(node));
  15888. }
  15889. GGML_PRINT("========================================\n");
  15890. }
  15891. // check if node is part of the graph
  15892. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15893. if (cgraph == NULL) {
  15894. return true;
  15895. }
  15896. for (int i = 0; i < cgraph->n_nodes; i++) {
  15897. if (cgraph->nodes[i] == node) {
  15898. return true;
  15899. }
  15900. }
  15901. return false;
  15902. }
  15903. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  15904. for (int i = 0; i < cgraph->n_nodes; i++) {
  15905. struct ggml_tensor * parent = cgraph->nodes[i];
  15906. if (parent->grad == node) {
  15907. return parent;
  15908. }
  15909. }
  15910. return NULL;
  15911. }
  15912. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15913. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  15914. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  15915. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  15916. gparent0 ? (void *) gparent0 : (void *) parent,
  15917. gparent0 ? "g" : "x",
  15918. gparent ? (void *) gparent : (void *) node,
  15919. gparent ? "g" : "x",
  15920. gparent ? "empty" : "vee",
  15921. gparent ? "dashed" : "solid",
  15922. label);
  15923. }
  15924. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  15925. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  15926. (void *) parent, "x",
  15927. (void *) node, "x",
  15928. label);
  15929. }
  15930. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  15931. char color[16];
  15932. FILE * fp = ggml_fopen(filename, "w");
  15933. GGML_ASSERT(fp);
  15934. fprintf(fp, "digraph G {\n");
  15935. fprintf(fp, " newrank = true;\n");
  15936. fprintf(fp, " rankdir = LR;\n");
  15937. for (int i = 0; i < gb->n_nodes; i++) {
  15938. struct ggml_tensor * node = gb->nodes[i];
  15939. if (ggml_graph_get_parent(gb, node) != NULL) {
  15940. continue;
  15941. }
  15942. if (node->flags & GGML_TENSOR_FLAG_PARAM) {
  15943. snprintf(color, sizeof(color), "yellow");
  15944. } else if (node->grad) {
  15945. if (ggml_graph_find(gf, node)) {
  15946. snprintf(color, sizeof(color), "green");
  15947. } else {
  15948. snprintf(color, sizeof(color), "lightblue");
  15949. }
  15950. } else {
  15951. snprintf(color, sizeof(color), "white");
  15952. }
  15953. fprintf(fp, " \"%p\" [ "
  15954. "style = filled; fillcolor = %s; shape = record; "
  15955. "label=\"",
  15956. (void *) node, color);
  15957. if (strlen(node->name) > 0) {
  15958. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15959. } else {
  15960. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15961. }
  15962. if (ggml_is_matrix(node)) {
  15963. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], ggml_op_symbol(node->op));
  15964. } else {
  15965. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], ggml_op_symbol(node->op));
  15966. }
  15967. if (node->grad) {
  15968. fprintf(fp, " | <g>%s\"; ]\n", ggml_op_symbol(node->grad->op));
  15969. } else {
  15970. fprintf(fp, "\"; ]\n");
  15971. }
  15972. }
  15973. for (int i = 0; i < gb->n_leafs; i++) {
  15974. struct ggml_tensor * node = gb->leafs[i];
  15975. snprintf(color, sizeof(color), "pink");
  15976. fprintf(fp, " \"%p\" [ "
  15977. "style = filled; fillcolor = %s; shape = record; "
  15978. "label=\"<x>",
  15979. (void *) node, color);
  15980. if (strlen(node->name) > 0) {
  15981. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  15982. } else {
  15983. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  15984. }
  15985. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  15986. if (ggml_nelements(node) < 5) {
  15987. fprintf(fp, " | (");
  15988. for (int j = 0; j < ggml_nelements(node); j++) {
  15989. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  15990. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  15991. }
  15992. else if (node->type == GGML_TYPE_F32 ||
  15993. node->type == GGML_TYPE_F16 ||
  15994. node->type == GGML_TYPE_BF16) {
  15995. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  15996. }
  15997. else {
  15998. fprintf(fp, "#");
  15999. }
  16000. if (j < ggml_nelements(node) - 1) {
  16001. fprintf(fp, ", ");
  16002. }
  16003. }
  16004. fprintf(fp, ")");
  16005. }
  16006. fprintf(fp, "\"; ]\n");
  16007. }
  16008. for (int i = 0; i < gb->n_nodes; i++) {
  16009. struct ggml_tensor * node = gb->nodes[i];
  16010. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16011. if (node->src[j]) {
  16012. char label[16];
  16013. snprintf(label, sizeof(label), "src %d", j);
  16014. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src[j], label);
  16015. }
  16016. }
  16017. }
  16018. for (int i = 0; i < gb->n_leafs; i++) {
  16019. struct ggml_tensor * node = gb->leafs[i];
  16020. for (int j = 0; j < GGML_MAX_SRC; j++) {
  16021. if (node->src[j]) {
  16022. char label[16];
  16023. snprintf(label, sizeof(label), "src %d", j);
  16024. ggml_graph_dump_dot_leaf_edge(fp, node, node->src[j], label);
  16025. }
  16026. }
  16027. }
  16028. fprintf(fp, "}\n");
  16029. fclose(fp);
  16030. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  16031. }
  16032. ////////////////////////////////////////////////////////////////////////////////
  16033. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  16034. int i = 0;
  16035. for (int p = 0; p < np; ++p) {
  16036. const int64_t ne = ggml_nelements(ps[p]) ;
  16037. // TODO: add function to set tensor from array
  16038. for (int64_t j = 0; j < ne; ++j) {
  16039. ggml_set_f32_1d(ps[p], j, x[i++]);
  16040. }
  16041. }
  16042. }
  16043. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  16044. int i = 0;
  16045. for (int p = 0; p < np; ++p) {
  16046. const int64_t ne = ggml_nelements(ps[p]) ;
  16047. // TODO: add function to get all elements at once
  16048. for (int64_t j = 0; j < ne; ++j) {
  16049. x[i++] = ggml_get_f32_1d(ps[p], j);
  16050. }
  16051. }
  16052. }
  16053. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  16054. int64_t i = 0;
  16055. for (int p = 0; p < np; ++p) {
  16056. const int64_t ne = ggml_nelements(ps[p]) ;
  16057. // TODO: add function to get all elements at once
  16058. for (int64_t j = 0; j < ne; ++j) {
  16059. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  16060. }
  16061. }
  16062. }
  16063. static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g, float scale) {
  16064. int64_t i = 0;
  16065. for (int p = 0; p < np; ++p) {
  16066. const int64_t ne = ggml_nelements(ps[p]) ;
  16067. // TODO: add function to get all elements at once
  16068. for (int64_t j = 0; j < ne; ++j) {
  16069. g[i++] += ggml_get_f32_1d(ps[p]->grad, j) * scale;
  16070. }
  16071. }
  16072. }
  16073. //
  16074. // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
  16075. //
  16076. // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
  16077. //
  16078. static enum ggml_opt_result ggml_opt_adam(
  16079. struct ggml_context * ctx,
  16080. struct ggml_opt_context * opt,
  16081. struct ggml_opt_params params,
  16082. struct ggml_tensor * f,
  16083. struct ggml_cgraph * gf,
  16084. struct ggml_cgraph * gb,
  16085. ggml_opt_callback callback,
  16086. void * callback_data) {
  16087. GGML_ASSERT(ggml_is_scalar(f));
  16088. // these will store the parameters we want to optimize
  16089. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16090. int np = 0;
  16091. int64_t nx = 0;
  16092. for (int i = 0; i < gf->n_nodes; ++i) {
  16093. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16094. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16095. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16096. ps[np++] = gf->nodes[i];
  16097. nx += ggml_nelements(gf->nodes[i]);
  16098. }
  16099. }
  16100. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  16101. int iter = opt->iter;
  16102. ggml_opt_init(opt->ctx, opt, params, nx);
  16103. opt->iter = iter;
  16104. }
  16105. // constants
  16106. float sched = params.adam.sched;
  16107. const float alpha = params.adam.alpha;
  16108. const float decay = params.adam.decay * alpha;
  16109. const float beta1 = params.adam.beta1;
  16110. const float beta2 = params.adam.beta2;
  16111. const float eps = params.adam.eps;
  16112. const float gclip = params.adam.gclip;
  16113. const int decay_min_ndim = params.adam.decay_min_ndim;
  16114. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16115. const float accum_norm = 1.0f / (float) n_accum;
  16116. float * g = opt->adam.g->data; // gradients
  16117. float * m = opt->adam.m->data; // first moment
  16118. float * v = opt->adam.v->data; // second moment
  16119. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  16120. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16121. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16122. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16123. bool cancel = false;
  16124. // compute the function value
  16125. float fx = 0;
  16126. ggml_set_zero(opt->adam.g);
  16127. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16128. if (callback) {
  16129. callback(callback_data, accum_step, &sched, &cancel);
  16130. if (cancel) {
  16131. return GGML_OPT_RESULT_CANCEL;
  16132. }
  16133. }
  16134. // ggml_graph_reset (gf);
  16135. ggml_set_f32 (f->grad, 1.0f);
  16136. ggml_graph_compute(gb, &cplan);
  16137. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16138. fx += ggml_get_f32_1d(f, 0);
  16139. }
  16140. fx *= accum_norm;
  16141. opt->adam.fx_prev = fx;
  16142. opt->adam.fx_best = opt->adam.fx_prev;
  16143. if (pf) {
  16144. pf[opt->iter % params.past] = opt->adam.fx_prev;
  16145. }
  16146. opt->loss_before = opt->adam.fx_prev;
  16147. opt->loss_after = opt->adam.fx_prev;
  16148. // initialize
  16149. if (opt->just_initialized) {
  16150. opt->adam.n_no_improvement = 0;
  16151. opt->just_initialized = false;
  16152. }
  16153. float * fx_best = &opt->adam.fx_best;
  16154. float * fx_prev = &opt->adam.fx_prev;
  16155. int * n_no_improvement = &opt->adam.n_no_improvement;
  16156. int iter0 = opt->iter;
  16157. // run the optimizer
  16158. for (int t = 0; t < params.adam.n_iter; ++t) {
  16159. opt->iter = iter0 + t + 1;
  16160. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  16161. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16162. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  16163. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  16164. for (int i = 0; i < np; ++i) {
  16165. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  16166. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  16167. }
  16168. const int64_t t_start_wall = ggml_time_us();
  16169. const int64_t t_start_cpu = ggml_cycles();
  16170. UNUSED(t_start_wall);
  16171. UNUSED(t_start_cpu);
  16172. {
  16173. float gnorm = 1.0f;
  16174. if (gclip > 0.0f) {
  16175. // gradient clipping
  16176. ggml_float sum = 0.0;
  16177. for (int64_t i = 0; i < nx; ++i) {
  16178. sum += (ggml_float)(g[i]*g[i]);
  16179. }
  16180. ggml_float norm = sqrt(sum);
  16181. if (norm > (ggml_float) gclip) {
  16182. gnorm = (float) ((ggml_float) gclip / norm);
  16183. }
  16184. }
  16185. const float beta1h = alpha*sched/(1.0f - powf(beta1, opt->iter));
  16186. const float beta2h = 1.0f/(1.0f - powf(beta2, opt->iter));
  16187. int64_t i = 0;
  16188. for (int p = 0; p < np; ++p) {
  16189. const int64_t ne = ggml_nelements(ps[p]);
  16190. const float p_decay = ((ggml_n_dims(ps[p]) >= decay_min_ndim) ? decay : 0.0f) * sched;
  16191. for (int64_t j = 0; j < ne; ++j) {
  16192. float x = ggml_get_f32_1d(ps[p], j);
  16193. float g_ = g[i]*gnorm;
  16194. m[i] = m[i]*beta1 + g_*(1.0f - beta1);
  16195. v[i] = v[i]*beta2 + g_*g_*(1.0f - beta2);
  16196. float mh = m[i]*beta1h;
  16197. float vh = v[i]*beta2h;
  16198. vh = sqrtf(vh) + eps;
  16199. x = x*(1.0f - p_decay) - mh/vh;
  16200. ggml_set_f32_1d(ps[p], j, x);
  16201. ++i;
  16202. }
  16203. }
  16204. }
  16205. fx = 0;
  16206. ggml_set_zero(opt->adam.g);
  16207. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16208. if (callback) {
  16209. callback(callback_data, accum_step, &sched, &cancel);
  16210. if (cancel) {
  16211. return GGML_OPT_RESULT_CANCEL;;
  16212. }
  16213. }
  16214. // ggml_graph_reset (gf);
  16215. ggml_set_f32 (f->grad, 1.0f);
  16216. ggml_graph_compute(gb, &cplan);
  16217. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16218. fx += ggml_get_f32_1d(f, 0);
  16219. }
  16220. fx *= accum_norm;
  16221. opt->loss_after = fx;
  16222. // check convergence
  16223. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  16224. GGML_PRINT_DEBUG("converged\n");
  16225. return GGML_OPT_RESULT_OK;
  16226. }
  16227. // delta-based convergence test
  16228. if (pf != NULL) {
  16229. // need at least params.past iterations to start checking for convergence
  16230. if (params.past <= iter0 + t) {
  16231. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  16232. if (fabsf(rate) < params.delta) {
  16233. return GGML_OPT_RESULT_OK;
  16234. }
  16235. }
  16236. pf[(iter0 + t)%params.past] = fx;
  16237. }
  16238. // check for improvement
  16239. if (params.max_no_improvement > 0) {
  16240. if (fx_best[0] > fx) {
  16241. fx_best[0] = fx;
  16242. n_no_improvement[0] = 0;
  16243. } else {
  16244. ++n_no_improvement[0];
  16245. if (n_no_improvement[0] >= params.max_no_improvement) {
  16246. return GGML_OPT_RESULT_OK;
  16247. }
  16248. }
  16249. }
  16250. fx_prev[0] = fx;
  16251. {
  16252. const int64_t t_end_cpu = ggml_cycles();
  16253. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  16254. UNUSED(t_end_cpu);
  16255. const int64_t t_end_wall = ggml_time_us();
  16256. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  16257. UNUSED(t_end_wall);
  16258. }
  16259. }
  16260. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16261. }
  16262. //
  16263. // L-BFGS
  16264. //
  16265. // the L-BFGS implementation below is based on the following implementation:
  16266. //
  16267. // https://github.com/chokkan/liblbfgs
  16268. //
  16269. struct ggml_lbfgs_iteration_data {
  16270. float alpha;
  16271. float ys;
  16272. float * s;
  16273. float * y;
  16274. };
  16275. static enum ggml_opt_result linesearch_backtracking(
  16276. const struct ggml_opt_params * params,
  16277. int nx,
  16278. float * x,
  16279. float * fx,
  16280. float * g,
  16281. float * d,
  16282. float * step,
  16283. const float * xp,
  16284. struct ggml_tensor * f,
  16285. struct ggml_cgraph * gb,
  16286. struct ggml_cplan * cplan,
  16287. const int np,
  16288. struct ggml_tensor * ps[],
  16289. bool * cancel,
  16290. ggml_opt_callback callback,
  16291. void * callback_data) {
  16292. int count = 0;
  16293. float width = 0.0f;
  16294. float dg = 0.0f;
  16295. float finit = 0.0f;
  16296. float dginit = 0.0f;
  16297. float dgtest = 0.0f;
  16298. const float dec = 0.5f;
  16299. const float inc = 2.1f;
  16300. const int n_accum = MAX(1, params->n_gradient_accumulation);
  16301. const float accum_norm = 1.0f / (float) n_accum;
  16302. if (*step <= 0.f) {
  16303. return GGML_LINESEARCH_INVALID_PARAMETERS;
  16304. }
  16305. // compute the initial gradient in the search direction
  16306. ggml_vec_dot_f32(nx, &dginit, 0, g, 0, d, 0, 1);
  16307. // make sure that d points to a descent direction
  16308. if (0 < dginit) {
  16309. return GGML_LINESEARCH_FAIL;
  16310. }
  16311. // initialize local variables
  16312. finit = *fx;
  16313. dgtest = params->lbfgs.ftol*dginit;
  16314. while (true) {
  16315. ggml_vec_cpy_f32(nx, x, xp);
  16316. ggml_vec_mad_f32(nx, x, d, *step);
  16317. // evaluate the function and gradient values
  16318. {
  16319. ggml_opt_set_params(np, ps, x);
  16320. *fx = 0;
  16321. memset(g, 0, sizeof(float)*nx);
  16322. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16323. if (callback) {
  16324. // LBFG-S does not support learning rate -> ignore learning schedule
  16325. float sched = 0;
  16326. callback(callback_data, accum_step, &sched, cancel);
  16327. if (*cancel) {
  16328. return GGML_OPT_RESULT_CANCEL;
  16329. }
  16330. }
  16331. // ggml_graph_reset (gf);
  16332. ggml_set_f32 (f->grad, 1.0f);
  16333. ggml_graph_compute(gb, cplan);
  16334. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16335. *fx += ggml_get_f32_1d(f, 0);
  16336. }
  16337. *fx *= accum_norm;
  16338. }
  16339. ++count;
  16340. if (*fx > finit + (*step)*dgtest) {
  16341. width = dec;
  16342. } else {
  16343. // Armijo condition is satisfied
  16344. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  16345. return count;
  16346. }
  16347. ggml_vec_dot_f32(nx, &dg, 0, g, 0, d, 0, 1);
  16348. // check the Wolfe condition
  16349. if (dg < params->lbfgs.wolfe * dginit) {
  16350. width = inc;
  16351. } else {
  16352. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  16353. // regular Wolfe conditions
  16354. return count;
  16355. }
  16356. if(dg > -params->lbfgs.wolfe*dginit) {
  16357. width = dec;
  16358. } else {
  16359. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  16360. return count;
  16361. }
  16362. }
  16363. }
  16364. if (*step < params->lbfgs.min_step) {
  16365. return GGML_LINESEARCH_MINIMUM_STEP;
  16366. }
  16367. if (*step > params->lbfgs.max_step) {
  16368. return GGML_LINESEARCH_MAXIMUM_STEP;
  16369. }
  16370. if (params->lbfgs.max_linesearch <= count) {
  16371. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  16372. }
  16373. (*step) *= width;
  16374. }
  16375. GGML_ASSERT(false && "line search failed");
  16376. return GGML_LINESEARCH_FAIL;
  16377. }
  16378. static enum ggml_opt_result ggml_opt_lbfgs(
  16379. struct ggml_context * ctx,
  16380. struct ggml_opt_context * opt,
  16381. struct ggml_opt_params params,
  16382. struct ggml_tensor * f,
  16383. struct ggml_cgraph * gf,
  16384. struct ggml_cgraph * gb,
  16385. ggml_opt_callback callback,
  16386. void * callback_data) {
  16387. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  16388. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  16389. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  16390. return GGML_OPT_RESULT_INVALID_WOLFE;
  16391. }
  16392. }
  16393. const int m = params.lbfgs.m;
  16394. // these will store the parameters we want to optimize
  16395. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  16396. int np = 0;
  16397. int nx = 0;
  16398. for (int i = 0; i < gf->n_nodes; ++i) {
  16399. if (gf->nodes[i]->flags & GGML_TENSOR_FLAG_PARAM) {
  16400. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  16401. GGML_ASSERT(np < GGML_MAX_PARAMS);
  16402. ps[np++] = gf->nodes[i];
  16403. nx += ggml_nelements(gf->nodes[i]);
  16404. }
  16405. }
  16406. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  16407. int iter = opt->iter;
  16408. ggml_opt_init(ctx, opt, params, nx);
  16409. opt->iter = iter;
  16410. }
  16411. struct ggml_cplan cplan = ggml_graph_plan(gb, params.n_threads);
  16412. struct ggml_object * obj = ggml_new_object(ctx, GGML_OBJECT_TYPE_WORK_BUFFER, cplan.work_size);
  16413. cplan.work_data = (uint8_t *)ctx->mem_buffer + obj->offs;
  16414. float * x = opt->lbfgs.x->data; // current parameters
  16415. float * xp = opt->lbfgs.xp->data; // previous parameters
  16416. float * g = opt->lbfgs.g->data; // current gradient
  16417. float * gp = opt->lbfgs.gp->data; // previous gradient
  16418. float * d = opt->lbfgs.d->data; // search direction
  16419. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  16420. const int n_accum = MAX(1, params.n_gradient_accumulation);
  16421. const float accum_norm = 1.0f / (float) n_accum;
  16422. float fx = 0.0f; // cost function value
  16423. float xnorm = 0.0f; // ||x||
  16424. float gnorm = 0.0f; // ||g||
  16425. // initialize x from the graph nodes
  16426. ggml_opt_get_params(np, ps, x);
  16427. // the L-BFGS memory
  16428. float * lm_alpha = opt->lbfgs.lmal->data;
  16429. float * lm_ys = opt->lbfgs.lmys->data;
  16430. float * lm_s = opt->lbfgs.lms->data;
  16431. float * lm_y = opt->lbfgs.lmy->data;
  16432. bool cancel = false;
  16433. // evaluate the function value and its gradient
  16434. {
  16435. ggml_opt_set_params(np, ps, x);
  16436. fx = 0;
  16437. memset(g, 0, sizeof(float)*nx);
  16438. for (int accum_step = 0; accum_step < n_accum; ++accum_step) {
  16439. if (callback) {
  16440. // LBFG-S does not support learning rate -> ignore learning schedule
  16441. float sched = 0;
  16442. callback(callback_data, accum_step, &sched, &cancel);
  16443. if (cancel) {
  16444. return GGML_OPT_RESULT_CANCEL;
  16445. }
  16446. }
  16447. // ggml_graph_reset (gf);
  16448. ggml_set_f32 (f->grad, 1.0f);
  16449. ggml_graph_compute(gb, &cplan);
  16450. ggml_opt_acc_grad(np, ps, g, accum_norm);
  16451. fx += ggml_get_f32_1d(f, 0);
  16452. }
  16453. fx *= accum_norm;
  16454. opt->loss_before = fx;
  16455. opt->loss_after = fx;
  16456. }
  16457. // search direction = -gradient
  16458. ggml_vec_neg_f32(nx, d, g);
  16459. // ||x||, ||g||
  16460. ggml_vec_norm_f32(nx, &xnorm, x);
  16461. ggml_vec_norm_f32(nx, &gnorm, g);
  16462. if (xnorm < 1.0f) {
  16463. xnorm = 1.0f;
  16464. }
  16465. // already optimized
  16466. if (gnorm/xnorm <= params.lbfgs.eps) {
  16467. return GGML_OPT_RESULT_OK;
  16468. }
  16469. if (opt->just_initialized) {
  16470. if (pf) {
  16471. pf[0] = fx;
  16472. }
  16473. opt->lbfgs.fx_best = fx;
  16474. // initial step
  16475. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  16476. opt->lbfgs.j = 0;
  16477. opt->lbfgs.k = 1;
  16478. opt->lbfgs.end = 0;
  16479. opt->lbfgs.n_no_improvement = 0;
  16480. opt->just_initialized = false;
  16481. }
  16482. float * fx_best = &opt->lbfgs.fx_best;
  16483. float * step = &opt->lbfgs.step;
  16484. int * j = &opt->lbfgs.j;
  16485. int * k = &opt->lbfgs.k;
  16486. int * end = &opt->lbfgs.end;
  16487. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  16488. int ls = 0;
  16489. int bound = 0;
  16490. float ys = 0.0f;
  16491. float yy = 0.0f;
  16492. float beta = 0.0f;
  16493. int it = 0;
  16494. while (true) {
  16495. // store the current position and gradient vectors
  16496. ggml_vec_cpy_f32(nx, xp, x);
  16497. ggml_vec_cpy_f32(nx, gp, g);
  16498. // TODO: instead of passing &cancel here, use the return code of the linesearch
  16499. // to determine if the optimization should be cancelled
  16500. // this is a simple change, but not doing this atm, since I don't have a nice
  16501. // way to test and don't want to break something with so many changes lined up
  16502. ls = linesearch_backtracking(&params, nx, x, &fx, g, d, step, xp, f, gb, &cplan, np, ps, &cancel, callback, callback_data);
  16503. if (cancel) {
  16504. return GGML_OPT_RESULT_CANCEL;
  16505. }
  16506. if (ls < 0) {
  16507. // linesearch failed - go back to the previous point and return
  16508. ggml_vec_cpy_f32(nx, x, xp);
  16509. ggml_vec_cpy_f32(nx, g, gp);
  16510. return ls;
  16511. }
  16512. opt->loss_after = fx;
  16513. ggml_vec_norm_f32(nx, &xnorm, x);
  16514. ggml_vec_norm_f32(nx, &gnorm, g);
  16515. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  16516. if (xnorm < 1.0f) {
  16517. xnorm = 1.0f;
  16518. }
  16519. if (gnorm/xnorm <= params.lbfgs.eps) {
  16520. // converged
  16521. return GGML_OPT_RESULT_OK;
  16522. }
  16523. // delta-based convergence test
  16524. if (pf != NULL) {
  16525. // need at least params.past iterations to start checking for convergence
  16526. if (params.past <= k[0]) {
  16527. const float rate = (pf[k[0]%params.past] - fx)/fx;
  16528. if (fabsf(rate) < params.delta) {
  16529. return GGML_OPT_RESULT_OK;
  16530. }
  16531. }
  16532. pf[k[0]%params.past] = fx;
  16533. }
  16534. // check for improvement
  16535. if (params.max_no_improvement > 0) {
  16536. if (fx < fx_best[0]) {
  16537. fx_best[0] = fx;
  16538. n_no_improvement[0] = 0;
  16539. } else {
  16540. n_no_improvement[0]++;
  16541. if (n_no_improvement[0] >= params.max_no_improvement) {
  16542. return GGML_OPT_RESULT_OK;
  16543. }
  16544. }
  16545. }
  16546. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  16547. // reached the maximum number of iterations
  16548. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16549. }
  16550. // update vectors s and y:
  16551. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  16552. // y_{k+1} = g_{k+1} - g_{k}.
  16553. //
  16554. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  16555. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  16556. // compute scalars ys and yy:
  16557. // ys = y^t \cdot s -> 1 / \rho.
  16558. // yy = y^t \cdot y.
  16559. //
  16560. ggml_vec_dot_f32(nx, &ys, 0, &lm_y[end[0]*nx], 0, &lm_s[end[0]*nx], 0, 1);
  16561. ggml_vec_dot_f32(nx, &yy, 0, &lm_y[end[0]*nx], 0, &lm_y[end[0]*nx], 0, 1);
  16562. lm_ys[end[0]] = ys;
  16563. // find new search direction
  16564. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  16565. bound = (m <= k[0]) ? m : k[0];
  16566. k[0]++;
  16567. it++;
  16568. end[0] = (end[0] + 1)%m;
  16569. // initialize search direction with -g
  16570. ggml_vec_neg_f32(nx, d, g);
  16571. j[0] = end[0];
  16572. for (int i = 0; i < bound; ++i) {
  16573. j[0] = (j[0] + m - 1) % m;
  16574. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  16575. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], 0, &lm_s[j[0]*nx], 0, d, 0, 1);
  16576. lm_alpha[j[0]] /= lm_ys[j[0]];
  16577. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  16578. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  16579. }
  16580. ggml_vec_scale_f32(nx, d, ys/yy);
  16581. for (int i = 0; i < bound; ++i) {
  16582. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  16583. ggml_vec_dot_f32(nx, &beta, 0, &lm_y[j[0]*nx], 0, d, 0, 1);
  16584. beta /= lm_ys[j[0]];
  16585. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  16586. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  16587. j[0] = (j[0] + 1)%m;
  16588. }
  16589. step[0] = 1.0;
  16590. }
  16591. GGML_ASSERT(false && "lbfgs failed");
  16592. return GGML_OPT_RESULT_DID_NOT_CONVERGE;
  16593. }
  16594. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  16595. struct ggml_opt_params result;
  16596. switch (type) {
  16597. case GGML_OPT_TYPE_ADAM:
  16598. {
  16599. result = (struct ggml_opt_params) {
  16600. .type = GGML_OPT_TYPE_ADAM,
  16601. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16602. .n_threads = 1, // FIXME: GGML_DEFAULT_N_THREADS ?
  16603. .past = 0,
  16604. .delta = 1e-5f,
  16605. .max_no_improvement = 100,
  16606. .print_forward_graph = true,
  16607. .print_backward_graph = true,
  16608. .n_gradient_accumulation = 1,
  16609. .adam = {
  16610. .n_iter = 10000,
  16611. .sched = 1.000f,
  16612. .decay = 0.0f,
  16613. .decay_min_ndim = 2,
  16614. .alpha = 0.001f,
  16615. .beta1 = 0.9f,
  16616. .beta2 = 0.999f,
  16617. .eps = 1e-8f,
  16618. .eps_f = 1e-5f,
  16619. .eps_g = 1e-3f,
  16620. .gclip = 0.0f,
  16621. },
  16622. };
  16623. } break;
  16624. case GGML_OPT_TYPE_LBFGS:
  16625. {
  16626. result = (struct ggml_opt_params) {
  16627. .type = GGML_OPT_TYPE_LBFGS,
  16628. .graph_size = GGML_DEFAULT_GRAPH_SIZE,
  16629. .n_threads = 1,
  16630. .past = 0,
  16631. .delta = 1e-5f,
  16632. .max_no_improvement = 0,
  16633. .print_forward_graph = true,
  16634. .print_backward_graph = true,
  16635. .n_gradient_accumulation = 1,
  16636. .lbfgs = {
  16637. .m = 6,
  16638. .n_iter = 100,
  16639. .max_linesearch = 20,
  16640. .eps = 1e-5f,
  16641. .ftol = 1e-4f,
  16642. .wolfe = 0.9f,
  16643. .min_step = 1e-20f,
  16644. .max_step = 1e+20f,
  16645. .linesearch = GGML_LINESEARCH_DEFAULT,
  16646. },
  16647. };
  16648. } break;
  16649. }
  16650. return result;
  16651. }
  16652. GGML_API void ggml_opt_init(
  16653. struct ggml_context * ctx,
  16654. struct ggml_opt_context * opt,
  16655. struct ggml_opt_params params,
  16656. int64_t nx) {
  16657. opt->ctx = ctx;
  16658. opt->params = params;
  16659. opt->iter = 0;
  16660. opt->nx = nx;
  16661. opt->just_initialized = true;
  16662. if (opt->ctx == NULL) {
  16663. struct ggml_init_params ctx_opt_params;
  16664. if (opt->params.type == GGML_OPT_TYPE_ADAM) {
  16665. ctx_opt_params.mem_size = GGML_MEM_ALIGN*3 + ggml_tensor_overhead()*3 + ggml_type_size(GGML_TYPE_F32)*nx*3;
  16666. if (opt->params.past > 0) {
  16667. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16668. }
  16669. } else if (opt->params.type == GGML_OPT_TYPE_LBFGS) {
  16670. ctx_opt_params.mem_size = GGML_MEM_ALIGN*9 + ggml_tensor_overhead()*9 + ggml_type_size(GGML_TYPE_F32)*(nx*5 + opt->params.lbfgs.m*2 + nx*opt->params.lbfgs.m*2);
  16671. if (opt->params.past > 0) {
  16672. ctx_opt_params.mem_size += GGML_MEM_ALIGN + ggml_tensor_overhead() + ggml_type_size(GGML_TYPE_F32)*opt->params.past;
  16673. }
  16674. }
  16675. ctx_opt_params.mem_buffer = NULL;
  16676. ctx_opt_params.no_alloc = false;
  16677. opt->ctx = ggml_init(ctx_opt_params);
  16678. }
  16679. switch (opt->params.type) {
  16680. case GGML_OPT_TYPE_ADAM:
  16681. {
  16682. opt->adam.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16683. opt->adam.m = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16684. opt->adam.v = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16685. opt->adam.pf = params.past > 0
  16686. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16687. : NULL;
  16688. ggml_set_zero(opt->adam.m);
  16689. ggml_set_zero(opt->adam.v);
  16690. if (opt->adam.pf) {
  16691. ggml_set_zero(opt->adam.pf);
  16692. }
  16693. } break;
  16694. case GGML_OPT_TYPE_LBFGS:
  16695. {
  16696. opt->lbfgs.x = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16697. opt->lbfgs.xp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16698. opt->lbfgs.g = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16699. opt->lbfgs.gp = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16700. opt->lbfgs.d = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, nx);
  16701. opt->lbfgs.pf = params.past > 0
  16702. ? ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.past)
  16703. : NULL;
  16704. opt->lbfgs.lmal = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16705. opt->lbfgs.lmys = ggml_new_tensor_1d(opt->ctx, GGML_TYPE_F32, params.lbfgs.m);
  16706. opt->lbfgs.lms = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16707. opt->lbfgs.lmy = ggml_new_tensor_2d(opt->ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  16708. ggml_set_zero(opt->lbfgs.x);
  16709. ggml_set_zero(opt->lbfgs.xp);
  16710. ggml_set_zero(opt->lbfgs.g);
  16711. ggml_set_zero(opt->lbfgs.gp);
  16712. ggml_set_zero(opt->lbfgs.d);
  16713. if (opt->lbfgs.pf) {
  16714. ggml_set_zero(opt->lbfgs.pf);
  16715. }
  16716. ggml_set_zero(opt->lbfgs.lmal);
  16717. ggml_set_zero(opt->lbfgs.lmys);
  16718. ggml_set_zero(opt->lbfgs.lms);
  16719. ggml_set_zero(opt->lbfgs.lmy);
  16720. } break;
  16721. }
  16722. }
  16723. enum ggml_opt_result ggml_opt(
  16724. struct ggml_context * ctx,
  16725. struct ggml_opt_params params,
  16726. struct ggml_tensor * f) {
  16727. bool free_ctx = false;
  16728. if (ctx == NULL) {
  16729. struct ggml_init_params params_ctx = {
  16730. .mem_size = 16*1024*1024,
  16731. .mem_buffer = NULL,
  16732. .no_alloc = false,
  16733. };
  16734. ctx = ggml_init(params_ctx);
  16735. if (ctx == NULL) {
  16736. return GGML_OPT_RESULT_NO_CONTEXT;
  16737. }
  16738. free_ctx = true;
  16739. }
  16740. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16741. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  16742. ggml_opt_init(ctx, opt, params, 0);
  16743. result = ggml_opt_resume(ctx, opt, f);
  16744. if (free_ctx) {
  16745. ggml_free(ctx);
  16746. }
  16747. return result;
  16748. }
  16749. enum ggml_opt_result ggml_opt_resume(
  16750. struct ggml_context * ctx,
  16751. struct ggml_opt_context * opt,
  16752. struct ggml_tensor * f) {
  16753. // build forward + backward compute graphs
  16754. struct ggml_cgraph * gf = ggml_new_graph_custom(ctx, opt->params.graph_size, true);
  16755. ggml_build_forward_expand(gf, f);
  16756. struct ggml_cgraph * gb = ggml_graph_dup(ctx, gf);
  16757. ggml_build_backward_expand(ctx, gf, gb, true);
  16758. return ggml_opt_resume_g(ctx, opt, f, gf, gb, NULL, NULL);
  16759. }
  16760. enum ggml_opt_result ggml_opt_resume_g(
  16761. struct ggml_context * ctx,
  16762. struct ggml_opt_context * opt,
  16763. struct ggml_tensor * f,
  16764. struct ggml_cgraph * gf,
  16765. struct ggml_cgraph * gb,
  16766. ggml_opt_callback callback,
  16767. void * callback_data) {
  16768. // build forward + backward compute graphs
  16769. enum ggml_opt_result result = GGML_OPT_RESULT_OK;
  16770. switch (opt->params.type) {
  16771. case GGML_OPT_TYPE_ADAM:
  16772. {
  16773. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16774. } break;
  16775. case GGML_OPT_TYPE_LBFGS:
  16776. {
  16777. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb, callback, callback_data);
  16778. } break;
  16779. }
  16780. if (opt->params.print_forward_graph) {
  16781. ggml_graph_print (gf);
  16782. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  16783. }
  16784. if (opt->params.print_backward_graph) {
  16785. ggml_graph_print (gb);
  16786. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  16787. }
  16788. return result;
  16789. }
  16790. ////////////////////////////////////////////////////////////////////////////////
  16791. void ggml_set_input(struct ggml_tensor * tensor) {
  16792. tensor->flags |= GGML_TENSOR_FLAG_INPUT;
  16793. }
  16794. void ggml_set_output(struct ggml_tensor * tensor) {
  16795. tensor->flags |= GGML_TENSOR_FLAG_OUTPUT;
  16796. }
  16797. ////////////////////////////////////////////////////////////////////////////////
  16798. void ggml_quantize_init(enum ggml_type type) {
  16799. ggml_critical_section_start();
  16800. switch (type) {
  16801. case GGML_TYPE_IQ2_XXS:
  16802. case GGML_TYPE_IQ2_XS:
  16803. case GGML_TYPE_IQ2_S:
  16804. case GGML_TYPE_IQ1_S:
  16805. case GGML_TYPE_IQ1_M: iq2xs_init_impl(type); break;
  16806. case GGML_TYPE_IQ3_XXS: iq3xs_init_impl(256); break;
  16807. case GGML_TYPE_IQ3_S: iq3xs_init_impl(512); break;
  16808. default: // nothing
  16809. break;
  16810. }
  16811. ggml_critical_section_end();
  16812. }
  16813. void ggml_quantize_free(void) {
  16814. ggml_critical_section_start();
  16815. iq2xs_free_impl(GGML_TYPE_IQ2_XXS);
  16816. iq2xs_free_impl(GGML_TYPE_IQ2_XS);
  16817. iq2xs_free_impl(GGML_TYPE_IQ1_S);
  16818. iq3xs_free_impl(256);
  16819. ggml_critical_section_end();
  16820. }
  16821. bool ggml_quantize_requires_imatrix(enum ggml_type type) {
  16822. return
  16823. type == GGML_TYPE_IQ2_XXS ||
  16824. type == GGML_TYPE_IQ2_XS ||
  16825. type == GGML_TYPE_IQ1_S;// ||
  16826. //type == GGML_TYPE_IQ1_M;
  16827. }
  16828. size_t ggml_quantize_chunk(
  16829. enum ggml_type type,
  16830. const float * src,
  16831. void * dst,
  16832. int64_t start,
  16833. int64_t nrows,
  16834. int64_t n_per_row,
  16835. const float * imatrix) {
  16836. const int64_t n = (int64_t) nrows * n_per_row;
  16837. if (ggml_quantize_requires_imatrix(type)) {
  16838. GGML_ASSERT(imatrix != NULL);
  16839. }
  16840. GGML_ASSERT(start % type_traits[type].blck_size == 0);
  16841. GGML_ASSERT(start % n_per_row == 0);
  16842. ggml_quantize_init(type); // this is noop if already initialized
  16843. const size_t start_row = start / n_per_row;
  16844. const size_t row_size = ggml_row_size(type, n_per_row);
  16845. size_t result = 0;
  16846. switch (type) {
  16847. case GGML_TYPE_Q4_0: result = quantize_q4_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16848. case GGML_TYPE_Q4_1: result = quantize_q4_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16849. case GGML_TYPE_Q5_0: result = quantize_q5_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16850. case GGML_TYPE_Q5_1: result = quantize_q5_1(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16851. case GGML_TYPE_Q8_0: result = quantize_q8_0(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16852. case GGML_TYPE_Q2_K: result = quantize_q2_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16853. case GGML_TYPE_Q3_K: result = quantize_q3_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16854. case GGML_TYPE_Q4_K: result = quantize_q4_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16855. case GGML_TYPE_Q5_K: result = quantize_q5_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16856. case GGML_TYPE_Q6_K: result = quantize_q6_K(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16857. case GGML_TYPE_IQ2_XXS: result = quantize_iq2_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16858. case GGML_TYPE_IQ2_XS: result = quantize_iq2_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16859. case GGML_TYPE_IQ3_XXS: result = quantize_iq3_xxs(src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16860. case GGML_TYPE_IQ3_S: result = quantize_iq3_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16861. case GGML_TYPE_IQ2_S: result = quantize_iq2_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16862. case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16863. case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16864. case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16865. case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
  16866. case GGML_TYPE_F16:
  16867. {
  16868. size_t elemsize = sizeof(ggml_fp16_t);
  16869. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  16870. result = n * elemsize;
  16871. } break;
  16872. case GGML_TYPE_BF16:
  16873. {
  16874. size_t elemsize = sizeof(ggml_bf16_t);
  16875. ggml_fp32_to_bf16_row(src + start, (ggml_bf16_t *)dst + start, n);
  16876. result = n * elemsize;
  16877. } break;
  16878. case GGML_TYPE_F32:
  16879. {
  16880. size_t elemsize = sizeof(float);
  16881. result = n * elemsize;
  16882. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  16883. } break;
  16884. default:
  16885. assert(false);
  16886. }
  16887. GGML_ASSERT(result == nrows * row_size);
  16888. return result;
  16889. }
  16890. ////////////////////////////////////////////////////////////////////////////////
  16891. struct gguf_str {
  16892. uint64_t n; // GGUFv2
  16893. char * data;
  16894. };
  16895. static const size_t GGUF_TYPE_SIZE[GGUF_TYPE_COUNT] = {
  16896. [GGUF_TYPE_UINT8] = sizeof(uint8_t),
  16897. [GGUF_TYPE_INT8] = sizeof(int8_t),
  16898. [GGUF_TYPE_UINT16] = sizeof(uint16_t),
  16899. [GGUF_TYPE_INT16] = sizeof(int16_t),
  16900. [GGUF_TYPE_UINT32] = sizeof(uint32_t),
  16901. [GGUF_TYPE_INT32] = sizeof(int32_t),
  16902. [GGUF_TYPE_FLOAT32] = sizeof(float),
  16903. [GGUF_TYPE_BOOL] = sizeof(bool),
  16904. [GGUF_TYPE_STRING] = sizeof(struct gguf_str),
  16905. [GGUF_TYPE_UINT64] = sizeof(uint64_t),
  16906. [GGUF_TYPE_INT64] = sizeof(int64_t),
  16907. [GGUF_TYPE_FLOAT64] = sizeof(double),
  16908. [GGUF_TYPE_ARRAY] = 0, // undefined
  16909. };
  16910. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16911. static const char * GGUF_TYPE_NAME[GGUF_TYPE_COUNT] = {
  16912. [GGUF_TYPE_UINT8] = "u8",
  16913. [GGUF_TYPE_INT8] = "i8",
  16914. [GGUF_TYPE_UINT16] = "u16",
  16915. [GGUF_TYPE_INT16] = "i16",
  16916. [GGUF_TYPE_UINT32] = "u32",
  16917. [GGUF_TYPE_INT32] = "i32",
  16918. [GGUF_TYPE_FLOAT32] = "f32",
  16919. [GGUF_TYPE_BOOL] = "bool",
  16920. [GGUF_TYPE_STRING] = "str",
  16921. [GGUF_TYPE_ARRAY] = "arr",
  16922. [GGUF_TYPE_UINT64] = "u64",
  16923. [GGUF_TYPE_INT64] = "i64",
  16924. [GGUF_TYPE_FLOAT64] = "f64",
  16925. };
  16926. static_assert(GGUF_TYPE_COUNT == 13, "GGUF_TYPE_COUNT != 13");
  16927. union gguf_value {
  16928. uint8_t uint8;
  16929. int8_t int8;
  16930. uint16_t uint16;
  16931. int16_t int16;
  16932. uint32_t uint32;
  16933. int32_t int32;
  16934. float float32;
  16935. uint64_t uint64;
  16936. int64_t int64;
  16937. double float64;
  16938. bool bool_;
  16939. struct gguf_str str;
  16940. struct {
  16941. enum gguf_type type;
  16942. uint64_t n; // GGUFv2
  16943. void * data;
  16944. } arr;
  16945. };
  16946. struct gguf_kv {
  16947. struct gguf_str key;
  16948. enum gguf_type type;
  16949. union gguf_value value;
  16950. };
  16951. struct gguf_header {
  16952. char magic[4];
  16953. uint32_t version;
  16954. uint64_t n_tensors; // GGUFv2
  16955. uint64_t n_kv; // GGUFv2
  16956. };
  16957. struct gguf_tensor_info {
  16958. struct gguf_str name;
  16959. uint32_t n_dims;
  16960. uint64_t ne[GGML_MAX_DIMS];
  16961. enum ggml_type type;
  16962. uint64_t offset; // offset from start of `data`, must be a multiple of `ALIGNMENT`
  16963. // for writing API
  16964. const void * data;
  16965. size_t size;
  16966. };
  16967. struct gguf_context {
  16968. struct gguf_header header;
  16969. struct gguf_kv * kv;
  16970. struct gguf_tensor_info * infos;
  16971. size_t alignment;
  16972. size_t offset; // offset of `data` from beginning of file
  16973. size_t size; // size of `data` in bytes
  16974. //uint8_t * padding;
  16975. void * data;
  16976. };
  16977. static size_t gguf_type_size(enum gguf_type type) {
  16978. GGML_ASSERT(0 <= type && type < GGUF_TYPE_COUNT);
  16979. return GGUF_TYPE_SIZE[type];
  16980. }
  16981. static void gguf_tensor_info_sanitize(struct gguf_tensor_info * info) {
  16982. GGML_ASSERT(info->n_dims <= GGML_MAX_DIMS);
  16983. GGML_ASSERT(0 <= info->type && info->type < GGML_TYPE_COUNT);
  16984. for (uint32_t i = 0; i < info->n_dims; ++i) {
  16985. GGML_ASSERT(info->ne[i] > 0);
  16986. }
  16987. // prevent overflow for total number of elements
  16988. GGML_ASSERT(INT64_MAX/info->ne[1] > info->ne[0]);
  16989. GGML_ASSERT(INT64_MAX/info->ne[2] > info->ne[0]*info->ne[1]);
  16990. GGML_ASSERT(INT64_MAX/info->ne[3] > info->ne[0]*info->ne[1]*info->ne[2]);
  16991. }
  16992. static bool gguf_fread_el(FILE * file, void * dst, size_t size, size_t * offset) {
  16993. const size_t n = fread(dst, 1, size, file);
  16994. *offset += n;
  16995. return n == size;
  16996. }
  16997. static bool gguf_fread_str(FILE * file, struct gguf_str * p, size_t * offset) {
  16998. p->n = 0;
  16999. p->data = NULL;
  17000. bool ok = true;
  17001. ok = ok && gguf_fread_el(file, &p->n, sizeof(p->n), offset);
  17002. // early exit if string length is invalid, prevents from integer overflow
  17003. if (p->n == SIZE_MAX) {
  17004. fprintf(stderr, "%s: invalid string length (%" PRIu64 ")\n", __func__, p->n);
  17005. return false;
  17006. }
  17007. p->data = GGML_CALLOC(p->n + 1, 1);
  17008. ok = ok && gguf_fread_el(file, p->data, p->n, offset);
  17009. return ok;
  17010. }
  17011. static void gguf_free_kv(struct gguf_kv * kv) {
  17012. if (kv->key.data) {
  17013. GGML_FREE(kv->key.data);
  17014. }
  17015. if (kv->type == GGUF_TYPE_STRING) {
  17016. if (kv->value.str.data) {
  17017. GGML_FREE(kv->value.str.data);
  17018. }
  17019. }
  17020. if (kv->type == GGUF_TYPE_ARRAY) {
  17021. if (kv->value.arr.data) {
  17022. if (kv->value.arr.type == GGUF_TYPE_STRING) {
  17023. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17024. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[j];
  17025. if (str->data) {
  17026. GGML_FREE(str->data);
  17027. }
  17028. }
  17029. }
  17030. GGML_FREE(kv->value.arr.data);
  17031. }
  17032. }
  17033. }
  17034. struct gguf_context * gguf_init_empty(void) {
  17035. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17036. memcpy(ctx->header.magic, GGUF_MAGIC, sizeof(ctx->header.magic));
  17037. ctx->header.version = GGUF_VERSION;
  17038. ctx->header.n_tensors = 0;
  17039. ctx->header.n_kv = 0;
  17040. ctx->kv = NULL;
  17041. ctx->infos = NULL;
  17042. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17043. ctx->offset = 0;
  17044. ctx->size = 0;
  17045. ctx->data = NULL;
  17046. return ctx;
  17047. }
  17048. struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_params params) {
  17049. FILE * file = ggml_fopen(fname, "rb");
  17050. if (!file) {
  17051. return NULL;
  17052. }
  17053. // offset from start of file
  17054. size_t offset = 0;
  17055. char magic[4];
  17056. // check the magic before making allocations
  17057. {
  17058. gguf_fread_el(file, &magic, sizeof(magic), &offset);
  17059. for (uint32_t i = 0; i < sizeof(magic); i++) {
  17060. if (magic[i] != GGUF_MAGIC[i]) {
  17061. fprintf(stderr, "%s: invalid magic characters '%c%c%c%c'\n", __func__, magic[0], magic[1], magic[2], magic[3]);
  17062. fclose(file);
  17063. return NULL;
  17064. }
  17065. }
  17066. }
  17067. bool ok = true;
  17068. struct gguf_context * ctx = GGML_CALLOC(1, sizeof(struct gguf_context));
  17069. // read the header
  17070. {
  17071. strncpy(ctx->header.magic, magic, 4);
  17072. ctx->kv = NULL;
  17073. ctx->infos = NULL;
  17074. ctx->data = NULL;
  17075. ok = ok && gguf_fread_el(file, &ctx->header.version, sizeof(ctx->header.version), &offset);
  17076. ok = ok && gguf_fread_el(file, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors), &offset);
  17077. ok = ok && gguf_fread_el(file, &ctx->header.n_kv, sizeof(ctx->header.n_kv), &offset);
  17078. if (ctx->header.version == 1) {
  17079. fprintf(stderr, "%s: GGUFv1 is no longer supported. please use a more up-to-date version\n", __func__);
  17080. fclose(file);
  17081. gguf_free(ctx);
  17082. return NULL;
  17083. }
  17084. // sanity-checks to prevent from integer/buffer overflows
  17085. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/sizeof(struct gguf_tensor_info));
  17086. ok = ok && (ctx->header.n_tensors < (SIZE_MAX/2)/ggml_tensor_overhead());
  17087. ok = ok && (ctx->header.n_kv < (SIZE_MAX/2)/sizeof(struct gguf_kv));
  17088. if (!ok) {
  17089. fprintf(stderr, "%s: failed to read header\n", __func__);
  17090. fclose(file);
  17091. gguf_free(ctx);
  17092. return NULL;
  17093. }
  17094. }
  17095. // read the kv pairs
  17096. {
  17097. const uint64_t n_kv = ctx->header.n_kv;
  17098. // header.n_kv will hold the actual value of pairs that were successfully read in the loop below
  17099. ctx->header.n_kv = 0;
  17100. ctx->kv = GGML_CALLOC(n_kv, sizeof(struct gguf_kv));
  17101. for (uint64_t i = 0; i < n_kv; ++i) {
  17102. struct gguf_kv * kv = &ctx->kv[i];
  17103. //fprintf(stderr, "%s: reading kv %d\n", __func__, i);
  17104. ok = ok && gguf_fread_str(file, &kv->key, &offset);
  17105. ok = ok && gguf_fread_el (file, &kv->type, sizeof(kv->type), &offset);
  17106. //fprintf(stderr, "%s: reading kv with key %s\n", __func__, kv->key.data);
  17107. switch (kv->type) {
  17108. case GGUF_TYPE_UINT8: ok = ok && gguf_fread_el (file, &kv->value.uint8, sizeof(kv->value.uint8), &offset); break;
  17109. case GGUF_TYPE_INT8: ok = ok && gguf_fread_el (file, &kv->value.int8, sizeof(kv->value.int8), &offset); break;
  17110. case GGUF_TYPE_UINT16: ok = ok && gguf_fread_el (file, &kv->value.uint16, sizeof(kv->value.uint16), &offset); break;
  17111. case GGUF_TYPE_INT16: ok = ok && gguf_fread_el (file, &kv->value.int16, sizeof(kv->value.int16), &offset); break;
  17112. case GGUF_TYPE_UINT32: ok = ok && gguf_fread_el (file, &kv->value.uint32, sizeof(kv->value.uint32), &offset); break;
  17113. case GGUF_TYPE_INT32: ok = ok && gguf_fread_el (file, &kv->value.int32, sizeof(kv->value.int32), &offset); break;
  17114. case GGUF_TYPE_FLOAT32: ok = ok && gguf_fread_el (file, &kv->value.float32, sizeof(kv->value.float32), &offset); break;
  17115. case GGUF_TYPE_UINT64: ok = ok && gguf_fread_el (file, &kv->value.uint64, sizeof(kv->value.uint64), &offset); break;
  17116. case GGUF_TYPE_INT64: ok = ok && gguf_fread_el (file, &kv->value.int64, sizeof(kv->value.int64), &offset); break;
  17117. case GGUF_TYPE_FLOAT64: ok = ok && gguf_fread_el (file, &kv->value.float64, sizeof(kv->value.float64), &offset); break;
  17118. case GGUF_TYPE_BOOL: ok = ok && gguf_fread_el (file, &kv->value.bool_, sizeof(kv->value.bool_), &offset); break;
  17119. case GGUF_TYPE_STRING: ok = ok && gguf_fread_str(file, &kv->value.str, &offset); break;
  17120. case GGUF_TYPE_ARRAY:
  17121. {
  17122. ok = ok && gguf_fread_el(file, &kv->value.arr.type, sizeof(kv->value.arr.type), &offset);
  17123. ok = ok && gguf_fread_el(file, &kv->value.arr.n, sizeof(kv->value.arr.n), &offset);
  17124. switch (kv->value.arr.type) {
  17125. case GGUF_TYPE_UINT8:
  17126. case GGUF_TYPE_INT8:
  17127. case GGUF_TYPE_UINT16:
  17128. case GGUF_TYPE_INT16:
  17129. case GGUF_TYPE_UINT32:
  17130. case GGUF_TYPE_INT32:
  17131. case GGUF_TYPE_FLOAT32:
  17132. case GGUF_TYPE_UINT64:
  17133. case GGUF_TYPE_INT64:
  17134. case GGUF_TYPE_FLOAT64:
  17135. case GGUF_TYPE_BOOL:
  17136. {
  17137. // prevent from integer overflow in the malloc below
  17138. if (kv->value.arr.n >= SIZE_MAX/gguf_type_size(kv->value.arr.type)) {
  17139. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17140. fclose(file);
  17141. gguf_free(ctx);
  17142. return NULL;
  17143. }
  17144. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, gguf_type_size(kv->value.arr.type));
  17145. ok = ok && gguf_fread_el(file, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type), &offset);
  17146. } break;
  17147. case GGUF_TYPE_STRING:
  17148. {
  17149. // prevent from integer overflow in the malloc below
  17150. if (kv->value.arr.n >= SIZE_MAX/sizeof(struct gguf_str)) {
  17151. fprintf(stderr, "%s: array size is too large (%" PRIu64 ")\n", __func__, kv->value.arr.n);
  17152. fclose(file);
  17153. gguf_free(ctx);
  17154. return NULL;
  17155. }
  17156. kv->value.arr.data = GGML_CALLOC(kv->value.arr.n, sizeof(struct gguf_str));
  17157. for (uint64_t j = 0; j < kv->value.arr.n; ++j) {
  17158. ok = ok && gguf_fread_str(file, &((struct gguf_str *) kv->value.arr.data)[j], &offset);
  17159. }
  17160. } break;
  17161. case GGUF_TYPE_ARRAY:
  17162. default: GGML_ASSERT(false && "invalid type"); break;
  17163. }
  17164. } break;
  17165. default: GGML_ASSERT(false && "invalid type");
  17166. }
  17167. if (!ok) {
  17168. break;
  17169. }
  17170. ctx->header.n_kv++;
  17171. }
  17172. if (!ok) {
  17173. fprintf(stderr, "%s: failed to read key-value pairs\n", __func__);
  17174. fclose(file);
  17175. gguf_free(ctx);
  17176. return NULL;
  17177. }
  17178. }
  17179. // read the tensor infos
  17180. if (ctx->header.n_tensors > 0) {
  17181. ctx->infos = GGML_CALLOC(ctx->header.n_tensors, sizeof(struct gguf_tensor_info));
  17182. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17183. struct gguf_tensor_info * info = &ctx->infos[i];
  17184. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  17185. info->ne[j] = 1;
  17186. }
  17187. ok = ok && gguf_fread_str(file, &info->name, &offset);
  17188. ok = ok && gguf_fread_el (file, &info->n_dims, sizeof(info->n_dims), &offset);
  17189. ok = ok && (info->n_dims <= GGML_MAX_DIMS);
  17190. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17191. ok = ok && gguf_fread_el(file, &info->ne[j], sizeof(info->ne[j]), &offset);
  17192. }
  17193. ok = ok && gguf_fread_el (file, &info->type, sizeof(info->type), &offset);
  17194. ok = ok && gguf_fread_el (file, &info->offset, sizeof(info->offset), &offset);
  17195. // TODO: return an error instead of crashing with GGML_ASSERT
  17196. gguf_tensor_info_sanitize(info);
  17197. // make sure there is no duplicated tensor names
  17198. for (uint64_t j = 0; j < i; ++j) {
  17199. if (strcmp(info->name.data, ctx->infos[j].name.data) == 0) {
  17200. fprintf(stderr, "%s: duplicated tensor name %s\n", __func__, info->name.data);
  17201. ok = false;
  17202. }
  17203. }
  17204. if (!ok) {
  17205. fprintf(stderr, "%s: failed to read tensor info\n", __func__);
  17206. fclose(file);
  17207. gguf_free(ctx);
  17208. return NULL;
  17209. }
  17210. }
  17211. }
  17212. ctx->alignment = GGUF_DEFAULT_ALIGNMENT;
  17213. int alignment_idx = gguf_find_key(ctx, "general.alignment");
  17214. if (alignment_idx != -1) {
  17215. ctx->alignment = gguf_get_val_u32(ctx, alignment_idx);
  17216. }
  17217. // we require the data section to be aligned, so take into account any padding
  17218. {
  17219. const size_t offset_pad = offset % ctx->alignment;
  17220. if (offset_pad != 0) {
  17221. offset += ctx->alignment - offset_pad;
  17222. fseek(file, offset, SEEK_SET);
  17223. }
  17224. }
  17225. // store the current file offset - this is where the data section starts
  17226. ctx->offset = offset;
  17227. // compute the total size of the data section, taking into account the alignment
  17228. {
  17229. ctx->size = 0;
  17230. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17231. struct gguf_tensor_info * info = &ctx->infos[i];
  17232. const int64_t ne =
  17233. (int64_t) info->ne[0] *
  17234. (int64_t) info->ne[1] *
  17235. (int64_t) info->ne[2] *
  17236. (int64_t) info->ne[3];
  17237. if (ne % ggml_blck_size(info->type) != 0) {
  17238. fprintf(stderr, "%s: tensor '%s' of type %d (%s) number of elements (%" PRId64 ") is not a multiple of block size (%d)\n",
  17239. __func__, info->name.data, (int)info->type, ggml_type_name(info->type), ne, ggml_blck_size(info->type));
  17240. fclose(file);
  17241. gguf_free(ctx);
  17242. return NULL;
  17243. }
  17244. const size_t size_cur = ggml_row_size(info->type, ne);
  17245. ctx->size += GGML_PAD(size_cur, ctx->alignment);
  17246. }
  17247. }
  17248. // load the tensor data only if requested
  17249. if (params.ctx != NULL) {
  17250. // if the provided gguf_context is no_alloc, then we create "empty" tensors and do not read the binary blob
  17251. // otherwise, we load the binary blob into the created ggml_context as well, and point the "data" members of
  17252. // the ggml_tensor structs to the appropriate locations in the binary blob
  17253. // compute the exact size needed for the new ggml_context
  17254. const size_t mem_size =
  17255. params.no_alloc ?
  17256. (ctx->header.n_tensors )*ggml_tensor_overhead() :
  17257. (ctx->header.n_tensors + 1)*ggml_tensor_overhead() + ctx->size;
  17258. struct ggml_init_params pdata = {
  17259. .mem_size = mem_size,
  17260. .mem_buffer = NULL,
  17261. .no_alloc = params.no_alloc,
  17262. };
  17263. *params.ctx = ggml_init(pdata);
  17264. struct ggml_context * ctx_data = *params.ctx;
  17265. struct ggml_tensor * data = NULL;
  17266. if (!params.no_alloc) {
  17267. data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
  17268. ok = ok && data != NULL;
  17269. // read the binary blob with the tensor data
  17270. ok = ok && gguf_fread_el(file, data->data, ctx->size, &offset);
  17271. if (!ok) {
  17272. fprintf(stderr, "%s: failed to read tensor data\n", __func__);
  17273. fclose(file);
  17274. ggml_free(ctx_data);
  17275. gguf_free(ctx);
  17276. return NULL;
  17277. }
  17278. ctx->data = data->data;
  17279. }
  17280. ggml_set_no_alloc(ctx_data, true);
  17281. // create the tensors
  17282. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17283. const int64_t ne[GGML_MAX_DIMS] = {
  17284. ctx->infos[i].ne[0],
  17285. ctx->infos[i].ne[1],
  17286. ctx->infos[i].ne[2],
  17287. ctx->infos[i].ne[3],
  17288. };
  17289. struct ggml_tensor * cur = ggml_new_tensor(ctx_data, ctx->infos[i].type, ctx->infos[i].n_dims, ne);
  17290. ok = ok && cur != NULL;
  17291. if (!ok) {
  17292. break;
  17293. }
  17294. ggml_set_name(cur, ctx->infos[i].name.data);
  17295. // point the data member to the appropriate location in the binary blob using the tensor infos
  17296. if (!params.no_alloc) {
  17297. //cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
  17298. cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
  17299. }
  17300. }
  17301. if (!ok) {
  17302. fprintf(stderr, "%s: failed to read the tensor data\n", __func__);
  17303. fclose(file);
  17304. ggml_free(ctx_data);
  17305. gguf_free(ctx);
  17306. return NULL;
  17307. }
  17308. ggml_set_no_alloc(ctx_data, params.no_alloc);
  17309. }
  17310. fclose(file);
  17311. return ctx;
  17312. }
  17313. void gguf_free(struct gguf_context * ctx) {
  17314. if (ctx == NULL) {
  17315. return;
  17316. }
  17317. if (ctx->kv) {
  17318. // free string memory - not great..
  17319. for (uint64_t i = 0; i < ctx->header.n_kv; ++i) {
  17320. gguf_free_kv(&ctx->kv[i]);
  17321. }
  17322. GGML_FREE(ctx->kv);
  17323. }
  17324. if (ctx->infos) {
  17325. for (uint64_t i = 0; i < ctx->header.n_tensors; ++i) {
  17326. struct gguf_tensor_info * info = &ctx->infos[i];
  17327. if (info->name.data) {
  17328. GGML_FREE(info->name.data);
  17329. }
  17330. }
  17331. GGML_FREE(ctx->infos);
  17332. }
  17333. GGML_FREE(ctx);
  17334. }
  17335. const char * gguf_type_name(enum gguf_type type) {
  17336. return GGUF_TYPE_NAME[type];
  17337. }
  17338. int gguf_get_version(const struct gguf_context * ctx) {
  17339. return ctx->header.version;
  17340. }
  17341. size_t gguf_get_alignment(const struct gguf_context * ctx) {
  17342. return ctx->alignment;
  17343. }
  17344. size_t gguf_get_data_offset(const struct gguf_context * ctx) {
  17345. return ctx->offset;
  17346. }
  17347. void * gguf_get_data(const struct gguf_context * ctx) {
  17348. return ctx->data;
  17349. }
  17350. int gguf_get_n_kv(const struct gguf_context * ctx) {
  17351. return ctx->header.n_kv;
  17352. }
  17353. int gguf_find_key(const struct gguf_context * ctx, const char * key) {
  17354. // return -1 if key not found
  17355. int keyfound = -1;
  17356. const int n_kv = gguf_get_n_kv(ctx);
  17357. for (int i = 0; i < n_kv; ++i) {
  17358. if (strcmp(key, gguf_get_key(ctx, i)) == 0) {
  17359. keyfound = i;
  17360. break;
  17361. }
  17362. }
  17363. return keyfound;
  17364. }
  17365. const char * gguf_get_key(const struct gguf_context * ctx, int key_id) {
  17366. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17367. return ctx->kv[key_id].key.data;
  17368. }
  17369. enum gguf_type gguf_get_kv_type(const struct gguf_context * ctx, int key_id) {
  17370. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17371. return ctx->kv[key_id].type;
  17372. }
  17373. enum gguf_type gguf_get_arr_type(const struct gguf_context * ctx, int key_id) {
  17374. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17375. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17376. return ctx->kv[key_id].value.arr.type;
  17377. }
  17378. const void * gguf_get_arr_data(const struct gguf_context * ctx, int key_id) {
  17379. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17380. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17381. return ctx->kv[key_id].value.arr.data;
  17382. }
  17383. const char * gguf_get_arr_str(const struct gguf_context * ctx, int key_id, int i) {
  17384. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17385. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17386. struct gguf_kv * kv = &ctx->kv[key_id];
  17387. struct gguf_str * str = &((struct gguf_str *) kv->value.arr.data)[i];
  17388. return str->data;
  17389. }
  17390. int gguf_get_arr_n(const struct gguf_context * ctx, int key_id) {
  17391. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17392. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_ARRAY);
  17393. return ctx->kv[key_id].value.arr.n;
  17394. }
  17395. uint8_t gguf_get_val_u8(const struct gguf_context * ctx, int key_id) {
  17396. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17397. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT8);
  17398. return ctx->kv[key_id].value.uint8;
  17399. }
  17400. int8_t gguf_get_val_i8(const struct gguf_context * ctx, int key_id) {
  17401. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17402. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT8);
  17403. return ctx->kv[key_id].value.int8;
  17404. }
  17405. uint16_t gguf_get_val_u16(const struct gguf_context * ctx, int key_id) {
  17406. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17407. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT16);
  17408. return ctx->kv[key_id].value.uint16;
  17409. }
  17410. int16_t gguf_get_val_i16(const struct gguf_context * ctx, int key_id) {
  17411. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17412. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT16);
  17413. return ctx->kv[key_id].value.int16;
  17414. }
  17415. uint32_t gguf_get_val_u32(const struct gguf_context * ctx, int key_id) {
  17416. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17417. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT32);
  17418. return ctx->kv[key_id].value.uint32;
  17419. }
  17420. int32_t gguf_get_val_i32(const struct gguf_context * ctx, int key_id) {
  17421. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17422. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT32);
  17423. return ctx->kv[key_id].value.int32;
  17424. }
  17425. float gguf_get_val_f32(const struct gguf_context * ctx, int key_id) {
  17426. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17427. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT32);
  17428. return ctx->kv[key_id].value.float32;
  17429. }
  17430. uint64_t gguf_get_val_u64(const struct gguf_context * ctx, int key_id) {
  17431. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17432. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_UINT64);
  17433. return ctx->kv[key_id].value.uint64;
  17434. }
  17435. int64_t gguf_get_val_i64(const struct gguf_context * ctx, int key_id) {
  17436. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17437. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_INT64);
  17438. return ctx->kv[key_id].value.int64;
  17439. }
  17440. double gguf_get_val_f64(const struct gguf_context * ctx, int key_id) {
  17441. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17442. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_FLOAT64);
  17443. return ctx->kv[key_id].value.float64;
  17444. }
  17445. bool gguf_get_val_bool(const struct gguf_context * ctx, int key_id) {
  17446. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17447. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_BOOL);
  17448. return ctx->kv[key_id].value.bool_;
  17449. }
  17450. const char * gguf_get_val_str(const struct gguf_context * ctx, int key_id) {
  17451. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17452. GGML_ASSERT(ctx->kv[key_id].type == GGUF_TYPE_STRING);
  17453. return ctx->kv[key_id].value.str.data;
  17454. }
  17455. const void * gguf_get_val_data(const struct gguf_context * ctx, int key_id) {
  17456. GGML_ASSERT(key_id >= 0 && key_id < gguf_get_n_kv(ctx));
  17457. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_ARRAY);
  17458. GGML_ASSERT(ctx->kv[key_id].type != GGUF_TYPE_STRING);
  17459. return &ctx->kv[key_id].value;
  17460. }
  17461. int gguf_get_n_tensors(const struct gguf_context * ctx) {
  17462. return ctx->header.n_tensors;
  17463. }
  17464. int gguf_find_tensor(const struct gguf_context * ctx, const char * name) {
  17465. // return -1 if tensor not found
  17466. int tensorfound = -1;
  17467. const int n_tensors = gguf_get_n_tensors(ctx);
  17468. for (int i = 0; i < n_tensors; ++i) {
  17469. if (strcmp(name, gguf_get_tensor_name(ctx, i)) == 0) {
  17470. tensorfound = i;
  17471. break;
  17472. }
  17473. }
  17474. return tensorfound;
  17475. }
  17476. size_t gguf_get_tensor_offset(const struct gguf_context * ctx, int i) {
  17477. return ctx->infos[i].offset;
  17478. }
  17479. char * gguf_get_tensor_name(const struct gguf_context * ctx, int i) {
  17480. return ctx->infos[i].name.data;
  17481. }
  17482. enum ggml_type gguf_get_tensor_type(const struct gguf_context * ctx, int i) {
  17483. return ctx->infos[i].type;
  17484. }
  17485. // returns the index
  17486. static int gguf_get_or_add_key(struct gguf_context * ctx, const char * key) {
  17487. const int idx = gguf_find_key(ctx, key);
  17488. if (idx >= 0) {
  17489. return idx;
  17490. }
  17491. const int n_kv = gguf_get_n_kv(ctx);
  17492. ctx->kv = realloc(ctx->kv, (n_kv + 1) * sizeof(struct gguf_kv));
  17493. ctx->kv[n_kv].key.n = strlen(key);
  17494. ctx->kv[n_kv].key.data = strdup(key);
  17495. ctx->header.n_kv++;
  17496. return n_kv;
  17497. }
  17498. void gguf_remove_key(struct gguf_context * ctx, const char * key) {
  17499. const int idx = gguf_find_key(ctx, key);
  17500. if (idx >= 0) {
  17501. const int n_kv = gguf_get_n_kv(ctx);
  17502. gguf_free_kv(&ctx->kv[idx]);
  17503. for (int i = idx; i < n_kv-1; ++i) {
  17504. ctx->kv[i] = ctx->kv[i+1];
  17505. }
  17506. ctx->kv = realloc(ctx->kv, (n_kv - 1) * sizeof(struct gguf_kv));
  17507. ctx->header.n_kv--;
  17508. }
  17509. }
  17510. void gguf_set_val_u8(struct gguf_context * ctx, const char * key, uint8_t val) {
  17511. const int idx = gguf_get_or_add_key(ctx, key);
  17512. ctx->kv[idx].type = GGUF_TYPE_UINT8;
  17513. ctx->kv[idx].value.uint8 = val;
  17514. }
  17515. void gguf_set_val_i8(struct gguf_context * ctx, const char * key, int8_t val) {
  17516. const int idx = gguf_get_or_add_key(ctx, key);
  17517. ctx->kv[idx].type = GGUF_TYPE_INT8;
  17518. ctx->kv[idx].value.int8 = val;
  17519. }
  17520. void gguf_set_val_u16(struct gguf_context * ctx, const char * key, uint16_t val) {
  17521. const int idx = gguf_get_or_add_key(ctx, key);
  17522. ctx->kv[idx].type = GGUF_TYPE_UINT16;
  17523. ctx->kv[idx].value.uint16 = val;
  17524. }
  17525. void gguf_set_val_i16(struct gguf_context * ctx, const char * key, int16_t val) {
  17526. const int idx = gguf_get_or_add_key(ctx, key);
  17527. ctx->kv[idx].type = GGUF_TYPE_INT16;
  17528. ctx->kv[idx].value.int16 = val;
  17529. }
  17530. void gguf_set_val_u32(struct gguf_context * ctx, const char * key, uint32_t val) {
  17531. const int idx = gguf_get_or_add_key(ctx, key);
  17532. ctx->kv[idx].type = GGUF_TYPE_UINT32;
  17533. ctx->kv[idx].value.uint32 = val;
  17534. }
  17535. void gguf_set_val_i32(struct gguf_context * ctx, const char * key, int32_t val) {
  17536. const int idx = gguf_get_or_add_key(ctx, key);
  17537. ctx->kv[idx].type = GGUF_TYPE_INT32;
  17538. ctx->kv[idx].value.int32 = val;
  17539. }
  17540. void gguf_set_val_f32(struct gguf_context * ctx, const char * key, float val) {
  17541. const int idx = gguf_get_or_add_key(ctx, key);
  17542. ctx->kv[idx].type = GGUF_TYPE_FLOAT32;
  17543. ctx->kv[idx].value.float32 = val;
  17544. }
  17545. void gguf_set_val_u64(struct gguf_context * ctx, const char * key, uint64_t val) {
  17546. const int idx = gguf_get_or_add_key(ctx, key);
  17547. ctx->kv[idx].type = GGUF_TYPE_UINT64;
  17548. ctx->kv[idx].value.uint64 = val;
  17549. }
  17550. void gguf_set_val_i64(struct gguf_context * ctx, const char * key, int64_t val) {
  17551. const int idx = gguf_get_or_add_key(ctx, key);
  17552. ctx->kv[idx].type = GGUF_TYPE_INT64;
  17553. ctx->kv[idx].value.int64 = val;
  17554. }
  17555. void gguf_set_val_f64(struct gguf_context * ctx, const char * key, double val) {
  17556. const int idx = gguf_get_or_add_key(ctx, key);
  17557. ctx->kv[idx].type = GGUF_TYPE_FLOAT64;
  17558. ctx->kv[idx].value.float64 = val;
  17559. }
  17560. void gguf_set_val_bool(struct gguf_context * ctx, const char * key, bool val) {
  17561. const int idx = gguf_get_or_add_key(ctx, key);
  17562. ctx->kv[idx].type = GGUF_TYPE_BOOL;
  17563. ctx->kv[idx].value.bool_ = val;
  17564. }
  17565. void gguf_set_val_str(struct gguf_context * ctx, const char * key, const char * val) {
  17566. const int idx = gguf_get_or_add_key(ctx, key);
  17567. ctx->kv[idx].type = GGUF_TYPE_STRING;
  17568. ctx->kv[idx].value.str.n = strlen(val);
  17569. ctx->kv[idx].value.str.data = strdup(val);
  17570. }
  17571. void gguf_set_arr_data(struct gguf_context * ctx, const char * key, enum gguf_type type, const void * data, int n) {
  17572. const int idx = gguf_get_or_add_key(ctx, key);
  17573. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17574. ctx->kv[idx].value.arr.type = type;
  17575. ctx->kv[idx].value.arr.n = n;
  17576. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, gguf_type_size(type));
  17577. memcpy(ctx->kv[idx].value.arr.data, data, n*gguf_type_size(type));
  17578. }
  17579. void gguf_set_arr_str(struct gguf_context * ctx, const char * key, const char ** data, int n) {
  17580. const int idx = gguf_get_or_add_key(ctx, key);
  17581. ctx->kv[idx].type = GGUF_TYPE_ARRAY;
  17582. ctx->kv[idx].value.arr.type = GGUF_TYPE_STRING;
  17583. ctx->kv[idx].value.arr.n = n;
  17584. ctx->kv[idx].value.arr.data = GGML_CALLOC(n, sizeof(struct gguf_str));
  17585. for (int i = 0; i < n; i++) {
  17586. struct gguf_str * str = &((struct gguf_str *)ctx->kv[idx].value.arr.data)[i];
  17587. str->n = strlen(data[i]);
  17588. str->data = strdup(data[i]);
  17589. }
  17590. }
  17591. // set or add KV pairs from another context
  17592. void gguf_set_kv(struct gguf_context * ctx, struct gguf_context * src) {
  17593. for (uint32_t i = 0; i < src->header.n_kv; i++) {
  17594. switch (src->kv[i].type) {
  17595. case GGUF_TYPE_UINT8: gguf_set_val_u8 (ctx, src->kv[i].key.data, src->kv[i].value.uint8); break;
  17596. case GGUF_TYPE_INT8: gguf_set_val_i8 (ctx, src->kv[i].key.data, src->kv[i].value.int8); break;
  17597. case GGUF_TYPE_UINT16: gguf_set_val_u16 (ctx, src->kv[i].key.data, src->kv[i].value.uint16); break;
  17598. case GGUF_TYPE_INT16: gguf_set_val_i16 (ctx, src->kv[i].key.data, src->kv[i].value.int16); break;
  17599. case GGUF_TYPE_UINT32: gguf_set_val_u32 (ctx, src->kv[i].key.data, src->kv[i].value.uint32); break;
  17600. case GGUF_TYPE_INT32: gguf_set_val_i32 (ctx, src->kv[i].key.data, src->kv[i].value.int32); break;
  17601. case GGUF_TYPE_FLOAT32: gguf_set_val_f32 (ctx, src->kv[i].key.data, src->kv[i].value.float32); break;
  17602. case GGUF_TYPE_UINT64: gguf_set_val_u64 (ctx, src->kv[i].key.data, src->kv[i].value.uint64); break;
  17603. case GGUF_TYPE_INT64: gguf_set_val_i64 (ctx, src->kv[i].key.data, src->kv[i].value.int64); break;
  17604. case GGUF_TYPE_FLOAT64: gguf_set_val_f64 (ctx, src->kv[i].key.data, src->kv[i].value.float64); break;
  17605. case GGUF_TYPE_BOOL: gguf_set_val_bool(ctx, src->kv[i].key.data, src->kv[i].value.bool_); break;
  17606. case GGUF_TYPE_STRING: gguf_set_val_str (ctx, src->kv[i].key.data, src->kv[i].value.str.data); break;
  17607. case GGUF_TYPE_ARRAY:
  17608. {
  17609. if (src->kv[i].value.arr.type == GGUF_TYPE_STRING) {
  17610. const char ** data = GGML_CALLOC(src->kv[i].value.arr.n, sizeof(char *));
  17611. for (uint32_t j = 0; j < src->kv[i].value.arr.n; j++) {
  17612. data[j] = ((struct gguf_str *)src->kv[i].value.arr.data)[j].data;
  17613. }
  17614. gguf_set_arr_str(ctx, src->kv[i].key.data, data, src->kv[i].value.arr.n);
  17615. GGML_FREE((void *)data);
  17616. } else if (src->kv[i].value.arr.type == GGUF_TYPE_ARRAY) {
  17617. GGML_ASSERT(false && "nested arrays not supported");
  17618. } else {
  17619. gguf_set_arr_data(ctx, src->kv[i].key.data, src->kv[i].value.arr.type, src->kv[i].value.arr.data, src->kv[i].value.arr.n);
  17620. }
  17621. } break;
  17622. default: GGML_ASSERT(false && "invalid type"); break;
  17623. }
  17624. }
  17625. }
  17626. void gguf_add_tensor(
  17627. struct gguf_context * ctx,
  17628. const struct ggml_tensor * tensor) {
  17629. if (gguf_find_tensor(ctx, tensor->name) != -1) {
  17630. GGML_ASSERT(false && "duplicated tensor name");
  17631. }
  17632. const int idx = ctx->header.n_tensors;
  17633. ctx->infos = realloc(ctx->infos, (idx + 1)*sizeof(struct gguf_tensor_info));
  17634. ctx->infos[idx].name.n = strlen(tensor->name);
  17635. ctx->infos[idx].name.data = strdup(tensor->name);
  17636. for (int i = 0; i < GGML_MAX_DIMS; ++i) {
  17637. ctx->infos[idx].ne[i] = 1;
  17638. }
  17639. ctx->infos[idx].n_dims = ggml_n_dims(tensor);
  17640. for (uint32_t i = 0; i < ctx->infos[idx].n_dims; i++) {
  17641. ctx->infos[idx].ne[i] = tensor->ne[i];
  17642. }
  17643. ctx->infos[idx].type = tensor->type;
  17644. ctx->infos[idx].offset = 0;
  17645. ctx->infos[idx].data = tensor->data;
  17646. ctx->infos[idx].size = ggml_nbytes(tensor);
  17647. if (ctx->header.n_tensors > 0) {
  17648. ctx->infos[idx].offset = ctx->infos[idx - 1].offset + GGML_PAD(ctx->infos[idx - 1].size, ctx->alignment);
  17649. }
  17650. ctx->header.n_tensors++;
  17651. }
  17652. void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
  17653. const int idx = gguf_find_tensor(ctx, name);
  17654. if (idx < 0) {
  17655. GGML_ASSERT(false && "tensor not found");
  17656. }
  17657. ctx->infos[idx].type = type;
  17658. }
  17659. void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size) {
  17660. const int idx = gguf_find_tensor(ctx, name);
  17661. if (idx < 0) {
  17662. GGML_ASSERT(false && "tensor not found");
  17663. }
  17664. ctx->infos[idx].data = data;
  17665. ctx->infos[idx].size = size;
  17666. // update offsets
  17667. for (uint32_t i = idx + 1; i < ctx->header.n_tensors; ++i) {
  17668. ctx->infos[i].offset = ctx->infos[i - 1].offset + GGML_PAD(ctx->infos[i - 1].size, ctx->alignment);
  17669. }
  17670. }
  17671. //static void gguf_fwrite_str(FILE * file, const struct gguf_str * val) {
  17672. // fwrite(&val->n, sizeof(val->n), 1, file);
  17673. // fwrite(val->data, sizeof(char), val->n, file);
  17674. //}
  17675. //
  17676. //static void gguf_fwrite_el(FILE * file, const void * val, size_t size) {
  17677. // fwrite(val, sizeof(char), size, file);
  17678. //}
  17679. struct gguf_buf {
  17680. void * data;
  17681. size_t size;
  17682. size_t offset;
  17683. };
  17684. static struct gguf_buf gguf_buf_init(size_t size) {
  17685. struct gguf_buf buf = {
  17686. /*buf.data =*/ size == 0 ? NULL : GGML_CALLOC(1, size),
  17687. /*buf.size =*/ size,
  17688. /*buf.offset =*/ 0,
  17689. };
  17690. return buf;
  17691. }
  17692. static void gguf_buf_free(struct gguf_buf buf) {
  17693. if (buf.data) {
  17694. GGML_FREE(buf.data);
  17695. }
  17696. }
  17697. static void gguf_buf_grow(struct gguf_buf * buf, size_t size) {
  17698. if (buf->offset + size > buf->size) {
  17699. buf->size = 1.5*(buf->offset + size);
  17700. if (buf->data) {
  17701. buf->data = realloc(buf->data, buf->size);
  17702. }
  17703. }
  17704. }
  17705. static void gguf_bwrite_str(struct gguf_buf * buf, const struct gguf_str * val) {
  17706. gguf_buf_grow(buf, sizeof(val->n) + val->n);
  17707. if (buf->data) {
  17708. memcpy((char *) buf->data + buf->offset, &val->n, sizeof(val->n));
  17709. }
  17710. buf->offset += sizeof(val->n);
  17711. if (buf->data) {
  17712. memcpy((char *) buf->data + buf->offset, val->data, val->n);
  17713. }
  17714. buf->offset += val->n;
  17715. }
  17716. static void gguf_bwrite_el(struct gguf_buf * buf, const void * val, size_t el_size) {
  17717. gguf_buf_grow(buf, el_size);
  17718. if (buf->data) {
  17719. memcpy((char *) buf->data + buf->offset, val, el_size);
  17720. }
  17721. buf->offset += el_size;
  17722. }
  17723. static void gguf_write_to_buf(const struct gguf_context * ctx, struct gguf_buf * buf, bool only_meta) {
  17724. // write header
  17725. gguf_bwrite_el(buf, &ctx->header.magic, sizeof(ctx->header.magic));
  17726. gguf_bwrite_el(buf, &ctx->header.version, sizeof(ctx->header.version));
  17727. gguf_bwrite_el(buf, &ctx->header.n_tensors, sizeof(ctx->header.n_tensors));
  17728. gguf_bwrite_el(buf, &ctx->header.n_kv, sizeof(ctx->header.n_kv));
  17729. // write key-value pairs
  17730. for (uint32_t i = 0; i < ctx->header.n_kv; ++i) {
  17731. struct gguf_kv * kv = &ctx->kv[i];
  17732. gguf_bwrite_str(buf, &kv->key);
  17733. gguf_bwrite_el (buf, &kv->type, sizeof(kv->type));
  17734. switch (kv->type) {
  17735. case GGUF_TYPE_UINT8: gguf_bwrite_el( buf, &kv->value.uint8, sizeof(kv->value.uint8) ); break;
  17736. case GGUF_TYPE_INT8: gguf_bwrite_el (buf, &kv->value.int8, sizeof(kv->value.int8) ); break;
  17737. case GGUF_TYPE_UINT16: gguf_bwrite_el (buf, &kv->value.uint16, sizeof(kv->value.uint16) ); break;
  17738. case GGUF_TYPE_INT16: gguf_bwrite_el (buf, &kv->value.int16, sizeof(kv->value.int16) ); break;
  17739. case GGUF_TYPE_UINT32: gguf_bwrite_el (buf, &kv->value.uint32, sizeof(kv->value.uint32) ); break;
  17740. case GGUF_TYPE_INT32: gguf_bwrite_el (buf, &kv->value.int32, sizeof(kv->value.int32) ); break;
  17741. case GGUF_TYPE_FLOAT32: gguf_bwrite_el (buf, &kv->value.float32, sizeof(kv->value.float32)); break;
  17742. case GGUF_TYPE_UINT64: gguf_bwrite_el (buf, &kv->value.uint64, sizeof(kv->value.uint64) ); break;
  17743. case GGUF_TYPE_INT64: gguf_bwrite_el (buf, &kv->value.int64, sizeof(kv->value.int64) ); break;
  17744. case GGUF_TYPE_FLOAT64: gguf_bwrite_el (buf, &kv->value.float64, sizeof(kv->value.float64)); break;
  17745. case GGUF_TYPE_BOOL: gguf_bwrite_el (buf, &kv->value.bool_, sizeof(kv->value.bool_) ); break;
  17746. case GGUF_TYPE_STRING: gguf_bwrite_str(buf, &kv->value.str ); break;
  17747. case GGUF_TYPE_ARRAY:
  17748. {
  17749. gguf_bwrite_el(buf, &kv->value.arr.type, sizeof(kv->value.arr.type));
  17750. gguf_bwrite_el(buf, &kv->value.arr.n, sizeof(kv->value.arr.n) );
  17751. switch (kv->value.arr.type) {
  17752. case GGUF_TYPE_UINT8:
  17753. case GGUF_TYPE_INT8:
  17754. case GGUF_TYPE_UINT16:
  17755. case GGUF_TYPE_INT16:
  17756. case GGUF_TYPE_UINT32:
  17757. case GGUF_TYPE_INT32:
  17758. case GGUF_TYPE_FLOAT32:
  17759. case GGUF_TYPE_UINT64:
  17760. case GGUF_TYPE_INT64:
  17761. case GGUF_TYPE_FLOAT64:
  17762. case GGUF_TYPE_BOOL:
  17763. {
  17764. gguf_bwrite_el(buf, kv->value.arr.data, kv->value.arr.n * gguf_type_size(kv->value.arr.type));
  17765. } break;
  17766. case GGUF_TYPE_STRING:
  17767. {
  17768. for (uint32_t j = 0; j < kv->value.arr.n; ++j) {
  17769. gguf_bwrite_str(buf, &((struct gguf_str *) kv->value.arr.data)[j]);
  17770. }
  17771. } break;
  17772. case GGUF_TYPE_ARRAY:
  17773. default: GGML_ASSERT(false && "invalid type"); break;
  17774. }
  17775. } break;
  17776. default: GGML_ASSERT(false && "invalid type");
  17777. }
  17778. }
  17779. // write tensor infos
  17780. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17781. struct gguf_tensor_info * info = &ctx->infos[i];
  17782. gguf_bwrite_str(buf, &info->name);
  17783. gguf_bwrite_el (buf, &info->n_dims, sizeof(info->n_dims));
  17784. for (uint32_t j = 0; j < info->n_dims; ++j) {
  17785. gguf_bwrite_el(buf, &info->ne[j], sizeof(info->ne[j]));
  17786. }
  17787. gguf_bwrite_el(buf, &info->type, sizeof(info->type));
  17788. gguf_bwrite_el(buf, &info->offset, sizeof(info->offset));
  17789. }
  17790. // we require the data section to be aligned, so take into account any padding
  17791. {
  17792. const size_t offset = buf->offset;
  17793. const size_t offset_pad = GGML_PAD(offset, ctx->alignment);
  17794. if (offset_pad != offset) {
  17795. uint8_t pad = 0;
  17796. for (size_t i = 0; i < offset_pad - offset; ++i) {
  17797. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17798. }
  17799. }
  17800. }
  17801. if (only_meta) {
  17802. return;
  17803. }
  17804. size_t offset = 0;
  17805. // write tensor data
  17806. for (uint32_t i = 0; i < ctx->header.n_tensors; ++i) {
  17807. struct gguf_tensor_info * info = &ctx->infos[i];
  17808. const size_t size = info->size;
  17809. const size_t size_pad = GGML_PAD(size, ctx->alignment);
  17810. gguf_bwrite_el(buf, info->data, size);
  17811. if (size_pad != size) {
  17812. uint8_t pad = 0;
  17813. for (size_t j = 0; j < size_pad - size; ++j) {
  17814. gguf_bwrite_el(buf, &pad, sizeof(pad));
  17815. }
  17816. }
  17817. GGML_ASSERT(offset == info->offset);
  17818. offset += size_pad;
  17819. }
  17820. }
  17821. void gguf_write_to_file(const struct gguf_context * ctx, const char * fname, bool only_meta) {
  17822. FILE * file = ggml_fopen(fname, "wb");
  17823. if (!file) {
  17824. GGML_ASSERT(false && "failed to open file for writing");
  17825. }
  17826. struct gguf_buf buf = gguf_buf_init(16*1024);
  17827. gguf_write_to_buf(ctx, &buf, only_meta);
  17828. fwrite(buf.data, 1, buf.offset, file);
  17829. gguf_buf_free(buf);
  17830. fclose(file);
  17831. }
  17832. size_t gguf_get_meta_size(const struct gguf_context * ctx) {
  17833. // no allocs - only compute size
  17834. struct gguf_buf buf = gguf_buf_init(0);
  17835. gguf_write_to_buf(ctx, &buf, true);
  17836. return buf.offset;
  17837. }
  17838. void gguf_get_meta_data(const struct gguf_context * ctx, void * data) {
  17839. struct gguf_buf buf = gguf_buf_init(16*1024);
  17840. gguf_write_to_buf(ctx, &buf, true);
  17841. memcpy(data, buf.data, buf.offset);
  17842. gguf_buf_free(buf);
  17843. }
  17844. ////////////////////////////////////////////////////////////////////////////////
  17845. int ggml_cpu_has_avx(void) {
  17846. #if defined(__AVX__)
  17847. return 1;
  17848. #else
  17849. return 0;
  17850. #endif
  17851. }
  17852. int ggml_cpu_has_avx_vnni(void) {
  17853. #if defined(__AVXVNNI__)
  17854. return 1;
  17855. #else
  17856. return 0;
  17857. #endif
  17858. }
  17859. int ggml_cpu_has_avx2(void) {
  17860. #if defined(__AVX2__)
  17861. return 1;
  17862. #else
  17863. return 0;
  17864. #endif
  17865. }
  17866. int ggml_cpu_has_avx512(void) {
  17867. #if defined(__AVX512F__)
  17868. return 1;
  17869. #else
  17870. return 0;
  17871. #endif
  17872. }
  17873. int ggml_cpu_has_avx512_vbmi(void) {
  17874. #if defined(__AVX512VBMI__)
  17875. return 1;
  17876. #else
  17877. return 0;
  17878. #endif
  17879. }
  17880. int ggml_cpu_has_avx512_vnni(void) {
  17881. #if defined(__AVX512VNNI__)
  17882. return 1;
  17883. #else
  17884. return 0;
  17885. #endif
  17886. }
  17887. int ggml_cpu_has_avx512_bf16(void) {
  17888. #if defined(__AVX512BF16__)
  17889. return 1;
  17890. #else
  17891. return 0;
  17892. #endif
  17893. }
  17894. int ggml_cpu_has_fma(void) {
  17895. #if defined(__FMA__)
  17896. return 1;
  17897. #else
  17898. return 0;
  17899. #endif
  17900. }
  17901. int ggml_cpu_has_neon(void) {
  17902. #if defined(__ARM_NEON)
  17903. return 1;
  17904. #else
  17905. return 0;
  17906. #endif
  17907. }
  17908. int ggml_cpu_has_sve(void) {
  17909. #if defined(__ARM_FEATURE_SVE)
  17910. // TODO: Currently, SVE 256 bit is only supported.
  17911. GGML_ASSERT(svcntb() == QK8_0);
  17912. return 1;
  17913. #else
  17914. return 0;
  17915. #endif
  17916. }
  17917. int ggml_cpu_has_arm_fma(void) {
  17918. #if defined(__ARM_FEATURE_FMA)
  17919. return 1;
  17920. #else
  17921. return 0;
  17922. #endif
  17923. }
  17924. int ggml_cpu_has_metal(void) {
  17925. #if defined(GGML_USE_METAL)
  17926. return 1;
  17927. #else
  17928. return 0;
  17929. #endif
  17930. }
  17931. int ggml_cpu_has_f16c(void) {
  17932. #if defined(__F16C__)
  17933. return 1;
  17934. #else
  17935. return 0;
  17936. #endif
  17937. }
  17938. int ggml_cpu_has_fp16_va(void) {
  17939. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  17940. return 1;
  17941. #else
  17942. return 0;
  17943. #endif
  17944. }
  17945. int ggml_cpu_has_wasm_simd(void) {
  17946. #if defined(__wasm_simd128__)
  17947. return 1;
  17948. #else
  17949. return 0;
  17950. #endif
  17951. }
  17952. int ggml_cpu_has_blas(void) {
  17953. #if defined(GGML_USE_BLAS) || defined(GGML_USE_CUDA) || defined(GGML_USE_VULKAN) || defined(GGML_USE_SYCL)
  17954. return 1;
  17955. #else
  17956. return 0;
  17957. #endif
  17958. }
  17959. int ggml_cpu_has_cuda(void) {
  17960. #if defined(GGML_USE_CUDA)
  17961. return 1;
  17962. #else
  17963. return 0;
  17964. #endif
  17965. }
  17966. int ggml_cpu_has_vulkan(void) {
  17967. #if defined(GGML_USE_VULKAN)
  17968. return 1;
  17969. #else
  17970. return 0;
  17971. #endif
  17972. }
  17973. int ggml_cpu_has_kompute(void) {
  17974. #if defined(GGML_USE_KOMPUTE)
  17975. return 1;
  17976. #else
  17977. return 0;
  17978. #endif
  17979. }
  17980. int ggml_cpu_has_sycl(void) {
  17981. #if defined(GGML_USE_SYCL)
  17982. return 1;
  17983. #else
  17984. return 0;
  17985. #endif
  17986. }
  17987. int ggml_cpu_has_rpc(void) {
  17988. #if defined(GGML_USE_RPC)
  17989. return 1;
  17990. #else
  17991. return 0;
  17992. #endif
  17993. }
  17994. int ggml_cpu_has_gpublas(void) {
  17995. return ggml_cpu_has_cuda() || ggml_cpu_has_vulkan() || ggml_cpu_has_kompute() || ggml_cpu_has_sycl();
  17996. }
  17997. int ggml_cpu_has_sse3(void) {
  17998. #if defined(__SSE3__)
  17999. return 1;
  18000. #else
  18001. return 0;
  18002. #endif
  18003. }
  18004. int ggml_cpu_has_ssse3(void) {
  18005. #if defined(__SSSE3__)
  18006. return 1;
  18007. #else
  18008. return 0;
  18009. #endif
  18010. }
  18011. int ggml_cpu_has_vsx(void) {
  18012. #if defined(__POWER9_VECTOR__)
  18013. return 1;
  18014. #else
  18015. return 0;
  18016. #endif
  18017. }
  18018. int ggml_cpu_has_matmul_int8(void) {
  18019. #if defined(__ARM_FEATURE_MATMUL_INT8)
  18020. return 1;
  18021. #else
  18022. return 0;
  18023. #endif
  18024. }
  18025. ////////////////////////////////////////////////////////////////////////////////