ggml.c 612 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628106291063010631106321063310634106351063610637106381063910640106411064210643106441064510646106471064810649106501065110652106531065410655106561065710658106591066010661106621066310664106651066610667106681066910670106711067210673106741067510676106771067810679106801068110682106831068410685106861068710688106891069010691106921069310694106951069610697106981069910700107011070210703107041070510706107071070810709107101071110712107131071410715107161071710718107191072010721107221072310724107251072610727107281072910730107311073210733107341073510736107371073810739107401074110742107431074410745107461074710748107491075010751107521075310754107551075610757107581075910760107611076210763107641076510766107671076810769107701077110772107731077410775107761077710778107791078010781107821078310784107851078610787107881078910790107911079210793107941079510796107971079810799108001080110802108031080410805108061080710808108091081010811108121081310814108151081610817108181081910820108211082210823108241082510826108271082810829108301083110832108331083410835108361083710838108391084010841108421084310844108451084610847108481084910850108511085210853108541085510856108571085810859108601086110862108631086410865108661086710868108691087010871108721087310874108751087610877108781087910880108811088210883108841088510886108871088810889108901089110892108931089410895108961089710898108991090010901109021090310904109051090610907109081090910910109111091210913109141091510916109171091810919109201092110922109231092410925109261092710928109291093010931109321093310934109351093610937109381093910940109411094210943109441094510946109471094810949109501095110952109531095410955109561095710958109591096010961109621096310964109651096610967109681096910970109711097210973109741097510976109771097810979109801098110982109831098410985109861098710988109891099010991109921099310994109951099610997109981099911000110011100211003110041100511006110071100811009110101101111012110131101411015110161101711018110191102011021110221102311024110251102611027110281102911030110311103211033110341103511036110371103811039110401104111042110431104411045110461104711048110491105011051110521105311054110551105611057110581105911060110611106211063110641106511066110671106811069110701107111072110731107411075110761107711078110791108011081110821108311084110851108611087110881108911090110911109211093110941109511096110971109811099111001110111102111031110411105111061110711108111091111011111111121111311114111151111611117111181111911120111211112211123111241112511126111271112811129111301113111132111331113411135111361113711138111391114011141111421114311144111451114611147111481114911150111511115211153111541115511156111571115811159111601116111162111631116411165111661116711168111691117011171111721117311174111751117611177111781117911180111811118211183111841118511186111871118811189111901119111192111931119411195111961119711198111991120011201112021120311204112051120611207112081120911210112111121211213112141121511216112171121811219112201122111222112231122411225112261122711228112291123011231112321123311234112351123611237112381123911240112411124211243112441124511246112471124811249112501125111252112531125411255112561125711258112591126011261112621126311264112651126611267112681126911270112711127211273112741127511276112771127811279112801128111282112831128411285112861128711288112891129011291112921129311294112951129611297112981129911300113011130211303113041130511306113071130811309113101131111312113131131411315113161131711318113191132011321113221132311324113251132611327113281132911330113311133211333113341133511336113371133811339113401134111342113431134411345113461134711348113491135011351113521135311354113551135611357113581135911360113611136211363113641136511366113671136811369113701137111372113731137411375113761137711378113791138011381113821138311384113851138611387113881138911390113911139211393113941139511396113971139811399114001140111402114031140411405114061140711408114091141011411114121141311414114151141611417114181141911420114211142211423114241142511426114271142811429114301143111432114331143411435114361143711438114391144011441114421144311444114451144611447114481144911450114511145211453114541145511456114571145811459114601146111462114631146411465114661146711468114691147011471114721147311474114751147611477114781147911480114811148211483114841148511486114871148811489114901149111492114931149411495114961149711498114991150011501115021150311504115051150611507115081150911510115111151211513115141151511516115171151811519115201152111522115231152411525115261152711528115291153011531115321153311534115351153611537115381153911540115411154211543115441154511546115471154811549115501155111552115531155411555115561155711558115591156011561115621156311564115651156611567115681156911570115711157211573115741157511576115771157811579115801158111582115831158411585115861158711588115891159011591115921159311594115951159611597115981159911600116011160211603116041160511606116071160811609116101161111612116131161411615116161161711618116191162011621116221162311624116251162611627116281162911630116311163211633116341163511636116371163811639116401164111642116431164411645116461164711648116491165011651116521165311654116551165611657116581165911660116611166211663116641166511666116671166811669116701167111672116731167411675116761167711678116791168011681116821168311684116851168611687116881168911690116911169211693116941169511696116971169811699117001170111702117031170411705117061170711708117091171011711117121171311714117151171611717117181171911720117211172211723117241172511726117271172811729117301173111732117331173411735117361173711738117391174011741117421174311744117451174611747117481174911750117511175211753117541175511756117571175811759117601176111762117631176411765117661176711768117691177011771117721177311774117751177611777117781177911780117811178211783117841178511786117871178811789117901179111792117931179411795117961179711798117991180011801118021180311804118051180611807118081180911810118111181211813118141181511816118171181811819118201182111822118231182411825118261182711828118291183011831118321183311834118351183611837118381183911840118411184211843118441184511846118471184811849118501185111852118531185411855118561185711858118591186011861118621186311864118651186611867118681186911870118711187211873118741187511876118771187811879118801188111882118831188411885118861188711888118891189011891118921189311894118951189611897118981189911900119011190211903119041190511906119071190811909119101191111912119131191411915119161191711918119191192011921119221192311924119251192611927119281192911930119311193211933119341193511936119371193811939119401194111942119431194411945119461194711948119491195011951119521195311954119551195611957119581195911960119611196211963119641196511966119671196811969119701197111972119731197411975119761197711978119791198011981119821198311984119851198611987119881198911990119911199211993119941199511996119971199811999120001200112002120031200412005120061200712008120091201012011120121201312014120151201612017120181201912020120211202212023120241202512026120271202812029120301203112032120331203412035120361203712038120391204012041120421204312044120451204612047120481204912050120511205212053120541205512056120571205812059120601206112062120631206412065120661206712068120691207012071120721207312074120751207612077120781207912080120811208212083120841208512086120871208812089120901209112092120931209412095120961209712098120991210012101121021210312104121051210612107121081210912110121111211212113121141211512116121171211812119121201212112122121231212412125121261212712128121291213012131121321213312134121351213612137121381213912140121411214212143121441214512146121471214812149121501215112152121531215412155121561215712158121591216012161121621216312164121651216612167121681216912170121711217212173121741217512176121771217812179121801218112182121831218412185121861218712188121891219012191121921219312194121951219612197121981219912200122011220212203122041220512206122071220812209122101221112212122131221412215122161221712218122191222012221122221222312224122251222612227122281222912230122311223212233122341223512236122371223812239122401224112242122431224412245122461224712248122491225012251122521225312254122551225612257122581225912260122611226212263122641226512266122671226812269122701227112272122731227412275122761227712278122791228012281122821228312284122851228612287122881228912290122911229212293122941229512296122971229812299123001230112302123031230412305123061230712308123091231012311123121231312314123151231612317123181231912320123211232212323123241232512326123271232812329123301233112332123331233412335123361233712338123391234012341123421234312344123451234612347123481234912350123511235212353123541235512356123571235812359123601236112362123631236412365123661236712368123691237012371123721237312374123751237612377123781237912380123811238212383123841238512386123871238812389123901239112392123931239412395123961239712398123991240012401124021240312404124051240612407124081240912410124111241212413124141241512416124171241812419124201242112422124231242412425124261242712428124291243012431124321243312434124351243612437124381243912440124411244212443124441244512446124471244812449124501245112452124531245412455124561245712458124591246012461124621246312464124651246612467124681246912470124711247212473124741247512476124771247812479124801248112482124831248412485124861248712488124891249012491124921249312494124951249612497124981249912500125011250212503125041250512506125071250812509125101251112512125131251412515125161251712518125191252012521125221252312524125251252612527125281252912530125311253212533125341253512536125371253812539125401254112542125431254412545125461254712548125491255012551125521255312554125551255612557125581255912560125611256212563125641256512566125671256812569125701257112572125731257412575125761257712578125791258012581125821258312584125851258612587125881258912590125911259212593125941259512596125971259812599126001260112602126031260412605126061260712608126091261012611126121261312614126151261612617126181261912620126211262212623126241262512626126271262812629126301263112632126331263412635126361263712638126391264012641126421264312644126451264612647126481264912650126511265212653126541265512656126571265812659126601266112662126631266412665126661266712668126691267012671126721267312674126751267612677126781267912680126811268212683126841268512686126871268812689126901269112692126931269412695126961269712698126991270012701127021270312704127051270612707127081270912710127111271212713127141271512716127171271812719127201272112722127231272412725127261272712728127291273012731127321273312734127351273612737127381273912740127411274212743127441274512746127471274812749127501275112752127531275412755127561275712758127591276012761127621276312764127651276612767127681276912770127711277212773127741277512776127771277812779127801278112782127831278412785127861278712788127891279012791127921279312794127951279612797127981279912800128011280212803128041280512806128071280812809128101281112812128131281412815128161281712818128191282012821128221282312824128251282612827128281282912830128311283212833128341283512836128371283812839128401284112842128431284412845128461284712848128491285012851128521285312854128551285612857128581285912860128611286212863128641286512866128671286812869128701287112872128731287412875128761287712878128791288012881128821288312884128851288612887128881288912890128911289212893128941289512896128971289812899129001290112902129031290412905129061290712908129091291012911129121291312914129151291612917129181291912920129211292212923129241292512926129271292812929129301293112932129331293412935129361293712938129391294012941129421294312944129451294612947129481294912950129511295212953129541295512956129571295812959129601296112962129631296412965129661296712968129691297012971129721297312974129751297612977129781297912980129811298212983129841298512986129871298812989129901299112992129931299412995129961299712998129991300013001130021300313004130051300613007130081300913010130111301213013130141301513016130171301813019130201302113022130231302413025130261302713028130291303013031130321303313034130351303613037130381303913040130411304213043130441304513046130471304813049130501305113052130531305413055130561305713058130591306013061130621306313064130651306613067130681306913070130711307213073130741307513076130771307813079130801308113082130831308413085130861308713088130891309013091130921309313094130951309613097130981309913100131011310213103131041310513106131071310813109131101311113112131131311413115131161311713118131191312013121131221312313124131251312613127131281312913130131311313213133131341313513136131371313813139131401314113142131431314413145131461314713148131491315013151131521315313154131551315613157131581315913160131611316213163131641316513166131671316813169131701317113172131731317413175131761317713178131791318013181131821318313184131851318613187131881318913190131911319213193131941319513196131971319813199132001320113202132031320413205132061320713208132091321013211132121321313214132151321613217132181321913220132211322213223132241322513226132271322813229132301323113232132331323413235132361323713238132391324013241132421324313244132451324613247132481324913250132511325213253132541325513256132571325813259132601326113262132631326413265132661326713268132691327013271132721327313274132751327613277132781327913280132811328213283132841328513286132871328813289132901329113292132931329413295132961329713298132991330013301133021330313304133051330613307133081330913310133111331213313133141331513316133171331813319133201332113322133231332413325133261332713328133291333013331133321333313334133351333613337133381333913340133411334213343133441334513346133471334813349133501335113352133531335413355133561335713358133591336013361133621336313364133651336613367133681336913370133711337213373133741337513376133771337813379133801338113382133831338413385133861338713388133891339013391133921339313394133951339613397133981339913400134011340213403134041340513406134071340813409134101341113412134131341413415134161341713418134191342013421134221342313424134251342613427134281342913430134311343213433134341343513436134371343813439134401344113442134431344413445134461344713448134491345013451134521345313454134551345613457134581345913460134611346213463134641346513466134671346813469134701347113472134731347413475134761347713478134791348013481134821348313484134851348613487134881348913490134911349213493134941349513496134971349813499135001350113502135031350413505135061350713508135091351013511135121351313514135151351613517135181351913520135211352213523135241352513526135271352813529135301353113532135331353413535135361353713538135391354013541135421354313544135451354613547135481354913550135511355213553135541355513556135571355813559135601356113562135631356413565135661356713568135691357013571135721357313574135751357613577135781357913580135811358213583135841358513586135871358813589135901359113592135931359413595135961359713598135991360013601136021360313604136051360613607136081360913610136111361213613136141361513616136171361813619136201362113622136231362413625136261362713628136291363013631136321363313634136351363613637136381363913640136411364213643136441364513646136471364813649136501365113652136531365413655136561365713658136591366013661136621366313664136651366613667136681366913670136711367213673136741367513676136771367813679136801368113682136831368413685136861368713688136891369013691136921369313694136951369613697136981369913700137011370213703137041370513706137071370813709137101371113712137131371413715137161371713718137191372013721137221372313724137251372613727137281372913730137311373213733137341373513736137371373813739137401374113742137431374413745137461374713748137491375013751137521375313754137551375613757137581375913760137611376213763137641376513766137671376813769137701377113772137731377413775137761377713778137791378013781137821378313784137851378613787137881378913790137911379213793137941379513796137971379813799138001380113802138031380413805138061380713808138091381013811138121381313814138151381613817138181381913820138211382213823138241382513826138271382813829138301383113832138331383413835138361383713838138391384013841138421384313844138451384613847138481384913850138511385213853138541385513856138571385813859138601386113862138631386413865138661386713868138691387013871138721387313874138751387613877138781387913880138811388213883138841388513886138871388813889138901389113892138931389413895138961389713898138991390013901139021390313904139051390613907139081390913910139111391213913139141391513916139171391813919139201392113922139231392413925139261392713928139291393013931139321393313934139351393613937139381393913940139411394213943139441394513946139471394813949139501395113952139531395413955139561395713958139591396013961139621396313964139651396613967139681396913970139711397213973139741397513976139771397813979139801398113982139831398413985139861398713988139891399013991139921399313994139951399613997139981399914000140011400214003140041400514006140071400814009140101401114012140131401414015140161401714018140191402014021140221402314024140251402614027140281402914030140311403214033140341403514036140371403814039140401404114042140431404414045140461404714048140491405014051140521405314054140551405614057140581405914060140611406214063140641406514066140671406814069140701407114072140731407414075140761407714078140791408014081140821408314084140851408614087140881408914090140911409214093140941409514096140971409814099141001410114102141031410414105141061410714108141091411014111141121411314114141151411614117141181411914120141211412214123141241412514126141271412814129141301413114132141331413414135141361413714138141391414014141141421414314144141451414614147141481414914150141511415214153141541415514156141571415814159141601416114162141631416414165141661416714168141691417014171141721417314174141751417614177141781417914180141811418214183141841418514186141871418814189141901419114192141931419414195141961419714198141991420014201142021420314204142051420614207142081420914210142111421214213142141421514216142171421814219142201422114222142231422414225142261422714228142291423014231142321423314234142351423614237142381423914240142411424214243142441424514246142471424814249142501425114252142531425414255142561425714258142591426014261142621426314264142651426614267142681426914270142711427214273142741427514276142771427814279142801428114282142831428414285142861428714288142891429014291142921429314294142951429614297142981429914300143011430214303143041430514306143071430814309143101431114312143131431414315143161431714318143191432014321143221432314324143251432614327143281432914330143311433214333143341433514336143371433814339143401434114342143431434414345143461434714348143491435014351143521435314354143551435614357143581435914360143611436214363143641436514366143671436814369143701437114372143731437414375143761437714378143791438014381143821438314384143851438614387143881438914390143911439214393143941439514396143971439814399144001440114402144031440414405144061440714408144091441014411144121441314414144151441614417144181441914420144211442214423144241442514426144271442814429144301443114432144331443414435144361443714438144391444014441144421444314444144451444614447144481444914450144511445214453144541445514456144571445814459144601446114462144631446414465144661446714468144691447014471144721447314474144751447614477144781447914480144811448214483144841448514486144871448814489144901449114492144931449414495144961449714498144991450014501145021450314504145051450614507145081450914510145111451214513145141451514516145171451814519145201452114522145231452414525145261452714528145291453014531145321453314534145351453614537145381453914540145411454214543145441454514546145471454814549145501455114552145531455414555145561455714558145591456014561145621456314564145651456614567145681456914570145711457214573145741457514576145771457814579145801458114582145831458414585145861458714588145891459014591145921459314594145951459614597145981459914600146011460214603146041460514606146071460814609146101461114612146131461414615146161461714618146191462014621146221462314624146251462614627146281462914630146311463214633146341463514636146371463814639146401464114642146431464414645146461464714648146491465014651146521465314654146551465614657146581465914660146611466214663146641466514666146671466814669146701467114672146731467414675146761467714678146791468014681146821468314684146851468614687146881468914690146911469214693146941469514696146971469814699147001470114702147031470414705147061470714708147091471014711147121471314714147151471614717147181471914720147211472214723147241472514726147271472814729147301473114732147331473414735147361473714738147391474014741147421474314744147451474614747147481474914750147511475214753147541475514756147571475814759147601476114762147631476414765147661476714768147691477014771147721477314774147751477614777147781477914780147811478214783147841478514786147871478814789147901479114792147931479414795147961479714798147991480014801148021480314804148051480614807148081480914810148111481214813148141481514816148171481814819148201482114822148231482414825148261482714828148291483014831148321483314834148351483614837148381483914840148411484214843148441484514846148471484814849148501485114852148531485414855148561485714858148591486014861148621486314864148651486614867148681486914870148711487214873148741487514876148771487814879148801488114882148831488414885148861488714888148891489014891148921489314894148951489614897148981489914900149011490214903149041490514906149071490814909149101491114912149131491414915149161491714918149191492014921149221492314924149251492614927149281492914930149311493214933149341493514936149371493814939149401494114942149431494414945149461494714948149491495014951149521495314954149551495614957149581495914960149611496214963149641496514966149671496814969149701497114972149731497414975149761497714978149791498014981149821498314984149851498614987149881498914990149911499214993149941499514996149971499814999150001500115002150031500415005150061500715008150091501015011150121501315014150151501615017150181501915020150211502215023150241502515026150271502815029150301503115032150331503415035150361503715038150391504015041150421504315044150451504615047150481504915050150511505215053150541505515056150571505815059150601506115062150631506415065150661506715068150691507015071150721507315074150751507615077150781507915080150811508215083150841508515086150871508815089150901509115092150931509415095150961509715098150991510015101151021510315104151051510615107151081510915110151111511215113151141511515116151171511815119151201512115122151231512415125151261512715128151291513015131151321513315134151351513615137151381513915140151411514215143151441514515146151471514815149151501515115152151531515415155151561515715158151591516015161151621516315164151651516615167151681516915170151711517215173151741517515176151771517815179151801518115182151831518415185151861518715188151891519015191151921519315194151951519615197151981519915200152011520215203152041520515206152071520815209152101521115212152131521415215152161521715218152191522015221152221522315224152251522615227152281522915230152311523215233152341523515236152371523815239152401524115242152431524415245152461524715248152491525015251152521525315254152551525615257152581525915260152611526215263152641526515266152671526815269152701527115272152731527415275152761527715278152791528015281152821528315284152851528615287152881528915290152911529215293152941529515296152971529815299153001530115302153031530415305153061530715308153091531015311153121531315314153151531615317153181531915320153211532215323153241532515326153271532815329153301533115332153331533415335153361533715338153391534015341153421534315344153451534615347153481534915350153511535215353153541535515356153571535815359153601536115362153631536415365153661536715368153691537015371153721537315374153751537615377153781537915380153811538215383153841538515386153871538815389153901539115392153931539415395153961539715398153991540015401154021540315404154051540615407154081540915410154111541215413154141541515416154171541815419154201542115422154231542415425154261542715428154291543015431154321543315434154351543615437154381543915440154411544215443154441544515446154471544815449154501545115452154531545415455154561545715458154591546015461154621546315464154651546615467154681546915470154711547215473154741547515476154771547815479154801548115482154831548415485154861548715488154891549015491154921549315494154951549615497154981549915500155011550215503155041550515506155071550815509155101551115512155131551415515155161551715518155191552015521155221552315524155251552615527155281552915530155311553215533155341553515536155371553815539155401554115542155431554415545155461554715548155491555015551155521555315554155551555615557155581555915560155611556215563155641556515566155671556815569155701557115572155731557415575155761557715578155791558015581155821558315584155851558615587155881558915590155911559215593155941559515596155971559815599156001560115602156031560415605156061560715608156091561015611156121561315614156151561615617156181561915620156211562215623156241562515626156271562815629156301563115632156331563415635156361563715638156391564015641156421564315644156451564615647156481564915650156511565215653156541565515656156571565815659156601566115662156631566415665156661566715668156691567015671156721567315674156751567615677156781567915680156811568215683156841568515686156871568815689156901569115692156931569415695156961569715698156991570015701157021570315704157051570615707157081570915710157111571215713157141571515716157171571815719157201572115722157231572415725157261572715728157291573015731157321573315734157351573615737157381573915740157411574215743157441574515746157471574815749157501575115752157531575415755157561575715758157591576015761157621576315764157651576615767157681576915770157711577215773157741577515776157771577815779157801578115782157831578415785157861578715788157891579015791157921579315794157951579615797157981579915800158011580215803158041580515806158071580815809158101581115812158131581415815158161581715818158191582015821158221582315824158251582615827158281582915830158311583215833158341583515836158371583815839158401584115842158431584415845158461584715848158491585015851158521585315854158551585615857158581585915860158611586215863158641586515866158671586815869158701587115872158731587415875158761587715878158791588015881158821588315884158851588615887158881588915890158911589215893158941589515896158971589815899159001590115902159031590415905159061590715908159091591015911159121591315914159151591615917159181591915920159211592215923159241592515926159271592815929159301593115932159331593415935159361593715938159391594015941159421594315944159451594615947159481594915950159511595215953159541595515956159571595815959159601596115962159631596415965159661596715968159691597015971159721597315974159751597615977159781597915980159811598215983159841598515986159871598815989159901599115992159931599415995159961599715998159991600016001160021600316004160051600616007160081600916010160111601216013160141601516016160171601816019160201602116022160231602416025160261602716028160291603016031160321603316034160351603616037160381603916040160411604216043160441604516046160471604816049160501605116052160531605416055160561605716058160591606016061160621606316064160651606616067160681606916070160711607216073160741607516076160771607816079160801608116082160831608416085160861608716088160891609016091160921609316094160951609616097160981609916100161011610216103161041610516106161071610816109161101611116112161131611416115161161611716118161191612016121161221612316124161251612616127161281612916130161311613216133161341613516136161371613816139161401614116142161431614416145161461614716148161491615016151161521615316154161551615616157161581615916160161611616216163161641616516166161671616816169161701617116172161731617416175161761617716178161791618016181161821618316184161851618616187161881618916190161911619216193161941619516196161971619816199162001620116202162031620416205162061620716208162091621016211162121621316214162151621616217162181621916220162211622216223162241622516226162271622816229162301623116232162331623416235162361623716238162391624016241162421624316244162451624616247162481624916250162511625216253162541625516256162571625816259162601626116262162631626416265162661626716268162691627016271162721627316274162751627616277162781627916280162811628216283162841628516286162871628816289162901629116292162931629416295162961629716298162991630016301163021630316304163051630616307163081630916310163111631216313163141631516316163171631816319163201632116322163231632416325163261632716328163291633016331163321633316334163351633616337163381633916340163411634216343163441634516346163471634816349163501635116352163531635416355163561635716358163591636016361163621636316364163651636616367163681636916370163711637216373163741637516376163771637816379163801638116382163831638416385163861638716388163891639016391163921639316394163951639616397163981639916400164011640216403164041640516406164071640816409164101641116412164131641416415164161641716418164191642016421164221642316424164251642616427164281642916430164311643216433164341643516436164371643816439164401644116442164431644416445164461644716448164491645016451164521645316454164551645616457164581645916460164611646216463164641646516466164671646816469164701647116472164731647416475164761647716478164791648016481164821648316484164851648616487164881648916490164911649216493164941649516496164971649816499165001650116502165031650416505165061650716508165091651016511165121651316514165151651616517165181651916520165211652216523165241652516526165271652816529165301653116532165331653416535165361653716538165391654016541165421654316544165451654616547165481654916550165511655216553165541655516556165571655816559165601656116562165631656416565165661656716568165691657016571165721657316574165751657616577165781657916580165811658216583165841658516586165871658816589165901659116592165931659416595165961659716598165991660016601166021660316604166051660616607166081660916610166111661216613166141661516616166171661816619166201662116622166231662416625166261662716628166291663016631166321663316634166351663616637166381663916640166411664216643166441664516646166471664816649166501665116652166531665416655166561665716658166591666016661166621666316664166651666616667166681666916670166711667216673166741667516676166771667816679166801668116682166831668416685166861668716688166891669016691166921669316694166951669616697166981669916700167011670216703167041670516706167071670816709167101671116712167131671416715167161671716718167191672016721167221672316724167251672616727167281672916730167311673216733167341673516736167371673816739167401674116742167431674416745167461674716748167491675016751167521675316754167551675616757167581675916760167611676216763167641676516766167671676816769167701677116772167731677416775167761677716778167791678016781167821678316784167851678616787167881678916790167911679216793167941679516796167971679816799168001680116802168031680416805168061680716808168091681016811168121681316814168151681616817168181681916820168211682216823168241682516826168271682816829168301683116832168331683416835168361683716838168391684016841168421684316844168451684616847168481684916850168511685216853168541685516856168571685816859168601686116862168631686416865168661686716868168691687016871168721687316874168751687616877168781687916880168811688216883168841688516886168871688816889168901689116892168931689416895168961689716898168991690016901169021690316904169051690616907169081690916910169111691216913169141691516916169171691816919169201692116922169231692416925169261692716928169291693016931169321693316934169351693616937169381693916940169411694216943169441694516946169471694816949169501695116952169531695416955169561695716958169591696016961169621696316964169651696616967169681696916970169711697216973169741697516976169771697816979169801698116982169831698416985169861698716988169891699016991169921699316994169951699616997169981699917000170011700217003170041700517006170071700817009170101701117012170131701417015170161701717018170191702017021170221702317024170251702617027170281702917030170311703217033170341703517036170371703817039170401704117042170431704417045170461704717048170491705017051170521705317054170551705617057170581705917060170611706217063170641706517066170671706817069170701707117072170731707417075170761707717078170791708017081170821708317084170851708617087170881708917090170911709217093170941709517096170971709817099171001710117102171031710417105171061710717108171091711017111171121711317114171151711617117171181711917120171211712217123171241712517126171271712817129171301713117132171331713417135171361713717138171391714017141171421714317144171451714617147171481714917150171511715217153171541715517156171571715817159171601716117162171631716417165171661716717168171691717017171171721717317174171751717617177171781717917180171811718217183171841718517186171871718817189171901719117192171931719417195171961719717198171991720017201172021720317204172051720617207172081720917210172111721217213172141721517216172171721817219172201722117222172231722417225172261722717228172291723017231172321723317234172351723617237172381723917240172411724217243172441724517246172471724817249172501725117252172531725417255172561725717258172591726017261172621726317264172651726617267172681726917270172711727217273172741727517276172771727817279172801728117282172831728417285172861728717288172891729017291172921729317294172951729617297172981729917300173011730217303173041730517306173071730817309173101731117312173131731417315173161731717318173191732017321173221732317324173251732617327173281732917330173311733217333173341733517336173371733817339173401734117342173431734417345173461734717348173491735017351173521735317354173551735617357173581735917360173611736217363173641736517366173671736817369173701737117372173731737417375173761737717378173791738017381173821738317384173851738617387173881738917390173911739217393173941739517396173971739817399174001740117402174031740417405174061740717408174091741017411174121741317414174151741617417174181741917420174211742217423174241742517426174271742817429174301743117432174331743417435174361743717438174391744017441174421744317444174451744617447174481744917450174511745217453174541745517456174571745817459174601746117462174631746417465174661746717468174691747017471174721747317474174751747617477174781747917480174811748217483174841748517486174871748817489174901749117492174931749417495174961749717498174991750017501175021750317504175051750617507175081750917510175111751217513175141751517516175171751817519175201752117522175231752417525175261752717528175291753017531175321753317534175351753617537175381753917540175411754217543175441754517546175471754817549175501755117552175531755417555175561755717558175591756017561175621756317564175651756617567175681756917570175711757217573175741757517576175771757817579175801758117582175831758417585175861758717588175891759017591175921759317594175951759617597175981759917600176011760217603176041760517606176071760817609176101761117612176131761417615176161761717618176191762017621176221762317624176251762617627176281762917630176311763217633176341763517636176371763817639176401764117642176431764417645176461764717648176491765017651176521765317654176551765617657176581765917660176611766217663176641766517666176671766817669176701767117672176731767417675176761767717678176791768017681176821768317684176851768617687176881768917690176911769217693176941769517696176971769817699177001770117702177031770417705177061770717708177091771017711177121771317714177151771617717177181771917720177211772217723177241772517726177271772817729177301773117732177331773417735177361773717738177391774017741177421774317744177451774617747177481774917750177511775217753177541775517756177571775817759177601776117762177631776417765177661776717768177691777017771177721777317774177751777617777177781777917780177811778217783177841778517786177871778817789177901779117792177931779417795177961779717798177991780017801178021780317804178051780617807178081780917810178111781217813178141781517816178171781817819178201782117822178231782417825178261782717828178291783017831178321783317834178351783617837178381783917840178411784217843178441784517846178471784817849178501785117852178531785417855178561785717858178591786017861178621786317864178651786617867178681786917870178711787217873178741787517876178771787817879178801788117882178831788417885178861788717888178891789017891178921789317894178951789617897178981789917900179011790217903179041790517906179071790817909179101791117912179131791417915179161791717918179191792017921179221792317924179251792617927179281792917930179311793217933179341793517936179371793817939179401794117942179431794417945179461794717948179491795017951179521795317954179551795617957179581795917960179611796217963179641796517966179671796817969179701797117972179731797417975179761797717978179791798017981179821798317984179851798617987179881798917990179911799217993179941799517996179971799817999180001800118002180031800418005180061800718008180091801018011180121801318014180151801618017180181801918020180211802218023180241802518026180271802818029180301803118032180331803418035180361803718038180391804018041180421804318044180451804618047180481804918050180511805218053180541805518056180571805818059180601806118062180631806418065180661806718068180691807018071180721807318074180751807618077180781807918080180811808218083180841808518086180871808818089180901809118092180931809418095180961809718098180991810018101181021810318104181051810618107181081810918110181111811218113181141811518116181171811818119181201812118122181231812418125181261812718128181291813018131181321813318134181351813618137181381813918140181411814218143181441814518146181471814818149181501815118152181531815418155181561815718158181591816018161181621816318164181651816618167181681816918170181711817218173181741817518176181771817818179181801818118182181831818418185181861818718188181891819018191181921819318194181951819618197181981819918200182011820218203182041820518206182071820818209182101821118212182131821418215182161821718218182191822018221182221822318224182251822618227182281822918230182311823218233182341823518236182371823818239182401824118242182431824418245182461824718248182491825018251182521825318254182551825618257182581825918260182611826218263182641826518266182671826818269182701827118272182731827418275182761827718278182791828018281182821828318284182851828618287182881828918290182911829218293182941829518296182971829818299183001830118302183031830418305183061830718308183091831018311183121831318314183151831618317183181831918320183211832218323183241832518326183271832818329183301833118332183331833418335183361833718338183391834018341183421834318344183451834618347183481834918350183511835218353183541835518356183571835818359183601836118362183631836418365183661836718368183691837018371183721837318374183751837618377183781837918380183811838218383183841838518386183871838818389183901839118392183931839418395183961839718398183991840018401184021840318404184051840618407184081840918410184111841218413184141841518416184171841818419184201842118422184231842418425184261842718428184291843018431184321843318434184351843618437184381843918440184411844218443184441844518446184471844818449184501845118452184531845418455184561845718458184591846018461184621846318464184651846618467184681846918470184711847218473184741847518476184771847818479184801848118482184831848418485184861848718488184891849018491184921849318494184951849618497184981849918500185011850218503185041850518506185071850818509185101851118512185131851418515185161851718518185191852018521185221852318524185251852618527185281852918530185311853218533185341853518536185371853818539185401854118542185431854418545185461854718548185491855018551185521855318554185551855618557185581855918560185611856218563185641856518566185671856818569185701857118572185731857418575185761857718578185791858018581185821858318584185851858618587185881858918590185911859218593185941859518596185971859818599186001860118602186031860418605186061860718608186091861018611186121861318614186151861618617186181861918620186211862218623186241862518626186271862818629186301863118632186331863418635186361863718638186391864018641186421864318644186451864618647186481864918650186511865218653186541865518656186571865818659186601866118662186631866418665186661866718668186691867018671186721867318674186751867618677186781867918680186811868218683186841868518686186871868818689186901869118692186931869418695186961869718698186991870018701187021870318704187051870618707187081870918710187111871218713187141871518716187171871818719187201872118722187231872418725187261872718728187291873018731187321873318734187351873618737187381873918740187411874218743187441874518746187471874818749187501875118752187531875418755187561875718758187591876018761187621876318764187651876618767187681876918770187711877218773187741877518776187771877818779187801878118782187831878418785187861878718788187891879018791187921879318794187951879618797187981879918800188011880218803188041880518806188071880818809188101881118812188131881418815188161881718818188191882018821188221882318824188251882618827188281882918830188311883218833188341883518836188371883818839188401884118842188431884418845188461884718848188491885018851188521885318854188551885618857188581885918860188611886218863188641886518866188671886818869188701887118872188731887418875188761887718878188791888018881188821888318884188851888618887188881888918890188911889218893188941889518896188971889818899189001890118902189031890418905189061890718908189091891018911189121891318914189151891618917189181891918920189211892218923189241892518926189271892818929189301893118932189331893418935189361893718938189391894018941189421894318944189451894618947189481894918950189511895218953189541895518956189571895818959189601896118962189631896418965189661896718968189691897018971189721897318974189751897618977189781897918980189811898218983189841898518986189871898818989189901899118992189931899418995189961899718998189991900019001190021900319004190051900619007190081900919010190111901219013190141901519016190171901819019190201902119022190231902419025190261902719028190291903019031190321903319034190351903619037190381903919040190411904219043190441904519046190471904819049190501905119052190531905419055190561905719058190591906019061190621906319064190651906619067190681906919070190711907219073190741907519076190771907819079190801908119082190831908419085190861908719088190891909019091190921909319094190951909619097190981909919100191011910219103191041910519106191071910819109191101911119112191131911419115191161911719118191191912019121191221912319124191251912619127191281912919130191311913219133191341913519136191371913819139191401914119142191431914419145191461914719148191491915019151191521915319154191551915619157191581915919160191611916219163191641916519166191671916819169191701917119172191731917419175191761917719178191791918019181191821918319184191851918619187191881918919190191911919219193191941919519196191971919819199192001920119202192031920419205192061920719208192091921019211192121921319214192151921619217192181921919220192211922219223
  1. #define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
  2. #define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
  3. #include "ggml.h"
  4. #ifdef GGML_USE_K_QUANTS
  5. #include "k_quants.h"
  6. #endif
  7. #if defined(_MSC_VER) || defined(__MINGW32__)
  8. #include <malloc.h> // using malloc.h with MSC/MINGW
  9. #elif !defined(__FreeBSD__) && !defined(__NetBSD__) && !defined(__OpenBSD__)
  10. #include <alloca.h>
  11. #endif
  12. #include <assert.h>
  13. #include <errno.h>
  14. #include <time.h>
  15. #include <math.h>
  16. #include <stdlib.h>
  17. #include <string.h>
  18. #include <stdint.h>
  19. #include <inttypes.h>
  20. #include <stdio.h>
  21. #include <float.h>
  22. #include <limits.h>
  23. #include <stdarg.h>
  24. #ifdef GGML_USE_METAL
  25. #include <unistd.h>
  26. #endif
  27. // if C99 - static_assert is noop
  28. // ref: https://stackoverflow.com/a/53923785/4039976
  29. #ifndef static_assert
  30. #define static_assert(cond, msg) struct global_scope_noop_trick
  31. #endif
  32. #if defined(_MSC_VER)
  33. // disable "possible loss of data" to avoid hundreds of casts
  34. // we should just be careful :)
  35. #pragma warning(disable: 4244 4267)
  36. #endif
  37. #if defined(_WIN32)
  38. #include <windows.h>
  39. typedef volatile LONG atomic_int;
  40. typedef atomic_int atomic_bool;
  41. static void atomic_store(atomic_int* ptr, LONG val) {
  42. InterlockedExchange(ptr, val);
  43. }
  44. static LONG atomic_load(atomic_int* ptr) {
  45. return InterlockedCompareExchange(ptr, 0, 0);
  46. }
  47. static LONG atomic_fetch_add(atomic_int* ptr, LONG inc) {
  48. return InterlockedExchangeAdd(ptr, inc);
  49. }
  50. static LONG atomic_fetch_sub(atomic_int* ptr, LONG dec) {
  51. return atomic_fetch_add(ptr, -(dec));
  52. }
  53. typedef HANDLE pthread_t;
  54. typedef DWORD thread_ret_t;
  55. static int pthread_create(pthread_t* out, void* unused, thread_ret_t(*func)(void*), void* arg) {
  56. (void) unused;
  57. HANDLE handle = CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE) func, arg, 0, NULL);
  58. if (handle == NULL)
  59. {
  60. return EAGAIN;
  61. }
  62. *out = handle;
  63. return 0;
  64. }
  65. static int pthread_join(pthread_t thread, void* unused) {
  66. (void) unused;
  67. return (int) WaitForSingleObject(thread, INFINITE);
  68. }
  69. static int sched_yield (void) {
  70. Sleep (0);
  71. return 0;
  72. }
  73. #else
  74. #include <pthread.h>
  75. #include <stdatomic.h>
  76. typedef void* thread_ret_t;
  77. #include <sys/types.h>
  78. #include <sys/stat.h>
  79. #include <unistd.h>
  80. #endif
  81. // __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
  82. #if defined(_MSC_VER) && (defined(__AVX2__) || defined(__AVX512F__))
  83. #ifndef __FMA__
  84. #define __FMA__
  85. #endif
  86. #ifndef __F16C__
  87. #define __F16C__
  88. #endif
  89. #ifndef __SSE3__
  90. #define __SSE3__
  91. #endif
  92. #endif
  93. #ifdef __HAIKU__
  94. #define static_assert(cond, msg) _Static_assert(cond, msg)
  95. #endif
  96. /*#define GGML_PERF*/
  97. #define GGML_DEBUG 0
  98. #define GGML_GELU_FP16
  99. #define GGML_GELU_QUICK_FP16
  100. #define GGML_SILU_FP16
  101. #define GGML_SOFT_MAX_UNROLL 4
  102. #define GGML_VEC_DOT_UNROLL 2
  103. //
  104. // logging
  105. //
  106. #if (GGML_DEBUG >= 1)
  107. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  108. #else
  109. #define GGML_PRINT_DEBUG(...)
  110. #endif
  111. #if (GGML_DEBUG >= 5)
  112. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  113. #else
  114. #define GGML_PRINT_DEBUG_5(...)
  115. #endif
  116. #if (GGML_DEBUG >= 10)
  117. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  118. #else
  119. #define GGML_PRINT_DEBUG_10(...)
  120. #endif
  121. #define GGML_PRINT(...) printf(__VA_ARGS__)
  122. #ifdef GGML_USE_ACCELERATE
  123. // uncomment to use vDSP for soft max computation
  124. // note: not sure if it is actually faster
  125. //#define GGML_SOFT_MAX_ACCELERATE
  126. #endif
  127. #if UINTPTR_MAX == 0xFFFFFFFF
  128. #define GGML_MEM_ALIGN 4
  129. #else
  130. #define GGML_MEM_ALIGN 16
  131. #endif
  132. //
  133. // logging
  134. //
  135. #if (GGML_DEBUG >= 1)
  136. #define GGML_PRINT_DEBUG(...) printf(__VA_ARGS__)
  137. #else
  138. #define GGML_PRINT_DEBUG(...)
  139. #endif
  140. #if (GGML_DEBUG >= 5)
  141. #define GGML_PRINT_DEBUG_5(...) printf(__VA_ARGS__)
  142. #else
  143. #define GGML_PRINT_DEBUG_5(...)
  144. #endif
  145. #if (GGML_DEBUG >= 10)
  146. #define GGML_PRINT_DEBUG_10(...) printf(__VA_ARGS__)
  147. #else
  148. #define GGML_PRINT_DEBUG_10(...)
  149. #endif
  150. #define GGML_PRINT(...) printf(__VA_ARGS__)
  151. //
  152. // end of logging block
  153. //
  154. #if defined(_MSC_VER) || defined(__MINGW32__)
  155. #define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
  156. #define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
  157. #else
  158. inline static void* ggml_aligned_malloc(size_t size) {
  159. void* aligned_memory = NULL;
  160. #ifdef GGML_USE_METAL
  161. int result = posix_memalign(&aligned_memory, getpagesize(), size);
  162. #else
  163. int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
  164. #endif
  165. if (result != 0) {
  166. // Handle allocation failure
  167. const char *error_desc = "unknown allocation error";
  168. switch (result) {
  169. case EINVAL:
  170. error_desc = "invalid alignment value";
  171. break;
  172. case ENOMEM:
  173. error_desc = "insufficient memory";
  174. break;
  175. }
  176. GGML_PRINT("%s: %s (attempted to allocate %6.2f MB)\n",
  177. __func__, error_desc, size/(1024.0*1024.0));
  178. return NULL;
  179. }
  180. return aligned_memory;
  181. }
  182. #define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
  183. #define GGML_ALIGNED_FREE(ptr) free(ptr)
  184. #endif
  185. #define UNUSED(x) (void)(x)
  186. #define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
  187. #if defined(GGML_USE_ACCELERATE)
  188. #include <Accelerate/Accelerate.h>
  189. #if defined(GGML_USE_CLBLAST) // allow usage of CLBlast alongside Accelerate functions
  190. #include "ggml-opencl.h"
  191. #endif
  192. #elif defined(GGML_USE_OPENBLAS)
  193. #include <cblas.h>
  194. #elif defined(GGML_USE_CUBLAS)
  195. #include "ggml-cuda.h"
  196. #elif defined(GGML_USE_CLBLAST)
  197. #include "ggml-opencl.h"
  198. #endif
  199. #undef MIN
  200. #undef MAX
  201. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  202. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  203. // floating point type used to accumulate sums
  204. typedef double ggml_float;
  205. // 16-bit float
  206. // on Arm, we use __fp16
  207. // on x86, we use uint16_t
  208. #ifdef __ARM_NEON
  209. // if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
  210. //
  211. // $ ln -sfn /Library/Developer/CommandLineTools/usr/lib/clang/13.1.6/include/arm_neon.h ./src/
  212. //
  213. #include <arm_neon.h>
  214. #define GGML_COMPUTE_FP16_TO_FP32(x) ((float) (x))
  215. #define GGML_COMPUTE_FP32_TO_FP16(x) (x)
  216. #define GGML_FP16_TO_FP32(x) ((float) (x))
  217. #define GGML_FP32_TO_FP16(x) (x)
  218. #else
  219. #ifdef __wasm_simd128__
  220. #include <wasm_simd128.h>
  221. #else
  222. #ifdef __POWER9_VECTOR__
  223. #include <altivec.h>
  224. #undef bool
  225. #define bool _Bool
  226. #else
  227. #if defined(_MSC_VER) || defined(__MINGW32__)
  228. #include <intrin.h>
  229. #else
  230. #if !defined(__riscv)
  231. #include <immintrin.h>
  232. #endif
  233. #endif
  234. #endif
  235. #endif
  236. #ifdef __F16C__
  237. #ifdef _MSC_VER
  238. #define GGML_COMPUTE_FP16_TO_FP32(x) _mm_cvtss_f32(_mm_cvtph_ps(_mm_cvtsi32_si128(x)))
  239. #define GGML_COMPUTE_FP32_TO_FP16(x) _mm_extract_epi16(_mm_cvtps_ph(_mm_set_ss(x), 0), 0)
  240. #else
  241. #define GGML_COMPUTE_FP16_TO_FP32(x) _cvtsh_ss(x)
  242. #define GGML_COMPUTE_FP32_TO_FP16(x) _cvtss_sh(x, 0)
  243. #endif
  244. #elif defined(__POWER9_VECTOR__)
  245. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  246. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  247. /* the inline asm below is about 12% faster than the lookup method */
  248. #define GGML_FP16_TO_FP32(x) GGML_COMPUTE_FP16_TO_FP32(x)
  249. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  250. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  251. register float f;
  252. register double d;
  253. __asm__(
  254. "mtfprd %0,%2\n"
  255. "xscvhpdp %0,%0\n"
  256. "frsp %1,%0\n" :
  257. /* temp */ "=d"(d),
  258. /* out */ "=f"(f):
  259. /* in */ "r"(h));
  260. return f;
  261. }
  262. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  263. register double d;
  264. register ggml_fp16_t r;
  265. __asm__( /* xscvdphp can work on double or single precision */
  266. "xscvdphp %0,%2\n"
  267. "mffprd %1,%0\n" :
  268. /* temp */ "=d"(d),
  269. /* out */ "=r"(r):
  270. /* in */ "f"(f));
  271. return r;
  272. }
  273. #else
  274. // FP16 <-> FP32
  275. // ref: https://github.com/Maratyszcza/FP16
  276. static inline float fp32_from_bits(uint32_t w) {
  277. union {
  278. uint32_t as_bits;
  279. float as_value;
  280. } fp32;
  281. fp32.as_bits = w;
  282. return fp32.as_value;
  283. }
  284. static inline uint32_t fp32_to_bits(float f) {
  285. union {
  286. float as_value;
  287. uint32_t as_bits;
  288. } fp32;
  289. fp32.as_value = f;
  290. return fp32.as_bits;
  291. }
  292. static inline float ggml_compute_fp16_to_fp32(ggml_fp16_t h) {
  293. const uint32_t w = (uint32_t) h << 16;
  294. const uint32_t sign = w & UINT32_C(0x80000000);
  295. const uint32_t two_w = w + w;
  296. const uint32_t exp_offset = UINT32_C(0xE0) << 23;
  297. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  298. const float exp_scale = 0x1.0p-112f;
  299. #else
  300. const float exp_scale = fp32_from_bits(UINT32_C(0x7800000));
  301. #endif
  302. const float normalized_value = fp32_from_bits((two_w >> 4) + exp_offset) * exp_scale;
  303. const uint32_t magic_mask = UINT32_C(126) << 23;
  304. const float magic_bias = 0.5f;
  305. const float denormalized_value = fp32_from_bits((two_w >> 17) | magic_mask) - magic_bias;
  306. const uint32_t denormalized_cutoff = UINT32_C(1) << 27;
  307. const uint32_t result = sign |
  308. (two_w < denormalized_cutoff ? fp32_to_bits(denormalized_value) : fp32_to_bits(normalized_value));
  309. return fp32_from_bits(result);
  310. }
  311. static inline ggml_fp16_t ggml_compute_fp32_to_fp16(float f) {
  312. #if defined(__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) || defined(__GNUC__) && !defined(__STRICT_ANSI__)
  313. const float scale_to_inf = 0x1.0p+112f;
  314. const float scale_to_zero = 0x1.0p-110f;
  315. #else
  316. const float scale_to_inf = fp32_from_bits(UINT32_C(0x77800000));
  317. const float scale_to_zero = fp32_from_bits(UINT32_C(0x08800000));
  318. #endif
  319. float base = (fabsf(f) * scale_to_inf) * scale_to_zero;
  320. const uint32_t w = fp32_to_bits(f);
  321. const uint32_t shl1_w = w + w;
  322. const uint32_t sign = w & UINT32_C(0x80000000);
  323. uint32_t bias = shl1_w & UINT32_C(0xFF000000);
  324. if (bias < UINT32_C(0x71000000)) {
  325. bias = UINT32_C(0x71000000);
  326. }
  327. base = fp32_from_bits((bias >> 1) + UINT32_C(0x07800000)) + base;
  328. const uint32_t bits = fp32_to_bits(base);
  329. const uint32_t exp_bits = (bits >> 13) & UINT32_C(0x00007C00);
  330. const uint32_t mantissa_bits = bits & UINT32_C(0x00000FFF);
  331. const uint32_t nonsign = exp_bits + mantissa_bits;
  332. return (sign >> 16) | (shl1_w > UINT32_C(0xFF000000) ? UINT16_C(0x7E00) : nonsign);
  333. }
  334. #define GGML_COMPUTE_FP16_TO_FP32(x) ggml_compute_fp16_to_fp32(x)
  335. #define GGML_COMPUTE_FP32_TO_FP16(x) ggml_compute_fp32_to_fp16(x)
  336. #endif // __F16C__
  337. #endif // __ARM_NEON
  338. //
  339. // global data
  340. //
  341. // precomputed gelu table for f16 (128 KB)
  342. static ggml_fp16_t table_gelu_f16[1 << 16];
  343. // precomputed quick gelu table for f16 (128 KB)
  344. static ggml_fp16_t table_gelu_quick_f16[1 << 16];
  345. // precomputed silu table for f16 (128 KB)
  346. static ggml_fp16_t table_silu_f16[1 << 16];
  347. // precomputed exp table for f16 (128 KB)
  348. static ggml_fp16_t table_exp_f16[1 << 16];
  349. // precomputed f32 table for f16 (256 KB)
  350. static float table_f32_f16[1 << 16];
  351. #if defined(__ARM_NEON) || defined(__wasm_simd128__)
  352. #define B1(c,s,n) 0x ## n ## c , 0x ## n ## s
  353. #define B2(c,s,n) B1(c,s,n ## c), B1(c,s,n ## s)
  354. #define B3(c,s,n) B2(c,s,n ## c), B2(c,s,n ## s)
  355. #define B4(c,s,n) B3(c,s,n ## c), B3(c,s,n ## s)
  356. #define B5(c,s,n) B4(c,s,n ## c), B4(c,s,n ## s)
  357. #define B6(c,s,n) B5(c,s,n ## c), B5(c,s,n ## s)
  358. #define B7(c,s,n) B6(c,s,n ## c), B6(c,s,n ## s)
  359. #define B8(c,s ) B7(c,s, c), B7(c,s, s)
  360. // precomputed tables for expanding 8bits to 8 bytes:
  361. static const uint64_t table_b2b_0[1 << 8] = { B8(00, 10) }; // ( b) << 4
  362. static const uint64_t table_b2b_1[1 << 8] = { B8(10, 00) }; // (!b) << 4
  363. #endif
  364. // On ARM NEON, it's quicker to directly convert x -> x instead of calling into ggml_lookup_fp16_to_fp32,
  365. // so we define GGML_FP16_TO_FP32 and GGML_FP32_TO_FP16 elsewhere for NEON.
  366. // This is also true for POWER9.
  367. #if !defined(GGML_FP16_TO_FP32) || !defined(GGML_FP32_TO_FP16)
  368. inline static float ggml_lookup_fp16_to_fp32(ggml_fp16_t f) {
  369. uint16_t s;
  370. memcpy(&s, &f, sizeof(uint16_t));
  371. return table_f32_f16[s];
  372. }
  373. #define GGML_FP16_TO_FP32(x) ggml_lookup_fp16_to_fp32(x)
  374. #define GGML_FP32_TO_FP16(x) GGML_COMPUTE_FP32_TO_FP16(x)
  375. #endif
  376. // note: do not use these inside ggml.c
  377. // these are meant to be used via the ggml.h API
  378. float ggml_fp16_to_fp32(ggml_fp16_t x) {
  379. return (float) GGML_FP16_TO_FP32(x);
  380. }
  381. ggml_fp16_t ggml_fp32_to_fp16(float x) {
  382. return GGML_FP32_TO_FP16(x);
  383. }
  384. void ggml_fp16_to_fp32_row(const ggml_fp16_t * x, float * y, size_t n) {
  385. for (size_t i = 0; i < n; i++) {
  386. y[i] = GGML_FP16_TO_FP32(x[i]);
  387. }
  388. }
  389. void ggml_fp32_to_fp16_row(const float * x, ggml_fp16_t * y, size_t n) {
  390. size_t i = 0;
  391. #if defined(__F16C__)
  392. for (; i + 7 < n; i += 8) {
  393. __m256 x_vec = _mm256_loadu_ps(x + i);
  394. __m128i y_vec = _mm256_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  395. _mm_storeu_si128((__m128i *)(y + i), y_vec);
  396. }
  397. for(; i + 3 < n; i += 4) {
  398. __m128 x_vec = _mm_loadu_ps(x + i);
  399. __m128i y_vec = _mm_cvtps_ph(x_vec, _MM_FROUND_TO_NEAREST_INT);
  400. _mm_storel_epi64((__m128i *)(y + i), y_vec);
  401. }
  402. #endif
  403. for (; i < n; i++) {
  404. y[i] = GGML_FP32_TO_FP16(x[i]);
  405. }
  406. }
  407. //
  408. // timing
  409. //
  410. #if defined(_MSC_VER) || defined(__MINGW32__)
  411. static int64_t timer_freq, timer_start;
  412. void ggml_time_init(void) {
  413. LARGE_INTEGER t;
  414. QueryPerformanceFrequency(&t);
  415. timer_freq = t.QuadPart;
  416. // The multiplication by 1000 or 1000000 below can cause an overflow if timer_freq
  417. // and the uptime is high enough.
  418. // We subtract the program start time to reduce the likelihood of that happening.
  419. QueryPerformanceCounter(&t);
  420. timer_start = t.QuadPart;
  421. }
  422. int64_t ggml_time_ms(void) {
  423. LARGE_INTEGER t;
  424. QueryPerformanceCounter(&t);
  425. return ((t.QuadPart-timer_start) * 1000) / timer_freq;
  426. }
  427. int64_t ggml_time_us(void) {
  428. LARGE_INTEGER t;
  429. QueryPerformanceCounter(&t);
  430. return ((t.QuadPart-timer_start) * 1000000) / timer_freq;
  431. }
  432. #else
  433. void ggml_time_init(void) {}
  434. int64_t ggml_time_ms(void) {
  435. struct timespec ts;
  436. clock_gettime(CLOCK_MONOTONIC, &ts);
  437. return (int64_t)ts.tv_sec*1000 + (int64_t)ts.tv_nsec/1000000;
  438. }
  439. int64_t ggml_time_us(void) {
  440. struct timespec ts;
  441. clock_gettime(CLOCK_MONOTONIC, &ts);
  442. return (int64_t)ts.tv_sec*1000000 + (int64_t)ts.tv_nsec/1000;
  443. }
  444. #endif
  445. int64_t ggml_cycles(void) {
  446. return clock();
  447. }
  448. int64_t ggml_cycles_per_ms(void) {
  449. return CLOCKS_PER_SEC/1000;
  450. }
  451. #ifdef GGML_PERF
  452. #define ggml_perf_time_ms() ggml_time_ms()
  453. #define ggml_perf_time_us() ggml_time_us()
  454. #define ggml_perf_cycles() ggml_cycles()
  455. #define ggml_perf_cycles_per_ms() ggml_cycles_per_ms()
  456. #else
  457. #define ggml_perf_time_ms() 0
  458. #define ggml_perf_time_us() 0
  459. #define ggml_perf_cycles() 0
  460. #define ggml_perf_cycles_per_ms() 0
  461. #endif
  462. //
  463. // cache line
  464. //
  465. #if defined(__cpp_lib_hardware_interference_size)
  466. #define CACHE_LINE_SIZE hardware_destructive_interference_size
  467. #else
  468. #if defined(__POWER9_VECTOR__)
  469. #define CACHE_LINE_SIZE 128
  470. #else
  471. #define CACHE_LINE_SIZE 64
  472. #endif
  473. #endif
  474. static const size_t CACHE_LINE_SIZE_F32 = CACHE_LINE_SIZE/sizeof(float);
  475. //
  476. // quantization
  477. //
  478. #define MM256_SET_M128I(a, b) _mm256_insertf128_si256(_mm256_castsi128_si256(b), (a), 1)
  479. #if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  480. // multiply int8_t, add results pairwise twice
  481. static inline __m128i mul_sum_i8_pairs(const __m128i x, const __m128i y) {
  482. // Get absolute values of x vectors
  483. const __m128i ax = _mm_sign_epi8(x, x);
  484. // Sign the values of the y vectors
  485. const __m128i sy = _mm_sign_epi8(y, x);
  486. // Perform multiplication and create 16-bit values
  487. const __m128i dot = _mm_maddubs_epi16(ax, sy);
  488. const __m128i ones = _mm_set1_epi16(1);
  489. return _mm_madd_epi16(ones, dot);
  490. }
  491. #if __AVX__ || __AVX2__ || __AVX512F__
  492. // horizontally add 8 floats
  493. static inline float hsum_float_8(const __m256 x) {
  494. __m128 res = _mm256_extractf128_ps(x, 1);
  495. res = _mm_add_ps(res, _mm256_castps256_ps128(x));
  496. res = _mm_add_ps(res, _mm_movehl_ps(res, res));
  497. res = _mm_add_ss(res, _mm_movehdup_ps(res));
  498. return _mm_cvtss_f32(res);
  499. }
  500. // horizontally add 8 int32_t
  501. static inline int hsum_i32_8(const __m256i a) {
  502. const __m128i sum128 = _mm_add_epi32(_mm256_castsi256_si128(a), _mm256_extractf128_si256(a, 1));
  503. const __m128i hi64 = _mm_unpackhi_epi64(sum128, sum128);
  504. const __m128i sum64 = _mm_add_epi32(hi64, sum128);
  505. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  506. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  507. }
  508. // horizontally add 4 int32_t
  509. static inline int hsum_i32_4(const __m128i a) {
  510. const __m128i hi64 = _mm_unpackhi_epi64(a, a);
  511. const __m128i sum64 = _mm_add_epi32(hi64, a);
  512. const __m128i hi32 = _mm_shuffle_epi32(sum64, _MM_SHUFFLE(2, 3, 0, 1));
  513. return _mm_cvtsi128_si32(_mm_add_epi32(sum64, hi32));
  514. }
  515. #if defined(__AVX2__) || defined(__AVX512F__)
  516. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  517. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  518. uint32_t x32;
  519. memcpy(&x32, x, sizeof(uint32_t));
  520. const __m256i shuf_mask = _mm256_set_epi64x(
  521. 0x0303030303030303, 0x0202020202020202,
  522. 0x0101010101010101, 0x0000000000000000);
  523. __m256i bytes = _mm256_shuffle_epi8(_mm256_set1_epi32(x32), shuf_mask);
  524. const __m256i bit_mask = _mm256_set1_epi64x(0x7fbfdfeff7fbfdfe);
  525. bytes = _mm256_or_si256(bytes, bit_mask);
  526. return _mm256_cmpeq_epi8(bytes, _mm256_set1_epi64x(-1));
  527. }
  528. // Unpack 32 4-bit fields into 32 bytes
  529. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  530. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  531. {
  532. const __m128i tmp = _mm_loadu_si128((const __m128i *)rsi);
  533. const __m256i bytes = MM256_SET_M128I(_mm_srli_epi16(tmp, 4), tmp);
  534. const __m256i lowMask = _mm256_set1_epi8( 0xF );
  535. return _mm256_and_si256(lowMask, bytes);
  536. }
  537. // add int16_t pairwise and return as float vector
  538. static inline __m256 sum_i16_pairs_float(const __m256i x) {
  539. const __m256i ones = _mm256_set1_epi16(1);
  540. const __m256i summed_pairs = _mm256_madd_epi16(ones, x);
  541. return _mm256_cvtepi32_ps(summed_pairs);
  542. }
  543. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  544. #if __AVXVNNI__
  545. const __m256i zero = _mm256_setzero_si256();
  546. const __m256i summed_pairs = _mm256_dpbusd_epi32(zero, ax, sy);
  547. return _mm256_cvtepi32_ps(summed_pairs);
  548. #else
  549. // Perform multiplication and create 16-bit values
  550. const __m256i dot = _mm256_maddubs_epi16(ax, sy);
  551. return sum_i16_pairs_float(dot);
  552. #endif
  553. }
  554. // multiply int8_t, add results pairwise twice and return as float vector
  555. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  556. #if __AVXVNNIINT8__
  557. const __m256i zero = _mm256_setzero_si256();
  558. const __m256i summed_pairs = _mm256_dpbssd_epi32(zero, x, y);
  559. return _mm256_cvtepi32_ps(summed_pairs);
  560. #else
  561. // Get absolute values of x vectors
  562. const __m256i ax = _mm256_sign_epi8(x, x);
  563. // Sign the values of the y vectors
  564. const __m256i sy = _mm256_sign_epi8(y, x);
  565. return mul_sum_us8_pairs_float(ax, sy);
  566. #endif
  567. }
  568. static inline __m128i packNibbles( __m256i bytes )
  569. {
  570. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  571. #if __AVX512F__
  572. const __m256i bytes_srli_4 = _mm256_srli_epi16(bytes, 4); // 0000_0000_abcd_0000
  573. bytes = _mm256_or_si256(bytes, bytes_srli_4); // 0000_abcd_abcd_efgh
  574. return _mm256_cvtepi16_epi8(bytes); // abcd_efgh
  575. #else
  576. const __m256i lowByte = _mm256_set1_epi16( 0xFF );
  577. __m256i high = _mm256_andnot_si256( lowByte, bytes );
  578. __m256i low = _mm256_and_si256( lowByte, bytes );
  579. high = _mm256_srli_epi16( high, 4 );
  580. bytes = _mm256_or_si256( low, high );
  581. // Compress uint16_t lanes into bytes
  582. __m128i r0 = _mm256_castsi256_si128( bytes );
  583. __m128i r1 = _mm256_extracti128_si256( bytes, 1 );
  584. return _mm_packus_epi16( r0, r1 );
  585. #endif
  586. }
  587. #elif defined(__AVX__)
  588. // spread 32 bits to 32 bytes { 0x00, 0xFF }
  589. static inline __m256i bytes_from_bits_32(const uint8_t * x) {
  590. uint32_t x32;
  591. memcpy(&x32, x, sizeof(uint32_t));
  592. const __m128i shuf_maskl = _mm_set_epi64x(0x0101010101010101, 0x0000000000000000);
  593. const __m128i shuf_maskh = _mm_set_epi64x(0x0303030303030303, 0x0202020202020202);
  594. __m128i bytesl = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskl);
  595. __m128i bytesh = _mm_shuffle_epi8(_mm_set1_epi32(x32), shuf_maskh);
  596. const __m128i bit_mask = _mm_set1_epi64x(0x7fbfdfeff7fbfdfe);
  597. bytesl = _mm_or_si128(bytesl, bit_mask);
  598. bytesh = _mm_or_si128(bytesh, bit_mask);
  599. bytesl = _mm_cmpeq_epi8(bytesl, _mm_set1_epi64x(-1));
  600. bytesh = _mm_cmpeq_epi8(bytesh, _mm_set1_epi64x(-1));
  601. return MM256_SET_M128I(bytesh, bytesl);
  602. }
  603. // Unpack 32 4-bit fields into 32 bytes
  604. // The output vector contains 32 bytes, each one in [ 0 .. 15 ] interval
  605. static inline __m256i bytes_from_nibbles_32(const uint8_t * rsi)
  606. {
  607. // Load 16 bytes from memory
  608. __m128i tmpl = _mm_loadu_si128((const __m128i *)rsi);
  609. __m128i tmph = _mm_srli_epi16(tmpl, 4);
  610. const __m128i lowMask = _mm_set1_epi8(0xF);
  611. tmpl = _mm_and_si128(lowMask, tmpl);
  612. tmph = _mm_and_si128(lowMask, tmph);
  613. return MM256_SET_M128I(tmph, tmpl);
  614. }
  615. // add int16_t pairwise and return as float vector
  616. static inline __m256 sum_i16_pairs_float(const __m128i xh, const __m128i xl) {
  617. const __m128i ones = _mm_set1_epi16(1);
  618. const __m128i summed_pairsl = _mm_madd_epi16(ones, xl);
  619. const __m128i summed_pairsh = _mm_madd_epi16(ones, xh);
  620. const __m256i summed_pairs = MM256_SET_M128I(summed_pairsh, summed_pairsl);
  621. return _mm256_cvtepi32_ps(summed_pairs);
  622. }
  623. static inline __m256 mul_sum_us8_pairs_float(const __m256i ax, const __m256i sy) {
  624. const __m128i axl = _mm256_castsi256_si128(ax);
  625. const __m128i axh = _mm256_extractf128_si256(ax, 1);
  626. const __m128i syl = _mm256_castsi256_si128(sy);
  627. const __m128i syh = _mm256_extractf128_si256(sy, 1);
  628. // Perform multiplication and create 16-bit values
  629. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  630. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  631. return sum_i16_pairs_float(doth, dotl);
  632. }
  633. // multiply int8_t, add results pairwise twice and return as float vector
  634. static inline __m256 mul_sum_i8_pairs_float(const __m256i x, const __m256i y) {
  635. const __m128i xl = _mm256_castsi256_si128(x);
  636. const __m128i xh = _mm256_extractf128_si256(x, 1);
  637. const __m128i yl = _mm256_castsi256_si128(y);
  638. const __m128i yh = _mm256_extractf128_si256(y, 1);
  639. // Get absolute values of x vectors
  640. const __m128i axl = _mm_sign_epi8(xl, xl);
  641. const __m128i axh = _mm_sign_epi8(xh, xh);
  642. // Sign the values of the y vectors
  643. const __m128i syl = _mm_sign_epi8(yl, xl);
  644. const __m128i syh = _mm_sign_epi8(yh, xh);
  645. // Perform multiplication and create 16-bit values
  646. const __m128i dotl = _mm_maddubs_epi16(axl, syl);
  647. const __m128i doth = _mm_maddubs_epi16(axh, syh);
  648. return sum_i16_pairs_float(doth, dotl);
  649. }
  650. static inline __m128i packNibbles( __m128i bytes1, __m128i bytes2 )
  651. {
  652. // Move bits within 16-bit lanes from 0000_abcd_0000_efgh into 0000_0000_abcd_efgh
  653. const __m128i lowByte = _mm_set1_epi16( 0xFF );
  654. __m128i high = _mm_andnot_si128( lowByte, bytes1 );
  655. __m128i low = _mm_and_si128( lowByte, bytes1 );
  656. high = _mm_srli_epi16( high, 4 );
  657. bytes1 = _mm_or_si128( low, high );
  658. high = _mm_andnot_si128( lowByte, bytes2 );
  659. low = _mm_and_si128( lowByte, bytes2 );
  660. high = _mm_srli_epi16( high, 4 );
  661. bytes2 = _mm_or_si128( low, high );
  662. return _mm_packus_epi16( bytes1, bytes2);
  663. }
  664. #endif
  665. #elif defined(__SSSE3__)
  666. // horizontally add 4x4 floats
  667. static inline float hsum_float_4x4(const __m128 a, const __m128 b, const __m128 c, const __m128 d) {
  668. __m128 res_0 =_mm_hadd_ps(a, b);
  669. __m128 res_1 =_mm_hadd_ps(c, d);
  670. __m128 res =_mm_hadd_ps(res_0, res_1);
  671. res =_mm_hadd_ps(res, res);
  672. res =_mm_hadd_ps(res, res);
  673. return _mm_cvtss_f32(res);
  674. }
  675. #endif // __AVX__ || __AVX2__ || __AVX512F__
  676. #endif // defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__)
  677. #if defined(__ARM_NEON)
  678. #if !defined(__aarch64__)
  679. inline static uint16_t vaddvq_u8(uint8x16_t v) {
  680. return
  681. (uint16_t)vgetq_lane_u8(v, 0) + (uint16_t)vgetq_lane_u8(v, 1) +
  682. (uint16_t)vgetq_lane_u8(v, 2) + (uint16_t)vgetq_lane_u8(v, 3) +
  683. (uint16_t)vgetq_lane_u8(v, 4) + (uint16_t)vgetq_lane_u8(v, 5) +
  684. (uint16_t)vgetq_lane_u8(v, 6) + (uint16_t)vgetq_lane_u8(v, 7) +
  685. (uint16_t)vgetq_lane_u8(v, 8) + (uint16_t)vgetq_lane_u8(v, 9) +
  686. (uint16_t)vgetq_lane_u8(v, 10) + (uint16_t)vgetq_lane_u8(v, 11) +
  687. (uint16_t)vgetq_lane_u8(v, 12) + (uint16_t)vgetq_lane_u8(v, 13) +
  688. (uint16_t)vgetq_lane_u8(v, 14) + (uint16_t)vgetq_lane_u8(v, 15);
  689. }
  690. inline static int16_t vaddvq_s8(int8x16_t v) {
  691. return
  692. (int16_t)vgetq_lane_s8(v, 0) + (int16_t)vgetq_lane_s8(v, 1) +
  693. (int16_t)vgetq_lane_s8(v, 2) + (int16_t)vgetq_lane_s8(v, 3) +
  694. (int16_t)vgetq_lane_s8(v, 4) + (int16_t)vgetq_lane_s8(v, 5) +
  695. (int16_t)vgetq_lane_s8(v, 6) + (int16_t)vgetq_lane_s8(v, 7) +
  696. (int16_t)vgetq_lane_s8(v, 8) + (int16_t)vgetq_lane_s8(v, 9) +
  697. (int16_t)vgetq_lane_s8(v, 10) + (int16_t)vgetq_lane_s8(v, 11) +
  698. (int16_t)vgetq_lane_s8(v, 12) + (int16_t)vgetq_lane_s8(v, 13) +
  699. (int16_t)vgetq_lane_s8(v, 14) + (int16_t)vgetq_lane_s8(v, 15);
  700. }
  701. inline static int32_t vaddvq_s16(int16x8_t v) {
  702. return
  703. (int32_t)vgetq_lane_s16(v, 0) + (int32_t)vgetq_lane_s16(v, 1) +
  704. (int32_t)vgetq_lane_s16(v, 2) + (int32_t)vgetq_lane_s16(v, 3) +
  705. (int32_t)vgetq_lane_s16(v, 4) + (int32_t)vgetq_lane_s16(v, 5) +
  706. (int32_t)vgetq_lane_s16(v, 6) + (int32_t)vgetq_lane_s16(v, 7);
  707. }
  708. inline static uint32_t vaddvq_u16(uint16x8_t v) {
  709. return
  710. (uint32_t)vgetq_lane_u16(v, 0) + (uint32_t)vgetq_lane_u16(v, 1) +
  711. (uint32_t)vgetq_lane_u16(v, 2) + (uint32_t)vgetq_lane_u16(v, 3) +
  712. (uint32_t)vgetq_lane_u16(v, 4) + (uint32_t)vgetq_lane_u16(v, 5) +
  713. (uint32_t)vgetq_lane_u16(v, 6) + (uint32_t)vgetq_lane_u16(v, 7);
  714. }
  715. inline static int32_t vaddvq_s32(int32x4_t v) {
  716. return vgetq_lane_s32(v, 0) + vgetq_lane_s32(v, 1) + vgetq_lane_s32(v, 2) + vgetq_lane_s32(v, 3);
  717. }
  718. inline static float vaddvq_f32(float32x4_t v) {
  719. return vgetq_lane_f32(v, 0) + vgetq_lane_f32(v, 1) + vgetq_lane_f32(v, 2) + vgetq_lane_f32(v, 3);
  720. }
  721. inline static float vminvq_f32(float32x4_t v) {
  722. return
  723. MIN(MIN(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  724. MIN(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  725. }
  726. inline static float vmaxvq_f32(float32x4_t v) {
  727. return
  728. MAX(MAX(vgetq_lane_f32(v, 0), vgetq_lane_f32(v, 1)),
  729. MAX(vgetq_lane_f32(v, 2), vgetq_lane_f32(v, 3)));
  730. }
  731. inline static int32x4_t vcvtnq_s32_f32(float32x4_t v) {
  732. int32x4_t res;
  733. res[0] = roundf(vgetq_lane_f32(v, 0));
  734. res[1] = roundf(vgetq_lane_f32(v, 1));
  735. res[2] = roundf(vgetq_lane_f32(v, 2));
  736. res[3] = roundf(vgetq_lane_f32(v, 3));
  737. return res;
  738. }
  739. #endif
  740. #endif
  741. #define QK4_0 32
  742. typedef struct {
  743. ggml_fp16_t d; // delta
  744. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  745. } block_q4_0;
  746. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2, "wrong q4_0 block size/padding");
  747. #define QK4_1 32
  748. typedef struct {
  749. ggml_fp16_t d; // delta
  750. ggml_fp16_t m; // min
  751. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  752. } block_q4_1;
  753. static_assert(sizeof(block_q4_1) == 2 * sizeof(ggml_fp16_t) + QK4_1 / 2, "wrong q4_1 block size/padding");
  754. #define QK5_0 32
  755. typedef struct {
  756. ggml_fp16_t d; // delta
  757. uint8_t qh[4]; // 5-th bit of quants
  758. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  759. } block_q5_0;
  760. static_assert(sizeof(block_q5_0) == sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_0 / 2, "wrong q5_0 block size/padding");
  761. #define QK5_1 32
  762. typedef struct {
  763. ggml_fp16_t d; // delta
  764. ggml_fp16_t m; // min
  765. uint8_t qh[4]; // 5-th bit of quants
  766. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  767. } block_q5_1;
  768. static_assert(sizeof(block_q5_1) == 2 * sizeof(ggml_fp16_t) + sizeof(uint32_t) + QK5_1 / 2, "wrong q5_1 block size/padding");
  769. #define QK8_0 32
  770. typedef struct {
  771. ggml_fp16_t d; // delta
  772. int8_t qs[QK8_0]; // quants
  773. } block_q8_0;
  774. static_assert(sizeof(block_q8_0) == sizeof(ggml_fp16_t) + QK8_0, "wrong q8_0 block size/padding");
  775. #define QK8_1 32
  776. typedef struct {
  777. float d; // delta
  778. float s; // d * sum(qs[i])
  779. int8_t qs[QK8_1]; // quants
  780. } block_q8_1;
  781. static_assert(sizeof(block_q8_1) == 2*sizeof(float) + QK8_1, "wrong q8_1 block size/padding");
  782. // reference implementation for deterministic creation of model files
  783. static void quantize_row_q4_0_reference(const float * restrict x, block_q4_0 * restrict y, int k) {
  784. static const int qk = QK4_0;
  785. assert(k % qk == 0);
  786. const int nb = k / qk;
  787. for (int i = 0; i < nb; i++) {
  788. float amax = 0.0f; // absolute max
  789. float max = 0.0f;
  790. for (int j = 0; j < qk; j++) {
  791. const float v = x[i*qk + j];
  792. if (amax < fabsf(v)) {
  793. amax = fabsf(v);
  794. max = v;
  795. }
  796. }
  797. const float d = max / -8;
  798. const float id = d ? 1.0f/d : 0.0f;
  799. y[i].d = GGML_FP32_TO_FP16(d);
  800. for (int j = 0; j < qk/2; ++j) {
  801. const float x0 = x[i*qk + 0 + j]*id;
  802. const float x1 = x[i*qk + qk/2 + j]*id;
  803. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  804. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  805. y[i].qs[j] = xi0;
  806. y[i].qs[j] |= xi1 << 4;
  807. }
  808. }
  809. }
  810. static void quantize_row_q4_0(const float * restrict x, void * restrict y, int k) {
  811. quantize_row_q4_0_reference(x, y, k);
  812. }
  813. static void quantize_row_q4_1_reference(const float * restrict x, block_q4_1 * restrict y, int k) {
  814. const int qk = QK4_1;
  815. assert(k % qk == 0);
  816. const int nb = k / qk;
  817. for (int i = 0; i < nb; i++) {
  818. float min = FLT_MAX;
  819. float max = -FLT_MAX;
  820. for (int j = 0; j < qk; j++) {
  821. const float v = x[i*qk + j];
  822. if (v < min) min = v;
  823. if (v > max) max = v;
  824. }
  825. const float d = (max - min) / ((1 << 4) - 1);
  826. const float id = d ? 1.0f/d : 0.0f;
  827. y[i].d = GGML_FP32_TO_FP16(d);
  828. y[i].m = GGML_FP32_TO_FP16(min);
  829. for (int j = 0; j < qk/2; ++j) {
  830. const float x0 = (x[i*qk + 0 + j] - min)*id;
  831. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  832. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  833. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  834. y[i].qs[j] = xi0;
  835. y[i].qs[j] |= xi1 << 4;
  836. }
  837. }
  838. }
  839. static void quantize_row_q4_1(const float * restrict x, void * restrict y, int k) {
  840. quantize_row_q4_1_reference(x, y, k);
  841. }
  842. static void quantize_row_q5_0_reference(const float * restrict x, block_q5_0 * restrict y, int k) {
  843. static const int qk = QK5_0;
  844. assert(k % qk == 0);
  845. const int nb = k / qk;
  846. for (int i = 0; i < nb; i++) {
  847. float amax = 0.0f; // absolute max
  848. float max = 0.0f;
  849. for (int j = 0; j < qk; j++) {
  850. const float v = x[i*qk + j];
  851. if (amax < fabsf(v)) {
  852. amax = fabsf(v);
  853. max = v;
  854. }
  855. }
  856. const float d = max / -16;
  857. const float id = d ? 1.0f/d : 0.0f;
  858. y[i].d = GGML_FP32_TO_FP16(d);
  859. uint32_t qh = 0;
  860. for (int j = 0; j < qk/2; ++j) {
  861. const float x0 = x[i*qk + 0 + j]*id;
  862. const float x1 = x[i*qk + qk/2 + j]*id;
  863. const uint8_t xi0 = MIN(31, (int8_t)(x0 + 16.5f));
  864. const uint8_t xi1 = MIN(31, (int8_t)(x1 + 16.5f));
  865. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  866. // get the 5-th bit and store it in qh at the right position
  867. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  868. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  869. }
  870. memcpy(&y[i].qh, &qh, sizeof(qh));
  871. }
  872. }
  873. static void quantize_row_q5_0(const float * restrict x, void * restrict y, int k) {
  874. quantize_row_q5_0_reference(x, y, k);
  875. }
  876. static void quantize_row_q5_1_reference(const float * restrict x, block_q5_1 * restrict y, int k) {
  877. const int qk = QK5_1;
  878. assert(k % qk == 0);
  879. const int nb = k / qk;
  880. for (int i = 0; i < nb; i++) {
  881. float min = FLT_MAX;
  882. float max = -FLT_MAX;
  883. for (int j = 0; j < qk; j++) {
  884. const float v = x[i*qk + j];
  885. if (v < min) min = v;
  886. if (v > max) max = v;
  887. }
  888. const float d = (max - min) / ((1 << 5) - 1);
  889. const float id = d ? 1.0f/d : 0.0f;
  890. y[i].d = GGML_FP32_TO_FP16(d);
  891. y[i].m = GGML_FP32_TO_FP16(min);
  892. uint32_t qh = 0;
  893. for (int j = 0; j < qk/2; ++j) {
  894. const float x0 = (x[i*qk + 0 + j] - min)*id;
  895. const float x1 = (x[i*qk + qk/2 + j] - min)*id;
  896. const uint8_t xi0 = (uint8_t)(x0 + 0.5f);
  897. const uint8_t xi1 = (uint8_t)(x1 + 0.5f);
  898. y[i].qs[j] = (xi0 & 0x0F) | ((xi1 & 0x0F) << 4);
  899. // get the 5-th bit and store it in qh at the right position
  900. qh |= ((xi0 & 0x10) >> 4) << (j + 0);
  901. qh |= ((xi1 & 0x10) >> 4) << (j + qk/2);
  902. }
  903. memcpy(&y[i].qh, &qh, sizeof(y[i].qh));
  904. }
  905. }
  906. static void quantize_row_q5_1(const float * restrict x, void * restrict y, int k) {
  907. quantize_row_q5_1_reference(x, y, k);
  908. }
  909. // reference implementation for deterministic creation of model files
  910. static void quantize_row_q8_0_reference(const float * restrict x, block_q8_0 * restrict y, int k) {
  911. assert(k % QK8_0 == 0);
  912. const int nb = k / QK8_0;
  913. for (int i = 0; i < nb; i++) {
  914. float amax = 0.0f; // absolute max
  915. for (int j = 0; j < QK8_0; j++) {
  916. const float v = x[i*QK8_0 + j];
  917. amax = MAX(amax, fabsf(v));
  918. }
  919. const float d = amax / ((1 << 7) - 1);
  920. const float id = d ? 1.0f/d : 0.0f;
  921. y[i].d = GGML_FP32_TO_FP16(d);
  922. for (int j = 0; j < QK8_0; ++j) {
  923. const float x0 = x[i*QK8_0 + j]*id;
  924. y[i].qs[j] = roundf(x0);
  925. }
  926. }
  927. }
  928. static void quantize_row_q8_0(const float * restrict x, void * restrict vy, int k) {
  929. assert(QK8_0 == 32);
  930. assert(k % QK8_0 == 0);
  931. const int nb = k / QK8_0;
  932. block_q8_0 * restrict y = vy;
  933. #if defined(__ARM_NEON)
  934. for (int i = 0; i < nb; i++) {
  935. float32x4_t srcv [8];
  936. float32x4_t asrcv[8];
  937. float32x4_t amaxv[8];
  938. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  939. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  940. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  941. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  942. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  943. const float amax = vmaxvq_f32(amaxv[0]);
  944. const float d = amax / ((1 << 7) - 1);
  945. const float id = d ? 1.0f/d : 0.0f;
  946. y[i].d = GGML_FP32_TO_FP16(d);
  947. for (int j = 0; j < 8; j++) {
  948. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  949. const int32x4_t vi = vcvtnq_s32_f32(v);
  950. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  951. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  952. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  953. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  954. }
  955. }
  956. #elif defined(__wasm_simd128__)
  957. for (int i = 0; i < nb; i++) {
  958. v128_t srcv [8];
  959. v128_t asrcv[8];
  960. v128_t amaxv[8];
  961. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  962. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  963. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  964. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  965. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  966. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  967. wasm_f32x4_extract_lane(amaxv[0], 1)),
  968. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  969. wasm_f32x4_extract_lane(amaxv[0], 3)));
  970. const float d = amax / ((1 << 7) - 1);
  971. const float id = d ? 1.0f/d : 0.0f;
  972. y[i].d = GGML_FP32_TO_FP16(d);
  973. for (int j = 0; j < 8; j++) {
  974. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  975. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  976. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  977. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  978. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  979. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  980. }
  981. }
  982. #elif defined(__AVX2__) || defined(__AVX__)
  983. for (int i = 0; i < nb; i++) {
  984. // Load elements into 4 AVX vectors
  985. __m256 v0 = _mm256_loadu_ps( x );
  986. __m256 v1 = _mm256_loadu_ps( x + 8 );
  987. __m256 v2 = _mm256_loadu_ps( x + 16 );
  988. __m256 v3 = _mm256_loadu_ps( x + 24 );
  989. x += 32;
  990. // Compute max(abs(e)) for the block
  991. const __m256 signBit = _mm256_set1_ps( -0.0f );
  992. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  993. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  994. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  995. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  996. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  997. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  998. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  999. const float maxScalar = _mm_cvtss_f32( max4 );
  1000. // Quantize these floats
  1001. const float d = maxScalar / 127.f;
  1002. y[i].d = GGML_FP32_TO_FP16(d);
  1003. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1004. const __m256 mul = _mm256_set1_ps( id );
  1005. // Apply the multiplier
  1006. v0 = _mm256_mul_ps( v0, mul );
  1007. v1 = _mm256_mul_ps( v1, mul );
  1008. v2 = _mm256_mul_ps( v2, mul );
  1009. v3 = _mm256_mul_ps( v3, mul );
  1010. // Round to nearest integer
  1011. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1012. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1013. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1014. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1015. // Convert floats to integers
  1016. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1017. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1018. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1019. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1020. #if defined(__AVX2__)
  1021. // Convert int32 to int16
  1022. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1023. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1024. // Convert int16 to int8
  1025. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1026. // We got our precious signed bytes, but the order is now wrong
  1027. // These AVX2 pack instructions process 16-byte pieces independently
  1028. // The following instruction is fixing the order
  1029. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1030. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1031. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1032. #else
  1033. // Since we don't have in AVX some necessary functions,
  1034. // we split the registers in half and call AVX2 analogs from SSE
  1035. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1036. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1037. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1038. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1039. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1040. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1041. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1042. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1043. // Convert int32 to int16
  1044. ni0 = _mm_packs_epi32( ni0, ni1 );
  1045. ni2 = _mm_packs_epi32( ni2, ni3 );
  1046. ni4 = _mm_packs_epi32( ni4, ni5 );
  1047. ni6 = _mm_packs_epi32( ni6, ni7 );
  1048. // Convert int16 to int8
  1049. ni0 = _mm_packs_epi16( ni0, ni2 );
  1050. ni4 = _mm_packs_epi16( ni4, ni6 );
  1051. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1052. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1053. #endif
  1054. }
  1055. #else
  1056. // scalar
  1057. quantize_row_q8_0_reference(x, y, k);
  1058. #endif
  1059. }
  1060. // reference implementation for deterministic creation of model files
  1061. static void quantize_row_q8_1_reference(const float * restrict x, block_q8_1 * restrict y, int k) {
  1062. assert(QK8_1 == 32);
  1063. assert(k % QK8_1 == 0);
  1064. const int nb = k / QK8_1;
  1065. for (int i = 0; i < nb; i++) {
  1066. float amax = 0.0f; // absolute max
  1067. for (int j = 0; j < QK8_1; j++) {
  1068. const float v = x[i*QK8_1 + j];
  1069. amax = MAX(amax, fabsf(v));
  1070. }
  1071. const float d = amax / ((1 << 7) - 1);
  1072. const float id = d ? 1.0f/d : 0.0f;
  1073. y[i].d = d;
  1074. int sum = 0;
  1075. for (int j = 0; j < QK8_1/2; ++j) {
  1076. const float v0 = x[i*QK8_1 + j]*id;
  1077. const float v1 = x[i*QK8_1 + QK8_1/2 + j]*id;
  1078. y[i].qs[ j] = roundf(v0);
  1079. y[i].qs[QK8_1/2 + j] = roundf(v1);
  1080. sum += y[i].qs[ j];
  1081. sum += y[i].qs[QK8_1/2 + j];
  1082. }
  1083. y[i].s = sum*d;
  1084. }
  1085. }
  1086. static void quantize_row_q8_1(const float * restrict x, void * restrict vy, int k) {
  1087. assert(k % QK8_1 == 0);
  1088. const int nb = k / QK8_1;
  1089. block_q8_1 * restrict y = vy;
  1090. #if defined(__ARM_NEON)
  1091. for (int i = 0; i < nb; i++) {
  1092. float32x4_t srcv [8];
  1093. float32x4_t asrcv[8];
  1094. float32x4_t amaxv[8];
  1095. for (int j = 0; j < 8; j++) srcv[j] = vld1q_f32(x + i*32 + 4*j);
  1096. for (int j = 0; j < 8; j++) asrcv[j] = vabsq_f32(srcv[j]);
  1097. for (int j = 0; j < 4; j++) amaxv[2*j] = vmaxq_f32(asrcv[2*j], asrcv[2*j+1]);
  1098. for (int j = 0; j < 2; j++) amaxv[4*j] = vmaxq_f32(amaxv[4*j], amaxv[4*j+2]);
  1099. for (int j = 0; j < 1; j++) amaxv[8*j] = vmaxq_f32(amaxv[8*j], amaxv[8*j+4]);
  1100. const float amax = vmaxvq_f32(amaxv[0]);
  1101. const float d = amax / ((1 << 7) - 1);
  1102. const float id = d ? 1.0f/d : 0.0f;
  1103. y[i].d = d;
  1104. int32x4_t accv = vdupq_n_s32(0);
  1105. for (int j = 0; j < 8; j++) {
  1106. const float32x4_t v = vmulq_n_f32(srcv[j], id);
  1107. const int32x4_t vi = vcvtnq_s32_f32(v);
  1108. y[i].qs[4*j + 0] = vgetq_lane_s32(vi, 0);
  1109. y[i].qs[4*j + 1] = vgetq_lane_s32(vi, 1);
  1110. y[i].qs[4*j + 2] = vgetq_lane_s32(vi, 2);
  1111. y[i].qs[4*j + 3] = vgetq_lane_s32(vi, 3);
  1112. accv = vaddq_s32(accv, vi);
  1113. }
  1114. y[i].s = d * vaddvq_s32(accv);
  1115. }
  1116. #elif defined(__wasm_simd128__)
  1117. for (int i = 0; i < nb; i++) {
  1118. v128_t srcv [8];
  1119. v128_t asrcv[8];
  1120. v128_t amaxv[8];
  1121. for (int j = 0; j < 8; j++) srcv[j] = wasm_v128_load(x + i*32 + 4*j);
  1122. for (int j = 0; j < 8; j++) asrcv[j] = wasm_f32x4_abs(srcv[j]);
  1123. for (int j = 0; j < 4; j++) amaxv[2*j] = wasm_f32x4_max(asrcv[2*j], asrcv[2*j+1]);
  1124. for (int j = 0; j < 2; j++) amaxv[4*j] = wasm_f32x4_max(amaxv[4*j], amaxv[4*j+2]);
  1125. for (int j = 0; j < 1; j++) amaxv[8*j] = wasm_f32x4_max(amaxv[8*j], amaxv[8*j+4]);
  1126. const float amax = MAX(MAX(wasm_f32x4_extract_lane(amaxv[0], 0),
  1127. wasm_f32x4_extract_lane(amaxv[0], 1)),
  1128. MAX(wasm_f32x4_extract_lane(amaxv[0], 2),
  1129. wasm_f32x4_extract_lane(amaxv[0], 3)));
  1130. const float d = amax / ((1 << 7) - 1);
  1131. const float id = d ? 1.0f/d : 0.0f;
  1132. y[i].d = d;
  1133. v128_t accv = wasm_i32x4_splat(0);
  1134. for (int j = 0; j < 8; j++) {
  1135. const v128_t v = wasm_f32x4_mul(srcv[j], wasm_f32x4_splat(id));
  1136. const v128_t vi = wasm_i32x4_trunc_sat_f32x4(v);
  1137. y[i].qs[4*j + 0] = wasm_i32x4_extract_lane(vi, 0);
  1138. y[i].qs[4*j + 1] = wasm_i32x4_extract_lane(vi, 1);
  1139. y[i].qs[4*j + 2] = wasm_i32x4_extract_lane(vi, 2);
  1140. y[i].qs[4*j + 3] = wasm_i32x4_extract_lane(vi, 3);
  1141. accv = wasm_i32x4_add(accv, vi);
  1142. }
  1143. y[i].s = d * (wasm_i32x4_extract_lane(accv, 0) +
  1144. wasm_i32x4_extract_lane(accv, 1) +
  1145. wasm_i32x4_extract_lane(accv, 2) +
  1146. wasm_i32x4_extract_lane(accv, 3));
  1147. }
  1148. #elif defined(__AVX2__) || defined(__AVX__)
  1149. for (int i = 0; i < nb; i++) {
  1150. // Load elements into 4 AVX vectors
  1151. __m256 v0 = _mm256_loadu_ps( x );
  1152. __m256 v1 = _mm256_loadu_ps( x + 8 );
  1153. __m256 v2 = _mm256_loadu_ps( x + 16 );
  1154. __m256 v3 = _mm256_loadu_ps( x + 24 );
  1155. x += 32;
  1156. // Compute max(abs(e)) for the block
  1157. const __m256 signBit = _mm256_set1_ps( -0.0f );
  1158. __m256 maxAbs = _mm256_andnot_ps( signBit, v0 );
  1159. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v1 ) );
  1160. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v2 ) );
  1161. maxAbs = _mm256_max_ps( maxAbs, _mm256_andnot_ps( signBit, v3 ) );
  1162. __m128 max4 = _mm_max_ps( _mm256_extractf128_ps( maxAbs, 1 ), _mm256_castps256_ps128( maxAbs ) );
  1163. max4 = _mm_max_ps( max4, _mm_movehl_ps( max4, max4 ) );
  1164. max4 = _mm_max_ss( max4, _mm_movehdup_ps( max4 ) );
  1165. const float maxScalar = _mm_cvtss_f32( max4 );
  1166. // Quantize these floats
  1167. const float d = maxScalar / 127.f;
  1168. y[i].d = d;
  1169. const float id = ( maxScalar != 0.0f ) ? 127.f / maxScalar : 0.0f;
  1170. const __m256 mul = _mm256_set1_ps( id );
  1171. // Apply the multiplier
  1172. v0 = _mm256_mul_ps( v0, mul );
  1173. v1 = _mm256_mul_ps( v1, mul );
  1174. v2 = _mm256_mul_ps( v2, mul );
  1175. v3 = _mm256_mul_ps( v3, mul );
  1176. // Round to nearest integer
  1177. v0 = _mm256_round_ps( v0, _MM_ROUND_NEAREST );
  1178. v1 = _mm256_round_ps( v1, _MM_ROUND_NEAREST );
  1179. v2 = _mm256_round_ps( v2, _MM_ROUND_NEAREST );
  1180. v3 = _mm256_round_ps( v3, _MM_ROUND_NEAREST );
  1181. // Convert floats to integers
  1182. __m256i i0 = _mm256_cvtps_epi32( v0 );
  1183. __m256i i1 = _mm256_cvtps_epi32( v1 );
  1184. __m256i i2 = _mm256_cvtps_epi32( v2 );
  1185. __m256i i3 = _mm256_cvtps_epi32( v3 );
  1186. #if defined(__AVX2__)
  1187. // Compute the sum of the quants and set y[i].s
  1188. y[i].s = d * hsum_i32_8(_mm256_add_epi32(_mm256_add_epi32(i0, i1), _mm256_add_epi32(i2, i3)));
  1189. // Convert int32 to int16
  1190. i0 = _mm256_packs_epi32( i0, i1 ); // 0, 1, 2, 3, 8, 9, 10, 11, 4, 5, 6, 7, 12, 13, 14, 15
  1191. i2 = _mm256_packs_epi32( i2, i3 ); // 16, 17, 18, 19, 24, 25, 26, 27, 20, 21, 22, 23, 28, 29, 30, 31
  1192. // Convert int16 to int8
  1193. i0 = _mm256_packs_epi16( i0, i2 ); // 0, 1, 2, 3, 8, 9, 10, 11, 16, 17, 18, 19, 24, 25, 26, 27, 4, 5, 6, 7, 12, 13, 14, 15, 20, 21, 22, 23, 28, 29, 30, 31
  1194. // We got our precious signed bytes, but the order is now wrong
  1195. // These AVX2 pack instructions process 16-byte pieces independently
  1196. // The following instruction is fixing the order
  1197. const __m256i perm = _mm256_setr_epi32( 0, 4, 1, 5, 2, 6, 3, 7 );
  1198. i0 = _mm256_permutevar8x32_epi32( i0, perm );
  1199. _mm256_storeu_si256((__m256i *)y[i].qs, i0);
  1200. #else
  1201. // Since we don't have in AVX some necessary functions,
  1202. // we split the registers in half and call AVX2 analogs from SSE
  1203. __m128i ni0 = _mm256_castsi256_si128( i0 );
  1204. __m128i ni1 = _mm256_extractf128_si256( i0, 1);
  1205. __m128i ni2 = _mm256_castsi256_si128( i1 );
  1206. __m128i ni3 = _mm256_extractf128_si256( i1, 1);
  1207. __m128i ni4 = _mm256_castsi256_si128( i2 );
  1208. __m128i ni5 = _mm256_extractf128_si256( i2, 1);
  1209. __m128i ni6 = _mm256_castsi256_si128( i3 );
  1210. __m128i ni7 = _mm256_extractf128_si256( i3, 1);
  1211. // Compute the sum of the quants and set y[i].s
  1212. const __m128i s0 = _mm_add_epi32(_mm_add_epi32(ni0, ni1), _mm_add_epi32(ni2, ni3));
  1213. const __m128i s1 = _mm_add_epi32(_mm_add_epi32(ni4, ni5), _mm_add_epi32(ni6, ni7));
  1214. y[i].s = d * hsum_i32_4(_mm_add_epi32(s0, s1));
  1215. // Convert int32 to int16
  1216. ni0 = _mm_packs_epi32( ni0, ni1 );
  1217. ni2 = _mm_packs_epi32( ni2, ni3 );
  1218. ni4 = _mm_packs_epi32( ni4, ni5 );
  1219. ni6 = _mm_packs_epi32( ni6, ni7 );
  1220. // Convert int16 to int8
  1221. ni0 = _mm_packs_epi16( ni0, ni2 );
  1222. ni4 = _mm_packs_epi16( ni4, ni6 );
  1223. _mm_storeu_si128((__m128i *)(y[i].qs + 0), ni0);
  1224. _mm_storeu_si128((__m128i *)(y[i].qs + 16), ni4);
  1225. #endif
  1226. }
  1227. #else
  1228. // scalar
  1229. quantize_row_q8_1_reference(x, y, k);
  1230. #endif
  1231. }
  1232. static void dequantize_row_q4_0(const block_q4_0 * restrict x, float * restrict y, int k) {
  1233. static const int qk = QK4_0;
  1234. assert(k % qk == 0);
  1235. const int nb = k / qk;
  1236. for (int i = 0; i < nb; i++) {
  1237. const float d = GGML_FP16_TO_FP32(x[i].d);
  1238. for (int j = 0; j < qk/2; ++j) {
  1239. const int x0 = (x[i].qs[j] & 0x0F) - 8;
  1240. const int x1 = (x[i].qs[j] >> 4) - 8;
  1241. y[i*qk + j + 0 ] = x0*d;
  1242. y[i*qk + j + qk/2] = x1*d;
  1243. }
  1244. }
  1245. }
  1246. static void dequantize_row_q4_1(const block_q4_1 * restrict x, float * restrict y, int k) {
  1247. static const int qk = QK4_1;
  1248. assert(k % qk == 0);
  1249. const int nb = k / qk;
  1250. for (int i = 0; i < nb; i++) {
  1251. const float d = GGML_FP16_TO_FP32(x[i].d);
  1252. const float m = GGML_FP16_TO_FP32(x[i].m);
  1253. for (int j = 0; j < qk/2; ++j) {
  1254. const int x0 = (x[i].qs[j] & 0x0F);
  1255. const int x1 = (x[i].qs[j] >> 4);
  1256. y[i*qk + j + 0 ] = x0*d + m;
  1257. y[i*qk + j + qk/2] = x1*d + m;
  1258. }
  1259. }
  1260. }
  1261. static void dequantize_row_q5_0(const block_q5_0 * restrict x, float * restrict y, int k) {
  1262. static const int qk = QK5_0;
  1263. assert(k % qk == 0);
  1264. const int nb = k / qk;
  1265. for (int i = 0; i < nb; i++) {
  1266. const float d = GGML_FP16_TO_FP32(x[i].d);
  1267. uint32_t qh;
  1268. memcpy(&qh, x[i].qh, sizeof(qh));
  1269. for (int j = 0; j < qk/2; ++j) {
  1270. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1271. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1272. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  1273. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  1274. y[i*qk + j + 0 ] = x0*d;
  1275. y[i*qk + j + qk/2] = x1*d;
  1276. }
  1277. }
  1278. }
  1279. static void dequantize_row_q5_1(const block_q5_1 * restrict x, float * restrict y, int k) {
  1280. static const int qk = QK5_1;
  1281. assert(k % qk == 0);
  1282. const int nb = k / qk;
  1283. for (int i = 0; i < nb; i++) {
  1284. const float d = GGML_FP16_TO_FP32(x[i].d);
  1285. const float m = GGML_FP16_TO_FP32(x[i].m);
  1286. uint32_t qh;
  1287. memcpy(&qh, x[i].qh, sizeof(qh));
  1288. for (int j = 0; j < qk/2; ++j) {
  1289. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  1290. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  1291. const int x0 = (x[i].qs[j] & 0x0F) | xh_0;
  1292. const int x1 = (x[i].qs[j] >> 4) | xh_1;
  1293. y[i*qk + j + 0 ] = x0*d + m;
  1294. y[i*qk + j + qk/2] = x1*d + m;
  1295. }
  1296. }
  1297. }
  1298. static void dequantize_row_q8_0(const void * restrict vx, float * restrict y, int k) {
  1299. static const int qk = QK8_0;
  1300. assert(k % qk == 0);
  1301. const int nb = k / qk;
  1302. const block_q8_0 * restrict x = vx;
  1303. for (int i = 0; i < nb; i++) {
  1304. const float d = GGML_FP16_TO_FP32(x[i].d);
  1305. for (int j = 0; j < qk; ++j) {
  1306. y[i*qk + j] = x[i].qs[j]*d;
  1307. }
  1308. }
  1309. }
  1310. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1311. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1312. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1313. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1314. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy);
  1315. static const quantize_fns_t quantize_fns[GGML_TYPE_COUNT] = {
  1316. [GGML_TYPE_Q4_0] = {
  1317. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_0,
  1318. .quantize_row_q = quantize_row_q4_0,
  1319. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_0_reference,
  1320. .quantize_row_q_dot = quantize_row_q8_0,
  1321. .vec_dot_q = ggml_vec_dot_q4_0_q8_0,
  1322. .vec_dot_type = GGML_TYPE_Q8_0,
  1323. },
  1324. [GGML_TYPE_Q4_1] = {
  1325. .dequantize_row_q = (dequantize_row_q_t)dequantize_row_q4_1,
  1326. .quantize_row_q = quantize_row_q4_1,
  1327. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_1_reference,
  1328. .quantize_row_q_dot = quantize_row_q8_1,
  1329. .vec_dot_q = ggml_vec_dot_q4_1_q8_1,
  1330. .vec_dot_type = GGML_TYPE_Q8_1,
  1331. },
  1332. [GGML_TYPE_Q5_0] = {
  1333. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_0,
  1334. .quantize_row_q = quantize_row_q5_0,
  1335. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_0_reference,
  1336. .quantize_row_q_dot = quantize_row_q8_0,
  1337. .vec_dot_q = ggml_vec_dot_q5_0_q8_0,
  1338. .vec_dot_type = GGML_TYPE_Q8_0,
  1339. },
  1340. [GGML_TYPE_Q5_1] = {
  1341. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_1,
  1342. .quantize_row_q = quantize_row_q5_1,
  1343. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_1_reference,
  1344. .quantize_row_q_dot = quantize_row_q8_1,
  1345. .vec_dot_q = ggml_vec_dot_q5_1_q8_1,
  1346. .vec_dot_type = GGML_TYPE_Q8_1,
  1347. },
  1348. [GGML_TYPE_Q8_0] = {
  1349. .dequantize_row_q = dequantize_row_q8_0,
  1350. .quantize_row_q = quantize_row_q8_0,
  1351. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_0_reference,
  1352. .quantize_row_q_dot = quantize_row_q8_0,
  1353. .vec_dot_q = ggml_vec_dot_q8_0_q8_0,
  1354. .vec_dot_type = GGML_TYPE_Q8_0,
  1355. },
  1356. [GGML_TYPE_Q8_1] = {
  1357. .dequantize_row_q = NULL, // TODO
  1358. .quantize_row_q = quantize_row_q8_1,
  1359. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q8_1_reference,
  1360. .quantize_row_q_dot = quantize_row_q8_1,
  1361. .vec_dot_q = NULL, // TODO
  1362. .vec_dot_type = GGML_TYPE_Q8_1,
  1363. },
  1364. #ifdef GGML_USE_K_QUANTS
  1365. [GGML_TYPE_Q2_K] = {
  1366. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q2_K,
  1367. .quantize_row_q = quantize_row_q2_K,
  1368. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q2_K_reference,
  1369. .quantize_row_q_dot = quantize_row_q8_K,
  1370. .vec_dot_q = ggml_vec_dot_q2_K_q8_K,
  1371. .vec_dot_type = GGML_TYPE_Q8_K,
  1372. },
  1373. [GGML_TYPE_Q3_K] = {
  1374. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q3_K,
  1375. .quantize_row_q = quantize_row_q3_K,
  1376. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q3_K_reference,
  1377. .quantize_row_q_dot = quantize_row_q8_K,
  1378. .vec_dot_q = ggml_vec_dot_q3_K_q8_K,
  1379. .vec_dot_type = GGML_TYPE_Q8_K,
  1380. },
  1381. [GGML_TYPE_Q4_K] = {
  1382. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q4_K,
  1383. .quantize_row_q = quantize_row_q4_K,
  1384. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q4_K_reference,
  1385. .quantize_row_q_dot = quantize_row_q8_K,
  1386. .vec_dot_q = ggml_vec_dot_q4_K_q8_K,
  1387. .vec_dot_type = GGML_TYPE_Q8_K,
  1388. },
  1389. [GGML_TYPE_Q5_K] = {
  1390. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q5_K,
  1391. .quantize_row_q = quantize_row_q5_K,
  1392. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q5_K_reference,
  1393. .quantize_row_q_dot = quantize_row_q8_K,
  1394. .vec_dot_q = ggml_vec_dot_q5_K_q8_K,
  1395. .vec_dot_type = GGML_TYPE_Q8_K,
  1396. },
  1397. [GGML_TYPE_Q6_K] = {
  1398. .dequantize_row_q = (dequantize_row_q_t) dequantize_row_q6_K,
  1399. .quantize_row_q = quantize_row_q6_K,
  1400. .quantize_row_q_reference = (quantize_row_q_t) quantize_row_q6_K_reference,
  1401. .quantize_row_q_dot = quantize_row_q8_K,
  1402. .vec_dot_q = ggml_vec_dot_q6_K_q8_K,
  1403. .vec_dot_type = GGML_TYPE_Q8_K,
  1404. },
  1405. #endif
  1406. };
  1407. // For internal test use
  1408. quantize_fns_t ggml_internal_get_quantize_fn(size_t i) {
  1409. GGML_ASSERT(i < GGML_TYPE_COUNT);
  1410. return quantize_fns[i];
  1411. }
  1412. //
  1413. // simd mappings
  1414. //
  1415. // we define a common set of C macros which map to specific intrinsics based on the current architecture
  1416. // we then implement the fundamental computation operations below using only these macros
  1417. // adding support for new architectures requires to define the corresponding SIMD macros
  1418. //
  1419. // GGML_F32_STEP / GGML_F16_STEP
  1420. // number of elements to process in a single step
  1421. //
  1422. // GGML_F32_EPR / GGML_F16_EPR
  1423. // number of elements to fit in a single register
  1424. //
  1425. #if defined(__ARM_NEON) && defined(__ARM_FEATURE_FMA)
  1426. #define GGML_SIMD
  1427. // F32 NEON
  1428. #define GGML_F32_STEP 16
  1429. #define GGML_F32_EPR 4
  1430. #define GGML_F32x4 float32x4_t
  1431. #define GGML_F32x4_ZERO vdupq_n_f32(0.0f)
  1432. #define GGML_F32x4_SET1(x) vdupq_n_f32(x)
  1433. #define GGML_F32x4_LOAD vld1q_f32
  1434. #define GGML_F32x4_STORE vst1q_f32
  1435. #define GGML_F32x4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1436. #define GGML_F32x4_ADD vaddq_f32
  1437. #define GGML_F32x4_MUL vmulq_f32
  1438. #define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
  1439. #define GGML_F32x4_REDUCE(res, x) \
  1440. { \
  1441. int offset = GGML_F32_ARR >> 1; \
  1442. for (int i = 0; i < offset; ++i) { \
  1443. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1444. } \
  1445. offset >>= 1; \
  1446. for (int i = 0; i < offset; ++i) { \
  1447. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1448. } \
  1449. offset >>= 1; \
  1450. for (int i = 0; i < offset; ++i) { \
  1451. x[i] = vaddq_f32(x[i], x[offset+i]); \
  1452. } \
  1453. res = GGML_F32x4_REDUCE_ONE(x[0]); \
  1454. }
  1455. #define GGML_F32_VEC GGML_F32x4
  1456. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1457. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1458. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1459. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1460. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1461. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1462. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1463. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1464. // F16 NEON
  1465. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  1466. #define GGML_F16_STEP 32
  1467. #define GGML_F16_EPR 8
  1468. #define GGML_F16x8 float16x8_t
  1469. #define GGML_F16x8_ZERO vdupq_n_f16(0.0f)
  1470. #define GGML_F16x8_SET1(x) vdupq_n_f16(x)
  1471. #define GGML_F16x8_LOAD vld1q_f16
  1472. #define GGML_F16x8_STORE vst1q_f16
  1473. #define GGML_F16x8_FMA(a, b, c) vfmaq_f16(a, b, c)
  1474. #define GGML_F16x8_ADD vaddq_f16
  1475. #define GGML_F16x8_MUL vmulq_f16
  1476. #define GGML_F16x8_REDUCE(res, x) \
  1477. { \
  1478. int offset = GGML_F16_ARR >> 1; \
  1479. for (int i = 0; i < offset; ++i) { \
  1480. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1481. } \
  1482. offset >>= 1; \
  1483. for (int i = 0; i < offset; ++i) { \
  1484. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1485. } \
  1486. offset >>= 1; \
  1487. for (int i = 0; i < offset; ++i) { \
  1488. x[i] = vaddq_f16(x[i], x[offset+i]); \
  1489. } \
  1490. const float32x4_t t0 = vcvt_f32_f16(vget_low_f16 (x[0])); \
  1491. const float32x4_t t1 = vcvt_f32_f16(vget_high_f16(x[0])); \
  1492. res = (ggml_float) vaddvq_f32(vaddq_f32(t0, t1)); \
  1493. }
  1494. #define GGML_F16_VEC GGML_F16x8
  1495. #define GGML_F16_VEC_ZERO GGML_F16x8_ZERO
  1496. #define GGML_F16_VEC_SET1 GGML_F16x8_SET1
  1497. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x8_LOAD(p)
  1498. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x8_STORE(p, r[i])
  1499. #define GGML_F16_VEC_FMA GGML_F16x8_FMA
  1500. #define GGML_F16_VEC_ADD GGML_F16x8_ADD
  1501. #define GGML_F16_VEC_MUL GGML_F16x8_MUL
  1502. #define GGML_F16_VEC_REDUCE GGML_F16x8_REDUCE
  1503. #else
  1504. // if FP16 vector arithmetic is not supported, we use FP32 instead
  1505. // and take advantage of the vcvt_ functions to convert to/from FP16
  1506. #define GGML_F16_STEP 16
  1507. #define GGML_F16_EPR 4
  1508. #define GGML_F32Cx4 float32x4_t
  1509. #define GGML_F32Cx4_ZERO vdupq_n_f32(0.0f)
  1510. #define GGML_F32Cx4_SET1(x) vdupq_n_f32(x)
  1511. #define GGML_F32Cx4_LOAD(x) vcvt_f32_f16(vld1_f16(x))
  1512. #define GGML_F32Cx4_STORE(x, y) vst1_f16(x, vcvt_f16_f32(y))
  1513. #define GGML_F32Cx4_FMA(a, b, c) vfmaq_f32(a, b, c)
  1514. #define GGML_F32Cx4_ADD vaddq_f32
  1515. #define GGML_F32Cx4_MUL vmulq_f32
  1516. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1517. #define GGML_F16_VEC GGML_F32Cx4
  1518. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1519. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1520. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1521. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1522. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1523. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1524. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1525. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1526. #endif
  1527. #elif defined(__AVX__)
  1528. #define GGML_SIMD
  1529. // F32 AVX
  1530. #define GGML_F32_STEP 32
  1531. #define GGML_F32_EPR 8
  1532. #define GGML_F32x8 __m256
  1533. #define GGML_F32x8_ZERO _mm256_setzero_ps()
  1534. #define GGML_F32x8_SET1(x) _mm256_set1_ps(x)
  1535. #define GGML_F32x8_LOAD _mm256_loadu_ps
  1536. #define GGML_F32x8_STORE _mm256_storeu_ps
  1537. #if defined(__FMA__)
  1538. #define GGML_F32x8_FMA(a, b, c) _mm256_fmadd_ps(b, c, a)
  1539. #else
  1540. #define GGML_F32x8_FMA(a, b, c) _mm256_add_ps(_mm256_mul_ps(b, c), a)
  1541. #endif
  1542. #define GGML_F32x8_ADD _mm256_add_ps
  1543. #define GGML_F32x8_MUL _mm256_mul_ps
  1544. #define GGML_F32x8_REDUCE(res, x) \
  1545. { \
  1546. int offset = GGML_F32_ARR >> 1; \
  1547. for (int i = 0; i < offset; ++i) { \
  1548. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1549. } \
  1550. offset >>= 1; \
  1551. for (int i = 0; i < offset; ++i) { \
  1552. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1553. } \
  1554. offset >>= 1; \
  1555. for (int i = 0; i < offset; ++i) { \
  1556. x[i] = _mm256_add_ps(x[i], x[offset+i]); \
  1557. } \
  1558. const __m128 t0 = _mm_add_ps(_mm256_castps256_ps128(x[0]), \
  1559. _mm256_extractf128_ps(x[0], 1)); \
  1560. const __m128 t1 = _mm_hadd_ps(t0, t0); \
  1561. res = _mm_cvtss_f32(_mm_hadd_ps(t1, t1)); \
  1562. }
  1563. // TODO: is this optimal ?
  1564. #define GGML_F32_VEC GGML_F32x8
  1565. #define GGML_F32_VEC_ZERO GGML_F32x8_ZERO
  1566. #define GGML_F32_VEC_SET1 GGML_F32x8_SET1
  1567. #define GGML_F32_VEC_LOAD GGML_F32x8_LOAD
  1568. #define GGML_F32_VEC_STORE GGML_F32x8_STORE
  1569. #define GGML_F32_VEC_FMA GGML_F32x8_FMA
  1570. #define GGML_F32_VEC_ADD GGML_F32x8_ADD
  1571. #define GGML_F32_VEC_MUL GGML_F32x8_MUL
  1572. #define GGML_F32_VEC_REDUCE GGML_F32x8_REDUCE
  1573. // F16 AVX
  1574. #define GGML_F16_STEP 32
  1575. #define GGML_F16_EPR 8
  1576. // F16 arithmetic is not supported by AVX, so we use F32 instead
  1577. #define GGML_F32Cx8 __m256
  1578. #define GGML_F32Cx8_ZERO _mm256_setzero_ps()
  1579. #define GGML_F32Cx8_SET1(x) _mm256_set1_ps(x)
  1580. #if defined(__F16C__)
  1581. // the _mm256_cvt intrinsics require F16C
  1582. #define GGML_F32Cx8_LOAD(x) _mm256_cvtph_ps(_mm_loadu_si128((__m128i *)(x)))
  1583. #define GGML_F32Cx8_STORE(x, y) _mm_storeu_si128((__m128i *)(x), _mm256_cvtps_ph(y, 0))
  1584. #else
  1585. static inline __m256 __avx_f32cx8_load(ggml_fp16_t *x) {
  1586. float tmp[8];
  1587. for (int i = 0; i < 8; i++) {
  1588. tmp[i] = GGML_FP16_TO_FP32(x[i]);
  1589. }
  1590. return _mm256_loadu_ps(tmp);
  1591. }
  1592. static inline void __avx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
  1593. float arr[8];
  1594. _mm256_storeu_ps(arr, y);
  1595. for (int i = 0; i < 8; i++)
  1596. x[i] = GGML_FP32_TO_FP16(arr[i]);
  1597. }
  1598. #define GGML_F32Cx8_LOAD(x) __avx_f32cx8_load(x)
  1599. #define GGML_F32Cx8_STORE(x, y) __avx_f32cx8_store(x, y)
  1600. #endif
  1601. #define GGML_F32Cx8_FMA GGML_F32x8_FMA
  1602. #define GGML_F32Cx8_ADD _mm256_add_ps
  1603. #define GGML_F32Cx8_MUL _mm256_mul_ps
  1604. #define GGML_F32Cx8_REDUCE GGML_F32x8_REDUCE
  1605. #define GGML_F16_VEC GGML_F32Cx8
  1606. #define GGML_F16_VEC_ZERO GGML_F32Cx8_ZERO
  1607. #define GGML_F16_VEC_SET1 GGML_F32Cx8_SET1
  1608. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx8_LOAD(p)
  1609. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx8_STORE(p, r[i])
  1610. #define GGML_F16_VEC_FMA GGML_F32Cx8_FMA
  1611. #define GGML_F16_VEC_ADD GGML_F32Cx8_ADD
  1612. #define GGML_F16_VEC_MUL GGML_F32Cx8_MUL
  1613. #define GGML_F16_VEC_REDUCE GGML_F32Cx8_REDUCE
  1614. #elif defined(__POWER9_VECTOR__)
  1615. #define GGML_SIMD
  1616. // F32 POWER9
  1617. #define GGML_F32_STEP 32
  1618. #define GGML_F32_EPR 4
  1619. #define GGML_F32x4 vector float
  1620. #define GGML_F32x4_ZERO 0.0f
  1621. #define GGML_F32x4_SET1 vec_splats
  1622. #define GGML_F32x4_LOAD(p) vec_xl(0, p)
  1623. #define GGML_F32x4_STORE(p, r) vec_xst(r, 0, p)
  1624. #define GGML_F32x4_FMA(a, b, c) vec_madd(b, c, a)
  1625. #define GGML_F32x4_ADD vec_add
  1626. #define GGML_F32x4_MUL vec_mul
  1627. #define GGML_F32x4_REDUCE(res, x) \
  1628. { \
  1629. int offset = GGML_F32_ARR >> 1; \
  1630. for (int i = 0; i < offset; ++i) { \
  1631. x[i] = vec_add(x[i], x[offset+i]); \
  1632. } \
  1633. offset >>= 1; \
  1634. for (int i = 0; i < offset; ++i) { \
  1635. x[i] = vec_add(x[i], x[offset+i]); \
  1636. } \
  1637. offset >>= 1; \
  1638. for (int i = 0; i < offset; ++i) { \
  1639. x[i] = vec_add(x[i], x[offset+i]); \
  1640. } \
  1641. res = vec_extract(x[0], 0) + \
  1642. vec_extract(x[0], 1) + \
  1643. vec_extract(x[0], 2) + \
  1644. vec_extract(x[0], 3); \
  1645. }
  1646. #define GGML_F32_VEC GGML_F32x4
  1647. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1648. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1649. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1650. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1651. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1652. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1653. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1654. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1655. // F16 POWER9
  1656. #define GGML_F16_STEP GGML_F32_STEP
  1657. #define GGML_F16_EPR GGML_F32_EPR
  1658. #define GGML_F16_VEC GGML_F32x4
  1659. #define GGML_F16_VEC_ZERO GGML_F32x4_ZERO
  1660. #define GGML_F16_VEC_SET1 GGML_F32x4_SET1
  1661. #define GGML_F16_VEC_FMA GGML_F32x4_FMA
  1662. #define GGML_F16_VEC_REDUCE GGML_F32x4_REDUCE
  1663. // Use vec_xl, not vec_ld, in case the load address is not aligned.
  1664. #define GGML_F16_VEC_LOAD(p, i) (i & 0x1) ? \
  1665. vec_extract_fp32_from_shorth(vec_xl(0, p - GGML_F16_EPR)) : \
  1666. vec_extract_fp32_from_shortl(vec_xl(0, p))
  1667. #define GGML_ENDIAN_BYTE(i) ((unsigned char *)&(uint16_t){1})[i]
  1668. #define GGML_F16_VEC_STORE(p, r, i) \
  1669. if (i & 0x1) \
  1670. vec_xst(vec_pack_to_short_fp32(r[i - GGML_ENDIAN_BYTE(1)], \
  1671. r[i - GGML_ENDIAN_BYTE(0)]), \
  1672. 0, p - GGML_F16_EPR)
  1673. #elif defined(__wasm_simd128__)
  1674. #define GGML_SIMD
  1675. // F32 WASM
  1676. #define GGML_F32_STEP 16
  1677. #define GGML_F32_EPR 4
  1678. #define GGML_F32x4 v128_t
  1679. #define GGML_F32x4_ZERO wasm_f32x4_splat(0.0f)
  1680. #define GGML_F32x4_SET1(x) wasm_f32x4_splat(x)
  1681. #define GGML_F32x4_LOAD wasm_v128_load
  1682. #define GGML_F32x4_STORE wasm_v128_store
  1683. #define GGML_F32x4_FMA(a, b, c) wasm_f32x4_add(wasm_f32x4_mul(b, c), a)
  1684. #define GGML_F32x4_ADD wasm_f32x4_add
  1685. #define GGML_F32x4_MUL wasm_f32x4_mul
  1686. #define GGML_F32x4_REDUCE(res, x) \
  1687. { \
  1688. int offset = GGML_F32_ARR >> 1; \
  1689. for (int i = 0; i < offset; ++i) { \
  1690. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1691. } \
  1692. offset >>= 1; \
  1693. for (int i = 0; i < offset; ++i) { \
  1694. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1695. } \
  1696. offset >>= 1; \
  1697. for (int i = 0; i < offset; ++i) { \
  1698. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1699. } \
  1700. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1701. wasm_f32x4_extract_lane(x[0], 1) + \
  1702. wasm_f32x4_extract_lane(x[0], 2) + \
  1703. wasm_f32x4_extract_lane(x[0], 3); \
  1704. }
  1705. #define GGML_F32_VEC GGML_F32x4
  1706. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1707. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1708. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1709. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1710. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1711. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1712. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1713. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1714. // F16 WASM
  1715. #define GGML_F16_STEP 16
  1716. #define GGML_F16_EPR 4
  1717. inline static v128_t __wasm_f16x4_load(const ggml_fp16_t * p) {
  1718. float tmp[4];
  1719. tmp[0] = GGML_FP16_TO_FP32(p[0]);
  1720. tmp[1] = GGML_FP16_TO_FP32(p[1]);
  1721. tmp[2] = GGML_FP16_TO_FP32(p[2]);
  1722. tmp[3] = GGML_FP16_TO_FP32(p[3]);
  1723. return wasm_v128_load(tmp);
  1724. }
  1725. inline static void __wasm_f16x4_store(ggml_fp16_t * p, v128_t x) {
  1726. float tmp[4];
  1727. wasm_v128_store(tmp, x);
  1728. p[0] = GGML_FP32_TO_FP16(tmp[0]);
  1729. p[1] = GGML_FP32_TO_FP16(tmp[1]);
  1730. p[2] = GGML_FP32_TO_FP16(tmp[2]);
  1731. p[3] = GGML_FP32_TO_FP16(tmp[3]);
  1732. }
  1733. #define GGML_F16x4 v128_t
  1734. #define GGML_F16x4_ZERO wasm_f32x4_splat(0.0f)
  1735. #define GGML_F16x4_SET1(x) wasm_f32x4_splat(x)
  1736. #define GGML_F16x4_LOAD(x) __wasm_f16x4_load(x)
  1737. #define GGML_F16x4_STORE(x, y) __wasm_f16x4_store(x, y)
  1738. #define GGML_F16x4_FMA GGML_F32x4_FMA
  1739. #define GGML_F16x4_ADD wasm_f32x4_add
  1740. #define GGML_F16x4_MUL wasm_f32x4_mul
  1741. #define GGML_F16x4_REDUCE(res, x) \
  1742. { \
  1743. int offset = GGML_F16_ARR >> 1; \
  1744. for (int i = 0; i < offset; ++i) { \
  1745. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1746. } \
  1747. offset >>= 1; \
  1748. for (int i = 0; i < offset; ++i) { \
  1749. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1750. } \
  1751. offset >>= 1; \
  1752. for (int i = 0; i < offset; ++i) { \
  1753. x[i] = wasm_f32x4_add(x[i], x[offset+i]); \
  1754. } \
  1755. res = wasm_f32x4_extract_lane(x[0], 0) + \
  1756. wasm_f32x4_extract_lane(x[0], 1) + \
  1757. wasm_f32x4_extract_lane(x[0], 2) + \
  1758. wasm_f32x4_extract_lane(x[0], 3); \
  1759. }
  1760. #define GGML_F16_VEC GGML_F16x4
  1761. #define GGML_F16_VEC_ZERO GGML_F16x4_ZERO
  1762. #define GGML_F16_VEC_SET1 GGML_F16x4_SET1
  1763. #define GGML_F16_VEC_LOAD(p, i) GGML_F16x4_LOAD(p)
  1764. #define GGML_F16_VEC_STORE(p, r, i) GGML_F16x4_STORE(p, r[i])
  1765. #define GGML_F16_VEC_FMA GGML_F16x4_FMA
  1766. #define GGML_F16_VEC_ADD GGML_F16x4_ADD
  1767. #define GGML_F16_VEC_MUL GGML_F16x4_MUL
  1768. #define GGML_F16_VEC_REDUCE GGML_F16x4_REDUCE
  1769. #elif defined(__SSE3__)
  1770. #define GGML_SIMD
  1771. // F32 SSE
  1772. #define GGML_F32_STEP 32
  1773. #define GGML_F32_EPR 4
  1774. #define GGML_F32x4 __m128
  1775. #define GGML_F32x4_ZERO _mm_setzero_ps()
  1776. #define GGML_F32x4_SET1(x) _mm_set1_ps(x)
  1777. #define GGML_F32x4_LOAD _mm_loadu_ps
  1778. #define GGML_F32x4_STORE _mm_storeu_ps
  1779. #if defined(__FMA__)
  1780. // TODO: Does this work?
  1781. #define GGML_F32x4_FMA(a, b, c) _mm_fmadd_ps(b, c, a)
  1782. #else
  1783. #define GGML_F32x4_FMA(a, b, c) _mm_add_ps(_mm_mul_ps(b, c), a)
  1784. #endif
  1785. #define GGML_F32x4_ADD _mm_add_ps
  1786. #define GGML_F32x4_MUL _mm_mul_ps
  1787. #define GGML_F32x4_REDUCE(res, x) \
  1788. { \
  1789. int offset = GGML_F32_ARR >> 1; \
  1790. for (int i = 0; i < offset; ++i) { \
  1791. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1792. } \
  1793. offset >>= 1; \
  1794. for (int i = 0; i < offset; ++i) { \
  1795. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1796. } \
  1797. offset >>= 1; \
  1798. for (int i = 0; i < offset; ++i) { \
  1799. x[i] = _mm_add_ps(x[i], x[offset+i]); \
  1800. } \
  1801. const __m128 t0 = _mm_hadd_ps(x[0], x[0]); \
  1802. res = _mm_cvtss_f32(_mm_hadd_ps(t0, t0)); \
  1803. }
  1804. // TODO: is this optimal ?
  1805. #define GGML_F32_VEC GGML_F32x4
  1806. #define GGML_F32_VEC_ZERO GGML_F32x4_ZERO
  1807. #define GGML_F32_VEC_SET1 GGML_F32x4_SET1
  1808. #define GGML_F32_VEC_LOAD GGML_F32x4_LOAD
  1809. #define GGML_F32_VEC_STORE GGML_F32x4_STORE
  1810. #define GGML_F32_VEC_FMA GGML_F32x4_FMA
  1811. #define GGML_F32_VEC_ADD GGML_F32x4_ADD
  1812. #define GGML_F32_VEC_MUL GGML_F32x4_MUL
  1813. #define GGML_F32_VEC_REDUCE GGML_F32x4_REDUCE
  1814. // F16 SSE
  1815. #define GGML_F16_STEP 32
  1816. #define GGML_F16_EPR 4
  1817. static inline __m128 __sse_f16x4_load(ggml_fp16_t *x) {
  1818. float tmp[4];
  1819. tmp[0] = GGML_FP16_TO_FP32(x[0]);
  1820. tmp[1] = GGML_FP16_TO_FP32(x[1]);
  1821. tmp[2] = GGML_FP16_TO_FP32(x[2]);
  1822. tmp[3] = GGML_FP16_TO_FP32(x[3]);
  1823. return _mm_loadu_ps(tmp);
  1824. }
  1825. static inline void __sse_f16x4_store(ggml_fp16_t *x, __m128 y) {
  1826. float arr[4];
  1827. _mm_storeu_ps(arr, y);
  1828. x[0] = GGML_FP32_TO_FP16(arr[0]);
  1829. x[1] = GGML_FP32_TO_FP16(arr[1]);
  1830. x[2] = GGML_FP32_TO_FP16(arr[2]);
  1831. x[3] = GGML_FP32_TO_FP16(arr[3]);
  1832. }
  1833. #define GGML_F32Cx4 __m128
  1834. #define GGML_F32Cx4_ZERO _mm_setzero_ps()
  1835. #define GGML_F32Cx4_SET1(x) _mm_set1_ps(x)
  1836. #define GGML_F32Cx4_LOAD(x) __sse_f16x4_load(x)
  1837. #define GGML_F32Cx4_STORE(x, y) __sse_f16x4_store(x, y)
  1838. #define GGML_F32Cx4_FMA GGML_F32x4_FMA
  1839. #define GGML_F32Cx4_ADD _mm_add_ps
  1840. #define GGML_F32Cx4_MUL _mm_mul_ps
  1841. #define GGML_F32Cx4_REDUCE GGML_F32x4_REDUCE
  1842. #define GGML_F16_VEC GGML_F32Cx4
  1843. #define GGML_F16_VEC_ZERO GGML_F32Cx4_ZERO
  1844. #define GGML_F16_VEC_SET1 GGML_F32Cx4_SET1
  1845. #define GGML_F16_VEC_LOAD(p, i) GGML_F32Cx4_LOAD(p)
  1846. #define GGML_F16_VEC_STORE(p, r, i) GGML_F32Cx4_STORE(p, r[i])
  1847. #define GGML_F16_VEC_FMA GGML_F32Cx4_FMA
  1848. #define GGML_F16_VEC_ADD GGML_F32Cx4_ADD
  1849. #define GGML_F16_VEC_MUL GGML_F32Cx4_MUL
  1850. #define GGML_F16_VEC_REDUCE GGML_F32Cx4_REDUCE
  1851. #endif
  1852. // GGML_F32_ARR / GGML_F16_ARR
  1853. // number of registers to use per step
  1854. #ifdef GGML_SIMD
  1855. #define GGML_F32_ARR (GGML_F32_STEP/GGML_F32_EPR)
  1856. #define GGML_F16_ARR (GGML_F16_STEP/GGML_F16_EPR)
  1857. #endif
  1858. //
  1859. // fundamental operations
  1860. //
  1861. inline static void ggml_vec_set_i8(const int n, int8_t * x, const int8_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1862. inline static void ggml_vec_set_i16(const int n, int16_t * x, const int16_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1863. inline static void ggml_vec_set_i32(const int n, int32_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1864. inline static void ggml_vec_set_f16(const int n, ggml_fp16_t * x, const int32_t v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1865. inline static void ggml_vec_add_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] + y[i]; }
  1866. inline static void ggml_vec_add1_f32(const int n, float * z, const float * x, const float v) { for (int i = 0; i < n; ++i) z[i] = x[i] + v; }
  1867. inline static void ggml_vec_acc_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] += x[i]; }
  1868. inline static void ggml_vec_acc1_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] += v; }
  1869. inline static void ggml_vec_sub_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i] - y[i]; }
  1870. inline static void ggml_vec_set_f32 (const int n, float * x, const float v) { for (int i = 0; i < n; ++i) x[i] = v; }
  1871. inline static void ggml_vec_cpy_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]; }
  1872. inline static void ggml_vec_neg_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = -x[i]; }
  1873. inline static void ggml_vec_mul_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]*y[i]; }
  1874. inline static void ggml_vec_div_f32 (const int n, float * z, const float * x, const float * y) { for (int i = 0; i < n; ++i) z[i] = x[i]/y[i]; }
  1875. inline static void ggml_vec_dot_f32(const int n, float * restrict s, const float * restrict x, const float * restrict y) {
  1876. #ifdef GGML_SIMD
  1877. float sumf = 0.0f;
  1878. const int np = (n & ~(GGML_F32_STEP - 1));
  1879. GGML_F32_VEC sum[GGML_F32_ARR] = { GGML_F32_VEC_ZERO };
  1880. GGML_F32_VEC ax[GGML_F32_ARR];
  1881. GGML_F32_VEC ay[GGML_F32_ARR];
  1882. for (int i = 0; i < np; i += GGML_F32_STEP) {
  1883. for (int j = 0; j < GGML_F32_ARR; j++) {
  1884. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  1885. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  1886. sum[j] = GGML_F32_VEC_FMA(sum[j], ax[j], ay[j]);
  1887. }
  1888. }
  1889. // reduce sum0..sum3 to sum0
  1890. GGML_F32_VEC_REDUCE(sumf, sum);
  1891. // leftovers
  1892. for (int i = np; i < n; ++i) {
  1893. sumf += x[i]*y[i];
  1894. }
  1895. #else
  1896. // scalar
  1897. ggml_float sumf = 0.0;
  1898. for (int i = 0; i < n; ++i) {
  1899. sumf += (ggml_float)(x[i]*y[i]);
  1900. }
  1901. #endif
  1902. *s = sumf;
  1903. }
  1904. inline static void ggml_vec_dot_f16(const int n, float * restrict s, ggml_fp16_t * restrict x, ggml_fp16_t * restrict y) {
  1905. ggml_float sumf = 0.0;
  1906. #if defined(GGML_SIMD)
  1907. const int np = (n & ~(GGML_F16_STEP - 1));
  1908. GGML_F16_VEC sum[GGML_F16_ARR] = { GGML_F16_VEC_ZERO };
  1909. GGML_F16_VEC ax[GGML_F16_ARR];
  1910. GGML_F16_VEC ay[GGML_F16_ARR];
  1911. for (int i = 0; i < np; i += GGML_F16_STEP) {
  1912. for (int j = 0; j < GGML_F16_ARR; j++) {
  1913. ax[j] = GGML_F16_VEC_LOAD(x + i + j*GGML_F16_EPR, j);
  1914. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  1915. sum[j] = GGML_F16_VEC_FMA(sum[j], ax[j], ay[j]);
  1916. }
  1917. }
  1918. // reduce sum0..sum3 to sum0
  1919. GGML_F16_VEC_REDUCE(sumf, sum);
  1920. // leftovers
  1921. for (int i = np; i < n; ++i) {
  1922. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1923. }
  1924. #else
  1925. for (int i = 0; i < n; ++i) {
  1926. sumf += (ggml_float)(GGML_FP16_TO_FP32(x[i])*GGML_FP16_TO_FP32(y[i]));
  1927. }
  1928. #endif
  1929. *s = sumf;
  1930. }
  1931. static void ggml_vec_dot_q4_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  1932. const int qk = QK8_0;
  1933. const int nb = n / qk;
  1934. assert(n % qk == 0);
  1935. assert(nb % 2 == 0);
  1936. const block_q4_0 * restrict x = vx;
  1937. const block_q8_0 * restrict y = vy;
  1938. #if defined(__ARM_NEON)
  1939. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  1940. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  1941. for (int i = 0; i < nb; i += 2) {
  1942. const block_q4_0 * restrict x0 = &x[i + 0];
  1943. const block_q4_0 * restrict x1 = &x[i + 1];
  1944. const block_q8_0 * restrict y0 = &y[i + 0];
  1945. const block_q8_0 * restrict y1 = &y[i + 1];
  1946. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  1947. const int8x16_t s8b = vdupq_n_s8(0x8);
  1948. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  1949. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  1950. // 4-bit -> 8-bit
  1951. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  1952. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  1953. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  1954. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  1955. // sub 8
  1956. const int8x16_t v0_0ls = vsubq_s8(v0_0l, s8b);
  1957. const int8x16_t v0_0hs = vsubq_s8(v0_0h, s8b);
  1958. const int8x16_t v0_1ls = vsubq_s8(v0_1l, s8b);
  1959. const int8x16_t v0_1hs = vsubq_s8(v0_1h, s8b);
  1960. // load y
  1961. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  1962. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  1963. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  1964. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  1965. #if defined(__ARM_FEATURE_DOTPROD)
  1966. // dot product into int32x4_t
  1967. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
  1968. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
  1969. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1970. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1971. #else
  1972. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
  1973. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
  1974. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
  1975. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
  1976. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
  1977. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
  1978. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
  1979. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
  1980. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  1981. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  1982. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  1983. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  1984. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  1985. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  1986. #endif
  1987. }
  1988. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  1989. #elif defined(__AVX2__)
  1990. // Initialize accumulator with zeros
  1991. __m256 acc = _mm256_setzero_ps();
  1992. // Main loop
  1993. for (int i = 0; i < nb; ++i) {
  1994. /* Compute combined scale for the block */
  1995. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  1996. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  1997. // Now we have a vector with bytes in [ 0 .. 15 ] interval. Offset them into [ -8 .. +7 ] interval.
  1998. const __m256i off = _mm256_set1_epi8( 8 );
  1999. bx = _mm256_sub_epi8( bx, off );
  2000. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2001. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2002. /* Multiply q with scale and accumulate */
  2003. acc = _mm256_fmadd_ps( d, q, acc );
  2004. }
  2005. *s = hsum_float_8(acc);
  2006. #elif defined(__AVX__)
  2007. // Initialize accumulator with zeros
  2008. __m256 acc = _mm256_setzero_ps();
  2009. // Main loop
  2010. for (int i = 0; i < nb; ++i) {
  2011. // Compute combined scale for the block
  2012. const __m256 d = _mm256_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2013. const __m128i lowMask = _mm_set1_epi8(0xF);
  2014. const __m128i off = _mm_set1_epi8(8);
  2015. const __m128i tmp = _mm_loadu_si128((const __m128i *)x[i].qs);
  2016. __m128i bx = _mm_and_si128(lowMask, tmp);
  2017. __m128i by = _mm_loadu_si128((const __m128i *)y[i].qs);
  2018. bx = _mm_sub_epi8(bx, off);
  2019. const __m128i i32_0 = mul_sum_i8_pairs(bx, by);
  2020. bx = _mm_and_si128(lowMask, _mm_srli_epi64(tmp, 4));
  2021. by = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2022. bx = _mm_sub_epi8(bx, off);
  2023. const __m128i i32_1 = mul_sum_i8_pairs(bx, by);
  2024. // Convert int32_t to float
  2025. __m256 p = _mm256_cvtepi32_ps(MM256_SET_M128I(i32_0, i32_1));
  2026. // Apply the scale, and accumulate
  2027. acc = _mm256_add_ps(_mm256_mul_ps( d, p ), acc);
  2028. }
  2029. *s = hsum_float_8(acc);
  2030. #elif defined(__SSSE3__)
  2031. // set constants
  2032. const __m128i lowMask = _mm_set1_epi8(0xF);
  2033. const __m128i off = _mm_set1_epi8(8);
  2034. // Initialize accumulator with zeros
  2035. __m128 acc_0 = _mm_setzero_ps();
  2036. __m128 acc_1 = _mm_setzero_ps();
  2037. __m128 acc_2 = _mm_setzero_ps();
  2038. __m128 acc_3 = _mm_setzero_ps();
  2039. // First round without accumulation
  2040. {
  2041. _mm_prefetch(&x[0] + sizeof(block_q4_0), _MM_HINT_T0);
  2042. _mm_prefetch(&y[0] + sizeof(block_q8_0), _MM_HINT_T0);
  2043. // Compute combined scale for the block 0 and 1
  2044. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[0].d) * GGML_FP16_TO_FP32(y[0].d) );
  2045. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[0].qs);
  2046. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2047. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[0].qs);
  2048. bx_0 = _mm_sub_epi8(bx_0, off);
  2049. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2050. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2051. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[0].qs + 16));
  2052. bx_1 = _mm_sub_epi8(bx_1, off);
  2053. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2054. _mm_prefetch(&x[1] + sizeof(block_q4_0), _MM_HINT_T0);
  2055. _mm_prefetch(&y[1] + sizeof(block_q8_0), _MM_HINT_T0);
  2056. // Compute combined scale for the block 2 and 3
  2057. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[1].d) * GGML_FP16_TO_FP32(y[1].d) );
  2058. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[1].qs);
  2059. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2060. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[1].qs);
  2061. bx_2 = _mm_sub_epi8(bx_2, off);
  2062. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2063. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2064. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[1].qs + 16));
  2065. bx_3 = _mm_sub_epi8(bx_3, off);
  2066. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2067. // Convert int32_t to float
  2068. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2069. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2070. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2071. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2072. // Apply the scale
  2073. acc_0 = _mm_mul_ps( d_0_1, p0 );
  2074. acc_1 = _mm_mul_ps( d_0_1, p1 );
  2075. acc_2 = _mm_mul_ps( d_2_3, p2 );
  2076. acc_3 = _mm_mul_ps( d_2_3, p3 );
  2077. }
  2078. // Main loop
  2079. for (int i = 2; i < nb; i+=2) {
  2080. _mm_prefetch(&x[i] + sizeof(block_q4_0), _MM_HINT_T0);
  2081. _mm_prefetch(&y[i] + sizeof(block_q8_0), _MM_HINT_T0);
  2082. // Compute combined scale for the block 0 and 1
  2083. const __m128 d_0_1 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d) );
  2084. const __m128i tmp_0_1 = _mm_loadu_si128((const __m128i *)x[i].qs);
  2085. __m128i bx_0 = _mm_and_si128(lowMask, tmp_0_1);
  2086. __m128i by_0 = _mm_loadu_si128((const __m128i *)y[i].qs);
  2087. bx_0 = _mm_sub_epi8(bx_0, off);
  2088. const __m128i i32_0 = mul_sum_i8_pairs(bx_0, by_0);
  2089. __m128i bx_1 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_0_1, 4));
  2090. __m128i by_1 = _mm_loadu_si128((const __m128i *)(y[i].qs + 16));
  2091. bx_1 = _mm_sub_epi8(bx_1, off);
  2092. const __m128i i32_1 = mul_sum_i8_pairs(bx_1, by_1);
  2093. _mm_prefetch(&x[i] + 2 * sizeof(block_q4_0), _MM_HINT_T0);
  2094. _mm_prefetch(&y[i] + 2 * sizeof(block_q8_0), _MM_HINT_T0);
  2095. // Compute combined scale for the block 2 and 3
  2096. const __m128 d_2_3 = _mm_set1_ps( GGML_FP16_TO_FP32(x[i + 1].d) * GGML_FP16_TO_FP32(y[i + 1].d) );
  2097. const __m128i tmp_2_3 = _mm_loadu_si128((const __m128i *)x[i + 1].qs);
  2098. __m128i bx_2 = _mm_and_si128(lowMask, tmp_2_3);
  2099. __m128i by_2 = _mm_loadu_si128((const __m128i *)y[i + 1].qs);
  2100. bx_2 = _mm_sub_epi8(bx_2, off);
  2101. const __m128i i32_2 = mul_sum_i8_pairs(bx_2, by_2);
  2102. __m128i bx_3 = _mm_and_si128(lowMask, _mm_srli_epi64(tmp_2_3, 4));
  2103. __m128i by_3 = _mm_loadu_si128((const __m128i *)(y[i + 1].qs + 16));
  2104. bx_3 = _mm_sub_epi8(bx_3, off);
  2105. const __m128i i32_3 = mul_sum_i8_pairs(bx_3, by_3);
  2106. // Convert int32_t to float
  2107. __m128 p0 = _mm_cvtepi32_ps(i32_0);
  2108. __m128 p1 = _mm_cvtepi32_ps(i32_1);
  2109. __m128 p2 = _mm_cvtepi32_ps(i32_2);
  2110. __m128 p3 = _mm_cvtepi32_ps(i32_3);
  2111. // Apply the scale
  2112. __m128 p0_d = _mm_mul_ps( d_0_1, p0 );
  2113. __m128 p1_d = _mm_mul_ps( d_0_1, p1 );
  2114. __m128 p2_d = _mm_mul_ps( d_2_3, p2 );
  2115. __m128 p3_d = _mm_mul_ps( d_2_3, p3 );
  2116. // Acummulate
  2117. acc_0 = _mm_add_ps(p0_d, acc_0);
  2118. acc_1 = _mm_add_ps(p1_d, acc_1);
  2119. acc_2 = _mm_add_ps(p2_d, acc_2);
  2120. acc_3 = _mm_add_ps(p3_d, acc_3);
  2121. }
  2122. *s = hsum_float_4x4(acc_0, acc_1, acc_2, acc_3);
  2123. #else
  2124. // scalar
  2125. float sumf = 0.0;
  2126. for (int i = 0; i < nb; i++) {
  2127. int sumi = 0;
  2128. for (int j = 0; j < qk/2; ++j) {
  2129. const int v0 = (x[i].qs[j] & 0x0F) - 8;
  2130. const int v1 = (x[i].qs[j] >> 4) - 8;
  2131. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2132. }
  2133. sumf += sumi*GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d);
  2134. }
  2135. *s = sumf;
  2136. #endif
  2137. }
  2138. static void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2139. const int qk = QK8_1;
  2140. const int nb = n / qk;
  2141. assert(n % qk == 0);
  2142. assert(nb % 2 == 0);
  2143. const block_q4_1 * restrict x = vx;
  2144. const block_q8_1 * restrict y = vy;
  2145. // TODO: add WASM SIMD
  2146. #if defined(__ARM_NEON)
  2147. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2148. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2149. float summs = 0;
  2150. for (int i = 0; i < nb; i += 2) {
  2151. const block_q4_1 * restrict x0 = &x[i + 0];
  2152. const block_q4_1 * restrict x1 = &x[i + 1];
  2153. const block_q8_1 * restrict y0 = &y[i + 0];
  2154. const block_q8_1 * restrict y1 = &y[i + 1];
  2155. summs += GGML_FP16_TO_FP32(x0->m) * y0->s + GGML_FP16_TO_FP32(x1->m) * y1->s;
  2156. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2157. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2158. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2159. // 4-bit -> 8-bit
  2160. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2161. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2162. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2163. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2164. // load y
  2165. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2166. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2167. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2168. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2169. #if defined(__ARM_FEATURE_DOTPROD)
  2170. // dot product into int32x4_t
  2171. const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
  2172. const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
  2173. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2174. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2175. #else
  2176. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
  2177. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
  2178. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
  2179. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
  2180. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
  2181. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
  2182. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
  2183. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
  2184. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2185. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2186. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2187. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2188. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2189. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2190. #endif
  2191. }
  2192. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
  2193. #elif defined(__AVX2__) || defined(__AVX__)
  2194. // Initialize accumulator with zeros
  2195. __m256 acc = _mm256_setzero_ps();
  2196. float summs = 0;
  2197. // Main loop
  2198. for (int i = 0; i < nb; ++i) {
  2199. const float d0 = GGML_FP16_TO_FP32(x[i].d);
  2200. const float d1 = y[i].d;
  2201. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2202. const __m256 d0v = _mm256_set1_ps( d0 );
  2203. const __m256 d1v = _mm256_set1_ps( d1 );
  2204. // Compute combined scales
  2205. const __m256 d0d1 = _mm256_mul_ps( d0v, d1v );
  2206. // Load 16 bytes, and unpack 4 bit fields into bytes, making 32 bytes
  2207. const __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2208. const __m256i by = _mm256_loadu_si256( (const __m256i *)y[i].qs );
  2209. const __m256 xy = mul_sum_us8_pairs_float(bx, by);
  2210. // Accumulate d0*d1*x*y
  2211. #if defined(__AVX2__)
  2212. acc = _mm256_fmadd_ps( d0d1, xy, acc );
  2213. #else
  2214. acc = _mm256_add_ps( _mm256_mul_ps( d0d1, xy ), acc );
  2215. #endif
  2216. }
  2217. *s = hsum_float_8(acc) + summs;
  2218. #else
  2219. // scalar
  2220. float sumf = 0.0;
  2221. for (int i = 0; i < nb; i++) {
  2222. int sumi = 0;
  2223. for (int j = 0; j < qk/2; ++j) {
  2224. const int v0 = (x[i].qs[j] & 0x0F);
  2225. const int v1 = (x[i].qs[j] >> 4);
  2226. sumi += (v0 * y[i].qs[j]) + (v1 * y[i].qs[j + qk/2]);
  2227. }
  2228. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2229. }
  2230. *s = sumf;
  2231. #endif
  2232. }
  2233. static void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2234. const int qk = QK8_0;
  2235. const int nb = n / qk;
  2236. assert(n % qk == 0);
  2237. assert(nb % 2 == 0);
  2238. assert(qk == QK5_0);
  2239. const block_q5_0 * restrict x = vx;
  2240. const block_q8_0 * restrict y = vy;
  2241. #if defined(__ARM_NEON)
  2242. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2243. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2244. uint32_t qh0;
  2245. uint32_t qh1;
  2246. uint64_t tmp0[4];
  2247. uint64_t tmp1[4];
  2248. for (int i = 0; i < nb; i += 2) {
  2249. const block_q5_0 * restrict x0 = &x[i];
  2250. const block_q5_0 * restrict x1 = &x[i + 1];
  2251. const block_q8_0 * restrict y0 = &y[i];
  2252. const block_q8_0 * restrict y1 = &y[i + 1];
  2253. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2254. // extract the 5th bit via lookup table ((!b) << 4)
  2255. memcpy(&qh0, x0->qh, sizeof(qh0));
  2256. memcpy(&qh1, x1->qh, sizeof(qh1));
  2257. tmp0[0] = table_b2b_1[(qh0 >> 0) & 0xFF];
  2258. tmp0[1] = table_b2b_1[(qh0 >> 8) & 0xFF];
  2259. tmp0[2] = table_b2b_1[(qh0 >> 16) & 0xFF];
  2260. tmp0[3] = table_b2b_1[(qh0 >> 24) ];
  2261. tmp1[0] = table_b2b_1[(qh1 >> 0) & 0xFF];
  2262. tmp1[1] = table_b2b_1[(qh1 >> 8) & 0xFF];
  2263. tmp1[2] = table_b2b_1[(qh1 >> 16) & 0xFF];
  2264. tmp1[3] = table_b2b_1[(qh1 >> 24) ];
  2265. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2266. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2267. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2268. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2269. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2270. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2271. // 4-bit -> 8-bit
  2272. int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2273. int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2274. int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2275. int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2276. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2277. const int8x16_t v0_0lf = vsubq_s8(v0_0l, qhl0);
  2278. const int8x16_t v0_0hf = vsubq_s8(v0_0h, qhh0);
  2279. const int8x16_t v0_1lf = vsubq_s8(v0_1l, qhl1);
  2280. const int8x16_t v0_1hf = vsubq_s8(v0_1h, qhh1);
  2281. // load y
  2282. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2283. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2284. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2285. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2286. #if defined(__ARM_FEATURE_DOTPROD)
  2287. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2288. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2289. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2290. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2291. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2292. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2293. #else
  2294. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2295. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2296. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2297. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2298. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2299. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2300. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2301. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2302. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2303. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2304. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2305. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2306. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2307. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2308. #endif
  2309. }
  2310. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2311. #elif defined(__wasm_simd128__)
  2312. v128_t sumv = wasm_f32x4_splat(0.0f);
  2313. uint32_t qh;
  2314. uint64_t tmp[4];
  2315. // TODO: check if unrolling this is better
  2316. for (int i = 0; i < nb; ++i) {
  2317. const block_q5_0 * restrict x0 = &x[i];
  2318. const block_q8_0 * restrict y0 = &y[i];
  2319. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2320. // extract the 5th bit
  2321. memcpy(&qh, x0->qh, sizeof(qh));
  2322. tmp[0] = table_b2b_1[(qh >> 0) & 0xFF];
  2323. tmp[1] = table_b2b_1[(qh >> 8) & 0xFF];
  2324. tmp[2] = table_b2b_1[(qh >> 16) & 0xFF];
  2325. tmp[3] = table_b2b_1[(qh >> 24) ];
  2326. const v128_t qhl = wasm_v128_load(tmp + 0);
  2327. const v128_t qhh = wasm_v128_load(tmp + 2);
  2328. const v128_t v0 = wasm_v128_load(x0->qs);
  2329. // 4-bit -> 8-bit
  2330. const v128_t v0l = wasm_v128_and (v0, m4b);
  2331. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2332. // add high bit and sub 16 (equivalent to sub 0x10 when bit is zero)
  2333. const v128_t v0lf = wasm_i8x16_sub(v0l, qhl);
  2334. const v128_t v0hf = wasm_i8x16_sub(v0h, qhh);
  2335. // load y
  2336. const v128_t v1l = wasm_v128_load(y0->qs);
  2337. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2338. // int8x16 -> int16x8
  2339. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2340. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2341. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2342. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2343. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2344. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2345. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2346. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2347. // dot product
  2348. sumv = wasm_f32x4_add(sumv, wasm_f32x4_mul(wasm_f32x4_convert_i32x4(
  2349. wasm_i32x4_add(
  2350. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2351. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2352. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2353. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2354. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * GGML_FP16_TO_FP32(y0->d))));
  2355. }
  2356. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2357. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3);
  2358. #elif defined(__AVX2__)
  2359. // Initialize accumulator with zeros
  2360. __m256 acc = _mm256_setzero_ps();
  2361. // Main loop
  2362. for (int i = 0; i < nb; i++) {
  2363. /* Compute combined scale for the block */
  2364. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2365. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2366. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2367. bxhi = _mm256_andnot_si256(bxhi, _mm256_set1_epi8((char)0xF0));
  2368. bx = _mm256_or_si256(bx, bxhi);
  2369. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2370. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2371. /* Multiply q with scale and accumulate */
  2372. acc = _mm256_fmadd_ps(d, q, acc);
  2373. }
  2374. *s = hsum_float_8(acc);
  2375. #elif defined(__AVX__)
  2376. // Initialize accumulator with zeros
  2377. __m256 acc = _mm256_setzero_ps();
  2378. __m128i mask = _mm_set1_epi8((char)0xF0);
  2379. // Main loop
  2380. for (int i = 0; i < nb; i++) {
  2381. /* Compute combined scale for the block */
  2382. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2383. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2384. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2385. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2386. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2387. bxhil = _mm_andnot_si128(bxhil, mask);
  2388. bxhih = _mm_andnot_si128(bxhih, mask);
  2389. __m128i bxl = _mm256_castsi256_si128(bx);
  2390. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2391. bxl = _mm_or_si128(bxl, bxhil);
  2392. bxh = _mm_or_si128(bxh, bxhih);
  2393. bx = MM256_SET_M128I(bxh, bxl);
  2394. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2395. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2396. /* Multiply q with scale and accumulate */
  2397. acc = _mm256_add_ps(_mm256_mul_ps(d, q), acc);
  2398. }
  2399. *s = hsum_float_8(acc);
  2400. #else
  2401. // scalar
  2402. float sumf = 0.0;
  2403. for (int i = 0; i < nb; i++) {
  2404. uint32_t qh;
  2405. memcpy(&qh, x[i].qh, sizeof(qh));
  2406. int sumi = 0;
  2407. for (int j = 0; j < qk/2; ++j) {
  2408. const uint8_t xh_0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  2409. const uint8_t xh_1 = ((qh & (1u << (j + 16))) >> (j + 12));
  2410. const int32_t x0 = ((x[i].qs[j] & 0x0F) | xh_0) - 16;
  2411. const int32_t x1 = ((x[i].qs[j] >> 4) | xh_1) - 16;
  2412. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2413. }
  2414. sumf += (GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d)) * sumi;
  2415. }
  2416. *s = sumf;
  2417. #endif
  2418. }
  2419. static void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2420. const int qk = QK8_1;
  2421. const int nb = n / qk;
  2422. assert(n % qk == 0);
  2423. assert(nb % 2 == 0);
  2424. assert(qk == QK5_1);
  2425. const block_q5_1 * restrict x = vx;
  2426. const block_q8_1 * restrict y = vy;
  2427. #if defined(__ARM_NEON)
  2428. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2429. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2430. float summs0 = 0.0f;
  2431. float summs1 = 0.0f;
  2432. uint32_t qh0;
  2433. uint32_t qh1;
  2434. uint64_t tmp0[4];
  2435. uint64_t tmp1[4];
  2436. for (int i = 0; i < nb; i += 2) {
  2437. const block_q5_1 * restrict x0 = &x[i];
  2438. const block_q5_1 * restrict x1 = &x[i + 1];
  2439. const block_q8_1 * restrict y0 = &y[i];
  2440. const block_q8_1 * restrict y1 = &y[i + 1];
  2441. const uint8x16_t m4b = vdupq_n_u8(0x0F);
  2442. summs0 += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2443. summs1 += GGML_FP16_TO_FP32(x1->m) * y1->s;
  2444. // extract the 5th bit via lookup table ((b) << 4)
  2445. memcpy(&qh0, x0->qh, sizeof(qh0));
  2446. memcpy(&qh1, x1->qh, sizeof(qh1));
  2447. tmp0[0] = table_b2b_0[(qh0 >> 0) & 0xFF];
  2448. tmp0[1] = table_b2b_0[(qh0 >> 8) & 0xFF];
  2449. tmp0[2] = table_b2b_0[(qh0 >> 16) & 0xFF];
  2450. tmp0[3] = table_b2b_0[(qh0 >> 24) ];
  2451. tmp1[0] = table_b2b_0[(qh1 >> 0) & 0xFF];
  2452. tmp1[1] = table_b2b_0[(qh1 >> 8) & 0xFF];
  2453. tmp1[2] = table_b2b_0[(qh1 >> 16) & 0xFF];
  2454. tmp1[3] = table_b2b_0[(qh1 >> 24) ];
  2455. const int8x16_t qhl0 = vld1q_s8((const int8_t *)(tmp0 + 0));
  2456. const int8x16_t qhh0 = vld1q_s8((const int8_t *)(tmp0 + 2));
  2457. const int8x16_t qhl1 = vld1q_s8((const int8_t *)(tmp1 + 0));
  2458. const int8x16_t qhh1 = vld1q_s8((const int8_t *)(tmp1 + 2));
  2459. const uint8x16_t v0_0 = vld1q_u8(x0->qs);
  2460. const uint8x16_t v0_1 = vld1q_u8(x1->qs);
  2461. // 4-bit -> 8-bit
  2462. const int8x16_t v0_0l = vreinterpretq_s8_u8(vandq_u8 (v0_0, m4b));
  2463. const int8x16_t v0_0h = vreinterpretq_s8_u8(vshrq_n_u8(v0_0, 4));
  2464. const int8x16_t v0_1l = vreinterpretq_s8_u8(vandq_u8 (v0_1, m4b));
  2465. const int8x16_t v0_1h = vreinterpretq_s8_u8(vshrq_n_u8(v0_1, 4));
  2466. // add high bit
  2467. const int8x16_t v0_0lf = vorrq_s8(v0_0l, qhl0);
  2468. const int8x16_t v0_0hf = vorrq_s8(v0_0h, qhh0);
  2469. const int8x16_t v0_1lf = vorrq_s8(v0_1l, qhl1);
  2470. const int8x16_t v0_1hf = vorrq_s8(v0_1h, qhh1);
  2471. // load y
  2472. const int8x16_t v1_0l = vld1q_s8(y0->qs);
  2473. const int8x16_t v1_0h = vld1q_s8(y0->qs + 16);
  2474. const int8x16_t v1_1l = vld1q_s8(y1->qs);
  2475. const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
  2476. #if defined(__ARM_FEATURE_DOTPROD)
  2477. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2478. vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
  2479. vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2480. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2481. vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
  2482. vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2483. #else
  2484. const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
  2485. const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
  2486. const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
  2487. const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
  2488. const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
  2489. const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
  2490. const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
  2491. const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
  2492. const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
  2493. const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
  2494. const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
  2495. const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
  2496. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
  2497. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
  2498. #endif
  2499. }
  2500. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
  2501. #elif defined(__wasm_simd128__)
  2502. v128_t sumv = wasm_f32x4_splat(0.0f);
  2503. float summs = 0.0f;
  2504. uint32_t qh;
  2505. uint64_t tmp[4];
  2506. // TODO: check if unrolling this is better
  2507. for (int i = 0; i < nb; ++i) {
  2508. const block_q5_1 * restrict x0 = &x[i];
  2509. const block_q8_1 * restrict y0 = &y[i];
  2510. summs += GGML_FP16_TO_FP32(x0->m) * y0->s;
  2511. const v128_t m4b = wasm_i8x16_splat(0x0F);
  2512. // extract the 5th bit
  2513. memcpy(&qh, x0->qh, sizeof(qh));
  2514. tmp[0] = table_b2b_0[(qh >> 0) & 0xFF];
  2515. tmp[1] = table_b2b_0[(qh >> 8) & 0xFF];
  2516. tmp[2] = table_b2b_0[(qh >> 16) & 0xFF];
  2517. tmp[3] = table_b2b_0[(qh >> 24) ];
  2518. const v128_t qhl = wasm_v128_load(tmp + 0);
  2519. const v128_t qhh = wasm_v128_load(tmp + 2);
  2520. const v128_t v0 = wasm_v128_load(x0->qs);
  2521. // 4-bit -> 8-bit
  2522. const v128_t v0l = wasm_v128_and (v0, m4b);
  2523. const v128_t v0h = wasm_u8x16_shr(v0, 4);
  2524. // add high bit
  2525. const v128_t v0lf = wasm_v128_or(v0l, qhl);
  2526. const v128_t v0hf = wasm_v128_or(v0h, qhh);
  2527. // load y
  2528. const v128_t v1l = wasm_v128_load(y0->qs);
  2529. const v128_t v1h = wasm_v128_load(y0->qs + 16);
  2530. // int8x16 -> int16x8
  2531. const v128_t v0lfl = wasm_i16x8_extend_low_i8x16 (v0lf);
  2532. const v128_t v0lfh = wasm_i16x8_extend_high_i8x16(v0lf);
  2533. const v128_t v0hfl = wasm_i16x8_extend_low_i8x16 (v0hf);
  2534. const v128_t v0hfh = wasm_i16x8_extend_high_i8x16(v0hf);
  2535. const v128_t v1ll = wasm_i16x8_extend_low_i8x16 (v1l);
  2536. const v128_t v1lh = wasm_i16x8_extend_high_i8x16(v1l);
  2537. const v128_t v1hl = wasm_i16x8_extend_low_i8x16 (v1h);
  2538. const v128_t v1hh = wasm_i16x8_extend_high_i8x16(v1h);
  2539. // dot product
  2540. sumv = wasm_f32x4_add(sumv,
  2541. wasm_f32x4_mul(wasm_f32x4_convert_i32x4(wasm_i32x4_add(
  2542. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0lfl, v1ll),
  2543. wasm_i32x4_dot_i16x8(v0lfh, v1lh)),
  2544. wasm_i32x4_add(wasm_i32x4_dot_i16x8(v0hfl, v1hl),
  2545. wasm_i32x4_dot_i16x8(v0hfh, v1hh)))),
  2546. wasm_f32x4_splat(GGML_FP16_TO_FP32(x0->d) * y0->d)));
  2547. }
  2548. *s = wasm_f32x4_extract_lane(sumv, 0) + wasm_f32x4_extract_lane(sumv, 1) +
  2549. wasm_f32x4_extract_lane(sumv, 2) + wasm_f32x4_extract_lane(sumv, 3) + summs;
  2550. #elif defined(__AVX2__)
  2551. // Initialize accumulator with zeros
  2552. __m256 acc = _mm256_setzero_ps();
  2553. float summs = 0.0f;
  2554. // Main loop
  2555. for (int i = 0; i < nb; i++) {
  2556. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2557. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2558. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2559. __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2560. bxhi = _mm256_and_si256(bxhi, _mm256_set1_epi8(0x10));
  2561. bx = _mm256_or_si256(bx, bxhi);
  2562. const __m256 dy = _mm256_set1_ps(y[i].d);
  2563. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2564. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2565. acc = _mm256_fmadd_ps(q, _mm256_mul_ps(dx, dy), acc);
  2566. }
  2567. *s = hsum_float_8(acc) + summs;
  2568. #elif defined(__AVX__)
  2569. // Initialize accumulator with zeros
  2570. __m256 acc = _mm256_setzero_ps();
  2571. __m128i mask = _mm_set1_epi8(0x10);
  2572. float summs = 0.0f;
  2573. // Main loop
  2574. for (int i = 0; i < nb; i++) {
  2575. const __m256 dx = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d));
  2576. summs += GGML_FP16_TO_FP32(x[i].m) * y[i].s;
  2577. __m256i bx = bytes_from_nibbles_32(x[i].qs);
  2578. const __m256i bxhi = bytes_from_bits_32(x[i].qh);
  2579. __m128i bxhil = _mm256_castsi256_si128(bxhi);
  2580. __m128i bxhih = _mm256_extractf128_si256(bxhi, 1);
  2581. bxhil = _mm_and_si128(bxhil, mask);
  2582. bxhih = _mm_and_si128(bxhih, mask);
  2583. __m128i bxl = _mm256_castsi256_si128(bx);
  2584. __m128i bxh = _mm256_extractf128_si256(bx, 1);
  2585. bxl = _mm_or_si128(bxl, bxhil);
  2586. bxh = _mm_or_si128(bxh, bxhih);
  2587. bx = MM256_SET_M128I(bxh, bxl);
  2588. const __m256 dy = _mm256_set1_ps(y[i].d);
  2589. const __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2590. const __m256 q = mul_sum_us8_pairs_float(bx, by);
  2591. acc = _mm256_add_ps(_mm256_mul_ps(q, _mm256_mul_ps(dx, dy)), acc);
  2592. }
  2593. *s = hsum_float_8(acc) + summs;
  2594. #else
  2595. // scalar
  2596. float sumf = 0.0;
  2597. for (int i = 0; i < nb; i++) {
  2598. uint32_t qh;
  2599. memcpy(&qh, x[i].qh, sizeof(qh));
  2600. int sumi = 0;
  2601. for (int j = 0; j < qk/2; ++j) {
  2602. const uint8_t xh_0 = ((qh >> (j + 0)) << 4) & 0x10;
  2603. const uint8_t xh_1 = ((qh >> (j + 12)) ) & 0x10;
  2604. const int32_t x0 = (x[i].qs[j] & 0xF) | xh_0;
  2605. const int32_t x1 = (x[i].qs[j] >> 4) | xh_1;
  2606. sumi += (x0 * y[i].qs[j]) + (x1 * y[i].qs[j + qk/2]);
  2607. }
  2608. sumf += (GGML_FP16_TO_FP32(x[i].d)*y[i].d)*sumi + GGML_FP16_TO_FP32(x[i].m)*y[i].s;
  2609. }
  2610. *s = sumf;
  2611. #endif
  2612. }
  2613. static void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restrict vx, const void * restrict vy) {
  2614. const int qk = QK8_0;
  2615. const int nb = n / qk;
  2616. assert(n % qk == 0);
  2617. assert(nb % 2 == 0);
  2618. const block_q8_0 * restrict x = vx;
  2619. const block_q8_0 * restrict y = vy;
  2620. #if defined(__ARM_NEON)
  2621. float32x4_t sumv0 = vdupq_n_f32(0.0f);
  2622. float32x4_t sumv1 = vdupq_n_f32(0.0f);
  2623. for (int i = 0; i < nb; i += 2) {
  2624. const block_q8_0 * restrict x0 = &x[i + 0];
  2625. const block_q8_0 * restrict x1 = &x[i + 1];
  2626. const block_q8_0 * restrict y0 = &y[i + 0];
  2627. const block_q8_0 * restrict y1 = &y[i + 1];
  2628. const int8x16_t x0_0 = vld1q_s8(x0->qs);
  2629. const int8x16_t x0_1 = vld1q_s8(x0->qs + 16);
  2630. const int8x16_t x1_0 = vld1q_s8(x1->qs);
  2631. const int8x16_t x1_1 = vld1q_s8(x1->qs + 16);
  2632. // load y
  2633. const int8x16_t y0_0 = vld1q_s8(y0->qs);
  2634. const int8x16_t y0_1 = vld1q_s8(y0->qs + 16);
  2635. const int8x16_t y1_0 = vld1q_s8(y1->qs);
  2636. const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
  2637. #if defined(__ARM_FEATURE_DOTPROD)
  2638. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
  2639. vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
  2640. vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2641. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
  2642. vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
  2643. vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2644. #else
  2645. const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
  2646. const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
  2647. const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
  2648. const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
  2649. const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
  2650. const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
  2651. const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
  2652. const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
  2653. const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
  2654. const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
  2655. const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
  2656. const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
  2657. sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
  2658. sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
  2659. #endif
  2660. }
  2661. *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
  2662. #elif defined(__AVX2__) || defined(__AVX__)
  2663. // Initialize accumulator with zeros
  2664. __m256 acc = _mm256_setzero_ps();
  2665. // Main loop
  2666. for (int i = 0; i < nb; ++i) {
  2667. // Compute combined scale for the block
  2668. const __m256 d = _mm256_set1_ps(GGML_FP16_TO_FP32(x[i].d) * GGML_FP16_TO_FP32(y[i].d));
  2669. __m256i bx = _mm256_loadu_si256((const __m256i *)x[i].qs);
  2670. __m256i by = _mm256_loadu_si256((const __m256i *)y[i].qs);
  2671. const __m256 q = mul_sum_i8_pairs_float(bx, by);
  2672. // Multiply q with scale and accumulate
  2673. #if defined(__AVX2__)
  2674. acc = _mm256_fmadd_ps( d, q, acc );
  2675. #else
  2676. acc = _mm256_add_ps( _mm256_mul_ps( d, q ), acc );
  2677. #endif
  2678. }
  2679. *s = hsum_float_8(acc);
  2680. #else
  2681. // scalar
  2682. float sumf = 0.0;
  2683. for (int i = 0; i < nb; i++) {
  2684. int sumi = 0;
  2685. for (int j = 0; j < qk; j++) {
  2686. sumi += x[i].qs[j]*y[i].qs[j];
  2687. }
  2688. sumf += sumi*(GGML_FP16_TO_FP32(x[i].d)*GGML_FP16_TO_FP32(y[i].d));
  2689. }
  2690. *s = sumf;
  2691. #endif
  2692. }
  2693. // compute GGML_VEC_DOT_UNROLL dot products at once
  2694. // xs - x row stride in bytes
  2695. inline static void ggml_vec_dot_f16_unroll(const int n, const int xs, float * restrict s, void * restrict xv, ggml_fp16_t * restrict y) {
  2696. ggml_float sumf[GGML_VEC_DOT_UNROLL] = { 0.0 };
  2697. ggml_fp16_t * restrict x[GGML_VEC_DOT_UNROLL];
  2698. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2699. x[i] = (ggml_fp16_t *) ((char *) xv + i*xs);
  2700. }
  2701. #if defined(GGML_SIMD)
  2702. const int np = (n & ~(GGML_F16_STEP - 1));
  2703. GGML_F16_VEC sum[GGML_VEC_DOT_UNROLL][GGML_F16_ARR] = { { GGML_F16_VEC_ZERO } };
  2704. GGML_F16_VEC ax[GGML_F16_ARR];
  2705. GGML_F16_VEC ay[GGML_F16_ARR];
  2706. for (int i = 0; i < np; i += GGML_F16_STEP) {
  2707. for (int j = 0; j < GGML_F16_ARR; j++) {
  2708. ay[j] = GGML_F16_VEC_LOAD(y + i + j*GGML_F16_EPR, j);
  2709. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2710. ax[j] = GGML_F16_VEC_LOAD(x[k] + i + j*GGML_F16_EPR, j);
  2711. sum[k][j] = GGML_F16_VEC_FMA(sum[k][j], ax[j], ay[j]);
  2712. }
  2713. }
  2714. }
  2715. // reduce sum0..sum3 to sum0
  2716. for (int k = 0; k < GGML_VEC_DOT_UNROLL; ++k) {
  2717. GGML_F16_VEC_REDUCE(sumf[k], sum[k]);
  2718. }
  2719. // leftovers
  2720. for (int i = np; i < n; ++i) {
  2721. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2722. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2723. }
  2724. }
  2725. #else
  2726. for (int i = 0; i < n; ++i) {
  2727. for (int j = 0; j < GGML_VEC_DOT_UNROLL; ++j) {
  2728. sumf[j] += (ggml_float)(GGML_FP16_TO_FP32(x[j][i])*GGML_FP16_TO_FP32(y[i]));
  2729. }
  2730. }
  2731. #endif
  2732. for (int i = 0; i < GGML_VEC_DOT_UNROLL; ++i) {
  2733. s[i] = sumf[i];
  2734. }
  2735. }
  2736. inline static void ggml_vec_mad_f32(const int n, float * restrict y, const float * restrict x, const float v) {
  2737. #if defined(GGML_SIMD)
  2738. const int np = (n & ~(GGML_F32_STEP - 1));
  2739. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2740. GGML_F32_VEC ax[GGML_F32_ARR];
  2741. GGML_F32_VEC ay[GGML_F32_ARR];
  2742. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2743. for (int j = 0; j < GGML_F32_ARR; j++) {
  2744. ax[j] = GGML_F32_VEC_LOAD(x + i + j*GGML_F32_EPR);
  2745. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2746. ay[j] = GGML_F32_VEC_FMA(ay[j], ax[j], vx);
  2747. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2748. }
  2749. }
  2750. // leftovers
  2751. for (int i = np; i < n; ++i) {
  2752. y[i] += x[i]*v;
  2753. }
  2754. #else
  2755. // scalar
  2756. for (int i = 0; i < n; ++i) {
  2757. y[i] += x[i]*v;
  2758. }
  2759. #endif
  2760. }
  2761. //inline static void ggml_vec_scale_f32(const int n, float * y, const float v) { for (int i = 0; i < n; ++i) y[i] *= v; }
  2762. inline static void ggml_vec_scale_f32(const int n, float * y, const float v) {
  2763. #if defined(GGML_SIMD)
  2764. const int np = (n & ~(GGML_F32_STEP - 1));
  2765. GGML_F32_VEC vx = GGML_F32_VEC_SET1(v);
  2766. GGML_F32_VEC ay[GGML_F32_ARR];
  2767. for (int i = 0; i < np; i += GGML_F32_STEP) {
  2768. for (int j = 0; j < GGML_F32_ARR; j++) {
  2769. ay[j] = GGML_F32_VEC_LOAD(y + i + j*GGML_F32_EPR);
  2770. ay[j] = GGML_F32_VEC_MUL(ay[j], vx);
  2771. GGML_F32_VEC_STORE(y + i + j*GGML_F32_EPR, ay[j]);
  2772. }
  2773. }
  2774. // leftovers
  2775. for (int i = np; i < n; ++i) {
  2776. y[i] *= v;
  2777. }
  2778. #else
  2779. // scalar
  2780. for (int i = 0; i < n; ++i) {
  2781. y[i] *= v;
  2782. }
  2783. #endif
  2784. }
  2785. inline static void ggml_vec_norm_f32 (const int n, float * s, const float * x) { ggml_vec_dot_f32(n, s, x, x); *s = sqrtf(*s); }
  2786. inline static void ggml_vec_sqr_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i]*x[i]; }
  2787. inline static void ggml_vec_sqrt_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = sqrtf(x[i]); }
  2788. inline static void ggml_vec_log_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = logf(x[i]); }
  2789. inline static void ggml_vec_abs_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fabsf(x[i]); }
  2790. inline static void ggml_vec_sgn_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : ((x[i] < 0.f) ? -1.f : 0.f); }
  2791. inline static void ggml_vec_step_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? 1.f : 0.f; }
  2792. inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; }
  2793. static const float GELU_COEF_A = 0.044715f;
  2794. static const float GELU_QUICK_COEF = -1.702f;
  2795. static const float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  2796. inline static float ggml_gelu_f32(float x) {
  2797. return 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  2798. }
  2799. inline static void ggml_vec_gelu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2800. const uint16_t * i16 = (const uint16_t *) x;
  2801. for (int i = 0; i < n; ++i) {
  2802. y[i] = table_gelu_f16[i16[i]];
  2803. }
  2804. }
  2805. #ifdef GGML_GELU_FP16
  2806. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2807. uint16_t t;
  2808. for (int i = 0; i < n; ++i) {
  2809. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2810. memcpy(&t, &fp16, sizeof(uint16_t));
  2811. y[i] = GGML_FP16_TO_FP32(table_gelu_f16[t]);
  2812. }
  2813. }
  2814. #else
  2815. inline static void ggml_vec_gelu_f32(const int n, float * y, const float * x) {
  2816. for (int i = 0; i < n; ++i) {
  2817. y[i] = ggml_gelu_f32(x[i]);
  2818. }
  2819. }
  2820. #endif
  2821. inline static float ggml_gelu_quick_f32(float x) {
  2822. return x*(1.0f/(1.0f+expf(GELU_QUICK_COEF*x)));
  2823. }
  2824. //inline static void ggml_vec_gelu_quick_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2825. // const uint16_t * i16 = (const uint16_t *) x;
  2826. // for (int i = 0; i < n; ++i) {
  2827. // y[i] = table_gelu_quick_f16[i16[i]];
  2828. // }
  2829. //}
  2830. #ifdef GGML_GELU_QUICK_FP16
  2831. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2832. uint16_t t;
  2833. for (int i = 0; i < n; ++i) {
  2834. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2835. memcpy(&t, &fp16, sizeof(uint16_t));
  2836. y[i] = GGML_FP16_TO_FP32(table_gelu_quick_f16[t]);
  2837. }
  2838. }
  2839. #else
  2840. inline static void ggml_vec_gelu_quick_f32(const int n, float * y, const float * x) {
  2841. for (int i = 0; i < n; ++i) {
  2842. y[i] = ggml_gelu_quick_f32(x[i]);
  2843. }
  2844. }
  2845. #endif
  2846. // Sigmoid Linear Unit (SiLU) function
  2847. inline static float ggml_silu_f32(float x) {
  2848. return x/(1.0f + expf(-x));
  2849. }
  2850. //inline static void ggml_vec_silu_f16(const int n, ggml_fp16_t * y, const ggml_fp16_t * x) {
  2851. // const uint16_t * i16 = (const uint16_t *) x;
  2852. // for (int i = 0; i < n; ++i) {
  2853. // y[i] = table_silu_f16[i16[i]];
  2854. // }
  2855. //}
  2856. #ifdef GGML_SILU_FP16
  2857. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2858. uint16_t t;
  2859. for (int i = 0; i < n; ++i) {
  2860. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2861. memcpy(&t, &fp16, sizeof(uint16_t));
  2862. y[i] = GGML_FP16_TO_FP32(table_silu_f16[t]);
  2863. }
  2864. }
  2865. #else
  2866. inline static void ggml_vec_silu_f32(const int n, float * y, const float * x) {
  2867. for (int i = 0; i < n; ++i) {
  2868. y[i] = ggml_silu_f32(x[i]);
  2869. }
  2870. }
  2871. #endif
  2872. inline static float ggml_silu_backward_f32(float x, float dy) {
  2873. const float s = 1.0f/(1.0f + expf(-x));
  2874. return dy*s*(1.0f + x*(1.0f - s));
  2875. }
  2876. #ifdef GGML_SILU_FP16
  2877. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2878. for (int i = 0; i < n; ++i) {
  2879. // we did not use x[i] to compute forward silu but its f16 equivalent
  2880. // take derivative at f16 of x[i]:
  2881. ggml_fp16_t fp16 = GGML_FP32_TO_FP16(x[i]);
  2882. float usedx = GGML_FP16_TO_FP32(fp16);
  2883. dx[i] = ggml_silu_backward_f32(usedx, dy[i]);
  2884. }
  2885. }
  2886. #else
  2887. inline static void ggml_vec_silu_backward_f32(const int n, float * dx, const float * x, const float * dy) {
  2888. for (int i = 0; i < n; ++i) {
  2889. dx[i] = ggml_silu_backward_f32(x[i], dy[i]);
  2890. }
  2891. }
  2892. #endif
  2893. inline static void ggml_vec_sum_f32(const int n, float * s, const float * x) {
  2894. #ifndef GGML_USE_ACCELERATE
  2895. ggml_float sum = 0.0;
  2896. for (int i = 0; i < n; ++i) {
  2897. sum += (ggml_float)x[i];
  2898. }
  2899. *s = sum;
  2900. #else
  2901. vDSP_sve(x, 1, s, n);
  2902. #endif
  2903. }
  2904. inline static void ggml_vec_sum_ggf(const int n, ggml_float * s, const float * x) {
  2905. ggml_float sum = 0.0;
  2906. for (int i = 0; i < n; ++i) {
  2907. sum += (ggml_float)x[i];
  2908. }
  2909. *s = sum;
  2910. }
  2911. inline static void ggml_vec_max_f32(const int n, float * s, const float * x) {
  2912. #ifndef GGML_USE_ACCELERATE
  2913. float max = -INFINITY;
  2914. for (int i = 0; i < n; ++i) {
  2915. max = MAX(max, x[i]);
  2916. }
  2917. *s = max;
  2918. #else
  2919. vDSP_maxv(x, 1, s, n);
  2920. #endif
  2921. }
  2922. inline static void ggml_vec_norm_inv_f32(const int n, float * s, const float * x) {
  2923. ggml_vec_norm_f32(n, s, x);
  2924. *s = 1.f/(*s);
  2925. }
  2926. //
  2927. // data types
  2928. //
  2929. static const int GGML_BLCK_SIZE[GGML_TYPE_COUNT] = {
  2930. [GGML_TYPE_F32] = 1,
  2931. [GGML_TYPE_F16] = 1,
  2932. [GGML_TYPE_Q4_0] = QK4_0,
  2933. [GGML_TYPE_Q4_1] = QK4_1,
  2934. [GGML_TYPE_Q5_0] = QK5_0,
  2935. [GGML_TYPE_Q5_1] = QK5_1,
  2936. [GGML_TYPE_Q8_0] = QK8_0,
  2937. [GGML_TYPE_Q8_1] = QK8_1,
  2938. #ifdef GGML_USE_K_QUANTS
  2939. [GGML_TYPE_Q2_K] = QK_K,
  2940. [GGML_TYPE_Q3_K] = QK_K,
  2941. [GGML_TYPE_Q4_K] = QK_K,
  2942. [GGML_TYPE_Q5_K] = QK_K,
  2943. [GGML_TYPE_Q6_K] = QK_K,
  2944. [GGML_TYPE_Q8_K] = QK_K,
  2945. #endif
  2946. [GGML_TYPE_I8] = 1,
  2947. [GGML_TYPE_I16] = 1,
  2948. [GGML_TYPE_I32] = 1,
  2949. };
  2950. static_assert(GGML_TYPE_COUNT == 19, "GGML_BLCK_SIZE is outdated");
  2951. static const size_t GGML_TYPE_SIZE[GGML_TYPE_COUNT] = {
  2952. [GGML_TYPE_F32] = sizeof(float),
  2953. [GGML_TYPE_F16] = sizeof(ggml_fp16_t),
  2954. [GGML_TYPE_Q4_0] = sizeof(block_q4_0),
  2955. [GGML_TYPE_Q4_1] = sizeof(block_q4_1),
  2956. [GGML_TYPE_Q5_0] = sizeof(block_q5_0),
  2957. [GGML_TYPE_Q5_1] = sizeof(block_q5_1),
  2958. [GGML_TYPE_Q8_0] = sizeof(block_q8_0),
  2959. [GGML_TYPE_Q8_1] = sizeof(block_q8_1),
  2960. #ifdef GGML_USE_K_QUANTS
  2961. [GGML_TYPE_Q2_K] = sizeof(block_q2_K),
  2962. [GGML_TYPE_Q3_K] = sizeof(block_q3_K),
  2963. [GGML_TYPE_Q4_K] = sizeof(block_q4_K),
  2964. [GGML_TYPE_Q5_K] = sizeof(block_q5_K),
  2965. [GGML_TYPE_Q6_K] = sizeof(block_q6_K),
  2966. [GGML_TYPE_Q8_K] = sizeof(block_q8_K),
  2967. #endif
  2968. [GGML_TYPE_I8] = sizeof(int8_t),
  2969. [GGML_TYPE_I16] = sizeof(int16_t),
  2970. [GGML_TYPE_I32] = sizeof(int32_t),
  2971. };
  2972. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_SIZE is outdated");
  2973. static const char * GGML_TYPE_NAME[GGML_TYPE_COUNT] = {
  2974. [GGML_TYPE_F32] = "f32",
  2975. [GGML_TYPE_F16] = "f16",
  2976. [GGML_TYPE_Q4_0] = "q4_0",
  2977. [GGML_TYPE_Q4_1] = "q4_1",
  2978. [GGML_TYPE_Q5_0] = "q5_0",
  2979. [GGML_TYPE_Q5_1] = "q5_1",
  2980. [GGML_TYPE_Q8_0] = "q8_0",
  2981. [GGML_TYPE_Q8_1] = "q8_1",
  2982. [GGML_TYPE_Q2_K] = "q2_K",
  2983. [GGML_TYPE_Q3_K] = "q3_K",
  2984. [GGML_TYPE_Q4_K] = "q4_K",
  2985. [GGML_TYPE_Q5_K] = "q5_K",
  2986. [GGML_TYPE_Q6_K] = "q6_K",
  2987. [GGML_TYPE_Q8_K] = "q8_K",
  2988. [GGML_TYPE_I8] = "i8",
  2989. [GGML_TYPE_I16] = "i16",
  2990. [GGML_TYPE_I32] = "i32",
  2991. };
  2992. static_assert(GGML_TYPE_COUNT == 19, "GGML_TYPE_NAME is outdated");
  2993. static bool GGML_IS_QUANTIZED[GGML_TYPE_COUNT] = {
  2994. [GGML_TYPE_F32] = false,
  2995. [GGML_TYPE_F16] = false,
  2996. [GGML_TYPE_Q4_0] = true,
  2997. [GGML_TYPE_Q4_1] = true,
  2998. [GGML_TYPE_Q5_0] = true,
  2999. [GGML_TYPE_Q5_1] = true,
  3000. [GGML_TYPE_Q8_0] = true,
  3001. [GGML_TYPE_Q8_1] = true,
  3002. [GGML_TYPE_Q2_K] = true,
  3003. [GGML_TYPE_Q3_K] = true,
  3004. [GGML_TYPE_Q4_K] = true,
  3005. [GGML_TYPE_Q5_K] = true,
  3006. [GGML_TYPE_Q6_K] = true,
  3007. [GGML_TYPE_Q8_K] = true,
  3008. [GGML_TYPE_I8] = false,
  3009. [GGML_TYPE_I16] = false,
  3010. [GGML_TYPE_I32] = false,
  3011. };
  3012. static_assert(GGML_TYPE_COUNT == 19, "GGML_IS_QUANTIZED is outdated");
  3013. static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
  3014. "NONE",
  3015. "DUP",
  3016. "ADD",
  3017. "ADD1",
  3018. "ACC",
  3019. "SUB",
  3020. "MUL",
  3021. "DIV",
  3022. "SQR",
  3023. "SQRT",
  3024. "LOG",
  3025. "SUM",
  3026. "SUM_ROWS",
  3027. "MEAN",
  3028. "REPEAT",
  3029. "REPEAT_BACK",
  3030. "ABS",
  3031. "SGN",
  3032. "NEG",
  3033. "STEP",
  3034. "RELU",
  3035. "GELU",
  3036. "GELU_QUICK",
  3037. "SILU",
  3038. "SILU_BACK",
  3039. "NORM",
  3040. "RMS_NORM",
  3041. "RMS_NORM_BACK",
  3042. "MUL_MAT",
  3043. "OUT_PROD",
  3044. "SCALE",
  3045. "SET",
  3046. "CPY",
  3047. "CONT",
  3048. "RESHAPE",
  3049. "VIEW",
  3050. "PERMUTE",
  3051. "TRANSPOSE",
  3052. "GET_ROWS",
  3053. "GET_ROWS_BACK",
  3054. "DIAG",
  3055. "DIAG_MASK_INF",
  3056. "DIAG_MASK_ZERO",
  3057. "SOFT_MAX",
  3058. "SOFT_MAX_BACK",
  3059. "ROPE",
  3060. "ROPE_BACK",
  3061. "ALIBI",
  3062. "CLAMP",
  3063. "CONV_1D_S1_PH",
  3064. "CONV_1D_S2_PH",
  3065. "CONV_2D_SK_P0",
  3066. "FLASH_ATTN",
  3067. "FLASH_FF",
  3068. "FLASH_ATTN_BACK",
  3069. "WIN_PART",
  3070. "WIN_UNPART",
  3071. "MAP_UNARY",
  3072. "MAP_BINARY",
  3073. "MAP_CUSTOM1",
  3074. "MAP_CUSTOM2",
  3075. "MAP_CUSTOM3",
  3076. "CROSS_ENTROPY_LOSS",
  3077. "CROSS_ENTROPY_LOSS_BACK",
  3078. };
  3079. static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64");
  3080. static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
  3081. "none",
  3082. "x",
  3083. "x+y",
  3084. "x+y",
  3085. "view(x,nb,offset)+=y->x",
  3086. "x-y",
  3087. "x*y",
  3088. "x/y",
  3089. "x^2",
  3090. "√x",
  3091. "log(x)",
  3092. "Σx",
  3093. "Σx_k",
  3094. "Σx/n",
  3095. "repeat(x)",
  3096. "repeat_back(x)",
  3097. "abs(x)",
  3098. "sgn(x)",
  3099. "-x",
  3100. "step(x)",
  3101. "relu(x)",
  3102. "gelu(x)",
  3103. "gelu_quick(x)",
  3104. "silu(x)",
  3105. "silu_back(x)",
  3106. "norm(x)",
  3107. "rms_norm(x)",
  3108. "rms_norm_back(x)",
  3109. "X*Y",
  3110. "X*Y",
  3111. "x*v",
  3112. "y-\\>view(x)",
  3113. "x-\\>y",
  3114. "cont(x)",
  3115. "reshape(x)",
  3116. "view(x)",
  3117. "permute(x)",
  3118. "transpose(x)",
  3119. "get_rows(x)",
  3120. "get_rows_back(x)",
  3121. "diag(x)",
  3122. "diag_mask_inf(x)",
  3123. "diag_mask_zero(x)",
  3124. "soft_max(x)",
  3125. "soft_max_back(x)",
  3126. "rope(x)",
  3127. "rope_back(x)",
  3128. "alibi(x)",
  3129. "clamp(x)",
  3130. "conv_1d_s1_ph(x)",
  3131. "conv_1d_s2_ph(x)",
  3132. "conv_2d_sk_p0(x)",
  3133. "flash_attn(x)",
  3134. "flash_ff(x)",
  3135. "flash_attn_back(x)",
  3136. "win_part(x)",
  3137. "win_unpart(x)",
  3138. "f(x)",
  3139. "f(x,y)",
  3140. "custom(x)",
  3141. "custom(x,y)",
  3142. "custom(x,y,z)",
  3143. "cross_entropy_loss(x,y)",
  3144. "cross_entropy_loss_back(x,y)",
  3145. };
  3146. static_assert(GGML_OP_COUNT == 64, "GGML_OP_COUNT != 64");
  3147. static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN");
  3148. static_assert(sizeof(struct ggml_tensor)%GGML_MEM_ALIGN == 0, "ggml_tensor size must be a multiple of GGML_MEM_ALIGN");
  3149. // WARN:
  3150. // Mis-confguration can lead to problem that's hard to reason about:
  3151. // * At best it crash or talks nosense.
  3152. // * At worst it talks slightly difference but hard to perceive.
  3153. //
  3154. // An op has to enable INIT or FINALIZE when any of it's branch needs that pass.
  3155. // Take care about compile options (e.g., GGML_USE_xxx).
  3156. static bool GGML_OP_HAS_INIT [GGML_OP_COUNT] = { 0 };
  3157. static bool GGML_OP_HAS_FINALIZE[GGML_OP_COUNT] = { 0 };
  3158. static void ggml_setup_op_has_task_pass(void) {
  3159. { // INIT
  3160. bool * I = GGML_OP_HAS_INIT;
  3161. I[GGML_OP_ACC ] = true;
  3162. I[GGML_OP_MUL_MAT ] = true;
  3163. I[GGML_OP_OUT_PROD ] = true;
  3164. I[GGML_OP_SET ] = true;
  3165. I[GGML_OP_GET_ROWS_BACK ] = true;
  3166. I[GGML_OP_DIAG_MASK_INF ] = true;
  3167. I[GGML_OP_DIAG_MASK_ZERO ] = true;
  3168. I[GGML_OP_CONV_1D_S1_PH ] = true;
  3169. I[GGML_OP_CONV_1D_S2_PH ] = true;
  3170. I[GGML_OP_CONV_2D_SK_P0 ] = true;
  3171. I[GGML_OP_FLASH_ATTN_BACK ] = true;
  3172. I[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3173. }
  3174. { // FINALIZE
  3175. bool * F = GGML_OP_HAS_FINALIZE;
  3176. F[GGML_OP_CROSS_ENTROPY_LOSS ] = true;
  3177. }
  3178. }
  3179. //
  3180. // ggml context
  3181. //
  3182. struct ggml_context {
  3183. size_t mem_size;
  3184. void * mem_buffer;
  3185. bool mem_buffer_owned;
  3186. bool no_alloc;
  3187. bool no_alloc_save; // this is used to save the no_alloc state when using scratch buffers
  3188. int n_objects;
  3189. struct ggml_object * objects_begin;
  3190. struct ggml_object * objects_end;
  3191. struct ggml_scratch scratch;
  3192. struct ggml_scratch scratch_save;
  3193. };
  3194. struct ggml_context_container {
  3195. bool used;
  3196. struct ggml_context context;
  3197. };
  3198. //
  3199. // NUMA support
  3200. //
  3201. #define GGML_NUMA_MAX_NODES 8
  3202. #define GGML_NUMA_MAX_CPUS 512
  3203. struct ggml_numa_node {
  3204. uint32_t cpus[GGML_NUMA_MAX_CPUS]; // hardware threads on this node
  3205. uint32_t n_cpus;
  3206. };
  3207. struct ggml_numa_nodes {
  3208. struct ggml_numa_node nodes[GGML_NUMA_MAX_NODES];
  3209. uint32_t n_nodes;
  3210. uint32_t total_cpus; // hardware threads on system
  3211. };
  3212. //
  3213. // ggml state
  3214. //
  3215. struct ggml_state {
  3216. struct ggml_context_container contexts[GGML_MAX_CONTEXTS];
  3217. struct ggml_numa_nodes numa;
  3218. };
  3219. // global state
  3220. static struct ggml_state g_state;
  3221. static atomic_int g_state_barrier = 0;
  3222. // barrier via spin lock
  3223. inline static void ggml_critical_section_start(void) {
  3224. int processing = atomic_fetch_add(&g_state_barrier, 1);
  3225. while (processing > 0) {
  3226. // wait for other threads to finish
  3227. atomic_fetch_sub(&g_state_barrier, 1);
  3228. sched_yield(); // TODO: reconsider this
  3229. processing = atomic_fetch_add(&g_state_barrier, 1);
  3230. }
  3231. }
  3232. // TODO: make this somehow automatically executed
  3233. // some sort of "sentry" mechanism
  3234. inline static void ggml_critical_section_end(void) {
  3235. atomic_fetch_sub(&g_state_barrier, 1);
  3236. }
  3237. void ggml_numa_init(void) {
  3238. if (g_state.numa.n_nodes > 0) {
  3239. fprintf(stderr, "ggml_numa_init: NUMA already initialized\n");
  3240. return;
  3241. }
  3242. #ifdef __linux__
  3243. struct stat st;
  3244. char path[256];
  3245. int rv;
  3246. // enumerate nodes
  3247. while (g_state.numa.n_nodes < GGML_NUMA_MAX_NODES) {
  3248. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u", g_state.numa.n_nodes);
  3249. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3250. if (stat(path, &st) != 0) { break; }
  3251. ++g_state.numa.n_nodes;
  3252. }
  3253. // enumerate CPUs
  3254. while (g_state.numa.total_cpus < GGML_NUMA_MAX_CPUS) {
  3255. rv = snprintf(path, sizeof(path), "/sys/devices/system/cpu/cpu%u", g_state.numa.total_cpus);
  3256. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3257. if (stat(path, &st) != 0) { break; }
  3258. ++g_state.numa.total_cpus;
  3259. }
  3260. GGML_PRINT_DEBUG("found %u numa nodes, %u CPUs\n", g_state.numa.n_nodes, g_state.numa.total_cpus);
  3261. if (g_state.numa.n_nodes < 1 || g_state.numa.total_cpus < 1) {
  3262. g_state.numa.n_nodes = 0;
  3263. return;
  3264. }
  3265. for (uint32_t n = 0; n < g_state.numa.n_nodes; ++n) {
  3266. struct ggml_numa_node * node = &g_state.numa.nodes[n];
  3267. GGML_PRINT_DEBUG("CPUs on node %u:", n);
  3268. node->n_cpus = 0;
  3269. for (uint32_t c = 0; c < g_state.numa.total_cpus; ++c) {
  3270. rv = snprintf(path, sizeof(path), "/sys/devices/system/node/node%u/cpu%u", n, c);
  3271. GGML_ASSERT(rv > 0 && (unsigned)rv < sizeof(path));
  3272. if (stat(path, &st) == 0) {
  3273. node->cpus[node->n_cpus++] = c;
  3274. GGML_PRINT_DEBUG(" %u", c);
  3275. }
  3276. }
  3277. GGML_PRINT_DEBUG("\n");
  3278. }
  3279. if (ggml_is_numa()) {
  3280. FILE *fptr = fopen("/proc/sys/kernel/numa_balancing", "r");
  3281. if (fptr != NULL) {
  3282. char buf[42];
  3283. if (fgets(buf, sizeof(buf), fptr) && strncmp(buf, "0\n", sizeof(buf)) != 0) {
  3284. GGML_PRINT("WARNING: /proc/sys/kernel/numa_balancing is enabled, this has been observed to impair performance\n");
  3285. }
  3286. fclose(fptr);
  3287. }
  3288. }
  3289. #else
  3290. // TODO
  3291. #endif
  3292. }
  3293. bool ggml_is_numa(void) {
  3294. return g_state.numa.n_nodes > 1;
  3295. }
  3296. ////////////////////////////////////////////////////////////////////////////////
  3297. void ggml_print_object(const struct ggml_object * obj) {
  3298. GGML_PRINT(" - ggml_object: offset = %zu, size = %zu, next = %p\n",
  3299. obj->offs, obj->size, (const void *) obj->next);
  3300. }
  3301. void ggml_print_objects(const struct ggml_context * ctx) {
  3302. struct ggml_object * obj = ctx->objects_begin;
  3303. GGML_PRINT("%s: objects in context %p:\n", __func__, (const void *) ctx);
  3304. while (obj != NULL) {
  3305. ggml_print_object(obj);
  3306. obj = obj->next;
  3307. }
  3308. GGML_PRINT("%s: --- end ---\n", __func__);
  3309. }
  3310. int64_t ggml_nelements(const struct ggml_tensor * tensor) {
  3311. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3312. return tensor->ne[0]*tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3313. }
  3314. int64_t ggml_nrows(const struct ggml_tensor * tensor) {
  3315. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3316. return tensor->ne[1]*tensor->ne[2]*tensor->ne[3];
  3317. }
  3318. size_t ggml_nbytes(const struct ggml_tensor * tensor) {
  3319. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3320. // this should handle cases where the tensor is not contiguous in memory
  3321. // probaby just:
  3322. //
  3323. // return tensor->ne[3]*tensor->nb[3]
  3324. //
  3325. // is enough, but just in case, adding the second part
  3326. return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
  3327. }
  3328. size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
  3329. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3330. return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
  3331. }
  3332. int ggml_blck_size(enum ggml_type type) {
  3333. return GGML_BLCK_SIZE[type];
  3334. }
  3335. size_t ggml_type_size(enum ggml_type type) {
  3336. return GGML_TYPE_SIZE[type];
  3337. }
  3338. float ggml_type_sizef(enum ggml_type type) {
  3339. return ((float)(GGML_TYPE_SIZE[type]))/GGML_BLCK_SIZE[type];
  3340. }
  3341. const char * ggml_type_name(enum ggml_type type) {
  3342. return GGML_TYPE_NAME[type];
  3343. }
  3344. const char * ggml_op_name(enum ggml_op op) {
  3345. return GGML_OP_NAME[op];
  3346. }
  3347. size_t ggml_element_size(const struct ggml_tensor * tensor) {
  3348. return GGML_TYPE_SIZE[tensor->type];
  3349. }
  3350. static inline bool ggml_is_scalar(const struct ggml_tensor * tensor) {
  3351. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3352. return tensor->ne[0] == 1 && tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3353. }
  3354. static inline bool ggml_is_vector(const struct ggml_tensor * tensor) {
  3355. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3356. return tensor->ne[1] == 1 && tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3357. }
  3358. static inline bool ggml_is_matrix(const struct ggml_tensor * tensor) {
  3359. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3360. return tensor->ne[2] == 1 && tensor->ne[3] == 1;
  3361. }
  3362. static inline bool ggml_can_mul_mat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3363. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3364. return
  3365. (t0->ne[0] == t1->ne[0]) &&
  3366. (t0->ne[2] == t1->ne[2]) &&
  3367. (t0->ne[3] == t1->ne[3]);
  3368. }
  3369. static inline bool ggml_can_out_prod(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3370. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3371. return
  3372. (t0->ne[1] == t1->ne[1]) &&
  3373. (t0->ne[2] == t1->ne[2]) &&
  3374. (t0->ne[3] == t1->ne[3]);
  3375. }
  3376. bool ggml_is_quantized(enum ggml_type type) {
  3377. return GGML_IS_QUANTIZED[type];
  3378. }
  3379. enum ggml_type ggml_ftype_to_ggml_type(enum ggml_ftype ftype) {
  3380. enum ggml_type wtype = GGML_TYPE_COUNT;
  3381. switch (ftype) {
  3382. case GGML_FTYPE_ALL_F32: wtype = GGML_TYPE_F32; break;
  3383. case GGML_FTYPE_MOSTLY_F16: wtype = GGML_TYPE_F16; break;
  3384. case GGML_FTYPE_MOSTLY_Q4_0: wtype = GGML_TYPE_Q4_0; break;
  3385. case GGML_FTYPE_MOSTLY_Q4_1: wtype = GGML_TYPE_Q4_1; break;
  3386. case GGML_FTYPE_MOSTLY_Q5_0: wtype = GGML_TYPE_Q5_0; break;
  3387. case GGML_FTYPE_MOSTLY_Q5_1: wtype = GGML_TYPE_Q5_1; break;
  3388. case GGML_FTYPE_MOSTLY_Q8_0: wtype = GGML_TYPE_Q8_0; break;
  3389. case GGML_FTYPE_MOSTLY_Q2_K: wtype = GGML_TYPE_Q2_K; break;
  3390. case GGML_FTYPE_MOSTLY_Q3_K: wtype = GGML_TYPE_Q3_K; break;
  3391. case GGML_FTYPE_MOSTLY_Q4_K: wtype = GGML_TYPE_Q4_K; break;
  3392. case GGML_FTYPE_MOSTLY_Q5_K: wtype = GGML_TYPE_Q5_K; break;
  3393. case GGML_FTYPE_MOSTLY_Q6_K: wtype = GGML_TYPE_Q6_K; break;
  3394. case GGML_FTYPE_UNKNOWN: wtype = GGML_TYPE_COUNT; break;
  3395. case GGML_FTYPE_MOSTLY_Q4_1_SOME_F16: wtype = GGML_TYPE_COUNT; break;
  3396. }
  3397. GGML_ASSERT(wtype != GGML_TYPE_COUNT);
  3398. return wtype;
  3399. }
  3400. size_t ggml_tensor_overhead(void) {
  3401. return GGML_OBJECT_SIZE + GGML_TENSOR_SIZE + 16;
  3402. }
  3403. bool ggml_is_transposed(const struct ggml_tensor * tensor) {
  3404. return tensor->nb[0] > tensor->nb[1];
  3405. }
  3406. bool ggml_is_contiguous(const struct ggml_tensor * tensor) {
  3407. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3408. return
  3409. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3410. tensor->nb[1] == (tensor->nb[0]*tensor->ne[0])/GGML_BLCK_SIZE[tensor->type] &&
  3411. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3412. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3413. }
  3414. bool ggml_is_permuted(const struct ggml_tensor * tensor) {
  3415. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3416. return tensor->nb[0] > tensor->nb[1] || tensor->nb[1] > tensor->nb[2] || tensor->nb[2] > tensor->nb[3];
  3417. }
  3418. static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
  3419. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3420. return
  3421. tensor->nb[0] == GGML_TYPE_SIZE[tensor->type] &&
  3422. tensor->nb[2] == tensor->nb[1]*tensor->ne[1] &&
  3423. tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
  3424. }
  3425. static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3426. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3427. return
  3428. (t0->ne[0] == t1->ne[0] ) &&
  3429. (t0->ne[1] == t1->ne[1] ) &&
  3430. (t0->ne[2] == t1->ne[2] ) &&
  3431. (t0->ne[3] == t1->ne[3] );
  3432. }
  3433. // check if t1 can be represented as a repeatition of t0
  3434. static inline bool ggml_can_repeat(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3435. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3436. return
  3437. (t1->ne[0]%t0->ne[0] == 0) &&
  3438. (t1->ne[1]%t0->ne[1] == 0) &&
  3439. (t1->ne[2]%t0->ne[2] == 0) &&
  3440. (t1->ne[3]%t0->ne[3] == 0);
  3441. }
  3442. static inline bool ggml_can_repeat_rows(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
  3443. static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
  3444. return (t0->ne[0] == t1->ne[0]) && ggml_can_repeat(t0, t1);
  3445. }
  3446. static inline int ggml_up32(int n) {
  3447. return (n + 31) & ~31;
  3448. }
  3449. //static inline int ggml_up64(int n) {
  3450. // return (n + 63) & ~63;
  3451. //}
  3452. static inline int ggml_up(int n, int m) {
  3453. // assert m is a power of 2
  3454. GGML_ASSERT((m & (m - 1)) == 0);
  3455. return (n + m - 1) & ~(m - 1);
  3456. }
  3457. // assert that pointer is aligned to GGML_MEM_ALIGN
  3458. #define ggml_assert_aligned(ptr) \
  3459. GGML_ASSERT(((uintptr_t) (ptr))%GGML_MEM_ALIGN == 0)
  3460. ////////////////////////////////////////////////////////////////////////////////
  3461. struct ggml_context * ggml_init(struct ggml_init_params params) {
  3462. // make this function thread safe
  3463. ggml_critical_section_start();
  3464. static bool is_first_call = true;
  3465. if (is_first_call) {
  3466. // initialize time system (required on Windows)
  3467. ggml_time_init();
  3468. // initialize GELU, Quick GELU, SILU and EXP F32 tables
  3469. {
  3470. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3471. ggml_fp16_t ii;
  3472. for (int i = 0; i < (1 << 16); ++i) {
  3473. uint16_t ui = i;
  3474. memcpy(&ii, &ui, sizeof(ii));
  3475. const float f = table_f32_f16[i] = GGML_COMPUTE_FP16_TO_FP32(ii);
  3476. table_gelu_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_f32(f));
  3477. table_gelu_quick_f16[i] = GGML_FP32_TO_FP16(ggml_gelu_quick_f32(f));
  3478. table_silu_f16[i] = GGML_FP32_TO_FP16(ggml_silu_f32(f));
  3479. table_exp_f16[i] = GGML_FP32_TO_FP16(expf(f));
  3480. }
  3481. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3482. GGML_PRINT_DEBUG("%s: GELU, Quick GELU, SILU and EXP tables initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3483. }
  3484. // initialize g_state
  3485. {
  3486. const uint64_t t_start = ggml_time_us(); UNUSED(t_start);
  3487. g_state = (struct ggml_state) {
  3488. /*.contexts =*/ { { 0 } },
  3489. /*.numa =*/ {
  3490. .n_nodes = 0,
  3491. .total_cpus = 0,
  3492. },
  3493. };
  3494. for (int i = 0; i < GGML_MAX_CONTEXTS; ++i) {
  3495. g_state.contexts[i].used = false;
  3496. }
  3497. const uint64_t t_end = ggml_time_us(); UNUSED(t_end);
  3498. GGML_PRINT_DEBUG("%s: g_state initialized in %f ms\n", __func__, (t_end - t_start)/1000.0f);
  3499. }
  3500. #if defined(GGML_USE_CUBLAS)
  3501. ggml_init_cublas();
  3502. #elif defined(GGML_USE_CLBLAST)
  3503. ggml_cl_init();
  3504. #endif
  3505. ggml_setup_op_has_task_pass();
  3506. is_first_call = false;
  3507. }
  3508. // find non-used context in g_state
  3509. struct ggml_context * ctx = NULL;
  3510. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3511. if (!g_state.contexts[i].used) {
  3512. g_state.contexts[i].used = true;
  3513. ctx = &g_state.contexts[i].context;
  3514. GGML_PRINT_DEBUG("%s: found unused context %d\n", __func__, i);
  3515. break;
  3516. }
  3517. }
  3518. if (ctx == NULL) {
  3519. GGML_PRINT_DEBUG("%s: no unused context found\n", __func__);
  3520. ggml_critical_section_end();
  3521. return NULL;
  3522. }
  3523. const size_t mem_size = (params.mem_size + GGML_MEM_ALIGN - 1) & ~(GGML_MEM_ALIGN - 1);
  3524. *ctx = (struct ggml_context) {
  3525. /*.mem_size =*/ mem_size,
  3526. /*.mem_buffer =*/ params.mem_buffer ? params.mem_buffer : GGML_ALIGNED_MALLOC(mem_size),
  3527. /*.mem_buffer_owned =*/ params.mem_buffer ? false : true,
  3528. /*.no_alloc =*/ params.no_alloc,
  3529. /*.no_alloc_save =*/ params.no_alloc,
  3530. /*.n_objects =*/ 0,
  3531. /*.objects_begin =*/ NULL,
  3532. /*.objects_end =*/ NULL,
  3533. /*.scratch =*/ { 0, 0, NULL, },
  3534. /*.scratch_save =*/ { 0, 0, NULL, },
  3535. };
  3536. GGML_ASSERT(ctx->mem_buffer != NULL);
  3537. ggml_assert_aligned(ctx->mem_buffer);
  3538. GGML_PRINT_DEBUG("%s: context initialized\n", __func__);
  3539. ggml_critical_section_end();
  3540. return ctx;
  3541. }
  3542. void ggml_free(struct ggml_context * ctx) {
  3543. // make this function thread safe
  3544. ggml_critical_section_start();
  3545. bool found = false;
  3546. for (int i = 0; i < GGML_MAX_CONTEXTS; i++) {
  3547. if (&g_state.contexts[i].context == ctx) {
  3548. g_state.contexts[i].used = false;
  3549. GGML_PRINT_DEBUG("%s: context %d with %d objects has been freed. memory used = %zu\n",
  3550. __func__, i, ctx->n_objects, ctx->objects_end->offs + ctx->objects_end->size);
  3551. if (ctx->mem_buffer_owned) {
  3552. GGML_ALIGNED_FREE(ctx->mem_buffer);
  3553. }
  3554. found = true;
  3555. break;
  3556. }
  3557. }
  3558. if (!found) {
  3559. GGML_PRINT_DEBUG("%s: context not found\n", __func__);
  3560. }
  3561. ggml_critical_section_end();
  3562. }
  3563. size_t ggml_used_mem(const struct ggml_context * ctx) {
  3564. return ctx->objects_end == NULL ? 0 : ctx->objects_end->offs + ctx->objects_end->size;
  3565. }
  3566. size_t ggml_set_scratch(struct ggml_context * ctx, struct ggml_scratch scratch) {
  3567. const size_t result = ctx->scratch.data ? ctx->scratch.offs : 0;
  3568. ctx->scratch = scratch;
  3569. return result;
  3570. }
  3571. void ggml_set_no_alloc(struct ggml_context * ctx, bool no_alloc) {
  3572. ctx->no_alloc = no_alloc;
  3573. }
  3574. void * ggml_get_mem_buffer(const struct ggml_context * ctx) {
  3575. return ctx->mem_buffer;
  3576. }
  3577. size_t ggml_get_mem_size(const struct ggml_context * ctx) {
  3578. return ctx->mem_size;
  3579. }
  3580. size_t ggml_get_max_tensor_size(const struct ggml_context * ctx) {
  3581. size_t max_size = 0;
  3582. struct ggml_object * obj = ctx->objects_begin;
  3583. while (obj != NULL) {
  3584. struct ggml_tensor * tensor = (struct ggml_tensor *) ((char *) ctx->mem_buffer + obj->offs);
  3585. const size_t size = ggml_nbytes(tensor);
  3586. if (max_size < size) {
  3587. max_size = size;
  3588. }
  3589. obj = obj->next;
  3590. }
  3591. return max_size;
  3592. }
  3593. // IMPORTANT:
  3594. // when creating "opt" tensors, always save and load the scratch buffer
  3595. // this is an error prone process, but it is necessary to support inplace
  3596. // operators when using scratch buffers
  3597. // TODO: implement a better way
  3598. void ggml_scratch_save(struct ggml_context * ctx) {
  3599. // this is needed to allow opt tensors to store their data
  3600. // TODO: again, need to find a better way
  3601. ctx->no_alloc_save = ctx->no_alloc;
  3602. ctx->no_alloc = false;
  3603. ctx->scratch_save = ctx->scratch;
  3604. ctx->scratch.data = NULL;
  3605. }
  3606. void ggml_scratch_load(struct ggml_context * ctx) {
  3607. ctx->no_alloc = ctx->no_alloc_save;
  3608. ctx->scratch = ctx->scratch_save;
  3609. }
  3610. ////////////////////////////////////////////////////////////////////////////////
  3611. struct ggml_tensor * ggml_new_tensor_impl(
  3612. struct ggml_context * ctx,
  3613. enum ggml_type type,
  3614. int n_dims,
  3615. const int64_t* ne,
  3616. void* data) {
  3617. // always insert objects at the end of the context's memory pool
  3618. struct ggml_object * obj_cur = ctx->objects_end;
  3619. const size_t cur_offs = obj_cur == NULL ? 0 : obj_cur->offs;
  3620. const size_t cur_size = obj_cur == NULL ? 0 : obj_cur->size;
  3621. const size_t cur_end = cur_offs + cur_size;
  3622. size_t size_needed = 0;
  3623. if (data == NULL && !ctx->no_alloc) {
  3624. size_needed += GGML_TYPE_SIZE[type]*(ne[0]/GGML_BLCK_SIZE[type]);
  3625. for (int i = 1; i < n_dims; i++) {
  3626. size_needed *= ne[i];
  3627. }
  3628. // align to GGML_MEM_ALIGN
  3629. size_needed = ((size_needed + GGML_MEM_ALIGN - 1)/GGML_MEM_ALIGN)*GGML_MEM_ALIGN;
  3630. }
  3631. char * const mem_buffer = ctx->mem_buffer;
  3632. struct ggml_object * const obj_new = (struct ggml_object *)(mem_buffer + cur_end);
  3633. if (ctx->scratch.data == NULL || data != NULL) {
  3634. size_needed += GGML_TENSOR_SIZE;
  3635. if (cur_end + size_needed + GGML_OBJECT_SIZE > ctx->mem_size) {
  3636. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3637. __func__, cur_end + size_needed + GGML_OBJECT_SIZE, ctx->mem_size);
  3638. assert(false);
  3639. return NULL;
  3640. }
  3641. *obj_new = (struct ggml_object) {
  3642. .offs = cur_end + GGML_OBJECT_SIZE,
  3643. .size = size_needed,
  3644. .next = NULL,
  3645. };
  3646. } else {
  3647. if (ctx->scratch.offs + size_needed > ctx->scratch.size) {
  3648. GGML_PRINT("%s: not enough space in the scratch memory pool (needed %zu, available %zu)\n",
  3649. __func__, ctx->scratch.offs + size_needed, ctx->scratch.size);
  3650. assert(false);
  3651. return NULL;
  3652. }
  3653. if (cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE > ctx->mem_size) {
  3654. GGML_PRINT("%s: not enough space in the context's memory pool (needed %zu, available %zu)\n",
  3655. __func__, cur_end + GGML_TENSOR_SIZE + GGML_OBJECT_SIZE, ctx->mem_size);
  3656. assert(false);
  3657. return NULL;
  3658. }
  3659. data = (char * const) ctx->scratch.data + ctx->scratch.offs;
  3660. *obj_new = (struct ggml_object) {
  3661. .offs = cur_end + GGML_OBJECT_SIZE,
  3662. .size = GGML_TENSOR_SIZE,
  3663. .next = NULL,
  3664. };
  3665. //printf("scratch offs = %zu, size_needed = %zu\n", ctx->scratch.offs, size_needed);
  3666. ctx->scratch.offs += size_needed;
  3667. }
  3668. if (obj_cur != NULL) {
  3669. obj_cur->next = obj_new;
  3670. } else {
  3671. // this is the first object in this context
  3672. ctx->objects_begin = obj_new;
  3673. }
  3674. ctx->objects_end = obj_new;
  3675. //printf("%s: inserted new object at %zu, size = %zu\n", __func__, cur_end, obj_new->size);
  3676. struct ggml_tensor * const result = (struct ggml_tensor *)(mem_buffer + obj_new->offs);
  3677. ggml_assert_aligned(result);
  3678. *result = (struct ggml_tensor) {
  3679. /*.type =*/ type,
  3680. /*.backend =*/ GGML_BACKEND_CPU,
  3681. /*.n_dims =*/ n_dims,
  3682. /*.ne =*/ { 1, 1, 1, 1 },
  3683. /*.nb =*/ { 0, 0, 0, 0 },
  3684. /*.op =*/ GGML_OP_NONE,
  3685. /*.is_param =*/ false,
  3686. /*.grad =*/ NULL,
  3687. /*.src0 =*/ NULL,
  3688. /*.src1 =*/ NULL,
  3689. /*.opt =*/ { NULL },
  3690. /*.n_tasks =*/ 0,
  3691. /*.perf_runs =*/ 0,
  3692. /*.perf_cycles =*/ 0,
  3693. /*.perf_time_us =*/ 0,
  3694. /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
  3695. /*.name =*/ { 0 },
  3696. /*.extra =*/ NULL,
  3697. /*.pad =*/ { 0 },
  3698. };
  3699. // TODO: this should not be needed as long as we don't rely on aligned SIMD loads
  3700. //ggml_assert_aligned(result->data);
  3701. for (int i = 0; i < n_dims; i++) {
  3702. result->ne[i] = ne[i];
  3703. }
  3704. result->nb[0] = GGML_TYPE_SIZE[type];
  3705. result->nb[1] = result->nb[0]*(result->ne[0]/GGML_BLCK_SIZE[type]);
  3706. for (int i = 2; i < GGML_MAX_DIMS; i++) {
  3707. result->nb[i] = result->nb[i - 1]*result->ne[i - 1];
  3708. }
  3709. ctx->n_objects++;
  3710. return result;
  3711. }
  3712. struct ggml_tensor * ggml_new_tensor(
  3713. struct ggml_context * ctx,
  3714. enum ggml_type type,
  3715. int n_dims,
  3716. const int64_t * ne) {
  3717. return ggml_new_tensor_impl(ctx, type, n_dims, ne, NULL);
  3718. }
  3719. struct ggml_tensor * ggml_new_tensor_1d(
  3720. struct ggml_context * ctx,
  3721. enum ggml_type type,
  3722. int64_t ne0) {
  3723. return ggml_new_tensor(ctx, type, 1, &ne0);
  3724. }
  3725. struct ggml_tensor * ggml_new_tensor_2d(
  3726. struct ggml_context * ctx,
  3727. enum ggml_type type,
  3728. int64_t ne0,
  3729. int64_t ne1) {
  3730. const int64_t ne[2] = { ne0, ne1 };
  3731. return ggml_new_tensor(ctx, type, 2, ne);
  3732. }
  3733. struct ggml_tensor * ggml_new_tensor_3d(
  3734. struct ggml_context * ctx,
  3735. enum ggml_type type,
  3736. int64_t ne0,
  3737. int64_t ne1,
  3738. int64_t ne2) {
  3739. const int64_t ne[3] = { ne0, ne1, ne2 };
  3740. return ggml_new_tensor(ctx, type, 3, ne);
  3741. }
  3742. struct ggml_tensor * ggml_new_tensor_4d(
  3743. struct ggml_context * ctx,
  3744. enum ggml_type type,
  3745. int64_t ne0,
  3746. int64_t ne1,
  3747. int64_t ne2,
  3748. int64_t ne3) {
  3749. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  3750. return ggml_new_tensor(ctx, type, 4, ne);
  3751. }
  3752. struct ggml_tensor * ggml_new_i32(struct ggml_context * ctx, int32_t value) {
  3753. ggml_scratch_save(ctx);
  3754. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  3755. ggml_scratch_load(ctx);
  3756. ggml_set_i32(result, value);
  3757. return result;
  3758. }
  3759. struct ggml_tensor * ggml_new_f32(struct ggml_context * ctx, float value) {
  3760. ggml_scratch_save(ctx);
  3761. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 1);
  3762. ggml_scratch_load(ctx);
  3763. ggml_set_f32(result, value);
  3764. return result;
  3765. }
  3766. struct ggml_tensor * ggml_dup_tensor(struct ggml_context * ctx, const struct ggml_tensor * src) {
  3767. return ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, NULL);
  3768. }
  3769. struct ggml_tensor * ggml_set_zero(struct ggml_tensor * tensor) {
  3770. memset(tensor->data, 0, ggml_nbytes(tensor));
  3771. return tensor;
  3772. }
  3773. struct ggml_tensor * ggml_set_i32 (struct ggml_tensor * tensor, int32_t value) {
  3774. const int n = ggml_nrows(tensor);
  3775. const int nc = tensor->ne[0];
  3776. const size_t n1 = tensor->nb[1];
  3777. char * const data = tensor->data;
  3778. switch (tensor->type) {
  3779. case GGML_TYPE_I8:
  3780. {
  3781. assert(tensor->nb[0] == sizeof(int8_t));
  3782. for (int i = 0; i < n; i++) {
  3783. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3784. }
  3785. } break;
  3786. case GGML_TYPE_I16:
  3787. {
  3788. assert(tensor->nb[0] == sizeof(int16_t));
  3789. for (int i = 0; i < n; i++) {
  3790. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3791. }
  3792. } break;
  3793. case GGML_TYPE_I32:
  3794. {
  3795. assert(tensor->nb[0] == sizeof(int32_t));
  3796. for (int i = 0; i < n; i++) {
  3797. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3798. }
  3799. } break;
  3800. case GGML_TYPE_F16:
  3801. {
  3802. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3803. for (int i = 0; i < n; i++) {
  3804. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3805. }
  3806. } break;
  3807. case GGML_TYPE_F32:
  3808. {
  3809. assert(tensor->nb[0] == sizeof(float));
  3810. for (int i = 0; i < n; i++) {
  3811. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3812. }
  3813. } break;
  3814. default:
  3815. {
  3816. GGML_ASSERT(false);
  3817. } break;
  3818. }
  3819. return tensor;
  3820. }
  3821. struct ggml_tensor * ggml_set_f32(struct ggml_tensor * tensor, float value) {
  3822. const int n = ggml_nrows(tensor);
  3823. const int nc = tensor->ne[0];
  3824. const size_t n1 = tensor->nb[1];
  3825. char * const data = tensor->data;
  3826. switch (tensor->type) {
  3827. case GGML_TYPE_I8:
  3828. {
  3829. assert(tensor->nb[0] == sizeof(int8_t));
  3830. for (int i = 0; i < n; i++) {
  3831. ggml_vec_set_i8(nc, (int8_t *)(data + i*n1), value);
  3832. }
  3833. } break;
  3834. case GGML_TYPE_I16:
  3835. {
  3836. assert(tensor->nb[0] == sizeof(int16_t));
  3837. for (int i = 0; i < n; i++) {
  3838. ggml_vec_set_i16(nc, (int16_t *)(data + i*n1), value);
  3839. }
  3840. } break;
  3841. case GGML_TYPE_I32:
  3842. {
  3843. assert(tensor->nb[0] == sizeof(int32_t));
  3844. for (int i = 0; i < n; i++) {
  3845. ggml_vec_set_i32(nc, (int32_t *)(data + i*n1), value);
  3846. }
  3847. } break;
  3848. case GGML_TYPE_F16:
  3849. {
  3850. assert(tensor->nb[0] == sizeof(ggml_fp16_t));
  3851. for (int i = 0; i < n; i++) {
  3852. ggml_vec_set_f16(nc, (ggml_fp16_t *)(data + i*n1), value);
  3853. }
  3854. } break;
  3855. case GGML_TYPE_F32:
  3856. {
  3857. assert(tensor->nb[0] == sizeof(float));
  3858. for (int i = 0; i < n; i++) {
  3859. ggml_vec_set_f32(nc, (float *)(data + i*n1), value);
  3860. }
  3861. } break;
  3862. default:
  3863. {
  3864. GGML_ASSERT(false);
  3865. } break;
  3866. }
  3867. return tensor;
  3868. }
  3869. int32_t ggml_get_i32_1d(const struct ggml_tensor * tensor, int i) {
  3870. switch (tensor->type) {
  3871. case GGML_TYPE_I8:
  3872. {
  3873. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3874. return ((int8_t *)(tensor->data))[i];
  3875. } break;
  3876. case GGML_TYPE_I16:
  3877. {
  3878. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3879. return ((int16_t *)(tensor->data))[i];
  3880. } break;
  3881. case GGML_TYPE_I32:
  3882. {
  3883. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3884. return ((int32_t *)(tensor->data))[i];
  3885. } break;
  3886. case GGML_TYPE_F16:
  3887. {
  3888. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3889. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3890. } break;
  3891. case GGML_TYPE_F32:
  3892. {
  3893. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3894. return ((float *)(tensor->data))[i];
  3895. } break;
  3896. default:
  3897. {
  3898. GGML_ASSERT(false);
  3899. } break;
  3900. }
  3901. return 0.0f;
  3902. }
  3903. void ggml_set_i32_1d(const struct ggml_tensor * tensor, int i, int32_t value) {
  3904. switch (tensor->type) {
  3905. case GGML_TYPE_I8:
  3906. {
  3907. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3908. ((int8_t *)(tensor->data))[i] = value;
  3909. } break;
  3910. case GGML_TYPE_I16:
  3911. {
  3912. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3913. ((int16_t *)(tensor->data))[i] = value;
  3914. } break;
  3915. case GGML_TYPE_I32:
  3916. {
  3917. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3918. ((int32_t *)(tensor->data))[i] = value;
  3919. } break;
  3920. case GGML_TYPE_F16:
  3921. {
  3922. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3923. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3924. } break;
  3925. case GGML_TYPE_F32:
  3926. {
  3927. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3928. ((float *)(tensor->data))[i] = value;
  3929. } break;
  3930. default:
  3931. {
  3932. GGML_ASSERT(false);
  3933. } break;
  3934. }
  3935. }
  3936. float ggml_get_f32_1d(const struct ggml_tensor * tensor, int i) {
  3937. switch (tensor->type) {
  3938. case GGML_TYPE_I8:
  3939. {
  3940. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3941. return ((int8_t *)(tensor->data))[i];
  3942. } break;
  3943. case GGML_TYPE_I16:
  3944. {
  3945. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3946. return ((int16_t *)(tensor->data))[i];
  3947. } break;
  3948. case GGML_TYPE_I32:
  3949. {
  3950. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3951. return ((int32_t *)(tensor->data))[i];
  3952. } break;
  3953. case GGML_TYPE_F16:
  3954. {
  3955. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3956. return GGML_FP16_TO_FP32(((ggml_fp16_t *)(tensor->data))[i]);
  3957. } break;
  3958. case GGML_TYPE_F32:
  3959. {
  3960. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3961. return ((float *)(tensor->data))[i];
  3962. } break;
  3963. default:
  3964. {
  3965. GGML_ASSERT(false);
  3966. } break;
  3967. }
  3968. return 0.0f;
  3969. }
  3970. void ggml_set_f32_1d(const struct ggml_tensor * tensor, int i, float value) {
  3971. switch (tensor->type) {
  3972. case GGML_TYPE_I8:
  3973. {
  3974. GGML_ASSERT(tensor->nb[0] == sizeof(int8_t));
  3975. ((int8_t *)(tensor->data))[i] = value;
  3976. } break;
  3977. case GGML_TYPE_I16:
  3978. {
  3979. GGML_ASSERT(tensor->nb[0] == sizeof(int16_t));
  3980. ((int16_t *)(tensor->data))[i] = value;
  3981. } break;
  3982. case GGML_TYPE_I32:
  3983. {
  3984. GGML_ASSERT(tensor->nb[0] == sizeof(int32_t));
  3985. ((int32_t *)(tensor->data))[i] = value;
  3986. } break;
  3987. case GGML_TYPE_F16:
  3988. {
  3989. GGML_ASSERT(tensor->nb[0] == sizeof(ggml_fp16_t));
  3990. ((ggml_fp16_t *)(tensor->data))[i] = GGML_FP32_TO_FP16(value);
  3991. } break;
  3992. case GGML_TYPE_F32:
  3993. {
  3994. GGML_ASSERT(tensor->nb[0] == sizeof(float));
  3995. ((float *)(tensor->data))[i] = value;
  3996. } break;
  3997. default:
  3998. {
  3999. GGML_ASSERT(false);
  4000. } break;
  4001. }
  4002. }
  4003. void * ggml_get_data(const struct ggml_tensor * tensor) {
  4004. return tensor->data;
  4005. }
  4006. float * ggml_get_data_f32(const struct ggml_tensor * tensor) {
  4007. assert(tensor->type == GGML_TYPE_F32);
  4008. return (float *)(tensor->data);
  4009. }
  4010. const char * ggml_get_name(const struct ggml_tensor * tensor) {
  4011. return tensor->name;
  4012. }
  4013. struct ggml_tensor * ggml_set_name(struct ggml_tensor * tensor, const char * name) {
  4014. strncpy(tensor->name, name, sizeof(tensor->name));
  4015. tensor->name[sizeof(tensor->name) - 1] = '\0';
  4016. return tensor;
  4017. }
  4018. struct ggml_tensor * ggml_format_name(struct ggml_tensor * tensor, const char * fmt, ...) {
  4019. va_list args;
  4020. va_start(args, fmt);
  4021. vsnprintf(tensor->name, sizeof(tensor->name), fmt, args);
  4022. va_end(args);
  4023. return tensor;
  4024. }
  4025. struct ggml_tensor * ggml_view_tensor(
  4026. struct ggml_context * ctx,
  4027. const struct ggml_tensor * src) {
  4028. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, src->type, src->n_dims, src->ne, src->data);
  4029. ggml_format_name(result, "%s (view)", src->name);
  4030. result->nb[0] = src->nb[0];
  4031. result->nb[1] = src->nb[1];
  4032. result->nb[2] = src->nb[2];
  4033. result->nb[3] = src->nb[3];
  4034. return result;
  4035. }
  4036. struct ggml_tensor * ggml_get_tensor(struct ggml_context * ctx, const char * name) {
  4037. struct ggml_object * obj = ctx->objects_begin;
  4038. char * const mem_buffer = ctx->mem_buffer;
  4039. while (obj != NULL) {
  4040. struct ggml_tensor * cur = (struct ggml_tensor *)(mem_buffer + obj->offs);
  4041. if (strcmp(cur->name, name) == 0) {
  4042. return cur;
  4043. }
  4044. obj = obj->next;
  4045. }
  4046. return NULL;
  4047. }
  4048. ////////////////////////////////////////////////////////////////////////////////
  4049. // ggml_dup
  4050. struct ggml_tensor * ggml_dup_impl(
  4051. struct ggml_context * ctx,
  4052. struct ggml_tensor * a,
  4053. bool inplace) {
  4054. bool is_node = false;
  4055. if (!inplace && (a->grad)) {
  4056. is_node = true;
  4057. }
  4058. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4059. result->op = GGML_OP_DUP;
  4060. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4061. result->src0 = a;
  4062. result->src1 = NULL;
  4063. return result;
  4064. }
  4065. struct ggml_tensor * ggml_dup(
  4066. struct ggml_context * ctx,
  4067. struct ggml_tensor * a) {
  4068. return ggml_dup_impl(ctx, a, false);
  4069. }
  4070. struct ggml_tensor * ggml_dup_inplace(
  4071. struct ggml_context * ctx,
  4072. struct ggml_tensor * a) {
  4073. return ggml_dup_impl(ctx, a, true);
  4074. }
  4075. // ggml_add
  4076. struct ggml_tensor * ggml_add_impl(
  4077. struct ggml_context * ctx,
  4078. struct ggml_tensor * a,
  4079. struct ggml_tensor * b,
  4080. bool inplace) {
  4081. GGML_ASSERT(ggml_are_same_shape(a, b));
  4082. bool is_node = false;
  4083. if (a->grad || b->grad) {
  4084. is_node = true;
  4085. }
  4086. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4087. result->op = GGML_OP_ADD;
  4088. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4089. result->src0 = a;
  4090. result->src1 = b;
  4091. return result;
  4092. }
  4093. struct ggml_tensor * ggml_add(
  4094. struct ggml_context * ctx,
  4095. struct ggml_tensor * a,
  4096. struct ggml_tensor * b) {
  4097. return ggml_add_impl(ctx, a, b, false);
  4098. }
  4099. struct ggml_tensor * ggml_add_inplace(
  4100. struct ggml_context * ctx,
  4101. struct ggml_tensor * a,
  4102. struct ggml_tensor * b) {
  4103. return ggml_add_impl(ctx, a, b, true);
  4104. }
  4105. // ggml_add1
  4106. struct ggml_tensor * ggml_add1_impl(
  4107. struct ggml_context * ctx,
  4108. struct ggml_tensor * a,
  4109. struct ggml_tensor * b,
  4110. bool inplace) {
  4111. GGML_ASSERT(ggml_is_scalar(b));
  4112. GGML_ASSERT(ggml_is_padded_1d(a));
  4113. bool is_node = false;
  4114. if (a->grad || b->grad) {
  4115. is_node = true;
  4116. }
  4117. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4118. result->op = GGML_OP_ADD1;
  4119. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4120. result->src0 = a;
  4121. result->src1 = b;
  4122. return result;
  4123. }
  4124. struct ggml_tensor * ggml_add1(
  4125. struct ggml_context * ctx,
  4126. struct ggml_tensor * a,
  4127. struct ggml_tensor * b) {
  4128. return ggml_add1_impl(ctx, a, b, false);
  4129. }
  4130. struct ggml_tensor * ggml_add1_inplace(
  4131. struct ggml_context * ctx,
  4132. struct ggml_tensor * a,
  4133. struct ggml_tensor * b) {
  4134. return ggml_add1_impl(ctx, a, b, true);
  4135. }
  4136. // ggml_acc
  4137. struct ggml_tensor * ggml_acc_impl(
  4138. struct ggml_context * ctx,
  4139. struct ggml_tensor * a,
  4140. struct ggml_tensor * b,
  4141. size_t nb1,
  4142. size_t nb2,
  4143. size_t nb3,
  4144. size_t offset,
  4145. bool inplace) {
  4146. GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
  4147. GGML_ASSERT(ggml_is_contiguous(a));
  4148. GGML_ASSERT(a->type == GGML_TYPE_F32);
  4149. GGML_ASSERT(b->type == GGML_TYPE_F32);
  4150. bool is_node = false;
  4151. if (!inplace && (a->grad || b->grad)) {
  4152. is_node = true;
  4153. }
  4154. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4155. ggml_scratch_save(ctx);
  4156. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4157. ((int32_t *) c->data)[0] = nb1;
  4158. ((int32_t *) c->data)[1] = nb2;
  4159. ((int32_t *) c->data)[2] = nb3;
  4160. ((int32_t *) c->data)[3] = offset;
  4161. ((int32_t *) c->data)[4] = inplace ? 1 : 0;
  4162. ggml_scratch_load(ctx);
  4163. result->op = GGML_OP_ACC;
  4164. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4165. result->src0 = a;
  4166. result->src1 = b;
  4167. result->opt[0] = c;
  4168. return result;
  4169. }
  4170. struct ggml_tensor * ggml_acc(
  4171. struct ggml_context * ctx,
  4172. struct ggml_tensor * a,
  4173. struct ggml_tensor * b,
  4174. size_t nb1,
  4175. size_t nb2,
  4176. size_t nb3,
  4177. size_t offset) {
  4178. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4179. }
  4180. struct ggml_tensor * ggml_acc_inplace(
  4181. struct ggml_context * ctx,
  4182. struct ggml_tensor * a,
  4183. struct ggml_tensor * b,
  4184. size_t nb1,
  4185. size_t nb2,
  4186. size_t nb3,
  4187. size_t offset) {
  4188. return ggml_acc_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4189. }
  4190. // ggml_sub
  4191. struct ggml_tensor * ggml_sub_impl(
  4192. struct ggml_context * ctx,
  4193. struct ggml_tensor * a,
  4194. struct ggml_tensor * b,
  4195. bool inplace) {
  4196. GGML_ASSERT(ggml_are_same_shape(a, b));
  4197. bool is_node = false;
  4198. if (!inplace && (a->grad || b->grad)) {
  4199. is_node = true;
  4200. }
  4201. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4202. result->op = GGML_OP_SUB;
  4203. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4204. result->src0 = a;
  4205. result->src1 = b;
  4206. return result;
  4207. }
  4208. struct ggml_tensor * ggml_sub(
  4209. struct ggml_context * ctx,
  4210. struct ggml_tensor * a,
  4211. struct ggml_tensor * b) {
  4212. return ggml_sub_impl(ctx, a, b, false);
  4213. }
  4214. struct ggml_tensor * ggml_sub_inplace(
  4215. struct ggml_context * ctx,
  4216. struct ggml_tensor * a,
  4217. struct ggml_tensor * b) {
  4218. return ggml_sub_impl(ctx, a, b, true);
  4219. }
  4220. // ggml_mul
  4221. struct ggml_tensor * ggml_mul_impl(
  4222. struct ggml_context * ctx,
  4223. struct ggml_tensor * a,
  4224. struct ggml_tensor * b,
  4225. bool inplace) {
  4226. // TODO: support less-strict constraint
  4227. // GGML_ASSERT(ggml_can_repeat(b, a));
  4228. GGML_ASSERT(ggml_can_repeat_rows(b, a));
  4229. bool is_node = false;
  4230. if (!inplace && (a->grad || b->grad)) {
  4231. // TODO: support backward pass for broadcasting
  4232. GGML_ASSERT(ggml_are_same_shape(a, b));
  4233. is_node = true;
  4234. }
  4235. if (inplace) {
  4236. GGML_ASSERT(is_node == false);
  4237. }
  4238. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4239. result->op = GGML_OP_MUL;
  4240. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4241. result->src0 = a;
  4242. result->src1 = b;
  4243. return result;
  4244. }
  4245. struct ggml_tensor * ggml_mul(
  4246. struct ggml_context * ctx,
  4247. struct ggml_tensor * a,
  4248. struct ggml_tensor * b) {
  4249. return ggml_mul_impl(ctx, a, b, false);
  4250. }
  4251. struct ggml_tensor * ggml_mul_inplace(
  4252. struct ggml_context * ctx,
  4253. struct ggml_tensor * a,
  4254. struct ggml_tensor * b) {
  4255. return ggml_mul_impl(ctx, a, b, true);
  4256. }
  4257. // ggml_div
  4258. struct ggml_tensor * ggml_div_impl(
  4259. struct ggml_context * ctx,
  4260. struct ggml_tensor * a,
  4261. struct ggml_tensor * b,
  4262. bool inplace) {
  4263. GGML_ASSERT(ggml_are_same_shape(a, b));
  4264. bool is_node = false;
  4265. if (!inplace && (a->grad || b->grad)) {
  4266. is_node = true;
  4267. }
  4268. if (inplace) {
  4269. GGML_ASSERT(is_node == false);
  4270. }
  4271. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4272. result->op = GGML_OP_DIV;
  4273. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4274. result->src0 = a;
  4275. result->src1 = b;
  4276. return result;
  4277. }
  4278. struct ggml_tensor * ggml_div(
  4279. struct ggml_context * ctx,
  4280. struct ggml_tensor * a,
  4281. struct ggml_tensor * b) {
  4282. return ggml_div_impl(ctx, a, b, false);
  4283. }
  4284. struct ggml_tensor * ggml_div_inplace(
  4285. struct ggml_context * ctx,
  4286. struct ggml_tensor * a,
  4287. struct ggml_tensor * b) {
  4288. return ggml_div_impl(ctx, a, b, true);
  4289. }
  4290. // ggml_sqr
  4291. struct ggml_tensor * ggml_sqr_impl(
  4292. struct ggml_context * ctx,
  4293. struct ggml_tensor * a,
  4294. bool inplace) {
  4295. bool is_node = false;
  4296. if (!inplace && (a->grad)) {
  4297. is_node = true;
  4298. }
  4299. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4300. result->op = GGML_OP_SQR;
  4301. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4302. result->src0 = a;
  4303. result->src1 = NULL;
  4304. return result;
  4305. }
  4306. struct ggml_tensor * ggml_sqr(
  4307. struct ggml_context * ctx,
  4308. struct ggml_tensor * a) {
  4309. return ggml_sqr_impl(ctx, a, false);
  4310. }
  4311. struct ggml_tensor * ggml_sqr_inplace(
  4312. struct ggml_context * ctx,
  4313. struct ggml_tensor * a) {
  4314. return ggml_sqr_impl(ctx, a, true);
  4315. }
  4316. // ggml_sqrt
  4317. struct ggml_tensor * ggml_sqrt_impl(
  4318. struct ggml_context * ctx,
  4319. struct ggml_tensor * a,
  4320. bool inplace) {
  4321. bool is_node = false;
  4322. if (!inplace && (a->grad)) {
  4323. is_node = true;
  4324. }
  4325. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4326. result->op = GGML_OP_SQRT;
  4327. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4328. result->src0 = a;
  4329. result->src1 = NULL;
  4330. return result;
  4331. }
  4332. struct ggml_tensor * ggml_sqrt(
  4333. struct ggml_context * ctx,
  4334. struct ggml_tensor * a) {
  4335. return ggml_sqrt_impl(ctx, a, false);
  4336. }
  4337. struct ggml_tensor * ggml_sqrt_inplace(
  4338. struct ggml_context * ctx,
  4339. struct ggml_tensor * a) {
  4340. return ggml_sqrt_impl(ctx, a, true);
  4341. }
  4342. // ggml_log
  4343. struct ggml_tensor * ggml_log_impl(
  4344. struct ggml_context * ctx,
  4345. struct ggml_tensor * a,
  4346. bool inplace) {
  4347. bool is_node = false;
  4348. if (!inplace && (a->grad)) {
  4349. is_node = true;
  4350. }
  4351. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4352. result->op = GGML_OP_LOG;
  4353. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4354. result->src0 = a;
  4355. result->src1 = NULL;
  4356. return result;
  4357. }
  4358. struct ggml_tensor * ggml_log(
  4359. struct ggml_context * ctx,
  4360. struct ggml_tensor * a) {
  4361. return ggml_log_impl(ctx, a, false);
  4362. }
  4363. struct ggml_tensor * ggml_log_inplace(
  4364. struct ggml_context * ctx,
  4365. struct ggml_tensor * a) {
  4366. return ggml_log_impl(ctx, a, true);
  4367. }
  4368. // ggml_sum
  4369. struct ggml_tensor * ggml_sum(
  4370. struct ggml_context * ctx,
  4371. struct ggml_tensor * a) {
  4372. bool is_node = false;
  4373. if (a->grad) {
  4374. is_node = true;
  4375. }
  4376. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  4377. result->op = GGML_OP_SUM;
  4378. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4379. result->src0 = a;
  4380. result->src1 = NULL;
  4381. return result;
  4382. }
  4383. // ggml_sum_rows
  4384. struct ggml_tensor * ggml_sum_rows(
  4385. struct ggml_context * ctx,
  4386. struct ggml_tensor * a) {
  4387. bool is_node = false;
  4388. if (a->grad) {
  4389. is_node = true;
  4390. }
  4391. int64_t ne[4] = {1,1,1,1};
  4392. for (int i=1; i<a->n_dims; ++i) {
  4393. ne[i] = a->ne[i];
  4394. }
  4395. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, a->n_dims, ne);
  4396. result->op = GGML_OP_SUM_ROWS;
  4397. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4398. result->src0 = a;
  4399. result->src1 = NULL;
  4400. return result;
  4401. }
  4402. // ggml_mean
  4403. struct ggml_tensor * ggml_mean(
  4404. struct ggml_context * ctx,
  4405. struct ggml_tensor * a) {
  4406. bool is_node = false;
  4407. if (a->grad) {
  4408. GGML_ASSERT(false); // TODO: implement
  4409. is_node = true;
  4410. }
  4411. int64_t ne[GGML_MAX_DIMS] = { 1, a->ne[1], a->ne[2], a->ne[3] };
  4412. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, a->n_dims, ne);
  4413. result->op = GGML_OP_MEAN;
  4414. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4415. result->src0 = a;
  4416. result->src1 = NULL;
  4417. return result;
  4418. }
  4419. // ggml_repeat
  4420. struct ggml_tensor * ggml_repeat(
  4421. struct ggml_context * ctx,
  4422. struct ggml_tensor * a,
  4423. struct ggml_tensor * b) {
  4424. GGML_ASSERT(ggml_can_repeat(a, b));
  4425. bool is_node = false;
  4426. if (a->grad) {
  4427. is_node = true;
  4428. }
  4429. if (ggml_are_same_shape(a, b) && !is_node) {
  4430. return a;
  4431. }
  4432. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4433. result->op = GGML_OP_REPEAT;
  4434. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4435. result->src0 = a;
  4436. result->src1 = b;
  4437. return result;
  4438. }
  4439. // ggml_repeat_back
  4440. struct ggml_tensor * ggml_repeat_back(
  4441. struct ggml_context * ctx,
  4442. struct ggml_tensor * a,
  4443. struct ggml_tensor * b) {
  4444. GGML_ASSERT(ggml_can_repeat(b, a));
  4445. bool is_node = false;
  4446. if (a->grad) {
  4447. is_node = true;
  4448. }
  4449. if (ggml_are_same_shape(a, b) && !is_node) {
  4450. return a;
  4451. }
  4452. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, b->n_dims, b->ne);
  4453. result->op = GGML_OP_REPEAT_BACK;
  4454. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4455. result->src0 = a;
  4456. result->src1 = b;
  4457. return result;
  4458. }
  4459. // ggml_abs
  4460. struct ggml_tensor * ggml_abs_impl(
  4461. struct ggml_context * ctx,
  4462. struct ggml_tensor * a,
  4463. bool inplace) {
  4464. bool is_node = false;
  4465. if (!inplace && (a->grad)) {
  4466. is_node = true;
  4467. }
  4468. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4469. result->op = GGML_OP_ABS;
  4470. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4471. result->src0 = a;
  4472. result->src1 = NULL;
  4473. return result;
  4474. }
  4475. struct ggml_tensor * ggml_abs(
  4476. struct ggml_context * ctx,
  4477. struct ggml_tensor * a) {
  4478. return ggml_abs_impl(ctx, a, false);
  4479. }
  4480. struct ggml_tensor * ggml_abs_inplace(
  4481. struct ggml_context * ctx,
  4482. struct ggml_tensor * a) {
  4483. return ggml_abs_impl(ctx, a, true);
  4484. }
  4485. // ggml_sgn
  4486. struct ggml_tensor * ggml_sgn_impl(
  4487. struct ggml_context * ctx,
  4488. struct ggml_tensor * a,
  4489. bool inplace) {
  4490. bool is_node = false;
  4491. if (!inplace && (a->grad)) {
  4492. is_node = true;
  4493. }
  4494. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4495. result->op = GGML_OP_SGN;
  4496. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4497. result->src0 = a;
  4498. result->src1 = NULL;
  4499. return result;
  4500. }
  4501. struct ggml_tensor * ggml_sgn(
  4502. struct ggml_context * ctx,
  4503. struct ggml_tensor * a) {
  4504. return ggml_sgn_impl(ctx, a, false);
  4505. }
  4506. struct ggml_tensor * ggml_sgn_inplace(
  4507. struct ggml_context * ctx,
  4508. struct ggml_tensor * a) {
  4509. return ggml_sgn_impl(ctx, a, true);
  4510. }
  4511. // ggml_neg
  4512. struct ggml_tensor * ggml_neg_impl(
  4513. struct ggml_context * ctx,
  4514. struct ggml_tensor * a,
  4515. bool inplace) {
  4516. bool is_node = false;
  4517. if (!inplace && (a->grad)) {
  4518. is_node = true;
  4519. }
  4520. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4521. result->op = GGML_OP_NEG;
  4522. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4523. result->src0 = a;
  4524. result->src1 = NULL;
  4525. return result;
  4526. }
  4527. struct ggml_tensor * ggml_neg(
  4528. struct ggml_context * ctx,
  4529. struct ggml_tensor * a) {
  4530. return ggml_neg_impl(ctx, a, false);
  4531. }
  4532. struct ggml_tensor * ggml_neg_inplace(
  4533. struct ggml_context * ctx,
  4534. struct ggml_tensor * a) {
  4535. return ggml_neg_impl(ctx, a, true);
  4536. }
  4537. // ggml_step
  4538. struct ggml_tensor * ggml_step_impl(
  4539. struct ggml_context * ctx,
  4540. struct ggml_tensor * a,
  4541. bool inplace) {
  4542. bool is_node = false;
  4543. if (!inplace && (a->grad)) {
  4544. is_node = true;
  4545. }
  4546. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4547. result->op = GGML_OP_STEP;
  4548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4549. result->src0 = a;
  4550. result->src1 = NULL;
  4551. return result;
  4552. }
  4553. struct ggml_tensor * ggml_step(
  4554. struct ggml_context * ctx,
  4555. struct ggml_tensor * a) {
  4556. return ggml_step_impl(ctx, a, false);
  4557. }
  4558. struct ggml_tensor * ggml_step_inplace(
  4559. struct ggml_context * ctx,
  4560. struct ggml_tensor * a) {
  4561. return ggml_step_impl(ctx, a, true);
  4562. }
  4563. // ggml_relu
  4564. struct ggml_tensor * ggml_relu_impl(
  4565. struct ggml_context * ctx,
  4566. struct ggml_tensor * a,
  4567. bool inplace) {
  4568. bool is_node = false;
  4569. if (!inplace && (a->grad)) {
  4570. is_node = true;
  4571. }
  4572. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4573. result->op = GGML_OP_RELU;
  4574. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4575. result->src0 = a;
  4576. result->src1 = NULL;
  4577. return result;
  4578. }
  4579. struct ggml_tensor * ggml_relu(
  4580. struct ggml_context * ctx,
  4581. struct ggml_tensor * a) {
  4582. return ggml_relu_impl(ctx, a, false);
  4583. }
  4584. struct ggml_tensor * ggml_relu_inplace(
  4585. struct ggml_context * ctx,
  4586. struct ggml_tensor * a) {
  4587. return ggml_relu_impl(ctx, a, true);
  4588. }
  4589. // ggml_gelu
  4590. struct ggml_tensor * ggml_gelu_impl(
  4591. struct ggml_context * ctx,
  4592. struct ggml_tensor * a,
  4593. bool inplace) {
  4594. bool is_node = false;
  4595. if (!inplace && (a->grad)) {
  4596. is_node = true;
  4597. }
  4598. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4599. result->op = GGML_OP_GELU;
  4600. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4601. result->src0 = a;
  4602. result->src1 = NULL;
  4603. return result;
  4604. }
  4605. struct ggml_tensor * ggml_gelu(
  4606. struct ggml_context * ctx,
  4607. struct ggml_tensor * a) {
  4608. return ggml_gelu_impl(ctx, a, false);
  4609. }
  4610. struct ggml_tensor * ggml_gelu_inplace(
  4611. struct ggml_context * ctx,
  4612. struct ggml_tensor * a) {
  4613. return ggml_gelu_impl(ctx, a, true);
  4614. }
  4615. // ggml_gelu_quick
  4616. struct ggml_tensor * ggml_gelu_quick_impl(
  4617. struct ggml_context * ctx,
  4618. struct ggml_tensor * a,
  4619. bool inplace) {
  4620. bool is_node = false;
  4621. if (!inplace && (a->grad)) {
  4622. is_node = true;
  4623. }
  4624. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4625. result->op = GGML_OP_GELU_QUICK;
  4626. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4627. result->src0 = a;
  4628. result->src1 = NULL;
  4629. return result;
  4630. }
  4631. struct ggml_tensor * ggml_gelu_quick(
  4632. struct ggml_context * ctx,
  4633. struct ggml_tensor * a) {
  4634. return ggml_gelu_quick_impl(ctx, a, false);
  4635. }
  4636. struct ggml_tensor * ggml_gelu_quick_inplace(
  4637. struct ggml_context * ctx,
  4638. struct ggml_tensor * a) {
  4639. return ggml_gelu_quick_impl(ctx, a, true);
  4640. }
  4641. // ggml_silu
  4642. struct ggml_tensor * ggml_silu_impl(
  4643. struct ggml_context * ctx,
  4644. struct ggml_tensor * a,
  4645. bool inplace) {
  4646. bool is_node = false;
  4647. if (!inplace && (a->grad)) {
  4648. is_node = true;
  4649. }
  4650. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4651. result->op = GGML_OP_SILU;
  4652. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4653. result->src0 = a;
  4654. result->src1 = NULL;
  4655. return result;
  4656. }
  4657. struct ggml_tensor * ggml_silu(
  4658. struct ggml_context * ctx,
  4659. struct ggml_tensor * a) {
  4660. return ggml_silu_impl(ctx, a, false);
  4661. }
  4662. struct ggml_tensor * ggml_silu_inplace(
  4663. struct ggml_context * ctx,
  4664. struct ggml_tensor * a) {
  4665. return ggml_silu_impl(ctx, a, true);
  4666. }
  4667. // ggml_silu_back
  4668. struct ggml_tensor * ggml_silu_back(
  4669. struct ggml_context * ctx,
  4670. struct ggml_tensor * a,
  4671. struct ggml_tensor * b) {
  4672. bool is_node = false;
  4673. if (a->grad || b->grad) {
  4674. // TODO: implement backward
  4675. is_node = true;
  4676. }
  4677. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4678. result->op = GGML_OP_SILU_BACK;
  4679. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4680. result->src0 = a;
  4681. result->src1 = b;
  4682. return result;
  4683. }
  4684. // ggml_norm
  4685. struct ggml_tensor * ggml_norm_impl(
  4686. struct ggml_context * ctx,
  4687. struct ggml_tensor * a,
  4688. bool inplace) {
  4689. bool is_node = false;
  4690. if (!inplace && (a->grad)) {
  4691. GGML_ASSERT(false); // TODO: implement backward
  4692. is_node = true;
  4693. }
  4694. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4695. result->op = GGML_OP_NORM;
  4696. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4697. result->src0 = a;
  4698. result->src1 = NULL; // TODO: maybe store epsilon here?
  4699. return result;
  4700. }
  4701. struct ggml_tensor * ggml_norm(
  4702. struct ggml_context * ctx,
  4703. struct ggml_tensor * a) {
  4704. return ggml_norm_impl(ctx, a, false);
  4705. }
  4706. struct ggml_tensor * ggml_norm_inplace(
  4707. struct ggml_context * ctx,
  4708. struct ggml_tensor * a) {
  4709. return ggml_norm_impl(ctx, a, true);
  4710. }
  4711. struct ggml_tensor * ggml_rms_norm_impl(
  4712. struct ggml_context * ctx,
  4713. struct ggml_tensor * a,
  4714. bool inplace) {
  4715. bool is_node = false;
  4716. if (!inplace && (a->grad)) {
  4717. is_node = true;
  4718. }
  4719. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4720. result->op = GGML_OP_RMS_NORM;
  4721. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4722. result->src0 = a;
  4723. result->src1 = NULL; // TODO: maybe store epsilon here?
  4724. return result;
  4725. }
  4726. struct ggml_tensor * ggml_rms_norm(
  4727. struct ggml_context * ctx,
  4728. struct ggml_tensor * a) {
  4729. return ggml_rms_norm_impl(ctx, a, false);
  4730. }
  4731. struct ggml_tensor * ggml_rms_norm_inplace(
  4732. struct ggml_context * ctx,
  4733. struct ggml_tensor * a) {
  4734. return ggml_rms_norm_impl(ctx, a, true);
  4735. }
  4736. struct ggml_tensor * ggml_rms_norm_back(
  4737. struct ggml_context * ctx,
  4738. struct ggml_tensor * a,
  4739. struct ggml_tensor * b) {
  4740. bool is_node = false;
  4741. if (a->grad) {
  4742. // TODO: implement backward
  4743. is_node = true;
  4744. }
  4745. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  4746. result->op = GGML_OP_RMS_NORM_BACK;
  4747. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4748. result->src0 = a;
  4749. result->src1 = b;
  4750. return result;
  4751. }
  4752. // ggml_mul_mat
  4753. struct ggml_tensor * ggml_mul_mat(
  4754. struct ggml_context * ctx,
  4755. struct ggml_tensor * a,
  4756. struct ggml_tensor * b) {
  4757. GGML_ASSERT(ggml_can_mul_mat(a, b));
  4758. GGML_ASSERT(!ggml_is_transposed(a));
  4759. bool is_node = false;
  4760. if (a->grad || b->grad) {
  4761. is_node = true;
  4762. }
  4763. const int64_t ne[4] = { a->ne[1], b->ne[1], a->ne[2], b->ne[3] };
  4764. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4765. result->op = GGML_OP_MUL_MAT;
  4766. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4767. result->src0 = a;
  4768. result->src1 = b;
  4769. return result;
  4770. }
  4771. // ggml_out_prod
  4772. struct ggml_tensor * ggml_out_prod(
  4773. struct ggml_context * ctx,
  4774. struct ggml_tensor * a,
  4775. struct ggml_tensor * b) {
  4776. GGML_ASSERT(ggml_can_out_prod(a, b));
  4777. GGML_ASSERT(!ggml_is_transposed(a));
  4778. bool is_node = false;
  4779. if (a->grad || b->grad) {
  4780. is_node = true;
  4781. }
  4782. const int64_t ne[4] = { a->ne[0], b->ne[0], a->ne[2], b->ne[3] };
  4783. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, MIN(a->n_dims, b->n_dims), ne);
  4784. result->op = GGML_OP_OUT_PROD;
  4785. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4786. result->src0 = a;
  4787. result->src1 = b;
  4788. return result;
  4789. }
  4790. // ggml_scale
  4791. struct ggml_tensor * ggml_scale_impl(
  4792. struct ggml_context * ctx,
  4793. struct ggml_tensor * a,
  4794. struct ggml_tensor * b,
  4795. bool inplace) {
  4796. GGML_ASSERT(ggml_is_scalar(b));
  4797. GGML_ASSERT(ggml_is_padded_1d(a));
  4798. bool is_node = false;
  4799. if (a->grad || b->grad) {
  4800. is_node = true;
  4801. }
  4802. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4803. result->op = GGML_OP_SCALE;
  4804. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4805. result->src0 = a;
  4806. result->src1 = b;
  4807. return result;
  4808. }
  4809. struct ggml_tensor * ggml_scale(
  4810. struct ggml_context * ctx,
  4811. struct ggml_tensor * a,
  4812. struct ggml_tensor * b) {
  4813. return ggml_scale_impl(ctx, a, b, false);
  4814. }
  4815. struct ggml_tensor * ggml_scale_inplace(
  4816. struct ggml_context * ctx,
  4817. struct ggml_tensor * a,
  4818. struct ggml_tensor * b) {
  4819. return ggml_scale_impl(ctx, a, b, true);
  4820. }
  4821. // ggml_set
  4822. struct ggml_tensor * ggml_set_impl(
  4823. struct ggml_context * ctx,
  4824. struct ggml_tensor * a,
  4825. struct ggml_tensor * b,
  4826. size_t nb1,
  4827. size_t nb2,
  4828. size_t nb3,
  4829. size_t offset,
  4830. bool inplace) {
  4831. GGML_ASSERT(ggml_nelements(a) >= ggml_nelements(b));
  4832. bool is_node = false;
  4833. if (a->grad || b->grad) {
  4834. is_node = true;
  4835. }
  4836. // make a view of the destination
  4837. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4838. ggml_scratch_save(ctx);
  4839. struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
  4840. (( int32_t * ) c->data)[0] = nb1;
  4841. (( int32_t * ) c->data)[1] = nb2;
  4842. (( int32_t * ) c->data)[2] = nb3;
  4843. (( int32_t * ) c->data)[3] = offset;
  4844. (( int32_t * ) c->data)[4] = inplace ? 1 : 0;
  4845. ggml_scratch_load(ctx);
  4846. result->op = GGML_OP_SET;
  4847. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4848. result->src0 = a;
  4849. result->src1 = b;
  4850. result->opt[0] = c;
  4851. return result;
  4852. }
  4853. struct ggml_tensor * ggml_set(
  4854. struct ggml_context * ctx,
  4855. struct ggml_tensor * a,
  4856. struct ggml_tensor * b,
  4857. size_t nb1,
  4858. size_t nb2,
  4859. size_t nb3,
  4860. size_t offset) {
  4861. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
  4862. }
  4863. struct ggml_tensor * ggml_set_inplace(
  4864. struct ggml_context * ctx,
  4865. struct ggml_tensor * a,
  4866. struct ggml_tensor * b,
  4867. size_t nb1,
  4868. size_t nb2,
  4869. size_t nb3,
  4870. size_t offset) {
  4871. return ggml_set_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
  4872. }
  4873. struct ggml_tensor * ggml_set_1d(
  4874. struct ggml_context * ctx,
  4875. struct ggml_tensor * a,
  4876. struct ggml_tensor * b,
  4877. size_t offset) {
  4878. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, false);
  4879. }
  4880. struct ggml_tensor * ggml_set_1d_inplace(
  4881. struct ggml_context * ctx,
  4882. struct ggml_tensor * a,
  4883. struct ggml_tensor * b,
  4884. size_t offset) {
  4885. return ggml_set_impl(ctx, a, b, a->nb[1], a->nb[2], a->nb[3], offset, true);
  4886. }
  4887. struct ggml_tensor * ggml_set_2d(
  4888. struct ggml_context * ctx,
  4889. struct ggml_tensor * a,
  4890. struct ggml_tensor * b,
  4891. size_t nb1,
  4892. size_t offset) {
  4893. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4894. }
  4895. struct ggml_tensor * ggml_set_2d_inplace(
  4896. struct ggml_context * ctx,
  4897. struct ggml_tensor * a,
  4898. struct ggml_tensor * b,
  4899. size_t nb1,
  4900. size_t offset) {
  4901. return ggml_set_impl(ctx, a, b, nb1, a->nb[2], a->nb[3], offset, false);
  4902. }
  4903. // ggml_cpy
  4904. struct ggml_tensor * ggml_cpy_impl(
  4905. struct ggml_context * ctx,
  4906. struct ggml_tensor * a,
  4907. struct ggml_tensor * b,
  4908. bool inplace) {
  4909. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4910. bool is_node = false;
  4911. if (!inplace && (a->grad || b->grad)) {
  4912. is_node = true;
  4913. }
  4914. // make a view of the destination
  4915. struct ggml_tensor * result = ggml_view_tensor(ctx, b);
  4916. if (strlen(b->name) > 0) {
  4917. ggml_format_name(result, "%s (copy of %s)", b->name, a->name);
  4918. } else {
  4919. ggml_format_name(result, "%s (copy)", a->name);
  4920. }
  4921. result->op = GGML_OP_CPY;
  4922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4923. result->src0 = a;
  4924. result->src1 = b;
  4925. return result;
  4926. }
  4927. struct ggml_tensor * ggml_cpy(
  4928. struct ggml_context * ctx,
  4929. struct ggml_tensor * a,
  4930. struct ggml_tensor * b) {
  4931. return ggml_cpy_impl(ctx, a, b, false);
  4932. }
  4933. struct ggml_tensor * ggml_cpy_inplace(
  4934. struct ggml_context * ctx,
  4935. struct ggml_tensor * a,
  4936. struct ggml_tensor * b) {
  4937. return ggml_cpy_impl(ctx, a, b, true);
  4938. }
  4939. // ggml_cont
  4940. struct ggml_tensor * ggml_cont_impl(
  4941. struct ggml_context * ctx,
  4942. struct ggml_tensor * a,
  4943. bool inplace) {
  4944. bool is_node = false;
  4945. if (!inplace && a->grad) {
  4946. is_node = true;
  4947. }
  4948. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  4949. ggml_format_name(result, "%s (cont)", a->name);
  4950. result->op = GGML_OP_CONT;
  4951. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4952. result->src0 = a;
  4953. result->src1 = NULL;
  4954. return result;
  4955. }
  4956. struct ggml_tensor * ggml_cont(
  4957. struct ggml_context * ctx,
  4958. struct ggml_tensor * a) {
  4959. return ggml_cont_impl(ctx, a, false);
  4960. }
  4961. struct ggml_tensor * ggml_cont_inplace(
  4962. struct ggml_context * ctx,
  4963. struct ggml_tensor * a) {
  4964. return ggml_cont_impl(ctx, a, true);
  4965. }
  4966. // ggml_reshape
  4967. struct ggml_tensor * ggml_reshape(
  4968. struct ggml_context * ctx,
  4969. struct ggml_tensor * a,
  4970. struct ggml_tensor * b) {
  4971. GGML_ASSERT(ggml_is_contiguous(a));
  4972. GGML_ASSERT(ggml_is_contiguous(b));
  4973. GGML_ASSERT(ggml_nelements(a) == ggml_nelements(b));
  4974. bool is_node = false;
  4975. if (a->grad) {
  4976. is_node = true;
  4977. }
  4978. if (b->grad) {
  4979. // gradient propagation is not supported
  4980. //GGML_ASSERT(false);
  4981. }
  4982. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, b->n_dims, b->ne, a->data);
  4983. ggml_format_name(result, "%s (reshaped)", a->name);
  4984. result->op = GGML_OP_RESHAPE;
  4985. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  4986. result->src0 = a;
  4987. result->src1 = NULL;
  4988. return result;
  4989. }
  4990. struct ggml_tensor * ggml_reshape_1d(
  4991. struct ggml_context * ctx,
  4992. struct ggml_tensor * a,
  4993. int64_t ne0) {
  4994. GGML_ASSERT(ggml_is_contiguous(a));
  4995. GGML_ASSERT(ggml_nelements(a) == ne0);
  4996. bool is_node = false;
  4997. if (a->grad) {
  4998. is_node = true;
  4999. }
  5000. const int64_t ne[1] = { ne0 };
  5001. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, ne, a->data);
  5002. ggml_format_name(result, "%s (reshaped)", a->name);
  5003. result->op = GGML_OP_RESHAPE;
  5004. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5005. result->src0 = a;
  5006. result->src1 = NULL;
  5007. return result;
  5008. }
  5009. struct ggml_tensor * ggml_reshape_2d(
  5010. struct ggml_context * ctx,
  5011. struct ggml_tensor * a,
  5012. int64_t ne0,
  5013. int64_t ne1) {
  5014. GGML_ASSERT(ggml_is_contiguous(a));
  5015. GGML_ASSERT(ggml_nelements(a) == ne0*ne1);
  5016. bool is_node = false;
  5017. if (a->grad) {
  5018. is_node = true;
  5019. }
  5020. const int64_t ne[2] = { ne0, ne1 };
  5021. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, a->data);
  5022. ggml_format_name(result, "%s (reshaped)", a->name);
  5023. result->op = GGML_OP_RESHAPE;
  5024. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5025. result->src0 = a;
  5026. result->src1 = NULL;
  5027. return result;
  5028. }
  5029. struct ggml_tensor * ggml_reshape_3d(
  5030. struct ggml_context * ctx,
  5031. struct ggml_tensor * a,
  5032. int64_t ne0,
  5033. int64_t ne1,
  5034. int64_t ne2) {
  5035. GGML_ASSERT(ggml_is_contiguous(a));
  5036. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2);
  5037. bool is_node = false;
  5038. if (a->grad) {
  5039. is_node = true;
  5040. }
  5041. const int64_t ne[3] = { ne0, ne1, ne2 };
  5042. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, a->data);
  5043. ggml_format_name(result, "%s (reshaped)", a->name);
  5044. result->op = GGML_OP_RESHAPE;
  5045. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5046. result->src0 = a;
  5047. result->src1 = NULL;
  5048. return result;
  5049. }
  5050. struct ggml_tensor * ggml_reshape_4d(
  5051. struct ggml_context * ctx,
  5052. struct ggml_tensor * a,
  5053. int64_t ne0,
  5054. int64_t ne1,
  5055. int64_t ne2,
  5056. int64_t ne3) {
  5057. GGML_ASSERT(ggml_is_contiguous(a));
  5058. GGML_ASSERT(ggml_nelements(a) == ne0*ne1*ne2*ne3);
  5059. bool is_node = false;
  5060. if (a->grad) {
  5061. is_node = true;
  5062. }
  5063. const int64_t ne[4] = { ne0, ne1, ne2, ne3 };
  5064. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, a->data);
  5065. ggml_format_name(result, "%s (reshaped)", a->name);
  5066. result->op = GGML_OP_RESHAPE;
  5067. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5068. result->src0 = a;
  5069. result->src1 = NULL;
  5070. return result;
  5071. }
  5072. // ggml_view_1d
  5073. struct ggml_tensor * ggml_view_1d(
  5074. struct ggml_context * ctx,
  5075. struct ggml_tensor * a,
  5076. int64_t ne0,
  5077. size_t offset) {
  5078. bool is_node = false;
  5079. if (a->grad) {
  5080. is_node = true;
  5081. }
  5082. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 1, &ne0, (char *) a->data + offset);
  5083. ggml_format_name(result, "%s (view)", a->name);
  5084. ggml_scratch_save(ctx);
  5085. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5086. ggml_set_name(offs, "offset");
  5087. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5088. ggml_scratch_load(ctx);
  5089. result->op = GGML_OP_VIEW;
  5090. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5091. result->src0 = a;
  5092. result->src1 = NULL;
  5093. result->opt[0] = offs;
  5094. return result;
  5095. }
  5096. // ggml_view_2d
  5097. struct ggml_tensor * ggml_view_2d(
  5098. struct ggml_context * ctx,
  5099. struct ggml_tensor * a,
  5100. int64_t ne0,
  5101. int64_t ne1,
  5102. size_t nb1,
  5103. size_t offset) {
  5104. bool is_node = false;
  5105. if (a->grad) {
  5106. is_node = true;
  5107. }
  5108. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, 1, 1 };
  5109. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 2, ne, (char *) a->data + offset);
  5110. ggml_format_name(result, "%s (view)", a->name);
  5111. ggml_scratch_save(ctx);
  5112. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5113. ggml_set_name(offs, "offset");
  5114. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5115. ggml_scratch_load(ctx);
  5116. result->nb[1] = nb1;
  5117. result->nb[2] = result->nb[1]*ne1;
  5118. result->nb[3] = result->nb[2];
  5119. result->op = GGML_OP_VIEW;
  5120. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5121. result->src0 = a;
  5122. result->src1 = NULL;
  5123. result->opt[0] = offs;
  5124. return result;
  5125. }
  5126. // ggml_view_3d
  5127. struct ggml_tensor * ggml_view_3d(
  5128. struct ggml_context * ctx,
  5129. struct ggml_tensor * a,
  5130. int64_t ne0,
  5131. int64_t ne1,
  5132. int64_t ne2,
  5133. size_t nb1,
  5134. size_t nb2,
  5135. size_t offset) {
  5136. bool is_node = false;
  5137. if (a->grad) {
  5138. is_node = true;
  5139. }
  5140. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, 1 };
  5141. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 3, ne, (char *) a->data + offset);
  5142. ggml_format_name(result, "%s (view)", a->name);
  5143. ggml_scratch_save(ctx);
  5144. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5145. ggml_set_name(offs, "offset");
  5146. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5147. ggml_scratch_load(ctx);
  5148. result->nb[1] = nb1;
  5149. result->nb[2] = nb2;
  5150. result->nb[3] = result->nb[2]*ne2;
  5151. result->op = GGML_OP_VIEW;
  5152. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5153. result->src0 = a;
  5154. result->src1 = NULL;
  5155. result->opt[0] = offs;
  5156. return result;
  5157. }
  5158. // ggml_view_4d
  5159. struct ggml_tensor * ggml_view_4d(
  5160. struct ggml_context * ctx,
  5161. struct ggml_tensor * a,
  5162. int64_t ne0,
  5163. int64_t ne1,
  5164. int64_t ne2,
  5165. int64_t ne3,
  5166. size_t nb1,
  5167. size_t nb2,
  5168. size_t nb3,
  5169. size_t offset) {
  5170. bool is_node = false;
  5171. if (a->grad) {
  5172. is_node = true;
  5173. }
  5174. const int64_t ne[GGML_MAX_DIMS] = { ne0, ne1, ne2, ne3 };
  5175. struct ggml_tensor * result = ggml_new_tensor_impl(ctx, a->type, 4, ne, (char *) a->data + offset);
  5176. ggml_format_name(result, "%s (view)", a->name);
  5177. ggml_scratch_save(ctx);
  5178. struct ggml_tensor * offs = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5179. ggml_set_name(offs, "offset");
  5180. memcpy(offs->data, &offset, 2*sizeof(int32_t));
  5181. ggml_scratch_load(ctx);
  5182. result->nb[1] = nb1;
  5183. result->nb[2] = nb2;
  5184. result->nb[3] = nb3;
  5185. result->op = GGML_OP_VIEW;
  5186. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5187. result->src0 = a;
  5188. result->src1 = NULL;
  5189. result->opt[0] = offs;
  5190. return result;
  5191. }
  5192. // ggml_permute
  5193. struct ggml_tensor * ggml_permute(
  5194. struct ggml_context * ctx,
  5195. struct ggml_tensor * a,
  5196. int axis0,
  5197. int axis1,
  5198. int axis2,
  5199. int axis3) {
  5200. GGML_ASSERT(axis0 >= 0 && axis0 < GGML_MAX_DIMS);
  5201. GGML_ASSERT(axis1 >= 0 && axis1 < GGML_MAX_DIMS);
  5202. GGML_ASSERT(axis2 >= 0 && axis2 < GGML_MAX_DIMS);
  5203. GGML_ASSERT(axis3 >= 0 && axis3 < GGML_MAX_DIMS);
  5204. GGML_ASSERT(axis0 != axis1);
  5205. GGML_ASSERT(axis0 != axis2);
  5206. GGML_ASSERT(axis0 != axis3);
  5207. GGML_ASSERT(axis1 != axis2);
  5208. GGML_ASSERT(axis1 != axis3);
  5209. GGML_ASSERT(axis2 != axis3);
  5210. bool is_node = false;
  5211. if (a->grad) {
  5212. is_node = true;
  5213. }
  5214. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5215. ggml_format_name(result, "%s (permuted)", a->name);
  5216. int ne[GGML_MAX_DIMS];
  5217. int nb[GGML_MAX_DIMS];
  5218. ne[axis0] = a->ne[0];
  5219. ne[axis1] = a->ne[1];
  5220. ne[axis2] = a->ne[2];
  5221. ne[axis3] = a->ne[3];
  5222. nb[axis0] = a->nb[0];
  5223. nb[axis1] = a->nb[1];
  5224. nb[axis2] = a->nb[2];
  5225. nb[axis3] = a->nb[3];
  5226. result->ne[0] = ne[0];
  5227. result->ne[1] = ne[1];
  5228. result->ne[2] = ne[2];
  5229. result->ne[3] = ne[3];
  5230. result->nb[0] = nb[0];
  5231. result->nb[1] = nb[1];
  5232. result->nb[2] = nb[2];
  5233. result->nb[3] = nb[3];
  5234. result->op = GGML_OP_PERMUTE;
  5235. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5236. result->src0 = a;
  5237. result->src1 = NULL;
  5238. if (is_node) {
  5239. ggml_scratch_save(ctx);
  5240. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5241. ((int32_t *) b->data)[0] = axis0;
  5242. ((int32_t *) b->data)[1] = axis1;
  5243. ((int32_t *) b->data)[2] = axis2;
  5244. ((int32_t *) b->data)[3] = axis3;
  5245. ggml_scratch_load(ctx);
  5246. result->opt[0] = b;
  5247. }
  5248. return result;
  5249. }
  5250. // ggml_transpose
  5251. struct ggml_tensor * ggml_transpose(
  5252. struct ggml_context * ctx,
  5253. struct ggml_tensor * a) {
  5254. bool is_node = false;
  5255. if (a->grad) {
  5256. is_node = true;
  5257. }
  5258. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5259. ggml_format_name(result, "%s (transposed)", a->name);
  5260. result->ne[0] = a->ne[1];
  5261. result->ne[1] = a->ne[0];
  5262. result->nb[0] = a->nb[1];
  5263. result->nb[1] = a->nb[0];
  5264. result->op = GGML_OP_TRANSPOSE;
  5265. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5266. result->src0 = a;
  5267. result->src1 = NULL;
  5268. return result;
  5269. }
  5270. // ggml_get_rows
  5271. struct ggml_tensor * ggml_get_rows(
  5272. struct ggml_context * ctx,
  5273. struct ggml_tensor * a,
  5274. struct ggml_tensor * b) {
  5275. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5276. bool is_node = false;
  5277. if (a->grad || b->grad) {
  5278. is_node = true;
  5279. }
  5280. // TODO: implement non F32 return
  5281. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5282. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
  5283. result->op = GGML_OP_GET_ROWS;
  5284. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5285. result->src0 = a;
  5286. result->src1 = b;
  5287. return result;
  5288. }
  5289. // ggml_get_rows_back
  5290. struct ggml_tensor * ggml_get_rows_back(
  5291. struct ggml_context * ctx,
  5292. struct ggml_tensor * a,
  5293. struct ggml_tensor * b,
  5294. struct ggml_tensor * c) {
  5295. GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
  5296. GGML_ASSERT(ggml_is_matrix(c) && (a->ne[0] == c->ne[0]));
  5297. bool is_node = false;
  5298. if (a->grad || b->grad) {
  5299. is_node = true;
  5300. }
  5301. // TODO: implement non F32 return
  5302. //struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
  5303. struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, c->ne[0], c->ne[1]);
  5304. result->op = GGML_OP_GET_ROWS_BACK;
  5305. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5306. result->src0 = a;
  5307. result->src1 = b;
  5308. result->opt[0] = c;
  5309. return result;
  5310. }
  5311. // ggml_diag
  5312. struct ggml_tensor * ggml_diag(
  5313. struct ggml_context * ctx,
  5314. struct ggml_tensor * a) {
  5315. GGML_ASSERT(a->ne[1] == 1);
  5316. bool is_node = false;
  5317. if (a->grad) {
  5318. is_node = true;
  5319. }
  5320. const int64_t ne[4] = { a->ne[0], a->ne[0], a->ne[2], a->ne[3] };
  5321. struct ggml_tensor * result = ggml_new_tensor(ctx, a->type, MAX(a->n_dims, 2), ne);
  5322. result->op = GGML_OP_DIAG;
  5323. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5324. result->src0 = a;
  5325. result->src1 = NULL;
  5326. return result;
  5327. }
  5328. // ggml_diag_mask_inf
  5329. struct ggml_tensor * ggml_diag_mask_inf_impl(
  5330. struct ggml_context * ctx,
  5331. struct ggml_tensor * a,
  5332. int n_past,
  5333. bool inplace) {
  5334. bool is_node = false;
  5335. if (a->grad) {
  5336. is_node = true;
  5337. }
  5338. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5339. ggml_scratch_save(ctx);
  5340. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5341. ((int32_t *) b->data)[0] = n_past;
  5342. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5343. ggml_scratch_load(ctx);
  5344. result->op = GGML_OP_DIAG_MASK_INF;
  5345. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5346. result->src0 = a;
  5347. result->src1 = b;
  5348. return result;
  5349. }
  5350. struct ggml_tensor * ggml_diag_mask_inf(
  5351. struct ggml_context * ctx,
  5352. struct ggml_tensor * a,
  5353. int n_past) {
  5354. return ggml_diag_mask_inf_impl(ctx, a, n_past, false);
  5355. }
  5356. struct ggml_tensor * ggml_diag_mask_inf_inplace(
  5357. struct ggml_context * ctx,
  5358. struct ggml_tensor * a,
  5359. int n_past) {
  5360. return ggml_diag_mask_inf_impl(ctx, a, n_past, true);
  5361. }
  5362. // ggml_diag_mask_zero
  5363. struct ggml_tensor * ggml_diag_mask_zero_impl(
  5364. struct ggml_context * ctx,
  5365. struct ggml_tensor * a,
  5366. int n_past,
  5367. bool inplace) {
  5368. bool is_node = false;
  5369. if (a->grad) {
  5370. is_node = true;
  5371. }
  5372. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5373. ggml_scratch_save(ctx);
  5374. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 2);
  5375. ggml_set_name(b, "n_past, inplace");
  5376. ((int32_t *) b->data)[0] = n_past;
  5377. ((int32_t *) b->data)[1] = inplace ? 1 : 0;
  5378. ggml_scratch_load(ctx);
  5379. result->op = GGML_OP_DIAG_MASK_ZERO;
  5380. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5381. result->src0 = a;
  5382. result->src1 = b;
  5383. return result;
  5384. }
  5385. struct ggml_tensor * ggml_diag_mask_zero(
  5386. struct ggml_context * ctx,
  5387. struct ggml_tensor * a,
  5388. int n_past) {
  5389. return ggml_diag_mask_zero_impl(ctx, a, n_past, false);
  5390. }
  5391. struct ggml_tensor * ggml_diag_mask_zero_inplace(
  5392. struct ggml_context * ctx,
  5393. struct ggml_tensor * a,
  5394. int n_past) {
  5395. return ggml_diag_mask_zero_impl(ctx, a, n_past, true);
  5396. }
  5397. // ggml_soft_max
  5398. struct ggml_tensor * ggml_soft_max_impl(
  5399. struct ggml_context * ctx,
  5400. struct ggml_tensor * a,
  5401. bool inplace) {
  5402. bool is_node = false;
  5403. if (a->grad) {
  5404. is_node = true;
  5405. }
  5406. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5407. result->op = GGML_OP_SOFT_MAX;
  5408. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5409. result->src0 = a;
  5410. result->src1 = NULL;
  5411. return result;
  5412. }
  5413. struct ggml_tensor * ggml_soft_max(
  5414. struct ggml_context * ctx,
  5415. struct ggml_tensor * a) {
  5416. return ggml_soft_max_impl(ctx, a, false);
  5417. }
  5418. struct ggml_tensor * ggml_soft_max_inplace(
  5419. struct ggml_context * ctx,
  5420. struct ggml_tensor * a) {
  5421. return ggml_soft_max_impl(ctx, a, true);
  5422. }
  5423. // ggml_soft_max_back
  5424. struct ggml_tensor * ggml_soft_max_back_impl(
  5425. struct ggml_context * ctx,
  5426. struct ggml_tensor * a,
  5427. struct ggml_tensor * b,
  5428. bool inplace) {
  5429. bool is_node = false;
  5430. if (a->grad || b->grad) {
  5431. is_node = true; // TODO : implement backward pass
  5432. }
  5433. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5434. result->op = GGML_OP_SOFT_MAX_BACK;
  5435. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5436. result->src0 = a;
  5437. result->src1 = b;
  5438. return result;
  5439. }
  5440. struct ggml_tensor * ggml_soft_max_back(
  5441. struct ggml_context * ctx,
  5442. struct ggml_tensor * a,
  5443. struct ggml_tensor * b) {
  5444. return ggml_soft_max_back_impl(ctx, a, b, false);
  5445. }
  5446. struct ggml_tensor * ggml_soft_max_back_inplace(
  5447. struct ggml_context * ctx,
  5448. struct ggml_tensor * a,
  5449. struct ggml_tensor * b) {
  5450. return ggml_soft_max_back_impl(ctx, a, b, true);
  5451. }
  5452. // ggml_rope
  5453. struct ggml_tensor * ggml_rope_impl(
  5454. struct ggml_context * ctx,
  5455. struct ggml_tensor * a,
  5456. int n_past,
  5457. int n_dims,
  5458. int mode,
  5459. int n_ctx,
  5460. bool inplace) {
  5461. GGML_ASSERT(n_past >= 0);
  5462. bool is_node = false;
  5463. if (a->grad) {
  5464. is_node = true;
  5465. }
  5466. struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5467. ggml_scratch_save(ctx);
  5468. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 4);
  5469. ((int32_t *) b->data)[0] = n_past;
  5470. ((int32_t *) b->data)[1] = n_dims;
  5471. ((int32_t *) b->data)[2] = mode;
  5472. ((int32_t *) b->data)[3] = n_ctx;
  5473. ggml_scratch_load(ctx);
  5474. result->op = GGML_OP_ROPE;
  5475. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5476. result->src0 = a;
  5477. result->src1 = b;
  5478. return result;
  5479. }
  5480. struct ggml_tensor * ggml_rope(
  5481. struct ggml_context * ctx,
  5482. struct ggml_tensor * a,
  5483. int n_past,
  5484. int n_dims,
  5485. int mode,
  5486. int n_ctx) {
  5487. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, false);
  5488. }
  5489. struct ggml_tensor * ggml_rope_inplace(
  5490. struct ggml_context * ctx,
  5491. struct ggml_tensor * a,
  5492. int n_past,
  5493. int n_dims,
  5494. int mode,
  5495. int n_ctx) {
  5496. return ggml_rope_impl(ctx, a, n_past, n_dims, mode, n_ctx, true);
  5497. }
  5498. // ggml_rope_back
  5499. struct ggml_tensor * ggml_rope_back(
  5500. struct ggml_context * ctx,
  5501. struct ggml_tensor * a,
  5502. int n_past,
  5503. int n_dims,
  5504. int mode) {
  5505. GGML_ASSERT(n_past >= 0);
  5506. bool is_node = false;
  5507. if (a->grad) {
  5508. is_node = false; // TODO: implement backward
  5509. }
  5510. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5511. ggml_scratch_save(ctx);
  5512. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5513. ggml_set_name(b, "n_past, n_dims, mode");
  5514. ((int32_t *) b->data)[0] = n_past;
  5515. ((int32_t *) b->data)[1] = n_dims;
  5516. ((int32_t *) b->data)[2] = mode;
  5517. ggml_scratch_load(ctx);
  5518. result->op = GGML_OP_ROPE_BACK;
  5519. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5520. result->src0 = a;
  5521. result->src1 = b;
  5522. return result;
  5523. }
  5524. // ggml_alibi
  5525. struct ggml_tensor * ggml_alibi(
  5526. struct ggml_context * ctx,
  5527. struct ggml_tensor * a,
  5528. int n_past,
  5529. int n_head,
  5530. float bias_max) {
  5531. GGML_ASSERT(n_past >= 0);
  5532. bool is_node = false;
  5533. if (a->grad) {
  5534. GGML_ASSERT(false); // TODO: implement backward
  5535. is_node = true;
  5536. }
  5537. // TODO: when implement backward, fix this:
  5538. //struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5539. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5540. ggml_scratch_save(ctx);
  5541. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5542. ((int32_t *) b->data)[0] = n_past;
  5543. ((int32_t *) b->data)[1] = n_head;
  5544. GGML_ASSERT(sizeof(float) == sizeof(int32_t));
  5545. (((float *) b->data)[2]) = bias_max;
  5546. ggml_scratch_load(ctx);
  5547. result->op = GGML_OP_ALIBI;
  5548. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5549. result->src0 = a;
  5550. result->src1 = b;
  5551. return result;
  5552. }
  5553. // ggml_clamp
  5554. struct ggml_tensor * ggml_clamp(
  5555. struct ggml_context * ctx,
  5556. struct ggml_tensor * a,
  5557. float min,
  5558. float max) {
  5559. bool is_node = false;
  5560. if (a->grad) {
  5561. GGML_ASSERT(false); // TODO: implement backward
  5562. is_node = true;
  5563. }
  5564. // TODO: when implement backward, fix this:
  5565. struct ggml_tensor * result = ggml_view_tensor(ctx, a);
  5566. ggml_scratch_save(ctx);
  5567. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 2);
  5568. ((float *) b->data)[0] = min;
  5569. ((float *) b->data)[1] = max;
  5570. ggml_scratch_load(ctx);
  5571. result->op = GGML_OP_CLAMP;
  5572. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5573. result->src0 = a;
  5574. result->src1 = b;
  5575. return result;
  5576. }
  5577. // ggml_conv_1d_s1_ph
  5578. struct ggml_tensor * ggml_conv_1d_s1_ph(
  5579. struct ggml_context * ctx,
  5580. struct ggml_tensor * a,
  5581. struct ggml_tensor * b) {
  5582. GGML_ASSERT(ggml_is_matrix(b));
  5583. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5584. GGML_ASSERT(a->ne[3] == 1);
  5585. bool is_node = false;
  5586. if (a->grad || b->grad) {
  5587. GGML_ASSERT(false); // TODO: implement backward
  5588. is_node = true;
  5589. }
  5590. const int64_t ne[4] = { b->ne[0], a->ne[2], 1, 1, };
  5591. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5592. result->op = GGML_OP_CONV_1D_S1_PH;
  5593. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5594. result->src0 = a;
  5595. result->src1 = b;
  5596. return result;
  5597. }
  5598. // ggml_conv_1d_s2_ph
  5599. struct ggml_tensor * ggml_conv_1d_s2_ph(
  5600. struct ggml_context * ctx,
  5601. struct ggml_tensor * a,
  5602. struct ggml_tensor * b) {
  5603. GGML_ASSERT(ggml_is_matrix(b));
  5604. GGML_ASSERT(a->ne[1] == b->ne[1]);
  5605. GGML_ASSERT(a->ne[3] == 1);
  5606. bool is_node = false;
  5607. if (a->grad || b->grad) {
  5608. GGML_ASSERT(false); // TODO: implement backward
  5609. is_node = true;
  5610. }
  5611. const int64_t ne[4] = { b->ne[0]/2, a->ne[2], 1, 1, };
  5612. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
  5613. result->op = GGML_OP_CONV_1D_S2_PH;
  5614. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5615. result->src0 = a;
  5616. result->src1 = b;
  5617. return result;
  5618. }
  5619. // ggml_conv_2d_sk_p0
  5620. struct ggml_tensor * ggml_conv_2d_sk_p0(
  5621. struct ggml_context * ctx,
  5622. struct ggml_tensor * a,
  5623. struct ggml_tensor * b) {
  5624. GGML_ASSERT(b->ne[3] == 1);
  5625. GGML_ASSERT(a->ne[2] == b->ne[2]);
  5626. GGML_ASSERT(b->ne[0] % a->ne[0] == 0);
  5627. GGML_ASSERT(b->ne[1] % a->ne[1] == 0);
  5628. bool is_node = false;
  5629. if (a->grad || b->grad) {
  5630. GGML_ASSERT(false); // TODO: implement backward
  5631. is_node = true;
  5632. }
  5633. const int64_t ne[4] = { b->ne[0]/a->ne[0], b->ne[1]/a->ne[1], a->ne[3], 1, };
  5634. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5635. result->op = GGML_OP_CONV_2D_SK_P0;
  5636. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5637. result->src0 = a;
  5638. result->src1 = b;
  5639. return result;
  5640. }
  5641. // ggml_flash_attn
  5642. struct ggml_tensor * ggml_flash_attn(
  5643. struct ggml_context * ctx,
  5644. struct ggml_tensor * q,
  5645. struct ggml_tensor * k,
  5646. struct ggml_tensor * v,
  5647. bool masked) {
  5648. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5649. // TODO: check if vT can be multiplied by (k*qT)
  5650. bool is_node = false;
  5651. if (q->grad || k->grad || v->grad) {
  5652. is_node = true;
  5653. }
  5654. //struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
  5655. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, q->ne);
  5656. result->op = GGML_OP_FLASH_ATTN;
  5657. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5658. result->src0 = q;
  5659. result->src1 = k;
  5660. result->opt[0] = v;
  5661. result->opt[1] = ggml_new_i32(ctx, masked ? 1 : 0);
  5662. return result;
  5663. }
  5664. // ggml_flash_ff
  5665. struct ggml_tensor * ggml_flash_ff(
  5666. struct ggml_context * ctx,
  5667. struct ggml_tensor * a,
  5668. struct ggml_tensor * b0,
  5669. struct ggml_tensor * b1,
  5670. struct ggml_tensor * c0,
  5671. struct ggml_tensor * c1) {
  5672. GGML_ASSERT(ggml_can_mul_mat(b0, a));
  5673. // TODO: more checks
  5674. bool is_node = false;
  5675. if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
  5676. is_node = true;
  5677. }
  5678. //struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  5679. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, a->ne);
  5680. result->op = GGML_OP_FLASH_FF;
  5681. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5682. result->src0 = a;
  5683. result->src1 = b0;
  5684. result->opt[0] = b1;
  5685. result->opt[1] = c0;
  5686. result->opt[2] = c1;
  5687. return result;
  5688. }
  5689. // ggml_flash_attn_back
  5690. struct ggml_tensor * ggml_flash_attn_back(
  5691. struct ggml_context * ctx,
  5692. struct ggml_tensor * q,
  5693. struct ggml_tensor * k,
  5694. struct ggml_tensor * v,
  5695. struct ggml_tensor * d,
  5696. bool masked) {
  5697. GGML_ASSERT(ggml_can_mul_mat(k, q));
  5698. // TODO: check if vT can be multiplied by (k*qT)
  5699. // d shape [D,N,ne2,ne3]
  5700. // q shape [D,N,ne2,ne3]
  5701. // k shape [D,M,ne2,ne3]
  5702. // v shape [M,D,ne2,ne3]
  5703. const int64_t D = q->ne[0];
  5704. const int64_t N = q->ne[1];
  5705. const int64_t M = k->ne[1];
  5706. const int64_t ne2 = q->ne[2];
  5707. const int64_t ne3 = q->ne[3];
  5708. GGML_ASSERT(k->ne[0] == D);
  5709. GGML_ASSERT(v->ne[0] == M);
  5710. GGML_ASSERT(v->ne[1] == D);
  5711. GGML_ASSERT(d->ne[0] == D);
  5712. GGML_ASSERT(d->ne[1] == N);
  5713. GGML_ASSERT(k->ne[2] == ne2);
  5714. GGML_ASSERT(k->ne[3] == ne3);
  5715. GGML_ASSERT(v->ne[2] == ne2);
  5716. GGML_ASSERT(v->ne[3] == ne3);
  5717. GGML_ASSERT(d->ne[2] == ne2);
  5718. GGML_ASSERT(d->ne[3] == ne3);
  5719. bool is_node = false;
  5720. if (q->grad || k->grad || v->grad) {
  5721. // when using this operation (in backwards pass) these grads are set.
  5722. // we don't want to create (big) grad of our result, so is_node is false.
  5723. is_node = false;
  5724. }
  5725. // store gradients of q, k and v as continuous tensors concatenated in result.
  5726. // q shape[D,N,ne2,ne3] ; k shape [D,M,ne2,ne3] ; v shape [M,D,ne2,ne3]
  5727. // gradq->data = result->data
  5728. // gradk->data = result->data + nb0*D*N*ne2*ne3
  5729. // gradv->data = result->data + nb0*D*N*ne2*ne3 + nb0*D*M*ne2*ne3
  5730. // note: v and gradv are actually transposed, i.e. v->ne[0] != D.
  5731. int64_t ne[4] = {D,M+N+M,ne2,ne3};
  5732. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5733. result->op = GGML_OP_FLASH_ATTN_BACK;
  5734. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5735. result->src0 = q;
  5736. result->src1 = k;
  5737. result->opt[0] = v;
  5738. result->opt[1] = d;
  5739. result->opt[2] = ggml_new_i32(ctx, masked ? 1 : 0);
  5740. return result;
  5741. }
  5742. // ggml_win_part
  5743. struct ggml_tensor * ggml_win_part(
  5744. struct ggml_context * ctx,
  5745. struct ggml_tensor * a,
  5746. int w) {
  5747. GGML_ASSERT(a->ne[3] == 1);
  5748. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5749. bool is_node = false;
  5750. if (a->grad) {
  5751. GGML_ASSERT(false); // TODO: implement backward
  5752. is_node = true;
  5753. }
  5754. // padding
  5755. const int px = (w - a->ne[1]%w)%w;
  5756. const int py = (w - a->ne[2]%w)%w;
  5757. const int npx = (px + a->ne[1])/w;
  5758. const int npy = (py + a->ne[2])/w;
  5759. const int np = npx*npy;
  5760. const int64_t ne[4] = { a->ne[0], w, w, np, };
  5761. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
  5762. ggml_scratch_save(ctx);
  5763. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 3);
  5764. ((int32_t *) b->data)[0] = npx;
  5765. ((int32_t *) b->data)[1] = npy;
  5766. ((int32_t *) b->data)[2] = w;
  5767. ggml_scratch_load(ctx);
  5768. result->op = GGML_OP_WIN_PART;
  5769. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5770. result->src0 = a;
  5771. result->src1 = NULL;
  5772. result->opt[0] = b;
  5773. return result;
  5774. }
  5775. // ggml_win_unpart
  5776. struct ggml_tensor * ggml_win_unpart(
  5777. struct ggml_context * ctx,
  5778. struct ggml_tensor * a,
  5779. int w0,
  5780. int h0,
  5781. int w) {
  5782. GGML_ASSERT(a->type == GGML_TYPE_F32);
  5783. bool is_node = false;
  5784. if (a->grad) {
  5785. GGML_ASSERT(false); // TODO: implement backward
  5786. is_node = true;
  5787. }
  5788. const int64_t ne[4] = { a->ne[0], w0, h0, 1, };
  5789. struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
  5790. ggml_scratch_save(ctx);
  5791. struct ggml_tensor * b = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
  5792. ((int32_t *) b->data)[0] = w;
  5793. ggml_scratch_load(ctx);
  5794. result->op = GGML_OP_WIN_UNPART;
  5795. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5796. result->src0 = a;
  5797. result->src1 = NULL;
  5798. result->opt[0] = b;
  5799. return result;
  5800. }
  5801. // ggml_map_unary
  5802. struct ggml_tensor * ggml_map_unary_impl_f32(
  5803. struct ggml_context * ctx,
  5804. struct ggml_tensor * a,
  5805. const ggml_unary_op_f32_t fun,
  5806. bool inplace) {
  5807. bool is_node = false;
  5808. if (!inplace && a->grad) {
  5809. is_node = true;
  5810. }
  5811. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5812. ggml_scratch_save(ctx);
  5813. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5814. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5815. ggml_scratch_load(ctx);
  5816. result->op = GGML_OP_MAP_UNARY;
  5817. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5818. result->src0 = a;
  5819. result->opt[0] = addr_tensor;
  5820. return result;
  5821. }
  5822. struct ggml_tensor * ggml_map_unary_f32(
  5823. struct ggml_context * ctx,
  5824. struct ggml_tensor * a,
  5825. const ggml_unary_op_f32_t fun) {
  5826. return ggml_map_unary_impl_f32(ctx, a, fun, false);
  5827. }
  5828. struct ggml_tensor * ggml_map_unary_inplace_f32(
  5829. struct ggml_context * ctx,
  5830. struct ggml_tensor * a,
  5831. const ggml_unary_op_f32_t fun) {
  5832. return ggml_map_unary_impl_f32(ctx, a, fun, true);
  5833. }
  5834. // ggml_map_binary
  5835. struct ggml_tensor * ggml_map_binary_impl_f32(
  5836. struct ggml_context * ctx,
  5837. struct ggml_tensor * a,
  5838. struct ggml_tensor * b,
  5839. const ggml_binary_op_f32_t fun,
  5840. bool inplace) {
  5841. GGML_ASSERT(ggml_are_same_shape(a, b));
  5842. bool is_node = false;
  5843. if (!inplace && (a->grad || b->grad)) {
  5844. is_node = true;
  5845. }
  5846. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5847. ggml_scratch_save(ctx);
  5848. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5849. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5850. ggml_scratch_load(ctx);
  5851. result->op = GGML_OP_MAP_BINARY;
  5852. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5853. result->src0 = a;
  5854. result->src1 = b;
  5855. result->opt[0] = addr_tensor;
  5856. return result;
  5857. }
  5858. struct ggml_tensor * ggml_map_binary_f32(
  5859. struct ggml_context * ctx,
  5860. struct ggml_tensor * a,
  5861. struct ggml_tensor * b,
  5862. const ggml_binary_op_f32_t fun) {
  5863. return ggml_map_binary_impl_f32(ctx, a, b, fun, false);
  5864. }
  5865. struct ggml_tensor * ggml_map_binary_inplace_f32(
  5866. struct ggml_context * ctx,
  5867. struct ggml_tensor * a,
  5868. struct ggml_tensor * b,
  5869. const ggml_binary_op_f32_t fun) {
  5870. return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
  5871. }
  5872. // ggml_map_custom1
  5873. struct ggml_tensor * ggml_map_custom1_impl_f32(
  5874. struct ggml_context * ctx,
  5875. struct ggml_tensor * a,
  5876. const ggml_custom1_op_f32_t fun,
  5877. bool inplace) {
  5878. bool is_node = false;
  5879. if (!inplace && a->grad) {
  5880. is_node = true;
  5881. }
  5882. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5883. ggml_scratch_save(ctx);
  5884. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5885. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5886. ggml_scratch_load(ctx);
  5887. result->op = GGML_OP_MAP_CUSTOM1;
  5888. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5889. result->src0 = a;
  5890. result->opt[0] = addr_tensor;
  5891. return result;
  5892. }
  5893. struct ggml_tensor * ggml_map_custom1_f32(
  5894. struct ggml_context * ctx,
  5895. struct ggml_tensor * a,
  5896. const ggml_custom1_op_f32_t fun) {
  5897. return ggml_map_custom1_impl_f32(ctx, a, fun, false);
  5898. }
  5899. struct ggml_tensor * ggml_map_custom1_inplace_f32(
  5900. struct ggml_context * ctx,
  5901. struct ggml_tensor * a,
  5902. const ggml_custom1_op_f32_t fun) {
  5903. return ggml_map_custom1_impl_f32(ctx, a, fun, true);
  5904. }
  5905. // ggml_map_custom2
  5906. struct ggml_tensor * ggml_map_custom2_impl_f32(
  5907. struct ggml_context * ctx,
  5908. struct ggml_tensor * a,
  5909. struct ggml_tensor * b,
  5910. const ggml_custom2_op_f32_t fun,
  5911. bool inplace) {
  5912. bool is_node = false;
  5913. if (!inplace && (a->grad || b->grad)) {
  5914. is_node = true;
  5915. }
  5916. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5917. ggml_scratch_save(ctx);
  5918. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5919. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5920. ggml_scratch_load(ctx);
  5921. result->op = GGML_OP_MAP_CUSTOM2;
  5922. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5923. result->src0 = a;
  5924. result->src1 = b;
  5925. result->opt[0] = addr_tensor;
  5926. return result;
  5927. }
  5928. struct ggml_tensor * ggml_map_custom2_f32(
  5929. struct ggml_context * ctx,
  5930. struct ggml_tensor * a,
  5931. struct ggml_tensor * b,
  5932. const ggml_custom2_op_f32_t fun) {
  5933. return ggml_map_custom2_impl_f32(ctx, a, b, fun, false);
  5934. }
  5935. struct ggml_tensor * ggml_map_custom2_inplace_f32(
  5936. struct ggml_context * ctx,
  5937. struct ggml_tensor * a,
  5938. struct ggml_tensor * b,
  5939. const ggml_custom2_op_f32_t fun) {
  5940. return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
  5941. }
  5942. // ggml_map_custom3
  5943. struct ggml_tensor * ggml_map_custom3_impl_f32(
  5944. struct ggml_context * ctx,
  5945. struct ggml_tensor * a,
  5946. struct ggml_tensor * b,
  5947. struct ggml_tensor * c,
  5948. const ggml_custom3_op_f32_t fun,
  5949. bool inplace) {
  5950. bool is_node = false;
  5951. if (!inplace && (a->grad || b->grad || c->grad)) {
  5952. is_node = true;
  5953. }
  5954. struct ggml_tensor *result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
  5955. ggml_scratch_save(ctx);
  5956. struct ggml_tensor * addr_tensor = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(void *) / sizeof(int32_t));
  5957. *((void (**)(void))addr_tensor->data) = (void (*)(void))fun;
  5958. ggml_scratch_load(ctx);
  5959. result->op = GGML_OP_MAP_CUSTOM3;
  5960. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5961. result->src0 = a;
  5962. result->src1 = b;
  5963. result->opt[0] = addr_tensor;
  5964. result->opt[1] = c;
  5965. return result;
  5966. }
  5967. struct ggml_tensor * ggml_map_custom3_f32(
  5968. struct ggml_context * ctx,
  5969. struct ggml_tensor * a,
  5970. struct ggml_tensor * b,
  5971. struct ggml_tensor * c,
  5972. const ggml_custom3_op_f32_t fun) {
  5973. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, false);
  5974. }
  5975. struct ggml_tensor * ggml_map_custom3_inplace_f32(
  5976. struct ggml_context * ctx,
  5977. struct ggml_tensor * a,
  5978. struct ggml_tensor * b,
  5979. struct ggml_tensor * c,
  5980. const ggml_custom3_op_f32_t fun) {
  5981. return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
  5982. }
  5983. // ggml_cross_entropy_loss
  5984. struct ggml_tensor * ggml_cross_entropy_loss(
  5985. struct ggml_context * ctx,
  5986. struct ggml_tensor * a,
  5987. struct ggml_tensor * b) {
  5988. GGML_ASSERT(ggml_are_same_shape(a, b));
  5989. bool is_node = false;
  5990. if (a->grad || b->grad) {
  5991. is_node = true;
  5992. }
  5993. struct ggml_tensor * result = ggml_new_tensor_1d(ctx, a->type, 1);
  5994. result->op = GGML_OP_CROSS_ENTROPY_LOSS;
  5995. result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
  5996. result->src0 = a;
  5997. result->src1 = b;
  5998. return result;
  5999. }
  6000. // ggml_cross_entropy_loss_back
  6001. struct ggml_tensor * ggml_cross_entropy_loss_back(
  6002. struct ggml_context * ctx,
  6003. struct ggml_tensor * a,
  6004. struct ggml_tensor * b,
  6005. struct ggml_tensor * c) {
  6006. GGML_ASSERT(ggml_are_same_shape(a, b));
  6007. GGML_ASSERT(ggml_is_scalar(c));
  6008. struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
  6009. result->op = GGML_OP_CROSS_ENTROPY_LOSS_BACK;
  6010. result->grad = NULL;
  6011. result->src0 = a;
  6012. result->src1 = b;
  6013. result->opt[0] = c;
  6014. return result;
  6015. }
  6016. ////////////////////////////////////////////////////////////////////////////////
  6017. void ggml_set_param(
  6018. struct ggml_context * ctx,
  6019. struct ggml_tensor * tensor) {
  6020. tensor->is_param = true;
  6021. GGML_ASSERT(tensor->grad == NULL);
  6022. tensor->grad = ggml_dup_tensor(ctx, tensor);
  6023. }
  6024. // ggml_compute_forward_dup
  6025. static void ggml_compute_forward_dup_same_cont(
  6026. const struct ggml_compute_params * params,
  6027. const struct ggml_tensor * src0,
  6028. struct ggml_tensor * dst) {
  6029. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6030. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  6031. GGML_ASSERT(src0->type == dst->type);
  6032. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6033. return;
  6034. }
  6035. const size_t nb00 = src0->nb[0];
  6036. const size_t nb0 = dst->nb[0];
  6037. const int ith = params->ith; // thread index
  6038. const int nth = params->nth; // number of threads
  6039. // parallelize by elements
  6040. const int ne = ggml_nelements(dst);
  6041. const int dr = (ne + nth - 1) / nth;
  6042. const int ie0 = dr * ith;
  6043. const int ie1 = MIN(ie0 + dr, ne);
  6044. if (ie0 < ie1) {
  6045. memcpy(
  6046. ((char *) dst->data + ie0*nb0),
  6047. ((char *) src0->data + ie0*nb00),
  6048. (ie1 - ie0) * GGML_TYPE_SIZE[src0->type]);
  6049. }
  6050. }
  6051. static void ggml_compute_forward_dup_f16(
  6052. const struct ggml_compute_params * params,
  6053. const struct ggml_tensor * src0,
  6054. struct ggml_tensor * dst) {
  6055. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6056. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6057. return;
  6058. }
  6059. const int64_t ne00 = src0->ne[0];
  6060. const int64_t ne01 = src0->ne[1];
  6061. const int64_t ne02 = src0->ne[2];
  6062. const int64_t ne03 = src0->ne[3];
  6063. const int64_t ne0 = dst->ne[0];
  6064. const int64_t ne1 = dst->ne[1];
  6065. const int64_t ne2 = dst->ne[2];
  6066. const int64_t ne3 = dst->ne[3];
  6067. const size_t nb00 = src0->nb[0];
  6068. const size_t nb01 = src0->nb[1];
  6069. const size_t nb02 = src0->nb[2];
  6070. const size_t nb03 = src0->nb[3];
  6071. const size_t nb0 = dst->nb[0];
  6072. const size_t nb1 = dst->nb[1];
  6073. const size_t nb2 = dst->nb[2];
  6074. const size_t nb3 = dst->nb[3];
  6075. const int ith = params->ith; // thread index
  6076. const int nth = params->nth; // number of threads
  6077. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6078. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6079. return;
  6080. }
  6081. // parallelize by rows
  6082. const int nr = ne01;
  6083. // number of rows per thread
  6084. const int dr = (nr + nth - 1) / nth;
  6085. // row range for this thread
  6086. const int ir0 = dr * ith;
  6087. const int ir1 = MIN(ir0 + dr, nr);
  6088. if (src0->type == dst->type &&
  6089. ne00 == ne0 &&
  6090. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6091. // copy by rows
  6092. const size_t rs = ne00*nb00;
  6093. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6094. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6095. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6096. memcpy(
  6097. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6098. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6099. rs);
  6100. }
  6101. }
  6102. }
  6103. return;
  6104. }
  6105. // TODO: add more special-case implementations for tensor shapes/strides that can benefit from memcpy
  6106. if (ggml_is_contiguous(dst)) {
  6107. if (nb00 == sizeof(ggml_fp16_t)) {
  6108. if (dst->type == GGML_TYPE_F16) {
  6109. size_t id = 0;
  6110. const size_t rs = ne00 * nb00;
  6111. char * dst_ptr = (char *) dst->data;
  6112. for (int i03 = 0; i03 < ne03; i03++) {
  6113. for (int i02 = 0; i02 < ne02; i02++) {
  6114. id += rs * ir0;
  6115. for (int i01 = ir0; i01 < ir1; i01++) {
  6116. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6117. memcpy(dst_ptr + id, src0_ptr, rs);
  6118. id += rs;
  6119. }
  6120. id += rs * (ne01 - ir1);
  6121. }
  6122. }
  6123. } else if (dst->type == GGML_TYPE_F32) {
  6124. size_t id = 0;
  6125. float * dst_ptr = (float *) dst->data;
  6126. for (int i03 = 0; i03 < ne03; i03++) {
  6127. for (int i02 = 0; i02 < ne02; i02++) {
  6128. id += ne00 * ir0;
  6129. for (int i01 = ir0; i01 < ir1; i01++) {
  6130. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6131. for (int i00 = 0; i00 < ne00; i00++) {
  6132. dst_ptr[id] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6133. id++;
  6134. }
  6135. }
  6136. id += ne00 * (ne01 - ir1);
  6137. }
  6138. }
  6139. } else if (ggml_is_quantized(dst->type)) {
  6140. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6141. float * src0_f32 = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6142. size_t id = 0;
  6143. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6144. char * dst_ptr = (char *) dst->data;
  6145. for (int i03 = 0; i03 < ne03; i03++) {
  6146. for (int i02 = 0; i02 < ne02; i02++) {
  6147. id += rs * ir0;
  6148. for (int i01 = ir0; i01 < ir1; i01++) {
  6149. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6150. for (int i00 = 0; i00 < ne00; i00++) {
  6151. src0_f32[i00] = GGML_FP16_TO_FP32(src0_ptr[i00]);
  6152. }
  6153. quantize_row_q(src0_f32, dst_ptr + id, ne00);
  6154. id += rs;
  6155. }
  6156. id += rs * (ne01 - ir1);
  6157. }
  6158. }
  6159. } else {
  6160. GGML_ASSERT(false); // TODO: implement
  6161. }
  6162. } else {
  6163. //printf("%s: this is not optimal - fix me\n", __func__);
  6164. if (dst->type == GGML_TYPE_F32) {
  6165. size_t id = 0;
  6166. float * dst_ptr = (float *) dst->data;
  6167. for (int i03 = 0; i03 < ne03; i03++) {
  6168. for (int i02 = 0; i02 < ne02; i02++) {
  6169. id += ne00 * ir0;
  6170. for (int i01 = ir0; i01 < ir1; i01++) {
  6171. for (int i00 = 0; i00 < ne00; i00++) {
  6172. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6173. dst_ptr[id] = GGML_FP16_TO_FP32(*src0_ptr);
  6174. id++;
  6175. }
  6176. }
  6177. id += ne00 * (ne01 - ir1);
  6178. }
  6179. }
  6180. } else if (dst->type == GGML_TYPE_F16) {
  6181. size_t id = 0;
  6182. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6183. for (int i03 = 0; i03 < ne03; i03++) {
  6184. for (int i02 = 0; i02 < ne02; i02++) {
  6185. id += ne00 * ir0;
  6186. for (int i01 = ir0; i01 < ir1; i01++) {
  6187. for (int i00 = 0; i00 < ne00; i00++) {
  6188. const ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6189. dst_ptr[id] = *src0_ptr;
  6190. id++;
  6191. }
  6192. }
  6193. id += ne00 * (ne01 - ir1);
  6194. }
  6195. }
  6196. } else {
  6197. GGML_ASSERT(false); // TODO: implement
  6198. }
  6199. }
  6200. return;
  6201. }
  6202. // dst counters
  6203. int64_t i10 = 0;
  6204. int64_t i11 = 0;
  6205. int64_t i12 = 0;
  6206. int64_t i13 = 0;
  6207. if (dst->type == GGML_TYPE_F16) {
  6208. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6209. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6210. i10 += ne00 * ir0;
  6211. while (i10 >= ne0) {
  6212. i10 -= ne0;
  6213. if (++i11 == ne1) {
  6214. i11 = 0;
  6215. if (++i12 == ne2) {
  6216. i12 = 0;
  6217. if (++i13 == ne3) {
  6218. i13 = 0;
  6219. }
  6220. }
  6221. }
  6222. }
  6223. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6224. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6225. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6226. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6227. memcpy(dst_ptr, src0_ptr, sizeof(ggml_fp16_t));
  6228. if (++i10 == ne00) {
  6229. i10 = 0;
  6230. if (++i11 == ne01) {
  6231. i11 = 0;
  6232. if (++i12 == ne02) {
  6233. i12 = 0;
  6234. if (++i13 == ne03) {
  6235. i13 = 0;
  6236. }
  6237. }
  6238. }
  6239. }
  6240. }
  6241. }
  6242. i10 += ne00 * (ne01 - ir1);
  6243. while (i10 >= ne0) {
  6244. i10 -= ne0;
  6245. if (++i11 == ne1) {
  6246. i11 = 0;
  6247. if (++i12 == ne2) {
  6248. i12 = 0;
  6249. if (++i13 == ne3) {
  6250. i13 = 0;
  6251. }
  6252. }
  6253. }
  6254. }
  6255. }
  6256. }
  6257. } else if (dst->type == GGML_TYPE_F32) {
  6258. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6259. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6260. i10 += ne00 * ir0;
  6261. while (i10 >= ne0) {
  6262. i10 -= ne0;
  6263. if (++i11 == ne1) {
  6264. i11 = 0;
  6265. if (++i12 == ne2) {
  6266. i12 = 0;
  6267. if (++i13 == ne3) {
  6268. i13 = 0;
  6269. }
  6270. }
  6271. }
  6272. }
  6273. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6274. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6275. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6276. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6277. *(float *) dst_ptr = GGML_FP16_TO_FP32(*(const ggml_fp16_t *) src0_ptr);
  6278. if (++i10 == ne0) {
  6279. i10 = 0;
  6280. if (++i11 == ne1) {
  6281. i11 = 0;
  6282. if (++i12 == ne2) {
  6283. i12 = 0;
  6284. if (++i13 == ne3) {
  6285. i13 = 0;
  6286. }
  6287. }
  6288. }
  6289. }
  6290. }
  6291. }
  6292. i10 += ne00 * (ne01 - ir1);
  6293. while (i10 >= ne0) {
  6294. i10 -= ne0;
  6295. if (++i11 == ne1) {
  6296. i11 = 0;
  6297. if (++i12 == ne2) {
  6298. i12 = 0;
  6299. if (++i13 == ne3) {
  6300. i13 = 0;
  6301. }
  6302. }
  6303. }
  6304. }
  6305. }
  6306. }
  6307. } else {
  6308. GGML_ASSERT(false); // TODO: implement
  6309. }
  6310. }
  6311. static void ggml_compute_forward_dup_f32(
  6312. const struct ggml_compute_params * params,
  6313. const struct ggml_tensor * src0,
  6314. struct ggml_tensor * dst) {
  6315. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  6316. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6317. return;
  6318. }
  6319. const int64_t ne00 = src0->ne[0];
  6320. const int64_t ne01 = src0->ne[1];
  6321. const int64_t ne02 = src0->ne[2];
  6322. const int64_t ne03 = src0->ne[3];
  6323. const int64_t ne0 = dst->ne[0];
  6324. const int64_t ne1 = dst->ne[1];
  6325. const int64_t ne2 = dst->ne[2];
  6326. const int64_t ne3 = dst->ne[3];
  6327. const size_t nb00 = src0->nb[0];
  6328. const size_t nb01 = src0->nb[1];
  6329. const size_t nb02 = src0->nb[2];
  6330. const size_t nb03 = src0->nb[3];
  6331. const size_t nb0 = dst->nb[0];
  6332. const size_t nb1 = dst->nb[1];
  6333. const size_t nb2 = dst->nb[2];
  6334. const size_t nb3 = dst->nb[3];
  6335. const int ith = params->ith; // thread index
  6336. const int nth = params->nth; // number of threads
  6337. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6338. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6339. return;
  6340. }
  6341. // parallelize by rows
  6342. const int nr = ne01;
  6343. // number of rows per thread
  6344. const int dr = (nr + nth - 1) / nth;
  6345. // row range for this thread
  6346. const int ir0 = dr * ith;
  6347. const int ir1 = MIN(ir0 + dr, nr);
  6348. if (src0->type == dst->type &&
  6349. ne00 == ne0 &&
  6350. nb00 == GGML_TYPE_SIZE[src0->type] && nb0 == GGML_TYPE_SIZE[dst->type]) {
  6351. // copy by rows
  6352. const size_t rs = ne00*nb00;
  6353. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6354. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6355. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6356. memcpy(
  6357. ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  6358. ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03),
  6359. rs);
  6360. }
  6361. }
  6362. }
  6363. return;
  6364. }
  6365. if (ggml_is_contiguous(dst)) {
  6366. // TODO: simplify
  6367. if (nb00 == sizeof(float)) {
  6368. if (dst->type == GGML_TYPE_F32) {
  6369. size_t id = 0;
  6370. const size_t rs = ne00 * nb00;
  6371. char * dst_ptr = (char *) dst->data;
  6372. for (int i03 = 0; i03 < ne03; i03++) {
  6373. for (int i02 = 0; i02 < ne02; i02++) {
  6374. id += rs * ir0;
  6375. for (int i01 = ir0; i01 < ir1; i01++) {
  6376. const char * src0_ptr = (char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03;
  6377. memcpy(dst_ptr + id, src0_ptr, rs);
  6378. id += rs;
  6379. }
  6380. id += rs * (ne01 - ir1);
  6381. }
  6382. }
  6383. } else if (dst->type == GGML_TYPE_F16) {
  6384. size_t id = 0;
  6385. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6386. for (int i03 = 0; i03 < ne03; i03++) {
  6387. for (int i02 = 0; i02 < ne02; i02++) {
  6388. id += ne00 * ir0;
  6389. for (int i01 = ir0; i01 < ir1; i01++) {
  6390. for (int i00 = 0; i00 < ne00; i00++) {
  6391. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6392. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6393. id++;
  6394. }
  6395. }
  6396. id += ne00 * (ne01 - ir1);
  6397. }
  6398. }
  6399. } else if (ggml_is_quantized(dst->type)) {
  6400. quantize_row_q_t const quantize_row_q = quantize_fns[dst->type].quantize_row_q;
  6401. size_t id = 0;
  6402. size_t rs = nb0 * (ne00 / GGML_BLCK_SIZE[dst->type]);
  6403. char * dst_ptr = (char *) dst->data;
  6404. for (int i03 = 0; i03 < ne03; i03++) {
  6405. for (int i02 = 0; i02 < ne02; i02++) {
  6406. id += rs * ir0;
  6407. for (int i01 = ir0; i01 < ir1; i01++) {
  6408. const float * src0_ptr = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  6409. quantize_row_q(src0_ptr, dst_ptr + id, ne00);
  6410. id += rs;
  6411. }
  6412. id += rs * (ne01 - ir1);
  6413. }
  6414. }
  6415. } else {
  6416. GGML_ASSERT(false); // TODO: implement
  6417. }
  6418. } else {
  6419. //printf("%s: this is not optimal - fix me\n", __func__);
  6420. if (dst->type == GGML_TYPE_F32) {
  6421. size_t id = 0;
  6422. float * dst_ptr = (float *) dst->data;
  6423. for (int i03 = 0; i03 < ne03; i03++) {
  6424. for (int i02 = 0; i02 < ne02; i02++) {
  6425. id += ne00 * ir0;
  6426. for (int i01 = ir0; i01 < ir1; i01++) {
  6427. for (int i00 = 0; i00 < ne00; i00++) {
  6428. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6429. dst_ptr[id] = *src0_ptr;
  6430. id++;
  6431. }
  6432. }
  6433. id += ne00 * (ne01 - ir1);
  6434. }
  6435. }
  6436. } else if (dst->type == GGML_TYPE_F16) {
  6437. size_t id = 0;
  6438. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) dst->data;
  6439. for (int i03 = 0; i03 < ne03; i03++) {
  6440. for (int i02 = 0; i02 < ne02; i02++) {
  6441. id += ne00 * ir0;
  6442. for (int i01 = ir0; i01 < ir1; i01++) {
  6443. for (int i00 = 0; i00 < ne00; i00++) {
  6444. const float * src0_ptr = (float *) ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6445. dst_ptr[id] = GGML_FP32_TO_FP16(*src0_ptr);
  6446. id++;
  6447. }
  6448. }
  6449. id += ne00 * (ne01 - ir1);
  6450. }
  6451. }
  6452. } else {
  6453. GGML_ASSERT(false); // TODO: implement
  6454. }
  6455. }
  6456. return;
  6457. }
  6458. // dst counters
  6459. int64_t i10 = 0;
  6460. int64_t i11 = 0;
  6461. int64_t i12 = 0;
  6462. int64_t i13 = 0;
  6463. if (dst->type == GGML_TYPE_F32) {
  6464. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6465. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6466. i10 += ne00 * ir0;
  6467. while (i10 >= ne0) {
  6468. i10 -= ne0;
  6469. if (++i11 == ne1) {
  6470. i11 = 0;
  6471. if (++i12 == ne2) {
  6472. i12 = 0;
  6473. if (++i13 == ne3) {
  6474. i13 = 0;
  6475. }
  6476. }
  6477. }
  6478. }
  6479. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6480. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6481. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6482. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6483. memcpy(dst_ptr, src0_ptr, sizeof(float));
  6484. if (++i10 == ne0) {
  6485. i10 = 0;
  6486. if (++i11 == ne1) {
  6487. i11 = 0;
  6488. if (++i12 == ne2) {
  6489. i12 = 0;
  6490. if (++i13 == ne3) {
  6491. i13 = 0;
  6492. }
  6493. }
  6494. }
  6495. }
  6496. }
  6497. }
  6498. i10 += ne00 * (ne01 - ir1);
  6499. while (i10 >= ne0) {
  6500. i10 -= ne0;
  6501. if (++i11 == ne1) {
  6502. i11 = 0;
  6503. if (++i12 == ne2) {
  6504. i12 = 0;
  6505. if (++i13 == ne3) {
  6506. i13 = 0;
  6507. }
  6508. }
  6509. }
  6510. }
  6511. }
  6512. }
  6513. } else if (dst->type == GGML_TYPE_F16) {
  6514. for (int64_t i03 = 0; i03 < ne03; i03++) {
  6515. for (int64_t i02 = 0; i02 < ne02; i02++) {
  6516. i10 += ne00 * ir0;
  6517. while (i10 >= ne0) {
  6518. i10 -= ne0;
  6519. if (++i11 == ne1) {
  6520. i11 = 0;
  6521. if (++i12 == ne2) {
  6522. i12 = 0;
  6523. if (++i13 == ne3) {
  6524. i13 = 0;
  6525. }
  6526. }
  6527. }
  6528. }
  6529. for (int64_t i01 = ir0; i01 < ir1; i01++) {
  6530. for (int64_t i00 = 0; i00 < ne00; i00++) {
  6531. const char * src0_ptr = ((char *) src0->data + i00*nb00 + i01*nb01 + i02*nb02 + i03*nb03);
  6532. char * dst_ptr = ((char *) dst->data + i10*nb0 + i11*nb1 + i12*nb2 + i13*nb3);
  6533. *(ggml_fp16_t *) dst_ptr = GGML_FP32_TO_FP16(*(const float *) src0_ptr);
  6534. if (++i10 == ne0) {
  6535. i10 = 0;
  6536. if (++i11 == ne1) {
  6537. i11 = 0;
  6538. if (++i12 == ne2) {
  6539. i12 = 0;
  6540. if (++i13 == ne3) {
  6541. i13 = 0;
  6542. }
  6543. }
  6544. }
  6545. }
  6546. }
  6547. }
  6548. i10 += ne00 * (ne01 - ir1);
  6549. while (i10 >= ne0) {
  6550. i10 -= ne0;
  6551. if (++i11 == ne1) {
  6552. i11 = 0;
  6553. if (++i12 == ne2) {
  6554. i12 = 0;
  6555. if (++i13 == ne3) {
  6556. i13 = 0;
  6557. }
  6558. }
  6559. }
  6560. }
  6561. }
  6562. }
  6563. } else {
  6564. GGML_ASSERT(false); // TODO: implement
  6565. }
  6566. }
  6567. static void ggml_compute_forward_dup(
  6568. const struct ggml_compute_params * params,
  6569. const struct ggml_tensor * src0,
  6570. struct ggml_tensor * dst) {
  6571. if (ggml_is_contiguous(src0) && ggml_is_contiguous(dst) && src0->type == dst->type) {
  6572. ggml_compute_forward_dup_same_cont(params, src0, dst);
  6573. return;
  6574. }
  6575. switch (src0->type) {
  6576. case GGML_TYPE_F16:
  6577. {
  6578. ggml_compute_forward_dup_f16(params, src0, dst);
  6579. } break;
  6580. case GGML_TYPE_F32:
  6581. {
  6582. ggml_compute_forward_dup_f32(params, src0, dst);
  6583. } break;
  6584. default:
  6585. {
  6586. GGML_ASSERT(false);
  6587. } break;
  6588. }
  6589. }
  6590. // ggml_compute_forward_add
  6591. static void ggml_compute_forward_add_f32(
  6592. const struct ggml_compute_params * params,
  6593. const struct ggml_tensor * src0,
  6594. const struct ggml_tensor * src1,
  6595. struct ggml_tensor * dst) {
  6596. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6597. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6598. return;
  6599. }
  6600. const int ith = params->ith;
  6601. const int nth = params->nth;
  6602. const int nr = ggml_nrows(src0);
  6603. const int64_t ne0 = src0->ne[0];
  6604. const int64_t ne1 = src0->ne[1];
  6605. const int64_t ne2 = src0->ne[2];
  6606. const size_t nb00 = src0->nb[0];
  6607. const size_t nb01 = src0->nb[1];
  6608. const size_t nb02 = src0->nb[2];
  6609. const size_t nb03 = src0->nb[3];
  6610. const size_t nb10 = src1->nb[0];
  6611. const size_t nb11 = src1->nb[1];
  6612. const size_t nb12 = src1->nb[2];
  6613. const size_t nb13 = src1->nb[3];
  6614. const size_t nb0 = dst->nb[0];
  6615. const size_t nb1 = dst->nb[1];
  6616. const size_t nb2 = dst->nb[2];
  6617. const size_t nb3 = dst->nb[3];
  6618. GGML_ASSERT( nb0 == sizeof(float));
  6619. GGML_ASSERT(nb00 == sizeof(float));
  6620. // rows per thread
  6621. const int dr = (nr + nth - 1)/nth;
  6622. // row range for this thread
  6623. const int ir0 = dr*ith;
  6624. const int ir1 = MIN(ir0 + dr, nr);
  6625. if (nb10 == sizeof(float)) {
  6626. for (int ir = ir0; ir < ir1; ++ir) {
  6627. // src0, src1 and dst are same shape => same indices
  6628. const int i3 = ir/(ne2*ne1);
  6629. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6630. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6631. #ifdef GGML_USE_ACCELERATE
  6632. vDSP_vadd(
  6633. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6634. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  6635. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6636. ne0);
  6637. #else
  6638. ggml_vec_add_f32(ne0,
  6639. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6640. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6641. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  6642. #endif
  6643. // }
  6644. // }
  6645. }
  6646. } else {
  6647. // src1 is not contiguous
  6648. for (int ir = ir0; ir < ir1; ++ir) {
  6649. // src0, src1 and dst are same shape => same indices
  6650. const int i3 = ir/(ne2*ne1);
  6651. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6652. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6653. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6654. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6655. for (int i0 = 0; i0 < ne0; i0++) {
  6656. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  6657. dst_ptr[i0] = src0_ptr[i0] + *src1_ptr;
  6658. }
  6659. }
  6660. }
  6661. }
  6662. static void ggml_compute_forward_add_f16_f32(
  6663. const struct ggml_compute_params * params,
  6664. const struct ggml_tensor * src0,
  6665. const struct ggml_tensor * src1,
  6666. struct ggml_tensor * dst) {
  6667. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6668. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6669. return;
  6670. }
  6671. const int ith = params->ith;
  6672. const int nth = params->nth;
  6673. const int nr = ggml_nrows(src0);
  6674. const int64_t ne0 = src0->ne[0];
  6675. const int64_t ne1 = src0->ne[1];
  6676. const int64_t ne2 = src0->ne[2];
  6677. const size_t nb00 = src0->nb[0];
  6678. const size_t nb01 = src0->nb[1];
  6679. const size_t nb02 = src0->nb[2];
  6680. const size_t nb03 = src0->nb[3];
  6681. const size_t nb10 = src1->nb[0];
  6682. const size_t nb11 = src1->nb[1];
  6683. const size_t nb12 = src1->nb[2];
  6684. const size_t nb13 = src1->nb[3];
  6685. const size_t nb0 = dst->nb[0];
  6686. const size_t nb1 = dst->nb[1];
  6687. const size_t nb2 = dst->nb[2];
  6688. const size_t nb3 = dst->nb[3];
  6689. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6690. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6691. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6692. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6693. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6694. // rows per thread
  6695. const int dr = (nr + nth - 1)/nth;
  6696. // row range for this thread
  6697. const int ir0 = dr*ith;
  6698. const int ir1 = MIN(ir0 + dr, nr);
  6699. if (nb10 == sizeof(float)) {
  6700. for (int ir = ir0; ir < ir1; ++ir) {
  6701. // src0, src1 and dst are same shape => same indices
  6702. const int i3 = ir/(ne2*ne1);
  6703. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6704. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6705. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6706. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6707. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6708. for (int i = 0; i < ne0; i++) {
  6709. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + src1_ptr[i]);
  6710. }
  6711. }
  6712. }
  6713. else {
  6714. // src1 is not contiguous
  6715. GGML_ASSERT(false);
  6716. }
  6717. }
  6718. static void ggml_compute_forward_add_f16_f16(
  6719. const struct ggml_compute_params * params,
  6720. const struct ggml_tensor * src0,
  6721. const struct ggml_tensor * src1,
  6722. struct ggml_tensor * dst) {
  6723. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6724. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6725. return;
  6726. }
  6727. const int ith = params->ith;
  6728. const int nth = params->nth;
  6729. const int nr = ggml_nrows(src0);
  6730. const int64_t ne0 = src0->ne[0];
  6731. const int64_t ne1 = src0->ne[1];
  6732. const int64_t ne2 = src0->ne[2];
  6733. const size_t nb00 = src0->nb[0];
  6734. const size_t nb01 = src0->nb[1];
  6735. const size_t nb02 = src0->nb[2];
  6736. const size_t nb03 = src0->nb[3];
  6737. const size_t nb10 = src1->nb[0];
  6738. const size_t nb11 = src1->nb[1];
  6739. const size_t nb12 = src1->nb[2];
  6740. const size_t nb13 = src1->nb[3];
  6741. const size_t nb0 = dst->nb[0];
  6742. const size_t nb1 = dst->nb[1];
  6743. const size_t nb2 = dst->nb[2];
  6744. const size_t nb3 = dst->nb[3];
  6745. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6746. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  6747. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6748. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6749. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6750. // rows per thread
  6751. const int dr = (nr + nth - 1)/nth;
  6752. // row range for this thread
  6753. const int ir0 = dr*ith;
  6754. const int ir1 = MIN(ir0 + dr, nr);
  6755. if (nb10 == sizeof(ggml_fp16_t)) {
  6756. for (int ir = ir0; ir < ir1; ++ir) {
  6757. // src0, src1 and dst are same shape => same indices
  6758. const int i3 = ir/(ne2*ne1);
  6759. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6760. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6761. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  6762. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6763. ggml_fp16_t * src1_ptr = (ggml_fp16_t *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11);
  6764. for (int i = 0; i < ne0; i++) {
  6765. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + GGML_FP16_TO_FP32(src1_ptr[i]));
  6766. }
  6767. }
  6768. }
  6769. else {
  6770. // src1 is not contiguous
  6771. GGML_ASSERT(false);
  6772. }
  6773. }
  6774. static void ggml_compute_forward_add_q_f32(
  6775. const struct ggml_compute_params * params,
  6776. const struct ggml_tensor * src0,
  6777. const struct ggml_tensor * src1,
  6778. struct ggml_tensor * dst) {
  6779. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  6780. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6781. return;
  6782. }
  6783. const int nr = ggml_nrows(src0);
  6784. const int64_t ne00 = src0->ne[0];
  6785. const int64_t ne01 = src0->ne[1];
  6786. const int64_t ne02 = src0->ne[2];
  6787. //const int64_t ne03 = src0->ne[3];
  6788. const size_t nb00 = src0->nb[0];
  6789. const size_t nb01 = src0->nb[1];
  6790. const size_t nb02 = src0->nb[2];
  6791. const size_t nb03 = src0->nb[3];
  6792. const size_t nb10 = src1->nb[0];
  6793. const size_t nb11 = src1->nb[1];
  6794. const size_t nb12 = src1->nb[2];
  6795. const size_t nb13 = src1->nb[3];
  6796. const size_t nb0 = dst->nb[0];
  6797. const size_t nb1 = dst->nb[1];
  6798. const size_t nb2 = dst->nb[2];
  6799. const size_t nb3 = dst->nb[3];
  6800. const int ith = params->ith;
  6801. const int nth = params->nth;
  6802. const enum ggml_type type = src0->type;
  6803. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  6804. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  6805. // we don't support permuted src0 or src1
  6806. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  6807. GGML_ASSERT(nb10 == sizeof(float));
  6808. // dst cannot be transposed or permuted
  6809. GGML_ASSERT(nb0 <= nb1);
  6810. GGML_ASSERT(nb1 <= nb2);
  6811. GGML_ASSERT(nb2 <= nb3);
  6812. GGML_ASSERT(ggml_is_quantized(src0->type));
  6813. GGML_ASSERT(dst->type == src0->type);
  6814. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6815. // rows per thread
  6816. const int dr = (nr + nth - 1)/nth;
  6817. // row range for this thread
  6818. const int ir0 = dr*ith;
  6819. const int ir1 = MIN(ir0 + dr, nr);
  6820. float * wdata = (float *) params->wdata + (ne00 + CACHE_LINE_SIZE_F32) * ith;
  6821. for (int ir = ir0; ir < ir1; ++ir) {
  6822. // src0 indices
  6823. const int i03 = ir/(ne02*ne01);
  6824. const int i02 = (ir - i03*ne02*ne01)/ne01;
  6825. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  6826. // src1 and dst are same shape as src0 => same indices
  6827. const int i13 = i03;
  6828. const int i12 = i02;
  6829. const int i11 = i01;
  6830. const int i3 = i03;
  6831. const int i2 = i02;
  6832. const int i1 = i01;
  6833. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  6834. float * src1_row = (float *)((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13));
  6835. void * dst_row = (void *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  6836. assert(ne00 % 32 == 0);
  6837. // unquantize row from src0 to temp buffer
  6838. dequantize_row_q(src0_row, wdata, ne00);
  6839. // add src1
  6840. ggml_vec_acc_f32(ne00, wdata, src1_row);
  6841. // quantize row to dst
  6842. quantize_row_q(wdata, dst_row, ne00);
  6843. }
  6844. }
  6845. static void ggml_compute_forward_add(
  6846. const struct ggml_compute_params * params,
  6847. const struct ggml_tensor * src0,
  6848. const struct ggml_tensor * src1,
  6849. struct ggml_tensor * dst) {
  6850. switch (src0->type) {
  6851. case GGML_TYPE_F32:
  6852. {
  6853. ggml_compute_forward_add_f32(params, src0, src1, dst);
  6854. } break;
  6855. case GGML_TYPE_F16:
  6856. {
  6857. if (src1->type == GGML_TYPE_F16) {
  6858. ggml_compute_forward_add_f16_f16(params, src0, src1, dst);
  6859. }
  6860. else if (src1->type == GGML_TYPE_F32) {
  6861. ggml_compute_forward_add_f16_f32(params, src0, src1, dst);
  6862. }
  6863. else {
  6864. GGML_ASSERT(false);
  6865. }
  6866. } break;
  6867. case GGML_TYPE_Q4_0:
  6868. case GGML_TYPE_Q4_1:
  6869. case GGML_TYPE_Q5_0:
  6870. case GGML_TYPE_Q5_1:
  6871. case GGML_TYPE_Q8_0:
  6872. case GGML_TYPE_Q2_K:
  6873. case GGML_TYPE_Q3_K:
  6874. case GGML_TYPE_Q4_K:
  6875. case GGML_TYPE_Q5_K:
  6876. case GGML_TYPE_Q6_K:
  6877. {
  6878. ggml_compute_forward_add_q_f32(params, src0, src1, dst);
  6879. } break;
  6880. default:
  6881. {
  6882. GGML_ASSERT(false);
  6883. } break;
  6884. }
  6885. }
  6886. // ggml_compute_forward_add1
  6887. static void ggml_compute_forward_add1_f32(
  6888. const struct ggml_compute_params * params,
  6889. const struct ggml_tensor * src0,
  6890. const struct ggml_tensor * src1,
  6891. struct ggml_tensor * dst) {
  6892. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6893. GGML_ASSERT(ggml_is_scalar(src1));
  6894. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6895. return;
  6896. }
  6897. const int ith = params->ith;
  6898. const int nth = params->nth;
  6899. const int nr = ggml_nrows(src0);
  6900. const int64_t ne0 = src0->ne[0];
  6901. const int64_t ne1 = src0->ne[1];
  6902. const int64_t ne2 = src0->ne[2];
  6903. const size_t nb00 = src0->nb[0];
  6904. const size_t nb01 = src0->nb[1];
  6905. const size_t nb02 = src0->nb[2];
  6906. const size_t nb03 = src0->nb[3];
  6907. const size_t nb0 = dst->nb[0];
  6908. const size_t nb1 = dst->nb[1];
  6909. const size_t nb2 = dst->nb[2];
  6910. const size_t nb3 = dst->nb[3];
  6911. GGML_ASSERT( nb0 == sizeof(float));
  6912. GGML_ASSERT(nb00 == sizeof(float));
  6913. // rows per thread
  6914. const int dr = (nr + nth - 1)/nth;
  6915. // row range for this thread
  6916. const int ir0 = dr*ith;
  6917. const int ir1 = MIN(ir0 + dr, nr);
  6918. for (int ir = ir0; ir < ir1; ++ir) {
  6919. // src0 and dst are same shape => same indices
  6920. const int i3 = ir/(ne2*ne1);
  6921. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6922. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6923. #ifdef GGML_USE_ACCELERATE
  6924. UNUSED(ggml_vec_add1_f32);
  6925. vDSP_vadd(
  6926. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  6927. (float *) ((char *) src1->data), 0,
  6928. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  6929. ne0);
  6930. #else
  6931. ggml_vec_add1_f32(ne0,
  6932. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  6933. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  6934. *(float *) src1->data);
  6935. #endif
  6936. }
  6937. }
  6938. static void ggml_compute_forward_add1_f16_f32(
  6939. const struct ggml_compute_params * params,
  6940. const struct ggml_tensor * src0,
  6941. const struct ggml_tensor * src1,
  6942. struct ggml_tensor * dst) {
  6943. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6944. GGML_ASSERT(ggml_is_scalar(src1));
  6945. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6946. return;
  6947. }
  6948. // scalar to add
  6949. const float v = *(float *) src1->data;
  6950. const int ith = params->ith;
  6951. const int nth = params->nth;
  6952. const int nr = ggml_nrows(src0);
  6953. const int64_t ne0 = src0->ne[0];
  6954. const int64_t ne1 = src0->ne[1];
  6955. const int64_t ne2 = src0->ne[2];
  6956. const size_t nb00 = src0->nb[0];
  6957. const size_t nb01 = src0->nb[1];
  6958. const size_t nb02 = src0->nb[2];
  6959. const size_t nb03 = src0->nb[3];
  6960. const size_t nb0 = dst->nb[0];
  6961. const size_t nb1 = dst->nb[1];
  6962. const size_t nb2 = dst->nb[2];
  6963. const size_t nb3 = dst->nb[3];
  6964. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  6965. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  6966. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  6967. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  6968. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  6969. // rows per thread
  6970. const int dr = (nr + nth - 1)/nth;
  6971. // row range for this thread
  6972. const int ir0 = dr*ith;
  6973. const int ir1 = MIN(ir0 + dr, nr);
  6974. for (int ir = ir0; ir < ir1; ++ir) {
  6975. // src0 and dst are same shape => same indices
  6976. const int i3 = ir/(ne2*ne1);
  6977. const int i2 = (ir - i3*ne2*ne1)/ne1;
  6978. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  6979. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  6980. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  6981. for (int i = 0; i < ne0; i++) {
  6982. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  6983. }
  6984. }
  6985. }
  6986. static void ggml_compute_forward_add1_f16_f16(
  6987. const struct ggml_compute_params * params,
  6988. const struct ggml_tensor * src0,
  6989. const struct ggml_tensor * src1,
  6990. struct ggml_tensor * dst) {
  6991. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  6992. GGML_ASSERT(ggml_is_scalar(src1));
  6993. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  6994. return;
  6995. }
  6996. // scalar to add
  6997. const float v = GGML_FP16_TO_FP32(*(ggml_fp16_t *) src1->data);
  6998. const int ith = params->ith;
  6999. const int nth = params->nth;
  7000. const int nr = ggml_nrows(src0);
  7001. const int64_t ne0 = src0->ne[0];
  7002. const int64_t ne1 = src0->ne[1];
  7003. const int64_t ne2 = src0->ne[2];
  7004. const size_t nb00 = src0->nb[0];
  7005. const size_t nb01 = src0->nb[1];
  7006. const size_t nb02 = src0->nb[2];
  7007. const size_t nb03 = src0->nb[3];
  7008. const size_t nb0 = dst->nb[0];
  7009. const size_t nb1 = dst->nb[1];
  7010. const size_t nb2 = dst->nb[2];
  7011. const size_t nb3 = dst->nb[3];
  7012. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  7013. GGML_ASSERT(src1->type == GGML_TYPE_F16);
  7014. GGML_ASSERT(dst->type == GGML_TYPE_F16);
  7015. GGML_ASSERT( nb0 == sizeof(ggml_fp16_t));
  7016. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  7017. // rows per thread
  7018. const int dr = (nr + nth - 1)/nth;
  7019. // row range for this thread
  7020. const int ir0 = dr*ith;
  7021. const int ir1 = MIN(ir0 + dr, nr);
  7022. for (int ir = ir0; ir < ir1; ++ir) {
  7023. // src0 and dst are same shape => same indices
  7024. const int i3 = ir/(ne2*ne1);
  7025. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7026. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7027. ggml_fp16_t * dst_ptr = (ggml_fp16_t *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7028. ggml_fp16_t * src0_ptr = (ggml_fp16_t *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7029. for (int i = 0; i < ne0; i++) {
  7030. dst_ptr[i] = GGML_FP32_TO_FP16(GGML_FP16_TO_FP32(src0_ptr[i]) + v);
  7031. }
  7032. }
  7033. }
  7034. static void ggml_compute_forward_add1_q_f32(
  7035. const struct ggml_compute_params * params,
  7036. const struct ggml_tensor * src0,
  7037. const struct ggml_tensor * src1,
  7038. struct ggml_tensor * dst) {
  7039. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7040. GGML_ASSERT(ggml_is_scalar(src1));
  7041. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7042. return;
  7043. }
  7044. // scalar to add
  7045. const float v = *(float *) src1->data;
  7046. const int ith = params->ith;
  7047. const int nth = params->nth;
  7048. const int nr = ggml_nrows(src0);
  7049. const int64_t ne0 = src0->ne[0];
  7050. const int64_t ne1 = src0->ne[1];
  7051. const int64_t ne2 = src0->ne[2];
  7052. const size_t nb00 = src0->nb[0];
  7053. const size_t nb01 = src0->nb[1];
  7054. const size_t nb02 = src0->nb[2];
  7055. const size_t nb03 = src0->nb[3];
  7056. const size_t nb0 = dst->nb[0];
  7057. const size_t nb1 = dst->nb[1];
  7058. const size_t nb2 = dst->nb[2];
  7059. const size_t nb3 = dst->nb[3];
  7060. const enum ggml_type type = src0->type;
  7061. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  7062. quantize_row_q_t const quantize_row_q = quantize_fns[type].quantize_row_q;
  7063. // we don't support permuted src0
  7064. GGML_ASSERT(nb00 == GGML_TYPE_SIZE[type]);
  7065. // dst cannot be transposed or permuted
  7066. GGML_ASSERT(nb0 <= nb1);
  7067. GGML_ASSERT(nb1 <= nb2);
  7068. GGML_ASSERT(nb2 <= nb3);
  7069. GGML_ASSERT(ggml_is_quantized(src0->type));
  7070. GGML_ASSERT(dst->type == src0->type);
  7071. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  7072. // rows per thread
  7073. const int dr = (nr + nth - 1)/nth;
  7074. // row range for this thread
  7075. const int ir0 = dr*ith;
  7076. const int ir1 = MIN(ir0 + dr, nr);
  7077. float * wdata = (float *) params->wdata + (ne0 + CACHE_LINE_SIZE_F32) * ith;
  7078. for (int ir = ir0; ir < ir1; ++ir) {
  7079. // src0 and dst are same shape => same indices
  7080. const int i3 = ir/(ne2*ne1);
  7081. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7082. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7083. void * src0_row = (void *) ((char *) src0->data + (i1*nb01 + i2*nb02 + i3*nb03));
  7084. void * dst_row = (void *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb0 ));
  7085. assert(ne0 % 32 == 0);
  7086. // unquantize row from src0 to temp buffer
  7087. dequantize_row_q(src0_row, wdata, ne0);
  7088. // add src1
  7089. ggml_vec_acc1_f32(ne0, wdata, v);
  7090. // quantize row to dst
  7091. quantize_row_q(wdata, dst_row, ne0);
  7092. }
  7093. }
  7094. static void ggml_compute_forward_add1(
  7095. const struct ggml_compute_params * params,
  7096. const struct ggml_tensor * src0,
  7097. const struct ggml_tensor * src1,
  7098. struct ggml_tensor * dst) {
  7099. switch (src0->type) {
  7100. case GGML_TYPE_F32:
  7101. {
  7102. ggml_compute_forward_add1_f32(params, src0, src1, dst);
  7103. } break;
  7104. case GGML_TYPE_F16:
  7105. {
  7106. if (src1->type == GGML_TYPE_F16) {
  7107. ggml_compute_forward_add1_f16_f16(params, src0, src1, dst);
  7108. }
  7109. else if (src1->type == GGML_TYPE_F32) {
  7110. ggml_compute_forward_add1_f16_f32(params, src0, src1, dst);
  7111. }
  7112. else {
  7113. GGML_ASSERT(false);
  7114. }
  7115. } break;
  7116. case GGML_TYPE_Q4_0:
  7117. case GGML_TYPE_Q4_1:
  7118. case GGML_TYPE_Q5_0:
  7119. case GGML_TYPE_Q5_1:
  7120. case GGML_TYPE_Q8_0:
  7121. case GGML_TYPE_Q8_1:
  7122. case GGML_TYPE_Q2_K:
  7123. case GGML_TYPE_Q3_K:
  7124. case GGML_TYPE_Q4_K:
  7125. case GGML_TYPE_Q5_K:
  7126. case GGML_TYPE_Q6_K:
  7127. {
  7128. ggml_compute_forward_add1_q_f32(params, src0, src1, dst);
  7129. } break;
  7130. default:
  7131. {
  7132. GGML_ASSERT(false);
  7133. } break;
  7134. }
  7135. }
  7136. // ggml_compute_forward_acc
  7137. static void ggml_compute_forward_acc_f32(
  7138. const struct ggml_compute_params * params,
  7139. const struct ggml_tensor * src0,
  7140. const struct ggml_tensor * src1,
  7141. const struct ggml_tensor * opt0,
  7142. struct ggml_tensor * dst) {
  7143. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7144. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  7145. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  7146. GGML_ASSERT(ggml_nelements(opt0) == 5);
  7147. // view src0 and dst with these strides and data offset inbytes during acc
  7148. // nb0 is implicitely element_size because src0 and dst are contiguous
  7149. size_t nb1 = ((int32_t *) opt0->data)[0];
  7150. size_t nb2 = ((int32_t *) opt0->data)[1];
  7151. size_t nb3 = ((int32_t *) opt0->data)[2];
  7152. size_t offset = ((int32_t *) opt0->data)[3];
  7153. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  7154. if (!inplace && (params->type == GGML_TASK_INIT)) {
  7155. // memcpy needs to be synchronized across threads to avoid race conditions.
  7156. // => do it in INIT phase
  7157. memcpy(
  7158. ((char *) dst->data),
  7159. ((char *) src0->data),
  7160. ggml_nbytes(dst));
  7161. }
  7162. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7163. return;
  7164. }
  7165. const int ith = params->ith;
  7166. const int nth = params->nth;
  7167. const int nr = ggml_nrows(src1);
  7168. const int nc = src1->ne[0];
  7169. const int64_t ne10 = src1->ne[0];
  7170. const int64_t ne11 = src1->ne[1];
  7171. const int64_t ne12 = src1->ne[2];
  7172. const int64_t ne13 = src1->ne[3];
  7173. const size_t nb10 = src1->nb[0];
  7174. const size_t nb11 = src1->nb[1];
  7175. const size_t nb12 = src1->nb[2];
  7176. const size_t nb13 = src1->nb[3];
  7177. // src0 and dst as viewed during acc
  7178. const size_t nb0 = ggml_element_size(src0);
  7179. const size_t nb00 = nb0;
  7180. const size_t nb01 = nb1;
  7181. const size_t nb02 = nb2;
  7182. const size_t nb03 = nb3;
  7183. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb0 + (ne11 == 0 ? 0 : ne11-1)*nb1 + (ne12 == 0 ? 0 : ne12-1)*nb2 + (ne13 == 0 ? 0 : ne13-1)*nb3 < ggml_nbytes(dst));
  7184. GGML_ASSERT(offset + (ne10 == 0 ? 0 : ne10-1)*nb00 + (ne11 == 0 ? 0 : ne11-1)*nb01 + (ne12 == 0 ? 0 : ne12-1)*nb02 + (ne13 == 0 ? 0 : ne13-1)*nb03 < ggml_nbytes(src0));
  7185. GGML_ASSERT(nb10 == sizeof(float));
  7186. // rows per thread
  7187. const int dr = (nr + nth - 1)/nth;
  7188. // row range for this thread
  7189. const int ir0 = dr*ith;
  7190. const int ir1 = MIN(ir0 + dr, nr);
  7191. for (int ir = ir0; ir < ir1; ++ir) {
  7192. // src0 and dst are viewed with shape of src1 and offset
  7193. // => same indices
  7194. const int i3 = ir/(ne12*ne11);
  7195. const int i2 = (ir - i3*ne12*ne11)/ne11;
  7196. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  7197. #ifdef GGML_USE_ACCELERATE
  7198. vDSP_vadd(
  7199. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset), 1,
  7200. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7201. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset), 1, nc);
  7202. #else
  7203. ggml_vec_add_f32(nc,
  7204. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  7205. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + offset),
  7206. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7207. #endif
  7208. }
  7209. }
  7210. static void ggml_compute_forward_acc(
  7211. const struct ggml_compute_params * params,
  7212. const struct ggml_tensor * src0,
  7213. const struct ggml_tensor * src1,
  7214. const struct ggml_tensor * opt0,
  7215. struct ggml_tensor * dst) {
  7216. switch (src0->type) {
  7217. case GGML_TYPE_F32:
  7218. {
  7219. ggml_compute_forward_acc_f32(params, src0, src1, opt0, dst);
  7220. } break;
  7221. case GGML_TYPE_F16:
  7222. case GGML_TYPE_Q4_0:
  7223. case GGML_TYPE_Q4_1:
  7224. case GGML_TYPE_Q5_0:
  7225. case GGML_TYPE_Q5_1:
  7226. case GGML_TYPE_Q8_0:
  7227. case GGML_TYPE_Q8_1:
  7228. case GGML_TYPE_Q2_K:
  7229. case GGML_TYPE_Q3_K:
  7230. case GGML_TYPE_Q4_K:
  7231. case GGML_TYPE_Q5_K:
  7232. case GGML_TYPE_Q6_K:
  7233. default:
  7234. {
  7235. GGML_ASSERT(false);
  7236. } break;
  7237. }
  7238. }
  7239. // ggml_compute_forward_sub
  7240. static void ggml_compute_forward_sub_f32(
  7241. const struct ggml_compute_params * params,
  7242. const struct ggml_tensor * src0,
  7243. const struct ggml_tensor * src1,
  7244. struct ggml_tensor * dst) {
  7245. assert(params->ith == 0);
  7246. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7247. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7248. return;
  7249. }
  7250. const int nr = ggml_nrows(src0);
  7251. const int64_t ne0 = src0->ne[0];
  7252. const int64_t ne1 = src0->ne[1];
  7253. const int64_t ne2 = src0->ne[2];
  7254. const size_t nb00 = src0->nb[0];
  7255. const size_t nb01 = src0->nb[1];
  7256. const size_t nb02 = src0->nb[2];
  7257. const size_t nb03 = src0->nb[3];
  7258. const size_t nb10 = src1->nb[0];
  7259. const size_t nb11 = src1->nb[1];
  7260. const size_t nb12 = src1->nb[2];
  7261. const size_t nb13 = src1->nb[3];
  7262. const size_t nb0 = dst->nb[0];
  7263. const size_t nb1 = dst->nb[1];
  7264. const size_t nb2 = dst->nb[2];
  7265. const size_t nb3 = dst->nb[3];
  7266. GGML_ASSERT( nb0 == sizeof(float));
  7267. GGML_ASSERT(nb00 == sizeof(float));
  7268. if (nb10 == sizeof(float)) {
  7269. for (int ir = 0; ir < nr; ++ir) {
  7270. // src0, src1 and dst are same shape => same indices
  7271. const int i3 = ir/(ne2*ne1);
  7272. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7273. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7274. #ifdef GGML_USE_ACCELERATE
  7275. vDSP_vsub(
  7276. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7277. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7278. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7279. ne0);
  7280. #else
  7281. ggml_vec_sub_f32(ne0,
  7282. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7283. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7284. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7285. #endif
  7286. // }
  7287. // }
  7288. }
  7289. } else {
  7290. // src1 is not contiguous
  7291. for (int ir = 0; ir < nr; ++ir) {
  7292. // src0, src1 and dst are same shape => same indices
  7293. const int i3 = ir/(ne2*ne1);
  7294. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7295. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7296. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7297. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7298. for (int i0 = 0; i0 < ne0; i0++) {
  7299. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7300. dst_ptr[i0] = src0_ptr[i0] - *src1_ptr;
  7301. }
  7302. }
  7303. }
  7304. }
  7305. static void ggml_compute_forward_sub(
  7306. const struct ggml_compute_params * params,
  7307. const struct ggml_tensor * src0,
  7308. const struct ggml_tensor * src1,
  7309. struct ggml_tensor * dst) {
  7310. switch (src0->type) {
  7311. case GGML_TYPE_F32:
  7312. {
  7313. ggml_compute_forward_sub_f32(params, src0, src1, dst);
  7314. } break;
  7315. default:
  7316. {
  7317. GGML_ASSERT(false);
  7318. } break;
  7319. }
  7320. }
  7321. // ggml_compute_forward_mul
  7322. static void ggml_compute_forward_mul_f32(
  7323. const struct ggml_compute_params * params,
  7324. const struct ggml_tensor * src0,
  7325. const struct ggml_tensor * src1,
  7326. struct ggml_tensor * dst) {
  7327. GGML_ASSERT(ggml_can_repeat_rows(src1, src0) && ggml_are_same_shape(src0, dst));
  7328. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7329. return;
  7330. }
  7331. const int ith = params->ith;
  7332. const int nth = params->nth;
  7333. #ifdef GGML_USE_CLBLAST
  7334. if (src1->backend == GGML_BACKEND_GPU) {
  7335. if (ith == 0) {
  7336. ggml_cl_mul(src0, src1, dst);
  7337. }
  7338. return;
  7339. }
  7340. #endif
  7341. const int64_t nr = ggml_nrows(src0);
  7342. const int64_t ne00 = src0->ne[0];
  7343. const int64_t ne01 = src0->ne[1];
  7344. const int64_t ne02 = src0->ne[2];
  7345. const int64_t ne10 = src1->ne[0];
  7346. const int64_t ne11 = src1->ne[1];
  7347. const int64_t ne12 = src1->ne[2];
  7348. const int64_t ne13 = src1->ne[3];
  7349. const size_t nb00 = src0->nb[0];
  7350. const size_t nb01 = src0->nb[1];
  7351. const size_t nb02 = src0->nb[2];
  7352. const size_t nb03 = src0->nb[3];
  7353. const size_t nb10 = src1->nb[0];
  7354. const size_t nb11 = src1->nb[1];
  7355. const size_t nb12 = src1->nb[2];
  7356. const size_t nb13 = src1->nb[3];
  7357. const size_t nb0 = dst->nb[0];
  7358. const size_t nb1 = dst->nb[1];
  7359. const size_t nb2 = dst->nb[2];
  7360. const size_t nb3 = dst->nb[3];
  7361. GGML_ASSERT( nb0 == sizeof(float));
  7362. GGML_ASSERT(nb00 == sizeof(float));
  7363. GGML_ASSERT(ne00 == ne10);
  7364. if (nb10 == sizeof(float)) {
  7365. for (int64_t ir = ith; ir < nr; ir += nth) {
  7366. // src0 and dst are same shape => same indices
  7367. const int64_t i03 = ir/(ne02*ne01);
  7368. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7369. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7370. const int64_t i13 = i03 % ne13;
  7371. const int64_t i12 = i02 % ne12;
  7372. const int64_t i11 = i01 % ne11;
  7373. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7374. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7375. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11);
  7376. #ifdef GGML_USE_ACCELERATE
  7377. UNUSED(ggml_vec_mul_f32);
  7378. vDSP_vmul( src0_ptr, 1, src1_ptr, 1, dst_ptr, 1, ne00);
  7379. #else
  7380. ggml_vec_mul_f32(ne00, dst_ptr, src0_ptr, src1_ptr);
  7381. #endif
  7382. // }
  7383. // }
  7384. }
  7385. } else {
  7386. // src1 is not contiguous
  7387. for (int64_t ir = ith; ir < nr; ir += nth) {
  7388. // src0 and dst are same shape => same indices
  7389. // src1 is broadcastable across src0 and dst in i1, i2, i3
  7390. const int64_t i03 = ir/(ne02*ne01);
  7391. const int64_t i02 = (ir - i03*ne02*ne01)/ne01;
  7392. const int64_t i01 = (ir - i03*ne02*ne01 - i02*ne01);
  7393. const int64_t i13 = i03 % ne13;
  7394. const int64_t i12 = i02 % ne12;
  7395. const int64_t i11 = i01 % ne11;
  7396. float * dst_ptr = (float *) ((char *) dst->data + i03*nb3 + i02*nb2 + i01*nb1 );
  7397. float * src0_ptr = (float *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01);
  7398. for (int64_t i0 = 0; i0 < ne00; i0++) {
  7399. float * src1_ptr = (float *) ((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i0*nb10);
  7400. dst_ptr[i0] = src0_ptr[i0] * (*src1_ptr);
  7401. }
  7402. }
  7403. }
  7404. }
  7405. static void ggml_compute_forward_mul(
  7406. const struct ggml_compute_params * params,
  7407. const struct ggml_tensor * src0,
  7408. const struct ggml_tensor * src1,
  7409. struct ggml_tensor * dst) {
  7410. switch (src0->type) {
  7411. case GGML_TYPE_F32:
  7412. {
  7413. ggml_compute_forward_mul_f32(params, src0, src1, dst);
  7414. } break;
  7415. default:
  7416. {
  7417. GGML_ASSERT(false);
  7418. } break;
  7419. }
  7420. }
  7421. // ggml_compute_forward_div
  7422. static void ggml_compute_forward_div_f32(
  7423. const struct ggml_compute_params * params,
  7424. const struct ggml_tensor * src0,
  7425. const struct ggml_tensor * src1,
  7426. struct ggml_tensor * dst) {
  7427. assert(params->ith == 0);
  7428. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  7429. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7430. return;
  7431. }
  7432. const int nr = ggml_nrows(src0);
  7433. const int64_t ne0 = src0->ne[0];
  7434. const int64_t ne1 = src0->ne[1];
  7435. const int64_t ne2 = src0->ne[2];
  7436. const size_t nb00 = src0->nb[0];
  7437. const size_t nb01 = src0->nb[1];
  7438. const size_t nb02 = src0->nb[2];
  7439. const size_t nb03 = src0->nb[3];
  7440. const size_t nb10 = src1->nb[0];
  7441. const size_t nb11 = src1->nb[1];
  7442. const size_t nb12 = src1->nb[2];
  7443. const size_t nb13 = src1->nb[3];
  7444. const size_t nb0 = dst->nb[0];
  7445. const size_t nb1 = dst->nb[1];
  7446. const size_t nb2 = dst->nb[2];
  7447. const size_t nb3 = dst->nb[3];
  7448. GGML_ASSERT( nb0 == sizeof(float));
  7449. GGML_ASSERT(nb00 == sizeof(float));
  7450. if (nb10 == sizeof(float)) {
  7451. for (int ir = 0; ir < nr; ++ir) {
  7452. // src0, src1 and dst are same shape => same indices
  7453. const int i3 = ir/(ne2*ne1);
  7454. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7455. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7456. #ifdef GGML_USE_ACCELERATE
  7457. vDSP_vdiv(
  7458. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11), 1,
  7459. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01), 1,
  7460. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ), 1,
  7461. ne0);
  7462. #else
  7463. ggml_vec_div_f32(ne0,
  7464. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 ),
  7465. (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01),
  7466. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  7467. #endif
  7468. // }
  7469. // }
  7470. }
  7471. } else {
  7472. // src1 is not contiguous
  7473. for (int ir = 0; ir < nr; ++ir) {
  7474. // src0, src1 and dst are same shape => same indices
  7475. const int i3 = ir/(ne2*ne1);
  7476. const int i2 = (ir - i3*ne2*ne1)/ne1;
  7477. const int i1 = (ir - i3*ne2*ne1 - i2*ne1);
  7478. float * dst_ptr = (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 );
  7479. float * src0_ptr = (float *) ((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01);
  7480. for (int i0 = 0; i0 < ne0; i0++) {
  7481. float * src1_ptr = (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11 + i0*nb10);
  7482. dst_ptr[i0] = src0_ptr[i0] / (*src1_ptr);
  7483. }
  7484. }
  7485. }
  7486. }
  7487. static void ggml_compute_forward_div(
  7488. const struct ggml_compute_params * params,
  7489. const struct ggml_tensor * src0,
  7490. const struct ggml_tensor * src1,
  7491. struct ggml_tensor * dst) {
  7492. switch (src0->type) {
  7493. case GGML_TYPE_F32:
  7494. {
  7495. ggml_compute_forward_div_f32(params, src0, src1, dst);
  7496. } break;
  7497. default:
  7498. {
  7499. GGML_ASSERT(false);
  7500. } break;
  7501. }
  7502. }
  7503. // ggml_compute_forward_sqr
  7504. static void ggml_compute_forward_sqr_f32(
  7505. const struct ggml_compute_params * params,
  7506. const struct ggml_tensor * src0,
  7507. struct ggml_tensor * dst) {
  7508. assert(params->ith == 0);
  7509. assert(ggml_are_same_shape(src0, dst));
  7510. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7511. return;
  7512. }
  7513. const int n = ggml_nrows(src0);
  7514. const int nc = src0->ne[0];
  7515. assert( dst->nb[0] == sizeof(float));
  7516. assert(src0->nb[0] == sizeof(float));
  7517. for (int i = 0; i < n; i++) {
  7518. ggml_vec_sqr_f32(nc,
  7519. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7520. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7521. }
  7522. }
  7523. static void ggml_compute_forward_sqr(
  7524. const struct ggml_compute_params * params,
  7525. const struct ggml_tensor * src0,
  7526. struct ggml_tensor * dst) {
  7527. switch (src0->type) {
  7528. case GGML_TYPE_F32:
  7529. {
  7530. ggml_compute_forward_sqr_f32(params, src0, dst);
  7531. } break;
  7532. default:
  7533. {
  7534. GGML_ASSERT(false);
  7535. } break;
  7536. }
  7537. }
  7538. // ggml_compute_forward_sqrt
  7539. static void ggml_compute_forward_sqrt_f32(
  7540. const struct ggml_compute_params * params,
  7541. const struct ggml_tensor * src0,
  7542. struct ggml_tensor * dst) {
  7543. assert(params->ith == 0);
  7544. assert(ggml_are_same_shape(src0, dst));
  7545. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7546. return;
  7547. }
  7548. const int n = ggml_nrows(src0);
  7549. const int nc = src0->ne[0];
  7550. assert( dst->nb[0] == sizeof(float));
  7551. assert(src0->nb[0] == sizeof(float));
  7552. for (int i = 0; i < n; i++) {
  7553. ggml_vec_sqrt_f32(nc,
  7554. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7555. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7556. }
  7557. }
  7558. static void ggml_compute_forward_sqrt(
  7559. const struct ggml_compute_params * params,
  7560. const struct ggml_tensor * src0,
  7561. struct ggml_tensor * dst) {
  7562. switch (src0->type) {
  7563. case GGML_TYPE_F32:
  7564. {
  7565. ggml_compute_forward_sqrt_f32(params, src0, dst);
  7566. } break;
  7567. default:
  7568. {
  7569. GGML_ASSERT(false);
  7570. } break;
  7571. }
  7572. }
  7573. // ggml_compute_forward_log
  7574. static void ggml_compute_forward_log_f32(
  7575. const struct ggml_compute_params * params,
  7576. const struct ggml_tensor * src0,
  7577. struct ggml_tensor * dst) {
  7578. GGML_ASSERT(params->ith == 0);
  7579. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  7580. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7581. return;
  7582. }
  7583. const int n = ggml_nrows(src0);
  7584. const int nc = src0->ne[0];
  7585. GGML_ASSERT( dst->nb[0] == sizeof(float));
  7586. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7587. for (int i = 0; i < n; i++) {
  7588. ggml_vec_log_f32(nc,
  7589. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7590. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7591. }
  7592. }
  7593. static void ggml_compute_forward_log(
  7594. const struct ggml_compute_params * params,
  7595. const struct ggml_tensor * src0,
  7596. struct ggml_tensor * dst) {
  7597. switch (src0->type) {
  7598. case GGML_TYPE_F32:
  7599. {
  7600. ggml_compute_forward_log_f32(params, src0, dst);
  7601. } break;
  7602. default:
  7603. {
  7604. GGML_ASSERT(false);
  7605. } break;
  7606. }
  7607. }
  7608. // ggml_compute_forward_sum
  7609. static void ggml_compute_forward_sum_f32(
  7610. const struct ggml_compute_params * params,
  7611. const struct ggml_tensor * src0,
  7612. struct ggml_tensor * dst) {
  7613. assert(params->ith == 0);
  7614. assert(ggml_is_scalar(dst));
  7615. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7616. return;
  7617. }
  7618. assert(ggml_is_scalar(dst));
  7619. assert(src0->nb[0] == sizeof(float));
  7620. const int64_t ne00 = src0->ne[0];
  7621. const int64_t ne01 = src0->ne[1];
  7622. const int64_t ne02 = src0->ne[2];
  7623. const int64_t ne03 = src0->ne[3];
  7624. const size_t nb01 = src0->nb[1];
  7625. const size_t nb02 = src0->nb[2];
  7626. const size_t nb03 = src0->nb[3];
  7627. ggml_float sum = 0;
  7628. ggml_float row_sum = 0;
  7629. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7630. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7631. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7632. ggml_vec_sum_ggf(ne00,
  7633. &row_sum,
  7634. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7635. sum += row_sum;
  7636. }
  7637. }
  7638. }
  7639. ((float *) dst->data)[0] = sum;
  7640. }
  7641. static void ggml_compute_forward_sum(
  7642. const struct ggml_compute_params * params,
  7643. const struct ggml_tensor * src0,
  7644. struct ggml_tensor * dst) {
  7645. switch (src0->type) {
  7646. case GGML_TYPE_F32:
  7647. {
  7648. ggml_compute_forward_sum_f32(params, src0, dst);
  7649. } break;
  7650. default:
  7651. {
  7652. GGML_ASSERT(false);
  7653. } break;
  7654. }
  7655. }
  7656. // ggml_compute_forward_sum_rows
  7657. static void ggml_compute_forward_sum_rows_f32(
  7658. const struct ggml_compute_params * params,
  7659. const struct ggml_tensor * src0,
  7660. struct ggml_tensor * dst) {
  7661. GGML_ASSERT(params->ith == 0);
  7662. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7663. return;
  7664. }
  7665. GGML_ASSERT(src0->nb[0] == sizeof(float));
  7666. GGML_ASSERT(dst->nb[0] == sizeof(float));
  7667. const int64_t ne00 = src0->ne[0];
  7668. const int64_t ne01 = src0->ne[1];
  7669. const int64_t ne02 = src0->ne[2];
  7670. const int64_t ne03 = src0->ne[3];
  7671. const int64_t ne0 = dst->ne[0];
  7672. const int64_t ne1 = dst->ne[1];
  7673. const int64_t ne2 = dst->ne[2];
  7674. const int64_t ne3 = dst->ne[3];
  7675. GGML_ASSERT(ne0 == 1);
  7676. GGML_ASSERT(ne1 == ne01);
  7677. GGML_ASSERT(ne2 == ne02);
  7678. GGML_ASSERT(ne3 == ne03);
  7679. const size_t nb01 = src0->nb[1];
  7680. const size_t nb02 = src0->nb[2];
  7681. const size_t nb03 = src0->nb[3];
  7682. const size_t nb1 = dst->nb[1];
  7683. const size_t nb2 = dst->nb[2];
  7684. const size_t nb3 = dst->nb[3];
  7685. for (int64_t i3 = 0; i3 < ne03; i3++) {
  7686. for (int64_t i2 = 0; i2 < ne02; i2++) {
  7687. for (int64_t i1 = 0; i1 < ne01; i1++) {
  7688. float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
  7689. float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
  7690. float row_sum = 0;
  7691. ggml_vec_sum_f32(ne00, &row_sum, src_row);
  7692. dst_row[0] = row_sum;
  7693. }
  7694. }
  7695. }
  7696. }
  7697. static void ggml_compute_forward_sum_rows(
  7698. const struct ggml_compute_params * params,
  7699. const struct ggml_tensor * src0,
  7700. struct ggml_tensor * dst) {
  7701. switch (src0->type) {
  7702. case GGML_TYPE_F32:
  7703. {
  7704. ggml_compute_forward_sum_rows_f32(params, src0, dst);
  7705. } break;
  7706. default:
  7707. {
  7708. GGML_ASSERT(false);
  7709. } break;
  7710. }
  7711. }
  7712. // ggml_compute_forward_mean
  7713. static void ggml_compute_forward_mean_f32(
  7714. const struct ggml_compute_params * params,
  7715. const struct ggml_tensor * src0,
  7716. struct ggml_tensor * dst) {
  7717. assert(params->ith == 0);
  7718. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7719. return;
  7720. }
  7721. assert(src0->nb[0] == sizeof(float));
  7722. const int64_t ne00 = src0->ne[0];
  7723. const int64_t ne01 = src0->ne[1];
  7724. const int64_t ne02 = src0->ne[2];
  7725. const int64_t ne03 = src0->ne[3];
  7726. const size_t nb01 = src0->nb[1];
  7727. const size_t nb02 = src0->nb[2];
  7728. const size_t nb03 = src0->nb[3];
  7729. const int64_t ne0 = dst->ne[0];
  7730. const int64_t ne1 = dst->ne[1];
  7731. const int64_t ne2 = dst->ne[2];
  7732. const int64_t ne3 = dst->ne[3];
  7733. assert(ne0 == 1);
  7734. assert(ne1 == ne01);
  7735. assert(ne2 == ne02);
  7736. assert(ne3 == ne03);
  7737. UNUSED(ne0);
  7738. UNUSED(ne1);
  7739. UNUSED(ne2);
  7740. UNUSED(ne3);
  7741. const size_t nb1 = dst->nb[1];
  7742. const size_t nb2 = dst->nb[2];
  7743. const size_t nb3 = dst->nb[3];
  7744. for (int64_t i03 = 0; i03 < ne03; i03++) {
  7745. for (int64_t i02 = 0; i02 < ne02; i02++) {
  7746. for (int64_t i01 = 0; i01 < ne01; i01++) {
  7747. ggml_vec_sum_f32(ne00,
  7748. (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3),
  7749. (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03));
  7750. *(float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3) /= (float) ne00;
  7751. }
  7752. }
  7753. }
  7754. }
  7755. static void ggml_compute_forward_mean(
  7756. const struct ggml_compute_params * params,
  7757. const struct ggml_tensor * src0,
  7758. struct ggml_tensor * dst) {
  7759. switch (src0->type) {
  7760. case GGML_TYPE_F32:
  7761. {
  7762. ggml_compute_forward_mean_f32(params, src0, dst);
  7763. } break;
  7764. default:
  7765. {
  7766. GGML_ASSERT(false);
  7767. } break;
  7768. }
  7769. }
  7770. // ggml_compute_forward_repeat
  7771. static void ggml_compute_forward_repeat_f32(
  7772. const struct ggml_compute_params * params,
  7773. const struct ggml_tensor * src0,
  7774. struct ggml_tensor * dst) {
  7775. GGML_ASSERT(params->ith == 0);
  7776. GGML_ASSERT(ggml_can_repeat(src0, dst));
  7777. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7778. return;
  7779. }
  7780. const int64_t ne0 = dst->ne[0];
  7781. const int64_t ne1 = dst->ne[1];
  7782. const int64_t ne2 = dst->ne[2];
  7783. const int64_t ne3 = dst->ne[3];
  7784. const int64_t ne00 = src0->ne[0];
  7785. const int64_t ne01 = src0->ne[1];
  7786. const int64_t ne02 = src0->ne[2];
  7787. const int64_t ne03 = src0->ne[3];
  7788. const size_t nb0 = dst->nb[0];
  7789. const size_t nb1 = dst->nb[1];
  7790. const size_t nb2 = dst->nb[2];
  7791. const size_t nb3 = dst->nb[3];
  7792. const size_t nb00 = src0->nb[0];
  7793. const size_t nb01 = src0->nb[1];
  7794. const size_t nb02 = src0->nb[2];
  7795. const size_t nb03 = src0->nb[3];
  7796. // guaranteed to be an integer due to the check in ggml_can_repeat
  7797. const int nr0 = (int)(ne0/ne00);
  7798. const int nr1 = (int)(ne1/ne01);
  7799. const int nr2 = (int)(ne2/ne02);
  7800. const int nr3 = (int)(ne3/ne03);
  7801. // TODO: support for transposed / permuted tensors
  7802. GGML_ASSERT(nb0 == sizeof(float));
  7803. GGML_ASSERT(nb00 == sizeof(float));
  7804. // TODO: maybe this is not optimal?
  7805. for (int i3 = 0; i3 < nr3; i3++) {
  7806. for (int k3 = 0; k3 < ne03; k3++) {
  7807. for (int i2 = 0; i2 < nr2; i2++) {
  7808. for (int k2 = 0; k2 < ne02; k2++) {
  7809. for (int i1 = 0; i1 < nr1; i1++) {
  7810. for (int k1 = 0; k1 < ne01; k1++) {
  7811. for (int i0 = 0; i0 < nr0; i0++) {
  7812. ggml_vec_cpy_f32(ne00,
  7813. (float *) ((char *) dst->data + (i3*ne03 + k3)*nb3 + (i2*ne02 + k2)*nb2 + (i1*ne01 + k1)*nb1 + (i0*ne00)*nb0),
  7814. (float *) ((char *) src0->data + ( k3)*nb03 + ( k2)*nb02 + ( k1)*nb01));
  7815. }
  7816. }
  7817. }
  7818. }
  7819. }
  7820. }
  7821. }
  7822. }
  7823. static void ggml_compute_forward_repeat(
  7824. const struct ggml_compute_params * params,
  7825. const struct ggml_tensor * src0,
  7826. struct ggml_tensor * dst) {
  7827. switch (src0->type) {
  7828. case GGML_TYPE_F32:
  7829. {
  7830. ggml_compute_forward_repeat_f32(params, src0, dst);
  7831. } break;
  7832. default:
  7833. {
  7834. GGML_ASSERT(false);
  7835. } break;
  7836. }
  7837. }
  7838. // ggml_compute_forward_repeat_back
  7839. static void ggml_compute_forward_repeat_back_f32(
  7840. const struct ggml_compute_params * params,
  7841. const struct ggml_tensor * src0,
  7842. struct ggml_tensor * dst) {
  7843. GGML_ASSERT(params->ith == 0);
  7844. GGML_ASSERT(ggml_can_repeat(dst, src0));
  7845. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7846. return;
  7847. }
  7848. const int64_t ne0 = dst->ne[0];
  7849. const int64_t ne1 = dst->ne[1];
  7850. const int64_t ne2 = dst->ne[2];
  7851. const int64_t ne3 = dst->ne[3];
  7852. const int64_t ne00 = src0->ne[0];
  7853. const int64_t ne01 = src0->ne[1];
  7854. const int64_t ne02 = src0->ne[2];
  7855. const int64_t ne03 = src0->ne[3];
  7856. const size_t nb0 = dst->nb[0];
  7857. const size_t nb1 = dst->nb[1];
  7858. const size_t nb2 = dst->nb[2];
  7859. const size_t nb3 = dst->nb[3];
  7860. const size_t nb00 = src0->nb[0];
  7861. const size_t nb01 = src0->nb[1];
  7862. const size_t nb02 = src0->nb[2];
  7863. const size_t nb03 = src0->nb[3];
  7864. // guaranteed to be an integer due to the check in ggml_can_repeat
  7865. const int nr0 = (int)(ne00/ne0);
  7866. const int nr1 = (int)(ne01/ne1);
  7867. const int nr2 = (int)(ne02/ne2);
  7868. const int nr3 = (int)(ne03/ne3);
  7869. // TODO: support for transposed / permuted tensors
  7870. GGML_ASSERT(nb0 == sizeof(float));
  7871. GGML_ASSERT(nb00 == sizeof(float));
  7872. if (ggml_is_contiguous(dst)) {
  7873. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  7874. } else {
  7875. for (int k3 = 0; k3 < ne3; k3++) {
  7876. for (int k2 = 0; k2 < ne2; k2++) {
  7877. for (int k1 = 0; k1 < ne1; k1++) {
  7878. ggml_vec_set_f32(ne0,
  7879. (float *) ((char *) dst->data + k1*nb1 + k2*nb2 + k3*nb3),
  7880. 0);
  7881. }
  7882. }
  7883. }
  7884. }
  7885. // TODO: maybe this is not optimal?
  7886. for (int i3 = 0; i3 < nr3; i3++) {
  7887. for (int k3 = 0; k3 < ne3; k3++) {
  7888. for (int i2 = 0; i2 < nr2; i2++) {
  7889. for (int k2 = 0; k2 < ne2; k2++) {
  7890. for (int i1 = 0; i1 < nr1; i1++) {
  7891. for (int k1 = 0; k1 < ne1; k1++) {
  7892. for (int i0 = 0; i0 < nr0; i0++) {
  7893. ggml_vec_acc_f32(ne0,
  7894. (float *) ((char *) dst->data + ( k3)*nb3 + ( k2)*nb2 + ( k1)*nb1),
  7895. (float *) ((char *) src0->data + (i3*ne3 + k3)*nb03 + (i2*ne2 + k2)*nb02 + (i1*ne1 + k1)*nb01 + (i0*ne0)*nb00));
  7896. }
  7897. }
  7898. }
  7899. }
  7900. }
  7901. }
  7902. }
  7903. }
  7904. static void ggml_compute_forward_repeat_back(
  7905. const struct ggml_compute_params * params,
  7906. const struct ggml_tensor * src0,
  7907. struct ggml_tensor * dst) {
  7908. switch (src0->type) {
  7909. case GGML_TYPE_F32:
  7910. {
  7911. ggml_compute_forward_repeat_back_f32(params, src0, dst);
  7912. } break;
  7913. default:
  7914. {
  7915. GGML_ASSERT(false);
  7916. } break;
  7917. }
  7918. }
  7919. // ggml_compute_forward_abs
  7920. static void ggml_compute_forward_abs_f32(
  7921. const struct ggml_compute_params * params,
  7922. const struct ggml_tensor * src0,
  7923. struct ggml_tensor * dst) {
  7924. assert(params->ith == 0);
  7925. assert(ggml_are_same_shape(src0, dst));
  7926. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7927. return;
  7928. }
  7929. const int n = ggml_nrows(src0);
  7930. const int nc = src0->ne[0];
  7931. assert(dst->nb[0] == sizeof(float));
  7932. assert(src0->nb[0] == sizeof(float));
  7933. for (int i = 0; i < n; i++) {
  7934. ggml_vec_abs_f32(nc,
  7935. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7936. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7937. }
  7938. }
  7939. static void ggml_compute_forward_abs(
  7940. const struct ggml_compute_params * params,
  7941. const struct ggml_tensor * src0,
  7942. struct ggml_tensor * dst) {
  7943. switch (src0->type) {
  7944. case GGML_TYPE_F32:
  7945. {
  7946. ggml_compute_forward_abs_f32(params, src0, dst);
  7947. } break;
  7948. default:
  7949. {
  7950. GGML_ASSERT(false);
  7951. } break;
  7952. }
  7953. }
  7954. // ggml_compute_forward_sgn
  7955. static void ggml_compute_forward_sgn_f32(
  7956. const struct ggml_compute_params * params,
  7957. const struct ggml_tensor * src0,
  7958. struct ggml_tensor * dst) {
  7959. assert(params->ith == 0);
  7960. assert(ggml_are_same_shape(src0, dst));
  7961. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7962. return;
  7963. }
  7964. const int n = ggml_nrows(src0);
  7965. const int nc = src0->ne[0];
  7966. assert(dst->nb[0] == sizeof(float));
  7967. assert(src0->nb[0] == sizeof(float));
  7968. for (int i = 0; i < n; i++) {
  7969. ggml_vec_sgn_f32(nc,
  7970. (float *) ((char *) dst->data + i*( dst->nb[1])),
  7971. (float *) ((char *) src0->data + i*(src0->nb[1])));
  7972. }
  7973. }
  7974. static void ggml_compute_forward_sgn(
  7975. const struct ggml_compute_params * params,
  7976. const struct ggml_tensor * src0,
  7977. struct ggml_tensor * dst) {
  7978. switch (src0->type) {
  7979. case GGML_TYPE_F32:
  7980. {
  7981. ggml_compute_forward_sgn_f32(params, src0, dst);
  7982. } break;
  7983. default:
  7984. {
  7985. GGML_ASSERT(false);
  7986. } break;
  7987. }
  7988. }
  7989. // ggml_compute_forward_neg
  7990. static void ggml_compute_forward_neg_f32(
  7991. const struct ggml_compute_params * params,
  7992. const struct ggml_tensor * src0,
  7993. struct ggml_tensor * dst) {
  7994. assert(params->ith == 0);
  7995. assert(ggml_are_same_shape(src0, dst));
  7996. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  7997. return;
  7998. }
  7999. const int n = ggml_nrows(src0);
  8000. const int nc = src0->ne[0];
  8001. assert(dst->nb[0] == sizeof(float));
  8002. assert(src0->nb[0] == sizeof(float));
  8003. for (int i = 0; i < n; i++) {
  8004. ggml_vec_neg_f32(nc,
  8005. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8006. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8007. }
  8008. }
  8009. static void ggml_compute_forward_neg(
  8010. const struct ggml_compute_params * params,
  8011. const struct ggml_tensor * src0,
  8012. struct ggml_tensor * dst) {
  8013. switch (src0->type) {
  8014. case GGML_TYPE_F32:
  8015. {
  8016. ggml_compute_forward_neg_f32(params, src0, dst);
  8017. } break;
  8018. default:
  8019. {
  8020. GGML_ASSERT(false);
  8021. } break;
  8022. }
  8023. }
  8024. // ggml_compute_forward_step
  8025. static void ggml_compute_forward_step_f32(
  8026. const struct ggml_compute_params * params,
  8027. const struct ggml_tensor * src0,
  8028. struct ggml_tensor * dst) {
  8029. assert(params->ith == 0);
  8030. assert(ggml_are_same_shape(src0, dst));
  8031. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8032. return;
  8033. }
  8034. const int n = ggml_nrows(src0);
  8035. const int nc = src0->ne[0];
  8036. assert(dst->nb[0] == sizeof(float));
  8037. assert(src0->nb[0] == sizeof(float));
  8038. for (int i = 0; i < n; i++) {
  8039. ggml_vec_step_f32(nc,
  8040. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8041. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8042. }
  8043. }
  8044. static void ggml_compute_forward_step(
  8045. const struct ggml_compute_params * params,
  8046. const struct ggml_tensor * src0,
  8047. struct ggml_tensor * dst) {
  8048. switch (src0->type) {
  8049. case GGML_TYPE_F32:
  8050. {
  8051. ggml_compute_forward_step_f32(params, src0, dst);
  8052. } break;
  8053. default:
  8054. {
  8055. GGML_ASSERT(false);
  8056. } break;
  8057. }
  8058. }
  8059. // ggml_compute_forward_relu
  8060. static void ggml_compute_forward_relu_f32(
  8061. const struct ggml_compute_params * params,
  8062. const struct ggml_tensor * src0,
  8063. struct ggml_tensor * dst) {
  8064. assert(params->ith == 0);
  8065. assert(ggml_are_same_shape(src0, dst));
  8066. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8067. return;
  8068. }
  8069. const int n = ggml_nrows(src0);
  8070. const int nc = src0->ne[0];
  8071. assert(dst->nb[0] == sizeof(float));
  8072. assert(src0->nb[0] == sizeof(float));
  8073. for (int i = 0; i < n; i++) {
  8074. ggml_vec_relu_f32(nc,
  8075. (float *) ((char *) dst->data + i*( dst->nb[1])),
  8076. (float *) ((char *) src0->data + i*(src0->nb[1])));
  8077. }
  8078. }
  8079. static void ggml_compute_forward_relu(
  8080. const struct ggml_compute_params * params,
  8081. const struct ggml_tensor * src0,
  8082. struct ggml_tensor * dst) {
  8083. switch (src0->type) {
  8084. case GGML_TYPE_F32:
  8085. {
  8086. ggml_compute_forward_relu_f32(params, src0, dst);
  8087. } break;
  8088. default:
  8089. {
  8090. GGML_ASSERT(false);
  8091. } break;
  8092. }
  8093. }
  8094. // ggml_compute_forward_gelu
  8095. static void ggml_compute_forward_gelu_f32(
  8096. const struct ggml_compute_params * params,
  8097. const struct ggml_tensor * src0,
  8098. struct ggml_tensor * dst) {
  8099. GGML_ASSERT(ggml_is_contiguous(src0));
  8100. GGML_ASSERT(ggml_is_contiguous(dst));
  8101. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8102. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8103. return;
  8104. }
  8105. const int ith = params->ith;
  8106. const int nth = params->nth;
  8107. const int nc = src0->ne[0];
  8108. const int nr = ggml_nrows(src0);
  8109. // rows per thread
  8110. const int dr = (nr + nth - 1)/nth;
  8111. // row range for this thread
  8112. const int ir0 = dr*ith;
  8113. const int ir1 = MIN(ir0 + dr, nr);
  8114. for (int i1 = ir0; i1 < ir1; i1++) {
  8115. ggml_vec_gelu_f32(nc,
  8116. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8117. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8118. #ifndef NDEBUG
  8119. for (int k = 0; k < nc; k++) {
  8120. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8121. UNUSED(x);
  8122. assert(!isnan(x));
  8123. assert(!isinf(x));
  8124. }
  8125. #endif
  8126. }
  8127. }
  8128. static void ggml_compute_forward_gelu(
  8129. const struct ggml_compute_params * params,
  8130. const struct ggml_tensor * src0,
  8131. struct ggml_tensor * dst) {
  8132. switch (src0->type) {
  8133. case GGML_TYPE_F32:
  8134. {
  8135. ggml_compute_forward_gelu_f32(params, src0, dst);
  8136. } break;
  8137. default:
  8138. {
  8139. GGML_ASSERT(false);
  8140. } break;
  8141. }
  8142. }
  8143. // ggml_compute_forward_gelu_quick
  8144. static void ggml_compute_forward_gelu_quick_f32(
  8145. const struct ggml_compute_params * params,
  8146. const struct ggml_tensor * src0,
  8147. struct ggml_tensor * dst) {
  8148. GGML_ASSERT(ggml_is_contiguous(src0));
  8149. GGML_ASSERT(ggml_is_contiguous(dst));
  8150. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8151. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8152. return;
  8153. }
  8154. const int ith = params->ith;
  8155. const int nth = params->nth;
  8156. const int nc = src0->ne[0];
  8157. const int nr = ggml_nrows(src0);
  8158. // rows per thread
  8159. const int dr = (nr + nth - 1)/nth;
  8160. // row range for this thread
  8161. const int ir0 = dr*ith;
  8162. const int ir1 = MIN(ir0 + dr, nr);
  8163. for (int i1 = ir0; i1 < ir1; i1++) {
  8164. ggml_vec_gelu_quick_f32(nc,
  8165. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8166. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8167. #ifndef NDEBUG
  8168. for (int k = 0; k < nc; k++) {
  8169. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8170. UNUSED(x);
  8171. assert(!isnan(x));
  8172. assert(!isinf(x));
  8173. }
  8174. #endif
  8175. }
  8176. }
  8177. static void ggml_compute_forward_gelu_quick(
  8178. const struct ggml_compute_params * params,
  8179. const struct ggml_tensor * src0,
  8180. struct ggml_tensor * dst) {
  8181. switch (src0->type) {
  8182. case GGML_TYPE_F32:
  8183. {
  8184. ggml_compute_forward_gelu_quick_f32(params, src0, dst);
  8185. } break;
  8186. default:
  8187. {
  8188. GGML_ASSERT(false);
  8189. } break;
  8190. }
  8191. }
  8192. // ggml_compute_forward_silu
  8193. static void ggml_compute_forward_silu_f32(
  8194. const struct ggml_compute_params * params,
  8195. const struct ggml_tensor * src0,
  8196. struct ggml_tensor * dst) {
  8197. GGML_ASSERT(ggml_is_contiguous(src0));
  8198. GGML_ASSERT(ggml_is_contiguous(dst));
  8199. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8200. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8201. return;
  8202. }
  8203. const int ith = params->ith;
  8204. const int nth = params->nth;
  8205. const int nc = src0->ne[0];
  8206. const int nr = ggml_nrows(src0);
  8207. // rows per thread
  8208. const int dr = (nr + nth - 1)/nth;
  8209. // row range for this thread
  8210. const int ir0 = dr*ith;
  8211. const int ir1 = MIN(ir0 + dr, nr);
  8212. for (int i1 = ir0; i1 < ir1; i1++) {
  8213. ggml_vec_silu_f32(nc,
  8214. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8215. (float *) ((char *) src0->data + i1*(src0->nb[1])));
  8216. #ifndef NDEBUG
  8217. for (int k = 0; k < nc; k++) {
  8218. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8219. UNUSED(x);
  8220. assert(!isnan(x));
  8221. assert(!isinf(x));
  8222. }
  8223. #endif
  8224. }
  8225. }
  8226. static void ggml_compute_forward_silu(
  8227. const struct ggml_compute_params * params,
  8228. const struct ggml_tensor * src0,
  8229. struct ggml_tensor * dst) {
  8230. switch (src0->type) {
  8231. case GGML_TYPE_F32:
  8232. {
  8233. ggml_compute_forward_silu_f32(params, src0, dst);
  8234. } break;
  8235. default:
  8236. {
  8237. GGML_ASSERT(false);
  8238. } break;
  8239. }
  8240. }
  8241. // ggml_compute_forward_silu_back
  8242. static void ggml_compute_forward_silu_back_f32(
  8243. const struct ggml_compute_params * params,
  8244. const struct ggml_tensor * src0,
  8245. const struct ggml_tensor * grad,
  8246. struct ggml_tensor * dst) {
  8247. GGML_ASSERT(ggml_is_contiguous(grad));
  8248. GGML_ASSERT(ggml_is_contiguous(src0));
  8249. GGML_ASSERT(ggml_is_contiguous(dst));
  8250. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8251. GGML_ASSERT(ggml_are_same_shape(src0, grad));
  8252. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8253. return;
  8254. }
  8255. const int ith = params->ith;
  8256. const int nth = params->nth;
  8257. const int nc = src0->ne[0];
  8258. const int nr = ggml_nrows(src0);
  8259. // rows per thread
  8260. const int dr = (nr + nth - 1)/nth;
  8261. // row range for this thread
  8262. const int ir0 = dr*ith;
  8263. const int ir1 = MIN(ir0 + dr, nr);
  8264. for (int i1 = ir0; i1 < ir1; i1++) {
  8265. ggml_vec_silu_backward_f32(nc,
  8266. (float *) ((char *) dst->data + i1*( dst->nb[1])),
  8267. (float *) ((char *) src0->data + i1*(src0->nb[1])),
  8268. (float *) ((char *) grad->data + i1*(grad->nb[1])));
  8269. #ifndef NDEBUG
  8270. for (int k = 0; k < nc; k++) {
  8271. const float x = ((float *) ((char *) dst->data + i1*( dst->nb[1])))[k];
  8272. UNUSED(x);
  8273. assert(!isnan(x));
  8274. assert(!isinf(x));
  8275. }
  8276. #endif
  8277. }
  8278. }
  8279. static void ggml_compute_forward_silu_back(
  8280. const struct ggml_compute_params * params,
  8281. const struct ggml_tensor * src0,
  8282. const struct ggml_tensor * grad,
  8283. struct ggml_tensor * dst) {
  8284. switch (src0->type) {
  8285. case GGML_TYPE_F32:
  8286. {
  8287. ggml_compute_forward_silu_back_f32(params, src0, grad, dst);
  8288. } break;
  8289. default:
  8290. {
  8291. GGML_ASSERT(false);
  8292. } break;
  8293. }
  8294. }
  8295. // ggml_compute_forward_norm
  8296. static void ggml_compute_forward_norm_f32(
  8297. const struct ggml_compute_params * params,
  8298. const struct ggml_tensor * src0,
  8299. struct ggml_tensor * dst) {
  8300. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8301. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8302. return;
  8303. }
  8304. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8305. const int ith = params->ith;
  8306. const int nth = params->nth;
  8307. const int64_t ne00 = src0->ne[0];
  8308. const int64_t ne01 = src0->ne[1];
  8309. const int64_t ne02 = src0->ne[2];
  8310. const int64_t ne03 = src0->ne[3];
  8311. const size_t nb01 = src0->nb[1];
  8312. const size_t nb02 = src0->nb[2];
  8313. const size_t nb03 = src0->nb[3];
  8314. const size_t nb1 = dst->nb[1];
  8315. const size_t nb2 = dst->nb[2];
  8316. const size_t nb3 = dst->nb[3];
  8317. const float eps = 1e-5f; // TODO: make this a parameter
  8318. // TODO: optimize
  8319. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8320. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8321. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8322. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8323. ggml_float sum = 0.0;
  8324. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8325. sum += (ggml_float)x[i00];
  8326. }
  8327. float mean = sum/ne00;
  8328. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8329. ggml_float sum2 = 0.0;
  8330. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8331. float v = x[i00] - mean;
  8332. y[i00] = v;
  8333. sum2 += (ggml_float)(v*v);
  8334. }
  8335. float variance = sum2/ne00;
  8336. const float scale = 1.0f/sqrtf(variance + eps);
  8337. ggml_vec_scale_f32(ne00, y, scale);
  8338. }
  8339. }
  8340. }
  8341. }
  8342. static void ggml_compute_forward_norm(
  8343. const struct ggml_compute_params * params,
  8344. const struct ggml_tensor * src0,
  8345. struct ggml_tensor * dst) {
  8346. switch (src0->type) {
  8347. case GGML_TYPE_F32:
  8348. {
  8349. ggml_compute_forward_norm_f32(params, src0, dst);
  8350. } break;
  8351. default:
  8352. {
  8353. GGML_ASSERT(false);
  8354. } break;
  8355. }
  8356. }
  8357. static void ggml_compute_forward_rms_norm_f32(
  8358. const struct ggml_compute_params * params,
  8359. const struct ggml_tensor * src0,
  8360. struct ggml_tensor * dst) {
  8361. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  8362. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8363. return;
  8364. }
  8365. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8366. const int ith = params->ith;
  8367. const int nth = params->nth;
  8368. const int64_t ne00 = src0->ne[0];
  8369. const int64_t ne01 = src0->ne[1];
  8370. const int64_t ne02 = src0->ne[2];
  8371. const int64_t ne03 = src0->ne[3];
  8372. const size_t nb01 = src0->nb[1];
  8373. const size_t nb02 = src0->nb[2];
  8374. const size_t nb03 = src0->nb[3];
  8375. const size_t nb1 = dst->nb[1];
  8376. const size_t nb2 = dst->nb[2];
  8377. const size_t nb3 = dst->nb[3];
  8378. const float eps = 1e-6f; // TODO: make this a parameter
  8379. // TODO: optimize
  8380. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8381. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8382. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8383. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8384. ggml_float sum = 0.0;
  8385. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8386. sum += (ggml_float)(x[i00] * x[i00]);
  8387. }
  8388. const float mean = sum/ne00;
  8389. float * y = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8390. memcpy(y, x, ne00 * sizeof(float));
  8391. // for (int i00 = 0; i00 < ne00; i00++) {
  8392. // y[i00] = x[i00];
  8393. // }
  8394. const float scale = 1.0f/sqrtf(mean + eps);
  8395. ggml_vec_scale_f32(ne00, y, scale);
  8396. }
  8397. }
  8398. }
  8399. }
  8400. static void ggml_compute_forward_rms_norm(
  8401. const struct ggml_compute_params * params,
  8402. const struct ggml_tensor * src0,
  8403. struct ggml_tensor * dst) {
  8404. switch (src0->type) {
  8405. case GGML_TYPE_F32:
  8406. {
  8407. ggml_compute_forward_rms_norm_f32(params, src0, dst);
  8408. } break;
  8409. default:
  8410. {
  8411. GGML_ASSERT(false);
  8412. } break;
  8413. }
  8414. }
  8415. static void ggml_compute_forward_rms_norm_back_f32(
  8416. const struct ggml_compute_params * params,
  8417. const struct ggml_tensor * src0,
  8418. const struct ggml_tensor * src1,
  8419. struct ggml_tensor * dst) {
  8420. GGML_ASSERT(ggml_are_same_shape(src0, dst) && ggml_are_same_shape(src0, src1));
  8421. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  8422. return;
  8423. }
  8424. GGML_ASSERT(src0->nb[0] == sizeof(float));
  8425. const int ith = params->ith;
  8426. const int nth = params->nth;
  8427. const int64_t ne00 = src0->ne[0];
  8428. const int64_t ne01 = src0->ne[1];
  8429. const int64_t ne02 = src0->ne[2];
  8430. const int64_t ne03 = src0->ne[3];
  8431. const size_t nb01 = src0->nb[1];
  8432. const size_t nb02 = src0->nb[2];
  8433. const size_t nb03 = src0->nb[3];
  8434. const size_t nb11 = src1->nb[1];
  8435. const size_t nb12 = src1->nb[2];
  8436. const size_t nb13 = src1->nb[3];
  8437. const size_t nb1 = dst->nb[1];
  8438. const size_t nb2 = dst->nb[2];
  8439. const size_t nb3 = dst->nb[3];
  8440. const float eps = 1e-6f; // TODO: make this a parameter
  8441. // TODO: optimize
  8442. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8443. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8444. for (int64_t i01 = ith; i01 < ne01; i01 += nth) {
  8445. // src1 is same shape as src0 => same indices
  8446. const int64_t i11 = i01;
  8447. const int64_t i12 = i02;
  8448. const int64_t i13 = i03;
  8449. const float * x = (float *) ((char *) src0->data + i01*nb01 + i02*nb02 + i03*nb03);
  8450. const float * dz = (float *) ((char *) src1->data + i11*nb11 + i12*nb12 + i13*nb13);
  8451. ggml_float sum_xx = 0.0;
  8452. ggml_float sum_xdz = 0.0;
  8453. for (int64_t i00 = 0; i00 < ne00; i00++) {
  8454. sum_xx += (ggml_float)(x[i00] * x[i00]);
  8455. sum_xdz += (ggml_float)(x[i00] * dz[i00]);
  8456. }
  8457. //const float mean = (float)(sum_xx)/ne00;
  8458. const float mean_eps = (float)(sum_xx)/ne00 + eps;
  8459. const float sum_eps = (float)(sum_xx) + eps*ne00;
  8460. //const float mean_xdz = (float)(sum_xdz)/ne00;
  8461. // we could cache rms from forward pass to improve performance.
  8462. // to do this implement ggml_rms and compose ggml_rms_norm using ggml_rms.
  8463. //const float rms = sqrtf(mean_eps);
  8464. const float rrms = 1.0f / sqrtf(mean_eps);
  8465. //const float scale = -rrms/(ne00 * mean_eps); // -1/(n*rms**3)
  8466. {
  8467. // z = rms_norm(x)
  8468. //
  8469. // rms_norm(src0) =
  8470. // scale(
  8471. // src0,
  8472. // div(
  8473. // 1,
  8474. // sqrt(
  8475. // add(
  8476. // scale(
  8477. // sum(
  8478. // sqr(
  8479. // src0)),
  8480. // (1.0/N)),
  8481. // eps))));
  8482. // postorder:
  8483. // ## op args grad
  8484. // 00 param src0 grad[#00]
  8485. // 01 const 1
  8486. // 02 sqr (#00) grad[#02]
  8487. // 03 sum (#02) grad[#03]
  8488. // 04 const 1/N
  8489. // 05 scale (#03, #04) grad[#05]
  8490. // 06 const eps
  8491. // 07 add (#05, #06) grad[#07]
  8492. // 08 sqrt (#07) grad[#08]
  8493. // 09 div (#01,#08) grad[#09]
  8494. // 10 scale (#00,#09) grad[#10]
  8495. //
  8496. // backward pass, given grad[#10]
  8497. // #10: scale
  8498. // grad[#00] += scale(grad[#10],#09)
  8499. // grad[#09] += sum(mul(grad[#10],#00))
  8500. // #09: div
  8501. // grad[#08] += neg(mul(grad[#09], div(#09,#08)))
  8502. // #08: sqrt
  8503. // grad[#07] += mul(grad[#08], div(0.5, #08))
  8504. // #07: add
  8505. // grad[#05] += grad[#07]
  8506. // #05: scale
  8507. // grad[#03] += scale(grad[#05],#04)
  8508. // #03: sum
  8509. // grad[#02] += repeat(grad[#03], #02)
  8510. // #02:
  8511. // grad[#00] += scale(mul(#00, grad[#02]), 2.0)
  8512. //
  8513. // substitute and simplify:
  8514. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8515. // grad[#02] = repeat(grad[#03], #02)
  8516. // grad[#02] = repeat(scale(grad[#05],#04), #02)
  8517. // grad[#02] = repeat(scale(grad[#07],#04), #02)
  8518. // grad[#02] = repeat(scale(mul(grad[#08], div(0.5, #08)),#04), #02)
  8519. // grad[#02] = repeat(scale(mul(neg(mul(grad[#09], div(#09,#08))), div(0.5, #08)),#04), #02)
  8520. // grad[#02] = repeat(scale(mul(neg(mul(sum(mul(grad[#10],#00)), div(#09,#08))), div(0.5, #08)),#04), #02)
  8521. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(#09,#08) * div(0.5, #08) * (1/N)), #02)
  8522. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(div(#01,#08),#08) * div(0.5, #08) * (1/N)), #02)
  8523. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#08*#08) * div(0.5, #08) * (1/N)), #02)
  8524. // grad[#02] = repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)
  8525. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, grad[#02]), 2.0)
  8526. // grad[#00] = scale(grad(#10), #09) + scale(mul(#00, repeat(-(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N)), #02)), 2.0)
  8527. // grad[#00] = scale(grad(#10), #09) + scale(scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(0.5, #08) * (1/N))), 2.0)
  8528. // grad[#00] = scale(grad(#10), #09) + scale(#00, -(sum(mul(grad[#10],#00)) * div(1,#07) * div(1,#08) * (1/N)))
  8529. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8530. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,#07*#08) * (-1/N))
  8531. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(1,mean_eps*rms) * (-1/N))
  8532. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*mean_eps))
  8533. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*(sum_xx/N+eps)))
  8534. // grad[#00] = scale(grad(#10), #09) + scale(#00, sum(mul(grad[#10],#00)) * div(-1,rms*N*sum_xx+rms*N*eps))
  8535. // grad[#00] = scale(dz, rrms) + scale(x, sum(mul(dz,x)) * div(-1,rms*N*mean_eps))
  8536. // grad[#00] = scale(dz, rrms) + scale(x, sum_xdz * div(-1,rms*N*mean_eps))
  8537. // a = b*c + d*e
  8538. // a = b*c*f/f + d*e*f/f
  8539. // a = (b*c*f + d*e*f)*(1/f)
  8540. // a = (b*c*(1/c) + d*e*(1/c))*(1/(1/c))
  8541. // a = (b + d*e/c)*c
  8542. // b = dz, c = rrms, d = x, e = sum_xdz * div(-1,rms*N*mean_eps)
  8543. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)/rrms)*rrms
  8544. // a = (dz + x*sum_xdz * div(-1,rms*N*mean_eps)*rms)*rrms
  8545. // a = (dz + x*sum_xdz * div(-rms,rms*N*mean_eps))*rrms
  8546. // a = (dz + x*sum_xdz * div(-1,N*mean_eps))*rrms
  8547. // a = (dz + x*div(-sum_xdz,N*mean_eps))*rrms
  8548. // a = (dz + x*div(-mean_xdz,mean_eps))*rrms
  8549. // grad[#00] = scale(dz + scale(x, div(-mean_xdz,mean_eps)),rrms)
  8550. // grad[#00] = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8551. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8552. }
  8553. // dx = scale(dz + scale(x, -mean_xdz/mean_eps),rrms)
  8554. // post-order:
  8555. // dx := x
  8556. // dx := scale(dx,-mean_xdz/mean_eps)
  8557. // dx := add(dx, dz)
  8558. // dx := scale(dx, rrms)
  8559. float * dx = (float *) ((char *) dst->data + i01*nb1 + i02*nb2 + i03*nb3);
  8560. ggml_vec_cpy_f32 (ne00, dx, x);
  8561. // ggml_vec_scale_f32(ne00, dx, -mean_xdz/mean_eps);
  8562. ggml_vec_scale_f32(ne00, dx, (float)(-sum_xdz)/sum_eps);
  8563. ggml_vec_acc_f32 (ne00, dx, dz);
  8564. ggml_vec_scale_f32(ne00, dx, rrms);
  8565. }
  8566. }
  8567. }
  8568. }
  8569. static void ggml_compute_forward_rms_norm_back(
  8570. const struct ggml_compute_params * params,
  8571. const struct ggml_tensor * src0,
  8572. const struct ggml_tensor * src1,
  8573. struct ggml_tensor * dst) {
  8574. switch (src0->type) {
  8575. case GGML_TYPE_F32:
  8576. {
  8577. ggml_compute_forward_rms_norm_back_f32(params, src0, src1, dst);
  8578. } break;
  8579. default:
  8580. {
  8581. GGML_ASSERT(false);
  8582. } break;
  8583. }
  8584. }
  8585. // ggml_compute_forward_mul_mat
  8586. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8587. // helper function to determine if it is better to use BLAS or not
  8588. // for large matrices, BLAS is faster
  8589. static bool ggml_compute_forward_mul_mat_use_blas(
  8590. const struct ggml_tensor * src0,
  8591. const struct ggml_tensor * src1,
  8592. struct ggml_tensor * dst) {
  8593. //const int64_t ne00 = src0->ne[0];
  8594. //const int64_t ne01 = src0->ne[1];
  8595. const int64_t ne10 = src1->ne[0];
  8596. const int64_t ne0 = dst->ne[0];
  8597. const int64_t ne1 = dst->ne[1];
  8598. // TODO: find the optimal values for these
  8599. if (ggml_is_contiguous(src0) &&
  8600. ggml_is_contiguous(src1) &&
  8601. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32)) {
  8602. /*printf("BLAS: %d %d %d %d %d\n", ne0, ne1, ne10, ne00, ne01);*/
  8603. return true;
  8604. }
  8605. return false;
  8606. }
  8607. #endif
  8608. static void ggml_compute_forward_mul_mat_f32(
  8609. const struct ggml_compute_params * params,
  8610. const struct ggml_tensor * src0,
  8611. const struct ggml_tensor * src1,
  8612. struct ggml_tensor * dst) {
  8613. int64_t t0 = ggml_perf_time_us();
  8614. UNUSED(t0);
  8615. const int64_t ne00 = src0->ne[0];
  8616. const int64_t ne01 = src0->ne[1];
  8617. const int64_t ne02 = src0->ne[2];
  8618. const int64_t ne03 = src0->ne[3];
  8619. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8620. const int64_t ne10 = src1->ne[0];
  8621. #endif
  8622. const int64_t ne11 = src1->ne[1];
  8623. #ifndef NDEBUG
  8624. const int64_t ne12 = src1->ne[2];
  8625. const int64_t ne13 = src1->ne[3];
  8626. const int64_t ne0 = dst->ne[0];
  8627. const int64_t ne1 = dst->ne[1];
  8628. const int64_t ne2 = dst->ne[2];
  8629. const int64_t ne3 = dst->ne[3];
  8630. const int nb00 = src0->nb[0];
  8631. #endif
  8632. const int nb01 = src0->nb[1];
  8633. const int nb02 = src0->nb[2];
  8634. const int nb03 = src0->nb[3];
  8635. #ifndef NDEBUG
  8636. const int nb10 = src1->nb[0];
  8637. #endif
  8638. const int nb11 = src1->nb[1];
  8639. const int nb12 = src1->nb[2];
  8640. const int nb13 = src1->nb[3];
  8641. const int nb0 = dst->nb[0];
  8642. const int nb1 = dst->nb[1];
  8643. const int nb2 = dst->nb[2];
  8644. const int nb3 = dst->nb[3];
  8645. const int ith = params->ith;
  8646. const int nth = params->nth;
  8647. assert(ne02 == ne12);
  8648. assert(ne03 == ne13);
  8649. assert(ne2 == ne12);
  8650. assert(ne3 == ne13);
  8651. // we don't support permuted src0 or src1
  8652. assert(nb00 == sizeof(float));
  8653. assert(nb10 == sizeof(float));
  8654. // dst cannot be transposed or permuted
  8655. assert(nb0 == sizeof(float));
  8656. assert(nb0 <= nb1);
  8657. assert(nb1 <= nb2);
  8658. assert(nb2 <= nb3);
  8659. assert(ne0 == ne01);
  8660. assert(ne1 == ne11);
  8661. assert(ne2 == ne02);
  8662. assert(ne3 == ne03);
  8663. // nb01 >= nb00 - src0 is not transposed
  8664. // compute by src0 rows
  8665. #if defined(GGML_USE_CLBLAST)
  8666. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8667. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8668. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8669. }
  8670. return;
  8671. }
  8672. #endif
  8673. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8674. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8675. if (params->ith != 0) {
  8676. return;
  8677. }
  8678. if (params->type == GGML_TASK_INIT) {
  8679. return;
  8680. }
  8681. if (params->type == GGML_TASK_FINALIZE) {
  8682. return;
  8683. }
  8684. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8685. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8686. const float * x = (float *) ((char *) src0->data + i02*nb02 + i03*nb03);
  8687. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8688. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8689. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8690. ne11, ne01, ne10,
  8691. 1.0f, y, ne10,
  8692. x, ne00,
  8693. 0.0f, d, ne01);
  8694. }
  8695. }
  8696. //printf("CBLAS F32 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  8697. return;
  8698. }
  8699. #endif
  8700. if (params->type == GGML_TASK_INIT) {
  8701. return;
  8702. }
  8703. if (params->type == GGML_TASK_FINALIZE) {
  8704. return;
  8705. }
  8706. // parallelize by src0 rows using ggml_vec_dot_f32
  8707. // total rows in src0
  8708. const int nr = ne01*ne02*ne03;
  8709. // rows per thread
  8710. const int dr = (nr + nth - 1)/nth;
  8711. // row range for this thread
  8712. const int ir0 = dr*ith;
  8713. const int ir1 = MIN(ir0 + dr, nr);
  8714. for (int ir = ir0; ir < ir1; ++ir) {
  8715. // src0 indices
  8716. const int i03 = ir/(ne02*ne01);
  8717. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8718. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8719. for (int64_t ic = 0; ic < ne11; ++ic) {
  8720. // src1 indices
  8721. const int i13 = i03;
  8722. const int i12 = i02;
  8723. const int i11 = ic;
  8724. // dst indices
  8725. const int i0 = i01;
  8726. const int i1 = i11;
  8727. const int i2 = i02;
  8728. const int i3 = i03;
  8729. ggml_vec_dot_f32(ne00,
  8730. (float *) ((char *) dst->data + (i0*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  8731. (float *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03)),
  8732. (float *) ((char *) src1->data + (i11*nb11 + i12*nb12 + i13*nb13)));
  8733. }
  8734. }
  8735. //int64_t t1 = ggml_perf_time_us();
  8736. //static int64_t acc = 0;
  8737. //acc += t1 - t0;
  8738. //if (t1 - t0 > 10) {
  8739. // printf("\n");
  8740. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8741. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8742. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8743. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  8744. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8745. //}
  8746. }
  8747. static void ggml_compute_forward_mul_mat_f16_f32(
  8748. const struct ggml_compute_params * params,
  8749. const struct ggml_tensor * src0,
  8750. const struct ggml_tensor * src1,
  8751. struct ggml_tensor * dst) {
  8752. int64_t t0 = ggml_perf_time_us();
  8753. UNUSED(t0);
  8754. const int64_t ne00 = src0->ne[0];
  8755. const int64_t ne01 = src0->ne[1];
  8756. const int64_t ne02 = src0->ne[2];
  8757. const int64_t ne03 = src0->ne[3];
  8758. const int64_t ne10 = src1->ne[0];
  8759. const int64_t ne11 = src1->ne[1];
  8760. const int64_t ne12 = src1->ne[2];
  8761. const int64_t ne13 = src1->ne[3];
  8762. const int64_t ne0 = dst->ne[0];
  8763. const int64_t ne1 = dst->ne[1];
  8764. const int64_t ne2 = dst->ne[2];
  8765. const int64_t ne3 = dst->ne[3];
  8766. //const int64_t ne = ne0*ne1*ne2*ne3;
  8767. const int nb00 = src0->nb[0];
  8768. const int nb01 = src0->nb[1];
  8769. const int nb02 = src0->nb[2];
  8770. const int nb03 = src0->nb[3];
  8771. const int nb10 = src1->nb[0];
  8772. const int nb11 = src1->nb[1];
  8773. const int nb12 = src1->nb[2];
  8774. const int nb13 = src1->nb[3];
  8775. const int nb0 = dst->nb[0];
  8776. const int nb1 = dst->nb[1];
  8777. const int nb2 = dst->nb[2];
  8778. const int nb3 = dst->nb[3];
  8779. const int ith = params->ith;
  8780. const int nth = params->nth;
  8781. GGML_ASSERT(ne02 == ne12);
  8782. GGML_ASSERT(ne03 == ne13);
  8783. GGML_ASSERT(ne2 == ne12);
  8784. GGML_ASSERT(ne3 == ne13);
  8785. // TODO: we don't support permuted src0
  8786. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  8787. // dst cannot be transposed or permuted
  8788. GGML_ASSERT(nb0 == sizeof(float));
  8789. GGML_ASSERT(nb0 <= nb1);
  8790. GGML_ASSERT(nb1 <= nb2);
  8791. GGML_ASSERT(nb2 <= nb3);
  8792. GGML_ASSERT(ne0 == ne01);
  8793. GGML_ASSERT(ne1 == ne11);
  8794. GGML_ASSERT(ne2 == ne02);
  8795. GGML_ASSERT(ne3 == ne03);
  8796. // nb01 >= nb00 - src0 is not transposed
  8797. // compute by src0 rows
  8798. #if defined(GGML_USE_CLBLAST)
  8799. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8800. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8801. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8802. }
  8803. return;
  8804. }
  8805. #endif
  8806. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8807. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8808. GGML_ASSERT(nb10 == sizeof(float));
  8809. if (params->ith != 0) {
  8810. return;
  8811. }
  8812. if (params->type == GGML_TASK_INIT) {
  8813. return;
  8814. }
  8815. if (params->type == GGML_TASK_FINALIZE) {
  8816. return;
  8817. }
  8818. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8819. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8820. float * const wdata = params->wdata;
  8821. {
  8822. size_t id = 0;
  8823. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8824. for (int64_t i00 = 0; i00 < ne00; ++i00) {
  8825. wdata[id++] = GGML_FP16_TO_FP32(*(ggml_fp16_t *) ((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00));
  8826. }
  8827. }
  8828. assert(id*sizeof(float) <= params->wsize);
  8829. }
  8830. const float * x = wdata;
  8831. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8832. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8833. // zT = y * xT
  8834. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8835. ne11, ne01, ne10,
  8836. 1.0f, y, ne10,
  8837. x, ne00,
  8838. 0.0f, d, ne01);
  8839. }
  8840. }
  8841. /*printf("CBLAS F16 = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);*/
  8842. return;
  8843. }
  8844. #endif
  8845. if (params->type == GGML_TASK_INIT) {
  8846. ggml_fp16_t * const wdata = params->wdata;
  8847. size_t id = 0;
  8848. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  8849. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  8850. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  8851. for (int64_t i10 = 0; i10 < ne10; ++i10) {
  8852. wdata[id++] = GGML_FP32_TO_FP16(*(float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11 + i10*nb10));
  8853. }
  8854. }
  8855. }
  8856. }
  8857. GGML_ASSERT(id*sizeof(ggml_fp16_t) <= params->wsize);
  8858. return;
  8859. }
  8860. if (params->type == GGML_TASK_FINALIZE) {
  8861. return;
  8862. }
  8863. // fp16 -> half the size, so divide by 2
  8864. // TODO: do not support transposed src1
  8865. assert(nb10/2 == sizeof(ggml_fp16_t));
  8866. // parallelize by src0 rows using ggml_vec_dot_f16
  8867. // total rows in src0
  8868. const int nr = ne01*ne02*ne03;
  8869. // rows per thread
  8870. const int dr = (nr + nth - 1)/nth;
  8871. // row range for this thread
  8872. const int ir0 = dr*ith;
  8873. const int ir1 = MIN(ir0 + dr, nr);
  8874. ggml_fp16_t * wdata = params->wdata;
  8875. for (int ir = ir0; ir < ir1; ++ir) {
  8876. // src0 indices
  8877. const int i03 = ir/(ne02*ne01);
  8878. const int i02 = (ir - i03*ne02*ne01)/ne01;
  8879. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  8880. const int i13 = i03;
  8881. const int i12 = i02;
  8882. const int i0 = i01;
  8883. const int i2 = i02;
  8884. const int i3 = i03;
  8885. ggml_fp16_t * src0_row = (ggml_fp16_t *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  8886. ggml_fp16_t * src1_col = wdata + ( 0 + i12*ne11 + i13*ne12*ne11)*ne00;
  8887. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  8888. for (int64_t ic = 0; ic < ne11; ++ic) {
  8889. ggml_vec_dot_f16(ne00, &dst_col[ic*ne0], src0_row, src1_col + ic*ne00);
  8890. }
  8891. }
  8892. //int64_t t1 = ggml_time_us();
  8893. //static int64_t acc = 0;
  8894. //acc += t1 - t0;
  8895. //if (t1 - t0 > 10) {
  8896. // printf("\n");
  8897. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  8898. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  8899. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  8900. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  8901. //}
  8902. }
  8903. static void ggml_compute_forward_mul_mat_q_f32(
  8904. const struct ggml_compute_params * params,
  8905. const struct ggml_tensor * src0,
  8906. const struct ggml_tensor * src1,
  8907. struct ggml_tensor * dst) {
  8908. int64_t t0 = ggml_perf_time_us();
  8909. UNUSED(t0);
  8910. const int64_t ne00 = src0->ne[0];
  8911. const int64_t ne01 = src0->ne[1];
  8912. const int64_t ne02 = src0->ne[2];
  8913. const int64_t ne03 = src0->ne[3];
  8914. const int64_t ne10 = src1->ne[0];
  8915. const int64_t ne11 = src1->ne[1];
  8916. const int64_t ne12 = src1->ne[2];
  8917. const int64_t ne13 = src1->ne[3];
  8918. const int64_t ne0 = dst->ne[0];
  8919. const int64_t ne1 = dst->ne[1];
  8920. const int64_t ne2 = dst->ne[2];
  8921. const int64_t ne3 = dst->ne[3];
  8922. const int nb00 = src0->nb[0];
  8923. const int nb01 = src0->nb[1];
  8924. const int nb02 = src0->nb[2];
  8925. const int nb03 = src0->nb[3];
  8926. const int nb10 = src1->nb[0];
  8927. const int nb11 = src1->nb[1];
  8928. const int nb12 = src1->nb[2];
  8929. const int nb13 = src1->nb[3];
  8930. const int nb0 = dst->nb[0];
  8931. const int nb1 = dst->nb[1];
  8932. const int nb2 = dst->nb[2];
  8933. const int nb3 = dst->nb[3];
  8934. const int ith = params->ith;
  8935. const int nth = params->nth;
  8936. GGML_ASSERT(ne02 == ne12);
  8937. GGML_ASSERT(ne03 == ne13);
  8938. GGML_ASSERT(ne2 == ne12);
  8939. GGML_ASSERT(ne3 == ne13);
  8940. const enum ggml_type type = src0->type;
  8941. quantize_row_q_t const quantize_row_q_dot = quantize_fns[type].quantize_row_q_dot;
  8942. vec_dot_q_t const vec_dot_q = quantize_fns[type].vec_dot_q;
  8943. enum ggml_type const vec_dot_type = quantize_fns[type].vec_dot_type;
  8944. // we don't support permuted src0 or src1
  8945. GGML_ASSERT(nb00 == (int) GGML_TYPE_SIZE[type]);
  8946. GGML_ASSERT(nb10 == sizeof(float));
  8947. // dst cannot be transposed or permuted
  8948. GGML_ASSERT(nb0 == sizeof(float));
  8949. GGML_ASSERT(nb0 <= nb1);
  8950. GGML_ASSERT(nb1 <= nb2);
  8951. GGML_ASSERT(nb2 <= nb3);
  8952. GGML_ASSERT(ne0 == ne01);
  8953. GGML_ASSERT(ne1 == ne11);
  8954. GGML_ASSERT(ne2 == ne02);
  8955. GGML_ASSERT(ne3 == ne03);
  8956. // nb01 >= nb00 - src0 is not transposed
  8957. // compute by src0 rows
  8958. #if defined(GGML_USE_CLBLAST)
  8959. if (ggml_cl_can_mul_mat(src0, src1, dst)) {
  8960. if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
  8961. ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
  8962. }
  8963. return;
  8964. }
  8965. #endif
  8966. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  8967. if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
  8968. if (params->ith != 0) {
  8969. return;
  8970. }
  8971. if (params->type == GGML_TASK_INIT) {
  8972. return;
  8973. }
  8974. if (params->type == GGML_TASK_FINALIZE) {
  8975. return;
  8976. }
  8977. float * const wdata = params->wdata;
  8978. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  8979. for (int64_t i03 = 0; i03 < ne03; i03++) {
  8980. for (int64_t i02 = 0; i02 < ne02; i02++) {
  8981. const float * y = (float *) ((char *) src1->data + i02*nb12 + i03*nb13);
  8982. float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
  8983. {
  8984. size_t id = 0;
  8985. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  8986. dequantize_row_q((char *) src0->data + i03*nb03 + i02*nb02 + i01*nb01, wdata + id, ne00);
  8987. id += ne00;
  8988. }
  8989. assert(id*sizeof(float) <= params->wsize);
  8990. }
  8991. const float * x = wdata;
  8992. cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans,
  8993. ne11, ne01, ne10,
  8994. 1.0f, y, ne10,
  8995. x, ne00,
  8996. 0.0f, d, ne01);
  8997. }
  8998. }
  8999. //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3);
  9000. return;
  9001. }
  9002. #endif
  9003. if (params->type == GGML_TASK_INIT) {
  9004. char * wdata = params->wdata;
  9005. const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  9006. for (int64_t i13 = 0; i13 < ne13; ++i13) {
  9007. for (int64_t i12 = 0; i12 < ne12; ++i12) {
  9008. for (int64_t i11 = 0; i11 < ne11; ++i11) {
  9009. quantize_row_q_dot((float *)((char *) src1->data + i13*nb13 + i12*nb12 + i11*nb11), (void *) wdata, ne10);
  9010. wdata += row_size;
  9011. }
  9012. }
  9013. }
  9014. return;
  9015. }
  9016. if (params->type == GGML_TASK_FINALIZE) {
  9017. return;
  9018. }
  9019. // parallelize by src0 rows using ggml_vec_dot_q
  9020. // total rows in src0
  9021. const int nr = ne01*ne02*ne03;
  9022. // rows per thread
  9023. const int dr = (nr + nth - 1)/nth;
  9024. // row range for this thread
  9025. const int ir0 = dr*ith;
  9026. const int ir1 = MIN(ir0 + dr, nr);
  9027. void * wdata = params->wdata;
  9028. const size_t row_size = ne00*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
  9029. for (int ir = ir0; ir < ir1; ++ir) {
  9030. // src0 indices
  9031. const int i03 = ir/(ne02*ne01);
  9032. const int i02 = (ir - i03*ne02*ne01)/ne01;
  9033. const int i01 = (ir - i03*ne02*ne01 - i02*ne01);
  9034. const int i13 = i03;
  9035. const int i12 = i02;
  9036. const int i0 = i01;
  9037. const int i2 = i02;
  9038. const int i3 = i03;
  9039. void * src0_row = (void *) ((char *) src0->data + (i01*nb01 + i02*nb02 + i03*nb03));
  9040. char * src1_col = ((char *) wdata + ( (0 + i12*ne11 + i13*ne12*ne11)*row_size));
  9041. float * dst_col = (float *) ((char *) dst->data + (i0*nb0 + 0*nb1 + i2*nb2 + i3*nb3));
  9042. assert(ne00 % 32 == 0);
  9043. for (int64_t ic = 0; ic < ne11; ++ic) {
  9044. vec_dot_q(ne00, &dst_col[ic*ne0], src0_row, (void *) (src1_col + ic*row_size));
  9045. }
  9046. }
  9047. //int64_t t1 = ggml_time_us();
  9048. //static int64_t acc = 0;
  9049. //acc += t1 - t0;
  9050. //if (t1 - t0 > 10) {
  9051. // printf("\n");
  9052. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9053. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9054. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9055. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9056. //}
  9057. }
  9058. static void ggml_compute_forward_mul_mat(
  9059. const struct ggml_compute_params * params,
  9060. const struct ggml_tensor * src0,
  9061. const struct ggml_tensor * src1,
  9062. struct ggml_tensor * dst) {
  9063. switch (src0->type) {
  9064. case GGML_TYPE_Q4_0:
  9065. case GGML_TYPE_Q4_1:
  9066. case GGML_TYPE_Q5_0:
  9067. case GGML_TYPE_Q5_1:
  9068. case GGML_TYPE_Q8_0:
  9069. case GGML_TYPE_Q8_1:
  9070. case GGML_TYPE_Q2_K:
  9071. case GGML_TYPE_Q3_K:
  9072. case GGML_TYPE_Q4_K:
  9073. case GGML_TYPE_Q5_K:
  9074. case GGML_TYPE_Q6_K:
  9075. {
  9076. ggml_compute_forward_mul_mat_q_f32(params, src0, src1, dst);
  9077. } break;
  9078. case GGML_TYPE_F16:
  9079. {
  9080. ggml_compute_forward_mul_mat_f16_f32(params, src0, src1, dst);
  9081. } break;
  9082. case GGML_TYPE_F32:
  9083. {
  9084. ggml_compute_forward_mul_mat_f32(params, src0, src1, dst);
  9085. } break;
  9086. default:
  9087. {
  9088. GGML_ASSERT(false);
  9089. } break;
  9090. }
  9091. }
  9092. // ggml_compute_forward_out_prod
  9093. static void ggml_compute_forward_out_prod_f32(
  9094. const struct ggml_compute_params * params,
  9095. const struct ggml_tensor * src0,
  9096. const struct ggml_tensor * src1,
  9097. struct ggml_tensor * dst) {
  9098. int64_t t0 = ggml_perf_time_us();
  9099. UNUSED(t0);
  9100. const int64_t ne00 = src0->ne[0];
  9101. const int64_t ne01 = src0->ne[1];
  9102. const int64_t ne02 = src0->ne[2];
  9103. const int64_t ne03 = src0->ne[3];
  9104. const int64_t ne10 = src1->ne[0];
  9105. //const int64_t ne11 = src1->ne[1];
  9106. const int64_t ne12 = src1->ne[2];
  9107. const int64_t ne13 = src1->ne[3];
  9108. const int64_t ne0 = dst->ne[0];
  9109. const int64_t ne1 = dst->ne[1];
  9110. const int64_t ne2 = dst->ne[2];
  9111. const int64_t ne3 = dst->ne[3];
  9112. const int nb00 = src0->nb[0];
  9113. const int nb01 = src0->nb[1];
  9114. const int nb02 = src0->nb[2];
  9115. const int nb03 = src0->nb[3];
  9116. const int nb10 = src1->nb[0];
  9117. const int nb11 = src1->nb[1];
  9118. const int nb12 = src1->nb[2];
  9119. const int nb13 = src1->nb[3];
  9120. const int nb0 = dst->nb[0];
  9121. const int nb1 = dst->nb[1];
  9122. const int nb2 = dst->nb[2];
  9123. const int nb3 = dst->nb[3];
  9124. const int ith = params->ith;
  9125. const int nth = params->nth;
  9126. GGML_ASSERT(ne02 == ne12);
  9127. GGML_ASSERT(ne03 == ne13);
  9128. GGML_ASSERT(ne2 == ne12);
  9129. GGML_ASSERT(ne3 == ne13);
  9130. // we don't support permuted src0 or src1
  9131. GGML_ASSERT(nb00 == sizeof(float));
  9132. // dst cannot be transposed or permuted
  9133. GGML_ASSERT(nb0 == sizeof(float));
  9134. // GGML_ASSERT(nb0 <= nb1);
  9135. // GGML_ASSERT(nb1 <= nb2);
  9136. // GGML_ASSERT(nb2 <= nb3);
  9137. GGML_ASSERT(ne0 == ne00);
  9138. GGML_ASSERT(ne1 == ne10);
  9139. GGML_ASSERT(ne2 == ne02);
  9140. GGML_ASSERT(ne3 == ne03);
  9141. // nb01 >= nb00 - src0 is not transposed
  9142. // compute by src0 rows
  9143. // TODO: #if defined(GGML_USE_CUBLAS) ggml_cuda_out_prod
  9144. // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST)
  9145. if (params->type == GGML_TASK_INIT) {
  9146. ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0);
  9147. return;
  9148. }
  9149. if (params->type == GGML_TASK_FINALIZE) {
  9150. return;
  9151. }
  9152. // parallelize by last three dimensions
  9153. // total rows in dst
  9154. const int64_t nr = ne1*ne2*ne3;
  9155. // rows per thread
  9156. const int64_t dr = (nr + nth - 1)/nth;
  9157. // row range for this thread
  9158. const int64_t ir0 = dr*ith;
  9159. const int64_t ir1 = MIN(ir0 + dr, nr);
  9160. // dst[:,:,:,:] = 0
  9161. // for i2,i3:
  9162. // for i1:
  9163. // for i01:
  9164. // for i0:
  9165. // dst[i0,i1,i2,i3] += src0[i0,i01,i2,i3] * src1[i1,i01,i2,i3]
  9166. for (int64_t ir = ir0; ir < ir1; ++ir) {
  9167. // dst indices
  9168. const int64_t i3 = ir/(ne2*ne1);
  9169. const int64_t i2 = (ir - i3*ne2*ne1)/ne1;
  9170. const int64_t i1 = (ir - i3*ne2*ne1 - i2*ne1);
  9171. const int64_t i02 = i2;
  9172. const int64_t i03 = i3;
  9173. //const int64_t i10 = i1;
  9174. const int64_t i12 = i2;
  9175. const int64_t i13 = i3;
  9176. for (int64_t i01 = 0; i01 < ne01; ++i01) {
  9177. const int64_t i11 = i01;
  9178. float * s0 = (float *) ((char *) src0->data + ( i01*nb01 + i02*nb02 + i03*nb03));
  9179. float * s1 = (float *) ((char *) src1->data + (i1*nb10 + i11*nb11 + i12*nb12 + i13*nb13));
  9180. float * d = (float *) ((char *) dst->data + ( i1*nb1 + i2*nb2 + i3*nb3));
  9181. ggml_vec_mad_f32(ne0, d, s0, *s1);
  9182. // for (int64_t i0 = 0; i0 < ne0; ++i0) {
  9183. // d[i0] += s0[i0] * s1[i1];
  9184. // }
  9185. }
  9186. }
  9187. //int64_t t1 = ggml_perf_time_us();
  9188. //static int64_t acc = 0;
  9189. //acc += t1 - t0;
  9190. //if (t1 - t0 > 10) {
  9191. // printf("\n");
  9192. // printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
  9193. // printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
  9194. // printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
  9195. // printf("nb10 = %5d, nb11 = %5d, nb12 = %5d, nb13 = %5d\n", nb10, nb11, nb12, nb13);
  9196. // printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
  9197. //}
  9198. }
  9199. static void ggml_compute_forward_out_prod(
  9200. const struct ggml_compute_params * params,
  9201. const struct ggml_tensor * src0,
  9202. const struct ggml_tensor * src1,
  9203. struct ggml_tensor * dst) {
  9204. switch (src0->type) {
  9205. case GGML_TYPE_Q4_0:
  9206. case GGML_TYPE_Q4_1:
  9207. case GGML_TYPE_Q5_0:
  9208. case GGML_TYPE_Q5_1:
  9209. case GGML_TYPE_Q8_0:
  9210. case GGML_TYPE_Q8_1:
  9211. {
  9212. GGML_ASSERT(false); // todo
  9213. // ggml_compute_forward_out_prod_q_f32(params, src0, src1, dst);
  9214. } break;
  9215. case GGML_TYPE_F16:
  9216. {
  9217. GGML_ASSERT(false); // todo
  9218. // ggml_compute_forward_out_prod_f16_f32(params, src0, src1, dst);
  9219. } break;
  9220. case GGML_TYPE_F32:
  9221. {
  9222. ggml_compute_forward_out_prod_f32(params, src0, src1, dst);
  9223. } break;
  9224. default:
  9225. {
  9226. GGML_ASSERT(false);
  9227. } break;
  9228. }
  9229. }
  9230. // ggml_compute_forward_scale
  9231. static void ggml_compute_forward_scale_f32(
  9232. const struct ggml_compute_params * params,
  9233. const struct ggml_tensor * src0,
  9234. const struct ggml_tensor * src1,
  9235. struct ggml_tensor * dst) {
  9236. GGML_ASSERT(ggml_is_contiguous(src0));
  9237. GGML_ASSERT(ggml_is_contiguous(dst));
  9238. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9239. GGML_ASSERT(ggml_is_scalar(src1));
  9240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9241. return;
  9242. }
  9243. // scale factor
  9244. const float v = *(float *) src1->data;
  9245. const int ith = params->ith;
  9246. const int nth = params->nth;
  9247. const int nc = src0->ne[0];
  9248. const int nr = ggml_nrows(src0);
  9249. // rows per thread
  9250. const int dr = (nr + nth - 1)/nth;
  9251. // row range for this thread
  9252. const int ir0 = dr*ith;
  9253. const int ir1 = MIN(ir0 + dr, nr);
  9254. const size_t nb01 = src0->nb[1];
  9255. const size_t nb1 = dst->nb[1];
  9256. for (int i1 = ir0; i1 < ir1; i1++) {
  9257. if (dst->data != src0->data) {
  9258. // src0 is same shape as dst => same indices
  9259. memcpy((char *)dst->data + i1*nb1, (char *)src0->data + i1*nb01, nc * sizeof(float));
  9260. }
  9261. ggml_vec_scale_f32(nc, (float *) ((char *) dst->data + i1*nb1), v);
  9262. }
  9263. }
  9264. static void ggml_compute_forward_scale(
  9265. const struct ggml_compute_params * params,
  9266. const struct ggml_tensor * src0,
  9267. const struct ggml_tensor * src1,
  9268. struct ggml_tensor * dst) {
  9269. switch (src0->type) {
  9270. case GGML_TYPE_F32:
  9271. {
  9272. ggml_compute_forward_scale_f32(params, src0, src1, dst);
  9273. } break;
  9274. default:
  9275. {
  9276. GGML_ASSERT(false);
  9277. } break;
  9278. }
  9279. }
  9280. // ggml_compute_forward_set
  9281. static void ggml_compute_forward_set_f32(
  9282. const struct ggml_compute_params * params,
  9283. const struct ggml_tensor * src0,
  9284. const struct ggml_tensor * src1,
  9285. const struct ggml_tensor * opt0,
  9286. struct ggml_tensor * dst) {
  9287. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9288. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9289. GGML_ASSERT(opt0->type == GGML_TYPE_I32);
  9290. GGML_ASSERT(ggml_nelements(opt0) == 5);
  9291. // view src0 and dst with these strides and data offset inbytes during set
  9292. // nb0 is implicitely element_size because src0 and dst are contiguous
  9293. size_t nb1 = ((int32_t *) opt0->data)[0];
  9294. size_t nb2 = ((int32_t *) opt0->data)[1];
  9295. size_t nb3 = ((int32_t *) opt0->data)[2];
  9296. size_t offset = ((int32_t *) opt0->data)[3];
  9297. bool inplace = (bool) ((int32_t *) opt0->data)[4];
  9298. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9299. // memcpy needs to be synchronized across threads to avoid race conditions.
  9300. // => do it in INIT phase
  9301. memcpy(
  9302. ((char *) dst->data),
  9303. ((char *) src0->data),
  9304. ggml_nbytes(dst));
  9305. }
  9306. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9307. return;
  9308. }
  9309. const int ith = params->ith;
  9310. const int nth = params->nth;
  9311. const int nr = ggml_nrows(src1);
  9312. const int nc = src1->ne[0];
  9313. const int64_t ne10 = src1->ne[0];
  9314. const int64_t ne11 = src1->ne[1];
  9315. const int64_t ne12 = src1->ne[2];
  9316. const int64_t ne13 = src1->ne[3];
  9317. const size_t nb10 = src1->nb[0];
  9318. const size_t nb11 = src1->nb[1];
  9319. const size_t nb12 = src1->nb[2];
  9320. const size_t nb13 = src1->nb[3];
  9321. // src0 and dst as viewed during set
  9322. const size_t nb0 = ggml_element_size(src0);
  9323. const int im0 = (ne10 == 0 ? 0 : ne10-1);
  9324. const int im1 = (ne11 == 0 ? 0 : ne11-1);
  9325. const int im2 = (ne12 == 0 ? 0 : ne12-1);
  9326. const int im3 = (ne13 == 0 ? 0 : ne13-1);
  9327. GGML_ASSERT(offset + im0*nb0 + im1*nb1 + im2*nb2 + im3*nb3 <= ggml_nbytes(dst));
  9328. GGML_ASSERT(nb10 == sizeof(float));
  9329. // rows per thread
  9330. const int dr = (nr + nth - 1)/nth;
  9331. // row range for this thread
  9332. const int ir0 = dr*ith;
  9333. const int ir1 = MIN(ir0 + dr, nr);
  9334. for (int ir = ir0; ir < ir1; ++ir) {
  9335. // src0 and dst are viewed with shape of src1 and offset
  9336. // => same indices
  9337. const int i3 = ir/(ne12*ne11);
  9338. const int i2 = (ir - i3*ne12*ne11)/ne11;
  9339. const int i1 = (ir - i3*ne12*ne11 - i2*ne11);
  9340. ggml_vec_cpy_f32(nc,
  9341. (float *) ((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + offset),
  9342. (float *) ((char *) src1->data + i3*nb13 + i2*nb12 + i1*nb11));
  9343. }
  9344. }
  9345. static void ggml_compute_forward_set(
  9346. const struct ggml_compute_params * params,
  9347. const struct ggml_tensor * src0,
  9348. const struct ggml_tensor * src1,
  9349. const struct ggml_tensor * opt0,
  9350. struct ggml_tensor * dst) {
  9351. switch (src0->type) {
  9352. case GGML_TYPE_F32:
  9353. {
  9354. ggml_compute_forward_set_f32(params, src0, src1, opt0, dst);
  9355. } break;
  9356. case GGML_TYPE_F16:
  9357. case GGML_TYPE_Q4_0:
  9358. case GGML_TYPE_Q4_1:
  9359. case GGML_TYPE_Q5_0:
  9360. case GGML_TYPE_Q5_1:
  9361. case GGML_TYPE_Q8_0:
  9362. case GGML_TYPE_Q8_1:
  9363. case GGML_TYPE_Q2_K:
  9364. case GGML_TYPE_Q3_K:
  9365. case GGML_TYPE_Q4_K:
  9366. case GGML_TYPE_Q5_K:
  9367. case GGML_TYPE_Q6_K:
  9368. default:
  9369. {
  9370. GGML_ASSERT(false);
  9371. } break;
  9372. }
  9373. }
  9374. // ggml_compute_forward_cpy
  9375. static void ggml_compute_forward_cpy(
  9376. const struct ggml_compute_params * params,
  9377. const struct ggml_tensor * src0,
  9378. struct ggml_tensor * dst) {
  9379. ggml_compute_forward_dup(params, src0, dst);
  9380. }
  9381. // ggml_compute_forward_cont
  9382. static void ggml_compute_forward_cont(
  9383. const struct ggml_compute_params * params,
  9384. const struct ggml_tensor * src0,
  9385. struct ggml_tensor * dst) {
  9386. ggml_compute_forward_dup(params, src0, dst);
  9387. }
  9388. // ggml_compute_forward_reshape
  9389. static void ggml_compute_forward_reshape(
  9390. const struct ggml_compute_params * params,
  9391. const struct ggml_tensor * src0,
  9392. struct ggml_tensor * dst) {
  9393. // NOP
  9394. UNUSED(params);
  9395. UNUSED(src0);
  9396. UNUSED(dst);
  9397. }
  9398. // ggml_compute_forward_view
  9399. static void ggml_compute_forward_view(
  9400. const struct ggml_compute_params * params,
  9401. const struct ggml_tensor * src0) {
  9402. // NOP
  9403. UNUSED(params);
  9404. UNUSED(src0);
  9405. }
  9406. // ggml_compute_forward_permute
  9407. static void ggml_compute_forward_permute(
  9408. const struct ggml_compute_params * params,
  9409. const struct ggml_tensor * src0) {
  9410. // NOP
  9411. UNUSED(params);
  9412. UNUSED(src0);
  9413. }
  9414. // ggml_compute_forward_transpose
  9415. static void ggml_compute_forward_transpose(
  9416. const struct ggml_compute_params * params,
  9417. const struct ggml_tensor * src0) {
  9418. // NOP
  9419. UNUSED(params);
  9420. UNUSED(src0);
  9421. }
  9422. // ggml_compute_forward_get_rows
  9423. static void ggml_compute_forward_get_rows_q(
  9424. const struct ggml_compute_params * params,
  9425. const struct ggml_tensor * src0,
  9426. const struct ggml_tensor * src1,
  9427. struct ggml_tensor * dst) {
  9428. assert(params->ith == 0);
  9429. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9430. return;
  9431. }
  9432. const int nc = src0->ne[0];
  9433. const int nr = ggml_nelements(src1);
  9434. const enum ggml_type type = src0->type;
  9435. dequantize_row_q_t const dequantize_row_q = quantize_fns[type].dequantize_row_q;
  9436. assert( dst->ne[0] == nc);
  9437. assert( dst->ne[1] == nr);
  9438. assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
  9439. for (int i = 0; i < nr; ++i) {
  9440. const int r = ((int32_t *) src1->data)[i];
  9441. dequantize_row_q(
  9442. (const void *) ((char *) src0->data + r*src0->nb[1]),
  9443. (float *) ((char *) dst->data + i*dst->nb[1]), nc);
  9444. }
  9445. }
  9446. static void ggml_compute_forward_get_rows_f16(
  9447. const struct ggml_compute_params * params,
  9448. const struct ggml_tensor * src0,
  9449. const struct ggml_tensor * src1,
  9450. struct ggml_tensor * dst) {
  9451. assert(params->ith == 0);
  9452. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9453. return;
  9454. }
  9455. const int nc = src0->ne[0];
  9456. const int nr = ggml_nelements(src1);
  9457. assert( dst->ne[0] == nc);
  9458. assert( dst->ne[1] == nr);
  9459. assert(src0->nb[0] == sizeof(ggml_fp16_t));
  9460. for (int i = 0; i < nr; ++i) {
  9461. const int r = ((int32_t *) src1->data)[i];
  9462. for (int j = 0; j < nc; ++j) {
  9463. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
  9464. ((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
  9465. }
  9466. }
  9467. }
  9468. static void ggml_compute_forward_get_rows_f32(
  9469. const struct ggml_compute_params * params,
  9470. const struct ggml_tensor * src0,
  9471. const struct ggml_tensor * src1,
  9472. struct ggml_tensor * dst) {
  9473. assert(params->ith == 0);
  9474. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9475. return;
  9476. }
  9477. const int nc = src0->ne[0];
  9478. const int nr = ggml_nelements(src1);
  9479. assert( dst->ne[0] == nc);
  9480. assert( dst->ne[1] == nr);
  9481. assert(src0->nb[0] == sizeof(float));
  9482. for (int i = 0; i < nr; ++i) {
  9483. const int r = ((int32_t *) src1->data)[i];
  9484. ggml_vec_cpy_f32(nc,
  9485. (float *) ((char *) dst->data + i*dst->nb[1]),
  9486. (float *) ((char *) src0->data + r*src0->nb[1]));
  9487. }
  9488. }
  9489. static void ggml_compute_forward_get_rows(
  9490. const struct ggml_compute_params * params,
  9491. const struct ggml_tensor * src0,
  9492. const struct ggml_tensor * src1,
  9493. struct ggml_tensor * dst) {
  9494. switch (src0->type) {
  9495. case GGML_TYPE_Q4_0:
  9496. case GGML_TYPE_Q4_1:
  9497. case GGML_TYPE_Q5_0:
  9498. case GGML_TYPE_Q5_1:
  9499. case GGML_TYPE_Q8_0:
  9500. case GGML_TYPE_Q8_1:
  9501. case GGML_TYPE_Q2_K:
  9502. case GGML_TYPE_Q3_K:
  9503. case GGML_TYPE_Q4_K:
  9504. case GGML_TYPE_Q5_K:
  9505. case GGML_TYPE_Q6_K:
  9506. {
  9507. ggml_compute_forward_get_rows_q(params, src0, src1, dst);
  9508. } break;
  9509. case GGML_TYPE_F16:
  9510. {
  9511. ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
  9512. } break;
  9513. case GGML_TYPE_F32:
  9514. {
  9515. ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
  9516. } break;
  9517. default:
  9518. {
  9519. GGML_ASSERT(false);
  9520. } break;
  9521. }
  9522. //static bool first = true;
  9523. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9524. //if (first) {
  9525. // first = false;
  9526. //} else {
  9527. // for (int k = 0; k < dst->ne[1]; ++k) {
  9528. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9529. // for (int i = 0; i < 16; ++i) {
  9530. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9531. // }
  9532. // printf("\n");
  9533. // }
  9534. // printf("\n");
  9535. // }
  9536. // printf("\n");
  9537. // exit(0);
  9538. //}
  9539. }
  9540. // ggml_compute_forward_get_rows_back
  9541. static void ggml_compute_forward_get_rows_back_f32_f16(
  9542. const struct ggml_compute_params * params,
  9543. const struct ggml_tensor * src0,
  9544. const struct ggml_tensor * src1,
  9545. const struct ggml_tensor * opt0,
  9546. struct ggml_tensor * dst) {
  9547. GGML_ASSERT(params->ith == 0);
  9548. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9549. GGML_ASSERT(ggml_is_contiguous(opt0));
  9550. GGML_ASSERT(ggml_is_contiguous(dst));
  9551. ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9552. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9553. return;
  9554. }
  9555. const int nc = src0->ne[0];
  9556. const int nr = ggml_nelements(src1);
  9557. GGML_ASSERT( dst->ne[0] == nc);
  9558. GGML_ASSERT(src0->nb[0] == sizeof(ggml_fp16_t));
  9559. for (int i = 0; i < nr; ++i) {
  9560. const int r = ((int32_t *) src1->data)[i];
  9561. for (int j = 0; j < nc; ++j) {
  9562. ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + i*src0->nb[1]))[j];
  9563. ((float *) ((char *) dst->data + r*dst->nb[1]))[j] += GGML_FP16_TO_FP32(v);
  9564. }
  9565. }
  9566. }
  9567. static void ggml_compute_forward_get_rows_back_f32(
  9568. const struct ggml_compute_params * params,
  9569. const struct ggml_tensor * src0,
  9570. const struct ggml_tensor * src1,
  9571. const struct ggml_tensor * opt0,
  9572. struct ggml_tensor * dst) {
  9573. GGML_ASSERT(params->ith == 0);
  9574. GGML_ASSERT(ggml_are_same_shape(opt0, dst));
  9575. GGML_ASSERT(ggml_is_contiguous(opt0));
  9576. GGML_ASSERT(ggml_is_contiguous(dst));
  9577. // ggml_compute_forward_dup_same_cont(params, opt0, dst);
  9578. if (params->type == GGML_TASK_INIT) {
  9579. memset(dst->data, 0, ggml_nbytes(dst));
  9580. }
  9581. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9582. return;
  9583. }
  9584. const int nc = src0->ne[0];
  9585. const int nr = ggml_nelements(src1);
  9586. GGML_ASSERT( dst->ne[0] == nc);
  9587. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9588. for (int i = 0; i < nr; ++i) {
  9589. const int r = ((int32_t *) src1->data)[i];
  9590. ggml_vec_add_f32(nc,
  9591. (float *) ((char *) dst->data + r*dst->nb[1]),
  9592. (float *) ((char *) dst->data + r*dst->nb[1]),
  9593. (float *) ((char *) src0->data + i*src0->nb[1]));
  9594. }
  9595. }
  9596. static void ggml_compute_forward_get_rows_back(
  9597. const struct ggml_compute_params * params,
  9598. const struct ggml_tensor * src0,
  9599. const struct ggml_tensor * src1,
  9600. const struct ggml_tensor * opt0,
  9601. struct ggml_tensor * dst) {
  9602. switch (src0->type) {
  9603. case GGML_TYPE_F16:
  9604. {
  9605. ggml_compute_forward_get_rows_back_f32_f16(params, src0, src1, opt0, dst);
  9606. } break;
  9607. case GGML_TYPE_F32:
  9608. {
  9609. ggml_compute_forward_get_rows_back_f32(params, src0, src1, opt0, dst);
  9610. } break;
  9611. default:
  9612. {
  9613. GGML_ASSERT(false);
  9614. } break;
  9615. }
  9616. //static bool first = true;
  9617. //printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
  9618. //if (first) {
  9619. // first = false;
  9620. //} else {
  9621. // for (int k = 0; k < dst->ne[1]; ++k) {
  9622. // for (int j = 0; j < dst->ne[0]/16; ++j) {
  9623. // for (int i = 0; i < 16; ++i) {
  9624. // printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
  9625. // }
  9626. // printf("\n");
  9627. // }
  9628. // printf("\n");
  9629. // }
  9630. // printf("\n");
  9631. // exit(0);
  9632. //}
  9633. }
  9634. // ggml_compute_forward_diag
  9635. static void ggml_compute_forward_diag_f32(
  9636. const struct ggml_compute_params * params,
  9637. const struct ggml_tensor * src0,
  9638. struct ggml_tensor * dst) {
  9639. GGML_ASSERT(params->ith == 0);
  9640. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9641. return;
  9642. }
  9643. // TODO: handle transposed/permuted matrices
  9644. const int ne00 = src0->ne[0];
  9645. const int ne01 = src0->ne[1];
  9646. const int ne02 = src0->ne[2];
  9647. const int ne03 = src0->ne[3];
  9648. const int ne0 = dst->ne[0];
  9649. const int ne1 = dst->ne[1];
  9650. const int ne2 = dst->ne[2];
  9651. const int ne3 = dst->ne[3];
  9652. GGML_ASSERT(ne00 == ne0);
  9653. GGML_ASSERT(ne00 == ne1);
  9654. GGML_ASSERT(ne01 == 1);
  9655. GGML_ASSERT(ne02 == ne2);
  9656. GGML_ASSERT(ne03 == ne3);
  9657. const int nb00 = src0->nb[0];
  9658. //const int nb01 = src0->nb[1];
  9659. const int nb02 = src0->nb[2];
  9660. const int nb03 = src0->nb[3];
  9661. const int nb0 = dst->nb[0];
  9662. const int nb1 = dst->nb[1];
  9663. const int nb2 = dst->nb[2];
  9664. const int nb3 = dst->nb[3];
  9665. GGML_ASSERT(nb00 == sizeof(float));
  9666. GGML_ASSERT(nb0 == sizeof(float));
  9667. for (int i3 = 0; i3 < ne3; i3++) {
  9668. for (int i2 = 0; i2 < ne2; i2++) {
  9669. for (int i1 = 0; i1 < ne1; i1++) {
  9670. float * d = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1);
  9671. float * s = (float *)((char *) src0->data + i3*nb03 + i2*nb02);
  9672. for (int i0 = 0; i0 < i1; i0++) {
  9673. d[i0] = 0;
  9674. }
  9675. d[i1] = s[i1];
  9676. for (int i0 = i1+1; i0 < ne0; i0++) {
  9677. d[i0] = 0;
  9678. }
  9679. }
  9680. }
  9681. }
  9682. }
  9683. static void ggml_compute_forward_diag(
  9684. const struct ggml_compute_params * params,
  9685. const struct ggml_tensor * src0,
  9686. struct ggml_tensor * dst) {
  9687. switch (src0->type) {
  9688. case GGML_TYPE_F32:
  9689. {
  9690. ggml_compute_forward_diag_f32(params, src0, dst);
  9691. } break;
  9692. default:
  9693. {
  9694. GGML_ASSERT(false);
  9695. } break;
  9696. }
  9697. }
  9698. // ggml_compute_forward_diag_mask_inf
  9699. static void ggml_compute_forward_diag_mask_f32(
  9700. const struct ggml_compute_params * params,
  9701. const struct ggml_tensor * src0,
  9702. const struct ggml_tensor * src1,
  9703. struct ggml_tensor * dst,
  9704. const float value) {
  9705. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9706. GGML_ASSERT(ggml_nelements(src1) == 2);
  9707. const int ith = params->ith;
  9708. const int nth = params->nth;
  9709. const int n_past = ((int32_t *) src1->data)[0];
  9710. const bool inplace = (bool)((int32_t *) src1->data)[1];
  9711. GGML_ASSERT(n_past >= 0);
  9712. if (!inplace && (params->type == GGML_TASK_INIT)) {
  9713. // memcpy needs to be synchronized across threads to avoid race conditions.
  9714. // => do it in INIT phase
  9715. GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0));
  9716. GGML_ASSERT(ggml_is_contiguous(dst) && ggml_is_contiguous(src0));
  9717. memcpy(
  9718. ((char *) dst->data),
  9719. ((char *) src0->data),
  9720. ggml_nbytes(dst));
  9721. }
  9722. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9723. return;
  9724. }
  9725. // TODO: handle transposed/permuted matrices
  9726. const int n = ggml_nrows(src0);
  9727. const int nc = src0->ne[0];
  9728. const int nr = src0->ne[1];
  9729. const int nz = n/nr;
  9730. GGML_ASSERT( dst->nb[0] == sizeof(float));
  9731. GGML_ASSERT(src0->nb[0] == sizeof(float));
  9732. for (int k = 0; k < nz; k++) {
  9733. for (int j = ith; j < nr; j += nth) {
  9734. for (int i = n_past; i < nc; i++) {
  9735. if (i > n_past + j) {
  9736. *(float *)((char *) dst->data + k*dst->nb[2] + j*dst->nb[1] + i*dst->nb[0]) = value;
  9737. }
  9738. }
  9739. }
  9740. }
  9741. }
  9742. static void ggml_compute_forward_diag_mask_inf(
  9743. const struct ggml_compute_params * params,
  9744. const struct ggml_tensor * src0,
  9745. const struct ggml_tensor * src1,
  9746. struct ggml_tensor * dst) {
  9747. switch (src0->type) {
  9748. case GGML_TYPE_F32:
  9749. {
  9750. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, -INFINITY);
  9751. } break;
  9752. default:
  9753. {
  9754. GGML_ASSERT(false);
  9755. } break;
  9756. }
  9757. }
  9758. static void ggml_compute_forward_diag_mask_zero(
  9759. const struct ggml_compute_params * params,
  9760. const struct ggml_tensor * src0,
  9761. const struct ggml_tensor * src1,
  9762. struct ggml_tensor * dst) {
  9763. switch (src0->type) {
  9764. case GGML_TYPE_F32:
  9765. {
  9766. ggml_compute_forward_diag_mask_f32(params, src0, src1, dst, 0);
  9767. } break;
  9768. default:
  9769. {
  9770. GGML_ASSERT(false);
  9771. } break;
  9772. }
  9773. }
  9774. // ggml_compute_forward_soft_max
  9775. static void ggml_compute_forward_soft_max_f32(
  9776. const struct ggml_compute_params * params,
  9777. const struct ggml_tensor * src0,
  9778. struct ggml_tensor * dst) {
  9779. GGML_ASSERT(ggml_is_contiguous(src0));
  9780. GGML_ASSERT(ggml_is_contiguous(dst));
  9781. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9782. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9783. return;
  9784. }
  9785. // TODO: handle transposed/permuted matrices
  9786. const int ith = params->ith;
  9787. const int nth = params->nth;
  9788. const int nc = src0->ne[0];
  9789. const int nr = ggml_nrows(src0);
  9790. // rows per thread
  9791. const int dr = (nr + nth - 1)/nth;
  9792. // row range for this thread
  9793. const int ir0 = dr*ith;
  9794. const int ir1 = MIN(ir0 + dr, nr);
  9795. for (int i1 = ir0; i1 < ir1; i1++) {
  9796. float *sp = (float *)((char *) src0->data + i1*src0->nb[1]);
  9797. float *dp = (float *)((char *) dst->data + i1*dst->nb[1]);
  9798. #ifndef NDEBUG
  9799. for (int i = 0; i < nc; ++i) {
  9800. //printf("p[%d] = %f\n", i, p[i]);
  9801. assert(!isnan(sp[i]));
  9802. }
  9803. #endif
  9804. float max = -INFINITY;
  9805. ggml_vec_max_f32(nc, &max, sp);
  9806. ggml_float sum = 0.0;
  9807. uint16_t scvt;
  9808. for (int i = 0; i < nc; i++) {
  9809. if (sp[i] == -INFINITY) {
  9810. dp[i] = 0.0f;
  9811. } else {
  9812. // const float val = (sp[i] == -INFINITY) ? 0.0 : exp(sp[i] - max);
  9813. ggml_fp16_t s = GGML_FP32_TO_FP16(sp[i] - max);
  9814. memcpy(&scvt, &s, sizeof(scvt));
  9815. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  9816. sum += (ggml_float)val;
  9817. dp[i] = val;
  9818. }
  9819. }
  9820. assert(sum > 0.0);
  9821. sum = 1.0/sum;
  9822. ggml_vec_scale_f32(nc, dp, sum);
  9823. #ifndef NDEBUG
  9824. for (int i = 0; i < nc; ++i) {
  9825. assert(!isnan(dp[i]));
  9826. assert(!isinf(dp[i]));
  9827. }
  9828. #endif
  9829. }
  9830. }
  9831. static void ggml_compute_forward_soft_max(
  9832. const struct ggml_compute_params * params,
  9833. const struct ggml_tensor * src0,
  9834. struct ggml_tensor * dst) {
  9835. switch (src0->type) {
  9836. case GGML_TYPE_F32:
  9837. {
  9838. ggml_compute_forward_soft_max_f32(params, src0, dst);
  9839. } break;
  9840. default:
  9841. {
  9842. GGML_ASSERT(false);
  9843. } break;
  9844. }
  9845. }
  9846. // ggml_compute_forward_soft_max_back
  9847. static void ggml_compute_forward_soft_max_back_f32(
  9848. const struct ggml_compute_params * params,
  9849. const struct ggml_tensor * src0,
  9850. const struct ggml_tensor * src1,
  9851. struct ggml_tensor * dst) {
  9852. GGML_ASSERT(ggml_is_contiguous(src0));
  9853. GGML_ASSERT(ggml_is_contiguous(src1));
  9854. GGML_ASSERT(ggml_is_contiguous(dst));
  9855. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  9856. GGML_ASSERT(ggml_are_same_shape(src1, dst));
  9857. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9858. return;
  9859. }
  9860. // TODO: handle transposed/permuted matrices
  9861. const int ith = params->ith;
  9862. const int nth = params->nth;
  9863. const int nc = src0->ne[0];
  9864. const int nr = ggml_nrows(src0);
  9865. // rows per thread
  9866. const int dr = (nr + nth - 1)/nth;
  9867. // row range for this thread
  9868. const int ir0 = dr*ith;
  9869. const int ir1 = MIN(ir0 + dr, nr);
  9870. for (int i1 = ir0; i1 < ir1; i1++) {
  9871. float *dy = (float *)((char *) src0->data + i1*src0->nb[1]);
  9872. float *y = (float *)((char *) src1->data + i1*src1->nb[1]);
  9873. float *dx = (float *)((char *) dst->data + i1*dst->nb[1]);
  9874. #ifndef NDEBUG
  9875. for (int i = 0; i < nc; ++i) {
  9876. //printf("p[%d] = %f\n", i, p[i]);
  9877. assert(!isnan(dy[i]));
  9878. assert(!isnan(y[i]));
  9879. }
  9880. #endif
  9881. // Jii = yi - yi*yi
  9882. // Jij = -yi*yj
  9883. // J = diag(y)-y.T*y
  9884. // dx = J * dy
  9885. // dxk = sum_i(Jki * dyi)
  9886. // dxk = sum_i(-yk*yi * dyi) - (-yk*yk)*dyk + (yk - yk*yk)*dyk
  9887. // dxk = sum_i(-yk*yi * dyi) + yk*dyk
  9888. // dxk = -yk * sum_i(yi * dyi) + yk*dyk
  9889. // dxk = -yk * dot(y, dy) + yk*dyk
  9890. // dxk = yk * (- dot(y, dy) + dyk)
  9891. // dxk = yk * (dyk - dot(y, dy))
  9892. //
  9893. // post-order:
  9894. // dot_y_dy := dot(y, dy)
  9895. // dx := dy
  9896. // dx := dx - dot_y_dy
  9897. // dx := dx * y
  9898. // linear runtime, no additional memory
  9899. float dot_y_dy = 0;
  9900. ggml_vec_dot_f32 (nc, &dot_y_dy, y, dy);
  9901. ggml_vec_cpy_f32 (nc, dx, dy);
  9902. ggml_vec_acc1_f32(nc, dx, -dot_y_dy);
  9903. ggml_vec_mul_f32 (nc, dx, dx, y);
  9904. #ifndef NDEBUG
  9905. for (int i = 0; i < nc; ++i) {
  9906. assert(!isnan(dx[i]));
  9907. assert(!isinf(dx[i]));
  9908. }
  9909. #endif
  9910. }
  9911. }
  9912. static void ggml_compute_forward_soft_max_back(
  9913. const struct ggml_compute_params * params,
  9914. const struct ggml_tensor * src0,
  9915. const struct ggml_tensor * src1,
  9916. struct ggml_tensor * dst) {
  9917. switch (src0->type) {
  9918. case GGML_TYPE_F32:
  9919. {
  9920. ggml_compute_forward_soft_max_back_f32(params, src0, src1, dst);
  9921. } break;
  9922. default:
  9923. {
  9924. GGML_ASSERT(false);
  9925. } break;
  9926. }
  9927. }
  9928. // ggml_compute_forward_alibi
  9929. static void ggml_compute_forward_alibi_f32(
  9930. const struct ggml_compute_params * params,
  9931. const struct ggml_tensor * src0,
  9932. const struct ggml_tensor * src1,
  9933. struct ggml_tensor * dst) {
  9934. assert(params->ith == 0);
  9935. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9936. GGML_ASSERT(ggml_nelements(src1) == 3);
  9937. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9938. return;
  9939. }
  9940. const int n_past = ((int32_t *) src1->data)[0];
  9941. const int n_head = ((int32_t *) src1->data)[1];
  9942. const float max_bias = ((float *) src1->data)[2];
  9943. assert(n_past >= 0);
  9944. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9945. const int ne1 = src0->ne[1]; // seq_len_without_past
  9946. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9947. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9948. const int n = ggml_nrows(src0);
  9949. const int ne2_ne3 = n/ne1; // ne2*ne3
  9950. const int nb0 = src0->nb[0];
  9951. const int nb1 = src0->nb[1];
  9952. const int nb2 = src0->nb[2];
  9953. //const int nb3 = src0->nb[3];
  9954. assert(nb0 == sizeof(float));
  9955. assert(ne1 + n_past == ne0); (void) n_past;
  9956. // add alibi to src0 (KQ_scaled)
  9957. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  9958. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  9959. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  9960. for (int i = 0; i < ne0; i++) {
  9961. for (int j = 0; j < ne1; j++) {
  9962. for (int k = 0; k < ne2_ne3; k++) {
  9963. float * const src = (float *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  9964. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  9965. // TODO: k*nb2 or k*nb3
  9966. float m_k;
  9967. if (k < n_heads_log2_floor) {
  9968. m_k = powf(m0, k + 1);
  9969. } else {
  9970. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  9971. }
  9972. pdst[0] = (i-ne0+1) * m_k + src[0];
  9973. }
  9974. }
  9975. }
  9976. }
  9977. static void ggml_compute_forward_alibi_f16(
  9978. const struct ggml_compute_params * params,
  9979. const struct ggml_tensor * src0,
  9980. const struct ggml_tensor * src1,
  9981. struct ggml_tensor * dst) {
  9982. assert(params->ith == 0);
  9983. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  9984. GGML_ASSERT(ggml_nelements(src1) == 3);
  9985. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  9986. return;
  9987. }
  9988. const int n_past = ((int32_t *) src1->data)[0];
  9989. const int n_head = ((int32_t *) src1->data)[1];
  9990. const float max_bias = ((float *) src1->data)[2];
  9991. assert(n_past >= 0);
  9992. const int ne0 = src0->ne[0]; // all_seq_len = n_past + ne1
  9993. const int ne1 = src0->ne[1]; // seq_len_without_past
  9994. //const int ne2 = src0->ne[2]; // n_head -> this is k
  9995. //const int ne3 = src0->ne[3]; // 1 -> bsz
  9996. const int n = ggml_nrows(src0);
  9997. const int ne2_ne3 = n/ne1; // ne2*ne3
  9998. const int nb0 = src0->nb[0];
  9999. const int nb1 = src0->nb[1];
  10000. const int nb2 = src0->nb[2];
  10001. //const int nb3 = src0->nb[3];
  10002. assert(nb0 == sizeof(ggml_fp16_t));
  10003. assert(ne1 + n_past == ne0); (void) n_past;
  10004. // add alibi to src0 (KQ_scaled)
  10005. const int n_heads_log2_floor = 1 << (int) floor(log2(n_head));
  10006. const float m0 = powf(2.0f, -(max_bias) / n_heads_log2_floor);
  10007. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_heads_log2_floor);
  10008. for (int i = 0; i < ne0; i++) {
  10009. for (int j = 0; j < ne1; j++) {
  10010. for (int k = 0; k < ne2_ne3; k++) {
  10011. ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i*nb0 + j*nb1 + k*nb2);
  10012. float * pdst = (float *)((char *) dst->data + i*nb0 + j*nb1 + k*nb2);
  10013. // TODO: k*nb2 or k*nb3
  10014. float m_k;
  10015. if (k < n_heads_log2_floor) {
  10016. m_k = powf(m0, k + 1);
  10017. } else {
  10018. m_k = powf(m1, 2 * (k - n_heads_log2_floor) + 1);
  10019. }
  10020. // we return F32
  10021. pdst[0] = (i-ne0+1) * m_k + GGML_FP16_TO_FP32(src[0]);
  10022. }
  10023. }
  10024. }
  10025. }
  10026. static void ggml_compute_forward_alibi(
  10027. const struct ggml_compute_params * params,
  10028. const struct ggml_tensor * src0,
  10029. const struct ggml_tensor * src1,
  10030. struct ggml_tensor * dst) {
  10031. switch (src0->type) {
  10032. case GGML_TYPE_F16:
  10033. {
  10034. ggml_compute_forward_alibi_f16(params, src0, src1, dst);
  10035. } break;
  10036. case GGML_TYPE_F32:
  10037. {
  10038. ggml_compute_forward_alibi_f32(params, src0, src1, dst);
  10039. } break;
  10040. case GGML_TYPE_Q4_0:
  10041. case GGML_TYPE_Q4_1:
  10042. case GGML_TYPE_Q5_0:
  10043. case GGML_TYPE_Q5_1:
  10044. case GGML_TYPE_Q8_0:
  10045. case GGML_TYPE_Q8_1:
  10046. case GGML_TYPE_Q2_K:
  10047. case GGML_TYPE_Q3_K:
  10048. case GGML_TYPE_Q4_K:
  10049. case GGML_TYPE_Q5_K:
  10050. case GGML_TYPE_Q6_K:
  10051. case GGML_TYPE_Q8_K:
  10052. case GGML_TYPE_I8:
  10053. case GGML_TYPE_I16:
  10054. case GGML_TYPE_I32:
  10055. case GGML_TYPE_COUNT:
  10056. {
  10057. GGML_ASSERT(false);
  10058. } break;
  10059. }
  10060. }
  10061. // ggml_compute_forward_clamp
  10062. static void ggml_compute_forward_clamp_f32(
  10063. const struct ggml_compute_params * params,
  10064. const struct ggml_tensor * src0,
  10065. const struct ggml_tensor * src1,
  10066. struct ggml_tensor * dst) {
  10067. assert(params->ith == 0);
  10068. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10069. GGML_ASSERT(ggml_nelements(src1) == 2);
  10070. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10071. return;
  10072. }
  10073. const float min = ((float *) src1->data)[0];
  10074. const float max = ((float *) src1->data)[1];
  10075. const int ith = params->ith;
  10076. const int nth = params->nth;
  10077. const int n = ggml_nrows(src0);
  10078. const int nc = src0->ne[0];
  10079. const size_t nb00 = src0->nb[0];
  10080. const size_t nb01 = src0->nb[1];
  10081. const size_t nb0 = dst->nb[0];
  10082. const size_t nb1 = dst->nb[1];
  10083. GGML_ASSERT( nb0 == sizeof(float));
  10084. GGML_ASSERT(nb00 == sizeof(float));
  10085. for (int j = ith; j < n; j += nth) {
  10086. float * dst_ptr = (float *) ((char *) dst->data + j*nb1);
  10087. float * src0_ptr = (float *) ((char *) src0->data + j*nb01);
  10088. for (int i = 0; i < nc; i++) {
  10089. dst_ptr[i] = MAX(MIN(src0_ptr[i], max), min);
  10090. }
  10091. }
  10092. }
  10093. static void ggml_compute_forward_clamp(
  10094. const struct ggml_compute_params * params,
  10095. const struct ggml_tensor * src0,
  10096. const struct ggml_tensor * src1,
  10097. struct ggml_tensor * dst) {
  10098. switch (src0->type) {
  10099. case GGML_TYPE_F32:
  10100. {
  10101. ggml_compute_forward_clamp_f32(params, src0, src1, dst);
  10102. } break;
  10103. case GGML_TYPE_F16:
  10104. case GGML_TYPE_Q4_0:
  10105. case GGML_TYPE_Q4_1:
  10106. case GGML_TYPE_Q5_0:
  10107. case GGML_TYPE_Q5_1:
  10108. case GGML_TYPE_Q8_0:
  10109. case GGML_TYPE_Q8_1:
  10110. case GGML_TYPE_Q2_K:
  10111. case GGML_TYPE_Q3_K:
  10112. case GGML_TYPE_Q4_K:
  10113. case GGML_TYPE_Q5_K:
  10114. case GGML_TYPE_Q6_K:
  10115. case GGML_TYPE_Q8_K:
  10116. case GGML_TYPE_I8:
  10117. case GGML_TYPE_I16:
  10118. case GGML_TYPE_I32:
  10119. case GGML_TYPE_COUNT:
  10120. {
  10121. GGML_ASSERT(false);
  10122. } break;
  10123. }
  10124. }
  10125. // ggml_compute_forward_rope
  10126. static void ggml_compute_forward_rope_f32(
  10127. const struct ggml_compute_params * params,
  10128. const struct ggml_tensor * src0,
  10129. const struct ggml_tensor * src1,
  10130. struct ggml_tensor * dst) {
  10131. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  10132. GGML_ASSERT(ggml_nelements(src1) == 4);
  10133. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10134. return;
  10135. }
  10136. const int n_past = ((int32_t *) src1->data)[0];
  10137. const int n_dims = ((int32_t *) src1->data)[1];
  10138. const int mode = ((int32_t *) src1->data)[2];
  10139. const int n_ctx = ((int32_t *) src1->data)[3];
  10140. assert(n_past >= 0);
  10141. const size_t nb00 = src0->nb[0];
  10142. const size_t nb01 = src0->nb[1];
  10143. const size_t nb02 = src0->nb[2];
  10144. const size_t nb03 = src0->nb[3];
  10145. const int64_t ne0 = dst->ne[0];
  10146. const int64_t ne1 = dst->ne[1];
  10147. const int64_t ne2 = dst->ne[2];
  10148. const int64_t ne3 = dst->ne[3];
  10149. const size_t nb0 = dst->nb[0];
  10150. const size_t nb1 = dst->nb[1];
  10151. const size_t nb2 = dst->nb[2];
  10152. const size_t nb3 = dst->nb[3];
  10153. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10154. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10155. GGML_ASSERT(nb00 == sizeof(float));
  10156. const int ith = params->ith;
  10157. const int nth = params->nth;
  10158. const int nr = ggml_nrows(dst);
  10159. GGML_ASSERT(n_dims <= ne0);
  10160. GGML_ASSERT(n_dims % 2 == 0);
  10161. // rows per thread
  10162. const int dr = (nr + nth - 1)/nth;
  10163. // row range for this thread
  10164. const int ir0 = dr*ith;
  10165. const int ir1 = MIN(ir0 + dr, nr);
  10166. // row index used to determine which thread to use
  10167. int ir = 0;
  10168. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10169. const bool is_neox = mode & 2;
  10170. const bool is_glm = mode & 4;
  10171. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10172. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10173. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10174. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10175. if (ir++ < ir0) continue;
  10176. if (ir > ir1) break;
  10177. float theta = (float)p;
  10178. if (is_glm) {
  10179. theta = MIN(p, n_ctx - 2);
  10180. float block_theta = MAX(p - (n_ctx - 2), 0);
  10181. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10182. const float cos_theta = cosf(theta);
  10183. const float sin_theta = sinf(theta);
  10184. const float cos_block_theta = cosf(block_theta);
  10185. const float sin_block_theta = sinf(block_theta);
  10186. theta *= theta_scale;
  10187. block_theta *= theta_scale;
  10188. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10189. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10190. const float x0 = src[0];
  10191. const float x1 = src[n_dims/2];
  10192. const float x2 = src[n_dims];
  10193. const float x3 = src[n_dims/2*3];
  10194. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10195. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10196. dst_data[n_dims] = x2*cos_block_theta - x3*sin_block_theta;
  10197. dst_data[n_dims/2*3] = x2*sin_block_theta + x3*cos_block_theta;
  10198. }
  10199. } else if (!is_neox) {
  10200. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10201. const float cos_theta = cosf(theta);
  10202. const float sin_theta = sinf(theta);
  10203. theta *= theta_scale;
  10204. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10205. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10206. const float x0 = src[0];
  10207. const float x1 = src[1];
  10208. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10209. dst_data[1] = x0*sin_theta + x1*cos_theta;
  10210. }
  10211. } else {
  10212. // TODO: this is probably wrong, but I can't figure it out ..
  10213. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10214. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10215. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10216. const float cos_theta = cosf(theta);
  10217. const float sin_theta = sinf(theta);
  10218. theta *= theta_scale;
  10219. const int64_t i0 = ib*n_dims + ic/2;
  10220. const float * const src = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10221. float * dst_data = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10222. const float x0 = src[0];
  10223. const float x1 = src[n_dims/2];
  10224. dst_data[0] = x0*cos_theta - x1*sin_theta;
  10225. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  10226. }
  10227. }
  10228. }
  10229. }
  10230. }
  10231. }
  10232. }
  10233. static void ggml_compute_forward_rope_f16(
  10234. const struct ggml_compute_params * params,
  10235. const struct ggml_tensor * src0,
  10236. const struct ggml_tensor * src1,
  10237. struct ggml_tensor * dst) {
  10238. GGML_ASSERT(src1->type == GGML_TYPE_I32);
  10239. GGML_ASSERT(ggml_nelements(src1) == 4);
  10240. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10241. return;
  10242. }
  10243. const int n_past = ((int32_t *) src1->data)[0];
  10244. const int n_dims = ((int32_t *) src1->data)[1];
  10245. const int mode = ((int32_t *) src1->data)[2];
  10246. const int n_ctx = ((int32_t *) src1->data)[3];
  10247. assert(n_past >= 0);
  10248. const size_t nb00 = src0->nb[0];
  10249. const size_t nb01 = src0->nb[1];
  10250. const size_t nb02 = src0->nb[2];
  10251. const size_t nb03 = src0->nb[3];
  10252. const int64_t ne0 = dst->ne[0];
  10253. const int64_t ne1 = dst->ne[1];
  10254. const int64_t ne2 = dst->ne[2];
  10255. const int64_t ne3 = dst->ne[3];
  10256. const size_t nb0 = dst->nb[0];
  10257. const size_t nb1 = dst->nb[1];
  10258. const size_t nb2 = dst->nb[2];
  10259. const size_t nb3 = dst->nb[3];
  10260. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10261. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10262. GGML_ASSERT(nb0 == sizeof(ggml_fp16_t));
  10263. const int ith = params->ith;
  10264. const int nth = params->nth;
  10265. const int nr = ggml_nrows(dst);
  10266. GGML_ASSERT(n_dims <= ne0);
  10267. GGML_ASSERT(n_dims % 2 == 0);
  10268. // rows per thread
  10269. const int dr = (nr + nth - 1)/nth;
  10270. // row range for this thread
  10271. const int ir0 = dr*ith;
  10272. const int ir1 = MIN(ir0 + dr, nr);
  10273. // row index used to determine which thread to use
  10274. int ir = 0;
  10275. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10276. const bool is_neox = mode & 2;
  10277. const bool is_glm = mode & 4;
  10278. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10279. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10280. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10281. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10282. if (ir++ < ir0) continue;
  10283. if (ir > ir1) break;
  10284. float theta = (float)p;
  10285. if (is_glm) {
  10286. theta = MIN(p, n_ctx - 2);
  10287. float block_theta = MAX(p - (n_ctx - 2), 0);
  10288. for (int64_t i0 = 0; i0 < ne0 / 4; i0++) {
  10289. const float cos_theta = cosf(theta);
  10290. const float sin_theta = sinf(theta);
  10291. const float cos_block_theta = cosf(block_theta);
  10292. const float sin_block_theta = sinf(block_theta);
  10293. theta *= theta_scale;
  10294. block_theta *= theta_scale;
  10295. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10296. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10297. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10298. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10299. const float x2 = GGML_FP16_TO_FP32(src[n_dims]);
  10300. const float x3 = GGML_FP16_TO_FP32(src[n_dims/2*3]);
  10301. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10302. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10303. dst_data[n_dims] = GGML_FP32_TO_FP16(x2*cos_block_theta - x3*sin_block_theta);
  10304. dst_data[n_dims/2*3] = GGML_FP32_TO_FP16(x2*sin_block_theta + x3*cos_block_theta);
  10305. }
  10306. } if (!is_neox) {
  10307. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10308. const float cos_theta = cosf(theta);
  10309. const float sin_theta = sinf(theta);
  10310. theta *= theta_scale;
  10311. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10312. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10313. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10314. const float x1 = GGML_FP16_TO_FP32(src[1]);
  10315. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10316. dst_data[1] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10317. }
  10318. } else {
  10319. // TODO: this is probably wrong, but I can't figure it out ..
  10320. // ref: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt_neox/modeling_gpt_neox.py#LL251C1-L294C28
  10321. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10322. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10323. const float cos_theta = cosf(theta);
  10324. const float sin_theta = sinf(theta);
  10325. theta *= theta_scale;
  10326. const int64_t i0 = ib*n_dims + ic/2;
  10327. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10328. ggml_fp16_t * dst_data = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10329. const float x0 = GGML_FP16_TO_FP32(src[0]);
  10330. const float x1 = GGML_FP16_TO_FP32(src[n_dims/2]);
  10331. dst_data[0] = GGML_FP32_TO_FP16(x0*cos_theta - x1*sin_theta);
  10332. dst_data[n_dims/2] = GGML_FP32_TO_FP16(x0*sin_theta + x1*cos_theta);
  10333. }
  10334. }
  10335. }
  10336. }
  10337. }
  10338. }
  10339. }
  10340. static void ggml_compute_forward_rope(
  10341. const struct ggml_compute_params * params,
  10342. const struct ggml_tensor * src0,
  10343. const struct ggml_tensor * src1,
  10344. struct ggml_tensor * dst) {
  10345. switch (src0->type) {
  10346. case GGML_TYPE_F16:
  10347. {
  10348. ggml_compute_forward_rope_f16(params, src0, src1, dst);
  10349. } break;
  10350. case GGML_TYPE_F32:
  10351. {
  10352. ggml_compute_forward_rope_f32(params, src0, src1, dst);
  10353. } break;
  10354. default:
  10355. {
  10356. GGML_ASSERT(false);
  10357. } break;
  10358. }
  10359. }
  10360. // ggml_compute_forward_rope_back
  10361. static void ggml_compute_forward_rope_back_f32(
  10362. const struct ggml_compute_params * params,
  10363. const struct ggml_tensor * src0,
  10364. const struct ggml_tensor * src1,
  10365. struct ggml_tensor * dst) {
  10366. assert(src1->type == GGML_TYPE_I32);
  10367. assert(ggml_nelements(src1) == 3);
  10368. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10369. return;
  10370. }
  10371. // y = rope(x, src1)
  10372. // dx = rope_back(dy, src1)
  10373. // src0 is dy, src1 contains options
  10374. const int n_past = ((int32_t *) src1->data)[0];
  10375. const int n_dims = ((int32_t *) src1->data)[1];
  10376. const int mode = ((int32_t *) src1->data)[2];
  10377. assert(n_past >= 0);
  10378. const size_t nb00 = src0->nb[0];
  10379. const size_t nb01 = src0->nb[1];
  10380. const size_t nb02 = src0->nb[2];
  10381. const size_t nb03 = src0->nb[3];
  10382. const int64_t ne0 = dst->ne[0];
  10383. const int64_t ne1 = dst->ne[1];
  10384. const int64_t ne2 = dst->ne[2];
  10385. const int64_t ne3 = dst->ne[3];
  10386. const size_t nb0 = dst->nb[0];
  10387. const size_t nb1 = dst->nb[1];
  10388. const size_t nb2 = dst->nb[2];
  10389. const size_t nb3 = dst->nb[3];
  10390. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10391. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10392. assert(nb0 == sizeof(float));
  10393. const int ith = params->ith;
  10394. const int nth = params->nth;
  10395. const int nr = ggml_nrows(dst);
  10396. // rows per thread
  10397. const int dr = (nr + nth - 1)/nth;
  10398. // row range for this thread
  10399. const int ir0 = dr*ith;
  10400. const int ir1 = MIN(ir0 + dr, nr);
  10401. // row index used to determine which thread to use
  10402. int ir = 0;
  10403. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10404. const bool is_neox = mode & 2;
  10405. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10406. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10407. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10408. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10409. if (ir++ < ir0) continue;
  10410. if (ir > ir1) break;
  10411. float theta = (float)p;
  10412. if (!is_neox) {
  10413. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10414. const float cos_theta = cosf(theta);
  10415. const float sin_theta = sinf(theta);
  10416. theta *= theta_scale;
  10417. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10418. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10419. const float dy0 = dy[0];
  10420. const float dy1 = dy[1];
  10421. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10422. dx[1] = - dy0*sin_theta + dy1*cos_theta;
  10423. }
  10424. } else {
  10425. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10426. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10427. const float cos_theta = cosf(theta);
  10428. const float sin_theta = sinf(theta);
  10429. theta *= theta_scale;
  10430. const int64_t i0 = ib*n_dims + ic/2;
  10431. const float * const dy = (float *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10432. float * dx = (float *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10433. const float dy0 = dy[0];
  10434. const float dy1 = dy[n_dims/2];
  10435. dx[0] = dy0*cos_theta + dy1*sin_theta;
  10436. dx[n_dims/2] = - dy0*sin_theta + dy1*cos_theta;
  10437. }
  10438. }
  10439. }
  10440. }
  10441. }
  10442. }
  10443. }
  10444. static void ggml_compute_forward_rope_back_f16(
  10445. const struct ggml_compute_params * params,
  10446. const struct ggml_tensor * src0,
  10447. const struct ggml_tensor * src1,
  10448. struct ggml_tensor * dst) {
  10449. assert(src1->type == GGML_TYPE_I32);
  10450. assert(ggml_nelements(src1) == 3);
  10451. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  10452. return;
  10453. }
  10454. // y = rope(x, src1)
  10455. // dx = rope_back(dy, src1)
  10456. // src0 is dy, src1 contains options
  10457. const int n_past = ((int32_t *) src1->data)[0];
  10458. const int n_dims = ((int32_t *) src1->data)[1];
  10459. const int mode = ((int32_t *) src1->data)[2];
  10460. assert(n_past >= 0);
  10461. const size_t nb00 = src0->nb[0];
  10462. const size_t nb01 = src0->nb[1];
  10463. const size_t nb02 = src0->nb[2];
  10464. const size_t nb03 = src0->nb[3];
  10465. const int64_t ne0 = dst->ne[0];
  10466. const int64_t ne1 = dst->ne[1];
  10467. const int64_t ne2 = dst->ne[2];
  10468. const int64_t ne3 = dst->ne[3];
  10469. const size_t nb0 = dst->nb[0];
  10470. const size_t nb1 = dst->nb[1];
  10471. const size_t nb2 = dst->nb[2];
  10472. const size_t nb3 = dst->nb[3];
  10473. //printf("ne0: %d, ne1: %d, ne2: %d, ne3: %d\n", ne0, ne1, ne2, ne3);
  10474. //printf("n_past = %d, ne2 = %d\n", n_past, ne2);
  10475. assert(nb0 == sizeof(ggml_fp16_t));
  10476. const int ith = params->ith;
  10477. const int nth = params->nth;
  10478. const int nr = ggml_nrows(dst);
  10479. // rows per thread
  10480. const int dr = (nr + nth - 1)/nth;
  10481. // row range for this thread
  10482. const int ir0 = dr*ith;
  10483. const int ir1 = MIN(ir0 + dr, nr);
  10484. // row index used to determine which thread to use
  10485. int ir = 0;
  10486. const float theta_scale = powf(10000.0, -2.0f/n_dims);
  10487. const bool is_neox = mode & 2;
  10488. for (int64_t i3 = 0; i3 < ne3; i3++) {
  10489. for (int64_t i2 = ((mode & 1) == 0 ? 0 : n_past); i2 < ne2; i2++) {
  10490. const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
  10491. for (int64_t i1 = 0; i1 < ne1; i1++) {
  10492. if (ir++ < ir0) continue;
  10493. if (ir > ir1) break;
  10494. float theta = (float)p;
  10495. if (!is_neox) {
  10496. for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
  10497. const float cos_theta = cosf(theta);
  10498. const float sin_theta = sinf(theta);
  10499. theta *= theta_scale;
  10500. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10501. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10502. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10503. const float dy1 = GGML_FP16_TO_FP32(dy[1]);
  10504. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10505. dx[1] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10506. }
  10507. } else {
  10508. for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
  10509. for (int64_t ic = 0; ic < n_dims; ic += 2) {
  10510. const float cos_theta = cosf(theta);
  10511. const float sin_theta = sinf(theta);
  10512. theta *= theta_scale;
  10513. const int64_t i0 = ib*n_dims + ic/2;
  10514. const ggml_fp16_t * const dy = (ggml_fp16_t *)((char *) src0->data + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  10515. ggml_fp16_t * dx = (ggml_fp16_t *)((char *) dst->data + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  10516. const float dy0 = GGML_FP16_TO_FP32(dy[0]);
  10517. const float dy1 = GGML_FP16_TO_FP32(dy[n_dims/2]);
  10518. dx[0] = GGML_FP32_TO_FP16( dy0*cos_theta + dy1*sin_theta);
  10519. dx[n_dims/2] = GGML_FP32_TO_FP16(-dy0*sin_theta + dy1*cos_theta);
  10520. }
  10521. }
  10522. }
  10523. }
  10524. }
  10525. }
  10526. }
  10527. static void ggml_compute_forward_rope_back(
  10528. const struct ggml_compute_params * params,
  10529. const struct ggml_tensor * src0,
  10530. const struct ggml_tensor * src1,
  10531. struct ggml_tensor * dst) {
  10532. switch (src0->type) {
  10533. case GGML_TYPE_F16:
  10534. {
  10535. ggml_compute_forward_rope_back_f16(params, src0, src1, dst);
  10536. } break;
  10537. case GGML_TYPE_F32:
  10538. {
  10539. ggml_compute_forward_rope_back_f32(params, src0, src1, dst);
  10540. } break;
  10541. default:
  10542. {
  10543. GGML_ASSERT(false);
  10544. } break;
  10545. }
  10546. }
  10547. // ggml_compute_forward_conv_1d_s1_ph
  10548. static void ggml_compute_forward_conv_1d_s1_ph_f16_f32(
  10549. const struct ggml_compute_params * params,
  10550. const struct ggml_tensor * src0,
  10551. const struct ggml_tensor * src1,
  10552. struct ggml_tensor * dst) {
  10553. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10554. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10555. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10556. int64_t t0 = ggml_perf_time_us();
  10557. UNUSED(t0);
  10558. const int64_t ne00 = src0->ne[0];
  10559. const int64_t ne01 = src0->ne[1];
  10560. const int64_t ne02 = src0->ne[2];
  10561. //const int64_t ne03 = src0->ne[3];
  10562. const int64_t ne10 = src1->ne[0];
  10563. const int64_t ne11 = src1->ne[1];
  10564. //const int64_t ne12 = src1->ne[2];
  10565. //const int64_t ne13 = src1->ne[3];
  10566. //const int64_t ne0 = dst->ne[0];
  10567. //const int64_t ne1 = dst->ne[1];
  10568. //const int64_t ne2 = dst->ne[2];
  10569. //const int64_t ne3 = dst->ne[3];
  10570. //const int64_t ne = ne0*ne1*ne2*ne3;
  10571. const int nb00 = src0->nb[0];
  10572. const int nb01 = src0->nb[1];
  10573. const int nb02 = src0->nb[2];
  10574. //const int nb03 = src0->nb[3];
  10575. const int nb10 = src1->nb[0];
  10576. const int nb11 = src1->nb[1];
  10577. //const int nb12 = src1->nb[2];
  10578. //const int nb13 = src1->nb[3];
  10579. //const int nb0 = dst->nb[0];
  10580. const int nb1 = dst->nb[1];
  10581. //const int nb2 = dst->nb[2];
  10582. //const int nb3 = dst->nb[3];
  10583. const int ith = params->ith;
  10584. const int nth = params->nth;
  10585. const int nk = ne00;
  10586. const int nh = nk/2;
  10587. const int ew0 = ggml_up32(ne01);
  10588. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10589. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10590. GGML_ASSERT(nb10 == sizeof(float));
  10591. if (params->type == GGML_TASK_INIT) {
  10592. // TODO: fix this memset (wsize is overestimated)
  10593. memset(params->wdata, 0, params->wsize);
  10594. // prepare kernel data (src0)
  10595. {
  10596. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10597. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10598. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10599. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10600. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10601. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10602. dst_data[i00*ew0 + i01] = src[i00];
  10603. }
  10604. }
  10605. }
  10606. }
  10607. // prepare source data (src1)
  10608. {
  10609. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10610. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10611. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10612. ggml_fp16_t * dst_data = wdata;
  10613. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10614. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10615. }
  10616. }
  10617. }
  10618. return;
  10619. }
  10620. if (params->type == GGML_TASK_FINALIZE) {
  10621. return;
  10622. }
  10623. // total rows in dst
  10624. const int nr = ne02;
  10625. // rows per thread
  10626. const int dr = (nr + nth - 1)/nth;
  10627. // row range for this thread
  10628. const int ir0 = dr*ith;
  10629. const int ir1 = MIN(ir0 + dr, nr);
  10630. for (int i1 = ir0; i1 < ir1; i1++) {
  10631. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10632. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10633. dst_data[i0] = 0;
  10634. for (int k = -nh; k <= nh; k++) {
  10635. float v = 0.0f;
  10636. ggml_vec_dot_f16(ew0, &v,
  10637. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10638. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10639. dst_data[i0] += v;
  10640. }
  10641. }
  10642. }
  10643. }
  10644. static void ggml_compute_forward_conv_1d_s1_ph_f32(
  10645. const struct ggml_compute_params * params,
  10646. const struct ggml_tensor * src0,
  10647. const struct ggml_tensor * src1,
  10648. struct ggml_tensor * dst) {
  10649. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10650. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10651. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10652. int64_t t0 = ggml_perf_time_us();
  10653. UNUSED(t0);
  10654. const int64_t ne00 = src0->ne[0];
  10655. const int64_t ne01 = src0->ne[1];
  10656. const int64_t ne02 = src0->ne[2];
  10657. //const int64_t ne03 = src0->ne[3];
  10658. const int64_t ne10 = src1->ne[0];
  10659. const int64_t ne11 = src1->ne[1];
  10660. //const int64_t ne12 = src1->ne[2];
  10661. //const int64_t ne13 = src1->ne[3];
  10662. //const int64_t ne0 = dst->ne[0];
  10663. //const int64_t ne1 = dst->ne[1];
  10664. //const int64_t ne2 = dst->ne[2];
  10665. //const int64_t ne3 = dst->ne[3];
  10666. //const int64_t ne = ne0*ne1*ne2*ne3;
  10667. const int nb00 = src0->nb[0];
  10668. const int nb01 = src0->nb[1];
  10669. const int nb02 = src0->nb[2];
  10670. //const int nb03 = src0->nb[3];
  10671. const int nb10 = src1->nb[0];
  10672. const int nb11 = src1->nb[1];
  10673. //const int nb12 = src1->nb[2];
  10674. //const int nb13 = src1->nb[3];
  10675. //const int nb0 = dst->nb[0];
  10676. const int nb1 = dst->nb[1];
  10677. //const int nb2 = dst->nb[2];
  10678. //const int nb3 = dst->nb[3];
  10679. const int ith = params->ith;
  10680. const int nth = params->nth;
  10681. const int nk = ne00;
  10682. const int nh = nk/2;
  10683. const int ew0 = ggml_up32(ne01);
  10684. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10685. GGML_ASSERT(nb00 == sizeof(float));
  10686. GGML_ASSERT(nb10 == sizeof(float));
  10687. if (params->type == GGML_TASK_INIT) {
  10688. // TODO: fix this memset (wsize is overestimated)
  10689. memset(params->wdata, 0, params->wsize);
  10690. // prepare kernel data (src0)
  10691. {
  10692. float * const wdata = (float *) params->wdata + 0;
  10693. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10694. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10695. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10696. float * dst_data = wdata + i02*ew0*ne00;
  10697. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10698. dst_data[i00*ew0 + i01] = src[i00];
  10699. }
  10700. }
  10701. }
  10702. }
  10703. // prepare source data (src1)
  10704. {
  10705. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10706. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10707. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10708. float * dst_data = wdata;
  10709. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10710. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10711. }
  10712. }
  10713. }
  10714. return;
  10715. }
  10716. if (params->type == GGML_TASK_FINALIZE) {
  10717. return;
  10718. }
  10719. // total rows in dst
  10720. const int nr = ne02;
  10721. // rows per thread
  10722. const int dr = (nr + nth - 1)/nth;
  10723. // row range for this thread
  10724. const int ir0 = dr*ith;
  10725. const int ir1 = MIN(ir0 + dr, nr);
  10726. for (int i1 = ir0; i1 < ir1; i1++) {
  10727. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10728. for (int64_t i0 = 0; i0 < ne10; ++i0) {
  10729. dst_data[i0] = 0;
  10730. for (int k = -nh; k <= nh; k++) {
  10731. float v = 0.0f;
  10732. ggml_vec_dot_f32(ew0, &v,
  10733. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10734. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10735. dst_data[i0] += v;
  10736. }
  10737. }
  10738. }
  10739. }
  10740. static void ggml_compute_forward_conv_1d_s1_ph(
  10741. const struct ggml_compute_params * params,
  10742. const struct ggml_tensor * src0,
  10743. const struct ggml_tensor * src1,
  10744. struct ggml_tensor * dst) {
  10745. switch (src0->type) {
  10746. case GGML_TYPE_F16:
  10747. {
  10748. ggml_compute_forward_conv_1d_s1_ph_f16_f32(params, src0, src1, dst);
  10749. } break;
  10750. case GGML_TYPE_F32:
  10751. {
  10752. ggml_compute_forward_conv_1d_s1_ph_f32(params, src0, src1, dst);
  10753. } break;
  10754. default:
  10755. {
  10756. GGML_ASSERT(false);
  10757. } break;
  10758. }
  10759. }
  10760. // ggml_compute_forward_conv_1d_s2_ph
  10761. static void ggml_compute_forward_conv_1d_s2_ph_f16_f32(
  10762. const struct ggml_compute_params * params,
  10763. const struct ggml_tensor * src0,
  10764. const struct ggml_tensor * src1,
  10765. struct ggml_tensor * dst) {
  10766. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10767. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10768. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10769. int64_t t0 = ggml_perf_time_us();
  10770. UNUSED(t0);
  10771. const int64_t ne00 = src0->ne[0];
  10772. const int64_t ne01 = src0->ne[1];
  10773. const int64_t ne02 = src0->ne[2];
  10774. //const int64_t ne03 = src0->ne[3];
  10775. const int64_t ne10 = src1->ne[0];
  10776. const int64_t ne11 = src1->ne[1];
  10777. //const int64_t ne12 = src1->ne[2];
  10778. //const int64_t ne13 = src1->ne[3];
  10779. //const int64_t ne0 = dst->ne[0];
  10780. //const int64_t ne1 = dst->ne[1];
  10781. //const int64_t ne2 = dst->ne[2];
  10782. //const int64_t ne3 = dst->ne[3];
  10783. //const int64_t ne = ne0*ne1*ne2*ne3;
  10784. const int nb00 = src0->nb[0];
  10785. const int nb01 = src0->nb[1];
  10786. const int nb02 = src0->nb[2];
  10787. //const int nb03 = src0->nb[3];
  10788. const int nb10 = src1->nb[0];
  10789. const int nb11 = src1->nb[1];
  10790. //const int nb12 = src1->nb[2];
  10791. //const int nb13 = src1->nb[3];
  10792. //const int nb0 = dst->nb[0];
  10793. const int nb1 = dst->nb[1];
  10794. //const int nb2 = dst->nb[2];
  10795. //const int nb3 = dst->nb[3];
  10796. const int ith = params->ith;
  10797. const int nth = params->nth;
  10798. const int nk = ne00;
  10799. const int nh = nk/2;
  10800. const int ew0 = ggml_up32(ne01);
  10801. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10802. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  10803. GGML_ASSERT(nb10 == sizeof(float));
  10804. if (params->type == GGML_TASK_INIT) {
  10805. // TODO: fix this memset (wsize is overestimated)
  10806. memset(params->wdata, 0, params->wsize);
  10807. // prepare kernel data (src0)
  10808. {
  10809. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  10810. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10811. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10812. const ggml_fp16_t * const src = (ggml_fp16_t *)((char *) src0->data + i02*nb02 + i01*nb01);
  10813. ggml_fp16_t * dst_data = wdata + i02*ew0*ne00;
  10814. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10815. dst_data[i00*ew0 + i01] = src[i00];
  10816. }
  10817. }
  10818. }
  10819. }
  10820. // prepare source data (src1)
  10821. {
  10822. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + ne02*ew0*ne00;
  10823. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10824. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10825. ggml_fp16_t * dst_data = wdata;
  10826. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10827. dst_data[(i10 + nh)*ew0 + i11] = GGML_FP32_TO_FP16(src[i10]);
  10828. }
  10829. }
  10830. }
  10831. return;
  10832. }
  10833. if (params->type == GGML_TASK_FINALIZE) {
  10834. return;
  10835. }
  10836. // total rows in dst
  10837. const int nr = ne02;
  10838. // rows per thread
  10839. const int dr = (nr + nth - 1)/nth;
  10840. // row range for this thread
  10841. const int ir0 = dr*ith;
  10842. const int ir1 = MIN(ir0 + dr, nr);
  10843. for (int i1 = ir0; i1 < ir1; i1++) {
  10844. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10845. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10846. dst_data[i0/2] = 0;
  10847. for (int k = -nh; k <= nh; k++) {
  10848. float v = 0.0f;
  10849. ggml_vec_dot_f16(ew0, &v,
  10850. (ggml_fp16_t *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10851. (ggml_fp16_t *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10852. dst_data[i0/2] += v;
  10853. }
  10854. }
  10855. }
  10856. }
  10857. static void ggml_compute_forward_conv_1d_s2_ph_f32(
  10858. const struct ggml_compute_params * params,
  10859. const struct ggml_tensor * src0,
  10860. const struct ggml_tensor * src1,
  10861. struct ggml_tensor * dst) {
  10862. GGML_ASSERT(src0->type == GGML_TYPE_F32);
  10863. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10864. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10865. int64_t t0 = ggml_perf_time_us();
  10866. UNUSED(t0);
  10867. const int64_t ne00 = src0->ne[0];
  10868. const int64_t ne01 = src0->ne[1];
  10869. const int64_t ne02 = src0->ne[2];
  10870. //const int64_t ne03 = src0->ne[3];
  10871. const int64_t ne10 = src1->ne[0];
  10872. const int64_t ne11 = src1->ne[1];
  10873. //const int64_t ne12 = src1->ne[2];
  10874. //const int64_t ne13 = src1->ne[3];
  10875. //const int64_t ne0 = dst->ne[0];
  10876. //const int64_t ne1 = dst->ne[1];
  10877. //const int64_t ne2 = dst->ne[2];
  10878. //const int64_t ne3 = dst->ne[3];
  10879. //const int64_t ne = ne0*ne1*ne2*ne3;
  10880. const int nb00 = src0->nb[0];
  10881. const int nb01 = src0->nb[1];
  10882. const int nb02 = src0->nb[2];
  10883. //const int nb03 = src0->nb[3];
  10884. const int nb10 = src1->nb[0];
  10885. const int nb11 = src1->nb[1];
  10886. //const int nb12 = src1->nb[2];
  10887. //const int nb13 = src1->nb[3];
  10888. //const int nb0 = dst->nb[0];
  10889. const int nb1 = dst->nb[1];
  10890. //const int nb2 = dst->nb[2];
  10891. //const int nb3 = dst->nb[3];
  10892. const int ith = params->ith;
  10893. const int nth = params->nth;
  10894. const int nk = ne00;
  10895. const int nh = nk/2;
  10896. const int ew0 = ggml_up32(ne01);
  10897. GGML_ASSERT(ne00 % 2 == 1); // TODO: support even kernel sizes
  10898. GGML_ASSERT(nb00 == sizeof(float));
  10899. GGML_ASSERT(nb10 == sizeof(float));
  10900. if (params->type == GGML_TASK_INIT) {
  10901. // TODO: fix this memset (wsize is overestimated)
  10902. memset(params->wdata, 0, params->wsize);
  10903. // prepare kernel data (src0)
  10904. {
  10905. float * const wdata = (float *) params->wdata + 0;
  10906. for (int64_t i02 = 0; i02 < ne02; i02++) {
  10907. for (int64_t i01 = 0; i01 < ne01; i01++) {
  10908. const float * const src = (float *)((char *) src0->data + i02*nb02 + i01*nb01);
  10909. float * dst_data = wdata + i02*ew0*ne00;
  10910. for (int64_t i00 = 0; i00 < ne00; i00++) {
  10911. dst_data[i00*ew0 + i01] = src[i00];
  10912. }
  10913. }
  10914. }
  10915. }
  10916. // prepare source data (src1)
  10917. {
  10918. float * const wdata = (float *) params->wdata + ne02*ew0*ne00;
  10919. for (int64_t i11 = 0; i11 < ne11; i11++) {
  10920. const float * const src = (float *)((char *) src1->data + i11*nb11);
  10921. float * dst_data = wdata;
  10922. for (int64_t i10 = 0; i10 < ne10; i10++) {
  10923. dst_data[(i10 + nh)*ew0 + i11] = src[i10];
  10924. }
  10925. }
  10926. }
  10927. return;
  10928. }
  10929. if (params->type == GGML_TASK_FINALIZE) {
  10930. return;
  10931. }
  10932. // total rows in dst
  10933. const int nr = ne02;
  10934. // rows per thread
  10935. const int dr = (nr + nth - 1)/nth;
  10936. // row range for this thread
  10937. const int ir0 = dr*ith;
  10938. const int ir1 = MIN(ir0 + dr, nr);
  10939. for (int i1 = ir0; i1 < ir1; i1++) {
  10940. float * dst_data = (float *)((char *) dst->data + i1*nb1);
  10941. for (int64_t i0 = 0; i0 < ne10; i0 += 2) {
  10942. dst_data[i0/2] = 0;
  10943. for (int k = -nh; k <= nh; k++) {
  10944. float v = 0.0f;
  10945. ggml_vec_dot_f32(ew0, &v,
  10946. (float *) params->wdata + i1*ew0*ne00 + (nh + k)*ew0,
  10947. (float *) params->wdata + ne02*ew0*ne00 + (i0 + nh + k)*ew0);
  10948. dst_data[i0/2] += v;
  10949. }
  10950. }
  10951. }
  10952. }
  10953. static void ggml_compute_forward_conv_1d_s2_ph(
  10954. const struct ggml_compute_params * params,
  10955. const struct ggml_tensor * src0,
  10956. const struct ggml_tensor * src1,
  10957. struct ggml_tensor * dst) {
  10958. switch (src0->type) {
  10959. case GGML_TYPE_F16:
  10960. {
  10961. ggml_compute_forward_conv_1d_s2_ph_f16_f32(params, src0, src1, dst);
  10962. } break;
  10963. case GGML_TYPE_F32:
  10964. {
  10965. ggml_compute_forward_conv_1d_s2_ph_f32(params, src0, src1, dst);
  10966. } break;
  10967. default:
  10968. {
  10969. GGML_ASSERT(false);
  10970. } break;
  10971. }
  10972. }
  10973. // ggml_compute_forward_conv_2d_sk_p0
  10974. static void ggml_compute_forward_conv_2d_sk_p0_f16_f32(
  10975. const struct ggml_compute_params * params,
  10976. const struct ggml_tensor * src0,
  10977. const struct ggml_tensor * src1,
  10978. struct ggml_tensor * dst) {
  10979. GGML_ASSERT(src0->type == GGML_TYPE_F16);
  10980. GGML_ASSERT(src1->type == GGML_TYPE_F32);
  10981. GGML_ASSERT( dst->type == GGML_TYPE_F32);
  10982. int64_t t0 = ggml_perf_time_us();
  10983. UNUSED(t0);
  10984. const int ne00 = src0->ne[0];
  10985. const int ne01 = src0->ne[1];
  10986. const int ne02 = src0->ne[2];
  10987. //const int ne03 = src0->ne[3];
  10988. const int ne10 = src1->ne[0];
  10989. //const int ne11 = src1->ne[1];
  10990. const int ne12 = src1->ne[2];
  10991. //const int ne13 = src1->ne[3];
  10992. const int ne0 = dst->ne[0];
  10993. const int ne1 = dst->ne[1];
  10994. const int ne2 = dst->ne[2];
  10995. //const int ne3 = dst->ne[3];
  10996. //const int ne = ne0*ne1*ne2*ne3;
  10997. const int nb00 = src0->nb[0];
  10998. //const int nb01 = src0->nb[1];
  10999. //const int nb02 = src0->nb[2];
  11000. const int nb03 = src0->nb[3];
  11001. const int nb10 = src1->nb[0];
  11002. //const int nb11 = src1->nb[1];
  11003. const int nb12 = src1->nb[2];
  11004. //const int nb13 = src1->nb[3];
  11005. //const int nb0 = dst->nb[0];
  11006. //const int nb1 = dst->nb[1];
  11007. const int nb2 = dst->nb[2];
  11008. //const int nb3 = dst->nb[3];
  11009. const int ith = params->ith;
  11010. const int nth = params->nth;
  11011. const int nk0 = ne00;
  11012. const int nk1 = ne01;
  11013. // size of the convolution row - the kernel size unrolled across all channels
  11014. const int ew0 = nk0*nk1*ne02;
  11015. GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
  11016. GGML_ASSERT(nb10 == sizeof(float));
  11017. if (params->type == GGML_TASK_INIT) {
  11018. // TODO: fix this memset (wsize is overestimated)
  11019. memset(params->wdata, 0, params->wsize);
  11020. // prepare source data (src1)
  11021. {
  11022. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11023. for (int i12 = 0; i12 < ne12; i12++) {
  11024. const float * const src = (float *)((char *) src1->data + i12*nb12);
  11025. ggml_fp16_t * dst_data = wdata;
  11026. for (int i1 = 0; i1 < ne1; i1++) {
  11027. for (int i0 = 0; i0 < ne0; i0++) {
  11028. for (int ik1 = 0; ik1 < nk1; ik1++) {
  11029. for (int ik0 = 0; ik0 < nk0; ik0++) {
  11030. dst_data[(i1*ne0 + i0)*ew0 + i12*(nk0*nk1) + ik1*nk0 + ik0] =
  11031. GGML_FP32_TO_FP16(src[(i1*nk1 + ik1)*ne10 + (i0*nk0 + ik0)]);
  11032. }
  11033. }
  11034. }
  11035. }
  11036. }
  11037. }
  11038. return;
  11039. }
  11040. if (params->type == GGML_TASK_FINALIZE) {
  11041. return;
  11042. }
  11043. // total patches in dst
  11044. const int np = ne2;
  11045. // patches per thread
  11046. const int dp = (np + nth - 1)/nth;
  11047. // patch range for this thread
  11048. const int ip0 = dp*ith;
  11049. const int ip1 = MIN(ip0 + dp, np);
  11050. ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
  11051. for (int i2 = ip0; i2 < ip1; i2++) {
  11052. float * dst_data = (float *)((char *) dst->data + i2*nb2);
  11053. for (int i1 = 0; i1 < ne1; ++i1) {
  11054. for (int i0 = 0; i0 < ne0; ++i0) {
  11055. ggml_vec_dot_f16(ew0, dst_data + i1*ne0 + i0,
  11056. (ggml_fp16_t *) ((char *) src0->data + i2*nb03),
  11057. (ggml_fp16_t *) wdata + (i1*ne0 + i0)*ew0);
  11058. }
  11059. }
  11060. }
  11061. }
  11062. static void ggml_compute_forward_conv_2d_sk_p0(
  11063. const struct ggml_compute_params * params,
  11064. const struct ggml_tensor * src0,
  11065. const struct ggml_tensor * src1,
  11066. struct ggml_tensor * dst) {
  11067. switch (src0->type) {
  11068. case GGML_TYPE_F16:
  11069. {
  11070. ggml_compute_forward_conv_2d_sk_p0_f16_f32(params, src0, src1, dst);
  11071. } break;
  11072. case GGML_TYPE_F32:
  11073. {
  11074. //ggml_compute_forward_conv_2d_sk_p0_f32(params, src0, src1, dst);
  11075. GGML_ASSERT(false);
  11076. } break;
  11077. default:
  11078. {
  11079. GGML_ASSERT(false);
  11080. } break;
  11081. }
  11082. }
  11083. // ggml_compute_forward_flash_attn
  11084. static void ggml_compute_forward_flash_attn_f32(
  11085. const struct ggml_compute_params * params,
  11086. const struct ggml_tensor * q,
  11087. const struct ggml_tensor * k,
  11088. const struct ggml_tensor * v,
  11089. const bool masked,
  11090. struct ggml_tensor * dst) {
  11091. int64_t t0 = ggml_perf_time_us();
  11092. UNUSED(t0);
  11093. const int64_t neq0 = q->ne[0];
  11094. const int64_t neq1 = q->ne[1];
  11095. const int64_t neq2 = q->ne[2];
  11096. const int64_t neq3 = q->ne[3];
  11097. const int64_t nek0 = k->ne[0];
  11098. const int64_t nek1 = k->ne[1];
  11099. //const int64_t nek2 = k->ne[2];
  11100. //const int64_t nek3 = k->ne[3];
  11101. //const int64_t nev0 = v->ne[0];
  11102. const int64_t nev1 = v->ne[1];
  11103. //const int64_t nev2 = v->ne[2];
  11104. //const int64_t nev3 = v->ne[3];
  11105. const int64_t ne0 = dst->ne[0];
  11106. const int64_t ne1 = dst->ne[1];
  11107. //const int64_t ne2 = dst->ne[2];
  11108. //const int64_t ne3 = dst->ne[3];
  11109. const int nbk0 = k->nb[0];
  11110. const int nbk1 = k->nb[1];
  11111. const int nbk2 = k->nb[2];
  11112. const int nbk3 = k->nb[3];
  11113. const int nbq0 = q->nb[0];
  11114. const int nbq1 = q->nb[1];
  11115. const int nbq2 = q->nb[2];
  11116. const int nbq3 = q->nb[3];
  11117. const int nbv0 = v->nb[0];
  11118. const int nbv1 = v->nb[1];
  11119. const int nbv2 = v->nb[2];
  11120. const int nbv3 = v->nb[3];
  11121. const int nb0 = dst->nb[0];
  11122. const int nb1 = dst->nb[1];
  11123. const int nb2 = dst->nb[2];
  11124. const int nb3 = dst->nb[3];
  11125. const int ith = params->ith;
  11126. const int nth = params->nth;
  11127. const int64_t D = neq0;
  11128. const int64_t N = neq1;
  11129. const int64_t P = nek1 - N;
  11130. const int64_t M = P + N;
  11131. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11132. GGML_ASSERT(ne0 == D);
  11133. GGML_ASSERT(ne1 == N);
  11134. GGML_ASSERT(P >= 0);
  11135. GGML_ASSERT(nbq0 == sizeof(float));
  11136. GGML_ASSERT(nbk0 == sizeof(float));
  11137. GGML_ASSERT(nbv0 == sizeof(float));
  11138. GGML_ASSERT(neq0 == D);
  11139. GGML_ASSERT(nek0 == D);
  11140. GGML_ASSERT(nev1 == D);
  11141. GGML_ASSERT(neq1 == N);
  11142. GGML_ASSERT(nek1 == N + P);
  11143. GGML_ASSERT(nev1 == D);
  11144. // dst cannot be transposed or permuted
  11145. GGML_ASSERT(nb0 == sizeof(float));
  11146. GGML_ASSERT(nb0 <= nb1);
  11147. GGML_ASSERT(nb1 <= nb2);
  11148. GGML_ASSERT(nb2 <= nb3);
  11149. if (params->type == GGML_TASK_INIT) {
  11150. return;
  11151. }
  11152. if (params->type == GGML_TASK_FINALIZE) {
  11153. return;
  11154. }
  11155. // parallelize by q rows using ggml_vec_dot_f32
  11156. // total rows in q
  11157. const int nr = neq1*neq2*neq3;
  11158. // rows per thread
  11159. const int dr = (nr + nth - 1)/nth;
  11160. // row range for this thread
  11161. const int ir0 = dr*ith;
  11162. const int ir1 = MIN(ir0 + dr, nr);
  11163. const float scale = 1.0f/sqrtf(D);
  11164. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11165. for (int ir = ir0; ir < ir1; ++ir) {
  11166. // q indices
  11167. const int iq3 = ir/(neq2*neq1);
  11168. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11169. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11170. float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
  11171. for (int i = M; i < Mup; ++i) {
  11172. S[i] = -INFINITY;
  11173. }
  11174. for (int64_t ic = 0; ic < nek1; ++ic) {
  11175. // k indices
  11176. const int ik3 = iq3;
  11177. const int ik2 = iq2;
  11178. const int ik1 = ic;
  11179. // S indices
  11180. const int i1 = ik1;
  11181. ggml_vec_dot_f32(neq0,
  11182. S + i1,
  11183. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11184. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11185. }
  11186. // scale
  11187. ggml_vec_scale_f32(nek1, S, scale);
  11188. if (masked) {
  11189. for (int64_t i = P; i < M; i++) {
  11190. if (i > P + iq1) {
  11191. S[i] = -INFINITY;
  11192. }
  11193. }
  11194. }
  11195. // softmax
  11196. {
  11197. float max = -INFINITY;
  11198. ggml_vec_max_f32(M, &max, S);
  11199. ggml_float sum = 0.0;
  11200. {
  11201. #ifdef GGML_SOFT_MAX_ACCELERATE
  11202. max = -max;
  11203. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11204. vvexpf(S, S, &Mup);
  11205. ggml_vec_sum_f32(Mup, &sum, S);
  11206. #else
  11207. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11208. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11209. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11210. float * SS = S + i;
  11211. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11212. if (SS[j] == -INFINITY) {
  11213. SS[j] = 0.0f;
  11214. } else {
  11215. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11216. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11217. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11218. sump[j] += (ggml_float)val;
  11219. SS[j] = val;
  11220. }
  11221. }
  11222. }
  11223. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11224. sum += sump[i];
  11225. }
  11226. #endif
  11227. }
  11228. assert(sum > 0.0);
  11229. sum = 1.0/sum;
  11230. ggml_vec_scale_f32(M, S, sum);
  11231. #ifndef NDEBUG
  11232. for (int i = 0; i < M; ++i) {
  11233. assert(!isnan(S[i]));
  11234. assert(!isinf(S[i]));
  11235. }
  11236. #endif
  11237. }
  11238. for (int64_t ic = 0; ic < nev1; ++ic) {
  11239. // dst indices
  11240. const int i1 = iq1;
  11241. const int i2 = iq2;
  11242. const int i3 = iq3;
  11243. ggml_vec_dot_f32(nek1,
  11244. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11245. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11246. S);
  11247. }
  11248. }
  11249. }
  11250. static void ggml_compute_forward_flash_attn_f16(
  11251. const struct ggml_compute_params * params,
  11252. const struct ggml_tensor * q,
  11253. const struct ggml_tensor * k,
  11254. const struct ggml_tensor * v,
  11255. const bool masked,
  11256. struct ggml_tensor * dst) {
  11257. int64_t t0 = ggml_perf_time_us();
  11258. UNUSED(t0);
  11259. const int64_t neq0 = q->ne[0];
  11260. const int64_t neq1 = q->ne[1];
  11261. const int64_t neq2 = q->ne[2];
  11262. const int64_t neq3 = q->ne[3];
  11263. const int64_t nek0 = k->ne[0];
  11264. const int64_t nek1 = k->ne[1];
  11265. //const int64_t nek2 = k->ne[2];
  11266. //const int64_t nek3 = k->ne[3];
  11267. //const int64_t nev0 = v->ne[0];
  11268. const int64_t nev1 = v->ne[1];
  11269. //const int64_t nev2 = v->ne[2];
  11270. //const int64_t nev3 = v->ne[3];
  11271. const int64_t ne0 = dst->ne[0];
  11272. const int64_t ne1 = dst->ne[1];
  11273. //const int64_t ne2 = dst->ne[2];
  11274. //const int64_t ne3 = dst->ne[3];
  11275. const int nbk0 = k->nb[0];
  11276. const int nbk1 = k->nb[1];
  11277. const int nbk2 = k->nb[2];
  11278. const int nbk3 = k->nb[3];
  11279. const int nbq0 = q->nb[0];
  11280. const int nbq1 = q->nb[1];
  11281. const int nbq2 = q->nb[2];
  11282. const int nbq3 = q->nb[3];
  11283. const int nbv0 = v->nb[0];
  11284. const int nbv1 = v->nb[1];
  11285. const int nbv2 = v->nb[2];
  11286. const int nbv3 = v->nb[3];
  11287. const int nb0 = dst->nb[0];
  11288. const int nb1 = dst->nb[1];
  11289. const int nb2 = dst->nb[2];
  11290. const int nb3 = dst->nb[3];
  11291. const int ith = params->ith;
  11292. const int nth = params->nth;
  11293. const int64_t D = neq0;
  11294. const int64_t N = neq1;
  11295. const int64_t P = nek1 - N;
  11296. const int64_t M = P + N;
  11297. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11298. GGML_ASSERT(ne0 == D);
  11299. GGML_ASSERT(ne1 == N);
  11300. GGML_ASSERT(P >= 0);
  11301. GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
  11302. GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
  11303. GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
  11304. GGML_ASSERT(neq0 == D);
  11305. GGML_ASSERT(nek0 == D);
  11306. GGML_ASSERT(nev1 == D);
  11307. GGML_ASSERT(neq1 == N);
  11308. GGML_ASSERT(nek1 == N + P);
  11309. GGML_ASSERT(nev1 == D);
  11310. // dst cannot be transposed or permuted
  11311. GGML_ASSERT(nb0 == sizeof(float));
  11312. GGML_ASSERT(nb0 <= nb1);
  11313. GGML_ASSERT(nb1 <= nb2);
  11314. GGML_ASSERT(nb2 <= nb3);
  11315. if (params->type == GGML_TASK_INIT) {
  11316. return;
  11317. }
  11318. if (params->type == GGML_TASK_FINALIZE) {
  11319. return;
  11320. }
  11321. // parallelize by q rows using ggml_vec_dot_f32
  11322. // total rows in q
  11323. const int nr = neq1*neq2*neq3;
  11324. // rows per thread
  11325. const int dr = (nr + nth - 1)/nth;
  11326. // row range for this thread
  11327. const int ir0 = dr*ith;
  11328. const int ir1 = MIN(ir0 + dr, nr);
  11329. const float scale = 1.0f/sqrtf(D);
  11330. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11331. for (int ir = ir0; ir < ir1; ++ir) {
  11332. // q indices
  11333. const int iq3 = ir/(neq2*neq1);
  11334. const int iq2 = (ir - iq3*neq2*neq1)/neq1;
  11335. const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
  11336. float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
  11337. for (int i = M; i < Mup; ++i) {
  11338. S[i] = -INFINITY;
  11339. }
  11340. if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
  11341. for (int64_t ic = 0; ic < nek1; ++ic) {
  11342. // k indices
  11343. const int ik3 = iq3;
  11344. const int ik2 = iq2;
  11345. const int ik1 = ic;
  11346. // S indices
  11347. const int i1 = ik1;
  11348. ggml_vec_dot_f16(neq0,
  11349. S + i1,
  11350. (ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11351. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11352. }
  11353. } else {
  11354. for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
  11355. // k indices
  11356. const int ik3 = iq3;
  11357. const int ik2 = iq2;
  11358. const int ik1 = ic;
  11359. // S indices
  11360. const int i1 = ik1;
  11361. ggml_vec_dot_f16_unroll(neq0, nbk1,
  11362. S + i1,
  11363. ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11364. (ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11365. }
  11366. }
  11367. // scale
  11368. ggml_vec_scale_f32(nek1, S, scale);
  11369. if (masked) {
  11370. for (int64_t i = P; i < M; i++) {
  11371. if (i > P + iq1) {
  11372. S[i] = -INFINITY;
  11373. }
  11374. }
  11375. }
  11376. // softmax
  11377. {
  11378. float max = -INFINITY;
  11379. ggml_vec_max_f32(M, &max, S);
  11380. ggml_float sum = 0.0;
  11381. {
  11382. #ifdef GGML_SOFT_MAX_ACCELERATE
  11383. max = -max;
  11384. vDSP_vsadd(S, 1, &max, S, 1, Mup);
  11385. vvexpf(S, S, &Mup);
  11386. ggml_vec_sum_f32(Mup, &sum, S);
  11387. #else
  11388. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11389. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11390. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11391. float * SS = S + i;
  11392. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11393. if (SS[j] == -INFINITY) {
  11394. SS[j] = 0.0f;
  11395. } else {
  11396. ggml_fp16_t s = GGML_FP32_TO_FP16(SS[j] - max);
  11397. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11398. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11399. sump[j] += (ggml_float)val;
  11400. SS[j] = val;
  11401. }
  11402. }
  11403. }
  11404. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11405. sum += sump[i];
  11406. }
  11407. #endif
  11408. }
  11409. assert(sum > 0.0);
  11410. sum = 1.0/sum;
  11411. ggml_vec_scale_f32(M, S, sum);
  11412. #ifndef NDEBUG
  11413. for (int i = 0; i < M; ++i) {
  11414. assert(!isnan(S[i]));
  11415. assert(!isinf(S[i]));
  11416. }
  11417. #endif
  11418. }
  11419. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
  11420. for (int64_t i = 0; i < M; i++) {
  11421. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11422. }
  11423. if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
  11424. for (int64_t ic = 0; ic < nev1; ++ic) {
  11425. // dst indices
  11426. const int i1 = iq1;
  11427. const int i2 = iq2;
  11428. const int i3 = iq3;
  11429. ggml_vec_dot_f16(nek1,
  11430. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11431. (ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11432. S16);
  11433. }
  11434. } else {
  11435. for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
  11436. // dst indices
  11437. const int i1 = iq1;
  11438. const int i2 = iq2;
  11439. const int i3 = iq3;
  11440. ggml_vec_dot_f16_unroll(nek1, nbv1,
  11441. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11442. ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11443. S16);
  11444. }
  11445. }
  11446. }
  11447. }
  11448. static void ggml_compute_forward_flash_attn(
  11449. const struct ggml_compute_params * params,
  11450. const struct ggml_tensor * q,
  11451. const struct ggml_tensor * k,
  11452. const struct ggml_tensor * v,
  11453. const bool masked,
  11454. struct ggml_tensor * dst) {
  11455. switch (q->type) {
  11456. case GGML_TYPE_F16:
  11457. {
  11458. ggml_compute_forward_flash_attn_f16(params, q, k, v, masked, dst);
  11459. } break;
  11460. case GGML_TYPE_F32:
  11461. {
  11462. ggml_compute_forward_flash_attn_f32(params, q, k, v, masked, dst);
  11463. } break;
  11464. default:
  11465. {
  11466. GGML_ASSERT(false);
  11467. } break;
  11468. }
  11469. }
  11470. // ggml_compute_forward_flash_ff
  11471. static void ggml_compute_forward_flash_ff_f16(
  11472. const struct ggml_compute_params * params,
  11473. const struct ggml_tensor * a, // F16
  11474. const struct ggml_tensor * b0, // F16 fc_w
  11475. const struct ggml_tensor * b1, // F32 fc_b
  11476. const struct ggml_tensor * c0, // F16 proj_w
  11477. const struct ggml_tensor * c1, // F32 proj_b
  11478. struct ggml_tensor * dst) {
  11479. int64_t t0 = ggml_perf_time_us();
  11480. UNUSED(t0);
  11481. const int64_t nea0 = a->ne[0];
  11482. const int64_t nea1 = a->ne[1];
  11483. const int64_t nea2 = a->ne[2];
  11484. const int64_t nea3 = a->ne[3];
  11485. const int64_t neb00 = b0->ne[0];
  11486. const int64_t neb01 = b0->ne[1];
  11487. //const int64_t neb02 = b0->ne[2];
  11488. //const int64_t neb03 = b0->ne[3];
  11489. const int64_t neb10 = b1->ne[0];
  11490. const int64_t neb11 = b1->ne[1];
  11491. //const int64_t neb12 = b1->ne[2];
  11492. //const int64_t neb13 = b1->ne[3];
  11493. const int64_t nec00 = c0->ne[0];
  11494. const int64_t nec01 = c0->ne[1];
  11495. //const int64_t nec02 = c0->ne[2];
  11496. //const int64_t nec03 = c0->ne[3];
  11497. const int64_t nec10 = c1->ne[0];
  11498. const int64_t nec11 = c1->ne[1];
  11499. //const int64_t nec12 = c1->ne[2];
  11500. //const int64_t nec13 = c1->ne[3];
  11501. const int64_t ne0 = dst->ne[0];
  11502. const int64_t ne1 = dst->ne[1];
  11503. const int64_t ne2 = dst->ne[2];
  11504. //const int64_t ne3 = dst->ne[3];
  11505. const int nba0 = a->nb[0];
  11506. const int nba1 = a->nb[1];
  11507. const int nba2 = a->nb[2];
  11508. const int nba3 = a->nb[3];
  11509. const int nbb00 = b0->nb[0];
  11510. const int nbb01 = b0->nb[1];
  11511. const int nbb02 = b0->nb[2];
  11512. const int nbb03 = b0->nb[3];
  11513. const int nbb10 = b1->nb[0];
  11514. //const int nbb11 = b1->nb[1];
  11515. //const int nbb12 = b1->nb[2];
  11516. //const int nbb13 = b1->nb[3];
  11517. const int nbc00 = c0->nb[0];
  11518. const int nbc01 = c0->nb[1];
  11519. const int nbc02 = c0->nb[2];
  11520. const int nbc03 = c0->nb[3];
  11521. const int nbc10 = c1->nb[0];
  11522. //const int nbc11 = c1->nb[1];
  11523. //const int nbc12 = c1->nb[2];
  11524. //const int nbc13 = c1->nb[3];
  11525. const int nb0 = dst->nb[0];
  11526. const int nb1 = dst->nb[1];
  11527. const int nb2 = dst->nb[2];
  11528. const int nb3 = dst->nb[3];
  11529. const int ith = params->ith;
  11530. const int nth = params->nth;
  11531. const int64_t D = nea0;
  11532. //const int64_t N = nea1;
  11533. const int64_t M = neb01;
  11534. GGML_ASSERT(ne0 == nea0);
  11535. GGML_ASSERT(ne1 == nea1);
  11536. GGML_ASSERT(ne2 == nea2);
  11537. GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
  11538. GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
  11539. GGML_ASSERT(nbb10 == sizeof(float));
  11540. GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
  11541. GGML_ASSERT(nbc10 == sizeof(float));
  11542. GGML_ASSERT(neb00 == D);
  11543. GGML_ASSERT(neb01 == M);
  11544. GGML_ASSERT(neb10 == M);
  11545. GGML_ASSERT(neb11 == 1);
  11546. GGML_ASSERT(nec00 == M);
  11547. GGML_ASSERT(nec01 == D);
  11548. GGML_ASSERT(nec10 == D);
  11549. GGML_ASSERT(nec11 == 1);
  11550. // dst cannot be transposed or permuted
  11551. GGML_ASSERT(nb0 == sizeof(float));
  11552. GGML_ASSERT(nb0 <= nb1);
  11553. GGML_ASSERT(nb1 <= nb2);
  11554. GGML_ASSERT(nb2 <= nb3);
  11555. if (params->type == GGML_TASK_INIT) {
  11556. return;
  11557. }
  11558. if (params->type == GGML_TASK_FINALIZE) {
  11559. return;
  11560. }
  11561. // parallelize by a rows using ggml_vec_dot_f32
  11562. // total rows in a
  11563. const int nr = nea1*nea2*nea3;
  11564. // rows per thread
  11565. const int dr = (nr + nth - 1)/nth;
  11566. // row range for this thread
  11567. const int ir0 = dr*ith;
  11568. const int ir1 = MIN(ir0 + dr, nr);
  11569. for (int ir = ir0; ir < ir1; ++ir) {
  11570. // a indices
  11571. const int ia3 = ir/(nea2*nea1);
  11572. const int ia2 = (ir - ia3*nea2*nea1)/nea1;
  11573. const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
  11574. float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
  11575. for (int64_t ic = 0; ic < neb01; ++ic) {
  11576. // b0 indices
  11577. const int ib03 = ia3;
  11578. const int ib02 = ia2;
  11579. const int ib01 = ic;
  11580. // S indices
  11581. const int i1 = ib01;
  11582. ggml_vec_dot_f16(nea0,
  11583. S + i1,
  11584. (ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)),
  11585. (ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)));
  11586. }
  11587. ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
  11588. //ggml_vec_gelu_f32(neb01, S, S);
  11589. ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
  11590. for (int64_t i = 0; i < M; i++) {
  11591. S16[i] = GGML_FP32_TO_FP16(S[i]);
  11592. }
  11593. ggml_vec_gelu_f16(neb01, S16, S16);
  11594. {
  11595. // dst indices
  11596. const int i1 = ia1;
  11597. const int i2 = ia2;
  11598. const int i3 = ia3;
  11599. for (int64_t ic = 0; ic < nec01; ++ic) {
  11600. ggml_vec_dot_f16(neb01,
  11601. (float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
  11602. (ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)),
  11603. S16);
  11604. }
  11605. ggml_vec_add_f32(nec01,
  11606. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11607. (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
  11608. (float *) c1->data);
  11609. }
  11610. }
  11611. }
  11612. static void ggml_compute_forward_flash_ff(
  11613. const struct ggml_compute_params * params,
  11614. const struct ggml_tensor * a,
  11615. const struct ggml_tensor * b0,
  11616. const struct ggml_tensor * b1,
  11617. const struct ggml_tensor * c0,
  11618. const struct ggml_tensor * c1,
  11619. struct ggml_tensor * dst) {
  11620. switch (b0->type) {
  11621. case GGML_TYPE_F16:
  11622. {
  11623. ggml_compute_forward_flash_ff_f16(params, a, b0, b1, c0, c1, dst);
  11624. } break;
  11625. case GGML_TYPE_F32:
  11626. {
  11627. GGML_ASSERT(false); // TODO
  11628. } break;
  11629. default:
  11630. {
  11631. GGML_ASSERT(false);
  11632. } break;
  11633. }
  11634. }
  11635. // ggml_compute_forward_flash_attn_back
  11636. static void ggml_compute_forward_flash_attn_back_f32(
  11637. const struct ggml_compute_params * params,
  11638. const struct ggml_tensor * q,
  11639. const struct ggml_tensor * k,
  11640. const struct ggml_tensor * v,
  11641. const struct ggml_tensor * d,
  11642. const bool masked,
  11643. struct ggml_tensor * dst) {
  11644. int64_t t0 = ggml_perf_time_us();
  11645. UNUSED(t0);
  11646. const int64_t neq0 = q->ne[0];
  11647. const int64_t neq1 = q->ne[1];
  11648. const int64_t neq2 = q->ne[2];
  11649. const int64_t neq3 = q->ne[3];
  11650. const int64_t nek0 = k->ne[0];
  11651. const int64_t nek1 = k->ne[1];
  11652. //const int64_t nek2 = k->ne[2];
  11653. //const int64_t nek3 = k->ne[3];
  11654. const int64_t nev0 = v->ne[0];
  11655. const int64_t nev1 = v->ne[1];
  11656. //const int64_t nev2 = v->ne[2];
  11657. //const int64_t nev3 = v->ne[3];
  11658. const int64_t ned0 = d->ne[0];
  11659. const int64_t ned1 = d->ne[1];
  11660. //const int64_t ned2 = d->ne[2];
  11661. //const int64_t ned3 = d->ne[3];
  11662. const int64_t ne0 = dst->ne[0];
  11663. const int64_t ne1 = dst->ne[1];
  11664. const int64_t ne2 = dst->ne[2];
  11665. const int64_t ne3 = dst->ne[3];
  11666. const int nbk0 = k->nb[0];
  11667. const int nbk1 = k->nb[1];
  11668. const int nbk2 = k->nb[2];
  11669. const int nbk3 = k->nb[3];
  11670. const int nbq0 = q->nb[0];
  11671. const int nbq1 = q->nb[1];
  11672. const int nbq2 = q->nb[2];
  11673. const int nbq3 = q->nb[3];
  11674. const int nbv0 = v->nb[0];
  11675. const int nbv1 = v->nb[1];
  11676. const int nbv2 = v->nb[2];
  11677. const int nbv3 = v->nb[3];
  11678. const int nbd0 = d->nb[0];
  11679. const int nbd1 = d->nb[1];
  11680. const int nbd2 = d->nb[2];
  11681. const int nbd3 = d->nb[3];
  11682. const int nb0 = dst->nb[0];
  11683. const int nb1 = dst->nb[1];
  11684. const int nb2 = dst->nb[2];
  11685. const int nb3 = dst->nb[3];
  11686. const int ith = params->ith;
  11687. const int nth = params->nth;
  11688. const int64_t D = neq0;
  11689. const int64_t N = neq1;
  11690. const int64_t P = nek1 - N;
  11691. const int64_t M = P + N;
  11692. const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
  11693. const int mxDM = MAX(D, Mup);
  11694. // GGML_ASSERT(ne0 == D);
  11695. // GGML_ASSERT(ne1 == N);
  11696. GGML_ASSERT(P >= 0);
  11697. GGML_ASSERT(nbq0 == sizeof(float));
  11698. GGML_ASSERT(nbk0 == sizeof(float));
  11699. GGML_ASSERT(nbv0 == sizeof(float));
  11700. GGML_ASSERT(neq0 == D);
  11701. GGML_ASSERT(nek0 == D);
  11702. GGML_ASSERT(nev1 == D);
  11703. GGML_ASSERT(ned0 == D);
  11704. GGML_ASSERT(neq1 == N);
  11705. GGML_ASSERT(nek1 == N + P);
  11706. GGML_ASSERT(nev1 == D);
  11707. GGML_ASSERT(ned1 == N);
  11708. // dst cannot be transposed or permuted
  11709. GGML_ASSERT(nb0 == sizeof(float));
  11710. GGML_ASSERT(nb0 <= nb1);
  11711. GGML_ASSERT(nb1 <= nb2);
  11712. GGML_ASSERT(nb2 <= nb3);
  11713. if (params->type == GGML_TASK_INIT) {
  11714. if (ith == 0) {
  11715. memset(dst->data, 0, nb0*ne0*ne1*ne2*ne3);
  11716. }
  11717. return;
  11718. }
  11719. if (params->type == GGML_TASK_FINALIZE) {
  11720. return;
  11721. }
  11722. // parallelize by q rows using ggml_vec_dot_f32
  11723. // total rows in q
  11724. const int nr = neq2*neq3;
  11725. // rows per thread
  11726. const int dr = (nr + nth - 1)/nth;
  11727. // row range for this thread
  11728. const int ir0 = dr*ith;
  11729. const int ir1 = MIN(ir0 + dr, nr);
  11730. const float scale = 1.0f/sqrtf(D);
  11731. //printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
  11732. for (int ir = ir0; ir < ir1; ++ir) {
  11733. // q indices
  11734. const int iq3 = ir/(neq2);
  11735. const int iq2 = ir - iq3*neq2;
  11736. for ( int iq1 = 0; iq1 < neq1; ++iq1) {
  11737. // not sure about CACHE_LINE_SIZE_F32..
  11738. // - maybe it must not be multiplied by 2 and excluded from .. in SM 1*(..) offset?
  11739. float * S = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 0*(mxDM+CACHE_LINE_SIZE_F32);
  11740. float * SM = (float *) params->wdata + ith*2*(mxDM + CACHE_LINE_SIZE_F32) + 1*(mxDM+CACHE_LINE_SIZE_F32);
  11741. for (int i = M; i < Mup; ++i) {
  11742. S[i] = -INFINITY;
  11743. }
  11744. for (int64_t ic = 0; ic < nek1; ++ic) {
  11745. // k indices
  11746. const int ik3 = iq3;
  11747. const int ik2 = iq2;
  11748. const int ik1 = ic;
  11749. // S indices
  11750. const int i1 = ik1;
  11751. ggml_vec_dot_f32(neq0,
  11752. S + i1,
  11753. (float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
  11754. (float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
  11755. }
  11756. // scale
  11757. ggml_vec_scale_f32(nek1, S, scale);
  11758. if (masked) {
  11759. for (int64_t i = P; i < M; i++) {
  11760. if (i > P + iq1) {
  11761. S[i] = -INFINITY;
  11762. }
  11763. }
  11764. }
  11765. // softmax
  11766. {
  11767. float max = -INFINITY;
  11768. ggml_vec_max_f32(M, &max, S);
  11769. ggml_float sum = 0.0;
  11770. {
  11771. #ifdef GGML_SOFT_MAX_ACCELERATE
  11772. max = -max;
  11773. vDSP_vsadd(SM, 1, &max, SM, 1, Mup);
  11774. vvexpf(SM, SM, &Mup);
  11775. ggml_vec_sum_f32(Mup, &sum, SM);
  11776. #else
  11777. uint16_t scvt[GGML_SOFT_MAX_UNROLL];
  11778. ggml_float sump[GGML_SOFT_MAX_UNROLL] = { 0.0 };
  11779. for (int i = 0; i < Mup; i += GGML_SOFT_MAX_UNROLL) {
  11780. float * SR = S + i;
  11781. float * SW = SM + i;
  11782. for (int j = 0; j < GGML_SOFT_MAX_UNROLL; ++j) {
  11783. if (SR[j] == -INFINITY) {
  11784. SW[j] = 0.0f;
  11785. } else {
  11786. ggml_fp16_t s = GGML_FP32_TO_FP16(SR[j] - max);
  11787. memcpy(&scvt[j], &s, sizeof(uint16_t));
  11788. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt[j]]);
  11789. sump[j] += (ggml_float)val;
  11790. SW[j] = val;
  11791. }
  11792. }
  11793. }
  11794. for (int i = 0; i < GGML_SOFT_MAX_UNROLL; i++) {
  11795. sum += sump[i];
  11796. }
  11797. #endif
  11798. }
  11799. assert(sum > 0.0);
  11800. sum = 1.0/sum;
  11801. ggml_vec_scale_f32(M, SM, sum);
  11802. }
  11803. // step-by-step explanation
  11804. {
  11805. // forward-process shape grads from backward process
  11806. // parallel_for iq2,iq3:
  11807. // k[:D,:M,:,:] [D,M,:,:] grad[k][:D,:M,iq2,iq3] += grad[kcur]
  11808. // q[:D,:N,:,:] [D,N,:,:] grad[q][:D,iq1,iq2,iq3] += grad[qcur]
  11809. // v[:M,:D,:,:] [M,D,:,:] grad[v][:M,:D,iq2,iq3] += grad[vcur]
  11810. // for iq1:
  11811. // kcur = k[:D,:M,iq2,iq3] [D,M,1,1] grad[kcur] = grad[S1].T @ qcur
  11812. // qcur = q[:D,iq1,iq2,iq3] [D,1,1,1] grad[qcur] = grad[S1] @ kcur
  11813. // vcur = v[:M,:D,iq2,iq3] [M,D,1,1] grad[vcur] = grad[S5].T @ S4
  11814. // S0 = -Inf [D,1,1,1]
  11815. // ~S1[i] = dot(kcur[:D,i], qcur)
  11816. // S1 = qcur @ kcur.T [M,1,1,1] grad[S1] = grad[S2] * scale
  11817. // S2 = S1 * scale [M,1,1,1] grad[S2] = diag_mask_zero(grad[S3], P)
  11818. // S3 = diag_mask_inf(S2, P) [M,1,1,1] grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11819. // S4 = softmax(S3) [M,1,1,1] grad[S4] = grad[S5] @ vcur
  11820. // ~S5[i] = dot(vcur[:,i], S4)
  11821. // S5 = S4 @ vcur.T [D,1,1,1] grad[S5] = d[:D,iq1,iq2,iq3]
  11822. // ~dst[i,iq1,iq2,iq3] = S5[i] ^
  11823. // dst[:D,iq1,iq2,iq3] = S5 | grad[dst[:D,iq1,iq2,iq3]] = d[:D,iq1,iq2,iq3]
  11824. // dst backward-/ grad[dst] = d
  11825. //
  11826. // output gradients with their dependencies:
  11827. //
  11828. // grad[kcur] = grad[S1].T @ qcur
  11829. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11830. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11831. // grad[S4] = grad[S5] @ vcur
  11832. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11833. // grad[qcur] = grad[S1] @ kcur
  11834. // grad[vcur] = grad[S5].T @ S4
  11835. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11836. //
  11837. // in post-order:
  11838. //
  11839. // S1 = qcur @ kcur.T
  11840. // S2 = S1 * scale
  11841. // S3 = diag_mask_inf(S2, P)
  11842. // S4 = softmax(S3)
  11843. // grad[S4] = d[:D,iq1,iq2,iq3] @ vcur
  11844. // grad[S3] = S4 * (grad[S4] - dot(S4, grad[S4]))
  11845. // grad[S1] = diag_mask_zero(grad[S3], P) * scale
  11846. // grad[qcur] = grad[S1] @ kcur
  11847. // grad[kcur] = grad[S1].T @ qcur
  11848. // grad[vcur] = d[:D,iq1,iq2,iq3].T @ S4
  11849. //
  11850. // using less variables (SM=S4):
  11851. //
  11852. // S = diag_mask_inf(qcur @ kcur.T * scale, P)
  11853. // SM = softmax(S)
  11854. // S = d[:D,iq1,iq2,iq3] @ vcur
  11855. // dot_SM_gradSM = dot(SM, S)
  11856. // S = SM * (S - dot(SM, S))
  11857. // S = diag_mask_zero(S, P) * scale
  11858. //
  11859. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11860. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11861. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11862. }
  11863. // S = gradSM = d[:D,iq1,iq2,iq3] @ vcur
  11864. // S = d[:D,iq1,iq2,iq3] @ vcur
  11865. // S[:M] += vcur[:M,ic] * d[ic,iq1,iq2,iq3]
  11866. ggml_vec_set_f32(M, S, 0);
  11867. for (int64_t ic = 0; ic < D; ++ic) {
  11868. // dst indices
  11869. const int i1 = iq1;
  11870. const int i2 = iq2;
  11871. const int i3 = iq3;
  11872. ggml_vec_mad_f32(M,
  11873. S,
  11874. (float *) ((char *) v->data + ( ic*nbv1 + i2*nbv2 + i3*nbv3)),
  11875. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11876. }
  11877. // S = SM * (S - dot(SM, S))
  11878. float dot_SM_gradSM = 0;
  11879. ggml_vec_dot_f32 (M, &dot_SM_gradSM, SM, S);
  11880. ggml_vec_acc1_f32(M, S, -dot_SM_gradSM);
  11881. ggml_vec_mul_f32 (M, S, S, SM);
  11882. // S = diag_mask_zero(S, P) * scale
  11883. if (masked) {
  11884. // for (int64_t i = P + iq1 + 1; i < M; i++) {
  11885. // S[i] = 0;
  11886. // }
  11887. for (int64_t i = P; i < M; i++) {
  11888. if (i > P + iq1) {
  11889. S[i] = 0;
  11890. }
  11891. }
  11892. }
  11893. ggml_vec_scale_f32(M, S, scale);
  11894. void * grad_q = (char *) dst->data;
  11895. void * grad_k = (char *) dst->data + nb0*D*N*neq2*neq3;
  11896. void * grad_v = (char *) dst->data + nb0*D*N*neq2*neq3 + nb0*D*M*neq2*neq3;
  11897. const size_t nbgq1 = nb0*neq0;
  11898. const size_t nbgq2 = nb0*neq0*neq1;
  11899. const size_t nbgq3 = nb0*neq0*neq1*neq2;
  11900. const size_t nbgk1 = nb0*nek0;
  11901. const size_t nbgk2 = nb0*nek0*nek1;
  11902. const size_t nbgk3 = nb0*nek0*nek1*neq2;
  11903. const size_t nbgv1 = nb0*nev0;
  11904. const size_t nbgv2 = nb0*nev0*nev1;
  11905. const size_t nbgv3 = nb0*nev0*nev1*neq2;
  11906. // S shape [M,1]
  11907. // SM shape [M,1]
  11908. // kcur shape [D,M]
  11909. // qcur shape [D,1]
  11910. // vcur shape [M,D]
  11911. //
  11912. // grad[q][:D,iq1,iq2,iq3] += S @ kcur
  11913. // grad[q][:D,iq1,iq2,iq3] += shape[M,1] @ shape[D,M]
  11914. // grad[q][:D,iq1,iq2,iq3] += S[ic] * kcur[:D,ic]
  11915. //
  11916. //// grad[q][ic,iq1,iq2,iq3] += dot(kcur[:,ic],S.T)
  11917. //// grad[q][ic,iq1,iq2,iq3] += dot(k[:D,ic,iq2,iq3],S.T)
  11918. for (int64_t ic = 0; ic < M; ++ic) {
  11919. // dst indices
  11920. const int i1 = iq1;
  11921. const int i2 = iq2;
  11922. const int i3 = iq3;
  11923. ggml_vec_mad_f32(D,
  11924. (float *) ((char *) grad_q + (i1*nbgq1 + i2*nbgq2 + i3*nbgq3)),
  11925. (float *) ((char *) k->data + (ic*nbk1 + i2*nbk2 + i3*nbk3)),
  11926. S[ic]);
  11927. }
  11928. // grad[k][:D,:M,iq2,iq3] += S.T @ qcur
  11929. // grad[k][:D,ic,iq2,iq3] += S.T[0,ic] * qcur[:D,0]
  11930. // grad[k][:D,ic,iq2,iq3] += S[ic] * qcur[:D,0]
  11931. for (int64_t ic = 0; ic < M; ++ic) {
  11932. // dst indices
  11933. const int i1 = iq1;
  11934. const int i2 = iq2;
  11935. const int i3 = iq3;
  11936. // ggml_vec_set_f32(D,
  11937. // (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11938. // 0);
  11939. ggml_vec_mad_f32(D,
  11940. (float *) ((char *) grad_k + (ic*nbgk1 + i2*nbgk2 + i3*nbgk3)),
  11941. (float *) ((char *) q->data + (i1*nbq1 + i2*nbq2 + i3*nbq3)),
  11942. S[ic]);
  11943. }
  11944. // grad[v][:M,:D,iq2,iq3] += d[:D,iq1,iq2,iq3].T @ SM
  11945. // grad[v][:M,ic,iq2,iq3] += d[:D,iq1,iq2,iq3].T[0,ic] * SM[:M]
  11946. // grad[v][:M,ic,iq2,iq3] += d[ic,iq1,iq2,iq3] * SM[:M]
  11947. for (int64_t ic = 0; ic < D; ++ic) {
  11948. // dst indices
  11949. const int i1 = iq1;
  11950. const int i2 = iq2;
  11951. const int i3 = iq3;
  11952. // ggml_vec_set_f32(M,
  11953. // (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11954. // 0);
  11955. ggml_vec_mad_f32(M,
  11956. (float *) ((char *) grad_v + ( ic*nbgv1 + i2*nbgv2 + i3*nbgv3)),
  11957. SM,
  11958. *(float *) ((char *) d->data + (ic*nbd0 + i1*nbd1 + i2*nbd2 + i3*nbd3)));
  11959. }
  11960. }
  11961. }
  11962. }
  11963. static void ggml_compute_forward_flash_attn_back(
  11964. const struct ggml_compute_params * params,
  11965. const struct ggml_tensor * q,
  11966. const struct ggml_tensor * k,
  11967. const struct ggml_tensor * v,
  11968. const struct ggml_tensor * d,
  11969. const bool masked,
  11970. struct ggml_tensor * dst) {
  11971. switch (q->type) {
  11972. case GGML_TYPE_F32:
  11973. {
  11974. ggml_compute_forward_flash_attn_back_f32(params, q, k, v, d, masked, dst);
  11975. } break;
  11976. default:
  11977. {
  11978. GGML_ASSERT(false);
  11979. } break;
  11980. }
  11981. }
  11982. // ggml_compute_forward_win_part
  11983. static void ggml_compute_forward_win_part_f32(
  11984. const struct ggml_compute_params * params,
  11985. const struct ggml_tensor * src0,
  11986. const struct ggml_tensor * opt0,
  11987. struct ggml_tensor * dst) {
  11988. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  11989. return;
  11990. }
  11991. const int64_t ne00 = src0->ne[0]; UNUSED(ne00);
  11992. const int64_t ne01 = src0->ne[1];
  11993. const int64_t ne02 = src0->ne[2];
  11994. const int64_t ne03 = src0->ne[3]; UNUSED(ne03);
  11995. const int64_t ne0 = dst->ne[0];
  11996. const int64_t ne1 = dst->ne[1];
  11997. const int64_t ne2 = dst->ne[2];
  11998. const int64_t ne3 = dst->ne[3]; UNUSED(ne3);
  11999. const int32_t nep0 = ((const int32_t *)(opt0->data))[0];
  12000. const int32_t nep1 = ((const int32_t *)(opt0->data))[1];
  12001. const int32_t w = ((const int32_t *)(opt0->data))[2];
  12002. assert(ne00 == ne0);
  12003. assert(ne3 == nep0*nep1);
  12004. // TODO: optimize / multi-thread
  12005. for (int py = 0; py < nep1; ++py) {
  12006. for (int px = 0; px < nep0; ++px) {
  12007. const int64_t i3 = py*nep0 + px;
  12008. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12009. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12010. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12011. const int64_t i02 = py*w + i2;
  12012. const int64_t i01 = px*w + i1;
  12013. const int64_t i00 = i0;
  12014. const int64_t i = i3*ne2*ne1*ne0 + i2*ne1*ne0 + i1*ne0 + i0;
  12015. const int64_t j = i02*ne01*ne00 + i01*ne00 + i00;
  12016. if (py*w + i2 >= ne02 || px*w + i1 >= ne01) {
  12017. ((float *) dst->data)[i] = 0.0f;
  12018. } else {
  12019. ((float *) dst->data)[i] = ((float *) src0->data)[j];
  12020. }
  12021. }
  12022. }
  12023. }
  12024. }
  12025. }
  12026. }
  12027. static void ggml_compute_forward_win_part(
  12028. const struct ggml_compute_params * params,
  12029. const struct ggml_tensor * src0,
  12030. const struct ggml_tensor * opt0,
  12031. struct ggml_tensor * dst) {
  12032. switch (src0->type) {
  12033. case GGML_TYPE_F32:
  12034. {
  12035. ggml_compute_forward_win_part_f32(params, src0, opt0, dst);
  12036. } break;
  12037. default:
  12038. {
  12039. GGML_ASSERT(false);
  12040. } break;
  12041. }
  12042. }
  12043. // ggml_compute_forward_win_unpart
  12044. static void ggml_compute_forward_win_unpart_f32(
  12045. const struct ggml_compute_params * params,
  12046. const struct ggml_tensor * src0,
  12047. const struct ggml_tensor * opt0,
  12048. struct ggml_tensor * dst) {
  12049. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12050. return;
  12051. }
  12052. const int64_t ne00 = src0->ne[0];
  12053. const int64_t ne01 = src0->ne[1];
  12054. const int64_t ne02 = src0->ne[2];
  12055. //const int64_t ne03 = src0->ne[3];
  12056. const int64_t ne0 = dst->ne[0];
  12057. const int64_t ne1 = dst->ne[1];
  12058. const int64_t ne2 = dst->ne[2];
  12059. const int32_t w = ((const int32_t *)(opt0->data))[0];
  12060. // padding
  12061. const int px = (w - ne1%w)%w;
  12062. //const int py = (w - ne2%w)%w;
  12063. const int npx = (px + ne1)/w;
  12064. //const int npy = (py + ne2)/w;
  12065. assert(ne0 == ne00);
  12066. // TODO: optimize / multi-thread
  12067. for (int64_t i2 = 0; i2 < ne2; ++i2) {
  12068. for (int64_t i1 = 0; i1 < ne1; ++i1) {
  12069. for (int64_t i0 = 0; i0 < ne0; ++i0) {
  12070. const int ip2 = i2/w;
  12071. const int ip1 = i1/w;
  12072. const int64_t i02 = i2%w;
  12073. const int64_t i01 = i1%w;
  12074. const int64_t i00 = i0;
  12075. const int64_t i = (ip2*npx + ip1)*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00 + i00;
  12076. const int64_t j = i2*ne1*ne0 + i1*ne0 + i0;
  12077. ((float *) dst->data)[j] = ((float *) src0->data)[i];
  12078. }
  12079. }
  12080. }
  12081. }
  12082. static void ggml_compute_forward_win_unpart(
  12083. const struct ggml_compute_params * params,
  12084. const struct ggml_tensor * src0,
  12085. const struct ggml_tensor * opt0,
  12086. struct ggml_tensor * dst) {
  12087. switch (src0->type) {
  12088. case GGML_TYPE_F32:
  12089. {
  12090. ggml_compute_forward_win_unpart_f32(params, src0, opt0, dst);
  12091. } break;
  12092. default:
  12093. {
  12094. GGML_ASSERT(false);
  12095. } break;
  12096. }
  12097. }
  12098. // ggml_compute_forward_map_unary
  12099. static void ggml_compute_forward_map_unary_f32(
  12100. const struct ggml_compute_params * params,
  12101. const struct ggml_tensor * src0,
  12102. struct ggml_tensor * dst,
  12103. const ggml_unary_op_f32_t fun) {
  12104. GGML_ASSERT(ggml_are_same_shape(src0, dst));
  12105. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12106. return;
  12107. }
  12108. const int n = ggml_nrows(src0);
  12109. const int nc = src0->ne[0];
  12110. assert( dst->nb[0] == sizeof(float));
  12111. assert(src0->nb[0] == sizeof(float));
  12112. for (int i = 0; i < n; i++) {
  12113. fun(nc,
  12114. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12115. (float *) ((char *) src0->data + i*(src0->nb[1])));
  12116. }
  12117. }
  12118. static void ggml_compute_forward_map_unary(
  12119. const struct ggml_compute_params * params,
  12120. const struct ggml_tensor * src0,
  12121. struct ggml_tensor * dst,
  12122. const ggml_unary_op_f32_t fun) {
  12123. switch (src0->type) {
  12124. case GGML_TYPE_F32:
  12125. {
  12126. ggml_compute_forward_map_unary_f32(params, src0, dst, fun);
  12127. } break;
  12128. default:
  12129. {
  12130. GGML_ASSERT(false);
  12131. } break;
  12132. }
  12133. }
  12134. // ggml_compute_forward_map_binary
  12135. static void ggml_compute_forward_map_binary_f32(
  12136. const struct ggml_compute_params * params,
  12137. const struct ggml_tensor * src0,
  12138. const struct ggml_tensor * src1,
  12139. struct ggml_tensor * dst,
  12140. const ggml_binary_op_f32_t fun) {
  12141. assert(params->ith == 0);
  12142. assert(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12143. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12144. return;
  12145. }
  12146. const int n = ggml_nrows(src0);
  12147. const int nc = src0->ne[0];
  12148. assert( dst->nb[0] == sizeof(float));
  12149. assert(src0->nb[0] == sizeof(float));
  12150. assert(src1->nb[0] == sizeof(float));
  12151. for (int i = 0; i < n; i++) {
  12152. fun(nc,
  12153. (float *) ((char *) dst->data + i*( dst->nb[1])),
  12154. (float *) ((char *) src0->data + i*(src0->nb[1])),
  12155. (float *) ((char *) src1->data + i*(src1->nb[1])));
  12156. }
  12157. }
  12158. static void ggml_compute_forward_map_binary(
  12159. const struct ggml_compute_params * params,
  12160. const struct ggml_tensor * src0,
  12161. const struct ggml_tensor * src1,
  12162. struct ggml_tensor * dst,
  12163. const ggml_binary_op_f32_t fun) {
  12164. switch (src0->type) {
  12165. case GGML_TYPE_F32:
  12166. {
  12167. ggml_compute_forward_map_binary_f32(params, src0, src1, dst, fun);
  12168. } break;
  12169. default:
  12170. {
  12171. GGML_ASSERT(false);
  12172. } break;
  12173. }
  12174. }
  12175. // ggml_compute_forward_map_custom1
  12176. static void ggml_compute_forward_map_custom1_f32(
  12177. const struct ggml_compute_params * params,
  12178. const struct ggml_tensor * a,
  12179. struct ggml_tensor * dst,
  12180. const ggml_custom1_op_f32_t fun) {
  12181. assert(params->ith == 0);
  12182. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12183. return;
  12184. }
  12185. fun(dst, a);
  12186. }
  12187. static void ggml_compute_forward_map_custom1(
  12188. const struct ggml_compute_params * params,
  12189. const struct ggml_tensor * a,
  12190. struct ggml_tensor * dst,
  12191. const ggml_custom1_op_f32_t fun) {
  12192. switch (a->type) {
  12193. case GGML_TYPE_F32:
  12194. {
  12195. ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
  12196. } break;
  12197. default:
  12198. {
  12199. GGML_ASSERT(false);
  12200. } break;
  12201. }
  12202. }
  12203. // ggml_compute_forward_map_custom2
  12204. static void ggml_compute_forward_map_custom2_f32(
  12205. const struct ggml_compute_params * params,
  12206. const struct ggml_tensor * a,
  12207. const struct ggml_tensor * b,
  12208. struct ggml_tensor * dst,
  12209. const ggml_custom2_op_f32_t fun) {
  12210. assert(params->ith == 0);
  12211. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12212. return;
  12213. }
  12214. fun(dst, a, b);
  12215. }
  12216. static void ggml_compute_forward_map_custom2(
  12217. const struct ggml_compute_params * params,
  12218. const struct ggml_tensor * a,
  12219. const struct ggml_tensor * b,
  12220. struct ggml_tensor * dst,
  12221. const ggml_custom2_op_f32_t fun) {
  12222. switch (a->type) {
  12223. case GGML_TYPE_F32:
  12224. {
  12225. ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
  12226. } break;
  12227. default:
  12228. {
  12229. GGML_ASSERT(false);
  12230. } break;
  12231. }
  12232. }
  12233. // ggml_compute_forward_map_custom3
  12234. static void ggml_compute_forward_map_custom3_f32(
  12235. const struct ggml_compute_params * params,
  12236. const struct ggml_tensor * a,
  12237. const struct ggml_tensor * b,
  12238. const struct ggml_tensor * c,
  12239. struct ggml_tensor * dst,
  12240. const ggml_custom3_op_f32_t fun) {
  12241. assert(params->ith == 0);
  12242. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12243. return;
  12244. }
  12245. fun(dst, a, b, c);
  12246. }
  12247. static void ggml_compute_forward_map_custom3(
  12248. const struct ggml_compute_params * params,
  12249. const struct ggml_tensor * a,
  12250. const struct ggml_tensor * b,
  12251. const struct ggml_tensor * c,
  12252. struct ggml_tensor * dst,
  12253. const ggml_custom3_op_f32_t fun) {
  12254. switch (a->type) {
  12255. case GGML_TYPE_F32:
  12256. {
  12257. ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
  12258. } break;
  12259. default:
  12260. {
  12261. GGML_ASSERT(false);
  12262. } break;
  12263. }
  12264. }
  12265. // ggml_compute_forward_cross_entropy_loss
  12266. static void ggml_compute_forward_cross_entropy_loss_f32(
  12267. const struct ggml_compute_params * params,
  12268. const struct ggml_tensor * src0,
  12269. const struct ggml_tensor * src1,
  12270. struct ggml_tensor * dst) {
  12271. GGML_ASSERT(ggml_is_contiguous(src0));
  12272. GGML_ASSERT(ggml_is_contiguous(src1));
  12273. GGML_ASSERT(ggml_is_scalar(dst));
  12274. GGML_ASSERT(ggml_are_same_shape(src0, src1));
  12275. const int ith = params->ith;
  12276. const int nth = params->nth;
  12277. float * sums = (float *) params->wdata;
  12278. // TODO: handle transposed/permuted matrices
  12279. const int nc = src0->ne[0];
  12280. const int nr = ggml_nrows(src0);
  12281. if (params->type == GGML_TASK_INIT) {
  12282. if (ith == 0) {
  12283. memset(sums, 0, sizeof(float) * (nth + nth * nc));
  12284. }
  12285. return;
  12286. }
  12287. if (params->type == GGML_TASK_FINALIZE) {
  12288. if (ith == 0) {
  12289. float * dp = (float *) dst->data;
  12290. ggml_vec_sum_f32(nth, dp, sums);
  12291. dp[0] *= -1.0f;
  12292. }
  12293. return;
  12294. }
  12295. const double eps = 1e-9;
  12296. // rows per thread
  12297. const int dr = (nr + nth - 1)/nth;
  12298. // row range for this thread
  12299. const int ir0 = dr*ith;
  12300. const int ir1 = MIN(ir0 + dr, nr);
  12301. for (int i1 = ir0; i1 < ir1; i1++) {
  12302. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12303. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12304. float * st = (float *) params->wdata + nth + ith*nc;
  12305. #ifndef NDEBUG
  12306. for (int i = 0; i < nc; ++i) {
  12307. //printf("p[%d] = %f\n", i, p[i]);
  12308. assert(!isnan(s0[i]));
  12309. assert(!isnan(s1[i]));
  12310. }
  12311. #endif
  12312. // soft_max
  12313. ggml_float sum = 0.0;
  12314. {
  12315. float max = -INFINITY;
  12316. ggml_vec_max_f32(nc, &max, s0);
  12317. uint16_t scvt;
  12318. for (int i = 0; i < nc; i++) {
  12319. if (s0[i] == -INFINITY) {
  12320. st[i] = 0.0f;
  12321. } else {
  12322. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12323. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12324. memcpy(&scvt, &s, sizeof(scvt));
  12325. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12326. sum += (ggml_float)val;
  12327. st[i] = val;
  12328. }
  12329. }
  12330. assert(sum > 0.0);
  12331. // sum = 1.0/sum;
  12332. }
  12333. // avoid log(0) by rescaling from [0..1] to [eps..1]
  12334. sum = (1.0 - eps) / sum;
  12335. ggml_vec_scale_f32(nc, st, sum);
  12336. ggml_vec_add1_f32(nc, st, st, eps);
  12337. ggml_vec_log_f32(nc, st, st);
  12338. ggml_vec_mul_f32(nc, st, st, s1);
  12339. ggml_vec_sum_f32(nc, sums + ith, st);
  12340. #ifndef NDEBUG
  12341. for (int i = 0; i < nc; ++i) {
  12342. assert(!isnan(st[i]));
  12343. assert(!isinf(st[i]));
  12344. }
  12345. #endif
  12346. }
  12347. }
  12348. static void ggml_compute_forward_cross_entropy_loss(
  12349. const struct ggml_compute_params * params,
  12350. const struct ggml_tensor * src0,
  12351. const struct ggml_tensor * src1,
  12352. struct ggml_tensor * dst) {
  12353. switch (src0->type) {
  12354. case GGML_TYPE_F32:
  12355. {
  12356. ggml_compute_forward_cross_entropy_loss_f32(params, src0, src1, dst);
  12357. } break;
  12358. default:
  12359. {
  12360. GGML_ASSERT(false);
  12361. } break;
  12362. }
  12363. }
  12364. // ggml_compute_forward_cross_entropy_loss_back
  12365. static void ggml_compute_forward_cross_entropy_loss_back_f32(
  12366. const struct ggml_compute_params * params,
  12367. const struct ggml_tensor * src0,
  12368. const struct ggml_tensor * src1,
  12369. const struct ggml_tensor * opt0,
  12370. struct ggml_tensor * dst) {
  12371. GGML_ASSERT(ggml_is_contiguous(dst));
  12372. GGML_ASSERT(ggml_is_contiguous(src0));
  12373. GGML_ASSERT(ggml_is_contiguous(src1));
  12374. GGML_ASSERT(ggml_is_contiguous(opt0));
  12375. GGML_ASSERT(ggml_are_same_shape(src0, src1) && ggml_are_same_shape(src0, dst));
  12376. const int64_t ith = params->ith;
  12377. const int64_t nth = params->nth;
  12378. if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
  12379. return;
  12380. }
  12381. const float eps = 1e-9f;
  12382. // TODO: handle transposed/permuted matrices
  12383. const int64_t nc = src0->ne[0];
  12384. const int64_t nr = ggml_nrows(src0);
  12385. // rows per thread
  12386. const int64_t dr = (nr + nth - 1)/nth;
  12387. // row range for this thread
  12388. const int64_t ir0 = dr*ith;
  12389. const int64_t ir1 = MIN(ir0 + dr, nr);
  12390. float * d = (float *) opt0->data;
  12391. for (int64_t i1 = ir0; i1 < ir1; i1++) {
  12392. float * ds0 = (float *)((char *) dst->data + i1*dst->nb[1]);
  12393. float * s0 = (float *)((char *) src0->data + i1*src0->nb[1]);
  12394. float * s1 = (float *)((char *) src1->data + i1*src1->nb[1]);
  12395. float * sm = (float *) params->wdata + ith*nc;
  12396. #ifndef NDEBUG
  12397. for (int i = 0; i < nc; ++i) {
  12398. //printf("p[%d] = %f\n", i, p[i]);
  12399. assert(!isnan(s0[i]));
  12400. assert(!isnan(s1[i]));
  12401. }
  12402. #endif
  12403. // step by step explanation:
  12404. {
  12405. //float * sums = (float *) params->wdata;
  12406. // forward pass with annotated gradients from backward pass
  12407. // (built by going in reverse operation order, adding to gradients of current operation args)
  12408. // st0 = exp(s0-max(s0)) grad[st0] = grad[st1]*(1.0 - eps)/sum
  12409. // from softmax_back: grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12410. // ggml_vec_scale_f32(nc, st, sum); // st1 = st0*/sum = softmax(s0) grad[st1] = grad[st2]*(1.0 - eps)
  12411. // ggml_vec_scale_f32(nc, st, (1.0f - eps)); // st2 = st1*(1.0 - eps) grad[st2] = grad[st3]
  12412. // ggml_vec_add1_f32(nc, st, st, eps); // st3 = st2 + eps grad[st3] = grad[st4]/st3
  12413. // ggml_vec_log_f32(nc, st, st); // st4 = log(st3) grad[st4] = grad[st5] * s1
  12414. // ggml_vec_mul_f32(nc, st, st, s1); // st5 = st4 * s1 grad[st5] = grad[sums[ith]]
  12415. // ggml_vec_sum_f32(nc, sums + ith, st); // sums[ith] = st5 grad[sums[ith]] = grad[cross_entropy_loss] = -grad[cel]
  12416. // substitute into grad[st1], because we can reuse softmax_back from this point on
  12417. // grad[st1] = -grad[cel]*s1*(1.0 - eps)/(eps + softmax(s0)*(1.0 - eps))
  12418. // postorder:
  12419. // grad[st1] := softmax(s0)
  12420. // grad[st1] := grad[st1]*(1.0 - eps)
  12421. // grad[st1] := grad[st1] + eps
  12422. // grad[st1] := s1 / grad[st1]
  12423. // grad[st1] := grad[st1]*(1.0-eps)*-grad[cel]
  12424. // src0 gradients by going through softmax_back
  12425. // grad[s0] = st1_k * (grad[st1]_k - dot(st1, grad[st1]))
  12426. // from softmax_back:
  12427. // dxk = yk * (dyk - dot(y, dy))
  12428. // dot_y_dy := dot(y, dy)
  12429. // dx := dy
  12430. // dx := dx - dot_y_dy
  12431. // dx := dx * y
  12432. // postorder:
  12433. // dot_st1_dst1 := dot(st1, grad[st1])
  12434. // grad[s0] := grad[st1]
  12435. // grad[s0] := grad[s0] - dot_st1_dst1
  12436. // grad[s0] := grad[s0] * st1
  12437. // prepend postorder from grad[st1] directly using grad[s0] as memory location, as we will grad[s0] := grad[st1]
  12438. // sm := softmax(s0)
  12439. // grad[s0] := sm*(1.0 - eps)
  12440. // grad[s0] := grad[s0] + eps
  12441. // grad[s0] := s1 / grad[s0]
  12442. // grad[s0] := grad[s0]*(1.0-eps)*-grad[cel]
  12443. // dot_st1_dst1 := dot(sm, grad[s0])
  12444. // grad[s0] := grad[s0] - dot_st1_dst1
  12445. // grad[s0] := grad[s0] * sm
  12446. }
  12447. // soft_max
  12448. ggml_float sum = 0.0;
  12449. {
  12450. float max = -INFINITY;
  12451. ggml_vec_max_f32(nc, &max, s0);
  12452. uint16_t scvt;
  12453. for (int i = 0; i < nc; i++) {
  12454. if (s0[i] == -INFINITY) {
  12455. sm[i] = 0.0f;
  12456. } else {
  12457. // const float val = (s0[i] == -INFINITY) ? 0.0 : exp(s0[i] - max);
  12458. ggml_fp16_t s = GGML_FP32_TO_FP16(s0[i] - max);
  12459. memcpy(&scvt, &s, sizeof(scvt));
  12460. const float val = GGML_FP16_TO_FP32(table_exp_f16[scvt]);
  12461. sum += (ggml_float)val;
  12462. sm[i] = val;
  12463. }
  12464. }
  12465. assert(sum > 0.0);
  12466. sum = 1.0/sum;
  12467. }
  12468. float dot_st1_dst1 = 0;
  12469. ggml_vec_scale_f32(nc, sm, sum);
  12470. ggml_vec_cpy_f32 (nc, ds0, sm);
  12471. ggml_vec_scale_f32(nc, ds0, (1.0f - eps));
  12472. ggml_vec_add1_f32 (nc, ds0, ds0, eps);
  12473. ggml_vec_div_f32 (nc, ds0, s1, ds0);
  12474. ggml_vec_scale_f32(nc, ds0, -(1.0f - eps)*d[0]);
  12475. ggml_vec_dot_f32 (nc, &dot_st1_dst1, sm, ds0);
  12476. ggml_vec_acc1_f32 (nc, ds0, -dot_st1_dst1);
  12477. ggml_vec_mul_f32 (nc, ds0, ds0, sm);
  12478. #ifndef NDEBUG
  12479. for (int i = 0; i < nc; ++i) {
  12480. assert(!isnan(sm[i]));
  12481. assert(!isinf(sm[i]));
  12482. assert(!isnan(ds0[i]));
  12483. assert(!isinf(ds0[i]));
  12484. }
  12485. #endif
  12486. }
  12487. }
  12488. static void ggml_compute_forward_cross_entropy_loss_back(
  12489. const struct ggml_compute_params * params,
  12490. const struct ggml_tensor * src0,
  12491. const struct ggml_tensor * src1,
  12492. const struct ggml_tensor * opt0,
  12493. struct ggml_tensor * dst) {
  12494. switch (src0->type) {
  12495. case GGML_TYPE_F32:
  12496. {
  12497. ggml_compute_forward_cross_entropy_loss_back_f32(params, src0, src1, opt0, dst);
  12498. } break;
  12499. default:
  12500. {
  12501. GGML_ASSERT(false);
  12502. } break;
  12503. }
  12504. }
  12505. /////////////////////////////////
  12506. static void ggml_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor) {
  12507. GGML_ASSERT(params);
  12508. #ifdef GGML_USE_CUBLAS
  12509. bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
  12510. if (skip_cpu) {
  12511. return;
  12512. }
  12513. GGML_ASSERT(tensor->src0 == NULL || tensor->src0->backend == GGML_BACKEND_CPU);
  12514. GGML_ASSERT(tensor->src1 == NULL || tensor->src1->backend == GGML_BACKEND_CPU);
  12515. #endif // GGML_USE_CUBLAS
  12516. switch (tensor->op) {
  12517. case GGML_OP_DUP:
  12518. {
  12519. ggml_compute_forward_dup(params, tensor->src0, tensor);
  12520. } break;
  12521. case GGML_OP_ADD:
  12522. {
  12523. ggml_compute_forward_add(params, tensor->src0, tensor->src1, tensor);
  12524. } break;
  12525. case GGML_OP_ADD1:
  12526. {
  12527. ggml_compute_forward_add1(params, tensor->src0, tensor->src1, tensor);
  12528. } break;
  12529. case GGML_OP_ACC:
  12530. {
  12531. ggml_compute_forward_acc(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12532. } break;
  12533. case GGML_OP_SUB:
  12534. {
  12535. ggml_compute_forward_sub(params, tensor->src0, tensor->src1, tensor);
  12536. } break;
  12537. case GGML_OP_MUL:
  12538. {
  12539. ggml_compute_forward_mul(params, tensor->src0, tensor->src1, tensor);
  12540. } break;
  12541. case GGML_OP_DIV:
  12542. {
  12543. ggml_compute_forward_div(params, tensor->src0, tensor->src1, tensor);
  12544. } break;
  12545. case GGML_OP_SQR:
  12546. {
  12547. ggml_compute_forward_sqr(params, tensor->src0, tensor);
  12548. } break;
  12549. case GGML_OP_SQRT:
  12550. {
  12551. ggml_compute_forward_sqrt(params, tensor->src0, tensor);
  12552. } break;
  12553. case GGML_OP_LOG:
  12554. {
  12555. ggml_compute_forward_log(params, tensor->src0, tensor);
  12556. } break;
  12557. case GGML_OP_SUM:
  12558. {
  12559. ggml_compute_forward_sum(params, tensor->src0, tensor);
  12560. } break;
  12561. case GGML_OP_SUM_ROWS:
  12562. {
  12563. ggml_compute_forward_sum_rows(params, tensor->src0, tensor);
  12564. } break;
  12565. case GGML_OP_MEAN:
  12566. {
  12567. ggml_compute_forward_mean(params, tensor->src0, tensor);
  12568. } break;
  12569. case GGML_OP_REPEAT:
  12570. {
  12571. ggml_compute_forward_repeat(params, tensor->src0, tensor);
  12572. } break;
  12573. case GGML_OP_REPEAT_BACK:
  12574. {
  12575. ggml_compute_forward_repeat_back(params, tensor->src0, tensor);
  12576. } break;
  12577. case GGML_OP_ABS:
  12578. {
  12579. ggml_compute_forward_abs(params, tensor->src0, tensor);
  12580. } break;
  12581. case GGML_OP_SGN:
  12582. {
  12583. ggml_compute_forward_sgn(params, tensor->src0, tensor);
  12584. } break;
  12585. case GGML_OP_NEG:
  12586. {
  12587. ggml_compute_forward_neg(params, tensor->src0, tensor);
  12588. } break;
  12589. case GGML_OP_STEP:
  12590. {
  12591. ggml_compute_forward_step(params, tensor->src0, tensor);
  12592. } break;
  12593. case GGML_OP_RELU:
  12594. {
  12595. ggml_compute_forward_relu(params, tensor->src0, tensor);
  12596. } break;
  12597. case GGML_OP_GELU:
  12598. {
  12599. ggml_compute_forward_gelu(params, tensor->src0, tensor);
  12600. } break;
  12601. case GGML_OP_GELU_QUICK:
  12602. {
  12603. ggml_compute_forward_gelu_quick(params, tensor->src0, tensor);
  12604. } break;
  12605. case GGML_OP_SILU:
  12606. {
  12607. ggml_compute_forward_silu(params, tensor->src0, tensor);
  12608. } break;
  12609. case GGML_OP_SILU_BACK:
  12610. {
  12611. ggml_compute_forward_silu_back(params, tensor->src0, tensor->src1, tensor);
  12612. } break;
  12613. case GGML_OP_NORM:
  12614. {
  12615. ggml_compute_forward_norm(params, tensor->src0, tensor);
  12616. } break;
  12617. case GGML_OP_RMS_NORM:
  12618. {
  12619. ggml_compute_forward_rms_norm(params, tensor->src0, tensor);
  12620. } break;
  12621. case GGML_OP_RMS_NORM_BACK:
  12622. {
  12623. ggml_compute_forward_rms_norm_back(params, tensor->src0, tensor->src1, tensor);
  12624. } break;
  12625. case GGML_OP_MUL_MAT:
  12626. {
  12627. ggml_compute_forward_mul_mat(params, tensor->src0, tensor->src1, tensor);
  12628. } break;
  12629. case GGML_OP_OUT_PROD:
  12630. {
  12631. ggml_compute_forward_out_prod(params, tensor->src0, tensor->src1, tensor);
  12632. } break;
  12633. case GGML_OP_SCALE:
  12634. {
  12635. ggml_compute_forward_scale(params, tensor->src0, tensor->src1, tensor);
  12636. } break;
  12637. case GGML_OP_SET:
  12638. {
  12639. ggml_compute_forward_set(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12640. } break;
  12641. case GGML_OP_CPY:
  12642. {
  12643. ggml_compute_forward_cpy(params, tensor->src0, tensor);
  12644. } break;
  12645. case GGML_OP_CONT:
  12646. {
  12647. ggml_compute_forward_cont(params, tensor->src0, tensor);
  12648. } break;
  12649. case GGML_OP_RESHAPE:
  12650. {
  12651. ggml_compute_forward_reshape(params, tensor->src0, tensor);
  12652. } break;
  12653. case GGML_OP_VIEW:
  12654. {
  12655. ggml_compute_forward_view(params, tensor->src0);
  12656. } break;
  12657. case GGML_OP_PERMUTE:
  12658. {
  12659. ggml_compute_forward_permute(params, tensor->src0);
  12660. } break;
  12661. case GGML_OP_TRANSPOSE:
  12662. {
  12663. ggml_compute_forward_transpose(params, tensor->src0);
  12664. } break;
  12665. case GGML_OP_GET_ROWS:
  12666. {
  12667. ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
  12668. } break;
  12669. case GGML_OP_GET_ROWS_BACK:
  12670. {
  12671. ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12672. } break;
  12673. case GGML_OP_DIAG:
  12674. {
  12675. ggml_compute_forward_diag(params, tensor->src0, tensor);
  12676. } break;
  12677. case GGML_OP_DIAG_MASK_INF:
  12678. {
  12679. ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
  12680. } break;
  12681. case GGML_OP_DIAG_MASK_ZERO:
  12682. {
  12683. ggml_compute_forward_diag_mask_zero(params, tensor->src0, tensor->src1, tensor);
  12684. } break;
  12685. case GGML_OP_SOFT_MAX:
  12686. {
  12687. ggml_compute_forward_soft_max(params, tensor->src0, tensor);
  12688. } break;
  12689. case GGML_OP_SOFT_MAX_BACK:
  12690. {
  12691. ggml_compute_forward_soft_max_back(params, tensor->src0, tensor->src1, tensor);
  12692. } break;
  12693. case GGML_OP_ROPE:
  12694. {
  12695. ggml_compute_forward_rope(params, tensor->src0, tensor->src1, tensor);
  12696. } break;
  12697. case GGML_OP_ROPE_BACK:
  12698. {
  12699. ggml_compute_forward_rope_back(params, tensor->src0, tensor->src1, tensor);
  12700. } break;
  12701. case GGML_OP_ALIBI:
  12702. {
  12703. ggml_compute_forward_alibi(params, tensor->src0, tensor->src1, tensor);
  12704. } break;
  12705. case GGML_OP_CLAMP:
  12706. {
  12707. ggml_compute_forward_clamp(params, tensor->src0, tensor->src1, tensor);
  12708. } break;
  12709. case GGML_OP_CONV_1D_S1_PH:
  12710. {
  12711. ggml_compute_forward_conv_1d_s1_ph(params, tensor->src0, tensor->src1, tensor);
  12712. } break;
  12713. case GGML_OP_CONV_1D_S2_PH:
  12714. {
  12715. ggml_compute_forward_conv_1d_s2_ph(params, tensor->src0, tensor->src1, tensor);
  12716. } break;
  12717. case GGML_OP_CONV_2D_SK_P0:
  12718. {
  12719. ggml_compute_forward_conv_2d_sk_p0(params, tensor->src0, tensor->src1, tensor);
  12720. } break;
  12721. case GGML_OP_FLASH_ATTN:
  12722. {
  12723. const int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  12724. GGML_ASSERT(t == 0 || t == 1);
  12725. const bool masked = t != 0;
  12726. ggml_compute_forward_flash_attn(params, tensor->src0, tensor->src1, tensor->opt[0], masked, tensor);
  12727. } break;
  12728. case GGML_OP_FLASH_FF:
  12729. {
  12730. ggml_compute_forward_flash_ff(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], tensor->opt[2], tensor);
  12731. } break;
  12732. case GGML_OP_FLASH_ATTN_BACK:
  12733. {
  12734. int32_t t = ggml_get_i32_1d(tensor->opt[2], 0);
  12735. GGML_ASSERT(t == 0 || t == 1);
  12736. bool masked = t != 0;
  12737. ggml_compute_forward_flash_attn_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor->opt[1], masked, tensor);
  12738. } break;
  12739. case GGML_OP_WIN_PART:
  12740. {
  12741. ggml_compute_forward_win_part(params, tensor->src0, tensor->opt[0], tensor);
  12742. } break;
  12743. case GGML_OP_WIN_UNPART:
  12744. {
  12745. ggml_compute_forward_win_unpart(params, tensor->src0, tensor->opt[0], tensor);
  12746. } break;
  12747. case GGML_OP_MAP_UNARY:
  12748. {
  12749. const ggml_unary_op_f32_t fun = *((ggml_unary_op_f32_t *)tensor->opt[0]->data);
  12750. ggml_compute_forward_map_unary(params, tensor->src0, tensor, fun);
  12751. }
  12752. break;
  12753. case GGML_OP_MAP_BINARY:
  12754. {
  12755. const ggml_binary_op_f32_t fun = *((ggml_binary_op_f32_t *)tensor->opt[0]->data);
  12756. ggml_compute_forward_map_binary(params, tensor->src0, tensor->src1, tensor, fun);
  12757. }
  12758. break;
  12759. case GGML_OP_MAP_CUSTOM1:
  12760. {
  12761. const ggml_custom1_op_f32_t fun = *((ggml_custom1_op_f32_t *)tensor->opt[0]->data);
  12762. ggml_compute_forward_map_custom1(params, tensor->src0, tensor, fun);
  12763. }
  12764. break;
  12765. case GGML_OP_MAP_CUSTOM2:
  12766. {
  12767. const ggml_custom2_op_f32_t fun = *((ggml_custom2_op_f32_t *)tensor->opt[0]->data);
  12768. ggml_compute_forward_map_custom2(params, tensor->src0, tensor->src1, tensor, fun);
  12769. }
  12770. break;
  12771. case GGML_OP_MAP_CUSTOM3:
  12772. {
  12773. const ggml_custom3_op_f32_t fun = *((ggml_custom3_op_f32_t *)tensor->opt[0]->data);
  12774. ggml_compute_forward_map_custom3(params, tensor->src0, tensor->src1, tensor->opt[1], tensor, fun);
  12775. }
  12776. break;
  12777. case GGML_OP_CROSS_ENTROPY_LOSS:
  12778. {
  12779. ggml_compute_forward_cross_entropy_loss(params, tensor->src0, tensor->src1, tensor);
  12780. }
  12781. break;
  12782. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  12783. {
  12784. ggml_compute_forward_cross_entropy_loss_back(params, tensor->src0, tensor->src1, tensor->opt[0], tensor);
  12785. }
  12786. break;
  12787. case GGML_OP_NONE:
  12788. {
  12789. // nop
  12790. } break;
  12791. case GGML_OP_COUNT:
  12792. {
  12793. GGML_ASSERT(false);
  12794. } break;
  12795. }
  12796. }
  12797. ////////////////////////////////////////////////////////////////////////////////
  12798. static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor * tensor, bool inplace) {
  12799. struct ggml_tensor * src0 = tensor->src0;
  12800. struct ggml_tensor * src1 = tensor->src1;
  12801. switch (tensor->op) {
  12802. case GGML_OP_DUP:
  12803. {
  12804. if (src0->grad) {
  12805. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12806. }
  12807. } break;
  12808. case GGML_OP_ADD:
  12809. {
  12810. if (src0->grad) {
  12811. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12812. }
  12813. if (src1->grad) {
  12814. src1->grad = ggml_add_impl(ctx, src1->grad, tensor->grad, inplace);
  12815. }
  12816. } break;
  12817. case GGML_OP_ADD1:
  12818. {
  12819. if (src0->grad) {
  12820. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12821. }
  12822. if (src1->grad) {
  12823. src1->grad = ggml_add_impl(ctx,
  12824. src1->grad,
  12825. ggml_mean(ctx, tensor->grad), // TODO: should probably be sum instead of mean
  12826. inplace);
  12827. }
  12828. } break;
  12829. case GGML_OP_ACC:
  12830. {
  12831. if (src0->grad) {
  12832. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12833. }
  12834. if (src1->grad) {
  12835. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  12836. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  12837. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  12838. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  12839. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  12840. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  12841. struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
  12842. tensor->grad,
  12843. src1->grad->ne[0],
  12844. src1->grad->ne[1],
  12845. src1->grad->ne[2],
  12846. src1->grad->ne[3],
  12847. nb1, nb2, nb3, offset);
  12848. src1->grad =
  12849. ggml_add_impl(ctx,
  12850. src1->grad,
  12851. ggml_reshape(ctx,
  12852. ggml_cont(ctx, tensor_grad_view),
  12853. src1->grad),
  12854. inplace);
  12855. }
  12856. } break;
  12857. case GGML_OP_SUB:
  12858. {
  12859. if (src0->grad) {
  12860. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  12861. }
  12862. if (src1->grad) {
  12863. src1->grad = ggml_sub_impl(ctx, src1->grad, tensor->grad, inplace);
  12864. }
  12865. } break;
  12866. case GGML_OP_MUL:
  12867. {
  12868. if (src0->grad) {
  12869. src0->grad =
  12870. ggml_add_impl(ctx,
  12871. src0->grad,
  12872. ggml_mul(ctx, src1, tensor->grad),
  12873. inplace);
  12874. }
  12875. if (src1->grad) {
  12876. src1->grad =
  12877. ggml_add_impl(ctx,
  12878. src1->grad,
  12879. ggml_mul(ctx, src0, tensor->grad),
  12880. inplace);
  12881. }
  12882. } break;
  12883. case GGML_OP_DIV:
  12884. {
  12885. if (src0->grad) {
  12886. src0->grad =
  12887. ggml_add_impl(ctx,
  12888. src0->grad,
  12889. ggml_div(ctx, tensor->grad, src1),
  12890. inplace);
  12891. }
  12892. if (src1->grad) {
  12893. src1->grad =
  12894. ggml_sub_impl(ctx,
  12895. src1->grad,
  12896. ggml_mul(ctx,
  12897. tensor->grad,
  12898. ggml_div(ctx, tensor, src1)),
  12899. inplace);
  12900. }
  12901. } break;
  12902. case GGML_OP_SQR:
  12903. {
  12904. if (src0->grad) {
  12905. src0->grad =
  12906. ggml_add_impl(ctx,
  12907. src0->grad,
  12908. ggml_scale(ctx,
  12909. ggml_mul(ctx, src0, tensor->grad),
  12910. ggml_new_f32(ctx, 2.0f)),
  12911. inplace);
  12912. }
  12913. } break;
  12914. case GGML_OP_SQRT:
  12915. {
  12916. if (src0->grad) {
  12917. src0->grad =
  12918. ggml_add_impl(ctx,
  12919. src0->grad,
  12920. ggml_scale(ctx,
  12921. ggml_div(ctx,
  12922. tensor->grad,
  12923. tensor),
  12924. ggml_new_f32(ctx, 0.5f)),
  12925. inplace);
  12926. }
  12927. } break;
  12928. case GGML_OP_LOG:
  12929. {
  12930. if (src0->grad) {
  12931. src0->grad =
  12932. ggml_add_impl(ctx,
  12933. src0->grad,
  12934. ggml_div(ctx,
  12935. tensor->grad,
  12936. src0),
  12937. inplace);
  12938. }
  12939. } break;
  12940. case GGML_OP_SUM:
  12941. {
  12942. if (src0->grad) {
  12943. src0->grad =
  12944. ggml_add1_impl(ctx,
  12945. src0->grad,
  12946. tensor->grad,
  12947. inplace);
  12948. }
  12949. } break;
  12950. case GGML_OP_SUM_ROWS:
  12951. {
  12952. if (src0->grad) {
  12953. src0->grad =
  12954. ggml_add_impl(ctx,
  12955. src0->grad,
  12956. ggml_repeat(ctx,
  12957. tensor->grad,
  12958. src0->grad),
  12959. inplace);
  12960. }
  12961. } break;
  12962. case GGML_OP_MEAN:
  12963. {
  12964. GGML_ASSERT(false); // TODO: implement
  12965. } break;
  12966. case GGML_OP_REPEAT:
  12967. {
  12968. // necessary for llama
  12969. if (src0->grad) {
  12970. src0->grad = ggml_add_impl(ctx,
  12971. src0->grad,
  12972. ggml_repeat_back(ctx, tensor->grad, src0->grad),
  12973. inplace);
  12974. }
  12975. } break;
  12976. case GGML_OP_REPEAT_BACK:
  12977. {
  12978. if (src0->grad) {
  12979. // TODO: test this
  12980. src0->grad = ggml_add_impl(ctx,
  12981. src0->grad,
  12982. ggml_repeat(ctx, tensor->grad, src0->grad),
  12983. inplace);
  12984. }
  12985. } break;
  12986. case GGML_OP_ABS:
  12987. {
  12988. if (src0->grad) {
  12989. src0->grad =
  12990. ggml_add_impl(ctx,
  12991. src0->grad,
  12992. ggml_mul(ctx,
  12993. ggml_sgn(ctx, src0),
  12994. tensor->grad),
  12995. inplace);
  12996. }
  12997. } break;
  12998. case GGML_OP_SGN:
  12999. {
  13000. if (src0->grad) {
  13001. // noop
  13002. }
  13003. } break;
  13004. case GGML_OP_NEG:
  13005. {
  13006. if (src0->grad) {
  13007. src0->grad = ggml_sub_impl(ctx, src0->grad, tensor->grad, inplace);
  13008. }
  13009. } break;
  13010. case GGML_OP_STEP:
  13011. {
  13012. if (src0->grad) {
  13013. // noop
  13014. }
  13015. } break;
  13016. case GGML_OP_RELU:
  13017. {
  13018. if (src0->grad) {
  13019. src0->grad = ggml_sub_impl(ctx,
  13020. src0->grad,
  13021. ggml_mul(ctx,
  13022. ggml_step(ctx, src0),
  13023. tensor->grad),
  13024. inplace);
  13025. }
  13026. } break;
  13027. case GGML_OP_GELU:
  13028. {
  13029. GGML_ASSERT(false); // TODO: not implemented
  13030. } break;
  13031. case GGML_OP_GELU_QUICK:
  13032. {
  13033. GGML_ASSERT(false); // TODO: not implemented
  13034. } break;
  13035. case GGML_OP_ALIBI:
  13036. {
  13037. GGML_ASSERT(false); // TODO: not implemented
  13038. } break;
  13039. case GGML_OP_CLAMP:
  13040. {
  13041. GGML_ASSERT(false); // TODO: not implemented
  13042. } break;
  13043. case GGML_OP_SILU:
  13044. {
  13045. // necessary for llama
  13046. if (src0->grad) {
  13047. src0->grad = ggml_add_impl(ctx,
  13048. src0->grad,
  13049. ggml_silu_back(ctx, src0, tensor->grad),
  13050. inplace);
  13051. }
  13052. } break;
  13053. case GGML_OP_SILU_BACK:
  13054. {
  13055. GGML_ASSERT(false); // TODO: not implemented
  13056. } break;
  13057. case GGML_OP_NORM:
  13058. {
  13059. GGML_ASSERT(false); // TODO: not implemented
  13060. } break;
  13061. case GGML_OP_RMS_NORM:
  13062. {
  13063. // necessary for llama
  13064. if (src0->grad) {
  13065. src0->grad = ggml_add_impl(ctx,
  13066. src0->grad,
  13067. ggml_rms_norm_back(ctx, src0, tensor->grad),
  13068. inplace);
  13069. }
  13070. } break;
  13071. case GGML_OP_RMS_NORM_BACK:
  13072. {
  13073. GGML_ASSERT(false); // TODO: not implemented
  13074. } break;
  13075. case GGML_OP_MUL_MAT:
  13076. {
  13077. // https://cs231n.github.io/optimization-2/#staged
  13078. // # forward pass
  13079. // s0 = np.random.randn(5, 10)
  13080. // s1 = np.random.randn(10, 3)
  13081. // t = s0.dot(s1)
  13082. // # now suppose we had the gradient on t from above in the circuit
  13083. // dt = np.random.randn(*t.shape) # same shape as t
  13084. // ds0 = dt.dot(s1.T) #.T gives the transpose of the matrix
  13085. // ds1 = t.T.dot(dt)
  13086. // tensor.shape [m,p]
  13087. // src0.shape [n,m]
  13088. // src1.shape [n,p]
  13089. // necessary for llama
  13090. if (src0->grad) {
  13091. src0->grad =
  13092. ggml_add_impl(ctx,
  13093. src0->grad,
  13094. ggml_out_prod(ctx, // [n,m]
  13095. src1, // [n,p]
  13096. tensor->grad), // [m,p]
  13097. inplace);
  13098. }
  13099. if (src1->grad) {
  13100. src1->grad =
  13101. ggml_add_impl(ctx,
  13102. src1->grad,
  13103. // ggml_mul_mat(ctx, // [n,p]
  13104. // ggml_cont(ctx, // [m,n]
  13105. // ggml_transpose(ctx, src0)), // [m,n]
  13106. // tensor->grad), // [m,p]
  13107. // // when src0 is bigger than tensor->grad (this is mostly the case in llama),
  13108. // // avoid transpose of src0, rather transpose smaller tensor->grad
  13109. // // and then use ggml_out_prod
  13110. ggml_out_prod(ctx, // [n,p]
  13111. src0, // [n,m]
  13112. ggml_transpose(ctx, // [p,m]
  13113. tensor->grad)), // [m,p]
  13114. inplace);
  13115. }
  13116. } break;
  13117. case GGML_OP_OUT_PROD:
  13118. {
  13119. GGML_ASSERT(false); // TODO: not implemented
  13120. } break;
  13121. case GGML_OP_SCALE:
  13122. {
  13123. // necessary for llama
  13124. if (src0->grad) {
  13125. src0->grad =
  13126. ggml_add_impl(ctx,
  13127. src0->grad,
  13128. ggml_scale_impl(ctx, tensor->grad, src1, false),
  13129. inplace);
  13130. }
  13131. if (src1->grad) {
  13132. src1->grad =
  13133. ggml_add_impl(ctx,
  13134. src1->grad,
  13135. ggml_sum(ctx, ggml_mul_impl(ctx, tensor->grad, src0, false)),
  13136. inplace);
  13137. }
  13138. } break;
  13139. case GGML_OP_SET:
  13140. {
  13141. GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
  13142. GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
  13143. const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
  13144. const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
  13145. const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
  13146. const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
  13147. struct ggml_tensor * tensor_grad_view = NULL;
  13148. if (src0->grad || src1->grad) {
  13149. GGML_ASSERT(src0->type == tensor->type);
  13150. GGML_ASSERT(tensor->grad->type == tensor->type);
  13151. GGML_ASSERT(tensor->grad->type == src1->grad->type);
  13152. tensor_grad_view = ggml_view_4d(ctx,
  13153. tensor->grad,
  13154. src1->grad->ne[0],
  13155. src1->grad->ne[1],
  13156. src1->grad->ne[2],
  13157. src1->grad->ne[3],
  13158. nb1, nb2, nb3, offset);
  13159. }
  13160. if (src0->grad) {
  13161. src0->grad = ggml_add_impl(ctx,
  13162. src0->grad,
  13163. ggml_acc_impl(ctx,
  13164. tensor->grad,
  13165. ggml_neg(ctx, tensor_grad_view),
  13166. nb1, nb2, nb3, offset, false),
  13167. inplace);
  13168. }
  13169. if (src1->grad) {
  13170. src1->grad =
  13171. ggml_add_impl(ctx,
  13172. src1->grad,
  13173. ggml_reshape(ctx,
  13174. ggml_cont(ctx, tensor_grad_view),
  13175. src1->grad),
  13176. inplace);
  13177. }
  13178. } break;
  13179. case GGML_OP_CPY:
  13180. {
  13181. // necessary for llama
  13182. // cpy overwrites value of src1 by src0 and returns view(src1)
  13183. // the overwriting is mathematically equivalent to:
  13184. // tensor = src0 * 1 + src1 * 0
  13185. if (src0->grad) {
  13186. // dsrc0 = dtensor * 1
  13187. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13188. }
  13189. if (src1->grad) {
  13190. // dsrc1 = dtensor * 0 -> noop
  13191. }
  13192. } break;
  13193. case GGML_OP_CONT:
  13194. {
  13195. // same as cpy
  13196. if (src0->grad) {
  13197. GGML_ASSERT(ggml_is_contiguous(src0->grad));
  13198. GGML_ASSERT(ggml_is_contiguous(tensor->grad));
  13199. src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
  13200. }
  13201. } break;
  13202. case GGML_OP_RESHAPE:
  13203. {
  13204. // necessary for llama
  13205. if (src0->grad) {
  13206. src0->grad =
  13207. ggml_add_impl(ctx, src0->grad,
  13208. ggml_reshape(ctx, tensor->grad, src0->grad),
  13209. inplace);
  13210. }
  13211. } break;
  13212. case GGML_OP_VIEW:
  13213. {
  13214. // necessary for llama
  13215. if (src0->grad) {
  13216. size_t offset;
  13217. GGML_ASSERT(sizeof(offset) <= ggml_nbytes(tensor->opt[0]));
  13218. memcpy(&offset, tensor->opt[0]->data, sizeof(offset));
  13219. size_t nb1 = tensor->nb[1];
  13220. size_t nb2 = tensor->nb[2];
  13221. size_t nb3 = tensor->nb[3];
  13222. if (src0->type != src0->grad->type) {
  13223. // gradient is typically F32, but src0 could be other type
  13224. size_t ng = ggml_element_size(src0->grad);
  13225. size_t n0 = ggml_element_size(src0);
  13226. GGML_ASSERT(offset % n0 == 0);
  13227. GGML_ASSERT(nb1 % n0 == 0);
  13228. GGML_ASSERT(nb2 % n0 == 0);
  13229. GGML_ASSERT(nb3 % n0 == 0);
  13230. offset = (offset / n0) * ng;
  13231. nb1 = (nb1 / n0) * ng;
  13232. nb2 = (nb2 / n0) * ng;
  13233. nb3 = (nb3 / n0) * ng;
  13234. }
  13235. src0->grad = ggml_acc_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
  13236. }
  13237. } break;
  13238. case GGML_OP_PERMUTE:
  13239. {
  13240. // necessary for llama
  13241. if (src0->grad) {
  13242. int32_t * axes = (int32_t *) tensor->opt[0]->data;
  13243. int axis0 = axes[0] & 0x3;
  13244. int axis1 = axes[1] & 0x3;
  13245. int axis2 = axes[2] & 0x3;
  13246. int axis3 = axes[3] & 0x3;
  13247. int axes_backward[4] = {0,0,0,0};
  13248. axes_backward[axis0] = 0;
  13249. axes_backward[axis1] = 1;
  13250. axes_backward[axis2] = 2;
  13251. axes_backward[axis3] = 3;
  13252. src0->grad =
  13253. ggml_add_impl(ctx, src0->grad,
  13254. ggml_permute(ctx,
  13255. tensor->grad,
  13256. axes_backward[0],
  13257. axes_backward[1],
  13258. axes_backward[2],
  13259. axes_backward[3]),
  13260. inplace);
  13261. }
  13262. } break;
  13263. case GGML_OP_TRANSPOSE:
  13264. {
  13265. // necessary for llama
  13266. if (src0->grad) {
  13267. src0->grad =
  13268. ggml_add_impl(ctx, src0->grad,
  13269. ggml_transpose(ctx, tensor->grad),
  13270. inplace);
  13271. }
  13272. } break;
  13273. case GGML_OP_GET_ROWS:
  13274. {
  13275. // necessary for llama (only for tokenizer)
  13276. if (src0->grad) {
  13277. src0->grad =
  13278. ggml_add_impl(ctx, src0->grad,
  13279. ggml_get_rows_back(ctx, tensor->grad, src1, src0->grad),
  13280. inplace);
  13281. }
  13282. if (src1->grad) {
  13283. // noop
  13284. }
  13285. } break;
  13286. case GGML_OP_GET_ROWS_BACK:
  13287. {
  13288. GGML_ASSERT(false); // TODO: not implemented
  13289. } break;
  13290. case GGML_OP_DIAG:
  13291. {
  13292. GGML_ASSERT(false); // TODO: not implemented
  13293. } break;
  13294. case GGML_OP_DIAG_MASK_INF:
  13295. {
  13296. // necessary for llama
  13297. if (src0->grad) {
  13298. assert(src1->type == GGML_TYPE_I32);
  13299. assert(ggml_nelements(src1) == 2);
  13300. const int n_past = ((int32_t *) src1->data)[0];
  13301. src0->grad =
  13302. ggml_add_impl(ctx, src0->grad,
  13303. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13304. inplace);
  13305. }
  13306. if (src1->grad) {
  13307. // noop
  13308. }
  13309. } break;
  13310. case GGML_OP_DIAG_MASK_ZERO:
  13311. {
  13312. // necessary for llama
  13313. if (src0->grad) {
  13314. assert(src1->type == GGML_TYPE_I32);
  13315. assert(ggml_nelements(src1) == 2);
  13316. const int n_past = ((int32_t *) src1->data)[0];
  13317. src0->grad =
  13318. ggml_add_impl(ctx, src0->grad,
  13319. ggml_diag_mask_zero_impl(ctx, tensor->grad, n_past, false),
  13320. inplace);
  13321. }
  13322. if (src1->grad) {
  13323. // noop
  13324. }
  13325. } break;
  13326. case GGML_OP_SOFT_MAX:
  13327. {
  13328. // necessary for llama
  13329. if (src0->grad) {
  13330. src0->grad =
  13331. ggml_add_impl(ctx, src0->grad,
  13332. ggml_soft_max_back(ctx, tensor->grad, tensor),
  13333. inplace);
  13334. }
  13335. } break;
  13336. case GGML_OP_SOFT_MAX_BACK:
  13337. {
  13338. GGML_ASSERT(false); // TODO: not implemented
  13339. } break;
  13340. case GGML_OP_ROPE:
  13341. {
  13342. // necessary for llama
  13343. if (src0->grad) {
  13344. assert(src1->type == GGML_TYPE_I32);
  13345. assert(ggml_nelements(src1) == 3);
  13346. const int n_past = ((int32_t *) src1->data)[0];
  13347. const int n_dims = ((int32_t *) src1->data)[1];
  13348. const int mode = ((int32_t *) src1->data)[2];
  13349. src0->grad = ggml_add_impl(ctx,
  13350. src0->grad,
  13351. ggml_rope_back(ctx,
  13352. tensor->grad,
  13353. n_past,
  13354. n_dims,
  13355. mode),
  13356. inplace);
  13357. }
  13358. if (src1->grad) {
  13359. // noop
  13360. }
  13361. } break;
  13362. case GGML_OP_ROPE_BACK:
  13363. {
  13364. if (src0->grad) {
  13365. assert(src1->type == GGML_TYPE_I32);
  13366. assert(ggml_nelements(src1) == 4);
  13367. const int n_past = ((int32_t *) src1->data)[0];
  13368. const int n_dims = ((int32_t *) src1->data)[1];
  13369. const int mode = ((int32_t *) src1->data)[2];
  13370. const int n_ctx = ((int32_t *) src1->data)[3];
  13371. src0->grad = ggml_add_impl(ctx,
  13372. src0->grad,
  13373. ggml_rope(ctx,
  13374. tensor->grad,
  13375. n_past,
  13376. n_dims,
  13377. mode,
  13378. n_ctx),
  13379. inplace);
  13380. }
  13381. if (src1->grad) {
  13382. // noop
  13383. }
  13384. } break;
  13385. case GGML_OP_CONV_1D_S1_PH:
  13386. {
  13387. GGML_ASSERT(false); // TODO: not implemented
  13388. } break;
  13389. case GGML_OP_CONV_1D_S2_PH:
  13390. {
  13391. GGML_ASSERT(false); // TODO: not implemented
  13392. } break;
  13393. case GGML_OP_CONV_2D_SK_P0:
  13394. {
  13395. GGML_ASSERT(false); // TODO: not implemented
  13396. } break;
  13397. case GGML_OP_FLASH_ATTN:
  13398. {
  13399. struct ggml_tensor * flash_grad = NULL;
  13400. if (src0->grad || src1->grad || tensor->opt[0]->grad) {
  13401. int32_t t = ggml_get_i32_1d(tensor->opt[1], 0);
  13402. GGML_ASSERT(t == 0 || t == 1);
  13403. bool masked = t != 0;
  13404. flash_grad =
  13405. ggml_flash_attn_back(ctx,
  13406. src0,
  13407. src1,
  13408. tensor->opt[0],
  13409. tensor->grad,
  13410. masked);
  13411. }
  13412. if (src0->grad) {
  13413. struct ggml_tensor * grad_q = NULL;
  13414. const size_t nb0 = flash_grad->nb[0];
  13415. const size_t offset = 0;
  13416. switch(src0->n_dims) {
  13417. case 2:
  13418. {
  13419. grad_q = ggml_view_2d(ctx,
  13420. flash_grad,
  13421. src0->ne[0],
  13422. src0->ne[1],
  13423. nb0*src0->ne[0],
  13424. offset);
  13425. } break;
  13426. case 3:
  13427. {
  13428. grad_q = ggml_view_3d(ctx,
  13429. flash_grad,
  13430. src0->ne[0],
  13431. src0->ne[1],
  13432. src0->ne[2],
  13433. nb0*src0->ne[0],
  13434. nb0*src0->ne[0]*src0->ne[1],
  13435. offset);
  13436. } break;
  13437. case 4:
  13438. {
  13439. grad_q = ggml_view_4d(ctx,
  13440. flash_grad,
  13441. src0->ne[0],
  13442. src0->ne[1],
  13443. src0->ne[2],
  13444. src0->ne[3],
  13445. nb0*src0->ne[0],
  13446. nb0*src0->ne[0]*src0->ne[1],
  13447. nb0*src0->ne[0]*src0->ne[1]*src0->ne[2],
  13448. offset);
  13449. } break;
  13450. }
  13451. src0->grad = ggml_add_impl(ctx,
  13452. src0->grad,
  13453. grad_q,
  13454. inplace);
  13455. }
  13456. if (src1->grad) {
  13457. struct ggml_tensor * grad_k = NULL;
  13458. const size_t nb0 = flash_grad->nb[0];
  13459. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3];
  13460. switch(src1->n_dims) {
  13461. case 2:
  13462. {
  13463. grad_k = ggml_view_2d(ctx,
  13464. flash_grad,
  13465. src1->ne[0],
  13466. src1->ne[1],
  13467. nb0*src1->ne[0],
  13468. offset);
  13469. } break;
  13470. case 3:
  13471. {
  13472. grad_k = ggml_view_3d(ctx,
  13473. flash_grad,
  13474. src1->ne[0],
  13475. src1->ne[1],
  13476. src1->ne[2],
  13477. nb0*src1->ne[0],
  13478. nb0*src1->ne[0]*src1->ne[1],
  13479. offset);
  13480. } break;
  13481. case 4:
  13482. {
  13483. grad_k = ggml_view_4d(ctx,
  13484. flash_grad,
  13485. src1->ne[0],
  13486. src1->ne[1],
  13487. src1->ne[2],
  13488. src1->ne[3],
  13489. nb0*src1->ne[0],
  13490. nb0*src1->ne[0]*src1->ne[1],
  13491. nb0*src1->ne[0]*src1->ne[1]*src1->ne[2],
  13492. offset);
  13493. } break;
  13494. }
  13495. src1->grad = ggml_add_impl(ctx,
  13496. src1->grad,
  13497. grad_k,
  13498. inplace);
  13499. }
  13500. struct ggml_tensor * opt0 = tensor->opt[0];
  13501. if (opt0->grad) {
  13502. struct ggml_tensor * grad_v = NULL;
  13503. const size_t nb0 = flash_grad->nb[0];
  13504. const size_t offset = nb0*src0->ne[0]*src0->ne[1]*src0->ne[2]*src0->ne[3]
  13505. + nb0*src1->ne[0]*src1->ne[1]*src1->ne[2]*src1->ne[3];
  13506. switch(opt0->n_dims) {
  13507. case 2:
  13508. {
  13509. grad_v = ggml_view_2d(ctx,
  13510. flash_grad,
  13511. opt0->ne[0],
  13512. opt0->ne[1],
  13513. nb0*opt0->ne[0],
  13514. offset);
  13515. } break;
  13516. case 3:
  13517. {
  13518. grad_v = ggml_view_3d(ctx,
  13519. flash_grad,
  13520. opt0->ne[0],
  13521. opt0->ne[1],
  13522. opt0->ne[2],
  13523. nb0*opt0->ne[0],
  13524. nb0*opt0->ne[0]*opt0->ne[1],
  13525. offset);
  13526. } break;
  13527. case 4:
  13528. {
  13529. grad_v = ggml_view_4d(ctx,
  13530. flash_grad,
  13531. opt0->ne[0],
  13532. opt0->ne[1],
  13533. opt0->ne[2],
  13534. opt0->ne[3],
  13535. nb0*opt0->ne[0],
  13536. nb0*opt0->ne[0]*opt0->ne[1],
  13537. nb0*opt0->ne[0]*opt0->ne[1]*opt0->ne[2],
  13538. offset);
  13539. } break;
  13540. }
  13541. opt0->grad = ggml_add_impl(ctx,
  13542. opt0->grad,
  13543. grad_v,
  13544. inplace);
  13545. }
  13546. } break;
  13547. case GGML_OP_FLASH_FF:
  13548. {
  13549. GGML_ASSERT(false); // not supported
  13550. } break;
  13551. case GGML_OP_FLASH_ATTN_BACK:
  13552. {
  13553. GGML_ASSERT(false); // not supported
  13554. } break;
  13555. case GGML_OP_WIN_PART:
  13556. case GGML_OP_WIN_UNPART:
  13557. case GGML_OP_MAP_UNARY:
  13558. case GGML_OP_MAP_BINARY:
  13559. case GGML_OP_MAP_CUSTOM1:
  13560. case GGML_OP_MAP_CUSTOM2:
  13561. case GGML_OP_MAP_CUSTOM3:
  13562. {
  13563. GGML_ASSERT(false); // not supported
  13564. } break;
  13565. case GGML_OP_CROSS_ENTROPY_LOSS:
  13566. {
  13567. if (src0->grad) {
  13568. src0->grad = ggml_add_impl(ctx,
  13569. src0->grad,
  13570. ggml_cross_entropy_loss_back(ctx,
  13571. src0,
  13572. src1,
  13573. tensor->grad),
  13574. inplace);
  13575. }
  13576. } break;
  13577. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  13578. {
  13579. GGML_ASSERT(false); // not supported
  13580. } break;
  13581. case GGML_OP_NONE:
  13582. {
  13583. // nop
  13584. } break;
  13585. case GGML_OP_COUNT:
  13586. {
  13587. GGML_ASSERT(false);
  13588. } break;
  13589. }
  13590. }
  13591. static void ggml_visit_parents(struct ggml_cgraph * cgraph, struct ggml_tensor * node) {
  13592. if (node->grad == NULL) {
  13593. // this usually happens when we generate intermediate nodes from constants in the backward pass
  13594. // it can also happen during forward pass, if the user performs computations with constants
  13595. if (node->op != GGML_OP_NONE) {
  13596. //GGML_PRINT_DEBUG("%s: warning: node %p has no grad, but op %d\n", __func__, (void *) node, node->op);
  13597. }
  13598. }
  13599. // check if already visited
  13600. for (int i = 0; i < cgraph->n_nodes; i++) {
  13601. if (cgraph->nodes[i] == node) {
  13602. return;
  13603. }
  13604. }
  13605. for (int i = 0; i < cgraph->n_leafs; i++) {
  13606. if (cgraph->leafs[i] == node) {
  13607. return;
  13608. }
  13609. }
  13610. if (node->src0) {
  13611. ggml_visit_parents(cgraph, node->src0);
  13612. }
  13613. if (node->src1) {
  13614. ggml_visit_parents(cgraph, node->src1);
  13615. }
  13616. for (int i = 0; i < GGML_MAX_OPT; ++i) {
  13617. if (node->opt[i]) {
  13618. ggml_visit_parents(cgraph, node->opt[i]);
  13619. }
  13620. }
  13621. if (node->op == GGML_OP_NONE && node->grad == NULL) {
  13622. // reached a leaf node, not part of the gradient graph (e.g. a constant)
  13623. GGML_ASSERT(cgraph->n_leafs < GGML_MAX_NODES);
  13624. if (strlen(node->name) == 0) {
  13625. ggml_format_name(node, "leaf_%d", cgraph->n_leafs);
  13626. }
  13627. cgraph->leafs[cgraph->n_leafs] = node;
  13628. cgraph->n_leafs++;
  13629. } else {
  13630. GGML_ASSERT(cgraph->n_nodes < GGML_MAX_NODES);
  13631. if (strlen(node->name) == 0) {
  13632. ggml_format_name(node, "node_%d", cgraph->n_nodes);
  13633. }
  13634. cgraph->nodes[cgraph->n_nodes] = node;
  13635. cgraph->grads[cgraph->n_nodes] = node->grad;
  13636. cgraph->n_nodes++;
  13637. }
  13638. }
  13639. static void ggml_build_forward_impl(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor, bool expand) {
  13640. if (!expand) {
  13641. cgraph->n_nodes = 0;
  13642. cgraph->n_leafs = 0;
  13643. }
  13644. const int n0 = cgraph->n_nodes;
  13645. UNUSED(n0);
  13646. ggml_visit_parents(cgraph, tensor);
  13647. const int n_new = cgraph->n_nodes - n0;
  13648. GGML_PRINT_DEBUG("%s: visited %d new nodes\n", __func__, n_new);
  13649. if (n_new > 0) {
  13650. // the last added node should always be starting point
  13651. GGML_ASSERT(cgraph->nodes[cgraph->n_nodes - 1] == tensor);
  13652. }
  13653. }
  13654. void ggml_build_forward_expand(struct ggml_cgraph * cgraph, struct ggml_tensor * tensor) {
  13655. ggml_build_forward_impl(cgraph, tensor, true);
  13656. }
  13657. struct ggml_cgraph ggml_build_forward(struct ggml_tensor * tensor) {
  13658. struct ggml_cgraph result = {
  13659. /*.n_nodes =*/ 0,
  13660. /*.n_leafs =*/ 0,
  13661. /*.n_threads =*/ GGML_DEFAULT_N_THREADS,
  13662. /*.work_size =*/ 0,
  13663. /*.work =*/ NULL,
  13664. /*.nodes =*/ { NULL },
  13665. /*.grads =*/ { NULL },
  13666. /*.leafs =*/ { NULL },
  13667. /*.perf_runs =*/ 0,
  13668. /*.perf_cycles =*/ 0,
  13669. /*.perf_time_us =*/ 0,
  13670. };
  13671. ggml_build_forward_impl(&result, tensor, false);
  13672. return result;
  13673. }
  13674. struct ggml_cgraph ggml_build_backward(struct ggml_context * ctx, struct ggml_cgraph * gf, bool keep) {
  13675. struct ggml_cgraph result = *gf;
  13676. GGML_ASSERT(gf->n_nodes > 0);
  13677. // if we are keeping the gradient graph, we have to detach the gradient nodes from the original graph
  13678. if (keep) {
  13679. for (int i = 0; i < gf->n_nodes; i++) {
  13680. struct ggml_tensor * node = gf->nodes[i];
  13681. if (node->grad) {
  13682. node->grad = ggml_dup_tensor(ctx, node);
  13683. gf->grads[i] = node->grad;
  13684. }
  13685. }
  13686. }
  13687. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13688. struct ggml_tensor * node = gf->nodes[i];
  13689. // because we detached the grad nodes from the original graph, we can afford inplace operations
  13690. if (node->grad) {
  13691. ggml_compute_backward(ctx, node, keep);
  13692. }
  13693. }
  13694. for (int i = gf->n_nodes - 1; i >= 0; i--) {
  13695. struct ggml_tensor * node = gf->nodes[i];
  13696. if (node->is_param) {
  13697. GGML_PRINT_DEBUG("%s: found root node %p\n", __func__, (void *) node);
  13698. ggml_build_forward_impl(&result, node->grad, true);
  13699. }
  13700. }
  13701. return result;
  13702. }
  13703. //
  13704. // thread data
  13705. //
  13706. // synchronization is done via busy loops
  13707. // I tried using spin locks, but not sure how to use them correctly - the things I tried were slower than busy loops
  13708. //
  13709. #ifdef __APPLE__
  13710. //#include <os/lock.h>
  13711. //
  13712. //typedef os_unfair_lock ggml_lock_t;
  13713. //
  13714. //#define ggml_lock_init(x) UNUSED(x)
  13715. //#define ggml_lock_destroy(x) UNUSED(x)
  13716. //#define ggml_lock_lock os_unfair_lock_lock
  13717. //#define ggml_lock_unlock os_unfair_lock_unlock
  13718. //
  13719. //#define GGML_LOCK_INITIALIZER OS_UNFAIR_LOCK_INIT
  13720. typedef int ggml_lock_t;
  13721. #define ggml_lock_init(x) UNUSED(x)
  13722. #define ggml_lock_destroy(x) UNUSED(x)
  13723. #define ggml_lock_lock(x) UNUSED(x)
  13724. #define ggml_lock_unlock(x) UNUSED(x)
  13725. #define GGML_LOCK_INITIALIZER 0
  13726. typedef pthread_t ggml_thread_t;
  13727. #define ggml_thread_create pthread_create
  13728. #define ggml_thread_join pthread_join
  13729. #else
  13730. //typedef pthread_spinlock_t ggml_lock_t;
  13731. //#define ggml_lock_init(x) pthread_spin_init(x, PTHREAD_PROCESS_PRIVATE)
  13732. //#define ggml_lock_destroy pthread_spin_destroy
  13733. //#define ggml_lock_lock pthread_spin_lock
  13734. //#define ggml_lock_unlock pthread_spin_unlock
  13735. typedef int ggml_lock_t;
  13736. #define ggml_lock_init(x) UNUSED(x)
  13737. #define ggml_lock_destroy(x) UNUSED(x)
  13738. #if defined(__x86_64__) || (defined(_MSC_VER) && defined(_M_AMD64))
  13739. #define ggml_lock_lock(x) _mm_pause()
  13740. #else
  13741. #define ggml_lock_lock(x) UNUSED(x)
  13742. #endif
  13743. #define ggml_lock_unlock(x) UNUSED(x)
  13744. #define GGML_LOCK_INITIALIZER 0
  13745. typedef pthread_t ggml_thread_t;
  13746. #define ggml_thread_create pthread_create
  13747. #define ggml_thread_join pthread_join
  13748. #endif
  13749. // Android's libc implementation "bionic" does not support setting affinity
  13750. #if defined(__linux__) && !defined(__BIONIC__)
  13751. void set_numa_thread_affinity(int thread_n, int n_threads) {
  13752. if (!ggml_is_numa()) {
  13753. return;
  13754. }
  13755. // run thread on node_num thread_n / (threads per node)
  13756. const int node_num = thread_n / ((n_threads + g_state.numa.n_nodes - 1) / g_state.numa.n_nodes);
  13757. struct ggml_numa_node * node = &g_state.numa.nodes[node_num];
  13758. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13759. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13760. CPU_ZERO_S(setsize, cpus);
  13761. for (size_t i = 0; i < node->n_cpus; ++i) {
  13762. CPU_SET_S(node->cpus[i], setsize, cpus);
  13763. }
  13764. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13765. if (rv) {
  13766. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13767. strerror(rv));
  13768. }
  13769. CPU_FREE(cpus);
  13770. }
  13771. void clear_numa_thread_affinity(void) {
  13772. if (!ggml_is_numa()) {
  13773. return;
  13774. }
  13775. size_t setsize = CPU_ALLOC_SIZE(g_state.numa.total_cpus);
  13776. cpu_set_t * cpus = CPU_ALLOC(g_state.numa.total_cpus);
  13777. CPU_ZERO_S(setsize, cpus);
  13778. for (unsigned i = 0; i < g_state.numa.total_cpus; ++i) {
  13779. CPU_SET_S(i, setsize, cpus);
  13780. }
  13781. int rv = pthread_setaffinity_np(pthread_self(), setsize, cpus);
  13782. if (rv) {
  13783. fprintf(stderr, "warning: pthread_setaffinity_np() failed: %s\n",
  13784. strerror(rv));
  13785. }
  13786. CPU_FREE(cpus);
  13787. }
  13788. #else
  13789. // TODO: Windows etc.
  13790. // (the linux implementation may also work on BSD, someone should test)
  13791. void set_numa_thread_affinity(int thread_n, int n_threads) { UNUSED(thread_n); UNUSED(n_threads); }
  13792. void clear_numa_thread_affinity(void) {}
  13793. #endif
  13794. struct ggml_compute_state_shared {
  13795. struct ggml_cgraph * cgraph;
  13796. int64_t perf_node_start_cycles;
  13797. int64_t perf_node_start_time_us;
  13798. int n_threads;
  13799. // synchronization primitives
  13800. atomic_int n_active; // num active threads
  13801. atomic_int node_n; // active graph node
  13802. };
  13803. struct ggml_compute_state {
  13804. ggml_thread_t thrd;
  13805. int ith;
  13806. struct ggml_compute_state_shared * shared;
  13807. };
  13808. static void ggml_graph_compute_perf_stats_node(struct ggml_tensor * node, const struct ggml_compute_state_shared * st) {
  13809. int64_t cycles_cur = ggml_perf_cycles() - st->perf_node_start_cycles;
  13810. int64_t time_us_cur = ggml_perf_time_us() - st->perf_node_start_time_us;
  13811. node->perf_runs++;
  13812. node->perf_cycles += cycles_cur;
  13813. node->perf_time_us += time_us_cur;
  13814. }
  13815. static thread_ret_t ggml_graph_compute_thread(void * data) {
  13816. struct ggml_compute_state * state = (struct ggml_compute_state *) data;
  13817. struct ggml_cgraph * cgraph = state->shared->cgraph;
  13818. const int n_threads = state->shared->n_threads;
  13819. set_numa_thread_affinity(state->ith, n_threads);
  13820. int node_n = -1;
  13821. while (true) {
  13822. if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) {
  13823. // all other threads are finished and spinning
  13824. // do finalize and init here so we don't have synchronize again
  13825. struct ggml_compute_params params = {
  13826. /*.type =*/ GGML_TASK_FINALIZE,
  13827. /*.ith =*/ 0,
  13828. /*.nth =*/ 0,
  13829. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13830. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13831. };
  13832. if (node_n != -1) {
  13833. /* FINALIZE */
  13834. struct ggml_tensor * node = state->shared->cgraph->nodes[node_n];
  13835. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13836. params.nth = node->n_tasks;
  13837. ggml_compute_forward(&params, node);
  13838. ggml_graph_compute_perf_stats_node(node, state->shared);
  13839. }
  13840. }
  13841. // distribute new work or execute it direct if 1T
  13842. while (++node_n < cgraph->n_nodes) {
  13843. GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes);
  13844. struct ggml_tensor * node = cgraph->nodes[node_n];
  13845. state->shared->perf_node_start_cycles = ggml_perf_cycles();
  13846. state->shared->perf_node_start_time_us = ggml_perf_time_us();
  13847. params.nth = node->n_tasks;
  13848. /* INIT */
  13849. if (GGML_OP_HAS_INIT[node->op]) {
  13850. params.type = GGML_TASK_INIT;
  13851. ggml_compute_forward(&params, node);
  13852. }
  13853. if (node->n_tasks == 1) {
  13854. // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1,
  13855. // they do something more efficient than spinning (?)
  13856. params.type = GGML_TASK_COMPUTE;
  13857. ggml_compute_forward(&params, node);
  13858. if (GGML_OP_HAS_FINALIZE[node->op]) {
  13859. params.type = GGML_TASK_FINALIZE;
  13860. ggml_compute_forward(&params, node);
  13861. ggml_graph_compute_perf_stats_node(node, state->shared);
  13862. }
  13863. } else {
  13864. break;
  13865. }
  13866. }
  13867. atomic_store(&state->shared->n_active, n_threads);
  13868. atomic_store(&state->shared->node_n, node_n);
  13869. } else {
  13870. // wait for other threads to finish
  13871. const int last = node_n;
  13872. do {
  13873. sched_yield();
  13874. node_n = atomic_load(&state->shared->node_n);
  13875. } while (node_n == last);
  13876. }
  13877. // check if we should stop
  13878. if (node_n >= cgraph->n_nodes) break;
  13879. /* COMPUTE */
  13880. struct ggml_tensor * node = cgraph->nodes[node_n];
  13881. struct ggml_compute_params params = {
  13882. /*.type =*/ GGML_TASK_COMPUTE,
  13883. /*.ith =*/ state->ith,
  13884. /*.nth =*/ node->n_tasks,
  13885. /*.wsize =*/ cgraph->work ? ggml_nbytes(cgraph->work) : 0,
  13886. /*.wdata =*/ cgraph->work ? cgraph->work->data : NULL,
  13887. };
  13888. if (state->ith < node->n_tasks) {
  13889. ggml_compute_forward(&params, node);
  13890. }
  13891. }
  13892. return 0;
  13893. }
  13894. void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph) {
  13895. const int n_threads = cgraph->n_threads;
  13896. struct ggml_compute_state_shared state_shared = {
  13897. /*.cgraph =*/ cgraph,
  13898. /*.perf_node_start_cycles =*/ 0,
  13899. /*.perf_node_start_time_us =*/ 0,
  13900. /*.n_threads =*/ n_threads,
  13901. /*.n_active =*/ n_threads,
  13902. /*.node_n =*/ -1,
  13903. };
  13904. struct ggml_compute_state * workers = alloca(sizeof(struct ggml_compute_state)*n_threads);
  13905. // initialize tasks + work buffer
  13906. {
  13907. size_t work_size = 0;
  13908. // thread scheduling for the different operations
  13909. for (int i = 0; i < cgraph->n_nodes; i++) {
  13910. struct ggml_tensor * node = cgraph->nodes[i];
  13911. switch (node->op) {
  13912. case GGML_OP_CPY:
  13913. case GGML_OP_DUP:
  13914. {
  13915. node->n_tasks = n_threads;
  13916. size_t cur = 0;
  13917. if (ggml_is_quantized(node->type)) {
  13918. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->ne[0] * n_threads;
  13919. }
  13920. work_size = MAX(work_size, cur);
  13921. } break;
  13922. case GGML_OP_ADD:
  13923. case GGML_OP_ADD1:
  13924. {
  13925. node->n_tasks = n_threads;
  13926. size_t cur = 0;
  13927. if (ggml_is_quantized(node->src0->type)) {
  13928. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src0->ne[0] * n_threads;
  13929. }
  13930. work_size = MAX(work_size, cur);
  13931. } break;
  13932. case GGML_OP_ACC:
  13933. {
  13934. node->n_tasks = n_threads;
  13935. size_t cur = 0;
  13936. if (ggml_is_quantized(node->src0->type)) {
  13937. cur = GGML_TYPE_SIZE[GGML_TYPE_F32] * node->src1->ne[0] * n_threads;
  13938. }
  13939. work_size = MAX(work_size, cur);
  13940. } break;
  13941. case GGML_OP_SUB:
  13942. case GGML_OP_DIV:
  13943. case GGML_OP_SQR:
  13944. case GGML_OP_SQRT:
  13945. case GGML_OP_LOG:
  13946. case GGML_OP_SUM:
  13947. case GGML_OP_SUM_ROWS:
  13948. case GGML_OP_MEAN:
  13949. case GGML_OP_REPEAT:
  13950. case GGML_OP_REPEAT_BACK:
  13951. case GGML_OP_ABS:
  13952. case GGML_OP_SGN:
  13953. case GGML_OP_NEG:
  13954. case GGML_OP_STEP:
  13955. case GGML_OP_RELU:
  13956. {
  13957. node->n_tasks = 1;
  13958. } break;
  13959. case GGML_OP_MUL:
  13960. case GGML_OP_GELU:
  13961. case GGML_OP_GELU_QUICK:
  13962. case GGML_OP_SILU:
  13963. case GGML_OP_SILU_BACK:
  13964. case GGML_OP_NORM:
  13965. case GGML_OP_RMS_NORM:
  13966. case GGML_OP_RMS_NORM_BACK:
  13967. {
  13968. node->n_tasks = n_threads;
  13969. } break;
  13970. case GGML_OP_MUL_MAT:
  13971. case GGML_OP_OUT_PROD:
  13972. {
  13973. node->n_tasks = n_threads;
  13974. // TODO: use different scheduling for different matrix sizes
  13975. //const int nr0 = ggml_nrows(node->src0);
  13976. //const int nr1 = ggml_nrows(node->src1);
  13977. //node->n_tasks = MIN(n_threads, MAX(1, nr0/128));
  13978. //printf("nr0 = %8d, nr1 = %8d, nr0*nr1 = %8d, n_tasks = %d\n", nr0, nr1, nr0*nr1, node->n_tasks);
  13979. size_t cur = 0;
  13980. #if defined(GGML_USE_CUBLAS)
  13981. if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
  13982. node->n_tasks = 1; // TODO: this actually is doing nothing
  13983. // the threads are still spinning
  13984. }
  13985. else
  13986. #elif defined(GGML_USE_CLBLAST)
  13987. if (ggml_cl_can_mul_mat(node->src0, node->src1, node)) {
  13988. node->n_tasks = 1; // TODO: this actually is doing nothing
  13989. // the threads are still spinning
  13990. cur = ggml_cl_mul_mat_get_wsize(node->src0, node->src1, node);
  13991. }
  13992. else
  13993. #endif
  13994. if (node->src0->type == GGML_TYPE_F16 && node->src1->type == GGML_TYPE_F32) {
  13995. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  13996. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  13997. node->n_tasks = 1; // TODO: this actually is doing nothing
  13998. // the threads are still spinning
  13999. // here we need memory just for single 2D matrix from src0
  14000. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  14001. } else {
  14002. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  14003. }
  14004. #else
  14005. cur = GGML_TYPE_SIZE[GGML_TYPE_F16]*ggml_nelements(node->src1);
  14006. #endif
  14007. } else if (node->src0->type == GGML_TYPE_F32 && node->src1->type == GGML_TYPE_F32) {
  14008. cur = 0;
  14009. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14010. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  14011. node->n_tasks = 1;
  14012. }
  14013. #endif
  14014. } else if (ggml_is_quantized(node->src0->type) && node->src1->type == GGML_TYPE_F32) {
  14015. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
  14016. if (ggml_compute_forward_mul_mat_use_blas(node->src0, node->src1, node)) {
  14017. node->n_tasks = 1;
  14018. cur = GGML_TYPE_SIZE[GGML_TYPE_F32]*(node->src0->ne[0]*node->src0->ne[1]);
  14019. } else
  14020. #endif
  14021. {
  14022. const enum ggml_type type_q = quantize_fns[node->src0->type].vec_dot_type;
  14023. cur = GGML_TYPE_SIZE[type_q]*ggml_nelements(node->src1)/GGML_BLCK_SIZE[type_q];
  14024. }
  14025. } else {
  14026. GGML_ASSERT(false);
  14027. }
  14028. work_size = MAX(work_size, cur);
  14029. } break;
  14030. case GGML_OP_SCALE:
  14031. {
  14032. node->n_tasks = 1;
  14033. } break;
  14034. case GGML_OP_SET:
  14035. case GGML_OP_CONT:
  14036. case GGML_OP_RESHAPE:
  14037. case GGML_OP_VIEW:
  14038. case GGML_OP_PERMUTE:
  14039. case GGML_OP_TRANSPOSE:
  14040. case GGML_OP_GET_ROWS:
  14041. case GGML_OP_GET_ROWS_BACK:
  14042. case GGML_OP_DIAG:
  14043. case GGML_OP_DIAG_MASK_ZERO:
  14044. {
  14045. node->n_tasks = 1;
  14046. } break;
  14047. case GGML_OP_DIAG_MASK_INF:
  14048. case GGML_OP_SOFT_MAX:
  14049. case GGML_OP_SOFT_MAX_BACK:
  14050. case GGML_OP_ROPE:
  14051. case GGML_OP_ROPE_BACK:
  14052. {
  14053. node->n_tasks = n_threads;
  14054. } break;
  14055. case GGML_OP_ALIBI:
  14056. {
  14057. node->n_tasks = 1; //TODO
  14058. } break;
  14059. case GGML_OP_CLAMP:
  14060. {
  14061. node->n_tasks = 1; //TODO
  14062. } break;
  14063. case GGML_OP_CONV_1D_S1_PH:
  14064. case GGML_OP_CONV_1D_S2_PH:
  14065. {
  14066. node->n_tasks = n_threads;
  14067. GGML_ASSERT(node->src0->ne[3] == 1);
  14068. GGML_ASSERT(node->src1->ne[2] == 1);
  14069. GGML_ASSERT(node->src1->ne[3] == 1);
  14070. size_t cur = 0;
  14071. const int nk = node->src0->ne[0];
  14072. if (node->src0->type == GGML_TYPE_F16 &&
  14073. node->src1->type == GGML_TYPE_F32) {
  14074. cur = sizeof(ggml_fp16_t)*(
  14075. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  14076. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  14077. );
  14078. } else if (node->src0->type == GGML_TYPE_F32 &&
  14079. node->src1->type == GGML_TYPE_F32) {
  14080. cur = sizeof(float)*(
  14081. nk*ggml_up32(node->src0->ne[1])*node->src0->ne[2] +
  14082. ( 2*(nk/2) + node->src1->ne[0])*node->src1->ne[1]
  14083. );
  14084. } else {
  14085. GGML_ASSERT(false);
  14086. }
  14087. work_size = MAX(work_size, cur);
  14088. } break;
  14089. case GGML_OP_CONV_2D_SK_P0:
  14090. {
  14091. node->n_tasks = n_threads;
  14092. GGML_ASSERT(node->src1->ne[3] == 1);
  14093. const int64_t ne00 = node->src0->ne[0]; // W
  14094. const int64_t ne01 = node->src0->ne[1]; // H
  14095. const int64_t ne02 = node->src0->ne[2]; // C
  14096. const int64_t ne03 = node->src0->ne[3]; // N
  14097. const int64_t ne10 = node->src1->ne[0]; // W
  14098. const int64_t ne11 = node->src1->ne[1]; // H
  14099. const int64_t ne12 = node->src1->ne[2]; // C
  14100. const int64_t nk = ne00*ne01;
  14101. UNUSED(ne02);
  14102. UNUSED(ne03);
  14103. UNUSED(nk);
  14104. size_t cur = 0;
  14105. if (node->src0->type == GGML_TYPE_F16 &&
  14106. node->src1->type == GGML_TYPE_F32) {
  14107. cur = sizeof(ggml_fp16_t)*(ne10*ne11*ne12);
  14108. } else if (node->src0->type == GGML_TYPE_F32 &&
  14109. node->src1->type == GGML_TYPE_F32) {
  14110. cur = sizeof(float)* (ne10*ne11*ne12);
  14111. } else {
  14112. GGML_ASSERT(false);
  14113. }
  14114. work_size = MAX(work_size, cur);
  14115. } break;
  14116. case GGML_OP_FLASH_ATTN:
  14117. {
  14118. node->n_tasks = n_threads;
  14119. size_t cur = 0;
  14120. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  14121. if (node->src1->type == GGML_TYPE_F32) {
  14122. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  14123. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  14124. }
  14125. if (node->src1->type == GGML_TYPE_F16) {
  14126. cur = sizeof(float)*ne11*node->n_tasks; // TODO: this can become (n_tasks-1)
  14127. cur += sizeof(float)*ne11*node->n_tasks; // this is overestimated by x2
  14128. }
  14129. work_size = MAX(work_size, cur);
  14130. } break;
  14131. case GGML_OP_FLASH_FF:
  14132. {
  14133. node->n_tasks = n_threads;
  14134. size_t cur = 0;
  14135. if (node->src1->type == GGML_TYPE_F32) {
  14136. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  14137. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  14138. }
  14139. if (node->src1->type == GGML_TYPE_F16) {
  14140. cur = sizeof(float)*node->src1->ne[1]*node->n_tasks; // TODO: this can become (n_tasks-1)
  14141. cur += sizeof(float)*node->src1->ne[1]*node->n_tasks; // this is overestimated by x2
  14142. }
  14143. work_size = MAX(work_size, cur);
  14144. } break;
  14145. case GGML_OP_FLASH_ATTN_BACK:
  14146. {
  14147. node->n_tasks = n_threads;
  14148. size_t cur = 0;
  14149. const int64_t D = node->src0->ne[0];
  14150. const int64_t ne11 = ggml_up(node->src1->ne[1], GGML_SOFT_MAX_UNROLL);
  14151. const int64_t mxDn = MAX(D, ne11) * 2; // *2 because of S and SM in ggml_compute_forward_flash_attn_back
  14152. if (node->src1->type == GGML_TYPE_F32) {
  14153. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  14154. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  14155. }
  14156. if (node->src1->type == GGML_TYPE_F16) {
  14157. cur = sizeof(float)*mxDn*node->n_tasks; // TODO: this can become (n_tasks-1)
  14158. cur += sizeof(float)*mxDn*node->n_tasks; // this is overestimated by x2
  14159. }
  14160. work_size = MAX(work_size, cur);
  14161. } break;
  14162. case GGML_OP_WIN_PART:
  14163. case GGML_OP_WIN_UNPART:
  14164. case GGML_OP_MAP_UNARY:
  14165. case GGML_OP_MAP_BINARY:
  14166. case GGML_OP_MAP_CUSTOM1:
  14167. case GGML_OP_MAP_CUSTOM2:
  14168. case GGML_OP_MAP_CUSTOM3:
  14169. {
  14170. node->n_tasks = 1;
  14171. } break;
  14172. case GGML_OP_CROSS_ENTROPY_LOSS:
  14173. {
  14174. node->n_tasks = n_threads;
  14175. size_t cur = ggml_type_size(node->type)*(node->n_tasks + node->src0->ne[0]*node->n_tasks);
  14176. work_size = MAX(work_size, cur);
  14177. } break;
  14178. case GGML_OP_CROSS_ENTROPY_LOSS_BACK:
  14179. {
  14180. node->n_tasks = n_threads;
  14181. size_t cur = ggml_type_size(node->type)*node->src0->ne[0]*node->n_tasks;
  14182. work_size = MAX(work_size, cur);
  14183. } break;
  14184. case GGML_OP_NONE:
  14185. {
  14186. node->n_tasks = 1;
  14187. } break;
  14188. case GGML_OP_COUNT:
  14189. {
  14190. GGML_ASSERT(false);
  14191. } break;
  14192. }
  14193. }
  14194. if (cgraph->work != NULL && work_size > cgraph->work_size) {
  14195. GGML_ASSERT(false); // TODO: better handling
  14196. }
  14197. if (work_size > 0 && cgraph->work == NULL) {
  14198. cgraph->work_size = work_size + CACHE_LINE_SIZE*(n_threads - 1);
  14199. GGML_PRINT_DEBUG("%s: allocating work buffer for graph (%zu bytes)\n", __func__, cgraph->work_size);
  14200. cgraph->work = ggml_new_tensor_1d(ctx, GGML_TYPE_I8, cgraph->work_size);
  14201. }
  14202. }
  14203. // create thread pool
  14204. if (n_threads > 1) {
  14205. for (int j = 1; j < n_threads; ++j) {
  14206. workers[j] = (struct ggml_compute_state) {
  14207. .thrd = 0,
  14208. .ith = j,
  14209. .shared = &state_shared,
  14210. };
  14211. const int rc = ggml_thread_create(&workers[j].thrd, NULL, ggml_graph_compute_thread, &workers[j]);
  14212. GGML_ASSERT(rc == 0);
  14213. }
  14214. }
  14215. workers[0].ith = 0;
  14216. workers[0].shared = &state_shared;
  14217. const int64_t perf_start_cycles = ggml_perf_cycles();
  14218. const int64_t perf_start_time_us = ggml_perf_time_us();
  14219. // this is a work thread too
  14220. ggml_graph_compute_thread(&workers[0]);
  14221. // don't leave affinity set on the main thread
  14222. clear_numa_thread_affinity();
  14223. // join thread pool
  14224. if (n_threads > 1) {
  14225. for (int j = 1; j < n_threads; j++) {
  14226. const int rc = ggml_thread_join(workers[j].thrd, NULL);
  14227. GGML_ASSERT(rc == 0);
  14228. }
  14229. }
  14230. // performance stats (graph)
  14231. {
  14232. int64_t perf_cycles_cur = ggml_perf_cycles() - perf_start_cycles;
  14233. int64_t perf_time_us_cur = ggml_perf_time_us() - perf_start_time_us;
  14234. cgraph->perf_runs++;
  14235. cgraph->perf_cycles += perf_cycles_cur;
  14236. cgraph->perf_time_us += perf_time_us_cur;
  14237. GGML_PRINT_DEBUG("%s: perf (%d) - cpu = %.3f / %.3f ms, wall = %.3f / %.3f ms\n",
  14238. __func__, cgraph->perf_runs,
  14239. (double) perf_cycles_cur / (double) ggml_cycles_per_ms(),
  14240. (double) cgraph->perf_cycles / (double) ggml_cycles_per_ms() / (double) cgraph->perf_runs,
  14241. (double) perf_time_us_cur / 1000.0,
  14242. (double) cgraph->perf_time_us / 1000.0 / cgraph->perf_runs);
  14243. }
  14244. }
  14245. void ggml_graph_reset(struct ggml_cgraph * cgraph) {
  14246. for (int i = 0; i < cgraph->n_nodes; i++) {
  14247. struct ggml_tensor * grad = cgraph->grads[i];
  14248. if (grad) {
  14249. ggml_set_zero(grad);
  14250. }
  14251. }
  14252. }
  14253. struct ggml_tensor * ggml_graph_get_tensor(struct ggml_cgraph * cgraph, const char * name) {
  14254. for (int i = 0; i < cgraph->n_leafs; i++) {
  14255. struct ggml_tensor * leaf = cgraph->leafs[i];
  14256. if (strcmp(leaf->name, name) == 0) {
  14257. return leaf;
  14258. }
  14259. }
  14260. for (int i = 0; i < cgraph->n_nodes; i++) {
  14261. struct ggml_tensor * node = cgraph->nodes[i];
  14262. if (strcmp(node->name, name) == 0) {
  14263. return node;
  14264. }
  14265. }
  14266. return NULL;
  14267. }
  14268. static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fout) {
  14269. const int64_t * ne = tensor->ne;
  14270. const size_t * nb = tensor->nb;
  14271. fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
  14272. ggml_type_name(tensor->type),
  14273. ggml_op_name (tensor->op),
  14274. tensor->n_dims,
  14275. ne[0], ne[1], ne[2], ne[3],
  14276. nb[0], nb[1], nb[2], nb[3],
  14277. tensor->data,
  14278. tensor->name);
  14279. }
  14280. static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char * arg, FILE * fout) {
  14281. const int64_t * ne = tensor->ne;
  14282. const size_t * nb = tensor->nb;
  14283. fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
  14284. arg,
  14285. ggml_type_name(tensor->type),
  14286. ggml_op_name (tensor->op),
  14287. tensor->n_dims,
  14288. ne[0], ne[1], ne[2], ne[3],
  14289. nb[0], nb[1], nb[2], nb[3],
  14290. tensor->n_tasks,
  14291. tensor->data,
  14292. tensor->name);
  14293. }
  14294. void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
  14295. //assert(cgraph->work == NULL);
  14296. //assert(cgraph->work_size == 0);
  14297. uint64_t size_eval = 0;
  14298. // compute size of intermediate results
  14299. // TODO: does not take into account scratch buffers !!!!
  14300. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14301. size_eval += ggml_nbytes(cgraph->nodes[i]);
  14302. }
  14303. // print
  14304. {
  14305. FILE * fout = stdout;
  14306. fprintf(fout, "\n");
  14307. fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
  14308. fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
  14309. fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
  14310. fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
  14311. fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
  14312. // header
  14313. fprintf(fout, "\n");
  14314. fprintf(fout, "%-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %16s %16s\n",
  14315. "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "DATA", "NAME");
  14316. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14317. ggml_graph_export_leaf(cgraph->leafs[i], fout);
  14318. GGML_ASSERT(cgraph->leafs[i]->op == GGML_OP_NONE);
  14319. GGML_ASSERT(cgraph->leafs[i]->src0 == NULL);
  14320. GGML_ASSERT(cgraph->leafs[i]->src1 == NULL);
  14321. }
  14322. // header
  14323. fprintf(fout, "\n");
  14324. fprintf(fout, "%-6s %-6s %-12s %8s %8s %8s %8s %8s %16s %16s %16s %16s %8s %16s %16s\n",
  14325. "ARG", "TYPE", "OP", "NDIMS", "NE0", "NE1", "NE2", "NE3", "NB0", "NB1", "NB2", "NB3", "NTASKS", "DATA", "NAME");
  14326. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14327. ggml_graph_export_node(cgraph->nodes[i], "DST", fout);
  14328. if (cgraph->nodes[i]->src0) {
  14329. ggml_graph_export_node(cgraph->nodes[i]->src0, "SRC0", fout);
  14330. }
  14331. if (cgraph->nodes[i]->src1) {
  14332. ggml_graph_export_node(cgraph->nodes[i]->src1, "SRC1", fout);
  14333. }
  14334. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14335. if (cgraph->nodes[i]->opt[j]) {
  14336. ggml_graph_export_node(cgraph->nodes[i]->opt[j], "OPT", fout);
  14337. }
  14338. }
  14339. fprintf(fout, "\n");
  14340. }
  14341. fprintf(fout, "\n");
  14342. }
  14343. // write binary data
  14344. {
  14345. FILE * fout = fopen(fname, "wb");
  14346. if (!fout) {
  14347. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14348. return;
  14349. }
  14350. // header
  14351. {
  14352. const uint32_t magic = GGML_FILE_MAGIC;
  14353. const uint32_t version = GGML_FILE_VERSION;
  14354. const uint32_t n_leafs = cgraph->n_leafs;
  14355. const uint32_t nodes = cgraph->n_nodes;
  14356. fwrite(&magic, sizeof(uint32_t), 1, fout);
  14357. fwrite(&version, sizeof(uint32_t), 1, fout);
  14358. fwrite(&n_leafs, sizeof(uint32_t), 1, fout);
  14359. fwrite(&nodes, sizeof(uint32_t), 1, fout);
  14360. fwrite(&size_eval, sizeof(uint64_t), 1, fout);
  14361. }
  14362. // leafs
  14363. {
  14364. for (int i = 0; i < cgraph->n_leafs; ++i) {
  14365. const struct ggml_tensor * tensor = cgraph->leafs[i];
  14366. const uint32_t type = tensor->type;
  14367. const uint32_t op = tensor->op;
  14368. const uint32_t n_dims = tensor->n_dims;
  14369. fwrite(&type, sizeof(uint32_t), 1, fout);
  14370. fwrite(&op, sizeof(uint32_t), 1, fout);
  14371. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14372. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14373. const uint64_t ne = tensor->ne[j];
  14374. const uint64_t nb = tensor->nb[j];
  14375. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14376. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14377. }
  14378. // store the pointer address
  14379. {
  14380. const uint64_t ptr = (uint64_t) tensor->data;
  14381. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  14382. }
  14383. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14384. // dump the data
  14385. // TODO: pad this to 32 byte boundary
  14386. {
  14387. const size_t size = ggml_nbytes(tensor);
  14388. fwrite(tensor->data, sizeof(char), size, fout);
  14389. }
  14390. }
  14391. }
  14392. // nodes
  14393. {
  14394. for (int i = 0; i < cgraph->n_nodes; ++i) {
  14395. const struct ggml_tensor * tensor = cgraph->nodes[i];
  14396. const uint32_t type = tensor->type;
  14397. const uint32_t op = tensor->op;
  14398. const uint32_t n_dims = tensor->n_dims;
  14399. fwrite(&type, sizeof(uint32_t), 1, fout);
  14400. fwrite(&op, sizeof(uint32_t), 1, fout);
  14401. fwrite(&n_dims, sizeof(uint32_t), 1, fout);
  14402. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14403. const uint64_t ne = tensor->ne[j];
  14404. const uint64_t nb = tensor->nb[j];
  14405. fwrite(&ne, sizeof(uint64_t), 1, fout);
  14406. fwrite(&nb, sizeof(uint64_t), 1, fout);
  14407. }
  14408. // store the pointer address
  14409. {
  14410. const uint64_t ptr = (uint64_t) tensor->data;
  14411. fwrite(&ptr, sizeof(uint64_t), 1, fout);
  14412. }
  14413. fwrite(tensor->name, sizeof(char), GGML_MAX_NAME, fout);
  14414. // output the op arguments
  14415. {
  14416. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14417. args[0] = tensor->src0;
  14418. args[1] = tensor->src1;
  14419. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14420. args[2 + j] = tensor->opt[j];
  14421. }
  14422. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14423. if (args[j]) {
  14424. int32_t idx = -1;
  14425. // check if leaf
  14426. {
  14427. for (int k = 0; k < cgraph->n_leafs; ++k) {
  14428. if (args[j] == cgraph->leafs[k]) {
  14429. idx = k;
  14430. break;
  14431. }
  14432. }
  14433. }
  14434. // check if node
  14435. if (idx == -1) {
  14436. for (int k = 0; k < cgraph->n_nodes; ++k) {
  14437. if (args[j] == cgraph->nodes[k]) {
  14438. idx = GGML_MAX_NODES + k;
  14439. break;
  14440. }
  14441. }
  14442. }
  14443. if (idx == -1) {
  14444. fprintf(stderr, "%s: failed to find tensor, arg = %d, node = %d\n", __func__, j, i);
  14445. return;
  14446. }
  14447. fwrite(&idx, sizeof(int32_t), 1, fout);
  14448. } else {
  14449. const int32_t nul = -1;
  14450. fwrite(&nul, sizeof(int32_t), 1, fout);
  14451. }
  14452. }
  14453. }
  14454. }
  14455. }
  14456. fclose(fout);
  14457. }
  14458. }
  14459. struct ggml_cgraph ggml_graph_import(const char * fname, struct ggml_context ** ctx_data, struct ggml_context ** ctx_eval) {
  14460. assert(*ctx_data == NULL);
  14461. assert(*ctx_eval == NULL);
  14462. struct ggml_cgraph result = { 0 };
  14463. struct ggml_tensor * data = NULL;
  14464. // read file into data
  14465. {
  14466. FILE * fin = fopen(fname, "rb");
  14467. if (!fin) {
  14468. fprintf(stderr, "%s: failed to open %s\n", __func__, fname);
  14469. return result;
  14470. }
  14471. size_t fsize = 0;
  14472. fseek(fin, 0, SEEK_END);
  14473. fsize = ftell(fin);
  14474. fseek(fin, 0, SEEK_SET);
  14475. // create the data context
  14476. {
  14477. const size_t overhead = 1*ggml_tensor_overhead();
  14478. struct ggml_init_params params = {
  14479. .mem_size = fsize + overhead,
  14480. .mem_buffer = NULL,
  14481. .no_alloc = false,
  14482. };
  14483. *ctx_data = ggml_init(params);
  14484. if (!*ctx_data) {
  14485. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14486. fclose(fin);
  14487. return result;
  14488. }
  14489. }
  14490. data = ggml_new_tensor_1d(*ctx_data, GGML_TYPE_I8, fsize);
  14491. {
  14492. const size_t ret = fread(data->data, sizeof(char), fsize, fin);
  14493. if (ret != fsize) {
  14494. fprintf(stderr, "%s: failed to read %s\n", __func__, fname);
  14495. fclose(fin);
  14496. return result;
  14497. }
  14498. }
  14499. fclose(fin);
  14500. }
  14501. // populate result
  14502. {
  14503. char * ptr = (char *) data->data;
  14504. const uint32_t magic = *(const uint32_t *) ptr; ptr += sizeof(magic);
  14505. if (magic != GGML_FILE_MAGIC) {
  14506. fprintf(stderr, "%s: invalid magic number, got %08x\n", __func__, magic);
  14507. return result;
  14508. }
  14509. const uint32_t version = *(const uint32_t *) ptr; ptr += sizeof(version);
  14510. if (version != GGML_FILE_VERSION) {
  14511. fprintf(stderr, "%s: invalid version number\n", __func__);
  14512. return result;
  14513. }
  14514. const uint32_t n_leafs = *(const uint32_t *) ptr; ptr += sizeof(n_leafs);
  14515. const uint32_t n_nodes = *(const uint32_t *) ptr; ptr += sizeof(n_nodes);
  14516. const uint64_t size_eval = *(const uint64_t *) ptr; ptr += sizeof(size_eval);
  14517. result.n_leafs = n_leafs;
  14518. result.n_nodes = n_nodes;
  14519. // create the data context
  14520. {
  14521. const size_t overhead = (n_leafs + n_nodes)*ggml_tensor_overhead();
  14522. struct ggml_init_params params = {
  14523. .mem_size = size_eval + overhead,
  14524. .mem_buffer = NULL,
  14525. .no_alloc = true,
  14526. };
  14527. *ctx_eval = ggml_init(params);
  14528. if (!*ctx_eval) {
  14529. fprintf(stderr, "%s: failed to create ggml context\n", __func__);
  14530. return result;
  14531. }
  14532. }
  14533. // leafs
  14534. {
  14535. uint32_t type;
  14536. uint32_t op;
  14537. uint32_t n_dims;
  14538. for (uint32_t i = 0; i < n_leafs; ++i) {
  14539. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14540. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14541. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14542. int64_t ne[GGML_MAX_DIMS];
  14543. size_t nb[GGML_MAX_DIMS];
  14544. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14545. uint64_t ne_cur;
  14546. uint64_t nb_cur;
  14547. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14548. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14549. ne[j] = ne_cur;
  14550. nb[j] = nb_cur;
  14551. }
  14552. struct ggml_tensor * tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14553. tensor->op = (enum ggml_op) op;
  14554. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur);
  14555. memcpy(tensor->name, ptr, GGML_MAX_NAME); ptr += GGML_MAX_NAME;
  14556. tensor->data = (void *) ptr;
  14557. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14558. tensor->nb[j] = nb[j];
  14559. }
  14560. result.leafs[i] = tensor;
  14561. ptr += ggml_nbytes(tensor);
  14562. fprintf(stderr, "%s: loaded leaf %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14563. }
  14564. }
  14565. ggml_set_no_alloc(*ctx_eval, false);
  14566. // nodes
  14567. {
  14568. uint32_t type;
  14569. uint32_t op;
  14570. uint32_t n_dims;
  14571. for (uint32_t i = 0; i < n_nodes; ++i) {
  14572. type = *(const uint32_t *) ptr; ptr += sizeof(type);
  14573. op = *(const uint32_t *) ptr; ptr += sizeof(op);
  14574. n_dims = *(const uint32_t *) ptr; ptr += sizeof(n_dims);
  14575. enum ggml_op eop = (enum ggml_op) op;
  14576. int64_t ne[GGML_MAX_DIMS];
  14577. size_t nb[GGML_MAX_DIMS];
  14578. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14579. uint64_t ne_cur;
  14580. uint64_t nb_cur;
  14581. ne_cur = *(const uint64_t *) ptr; ptr += sizeof(ne_cur);
  14582. nb_cur = *(const uint64_t *) ptr; ptr += sizeof(nb_cur);
  14583. ne[j] = ne_cur;
  14584. nb[j] = nb_cur;
  14585. }
  14586. uint64_t ptr_cur = *(const uint64_t *) ptr; ptr += sizeof(ptr_cur); // TODO: not yet used
  14587. const char * ptr_name = ptr; ptr += GGML_MAX_NAME;
  14588. const int32_t * ptr_arg_idx = (const int32_t *) ptr; ptr += (2 + GGML_MAX_OPT)*sizeof(int32_t);
  14589. struct ggml_tensor * args[2 + GGML_MAX_OPT] = { NULL };
  14590. // parse args
  14591. for (int j = 0; j < 2 + GGML_MAX_OPT; ++j) {
  14592. const int32_t arg_idx = ptr_arg_idx[j];
  14593. if (arg_idx == -1) {
  14594. continue;
  14595. }
  14596. if (arg_idx < GGML_MAX_NODES) {
  14597. args[j] = result.leafs[arg_idx];
  14598. } else {
  14599. args[j] = result.nodes[arg_idx - GGML_MAX_NODES];
  14600. }
  14601. }
  14602. // create the tensor
  14603. // "view" operations are handled differently
  14604. // TODO: handle inplace ops - currently a copy is always made
  14605. struct ggml_tensor * tensor = NULL;
  14606. switch (eop) {
  14607. // TODO: implement other view ops
  14608. case GGML_OP_RESHAPE:
  14609. {
  14610. tensor = ggml_reshape_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3]);
  14611. } break;
  14612. case GGML_OP_VIEW:
  14613. {
  14614. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14615. uint64_t offs;
  14616. memcpy(&offs, args[2]->data, sizeof(offs));
  14617. tensor->data = ((char *) tensor->data) + offs;
  14618. } break;
  14619. case GGML_OP_TRANSPOSE:
  14620. {
  14621. tensor = ggml_transpose(*ctx_eval, args[0]);
  14622. } break;
  14623. case GGML_OP_PERMUTE:
  14624. {
  14625. tensor = ggml_view_4d(*ctx_eval, args[0], ne[0], ne[1], ne[2], ne[3], 0, 0, 0, 0);
  14626. } break;
  14627. default:
  14628. {
  14629. tensor = ggml_new_tensor(*ctx_eval, (enum ggml_type) type, n_dims, ne);
  14630. tensor->op = eop;
  14631. } break;
  14632. }
  14633. memcpy(tensor->name, ptr_name, GGML_MAX_NAME);
  14634. for (int j = 0; j < GGML_MAX_DIMS; ++j) {
  14635. tensor->nb[j] = nb[j];
  14636. }
  14637. tensor->src0 = args[0];
  14638. tensor->src1 = args[1];
  14639. for (int j = 0; j < GGML_MAX_OPT; ++j) {
  14640. tensor->opt[j] = args[2 + j];
  14641. }
  14642. result.nodes[i] = tensor;
  14643. fprintf(stderr, "%s: loaded node %d: '%16s', %3d dims, %9zu bytes\n", __func__, i, tensor->name, n_dims, ggml_nbytes(tensor));
  14644. }
  14645. }
  14646. }
  14647. return result;
  14648. }
  14649. void ggml_graph_print(const struct ggml_cgraph * cgraph) {
  14650. int64_t perf_total_per_op_us[GGML_OP_COUNT] = {0};
  14651. GGML_PRINT("=== GRAPH ===\n");
  14652. GGML_PRINT_DEBUG("n_threads = %d\n", cgraph->n_threads);
  14653. GGML_PRINT_DEBUG("total work size = %zu bytes\n", cgraph->work_size);
  14654. GGML_PRINT("n_nodes = %d\n", cgraph->n_nodes);
  14655. for (int i = 0; i < cgraph->n_nodes; i++) {
  14656. struct ggml_tensor * node = cgraph->nodes[i];
  14657. perf_total_per_op_us[node->op] += MAX(1, node->perf_time_us);
  14658. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 ", %5" PRId64 "] %16s %s (%3d) cpu = %7.3f / %7.3f ms, wall = %7.3f / %7.3f ms\n",
  14659. i,
  14660. node->ne[0], node->ne[1], node->ne[2],
  14661. GGML_OP_NAME[node->op], node->is_param ? "x" : node->grad ? "g" : " ", node->perf_runs,
  14662. (double) node->perf_cycles / (double) ggml_cycles_per_ms(),
  14663. (double) node->perf_cycles / (double) ggml_cycles_per_ms() / (double) node->perf_runs,
  14664. (double) node->perf_time_us / 1000.0,
  14665. (double) node->perf_time_us / 1000.0 / node->perf_runs);
  14666. }
  14667. GGML_PRINT("n_leafs = %d\n", cgraph->n_leafs);
  14668. for (int i = 0; i < cgraph->n_leafs; i++) {
  14669. struct ggml_tensor * node = cgraph->leafs[i];
  14670. GGML_PRINT(" - %3d: [ %5" PRId64 ", %5" PRId64 "] %8s\n",
  14671. i,
  14672. node->ne[0], node->ne[1],
  14673. GGML_OP_NAME[node->op]);
  14674. }
  14675. for (int i = 0; i < GGML_OP_COUNT; i++) {
  14676. if (perf_total_per_op_us[i] == 0) {
  14677. continue;
  14678. }
  14679. GGML_PRINT("perf_total_per_op_us[%16s] = %7.3f ms\n", GGML_OP_NAME[i], (double) perf_total_per_op_us[i] / 1000.0);
  14680. }
  14681. GGML_PRINT("========================================\n");
  14682. }
  14683. // check if node is part of the graph
  14684. static bool ggml_graph_find(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14685. if (cgraph == NULL) {
  14686. return true;
  14687. }
  14688. for (int i = 0; i < cgraph->n_nodes; i++) {
  14689. if (cgraph->nodes[i] == node) {
  14690. return true;
  14691. }
  14692. }
  14693. return false;
  14694. }
  14695. static struct ggml_tensor * ggml_graph_get_parent(const struct ggml_cgraph * cgraph, const struct ggml_tensor * node) {
  14696. for (int i = 0; i < cgraph->n_nodes; i++) {
  14697. struct ggml_tensor * parent = cgraph->nodes[i];
  14698. if (parent->grad == node) {
  14699. return parent;
  14700. }
  14701. }
  14702. return NULL;
  14703. }
  14704. static void ggml_graph_dump_dot_node_edge(FILE * fp, const struct ggml_cgraph * gb, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14705. struct ggml_tensor * gparent = ggml_graph_get_parent(gb, node);
  14706. struct ggml_tensor * gparent0 = ggml_graph_get_parent(gb, parent);
  14707. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ arrowhead = %s; style = %s; label = \"%s\"; ]\n",
  14708. gparent0 ? (void *) gparent0 : (void *) parent,
  14709. gparent0 ? "g" : "x",
  14710. gparent ? (void *) gparent : (void *) node,
  14711. gparent ? "g" : "x",
  14712. gparent ? "empty" : "vee",
  14713. gparent ? "dashed" : "solid",
  14714. label);
  14715. }
  14716. static void ggml_graph_dump_dot_leaf_edge(FILE * fp, struct ggml_tensor * node, struct ggml_tensor * parent, const char * label) {
  14717. fprintf(fp, " \"%p\":%s -> \"%p\":%s [ label = \"%s\"; ]\n",
  14718. (void *) parent, "x",
  14719. (void *) node, "x",
  14720. label);
  14721. }
  14722. void ggml_graph_dump_dot(const struct ggml_cgraph * gb, const struct ggml_cgraph * gf, const char * filename) {
  14723. char color[16];
  14724. FILE * fp = fopen(filename, "w");
  14725. GGML_ASSERT(fp);
  14726. fprintf(fp, "digraph G {\n");
  14727. fprintf(fp, " newrank = true;\n");
  14728. fprintf(fp, " rankdir = LR;\n");
  14729. for (int i = 0; i < gb->n_nodes; i++) {
  14730. struct ggml_tensor * node = gb->nodes[i];
  14731. if (ggml_graph_get_parent(gb, node) != NULL) {
  14732. continue;
  14733. }
  14734. if (node->is_param) {
  14735. snprintf(color, sizeof(color), "yellow");
  14736. } else if (node->grad) {
  14737. if (ggml_graph_find(gf, node)) {
  14738. snprintf(color, sizeof(color), "green");
  14739. } else {
  14740. snprintf(color, sizeof(color), "lightblue");
  14741. }
  14742. } else {
  14743. snprintf(color, sizeof(color), "white");
  14744. }
  14745. fprintf(fp, " \"%p\" [ "
  14746. "style = filled; fillcolor = %s; shape = record; "
  14747. "label=\"",
  14748. (void *) node, color);
  14749. if (strlen(node->name) > 0) {
  14750. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14751. } else {
  14752. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14753. }
  14754. if (node->n_dims == 2) {
  14755. fprintf(fp, "%d [%" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], GGML_OP_SYMBOL[node->op]);
  14756. } else {
  14757. fprintf(fp, "%d [%" PRId64 ", %" PRId64 ", %" PRId64 "] | <x>%s", i, node->ne[0], node->ne[1], node->ne[2], GGML_OP_SYMBOL[node->op]);
  14758. }
  14759. if (node->grad) {
  14760. fprintf(fp, " | <g>%s\"; ]\n", GGML_OP_SYMBOL[node->grad->op]);
  14761. } else {
  14762. fprintf(fp, "\"; ]\n");
  14763. }
  14764. }
  14765. for (int i = 0; i < gb->n_leafs; i++) {
  14766. struct ggml_tensor * node = gb->leafs[i];
  14767. snprintf(color, sizeof(color), "pink");
  14768. fprintf(fp, " \"%p\" [ "
  14769. "style = filled; fillcolor = %s; shape = record; "
  14770. "label=\"<x>",
  14771. (void *) node, color);
  14772. if (strlen(node->name) > 0) {
  14773. fprintf(fp, "%s (%s)|", node->name, ggml_type_name(node->type));
  14774. } else {
  14775. fprintf(fp, "(%s)|", ggml_type_name(node->type));
  14776. }
  14777. fprintf(fp, "CONST %d [%" PRId64 ", %" PRId64 "]", i, node->ne[0], node->ne[1]);
  14778. if (ggml_nelements(node) < 5) {
  14779. fprintf(fp, " | (");
  14780. for (int j = 0; j < ggml_nelements(node); j++) {
  14781. if (node->type == GGML_TYPE_I8 || node->type == GGML_TYPE_I16 || node->type == GGML_TYPE_I32) {
  14782. fprintf(fp, "%d", ggml_get_i32_1d(node, j));
  14783. }
  14784. else if (node->type == GGML_TYPE_F32 || node->type == GGML_TYPE_F16) {
  14785. fprintf(fp, "%.1e", (double)ggml_get_f32_1d(node, j));
  14786. }
  14787. else {
  14788. fprintf(fp, "#");
  14789. }
  14790. if (j < ggml_nelements(node) - 1) {
  14791. fprintf(fp, ", ");
  14792. }
  14793. }
  14794. fprintf(fp, ")");
  14795. }
  14796. fprintf(fp, "\"; ]\n");
  14797. }
  14798. for (int i = 0; i < gb->n_nodes; i++) {
  14799. struct ggml_tensor * node = gb->nodes[i];
  14800. if (node->src0) {
  14801. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src0, "x");
  14802. }
  14803. if (node->src1) {
  14804. ggml_graph_dump_dot_node_edge(fp, gb, node, node->src1, "y");
  14805. }
  14806. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14807. if (node->opt[j]) {
  14808. char label[16];
  14809. snprintf(label, sizeof(label), "opt %d", j);
  14810. ggml_graph_dump_dot_node_edge(fp, gb, node, node->opt[j], label);
  14811. }
  14812. }
  14813. }
  14814. for (int i = 0; i < gb->n_leafs; i++) {
  14815. struct ggml_tensor * node = gb->leafs[i];
  14816. if (node->src0) {
  14817. ggml_graph_dump_dot_leaf_edge(fp, node, node->src0, "x");
  14818. }
  14819. if (node->src1) {
  14820. ggml_graph_dump_dot_leaf_edge(fp, node, node->src1, "y");
  14821. }
  14822. for (int j = 0; j < GGML_MAX_OPT; j++) {
  14823. if (node->opt[j]) {
  14824. char label[16];
  14825. snprintf(label, sizeof(label), "opt %d", j);
  14826. ggml_graph_dump_dot_leaf_edge(fp, node, node->opt[j], label);
  14827. }
  14828. }
  14829. }
  14830. fprintf(fp, "}\n");
  14831. fclose(fp);
  14832. GGML_PRINT("%s: dot -Tpng %s -o %s.png && open %s.png\n", __func__, filename, filename, filename);
  14833. }
  14834. ////////////////////////////////////////////////////////////////////////////////
  14835. static void ggml_opt_set_params(int np, struct ggml_tensor * const ps[], const float * x) {
  14836. int i = 0;
  14837. for (int p = 0; p < np; ++p) {
  14838. const int64_t ne = ggml_nelements(ps[p]) ;
  14839. // TODO: add function to set tensor from array
  14840. for (int64_t j = 0; j < ne; ++j) {
  14841. ggml_set_f32_1d(ps[p], j, x[i++]);
  14842. }
  14843. }
  14844. }
  14845. static void ggml_opt_get_params(int np, struct ggml_tensor * const ps[], float * x) {
  14846. int i = 0;
  14847. for (int p = 0; p < np; ++p) {
  14848. const int64_t ne = ggml_nelements(ps[p]) ;
  14849. // TODO: add function to get all elements at once
  14850. for (int64_t j = 0; j < ne; ++j) {
  14851. x[i++] = ggml_get_f32_1d(ps[p], j);
  14852. }
  14853. }
  14854. }
  14855. static void ggml_opt_get_grad(int np, struct ggml_tensor * const ps[], float * g) {
  14856. int i = 0;
  14857. for (int p = 0; p < np; ++p) {
  14858. const int64_t ne = ggml_nelements(ps[p]) ;
  14859. // TODO: add function to get all elements at once
  14860. for (int64_t j = 0; j < ne; ++j) {
  14861. g[i++] = ggml_get_f32_1d(ps[p]->grad, j);
  14862. }
  14863. }
  14864. }
  14865. //
  14866. // ADAM
  14867. //
  14868. // ref: https://arxiv.org/pdf/1412.6980.pdf
  14869. //
  14870. static enum ggml_opt_result ggml_opt_adam(
  14871. struct ggml_context * ctx,
  14872. struct ggml_opt_context * opt,
  14873. struct ggml_opt_params params,
  14874. struct ggml_tensor * f,
  14875. struct ggml_cgraph * gf,
  14876. struct ggml_cgraph * gb) {
  14877. GGML_ASSERT(ggml_is_scalar(f));
  14878. gf->n_threads = params.n_threads;
  14879. gb->n_threads = params.n_threads;
  14880. // these will store the parameters we want to optimize
  14881. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  14882. int np = 0;
  14883. int nx = 0;
  14884. for (int i = 0; i < gf->n_nodes; ++i) {
  14885. if (gf->nodes[i]->is_param) {
  14886. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  14887. GGML_ASSERT(np < GGML_MAX_PARAMS);
  14888. ps[np++] = gf->nodes[i];
  14889. nx += ggml_nelements(gf->nodes[i]);
  14890. }
  14891. }
  14892. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past)) {
  14893. int iter = opt->iter;
  14894. ggml_opt_init(opt->ctx, opt, params, nx);
  14895. opt->iter = iter;
  14896. }
  14897. // constants
  14898. const float sched = params.adam.sched;
  14899. const float decay = params.adam.decay * sched;
  14900. const float alpha = params.adam.alpha * sched;
  14901. const float beta1 = params.adam.beta1;
  14902. const float beta2 = params.adam.beta2;
  14903. const float eps = params.adam.eps;
  14904. float * x = opt->adam.x->data; // view of the parameters
  14905. float * g1 = opt->adam.g1->data; // gradient
  14906. float * g2 = opt->adam.g2->data; // gradient squared
  14907. float * m = opt->adam.m->data; // first moment
  14908. float * v = opt->adam.v->data; // second moment
  14909. float * mh = opt->adam.mh->data; // first moment hat
  14910. float * vh = opt->adam.vh->data; // second moment hat
  14911. float * pf = params.past > 0 ? opt->adam.pf->data : NULL; // past function values
  14912. // update view
  14913. ggml_opt_get_params(np, ps, x);
  14914. // compute the function value
  14915. ggml_graph_reset (gf);
  14916. ggml_set_f32 (f->grad, 1.0f);
  14917. ggml_graph_compute(ctx, gb);
  14918. opt->adam.fx_prev = ggml_get_f32_1d(f, 0);
  14919. opt->adam.fx_best = opt->adam.fx_prev;
  14920. if (pf) {
  14921. pf[opt->iter % params.past] = opt->adam.fx_prev;
  14922. }
  14923. // initialize
  14924. if (opt->just_initialized) {
  14925. opt->adam.n_no_improvement = 0;
  14926. opt->just_initialized = false;
  14927. }
  14928. float * fx_best = &opt->adam.fx_best;
  14929. float * fx_prev = &opt->adam.fx_prev;
  14930. int * n_no_improvement = &opt->adam.n_no_improvement;
  14931. int iter0 = opt->iter;
  14932. // run the optimizer
  14933. for (int t = 0; t < params.adam.n_iter; ++t) {
  14934. opt->iter = iter0 + t + 1;
  14935. GGML_PRINT_DEBUG ("=== iter %d ===\n", t);
  14936. GGML_PRINT_DEBUG ("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  14937. GGML_PRINT_DEBUG_5("df/dx0 = %10.6f\n", ggml_get_f32_1d(ps[0]->grad, 0));
  14938. GGML_PRINT_DEBUG_5("df/dx1 = %10.6f\n", ggml_get_f32_1d(ps[1]->grad, 0));
  14939. for (int i = 0; i < np; ++i) {
  14940. GGML_PRINT_DEBUG("param %d: %10.6f, g = %10.6f\n", i,
  14941. ggml_get_f32_1d(ps[i], 0), ggml_get_f32_1d(ps[i]->grad, 0));
  14942. }
  14943. const int64_t t_start_wall = ggml_time_us();
  14944. const int64_t t_start_cpu = ggml_cycles();
  14945. UNUSED(t_start_wall);
  14946. UNUSED(t_start_cpu);
  14947. {
  14948. // update the gradient
  14949. ggml_opt_get_grad(np, ps, g1);
  14950. // m_t = beta1*m_t-1 + (1 - beta1)*g_t
  14951. ggml_vec_scale_f32(nx, m, beta1);
  14952. ggml_vec_mad_f32 (nx, m, g1, 1.0f - beta1);
  14953. // g2 = g1^2
  14954. ggml_vec_sqr_f32 (nx, g2, g1);
  14955. // v_t = beta2*v_t-1 + (1 - beta2)*g_t^2
  14956. ggml_vec_scale_f32(nx, v, beta2);
  14957. ggml_vec_mad_f32 (nx, v, g2, 1.0f - beta2);
  14958. // m^hat = m_t / (1 - beta1^t)
  14959. // v^hat = v_t / (1 - beta2^t)
  14960. // x_t = x_t-1 - sched*(alpha*m^hat/(sqrt(v^hat) + eps) + decay*x_t-1)
  14961. // x_t = x_t-1 - sched*alpha*m^hat/(sqrt(v^hat) + eps) - sched*decay*x_t-1
  14962. // x_t = x_t-1*(1-sched*decay) - sched*alpha*m^hat/(sqrt(v^hat) + eps)
  14963. // x_t = x_t-1*(1-sched*decay) + sched*decay*(-alpha/decay)*m^hat/(sqrt(v^hat) + eps)
  14964. // x_t = mix(x_t-1, (-alpha/decay)*m^hat/(sqrt(v^hat) + eps), sched*decay)
  14965. ggml_vec_cpy_f32 (nx, mh, m);
  14966. ggml_vec_cpy_f32 (nx, vh, v);
  14967. ggml_vec_scale_f32(nx, mh, alpha/(1.0f - powf(beta1, opt->iter)));
  14968. ggml_vec_scale_f32(nx, vh, 1.0f/(1.0f - powf(beta2, opt->iter)));
  14969. ggml_vec_sqrt_f32 (nx, vh, vh);
  14970. ggml_vec_acc1_f32 (nx, vh, eps);
  14971. ggml_vec_div_f32 (nx, mh, mh, vh);
  14972. ggml_vec_scale_f32(nx, x, 1.0f - decay);
  14973. ggml_vec_sub_f32 (nx, x, x, mh);
  14974. // update the parameters
  14975. ggml_opt_set_params(np, ps, x);
  14976. }
  14977. ggml_graph_reset (gf);
  14978. ggml_set_f32 (f->grad, 1.0f);
  14979. ggml_graph_compute(ctx, gb);
  14980. const float fx = ggml_get_f32_1d(f, 0);
  14981. // check convergence
  14982. if (fabsf(fx - fx_prev[0])/fx < params.adam.eps_f) {
  14983. GGML_PRINT_DEBUG("converged\n");
  14984. return GGML_OPT_OK;
  14985. }
  14986. // delta-based convergence test
  14987. if (pf != NULL) {
  14988. // need at least params.past iterations to start checking for convergence
  14989. if (params.past <= iter0 + t) {
  14990. const float rate = (pf[(iter0 + t)%params.past] - fx)/fx;
  14991. if (fabsf(rate) < params.delta) {
  14992. return GGML_OPT_OK;
  14993. }
  14994. }
  14995. pf[(iter0 + t)%params.past] = fx;
  14996. }
  14997. // check for improvement
  14998. if (params.max_no_improvement > 0) {
  14999. if (fx_best[0] > fx) {
  15000. fx_best[0] = fx;
  15001. n_no_improvement[0] = 0;
  15002. } else {
  15003. ++n_no_improvement[0];
  15004. if (n_no_improvement[0] >= params.max_no_improvement) {
  15005. return GGML_OPT_OK;
  15006. }
  15007. }
  15008. }
  15009. fx_prev[0] = fx;
  15010. {
  15011. const int64_t t_end_cpu = ggml_cycles();
  15012. GGML_PRINT_DEBUG("time iter: %5.3f s\n", ((float)(t_end_cpu - t_start_cpu))/CLOCKS_PER_SEC);
  15013. UNUSED(t_end_cpu);
  15014. const int64_t t_end_wall = ggml_time_us();
  15015. GGML_PRINT_DEBUG("wall time iter: %5.3f s\n", (t_end_wall - t_start_wall)/1e6);
  15016. UNUSED(t_end_wall);
  15017. }
  15018. }
  15019. return GGML_OPT_DID_NOT_CONVERGE;
  15020. }
  15021. //
  15022. // L-BFGS
  15023. //
  15024. // the L-BFGS implementation below is based on the following implementation:
  15025. //
  15026. // https://github.com/chokkan/liblbfgs
  15027. //
  15028. struct ggml_lbfgs_iteration_data {
  15029. float alpha;
  15030. float ys;
  15031. float * s;
  15032. float * y;
  15033. };
  15034. static enum ggml_opt_result linesearch_backtracking(
  15035. struct ggml_context * ctx,
  15036. const struct ggml_opt_params * params,
  15037. int nx,
  15038. float * x,
  15039. float * fx,
  15040. float * g,
  15041. float * d,
  15042. float * step,
  15043. const float * xp,
  15044. struct ggml_tensor * f,
  15045. struct ggml_cgraph * gf,
  15046. struct ggml_cgraph * gb,
  15047. const int np,
  15048. struct ggml_tensor * ps[]) {
  15049. int count = 0;
  15050. float width = 0.0f;
  15051. float dg = 0.0f;
  15052. float finit = 0.0f;
  15053. float dginit = 0.0f;
  15054. float dgtest = 0.0f;
  15055. const float dec = 0.5f;
  15056. const float inc = 2.1f;
  15057. if (*step <= 0.f) {
  15058. return GGML_LINESEARCH_INVALID_PARAMETERS;
  15059. }
  15060. // compute the initial gradient in the search direction
  15061. ggml_vec_dot_f32(nx, &dginit, g, d);
  15062. // make sure that d points to a descent direction
  15063. if (0 < dginit) {
  15064. return GGML_LINESEARCH_FAIL;
  15065. }
  15066. // initialize local variables
  15067. finit = *fx;
  15068. dgtest = params->lbfgs.ftol*dginit;
  15069. while (true) {
  15070. ggml_vec_cpy_f32(nx, x, xp);
  15071. ggml_vec_mad_f32(nx, x, d, *step);
  15072. // evaluate the function and gradient values
  15073. {
  15074. ggml_opt_set_params(np, ps, x);
  15075. ggml_graph_reset (gf);
  15076. ggml_set_f32 (f->grad, 1.0f);
  15077. ggml_graph_compute(ctx, gb);
  15078. ggml_opt_get_grad(np, ps, g);
  15079. *fx = ggml_get_f32_1d(f, 0);
  15080. }
  15081. ++count;
  15082. if (*fx > finit + (*step)*dgtest) {
  15083. width = dec;
  15084. } else {
  15085. // Armijo condition is satisfied
  15086. if (params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_ARMIJO) {
  15087. return count;
  15088. }
  15089. ggml_vec_dot_f32(nx, &dg, g, d);
  15090. // check the Wolfe condition
  15091. if (dg < params->lbfgs.wolfe * dginit) {
  15092. width = inc;
  15093. } else {
  15094. if(params->lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE) {
  15095. // regular Wolfe conditions
  15096. return count;
  15097. }
  15098. if(dg > -params->lbfgs.wolfe*dginit) {
  15099. width = dec;
  15100. } else {
  15101. // strong Wolfe condition (GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE)
  15102. return count;
  15103. }
  15104. return count;
  15105. }
  15106. }
  15107. if (*step < params->lbfgs.min_step) {
  15108. return GGML_LINESEARCH_MINIMUM_STEP;
  15109. }
  15110. if (*step > params->lbfgs.max_step) {
  15111. return GGML_LINESEARCH_MAXIMUM_STEP;
  15112. }
  15113. if (params->lbfgs.max_linesearch <= count) {
  15114. return GGML_LINESEARCH_MAXIMUM_ITERATIONS;
  15115. }
  15116. (*step) *= width;
  15117. }
  15118. return GGML_LINESEARCH_FAIL;
  15119. }
  15120. static enum ggml_opt_result ggml_opt_lbfgs(
  15121. struct ggml_context * ctx,
  15122. struct ggml_opt_context * opt,
  15123. struct ggml_opt_params params,
  15124. struct ggml_tensor * f,
  15125. struct ggml_cgraph * gf,
  15126. struct ggml_cgraph * gb) {
  15127. if (params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_WOLFE ||
  15128. params.lbfgs.linesearch == GGML_LINESEARCH_BACKTRACKING_STRONG_WOLFE) {
  15129. if (params.lbfgs.wolfe <= params.lbfgs.ftol || 1.f <= params.lbfgs.wolfe) {
  15130. return GGML_OPT_INVALID_WOLFE;
  15131. }
  15132. }
  15133. gf->n_threads = params.n_threads;
  15134. gb->n_threads = params.n_threads;
  15135. const int m = params.lbfgs.m;
  15136. // these will store the parameters we want to optimize
  15137. struct ggml_tensor * ps[GGML_MAX_PARAMS];
  15138. int np = 0;
  15139. int nx = 0;
  15140. for (int i = 0; i < gf->n_nodes; ++i) {
  15141. if (gf->nodes[i]->is_param) {
  15142. GGML_PRINT_DEBUG("found param %d: grad->op = %d\n", np, gf->nodes[i]->grad->op);
  15143. GGML_ASSERT(np < GGML_MAX_PARAMS);
  15144. ps[np++] = gf->nodes[i];
  15145. nx += ggml_nelements(gf->nodes[i]);
  15146. }
  15147. }
  15148. if ((opt->params.type != params.type) || (opt->nx != nx) || (opt->params.past != params.past) || (opt->params.lbfgs.m != params.lbfgs.m)) {
  15149. int iter = opt->iter;
  15150. ggml_opt_init(ctx, opt, params, nx);
  15151. opt->iter = iter;
  15152. }
  15153. float * x = opt->lbfgs.x->data; // current parameters
  15154. float * xp = opt->lbfgs.xp->data; // previous parameters
  15155. float * g = opt->lbfgs.g->data; // current gradient
  15156. float * gp = opt->lbfgs.gp->data; // previous gradient
  15157. float * d = opt->lbfgs.d->data; // search direction
  15158. float * pf = params.past > 0 ? opt->lbfgs.pf->data : NULL; // past function values
  15159. float fx = 0.0f; // cost function value
  15160. float xnorm = 0.0f; // ||x||
  15161. float gnorm = 0.0f; // ||g||
  15162. // initialize x from the graph nodes
  15163. ggml_opt_get_params(np, ps, x);
  15164. // the L-BFGS memory
  15165. float * lm_alpha = opt->lbfgs.lmal->data;
  15166. float * lm_ys = opt->lbfgs.lmys->data;
  15167. float * lm_s = opt->lbfgs.lms->data;
  15168. float * lm_y = opt->lbfgs.lmy->data;
  15169. // evaluate the function value and its gradient
  15170. {
  15171. ggml_opt_set_params(np, ps, x);
  15172. ggml_graph_reset (gf);
  15173. ggml_set_f32 (f->grad, 1.0f);
  15174. ggml_graph_compute(ctx, gb);
  15175. ggml_opt_get_grad(np, ps, g);
  15176. fx = ggml_get_f32_1d(f, 0);
  15177. }
  15178. // search direction = -gradient
  15179. ggml_vec_neg_f32(nx, d, g);
  15180. // ||x||, ||g||
  15181. ggml_vec_norm_f32(nx, &xnorm, x);
  15182. ggml_vec_norm_f32(nx, &gnorm, g);
  15183. if (xnorm < 1.0f) {
  15184. xnorm = 1.0f;
  15185. }
  15186. // already optimized
  15187. if (gnorm/xnorm <= params.lbfgs.eps) {
  15188. return GGML_OPT_OK;
  15189. }
  15190. if (opt->just_initialized) {
  15191. if (pf) {
  15192. pf[0] = fx;
  15193. }
  15194. opt->lbfgs.fx_best = fx;
  15195. // initial step
  15196. ggml_vec_norm_inv_f32(nx, &opt->lbfgs.step, d);
  15197. opt->lbfgs.j = 0;
  15198. opt->lbfgs.k = 1;
  15199. opt->lbfgs.end = 0;
  15200. opt->lbfgs.n_no_improvement = 0;
  15201. opt->just_initialized = false;
  15202. }
  15203. float * fx_best = &opt->lbfgs.fx_best;
  15204. float * step = &opt->lbfgs.step;
  15205. int * j = &opt->lbfgs.j;
  15206. int * k = &opt->lbfgs.k;
  15207. int * end = &opt->lbfgs.end;
  15208. int * n_no_improvement = &opt->lbfgs.n_no_improvement;
  15209. int ls = 0;
  15210. int bound = 0;
  15211. float ys = 0.0f;
  15212. float yy = 0.0f;
  15213. float beta = 0.0f;
  15214. int it = 0;
  15215. while (true) {
  15216. // store the current position and gradient vectors
  15217. ggml_vec_cpy_f32(nx, xp, x);
  15218. ggml_vec_cpy_f32(nx, gp, g);
  15219. ls = linesearch_backtracking(ctx, &params, nx, x, &fx, g, d, step, xp, f, gf, gb, np, ps);
  15220. if (ls < 0) {
  15221. // linesearch failed - go back to the previous point and return
  15222. ggml_vec_cpy_f32(nx, x, xp);
  15223. ggml_vec_cpy_f32(nx, g, gp);
  15224. return ls;
  15225. }
  15226. ggml_vec_norm_f32(nx, &xnorm, x);
  15227. ggml_vec_norm_f32(nx, &gnorm, g);
  15228. GGML_PRINT_DEBUG("f = %10.6f\n", ggml_get_f32_1d(f, 0));
  15229. if (xnorm < 1.0f) {
  15230. xnorm = 1.0f;
  15231. }
  15232. if (gnorm/xnorm <= params.lbfgs.eps) {
  15233. // converged
  15234. return GGML_OPT_OK;
  15235. }
  15236. // delta-based convergence test
  15237. if (pf != NULL) {
  15238. // need at least params.past iterations to start checking for convergence
  15239. if (params.past <= k[0]) {
  15240. const float rate = (pf[k[0]%params.past] - fx)/fx;
  15241. if (fabsf(rate) < params.delta) {
  15242. return GGML_OPT_OK;
  15243. }
  15244. }
  15245. pf[k[0]%params.past] = fx;
  15246. }
  15247. // check for improvement
  15248. if (params.max_no_improvement > 0) {
  15249. if (fx < fx_best[0]) {
  15250. fx_best[0] = fx;
  15251. n_no_improvement[0] = 0;
  15252. } else {
  15253. n_no_improvement[0]++;
  15254. if (n_no_improvement[0] >= params.max_no_improvement) {
  15255. return GGML_OPT_OK;
  15256. }
  15257. }
  15258. }
  15259. if (params.lbfgs.n_iter != 0 && params.lbfgs.n_iter < it + 1) {
  15260. // reached the maximum number of iterations
  15261. return GGML_OPT_DID_NOT_CONVERGE;
  15262. }
  15263. // update vectors s and y:
  15264. // s_{k+1} = x_{k+1} - x_{k} = \step * d_{k}.
  15265. // y_{k+1} = g_{k+1} - g_{k}.
  15266. //
  15267. ggml_vec_sub_f32(nx, &lm_s[end[0]*nx], x, xp);
  15268. ggml_vec_sub_f32(nx, &lm_y[end[0]*nx], g, gp);
  15269. // compute scalars ys and yy:
  15270. // ys = y^t \cdot s -> 1 / \rho.
  15271. // yy = y^t \cdot y.
  15272. //
  15273. ggml_vec_dot_f32(nx, &ys, &lm_y[end[0]*nx], &lm_s[end[0] *nx]);
  15274. ggml_vec_dot_f32(nx, &yy, &lm_y[end[0]*nx], &lm_y[end[0]*nx]);
  15275. lm_ys[end[0]] = ys;
  15276. // find new search direction
  15277. // ref: https://en.wikipedia.org/wiki/Limited-memory_BFGS
  15278. bound = (m <= k[0]) ? m : k[0];
  15279. k[0]++;
  15280. it++;
  15281. end[0] = (end[0] + 1)%m;
  15282. // initialize search direction with -g
  15283. ggml_vec_neg_f32(nx, d, g);
  15284. j[0] = end[0];
  15285. for (int i = 0; i < bound; ++i) {
  15286. j[0] = (j[0] + m - 1) % m;
  15287. // \alpha_{j} = \rho_{j} s^{t}_{j} \cdot q_{k+1}
  15288. ggml_vec_dot_f32(nx, &lm_alpha[j[0]], &lm_s[j[0]*nx], d);
  15289. lm_alpha[j[0]] /= lm_ys[j[0]];
  15290. // q_{i} = q_{i+1} - \alpha_{i} y_{i}
  15291. ggml_vec_mad_f32(nx, d, &lm_y[j[0]*nx], -lm_alpha[j[0]]);
  15292. }
  15293. ggml_vec_scale_f32(nx, d, ys/yy);
  15294. for (int i = 0; i < bound; ++i) {
  15295. // \beta_{j} = \rho_{j} y^t_{j} \cdot \gamma_{i}
  15296. ggml_vec_dot_f32(nx, &beta, &lm_y[j[0]*nx], d);
  15297. beta /= lm_ys[j[0]];
  15298. // \gamma_{i+1} = \gamma_{i} + (\alpha_{j} - \beta_{j}) s_{j}
  15299. ggml_vec_mad_f32(nx, d, &lm_s[j[0]*nx], lm_alpha[j[0]] - beta);
  15300. j[0] = (j[0] + 1)%m;
  15301. }
  15302. step[0] = 1.0;
  15303. }
  15304. return GGML_OPT_DID_NOT_CONVERGE;
  15305. }
  15306. struct ggml_opt_params ggml_opt_default_params(enum ggml_opt_type type) {
  15307. struct ggml_opt_params result;
  15308. switch (type) {
  15309. case GGML_OPT_ADAM:
  15310. {
  15311. result = (struct ggml_opt_params) {
  15312. .type = GGML_OPT_ADAM,
  15313. .n_threads = 1,
  15314. .past = 0,
  15315. .delta = 1e-5f,
  15316. .max_no_improvement = 100,
  15317. .print_forward_graph = true,
  15318. .print_backward_graph = true,
  15319. .adam = {
  15320. .n_iter = 10000,
  15321. .sched = 1.000f,
  15322. .decay = 0.001f,
  15323. .alpha = 0.001f,
  15324. .beta1 = 0.9f,
  15325. .beta2 = 0.999f,
  15326. .eps = 1e-8f,
  15327. .eps_f = 1e-5f,
  15328. .eps_g = 1e-3f,
  15329. },
  15330. };
  15331. } break;
  15332. case GGML_OPT_LBFGS:
  15333. {
  15334. result = (struct ggml_opt_params) {
  15335. .type = GGML_OPT_LBFGS,
  15336. .n_threads = 1,
  15337. .past = 0,
  15338. .delta = 1e-5f,
  15339. .max_no_improvement = 0,
  15340. .print_forward_graph = true,
  15341. .print_backward_graph = true,
  15342. .lbfgs = {
  15343. .m = 6,
  15344. .n_iter = 100,
  15345. .max_linesearch = 20,
  15346. .eps = 1e-5f,
  15347. .ftol = 1e-4f,
  15348. .wolfe = 0.9f,
  15349. .min_step = 1e-20f,
  15350. .max_step = 1e+20f,
  15351. .linesearch = GGML_LINESEARCH_DEFAULT,
  15352. },
  15353. };
  15354. } break;
  15355. }
  15356. return result;
  15357. }
  15358. GGML_API void ggml_opt_init(
  15359. struct ggml_context * ctx,
  15360. struct ggml_opt_context * opt,
  15361. struct ggml_opt_params params,
  15362. int64_t nx) {
  15363. opt->ctx = ctx;
  15364. opt->params = params;
  15365. opt->iter = 0;
  15366. opt->nx = nx;
  15367. opt->just_initialized = true;
  15368. switch (opt->params.type) {
  15369. case GGML_OPT_ADAM:
  15370. {
  15371. opt->adam.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15372. opt->adam.g1 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15373. opt->adam.g2 = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15374. opt->adam.m = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15375. opt->adam.v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15376. opt->adam.mh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15377. opt->adam.vh = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15378. opt->adam.pf = params.past > 0
  15379. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15380. : NULL;
  15381. ggml_set_zero(opt->adam.x);
  15382. ggml_set_zero(opt->adam.g1);
  15383. ggml_set_zero(opt->adam.g2);
  15384. ggml_set_zero(opt->adam.m);
  15385. ggml_set_zero(opt->adam.v);
  15386. ggml_set_zero(opt->adam.mh);
  15387. ggml_set_zero(opt->adam.vh);
  15388. if (opt->adam.pf) {
  15389. ggml_set_zero(opt->adam.pf);
  15390. }
  15391. } break;
  15392. case GGML_OPT_LBFGS:
  15393. {
  15394. opt->lbfgs.x = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15395. opt->lbfgs.xp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15396. opt->lbfgs.g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15397. opt->lbfgs.gp = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15398. opt->lbfgs.d = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, nx);
  15399. opt->lbfgs.pf = params.past > 0
  15400. ? ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.past)
  15401. : NULL;
  15402. opt->lbfgs.lmal = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15403. opt->lbfgs.lmys = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, params.lbfgs.m);
  15404. opt->lbfgs.lms = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15405. opt->lbfgs.lmy = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, nx, params.lbfgs.m);
  15406. ggml_set_zero(opt->lbfgs.x);
  15407. ggml_set_zero(opt->lbfgs.xp);
  15408. ggml_set_zero(opt->lbfgs.g);
  15409. ggml_set_zero(opt->lbfgs.gp);
  15410. ggml_set_zero(opt->lbfgs.d);
  15411. if (opt->lbfgs.pf) {
  15412. ggml_set_zero(opt->lbfgs.pf);
  15413. }
  15414. ggml_set_zero(opt->lbfgs.lmal);
  15415. ggml_set_zero(opt->lbfgs.lmys);
  15416. ggml_set_zero(opt->lbfgs.lms);
  15417. ggml_set_zero(opt->lbfgs.lmy);
  15418. } break;
  15419. }
  15420. }
  15421. enum ggml_opt_result ggml_opt(
  15422. struct ggml_context * ctx,
  15423. struct ggml_opt_params params,
  15424. struct ggml_tensor * f) {
  15425. bool free_ctx = false;
  15426. if (ctx == NULL) {
  15427. struct ggml_init_params params_ctx = {
  15428. .mem_size = 16*1024*1024,
  15429. .mem_buffer = NULL,
  15430. .no_alloc = false,
  15431. };
  15432. ctx = ggml_init(params_ctx);
  15433. if (ctx == NULL) {
  15434. return GGML_OPT_NO_CONTEXT;
  15435. }
  15436. free_ctx = true;
  15437. }
  15438. enum ggml_opt_result result = GGML_OPT_OK;
  15439. struct ggml_opt_context * opt = (struct ggml_opt_context *) alloca(sizeof(struct ggml_opt_context));
  15440. ggml_opt_init(ctx, opt, params, 0);
  15441. result = ggml_opt_resume(ctx, opt, f);
  15442. if (free_ctx) {
  15443. ggml_free(ctx);
  15444. }
  15445. return result;
  15446. }
  15447. enum ggml_opt_result ggml_opt_resume(
  15448. struct ggml_context * ctx,
  15449. struct ggml_opt_context * opt,
  15450. struct ggml_tensor * f) {
  15451. // build forward + backward compute graphs
  15452. struct ggml_tensor * gfbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15453. struct ggml_tensor * gbbuf = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, sizeof(struct ggml_cgraph) / GGML_TYPE_SIZE[GGML_TYPE_I32]+ (sizeof(struct ggml_cgraph) % GGML_TYPE_SIZE[GGML_TYPE_I32] ? 1 : 0));
  15454. struct ggml_cgraph * gf = (struct ggml_cgraph *) gfbuf->data;
  15455. struct ggml_cgraph * gb = (struct ggml_cgraph *) gbbuf->data;
  15456. *gf = ggml_build_forward (f);
  15457. *gb = ggml_build_backward(ctx, gf, true);
  15458. return ggml_opt_resume_g(ctx, opt, f, gf, gb);
  15459. }
  15460. enum ggml_opt_result ggml_opt_resume_g(
  15461. struct ggml_context * ctx,
  15462. struct ggml_opt_context * opt,
  15463. struct ggml_tensor * f,
  15464. struct ggml_cgraph * gf,
  15465. struct ggml_cgraph * gb) {
  15466. // build forward + backward compute graphs
  15467. enum ggml_opt_result result = GGML_OPT_OK;
  15468. switch (opt->params.type) {
  15469. case GGML_OPT_ADAM:
  15470. {
  15471. result = ggml_opt_adam(ctx, opt, opt->params, f, gf, gb);
  15472. } break;
  15473. case GGML_OPT_LBFGS:
  15474. {
  15475. result = ggml_opt_lbfgs(ctx, opt, opt->params, f, gf, gb);
  15476. } break;
  15477. }
  15478. if (opt->params.print_forward_graph) {
  15479. ggml_graph_print (gf);
  15480. ggml_graph_dump_dot(gf, NULL, "opt-forward.dot");
  15481. }
  15482. if (opt->params.print_backward_graph) {
  15483. ggml_graph_print (gb);
  15484. ggml_graph_dump_dot(gb, gf, "opt-backward.dot");
  15485. }
  15486. return result;
  15487. }
  15488. ////////////////////////////////////////////////////////////////////////////////
  15489. size_t ggml_quantize_q4_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15490. assert(k % QK4_0 == 0);
  15491. const int nb = k / QK4_0;
  15492. for (int b = 0; b < n; b += k) {
  15493. block_q4_0 * restrict y = (block_q4_0 *) dst + b/QK4_0;
  15494. quantize_row_q4_0_reference(src + b, y, k);
  15495. for (int i = 0; i < nb; i++) {
  15496. for (int j = 0; j < QK4_0; j += 2) {
  15497. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15498. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15499. hist[vi0]++;
  15500. hist[vi1]++;
  15501. }
  15502. }
  15503. }
  15504. return (n/QK4_0*sizeof(block_q4_0));
  15505. }
  15506. size_t ggml_quantize_q4_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15507. assert(k % QK4_1 == 0);
  15508. const int nb = k / QK4_1;
  15509. for (int b = 0; b < n; b += k) {
  15510. block_q4_1 * restrict y = (block_q4_1 *) dst + b/QK4_1;
  15511. quantize_row_q4_1_reference(src + b, y, k);
  15512. for (int i = 0; i < nb; i++) {
  15513. for (int j = 0; j < QK4_1; j += 2) {
  15514. const uint8_t vi0 = y[i].qs[j/2] & 0x0F;
  15515. const uint8_t vi1 = y[i].qs[j/2] >> 4;
  15516. hist[vi0]++;
  15517. hist[vi1]++;
  15518. }
  15519. }
  15520. }
  15521. return (n/QK4_1*sizeof(block_q4_1));
  15522. }
  15523. size_t ggml_quantize_q5_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15524. assert(k % QK5_0 == 0);
  15525. const int nb = k / QK5_0;
  15526. for (int b = 0; b < n; b += k) {
  15527. block_q5_0 * restrict y = (block_q5_0 *)dst + b/QK5_0;
  15528. quantize_row_q5_0_reference(src + b, y, k);
  15529. for (int i = 0; i < nb; i++) {
  15530. uint32_t qh;
  15531. memcpy(&qh, &y[i].qh, sizeof(qh));
  15532. for (int j = 0; j < QK5_0; j += 2) {
  15533. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15534. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15535. // cast to 16 bins
  15536. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15537. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15538. hist[vi0]++;
  15539. hist[vi1]++;
  15540. }
  15541. }
  15542. }
  15543. return (n/QK5_0*sizeof(block_q5_0));
  15544. }
  15545. size_t ggml_quantize_q5_1(const float * src, void * dst, int n, int k, int64_t * hist) {
  15546. assert(k % QK5_1 == 0);
  15547. const int nb = k / QK5_1;
  15548. for (int b = 0; b < n; b += k) {
  15549. block_q5_1 * restrict y = (block_q5_1 *)dst + b/QK5_1;
  15550. quantize_row_q5_1_reference(src + b, y, k);
  15551. for (int i = 0; i < nb; i++) {
  15552. uint32_t qh;
  15553. memcpy(&qh, &y[i].qh, sizeof(qh));
  15554. for (int j = 0; j < QK5_1; j += 2) {
  15555. const uint8_t vh0 = ((qh & (1u << (j + 0 ))) >> (j + 0 )) << 4;
  15556. const uint8_t vh1 = ((qh & (1u << (j + 16))) >> (j + 12));
  15557. // cast to 16 bins
  15558. const uint8_t vi0 = ((y[i].qs[j/2] & 0x0F) | vh0) / 2;
  15559. const uint8_t vi1 = ((y[i].qs[j/2] >> 4) | vh1) / 2;
  15560. hist[vi0]++;
  15561. hist[vi1]++;
  15562. }
  15563. }
  15564. }
  15565. return (n/QK5_1*sizeof(block_q5_1));
  15566. }
  15567. size_t ggml_quantize_q8_0(const float * src, void * dst, int n, int k, int64_t * hist) {
  15568. assert(k % QK8_0 == 0);
  15569. const int nb = k / QK8_0;
  15570. for (int b = 0; b < n; b += k) {
  15571. block_q8_0 * restrict y = (block_q8_0 *)dst + b/QK8_0;
  15572. quantize_row_q8_0_reference(src + b, y, k);
  15573. for (int i = 0; i < nb; i++) {
  15574. for (int j = 0; j < QK8_0; ++j) {
  15575. const int8_t vi = y[i].qs[j];
  15576. hist[vi/16 + 8]++;
  15577. }
  15578. }
  15579. }
  15580. return (n/QK8_0*sizeof(block_q8_0));
  15581. }
  15582. size_t ggml_quantize_chunk(enum ggml_type type, const float * src, void * dst, int start, int n, int64_t * hist) {
  15583. size_t result = 0;
  15584. switch (type) {
  15585. case GGML_TYPE_Q4_0:
  15586. {
  15587. GGML_ASSERT(start % QK4_0 == 0);
  15588. block_q4_0 * block = (block_q4_0*)dst + start / QK4_0;
  15589. result = ggml_quantize_q4_0(src + start, block, n, n, hist);
  15590. } break;
  15591. case GGML_TYPE_Q4_1:
  15592. {
  15593. GGML_ASSERT(start % QK4_1 == 0);
  15594. block_q4_1 * block = (block_q4_1*)dst + start / QK4_1;
  15595. result = ggml_quantize_q4_1(src + start, block, n, n, hist);
  15596. } break;
  15597. case GGML_TYPE_Q5_0:
  15598. {
  15599. GGML_ASSERT(start % QK5_0 == 0);
  15600. block_q5_0 * block = (block_q5_0*)dst + start / QK5_0;
  15601. result = ggml_quantize_q5_0(src + start, block, n, n, hist);
  15602. } break;
  15603. case GGML_TYPE_Q5_1:
  15604. {
  15605. GGML_ASSERT(start % QK5_1 == 0);
  15606. block_q5_1 * block = (block_q5_1*)dst + start / QK5_1;
  15607. result = ggml_quantize_q5_1(src + start, block, n, n, hist);
  15608. } break;
  15609. case GGML_TYPE_Q8_0:
  15610. {
  15611. GGML_ASSERT(start % QK8_0 == 0);
  15612. block_q8_0 * block = (block_q8_0*)dst + start / QK8_0;
  15613. result = ggml_quantize_q8_0(src + start, block, n, n, hist);
  15614. } break;
  15615. #ifdef GGML_USE_K_QUANTS
  15616. case GGML_TYPE_Q2_K:
  15617. {
  15618. GGML_ASSERT(start % QK_K == 0);
  15619. block_q2_K * block = (block_q2_K*)dst + start / QK_K;
  15620. result = ggml_quantize_q2_K(src + start, block, n, n, hist);
  15621. } break;
  15622. case GGML_TYPE_Q3_K:
  15623. {
  15624. GGML_ASSERT(start % QK_K == 0);
  15625. block_q3_K * block = (block_q3_K*)dst + start / QK_K;
  15626. result = ggml_quantize_q3_K(src + start, block, n, n, hist);
  15627. } break;
  15628. case GGML_TYPE_Q4_K:
  15629. {
  15630. GGML_ASSERT(start % QK_K == 0);
  15631. block_q4_K * block = (block_q4_K*)dst + start / QK_K;
  15632. result = ggml_quantize_q4_K(src + start, block, n, n, hist);
  15633. } break;
  15634. case GGML_TYPE_Q5_K:
  15635. {
  15636. GGML_ASSERT(start % QK_K == 0);
  15637. block_q5_K * block = (block_q5_K*)dst + start / QK_K;
  15638. result = ggml_quantize_q5_K(src + start, block, n, n, hist);
  15639. } break;
  15640. case GGML_TYPE_Q6_K:
  15641. {
  15642. GGML_ASSERT(start % QK_K == 0);
  15643. block_q6_K * block = (block_q6_K*)dst + start / QK_K;
  15644. result = ggml_quantize_q6_K(src + start, block, n, n, hist);
  15645. } break;
  15646. #endif
  15647. case GGML_TYPE_F16:
  15648. {
  15649. int elemsize = sizeof(ggml_fp16_t);
  15650. ggml_fp32_to_fp16_row(src + start, (ggml_fp16_t *)dst + start, n);
  15651. result = n * elemsize;
  15652. } break;
  15653. case GGML_TYPE_F32:
  15654. {
  15655. int elemsize = sizeof(float);
  15656. result = n * elemsize;
  15657. memcpy((uint8_t *)dst + start * elemsize, src + start, result);
  15658. } break;
  15659. default:
  15660. assert(false);
  15661. }
  15662. return result;
  15663. }
  15664. ////////////////////////////////////////////////////////////////////////////////
  15665. int ggml_cpu_has_avx(void) {
  15666. #if defined(__AVX__)
  15667. return 1;
  15668. #else
  15669. return 0;
  15670. #endif
  15671. }
  15672. int ggml_cpu_has_avx2(void) {
  15673. #if defined(__AVX2__)
  15674. return 1;
  15675. #else
  15676. return 0;
  15677. #endif
  15678. }
  15679. int ggml_cpu_has_avx512(void) {
  15680. #if defined(__AVX512F__)
  15681. return 1;
  15682. #else
  15683. return 0;
  15684. #endif
  15685. }
  15686. int ggml_cpu_has_avx512_vbmi(void) {
  15687. #if defined(__AVX512VBMI__)
  15688. return 1;
  15689. #else
  15690. return 0;
  15691. #endif
  15692. }
  15693. int ggml_cpu_has_avx512_vnni(void) {
  15694. #if defined(__AVX512VNNI__)
  15695. return 1;
  15696. #else
  15697. return 0;
  15698. #endif
  15699. }
  15700. int ggml_cpu_has_fma(void) {
  15701. #if defined(__FMA__)
  15702. return 1;
  15703. #else
  15704. return 0;
  15705. #endif
  15706. }
  15707. int ggml_cpu_has_neon(void) {
  15708. #if defined(__ARM_NEON)
  15709. return 1;
  15710. #else
  15711. return 0;
  15712. #endif
  15713. }
  15714. int ggml_cpu_has_arm_fma(void) {
  15715. #if defined(__ARM_FEATURE_FMA)
  15716. return 1;
  15717. #else
  15718. return 0;
  15719. #endif
  15720. }
  15721. int ggml_cpu_has_f16c(void) {
  15722. #if defined(__F16C__)
  15723. return 1;
  15724. #else
  15725. return 0;
  15726. #endif
  15727. }
  15728. int ggml_cpu_has_fp16_va(void) {
  15729. #if defined(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC)
  15730. return 1;
  15731. #else
  15732. return 0;
  15733. #endif
  15734. }
  15735. int ggml_cpu_has_wasm_simd(void) {
  15736. #if defined(__wasm_simd128__)
  15737. return 1;
  15738. #else
  15739. return 0;
  15740. #endif
  15741. }
  15742. int ggml_cpu_has_blas(void) {
  15743. #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST)
  15744. return 1;
  15745. #else
  15746. return 0;
  15747. #endif
  15748. }
  15749. int ggml_cpu_has_cublas(void) {
  15750. #if defined(GGML_USE_CUBLAS)
  15751. return 1;
  15752. #else
  15753. return 0;
  15754. #endif
  15755. }
  15756. int ggml_cpu_has_clblast(void) {
  15757. #if defined(GGML_USE_CLBLAST)
  15758. return 1;
  15759. #else
  15760. return 0;
  15761. #endif
  15762. }
  15763. int ggml_cpu_has_gpublas(void) {
  15764. return ggml_cpu_has_cublas() || ggml_cpu_has_clblast();
  15765. }
  15766. int ggml_cpu_has_sse3(void) {
  15767. #if defined(__SSE3__)
  15768. return 1;
  15769. #else
  15770. return 0;
  15771. #endif
  15772. }
  15773. int ggml_cpu_has_vsx(void) {
  15774. #if defined(__POWER9_VECTOR__)
  15775. return 1;
  15776. #else
  15777. return 0;
  15778. #endif
  15779. }
  15780. ////////////////////////////////////////////////////////////////////////////////