convert_hf_to_gguf.py 487 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398839984008401840284038404840584068407840884098410841184128413841484158416841784188419842084218422842384248425842684278428842984308431843284338434843584368437843884398440844184428443844484458446844784488449845084518452845384548455845684578458845984608461846284638464846584668467846884698470847184728473847484758476847784788479848084818482848384848485848684878488848984908491849284938494849584968497849884998500850185028503850485058506850785088509851085118512851385148515851685178518851985208521852285238524852585268527852885298530853185328533853485358536853785388539854085418542854385448545854685478548854985508551855285538554855585568557855885598560856185628563856485658566856785688569857085718572857385748575857685778578857985808581858285838584858585868587858885898590859185928593859485958596859785988599860086018602860386048605860686078608860986108611861286138614861586168617861886198620862186228623862486258626862786288629863086318632863386348635863686378638863986408641864286438644864586468647864886498650865186528653865486558656865786588659866086618662866386648665866686678668866986708671867286738674867586768677867886798680868186828683868486858686868786888689869086918692869386948695869686978698869987008701870287038704870587068707870887098710871187128713871487158716871787188719872087218722872387248725872687278728872987308731873287338734873587368737873887398740874187428743874487458746874787488749875087518752875387548755875687578758875987608761876287638764876587668767876887698770877187728773877487758776877787788779878087818782878387848785878687878788878987908791879287938794879587968797879887998800880188028803880488058806880788088809881088118812881388148815881688178818881988208821882288238824882588268827882888298830883188328833883488358836883788388839884088418842884388448845884688478848884988508851885288538854885588568857885888598860886188628863886488658866886788688869887088718872887388748875887688778878887988808881888288838884888588868887888888898890889188928893889488958896889788988899890089018902890389048905890689078908890989108911891289138914891589168917891889198920892189228923892489258926892789288929893089318932893389348935893689378938893989408941894289438944894589468947894889498950895189528953895489558956895789588959896089618962896389648965896689678968896989708971897289738974897589768977897889798980898189828983898489858986898789888989899089918992899389948995899689978998899990009001900290039004900590069007900890099010901190129013901490159016901790189019902090219022902390249025902690279028902990309031903290339034903590369037903890399040904190429043904490459046904790489049905090519052905390549055905690579058905990609061906290639064906590669067906890699070907190729073907490759076907790789079908090819082908390849085908690879088908990909091909290939094909590969097909890999100910191029103910491059106910791089109911091119112911391149115911691179118911991209121912291239124912591269127912891299130913191329133913491359136913791389139914091419142914391449145914691479148914991509151915291539154915591569157915891599160916191629163916491659166916791689169917091719172917391749175917691779178917991809181918291839184918591869187918891899190919191929193919491959196919791989199920092019202920392049205920692079208920992109211921292139214921592169217921892199220922192229223922492259226922792289229923092319232923392349235923692379238923992409241924292439244924592469247924892499250925192529253925492559256925792589259926092619262926392649265926692679268926992709271927292739274927592769277927892799280928192829283928492859286928792889289929092919292929392949295929692979298929993009301930293039304930593069307930893099310931193129313931493159316931793189319932093219322932393249325932693279328932993309331933293339334933593369337933893399340934193429343934493459346934793489349935093519352935393549355935693579358935993609361936293639364936593669367936893699370937193729373937493759376937793789379938093819382938393849385938693879388938993909391939293939394939593969397939893999400940194029403940494059406940794089409941094119412941394149415941694179418941994209421942294239424942594269427942894299430943194329433943494359436943794389439944094419442944394449445944694479448944994509451945294539454945594569457945894599460946194629463946494659466946794689469947094719472947394749475947694779478947994809481948294839484948594869487948894899490949194929493949494959496949794989499950095019502950395049505950695079508950995109511951295139514951595169517951895199520952195229523952495259526952795289529953095319532953395349535953695379538953995409541954295439544954595469547954895499550955195529553955495559556955795589559956095619562956395649565956695679568956995709571957295739574957595769577957895799580958195829583958495859586958795889589959095919592959395949595959695979598959996009601960296039604960596069607960896099610961196129613961496159616961796189619962096219622962396249625962696279628962996309631963296339634963596369637963896399640964196429643964496459646964796489649965096519652965396549655965696579658965996609661966296639664966596669667966896699670967196729673967496759676967796789679968096819682968396849685968696879688968996909691969296939694969596969697969896999700970197029703970497059706970797089709971097119712971397149715971697179718971997209721972297239724972597269727972897299730973197329733973497359736973797389739974097419742974397449745974697479748974997509751975297539754975597569757975897599760976197629763976497659766976797689769977097719772977397749775977697779778977997809781978297839784978597869787978897899790979197929793979497959796979797989799980098019802980398049805980698079808980998109811981298139814981598169817981898199820982198229823982498259826982798289829983098319832983398349835983698379838983998409841984298439844984598469847984898499850985198529853985498559856985798589859986098619862986398649865986698679868986998709871987298739874987598769877987898799880988198829883988498859886988798889889989098919892989398949895989698979898989999009901990299039904990599069907990899099910991199129913991499159916991799189919992099219922992399249925992699279928992999309931993299339934993599369937993899399940994199429943994499459946994799489949995099519952995399549955995699579958995999609961996299639964996599669967996899699970997199729973997499759976997799789979998099819982998399849985998699879988998999909991999299939994999599969997999899991000010001100021000310004100051000610007100081000910010100111001210013100141001510016100171001810019100201002110022100231002410025100261002710028100291003010031100321003310034100351003610037100381003910040100411004210043100441004510046100471004810049100501005110052100531005410055100561005710058100591006010061100621006310064100651006610067100681006910070100711007210073100741007510076100771007810079100801008110082100831008410085100861008710088100891009010091100921009310094100951009610097100981009910100101011010210103101041010510106101071010810109101101011110112101131011410115101161011710118101191012010121101221012310124101251012610127101281012910130101311013210133101341013510136101371013810139101401014110142101431014410145101461014710148101491015010151101521015310154101551015610157101581015910160101611016210163101641016510166101671016810169101701017110172101731017410175101761017710178101791018010181101821018310184101851018610187101881018910190101911019210193101941019510196101971019810199102001020110202102031020410205102061020710208102091021010211102121021310214102151021610217102181021910220102211022210223102241022510226102271022810229102301023110232102331023410235102361023710238102391024010241102421024310244102451024610247102481024910250102511025210253102541025510256102571025810259102601026110262102631026410265102661026710268102691027010271102721027310274102751027610277102781027910280102811028210283102841028510286102871028810289102901029110292102931029410295102961029710298102991030010301103021030310304103051030610307103081030910310103111031210313103141031510316103171031810319103201032110322103231032410325103261032710328103291033010331103321033310334103351033610337103381033910340103411034210343103441034510346103471034810349103501035110352103531035410355103561035710358103591036010361103621036310364103651036610367103681036910370103711037210373103741037510376103771037810379103801038110382103831038410385103861038710388103891039010391103921039310394103951039610397103981039910400104011040210403104041040510406104071040810409104101041110412104131041410415104161041710418104191042010421104221042310424104251042610427104281042910430104311043210433104341043510436104371043810439104401044110442104431044410445104461044710448104491045010451104521045310454104551045610457104581045910460104611046210463104641046510466104671046810469104701047110472104731047410475104761047710478104791048010481104821048310484104851048610487104881048910490104911049210493104941049510496104971049810499105001050110502105031050410505105061050710508105091051010511105121051310514105151051610517105181051910520105211052210523105241052510526105271052810529105301053110532105331053410535105361053710538105391054010541105421054310544105451054610547105481054910550105511055210553105541055510556105571055810559105601056110562105631056410565105661056710568105691057010571105721057310574105751057610577105781057910580105811058210583105841058510586105871058810589105901059110592105931059410595105961059710598105991060010601106021060310604106051060610607106081060910610106111061210613106141061510616106171061810619106201062110622106231062410625106261062710628
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. from transformers import AutoConfig
  18. import math
  19. import numpy as np
  20. import torch
  21. if TYPE_CHECKING:
  22. from torch import Tensor
  23. if 'NO_LOCAL_GGUF' not in os.environ:
  24. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  25. import gguf
  26. from gguf.vocab import MistralTokenizerType, MistralVocab
  27. try:
  28. from mistral_common.tokens.tokenizers.base import TokenizerVersion # pyright: ignore[reportMissingImports]
  29. from mistral_common.tokens.tokenizers.multimodal import DATASET_MEAN as _MISTRAL_COMMON_DATASET_MEAN, DATASET_STD as _MISTRAL_COMMON_DATASET_STD # pyright: ignore[reportMissingImports]
  30. from mistral_common.tokens.tokenizers.tekken import Tekkenizer # pyright: ignore[reportMissingImports]
  31. from mistral_common.tokens.tokenizers.sentencepiece import ( # pyright: ignore[reportMissingImports]
  32. SentencePieceTokenizer,
  33. )
  34. _mistral_common_installed = True
  35. _mistral_import_error_msg = ""
  36. except ImportError:
  37. _MISTRAL_COMMON_DATASET_MEAN = (0.48145466, 0.4578275, 0.40821073)
  38. _MISTRAL_COMMON_DATASET_STD = (0.26862954, 0.26130258, 0.27577711)
  39. _mistral_common_installed = False
  40. TokenizerVersion = None
  41. Tekkenizer = None
  42. SentencePieceTokenizer = None
  43. _mistral_import_error_msg = (
  44. "Mistral format requires `mistral-common` to be installed. Please run "
  45. "`pip install mistral-common[image,audio]` to install it."
  46. )
  47. logger = logging.getLogger("hf-to-gguf")
  48. ###### MODEL DEFINITIONS ######
  49. class SentencePieceTokenTypes(IntEnum):
  50. NORMAL = 1
  51. UNKNOWN = 2
  52. CONTROL = 3
  53. USER_DEFINED = 4
  54. UNUSED = 5
  55. BYTE = 6
  56. class ModelType(IntEnum):
  57. TEXT = 1
  58. MMPROJ = 2
  59. AnyModel = TypeVar("AnyModel", bound="type[ModelBase]")
  60. class ModelBase:
  61. _model_classes: dict[ModelType, dict[str, type[ModelBase]]] = {
  62. ModelType.TEXT: {},
  63. ModelType.MMPROJ: {},
  64. }
  65. dir_model: Path
  66. ftype: gguf.LlamaFileType
  67. fname_out: Path
  68. is_big_endian: bool
  69. endianess: gguf.GGUFEndian
  70. use_temp_file: bool
  71. lazy: bool
  72. dry_run: bool
  73. hparams: dict[str, Any]
  74. model_tensors: dict[str, Callable[[], Tensor]]
  75. gguf_writer: gguf.GGUFWriter
  76. model_name: str | None
  77. metadata_override: Path | None
  78. dir_model_card: Path
  79. remote_hf_model_id: str | None
  80. # subclasses should define this!
  81. model_arch: gguf.MODEL_ARCH
  82. # subclasses should initialize this!
  83. block_count: int
  84. tensor_map: gguf.TensorNameMap
  85. # Mistral format specifics
  86. is_mistral_format: bool = False
  87. disable_mistral_community_chat_template: bool = False
  88. sentence_transformers_dense_modules: bool = False
  89. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, *, is_big_endian: bool = False,
  90. use_temp_file: bool = False, eager: bool = False,
  91. metadata_override: Path | None = None, model_name: str | None = None,
  92. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  93. small_first_shard: bool = False, hparams: dict[str, Any] | None = None, remote_hf_model_id: str | None = None,
  94. disable_mistral_community_chat_template: bool = False,
  95. sentence_transformers_dense_modules: bool = False):
  96. if type(self) is ModelBase or \
  97. type(self) is TextModel or \
  98. type(self) is MmprojModel:
  99. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  100. if self.is_mistral_format and not _mistral_common_installed:
  101. raise ImportError(_mistral_import_error_msg)
  102. self.dir_model = dir_model
  103. self.ftype = ftype
  104. self.fname_out = fname_out
  105. self.is_big_endian = is_big_endian
  106. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  107. self.use_temp_file = use_temp_file
  108. self.lazy = not eager or (remote_hf_model_id is not None)
  109. self.dry_run = dry_run
  110. self.remote_hf_model_id = remote_hf_model_id
  111. self.sentence_transformers_dense_modules = sentence_transformers_dense_modules
  112. self.hparams = ModelBase.load_hparams(self.dir_model, self.is_mistral_format) if hparams is None else hparams
  113. self.model_tensors = self.index_tensors(remote_hf_model_id=remote_hf_model_id)
  114. self.metadata_override = metadata_override
  115. self.model_name = model_name
  116. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  117. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  118. if self.ftype == gguf.LlamaFileType.GUESSED:
  119. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  120. _, first_tensor = next(self.get_tensors())
  121. if first_tensor.dtype == torch.float16:
  122. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  123. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  124. else:
  125. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  126. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  127. self.dequant_model()
  128. # Configure GGUF Writer
  129. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  130. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  131. # Mistral specific
  132. self.disable_mistral_community_chat_template = disable_mistral_community_chat_template
  133. @classmethod
  134. def add_prefix_to_filename(cls, path: Path, prefix: str) -> Path:
  135. stem, suffix = path.stem, path.suffix
  136. new_name = f"{prefix}{stem}{suffix}"
  137. return path.with_name(new_name)
  138. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  139. key = next((k for k in keys if k in self.hparams), None)
  140. if key is not None:
  141. return self.hparams[key]
  142. if optional:
  143. return None
  144. raise KeyError(f"could not find any of: {keys}")
  145. def index_tensors(self, remote_hf_model_id: str | None = None) -> dict[str, Callable[[], Tensor]]:
  146. tensors: dict[str, Callable[[], Tensor]] = {}
  147. if remote_hf_model_id is not None:
  148. is_safetensors = True
  149. logger.info(f"Using remote model with HuggingFace id: {remote_hf_model_id}")
  150. remote_tensors = gguf.utility.SafetensorRemote.get_list_tensors_hf_model(remote_hf_model_id)
  151. for name, remote_tensor in remote_tensors.items():
  152. tensors[name] = lambda r=remote_tensor: LazyTorchTensor.from_remote_tensor(r)
  153. return tensors
  154. prefix = "model" if not self.is_mistral_format else "consolidated"
  155. part_names: set[str] = set(ModelBase.get_model_part_names(self.dir_model, prefix, ".safetensors"))
  156. is_safetensors: bool = len(part_names) > 0
  157. if not is_safetensors:
  158. part_names = set(ModelBase.get_model_part_names(self.dir_model, "pytorch_model", ".bin"))
  159. tensor_names_from_index: set[str] = set()
  160. if not self.is_mistral_format:
  161. index_name = "model.safetensors" if is_safetensors else "pytorch_model.bin"
  162. index_name += ".index.json"
  163. index_file = self.dir_model / index_name
  164. if index_file.is_file():
  165. logger.info(f"gguf: loading model weight map from '{index_name}'")
  166. with open(index_file, "r", encoding="utf-8") as f:
  167. index: dict[str, Any] = json.load(f)
  168. weight_map = index.get("weight_map")
  169. if weight_map is None or not isinstance(weight_map, dict):
  170. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  171. tensor_names_from_index.update(weight_map.keys())
  172. part_names |= set(weight_map.values())
  173. else:
  174. weight_map = {}
  175. else:
  176. weight_map = {}
  177. for part_name in part_names:
  178. logger.info(f"gguf: indexing model part '{part_name}'")
  179. ctx: ContextManager[Any]
  180. if is_safetensors:
  181. ctx = cast(ContextManager[Any], gguf.utility.SafetensorsLocal(self.dir_model / part_name))
  182. else:
  183. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  184. with ctx as model_part:
  185. assert model_part is not None
  186. for name in model_part.keys():
  187. if is_safetensors:
  188. data: gguf.utility.LocalTensor = model_part[name]
  189. if self.lazy:
  190. data_gen = lambda data=data: LazyTorchTensor.from_local_tensor(data) # noqa: E731
  191. else:
  192. dtype = LazyTorchTensor._dtype_str_map[data.dtype]
  193. data_gen = lambda data=data, dtype=dtype: torch.from_numpy(data.mmap_bytes()).view(dtype).reshape(data.shape) # noqa: E731
  194. else:
  195. data_torch: Tensor = model_part[name]
  196. if self.lazy:
  197. data_gen = lambda data=data_torch: LazyTorchTensor.from_eager(data) # noqa: E731
  198. else:
  199. data_gen = lambda data=data_torch: data # noqa: E731
  200. tensors[name] = data_gen
  201. # verify tensor name presence and identify potentially missing files
  202. if len(tensor_names_from_index) > 0:
  203. tensor_names_from_parts = set(tensors.keys())
  204. if len(tensor_names_from_parts.symmetric_difference(tensor_names_from_index)) > 0:
  205. missing = sorted(tensor_names_from_index.difference(tensor_names_from_parts))
  206. extra = sorted(tensor_names_from_parts.difference(tensor_names_from_index))
  207. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  208. if len(extra) == 0 and len(missing_files) > 0:
  209. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  210. f"Missing tensors: {missing}")
  211. else:
  212. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  213. f"Missing tensors: {missing}\n"
  214. f"Extra tensors: {extra}")
  215. return tensors
  216. def dequant_model(self):
  217. tensors_to_remove: list[str] = []
  218. new_tensors: dict[str, Callable[[], Tensor]] = {}
  219. if (quant_config := self.hparams.get("quantization_config")) and isinstance(quant_config, dict):
  220. quant_method = quant_config.get("quant_method")
  221. def dequant_bitnet(weight: Tensor, scale: Tensor) -> Tensor:
  222. weight = weight.view(torch.uint8)
  223. orig_shape = weight.shape
  224. shift = torch.tensor([0, 2, 4, 6], dtype=torch.uint8).reshape((4, *(1 for _ in range(len(orig_shape)))))
  225. data = weight.unsqueeze(0).expand((4, *orig_shape)) >> shift
  226. data = data & 3
  227. data = (data.float() - 1).reshape((orig_shape[0] * 4, *orig_shape[1:]))
  228. # The scale is inverted
  229. return data / scale.float()
  230. def dequant_simple(weight: Tensor, scale: Tensor, block_size: Sequence[int] | None = None) -> Tensor:
  231. scale = scale.float()
  232. if block_size is not None:
  233. for i, size in enumerate(block_size):
  234. scale = scale.repeat_interleave(size, i)
  235. # unpad the scale (e.g. when the tensor size isn't a multiple of the block size)
  236. scale = scale[tuple(slice(0, size) for size in weight.shape)]
  237. return weight.float() * scale
  238. # ref: https://github.com/ModelCloud/GPTQModel/blob/037c5c0f6c9e33c500d975b038d02e7ca437546d/gptqmodel/nn_modules/qlinear/__init__.py#L437-L476
  239. def dequant_gptq(g_idx: Tensor, qweight: Tensor, qzeros: Tensor, scales: Tensor) -> Tensor:
  240. bits = quant_config["bits"]
  241. assert bits in (2, 3, 4, 8)
  242. assert qweight.dtype == qzeros.dtype
  243. maxq = (2 ** bits) - 1
  244. weight = None
  245. zeros = None
  246. pack_dtype_bits = qweight.dtype.itemsize * 8
  247. if bits in [2, 4, 8]:
  248. pack_factor = pack_dtype_bits // bits
  249. wf = torch.tensor(list(range(0, pack_dtype_bits, bits)), dtype=torch.int32).unsqueeze(0)
  250. if self.lazy:
  251. wf = LazyTorchTensor.from_eager(wf)
  252. zeros = torch.bitwise_right_shift(
  253. qzeros.unsqueeze(2).expand(-1, -1, pack_factor),
  254. wf.unsqueeze(0)
  255. ).to(torch.int16 if bits == 8 else torch.int8)
  256. zeros = torch.bitwise_and(zeros, maxq).reshape(scales.shape)
  257. weight = torch.bitwise_and(
  258. torch.bitwise_right_shift(
  259. qweight.unsqueeze(1).expand(-1, pack_factor, -1),
  260. wf.unsqueeze(-1)
  261. ).to(torch.int16 if bits == 8 else torch.int8),
  262. maxq
  263. )
  264. elif bits == 3:
  265. raise NotImplementedError("3-bit gptq dequantization is not yet implemented")
  266. assert weight is not None
  267. assert zeros is not None
  268. weight = weight.reshape(weight.shape[0] * weight.shape[1], weight.shape[2])
  269. # gptq_v2 doesn't need to offset zeros
  270. if quant_config.get("checkpoint_format", "gptq") == "gptq":
  271. zeros += 1
  272. return (scales[g_idx].float() * (weight - zeros[g_idx]).float()).T
  273. def dequant_packed(w: Tensor, scale: Tensor, shape_tensor: Tensor, zero_point: Tensor | None, num_bits: int, group_size: int):
  274. assert w.dtype == torch.int32
  275. shape = tuple(shape_tensor.tolist())
  276. assert len(shape) == 2
  277. mask = (1 << num_bits) - 1
  278. shifts = torch.arange(0, 32 - (num_bits - 1), num_bits, dtype=torch.int32)
  279. if self.lazy:
  280. shifts = LazyTorchTensor.from_eager(shifts)
  281. if zero_point is None:
  282. offset = 1 << (num_bits - 1)
  283. else:
  284. assert len(zero_point.shape) == 2
  285. offset = (zero_point.unsqueeze(1) >> shifts.reshape(1, -1, 1)) & mask
  286. offset = offset.reshape(-1, zero_point.shape[1])
  287. # trim padding, and prepare for broadcast
  288. # NOTE: the zero-point is packed along dim 0
  289. offset = offset[:shape[0], :].unsqueeze(-1)
  290. # extract values
  291. # NOTE: the weights are packed along dim 1
  292. unpacked = (w.unsqueeze(-1) >> shifts.reshape(1, 1, -1)) & mask
  293. unpacked = unpacked.reshape(shape[0], -1)
  294. # trim padding
  295. unpacked = unpacked[:, :shape[1]]
  296. # prepare for broadcast of the scale
  297. unpacked = unpacked.reshape(shape[0], (unpacked.shape[-1] + group_size - 1) // group_size, group_size)
  298. unpacked = unpacked - offset
  299. return (unpacked * scale.unsqueeze(-1).float()).reshape(shape)
  300. if quant_method == "bitnet":
  301. for name in self.model_tensors.keys():
  302. if name.endswith(".weight_scale"):
  303. weight_name = name.removesuffix("_scale")
  304. w = self.model_tensors[weight_name]
  305. s = self.model_tensors[name]
  306. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_bitnet(w(), s())
  307. tensors_to_remove.append(name)
  308. elif quant_method == "fp8":
  309. block_size = quant_config.get("weight_block_size")
  310. for name in self.model_tensors.keys():
  311. if name.endswith(".weight_scale_inv"):
  312. weight_name = name.removesuffix("_scale_inv")
  313. w = self.model_tensors[weight_name]
  314. s = self.model_tensors[name]
  315. self.model_tensors[weight_name] = lambda w=w, s=s, bs=block_size: dequant_simple(w(), s(), bs)
  316. tensors_to_remove.append(name)
  317. elif quant_method == "gptq":
  318. for name in self.model_tensors.keys():
  319. if name.endswith(".qweight"):
  320. base_name = name.removesuffix(".qweight")
  321. g_idx = self.model_tensors[base_name + ".g_idx"]
  322. qweight = self.model_tensors[base_name + ".qweight"]
  323. qzeros = self.model_tensors[base_name + ".qzeros"]
  324. scales = self.model_tensors[base_name + ".scales"]
  325. new_tensors[base_name + ".weight"] = (
  326. lambda g=g_idx, z=qzeros, w=qweight, s=scales: dequant_gptq(
  327. g(), w(), z(), s()
  328. )
  329. )
  330. tensors_to_remove += [
  331. base_name + n
  332. for n in (
  333. ".g_idx",
  334. ".qzeros",
  335. ".qweight",
  336. ".scales",
  337. )
  338. ]
  339. elif quant_method == "compressed-tensors":
  340. quant_format = quant_config["format"]
  341. groups = quant_config["config_groups"]
  342. if len(groups) > 1:
  343. raise NotImplementedError("Can't handle multiple config groups for compressed-tensors yet")
  344. weight_config = tuple(groups.values())[0]["weights"]
  345. if quant_format == "float-quantized" or quant_format == "int-quantized" or quant_format == "naive-quantized":
  346. block_size = weight_config.get("block_structure", None)
  347. strategy = weight_config.get("strategy")
  348. assert strategy == "channel" or strategy == "block"
  349. assert weight_config.get("group_size") is None # didn't find a model using this yet
  350. for name in self.model_tensors.keys():
  351. if name.endswith(".weight_scale"):
  352. weight_name = name.removesuffix("_scale")
  353. w = self.model_tensors[weight_name]
  354. s = self.model_tensors[name]
  355. self.model_tensors[weight_name] = lambda w=w, s=s: dequant_simple(w(), s(), block_size)
  356. tensors_to_remove.append(name)
  357. elif quant_format == "pack-quantized":
  358. assert weight_config.get("strategy") == "group"
  359. assert weight_config.get("type", "int") == "int"
  360. num_bits = weight_config.get("num_bits")
  361. group_size = weight_config.get("group_size")
  362. assert isinstance(num_bits, int)
  363. assert isinstance(group_size, int)
  364. for name in self.model_tensors.keys():
  365. if name.endswith(".weight_packed"):
  366. base_name = name.removesuffix("_packed")
  367. w = self.model_tensors[name]
  368. scale = self.model_tensors[base_name + "_scale"]
  369. shape = self.model_tensors[base_name + "_shape"]
  370. zero_point = self.model_tensors.get(base_name + "_zero_point", lambda: None)
  371. new_tensors[base_name] = (
  372. lambda w=w, scale=scale, shape=shape, zero_point=zero_point: dequant_packed(
  373. w(), scale(), shape(), zero_point(), num_bits, group_size,
  374. )
  375. )
  376. tensors_to_remove += [base_name + n for n in ("_packed", "_shape", "_scale")]
  377. if (base_name + "_zero_point") in self.model_tensors:
  378. tensors_to_remove.append(base_name + "_zero_point")
  379. else:
  380. raise NotImplementedError(f"Quant format {quant_format!r} for method {quant_method!r} is not yet supported")
  381. else:
  382. raise NotImplementedError(f"Quant method is not yet supported: {quant_method!r}")
  383. for name in tensors_to_remove:
  384. if name in self.model_tensors:
  385. del self.model_tensors[name]
  386. for name, value in new_tensors.items():
  387. self.model_tensors[name] = value
  388. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  389. for name, gen in self.model_tensors.items():
  390. yield name, gen()
  391. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  392. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  393. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  394. name: str = gguf.TENSOR_NAMES[key]
  395. if "{bid}" in name:
  396. assert bid is not None
  397. name = name.format(bid=bid)
  398. return name + suffix
  399. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  400. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  401. return False
  402. key_name: str = gguf.TENSOR_NAMES[key]
  403. if "{bid}" in key_name:
  404. if bid is None:
  405. return False
  406. key_name = key_name.format(bid=bid)
  407. else:
  408. if bid is not None:
  409. return False
  410. return name == (key_name + suffix)
  411. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  412. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  413. if new_name is None:
  414. raise ValueError(f"Can not map tensor {name!r}")
  415. return new_name
  416. def set_gguf_parameters(self):
  417. raise NotImplementedError("set_gguf_parameters() must be implemented in subclasses")
  418. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  419. del bid # unused
  420. return [(self.map_tensor_name(name), data_torch)]
  421. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  422. del name, new_name, bid, n_dims # unused
  423. return False
  424. # some models need extra generated tensors (like rope_freqs)
  425. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  426. return ()
  427. def prepare_tensors(self):
  428. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  429. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  430. # we don't need these
  431. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  432. continue
  433. old_dtype = data_torch.dtype
  434. # convert any unsupported data types to float32
  435. if data_torch.dtype not in (torch.float16, torch.float32):
  436. data_torch = data_torch.to(torch.float32)
  437. # use the first number-like part of the tensor name as the block id
  438. bid = None
  439. for part in name.split("."):
  440. if part.isdecimal():
  441. bid = int(part)
  442. break
  443. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  444. # TODO: why do we squeeze here?
  445. # data = data_torch.squeeze().numpy()
  446. data = data_torch.numpy()
  447. n_dims = len(data.shape)
  448. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  449. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  450. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  451. data_qtype = gguf.GGMLQuantizationType.F32
  452. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  453. # Some tensor types are always in float32
  454. if data_qtype is False and (
  455. any(
  456. self.match_model_tensor_name(new_name, key, bid)
  457. for key in (
  458. gguf.MODEL_TENSOR.FFN_GATE_INP,
  459. gguf.MODEL_TENSOR.POS_EMBD,
  460. gguf.MODEL_TENSOR.TOKEN_TYPES,
  461. gguf.MODEL_TENSOR.SSM_CONV1D,
  462. gguf.MODEL_TENSOR.SHORTCONV_CONV,
  463. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  464. gguf.MODEL_TENSOR.TIME_MIX_W1,
  465. gguf.MODEL_TENSOR.TIME_MIX_W2,
  466. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  467. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  468. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  469. gguf.MODEL_TENSOR.POSNET_NORM1,
  470. gguf.MODEL_TENSOR.POSNET_NORM2,
  471. gguf.MODEL_TENSOR.V_ENC_EMBD_POS,
  472. gguf.MODEL_TENSOR.A_ENC_EMBD_POS,
  473. gguf.MODEL_TENSOR.ALTUP_CORRECT_COEF,
  474. gguf.MODEL_TENSOR.ALTUP_PREDICT_COEF,
  475. )
  476. )
  477. or new_name[-7:] not in (".weight", ".lora_a", ".lora_b")
  478. ):
  479. data_qtype = gguf.GGMLQuantizationType.F32
  480. if data_qtype is False and any(
  481. self.match_model_tensor_name(new_name, key, bid)
  482. for key in (
  483. gguf.MODEL_TENSOR.TOKEN_EMBD,
  484. gguf.MODEL_TENSOR.PER_LAYER_TOKEN_EMBD,
  485. gguf.MODEL_TENSOR.OUTPUT,
  486. gguf.MODEL_TENSOR.ALTUP_ROUTER,
  487. gguf.MODEL_TENSOR.LAUREL_L,
  488. gguf.MODEL_TENSOR.LAUREL_R,
  489. )
  490. ):
  491. if self.ftype in (
  492. gguf.LlamaFileType.MOSTLY_TQ1_0,
  493. gguf.LlamaFileType.MOSTLY_TQ2_0,
  494. ):
  495. # TODO: use Q4_K and Q6_K
  496. data_qtype = gguf.GGMLQuantizationType.F16
  497. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  498. if isinstance(data_qtype, bool):
  499. if self.ftype == gguf.LlamaFileType.ALL_F32:
  500. data_qtype = gguf.GGMLQuantizationType.F32
  501. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  502. data_qtype = gguf.GGMLQuantizationType.F16
  503. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  504. data_qtype = gguf.GGMLQuantizationType.BF16
  505. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  506. data_qtype = gguf.GGMLQuantizationType.Q8_0
  507. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  508. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  509. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  510. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  511. else:
  512. raise ValueError(f"Unknown file type: {self.ftype.name}")
  513. try:
  514. data = gguf.quants.quantize(data, data_qtype)
  515. except gguf.QuantError as e:
  516. logger.warning("%s, %s", e, "falling back to F16")
  517. data_qtype = gguf.GGMLQuantizationType.F16
  518. data = gguf.quants.quantize(data, data_qtype)
  519. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  520. # reverse shape to make it similar to the internal ggml dimension order
  521. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  522. # n_dims is implicit in the shape
  523. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  524. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  525. def set_type(self):
  526. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  527. def prepare_metadata(self, vocab_only: bool):
  528. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  529. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  530. # If we are using HF model id, set the metadata name to the model id
  531. if self.remote_hf_model_id:
  532. self.metadata.name = self.remote_hf_model_id
  533. # Fallback to model directory name if metadata name is still missing
  534. if self.metadata.name is None:
  535. self.metadata.name = self.dir_model.name
  536. # Generate parameter weight class (useful for leader boards) if not yet determined
  537. if self.metadata.size_label is None and total_params > 0:
  538. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  539. self.set_type()
  540. logger.info("Set meta model")
  541. self.metadata.set_gguf_meta_model(self.gguf_writer)
  542. logger.info("Set model parameters")
  543. self.set_gguf_parameters()
  544. logger.info("Set model quantization version")
  545. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  546. def write_vocab(self):
  547. raise NotImplementedError("write_vocab() must be implemented in subclasses")
  548. def write(self):
  549. self.prepare_tensors()
  550. self.prepare_metadata(vocab_only=False)
  551. self.gguf_writer.write_header_to_file(path=self.fname_out)
  552. self.gguf_writer.write_kv_data_to_file()
  553. self.gguf_writer.write_tensors_to_file(progress=True)
  554. self.gguf_writer.close()
  555. @staticmethod
  556. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  557. part_names: list[str] = []
  558. for filename in os.listdir(dir_model):
  559. if filename.startswith(prefix) and filename.endswith(suffix):
  560. part_names.append(filename)
  561. part_names.sort()
  562. return part_names
  563. @staticmethod
  564. def load_hparams(dir_model: Path, is_mistral_format: bool):
  565. if is_mistral_format:
  566. with open(dir_model / "params.json", "r", encoding="utf-8") as f:
  567. config = json.load(f)
  568. return config
  569. try:
  570. # for security reason, we don't allow loading remote code by default
  571. # if a model need remote code, we will fallback to config.json
  572. config = AutoConfig.from_pretrained(dir_model, trust_remote_code=False).to_dict()
  573. except Exception as e:
  574. logger.warning(f"Failed to load model config from {dir_model}: {e}")
  575. logger.warning("Trying to load config.json instead")
  576. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  577. config = json.load(f)
  578. if "llm_config" in config:
  579. # rename for InternVL
  580. config["text_config"] = config["llm_config"]
  581. if "thinker_config" in config:
  582. # rename for Qwen2.5-Omni
  583. config["text_config"] = config["thinker_config"]["text_config"]
  584. return config
  585. @classmethod
  586. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  587. assert names
  588. def func(modelcls: AnyModel) -> AnyModel:
  589. model_type = ModelType.MMPROJ if modelcls.model_arch == gguf.MODEL_ARCH.MMPROJ else ModelType.TEXT
  590. for name in names:
  591. cls._model_classes[model_type][name] = modelcls
  592. return modelcls
  593. return func
  594. @classmethod
  595. def print_registered_models(cls):
  596. for model_type, model_classes in cls._model_classes.items():
  597. logger.error(f"{model_type.name} models:")
  598. for name in sorted(model_classes.keys()):
  599. logger.error(f" - {name}")
  600. @classmethod
  601. def from_model_architecture(cls, arch: str, model_type = ModelType.TEXT) -> type[ModelBase]:
  602. try:
  603. return cls._model_classes[model_type][arch]
  604. except KeyError:
  605. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  606. class TextModel(ModelBase):
  607. model_type = ModelType.TEXT
  608. hf_arch: str
  609. def __init__(self, *args, **kwargs):
  610. super().__init__(*args, **kwargs)
  611. if not self.is_mistral_format:
  612. self.hf_arch = get_model_architecture(self.hparams, self.model_type)
  613. else:
  614. self.hf_arch = ""
  615. if "text_config" in self.hparams:
  616. # move the text_config to the root level
  617. self.hparams = {**self.hparams, **self.hparams["text_config"]}
  618. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  619. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  620. @classmethod
  621. def __init_subclass__(cls):
  622. # can't use an abstract property, because overriding it without type errors
  623. # would require using decorated functions instead of simply defining the property
  624. if "model_arch" not in cls.__dict__:
  625. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  626. def set_vocab(self):
  627. self._set_vocab_gpt2()
  628. def prepare_metadata(self, vocab_only: bool):
  629. super().prepare_metadata(vocab_only=vocab_only)
  630. total_params = self.gguf_writer.get_total_parameter_count()[0]
  631. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  632. output_type: str = self.ftype.name.partition("_")[2]
  633. # Filename Output
  634. if self.fname_out.is_dir():
  635. # Generate default filename based on model specification and available metadata
  636. if not vocab_only:
  637. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  638. else:
  639. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  640. # Use the default filename
  641. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  642. else:
  643. # Output path is a custom defined templated filename
  644. # Note: `not is_dir()` is used because `.is_file()` will not detect
  645. # file template strings as it doesn't actually exist as a file
  646. # Process templated file name with the output ftype, useful with the "auto" ftype
  647. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  648. logger.info("Set model tokenizer")
  649. self.set_vocab()
  650. def set_gguf_parameters(self):
  651. self.gguf_writer.add_block_count(self.block_count)
  652. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx", "n_positions", "max_length"], optional=True)) is not None:
  653. self.gguf_writer.add_context_length(n_ctx)
  654. logger.info(f"gguf: context length = {n_ctx}")
  655. if (n_embd := self.find_hparam(["hidden_size", "n_embd", "dim"], optional=True)) is not None:
  656. self.gguf_writer.add_embedding_length(n_embd)
  657. logger.info(f"gguf: embedding length = {n_embd}")
  658. if (n_ff := self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"], optional=True)) is not None:
  659. self.gguf_writer.add_feed_forward_length(n_ff)
  660. logger.info(f"gguf: feed forward length = {n_ff}")
  661. if (n_head := self.find_hparam(["num_attention_heads", "n_head", "n_heads"], optional=True)) is not None:
  662. self.gguf_writer.add_head_count(n_head)
  663. logger.info(f"gguf: head count = {n_head}")
  664. if (n_head_kv := self.find_hparam(["num_key_value_heads", "n_kv_heads"], optional=True)) is not None:
  665. self.gguf_writer.add_head_count_kv(n_head_kv)
  666. logger.info(f"gguf: key-value head count = {n_head_kv}")
  667. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  668. self.gguf_writer.add_rope_freq_base(rope_theta)
  669. logger.info(f"gguf: rope theta = {rope_theta}")
  670. if (f_rms_eps := self.find_hparam(["rms_norm_eps", "norm_eps"], optional=True)) is not None:
  671. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  672. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  673. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  674. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  675. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  676. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  677. self.gguf_writer.add_expert_count(n_experts)
  678. logger.info(f"gguf: expert count = {n_experts}")
  679. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  680. self.gguf_writer.add_expert_used_count(n_experts_used)
  681. logger.info(f"gguf: experts used count = {n_experts_used}")
  682. if (n_expert_groups := self.hparams.get("n_group")) is not None:
  683. self.gguf_writer.add_expert_group_count(n_expert_groups)
  684. logger.info(f"gguf: expert groups count = {n_expert_groups}")
  685. if (n_group_used := self.hparams.get("topk_group")) is not None:
  686. self.gguf_writer.add_expert_group_used_count(n_group_used)
  687. logger.info(f"gguf: expert groups used count = {n_group_used}")
  688. if (score_func := self.find_hparam(["score_function", "scoring_func", "score_func"], optional=True)) is not None:
  689. if score_func == "sigmoid":
  690. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  691. elif score_func == "softmax":
  692. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  693. else:
  694. raise ValueError(f"Unsupported expert score gating function value: {score_func}")
  695. logger.info(f"gguf: expert score gating function = {score_func}")
  696. if (head_dim := self.hparams.get("head_dim")) is not None:
  697. self.gguf_writer.add_key_length(head_dim)
  698. self.gguf_writer.add_value_length(head_dim)
  699. self.gguf_writer.add_file_type(self.ftype)
  700. logger.info(f"gguf: file type = {self.ftype}")
  701. def write_vocab(self):
  702. if len(self.gguf_writer.tensors) != 1:
  703. raise ValueError('Splitting the vocabulary is not supported')
  704. self.prepare_metadata(vocab_only=True)
  705. self.gguf_writer.write_header_to_file(path=self.fname_out)
  706. self.gguf_writer.write_kv_data_to_file()
  707. self.gguf_writer.close()
  708. def does_token_look_special(self, token: str | bytes) -> bool:
  709. if isinstance(token, (bytes, bytearray)):
  710. token_text = token.decode(encoding="utf-8")
  711. elif isinstance(token, memoryview):
  712. token_text = token.tobytes().decode(encoding="utf-8")
  713. else:
  714. token_text = token
  715. # Some models mark some added tokens which ought to be control tokens as not special.
  716. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  717. seems_special = token_text in (
  718. "<pad>", # deepseek-coder
  719. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  720. )
  721. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  722. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  723. # TODO: should these be marked as UNUSED instead? (maybe not)
  724. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  725. return seems_special
  726. # used for GPT-2 BPE and WordPiece vocabs
  727. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  728. tokens: list[str] = []
  729. toktypes: list[int] = []
  730. from transformers import AutoTokenizer
  731. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  732. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  733. assert max(tokenizer.vocab.values()) < vocab_size
  734. tokpre = self.get_vocab_base_pre(tokenizer)
  735. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  736. added_vocab = tokenizer.get_added_vocab()
  737. added_tokens_decoder = tokenizer.added_tokens_decoder
  738. for i in range(vocab_size):
  739. if i not in reverse_vocab:
  740. tokens.append(f"[PAD{i}]")
  741. toktypes.append(gguf.TokenType.UNUSED)
  742. else:
  743. token: str = reverse_vocab[i]
  744. if token in added_vocab:
  745. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  746. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  747. if not added_tokens_decoder[i].normalized:
  748. previous_token = token
  749. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  750. if previous_token != token:
  751. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  752. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  753. toktypes.append(gguf.TokenType.CONTROL)
  754. else:
  755. # NOTE: this was added for Gemma.
  756. # Encoding and decoding the tokens above isn't sufficient for this case.
  757. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  758. toktypes.append(gguf.TokenType.USER_DEFINED)
  759. else:
  760. toktypes.append(gguf.TokenType.NORMAL)
  761. tokens.append(token)
  762. return tokens, toktypes, tokpre
  763. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  764. # do not modify it manually!
  765. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  766. # Marker: Start get_vocab_base_pre
  767. def get_vocab_base_pre(self, tokenizer) -> str:
  768. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  769. # is specific for the BPE pre-tokenizer used by the model
  770. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  771. # use in llama.cpp to implement the same pre-tokenizer
  772. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  773. chktok = tokenizer.encode(chktxt)
  774. chkhsh = sha256(str(chktok).encode()).hexdigest()
  775. logger.debug(f"chktok: {chktok}")
  776. logger.debug(f"chkhsh: {chkhsh}")
  777. res = None
  778. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  779. # or pull the latest version of the model from Huggingface
  780. # don't edit the hashes manually!
  781. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  782. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  783. res = "chatglm-bpe"
  784. if chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  785. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  786. res = "chatglm-bpe"
  787. if chkhsh == "a1336059768a55c99a734006ffb02203cd450fed003e9a71886c88acf24fdbc2":
  788. # ref: https://huggingface.co/THUDM/glm-4-9b-hf
  789. res = "glm4"
  790. if chkhsh == "9ca2dd618e8afaf09731a7cf6e2105b373ba6a1821559f258b272fe83e6eb902":
  791. # ref: https://huggingface.co/zai-org/GLM-4.5-Air
  792. res = "glm4"
  793. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  794. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  795. res = "minerva-7b"
  796. if chkhsh == "7e57df22b1fe23a7b1e1c7f3dc4e3f96d43a4eb0836d0c6bdc3436d7b2f1c664":
  797. # ref: https://huggingface.co/tencent/Hunyuan-A13B-Instruct
  798. res = "hunyuan"
  799. if chkhsh == "bba3b3366b646dbdded5dbc42d59598b849371afc42f7beafa914afaa5b70aa6":
  800. # ref: https://huggingface.co/tencent/Hunyuan-4B-Instruct
  801. res = "hunyuan-dense"
  802. if chkhsh == "a6b57017d60e6edb4d88ecc2845188e0eb333a70357e45dcc9b53964a73bbae6":
  803. # ref: https://huggingface.co/tiiuae/Falcon-H1-0.5B-Base
  804. res = "falcon-h1"
  805. if chkhsh == "60476e1243776c4fb1b993dbd7a5f15ac22f83c80afdf425fa5ae01c8d44ef86":
  806. # ref: https://huggingface.co/tiiuae/Falcon-H1-1B-Base
  807. res = "falcon-h1"
  808. if chkhsh == "3eda48b4c4dc7de733d1a8b3e3b4a85243dbbf704da2ee9d42c6beced8897896":
  809. # ref: https://huggingface.co/tiiuae/Falcon-H1-7B-Base
  810. res = "falcon-h1"
  811. if chkhsh == "48f8e02c0359c0bbdd82f26909171fac1c18a457bb47573ed1fe3bbb2c1cfd4b":
  812. # ref: https://huggingface.co/tiiuae/Falcon-H1-34B-Base
  813. res = "falcon-h1"
  814. if chkhsh == "81212dc7cdb7e0c1074ca62c5aeab0d43c9f52b8a737be7b12a777c953027890":
  815. # ref: https://huggingface.co/moonshotai/Kimi-K2-Base
  816. res = "kimi-k2"
  817. if chkhsh == "d4540891389ea895b53b399da6ac824becc30f2fba0e9ddbb98f92e55ca0e97c":
  818. # ref: https://huggingface.co/Qwen/Qwen3-Embedding-0.6B
  819. res = "qwen2"
  820. if chkhsh == "66b8d4e19ab16c3bfd89bce5d785fb7e0155e8648708a1f42077cb9fe002c273":
  821. # ref: https://huggingface.co/alvarobartt/grok-2-tokenizer
  822. res = "grok-2"
  823. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  824. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  825. res = "llama-bpe"
  826. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  827. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  828. res = "deepseek-llm"
  829. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  830. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  831. res = "deepseek-coder"
  832. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  833. # ref: https://huggingface.co/tiiuae/falcon-7b
  834. res = "falcon"
  835. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  836. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  837. res = "bert-bge"
  838. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  839. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  840. res = "falcon3"
  841. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  842. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  843. res = "bert-bge-large"
  844. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  845. # ref: https://huggingface.co/mosaicml/mpt-7b
  846. res = "mpt"
  847. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  848. # ref: https://huggingface.co/bigcode/starcoder2-3b
  849. res = "starcoder"
  850. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  851. # ref: https://huggingface.co/openai-community/gpt2
  852. res = "gpt-2"
  853. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  854. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  855. res = "stablelm2"
  856. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  857. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  858. res = "refact"
  859. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  860. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  861. res = "command-r"
  862. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  863. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  864. res = "qwen2"
  865. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  866. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  867. res = "olmo"
  868. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  869. # ref: https://huggingface.co/databricks/dbrx-base
  870. res = "dbrx"
  871. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  872. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  873. res = "jina-v1-en"
  874. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  875. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  876. res = "jina-v2-en"
  877. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  878. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  879. res = "jina-v2-es"
  880. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  881. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  882. res = "jina-v2-de"
  883. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  884. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  885. res = "smaug-bpe"
  886. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  887. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  888. res = "poro-chat"
  889. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  890. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  891. res = "jina-v2-code"
  892. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  893. # ref: https://huggingface.co/LumiOpen/Viking-7B
  894. res = "viking"
  895. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  896. # ref: https://huggingface.co/core42/jais-13b
  897. res = "jais"
  898. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  899. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  900. res = "codeshell"
  901. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  902. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  903. res = "tekken"
  904. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  905. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  906. res = "smollm"
  907. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  908. # ref: https://huggingface.co/bigscience/bloom
  909. res = "bloom"
  910. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  911. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  912. res = "gpt3-finnish"
  913. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  914. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  915. res = "exaone"
  916. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  917. # ref: https://huggingface.co/microsoft/phi-2
  918. res = "phi-2"
  919. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  920. # ref: https://huggingface.co/facebook/chameleon-7b
  921. res = "chameleon"
  922. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  923. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  924. res = "roberta-bpe"
  925. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  926. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  927. res = "gigachat"
  928. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  929. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  930. res = "megrez"
  931. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  932. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  933. res = "deepseek-v3"
  934. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  935. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  936. res = "deepseek-r1-qwen"
  937. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  938. # ref: https://huggingface.co/Xenova/gpt-4o
  939. res = "gpt-4o"
  940. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  941. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  942. res = "superbpe"
  943. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  944. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  945. res = "trillion"
  946. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  947. # ref: https://huggingface.co/inclusionAI/Ling-lite
  948. res = "bailingmoe"
  949. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  950. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  951. res = "llama4"
  952. if chkhsh == "0e9433cbbb161f89e264eb32e8e64bfe69e834973ffca5d41d3948a604a3e2a3":
  953. # ref: https://huggingface.co/mistral-community/pixtral-12b
  954. res = "pixtral"
  955. if chkhsh == "d5f1dd6f980fec569fb218a81a7658ac45fc56b38c5a0adeb1c232fbe04ef5ec":
  956. # ref: https://huggingface.co/ByteDance-Seed/Seed-Coder-8B-Base
  957. res = "seed-coder"
  958. if chkhsh == "b0a6b1c0bd5998ebd9df08611efde34a4ff03faed45ae09c43e6b31ebd4b94cf":
  959. # ref: https://huggingface.co/skt/A.X-4.0
  960. res = "a.x-4.0"
  961. if chkhsh == "f6791d196f87ce6b56a7d234be618e0d58f8cda3549416635b2bebcd22cd95c4":
  962. # ref: https://huggingface.co/K-intelligence/Midm-2.0-Base-Instruct
  963. res = "midm-2.0"
  964. if chkhsh == "169bf0296a13c4d9b7672313f749eb36501d931022de052aad6e36f2bf34dd51":
  965. # ref: https://huggingface.co/LiquidAI/LFM2-Tokenizer
  966. res = "lfm2"
  967. if chkhsh == "2085e1638f6c377a0aa4ead21b27bb4cb941bf800df86ed391011769c1758dfb":
  968. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-4.0-32B
  969. res = "exaone4"
  970. if chkhsh == "a1e163ecab2e718a4c829d1148b6e86824ec36163bb71941c3dca9cd5ac25756":
  971. # ref: https://huggingface.co/JetBrains/Mellum-4b-base
  972. res = "mellum"
  973. if chkhsh == "49fc0303c9e0d2c2c565c510f64b2d9b271276acdcdadff733249eda9f7d59df":
  974. # ref: https://huggingface.co/arcee-ai/Trinity-Tokenizer
  975. res = "afmoe"
  976. if chkhsh == "9b1be57e70d20d9501b2b3186e792d81181ae36ada3903c26f9fea418cf87206":
  977. # ref: https://huggingface.co/inclusionAI/Ling-mini-base-2.0
  978. res = "bailingmoe2"
  979. if chkhsh == "53e325976a6e142379c19b09afcae354f2f496f147afa8f9e189a33fe4e3024e":
  980. # ref: https://huggingface.co/ibm-granite/granite-docling-258M
  981. res = "granite-docling"
  982. if chkhsh == "f4f37b6c8eb9ea29b3eac6bb8c8487c5ab7885f8d8022e67edc1c68ce8403e95":
  983. # ref: https://huggingface.co/MiniMaxAI/MiniMax-M2
  984. res = "minimax-m2"
  985. if res is None:
  986. logger.warning("\n")
  987. logger.warning("**************************************************************************************")
  988. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  989. logger.warning("** There are 2 possible reasons for this:")
  990. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  991. logger.warning("** - the pre-tokenization config has changed upstream")
  992. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  993. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  994. logger.warning("**")
  995. logger.warning(f"** chkhsh: {chkhsh}")
  996. logger.warning("**************************************************************************************")
  997. logger.warning("\n")
  998. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  999. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  1000. logger.debug(f"chkhsh: {chkhsh}")
  1001. return res
  1002. # Marker: End get_vocab_base_pre
  1003. def _set_vocab_none(self) -> None:
  1004. self.gguf_writer.add_tokenizer_model("none")
  1005. def _set_vocab_gpt2(self) -> None:
  1006. tokens, toktypes, tokpre = self.get_vocab_base()
  1007. self.gguf_writer.add_tokenizer_model("gpt2")
  1008. self.gguf_writer.add_tokenizer_pre(tokpre)
  1009. self.gguf_writer.add_token_list(tokens)
  1010. self.gguf_writer.add_token_types(toktypes)
  1011. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1012. special_vocab.add_to_gguf(self.gguf_writer)
  1013. def _set_vocab_qwen(self):
  1014. dir_model = self.dir_model
  1015. hparams = self.hparams
  1016. tokens: list[str] = []
  1017. toktypes: list[int] = []
  1018. from transformers import AutoTokenizer
  1019. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  1020. vocab_size = hparams["vocab_size"]
  1021. assert max(tokenizer.get_vocab().values()) < vocab_size
  1022. tokpre = self.get_vocab_base_pre(tokenizer)
  1023. merges = []
  1024. vocab = {}
  1025. mergeable_ranks = tokenizer.mergeable_ranks
  1026. for token, rank in mergeable_ranks.items():
  1027. vocab[QwenModel.token_bytes_to_string(token)] = rank
  1028. if len(token) == 1:
  1029. continue
  1030. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  1031. assert len(merged) == 2
  1032. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  1033. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  1034. added_vocab = tokenizer.special_tokens
  1035. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  1036. for i in range(vocab_size):
  1037. if i not in reverse_vocab:
  1038. tokens.append(f"[PAD{i}]")
  1039. toktypes.append(gguf.TokenType.UNUSED)
  1040. elif reverse_vocab[i] in added_vocab:
  1041. tokens.append(reverse_vocab[i])
  1042. toktypes.append(gguf.TokenType.CONTROL)
  1043. else:
  1044. tokens.append(reverse_vocab[i])
  1045. toktypes.append(gguf.TokenType.NORMAL)
  1046. self.gguf_writer.add_tokenizer_model("gpt2")
  1047. self.gguf_writer.add_tokenizer_pre(tokpre)
  1048. self.gguf_writer.add_token_list(tokens)
  1049. self.gguf_writer.add_token_types(toktypes)
  1050. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  1051. special_vocab.merges = merges
  1052. # only add special tokens when they were not already loaded from config.json
  1053. if len(special_vocab.special_token_ids) == 0:
  1054. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  1055. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  1056. # this one is usually not in config.json anyway
  1057. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  1058. special_vocab.add_to_gguf(self.gguf_writer)
  1059. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  1060. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  1061. self.gguf_writer.add_tokenizer_model("llama")
  1062. self.gguf_writer.add_tokenizer_pre("default")
  1063. self.gguf_writer.add_token_list(tokens)
  1064. self.gguf_writer.add_token_scores(scores)
  1065. self.gguf_writer.add_token_types(toktypes)
  1066. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1067. special_vocab.add_to_gguf(self.gguf_writer)
  1068. def _create_vocab_sentencepiece(self):
  1069. from sentencepiece import SentencePieceProcessor
  1070. tokenizer_path = self.dir_model / 'tokenizer.model'
  1071. if not tokenizer_path.is_file():
  1072. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  1073. tokenizer = SentencePieceProcessor()
  1074. tokenizer.LoadFromFile(str(tokenizer_path))
  1075. vocab_size = self.find_hparam([
  1076. "vocab_size_per_layer_input", # gemma3n
  1077. "vocab_size",
  1078. ], optional=True) or tokenizer.vocab_size()
  1079. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1080. scores: list[float] = [-10000.0] * vocab_size
  1081. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1082. for token_id in range(tokenizer.vocab_size()):
  1083. if token_id >= vocab_size:
  1084. logger.warning(f'ignore tokens from {token_id}: id is out of range, max={vocab_size - 1}')
  1085. break
  1086. piece = tokenizer.IdToPiece(token_id)
  1087. text = piece.encode("utf-8")
  1088. score = tokenizer.GetScore(token_id)
  1089. toktype = SentencePieceTokenTypes.NORMAL
  1090. if tokenizer.IsUnknown(token_id):
  1091. toktype = SentencePieceTokenTypes.UNKNOWN
  1092. elif tokenizer.IsControl(token_id):
  1093. toktype = SentencePieceTokenTypes.CONTROL
  1094. elif tokenizer.IsUnused(token_id):
  1095. toktype = SentencePieceTokenTypes.UNUSED
  1096. elif tokenizer.IsByte(token_id):
  1097. toktype = SentencePieceTokenTypes.BYTE
  1098. tokens[token_id] = text
  1099. scores[token_id] = score
  1100. toktypes[token_id] = toktype
  1101. added_tokens_file = self.dir_model / 'added_tokens.json'
  1102. if added_tokens_file.is_file():
  1103. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1104. added_tokens_json = json.load(f)
  1105. for key in added_tokens_json:
  1106. token_id = added_tokens_json[key]
  1107. if token_id >= vocab_size:
  1108. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1109. continue
  1110. tokens[token_id] = key.encode("utf-8")
  1111. scores[token_id] = -1000.0
  1112. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1113. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1114. if tokenizer_config_file.is_file():
  1115. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1116. tokenizer_config_json = json.load(f)
  1117. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1118. for token_id, token_data in added_tokens_decoder.items():
  1119. token_id = int(token_id)
  1120. token: str = token_data["content"]
  1121. if token_id >= vocab_size:
  1122. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1123. continue
  1124. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1125. if tokens[token_id] != token.encode("utf-8"):
  1126. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  1127. if token_data.get("special") or self.does_token_look_special(token):
  1128. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1129. else:
  1130. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  1131. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1132. scores[token_id] = -1000.0
  1133. tokens[token_id] = token.encode("utf-8")
  1134. if vocab_size > len(tokens):
  1135. pad_count = vocab_size - len(tokens)
  1136. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  1137. for i in range(1, pad_count + 1):
  1138. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  1139. scores.append(-1000.0)
  1140. toktypes.append(SentencePieceTokenTypes.UNUSED)
  1141. return tokens, scores, toktypes
  1142. def _set_vocab_llama_hf(self):
  1143. vocab = gguf.LlamaHfVocab(self.dir_model)
  1144. tokens = []
  1145. scores = []
  1146. toktypes = []
  1147. for text, score, toktype in vocab.all_tokens():
  1148. tokens.append(text)
  1149. scores.append(score)
  1150. toktypes.append(toktype)
  1151. assert len(tokens) == vocab.vocab_size
  1152. self.gguf_writer.add_tokenizer_model("llama")
  1153. self.gguf_writer.add_tokenizer_pre("default")
  1154. self.gguf_writer.add_token_list(tokens)
  1155. self.gguf_writer.add_token_scores(scores)
  1156. self.gguf_writer.add_token_types(toktypes)
  1157. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1158. special_vocab.add_to_gguf(self.gguf_writer)
  1159. def _set_vocab_rwkv_world(self):
  1160. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  1161. vocab_size = self.hparams.get("vocab_size", 65536)
  1162. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  1163. toktypes: list[int] = [gguf.TokenType.CONTROL]
  1164. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  1165. lines = f.readlines()
  1166. for line in lines:
  1167. parts = line.split(' ')
  1168. assert len(parts) >= 3
  1169. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  1170. token = token.encode("utf-8") if isinstance(token, str) else token
  1171. assert isinstance(token, bytes)
  1172. assert len(token) == token_len
  1173. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  1174. tokens.append(token_text.encode("utf-8"))
  1175. toktypes.append(gguf.TokenType.NORMAL)
  1176. remainder = vocab_size - len(tokens)
  1177. assert remainder >= 0
  1178. for i in range(len(tokens), vocab_size):
  1179. tokens.append(f"[PAD{i}]".encode("utf-8"))
  1180. toktypes.append(gguf.TokenType.UNUSED)
  1181. self.gguf_writer.add_tokenizer_model("rwkv")
  1182. self.gguf_writer.add_token_list(tokens)
  1183. self.gguf_writer.add_token_types(toktypes)
  1184. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  1185. if special_vocab.chat_template is None:
  1186. template_path = Path(__file__).parent / "models" / "templates" / "llama-cpp-rwkv-world.jinja"
  1187. if template_path.is_file():
  1188. with open(template_path, "r", encoding="utf-8") as f:
  1189. template = f.read()
  1190. else:
  1191. template = "rwkv-world"
  1192. special_vocab.chat_template = template
  1193. # hack: Add '\n\n' as the EOT token to make it chat normally
  1194. special_vocab._set_special_token("eot", 261)
  1195. # hack: Override these as they have already been set (incorrectly)
  1196. special_vocab.special_token_ids["bos"] = 0
  1197. special_vocab.special_token_ids["eos"] = 0
  1198. special_vocab.add_to_gguf(self.gguf_writer)
  1199. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  1200. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  1201. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  1202. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  1203. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  1204. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  1205. assert field # tokenizer model
  1206. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  1207. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  1208. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  1209. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  1210. assert field # token list
  1211. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  1212. if model_name == "llama-spm":
  1213. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  1214. assert field # token scores
  1215. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1216. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  1217. assert field # token types
  1218. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  1219. if model_name != "llama-spm":
  1220. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  1221. assert field # token merges
  1222. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  1223. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  1224. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  1225. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  1226. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  1227. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  1228. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  1229. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  1230. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  1231. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  1232. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  1233. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  1234. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  1235. def _try_set_pooling_type(self) -> None:
  1236. # get pooling path
  1237. pooling_path = None
  1238. module_path = self.dir_model / "modules.json"
  1239. if module_path.is_file():
  1240. with open(module_path, encoding="utf-8") as f:
  1241. modules = json.load(f)
  1242. for mod in modules:
  1243. if mod["type"] == "sentence_transformers.models.Pooling":
  1244. pooling_path = mod["path"]
  1245. break
  1246. # get pooling type
  1247. if pooling_path is not None:
  1248. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  1249. pooling = json.load(f)
  1250. if pooling["pooling_mode_mean_tokens"]:
  1251. pooling_type = gguf.PoolingType.MEAN
  1252. elif pooling["pooling_mode_cls_token"]:
  1253. pooling_type = gguf.PoolingType.CLS
  1254. elif pooling["pooling_mode_lasttoken"]:
  1255. pooling_type = gguf.PoolingType.LAST
  1256. else:
  1257. raise NotImplementedError("Only MEAN, CLS, and LAST pooling types supported")
  1258. self.gguf_writer.add_pooling_type(pooling_type)
  1259. def _set_vocab_interns1(self):
  1260. tokens: list[str] = []
  1261. toktypes: list[int] = []
  1262. from transformers import AutoTokenizer
  1263. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  1264. vocab = getattr(tokenizer, 'vocab', tokenizer.get_vocab())
  1265. vocab_size = self.hparams.get("vocab_size", len(vocab))
  1266. assert max(vocab.values()) < vocab_size
  1267. tokpre = self.get_vocab_base_pre(tokenizer)
  1268. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab.items()}
  1269. added_vocab = tokenizer.get_added_vocab()
  1270. added_tokens_decoder = tokenizer.added_tokens_decoder
  1271. for i in range(vocab_size):
  1272. if i not in reverse_vocab:
  1273. tokens.append(f"[PAD{i}]")
  1274. toktypes.append(gguf.TokenType.UNUSED)
  1275. else:
  1276. token: str = reverse_vocab[i]
  1277. if token in added_vocab:
  1278. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  1279. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  1280. if not added_tokens_decoder[i].normalized:
  1281. previous_token = token
  1282. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  1283. if previous_token != token:
  1284. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  1285. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  1286. toktypes.append(gguf.TokenType.CONTROL)
  1287. else:
  1288. toktypes.append(gguf.TokenType.USER_DEFINED)
  1289. else:
  1290. toktypes.append(gguf.TokenType.NORMAL)
  1291. tokens.append(token)
  1292. self.gguf_writer.add_tokenizer_model("gpt2")
  1293. self.gguf_writer.add_tokenizer_pre(tokpre)
  1294. self.gguf_writer.add_token_list(tokens)
  1295. self.gguf_writer.add_token_types(toktypes)
  1296. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1297. special_vocab._set_special_token("bos", 151643)
  1298. special_vocab.add_to_gguf(self.gguf_writer)
  1299. def _set_vocab_mistral(self):
  1300. if not _mistral_common_installed:
  1301. raise ImportError(_mistral_import_error_msg)
  1302. vocab = MistralVocab(self.dir_model)
  1303. logger.info(
  1304. f"Converting tokenizer {vocab.tokenizer_type} of size {vocab.vocab_size}."
  1305. )
  1306. self.gguf_writer.add_tokenizer_model(vocab.gguf_tokenizer_model)
  1307. tokens = []
  1308. scores = []
  1309. toktypes = []
  1310. for text, score, toktype in vocab.all_tokens():
  1311. tokens.append(text)
  1312. scores.append(score)
  1313. toktypes.append(toktype)
  1314. assert len(tokens) == vocab.vocab_size, (
  1315. f"token count ({len(tokens)}) != vocab size ({vocab.vocab_size})"
  1316. )
  1317. if vocab.tokenizer_type == MistralTokenizerType.tekken:
  1318. self.gguf_writer.add_tokenizer_pre("tekken")
  1319. self.gguf_writer.add_token_merges(
  1320. vocab.extract_vocab_merges_from_model()
  1321. )
  1322. logger.info(
  1323. f"Setting bos, eos, unk and pad token IDs to {vocab.bos_id}, {vocab.eos_id}, {vocab.unk_id}, {vocab.pad_id}."
  1324. )
  1325. self.gguf_writer.add_bos_token_id(vocab.bos_id)
  1326. self.gguf_writer.add_eos_token_id(vocab.eos_id)
  1327. self.gguf_writer.add_unk_token_id(vocab.unk_id)
  1328. self.gguf_writer.add_pad_token_id(vocab.pad_id)
  1329. self.gguf_writer.add_token_list(tokens)
  1330. self.gguf_writer.add_token_scores(scores)
  1331. self.gguf_writer.add_token_types(toktypes)
  1332. self.gguf_writer.add_vocab_size(vocab.vocab_size)
  1333. self.gguf_writer.add_add_bos_token(True)
  1334. self.gguf_writer.add_add_eos_token(False)
  1335. local_template_file_path = self.dir_model / "chat_template.jinja"
  1336. if self.is_mistral_format and local_template_file_path.is_file():
  1337. # Ministral-3 and other new Mistral models come with chat templates.
  1338. # ref: https://huggingface.co/mistralai/Ministral-3-14B-Instruct-2512/tree/main
  1339. logger.info("Using an existing Mistral local chat template.")
  1340. with open(local_template_file_path, "r", encoding="utf-8") as f:
  1341. template = f.read()
  1342. elif not self.is_mistral_format or not self.disable_mistral_community_chat_template:
  1343. template_dir = Path(__file__).parent / "models/templates/"
  1344. # Log only for Mistral format that the official tokenization and detokenization is via `mistral-common`.
  1345. if self.is_mistral_format:
  1346. logger.info(
  1347. "Using a Mistral community chat template. These templates can be subject to errors in early days or weeks after a release. "
  1348. "Mistral recommends to use `mistral-common` to perform tokenization and detokenization."
  1349. )
  1350. template = MistralModel.get_community_chat_template(vocab, template_dir, self.is_mistral_format)
  1351. else:
  1352. logger.info("Not using a Mistral local or community chat template. Ensure to perform the tokenization and detokenization via `mistral-common`.")
  1353. template = None
  1354. if template is not None:
  1355. self.gguf_writer.add_chat_template(template)
  1356. class MmprojModel(ModelBase):
  1357. model_type = ModelType.MMPROJ
  1358. model_arch = gguf.MODEL_ARCH.MMPROJ
  1359. preprocessor_config: dict[str, Any]
  1360. global_config: dict[str, Any]
  1361. n_block_keys = ["n_layers", "num_hidden_layers", "n_layer", "num_layers", "depth"]
  1362. has_vision_encoder: bool = True # by default
  1363. has_audio_encoder: bool = False
  1364. # for models having multiple encoders, we need to separate their hparams
  1365. hparams_vision: dict[str, Any] | None = None
  1366. hparams_audio: dict[str, Any] | None = None
  1367. def __init__(self, *args, **kwargs):
  1368. super().__init__(*args, **kwargs)
  1369. if self.model_arch != gguf.MODEL_ARCH.MMPROJ:
  1370. raise TypeError("MmprojModel must be subclassed with model_arch = gguf.MODEL_ARCH.MMPROJ")
  1371. # get n_embd of the text model
  1372. if not self.is_mistral_format:
  1373. if "text_config" not in self.hparams:
  1374. self.hparams["text_config"] = {}
  1375. if "audio_config" not in self.hparams:
  1376. self.hparams["audio_config"] = {}
  1377. text_config = {**self.hparams, **self.hparams["text_config"]}
  1378. self.n_embd_text = text_config.get("hidden_size", text_config.get("n_embd", 0))
  1379. else:
  1380. text_config = {
  1381. k: v for k, v in self.hparams.items() if k not in ["vision_encoder", "audio_encoder"]
  1382. }
  1383. self.n_embd_text = text_config.get("hidden_dim", 0)
  1384. assert self.n_embd_text > 0, "n_embd not found in hparams"
  1385. # move vision config to the top level, while preserving the original hparams in global_config
  1386. import copy
  1387. self.global_config = copy.deepcopy(self.hparams)
  1388. self.hparams_vision = self.get_vision_config()
  1389. self.hparams_audio = self.get_audio_config()
  1390. if self.hparams_vision is None and self.hparams_audio is None:
  1391. raise ValueError("vision_config / audio_config not found in hparams")
  1392. # for compat with vision-only models
  1393. self.hparams = self.hparams_vision or self.hparams_audio or self.hparams
  1394. # TODO @ngxson : this is a hack to support both vision and audio encoders
  1395. have_multiple_encoders = self.has_audio_encoder and self.has_vision_encoder
  1396. self.block_count = 128 if have_multiple_encoders else self.find_hparam(self.n_block_keys, True)
  1397. self.tensor_map = gguf.get_tensor_name_map(gguf.MODEL_ARCH.MMPROJ, self.block_count)
  1398. # load preprocessor config
  1399. self.preprocessor_config = {}
  1400. # prefer preprocessor_config.json if possible
  1401. preprocessor_config_path = self.dir_model / "preprocessor_config.json"
  1402. if preprocessor_config_path.is_file():
  1403. with open(preprocessor_config_path, "r", encoding="utf-8") as f:
  1404. self.preprocessor_config = json.load(f)
  1405. # prefer processor_config.json if possible
  1406. processor_config_path = self.dir_model / "processor_config.json"
  1407. if processor_config_path.is_file():
  1408. with open(processor_config_path, "r", encoding="utf-8") as f:
  1409. cfg = json.load(f)
  1410. # move image_processor to root level for compat
  1411. if "image_processor" in cfg:
  1412. cfg = {
  1413. **cfg,
  1414. **cfg["image_processor"],
  1415. }
  1416. # merge configs
  1417. self.preprocessor_config = {**self.preprocessor_config, **cfg}
  1418. def get_vision_config(self) -> dict[str, Any] | None:
  1419. config_name = "vision_config" if not self.is_mistral_format else "vision_encoder"
  1420. return self.global_config.get(config_name)
  1421. def get_audio_config(self) -> dict[str, Any] | None:
  1422. return self.global_config.get("audio_config")
  1423. def set_type(self):
  1424. self.gguf_writer.add_type(gguf.GGUFType.MMPROJ)
  1425. def prepare_metadata(self, vocab_only: bool):
  1426. super().prepare_metadata(vocab_only=vocab_only)
  1427. output_type: str = self.ftype.name.partition("_")[2]
  1428. if self.fname_out.is_dir():
  1429. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=output_type, model_type=None)
  1430. self.fname_out = self.fname_out / f"mmproj-{fname_default}.gguf"
  1431. else:
  1432. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  1433. def set_gguf_parameters(self):
  1434. self.gguf_writer.add_file_type(self.ftype)
  1435. if self.has_vision_encoder:
  1436. self.gguf_writer.add_clip_has_vision_encoder(True)
  1437. self.gguf_writer.add_vision_projection_dim(self.n_embd_text)
  1438. # vision config
  1439. self.image_size = self.find_vparam(["image_size"])
  1440. self.gguf_writer.add_vision_image_size(self.image_size)
  1441. self.gguf_writer.add_vision_patch_size(self.find_vparam(["patch_size"]))
  1442. self.gguf_writer.add_vision_embedding_length(self.find_vparam(["hidden_size"]))
  1443. self.gguf_writer.add_vision_feed_forward_length(self.find_vparam(["intermediate_size"]))
  1444. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys))
  1445. self.gguf_writer.add_vision_head_count(self.find_vparam(["num_attention_heads", "num_heads"]))
  1446. # preprocessor config
  1447. image_mean = _MISTRAL_COMMON_DATASET_MEAN if self.is_mistral_format else self.preprocessor_config["image_mean"]
  1448. image_std = _MISTRAL_COMMON_DATASET_STD if self.is_mistral_format else self.preprocessor_config["image_std"]
  1449. self.gguf_writer.add_vision_image_mean(image_mean)
  1450. self.gguf_writer.add_vision_image_std(image_std)
  1451. if self.has_audio_encoder:
  1452. self.gguf_writer.add_clip_has_audio_encoder(True)
  1453. self.gguf_writer.add_audio_projection_dim(self.n_embd_text)
  1454. # audio config
  1455. self.gguf_writer.add_audio_embedding_length(self.find_aparam(["hidden_size"]))
  1456. self.gguf_writer.add_audio_feed_forward_length(self.find_aparam(["intermediate_size"]))
  1457. self.gguf_writer.add_audio_block_count(self.find_aparam(self.n_block_keys))
  1458. self.gguf_writer.add_audio_head_count(self.find_aparam(["num_attention_heads"]))
  1459. if not self.has_vision_encoder and not self.has_audio_encoder:
  1460. raise ValueError("MmprojModel must have either vision or audio encoder")
  1461. def write_vocab(self):
  1462. raise ValueError("MmprojModel does not support vocab writing")
  1463. def find_vparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1464. assert self.hparams_vision is not None
  1465. return self._find_param(self.hparams_vision, keys, optional)
  1466. def find_aparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  1467. assert self.hparams_audio is not None
  1468. return self._find_param(self.hparams_audio, keys, optional)
  1469. def _find_param(self, obj: dict[str, Any], keys: Iterable[str], optional: bool = False) -> Any:
  1470. key = next((k for k in keys if k in obj), None)
  1471. if key is not None:
  1472. return obj[key]
  1473. if optional:
  1474. return None
  1475. raise KeyError(f"could not find any of: {keys}")
  1476. def tensor_force_quant(self, name, new_name, bid, n_dims):
  1477. del bid, name, n_dims # unused
  1478. if ".patch_embd.weight" in new_name:
  1479. return gguf.GGMLQuantizationType.F16 if self.ftype == gguf.LlamaFileType.MOSTLY_F16 else gguf.GGMLQuantizationType.F32
  1480. return False
  1481. @ModelBase.register("GPTNeoXForCausalLM")
  1482. class GPTNeoXModel(TextModel):
  1483. model_arch = gguf.MODEL_ARCH.GPTNEOX
  1484. def set_gguf_parameters(self):
  1485. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1486. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1487. self.gguf_writer.add_block_count(self.block_count)
  1488. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1489. self.gguf_writer.add_rope_dimension_count(
  1490. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  1491. )
  1492. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1493. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  1494. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  1495. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1496. del bid # unused
  1497. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1498. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1499. tensors: list[tuple[str, Tensor]] = []
  1500. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  1501. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1502. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1503. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1504. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1505. data_torch = torch.cat(
  1506. (
  1507. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1508. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1509. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1510. ),
  1511. dim=0,
  1512. )
  1513. logger.info("re-format attention.linear_qkv.weight")
  1514. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  1515. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1516. data_torch = torch.cat(
  1517. (
  1518. qkv_bias[:, 0, :].reshape((n_embed,)),
  1519. qkv_bias[:, 1, :].reshape((n_embed,)),
  1520. qkv_bias[:, 2, :].reshape((n_embed,)),
  1521. ),
  1522. dim=0,
  1523. )
  1524. logger.info("re-format attention.linear_qkv.bias")
  1525. tensors.append((self.map_tensor_name(name), data_torch))
  1526. return tensors
  1527. @ModelBase.register("BloomForCausalLM", "BloomModel")
  1528. class BloomModel(TextModel):
  1529. model_arch = gguf.MODEL_ARCH.BLOOM
  1530. def set_gguf_parameters(self):
  1531. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1532. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1533. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  1534. self.gguf_writer.add_embedding_length(n_embed)
  1535. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  1536. self.gguf_writer.add_block_count(self.block_count)
  1537. self.gguf_writer.add_head_count(n_head)
  1538. self.gguf_writer.add_head_count_kv(n_head)
  1539. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1540. self.gguf_writer.add_file_type(self.ftype)
  1541. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1542. del bid # unused
  1543. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  1544. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  1545. name = re.sub(r'transformer\.', '', name)
  1546. tensors: list[tuple[str, Tensor]] = []
  1547. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  1548. # Map bloom-style qkv_linear to gpt-style qkv_linear
  1549. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  1550. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  1551. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  1552. data_torch = torch.cat(
  1553. (
  1554. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  1555. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  1556. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  1557. ),
  1558. dim=0,
  1559. )
  1560. logger.info("re-format attention.linear_qkv.weight")
  1561. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  1562. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  1563. data_torch = torch.cat(
  1564. (
  1565. qkv_bias[:, 0, :].reshape((n_embed,)),
  1566. qkv_bias[:, 1, :].reshape((n_embed,)),
  1567. qkv_bias[:, 2, :].reshape((n_embed,)),
  1568. ),
  1569. dim=0,
  1570. )
  1571. logger.info("re-format attention.linear_qkv.bias")
  1572. tensors.append((self.map_tensor_name(name), data_torch))
  1573. return tensors
  1574. @ModelBase.register("MPTForCausalLM")
  1575. class MPTModel(TextModel):
  1576. model_arch = gguf.MODEL_ARCH.MPT
  1577. def set_vocab(self):
  1578. try:
  1579. self._set_vocab_gpt2()
  1580. except Exception:
  1581. # Fallback for SEA-LION model
  1582. self._set_vocab_sentencepiece()
  1583. self.gguf_writer.add_add_bos_token(False)
  1584. self.gguf_writer.add_pad_token_id(3)
  1585. self.gguf_writer.add_eos_token_id(1)
  1586. self.gguf_writer.add_unk_token_id(0)
  1587. def set_gguf_parameters(self):
  1588. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1589. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1590. self.gguf_writer.add_block_count(self.block_count)
  1591. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  1592. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1593. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  1594. self.gguf_writer.add_head_count_kv(kv_n_heads)
  1595. self.gguf_writer.add_layer_norm_eps(1e-5)
  1596. if self.hparams["attn_config"]["clip_qkv"] is not None:
  1597. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  1598. if self.hparams["attn_config"]["alibi"]:
  1599. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  1600. else:
  1601. self.gguf_writer.add_max_alibi_bias(0.0)
  1602. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1603. del bid # unused
  1604. if "scales" in name:
  1605. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  1606. new_name = new_name.replace("scales", "act.scales")
  1607. else:
  1608. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  1609. return [(new_name, data_torch)]
  1610. @ModelBase.register("OrionForCausalLM")
  1611. class OrionModel(TextModel):
  1612. model_arch = gguf.MODEL_ARCH.ORION
  1613. def set_vocab(self):
  1614. self._set_vocab_sentencepiece()
  1615. def set_gguf_parameters(self):
  1616. head_count = self.hparams["num_attention_heads"]
  1617. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1618. ctx_length = 0
  1619. if "max_sequence_length" in self.hparams:
  1620. ctx_length = self.hparams["max_sequence_length"]
  1621. elif "max_position_embeddings" in self.hparams:
  1622. ctx_length = self.hparams["max_position_embeddings"]
  1623. elif "model_max_length" in self.hparams:
  1624. ctx_length = self.hparams["model_max_length"]
  1625. else:
  1626. raise ValueError("gguf: can not find ctx length parameter.")
  1627. self.gguf_writer.add_file_type(self.ftype)
  1628. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1629. self.gguf_writer.add_context_length(ctx_length)
  1630. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1631. self.gguf_writer.add_block_count(self.block_count)
  1632. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1633. self.gguf_writer.add_head_count(head_count)
  1634. self.gguf_writer.add_head_count_kv(head_count_kv)
  1635. # note: config provides rms norm but it is actually layer norm
  1636. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1637. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1638. @ModelBase.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1639. class BaichuanModel(TextModel):
  1640. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1641. def set_vocab(self):
  1642. self._set_vocab_sentencepiece()
  1643. def set_gguf_parameters(self):
  1644. head_count = self.hparams["num_attention_heads"]
  1645. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1646. ctx_length = 0
  1647. if "max_sequence_length" in self.hparams:
  1648. ctx_length = self.hparams["max_sequence_length"]
  1649. elif "max_position_embeddings" in self.hparams:
  1650. ctx_length = self.hparams["max_position_embeddings"]
  1651. elif "model_max_length" in self.hparams:
  1652. ctx_length = self.hparams["model_max_length"]
  1653. else:
  1654. raise ValueError("gguf: can not find ctx length parameter.")
  1655. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1656. self.gguf_writer.add_context_length(ctx_length)
  1657. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1658. self.gguf_writer.add_block_count(self.block_count)
  1659. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1660. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1661. self.gguf_writer.add_head_count(head_count)
  1662. self.gguf_writer.add_head_count_kv(head_count_kv)
  1663. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1664. self.gguf_writer.add_file_type(self.ftype)
  1665. rope_scaling = self.hparams.get("rope_scaling") or {}
  1666. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1667. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1668. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1669. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1670. head_count = self.hparams["num_attention_heads"]
  1671. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1672. tensors: list[tuple[str, Tensor]] = []
  1673. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1674. logger.info(f"Unpacking and permuting layer {bid}")
  1675. tensors = [
  1676. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1677. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1678. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1679. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1680. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1681. self._reverse_hf_part(data_torch, 2)),
  1682. ]
  1683. else:
  1684. tensors = [(self.map_tensor_name(name), data_torch)]
  1685. return tensors
  1686. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1687. if n_kv_head is not None and n_head != n_kv_head:
  1688. n_head //= n_kv_head
  1689. return (
  1690. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1691. .swapaxes(1, 2)
  1692. .reshape(weights.shape)
  1693. )
  1694. def _reverse_hf_permute_part(
  1695. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1696. ) -> Tensor:
  1697. r = weights.shape[0] // 3
  1698. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1699. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1700. r = weights.shape[0] // 3
  1701. return weights[r * n_part:r * n_part + r, ...]
  1702. @ModelBase.register("XverseForCausalLM")
  1703. class XverseModel(TextModel):
  1704. model_arch = gguf.MODEL_ARCH.XVERSE
  1705. def set_vocab(self):
  1706. assert (self.dir_model / "tokenizer.json").is_file()
  1707. dir_model = self.dir_model
  1708. hparams = self.hparams
  1709. tokens: list[bytes] = []
  1710. toktypes: list[int] = []
  1711. from transformers import AutoTokenizer
  1712. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1713. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1714. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1715. # because vocab_size is the count of items, and indexes start at 0.
  1716. max_vocab_index = max(tokenizer.get_vocab().values())
  1717. if max_vocab_index >= vocab_size:
  1718. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1719. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1720. added_vocab = tokenizer.get_added_vocab()
  1721. for token_id in range(vocab_size):
  1722. token_text = reverse_vocab[token_id].encode('utf-8')
  1723. # replace "\x00" to string with length > 0
  1724. if token_text == b"\x00":
  1725. toktype = gguf.TokenType.BYTE # special
  1726. token_text = f"<{token_text}>".encode('utf-8')
  1727. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1728. toktype = gguf.TokenType.BYTE # special
  1729. elif reverse_vocab[token_id] in added_vocab:
  1730. if tokenizer.added_tokens_decoder[token_id].special:
  1731. toktype = gguf.TokenType.CONTROL
  1732. else:
  1733. toktype = gguf.TokenType.USER_DEFINED
  1734. else:
  1735. toktype = gguf.TokenType.NORMAL
  1736. tokens.append(token_text)
  1737. toktypes.append(toktype)
  1738. self.gguf_writer.add_tokenizer_model("llama")
  1739. self.gguf_writer.add_tokenizer_pre("default")
  1740. self.gguf_writer.add_token_list(tokens)
  1741. self.gguf_writer.add_token_types(toktypes)
  1742. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1743. special_vocab.add_to_gguf(self.gguf_writer)
  1744. def set_gguf_parameters(self):
  1745. head_count = self.hparams["num_attention_heads"]
  1746. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1747. ctx_length = 0
  1748. if "max_sequence_length" in self.hparams:
  1749. ctx_length = self.hparams["max_sequence_length"]
  1750. elif "max_position_embeddings" in self.hparams:
  1751. ctx_length = self.hparams["max_position_embeddings"]
  1752. elif "model_max_length" in self.hparams:
  1753. ctx_length = self.hparams["model_max_length"]
  1754. else:
  1755. raise ValueError("gguf: can not find ctx length parameter.")
  1756. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1757. self.gguf_writer.add_context_length(ctx_length)
  1758. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1759. self.gguf_writer.add_block_count(self.block_count)
  1760. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1761. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1762. self.gguf_writer.add_head_count(head_count)
  1763. self.gguf_writer.add_head_count_kv(head_count_kv)
  1764. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1765. self.gguf_writer.add_file_type(self.ftype)
  1766. rope_scaling = self.hparams.get("rope_scaling") or {}
  1767. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  1768. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1769. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  1770. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1771. del bid # unused
  1772. head_count = self.hparams["num_attention_heads"]
  1773. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1774. # HF models permute some of the tensors, so we need to undo that
  1775. if name.endswith("q_proj.weight"):
  1776. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1777. if name.endswith("k_proj.weight"):
  1778. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1779. return [(self.map_tensor_name(name), data_torch)]
  1780. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1781. if n_kv_head is not None and n_head != n_kv_head:
  1782. n_head //= n_kv_head
  1783. return (
  1784. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1785. .swapaxes(1, 2)
  1786. .reshape(weights.shape)
  1787. )
  1788. @ModelBase.register("FalconForCausalLM", "RWForCausalLM")
  1789. class FalconModel(TextModel):
  1790. model_arch = gguf.MODEL_ARCH.FALCON
  1791. def set_gguf_parameters(self):
  1792. n_head = self.hparams.get("num_attention_heads")
  1793. if n_head is None:
  1794. n_head = self.hparams["n_head"] # old name
  1795. n_head_kv = self.hparams.get("num_kv_heads")
  1796. if n_head_kv is None:
  1797. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1798. self.gguf_writer.add_context_length(2048) # not in config.json
  1799. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1800. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1801. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1802. self.gguf_writer.add_block_count(self.block_count)
  1803. self.gguf_writer.add_head_count(n_head)
  1804. self.gguf_writer.add_head_count_kv(n_head_kv)
  1805. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1806. self.gguf_writer.add_file_type(self.ftype)
  1807. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1808. del bid # unused
  1809. # QKV tensor transform
  1810. # The original query_key_value tensor contains n_head_kv "kv groups",
  1811. # each consisting of n_head/n_head_kv query weights followed by one key
  1812. # and one value weight (shared by all query heads in the kv group).
  1813. # This layout makes it a big pain to work with in GGML.
  1814. # So we rearrange them here,, so that we have n_head query weights
  1815. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1816. # in contiguous fashion.
  1817. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1818. if "query_key_value" in name:
  1819. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1820. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1821. head_dim = self.hparams["hidden_size"] // n_head
  1822. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1823. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1824. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1825. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1826. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1827. return [(self.map_tensor_name(name), data_torch)]
  1828. @ModelBase.register("GPTBigCodeForCausalLM")
  1829. class StarCoderModel(TextModel):
  1830. model_arch = gguf.MODEL_ARCH.STARCODER
  1831. def set_gguf_parameters(self):
  1832. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1833. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1834. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1835. self.gguf_writer.add_block_count(self.block_count)
  1836. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1837. self.gguf_writer.add_head_count_kv(1)
  1838. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1839. self.gguf_writer.add_file_type(self.ftype)
  1840. @ModelBase.register("GPTRefactForCausalLM")
  1841. class RefactModel(TextModel):
  1842. model_arch = gguf.MODEL_ARCH.REFACT
  1843. def set_vocab(self):
  1844. super().set_vocab()
  1845. # TODO: how to determine special FIM tokens automatically?
  1846. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1847. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1848. special_vocab._set_special_token("prefix", 1)
  1849. special_vocab._set_special_token("suffix", 3)
  1850. special_vocab._set_special_token("middle", 2)
  1851. special_vocab.chat_template = None # do not add it twice
  1852. special_vocab.add_to_gguf(self.gguf_writer)
  1853. def set_gguf_parameters(self):
  1854. hidden_dim = self.hparams["n_embd"]
  1855. inner_dim = 4 * hidden_dim
  1856. hidden_dim = int(2 * inner_dim / 3)
  1857. multiple_of = 256
  1858. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1859. # refact uses Alibi. So this is from config.json which might be used by training.
  1860. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1861. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1862. self.gguf_writer.add_feed_forward_length(ff_dim)
  1863. self.gguf_writer.add_block_count(self.block_count)
  1864. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1865. self.gguf_writer.add_head_count_kv(1)
  1866. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1867. self.gguf_writer.add_file_type(self.ftype)
  1868. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1869. hidden_dim = self.hparams["n_embd"]
  1870. inner_dim = 4 * hidden_dim
  1871. hidden_dim = int(2 * inner_dim / 3)
  1872. multiple_of = 256
  1873. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1874. n_head = self.hparams["n_head"]
  1875. n_head_kv = 1
  1876. head_dim = self.hparams["n_embd"] // n_head
  1877. tensors: list[tuple[str, Tensor]] = []
  1878. if bid is not None:
  1879. if name == f"transformer.h.{bid}.attn.kv.weight":
  1880. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1881. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1882. elif name == f"transformer.h.{bid}.attn.q.weight":
  1883. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1884. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1885. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1886. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1887. if len(tensors) == 0:
  1888. tensors.append((self.map_tensor_name(name), data_torch))
  1889. return tensors
  1890. @ModelBase.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1891. class StableLMModel(TextModel):
  1892. model_arch = gguf.MODEL_ARCH.STABLELM
  1893. def set_vocab(self):
  1894. if (self.dir_model / "tokenizer.json").is_file():
  1895. self._set_vocab_gpt2()
  1896. else:
  1897. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1898. self._set_vocab_qwen()
  1899. def set_gguf_parameters(self):
  1900. hparams = self.hparams
  1901. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1902. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1903. self.gguf_writer.add_block_count(self.block_count)
  1904. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1905. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1906. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1907. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1908. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1909. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1910. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1911. self.gguf_writer.add_file_type(self.ftype)
  1912. _q_norms: list[dict[str, Tensor]] | None = None
  1913. _k_norms: list[dict[str, Tensor]] | None = None
  1914. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1915. n_head = self.hparams["num_attention_heads"]
  1916. n_kv_head = self.hparams["num_key_value_heads"]
  1917. if name.find("q_layernorm.norms") != -1:
  1918. assert bid is not None
  1919. if self._q_norms is None:
  1920. self._q_norms = [{} for _ in range(self.block_count)]
  1921. self._q_norms[bid][name] = data_torch
  1922. if len(self._q_norms[bid]) >= n_head:
  1923. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1924. else:
  1925. return []
  1926. if name.find("k_layernorm.norms") != -1:
  1927. assert bid is not None
  1928. if self._k_norms is None:
  1929. self._k_norms = [{} for _ in range(self.block_count)]
  1930. self._k_norms[bid][name] = data_torch
  1931. if len(self._k_norms[bid]) >= n_kv_head:
  1932. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1933. else:
  1934. return []
  1935. return [(self.map_tensor_name(name), data_torch)]
  1936. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1937. datas: list[Tensor] = []
  1938. # extract the norms in order
  1939. for xid in range(n_head):
  1940. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1941. datas.append(norms[ename])
  1942. del norms[ename]
  1943. data_torch = torch.stack(datas, dim=0)
  1944. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1945. new_name = self.map_tensor_name(merged_name)
  1946. return [(new_name, data_torch)]
  1947. def prepare_tensors(self):
  1948. super().prepare_tensors()
  1949. if self._q_norms is not None or self._k_norms is not None:
  1950. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1951. norms = (
  1952. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1953. ) + (
  1954. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1955. )
  1956. if len(norms) > 0:
  1957. raise ValueError(f"Unprocessed norms: {norms}")
  1958. @ModelBase.register(
  1959. "LLaMAForCausalLM",
  1960. "LlamaForCausalLM",
  1961. "MistralForCausalLM",
  1962. "MixtralForCausalLM",
  1963. "VLlama3ForCausalLM",
  1964. "LlavaForConditionalGeneration",
  1965. "VoxtralForConditionalGeneration",
  1966. "LlamaModel")
  1967. class LlamaModel(TextModel):
  1968. model_arch = gguf.MODEL_ARCH.LLAMA
  1969. undo_permute = True
  1970. def __init__(self, *args, **kwargs):
  1971. super().__init__(*args, **kwargs)
  1972. # fix for SmolVLM2, missing `num_attention_heads` in config.json
  1973. if self.hf_arch == "VLlama3ForCausalLM":
  1974. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 32)
  1975. def set_vocab(self):
  1976. if self.is_mistral_format:
  1977. return self._set_vocab_mistral()
  1978. path_tekken_json = self.dir_model / "tekken.json"
  1979. path_tokenizer_json = self.dir_model / "tokenizer.json"
  1980. if path_tekken_json.is_file() and not path_tokenizer_json.is_file():
  1981. self._set_vocab_mistral()
  1982. try:
  1983. self._set_vocab_sentencepiece()
  1984. except FileNotFoundError:
  1985. try:
  1986. self._set_vocab_llama_hf()
  1987. except (FileNotFoundError, TypeError):
  1988. # Llama 3
  1989. self._set_vocab_gpt2()
  1990. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1991. if self.hparams.get("vocab_size", 32000) == 32016:
  1992. special_vocab = gguf.SpecialVocab(
  1993. self.dir_model, load_merges=False,
  1994. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1995. )
  1996. special_vocab._set_special_token("prefix", 32007)
  1997. special_vocab._set_special_token("suffix", 32008)
  1998. special_vocab._set_special_token("middle", 32009)
  1999. special_vocab._set_special_token("eot", 32010)
  2000. special_vocab.add_to_gguf(self.gguf_writer)
  2001. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2002. if tokenizer_config_file.is_file():
  2003. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2004. tokenizer_config_json = json.load(f)
  2005. if "add_prefix_space" in tokenizer_config_json:
  2006. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2007. # Apply to granite small models only
  2008. if self.hparams.get("vocab_size", 32000) == 49152:
  2009. self.gguf_writer.add_add_bos_token(False)
  2010. def set_gguf_parameters(self):
  2011. super().set_gguf_parameters()
  2012. hparams = self.hparams
  2013. if not self.is_mistral_format:
  2014. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2015. if (rope_dim := hparams.get("head_dim")) is None:
  2016. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2017. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2018. rope_scaling = self.hparams.get("rope_scaling") or {}
  2019. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2020. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2021. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2022. @staticmethod
  2023. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2024. if n_head_kv is not None and n_head != n_head_kv:
  2025. n_head = n_head_kv
  2026. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2027. .swapaxes(1, 2)
  2028. .reshape(weights.shape))
  2029. _experts: list[dict[str, Tensor]] | None = None
  2030. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2031. n_head = self.find_hparam(["n_heads", "num_attention_heads"])
  2032. n_kv_head = self.find_hparam(["n_kv_heads", "num_key_value_heads"])
  2033. vision_prefixes = [
  2034. "vision_encoder.",
  2035. "vision_language_adapter.",
  2036. "patch_merger.",
  2037. "pre_mm_projector_norm",
  2038. ]
  2039. is_multimodal_tensor = "vision_tower" in name \
  2040. or "vision_model" in name \
  2041. or "audio_tower" in name \
  2042. or "model.connector" in name \
  2043. or "multi_modal_projector" in name \
  2044. or any(
  2045. name.startswith(prefix)
  2046. for prefix in vision_prefixes
  2047. )
  2048. if is_multimodal_tensor:
  2049. return [] # skip vision tensors
  2050. elif self.hf_arch == "LlamaModel":
  2051. name = "model." + name
  2052. elif name.startswith("model.text_model"):
  2053. name = name.replace("text_model.", "") # for SmolVLM
  2054. elif name.startswith("language_model."):
  2055. name = name.replace("language_model.", "") # for the rest
  2056. if self.undo_permute:
  2057. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2058. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2059. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2060. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2061. # process the experts separately
  2062. if name.find("block_sparse_moe.experts") != -1:
  2063. n_experts = self.hparams["num_local_experts"]
  2064. assert bid is not None
  2065. if self._experts is None:
  2066. self._experts = [{} for _ in range(self.block_count)]
  2067. self._experts[bid][name] = data_torch
  2068. if len(self._experts[bid]) >= n_experts * 3:
  2069. tensors: list[tuple[str, Tensor]] = []
  2070. # merge the experts into a single 3d tensor
  2071. for wid in ["w1", "w2", "w3"]:
  2072. datas: list[Tensor] = []
  2073. for xid in range(n_experts):
  2074. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2075. datas.append(self._experts[bid][ename])
  2076. del self._experts[bid][ename]
  2077. data_torch = torch.stack(datas, dim=0)
  2078. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2079. new_name = self.map_tensor_name(merged_name)
  2080. tensors.append((new_name, data_torch))
  2081. return tensors
  2082. else:
  2083. return []
  2084. return [(self.map_tensor_name(name), data_torch)]
  2085. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2086. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2087. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2088. base = self.hparams.get("rope_theta", 10000.0)
  2089. if (dim := self.hparams.get("head_dim")) is None:
  2090. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2091. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2092. factor = rope_scaling.get("factor", 8.0)
  2093. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2094. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2095. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2096. low_freq_wavelen = old_context_len / low_freq_factor
  2097. high_freq_wavelen = old_context_len / high_freq_factor
  2098. # assert low_freq_wavelen != high_freq_wavelen # Errors for Llama4
  2099. rope_factors = []
  2100. for freq in freqs:
  2101. wavelen = 2 * math.pi / freq
  2102. if wavelen < high_freq_wavelen:
  2103. rope_factors.append(1)
  2104. elif wavelen > low_freq_wavelen:
  2105. rope_factors.append(factor)
  2106. else:
  2107. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2108. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2109. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2110. def prepare_tensors(self):
  2111. super().prepare_tensors()
  2112. if self._experts is not None:
  2113. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2114. experts = [k for d in self._experts for k in d.keys()]
  2115. if len(experts) > 0:
  2116. raise ValueError(f"Unprocessed experts: {experts}")
  2117. @ModelBase.register("ArceeForCausalLM")
  2118. class ArceeModel(LlamaModel):
  2119. model_arch = gguf.MODEL_ARCH.ARCEE
  2120. def set_gguf_parameters(self):
  2121. super().set_gguf_parameters()
  2122. self._try_set_pooling_type()
  2123. rope_scaling = self.hparams.get("rope_scaling") or {}
  2124. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2125. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2126. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2127. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2128. @ModelBase.register("AfmoeForCausalLM")
  2129. class AfmoeModel(LlamaModel):
  2130. model_arch = gguf.MODEL_ARCH.AFMOE
  2131. def set_gguf_parameters(self):
  2132. super().set_gguf_parameters()
  2133. # MoE parameters
  2134. if (n_experts := self.hparams.get("num_experts")) is not None:
  2135. self.gguf_writer.add_expert_count(n_experts)
  2136. if (n_shared_experts := self.hparams.get("num_shared_experts")) is not None:
  2137. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  2138. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2139. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2140. if (n_dense_layers := self.hparams.get("num_dense_layers")) is not None:
  2141. self.gguf_writer.add_leading_dense_block_count(n_dense_layers)
  2142. # Route normalization and scaling
  2143. if (route_norm := self.hparams.get("route_norm")) is not None:
  2144. self.gguf_writer.add_expert_weights_norm(route_norm)
  2145. if (route_scale := self.hparams.get("route_scale")) is not None:
  2146. self.gguf_writer.add_expert_weights_scale(route_scale)
  2147. # Sliding window attention
  2148. if (sliding_window := self.hparams.get("sliding_window")) is not None:
  2149. self.gguf_writer.add_sliding_window(sliding_window)
  2150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2151. # Handle expert weights - they're already merged in the HF format
  2152. # process the experts separately
  2153. if name.find("mlp.experts") != -1:
  2154. n_experts = self.hparams["num_experts"]
  2155. assert bid is not None
  2156. if self._experts is None:
  2157. self._experts = [{} for _ in range(self.block_count)]
  2158. self._experts[bid][name] = data_torch
  2159. if len(self._experts[bid]) >= n_experts * 3:
  2160. tensors: list[tuple[str, Tensor]] = []
  2161. # merge the experts into a single 3d tensor
  2162. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  2163. datas: list[Tensor] = []
  2164. for xid in range(n_experts):
  2165. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2166. datas.append(self._experts[bid][ename_to_retrieve])
  2167. del self._experts[bid][ename_to_retrieve]
  2168. data_torch = torch.stack(datas, dim=0)
  2169. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2170. new_name = self.map_tensor_name(merged_name)
  2171. tensors.append((new_name, data_torch))
  2172. return tensors
  2173. else:
  2174. return []
  2175. if name.endswith(".expert_bias"):
  2176. name = name.replace(".expert_bias", ".expert_bias.bias")
  2177. return [(self.map_tensor_name(name), data_torch)]
  2178. @ModelBase.register(
  2179. "LlavaForConditionalGeneration", # pixtral
  2180. "Mistral3ForConditionalGeneration", # mistral small 3.1
  2181. )
  2182. class LlavaVisionModel(MmprojModel):
  2183. img_break_tok_id = -1
  2184. use_break_tok = True
  2185. def __init__(self, *args, **kwargs):
  2186. super().__init__(*args, **kwargs)
  2187. if self.hparams.get("model_type") == "pixtral":
  2188. # layer_norm_eps is not in config.json, it is hard-coded in modeling_pixtral.py
  2189. self.hparams["layer_norm_eps"] = self.hparams.get("layer_norm_eps", 1e-5)
  2190. if self.use_break_tok:
  2191. self.img_break_tok_id = self.get_token_id("[IMG_BREAK]")
  2192. elif self.is_mistral_format:
  2193. # hparams is already vision config here so norm_eps is only defined in global_config.
  2194. self.hparams["norm_eps"] = self.global_config.get("norm_eps", None)
  2195. assert self.hparams["norm_eps"] is not None, "norm_eps not found in params.json"
  2196. if self.use_break_tok:
  2197. self.img_break_tok_id = self.find_vparam(["image_break_token_id"])
  2198. else:
  2199. raise ValueError(f"Unsupported model type: {self.hparams['model_type']}")
  2200. logger.info(f"Image break token id: {self.img_break_tok_id}")
  2201. def get_token_id(self, token: str) -> int:
  2202. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2203. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2204. added_tokens_decoder = json.load(f)['added_tokens_decoder']
  2205. for id_, token_data in added_tokens_decoder.items():
  2206. if token_data["content"] == token:
  2207. return int(id_)
  2208. raise ValueError(f"Token '{token}' not found in tokenizer config.")
  2209. def set_gguf_parameters(self):
  2210. super().set_gguf_parameters()
  2211. hparams = self.hparams
  2212. if hparams.get("model_type") == "pixtral":
  2213. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  2214. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  2215. # hidden_act
  2216. if hparams["hidden_act"] == "silu":
  2217. self.gguf_writer.add_vision_use_silu(True)
  2218. elif hparams["hidden_act"] == "gelu":
  2219. self.gguf_writer.add_vision_use_gelu(True)
  2220. else:
  2221. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  2222. # spatial_merge_size
  2223. if "spatial_merge_size" in self.global_config:
  2224. self.gguf_writer.add_vision_spatial_merge_size(self.global_config["spatial_merge_size"])
  2225. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2226. del bid # unused
  2227. n_head = (
  2228. self.hparams["num_attention_heads"] if not self.is_mistral_format else self.find_vparam(["num_attention_heads"])
  2229. )
  2230. n_kv_head = n_head
  2231. valid_prefixes = (
  2232. "multi_modal_projector.",
  2233. "vision_tower.",
  2234. "vision_encoder.",
  2235. "vision_language_adapter.",
  2236. "patch_merger.",
  2237. "pre_mm_projector_norm",
  2238. )
  2239. if any(name.startswith(prefix) for prefix in valid_prefixes):
  2240. # process vision tensors
  2241. if name.endswith(("q_proj.weight", "q_proj.bias")) and not self.is_mistral_format:
  2242. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2243. if name.endswith(("k_proj.weight", "k_proj.bias")) and not self.is_mistral_format:
  2244. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2245. return [(self.map_tensor_name(name), data_torch)]
  2246. embed_key = "embed_tokens.weight" if not self.is_mistral_format else "tok_embeddings.weight"
  2247. if self.img_break_tok_id > 0 and embed_key in name:
  2248. logger.info(f"Extracting [IMG_BREAK] token embedding from {name}")
  2249. # for pixtral model, we need to extract the [IMG_BREAK] token embedding
  2250. img_break_embd = data_torch[self.img_break_tok_id]
  2251. name = gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_TOK_EMBD_IMG_BREAK]
  2252. return [(self.map_tensor_name(name), img_break_embd)]
  2253. return [] # skip other tensors
  2254. @ModelBase.register("Idefics3ForConditionalGeneration", "SmolVLMForConditionalGeneration")
  2255. class SmolVLMModel(MmprojModel):
  2256. def __init__(self, *args, **kwargs):
  2257. super().__init__(*args, **kwargs)
  2258. if self.hparams["model_type"] == "smolvlm_vision":
  2259. # fix for SmolVLM2, missing some keys in config.json
  2260. # default values are taken from transformers code
  2261. self.hparams["hidden_size"] = self.hparams.get("hidden_size", 1152)
  2262. self.hparams["num_attention_heads"] = self.hparams.get("num_attention_heads", 16)
  2263. self.hparams["intermediate_size"] = self.hparams.get("intermediate_size", 3072)
  2264. def set_gguf_parameters(self):
  2265. super().set_gguf_parameters()
  2266. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.IDEFICS3)
  2267. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  2268. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("scale_factor", 2))
  2269. self.gguf_writer.add_vision_use_gelu(True)
  2270. # Add the preprocessor longest edge size
  2271. preproc_image_size = self.preprocessor_config.get("size", {}).get("longest_edge", self.image_size)
  2272. self.gguf_writer.add_vision_preproc_image_size(preproc_image_size)
  2273. def tensor_force_quant(self, name, new_name, bid, n_dims):
  2274. if ".embeddings." in name:
  2275. return gguf.GGMLQuantizationType.F32
  2276. return super().tensor_force_quant(name, new_name, bid, n_dims)
  2277. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2278. del bid # unused
  2279. is_vision_tensor = "vision_tower" in name or "vision_model" in name or "model.connector" in name
  2280. if is_vision_tensor:
  2281. return [(self.map_tensor_name(name), data_torch)]
  2282. return [] # skip other tensors
  2283. @ModelBase.register(
  2284. "Llama4ForConditionalGeneration",
  2285. "Llama4ForCausalLM",
  2286. )
  2287. class Llama4Model(LlamaModel):
  2288. model_arch = gguf.MODEL_ARCH.LLAMA4
  2289. undo_permute = False
  2290. def __init__(self, *args, **kwargs):
  2291. super().__init__(*args, **kwargs)
  2292. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  2293. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  2294. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  2295. def set_vocab(self):
  2296. self._set_vocab_gpt2()
  2297. def set_gguf_parameters(self):
  2298. super().set_gguf_parameters()
  2299. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  2300. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  2301. if "layer_types" in self.hparams:
  2302. if all(lt == "full_attention" for lt in self.hparams["layer_types"]):
  2303. # all layers are full attention (for MobileLLM), disable swa
  2304. self.gguf_writer.add_sliding_window(0)
  2305. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2306. if name.startswith("language_model."):
  2307. name = name.replace("language_model.", "")
  2308. # split the gate_up into gate and up
  2309. if "gate_up_proj" in name:
  2310. name_up = name.replace("gate_up_proj", "up_proj.weight")
  2311. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  2312. dim_half = data_torch.shape[-1] // 2
  2313. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  2314. return [
  2315. (self.map_tensor_name(name_gate), gate_proj_weight),
  2316. (self.map_tensor_name(name_up), up_proj_weight)
  2317. ]
  2318. if name.endswith("down_proj"):
  2319. name += ".weight"
  2320. data_torch = data_torch.transpose(-1, -2)
  2321. if "multi_modal_projector" in name or "vision_model" in name:
  2322. return []
  2323. return super().modify_tensors(data_torch, name, bid)
  2324. @ModelBase.register("Llama4ForConditionalGeneration")
  2325. class Llama4VisionModel(MmprojModel):
  2326. def set_gguf_parameters(self):
  2327. super().set_gguf_parameters()
  2328. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LLAMA4)
  2329. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams["norm_eps"])
  2330. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / self.hparams["pixel_shuffle_ratio"]))
  2331. assert self.hparams["hidden_act"] == "gelu"
  2332. self.gguf_writer.add_vision_use_gelu(True)
  2333. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2334. del bid # unused
  2335. if "multi_modal_projector" in name or "vision_model" in name:
  2336. # process vision tensors
  2337. if "positional_embedding_vlm" in name and ".weight" not in name:
  2338. name += ".weight"
  2339. if "multi_modal_projector.linear_1" in name:
  2340. # despite the name with number postfix, this is a single fully connected layer
  2341. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_MMPROJ_FC] + '.weight', data_torch)]
  2342. return [(self.map_tensor_name(name), data_torch)]
  2343. return []
  2344. @ModelBase.register("Mistral3ForConditionalGeneration")
  2345. class Mistral3Model(LlamaModel):
  2346. model_arch = gguf.MODEL_ARCH.MISTRAL3
  2347. def __init__(self, *args, **kwargs):
  2348. super().__init__(*args, **kwargs)
  2349. # for compatibility, we use LLAMA arch for older models
  2350. # TODO: remove this once everyone has migrated to newer version of llama.cpp
  2351. if self.hparams.get("model_type") != "ministral3":
  2352. self.model_arch = gguf.MODEL_ARCH.LLAMA
  2353. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  2354. self.gguf_writer.add_architecture()
  2355. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  2356. def set_gguf_parameters(self):
  2357. super().set_gguf_parameters()
  2358. rope_params = self.hparams.get("rope_parameters")
  2359. if self.hparams.get("model_type") == "ministral3":
  2360. assert rope_params is not None, "ministral3 must have 'rope_parameters' config"
  2361. assert rope_params["rope_type"] == "yarn", "ministral3 rope_type must be 'yarn'"
  2362. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2363. self.gguf_writer.add_rope_scaling_factor(rope_params["factor"])
  2364. self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_params["beta_fast"])
  2365. self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_params["beta_slow"])
  2366. self.gguf_writer.add_rope_scaling_yarn_log_mul(rope_params["mscale_all_dim"])
  2367. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_params["original_max_position_embeddings"])
  2368. self.gguf_writer.add_rope_freq_base(rope_params["rope_theta"])
  2369. self.gguf_writer.add_attn_temperature_scale(rope_params["llama_4_scaling_beta"])
  2370. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  2371. # TODO: probably not worth supporting quantized weight, as official BF16 is also available
  2372. if name.endswith("weight_scale_inv"):
  2373. raise ValueError("This is a quantized weight, please use BF16 weight instead")
  2374. name = name.replace("language_model.", "")
  2375. if "multi_modal_projector" in name or "vision_tower" in name:
  2376. return []
  2377. return super().modify_tensors(data_torch, name, bid)
  2378. @ModelBase.register("DeciLMForCausalLM")
  2379. class DeciModel(TextModel):
  2380. model_arch = gguf.MODEL_ARCH.DECI
  2381. @staticmethod
  2382. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  2383. # DeciLM-specific code
  2384. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  2385. return DeciModel._find_multiple(intermediate_size, 256)
  2386. @staticmethod
  2387. def _find_multiple(n: int, k: int) -> int:
  2388. # DeciLM-specific code
  2389. if n % k == 0:
  2390. return n
  2391. return n + k - (n % k)
  2392. def __init__(self, *args, **kwargs):
  2393. super().__init__(*args, **kwargs)
  2394. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2395. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  2396. assert self.block_count == len(_block_configs)
  2397. self._num_kv_heads = list()
  2398. self._num_heads = list()
  2399. _ffn_multipliers = list()
  2400. # ***linear attention layer***
  2401. # if n_heads_in_group is None and replace_with_linear is True
  2402. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  2403. # ***attention-free layer***
  2404. # if n_heads_in_group is None and replace_with_linear is False
  2405. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  2406. # ***normal attention-layer***
  2407. # if n_heads_in_group is not None, then
  2408. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  2409. # _num_heads[il] is num_attention_head
  2410. # ***dummy layer*** for nemotron 253B
  2411. # if n_heads_in_group is None and ffn_mult is None
  2412. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0 and _ffn_dims is 0
  2413. for il in range(len(_block_configs)):
  2414. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  2415. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  2416. self._num_kv_heads.append(0)
  2417. self._num_heads.append(self.hparams["num_attention_heads"])
  2418. else:
  2419. self._num_kv_heads.append(0)
  2420. self._num_heads.append(0)
  2421. else:
  2422. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  2423. self._num_heads.append(self.hparams["num_attention_heads"])
  2424. if _block_configs[il]["ffn"]["ffn_mult"] is None: # dummy layer
  2425. _ffn_multipliers.append(0.0)
  2426. else:
  2427. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  2428. assert self.block_count == len(self._num_kv_heads)
  2429. assert self.block_count == len(self._num_heads)
  2430. assert self.block_count == len(_ffn_multipliers)
  2431. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2432. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  2433. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  2434. self._ffn_dims: list[int] = [
  2435. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  2436. for multiplier in _ffn_multipliers
  2437. ]
  2438. def set_vocab(self):
  2439. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  2440. # eos_token from '|eot_id|' to '|end_of_text|'
  2441. if self.hparams.get("vocab_size", 128256) == 128256:
  2442. tokens, toktypes, tokpre = self.get_vocab_base()
  2443. self.gguf_writer.add_tokenizer_model("gpt2")
  2444. self.gguf_writer.add_tokenizer_pre(tokpre)
  2445. self.gguf_writer.add_token_list(tokens)
  2446. self.gguf_writer.add_token_types(toktypes)
  2447. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  2448. special_vocab.add_to_gguf(self.gguf_writer)
  2449. else:
  2450. # DeciLM-7B
  2451. self._set_vocab_llama_hf()
  2452. def set_gguf_parameters(self):
  2453. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  2454. assert self.block_count == len(self._num_kv_heads)
  2455. assert self.block_count == len(self._num_heads)
  2456. assert self.block_count == len(self._ffn_dims)
  2457. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  2458. self.gguf_writer.add_rope_freq_base(rope_theta)
  2459. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2460. self.gguf_writer.add_head_count(self._num_heads)
  2461. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2462. self.gguf_writer.add_block_count(self.block_count)
  2463. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2464. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2465. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2466. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2467. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2468. self.gguf_writer.add_file_type(self.ftype)
  2469. else: # DeciLM-7B
  2470. super().set_gguf_parameters()
  2471. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  2472. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  2473. assert self.block_count == len(self._num_kv_heads)
  2474. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2475. hparams = self.hparams
  2476. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2477. if (rope_dim := hparams.get("head_dim")) is None:
  2478. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2479. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2480. rope_scaling = self.hparams.get("rope_scaling") or {}
  2481. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  2482. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2483. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2484. @staticmethod
  2485. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2486. if n_head_kv is not None and n_head != n_head_kv:
  2487. n_head = n_head_kv
  2488. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2489. .swapaxes(1, 2)
  2490. .reshape(weights.shape))
  2491. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2492. n_head = self.hparams["num_attention_heads"]
  2493. if bid is not None:
  2494. if "num_key_value_heads_per_layer" in self.hparams:
  2495. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  2496. elif "block_configs" in self.hparams:
  2497. n_kv_head = self._num_kv_heads[bid]
  2498. n_head = self._num_heads[bid]
  2499. else:
  2500. n_kv_head = self.hparams.get("num_key_value_heads")
  2501. else:
  2502. n_kv_head = self.hparams.get("num_key_value_heads")
  2503. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2504. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  2505. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2506. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  2507. return [(self.map_tensor_name(name), data_torch)]
  2508. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2509. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  2510. if rope_scaling.get("rope_type", '').lower() == "llama3":
  2511. base = self.hparams.get("rope_theta", 10000.0)
  2512. if (dim := self.hparams.get("head_dim")) is None:
  2513. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2514. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  2515. factor = rope_scaling.get("factor", 8.0)
  2516. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  2517. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  2518. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  2519. low_freq_wavelen = old_context_len / low_freq_factor
  2520. high_freq_wavelen = old_context_len / high_freq_factor
  2521. assert low_freq_wavelen != high_freq_wavelen
  2522. rope_factors = []
  2523. for freq in freqs:
  2524. wavelen = 2 * math.pi / freq
  2525. if wavelen < high_freq_wavelen:
  2526. rope_factors.append(1)
  2527. elif wavelen > low_freq_wavelen:
  2528. rope_factors.append(factor)
  2529. else:
  2530. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  2531. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  2532. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  2533. def prepare_tensors(self):
  2534. super().prepare_tensors()
  2535. @ModelBase.register("BitnetForCausalLM")
  2536. class BitnetModel(TextModel):
  2537. model_arch = gguf.MODEL_ARCH.BITNET
  2538. def set_vocab(self):
  2539. self._set_vocab_sentencepiece()
  2540. def set_gguf_parameters(self):
  2541. super().set_gguf_parameters()
  2542. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2543. self.gguf_writer.add_rope_scaling_factor(1.0)
  2544. def weight_quant(self, weight: Tensor) -> Tensor:
  2545. dtype = weight.dtype
  2546. weight = weight.float()
  2547. scale = weight.abs().mean().clamp(min=1e-5)
  2548. iscale = 1 / scale
  2549. # TODO: multiply by the scale directly instead of inverting it twice
  2550. # (this is also unnecessarily doubly inverted upstream)
  2551. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  2552. result = (weight * iscale).round().clamp(-1, 1) / iscale
  2553. return result.type(dtype)
  2554. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2555. new_name = self.map_tensor_name(name)
  2556. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  2557. gguf.MODEL_TENSOR.ATTN_Q,
  2558. gguf.MODEL_TENSOR.ATTN_K,
  2559. gguf.MODEL_TENSOR.ATTN_V,
  2560. gguf.MODEL_TENSOR.ATTN_OUT,
  2561. gguf.MODEL_TENSOR.FFN_UP,
  2562. gguf.MODEL_TENSOR.FFN_DOWN,
  2563. gguf.MODEL_TENSOR.FFN_GATE,
  2564. ]):
  2565. # transform weight into 1/0/-1 (in fp32)
  2566. data_torch = self.weight_quant(data_torch)
  2567. yield (new_name, data_torch)
  2568. @ModelBase.register("GrokForCausalLM", "Grok1ForCausalLM")
  2569. class GrokModel(TextModel):
  2570. model_arch = gguf.MODEL_ARCH.GROK
  2571. def set_vocab(self):
  2572. if (self.dir_model / 'tokenizer.model').is_file():
  2573. self._set_vocab_sentencepiece()
  2574. return
  2575. if not (self.dir_model / 'tokenizer.json').is_file() or not (self.dir_model / 'chat_template.jinja').is_file():
  2576. logger.error('Error: Missing vocab and chat template, download files from https://huggingface.co/alvarobartt/grok-2-tokenizer')
  2577. sys.exit(1)
  2578. self._set_vocab_gpt2()
  2579. def __init__(self, *args, **kwargs):
  2580. super().__init__(*args, **kwargs)
  2581. def set_gguf_parameters(self):
  2582. super().set_gguf_parameters()
  2583. self.gguf_writer.add_attn_logit_softcapping(self.hparams.get("attn_logit_softcapping", 30.0))
  2584. self.gguf_writer.add_router_logit_softcapping(self.hparams.get("router_logit_softcapping", 30.0))
  2585. if (final_logit_softcap := self.hparams.get("final_logit_softcapping")):
  2586. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  2587. if (rope_dim := self.hparams.get("head_dim")) is None:
  2588. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2589. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  2590. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  2591. # Treat "original" as "yarn", seems to have been a mistake
  2592. if self.hparams.get("rope_type") in ("yarn", "original"):
  2593. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2594. self.gguf_writer.add_rope_scaling_factor(self.hparams["scaling_factor"])
  2595. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["original_max_position_embeddings"])
  2596. self.gguf_writer.add_rope_scaling_yarn_ext_factor(self.hparams["extrapolation_factor"])
  2597. self.gguf_writer.add_rope_scaling_yarn_attn_factor(self.hparams["attn_factor"])
  2598. self.gguf_writer.add_rope_scaling_yarn_beta_fast(self.hparams["beta_fast"])
  2599. self.gguf_writer.add_rope_scaling_yarn_beta_slow(self.hparams["beta_slow"])
  2600. if temp_len := self.hparams.get("attn_temperature_len"):
  2601. self.gguf_writer.add_attn_temperature_length(temp_len)
  2602. self.gguf_writer.add_attn_output_scale(self.hparams.get("attn_output_multiplier", rope_dim**-0.5))
  2603. self.gguf_writer.add_embedding_scale(self.hparams["embedding_multiplier_scale"])
  2604. self.gguf_writer.add_logit_scale(self.hparams["output_multiplier_scale"])
  2605. _experts: list[dict[str, list[Tensor]]] | None = None
  2606. _cur_expert = ""
  2607. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2608. tensors: list[tuple[str, Tensor]] = []
  2609. is_expert = ".moe." in name or ".block_sparse_moe.experts." in name
  2610. if not is_expert:
  2611. tensors.append((self.map_tensor_name(name), data_torch))
  2612. # process the experts separately
  2613. if is_expert or self._cur_expert:
  2614. n_experts = self.hparams["num_local_experts"]
  2615. assert bid is not None
  2616. if self._experts is None:
  2617. self._experts = [{} for _ in range(self.block_count)]
  2618. # concatenate split tensors
  2619. if name in self._experts[bid]:
  2620. self._cur_expert = name
  2621. self._experts[bid][name].append(data_torch)
  2622. return []
  2623. elif is_expert:
  2624. self._cur_expert = name
  2625. self._experts[bid][name] = [data_torch]
  2626. return []
  2627. else:
  2628. self._cur_expert = ""
  2629. for bid in range(self.block_count):
  2630. if len(self._experts[bid]) >= n_experts * 3:
  2631. # merge the experts into a single 3d tensor
  2632. for wid in [("linear", "w1", 0), ("linear_1", "w2", 1), ("linear_v", "w3", 0)]:
  2633. datas: list[Tensor] = []
  2634. for xid in range(n_experts):
  2635. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid[0]}.weight"
  2636. if ename not in self._experts[bid]:
  2637. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid[1]}.weight"
  2638. tensor_list = self._experts[bid][ename]
  2639. datas.append(torch.cat(tensor_list, dim=wid[2]) if len(tensor_list) > 1 else tensor_list[0])
  2640. del self._experts[bid][ename]
  2641. data_torch = torch.stack(datas, dim=0)
  2642. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid[0]}.weight"
  2643. new_name = self.map_tensor_name(merged_name)
  2644. yield (new_name, data_torch)
  2645. yield from tensors
  2646. @ModelBase.register("DbrxForCausalLM")
  2647. class DbrxModel(TextModel):
  2648. model_arch = gguf.MODEL_ARCH.DBRX
  2649. def set_gguf_parameters(self):
  2650. ffn_config = self.hparams["ffn_config"]
  2651. attn_config = self.hparams["attn_config"]
  2652. self.gguf_writer.add_block_count(self.block_count)
  2653. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  2654. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  2655. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  2656. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  2657. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  2658. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  2659. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  2660. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  2661. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  2662. self.gguf_writer.add_layer_norm_eps(1e-5)
  2663. self.gguf_writer.add_file_type(self.ftype)
  2664. logger.info(f"gguf: file type = {self.ftype}")
  2665. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2666. del bid # unused
  2667. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  2668. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  2669. n_embd = self.hparams["d_model"]
  2670. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  2671. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  2672. # But llama.cpp moe graph works differently
  2673. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  2674. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  2675. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2676. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  2677. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  2678. experts = False
  2679. for exp_tensor_name in exp_tensor_names.keys():
  2680. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  2681. experts = True
  2682. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  2683. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  2684. data_torch = data_torch.permute(*permute_tensor)
  2685. break
  2686. # map tensor names
  2687. # In MoE models the ffn tensors are typically most of the model weights,
  2688. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  2689. # Every other model has the weight names ending in .weight,
  2690. # let's assume that is the convention which is not the case for dbrx:
  2691. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  2692. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  2693. return [(new_name, data_torch)]
  2694. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  2695. del name, new_name, bid # unused
  2696. return n_dims > 1
  2697. @ModelBase.register("MiniCPMForCausalLM")
  2698. class MiniCPMModel(TextModel):
  2699. model_arch = gguf.MODEL_ARCH.MINICPM
  2700. def set_gguf_parameters(self):
  2701. super().set_gguf_parameters()
  2702. embedding_scale = float(self.hparams["scale_emb"])
  2703. self.gguf_writer.add_embedding_scale(embedding_scale)
  2704. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  2705. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  2706. self.gguf_writer.add_residual_scale(residual_scale)
  2707. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  2708. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  2709. self.gguf_writer.add_logit_scale(logit_scale)
  2710. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  2711. rope_scaling = self.hparams.get("rope_scaling") or {}
  2712. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "longrope":
  2713. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  2714. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  2715. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2716. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  2717. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2718. if rope_scaling is not None:
  2719. long_factors = rope_scaling.get('long_factor', None)
  2720. short_factors = rope_scaling.get('short_factor', None)
  2721. if long_factors is None or short_factors is None:
  2722. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2723. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2724. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2725. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2726. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2727. def set_vocab(self):
  2728. self._set_vocab_sentencepiece()
  2729. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2730. del bid # unused
  2731. n_head = self.hparams["num_attention_heads"]
  2732. n_kv_head = self.hparams.get("num_key_value_heads")
  2733. # HF models permute some of the tensors, so we need to undo that
  2734. if name.endswith(("q_proj.weight")):
  2735. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2736. if name.endswith(("k_proj.weight")):
  2737. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2738. return [(self.map_tensor_name(name), data_torch)]
  2739. @ModelBase.register("MiniCPM3ForCausalLM")
  2740. class MiniCPM3Model(TextModel):
  2741. model_arch = gguf.MODEL_ARCH.MINICPM3
  2742. def set_gguf_parameters(self):
  2743. hparams = self.hparams
  2744. self.gguf_writer.add_file_type(self.ftype)
  2745. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2746. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2747. self.gguf_writer.add_block_count(self.block_count)
  2748. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2749. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2750. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  2751. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2752. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2753. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2754. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2755. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2756. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2757. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2758. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2759. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2760. if rope_scaling is not None:
  2761. rope_dims = self.hparams["qk_rope_head_dim"]
  2762. long_factors = rope_scaling.get('long_factor', None)
  2763. short_factors = rope_scaling.get('short_factor', None)
  2764. if long_factors is None or short_factors is None:
  2765. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2766. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2767. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  2768. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2769. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2770. def set_vocab(self):
  2771. self._set_vocab_sentencepiece()
  2772. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  2773. if n_kv_head is not None and n_head != n_kv_head:
  2774. n_head //= n_kv_head
  2775. return (
  2776. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2777. .swapaxes(1, 2)
  2778. .reshape(weights.shape)
  2779. )
  2780. @ModelBase.register("QWenLMHeadModel")
  2781. class QwenModel(TextModel):
  2782. model_arch = gguf.MODEL_ARCH.QWEN
  2783. @staticmethod
  2784. def token_bytes_to_string(b):
  2785. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  2786. byte_encoder = bytes_to_unicode()
  2787. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  2788. @staticmethod
  2789. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  2790. parts = [bytes([b]) for b in token]
  2791. while True:
  2792. min_idx = None
  2793. min_rank = None
  2794. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  2795. rank = mergeable_ranks.get(pair[0] + pair[1])
  2796. if rank is not None and (min_rank is None or rank < min_rank):
  2797. min_idx = i
  2798. min_rank = rank
  2799. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  2800. break
  2801. assert min_idx is not None
  2802. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  2803. return parts
  2804. def set_vocab(self):
  2805. self._set_vocab_qwen()
  2806. def set_gguf_parameters(self):
  2807. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2808. self.gguf_writer.add_block_count(self.block_count)
  2809. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2810. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2811. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2812. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  2813. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2814. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  2815. self.gguf_writer.add_file_type(self.ftype)
  2816. @ModelBase.register("Qwen2Model", "Qwen2ForCausalLM", "Qwen2AudioForConditionalGeneration")
  2817. class Qwen2Model(TextModel):
  2818. model_arch = gguf.MODEL_ARCH.QWEN2
  2819. def set_vocab(self):
  2820. try:
  2821. self._set_vocab_sentencepiece()
  2822. except FileNotFoundError:
  2823. self._set_vocab_gpt2()
  2824. def set_gguf_parameters(self):
  2825. super().set_gguf_parameters()
  2826. self._try_set_pooling_type()
  2827. rope_scaling = self.hparams.get("rope_scaling") or {}
  2828. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2829. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2830. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2831. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2832. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2833. if self.hf_arch == "Qwen2Model":
  2834. name = f"model.{name}" # map to Qwen2ForCausalLM tensors
  2835. if "language_model." in name:
  2836. name = name.replace("language_model.", "") # for InternVL
  2837. if name.startswith("mlp") or name.startswith("multi_modal_projector") \
  2838. or name.startswith("vision_model") or name.startswith("audio_tower") \
  2839. or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector"):
  2840. # skip vision and audio tensors
  2841. return []
  2842. yield from super().modify_tensors(data_torch, name, bid)
  2843. @ModelBase.register("DreamModel")
  2844. class DreamModel(TextModel):
  2845. model_arch = gguf.MODEL_ARCH.DREAM
  2846. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2847. tokens: list[str] = []
  2848. toktypes: list[int] = []
  2849. from transformers import AutoTokenizer
  2850. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2851. vocab_dict = tokenizer.get_vocab()
  2852. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2853. assert max(vocab_dict.values()) < vocab_size
  2854. tokpre = self.get_vocab_base_pre(tokenizer)
  2855. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2856. added_vocab = tokenizer.get_added_vocab()
  2857. for i in range(vocab_size):
  2858. if i not in reverse_vocab:
  2859. tokens.append(f"[PAD{i}]")
  2860. toktypes.append(gguf.TokenType.UNUSED)
  2861. elif reverse_vocab[i] in added_vocab:
  2862. tokens.append(reverse_vocab[i])
  2863. # Check if it's a special token - treat special tokens as CONTROL tokens
  2864. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2865. if tokenizer.added_tokens_decoder[i].special:
  2866. toktypes.append(gguf.TokenType.CONTROL)
  2867. else:
  2868. toktypes.append(gguf.TokenType.USER_DEFINED)
  2869. else:
  2870. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2871. toktypes.append(gguf.TokenType.CONTROL)
  2872. else:
  2873. tokens.append(reverse_vocab[i])
  2874. toktypes.append(gguf.TokenType.NORMAL)
  2875. return tokens, toktypes, tokpre
  2876. def set_vocab(self):
  2877. try:
  2878. self._set_vocab_sentencepiece()
  2879. except FileNotFoundError:
  2880. self._set_vocab_gpt2()
  2881. def set_gguf_parameters(self):
  2882. super().set_gguf_parameters()
  2883. self._try_set_pooling_type()
  2884. # Dream models use non-causal attention for diffusion
  2885. self.gguf_writer.add_causal_attention(False)
  2886. # Handle RoPE scaling similar to Qwen2
  2887. rope_scaling = self.hparams.get("rope_scaling") or {}
  2888. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  2889. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2890. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  2891. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  2892. # Add Dream-specific parameters
  2893. mask_token_id = self.hparams.get("mask_token_id")
  2894. if mask_token_id is not None:
  2895. self.gguf_writer.add_mask_token_id(mask_token_id)
  2896. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2897. # Dream model tensors should be mapped directly since it's the base model
  2898. yield from super().modify_tensors(data_torch, name, bid)
  2899. @ModelBase.register("LLaDAModelLM")
  2900. class LLaDAModel(TextModel):
  2901. model_arch = gguf.MODEL_ARCH.LLADA
  2902. undo_permute = True
  2903. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  2904. tokens: list[str] = []
  2905. toktypes: list[int] = []
  2906. from transformers import AutoTokenizer
  2907. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  2908. vocab_dict = tokenizer.get_vocab()
  2909. vocab_size = self.hparams.get("vocab_size", len(vocab_dict))
  2910. assert max(vocab_dict.values()) < vocab_size
  2911. tokpre = self.get_vocab_base_pre(tokenizer)
  2912. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in vocab_dict.items()}
  2913. added_vocab = tokenizer.get_added_vocab()
  2914. for i in range(vocab_size):
  2915. if i not in reverse_vocab:
  2916. tokens.append(f"[PAD{i}]")
  2917. toktypes.append(gguf.TokenType.UNUSED)
  2918. elif reverse_vocab[i] in added_vocab:
  2919. tokens.append(reverse_vocab[i])
  2920. # Check if it's a special token - treat special tokens as CONTROL tokens
  2921. if hasattr(tokenizer, 'added_tokens_decoder') and i in tokenizer.added_tokens_decoder:
  2922. if tokenizer.added_tokens_decoder[i].special:
  2923. toktypes.append(gguf.TokenType.CONTROL)
  2924. else:
  2925. toktypes.append(gguf.TokenType.USER_DEFINED)
  2926. else:
  2927. # Fallback: treat all added vocab as control tokens for special tokens like <|im_start|>
  2928. toktypes.append(gguf.TokenType.CONTROL)
  2929. else:
  2930. tokens.append(reverse_vocab[i])
  2931. toktypes.append(gguf.TokenType.NORMAL)
  2932. return tokens, toktypes, tokpre
  2933. def set_vocab(self):
  2934. self._set_vocab_gpt2()
  2935. # LLaDA specific parameters
  2936. self.gguf_writer.add_add_bos_token(True)
  2937. def set_gguf_parameters(self):
  2938. super().set_gguf_parameters()
  2939. self._try_set_pooling_type()
  2940. # Add parameters similar to LlamaModel
  2941. hparams = self.hparams
  2942. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2943. if (rope_dim := hparams.get("head_dim")) is None:
  2944. n_heads = hparams.get("num_attention_heads", hparams.get("n_heads"))
  2945. rope_dim = hparams.get("hidden_size", hparams.get("d_model")) // n_heads
  2946. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2947. # Set context length for LLaDA
  2948. context_length = self.hparams.get("max_sequence_length", 4096)
  2949. self.gguf_writer.add_context_length(context_length)
  2950. # Set embedding length (dimension size)
  2951. embedding_length = self.hparams.get("d_model", 4096)
  2952. self.gguf_writer.add_embedding_length(embedding_length)
  2953. # Set feed forward length (MLP hidden size)
  2954. feed_forward_length = self.hparams.get("mlp_hidden_size", 12288)
  2955. self.gguf_writer.add_feed_forward_length(feed_forward_length)
  2956. # LLaDA models use non-causal attention for diffusion, similar to Dream
  2957. self.gguf_writer.add_causal_attention(False)
  2958. # LLaDA models don't shift their logits
  2959. self.gguf_writer.add_diffusion_shift_logits(False)
  2960. @staticmethod
  2961. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2962. if n_head_kv is not None and n_head != n_head_kv:
  2963. n_head = n_head_kv
  2964. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2965. .swapaxes(1, 2)
  2966. .reshape(weights.shape))
  2967. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2968. n_head = self.hparams.get("num_attention_heads", self.hparams.get("n_heads"))
  2969. n_kv_head = self.hparams.get("num_key_value_heads", self.hparams.get("n_kv_heads"))
  2970. if self.undo_permute:
  2971. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2972. data_torch = LLaDAModel.permute(data_torch, n_head, n_head)
  2973. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2974. data_torch = LLaDAModel.permute(data_torch, n_head, n_kv_head)
  2975. # LLaDA model tensors should be mapped directly since it's the base model
  2976. yield from super().modify_tensors(data_torch, name, bid)
  2977. @ModelBase.register("Ernie4_5_ForCausalLM", "Ernie4_5ForCausalLM")
  2978. class Ernie4_5Model(TextModel):
  2979. model_arch = gguf.MODEL_ARCH.ERNIE4_5
  2980. def set_vocab(self):
  2981. self._set_vocab_sentencepiece()
  2982. def set_gguf_parameters(self):
  2983. super().set_gguf_parameters()
  2984. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2985. num_heads = self.hparams["num_attention_heads"]
  2986. num_kv_heads = self.hparams["num_key_value_heads"]
  2987. if (head_dim := self.hparams.get("head_dim")) is None:
  2988. head_dim = self.hparams["hidden_size"] // num_heads
  2989. if "ernie." in name:
  2990. name = name.replace("ernie.", "model.")
  2991. # split the qkv weights
  2992. # qkv_proj shape: [(num_heads + 2 * num_kv_heads) * head_dim, hidden_size]
  2993. if "qkv_proj" in name:
  2994. name_q = name.replace("qkv_proj.weight", "q_proj.weight")
  2995. name_k = name.replace("qkv_proj.weight", "k_proj.weight")
  2996. name_v = name.replace("qkv_proj.weight", "v_proj.weight")
  2997. total_q_dim = num_heads * head_dim
  2998. total_k_dim = num_kv_heads * head_dim
  2999. total_v_dim = num_kv_heads * head_dim
  3000. q_proj_weight, k_proj_weight, v_proj_weight = data_torch.split([total_q_dim, total_k_dim, total_v_dim], dim=0)
  3001. return [
  3002. (self.map_tensor_name(name_q), q_proj_weight),
  3003. (self.map_tensor_name(name_k), k_proj_weight),
  3004. (self.map_tensor_name(name_v), v_proj_weight)
  3005. ]
  3006. # split the up_gate_proj into gate and up
  3007. # up_gate_proj shape: [2 * intermediate_size, hidden_size]
  3008. if "up_gate_proj" in name:
  3009. name_up = name.replace("up_gate_proj.weight", "up_proj.weight")
  3010. name_gate = name.replace("up_gate_proj.weight", "gate_proj.weight")
  3011. dim_half = data_torch.shape[0] // 2
  3012. gate_proj_weight, up_proj_weight = data_torch.split(dim_half, dim=0)
  3013. return [
  3014. (self.map_tensor_name(name_gate), gate_proj_weight),
  3015. (self.map_tensor_name(name_up), up_proj_weight)
  3016. ]
  3017. return [(self.map_tensor_name(name), data_torch)]
  3018. @ModelBase.register("Ernie4_5_MoeForCausalLM")
  3019. class Ernie4_5MoeModel(Ernie4_5Model):
  3020. model_arch = gguf.MODEL_ARCH.ERNIE4_5_MOE
  3021. _experts: list[dict[str, Tensor]] | None = None
  3022. def __init__(self, *args, **kwargs):
  3023. super().__init__(*args, **kwargs)
  3024. self._experts = [{} for _ in range(self.block_count)]
  3025. def set_gguf_parameters(self):
  3026. super().set_gguf_parameters()
  3027. self.gguf_writer.add_expert_count(self.hparams["moe_num_experts"])
  3028. self.gguf_writer.add_expert_used_count(self.hparams["moe_k"])
  3029. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["moe_layer_interval"])
  3030. self.gguf_writer.add_leading_dense_block_count(self.hparams["moe_layer_start_index"])
  3031. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3032. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3033. if (shared_expert_count := self.hparams.get('moe_num_shared_experts')) is not None:
  3034. self.gguf_writer.add_expert_shared_count(shared_expert_count)
  3035. if shared_expert_count > 0 and (shared_expert_intermediate_size := self.hparams.get('intermediate_size')) is not None and (num_key_value_heads := self.hparams.get('num_key_value_heads')) is not None:
  3036. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size // num_key_value_heads)
  3037. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3038. # Modify correction bias name as in DeepseekV2
  3039. if name.endswith("e_score_correction_bias"):
  3040. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3041. # skip Multi-Token Prediction (MTP) layers (again, same as DeepseekV2)
  3042. match = re.match(r"model.mtp_block.(\d+)", name)
  3043. if match:
  3044. return []
  3045. # skip all other MTP tensors for now
  3046. match = re.match(r"model.mtp_emb_norm.(\d+)", name)
  3047. if match:
  3048. return []
  3049. match = re.match(r"model.mtp_hidden_norm.(\d+)", name)
  3050. if match:
  3051. return []
  3052. match = re.match(r"model.mtp_linear_proj.(\d+)", name)
  3053. if match:
  3054. return []
  3055. # process the experts separately
  3056. if name.find("mlp.experts") != -1:
  3057. n_experts = self.hparams["moe_num_experts"]
  3058. assert bid is not None
  3059. if self._experts is None:
  3060. self._experts = [{} for _ in range(self.block_count)]
  3061. self._experts[bid][name] = data_torch
  3062. if len(self._experts[bid]) >= n_experts * 3:
  3063. tensors: list[tuple[str, Tensor]] = []
  3064. # merge the experts into a single 3d tensor
  3065. for w_name in ["gate_proj", "up_proj", "down_proj"]:
  3066. datas: list[Tensor] = []
  3067. for xid in range(n_experts):
  3068. ename_to_retrieve = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3069. datas.append(self._experts[bid][ename_to_retrieve])
  3070. del self._experts[bid][ename_to_retrieve]
  3071. data_torch = torch.stack(datas, dim=0)
  3072. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3073. new_name = self.map_tensor_name(merged_name)
  3074. tensors.append((new_name, data_torch))
  3075. return tensors
  3076. else:
  3077. return []
  3078. return [(self.map_tensor_name(name), data_torch)]
  3079. def prepare_tensors(self):
  3080. super().prepare_tensors()
  3081. if self._experts is not None:
  3082. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3083. experts = [k for d in self._experts for k in d.keys()]
  3084. if len(experts) > 0:
  3085. raise ValueError(f"Unprocessed experts: {experts}")
  3086. @ModelBase.register(
  3087. "Qwen2VLModel",
  3088. "Qwen2VLForConditionalGeneration",
  3089. "Qwen2_5_VLForConditionalGeneration",
  3090. "Qwen2_5OmniModel",
  3091. )
  3092. class Qwen2VLModel(TextModel):
  3093. model_arch = gguf.MODEL_ARCH.QWEN2VL
  3094. def set_gguf_parameters(self):
  3095. super().set_gguf_parameters()
  3096. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  3097. mrope_section += [0] * max(0, 4 - len(mrope_section))
  3098. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  3099. def set_vocab(self):
  3100. try:
  3101. self._set_vocab_sentencepiece()
  3102. except FileNotFoundError:
  3103. self._set_vocab_gpt2()
  3104. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3105. del bid # unused
  3106. if name.startswith("thinker."):
  3107. name = name.replace("thinker.", "")
  3108. if name.startswith("visual") or name.startswith("audio") or \
  3109. name.startswith("talker") or name.startswith("token2wav"):
  3110. # skip multimodal tensors
  3111. return []
  3112. return [(self.map_tensor_name(name), data_torch)]
  3113. @ModelBase.register("Qwen2VLModel", "Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  3114. class Qwen2VLVisionModel(MmprojModel):
  3115. def __init__(self, *args, **kwargs):
  3116. super().__init__(*args, **kwargs)
  3117. assert self.hparams_vision is not None
  3118. self.hparams_vision["image_size"] = self.hparams_vision.get("image_size", 560)
  3119. # rename config.json values
  3120. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3121. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3122. if "embed_dim" in self.hparams_vision: # qwen2vl
  3123. self.hparams_vision["intermediate_size"] = self.hparams_vision.get("hidden_size")
  3124. self.hparams_vision["hidden_size"] = self.hparams_vision.get("embed_dim")
  3125. def set_gguf_parameters(self):
  3126. super().set_gguf_parameters()
  3127. assert self.hparams_vision is not None
  3128. hparams = self.hparams_vision
  3129. model_type = self.global_config['model_type']
  3130. if model_type == 'qwen2_vl':
  3131. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2VL)
  3132. elif model_type == 'qwen2_5_vl' or model_type == 'qwen2_5_omni':
  3133. if model_type == 'qwen2_5_omni':
  3134. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25O)
  3135. else:
  3136. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN25VL)
  3137. self.gguf_writer.add_vision_use_silu(True)
  3138. # find n_wa_pattern (window attention pattern)
  3139. fullatt_block_indexes = hparams.get("fullatt_block_indexes")
  3140. assert fullatt_block_indexes is not None, "fullatt_block_indexes is required for qwen2_5_vl"
  3141. n_wa_pattern = fullatt_block_indexes[0] + 1
  3142. # validate n_wa_pattern
  3143. for i in range(1, len(fullatt_block_indexes)):
  3144. if fullatt_block_indexes[i] - fullatt_block_indexes[i - 1] != n_wa_pattern:
  3145. raise ValueError(f"Invalid fullatt_block_indexes: {fullatt_block_indexes}")
  3146. self.gguf_writer.add_vision_n_wa_pattern(n_wa_pattern)
  3147. else:
  3148. raise ValueError(f"Unknown QwenVL model type: {self.global_config['model_type']}")
  3149. # default values below are taken from HF tranformers code
  3150. self.gguf_writer.add_vision_attention_layernorm_eps(self.global_config.get("rms_norm_eps", 1e-6))
  3151. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3152. if ".position_embd." in new_name:
  3153. return gguf.GGMLQuantizationType.F32
  3154. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3155. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3156. del bid # unused
  3157. if name.startswith("visual."):
  3158. # process visual tensors
  3159. # split QKV tensors if needed
  3160. if ".qkv." in name:
  3161. if data_torch.ndim == 2: # weight
  3162. c3, _ = data_torch.shape
  3163. else: # bias
  3164. c3 = data_torch.shape[0]
  3165. assert c3 % 3 == 0
  3166. c = c3 // 3
  3167. wq = data_torch[:c]
  3168. wk = data_torch[c: c * 2]
  3169. wv = data_torch[c * 2:]
  3170. return [
  3171. (self.map_tensor_name(name.replace("qkv", "q")), wq),
  3172. (self.map_tensor_name(name.replace("qkv", "k")), wk),
  3173. (self.map_tensor_name(name.replace("qkv", "v")), wv),
  3174. ]
  3175. elif 'patch_embed.proj.weight' in name:
  3176. # split Conv3D into Conv2Ds
  3177. c1, c2, kt, kh, kw = data_torch.shape
  3178. del c1, c2, kh, kw # unused
  3179. assert kt == 2, "Current implmentation only support temporal_patch_size of 2"
  3180. return [
  3181. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight" , data_torch[:, :, 0, ...]),
  3182. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3183. ]
  3184. else:
  3185. return [(self.map_tensor_name(name), data_torch)]
  3186. return [] # skip other tensors
  3187. @ModelBase.register("Qwen2_5OmniModel")
  3188. class Qwen25OmniModel(Qwen2VLVisionModel):
  3189. has_vision_encoder = True
  3190. has_audio_encoder = True
  3191. def __init__(self, *args, **kwargs):
  3192. super().__init__(*args, **kwargs)
  3193. assert self.hparams_audio is not None
  3194. self.hparams_audio["hidden_size"] = self.hparams_audio["d_model"]
  3195. self.hparams_audio["intermediate_size"] = self.hparams_audio["encoder_ffn_dim"]
  3196. self.hparams_audio["num_attention_heads"] = self.hparams_audio["encoder_attention_heads"]
  3197. def set_gguf_parameters(self):
  3198. super().set_gguf_parameters()
  3199. assert self.hparams_audio is not None
  3200. self.gguf_writer.add_audio_num_mel_bins(self.hparams_audio["num_mel_bins"])
  3201. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams_audio.get("layer_norm_eps", 1e-5))
  3202. def get_vision_config(self) -> dict[str, Any] | None:
  3203. return self.global_config["thinker_config"].get("vision_config")
  3204. def get_audio_config(self) -> dict[str, Any] | None:
  3205. return self.global_config["thinker_config"].get("audio_config")
  3206. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3207. # SinusoidsPositionEmbedding
  3208. assert self.hparams_audio is not None
  3209. max_timescale = 10000
  3210. length = 1500
  3211. channels = self.hparams_audio["hidden_size"]
  3212. log_timescale_increment = np.log(max_timescale) / (channels // 2 - 1)
  3213. inv_timescales = torch.exp(-log_timescale_increment * torch.arange(channels // 2).float())
  3214. scaled_time = torch.arange(length)[:, np.newaxis] * inv_timescales[np.newaxis, :]
  3215. pos_embd = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1).to(dtype=torch.float32)
  3216. yield ("audio_tower.embed_positions.weight", pos_embd)
  3217. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3218. if ".conv" in name and ".weight" in name:
  3219. return gguf.GGMLQuantizationType.F16
  3220. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3222. if name.startswith("thinker."):
  3223. name = name.replace("thinker.", "")
  3224. if name.startswith("audio_tower"):
  3225. # process audio tensors
  3226. if "conv1.bias" in name or "conv2.bias" in name:
  3227. # transpose conv1 and conv2 bias
  3228. data_torch = data_torch.unsqueeze(-1)
  3229. if "audio_bos_eos_token" in name:
  3230. # this tensor is left unused in transformers code
  3231. # https://github.com/huggingface/transformers/blob/6e3063422c4b1c014aa60c32b9254fd2902f0f28/src/transformers/models/qwen2_5_omni/modular_qwen2_5_omni.py#L1809
  3232. return []
  3233. return [(self.map_tensor_name(name), data_torch)]
  3234. return super().modify_tensors(data_torch, name, bid)
  3235. @ModelBase.register("InternVisionModel")
  3236. class InternVisionModel(MmprojModel):
  3237. def set_gguf_parameters(self):
  3238. assert self.hparams_vision is not None
  3239. if isinstance(self.hparams_vision['image_size'], list):
  3240. self.hparams_vision['image_size'] = self.hparams_vision['image_size'][0]
  3241. if isinstance(self.hparams_vision['patch_size'], list):
  3242. self.hparams_vision['patch_size'] = self.hparams_vision['patch_size'][0]
  3243. super().set_gguf_parameters()
  3244. hparams = self.hparams
  3245. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.INTERNVL)
  3246. self.gguf_writer.add_vision_attention_layernorm_eps(hparams["layer_norm_eps"])
  3247. # hidden_act
  3248. if hparams["hidden_act"] == "silu":
  3249. self.gguf_writer.add_vision_use_silu(True)
  3250. elif hparams["hidden_act"] == "gelu":
  3251. self.gguf_writer.add_vision_use_gelu(True)
  3252. else:
  3253. raise ValueError(f"Unsupported hidden_act: {hparams['hidden_act']}")
  3254. # downsample_ratio
  3255. downsample_ratio = self.global_config.get("downsample_ratio")
  3256. assert downsample_ratio is not None
  3257. self.gguf_writer.add_vision_projector_scale_factor(int(1.0 / downsample_ratio))
  3258. def tensor_force_quant(self, name, new_name, bid, n_dims):
  3259. if ".position_embd." in new_name:
  3260. return gguf.GGMLQuantizationType.F32
  3261. return super().tensor_force_quant(name, new_name, bid, n_dims)
  3262. def _mapping_interns1_name(self, name):
  3263. names_map = {
  3264. "model.multi_modal_projector.layer_norm.bias": "mlp1.0.bias",
  3265. "model.multi_modal_projector.layer_norm.weight": "mlp1.0.weight",
  3266. "model.multi_modal_projector.linear_1.bias": "mlp1.1.bias",
  3267. "model.multi_modal_projector.linear_1.weight": "mlp1.1.weight",
  3268. "model.multi_modal_projector.linear_2.bias": "mlp1.3.bias",
  3269. "model.multi_modal_projector.linear_2.weight": "mlp1.3.weight",
  3270. }
  3271. if name in names_map:
  3272. name = names_map[name]
  3273. return name
  3274. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3275. del bid # unused
  3276. vision_prefix = ['vision_model', 'mlp', 'model.vision_tower', 'model.multi_modal_projector']
  3277. # deal with intern-s1 special case
  3278. name = self._mapping_interns1_name(name)
  3279. if any([name.startswith(prefix) for prefix in vision_prefix]):
  3280. # process visual tensors
  3281. # correct name
  3282. if name.startswith("vision_model"):
  3283. name = "vision_tower." + name
  3284. if (".ls" in name or ".lambda_" in name or "position_embedding" in name) and not name.endswith(".weight"):
  3285. name += ".weight"
  3286. # split QKV tensors if needed
  3287. if ".qkv." in name:
  3288. if data_torch.ndim == 2: # weight
  3289. c3, _ = data_torch.shape
  3290. else: # bias
  3291. c3 = data_torch.shape[0]
  3292. assert c3 % 3 == 0
  3293. c = c3 // 3
  3294. wq = data_torch[:c]
  3295. wk = data_torch[c: c * 2]
  3296. wv = data_torch[c * 2:]
  3297. return [
  3298. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.q_proj")), wq),
  3299. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.k_proj")), wk),
  3300. (self.map_tensor_name(name.replace("attn.qkv", "self_attn.v_proj")), wv),
  3301. ]
  3302. return [(self.map_tensor_name(name), data_torch)]
  3303. return [] # skip other tensors
  3304. @ModelBase.register("WavTokenizerDec")
  3305. class WavTokenizerDecModel(TextModel):
  3306. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  3307. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3308. del bid # unused
  3309. if \
  3310. name.endswith("codebook.cluster_size") or \
  3311. name.endswith("codebook.embed_avg") or \
  3312. name.endswith("codebook.inited"):
  3313. logger.debug(f"Skipping {name!r}")
  3314. return []
  3315. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  3316. return [(self.map_tensor_name(name), data_torch)]
  3317. def set_vocab(self):
  3318. self._set_vocab_none()
  3319. def set_gguf_parameters(self):
  3320. super().set_gguf_parameters()
  3321. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  3322. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  3323. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  3324. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  3325. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  3326. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  3327. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  3328. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  3329. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  3330. self.gguf_writer.add_causal_attention(False)
  3331. @ModelBase.register("Qwen2MoeForCausalLM")
  3332. class Qwen2MoeModel(TextModel):
  3333. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  3334. def set_gguf_parameters(self):
  3335. super().set_gguf_parameters()
  3336. if (n_experts := self.hparams.get("num_experts")) is not None:
  3337. self.gguf_writer.add_expert_count(n_experts)
  3338. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  3339. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  3340. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  3341. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  3342. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  3343. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  3344. # YaRN is not enabled by default
  3345. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  3346. rope_scaling = self.hparams.get("rope_scaling") or {}
  3347. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  3348. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3349. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  3350. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  3351. _experts: list[dict[str, Tensor]] | None = None
  3352. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3353. # process the experts separately
  3354. name = name.replace("language_model.", "") # InternVL
  3355. # handle aggregated expert tensors
  3356. # GGUF stores dimensions reversed from PyTorch, so:
  3357. # PyTorch (A,B,C) -> GGUF writes [C,B,A] -> GGML reads ne={C,B,A}
  3358. # Input shapes from HF: (n_expert, n_ff_exp, n_embd) or (n_expert, n_embd, n_ff_exp)
  3359. # Expected GGML ne: {n_embd, n_ff_exp, n_expert} for gate/up, {n_ff_exp, n_embd, n_expert} for down
  3360. if name.endswith("mlp.experts.down_proj") or name.endswith("mlp.experts.down_proj.weight"):
  3361. mapped = f"{name}.weight" if not name.endswith(".weight") else name
  3362. # Input: (n_expert=128, n_ff_exp=768, n_embd=2048)
  3363. # Want GGML ne: {n_ff_exp, n_embd, n_expert} = {768, 2048, 128}
  3364. # Need PyTorch: (128, 2048, 768) [reversed of GGML]
  3365. # So: permute(0, 2, 1): (128, 768, 2048) -> (128, 2048, 768)
  3366. permuted = data_torch.permute(0, 2, 1).contiguous()
  3367. return [(self.map_tensor_name(mapped), permuted)]
  3368. if name.endswith("mlp.experts.gate_up_proj") or name.endswith("mlp.experts.gate_up_proj.weight"):
  3369. if data_torch.ndim < 3 or data_torch.shape[-1] % 2 != 0:
  3370. raise ValueError(f"Unexpected gate_up_proj shape for {name}: {tuple(data_torch.shape)}")
  3371. split_dim = data_torch.shape[-1] // 2
  3372. gate = data_torch[..., :split_dim].contiguous()
  3373. up = data_torch[..., split_dim:].contiguous()
  3374. # Input gate/up: (n_expert=128, n_embd=2048, n_ff_exp=768)
  3375. # Want GGML ne: {n_embd, n_ff_exp, n_expert} = {2048, 768, 128}
  3376. # Need PyTorch: (128, 768, 2048) [reversed of GGML]
  3377. # So: permute(0, 2, 1): (128, 2048, 768) -> (128, 768, 2048)
  3378. base_name = name.removesuffix(".weight")
  3379. base = base_name.rsplit('.', 1)[0]
  3380. mapped_gate = f"{base}.gate_proj.weight"
  3381. mapped_up = f"{base}.up_proj.weight"
  3382. perm_gate = gate.permute(0, 2, 1).contiguous()
  3383. perm_up = up.permute(0, 2, 1).contiguous()
  3384. return [
  3385. (self.map_tensor_name(mapped_gate), perm_gate),
  3386. (self.map_tensor_name(mapped_up), perm_up),
  3387. ]
  3388. if name.startswith("mlp") or name.startswith("vision_model") or name.startswith("model.vision_tower") or name.startswith("model.multi_modal_projector") or name.startswith("model.visual"):
  3389. # skip visual tensors
  3390. return []
  3391. if name.find("experts") != -1:
  3392. n_experts = self.hparams["num_experts"]
  3393. assert bid is not None
  3394. if self._experts is None:
  3395. self._experts = [{} for _ in range(self.block_count)]
  3396. self._experts[bid][name] = data_torch
  3397. if len(self._experts[bid]) >= n_experts * 3:
  3398. tensors: list[tuple[str, Tensor]] = []
  3399. # merge the experts into a single 3d tensor
  3400. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3401. datas: list[Tensor] = []
  3402. for xid in range(n_experts):
  3403. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3404. datas.append(self._experts[bid][ename])
  3405. del self._experts[bid][ename]
  3406. data_torch = torch.stack(datas, dim=0)
  3407. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3408. new_name = self.map_tensor_name(merged_name)
  3409. tensors.append((new_name, data_torch))
  3410. return tensors
  3411. else:
  3412. return []
  3413. return [(self.map_tensor_name(name), data_torch)]
  3414. def prepare_tensors(self):
  3415. super().prepare_tensors()
  3416. if self._experts is not None:
  3417. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3418. experts = [k for d in self._experts for k in d.keys()]
  3419. if len(experts) > 0:
  3420. raise ValueError(f"Unprocessed experts: {experts}")
  3421. @ModelBase.register("Qwen3ForCausalLM")
  3422. class Qwen3Model(Qwen2Model):
  3423. model_arch = gguf.MODEL_ARCH.QWEN3
  3424. # extra logic for rerank models
  3425. is_rerank: bool = False
  3426. is_tied_embeddings: bool = False
  3427. token_false_id: int | None = None
  3428. token_true_id: int | None = None
  3429. def __init__(self, *args, **kwargs):
  3430. super().__init__(*args, **kwargs)
  3431. # track for intern-s1-mini
  3432. hparams = ModelBase.load_hparams(self.dir_model, is_mistral_format=False)
  3433. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3434. # a bit hacky, but currently the only way to detect if this is a rerank model
  3435. # ref: https://huggingface.co/Qwen/Qwen3-Reranker-0.6B
  3436. readme_path = self.dir_model / "README.md"
  3437. readme_text = ""
  3438. if readme_path.exists():
  3439. with readme_path.open("r", encoding="utf-8") as f:
  3440. readme_text = f.read()
  3441. if "# Qwen3-Reranker" in readme_text:
  3442. self._find_rerank_config()
  3443. def set_vocab(self):
  3444. # deal with intern-s1-mini
  3445. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3446. self._set_vocab_interns1()
  3447. return
  3448. super().set_vocab()
  3449. def _find_rerank_config(self):
  3450. from transformers import AutoTokenizer
  3451. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  3452. self.is_rerank = True
  3453. self.is_tied_embeddings = self.hparams.get("tie_word_embeddings", False)
  3454. self.token_false_id = tokenizer.convert_tokens_to_ids("no")
  3455. self.token_true_id = tokenizer.convert_tokens_to_ids("yes")
  3456. self.sep_token_id = tokenizer.convert_tokens_to_ids("|")
  3457. assert self.token_false_id is not None and self.token_true_id is not None
  3458. def set_gguf_parameters(self):
  3459. super().set_gguf_parameters()
  3460. if self.is_rerank:
  3461. self.gguf_writer.add_pooling_type(gguf.PoolingType.RANK)
  3462. self.gguf_writer.add_classifier_output_labels(["yes", "no"])
  3463. self.gguf_writer.add_chat_template([{
  3464. "name": "rerank",
  3465. "template": "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n"
  3466. "<|im_start|>user\n<Instruct>: Given a web search query, retrieve relevant passages that answer the query\n<Query>: {query}\n<Document>: {document}<|im_end|>\n"
  3467. "<|im_start|>assistant\n<think>\n\n</think>\n\n"
  3468. }])
  3469. def _get_cls_out_tensor(self, data_torch: Tensor) -> Tensor:
  3470. # extract "yes" and "no" tokens from the output lm_head tensor
  3471. false_row = data_torch[self.token_false_id]
  3472. true_row = data_torch[self.token_true_id]
  3473. return torch.stack([true_row, false_row], dim=0)
  3474. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3475. if "model.vision_" in name:
  3476. # skip multimodal tensors
  3477. return []
  3478. if self.is_rerank:
  3479. is_tied_head = self.is_tied_embeddings and "embed_tokens" in name
  3480. is_real_head = not self.is_tied_embeddings and "lm_head" in name
  3481. if is_tied_head or is_real_head:
  3482. cls_out_head = (
  3483. gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.CLS_OUT] + ".weight",
  3484. self._get_cls_out_tensor(data_torch),
  3485. )
  3486. if is_tied_head:
  3487. embed = (self.map_tensor_name(name), data_torch)
  3488. return [cls_out_head, embed]
  3489. if is_real_head:
  3490. return [cls_out_head]
  3491. return super().modify_tensors(data_torch, name, bid)
  3492. @ModelBase.register("Qwen3MoeForCausalLM")
  3493. class Qwen3MoeModel(Qwen2MoeModel):
  3494. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  3495. def __init__(self, *args, **kwargs):
  3496. super().__init__(*args, **kwargs)
  3497. hparams = ModelBase.load_hparams(self.dir_model, False)
  3498. self.origin_hf_arch = hparams.get('architectures', [None])[0]
  3499. def set_vocab(self):
  3500. # deal with intern-s1
  3501. if self.origin_hf_arch == 'InternS1ForConditionalGeneration':
  3502. self._set_vocab_interns1()
  3503. return
  3504. super().set_vocab()
  3505. @ModelBase.register("Qwen3NextForCausalLM")
  3506. class Qwen3NextModel(Qwen2MoeModel):
  3507. model_arch = gguf.MODEL_ARCH.QWEN3NEXT
  3508. def set_gguf_parameters(self):
  3509. super().set_gguf_parameters()
  3510. self.gguf_writer.add_ssm_conv_kernel(self.hparams["linear_conv_kernel_dim"])
  3511. self.gguf_writer.add_ssm_state_size(self.hparams["linear_key_head_dim"])
  3512. self.gguf_writer.add_ssm_group_count(self.hparams["linear_num_key_heads"])
  3513. self.gguf_writer.add_ssm_time_step_rank(self.hparams["linear_num_value_heads"])
  3514. self.gguf_writer.add_ssm_inner_size(self.hparams["linear_value_head_dim"] * self.hparams["linear_num_value_heads"])
  3515. if (rope_dim := self.hparams.get("head_dim")) is None:
  3516. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  3517. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.25)))
  3518. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3519. if name.startswith("mtp"):
  3520. return [] # ignore MTP layers for now
  3521. if name.endswith(".A_log"):
  3522. data_torch = -torch.exp(data_torch)
  3523. elif name.endswith(".dt_bias"):
  3524. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  3525. elif "conv1d" in name:
  3526. data_torch = data_torch.squeeze()
  3527. elif name.endswith("norm.weight") and not name.endswith("linear_attn.norm.weight"):
  3528. data_torch = data_torch + 1
  3529. yield from super().modify_tensors(data_torch, name, bid)
  3530. @ModelBase.register("RND1")
  3531. class RND1Model(Qwen2MoeModel):
  3532. model_arch = gguf.MODEL_ARCH.RND1
  3533. def set_gguf_parameters(self):
  3534. super().set_gguf_parameters()
  3535. # RND1 specific parameters
  3536. # RND1 uses bidirectional attention
  3537. self.gguf_writer.add_causal_attention(False)
  3538. if (mask_token_id := self.hparams.get("mask_token_id")) is not None:
  3539. self.gguf_writer.add_mask_token_id(mask_token_id)
  3540. @ModelBase.register("Qwen3VLForConditionalGeneration", "Qwen3VLMoeForConditionalGeneration")
  3541. class Qwen3VLVisionModel(MmprojModel):
  3542. def __init__(self, *args, **kwargs):
  3543. super().__init__(*args, **kwargs)
  3544. assert self.hparams_vision is not None
  3545. # Compute image_size if not present
  3546. if "image_size" not in self.hparams_vision:
  3547. # For Qwen3VL/Qwen3VLMoe, compute from num_position_embeddings
  3548. num_pos = self.hparams_vision.get("num_position_embeddings", 2304)
  3549. patch_size = self.hparams_vision.get("patch_size", 16)
  3550. # num_position_embeddings = (image_size / patch_size) ** 2
  3551. # So image_size = sqrt(num_position_embeddings) * patch_size
  3552. image_size = int(num_pos**0.5 * patch_size)
  3553. self.hparams_vision["image_size"] = image_size
  3554. # Rename config values for compatibility
  3555. self.hparams_vision["num_attention_heads"] = self.hparams_vision.get("num_heads")
  3556. self.hparams_vision["num_hidden_layers"] = self.hparams_vision.get("depth")
  3557. self.is_deepstack_layers = [False] * int(self.hparams_vision["num_hidden_layers"] or 0)
  3558. for idx in self.hparams_vision.get("deepstack_visual_indexes", []):
  3559. self.is_deepstack_layers[idx] = True
  3560. def set_gguf_parameters(self):
  3561. super().set_gguf_parameters()
  3562. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN3VL)
  3563. self.gguf_writer.add_vision_use_gelu(True)
  3564. if self.hparams_vision is not None:
  3565. merge_size = self.hparams_vision.get("spatial_merge_size")
  3566. if merge_size is not None:
  3567. self.gguf_writer.add_vision_spatial_merge_size(int(merge_size))
  3568. # Use text config's rms_norm_eps for vision attention layernorm eps
  3569. rms_norm_eps = self.global_config.get("text_config", {}).get("rms_norm_eps", 1e-6)
  3570. self.gguf_writer.add_vision_attention_layernorm_eps(rms_norm_eps)
  3571. if self.is_deepstack_layers:
  3572. self.gguf_writer.add_vision_is_deepstack_layers(self.is_deepstack_layers)
  3573. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3574. assert self.hparams_vision is not None
  3575. # Skip text model tensors - they go in the text model file
  3576. if name.startswith("model.language_model.") or name.startswith("lm_head."):
  3577. return []
  3578. if name.startswith("model.visual."):
  3579. name = name.replace("model.visual.", "visual.", 1)
  3580. if name.startswith("visual.deepstack_merger_list."):
  3581. prefix, rest = name.split(".", maxsplit=3)[2:]
  3582. # prefix is the layer index, convert to absolute clip layer index!
  3583. idx = self.hparams_vision.get("deepstack_visual_indexes", [])[int(prefix)]
  3584. target = rest
  3585. tensor_type: gguf.MODEL_TENSOR
  3586. if target.startswith("norm."):
  3587. tensor_type = gguf.MODEL_TENSOR.V_DS_NORM
  3588. suffix = target.split(".", 1)[1]
  3589. elif target.startswith("linear_fc1."):
  3590. tensor_type = gguf.MODEL_TENSOR.V_DS_FC1
  3591. suffix = target.split(".", 1)[1]
  3592. elif target.startswith("linear_fc2."):
  3593. tensor_type = gguf.MODEL_TENSOR.V_DS_FC2
  3594. suffix = target.split(".", 1)[1]
  3595. else:
  3596. raise ValueError(f"Unexpected deepstack tensor: {name}")
  3597. new_name = self.format_tensor_name(tensor_type, idx, suffix=f".{suffix}")
  3598. return [(new_name, data_torch)]
  3599. if name.startswith("visual.merger."):
  3600. suffix = name.split(".", 2)[2]
  3601. if suffix.startswith("linear_fc"):
  3602. fc_idx_str, tail = suffix.split(".", 1)
  3603. fc_num = int(fc_idx_str.replace("linear_fc", ""))
  3604. # Qwen3VL has linear_fc1 and linear_fc2
  3605. # Map to indices 0 and 2 (matching Qwen2VL which uses indices 0 and 2)
  3606. if fc_num == 1:
  3607. fc_idx = 0
  3608. elif fc_num == 2:
  3609. fc_idx = 2
  3610. else:
  3611. raise ValueError(f"unexpected fc index {fc_num} in {name}")
  3612. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, fc_idx, suffix=f".{tail}")
  3613. elif suffix.startswith("norm."):
  3614. new_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_POST_NORM, suffix=f".{suffix.split('.', 1)[1]}")
  3615. else:
  3616. raise ValueError(f"Unexpected merger tensor: {name}")
  3617. return [(new_name, data_torch)]
  3618. if name == "visual.patch_embed.proj.weight":
  3619. # split Conv3D into Conv2Ds along temporal dimension
  3620. c1, c2, kt, _, _ = data_torch.shape
  3621. del c1, c2
  3622. if kt != 2:
  3623. raise ValueError("Current implementation only supports temporal_patch_size of 2")
  3624. return [
  3625. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight", data_torch[:, :, 0, ...]),
  3626. (gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".weight.1", data_torch[:, :, 1, ...]),
  3627. ]
  3628. if name == "visual.patch_embed.proj.bias":
  3629. # Include the bias - it's used by the C++ code
  3630. return [(gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.V_ENC_EMBD_PATCH] + ".bias", data_torch)]
  3631. if name.startswith("visual."):
  3632. return [(self.map_tensor_name(name), data_torch)]
  3633. # Fall back to parent class for other tensors
  3634. return super().modify_tensors(data_torch, name, bid)
  3635. @ModelBase.register("Qwen3VLForConditionalGeneration")
  3636. class Qwen3VLTextModel(Qwen3Model):
  3637. model_arch = gguf.MODEL_ARCH.QWEN3VL
  3638. def set_gguf_parameters(self):
  3639. super().set_gguf_parameters()
  3640. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3641. text_config = self.hparams.get("text_config", {})
  3642. # rope_scaling is deprecated in V5, use rope_parameters instead
  3643. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3644. if rope_scaling.get("mrope_section"):
  3645. # mrope_section contains [time, height, width] dimensions
  3646. mrope_section = rope_scaling["mrope_section"]
  3647. # Pad to 4 dimensions [time, height, width, extra]
  3648. while len(mrope_section) < 4:
  3649. mrope_section.append(0)
  3650. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3651. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3652. vision_config = self.hparams.get("vision_config", {})
  3653. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3654. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3655. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3656. # Skip vision tensors - they go in the mmproj file
  3657. if name.startswith("model.visual."):
  3658. return []
  3659. return super().modify_tensors(data_torch, name, bid)
  3660. @ModelBase.register("Qwen3VLMoeForConditionalGeneration")
  3661. class Qwen3VLMoeTextModel(Qwen3MoeModel):
  3662. model_arch = gguf.MODEL_ARCH.QWEN3VLMOE
  3663. def set_gguf_parameters(self):
  3664. super().set_gguf_parameters()
  3665. # Handle MRoPE (Multi-axis Rotary Position Embedding) for Qwen3-VL
  3666. text_config = self.hparams.get("text_config", {})
  3667. # rope_scaling is deprecated in V5, use rope_parameters instead
  3668. rope_scaling = text_config.get("rope_scaling") or text_config.get("rope_parameters") or {}
  3669. if rope_scaling.get("mrope_section"):
  3670. # mrope_section contains [time, height, width] dimensions
  3671. mrope_section = rope_scaling["mrope_section"]
  3672. # Pad to 4 dimensions [time, height, width, extra]
  3673. while len(mrope_section) < 4:
  3674. mrope_section.append(0)
  3675. self.gguf_writer.add_rope_dimension_sections(mrope_section[:4])
  3676. logger.info(f"MRoPE sections: {mrope_section[:4]}")
  3677. vision_config = self.hparams.get("vision_config", {})
  3678. deepstack_layer_num = len(vision_config.get("deepstack_visual_indexes", []))
  3679. self.gguf_writer.add_num_deepstack_layers(deepstack_layer_num)
  3680. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3681. # Skip vision tensors - they go in the mmproj file
  3682. if name.startswith("model.visual."):
  3683. return []
  3684. return super().modify_tensors(data_torch, name, bid)
  3685. @ModelBase.register("GPT2LMHeadModel")
  3686. class GPT2Model(TextModel):
  3687. model_arch = gguf.MODEL_ARCH.GPT2
  3688. def set_gguf_parameters(self):
  3689. self.gguf_writer.add_block_count(self.block_count)
  3690. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  3691. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3692. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  3693. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3694. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3695. self.gguf_writer.add_file_type(self.ftype)
  3696. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3697. del bid # unused
  3698. tensors: list[tuple[str, Tensor]] = []
  3699. # we don't need these
  3700. if name.endswith((".attn.bias", ".attn.masked_bias")):
  3701. return tensors
  3702. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  3703. data_torch = data_torch.transpose(1, 0)
  3704. new_name = self.map_tensor_name(name)
  3705. tensors.append((new_name, data_torch))
  3706. return tensors
  3707. @ModelBase.register("PhiForCausalLM")
  3708. class Phi2Model(TextModel):
  3709. model_arch = gguf.MODEL_ARCH.PHI2
  3710. def set_gguf_parameters(self):
  3711. rot_pct = self.find_hparam(["partial_rotary_factor"])
  3712. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3713. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3714. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  3715. self.gguf_writer.add_embedding_length(n_embd)
  3716. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  3717. self.gguf_writer.add_block_count(self.block_count)
  3718. self.gguf_writer.add_head_count(n_head)
  3719. self.gguf_writer.add_head_count_kv(n_head)
  3720. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  3721. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3722. self.gguf_writer.add_file_type(self.ftype)
  3723. self.gguf_writer.add_add_bos_token(False)
  3724. @ModelBase.register("Phi3ForCausalLM")
  3725. class Phi3MiniModel(TextModel):
  3726. model_arch = gguf.MODEL_ARCH.PHI3
  3727. def set_vocab(self):
  3728. # Phi-4 model uses GPT2Tokenizer
  3729. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3730. if tokenizer_config_file.is_file():
  3731. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3732. tokenizer_config_json = json.load(f)
  3733. tokenizer_class = tokenizer_config_json['tokenizer_class']
  3734. if tokenizer_class == 'GPT2Tokenizer':
  3735. return self._set_vocab_gpt2()
  3736. from sentencepiece import SentencePieceProcessor
  3737. tokenizer_path = self.dir_model / 'tokenizer.model'
  3738. if not tokenizer_path.is_file():
  3739. raise ValueError(f'Error: Missing {tokenizer_path}')
  3740. tokenizer = SentencePieceProcessor()
  3741. tokenizer.LoadFromFile(str(tokenizer_path))
  3742. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3743. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3744. scores: list[float] = [-10000.0] * vocab_size
  3745. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3746. for token_id in range(tokenizer.vocab_size()):
  3747. piece = tokenizer.IdToPiece(token_id)
  3748. text = piece.encode("utf-8")
  3749. score = tokenizer.GetScore(token_id)
  3750. toktype = SentencePieceTokenTypes.NORMAL
  3751. if tokenizer.IsUnknown(token_id):
  3752. toktype = SentencePieceTokenTypes.UNKNOWN
  3753. elif tokenizer.IsControl(token_id):
  3754. toktype = SentencePieceTokenTypes.CONTROL
  3755. elif tokenizer.IsUnused(token_id):
  3756. toktype = SentencePieceTokenTypes.UNUSED
  3757. elif tokenizer.IsByte(token_id):
  3758. toktype = SentencePieceTokenTypes.BYTE
  3759. tokens[token_id] = text
  3760. scores[token_id] = score
  3761. toktypes[token_id] = toktype
  3762. added_tokens_file = self.dir_model / 'added_tokens.json'
  3763. if added_tokens_file.is_file():
  3764. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3765. added_tokens_json = json.load(f)
  3766. for key in added_tokens_json:
  3767. token_id = added_tokens_json[key]
  3768. if token_id >= vocab_size:
  3769. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3770. continue
  3771. tokens[token_id] = key.encode("utf-8")
  3772. scores[token_id] = -1000.0
  3773. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3774. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3775. if tokenizer_config_file.is_file():
  3776. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3777. tokenizer_config_json = json.load(f)
  3778. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  3779. for token_id, foken_data in added_tokens_decoder.items():
  3780. token_id = int(token_id)
  3781. token = foken_data["content"].encode("utf-8")
  3782. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3783. if tokens[token_id] != token:
  3784. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3785. tokens[token_id] = token
  3786. scores[token_id] = -1000.0
  3787. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3788. if foken_data.get("special"):
  3789. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3790. tokenizer_file = self.dir_model / 'tokenizer.json'
  3791. if tokenizer_file.is_file():
  3792. with open(tokenizer_file, "r", encoding="utf-8") as f:
  3793. tokenizer_json = json.load(f)
  3794. added_tokens = tokenizer_json.get("added_tokens", [])
  3795. for foken_data in added_tokens:
  3796. token_id = int(foken_data["id"])
  3797. token = foken_data["content"].encode("utf-8")
  3798. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  3799. if tokens[token_id] != token:
  3800. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  3801. tokens[token_id] = token
  3802. scores[token_id] = -1000.0
  3803. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3804. if foken_data.get("special"):
  3805. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  3806. self.gguf_writer.add_tokenizer_model("llama")
  3807. self.gguf_writer.add_tokenizer_pre("default")
  3808. self.gguf_writer.add_token_list(tokens)
  3809. self.gguf_writer.add_token_scores(scores)
  3810. self.gguf_writer.add_token_types(toktypes)
  3811. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3812. special_vocab.add_to_gguf(self.gguf_writer)
  3813. def set_gguf_parameters(self):
  3814. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3815. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3816. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  3817. rms_eps = self.find_hparam(["rms_norm_eps"])
  3818. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3819. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3820. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3821. rope_dims = int(rot_pct * n_embd) // n_head
  3822. self.gguf_writer.add_context_length(max_pos_embds)
  3823. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  3824. self.gguf_writer.add_embedding_length(n_embd)
  3825. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  3826. self.gguf_writer.add_block_count(self.block_count)
  3827. self.gguf_writer.add_head_count(n_head)
  3828. self.gguf_writer.add_head_count_kv(n_head_kv)
  3829. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  3830. self.gguf_writer.add_rope_dimension_count(rope_dims)
  3831. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  3832. self.gguf_writer.add_file_type(self.ftype)
  3833. sliding_window = self.hparams.get("sliding_window")
  3834. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  3835. if sliding_window is None:
  3836. sliding_window = 0
  3837. self.gguf_writer.add_sliding_window(sliding_window)
  3838. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3839. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3840. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3841. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  3842. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  3843. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  3844. rope_dims = int(rot_pct * n_embd) // n_head
  3845. # write rope scaling for long context (128k) model
  3846. rope_scaling = self.find_hparam(['rope_scaling'], True)
  3847. if rope_scaling is None:
  3848. return
  3849. scale = max_pos_embds / orig_max_pos_embds
  3850. rope_scaling_type = rope_scaling.get('rope_type', rope_scaling.get('type', '')).lower()
  3851. if len(rope_scaling_type) == 0:
  3852. raise KeyError('Missing the required key rope_scaling.type')
  3853. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  3854. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  3855. elif rope_scaling_type == 'yarn':
  3856. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  3857. else:
  3858. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  3859. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  3860. long_factors = rope_scaling.get('long_factor', None)
  3861. short_factors = rope_scaling.get('short_factor', None)
  3862. if long_factors is None or short_factors is None:
  3863. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  3864. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  3865. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  3866. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  3867. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  3868. @ModelBase.register("PhiMoEForCausalLM")
  3869. class PhiMoeModel(Phi3MiniModel):
  3870. model_arch = gguf.MODEL_ARCH.PHIMOE
  3871. _experts: list[dict[str, Tensor]] | None = None
  3872. def set_gguf_parameters(self):
  3873. super().set_gguf_parameters()
  3874. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  3875. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  3876. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3877. # process the experts separately
  3878. if name.find("block_sparse_moe.experts") != -1:
  3879. n_experts = self.hparams["num_local_experts"]
  3880. assert bid is not None
  3881. if self._experts is None:
  3882. self._experts = [{} for _ in range(self.block_count)]
  3883. self._experts[bid][name] = data_torch
  3884. if len(self._experts[bid]) >= n_experts * 3:
  3885. tensors: list[tuple[str, Tensor]] = []
  3886. # merge the experts into a single 3d tensor
  3887. for w_name in ["w1", "w2", "w3"]:
  3888. datas: list[Tensor] = []
  3889. for xid in range(n_experts):
  3890. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  3891. datas.append(self._experts[bid][ename])
  3892. del self._experts[bid][ename]
  3893. data_torch = torch.stack(datas, dim=0)
  3894. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  3895. new_name = self.map_tensor_name(merged_name)
  3896. tensors.append((new_name, data_torch))
  3897. return tensors
  3898. else:
  3899. return []
  3900. return [(self.map_tensor_name(name), data_torch)]
  3901. def prepare_tensors(self):
  3902. super().prepare_tensors()
  3903. if self._experts is not None:
  3904. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3905. experts = [k for d in self._experts for k in d.keys()]
  3906. if len(experts) > 0:
  3907. raise ValueError(f"Unprocessed experts: {experts}")
  3908. @ModelBase.register("PlamoForCausalLM")
  3909. class PlamoModel(TextModel):
  3910. model_arch = gguf.MODEL_ARCH.PLAMO
  3911. def set_vocab(self):
  3912. self._set_vocab_sentencepiece()
  3913. def set_gguf_parameters(self):
  3914. hparams = self.hparams
  3915. self.gguf_writer.add_context_length(4096) # not in config.json
  3916. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  3917. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  3918. self.gguf_writer.add_block_count(self.block_count)
  3919. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  3920. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  3921. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  3922. self.gguf_writer.add_file_type(self.ftype)
  3923. def shuffle_attn_q_weight(self, data_torch):
  3924. assert data_torch.size() == (5120, 5120)
  3925. data_torch = data_torch.reshape(8, 5, 128, 5120)
  3926. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  3927. data_torch = torch.reshape(data_torch, (5120, 5120))
  3928. return data_torch
  3929. def shuffle_attn_output_weight(self, data_torch):
  3930. assert data_torch.size() == (5120, 5120)
  3931. data_torch = data_torch.reshape(5120, 8, 5, 128)
  3932. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  3933. data_torch = torch.reshape(data_torch, (5120, 5120))
  3934. return data_torch
  3935. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3936. del bid # unused
  3937. new_name = self.map_tensor_name(name)
  3938. # shuffle for broadcasting of gqa in ggml_mul_mat
  3939. if new_name.endswith("attn_q.weight"):
  3940. data_torch = self.shuffle_attn_q_weight(data_torch)
  3941. elif new_name.endswith("attn_output.weight"):
  3942. data_torch = self.shuffle_attn_output_weight(data_torch)
  3943. return [(new_name, data_torch)]
  3944. @ModelBase.register("Plamo2ForCausalLM", "PLaMo2ForCausalLM")
  3945. class Plamo2Model(TextModel):
  3946. model_arch = gguf.MODEL_ARCH.PLAMO2
  3947. def set_vocab(self):
  3948. # PLaMo 2 uses a custom tokenizer with a .jsonl file
  3949. # We need to handle this specially
  3950. tokenizer_jsonl_path = self.dir_model / "tokenizer.jsonl"
  3951. tokenizer_config_path = self.dir_model / "tokenizer_config.json"
  3952. if not tokenizer_jsonl_path.is_file():
  3953. raise FileNotFoundError(f"PLaMo 2 tokenizer file not found: {tokenizer_jsonl_path}")
  3954. # Load tokenizer config
  3955. with open(tokenizer_config_path, 'r', encoding='utf-8') as f:
  3956. tokenizer_config = json.load(f)
  3957. # Load tokens from JSONL file (actually a list format)
  3958. tokens = []
  3959. scores = []
  3960. toktypes = []
  3961. with open(tokenizer_jsonl_path, 'r', encoding='utf-8') as f:
  3962. for line_num, line in enumerate(f):
  3963. if line.strip():
  3964. token_data = json.loads(line)
  3965. # Format: [token, score, type, ?, ?, ?, ?]
  3966. token = token_data[0].encode("utf-8")
  3967. score = float(token_data[1])
  3968. token_type_str = token_data[2] if len(token_data) > 2 else "NORMAL"
  3969. tokens.append(token)
  3970. scores.append(score)
  3971. # Map token type strings to GGUF token types
  3972. if token_type_str == "UNKNOWN":
  3973. toktypes.append(gguf.TokenType.UNKNOWN)
  3974. elif token_type_str == "CONTROL":
  3975. toktypes.append(gguf.TokenType.CONTROL)
  3976. elif token_type_str == "BYTE":
  3977. toktypes.append(gguf.TokenType.BYTE)
  3978. else:
  3979. # Check for PLaMo-2 special tokens
  3980. token_str = token_data[0]
  3981. if token_str.startswith("<|plamo:") and token_str.endswith("|>"):
  3982. toktypes.append(gguf.TokenType.CONTROL)
  3983. else:
  3984. toktypes.append(gguf.TokenType.NORMAL)
  3985. vocab_size = self.hparams["vocab_size"]
  3986. if vocab_size > len(tokens):
  3987. pad_count = vocab_size - len(tokens)
  3988. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3989. for i in range(1, pad_count + 1):
  3990. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3991. scores.append(-1000.0)
  3992. toktypes.append(gguf.TokenType.UNUSED)
  3993. # Use "plamo2" tokenizer type for PLaMo-2's custom Aho-Corasick tokenizer
  3994. self.gguf_writer.add_tokenizer_model("plamo2")
  3995. self.gguf_writer.add_tokenizer_pre("default")
  3996. self.gguf_writer.add_token_list(tokens)
  3997. self.gguf_writer.add_token_scores(scores)
  3998. self.gguf_writer.add_token_types(toktypes)
  3999. # Add special tokens from config
  4000. if "bos_token" in tokenizer_config and tokenizer_config["bos_token"] is not None:
  4001. token_id = tokens.index(tokenizer_config["bos_token"].encode("utf-8"))
  4002. self.gguf_writer.add_bos_token_id(token_id)
  4003. if "eos_token" in tokenizer_config and tokenizer_config["eos_token"] is not None:
  4004. token_id = tokens.index(tokenizer_config["eos_token"].encode("utf-8"))
  4005. self.gguf_writer.add_eos_token_id(token_id)
  4006. if "pad_token" in tokenizer_config and tokenizer_config["pad_token"] is not None:
  4007. token_id = tokens.index(tokenizer_config["pad_token"].encode("utf-8"))
  4008. self.gguf_writer.add_pad_token_id(token_id)
  4009. if "sep_token" in tokenizer_config and tokenizer_config["sep_token"] is not None:
  4010. token_id = tokens.index(tokenizer_config["sep_token"].encode("utf-8"))
  4011. self.gguf_writer.add_sep_token_id(token_id)
  4012. if "unk_token" in tokenizer_config and tokenizer_config["unk_token"] is not None:
  4013. token_id = tokens.index(tokenizer_config["unk_token"].encode("utf-8"))
  4014. self.gguf_writer.add_unk_token_id(token_id)
  4015. # Add <|plamo:op|> as EOT to ensure appropriate end of generation
  4016. self.gguf_writer.add_eot_token_id(4)
  4017. self.gguf_writer.add_add_space_prefix(False)
  4018. def set_gguf_parameters(self):
  4019. hparams = self.hparams
  4020. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  4021. # Which layers are Mamba layers
  4022. # PLaMo 2 uses mamba_step to indicate the pattern (e.g., 2 means every other layer)
  4023. # This logic matches modeling_plamo.py's is_mamba function
  4024. mamba_step = hparams.get("mamba_step", 2)
  4025. mamba_enabled = hparams.get("mamba_enabled", True)
  4026. num_key_value_heads = []
  4027. num_attention_heads = []
  4028. if mamba_enabled:
  4029. for i in range(self.block_count):
  4030. if self.block_count <= (mamba_step // 2):
  4031. # use attention in last layer
  4032. is_mamba = (i != self.block_count - 1)
  4033. else:
  4034. is_mamba = (i % mamba_step) != (mamba_step // 2)
  4035. if is_mamba:
  4036. num_key_value_heads.append(0)
  4037. num_attention_heads.append(0)
  4038. else:
  4039. num_key_value_heads.append(hparams.get("num_key_value_heads", 4))
  4040. num_attention_heads.append(hparams.get("num_attention_heads", 32))
  4041. if num_key_value_heads and num_attention_heads:
  4042. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  4043. self.gguf_writer.add_head_count(num_attention_heads)
  4044. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 2048))
  4045. self.gguf_writer.add_embedding_length(hparams.get("hidden_size", 4096))
  4046. self.gguf_writer.add_key_length(hparams.get("hidden_size_per_head", 128))
  4047. self.gguf_writer.add_value_length(hparams.get("hidden_size_per_head", 128))
  4048. self.gguf_writer.add_block_count(self.block_count)
  4049. self.gguf_writer.add_layer_norm_rms_eps(hparams.get("rms_norm_eps", 1e-06))
  4050. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 10000))
  4051. # Mamba parameters
  4052. self.gguf_writer.add_ssm_state_size(hparams.get("mamba_d_state", 64))
  4053. self.gguf_writer.add_ssm_conv_kernel(hparams.get("mamba_d_conv", 4))
  4054. self.gguf_writer.add_ssm_time_step_rank(hparams.get("mamba_num_heads", 64))
  4055. intermediate_size = hparams.get("mamba_num_heads", 64) * hparams.get("hidden_size_per_head", 128)
  4056. self.gguf_writer.add_ssm_inner_size(intermediate_size)
  4057. self.gguf_writer.add_ssm_group_count(0)
  4058. # MLP feed forward parameters (for attention layers)
  4059. self.gguf_writer.add_feed_forward_length(hparams.get("intermediate_size", 13312))
  4060. self.gguf_writer.add_file_type(self.ftype)
  4061. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4062. del bid # unused
  4063. if name.endswith(".A_log"):
  4064. data_torch = -torch.exp(data_torch)
  4065. elif name.endswith(".dt_bias"):
  4066. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  4067. elif name.endswith(".dt_norm_weight"):
  4068. name = name.rpartition(".dt_norm_weight")[0] + ".dt_norm.weight"
  4069. elif name.endswith(".B_norm_weight"):
  4070. name = name.rpartition(".B_norm_weight")[0] + ".B_norm.weight"
  4071. elif name.endswith(".C_norm_weight"):
  4072. name = name.rpartition(".C_norm_weight")[0] + ".C_norm.weight"
  4073. elif name.endswith(".k_weight"):
  4074. name = name.rpartition(".k_weight")[0] + ".k.weight"
  4075. elif name.endswith(".q_weight"):
  4076. name = name.rpartition(".q_weight")[0] + ".q.weight"
  4077. elif name.endswith(".conv1d.weight"):
  4078. data_torch = torch.squeeze(data_torch) # remove (, 1, )
  4079. assert data_torch.ndim == 2
  4080. elif name.endswith(".pre_mixer_norm.weight"):
  4081. data_torch += 1.0
  4082. elif name.endswith(".post_mixer_norm.weight"):
  4083. data_torch += 1.0 / 5
  4084. elif name.endswith(".pre_mlp_norm.weight"):
  4085. data_torch += 1.0
  4086. elif name.endswith(".post_mlp_norm.weight"):
  4087. data_torch += 1.0 / (5**1.5)
  4088. elif name.endswith(".norm.weight"):
  4089. data_torch += 1.0
  4090. new_name = self.map_tensor_name(name)
  4091. return [(new_name, data_torch)]
  4092. @ModelBase.register("CodeShellForCausalLM")
  4093. class CodeShellModel(TextModel):
  4094. model_arch = gguf.MODEL_ARCH.CODESHELL
  4095. def set_gguf_parameters(self):
  4096. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  4097. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  4098. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  4099. self.gguf_writer.add_block_count(self.block_count)
  4100. self.gguf_writer.add_head_count(self.hparams["n_head"])
  4101. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  4102. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  4103. self.gguf_writer.add_file_type(self.ftype)
  4104. self.gguf_writer.add_rope_freq_base(10000.0)
  4105. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4106. self.gguf_writer.add_rope_scaling_factor(1.0)
  4107. @ModelBase.register("InternLM2ForCausalLM")
  4108. class InternLM2Model(TextModel):
  4109. model_arch = gguf.MODEL_ARCH.INTERNLM2
  4110. def set_vocab(self):
  4111. # (TODO): Is there a better way?
  4112. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  4113. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  4114. # recognized as an empty string in C++.
  4115. from sentencepiece import SentencePieceProcessor
  4116. from sentencepiece import sentencepiece_model_pb2 as model
  4117. tokenizer_path = self.dir_model / 'tokenizer.model'
  4118. tokens: list[bytes] = []
  4119. scores: list[float] = []
  4120. toktypes: list[int] = []
  4121. if not tokenizer_path.is_file():
  4122. logger.error(f'Error: Missing {tokenizer_path}')
  4123. sys.exit(1)
  4124. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4125. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4126. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4127. tokenizer = SentencePieceProcessor()
  4128. tokenizer.LoadFromFile(str(tokenizer_path))
  4129. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  4130. for token_id in range(vocab_size):
  4131. piece = tokenizer.IdToPiece(token_id)
  4132. text = piece.encode("utf-8")
  4133. score = tokenizer.GetScore(token_id)
  4134. if text == b"\x00":
  4135. # (TODO): fixme
  4136. # Hack here and replace the \x00 characters.
  4137. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  4138. text = "🐉".encode("utf-8")
  4139. toktype = SentencePieceTokenTypes.NORMAL
  4140. if tokenizer.IsUnknown(token_id):
  4141. toktype = SentencePieceTokenTypes.UNKNOWN
  4142. elif tokenizer.IsControl(token_id):
  4143. toktype = SentencePieceTokenTypes.CONTROL
  4144. elif tokenizer.IsUnused(token_id):
  4145. toktype = SentencePieceTokenTypes.UNUSED
  4146. elif tokenizer.IsByte(token_id):
  4147. toktype = SentencePieceTokenTypes.BYTE
  4148. # take care of ununsed raw token
  4149. if piece.startswith('[UNUSED'):
  4150. toktype = SentencePieceTokenTypes.UNUSED
  4151. tokens.append(text)
  4152. scores.append(score)
  4153. toktypes.append(toktype)
  4154. added_tokens_file = self.dir_model / 'added_tokens.json'
  4155. if added_tokens_file.is_file():
  4156. with open(added_tokens_file, "r", encoding="utf-8") as f:
  4157. added_tokens_json = json.load(f)
  4158. for key in added_tokens_json:
  4159. tokens.append(key.encode("utf-8"))
  4160. scores.append(-1000.0)
  4161. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  4162. chat_eos_token = '<|im_end|>'
  4163. chat_eos_token_id = None
  4164. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4165. if tokenizer_config_file.is_file():
  4166. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4167. tokenizer_config_json = json.load(f)
  4168. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  4169. for token_id, foken_data in added_tokens_decoder.items():
  4170. token_id = int(token_id)
  4171. token = foken_data["content"]
  4172. if token == chat_eos_token:
  4173. chat_eos_token_id = token_id
  4174. token = token.encode("utf-8")
  4175. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4176. if tokens[token_id] != token:
  4177. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4178. tokens[token_id] = token
  4179. scores[token_id] = -1000.0
  4180. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4181. if foken_data.get("special"):
  4182. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4183. tokenizer_file = self.dir_model / 'tokenizer.json'
  4184. if tokenizer_file.is_file():
  4185. with open(tokenizer_file, "r", encoding="utf-8") as f:
  4186. tokenizer_json = json.load(f)
  4187. added_tokens = tokenizer_json.get("added_tokens", [])
  4188. for foken_data in added_tokens:
  4189. token_id = int(foken_data["id"])
  4190. token = foken_data["content"]
  4191. if token == chat_eos_token:
  4192. chat_eos_token_id = token_id
  4193. token = token.encode("utf-8")
  4194. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  4195. if tokens[token_id] != token:
  4196. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  4197. tokens[token_id] = token
  4198. scores[token_id] = -1000.0
  4199. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  4200. if foken_data.get("special"):
  4201. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  4202. self.gguf_writer.add_tokenizer_model("llama")
  4203. self.gguf_writer.add_tokenizer_pre("default")
  4204. self.gguf_writer.add_token_list(tokens)
  4205. self.gguf_writer.add_token_scores(scores)
  4206. self.gguf_writer.add_token_types(toktypes)
  4207. self.gguf_writer.add_add_space_prefix(add_prefix)
  4208. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4209. old_eos = special_vocab.special_token_ids["eos"]
  4210. if chat_eos_token_id is not None:
  4211. # For the chat model, we replace the eos with '<|im_end|>'.
  4212. # TODO: this is a hack, should be fixed
  4213. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  4214. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  4215. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  4216. " in chat mode so that the conversation can end normally.")
  4217. special_vocab.add_to_gguf(self.gguf_writer)
  4218. def set_gguf_parameters(self):
  4219. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  4220. self.gguf_writer.add_block_count(self.block_count)
  4221. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  4222. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  4223. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  4224. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  4225. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4226. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  4227. self.gguf_writer.add_file_type(self.ftype)
  4228. rope_scaling = self.hparams.get("rope_scaling") or {}
  4229. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4230. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4231. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4232. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4233. num_heads = self.hparams["num_attention_heads"]
  4234. num_kv_heads = self.hparams["num_key_value_heads"]
  4235. n_embd = self.hparams["hidden_size"]
  4236. q_per_kv = num_heads // num_kv_heads
  4237. head_dim = n_embd // num_heads
  4238. num_groups = num_heads // q_per_kv
  4239. name = name.replace("language_model.", "") # InternVL
  4240. if name.startswith("mlp") or name.startswith("vision_model"):
  4241. # skip visual tensors
  4242. return []
  4243. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  4244. qkv = data_torch
  4245. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  4246. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  4247. # The model weights of q and k equire additional reshape.
  4248. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  4249. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  4250. v = v.reshape((-1, v.shape[-1]))
  4251. return [
  4252. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  4253. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  4254. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  4255. ]
  4256. else:
  4257. return [(self.map_tensor_name(name), data_torch)]
  4258. @ModelBase.register("InternLM3ForCausalLM")
  4259. class InternLM3Model(TextModel):
  4260. model_arch = gguf.MODEL_ARCH.LLAMA
  4261. def set_vocab(self):
  4262. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  4263. self.gguf_writer.add_tokenizer_model("llama")
  4264. self.gguf_writer.add_tokenizer_pre("default")
  4265. self.gguf_writer.add_token_list(tokens)
  4266. self.gguf_writer.add_token_scores(scores)
  4267. self.gguf_writer.add_token_types(toktypes)
  4268. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4269. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  4270. if tokenizer_config_file.is_file():
  4271. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  4272. tokenizer_config_json = json.load(f)
  4273. if "add_prefix_space" in tokenizer_config_json:
  4274. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  4275. if "added_tokens_decoder" in tokenizer_config_json:
  4276. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  4277. if token_data.get("special"):
  4278. token_id = int(token_id)
  4279. token = token_data["content"]
  4280. special_vocab._set_special_token(token, token_id)
  4281. # update eos token
  4282. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  4283. special_vocab.special_token_ids["eos"] = token_id
  4284. special_vocab.add_to_gguf(self.gguf_writer)
  4285. def set_gguf_parameters(self):
  4286. super().set_gguf_parameters()
  4287. hparams = self.hparams
  4288. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4289. if (rope_dim := hparams.get("head_dim")) is None:
  4290. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  4291. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4292. rope_scaling = self.hparams.get("rope_scaling") or {}
  4293. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  4294. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4295. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4296. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4297. n_head = self.hparams["num_attention_heads"]
  4298. n_kv_head = self.hparams.get("num_key_value_heads")
  4299. name = name.replace("language_model.", "") # InternVL
  4300. if name.startswith("mlp") or name.startswith("vision_model"):
  4301. # skip visual tensors
  4302. return []
  4303. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4304. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4305. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4306. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4307. return [(self.map_tensor_name(name), data_torch)]
  4308. @ModelBase.register("BertModel", "BertForMaskedLM", "CamembertModel", "BertForSequenceClassification")
  4309. class BertModel(TextModel):
  4310. model_arch = gguf.MODEL_ARCH.BERT
  4311. def __init__(self, *args, **kwargs):
  4312. super().__init__(*args, **kwargs)
  4313. self.vocab_size = None
  4314. if cls_out_labels := self.hparams.get("id2label"):
  4315. if len(cls_out_labels) == 2 and cls_out_labels[0] == "LABEL_0":
  4316. # Remove dummy labels added by AutoConfig
  4317. cls_out_labels = None
  4318. self.cls_out_labels = cls_out_labels
  4319. def set_gguf_parameters(self):
  4320. super().set_gguf_parameters()
  4321. self.gguf_writer.add_causal_attention(False)
  4322. self._try_set_pooling_type()
  4323. if self.cls_out_labels:
  4324. self.gguf_writer.add_classifier_output_labels([v for k, v in sorted(self.cls_out_labels.items())])
  4325. def set_vocab(self):
  4326. tokens, toktypes, tokpre = self.get_vocab_base()
  4327. self.vocab_size = len(tokens)
  4328. # we need this to validate the size of the token_type embeddings
  4329. # though currently we are passing all zeros to the token_type embeddings
  4330. # "Sequence A" or "Sequence B"
  4331. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4332. # convert to phantom space vocab
  4333. def phantom(tok):
  4334. if tok.startswith("[") and tok.endswith("]"):
  4335. return tok
  4336. if tok.startswith("##"):
  4337. return tok[2:]
  4338. return "\u2581" + tok
  4339. tokens = list(map(phantom, tokens))
  4340. # add vocab to gguf
  4341. self.gguf_writer.add_tokenizer_model("bert")
  4342. self.gguf_writer.add_tokenizer_pre(tokpre)
  4343. self.gguf_writer.add_token_list(tokens)
  4344. self.gguf_writer.add_token_types(toktypes)
  4345. # handle special tokens
  4346. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4347. special_vocab.add_to_gguf(self.gguf_writer)
  4348. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4349. del bid # unused
  4350. if name.startswith("bert."):
  4351. name = name[5:]
  4352. if name.endswith(".gamma"):
  4353. name = name[:-6] + ".weight"
  4354. if name.endswith(".beta"):
  4355. name = name[:-5] + ".bias"
  4356. # we are only using BERT for embeddings so we don't need the pooling layer
  4357. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  4358. return [] # we don't need these
  4359. if name.startswith("cls.predictions"):
  4360. return []
  4361. if name.startswith("cls.seq_relationship"):
  4362. return []
  4363. if self.cls_out_labels:
  4364. # For BertForSequenceClassification (direct projection layer)
  4365. if name == "classifier.weight":
  4366. name = "classifier.out_proj.weight"
  4367. if name == "classifier.bias":
  4368. name = "classifier.out_proj.bias"
  4369. return [(self.map_tensor_name(name), data_torch)]
  4370. def _xlmroberta_tokenizer_init(self) -> None:
  4371. # we need the pad_token_id to know how to chop down position_embd matrix
  4372. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4373. self._position_offset = 1 + pad_token_id
  4374. if "max_position_embeddings" in self.hparams:
  4375. self.hparams["max_position_embeddings"] -= self._position_offset
  4376. else:
  4377. self._position_offset = None
  4378. def _xlmroberta_set_vocab(self) -> None:
  4379. # to avoid TypeError: Descriptors cannot be created directly
  4380. # exception when importing sentencepiece_model_pb2
  4381. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  4382. from sentencepiece import SentencePieceProcessor
  4383. from sentencepiece import sentencepiece_model_pb2 as model
  4384. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  4385. tokenizer_json = {}
  4386. tokenizer_config_json = {}
  4387. if not tokenizer_path.is_file():
  4388. tokenizer_path = self.dir_model / 'tokenizer.json'
  4389. tokenizer_config_path = self.dir_model / 'tokenizer_config.json'
  4390. if not tokenizer_path.is_file():
  4391. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  4392. from base64 import b64decode
  4393. from transformers import AutoTokenizer
  4394. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  4395. with open(tokenizer_path, "r", encoding="utf-8") as fp:
  4396. tokenizer_json = json.load(fp)
  4397. if tokenizer_config_path.is_file():
  4398. with open(tokenizer_config_path, "r", encoding="utf-8") as fp:
  4399. tokenizer_config_json = json.load(fp)
  4400. add_prefix = tokenizer.add_prefix_space
  4401. remove_whitespaces = tokenizer.clean_up_tokenization_spaces
  4402. precompiled_charsmap = b64decode(tokenizer_json["normalizer"]["precompiled_charsmap"])
  4403. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size)
  4404. else:
  4405. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  4406. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  4407. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  4408. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  4409. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  4410. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  4411. tokenizer = SentencePieceProcessor()
  4412. tokenizer.LoadFromFile(str(tokenizer_path))
  4413. vocab_size = max(self.hparams.get("vocab_size", 0), tokenizer.vocab_size())
  4414. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  4415. scores: list[float] = [-10000.0] * vocab_size
  4416. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  4417. if isinstance(tokenizer, SentencePieceProcessor):
  4418. for token_id in range(tokenizer.vocab_size()):
  4419. piece = tokenizer.IdToPiece(token_id)
  4420. text = piece.encode("utf-8")
  4421. score = tokenizer.GetScore(token_id)
  4422. toktype = SentencePieceTokenTypes.NORMAL
  4423. if tokenizer.IsUnknown(token_id):
  4424. toktype = SentencePieceTokenTypes.UNKNOWN
  4425. elif tokenizer.IsControl(token_id):
  4426. toktype = SentencePieceTokenTypes.CONTROL
  4427. elif tokenizer.IsUnused(token_id):
  4428. toktype = SentencePieceTokenTypes.UNUSED
  4429. elif tokenizer.IsByte(token_id):
  4430. toktype = SentencePieceTokenTypes.BYTE
  4431. tokens[token_id] = text
  4432. scores[token_id] = score
  4433. toktypes[token_id] = toktype
  4434. else:
  4435. added_vocab = tokenizer.get_added_vocab()
  4436. unk_token = tokenizer_config_json.get("unk_token")
  4437. unk_token_id = added_vocab.get(unk_token, tokenizer_json["model"].get("unk_id", 3))
  4438. for token_id in range(tokenizer.vocab_size):
  4439. piece = tokenizer._convert_id_to_token(token_id)
  4440. if (piece := tokenizer._convert_id_to_token(token_id)) is not None:
  4441. text = piece.encode("utf-8")
  4442. score = tokenizer_json["model"]["vocab"][token_id][1]
  4443. toktype = SentencePieceTokenTypes.NORMAL
  4444. if token_id == unk_token_id:
  4445. toktype = SentencePieceTokenTypes.UNKNOWN
  4446. elif token_id in tokenizer.all_special_ids:
  4447. toktype = SentencePieceTokenTypes.CONTROL
  4448. elif token_id in added_vocab.values():
  4449. toktype = SentencePieceTokenTypes.USER_DEFINED
  4450. # No reliable way to detect this, but jina doesn't have any
  4451. # elif tokenizer.IsByte(token_id):
  4452. # toktype = SentencePieceTokenTypes.BYTE
  4453. tokens[token_id] = text
  4454. scores[token_id] = score
  4455. toktypes[token_id] = toktype
  4456. if isinstance(tokenizer, SentencePieceProcessor):
  4457. # realign tokens (see HF tokenizer code)
  4458. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  4459. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  4460. toktypes = [
  4461. SentencePieceTokenTypes.CONTROL,
  4462. SentencePieceTokenTypes.CONTROL,
  4463. SentencePieceTokenTypes.CONTROL,
  4464. SentencePieceTokenTypes.UNKNOWN,
  4465. ] + toktypes[3:-1]
  4466. if self.model_arch == gguf.MODEL_ARCH.NOMIC_BERT_MOE:
  4467. # Add mask token missing from sentencepiece.bpe.model
  4468. tokens[250001] = b'<mask>'
  4469. scores[250001] = 0.0
  4470. toktypes[250001] = SentencePieceTokenTypes.CONTROL
  4471. self.gguf_writer.add_tokenizer_model("t5")
  4472. self.gguf_writer.add_tokenizer_pre("default")
  4473. self.gguf_writer.add_token_list(tokens)
  4474. self.gguf_writer.add_token_scores(scores)
  4475. self.gguf_writer.add_token_types(toktypes)
  4476. self.gguf_writer.add_add_space_prefix(add_prefix)
  4477. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4478. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  4479. if precompiled_charsmap:
  4480. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  4481. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  4482. special_vocab.add_to_gguf(self.gguf_writer)
  4483. @ModelBase.register("DistilBertModel", "DistilBertForMaskedLM", "DistilBertForSequenceClassification")
  4484. class DistilBertModel(BertModel):
  4485. model_arch = gguf.MODEL_ARCH.BERT
  4486. def set_gguf_parameters(self):
  4487. self.gguf_writer.add_layer_norm_eps(1e-12)
  4488. logger.info("gguf: layer norm epsilon = 1e-12")
  4489. super().set_gguf_parameters()
  4490. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4491. if name.startswith("distilbert."):
  4492. name = name[11:]
  4493. # These layers act as MLM head, so we don't need them
  4494. if name.startswith("vocab_"):
  4495. return []
  4496. return super().modify_tensors(data_torch, name, bid)
  4497. @ModelBase.register("RobertaModel", "RobertaForSequenceClassification")
  4498. class RobertaModel(BertModel):
  4499. model_arch = gguf.MODEL_ARCH.BERT
  4500. def __init__(self, *args, **kwargs):
  4501. super().__init__(*args, **kwargs)
  4502. # we need the pad_token_id to know how to chop down position_embd matrix
  4503. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  4504. self._position_offset = 1 + pad_token_id
  4505. if "max_position_embeddings" in self.hparams:
  4506. self.hparams["max_position_embeddings"] -= self._position_offset
  4507. else:
  4508. self._position_offset = None
  4509. def set_vocab(self):
  4510. """Support BPE tokenizers for roberta models"""
  4511. bpe_tok_path = self.dir_model / "tokenizer.json"
  4512. if bpe_tok_path.exists():
  4513. self._set_vocab_gpt2()
  4514. # we need this to validate the size of the token_type embeddings
  4515. # though currently we are passing all zeros to the token_type embeddings
  4516. # "Sequence A" or "Sequence B"
  4517. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  4518. else:
  4519. return super().set_vocab()
  4520. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4521. # if name starts with "roberta.", remove the prefix
  4522. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4523. if name.startswith("roberta."):
  4524. name = name[8:]
  4525. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4526. if name == "embeddings.position_embeddings.weight":
  4527. if self._position_offset is not None:
  4528. data_torch = data_torch[self._position_offset:,:]
  4529. return super().modify_tensors(data_torch, name, bid)
  4530. @ModelBase.register("NomicBertModel")
  4531. class NomicBertModel(BertModel):
  4532. model_arch = gguf.MODEL_ARCH.BERT
  4533. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4534. hparams = kwargs.pop("hparams", None)
  4535. if hparams is None:
  4536. hparams = ModelBase.load_hparams(dir_model, False)
  4537. self.is_moe = bool(hparams.get("moe_every_n_layers"))
  4538. self.model_arch = gguf.MODEL_ARCH.NOMIC_BERT_MOE if self.is_moe else gguf.MODEL_ARCH.NOMIC_BERT
  4539. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4540. self._tokenizer_is_xlmroberta = self._is_tokenizer_xlmroberta()
  4541. if self._tokenizer_is_xlmroberta:
  4542. self._xlmroberta_tokenizer_init()
  4543. npos, mtp = self.hparams["n_positions"], self.hparams.get("max_trained_positions", 2048)
  4544. if npos == 8192 and mtp == 2048:
  4545. self.hparams["n_positions"] = 2048 # nomic-embed-text v1 and v1.5 are trained for 2048 tokens.
  4546. elif npos == 2048 and mtp == 2048:
  4547. self.hparams["n_positions"] = 512 # nomic-embed-text-v2-moe is trained for 512 tokens.
  4548. else:
  4549. raise ValueError(f"unrecognized parameters: n_positions={npos}, max_trained_positions={mtp}")
  4550. assert self.hparams["activation_function"] == "gelu" if self.is_moe else "swiglu"
  4551. # this doesn't do anything in the HF version
  4552. assert self.hparams["causal"] is False
  4553. # no bias tensors unless MoE
  4554. assert self.hparams["qkv_proj_bias"] == self.is_moe
  4555. assert self.hparams["mlp_fc1_bias"] == self.is_moe
  4556. assert self.hparams["mlp_fc2_bias"] == self.is_moe
  4557. # norm at end of layer
  4558. assert self.hparams["prenorm"] is False
  4559. # standard RoPE
  4560. assert self.hparams["rotary_emb_fraction"] == 1.0
  4561. assert self.hparams["rotary_emb_interleaved"] is False
  4562. assert self.hparams["rotary_emb_scale_base"] is None
  4563. def set_vocab(self) -> None:
  4564. if self._tokenizer_is_xlmroberta:
  4565. return self._xlmroberta_set_vocab()
  4566. return super().set_vocab()
  4567. def modify_tensors(self, data_torch: torch.Tensor, name: str, bid: int | None) -> Iterable[tuple[str, torch.Tensor]]:
  4568. # If the tensor is an experts bias tensor, skip it by returning an empty list.
  4569. if "mlp.experts.bias" in name:
  4570. return [] # Explicitly return an empty list.
  4571. if "mlp.experts.mlp.w1" in name:
  4572. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4573. name += ".weight"
  4574. if "mlp.experts.mlp.w2" in name:
  4575. data_torch = data_torch.view(self.hparams["num_experts"], self.hparams["n_inner"], self.hparams["n_embd"])
  4576. data_torch = data_torch.transpose(1, 2)
  4577. name += ".weight"
  4578. return [(self.map_tensor_name(name), data_torch)]
  4579. def set_gguf_parameters(self):
  4580. super().set_gguf_parameters()
  4581. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  4582. if self.is_moe:
  4583. self.gguf_writer.add_moe_every_n_layers(self.hparams["moe_every_n_layers"])
  4584. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  4585. self.gguf_writer.add_expert_used_count(self.hparams["moe_top_k"])
  4586. def _is_tokenizer_xlmroberta(self) -> bool:
  4587. with open(self.dir_model / "tokenizer.json") as f:
  4588. tokenizer_json = json.load(f)
  4589. toktyp = tokenizer_json["model"]["type"]
  4590. if toktyp == "Unigram":
  4591. return True
  4592. if toktyp == "WordPiece":
  4593. return False
  4594. raise ValueError(f"unknown tokenizer: {toktyp}")
  4595. @ModelBase.register("NeoBERT", "NeoBERTLMHead", "NeoBERTForSequenceClassification")
  4596. class NeoBert(BertModel):
  4597. model_arch = gguf.MODEL_ARCH.NEO_BERT
  4598. def set_gguf_parameters(self):
  4599. super().set_gguf_parameters()
  4600. # NeoBERT uses 2/3 of the intermediate size as feed forward length
  4601. self.gguf_writer.add_feed_forward_length(int(2 * self.hparams["intermediate_size"] / 3))
  4602. self.gguf_writer.add_rope_freq_base(10000.0) # default value for NeoBERT
  4603. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4604. f_rms_eps = self.hparams.get("norm_eps", 1e-6) # default value for NeoBERT
  4605. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  4606. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  4607. self.gguf_writer.add_pooling_type(gguf.PoolingType.CLS) # https://huggingface.co/chandar-lab/NeoBERT#how-to-use
  4608. def modify_tensors(self, data_torch, name, bid):
  4609. if name.startswith("decoder."):
  4610. return []
  4611. if name.startswith("model."):
  4612. name = name[6:]
  4613. return super().modify_tensors(data_torch, name, bid)
  4614. @ModelBase.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  4615. class XLMRobertaModel(BertModel):
  4616. model_arch = gguf.MODEL_ARCH.BERT
  4617. _lora_files = {}
  4618. _lora_names = []
  4619. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, **kwargs: Any):
  4620. hparams = kwargs.pop("hparams", None)
  4621. if hparams is None:
  4622. hparams = ModelBase.load_hparams(dir_model, False)
  4623. if lora_names := hparams.get("lora_adaptations"):
  4624. self._lora_names = lora_names
  4625. self.model_arch = gguf.MODEL_ARCH.JINA_BERT_V3
  4626. super().__init__(dir_model, ftype, fname_out, hparams=hparams, **kwargs)
  4627. self._xlmroberta_tokenizer_init()
  4628. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4629. if self._lora_names:
  4630. for name in self._lora_names:
  4631. fname = self.add_prefix_to_filename(self.fname_out, f"lora-{name}-")
  4632. self._lora_files[name] = gguf.GGUFWriter(fname, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file, dry_run=self.dry_run)
  4633. return super().generate_extra_tensors()
  4634. def set_type(self):
  4635. for lora_writer in self._lora_files.values():
  4636. lora_writer.add_type(gguf.GGUFType.ADAPTER)
  4637. lora_writer.add_string(gguf.Keys.Adapter.TYPE, "lora")
  4638. super().set_type()
  4639. def set_vocab(self):
  4640. self._xlmroberta_set_vocab()
  4641. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4642. # if name starts with "roberta.", remove the prefix
  4643. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  4644. if name.startswith("roberta."):
  4645. name = name[8:]
  4646. # jina-embeddings-v3
  4647. if ".parametrizations." in name:
  4648. name = name.replace(".parametrizations.", ".")
  4649. if name.endswith(".original"):
  4650. name = name[:-9]
  4651. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  4652. if name == "embeddings.position_embeddings.weight":
  4653. if self._position_offset is not None:
  4654. data_torch = data_torch[self._position_offset:,:]
  4655. if name.endswith(".0.lora_A") or name.endswith(".0.lora_B"):
  4656. if name.startswith("pooler.dense"):
  4657. return []
  4658. num_loras = data_torch.size(0)
  4659. assert num_loras == len(self._lora_names)
  4660. # Split out each LoRA in their own GGUF
  4661. for i, lora_writer in enumerate(self._lora_files.values()):
  4662. new_name = self.map_tensor_name(name[:-9]) + name[-7:].lower()
  4663. data = data_torch[i, :, :]
  4664. # Transpose/flip token_embd/types into correct shape
  4665. if new_name == "token_embd.weight.lora_b":
  4666. data = data.T
  4667. elif new_name.startswith("token_types.weight."):
  4668. new_name = new_name[:-1] + ("a" if new_name[-1:] == "b" else "b")
  4669. lora_writer.add_tensor(new_name, data.float().numpy(), raw_dtype=gguf.GGMLQuantizationType.F32)
  4670. return []
  4671. return super().modify_tensors(data_torch, name, bid)
  4672. def set_gguf_parameters(self):
  4673. super().set_gguf_parameters()
  4674. # jina-embeddings-v3
  4675. if rotary_emb_base := self.hparams.get("rotary_emb_base"):
  4676. self.gguf_writer.add_rope_freq_base(rotary_emb_base)
  4677. lora_alpha = self.hparams.get("lora_alpha")
  4678. if lora_prompt_prefixes := self.hparams.get("task_instructions"):
  4679. assert self._lora_files and all(lora_name in lora_prompt_prefixes for lora_name in self._lora_files.keys())
  4680. for lora_name, lora_writer in self._lora_files.items():
  4681. lora_writer.add_float32(gguf.Keys.Adapter.LORA_ALPHA, lora_alpha if lora_alpha is not None else 1.0)
  4682. lora_writer.add_string(gguf.Keys.Adapter.LORA_TASK_NAME, lora_name)
  4683. if lora_prompt_prefixes:
  4684. lora_writer.add_string(gguf.Keys.Adapter.LORA_PROMPT_PREFIX, lora_prompt_prefixes[lora_name])
  4685. def write(self):
  4686. super().write()
  4687. for lora_writer in self._lora_files.values():
  4688. lora_writer.write_header_to_file()
  4689. lora_writer.write_kv_data_to_file()
  4690. lora_writer.write_tensors_to_file(progress=True)
  4691. lora_writer.close()
  4692. @ModelBase.register("GemmaForCausalLM")
  4693. class GemmaModel(TextModel):
  4694. model_arch = gguf.MODEL_ARCH.GEMMA
  4695. def set_vocab(self):
  4696. self._set_vocab_sentencepiece()
  4697. # TODO: these special tokens should be exported only for the CodeGemma family
  4698. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  4699. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  4700. special_vocab._set_special_token("prefix", 67)
  4701. special_vocab._set_special_token("suffix", 69)
  4702. special_vocab._set_special_token("middle", 68)
  4703. special_vocab._set_special_token("fsep", 70)
  4704. special_vocab._set_special_token("eot", 107)
  4705. special_vocab.chat_template = None # do not add it twice
  4706. special_vocab.add_to_gguf(self.gguf_writer)
  4707. self.gguf_writer.add_add_space_prefix(False)
  4708. def set_gguf_parameters(self):
  4709. hparams = self.hparams
  4710. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4711. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4712. self.gguf_writer.add_block_count(self.block_count)
  4713. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4714. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4715. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4716. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4717. self.gguf_writer.add_key_length(hparams["head_dim"])
  4718. self.gguf_writer.add_value_length(hparams["head_dim"])
  4719. self.gguf_writer.add_file_type(self.ftype)
  4720. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4721. del bid # unused
  4722. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4723. # To prevent errors, skip loading lm_head.weight.
  4724. if name == "lm_head.weight":
  4725. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4726. return []
  4727. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4728. if name.endswith("norm.weight"):
  4729. data_torch = data_torch + 1
  4730. return [(self.map_tensor_name(name), data_torch)]
  4731. @ModelBase.register("Gemma2ForCausalLM")
  4732. class Gemma2Model(TextModel):
  4733. model_arch = gguf.MODEL_ARCH.GEMMA2
  4734. def set_vocab(self):
  4735. self._set_vocab_sentencepiece()
  4736. self.gguf_writer.add_add_space_prefix(False)
  4737. def set_gguf_parameters(self):
  4738. hparams = self.hparams
  4739. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  4740. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4741. self.gguf_writer.add_block_count(self.block_count)
  4742. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4743. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  4744. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  4745. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  4746. self.gguf_writer.add_key_length(hparams["head_dim"])
  4747. self.gguf_writer.add_value_length(hparams["head_dim"])
  4748. self.gguf_writer.add_file_type(self.ftype)
  4749. self.gguf_writer.add_attn_logit_softcapping(
  4750. self.hparams["attn_logit_softcapping"]
  4751. )
  4752. self.gguf_writer.add_final_logit_softcapping(
  4753. self.hparams["final_logit_softcapping"]
  4754. )
  4755. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  4756. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4757. del bid # unused
  4758. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  4759. # To prevent errors, skip loading lm_head.weight.
  4760. if name == "lm_head.weight":
  4761. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  4762. return []
  4763. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  4764. if name.endswith("norm.weight"):
  4765. data_torch = data_torch + 1
  4766. return [(self.map_tensor_name(name), data_torch)]
  4767. @ModelBase.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  4768. class Gemma3Model(TextModel):
  4769. model_arch = gguf.MODEL_ARCH.GEMMA3
  4770. norm_shift = 1.0 # Gemma3RMSNorm adds 1.0 to the norm value
  4771. def set_vocab(self):
  4772. if (self.dir_model / "tokenizer.model").is_file():
  4773. self._set_vocab_sentencepiece()
  4774. self.gguf_writer.add_add_space_prefix(False)
  4775. else:
  4776. self._set_vocab_gpt2()
  4777. def set_gguf_parameters(self):
  4778. hparams = self.hparams
  4779. # some default values are not specified in the hparams
  4780. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  4781. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  4782. self.gguf_writer.add_block_count(self.block_count)
  4783. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  4784. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  4785. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  4786. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  4787. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  4788. self.gguf_writer.add_file_type(self.ftype)
  4789. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  4790. # attn_logit_softcapping is removed in Gemma3
  4791. assert hparams.get("attn_logit_softcapping") is None
  4792. if (final_logit_softcap := hparams.get("final_logit_softcapping")):
  4793. self.gguf_writer.add_final_logit_softcapping(final_logit_softcap)
  4794. if hparams.get("sliding_window_pattern") != 1:
  4795. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  4796. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  4797. if hparams.get("rope_scaling") is not None:
  4798. rope_scaling = hparams["rope_scaling"]
  4799. if rope_scaling["rope_type"] == "linear":
  4800. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  4801. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4802. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4803. elif rope_scaling["rope_type"] == "yarn":
  4804. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  4805. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  4806. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  4807. self.gguf_writer.add_rope_scaling_yarn_ext_factor(rope_scaling["extrapolation_factor"])
  4808. self.gguf_writer.add_rope_scaling_yarn_beta_fast(rope_scaling["beta_fast"])
  4809. self.gguf_writer.add_rope_scaling_yarn_beta_slow(rope_scaling["beta_slow"])
  4810. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4811. del bid # unused
  4812. if "language_model." in name:
  4813. name = name.replace("language_model.", "")
  4814. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4815. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4816. return [] # skip vision tensors
  4817. # remove OOV (out-of-vocabulary) rows in token_embd
  4818. if "embed_tokens.weight" in name:
  4819. if (self.dir_model / "tokenizer.model").is_file():
  4820. tokens = self._create_vocab_sentencepiece()[0]
  4821. else:
  4822. tokens = self.get_vocab_base()[0]
  4823. data_torch = data_torch[:len(tokens)]
  4824. # ref code in Gemma3RMSNorm
  4825. # output = output * (1.0 + self.weight.float())
  4826. # note: this is not the case on gemma3n
  4827. if name.endswith("norm.weight"):
  4828. data_torch = data_torch + self.norm_shift
  4829. return [(self.map_tensor_name(name), data_torch)]
  4830. @ModelBase.register("Gemma3TextModel")
  4831. class EmbeddingGemma(Gemma3Model):
  4832. model_arch = gguf.MODEL_ARCH.GEMMA_EMBEDDING
  4833. module_paths = []
  4834. dense_features_dims = {}
  4835. def __init__(self, *args, **kwargs):
  4836. super().__init__(*args, **kwargs)
  4837. if self.sentence_transformers_dense_modules:
  4838. # read modules.json to determine if model has Dense layers
  4839. modules_file = self.dir_model / "modules.json"
  4840. if modules_file.is_file():
  4841. with open(modules_file, encoding="utf-8") as modules_json_file:
  4842. mods = json.load(modules_json_file)
  4843. for mod in mods:
  4844. if mod["type"] == "sentence_transformers.models.Dense":
  4845. mod_path = mod["path"]
  4846. # check if model.safetensors file for Dense layer exists
  4847. model_tensors_file = self.dir_model / mod_path / "model.safetensors"
  4848. if model_tensors_file.is_file():
  4849. self.module_paths.append(mod_path)
  4850. # read config.json of the Dense layer to get in/out features
  4851. mod_conf_file = self.dir_model / mod_path / "config.json"
  4852. if mod_conf_file.is_file():
  4853. with open(mod_conf_file, encoding="utf-8") as mod_conf_json_file:
  4854. mod_conf = json.load(mod_conf_json_file)
  4855. # hparams dense_2_feat_out and dense_3_feat_in are required when loading model's dense weights
  4856. prefix = self._get_dense_prefix(mod_path)
  4857. if mod_conf["in_features"] is not None and mod_conf["out_features"] is not None:
  4858. self.dense_features_dims[prefix] = (mod_conf["in_features"], mod_conf["out_features"])
  4859. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4860. from safetensors.torch import load_file
  4861. module_paths = list(self.module_paths)
  4862. for i, module_path in enumerate(module_paths):
  4863. tensors_file = self.dir_model / module_path / "model.safetensors"
  4864. local_tensors = load_file(tensors_file)
  4865. tensor_name = self._get_dense_prefix(module_path)
  4866. for name, local_tensor in local_tensors.items():
  4867. if not name.endswith(".weight"):
  4868. continue
  4869. orig_name = name.replace("linear", tensor_name)
  4870. name = self.map_tensor_name(orig_name)
  4871. yield name, local_tensor.clone()
  4872. @staticmethod
  4873. def _get_dense_prefix(module_path) -> str:
  4874. """Get the tensor name prefix for the Dense layer from module path."""
  4875. tensor_name = "dense_2" if module_path == "2_Dense" else "dense_3"
  4876. return tensor_name
  4877. def set_gguf_parameters(self):
  4878. super().set_gguf_parameters()
  4879. # Override the sliding window size as it gets adjusted by the Gemma3TextConfig
  4880. # constructor. We want to use the value from the original model's config.json.
  4881. # ref: https://github.com/huggingface/transformers/pull/40700
  4882. with open(self.dir_model / "config.json", "r", encoding="utf-8") as f:
  4883. config = json.load(f)
  4884. orig_sliding_window = config.get("sliding_window")
  4885. if orig_sliding_window is None:
  4886. raise ValueError("sliding_window not found in model config - this is required for the model")
  4887. logger.info(f"Using original sliding_window from config: {orig_sliding_window} "
  4888. f"instead of {self.hparams['sliding_window']}")
  4889. self.gguf_writer.add_sliding_window(orig_sliding_window)
  4890. if self.sentence_transformers_dense_modules:
  4891. for dense, dims in self.dense_features_dims.items():
  4892. logger.info(f"Setting dense layer {dense} in/out features to {dims}")
  4893. self.gguf_writer.add_dense_features_dims(dense, dims[0], dims[1])
  4894. self._try_set_pooling_type()
  4895. @ModelBase.register("Gemma3ForConditionalGeneration")
  4896. class Gemma3VisionModel(MmprojModel):
  4897. def set_gguf_parameters(self):
  4898. super().set_gguf_parameters()
  4899. hparams = self.hparams
  4900. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.GEMMA3)
  4901. # default values below are taken from HF tranformers code
  4902. self.gguf_writer.add_vision_attention_layernorm_eps(hparams.get("layer_norm_eps", 1e-6))
  4903. self.gguf_writer.add_vision_use_gelu(True)
  4904. # calculate proj_scale_factor (used by tinygemma3 test model)
  4905. image_seq_length = self.preprocessor_config.get("image_seq_length", 256)
  4906. n_per_side = int(image_seq_length ** 0.5)
  4907. image_size = self.hparams["image_size"]
  4908. patch_size = self.hparams["patch_size"]
  4909. proj_scale_factor = (image_size // patch_size) // n_per_side
  4910. if proj_scale_factor > 0 and proj_scale_factor != 4:
  4911. # we only need to write this if it's not the default value
  4912. # in this case, we are converting a test model
  4913. self.gguf_writer.add_vision_projector_scale_factor(proj_scale_factor)
  4914. def tensor_force_quant(self, name, new_name, bid, n_dims):
  4915. # related to https://github.com/ggml-org/llama.cpp/issues/13025
  4916. if "input_projection" in name:
  4917. return gguf.GGMLQuantizationType.F16
  4918. if ".embeddings." in name:
  4919. return gguf.GGMLQuantizationType.F32
  4920. return super().tensor_force_quant(name, new_name, bid, n_dims)
  4921. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4922. del bid # unused
  4923. if "vision_model.head." in name:
  4924. return [] # skip redundant tensors for tinygemma3
  4925. if name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  4926. or name.startswith("multimodal_projector.") or name.startswith("vision_model."):
  4927. # process vision tensors
  4928. name = name.replace("_weight", ".weight")
  4929. # correct norm value ; only this "soft_emb_norm" need to be corrected as it's part of Gemma projector
  4930. # the other norm values are part of SigLIP model, and they are already correct
  4931. # ref code: Gemma3RMSNorm
  4932. if "soft_emb_norm.weight" in name:
  4933. logger.info(f"Correcting norm value for '{name}'")
  4934. data_torch = data_torch + 1
  4935. return [(self.map_tensor_name(name), data_torch)]
  4936. return [] # skip other tensors
  4937. @ModelBase.register("Gemma3nForConditionalGeneration")
  4938. class Gemma3NModel(Gemma3Model):
  4939. model_arch = gguf.MODEL_ARCH.GEMMA3N
  4940. norm_shift = 0.0 # same value with Gemma3p5RMSNorm scale_shift on python code
  4941. _altup_proj: list[Tensor] = []
  4942. _altup_unembd: list[Tensor] = []
  4943. def __init__(self, *args, **kwargs):
  4944. super().__init__(*args, **kwargs)
  4945. assert self.hparams["altup_num_inputs"] == 4, "Current conversion only supports 4 altup inputs"
  4946. self._altup_proj = [
  4947. torch.Tensor(), # to be replaced
  4948. torch.Tensor(), # to be replaced
  4949. torch.Tensor(), # to be replaced
  4950. ]
  4951. self._altup_unembd = [
  4952. torch.Tensor(), # to be replaced
  4953. torch.Tensor(), # to be replaced
  4954. torch.Tensor(), # to be replaced
  4955. ]
  4956. def set_vocab(self):
  4957. super().set_vocab()
  4958. def set_gguf_parameters(self):
  4959. super().set_gguf_parameters()
  4960. self.gguf_writer.add_altup_active_idx(self.hparams["altup_active_idx"])
  4961. self.gguf_writer.add_altup_num_inputs(self.hparams["altup_num_inputs"])
  4962. self.gguf_writer.add_embedding_length_per_layer_input(self.hparams["hidden_size_per_layer_input"])
  4963. self.gguf_writer.add_shared_kv_layers(self.hparams["num_kv_shared_layers"])
  4964. activation_sparsity_scale = []
  4965. for s in self.hparams["activation_sparsity_pattern"]:
  4966. normal_dist = torch.distributions.normal.Normal(0, 1)
  4967. std_multiplier = normal_dist.icdf(torch.tensor(s, dtype=torch.float32))
  4968. activation_sparsity_scale.append(std_multiplier.item())
  4969. self.gguf_writer.add_activation_sparsity_scale(activation_sparsity_scale)
  4970. sliding_window_pattern = []
  4971. for t in self.hparams["layer_types"]:
  4972. sliding_window_pattern.append(t == "sliding_attention")
  4973. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  4974. def _stack_matrices(self, matrices: list[Tensor]) -> Tensor | None:
  4975. has_all = all(m.numel() > 0 for m in matrices)
  4976. if not has_all:
  4977. return None
  4978. else:
  4979. return torch.stack(matrices, dim=0)
  4980. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4981. if name.endswith("_scale"):
  4982. name = name + ".weight"
  4983. # TODO: implement self.prediction_coefs.weight.clamp_(...)
  4984. if "language_model." not in name:
  4985. return [] # skip non-language model tensors
  4986. if "altup_unembed_projections" in name:
  4987. data_torch = data_torch.to(device="cpu")
  4988. if ".0." in name:
  4989. self._altup_unembd[0] = data_torch
  4990. elif ".1." in name:
  4991. self._altup_unembd[1] = data_torch
  4992. elif ".2." in name:
  4993. self._altup_unembd[2] = data_torch
  4994. else:
  4995. raise ValueError(f"Unknown name: {name}")
  4996. out = self._stack_matrices(self._altup_unembd)
  4997. if out is not None:
  4998. return [(self.map_tensor_name("model.altup_unembed_projections.weight"), out)]
  4999. else:
  5000. return []
  5001. if "altup_projections" in name:
  5002. data_torch = data_torch.to(device="cpu")
  5003. if ".0." in name:
  5004. self._altup_proj[0] = data_torch
  5005. elif ".1." in name:
  5006. self._altup_proj[1] = data_torch
  5007. elif ".2." in name:
  5008. self._altup_proj[2] = data_torch
  5009. else:
  5010. raise ValueError(f"Unknown name: {name}")
  5011. out = self._stack_matrices(self._altup_proj)
  5012. if out is not None:
  5013. return [(self.map_tensor_name("model.altup_projections.weight"), out)]
  5014. else:
  5015. return []
  5016. return super().modify_tensors(data_torch, name, bid)
  5017. @ModelBase.register("Starcoder2ForCausalLM")
  5018. class StarCoder2Model(TextModel):
  5019. model_arch = gguf.MODEL_ARCH.STARCODER2
  5020. @ModelBase.register("Rwkv6ForCausalLM")
  5021. class Rwkv6Model(TextModel):
  5022. model_arch = gguf.MODEL_ARCH.RWKV6
  5023. def set_vocab(self):
  5024. self._set_vocab_rwkv_world()
  5025. def set_gguf_parameters(self):
  5026. head_size = self.hparams["head_size"]
  5027. hidden_size = self.hparams["hidden_size"]
  5028. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5029. rescale_every_n_layers = self.hparams["rescale_every"]
  5030. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  5031. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  5032. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  5033. # RWKV isn't context limited
  5034. self.gguf_writer.add_context_length(1048576)
  5035. self.gguf_writer.add_embedding_length(hidden_size)
  5036. self.gguf_writer.add_block_count(self.block_count)
  5037. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5038. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  5039. self.gguf_writer.add_wkv_head_size(head_size)
  5040. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5041. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5042. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5043. self.gguf_writer.add_file_type(self.ftype)
  5044. # required by llama.cpp, unused
  5045. self.gguf_writer.add_head_count(0)
  5046. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5047. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5048. new_name = self.map_tensor_name(name)
  5049. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5050. new_name += ".weight"
  5051. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  5052. data_torch = data_torch.transpose(0, 1)
  5053. if new_name.endswith("time_mix_w2.weight"):
  5054. data_torch = data_torch.permute(0, 2, 1)
  5055. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  5056. data_torch = data_torch.squeeze()
  5057. try:
  5058. rescale_every_n_layers = self.hparams["rescale_every"]
  5059. if rescale_every_n_layers > 0:
  5060. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  5061. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  5062. except KeyError:
  5063. pass
  5064. # concat time_mix_lerp weights to reduce some cpu overhead
  5065. # also reduces the number of tensors in the model
  5066. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  5067. try:
  5068. self.lerp_weights[bid][new_name] = data_torch
  5069. except KeyError:
  5070. self.lerp_weights[bid] = {new_name: data_torch}
  5071. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  5072. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5073. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  5074. yield (new_name, data)
  5075. return
  5076. yield (new_name, data_torch)
  5077. @ModelBase.register("RWKV6Qwen2ForCausalLM")
  5078. class RWKV6Qwen2Model(Rwkv6Model):
  5079. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  5080. def set_vocab(self):
  5081. try:
  5082. self._set_vocab_sentencepiece()
  5083. except FileNotFoundError:
  5084. self._set_vocab_gpt2()
  5085. def set_gguf_parameters(self):
  5086. num_attention_heads = self.hparams["num_attention_heads"]
  5087. num_key_value_heads = self.hparams["num_key_value_heads"]
  5088. hidden_size = self.hparams["hidden_size"]
  5089. head_size = hidden_size // num_attention_heads
  5090. rms_norm_eps = self.hparams["rms_norm_eps"]
  5091. intermediate_size = self.hparams["intermediate_size"]
  5092. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  5093. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  5094. # RWKV isn't context limited
  5095. self.gguf_writer.add_context_length(1048576)
  5096. self.gguf_writer.add_embedding_length(hidden_size)
  5097. self.gguf_writer.add_block_count(self.block_count)
  5098. self.gguf_writer.add_wkv_head_size(head_size)
  5099. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  5100. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  5101. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5102. self.gguf_writer.add_file_type(self.ftype)
  5103. # special parameters for time_mixing in RWKV6QWEN2
  5104. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5105. self.gguf_writer.add_token_shift_count(1)
  5106. # RWKV6QWEN2 use grouped key/value like GQA
  5107. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  5108. # required by llama.cpp, unused
  5109. self.gguf_writer.add_head_count(0)
  5110. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5111. for new_name, data in super().modify_tensors(data_torch, name, bid):
  5112. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  5113. data = data.view(5, -1, data.shape[-1])
  5114. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  5115. # permute them here to avoid code changes
  5116. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  5117. if "w2" in new_name:
  5118. data = data.view(5, -1, data.shape[-1])
  5119. yield (new_name, data)
  5120. continue
  5121. yield (new_name, data)
  5122. @ModelBase.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  5123. class Rwkv7Model(TextModel):
  5124. model_arch = gguf.MODEL_ARCH.RWKV7
  5125. def set_vocab(self):
  5126. self._set_vocab_rwkv_world()
  5127. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  5128. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  5129. def set_gguf_parameters(self):
  5130. try:
  5131. head_size = self.hparams["head_size"]
  5132. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  5133. except KeyError:
  5134. head_size = self.hparams["head_dim"]
  5135. layer_norm_eps = self.hparams["norm_eps"]
  5136. hidden_size = self.hparams["hidden_size"]
  5137. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  5138. # ICLR: In-Context-Learning-Rate
  5139. try:
  5140. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5141. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5142. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5143. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5144. except KeyError:
  5145. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5146. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  5147. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  5148. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  5149. # RWKV isn't context limited
  5150. self.gguf_writer.add_context_length(1048576)
  5151. self.gguf_writer.add_embedding_length(hidden_size)
  5152. self.gguf_writer.add_block_count(self.block_count)
  5153. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  5154. self.gguf_writer.add_wkv_head_size(head_size)
  5155. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5156. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5157. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5158. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5159. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5160. self.gguf_writer.add_file_type(self.ftype)
  5161. # required by llama.cpp, unused
  5162. self.gguf_writer.add_head_count(0)
  5163. lerp_weights: dict[int, dict[str, Tensor]] = {}
  5164. lora_needs_transpose: bool = True
  5165. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5166. # unify tensor names here to make life easier
  5167. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  5168. name = name.replace("self_attn", "attention").replace("attn", "attention")
  5169. name = name.replace("time_mixer.", "")
  5170. # lora layer names in fla-hub's impl
  5171. if "_lora.lora" in name:
  5172. self.lora_needs_transpose = False
  5173. name = name.replace("_lora.lora.0.weight", "1.weight")
  5174. name = name.replace("_lora.lora.2.weight", "2.weight")
  5175. name = name.replace("_lora.lora.2.bias", "0.weight")
  5176. name = name.replace("feed_forward_norm", "ln2")
  5177. name = name.replace("g_norm", "ln_x")
  5178. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  5179. # some models have dummy v0/v1/v2 on first layer while others don't
  5180. # ignore them all since they are not used
  5181. return
  5182. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  5183. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  5184. if bid is not None and "attention.x_" in name:
  5185. if "attention.x_x" in name:
  5186. # already concatenated
  5187. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5188. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  5189. yield (new_name, data)
  5190. else:
  5191. try:
  5192. self.lerp_weights[bid][name] = data_torch
  5193. except KeyError:
  5194. self.lerp_weights[bid] = {name: data_torch}
  5195. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  5196. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  5197. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  5198. yield (new_name, data)
  5199. return
  5200. else:
  5201. data_torch = data_torch.squeeze()
  5202. new_name = self.map_tensor_name(name)
  5203. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  5204. new_name += ".weight"
  5205. if self.lora_needs_transpose and any(
  5206. new_name.endswith(t) for t in [
  5207. "time_mix_w1.weight", "time_mix_w2.weight",
  5208. "time_mix_a1.weight", "time_mix_a2.weight",
  5209. "time_mix_v1.weight", "time_mix_v2.weight",
  5210. "time_mix_g1.weight", "time_mix_g2.weight",
  5211. ]
  5212. ):
  5213. data_torch = data_torch.transpose(0, 1)
  5214. if 'r_k' in new_name:
  5215. data_torch = data_torch.flatten()
  5216. if bid == 0 and "time_mix_a" in new_name:
  5217. # dummy v0/v1/v2 on first layer
  5218. # easist way to make llama happy
  5219. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  5220. yield (new_name, data_torch)
  5221. @ModelBase.register("RwkvHybridForCausalLM")
  5222. class ARwkv7Model(Rwkv7Model):
  5223. model_arch = gguf.MODEL_ARCH.ARWKV7
  5224. def set_vocab(self):
  5225. try:
  5226. self._set_vocab_sentencepiece()
  5227. except FileNotFoundError:
  5228. self._set_vocab_gpt2()
  5229. def set_gguf_parameters(self):
  5230. hidden_size = self.hparams["hidden_size"]
  5231. head_size = self.hparams["head_size"]
  5232. rms_norm_eps = self.hparams["rms_norm_eps"]
  5233. intermediate_size = self.hparams["intermediate_size"]
  5234. wkv_has_gate = self.hparams["wkv_has_gate"]
  5235. assert self.hparams["wkv_version"] == 7
  5236. # ICLR: In-Context-Learning-Rate
  5237. lora_rank_decay = 64
  5238. lora_rank_iclr = 64
  5239. lora_rank_value_residual_mix = 32
  5240. lora_rank_gate = 128 if wkv_has_gate else 0
  5241. # RWKV isn't context limited
  5242. self.gguf_writer.add_context_length(1048576)
  5243. self.gguf_writer.add_embedding_length(hidden_size)
  5244. self.gguf_writer.add_block_count(self.block_count)
  5245. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5246. self.gguf_writer.add_wkv_head_size(head_size)
  5247. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  5248. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  5249. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  5250. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  5251. self.gguf_writer.add_feed_forward_length(intermediate_size)
  5252. self.gguf_writer.add_file_type(self.ftype)
  5253. self.gguf_writer.add_token_shift_count(1)
  5254. # required by llama.cpp, unused
  5255. self.gguf_writer.add_head_count(0)
  5256. @ModelBase.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  5257. class MambaModel(TextModel):
  5258. model_arch = gguf.MODEL_ARCH.MAMBA
  5259. def __init__(self, dir_model: Path, *args, **kwargs):
  5260. # Avoid using AutoConfig for hparams
  5261. hparams = kwargs.pop("hparams", None)
  5262. if hparams is None:
  5263. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5264. hparams = json.load(f)
  5265. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5266. def set_vocab(self):
  5267. vocab_size = self.hparams["vocab_size"]
  5268. # Round vocab size to next multiple of 8
  5269. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  5270. # pad using ceiling division
  5271. # ref: https://stackoverflow.com/a/17511341/22827863
  5272. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5273. self.hparams["vocab_size"] = vocab_size
  5274. if (self.dir_model / "tokenizer.json").is_file():
  5275. self._set_vocab_gpt2()
  5276. elif (self.dir_model / "tokenizer.model").is_file():
  5277. self._set_vocab_sentencepiece()
  5278. else:
  5279. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5280. self._set_vocab_builtin("gpt-neox", vocab_size)
  5281. def set_gguf_parameters(self):
  5282. d_model = self.find_hparam(["hidden_size", "d_model"])
  5283. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5284. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  5285. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  5286. # ceiling division
  5287. # ref: https://stackoverflow.com/a/17511341/22827863
  5288. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5289. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  5290. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5291. use_dt_b_c_norm = False
  5292. # For falconmamba we do apply RMS norm on B / DT and C layers
  5293. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  5294. use_dt_b_c_norm = True
  5295. # Fail early for models which don't have a block expansion factor of 2
  5296. assert d_inner == 2 * d_model
  5297. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5298. self.gguf_writer.add_embedding_length(d_model)
  5299. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5300. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5301. self.gguf_writer.add_block_count(self.block_count)
  5302. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5303. self.gguf_writer.add_ssm_inner_size(d_inner)
  5304. self.gguf_writer.add_ssm_state_size(d_state)
  5305. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5306. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5307. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  5308. self.gguf_writer.add_file_type(self.ftype)
  5309. _tok_embd = None
  5310. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5311. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  5312. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  5313. new_name = self.map_tensor_name(name)
  5314. if name.endswith(".A_log"):
  5315. logger.debug("A_log --> A ==> " + new_name)
  5316. data_torch = -torch.exp(data_torch)
  5317. # [4 1 8192 1] -> [4 8192 1 1]
  5318. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5319. data_torch = data_torch.squeeze()
  5320. # assuming token_embd.weight is seen before output.weight
  5321. if self._tok_embd is not None and new_name == output_name:
  5322. if torch.equal(self._tok_embd, data_torch):
  5323. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  5324. return []
  5325. elif new_name == tok_embd_name:
  5326. self._tok_embd = data_torch
  5327. return [(new_name, data_torch)]
  5328. @ModelBase.register("Mamba2ForCausalLM")
  5329. class Mamba2Model(TextModel):
  5330. model_arch = gguf.MODEL_ARCH.MAMBA2
  5331. def __init__(self, dir_model: Path, *args, **kwargs):
  5332. # Avoid using AutoConfig for hparams
  5333. # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
  5334. hparams = kwargs.pop("hparams", None)
  5335. if hparams is None:
  5336. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  5337. hparams = json.load(f)
  5338. super().__init__(dir_model, *args, hparams=hparams, **kwargs)
  5339. self.d_model = self.find_hparam(["hidden_size", "d_model", "dim"])
  5340. self.d_inner = self.find_hparam(["mamba_d_ssm", "intermediate_size", "d_inner"], optional=True) or 2 * self.d_model
  5341. self.n_group = self.find_hparam(["n_groups"], optional=True) or 1
  5342. def set_vocab(self):
  5343. vocab_size = self.hparams["vocab_size"]
  5344. # Round vocab size to next multiple of 16
  5345. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 16)
  5346. # pad using ceiling division
  5347. # ref: https://stackoverflow.com/a/17511341/22827863
  5348. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  5349. self.hparams["vocab_size"] = vocab_size
  5350. if (self.dir_model / "tokenizer.model").is_file():
  5351. self._set_vocab_sentencepiece()
  5352. elif (self.dir_model / "tokenizer.model.v3").is_file():
  5353. # mamba-codestral
  5354. raise NotImplementedError(f"Please rename {self.dir_model / 'tokenizer.model.v3'} to {self.dir_model / 'tokenizer.model'}")
  5355. elif (self.dir_model / "tokenizer.json").is_file():
  5356. self._set_vocab_gpt2()
  5357. else:
  5358. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  5359. self._set_vocab_builtin("gpt-neox", vocab_size)
  5360. def set_gguf_parameters(self):
  5361. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  5362. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 128
  5363. head_dim = self.find_hparam(["mamba_d_head", "head_dim"], optional=True) or 64
  5364. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  5365. # Fail early for models which don't have a block expansion factor of 2
  5366. # TODO: does this really matter?
  5367. # skip the assertion for FalconH1 Model
  5368. if self.model_arch != gguf.MODEL_ARCH.FALCON_H1:
  5369. assert self.d_inner == 2 * self.d_model
  5370. assert self.d_inner % head_dim == 0
  5371. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  5372. self.gguf_writer.add_embedding_length(self.d_model)
  5373. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  5374. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  5375. self.gguf_writer.add_block_count(self.block_count)
  5376. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5377. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  5378. self.gguf_writer.add_ssm_state_size(d_state)
  5379. self.gguf_writer.add_ssm_time_step_rank(self.d_inner // head_dim)
  5380. self.gguf_writer.add_ssm_group_count(self.n_group)
  5381. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5382. self.gguf_writer.add_file_type(self.ftype)
  5383. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5384. if name.startswith("model.backbone") or name.startswith("model.lm_head"):
  5385. # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
  5386. name = name.removeprefix("model.")
  5387. if name.endswith(".dt_bias"):
  5388. name = name.rpartition(".dt_bias")[0] + ".dt_proj.bias"
  5389. new_name = self.map_tensor_name(name)
  5390. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5391. data_torch = data_torch.squeeze()
  5392. elif any(self.match_model_tensor_name(new_name, t, bid, suffix="") for t in [
  5393. gguf.MODEL_TENSOR.SSM_A,
  5394. gguf.MODEL_TENSOR.SSM_D,
  5395. ]):
  5396. # unsqueeze A to use similar shape semantics as Mamba-1
  5397. # (D is also unsqueezed, but for more straightforward broadcast internally)
  5398. data_torch = data_torch.reshape((*data_torch.shape, 1))
  5399. elif self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_NORM, bid):
  5400. data_torch = data_torch.reshape((self.n_group, self.d_inner // self.n_group))
  5401. if name.endswith(".A_log"):
  5402. logger.debug("A_log --> A ==> " + new_name)
  5403. data_torch = -torch.exp(data_torch)
  5404. yield (new_name, data_torch)
  5405. @ModelBase.register("JambaForCausalLM")
  5406. class JambaModel(TextModel):
  5407. model_arch = gguf.MODEL_ARCH.JAMBA
  5408. def set_vocab(self):
  5409. if (self.dir_model / "tokenizer.model").is_file():
  5410. self._set_vocab_sentencepiece()
  5411. else:
  5412. self._set_vocab_llama_hf()
  5413. self.gguf_writer.add_add_space_prefix(False)
  5414. def set_gguf_parameters(self):
  5415. d_model = self.find_hparam(["hidden_size", "mamba_d_model"])
  5416. d_conv = self.find_hparam(["mamba_d_conv"], optional=True) or 4
  5417. d_inner = self.hparams["mamba_expand"] * d_model
  5418. d_state = self.find_hparam(["mamba_d_state"], optional=True) or 16
  5419. # ceiling division
  5420. # ref: https://stackoverflow.com/a/17511341/22827863
  5421. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  5422. dt_rank = self.find_hparam(["mamba_dt_rank"], optional=True) or -(d_model // -16)
  5423. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-6
  5424. n_kv_head = self.hparams["num_key_value_heads"]
  5425. attn_offset = self.hparams["attn_layer_offset"]
  5426. attn_period = self.hparams["attn_layer_period"]
  5427. n_kv_vec = [0 for _ in range(attn_offset)] + [
  5428. n_kv_head if (i - attn_offset) % attn_period == 0 else 0 for i in range(attn_offset, self.block_count)
  5429. ]
  5430. self.gguf_writer.add_block_count(self.block_count)
  5431. self.gguf_writer.add_context_length(self.find_hparam(["max_position_embeddings", "n_ctx"]))
  5432. self.gguf_writer.add_embedding_length(d_model)
  5433. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  5434. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  5435. self.gguf_writer.add_head_count_kv(n_kv_vec)
  5436. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  5437. self.gguf_writer.add_ssm_inner_size(d_inner)
  5438. self.gguf_writer.add_ssm_state_size(d_state)
  5439. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  5440. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  5441. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  5442. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  5443. self.gguf_writer.add_file_type(self.ftype)
  5444. _experts: list[dict[str, Tensor]] | None = None
  5445. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5446. # Mini-Jamba
  5447. name = name.replace(".moe.", ".feed_forward.")
  5448. if bid is not None:
  5449. moe_offset = self.hparams["expert_layer_offset"]
  5450. moe_period = self.hparams["expert_layer_period"]
  5451. if not (bid >= moe_offset and (bid - moe_offset) % moe_period == 0):
  5452. name = name.replace(".experts.0.", ".")
  5453. # process the experts separately
  5454. if ".feed_forward.experts." in name:
  5455. n_experts = self.hparams["num_experts"]
  5456. assert bid is not None
  5457. if self._experts is None:
  5458. self._experts = [{} for _ in range(self.block_count)]
  5459. self._experts[bid][name] = data_torch
  5460. if len(self._experts[bid]) >= n_experts * 3:
  5461. # merge the experts into a single 3d tensor
  5462. for wid in ["down_proj", "gate_proj", "up_proj"]:
  5463. datas: list[Tensor] = []
  5464. for xid in range(n_experts):
  5465. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{wid}.weight"
  5466. datas.append(self._experts[bid][ename])
  5467. del self._experts[bid][ename]
  5468. data_torch = torch.stack(datas, dim=0)
  5469. # using the same merged name as qwen2moe
  5470. merged_name = f"model.layers.{bid}.mlp.experts.{wid}.weight"
  5471. new_name = self.map_tensor_name(merged_name)
  5472. yield new_name, data_torch
  5473. return
  5474. new_name = self.map_tensor_name(name)
  5475. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  5476. data_torch = data_torch.squeeze()
  5477. if name.endswith(".A_log"):
  5478. logger.debug("A_log --> A ==> " + new_name)
  5479. data_torch = -torch.exp(data_torch)
  5480. yield (new_name, data_torch)
  5481. def prepare_tensors(self):
  5482. super().prepare_tensors()
  5483. if self._experts is not None:
  5484. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5485. experts = [k for d in self._experts for k in d.keys()]
  5486. if len(experts) > 0:
  5487. raise ValueError(f"Unprocessed experts: {experts}")
  5488. @ModelBase.register("CohereForCausalLM")
  5489. class CommandR2Model(TextModel):
  5490. model_arch = gguf.MODEL_ARCH.COMMAND_R
  5491. def __init__(self, *args, **kwargs):
  5492. super().__init__(*args, **kwargs)
  5493. # max_position_embeddings = 8192 in config.json but model was actually
  5494. # trained on 128k context length
  5495. # aya-23 models don't have model_max_length specified
  5496. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  5497. def set_gguf_parameters(self):
  5498. super().set_gguf_parameters()
  5499. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5500. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5501. @ModelBase.register("Cohere2ForCausalLM")
  5502. class Cohere2Model(TextModel):
  5503. model_arch = gguf.MODEL_ARCH.COHERE2
  5504. def set_gguf_parameters(self):
  5505. super().set_gguf_parameters()
  5506. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  5507. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5508. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  5509. rotary_pct = self.hparams["rotary_pct"]
  5510. hidden_size = self.hparams["hidden_size"]
  5511. num_attention_heads = self.hparams["num_attention_heads"]
  5512. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  5513. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5514. @ModelBase.register("OlmoForCausalLM")
  5515. @ModelBase.register("OLMoForCausalLM")
  5516. class OlmoModel(TextModel):
  5517. model_arch = gguf.MODEL_ARCH.OLMO
  5518. def set_gguf_parameters(self):
  5519. super().set_gguf_parameters()
  5520. self.gguf_writer.add_layer_norm_eps(1e-5)
  5521. clip_qkv = self.hparams.get("clip_qkv")
  5522. if clip_qkv is not None:
  5523. self.gguf_writer.add_clamp_kqv(clip_qkv)
  5524. # Same as super class, but permuting q_proj, k_proj
  5525. # Copied from: LlamaModel
  5526. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5527. del bid # unused
  5528. n_head = self.hparams["num_attention_heads"]
  5529. n_kv_head = self.hparams.get("num_key_value_heads")
  5530. if name.endswith("q_proj.weight"):
  5531. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5532. if name.endswith("k_proj.weight"):
  5533. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5534. return [(self.map_tensor_name(name), data_torch)]
  5535. @ModelBase.register("SeedOssForCausalLM")
  5536. class SeedOssModel(TextModel):
  5537. model_arch = gguf.MODEL_ARCH.SEED_OSS
  5538. @ModelBase.register("Olmo2ForCausalLM")
  5539. @ModelBase.register("Olmo3ForCausalLM")
  5540. class Olmo2Model(TextModel):
  5541. model_arch = gguf.MODEL_ARCH.OLMO2
  5542. def set_gguf_parameters(self):
  5543. super().set_gguf_parameters()
  5544. rope_scaling = self.hparams.get("rope_scaling") or {}
  5545. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5546. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5547. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5548. self.gguf_writer.add_rope_scaling_attn_factors(rope_scaling["attention_factor"])
  5549. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5550. if "sliding_window" in self.hparams:
  5551. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  5552. sliding_window_pattern = []
  5553. if "layer_types" in self.hparams:
  5554. sliding_window_pattern = [t == "sliding_attention" for t in self.hparams["layer_types"]]
  5555. else:
  5556. # Olmo2 does not use sliding window attention.
  5557. # Olmo3 defaults to using sliding window for all layers except every 4th.
  5558. for i in range(self.hparams["num_hidden_layers"]):
  5559. sliding_window_pattern.append((i + 1) % 4 != 0)
  5560. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  5561. @ModelBase.register("OlmoeForCausalLM")
  5562. class OlmoeModel(TextModel):
  5563. model_arch = gguf.MODEL_ARCH.OLMOE
  5564. def set_gguf_parameters(self):
  5565. super().set_gguf_parameters()
  5566. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  5567. if (n_experts := self.hparams.get("num_experts")) is not None:
  5568. self.gguf_writer.add_expert_count(n_experts)
  5569. _experts: list[dict[str, Tensor]] | None = None
  5570. # Copied from: Qwen2MoeModel
  5571. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5572. # process the experts separately
  5573. if name.find("experts") != -1:
  5574. n_experts = self.hparams["num_experts"]
  5575. assert bid is not None
  5576. if self._experts is None:
  5577. self._experts = [{} for _ in range(self.block_count)]
  5578. self._experts[bid][name] = data_torch
  5579. if len(self._experts[bid]) >= n_experts * 3:
  5580. tensors: list[tuple[str, Tensor]] = []
  5581. # merge the experts into a single 3d tensor
  5582. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5583. datas: list[Tensor] = []
  5584. for xid in range(n_experts):
  5585. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5586. datas.append(self._experts[bid][ename])
  5587. del self._experts[bid][ename]
  5588. data_torch = torch.stack(datas, dim=0)
  5589. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5590. new_name = self.map_tensor_name(merged_name)
  5591. tensors.append((new_name, data_torch))
  5592. return tensors
  5593. else:
  5594. return []
  5595. return [(self.map_tensor_name(name), data_torch)]
  5596. # Copied from: Qwen2MoeModel
  5597. def prepare_tensors(self):
  5598. super().prepare_tensors()
  5599. if self._experts is not None:
  5600. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5601. experts = [k for d in self._experts for k in d.keys()]
  5602. if len(experts) > 0:
  5603. raise ValueError(f"Unprocessed experts: {experts}")
  5604. @ModelBase.register("JinaBertModel", "JinaBertForMaskedLM")
  5605. class JinaBertV2Model(BertModel):
  5606. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  5607. def set_vocab(self):
  5608. tokenizer_class = 'BertTokenizer'
  5609. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  5610. tokenizer_class = json.load(f)['tokenizer_class']
  5611. if tokenizer_class == 'BertTokenizer':
  5612. super().set_vocab()
  5613. elif tokenizer_class == 'RobertaTokenizer':
  5614. self._set_vocab_gpt2()
  5615. self.gguf_writer.add_token_type_count(2)
  5616. else:
  5617. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  5618. @ModelBase.register("OpenELMForCausalLM")
  5619. class OpenELMModel(TextModel):
  5620. model_arch = gguf.MODEL_ARCH.OPENELM
  5621. @staticmethod
  5622. def _make_divisible(v: float | int, divisor: int) -> int:
  5623. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  5624. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  5625. # Make sure that round down does not go down by more than 10%.
  5626. if new_v < 0.9 * v:
  5627. new_v += divisor
  5628. return new_v
  5629. def __init__(self, *args, **kwargs):
  5630. super().__init__(*args, **kwargs)
  5631. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  5632. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  5633. self._n_embd: int = self.hparams["model_dim"]
  5634. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  5635. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  5636. self._ffn_dims: list[int] = [
  5637. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  5638. for multiplier in ffn_multipliers
  5639. ]
  5640. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  5641. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  5642. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  5643. def set_vocab(self):
  5644. try:
  5645. self._set_vocab_sentencepiece()
  5646. except FileNotFoundError:
  5647. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  5648. def set_gguf_parameters(self):
  5649. n_embd = self._n_embd
  5650. head_dim = self.hparams["head_dim"]
  5651. rot_pct = 1.0
  5652. assert self.block_count == len(self._num_kv_heads)
  5653. assert self.block_count == len(self._num_query_heads)
  5654. assert self.block_count == len(self._ffn_dims)
  5655. self.gguf_writer.add_block_count(self.block_count)
  5656. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  5657. self.gguf_writer.add_embedding_length(n_embd)
  5658. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  5659. self.gguf_writer.add_head_count(self._num_query_heads)
  5660. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  5661. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  5662. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  5663. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  5664. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  5665. self.gguf_writer.add_key_length(head_dim)
  5666. self.gguf_writer.add_value_length(head_dim)
  5667. self.gguf_writer.add_file_type(self.ftype)
  5668. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  5669. if "n_layers" in keys:
  5670. return self.hparams["num_transformer_layers"]
  5671. return super().find_hparam(keys, optional)
  5672. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5673. # split ff
  5674. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  5675. ff_dim = self._ffn_dims[bid]
  5676. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  5677. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  5678. return
  5679. yield (self.map_tensor_name(name), data_torch)
  5680. @ModelBase.register("ArcticForCausalLM")
  5681. class ArcticModel(TextModel):
  5682. model_arch = gguf.MODEL_ARCH.ARCTIC
  5683. def set_vocab(self):
  5684. # The reason for using a custom implementation here is that the
  5685. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  5686. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  5687. from sentencepiece import SentencePieceProcessor
  5688. tokenizer_path = self.dir_model / 'tokenizer.model'
  5689. if not tokenizer_path.is_file():
  5690. logger.error(f'Error: Missing {tokenizer_path}')
  5691. sys.exit(1)
  5692. # Read the whole vocabulary from the tokenizer.model file
  5693. tokenizer = SentencePieceProcessor()
  5694. tokenizer.LoadFromFile(str(tokenizer_path))
  5695. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  5696. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  5697. scores: list[float] = [-10000.0] * vocab_size
  5698. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  5699. for token_id in range(tokenizer.vocab_size()):
  5700. piece = tokenizer.IdToPiece(token_id)
  5701. text = piece.encode("utf-8")
  5702. score = tokenizer.GetScore(token_id)
  5703. toktype = SentencePieceTokenTypes.NORMAL
  5704. if tokenizer.IsUnknown(token_id):
  5705. toktype = SentencePieceTokenTypes.UNKNOWN
  5706. elif tokenizer.IsControl(token_id):
  5707. toktype = SentencePieceTokenTypes.CONTROL
  5708. elif tokenizer.IsUnused(token_id):
  5709. toktype = SentencePieceTokenTypes.UNUSED
  5710. elif tokenizer.IsByte(token_id):
  5711. toktype = SentencePieceTokenTypes.BYTE
  5712. tokens[token_id] = text
  5713. scores[token_id] = score
  5714. toktypes[token_id] = toktype
  5715. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  5716. # of information about added/redefined tokens and modify them accordingly.
  5717. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  5718. if tokenizer_config_file.is_file():
  5719. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  5720. tokenizer_config_json = json.load(f)
  5721. if "added_tokens_decoder" in tokenizer_config_json:
  5722. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  5723. for token_id, token_json in added_tokens_decoder.items():
  5724. token_id = int(token_id)
  5725. if token_id >= vocab_size:
  5726. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  5727. continue
  5728. token_content = token_json["content"]
  5729. token_type = SentencePieceTokenTypes.USER_DEFINED
  5730. token_score = -10000.0
  5731. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  5732. # Set the score to 0.0 as in the original tokenizer.model
  5733. if ("special" in token_json) and token_json["special"]:
  5734. if token_content == tokenizer_config_json["unk_token"]:
  5735. token_type = SentencePieceTokenTypes.UNKNOWN
  5736. else:
  5737. token_type = SentencePieceTokenTypes.CONTROL
  5738. token_score = 0.0
  5739. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  5740. tokens[token_id] = token_content.encode("utf-8")
  5741. toktypes[token_id] = token_type
  5742. scores[token_id] = token_score
  5743. self.gguf_writer.add_tokenizer_model("llama")
  5744. self.gguf_writer.add_tokenizer_pre("default")
  5745. self.gguf_writer.add_token_list(tokens)
  5746. self.gguf_writer.add_token_scores(scores)
  5747. self.gguf_writer.add_token_types(toktypes)
  5748. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  5749. special_vocab.add_to_gguf(self.gguf_writer)
  5750. def set_gguf_parameters(self):
  5751. super().set_gguf_parameters()
  5752. hparams = self.hparams
  5753. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5754. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  5755. _experts: list[dict[str, Tensor]] | None = None
  5756. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5757. n_head = self.hparams["num_attention_heads"]
  5758. n_kv_head = self.hparams.get("num_key_value_heads")
  5759. if name.endswith("q_proj.weight"):
  5760. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  5761. if name.endswith("k_proj.weight"):
  5762. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  5763. # process the experts separately
  5764. if name.find("block_sparse_moe.experts") != -1:
  5765. n_experts = self.hparams["num_local_experts"]
  5766. assert bid is not None
  5767. if self._experts is None:
  5768. self._experts = [{} for _ in range(self.block_count)]
  5769. self._experts[bid][name] = data_torch
  5770. if len(self._experts[bid]) >= n_experts * 3:
  5771. tensors: list[tuple[str, Tensor]] = []
  5772. # merge the experts into a single 3d tensor
  5773. for wid in ["w1", "w2", "w3"]:
  5774. datas: list[Tensor] = []
  5775. for xid in range(n_experts):
  5776. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  5777. datas.append(self._experts[bid][ename])
  5778. del self._experts[bid][ename]
  5779. data_torch = torch.stack(datas, dim=0)
  5780. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  5781. new_name = self.map_tensor_name(merged_name)
  5782. tensors.append((new_name, data_torch))
  5783. return tensors
  5784. else:
  5785. return []
  5786. return [(self.map_tensor_name(name), data_torch)]
  5787. def prepare_tensors(self):
  5788. super().prepare_tensors()
  5789. if self._experts is not None:
  5790. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5791. experts = [k for d in self._experts for k in d.keys()]
  5792. if len(experts) > 0:
  5793. raise ValueError(f"Unprocessed experts: {experts}")
  5794. @ModelBase.register("DeepseekForCausalLM")
  5795. class DeepseekModel(TextModel):
  5796. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  5797. def set_vocab(self):
  5798. try:
  5799. self._set_vocab_sentencepiece()
  5800. except FileNotFoundError:
  5801. self._set_vocab_gpt2()
  5802. def set_gguf_parameters(self):
  5803. super().set_gguf_parameters()
  5804. hparams = self.hparams
  5805. if (rope_dim := hparams.get("head_dim")) is None:
  5806. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  5807. self.gguf_writer.add_rope_dimension_count(rope_dim)
  5808. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  5809. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5810. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5811. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5812. self.gguf_writer.add_expert_weights_scale(1.0)
  5813. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5814. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5815. _experts: list[dict[str, Tensor]] | None = None
  5816. @staticmethod
  5817. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  5818. if n_head_kv is not None and n_head != n_head_kv:
  5819. n_head = n_head_kv
  5820. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  5821. .swapaxes(1, 2)
  5822. .reshape(weights.shape))
  5823. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5824. n_head = self.hparams["num_attention_heads"]
  5825. n_kv_head = self.hparams.get("num_key_value_heads")
  5826. if name.endswith(("q_proj.weight", "q_proj.bias")):
  5827. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  5828. if name.endswith(("k_proj.weight", "k_proj.bias")):
  5829. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  5830. # process the experts separately
  5831. if name.find("mlp.experts") != -1:
  5832. n_experts = self.hparams["n_routed_experts"]
  5833. assert bid is not None
  5834. if self._experts is None:
  5835. self._experts = [{} for _ in range(self.block_count)]
  5836. self._experts[bid][name] = data_torch
  5837. if len(self._experts[bid]) >= n_experts * 3:
  5838. tensors: list[tuple[str, Tensor]] = []
  5839. # merge the experts into a single 3d tensor
  5840. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5841. datas: list[Tensor] = []
  5842. for xid in range(n_experts):
  5843. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5844. datas.append(self._experts[bid][ename])
  5845. del self._experts[bid][ename]
  5846. data_torch = torch.stack(datas, dim=0)
  5847. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5848. new_name = self.map_tensor_name(merged_name)
  5849. tensors.append((new_name, data_torch))
  5850. return tensors
  5851. else:
  5852. return []
  5853. return [(self.map_tensor_name(name), data_torch)]
  5854. def prepare_tensors(self):
  5855. super().prepare_tensors()
  5856. if self._experts is not None:
  5857. # flatten `list[dict[str, Tensor]]` into `list[str]`
  5858. experts = [k for d in self._experts for k in d.keys()]
  5859. if len(experts) > 0:
  5860. raise ValueError(f"Unprocessed experts: {experts}")
  5861. @ModelBase.register(
  5862. "DeepseekV2ForCausalLM",
  5863. "DeepseekV3ForCausalLM",
  5864. "KimiVLForConditionalGeneration",
  5865. )
  5866. class DeepseekV2Model(TextModel):
  5867. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  5868. def set_vocab(self):
  5869. try:
  5870. self._set_vocab_gpt2()
  5871. return
  5872. except Exception:
  5873. pass
  5874. from transformers import AutoTokenizer
  5875. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  5876. tokpre = self.get_vocab_base_pre(tokenizer)
  5877. if tokpre == "kimi-k2":
  5878. # Build merges list using the approach similar to HunYuanMoE
  5879. merges = []
  5880. vocab = {}
  5881. mergeable_ranks = tokenizer.model._mergeable_ranks
  5882. for token, rank in mergeable_ranks.items():
  5883. vocab[QwenModel.token_bytes_to_string(token)] = rank
  5884. if len(token) == 1:
  5885. continue
  5886. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  5887. if len(merged) == 2:
  5888. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  5889. # Build token list
  5890. vocab_size = self.hparams["vocab_size"]
  5891. special_tokens = tokenizer.special_tokens
  5892. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  5893. tokens: list[str] = []
  5894. toktypes: list[int] = []
  5895. for i in range(vocab_size):
  5896. if i not in reverse_vocab:
  5897. tokens.append(f"[PAD{i}]")
  5898. toktypes.append(gguf.TokenType.UNUSED)
  5899. else:
  5900. token = reverse_vocab[i]
  5901. tokens.append(token)
  5902. if i in special_tokens.values():
  5903. toktypes.append(gguf.TokenType.CONTROL)
  5904. else:
  5905. toktypes.append(gguf.TokenType.NORMAL)
  5906. self.gguf_writer.add_tokenizer_model("gpt2")
  5907. self.gguf_writer.add_tokenizer_pre(tokpre)
  5908. self.gguf_writer.add_token_list(tokens)
  5909. self.gguf_writer.add_token_types(toktypes)
  5910. self.gguf_writer.add_token_merges(merges)
  5911. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  5912. special_vocab.add_to_gguf(self.gguf_writer)
  5913. else:
  5914. raise NotImplementedError(f"Deepseek pre-tokenizer {tokpre!r} is not supported yet!")
  5915. def set_gguf_parameters(self):
  5916. # note: deepseek2 using MLA converts into MQA (ie: GQA with 1 group)
  5917. self.hparams["num_key_value_heads"] = 1
  5918. super().set_gguf_parameters()
  5919. hparams = self.hparams
  5920. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  5921. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  5922. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  5923. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  5924. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  5925. # note: deepseek2 using MLA converts into MQA with larger heads, then decompresses to MHA
  5926. self.gguf_writer.add_key_length(hparams["kv_lora_rank"] + hparams["qk_rope_head_dim"])
  5927. self.gguf_writer.add_value_length(hparams["kv_lora_rank"])
  5928. self.gguf_writer.add_key_length_mla(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  5929. self.gguf_writer.add_value_length_mla(hparams["v_head_dim"])
  5930. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  5931. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  5932. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  5933. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  5934. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  5935. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  5936. rope_scaling = self.hparams.get("rope_scaling") or {}
  5937. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  5938. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  5939. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  5940. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  5941. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * rope_scaling["mscale_all_dim"])
  5942. _experts: list[dict[str, Tensor]] | None = None
  5943. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  5944. # skip vision tensors and remove "language_model." for Kimi-VL
  5945. if "vision_tower" in name or "multi_modal_projector" in name:
  5946. return []
  5947. if name.startswith("language_model."):
  5948. name = name.replace("language_model.", "")
  5949. # rename e_score_correction_bias tensors
  5950. if name.endswith("e_score_correction_bias"):
  5951. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  5952. # skip Multi-Token Prediction (MTP) layers
  5953. block_count = self.hparams["num_hidden_layers"]
  5954. match = re.match(r"model.layers.(\d+)", name)
  5955. if match and int(match.group(1)) >= block_count:
  5956. return []
  5957. # process the experts separately
  5958. if name.find("mlp.experts") != -1:
  5959. n_experts = self.hparams["n_routed_experts"]
  5960. assert bid is not None
  5961. if self._experts is None:
  5962. self._experts = [{} for _ in range(self.block_count)]
  5963. self._experts[bid][name] = data_torch
  5964. if len(self._experts[bid]) >= n_experts * 3:
  5965. tensors: list[tuple[str, Tensor]] = []
  5966. # merge the experts into a single 3d tensor
  5967. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  5968. datas: list[Tensor] = []
  5969. for xid in range(n_experts):
  5970. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  5971. datas.append(self._experts[bid][ename])
  5972. del self._experts[bid][ename]
  5973. data_torch = torch.stack(datas, dim=0)
  5974. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  5975. new_name = self.map_tensor_name(merged_name)
  5976. tensors.append((new_name, data_torch))
  5977. return tensors
  5978. else:
  5979. return []
  5980. # note: MLA with the absorption optimization, needs these two split and k_b_proj transposed
  5981. if name.endswith("kv_b_proj.weight"):
  5982. name_kb = name.replace("kv_b_proj", "k_b_proj")
  5983. name_vb = name.replace("kv_b_proj", "v_b_proj")
  5984. n_head_kv = self.hparams["num_key_value_heads"]
  5985. v_head_dim = self.hparams["v_head_dim"]
  5986. qk_nope_head_dim = self.hparams["qk_nope_head_dim"]
  5987. assert data_torch.shape[0] == n_head_kv * (v_head_dim + qk_nope_head_dim)
  5988. kv_b = data_torch.view(n_head_kv, v_head_dim + qk_nope_head_dim, data_torch.shape[-1])
  5989. k_b, v_b = torch.split(kv_b, [qk_nope_head_dim, v_head_dim], dim=1)
  5990. k_b = k_b.transpose(1, 2)
  5991. return [
  5992. (self.map_tensor_name(name_kb), k_b),
  5993. (self.map_tensor_name(name_vb), v_b)
  5994. ]
  5995. return [(self.map_tensor_name(name), data_torch)]
  5996. def prepare_tensors(self):
  5997. super().prepare_tensors()
  5998. if self._experts is not None:
  5999. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6000. experts = [k for d in self._experts for k in d.keys()]
  6001. if len(experts) > 0:
  6002. raise ValueError(f"Unprocessed experts: {experts}")
  6003. @ModelBase.register("MiniMaxM2ForCausalLM")
  6004. class MiniMaxM2Model(TextModel):
  6005. model_arch = gguf.MODEL_ARCH.MINIMAXM2
  6006. _experts_cache: dict[int, dict[str, Tensor]] = {}
  6007. def __init__(self, *args, **kwargs):
  6008. super().__init__(*args, **kwargs)
  6009. self.hparams["num_experts"] = self.hparams["num_local_experts"]
  6010. def set_gguf_parameters(self):
  6011. super().set_gguf_parameters()
  6012. self.gguf_writer.add_expert_feed_forward_length(self.find_hparam(["intermediate_size"]))
  6013. self.gguf_writer.add_rope_dimension_count(self.find_hparam(["rotary_dim"]))
  6014. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6015. if name.endswith("e_score_correction_bias"):
  6016. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6017. # merge expert weights
  6018. if 'experts' in name:
  6019. n_experts = self.hparams["num_experts"]
  6020. assert bid is not None
  6021. expert_cache = self._experts_cache.setdefault(bid, {})
  6022. expert_cache[name] = data_torch
  6023. expert_weights = ["w1", "w2", "w3"]
  6024. # not enough expert weights to merge
  6025. if len(expert_cache) < n_experts * len(expert_weights):
  6026. return []
  6027. tensors: list[tuple[str, Tensor]] = []
  6028. for w_name in expert_weights:
  6029. datas: list[Tensor] = []
  6030. for xid in range(n_experts):
  6031. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  6032. datas.append(expert_cache[ename])
  6033. del expert_cache[ename]
  6034. data_torch = torch.stack(datas, dim=0)
  6035. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  6036. new_name = self.map_tensor_name(merged_name)
  6037. tensors.append((new_name, data_torch))
  6038. del self._experts_cache[bid]
  6039. return tensors
  6040. return super().modify_tensors(data_torch, name, bid)
  6041. @ModelBase.register("PanguEmbeddedForCausalLM")
  6042. class PanguEmbeddedModel(TextModel):
  6043. model_arch = gguf.MODEL_ARCH.PANGU_EMBED
  6044. def set_vocab(self):
  6045. self._set_vocab_sentencepiece()
  6046. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  6047. if tokenizer_config_file.is_file():
  6048. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  6049. tokenizer_config_json = json.load(f)
  6050. if "add_prefix_space" in tokenizer_config_json:
  6051. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  6052. def set_gguf_parameters(self):
  6053. super().set_gguf_parameters()
  6054. hparams = self.hparams
  6055. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6056. # PanguEmbedded's hparam loaded from config.json without head_dim
  6057. if (rope_dim := hparams.get("head_dim")) is None:
  6058. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  6059. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6060. if hparams.get("head_dim") is None:
  6061. self.gguf_writer.add_key_length(rope_dim)
  6062. self.gguf_writer.add_value_length(rope_dim)
  6063. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6064. if name == "lm_head.weight":
  6065. if self.hparams.get("tie_word_embeddings", False):
  6066. logger.info("Skipping tied output layer 'lm_head.weight'")
  6067. return []
  6068. return [(self.map_tensor_name(name), data_torch)]
  6069. @ModelBase.register("Dots1ForCausalLM")
  6070. class Dots1Model(Qwen2MoeModel):
  6071. model_arch = gguf.MODEL_ARCH.DOTS1
  6072. def __init__(self, *args, **kwargs):
  6073. super().__init__(*args, **kwargs)
  6074. self.hparams["num_experts"] = self.hparams["n_routed_experts"]
  6075. def set_gguf_parameters(self):
  6076. super().set_gguf_parameters()
  6077. self.gguf_writer.add_leading_dense_block_count(self.hparams["first_k_dense_replace"])
  6078. self.gguf_writer.add_expert_shared_count(self.hparams["n_shared_experts"])
  6079. self.gguf_writer.add_expert_weights_scale(self.hparams["routed_scaling_factor"])
  6080. self.gguf_writer.add_expert_weights_norm(self.hparams["norm_topk_prob"])
  6081. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  6082. if name.endswith("e_score_correction_bias"):
  6083. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6084. if "shared_experts" in name:
  6085. return [(self.map_tensor_name(name), data_torch)]
  6086. return super().modify_tensors(data_torch, name, bid)
  6087. @ModelBase.register("PLMForCausalLM")
  6088. class PLMModel(TextModel):
  6089. model_arch = gguf.MODEL_ARCH.PLM
  6090. def set_vocab(self):
  6091. self._set_vocab_gpt2()
  6092. def set_gguf_parameters(self):
  6093. super().set_gguf_parameters()
  6094. hparams = self.hparams
  6095. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6096. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  6097. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  6098. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  6099. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  6100. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6101. return [(self.map_tensor_name(name), data_torch)]
  6102. def prepare_tensors(self):
  6103. super().prepare_tensors()
  6104. @ModelBase.register("T5WithLMHeadModel")
  6105. @ModelBase.register("T5ForConditionalGeneration")
  6106. @ModelBase.register("MT5ForConditionalGeneration")
  6107. @ModelBase.register("UMT5ForConditionalGeneration")
  6108. @ModelBase.register("UMT5Model")
  6109. class T5Model(TextModel):
  6110. model_arch = gguf.MODEL_ARCH.T5
  6111. def __init__(self, *args, **kwargs):
  6112. super().__init__(*args, **kwargs)
  6113. self.shared_token_embeddings_found = False
  6114. def set_vocab(self):
  6115. # to avoid TypeError: Descriptors cannot be created directly
  6116. # exception when importing sentencepiece_model_pb2
  6117. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6118. from sentencepiece import SentencePieceProcessor
  6119. from sentencepiece import sentencepiece_model_pb2 as model
  6120. tokenizer_path = self.dir_model / 'tokenizer.model'
  6121. # many older models use spiece.model tokenizer model filename
  6122. if not tokenizer_path.is_file():
  6123. tokenizer_path = self.dir_model / 'spiece.model'
  6124. if not tokenizer_path.is_file():
  6125. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6126. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6127. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6128. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6129. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6130. # assure the tokenizer model file name is correct
  6131. assert tokenizer_path.name == 'tokenizer.model'
  6132. return self._set_vocab_sentencepiece()
  6133. else:
  6134. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6135. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6136. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6137. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6138. tokenizer = SentencePieceProcessor()
  6139. tokenizer.LoadFromFile(str(tokenizer_path))
  6140. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6141. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6142. scores: list[float] = [-10000.0] * vocab_size
  6143. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6144. for token_id in range(tokenizer.vocab_size()):
  6145. piece = tokenizer.IdToPiece(token_id)
  6146. text = piece.encode("utf-8")
  6147. score = tokenizer.GetScore(token_id)
  6148. toktype = SentencePieceTokenTypes.NORMAL
  6149. if tokenizer.IsUnknown(token_id):
  6150. toktype = SentencePieceTokenTypes.UNKNOWN
  6151. elif tokenizer.IsControl(token_id):
  6152. toktype = SentencePieceTokenTypes.CONTROL
  6153. elif tokenizer.IsUnused(token_id):
  6154. toktype = SentencePieceTokenTypes.UNUSED
  6155. elif tokenizer.IsByte(token_id):
  6156. toktype = SentencePieceTokenTypes.BYTE
  6157. tokens[token_id] = text
  6158. scores[token_id] = score
  6159. toktypes[token_id] = toktype
  6160. added_tokens_file = self.dir_model / 'added_tokens.json'
  6161. if added_tokens_file.is_file():
  6162. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6163. added_tokens_json = json.load(f)
  6164. for key in added_tokens_json:
  6165. token_id = added_tokens_json[key]
  6166. if token_id >= vocab_size:
  6167. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6168. continue
  6169. tokens[token_id] = key.encode("utf-8")
  6170. scores[token_id] = -1000.0
  6171. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6172. if vocab_size > len(tokens):
  6173. pad_count = vocab_size - len(tokens)
  6174. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6175. for i in range(1, pad_count + 1):
  6176. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6177. scores.append(-1000.0)
  6178. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6179. self.gguf_writer.add_tokenizer_model("t5")
  6180. self.gguf_writer.add_tokenizer_pre("default")
  6181. self.gguf_writer.add_token_list(tokens)
  6182. self.gguf_writer.add_token_scores(scores)
  6183. self.gguf_writer.add_token_types(toktypes)
  6184. self.gguf_writer.add_add_space_prefix(add_prefix)
  6185. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6186. if precompiled_charsmap:
  6187. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6188. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6189. special_vocab.add_to_gguf(self.gguf_writer)
  6190. def set_gguf_parameters(self):
  6191. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6192. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6193. n_ctx = 512
  6194. self.gguf_writer.add_context_length(n_ctx)
  6195. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6196. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6197. self.gguf_writer.add_block_count(self.block_count)
  6198. if (dec_n_layer := self.hparams.get("num_decoder_layers")) is not None:
  6199. self.gguf_writer.add_decoder_block_count(dec_n_layer)
  6200. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6201. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6202. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6203. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6204. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6205. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6206. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  6207. self.gguf_writer.add_file_type(self.ftype)
  6208. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6209. del bid # unused
  6210. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6211. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6212. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6213. # and decoder and ignore the remaining ones.
  6214. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6215. if not self.shared_token_embeddings_found:
  6216. name = "shared.weight"
  6217. self.shared_token_embeddings_found = True
  6218. else:
  6219. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6220. return []
  6221. return [(self.map_tensor_name(name), data_torch)]
  6222. @ModelBase.register("T5EncoderModel")
  6223. class T5EncoderModel(TextModel):
  6224. model_arch = gguf.MODEL_ARCH.T5ENCODER
  6225. def __init__(self, *args, **kwargs):
  6226. super().__init__(*args, **kwargs)
  6227. self.shared_token_embeddings_found = False
  6228. def set_vocab(self):
  6229. # to avoid TypeError: Descriptors cannot be created directly
  6230. # exception when importing sentencepiece_model_pb2
  6231. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  6232. from sentencepiece import SentencePieceProcessor
  6233. from sentencepiece import sentencepiece_model_pb2 as model
  6234. tokenizer_path = self.dir_model / 'tokenizer.model'
  6235. # many older models use spiece.model tokenizer model filename
  6236. if not tokenizer_path.is_file():
  6237. tokenizer_path = self.dir_model / 'spiece.model'
  6238. if not tokenizer_path.is_file():
  6239. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  6240. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  6241. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  6242. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  6243. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  6244. # assure the tokenizer model file name is correct
  6245. assert tokenizer_path.name == 'tokenizer.model'
  6246. return self._set_vocab_sentencepiece()
  6247. else:
  6248. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  6249. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  6250. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  6251. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  6252. tokenizer = SentencePieceProcessor()
  6253. tokenizer.LoadFromFile(str(tokenizer_path))
  6254. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  6255. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  6256. scores: list[float] = [-10000.0] * vocab_size
  6257. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  6258. for token_id in range(tokenizer.vocab_size()):
  6259. piece = tokenizer.IdToPiece(token_id)
  6260. text = piece.encode("utf-8")
  6261. score = tokenizer.GetScore(token_id)
  6262. toktype = SentencePieceTokenTypes.NORMAL
  6263. if tokenizer.IsUnknown(token_id):
  6264. toktype = SentencePieceTokenTypes.UNKNOWN
  6265. elif tokenizer.IsControl(token_id):
  6266. toktype = SentencePieceTokenTypes.CONTROL
  6267. elif tokenizer.IsUnused(token_id):
  6268. toktype = SentencePieceTokenTypes.UNUSED
  6269. elif tokenizer.IsByte(token_id):
  6270. toktype = SentencePieceTokenTypes.BYTE
  6271. tokens[token_id] = text
  6272. scores[token_id] = score
  6273. toktypes[token_id] = toktype
  6274. added_tokens_file = self.dir_model / 'added_tokens.json'
  6275. if added_tokens_file.is_file():
  6276. with open(added_tokens_file, "r", encoding="utf-8") as f:
  6277. added_tokens_json = json.load(f)
  6278. for key in added_tokens_json:
  6279. token_id = added_tokens_json[key]
  6280. if token_id >= vocab_size:
  6281. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  6282. continue
  6283. tokens[token_id] = key.encode("utf-8")
  6284. scores[token_id] = -1000.0
  6285. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  6286. if vocab_size > len(tokens):
  6287. pad_count = vocab_size - len(tokens)
  6288. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  6289. for i in range(1, pad_count + 1):
  6290. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  6291. scores.append(-1000.0)
  6292. toktypes.append(SentencePieceTokenTypes.UNUSED)
  6293. self.gguf_writer.add_tokenizer_model("t5")
  6294. self.gguf_writer.add_tokenizer_pre("default")
  6295. self.gguf_writer.add_token_list(tokens)
  6296. self.gguf_writer.add_token_scores(scores)
  6297. self.gguf_writer.add_token_types(toktypes)
  6298. self.gguf_writer.add_add_space_prefix(add_prefix)
  6299. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  6300. if precompiled_charsmap:
  6301. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  6302. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6303. special_vocab.add_to_gguf(self.gguf_writer)
  6304. def set_gguf_parameters(self):
  6305. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  6306. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  6307. n_ctx = 512
  6308. self.gguf_writer.add_context_length(n_ctx)
  6309. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  6310. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  6311. self.gguf_writer.add_block_count(self.block_count)
  6312. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  6313. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  6314. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  6315. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6316. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  6317. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  6318. self.gguf_writer.add_file_type(self.ftype)
  6319. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6320. del bid # unused
  6321. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  6322. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  6323. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  6324. # and decoder and ignore the remaining ones.
  6325. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  6326. if not self.shared_token_embeddings_found:
  6327. name = "shared.weight"
  6328. self.shared_token_embeddings_found = True
  6329. else:
  6330. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  6331. return []
  6332. return [(self.map_tensor_name(name), data_torch)]
  6333. @ModelBase.register("JAISLMHeadModel")
  6334. class JaisModel(TextModel):
  6335. model_arch = gguf.MODEL_ARCH.JAIS
  6336. def __init__(self, *args, **kwargs):
  6337. super().__init__(*args, **kwargs)
  6338. # SwigLU activation
  6339. assert self.hparams["activation_function"] == "swiglu"
  6340. # ALiBi position embedding
  6341. assert self.hparams["position_embedding_type"] == "alibi"
  6342. # Embeddings scale
  6343. self.embeddings_scale = 1.0
  6344. if 'mup_embeddings_scale' in self.hparams:
  6345. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  6346. elif 'embeddings_scale' in self.hparams:
  6347. self.embeddings_scale = self.hparams['embeddings_scale']
  6348. else:
  6349. assert False
  6350. self.width_scale = 1.0
  6351. if 'mup_output_alpha' in self.hparams:
  6352. assert 'mup_width_scale' in self.hparams
  6353. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  6354. elif 'width_scale' in self.hparams:
  6355. self.width_scale = self.hparams['width_scale']
  6356. else:
  6357. assert False
  6358. self.max_alibi_bias = 8.0
  6359. def set_vocab(self):
  6360. self._set_vocab_gpt2()
  6361. def set_gguf_parameters(self):
  6362. self.gguf_writer.add_block_count(self.block_count)
  6363. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  6364. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  6365. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  6366. self.gguf_writer.add_head_count(self.hparams["n_head"])
  6367. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  6368. self.gguf_writer.add_file_type(self.ftype)
  6369. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6370. del bid # unused
  6371. tensors: list[tuple[str, Tensor]] = []
  6372. # we don't need these
  6373. if name.endswith((".attn.bias")):
  6374. return tensors
  6375. if name.endswith(("relative_pe.slopes")):
  6376. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  6377. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  6378. # but Jais's PyTorch model simply precalculates the slope values and places them
  6379. # in relative_pes.slopes
  6380. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  6381. first_val = float(data_torch[0].item())
  6382. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  6383. return tensors
  6384. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  6385. data_torch = data_torch.transpose(1, 0)
  6386. new_name = self.map_tensor_name(name)
  6387. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  6388. tensors.append((new_name, data_torch * self.embeddings_scale))
  6389. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  6390. tensors.append((new_name, data_torch * self.width_scale))
  6391. else:
  6392. tensors.append((new_name, data_torch))
  6393. return tensors
  6394. def prepare_tensors(self):
  6395. super().prepare_tensors()
  6396. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  6397. @ModelBase.register("Glm4ForCausalLM", "Glm4vForConditionalGeneration")
  6398. class Glm4Model(TextModel):
  6399. model_arch = gguf.MODEL_ARCH.GLM4
  6400. def set_vocab(self):
  6401. from transformers import AutoTokenizer
  6402. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  6403. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6404. tokens, toktypes, tokpre = self.get_vocab_base()
  6405. self.gguf_writer.add_tokenizer_model("gpt2")
  6406. self.gguf_writer.add_tokenizer_pre(tokpre)
  6407. self.gguf_writer.add_token_list(tokens)
  6408. self.gguf_writer.add_token_types(toktypes)
  6409. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6410. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6411. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6412. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6413. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6414. special_vocab.add_to_gguf(self.gguf_writer)
  6415. def set_gguf_parameters(self):
  6416. super().set_gguf_parameters()
  6417. if (rope_dim := self.hparams.get("head_dim")) is None:
  6418. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6419. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6420. rope_scaling = self.hparams.get("rope_scaling") or {}
  6421. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  6422. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  6423. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6424. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  6425. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6426. if name.startswith("model.visual."): # ignore visual part of Glm4v
  6427. return []
  6428. elif name.startswith("model.language_model."):
  6429. name = name.replace("language_model.", "") # for Glm4v
  6430. return super().modify_tensors(data_torch, name, bid)
  6431. @ModelBase.register("Glm4MoeForCausalLM")
  6432. class Glm4MoeModel(TextModel):
  6433. model_arch = gguf.MODEL_ARCH.GLM4_MOE
  6434. def __init__(self, *args, **kwargs):
  6435. super().__init__(*args, **kwargs)
  6436. # GLM4_MOE has num_hidden_layers + 1 actual layers (including NextN layer)
  6437. self.block_count = self.hparams["num_hidden_layers"] + self.hparams.get("num_nextn_predict_layers", 0)
  6438. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  6439. def set_vocab(self):
  6440. from transformers import AutoTokenizer
  6441. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  6442. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6443. tokens, toktypes, tokpre = self.get_vocab_base()
  6444. self.gguf_writer.add_tokenizer_model("gpt2")
  6445. self.gguf_writer.add_tokenizer_pre(tokpre)
  6446. self.gguf_writer.add_token_list(tokens)
  6447. self.gguf_writer.add_token_types(toktypes)
  6448. # Special tokens
  6449. # Note: Using <|endoftext|> (151329) for eot causes endless generation
  6450. special_vocab._set_special_token("bos", tokenizer.get_added_vocab()["[gMASK]"]) # 151331
  6451. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"]) # 151336
  6452. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"]) # 151329
  6453. special_vocab._set_special_token("eom", tokenizer.get_added_vocab()["<|observation|>"]) # 151338
  6454. special_vocab.add_to_gguf(self.gguf_writer)
  6455. def set_gguf_parameters(self):
  6456. super().set_gguf_parameters()
  6457. if (rope_dim := self.hparams.get("head_dim")) is None:
  6458. rope_dim = (
  6459. self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6460. )
  6461. self.gguf_writer.add_rope_dimension_count(
  6462. int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5))
  6463. )
  6464. # MoE parameters - Use only routed expert count (shared experts handled separately)
  6465. if (n_routed_experts := self.hparams.get("n_routed_experts")) is not None:
  6466. self.gguf_writer.add_expert_count(n_routed_experts)
  6467. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  6468. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  6469. if (n_shared_experts := self.hparams.get("n_shared_experts")) is not None:
  6470. self.gguf_writer.add_expert_shared_count(n_shared_experts)
  6471. if (first_k_dense_replace := self.hparams.get("first_k_dense_replace")) is not None:
  6472. self.gguf_writer.add_leading_dense_block_count(first_k_dense_replace)
  6473. # Expert gating function (sigmoid for GLM4_MOE)
  6474. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  6475. # Routed scaling factor
  6476. if (routed_scaling_factor := self.hparams.get("routed_scaling_factor")) is not None:
  6477. self.gguf_writer.add_expert_weights_scale(routed_scaling_factor)
  6478. # Normalise topk probabilities
  6479. if (norm_topk_prob := self.hparams.get("norm_topk_prob")) is not None:
  6480. self.gguf_writer.add_expert_weights_norm(norm_topk_prob)
  6481. # NextN/MTP prediction layers
  6482. if (num_nextn_predict_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  6483. self.gguf_writer.add_nextn_predict_layers(num_nextn_predict_layers)
  6484. _experts: list[dict[str, Tensor]] | None = None
  6485. def modify_tensors(
  6486. self, data_torch: Tensor, name: str, bid: int | None
  6487. ) -> Iterable[tuple[str, Tensor]]:
  6488. if name.startswith("model.visual."): # ignore visual part
  6489. return []
  6490. elif name.startswith("model.language_model."):
  6491. name = name.replace("language_model.", "") # for multimodal variants
  6492. # Handle main token embedding (but not layer-specific NextN embeddings)
  6493. if name == "model.embed_tokens.weight" and ".layers." not in name:
  6494. return [(self.map_tensor_name("token_embd.weight"), data_torch)]
  6495. # Handle routed experts
  6496. if name.find("mlp.experts") != -1:
  6497. n_experts = self.hparams["n_routed_experts"]
  6498. assert bid is not None
  6499. if self._experts is None:
  6500. self._experts = [{} for _ in range(self.block_count)]
  6501. self._experts[bid][name] = data_torch
  6502. if len(self._experts[bid]) >= n_experts * 3:
  6503. tensors: list[tuple[str, Tensor]] = []
  6504. # merge the experts into a single 3d tensor
  6505. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  6506. datas: list[Tensor] = []
  6507. for xid in range(n_experts):
  6508. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  6509. datas.append(self._experts[bid][ename])
  6510. del self._experts[bid][ename]
  6511. data_torch = torch.stack(datas, dim=0)
  6512. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  6513. new_name = self.map_tensor_name(merged_name)
  6514. tensors.append((new_name, data_torch))
  6515. return tensors
  6516. else:
  6517. return []
  6518. if name.endswith("e_score_correction_bias"):
  6519. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  6520. new_name = self.map_tensor_name(name)
  6521. return [(new_name, data_torch)]
  6522. def prepare_tensors(self):
  6523. super().prepare_tensors()
  6524. if self._experts is not None:
  6525. # flatten `list[dict[str, Tensor]]` into `list[str]`
  6526. experts = [k for d in self._experts for k in d.keys()]
  6527. if len(experts) > 0:
  6528. raise ValueError(f"Unprocessed experts: {experts}")
  6529. @ModelBase.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  6530. class ChatGLMModel(TextModel):
  6531. model_arch = gguf.MODEL_ARCH.CHATGLM
  6532. def set_vocab_chatglm3(self):
  6533. dir_model = self.dir_model
  6534. hparams = self.hparams
  6535. tokens: list[bytes] = []
  6536. toktypes: list[int] = []
  6537. scores: list[float] = []
  6538. from transformers import AutoTokenizer
  6539. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6540. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  6541. assert max(tokenizer.get_vocab().values()) < vocab_size
  6542. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  6543. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  6544. for token_id in range(vocab_size):
  6545. piece = tokenizer._convert_id_to_token(token_id)
  6546. if token_id == 0:
  6547. piece = "<unk>"
  6548. elif token_id == 1:
  6549. piece = "<bos>"
  6550. elif token_id == 2:
  6551. piece = "<eos>"
  6552. text = piece.encode("utf-8")
  6553. score = 0.0
  6554. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  6555. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  6556. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  6557. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  6558. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  6559. if piece in special_tokens:
  6560. toktype = SentencePieceTokenTypes.CONTROL
  6561. elif len(piece) == 0:
  6562. text = f"[PAD{token_id}]".encode("utf-8")
  6563. toktype = SentencePieceTokenTypes.UNUSED
  6564. else:
  6565. toktype = SentencePieceTokenTypes.USER_DEFINED
  6566. tokens.append(text)
  6567. scores.append(score)
  6568. toktypes.append(toktype)
  6569. continue
  6570. toktype = SentencePieceTokenTypes.NORMAL
  6571. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  6572. toktype = SentencePieceTokenTypes.UNKNOWN
  6573. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  6574. toktype = SentencePieceTokenTypes.CONTROL
  6575. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  6576. toktype = SentencePieceTokenTypes.UNUSED
  6577. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  6578. toktype = SentencePieceTokenTypes.BYTE
  6579. tokens.append(text)
  6580. scores.append(score)
  6581. toktypes.append(toktype)
  6582. self.gguf_writer.add_tokenizer_model("llama")
  6583. # glm3 needs prefix and suffix formatted as:
  6584. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  6585. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  6586. self.gguf_writer.add_token_list(tokens)
  6587. self.gguf_writer.add_token_scores(scores)
  6588. self.gguf_writer.add_token_types(toktypes)
  6589. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  6590. special_vocab.add_to_gguf(self.gguf_writer)
  6591. @staticmethod
  6592. def token_bytes_to_string(b):
  6593. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  6594. byte_encoder = bytes_to_unicode()
  6595. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  6596. @staticmethod
  6597. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  6598. parts = [bytes([b]) for b in token]
  6599. while True:
  6600. min_idx = None
  6601. min_rank = None
  6602. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  6603. rank = mergeable_ranks.get(pair[0] + pair[1])
  6604. if rank is not None and (min_rank is None or rank < min_rank):
  6605. min_idx = i
  6606. min_rank = rank
  6607. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  6608. break
  6609. assert min_idx is not None
  6610. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  6611. return parts
  6612. def set_vocab(self):
  6613. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  6614. self.set_vocab_chatglm3()
  6615. return
  6616. dir_model = self.dir_model
  6617. hparams = self.hparams
  6618. tokens: list[str] = []
  6619. toktypes: list[int] = []
  6620. from transformers import AutoTokenizer
  6621. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  6622. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  6623. assert max(tokenizer.get_vocab().values()) < vocab_size
  6624. tokens, toktypes, tokpre = self.get_vocab_base()
  6625. self.gguf_writer.add_tokenizer_model("gpt2")
  6626. self.gguf_writer.add_tokenizer_pre(tokpre)
  6627. self.gguf_writer.add_token_list(tokens)
  6628. self.gguf_writer.add_token_types(toktypes)
  6629. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6630. # only add special tokens when they were not already loaded from config.json
  6631. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  6632. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  6633. # this one is usually not in config.json anyway
  6634. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  6635. special_vocab.add_to_gguf(self.gguf_writer)
  6636. def set_gguf_parameters(self):
  6637. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  6638. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  6639. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  6640. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  6641. self.gguf_writer.add_embedding_length(n_embed)
  6642. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  6643. self.gguf_writer.add_block_count(self.block_count)
  6644. self.gguf_writer.add_head_count(n_head)
  6645. self.gguf_writer.add_head_count_kv(n_head_kv)
  6646. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  6647. self.gguf_writer.add_file_type(self.ftype)
  6648. if "attention_dim" in self.hparams:
  6649. rope_dim = self.hparams["attention_dim"]
  6650. else:
  6651. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6652. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  6653. self.gguf_writer.add_add_bos_token(False)
  6654. rope_freq = 10000
  6655. if "rope_ratio" in self.hparams:
  6656. rope_freq = rope_freq * self.hparams["rope_ratio"]
  6657. self.gguf_writer.add_rope_freq_base(rope_freq)
  6658. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6659. del bid # unused
  6660. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  6661. return []
  6662. name = name.removeprefix("transformer.")
  6663. return [(self.map_tensor_name(name), data_torch)]
  6664. @ModelBase.register("NemotronForCausalLM")
  6665. class NemotronModel(TextModel):
  6666. model_arch = gguf.MODEL_ARCH.NEMOTRON
  6667. def set_vocab(self):
  6668. self._set_vocab_sentencepiece()
  6669. self.gguf_writer.add_pad_token_id(0)
  6670. self.gguf_writer.add_unk_token_id(1)
  6671. def set_gguf_parameters(self):
  6672. super().set_gguf_parameters()
  6673. hparams = self.hparams
  6674. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6675. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  6676. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  6677. # * Partial RoPE
  6678. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  6679. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  6680. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  6681. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  6682. # * RopeScaling for Nemotron
  6683. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  6684. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  6685. else:
  6686. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6687. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  6688. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6689. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  6690. # model.layers.{l}.input_layernorm.weight
  6691. # model.layers.{l}.post_attention_layernorm.weight
  6692. # model.norm.weight
  6693. if name.endswith("norm.weight"):
  6694. data_torch = data_torch + 1
  6695. return [(self.map_tensor_name(name), data_torch)]
  6696. @ModelBase.register("ExaoneForCausalLM")
  6697. class ExaoneModel(TextModel):
  6698. model_arch = gguf.MODEL_ARCH.EXAONE
  6699. def set_gguf_parameters(self):
  6700. hparams = self.hparams
  6701. assert (hparams["activation_function"] == "silu")
  6702. max_position_embeddings = hparams["max_position_embeddings"]
  6703. embed_dim = hparams["hidden_size"]
  6704. num_heads = hparams["num_attention_heads"]
  6705. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  6706. layer_norm_eps = hparams["layer_norm_epsilon"]
  6707. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  6708. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  6709. # attention_dropout_rate = hparams["attention_dropout"]
  6710. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  6711. # embed_dropout_rate = hparams["embed_dropout"]
  6712. self.gguf_writer.add_embedding_length(embed_dim)
  6713. self.gguf_writer.add_head_count(num_heads)
  6714. self.gguf_writer.add_head_count_kv(num_kv_heads)
  6715. self.gguf_writer.add_context_length(max_position_embeddings)
  6716. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  6717. self.gguf_writer.add_feed_forward_length(intermediate_size)
  6718. self.gguf_writer.add_block_count(self.block_count)
  6719. self.gguf_writer.add_file_type(self.ftype)
  6720. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  6721. self.gguf_writer.add_rope_freq_base(rope_theta)
  6722. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  6723. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  6724. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  6725. rope_scaling = self.hparams.get("rope_scaling") or {}
  6726. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6727. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6728. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6729. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6730. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6731. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6732. base = self.hparams.get("rope_theta", 10000.0)
  6733. if (dim := self.hparams.get("head_dim")) is None:
  6734. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6735. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6736. factor = rope_scaling.get("factor", 8.0)
  6737. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6738. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6739. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6740. low_freq_wavelen = old_context_len / low_freq_factor
  6741. high_freq_wavelen = old_context_len / high_freq_factor
  6742. assert low_freq_wavelen != high_freq_wavelen
  6743. rope_factors = []
  6744. for freq in freqs:
  6745. wavelen = 2 * math.pi / freq
  6746. if wavelen < high_freq_wavelen:
  6747. rope_factors.append(1)
  6748. elif wavelen > low_freq_wavelen:
  6749. rope_factors.append(factor)
  6750. else:
  6751. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6752. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6753. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6754. @ModelBase.register("Exaone4ForCausalLM")
  6755. class Exaone4Model(TextModel):
  6756. model_arch = gguf.MODEL_ARCH.EXAONE4
  6757. def set_vocab(self):
  6758. tokens, toktypes, tokpre = self.get_vocab_base()
  6759. self.gguf_writer.add_tokenizer_model("gpt2")
  6760. self.gguf_writer.add_tokenizer_pre(tokpre)
  6761. self.gguf_writer.add_token_list(tokens)
  6762. self.gguf_writer.add_token_types(toktypes)
  6763. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  6764. special_vocab.add_to_gguf(self.gguf_writer)
  6765. def set_gguf_parameters(self):
  6766. super().set_gguf_parameters()
  6767. hparams = self.hparams
  6768. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  6769. if hparams.get("sliding_window") is not None:
  6770. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  6771. if "layer_types" in hparams:
  6772. self.gguf_writer.add_sliding_window_pattern([t == "sliding_attention" for t in hparams["layer_types"]])
  6773. elif "sliding_window_pattern" in hparams:
  6774. sliding_window_pattern = []
  6775. if isinstance(hparams["sliding_window_pattern"], str): # e.g. LLLG
  6776. for i in range(hparams["num_hidden_layers"]):
  6777. sliding_window_pattern.append(hparams["sliding_window_pattern"][i % len(hparams["sliding_window_pattern"])] == "L")
  6778. if isinstance(hparams["sliding_window_pattern"], int): # e.g. 4
  6779. for i in range(hparams["num_hidden_layers"]):
  6780. sliding_window_pattern.append((i + 1) % hparams["sliding_window_pattern"] != 0)
  6781. if len(sliding_window_pattern) == hparams["num_hidden_layers"]:
  6782. self.gguf_writer.add_sliding_window_pattern(sliding_window_pattern)
  6783. rope_scaling = self.hparams.get("rope_scaling") or {}
  6784. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "linear" and "factor" in rope_scaling:
  6785. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  6786. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  6787. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  6788. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  6789. if rope_scaling.get("rope_type", '').lower() == "llama3":
  6790. base = self.hparams.get("rope_theta", 10_000.0)
  6791. if (dim := self.hparams.get("head_dim")) is None:
  6792. dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  6793. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  6794. factor = rope_scaling.get("factor", 16.0)
  6795. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  6796. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  6797. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  6798. low_freq_wavelen = old_context_len / low_freq_factor
  6799. high_freq_wavelen = old_context_len / high_freq_factor
  6800. rope_factors = []
  6801. for freq in freqs:
  6802. wavelen = 2 * math.pi / freq
  6803. if wavelen < high_freq_wavelen:
  6804. rope_factors.append(1)
  6805. elif wavelen > low_freq_wavelen:
  6806. rope_factors.append(factor)
  6807. else:
  6808. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  6809. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  6810. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  6811. @ModelBase.register("GraniteForCausalLM")
  6812. class GraniteModel(LlamaModel):
  6813. """Conversion for IBM's GraniteForCausalLM"""
  6814. model_arch = gguf.MODEL_ARCH.GRANITE
  6815. def set_gguf_parameters(self):
  6816. """Granite uses standard llama parameters with the following differences:
  6817. - No head_dim support
  6818. - New multiplier params:
  6819. - attention_scale
  6820. - embedding_scale
  6821. - residual_scale
  6822. - logits_scaling
  6823. """
  6824. if head_dim := self.hparams.pop("head_dim", None):
  6825. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  6826. super().set_gguf_parameters()
  6827. # NOTE: Convert _multiplier params to _scale params for naming
  6828. # consistency
  6829. if attention_scale := self.hparams.get("attention_multiplier"):
  6830. self.gguf_writer.add_attention_scale(attention_scale)
  6831. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  6832. if embedding_scale := self.hparams.get("embedding_multiplier"):
  6833. self.gguf_writer.add_embedding_scale(embedding_scale)
  6834. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  6835. if residual_scale := self.hparams.get("residual_multiplier"):
  6836. self.gguf_writer.add_residual_scale(residual_scale)
  6837. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  6838. if logits_scale := self.hparams.get("logits_scaling"):
  6839. self.gguf_writer.add_logit_scale(logits_scale)
  6840. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  6841. @ModelBase.register("GraniteMoeForCausalLM", "GraniteMoeSharedForCausalLM")
  6842. class GraniteMoeModel(GraniteModel):
  6843. """Conversion for IBM's GraniteMoeForCausalLM"""
  6844. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  6845. def set_gguf_parameters(self):
  6846. """GraniteMoeShared uses GraniteMoe parameters plus the following:
  6847. - shared_intermediate_size
  6848. """
  6849. super().set_gguf_parameters()
  6850. if shared_feed_forward_length := self.hparams.get("shared_intermediate_size"):
  6851. self.gguf_writer.add_expert_shared_feed_forward_length(shared_feed_forward_length)
  6852. logger.info("gguf: (granitemoeshared) shared_feed_forward_length = %s", shared_feed_forward_length)
  6853. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  6854. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  6855. is used. This essentially merges w1 and w3 into a single tensor with 2x
  6856. the hidden size that is then split during forward. To keep compatibility
  6857. with existing mixtral support, we pull them apart here.
  6858. """
  6859. if name.endswith("block_sparse_moe.input_linear.weight"):
  6860. ffn_dim = self.hparams["intermediate_size"]
  6861. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  6862. gate, up = data_torch.split(ffn_dim, dim=-2)
  6863. return [
  6864. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  6865. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  6866. ]
  6867. has_experts = bool(self.hparams.get('num_local_experts'))
  6868. if name.endswith("shared_mlp.input_linear.weight"):
  6869. ffn_dim = self.hparams["shared_intermediate_size"]
  6870. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * shared_intermediate_size"
  6871. gate, up = data_torch.split(ffn_dim, dim=-2)
  6872. if has_experts:
  6873. return [
  6874. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_SHEXP, bid), gate),
  6875. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_SHEXP, bid), up),
  6876. ]
  6877. return [
  6878. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), gate),
  6879. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), up),
  6880. ]
  6881. if not has_experts and name.endswith("shared_mlp.output_linear.weight"):
  6882. return [
  6883. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_DOWN, bid), data_torch)
  6884. ]
  6885. return super().modify_tensors(data_torch, name, bid)
  6886. @ModelBase.register("GraniteMoeHybridForCausalLM", "BambaForCausalLM")
  6887. class GraniteHybridModel(Mamba2Model, GraniteMoeModel):
  6888. """GraniteHybrid is a hybrid SSM + Attention model that uses Mamba2 SSM
  6889. layers and optionally uses MoE w/ a shared expert"""
  6890. model_arch = gguf.MODEL_ARCH.GRANITE_HYBRID
  6891. undo_permute = True
  6892. def __init__(self, *args, **kwargs):
  6893. # Hybrid mamba models use a prefix for the mamba-specific params.
  6894. # TODO: Extend this if the prefix(es) need to be configurable
  6895. self.hparam_prefixes = ["mamba"]
  6896. super().__init__(*args, **kwargs)
  6897. # Lists of which layers use ssm vs attention
  6898. self._attn_layers = self.get_attn_layers()
  6899. self._ssm_layers = [
  6900. i for i in range(self.block_count)
  6901. if i not in self._attn_layers
  6902. ]
  6903. # There are some models in this family that are non-hybrid, but keep the
  6904. # same parent class by setting all layers to "attention." If this is the
  6905. # case, the model architecture needs to be updated to a standard
  6906. # "granite" or "granitemoe" model
  6907. if not self._ssm_layers:
  6908. has_experts = self.find_hparam(["num_experts_per_tok"], optional=True)
  6909. new_arch = (
  6910. gguf.MODEL_ARCH.GRANITE_MOE
  6911. if has_experts else
  6912. gguf.MODEL_ARCH.GRANITE
  6913. )
  6914. self.model_arch = new_arch
  6915. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[new_arch]
  6916. self.gguf_writer.add_architecture()
  6917. # n_group and d_inner are used during reshape_tensors for mamba2
  6918. # NOTE: Explicitly include hparam prefix prefix for d_model to
  6919. # disambiguate with top-level head_dim
  6920. # NOTE 2: If needed for future models, this can be isolated in a method
  6921. # to separate the prefix setting and teh keys used
  6922. self.d_model = self.find_hparam([f"{self.hparam_prefixes[0]}_head_dim", "hidden_size", "d_model"])
  6923. self.n_group = self.find_hparam(["n_groups", "num_groups"])
  6924. self.d_inner = self.find_hparam(["expand", "num_heads"]) * self.d_model
  6925. def get_attn_layers(self):
  6926. # Explicit list of layer type names
  6927. if layer_types := self.hparams.get("layer_types"):
  6928. return [
  6929. i for i, typ in enumerate(layer_types)
  6930. if typ == "attention"
  6931. ]
  6932. # Layer types indicated by index or period
  6933. attn_layers = self.hparams.get("attn_layer_indices", [])
  6934. if not attn_layers:
  6935. attn_period = self.hparams.get("attn_layer_period")
  6936. assert attn_period, "Didn't find attn_layer_indices or attn_layer_period"
  6937. attn_offset = self.hparams.get("attn_layer_offset")
  6938. assert attn_offset is not None, "No attention layer offset set with attn_layer_period"
  6939. attn_layers = [
  6940. i for i in range(self.block_count)
  6941. if i % attn_period == attn_offset
  6942. ]
  6943. return attn_layers
  6944. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  6945. prefixed = []
  6946. for pfx in self.hparam_prefixes:
  6947. prefixed.extend(
  6948. "_".join([pfx, k])
  6949. for k in keys
  6950. )
  6951. keys = list(keys) + prefixed
  6952. return Mamba2Model.find_hparam(self, keys, *args, **kwargs)
  6953. def modify_tensors(
  6954. self, data_torch: Tensor, name: str, bid: int | None
  6955. ) -> Iterable[tuple[str, Tensor]]:
  6956. if (
  6957. name.endswith("block_sparse_moe.input_linear.weight")
  6958. or "shared_mlp" in name
  6959. ):
  6960. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6961. # Determine whether this is a mamba layer or an attention layer
  6962. if bid in self._ssm_layers:
  6963. return Mamba2Model.modify_tensors(self, data_torch, name, bid)
  6964. elif bid in self._attn_layers:
  6965. return GraniteMoeModel.modify_tensors(self, data_torch, name, bid)
  6966. return [(self.map_tensor_name(name), data_torch)]
  6967. def set_gguf_parameters(self):
  6968. """This method merges params from both parents and some that are
  6969. specific to this model. The result is some duplication of how the params
  6970. get set. The following warnings are expected during conversion:
  6971. WARNING:Duplicated key name 'granitehybrid.attention.head_count_kv'
  6972. WARNING:Duplicated key name 'granitehybrid.context_length'
  6973. """
  6974. GraniteMoeModel.set_gguf_parameters(self)
  6975. ## Mamba mixer params ##
  6976. self.gguf_writer.add_ssm_conv_kernel(self.find_hparam(["conv_kernel", "d_conv"]))
  6977. self.gguf_writer.add_ssm_state_size(self.find_hparam(["state_size", "d_state", "state_dim", "ssm_state_size"]))
  6978. self.gguf_writer.add_ssm_group_count(self.n_group)
  6979. self.gguf_writer.add_ssm_inner_size(self.d_inner)
  6980. # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
  6981. # in llama.cpp
  6982. self.gguf_writer.add_ssm_time_step_rank(self.find_hparam(["n_heads", "num_heads"]))
  6983. ## Attention params ##
  6984. head_count_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  6985. head_count_kv_vec = [
  6986. head_count_kv if i in self._attn_layers else 0 for i in range(self.block_count)
  6987. ]
  6988. if rope_dim := self.hparams.get("attn_rotary_emb"):
  6989. self.gguf_writer.add_rope_dimension_count(rope_dim)
  6990. self.gguf_writer.add_head_count_kv(head_count_kv_vec)
  6991. ## If Bamba or non-hybrid, use rope, otherwise don't
  6992. use_rope = (
  6993. "BambaForCausalLM" in self.hparams["architectures"]
  6994. or not self._ssm_layers
  6995. )
  6996. self.gguf_writer.add_rope_scaling_finetuned(use_rope)
  6997. if not use_rope:
  6998. self.gguf_writer.add_context_length(2**20)
  6999. ## Validation ##
  7000. d_head = self.find_hparam(["d_head"], optional=True) or 64
  7001. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7002. assert self.d_inner % d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {d_head}"
  7003. def set_vocab(self):
  7004. self.hparams["pad_vocab_size_multiple"] = 8
  7005. Mamba2Model.set_vocab(self)
  7006. @ModelBase.register("NemotronHForCausalLM")
  7007. class NemotronHModel(GraniteHybridModel):
  7008. """Hybrid mamba2/attention model from NVIDIA"""
  7009. model_arch = gguf.MODEL_ARCH.NEMOTRON_H
  7010. def __init__(self, *args, **kwargs):
  7011. super().__init__(*args, **kwargs)
  7012. # Save the top-level head_dim for later
  7013. self.head_dim = self.hparams.get("head_dim", self.hparams.get("attention_head_dim"))
  7014. assert self.head_dim is not None, "Could not find the attention head dim in config"
  7015. # Don't use expand to calculate d_inner
  7016. self.d_inner = self.find_hparam(["num_heads"]) * self.d_model
  7017. # Update the ssm / attn / mlp layers
  7018. # M: Mamba2, *: Attention, -: MLP
  7019. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7020. self._ssm_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "M"]
  7021. self._mlp_layers = [i for i, val in enumerate(hybrid_override_pattern) if val == "-"]
  7022. def get_attn_layers(self):
  7023. hybrid_override_pattern = self.hparams["hybrid_override_pattern"]
  7024. assert len(hybrid_override_pattern) == self.block_count, "Mismatch between hybrid override and num_hidden_layers!"
  7025. return [i for i, val in enumerate(hybrid_override_pattern) if val == "*"]
  7026. def set_gguf_parameters(self):
  7027. super().set_gguf_parameters()
  7028. self.gguf_writer.add_key_length(self.head_dim)
  7029. self.gguf_writer.add_value_length(self.head_dim)
  7030. # Set feed_forward_length
  7031. # NOTE: This will trigger an override warning. This is preferrable to
  7032. # duplicating all the parent logic
  7033. n_ff = self.find_hparam(["intermediate_size", "n_inner", "hidden_dim"])
  7034. self.gguf_writer.add_feed_forward_length([
  7035. n_ff if i in self._mlp_layers else 0 for i in range(self.block_count)
  7036. ])
  7037. def set_vocab(self):
  7038. super().set_vocab()
  7039. # The tokenizer _does_ add a BOS token (via post_processor type
  7040. # TemplateProcessing) but does not set add_bos_token to true in the
  7041. # config, so we need to explicitly override it here.
  7042. self.gguf_writer.add_add_bos_token(True)
  7043. @ModelBase.register("BailingMoeForCausalLM")
  7044. class BailingMoeModel(TextModel):
  7045. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  7046. def set_vocab(self):
  7047. self._set_vocab_gpt2()
  7048. def set_gguf_parameters(self):
  7049. super().set_gguf_parameters()
  7050. hparams = self.hparams
  7051. if (rope_dim := hparams.get("head_dim")) is None:
  7052. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7053. self.gguf_writer.add_rope_dimension_count(rope_dim)
  7054. rope_scaling = self.hparams.get("rope_scaling") or {}
  7055. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7056. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7057. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7058. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7059. else:
  7060. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7061. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7062. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7063. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7064. self.gguf_writer.add_expert_weights_scale(1.0)
  7065. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7066. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7067. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7068. _experts: list[dict[str, Tensor]] | None = None
  7069. @staticmethod
  7070. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  7071. if n_head_kv is not None and n_head != n_head_kv:
  7072. n_head = n_head_kv
  7073. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  7074. .swapaxes(1, 2)
  7075. .reshape(weights.shape))
  7076. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7077. n_head = self.hparams["num_attention_heads"]
  7078. n_kv_head = self.hparams.get("num_key_value_heads")
  7079. n_embd = self.hparams["hidden_size"]
  7080. if (head_dim := self.hparams.get("head_dim")) is None:
  7081. head_dim = n_embd // n_head
  7082. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  7083. if name.endswith("attention.dense.weight"):
  7084. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  7085. elif name.endswith("query_key_value.weight"):
  7086. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  7087. return [
  7088. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  7089. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  7090. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  7091. ]
  7092. elif name.find("mlp.experts") != -1:
  7093. n_experts = self.hparams["num_experts"]
  7094. assert bid is not None
  7095. tensors: list[tuple[str, Tensor]] = []
  7096. if self._experts is None:
  7097. self._experts = [{} for _ in range(self.block_count)]
  7098. self._experts[bid][name] = data_torch
  7099. if len(self._experts[bid]) >= n_experts * 3:
  7100. # merge the experts into a single 3d tensor
  7101. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7102. datas: list[Tensor] = []
  7103. for xid in range(n_experts):
  7104. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7105. datas.append(self._experts[bid][ename])
  7106. del self._experts[bid][ename]
  7107. data_torch = torch.stack(datas, dim=0)
  7108. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7109. new_name = self.map_tensor_name(merged_name)
  7110. tensors.append((new_name, data_torch))
  7111. return tensors
  7112. new_name = self.map_tensor_name(name)
  7113. if new_name == output_name and self.hparams.get("norm_head"):
  7114. data_torch = data_torch.float()
  7115. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  7116. return [(new_name, data_torch)]
  7117. def prepare_tensors(self):
  7118. super().prepare_tensors()
  7119. if self._experts is not None:
  7120. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7121. experts = [k for d in self._experts for k in d.keys()]
  7122. if len(experts) > 0:
  7123. raise ValueError(f"Unprocessed experts: {experts}")
  7124. @ModelBase.register("BailingMoeV2ForCausalLM")
  7125. class BailingMoeV2Model(TextModel):
  7126. model_arch = gguf.MODEL_ARCH.BAILINGMOE2
  7127. def __init__(self, *args, **kwargs):
  7128. super().__init__(*args, **kwargs)
  7129. if nextn_layers := self.hparams.get("num_nextn_predict_layers", 0):
  7130. self.block_count = self.hparams["num_hidden_layers"] + nextn_layers
  7131. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  7132. def set_vocab(self):
  7133. self._set_vocab_gpt2()
  7134. def set_gguf_parameters(self):
  7135. super().set_gguf_parameters()
  7136. hparams = self.hparams
  7137. if (rope_dim := hparams.get("head_dim")) is None:
  7138. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  7139. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  7140. rope_scaling = self.hparams.get("rope_scaling") or {}
  7141. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7142. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7143. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7144. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7145. else:
  7146. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7147. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  7148. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  7149. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  7150. self.gguf_writer.add_expert_shared_feed_forward_length(hparams.get("moe_shared_expert_intermediate_size", hparams["moe_intermediate_size"] * hparams["num_shared_experts"]))
  7151. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  7152. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7153. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  7154. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  7155. if (nextn_layers := self.hparams.get("num_nextn_predict_layers")) is not None:
  7156. self.gguf_writer.add_nextn_predict_layers(nextn_layers)
  7157. _experts: list[dict[str, Tensor]] | None = None
  7158. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7159. if "mlp.experts" in name:
  7160. n_experts = self.hparams["num_experts"]
  7161. assert bid is not None
  7162. tensors: list[tuple[str, Tensor]] = []
  7163. if self._experts is None:
  7164. self._experts = [{} for _ in range(self.block_count)]
  7165. self._experts[bid][name] = data_torch
  7166. if len(self._experts[bid]) >= n_experts * 3:
  7167. # merge the experts into a single 3d tensor
  7168. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7169. datas: list[Tensor] = []
  7170. for xid in range(n_experts):
  7171. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7172. datas.append(self._experts[bid][ename])
  7173. del self._experts[bid][ename]
  7174. data_torch = torch.stack(datas, dim=0)
  7175. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7176. new_name = self.map_tensor_name(merged_name)
  7177. tensors.append((new_name, data_torch))
  7178. return tensors
  7179. if name.endswith(".expert_bias"):
  7180. name = name.replace(".expert_bias", ".expert_bias.bias")
  7181. return [(self.map_tensor_name(name), data_torch)]
  7182. def prepare_tensors(self):
  7183. super().prepare_tensors()
  7184. if self._experts is not None:
  7185. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7186. experts = [k for d in self._experts for k in d.keys()]
  7187. if len(experts) > 0:
  7188. raise ValueError(f"Unprocessed experts: {experts}")
  7189. @ModelBase.register("GroveMoeForCausalLM", "modeling_grove_moe.GroveMoeForCausalLM")
  7190. class GroveMoeModel(TextModel):
  7191. model_arch = gguf.MODEL_ARCH.GROVEMOE
  7192. def set_gguf_parameters(self):
  7193. super().set_gguf_parameters()
  7194. if (n_experts := self.hparams.get("num_experts")) is not None:
  7195. self.gguf_writer.add_expert_count(n_experts)
  7196. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  7197. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7198. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7199. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L299
  7200. self.gguf_writer.add_expert_chunk_feed_forward_length(self.hparams.get("head_dim") or 128)
  7201. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L298
  7202. self.gguf_writer.add_experts_per_group(2)
  7203. # FIXME?: Hardcoded https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L376
  7204. self.gguf_writer.add_expert_group_scale(0.05)
  7205. # YaRN is not enabled by default
  7206. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7207. rope_scaling = self.hparams.get("rope_scaling") or {}
  7208. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7209. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7210. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7211. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7212. _experts: list[dict[str, Tensor]] | None = None
  7213. _chunk_experts: list[dict[str, Tensor]] | None = None
  7214. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7215. if name.endswith(".expert_bias"):
  7216. # FIXME?: Unused https://huggingface.co/inclusionAI/GroveMoE-Inst/blob/c4c69e5970d18907b5e6ddccdfd55176fe292df1/modeling_grove_moe.py#L303
  7217. return []
  7218. # process the experts separately
  7219. if name.find("chunk_experts") != -1:
  7220. n_experts = self.hparams["num_experts"] // 2 # see add_experts_per_group
  7221. assert bid is not None
  7222. if self._chunk_experts is None:
  7223. self._chunk_experts = [{} for _ in range(self.block_count)]
  7224. self._chunk_experts[bid][name] = data_torch
  7225. if len(self._chunk_experts[bid]) >= n_experts * 3:
  7226. tensors: list[tuple[str, Tensor]] = []
  7227. # merge the experts into a single 3d tensor
  7228. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7229. datas: list[Tensor] = []
  7230. for xid in range(n_experts):
  7231. ename = f"model.layers.{bid}.mlp.chunk_experts.{xid}.{w_name}.weight"
  7232. datas.append(self._chunk_experts[bid][ename])
  7233. del self._chunk_experts[bid][ename]
  7234. data_torch = torch.stack(datas, dim=0)
  7235. merged_name = f"model.layers.{bid}.mlp.chunk_experts.{w_name}.weight"
  7236. new_name = self.map_tensor_name(merged_name)
  7237. tensors.append((new_name, data_torch))
  7238. return tensors
  7239. else:
  7240. return []
  7241. elif name.find("experts") != -1:
  7242. n_experts = self.hparams["num_experts"]
  7243. assert bid is not None
  7244. if self._experts is None:
  7245. self._experts = [{} for _ in range(self.block_count)]
  7246. self._experts[bid][name] = data_torch
  7247. if len(self._experts[bid]) >= n_experts * 3:
  7248. tensors: list[tuple[str, Tensor]] = []
  7249. # merge the experts into a single 3d tensor
  7250. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7251. datas: list[Tensor] = []
  7252. for xid in range(n_experts):
  7253. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7254. datas.append(self._experts[bid][ename])
  7255. del self._experts[bid][ename]
  7256. data_torch = torch.stack(datas, dim=0)
  7257. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7258. new_name = self.map_tensor_name(merged_name)
  7259. tensors.append((new_name, data_torch))
  7260. return tensors
  7261. else:
  7262. return []
  7263. return [(self.map_tensor_name(name), data_torch)]
  7264. def prepare_tensors(self):
  7265. super().prepare_tensors()
  7266. if self._chunk_experts is not None:
  7267. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7268. chunk_experts = [k for d in self._chunk_experts for k in d.keys()]
  7269. if len(chunk_experts) > 0:
  7270. raise ValueError(f"Unprocessed adjugate experts: {chunk_experts}")
  7271. if self._experts is not None:
  7272. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7273. experts = [k for d in self._experts for k in d.keys()]
  7274. if len(experts) > 0:
  7275. raise ValueError(f"Unprocessed experts: {experts}")
  7276. @ModelBase.register("ChameleonForConditionalGeneration")
  7277. @ModelBase.register("ChameleonForCausalLM") # obsolete
  7278. class ChameleonModel(TextModel):
  7279. model_arch = gguf.MODEL_ARCH.CHAMELEON
  7280. def set_gguf_parameters(self):
  7281. super().set_gguf_parameters()
  7282. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  7283. def set_vocab(self):
  7284. self._set_vocab_gpt2()
  7285. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7286. # ignore image tokenizer for now
  7287. # TODO: remove this once image support is implemented for Chameleon
  7288. if name.startswith("model.vqmodel"):
  7289. return []
  7290. n_head = self.hparams["num_attention_heads"]
  7291. n_kv_head = self.hparams.get("num_key_value_heads")
  7292. hidden_dim = self.hparams.get("hidden_size")
  7293. if name.endswith(("q_proj.weight", "q_proj.bias")):
  7294. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  7295. if name.endswith(("k_proj.weight", "k_proj.bias")):
  7296. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  7297. if name.endswith(("q_norm.weight", "q_norm.bias")):
  7298. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  7299. if name.endswith(("k_norm.weight", "k_norm.bias")):
  7300. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  7301. return [(self.map_tensor_name(name), data_torch)]
  7302. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  7303. @staticmethod
  7304. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  7305. head_dim = hidden_dim // n_heads
  7306. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  7307. data_torch = data_torch.repeat_interleave(n_heads, 0)
  7308. return data_torch
  7309. @ModelBase.register("UltravoxModel")
  7310. class UltravoxModel(TextModel):
  7311. model_arch = gguf.MODEL_ARCH.LLAMA # dummy
  7312. def __init__(self, *args, **kwargs):
  7313. super().__init__(*args, **kwargs)
  7314. raise NotImplementedError("Ultravox does not have text decoder. Instead, it uses Llama or other models for text. If you want to get the audio encoder, please use --mmproj argument")
  7315. @ModelBase.register("Qwen2AudioForConditionalGeneration")
  7316. class WhisperEncoderModel(MmprojModel):
  7317. has_vision_encoder = False # no vision encoder
  7318. has_audio_encoder = True
  7319. def __init__(self, *args, **kwargs):
  7320. super().__init__(*args, **kwargs)
  7321. if "hidden_size" not in self.hparams and "intermediate_size" not in self.hparams:
  7322. self.hparams["hidden_size"] = self.hparams["d_model"]
  7323. self.hparams["intermediate_size"] = self.hparams["encoder_ffn_dim"]
  7324. self.hparams["num_attention_heads"] = self.hparams["encoder_attention_heads"]
  7325. def set_gguf_parameters(self):
  7326. super().set_gguf_parameters()
  7327. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.QWEN2A)
  7328. self.gguf_writer.add_audio_num_mel_bins(self.hparams["num_mel_bins"])
  7329. self.gguf_writer.add_audio_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-5))
  7330. def tensor_force_quant(self, name, new_name, bid, n_dims):
  7331. if ".conv" in name and ".weight" in name:
  7332. return gguf.GGMLQuantizationType.F16
  7333. return super().tensor_force_quant(name, new_name, bid, n_dims)
  7334. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7335. del bid # unused
  7336. if name.startswith("language_model."):
  7337. # skip language model tensors
  7338. return []
  7339. # prevent clash naming with vision tensors
  7340. if name.startswith("multi_modal_projector"):
  7341. name = "audio." + name
  7342. if "conv1.bias" in name or "conv2.bias" in name:
  7343. # transpose conv1 and conv2 bias
  7344. data_torch = data_torch.unsqueeze(-1)
  7345. return [(self.map_tensor_name(name), data_torch)]
  7346. @ModelBase.register("UltravoxModel")
  7347. class UltravoxWhisperEncoderModel(WhisperEncoderModel):
  7348. has_vision_encoder = False # no vision encoder
  7349. has_audio_encoder = True
  7350. def set_gguf_parameters(self):
  7351. super().set_gguf_parameters()
  7352. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.ULTRAVOX)
  7353. self.gguf_writer.add_audio_stack_factor(self.global_config["stack_factor"])
  7354. @ModelBase.register("VoxtralForConditionalGeneration")
  7355. class VoxtralWhisperEncoderModel(WhisperEncoderModel):
  7356. has_vision_encoder = False # no vision encoder
  7357. has_audio_encoder = True
  7358. def set_gguf_parameters(self):
  7359. super().set_gguf_parameters()
  7360. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.VOXTRAL)
  7361. self.gguf_writer.add_audio_stack_factor(4) # == intermediate_size // hidden_size
  7362. @ModelBase.register("FalconH1ForCausalLM")
  7363. class FalconH1Model(Mamba2Model):
  7364. model_arch = gguf.MODEL_ARCH.FALCON_H1
  7365. def __init__(self, *args, **kwargs):
  7366. # Set the hparam prefixes for Falcon Mamba2
  7367. self.hparam_prefixes = ["mamba"]
  7368. # Initialize the base Mamba2Model
  7369. super().__init__(*args, **kwargs)
  7370. # Use Llama conversion for attention
  7371. self._transformer_model_class = LlamaModel
  7372. # n_group and d_inner are used during reshape_tensors for mamba2
  7373. self.n_group = self.find_hparam(["n_groups"])
  7374. self.d_inner = self.find_hparam(["mamba_d_ssm"])
  7375. self.d_head = self.find_hparam(["d_head"])
  7376. # Initialize any Falcon Mamba2 specific attributes
  7377. self.has_attention = True # Falcon Mamba2 has attention components
  7378. # Load Falcon-H1 multipliers from hyperparameters
  7379. self.attention_in_multiplier = self.find_hparam(["attention_in_multiplier"], optional=True)
  7380. self.attention_out_multiplier = self.find_hparam(["attention_out_multiplier"], optional=True)
  7381. self.ssm_in_multiplier = self.find_hparam(["ssm_in_multiplier"], optional=True)
  7382. self.ssm_out_multiplier = self.find_hparam(["ssm_out_multiplier"], optional=True)
  7383. self.mlp_multipliers = self.find_hparam(["mlp_multipliers"], optional=True)
  7384. self.ssm_multipliers = self.find_hparam(["ssm_multipliers"], optional=True)
  7385. self.intermediate_size = self.find_hparam(["intermediate_size"])
  7386. self.key_multiplier = self.find_hparam(["key_multiplier"], optional=True)
  7387. def find_hparam(self, keys: Iterable[str], *args, **kwargs) -> Any:
  7388. prefixed = []
  7389. for pfx in self.hparam_prefixes:
  7390. prefixed.extend(
  7391. "_".join([pfx, k])
  7392. for k in keys
  7393. )
  7394. keys = list(keys) + prefixed
  7395. return super().find_hparam(keys, *args, **kwargs)
  7396. def set_vocab(self):
  7397. self._set_vocab_gpt2()
  7398. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7399. tensors = list(super().modify_tensors(data_torch, name, bid))
  7400. tensor = tensors[0][1]
  7401. if "down_proj" in name:
  7402. tensor = tensor * self.mlp_multipliers[1]
  7403. elif "gate_proj" in name:
  7404. tensor = tensor * self.mlp_multipliers[0]
  7405. elif "k_proj" in name:
  7406. tensor = tensor * self.key_multiplier * self.attention_in_multiplier
  7407. elif "q_proj" in name:
  7408. tensor = tensor * self.attention_in_multiplier
  7409. elif "v_proj" in name:
  7410. tensor = tensor * self.attention_in_multiplier
  7411. elif "o_proj" in name:
  7412. tensor = tensor * self.attention_out_multiplier
  7413. elif "out_proj" in name:
  7414. tensor = tensor * self.ssm_out_multiplier
  7415. elif "in_proj" in name:
  7416. tensor = tensor * self.ssm_in_multiplier
  7417. zxbcdt_multipliers = self.hparams["ssm_multipliers"]
  7418. intermediate_size = self.hparams["mamba_d_ssm"]
  7419. groups_time_state_size = self.hparams["mamba_n_groups"] * self.hparams["mamba_d_state"]
  7420. tensor[:intermediate_size, :] *= zxbcdt_multipliers[0]
  7421. tensor[intermediate_size:2 * intermediate_size, :] *= zxbcdt_multipliers[1]
  7422. tensor[2 * intermediate_size:2 * intermediate_size + groups_time_state_size, :] *= zxbcdt_multipliers[2]
  7423. tensor[2 * intermediate_size + groups_time_state_size:2 * intermediate_size + 2 * groups_time_state_size, :] *= zxbcdt_multipliers[3]
  7424. tensor[2 * intermediate_size + 2 * groups_time_state_size:, :] *= zxbcdt_multipliers[4]
  7425. elif "lm_head" in name:
  7426. tensor = tensor * self.hparams["lm_head_multiplier"]
  7427. elif "embed_tokens" in name:
  7428. tensor = tensor * self.hparams["embedding_multiplier"]
  7429. elif "mamba.norm" in name:
  7430. tensor = tensor.reshape(self.n_group, self.d_inner // self.n_group)
  7431. tensors = [(tensors[0][0], tensor)]
  7432. return tensors
  7433. def set_gguf_parameters(self):
  7434. super().set_gguf_parameters()
  7435. ## General Params ##
  7436. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7437. # Override some Mamba2 defaults
  7438. self.gguf_writer.add_block_count(self.block_count)
  7439. self.gguf_writer.add_context_length(self.hparams.get("max_position_embeddings", 0))
  7440. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  7441. ## Attention params ##
  7442. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"]) # Override value 0 from Mamba2
  7443. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  7444. self.gguf_writer.add_key_length(self.hparams["head_dim"])
  7445. self.gguf_writer.add_value_length(self.hparams["head_dim"])
  7446. ## Validation ##
  7447. assert self.hparams.get("hidden_act") in [None, "silu"], "Only SILU activation supported"
  7448. assert self.d_inner % self.d_head == 0, f"SSM inner size {self.d_inner} not a multiple of head dim {self.d_head}"
  7449. # Add any other Falcon Mamba2 specific configuration
  7450. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  7451. @ModelBase.register("HunYuanMoEV1ForCausalLM")
  7452. class HunYuanMoEModel(TextModel):
  7453. model_arch = gguf.MODEL_ARCH.HUNYUAN_MOE
  7454. def set_vocab(self):
  7455. from transformers import AutoTokenizer
  7456. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7457. # 1. Get the pre-tokenizer identifier hash
  7458. tokpre = self.get_vocab_base_pre(tokenizer)
  7459. # 2. Reverse-engineer the merges list from mergeable_ranks
  7460. merges = []
  7461. vocab = {}
  7462. mergeable_ranks = tokenizer.mergeable_ranks
  7463. for token, rank in mergeable_ranks.items():
  7464. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7465. if len(token) == 1:
  7466. continue
  7467. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7468. if len(merged) == 2: # todo this is an assert in Qwen, why?
  7469. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7470. # 3. Generate the tokens and toktypes lists
  7471. vocab_size = self.hparams["vocab_size"]
  7472. assert tokenizer.vocab_size == vocab_size
  7473. special_tokens = tokenizer.special_tokens
  7474. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7475. tokens: list[str] = []
  7476. toktypes: list[int] = []
  7477. for i in range(vocab_size):
  7478. if i not in reverse_vocab:
  7479. tokens.append(f"[PAD{i}]")
  7480. toktypes.append(gguf.TokenType.UNUSED)
  7481. else:
  7482. token = reverse_vocab[i]
  7483. tokens.append(token)
  7484. if i in special_tokens.values():
  7485. toktypes.append(gguf.TokenType.CONTROL)
  7486. else:
  7487. toktypes.append(gguf.TokenType.NORMAL)
  7488. # 4. Write all vocab-related fields to the GGUF writer
  7489. self.gguf_writer.add_tokenizer_model("gpt2")
  7490. self.gguf_writer.add_tokenizer_pre(tokpre)
  7491. self.gguf_writer.add_token_list(tokens)
  7492. self.gguf_writer.add_token_types(toktypes)
  7493. self.gguf_writer.add_token_merges(merges)
  7494. # 5. Add special tokens and chat templates
  7495. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7496. special_vocab.add_to_gguf(self.gguf_writer)
  7497. # FIX for BOS token: Overwrite incorrect id read from config.json
  7498. self.gguf_writer.add_bos_token_id(127959) # <|bos|>
  7499. def set_gguf_parameters(self):
  7500. super().set_gguf_parameters()
  7501. hparams = self.hparams
  7502. self.gguf_writer.add_expert_count(hparams["num_experts"])
  7503. self.gguf_writer.add_expert_shared_feed_forward_length(hparams["intermediate_size"])
  7504. moe_intermediate_size = hparams["moe_intermediate_size"]
  7505. assert all(n == moe_intermediate_size[0] for n in moe_intermediate_size)
  7506. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size[0])
  7507. moe_topk = hparams["moe_topk"]
  7508. assert all(topk == moe_topk[0] for topk in moe_topk)
  7509. self.gguf_writer.add_expert_used_count(moe_topk[0])
  7510. moe_shared_expert = hparams["num_shared_expert"]
  7511. assert all(n == moe_shared_expert[0] for n in moe_shared_expert)
  7512. self.gguf_writer.add_expert_shared_count(moe_shared_expert[0])
  7513. # Rope
  7514. rope_scaling = hparams.get("rope_scaling", {})
  7515. if rope_scaling.get("type") == "dynamic":
  7516. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7517. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7518. alpha = rope_scaling.get("alpha", 1000)
  7519. base = hparams.get("rope_theta", 10000.0)
  7520. dim = (hparams["hidden_size"] // hparams["num_attention_heads"]) # 128
  7521. scaled_base = base * (alpha ** (dim / (dim - 2))) # 10000 * (1000 ** (128 / 126)) = 11158839.9251
  7522. self.gguf_writer.add_rope_freq_base(scaled_base)
  7523. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7524. self.gguf_writer.add_rope_scaling_factor(1)
  7525. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7526. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7527. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7528. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7529. assert alpha == 1000 and base == 10000.0 and dim == 128 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7530. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7531. _experts: list[dict[str, Tensor]] | None = None
  7532. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7533. if name == "lm_head.weight":
  7534. if self.hparams.get("tie_word_embeddings", False):
  7535. logger.info("Skipping tied output layer 'lm_head.weight'")
  7536. return []
  7537. if name.find("mlp.experts") != -1:
  7538. n_experts = self.hparams["num_experts"]
  7539. assert bid is not None
  7540. if self._experts is None:
  7541. self._experts = [{} for _ in range(self.block_count)]
  7542. self._experts[bid][name] = data_torch
  7543. if len(self._experts[bid]) >= n_experts * 3:
  7544. # merge the experts into a single 3d tensor
  7545. tensors: list[tuple[str, Tensor]] = []
  7546. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7547. datas: list[Tensor] = []
  7548. for xid in range(n_experts):
  7549. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7550. datas.append(self._experts[bid][ename])
  7551. del self._experts[bid][ename]
  7552. data_torch = torch.stack(datas, dim=0)
  7553. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7554. new_name = self.map_tensor_name(merged_name)
  7555. tensors.append((new_name, data_torch))
  7556. return tensors
  7557. else:
  7558. return []
  7559. return [(self.map_tensor_name(name), data_torch)]
  7560. def prepare_tensors(self):
  7561. super().prepare_tensors()
  7562. if self._experts is not None:
  7563. experts = [k for d in self._experts for k in d.keys()]
  7564. if len(experts) > 0:
  7565. raise ValueError(f"Unprocessed experts: {experts}")
  7566. @ModelBase.register("LLaDAMoEModel", "LLaDAMoEModelLM")
  7567. class LLaDAMoEModel(TextModel):
  7568. model_arch = gguf.MODEL_ARCH.LLADA_MOE
  7569. def set_gguf_parameters(self):
  7570. super().set_gguf_parameters()
  7571. if (n_experts := self.hparams.get("num_experts")) is not None:
  7572. self.gguf_writer.add_expert_count(n_experts)
  7573. if (expert_intermediate_size := self.hparams.get("expert_intermediate_size")) is not None:
  7574. self.gguf_writer.add_expert_feed_forward_length(expert_intermediate_size)
  7575. # number of experts used per token (top-k)
  7576. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  7577. self.gguf_writer.add_expert_used_count(n_experts_used)
  7578. self.gguf_writer.add_mask_token_id(156895)
  7579. self.gguf_writer.add_causal_attention(False)
  7580. self.gguf_writer.add_diffusion_shift_logits(False)
  7581. _experts: list[dict[str, Tensor]] | None = None
  7582. # Copied from: Qwen2MoeModel
  7583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7584. # process the experts separately
  7585. if name.find("experts") != -1:
  7586. n_experts = self.hparams["num_experts"]
  7587. assert bid is not None
  7588. if self._experts is None:
  7589. self._experts = [{} for _ in range(self.block_count)]
  7590. self._experts[bid][name] = data_torch
  7591. if len(self._experts[bid]) >= n_experts * 3:
  7592. tensors: list[tuple[str, Tensor]] = []
  7593. # merge the experts into a single 3d tensor
  7594. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  7595. datas: list[Tensor] = []
  7596. for xid in range(n_experts):
  7597. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  7598. datas.append(self._experts[bid][ename])
  7599. del self._experts[bid][ename]
  7600. data_torch = torch.stack(datas, dim=0)
  7601. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  7602. new_name = self.map_tensor_name(merged_name)
  7603. tensors.append((new_name, data_torch))
  7604. return tensors
  7605. else:
  7606. return []
  7607. return [(self.map_tensor_name(name), data_torch)]
  7608. # Copied from: Qwen2MoeModel
  7609. def prepare_tensors(self):
  7610. super().prepare_tensors()
  7611. if self._experts is not None:
  7612. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7613. experts = [k for d in self._experts for k in d.keys()]
  7614. if len(experts) > 0:
  7615. raise ValueError(f"Unprocessed experts: {experts}")
  7616. @ModelBase.register("HunYuanDenseV1ForCausalLM")
  7617. class HunYuanModel(TextModel):
  7618. model_arch = gguf.MODEL_ARCH.HUNYUAN_DENSE
  7619. def set_vocab(self):
  7620. if (self.dir_model / "tokenizer.json").is_file():
  7621. self._set_vocab_gpt2()
  7622. else:
  7623. from transformers import AutoTokenizer
  7624. tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=True)
  7625. # 1. Get the pre-tokenizer identifier hash
  7626. tokpre = self.get_vocab_base_pre(tokenizer)
  7627. # 2. Reverse-engineer the merges list from mergeable_ranks
  7628. merges = []
  7629. vocab = {}
  7630. mergeable_ranks = tokenizer.mergeable_ranks
  7631. for token, rank in mergeable_ranks.items():
  7632. vocab[QwenModel.token_bytes_to_string(token)] = rank
  7633. if len(token) == 1:
  7634. continue
  7635. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  7636. if len(merged) == 2:
  7637. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  7638. # 3. Generate the tokens and toktypes lists
  7639. vocab_size = self.hparams["vocab_size"]
  7640. assert tokenizer.vocab_size == vocab_size
  7641. special_tokens = tokenizer.special_tokens
  7642. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **special_tokens}.items()}
  7643. tokens: list[str] = []
  7644. toktypes: list[int] = []
  7645. for i in range(vocab_size):
  7646. if i not in reverse_vocab:
  7647. tokens.append(f"[PAD{i}]")
  7648. toktypes.append(gguf.TokenType.UNUSED)
  7649. else:
  7650. token = reverse_vocab[i]
  7651. tokens.append(token)
  7652. if i in special_tokens.values():
  7653. toktypes.append(gguf.TokenType.CONTROL)
  7654. else:
  7655. toktypes.append(gguf.TokenType.NORMAL)
  7656. # 4. Write all vocab-related fields to the GGUF writer
  7657. self.gguf_writer.add_tokenizer_model("gpt2")
  7658. self.gguf_writer.add_tokenizer_pre(tokpre)
  7659. self.gguf_writer.add_token_list(tokens)
  7660. self.gguf_writer.add_token_types(toktypes)
  7661. self.gguf_writer.add_token_merges(merges)
  7662. # 5. Add special tokens and chat templates
  7663. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  7664. special_vocab.add_to_gguf(self.gguf_writer)
  7665. # FIX for BOS token: Overwrite incorrect id read from config.json
  7666. if self.hparams['hidden_size'] == 4096:
  7667. self.gguf_writer.add_bos_token_id(127958) # only for 7b dense, fix <|bos|> token
  7668. def set_gguf_parameters(self):
  7669. super().set_gguf_parameters()
  7670. hparams = self.hparams
  7671. # Rope
  7672. rope_scaling = hparams.get("rope_scaling", {})
  7673. if rope_scaling.get("type") == "dynamic":
  7674. # HunYuan uses NTK Aware Alpha based scaling. Original implementation: https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
  7675. # 1000 corresponds to a usable context length of 256k (https://github.com/Tencent-Hunyuan/Hunyuan-A13B/blob/main/report/Hunyuan_A13B_Technical_Report.pdf)
  7676. alpha = rope_scaling.get("alpha", 50)
  7677. base = hparams.get("rope_theta", 10000.0)
  7678. dim = hparams["head_dim"]
  7679. scaled_base = base * (alpha ** (dim / (dim - 2)))
  7680. self.gguf_writer.add_rope_freq_base(scaled_base)
  7681. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  7682. self.gguf_writer.add_rope_scaling_factor(1)
  7683. # There is no consistent way to calculate ctx from alpha, and the config is incorrectly set to 32k
  7684. self.gguf_writer.add_rope_scaling_orig_ctx_len(256 * 1024) # 256k context length
  7685. self.gguf_writer.add_context_length(256 * 1024) # 256k context length
  7686. # if any of our assumptions about the values are wrong, something has changed and this may need to be updated
  7687. assert base == 10000.0 and self.hparams["max_position_embeddings"] in [32 * 1024, 256 * 1024] , \
  7688. "HunYuan dynamic RoPE scaling assumptions changed, please update the logic or context length manually"
  7689. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7690. if name == "lm_head.weight":
  7691. if self.hparams.get("tie_word_embeddings", False):
  7692. logger.info("Skipping tied output layer 'lm_head.weight'")
  7693. return []
  7694. return [(self.map_tensor_name(name), data_torch)]
  7695. @ModelBase.register("SmolLM3ForCausalLM")
  7696. class SmolLM3Model(LlamaModel):
  7697. model_arch = gguf.MODEL_ARCH.SMOLLM3
  7698. @ModelBase.register("GptOssForCausalLM")
  7699. class GptOssModel(TextModel):
  7700. model_arch = gguf.MODEL_ARCH.GPT_OSS
  7701. # TODO: remove once MXFP4 is supported more generally
  7702. def dequant_model(self):
  7703. quant_config = self.hparams.get("quantization_config")
  7704. if quant_config is not None and quant_config.get("quant_method") == "mxfp4":
  7705. return
  7706. return super().dequant_model()
  7707. def transform_nibble_layout(self, tensor):
  7708. assert tensor.dtype == torch.uint8
  7709. assert tensor.shape[-1] == 16
  7710. # swap nibbles
  7711. t_lo = tensor & 0x0F
  7712. t_hi = tensor & 0xF0
  7713. t_swapped = (t_lo << 4) | (t_hi >> 4)
  7714. tensor = t_swapped
  7715. # transform aaaa...bbbb... to abababab...
  7716. blk_a, blk_b = tensor.chunk(2, dim=-1)
  7717. # get a_
  7718. blk_a0 = (blk_a & 0xF0).view(-1, 1)
  7719. blk_a1 = (blk_a << 4).view(-1, 1)
  7720. blk_a = torch.stack((blk_a0, blk_a1), dim=2).view(tensor.shape)
  7721. # get _b
  7722. blk_b0 = (blk_b >> 4).view(-1, 1)
  7723. blk_b1 = (blk_b & 0x0F).view(-1, 1)
  7724. blk_b = torch.stack((blk_b0, blk_b1), dim=2).view(tensor.shape)
  7725. # swap once more
  7726. out = blk_a | blk_b
  7727. out_h = out & 0xF0
  7728. out_l = out & 0x0F
  7729. out = (out_h >> 4) | (out_l << 4)
  7730. return out
  7731. def repack_mxfp4(self, new_name: str, blocks: Tensor, scales: Tensor):
  7732. assert blocks.dtype == torch.uint8
  7733. assert scales.dtype == torch.uint8
  7734. scales = scales.unsqueeze(-1)
  7735. assert len(blocks.shape) == 4
  7736. assert len(scales.shape) == 4
  7737. blocks = self.transform_nibble_layout(blocks)
  7738. new_data = torch.concat((scales, blocks), dim=-1)
  7739. new_shape = [new_data.shape[0], new_data.shape[1], new_data.shape[2] * 32]
  7740. logger.info(f"Repacked {new_name} with shape {new_shape} and quantization MXFP4")
  7741. # flatten last dim
  7742. new_data = new_data.view(new_data.shape[0], new_data.shape[1], new_data.shape[2] * new_data.shape[3])
  7743. new_data = new_data.numpy()
  7744. self.gguf_writer.add_tensor(new_name, new_data, raw_dtype=gguf.GGMLQuantizationType.MXFP4)
  7745. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  7746. blocks0: Tensor = torch.zeros(1)
  7747. blocks1: Tensor = torch.zeros(1)
  7748. # we assume that tensors are loaded in the correct order
  7749. for name, data_torch in self.get_tensors():
  7750. if "mlp.experts.down_proj_blocks" in name:
  7751. blocks0 = data_torch
  7752. elif "mlp.experts.down_proj_scales" in name:
  7753. new_name = self.map_tensor_name(name.replace("_scales", ".weight"))
  7754. self.repack_mxfp4(new_name, blocks0, data_torch)
  7755. elif "mlp.experts.gate_up_proj_blocks" in name:
  7756. blocks0, blocks1 = data_torch[:, ::2, :, :], data_torch[:, 1::2, :, :]
  7757. elif "mlp.experts.gate_up_proj_scales" in name:
  7758. scales0, scales1 = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7759. new_name_gate = self.map_tensor_name(name.replace("gate_up_proj_scales", "gate_proj.weight"))
  7760. new_name_up = self.map_tensor_name(name.replace("gate_up_proj_scales", "up_proj.weight"))
  7761. self.repack_mxfp4(new_name_gate, blocks0, scales0)
  7762. self.repack_mxfp4(new_name_up, blocks1, scales1)
  7763. return []
  7764. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7765. del bid # unused
  7766. if "sinks" in name:
  7767. name += ".weight"
  7768. # correct naming for down_proj
  7769. if "down_proj" in name:
  7770. if name.endswith("_bias"):
  7771. name = name.replace("down_proj_bias", "down_proj.bias")
  7772. elif "_blocks" not in name and "_scales" not in name:
  7773. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7774. name = name.replace("down_proj", "down_proj.weight")
  7775. data_torch = data_torch.transpose(-1, -2)
  7776. else:
  7777. # otherwise, it should already be repacked to ggml MXFP4 format
  7778. return []
  7779. # split the gate_up into gate and up
  7780. if "gate_up_proj" in name:
  7781. if name.endswith("_bias"):
  7782. name_up = name.replace("gate_up_proj_bias", "up_proj.bias")
  7783. name_gate = name.replace("gate_up_proj_bias", "gate_proj.bias")
  7784. gate_proj_bias, up_proj_bias = data_torch[..., ::2], data_torch[..., 1::2]
  7785. return [
  7786. (self.map_tensor_name(name_gate), gate_proj_bias),
  7787. (self.map_tensor_name(name_up), up_proj_bias)
  7788. ]
  7789. elif "_blocks" not in name and "_scales" not in name:
  7790. logger.warning(f"{name} is not in MXFP4, performance may be degraded")
  7791. name_up = name.replace("gate_up_proj", "up_proj.weight")
  7792. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  7793. data_torch = data_torch.transpose(-1, -2)
  7794. gate_proj_weight, up_proj_weight = data_torch[:, ::2, :], data_torch[:, 1::2, :]
  7795. return [
  7796. (self.map_tensor_name(name_gate), gate_proj_weight),
  7797. (self.map_tensor_name(name_up), up_proj_weight)
  7798. ]
  7799. else:
  7800. # otherwise, it should already be repacked to ggml MXFP4 format
  7801. return []
  7802. return [(self.map_tensor_name(name), data_torch)]
  7803. def set_vocab(self):
  7804. self._set_vocab_gpt2()
  7805. def set_gguf_parameters(self):
  7806. super().set_gguf_parameters()
  7807. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  7808. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size"])
  7809. rope_scaling = self.hparams.get("rope_scaling") or {}
  7810. rope_type = rope_scaling.get("rope_type", rope_scaling.get("type"))
  7811. assert rope_type == "yarn", f"GPT-OSS only supports yarn rope scaling, got {rope_type}"
  7812. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7813. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7814. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling.get("original_max_position_embeddings", 4096))
  7815. @ModelBase.register("Lfm2ForCausalLM", "LFM2ForCausalLM")
  7816. class LFM2Model(TextModel):
  7817. model_arch = gguf.MODEL_ARCH.LFM2
  7818. def _add_feed_forward_length(self):
  7819. ff_dim = self.hparams["block_ff_dim"]
  7820. auto_adjust_ff_dim = self.hparams["block_auto_adjust_ff_dim"]
  7821. ff_dim = self.hparams["block_ff_dim"]
  7822. ffn_dim_multiplier = self.hparams["block_ffn_dim_multiplier"]
  7823. multiple_of = self.hparams["block_multiple_of"]
  7824. if auto_adjust_ff_dim:
  7825. ff_dim = int(2 * ff_dim / 3)
  7826. # custom dim factor multiplier
  7827. if ffn_dim_multiplier is not None:
  7828. ff_dim = int(ffn_dim_multiplier * ff_dim)
  7829. ff_dim = multiple_of * ((ff_dim + multiple_of - 1) // multiple_of)
  7830. self.gguf_writer.add_feed_forward_length(ff_dim)
  7831. def set_gguf_parameters(self):
  7832. # set num_key_value_heads only for attention layers
  7833. self.hparams["num_key_value_heads"] = [
  7834. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7835. for layer_type in self.hparams["layer_types"]
  7836. ]
  7837. super().set_gguf_parameters()
  7838. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7839. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7840. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["norm_eps"])
  7841. self._add_feed_forward_length()
  7842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7843. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7844. if is_vision_tensor:
  7845. # skip vision tensors
  7846. return []
  7847. name = name.replace("language_model.", "")
  7848. # conv op requires 2d tensor
  7849. if 'conv.conv' in name:
  7850. data_torch = data_torch.squeeze(1)
  7851. return [(self.map_tensor_name(name), data_torch)]
  7852. @ModelBase.register("Lfm2MoeForCausalLM")
  7853. class LFM2MoeModel(TextModel):
  7854. model_arch = gguf.MODEL_ARCH.LFM2MOE
  7855. def set_gguf_parameters(self):
  7856. # set num_key_value_heads only for attention layers
  7857. self.hparams["num_key_value_heads"] = [
  7858. self.hparams["num_key_value_heads"] if layer_type == "full_attention" else 0
  7859. for layer_type in self.hparams["layer_types"]
  7860. ]
  7861. super().set_gguf_parameters()
  7862. self.gguf_writer.add_expert_count(self.hparams["num_experts"])
  7863. self.gguf_writer.add_expert_feed_forward_length(self.hparams["moe_intermediate_size"])
  7864. self.gguf_writer.add_leading_dense_block_count(self.hparams["num_dense_layers"])
  7865. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7866. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  7867. self.gguf_writer.add_shortconv_l_cache(self.hparams["conv_L_cache"])
  7868. # cache for experts weights for merging
  7869. _experts_cache: dict[int, dict[str, Tensor]] = {}
  7870. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7871. # conv op requires 2d tensor
  7872. if 'conv.conv' in name:
  7873. data_torch = data_torch.squeeze(1)
  7874. if name.endswith(".expert_bias"):
  7875. name = name.replace(".expert_bias", ".expert_bias.bias")
  7876. # merge expert weights
  7877. if 'experts' in name:
  7878. n_experts = self.hparams["num_experts"]
  7879. assert bid is not None
  7880. expert_cache = self._experts_cache.setdefault(bid, {})
  7881. expert_cache[name] = data_torch
  7882. expert_weights = ["w1", "w2", "w3"]
  7883. # not enough expert weights to merge
  7884. if len(expert_cache) < n_experts * len(expert_weights):
  7885. return []
  7886. tensors: list[tuple[str, Tensor]] = []
  7887. for w_name in expert_weights:
  7888. datas: list[Tensor] = []
  7889. for xid in range(n_experts):
  7890. ename = f"model.layers.{bid}.feed_forward.experts.{xid}.{w_name}.weight"
  7891. datas.append(expert_cache[ename])
  7892. del expert_cache[ename]
  7893. data_torch = torch.stack(datas, dim=0)
  7894. merged_name = f"layers.{bid}.feed_forward.experts.{w_name}.weight"
  7895. new_name = self.map_tensor_name(merged_name)
  7896. tensors.append((new_name, data_torch))
  7897. del self._experts_cache[bid]
  7898. return tensors
  7899. return [(self.map_tensor_name(name), data_torch)]
  7900. def prepare_tensors(self):
  7901. super().prepare_tensors()
  7902. assert not self._experts_cache
  7903. @ModelBase.register("Lfm2VlForConditionalGeneration")
  7904. class LFM2VLModel(MmprojModel):
  7905. def __init__(self, *args, **kwargs):
  7906. super().__init__(*args, **kwargs)
  7907. assert self.hparams_vision is not None
  7908. # TODO(tarek): for dynamic resolution image_size is not specified, setting here for compatibility
  7909. self.hparams_vision["image_size"] = 256
  7910. def set_gguf_parameters(self):
  7911. super().set_gguf_parameters()
  7912. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LFM2)
  7913. self.gguf_writer.add_vision_attention_layernorm_eps(self.find_vparam(["layer_norm_eps"]))
  7914. self.gguf_writer.add_vision_projector_scale_factor(self.global_config.get("downsample_factor", 2))
  7915. self.gguf_writer.add_vision_use_gelu(True)
  7916. # python notation, e.g. for vision_feature_layer == -1, we pick last layer -> vision_feature_layers_to_drop = 0
  7917. vision_feature_layers_to_drop = -(self.global_config.get("vision_feature_layer", -1) + 1)
  7918. self.gguf_writer.add_vision_block_count(self.find_vparam(self.n_block_keys) - vision_feature_layers_to_drop)
  7919. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7920. del bid # unused
  7921. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  7922. if is_vision_tensor:
  7923. # remove "model." prefix
  7924. name = name.replace("model.vision_tower.", "vision_tower.")
  7925. name = name.replace("model.multi_modal_projector.", "multi_modal_projector.")
  7926. if "patch_embedding.weight" in name:
  7927. data_torch = data_torch.view(data_torch.shape[0], 16, 16, 3).permute(0, 3, 1, 2)
  7928. return [(self.map_tensor_name(name), data_torch)]
  7929. return [] # skip other tensors
  7930. @ModelBase.register("SmallThinkerForCausalLM")
  7931. class SmallThinkerModel(TextModel):
  7932. model_arch = gguf.MODEL_ARCH.SMALLTHINKER
  7933. def set_gguf_parameters(self):
  7934. super().set_gguf_parameters()
  7935. if (n_experts := self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))) is not None:
  7936. self.gguf_writer.add_expert_count(n_experts)
  7937. if (n_experts_used := self.hparams.get("num_experts_per_tok", self.hparams.get("moe_num_active_primary_experts"))) is not None:
  7938. self.gguf_writer.add_expert_used_count(n_experts_used)
  7939. if (moe_intermediate_size := self.hparams.get("moe_ffn_hidden_size")) is not None:
  7940. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  7941. self.gguf_writer.add_feed_forward_length(moe_intermediate_size)
  7942. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  7943. if (self.hparams.get('moe_primary_router_apply_softmax')):
  7944. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  7945. else:
  7946. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  7947. # YaRN is not enabled by default
  7948. # To enable it, please refer to this guide: https://huggingface.co/Qwen/Qwen3-30B-A3B#processing-long-texts
  7949. rope_scaling = self.hparams.get("rope_scaling") or {}
  7950. if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling:
  7951. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  7952. self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"])
  7953. self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"])
  7954. sliding_window_layout = self.hparams.get("sliding_window_layout")
  7955. if sliding_window_layout:
  7956. for i in sliding_window_layout:
  7957. if i != 0:
  7958. sliding_window = self.hparams.get("sliding_window_size")
  7959. if sliding_window:
  7960. self.gguf_writer.add_sliding_window(sliding_window)
  7961. break
  7962. _experts: list[dict[str, Tensor]] | None = None
  7963. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  7964. # process the experts separately
  7965. if name.find("experts") != -1:
  7966. n_experts = self.hparams.get("num_experts", self.hparams.get("moe_num_primary_experts"))
  7967. assert bid is not None
  7968. if self._experts is None:
  7969. self._experts = [{} for _ in range(self.block_count)]
  7970. self._experts[bid][name] = data_torch
  7971. if len(self._experts[bid]) >= n_experts * 3:
  7972. tensors: list[tuple[str, Tensor]] = []
  7973. # merge the experts into a single 3d tensor
  7974. for w_name in ["down", "gate", "up"]:
  7975. datas: list[Tensor] = []
  7976. for xid in range(n_experts):
  7977. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  7978. datas.append(self._experts[bid][ename])
  7979. del self._experts[bid][ename]
  7980. data_torch = torch.stack(datas, dim=0)
  7981. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  7982. new_name = self.map_tensor_name(merged_name)
  7983. tensors.append((new_name, data_torch))
  7984. return tensors
  7985. else:
  7986. return []
  7987. return [(self.map_tensor_name(name), data_torch)]
  7988. def prepare_tensors(self):
  7989. super().prepare_tensors()
  7990. if self._experts is not None:
  7991. # flatten `list[dict[str, Tensor]]` into `list[str]`
  7992. experts = [k for d in self._experts for k in d.keys()]
  7993. if len(experts) > 0:
  7994. raise ValueError(f"Unprocessed experts: {experts}")
  7995. @ModelBase.register("ApertusForCausalLM")
  7996. class ApertusModel(LlamaModel):
  7997. model_arch = gguf.MODEL_ARCH.APERTUS
  7998. undo_permute = False
  7999. _alpha_n = {}
  8000. _alpha_p = {}
  8001. _beta = {}
  8002. _eps = {}
  8003. def modify_tensors(self, data_torch, name, bid):
  8004. # Handle xIELU activation parameters
  8005. n_layers = self.hparams["num_hidden_layers"]
  8006. if name.endswith(".act_fn.alpha_n"):
  8007. self._alpha_n[bid] = data_torch.to("cpu").float().item()
  8008. if (len(self._alpha_n) == n_layers):
  8009. self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)])
  8010. return []
  8011. if name.endswith(".act_fn.alpha_p"):
  8012. self._alpha_p[bid] = data_torch.to("cpu").float().item()
  8013. if (len(self._alpha_p) == n_layers):
  8014. self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)])
  8015. return []
  8016. if name.endswith(".act_fn.beta"):
  8017. self._beta[bid] = data_torch.to("cpu").float().item()
  8018. if (len(self._beta) == n_layers):
  8019. self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)])
  8020. return []
  8021. if name.endswith(".act_fn.eps"):
  8022. self._eps[bid] = data_torch.to("cpu").float().item()
  8023. if (len(self._eps) == n_layers):
  8024. self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)])
  8025. return []
  8026. return super().modify_tensors(data_torch, name, bid)
  8027. class MistralModel(LlamaModel):
  8028. model_arch = gguf.MODEL_ARCH.MISTRAL3
  8029. model_name = "Mistral"
  8030. hf_arch = ""
  8031. is_mistral_format = True
  8032. undo_permute = False
  8033. def __init__(self, *args, **kwargs):
  8034. super().__init__(*args, **kwargs)
  8035. # for compatibility, we use LLAMA arch for older models
  8036. # TODO: remove this once everyone migrates to newer version of llama.cpp
  8037. if "llama_4_scaling" not in self.hparams:
  8038. self.model_arch = gguf.MODEL_ARCH.LLAMA
  8039. self.gguf_writer.arch = gguf.MODEL_ARCH_NAMES[self.model_arch]
  8040. self.gguf_writer.add_architecture()
  8041. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  8042. @staticmethod
  8043. def get_community_chat_template(vocab: MistralVocab, templates_dir: Path, is_mistral_format: bool):
  8044. assert TokenizerVersion is not None and Tekkenizer is not None and SentencePieceTokenizer is not None, _mistral_import_error_msg
  8045. assert isinstance(vocab.tokenizer, (Tekkenizer, SentencePieceTokenizer)), (
  8046. f"Expected Tekkenizer or SentencePieceTokenizer, got {type(vocab.tokenizer)}"
  8047. )
  8048. if vocab.tokenizer.version == TokenizerVersion.v1:
  8049. return "mistral-v1"
  8050. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8051. return "mistral-v3"
  8052. elif vocab.tokenizer.version == TokenizerVersion.v3 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8053. return "mistral-v3-tekken"
  8054. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.spm:
  8055. return "mistral-v7"
  8056. elif vocab.tokenizer.version == TokenizerVersion.v7 and vocab.tokenizer_type == MistralTokenizerType.tekken:
  8057. return "mistral-v7-tekken"
  8058. elif vocab.tokenizer.version == TokenizerVersion.v11:
  8059. template_file = "Mistral-Small-3.2-24B-Instruct-2506.jinja"
  8060. elif vocab.tokenizer.version == TokenizerVersion.v13:
  8061. template_file = "unsloth-mistral-Devstral-Small-2507.jinja"
  8062. else:
  8063. err_message = f"Unknown tokenizer type: {vocab.tokenizer_type} and version {vocab.tokenizer.version}"
  8064. if is_mistral_format:
  8065. err_message += (
  8066. " . Please pass --disable-mistral-community-chat-template argument to the CLI "
  8067. "if you want to skip this error and use the Mistral official `mistral-common` pre-processing library."
  8068. )
  8069. raise ValueError(err_message)
  8070. template_path = templates_dir / template_file
  8071. if not template_path.exists():
  8072. raise FileNotFoundError(f"Template file not found: {template_path}")
  8073. with open(template_path, "r", encoding="utf-8") as f:
  8074. template = f.read()
  8075. return template
  8076. def set_gguf_parameters(self):
  8077. super().set_gguf_parameters()
  8078. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8079. @staticmethod
  8080. def set_mistral_config(gguf_writer: gguf.GGUFWriter, hparams: dict):
  8081. if "yarn" in hparams:
  8082. yarn_params = hparams["yarn"]
  8083. gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  8084. gguf_writer.add_rope_scaling_factor(yarn_params["factor"])
  8085. gguf_writer.add_rope_scaling_yarn_beta_fast(yarn_params["beta"])
  8086. gguf_writer.add_rope_scaling_yarn_beta_slow(yarn_params["alpha"])
  8087. gguf_writer.add_rope_scaling_yarn_log_mul(1.0) # mscale_all_dim
  8088. gguf_writer.add_rope_scaling_orig_ctx_len(yarn_params["original_max_position_embeddings"])
  8089. if "llama_4_scaling" in hparams:
  8090. gguf_writer.add_attn_temperature_scale(hparams["llama_4_scaling"]["beta"])
  8091. class MistralMoeModel(DeepseekV2Model):
  8092. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  8093. model_name = "Mistral"
  8094. hf_arch = ""
  8095. is_mistral_format = True
  8096. def __init__(self, *args, **kwargs):
  8097. super().__init__(*args, **kwargs)
  8098. logger.info("Using MistralMoeModel")
  8099. # remap hparams from Mistral MoE format to DeepseekV2 format
  8100. # we do this way to be able to reuse DeepseekV2Model set_gguf_parameters logic
  8101. # ref: https://github.com/vllm-project/vllm/blob/b294e28db2c5dee61bc25157664edcada8b90b31/vllm/transformers_utils/configs/mistral.py
  8102. config = self.hparams
  8103. # Mistral key -> HF key
  8104. config_mapping = {
  8105. "dim": "hidden_size",
  8106. "norm_eps": "rms_norm_eps",
  8107. "n_kv_heads": "num_key_value_heads",
  8108. "n_layers": "num_hidden_layers",
  8109. "n_heads": "num_attention_heads",
  8110. "hidden_dim": "intermediate_size",
  8111. }
  8112. # HF key -> (Mistral key, default value)
  8113. top_level_mapping_with_default = {
  8114. "model_type": ("model_type", "transformer"),
  8115. "hidden_act": ("activation", "silu"),
  8116. "tie_word_embeddings": ("tied_embeddings", False),
  8117. "max_seq_len": ("max_seq_len", config.get("max_position_embeddings", 128_000)),
  8118. "max_position_embeddings": ("max_position_embeddings", 128_000),
  8119. }
  8120. # mapping top-level keys
  8121. for key, new_key in config_mapping.items():
  8122. if key in config:
  8123. config[new_key] = config[key]
  8124. for new_key, (key, default_value) in top_level_mapping_with_default.items():
  8125. config[new_key] = config.get(key, default_value)
  8126. # mapping MoE-specific keys
  8127. moe_config_map = {
  8128. "route_every_n": "moe_layer_freq",
  8129. "first_k_dense_replace": "first_k_dense_replace",
  8130. "num_experts_per_tok": "num_experts_per_tok",
  8131. "num_experts": "n_routed_experts",
  8132. "expert_hidden_dim": "moe_intermediate_size",
  8133. "routed_scale": "routed_scaling_factor",
  8134. "num_shared_experts": "n_shared_experts",
  8135. "num_expert_groups": "n_group",
  8136. "num_expert_groups_per_tok": "topk_group",
  8137. }
  8138. moe = config["moe"]
  8139. for key, new_key in moe_config_map.items():
  8140. if key in moe:
  8141. config[new_key] = moe[key]
  8142. # provide missing values
  8143. config["topk_method"] = None
  8144. config["norm_topk_prob"] = True
  8145. config["scoring_func"] = "softmax"
  8146. def set_vocab(self):
  8147. self._set_vocab_mistral()
  8148. def set_gguf_parameters(self):
  8149. super().set_gguf_parameters()
  8150. MistralModel.set_mistral_config(self.gguf_writer, self.hparams)
  8151. yarn_params = self.hparams["yarn"]
  8152. self.gguf_writer.add_attn_temperature_length(yarn_params["original_max_position_embeddings"])
  8153. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1) # mscale_all_dim * 0.1
  8154. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8155. if name.startswith("vision_") or name.startswith("patch_merger.") or "mm_projector" in name:
  8156. return []
  8157. # rename certain tensors so that we can reuse DeepseekV2Model modify_tensors logic
  8158. if name.endswith(".qscale_act"):
  8159. name = name.replace(".qscale_act", ".input_scale")
  8160. if name.endswith(".qscale_weight"):
  8161. name = name.replace(".qscale_weight", ".weight_scale")
  8162. if ".wkv_b." in name:
  8163. name = name.replace(".wkv_b.", ".kv_b_proj.")
  8164. if ".experts." in name:
  8165. name = name.replace(".experts.", ".mlp.experts.")
  8166. name = name.replace(".w1.", ".gate_proj.")
  8167. name = name.replace(".w2.", ".down_proj.")
  8168. name = name.replace(".w3.", ".up_proj.")
  8169. name = "model." + name
  8170. return super().modify_tensors(data_torch, name, bid)
  8171. class PixtralModel(LlavaVisionModel):
  8172. model_name = "Pixtral"
  8173. hf_arch = ""
  8174. is_mistral_format = True
  8175. def set_gguf_parameters(self):
  8176. super().set_gguf_parameters()
  8177. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.PIXTRAL)
  8178. self.gguf_writer.add_vision_attention_layernorm_eps(
  8179. self.find_hparam(["norm_eps"])
  8180. )
  8181. self.gguf_writer.add_rope_freq_base(self.find_vparam(["rope_theta"]))
  8182. self.gguf_writer.add_vision_use_silu(True)
  8183. # spatial_merge_size
  8184. if self.find_vparam(["mm_projector_id"]) == "patch_merge":
  8185. self.gguf_writer.add_vision_spatial_merge_size(
  8186. self.find_vparam(["spatial_merge_size"])
  8187. )
  8188. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  8189. if name == "vision_language_adapter.w_in.weight":
  8190. return "mm.1.weight"
  8191. elif name == "vision_language_adapter.w_out.weight":
  8192. return "mm.2.weight"
  8193. return super().map_tensor_name(name, try_suffixes)
  8194. @ModelBase.register("LightOnOCRForConditionalGeneration")
  8195. class LightOnOCRVisionModel(LlavaVisionModel):
  8196. is_mistral_format = False
  8197. use_break_tok = False
  8198. def set_gguf_parameters(self):
  8199. super().set_gguf_parameters()
  8200. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.LIGHTONOCR)
  8201. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  8202. name = name.replace("model.vision_encoder.", "vision_tower.")
  8203. name = name.replace("model.vision_projection.", "multi_modal_projector.")
  8204. return super().modify_tensors(data_torch, name, bid)
  8205. @ModelBase.register("KimiVLForConditionalGeneration")
  8206. class KimiVLModel(MmprojModel):
  8207. def __init__(self, *args, **kwargs):
  8208. super().__init__(*args, **kwargs)
  8209. assert self.hparams_vision is not None
  8210. self.hparams_vision["image_size"] = 64 * 14 # for compatibility
  8211. def set_gguf_parameters(self):
  8212. super().set_gguf_parameters()
  8213. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.KIMIVL)
  8214. self.gguf_writer.add_vision_use_gelu(True)
  8215. self.gguf_writer.add_vision_projector_scale_factor(2)
  8216. # eps is the same as pytorch's default value
  8217. assert self.hparams_vision is not None
  8218. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-5))
  8219. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8220. del bid # unused
  8221. is_vision_tensor = "vision_tower" in name or "multi_modal_projector" in name
  8222. if is_vision_tensor:
  8223. if "pos_emb.weight" in name:
  8224. data_torch = data_torch.view(data_torch.shape[0] * data_torch.shape[1], data_torch.shape[2])
  8225. elif "wqkv" in name:
  8226. split_dim = 0 if "weight" in name else -1
  8227. wq, wk, wv = data_torch.chunk(3, dim=split_dim)
  8228. return [
  8229. (self.map_tensor_name(name.replace("wqkv", "wq")), wq),
  8230. (self.map_tensor_name(name.replace("wqkv", "wk")), wk),
  8231. (self.map_tensor_name(name.replace("wqkv", "wv")), wv)
  8232. ]
  8233. return [(self.map_tensor_name(name), data_torch)]
  8234. return [] # skip other tensors
  8235. @ModelBase.register("CogVLMForCausalLM")
  8236. class CogVLMVisionModel(MmprojModel):
  8237. def set_gguf_parameters(self):
  8238. super().set_gguf_parameters()
  8239. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams.get("layer_norm_eps", 1e-6))
  8240. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.COGVLM)
  8241. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8242. del bid # unused
  8243. if not name.startswith("model.vision."):
  8244. return []
  8245. return [(self.map_tensor_name(name), data_torch)]
  8246. @ModelBase.register("CogVLMForCausalLM")
  8247. class CogVLMModel(LlamaModel):
  8248. model_arch = gguf.MODEL_ARCH.COGVLM
  8249. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8250. del bid # unused
  8251. # block vision tensors
  8252. if name.startswith("model.vision."):
  8253. return []
  8254. return [(self.map_tensor_name(name), data_torch)]
  8255. @ModelBase.register("JanusForConditionalGeneration")
  8256. class JanusProModel(LlamaModel):
  8257. model_arch = gguf.MODEL_ARCH.LLAMA # reuse Llama arch
  8258. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8259. # Skip vision, aligner, and generation tensors
  8260. skip_prefixes = (
  8261. 'model.vision_model.',
  8262. 'model.aligner.',
  8263. 'model.vqmodel.',
  8264. 'model.generation_embeddings.',
  8265. 'model.generation_aligner.',
  8266. 'model.generation_head.',
  8267. )
  8268. if name.startswith(skip_prefixes):
  8269. return []
  8270. if name.startswith('model.language_model.'):
  8271. name = name.replace('model.language_model.', 'model.')
  8272. elif name.startswith('language_model.'):
  8273. name = name.replace('language_model.', '')
  8274. return super().modify_tensors(data_torch, name, bid)
  8275. @ModelBase.register("JanusForConditionalGeneration")
  8276. class JanusProVisionModel(MmprojModel):
  8277. def __init__(self, *args, **kwargs):
  8278. super().__init__(*args, **kwargs)
  8279. assert self.hparams_vision is not None
  8280. if "intermediate_size" not in self.hparams_vision:
  8281. mlp_ratio = self.hparams_vision.get("mlp_ratio")
  8282. hidden_size = self.hparams_vision.get("hidden_size")
  8283. if mlp_ratio is not None and hidden_size is not None:
  8284. self.hparams_vision["intermediate_size"] = int(round(hidden_size * mlp_ratio))
  8285. def set_gguf_parameters(self):
  8286. super().set_gguf_parameters()
  8287. assert self.hparams_vision is not None
  8288. self.gguf_writer.add_clip_projector_type(gguf.VisionProjectorType.JANUS_PRO)
  8289. self.gguf_writer.add_vision_attention_layernorm_eps(self.hparams_vision.get("layer_norm_eps", 1e-6))
  8290. hidden_act = str(self.hparams_vision.get("hidden_act", "")).lower()
  8291. if hidden_act == "gelu":
  8292. self.gguf_writer.add_vision_use_gelu(True)
  8293. elif hidden_act == "silu":
  8294. self.gguf_writer.add_vision_use_silu(True)
  8295. def _map_aligner_tensor(self, data_torch: Tensor, name: str) -> Iterable[tuple[str, Tensor]]:
  8296. """Map aligner tensors to projector format"""
  8297. suffix = ".bias" if name.endswith(".bias") else ".weight"
  8298. if name.startswith("model.aligner."):
  8299. local_name = name[len("model.aligner."):]
  8300. elif name.startswith("aligner."):
  8301. local_name = name[len("aligner."):]
  8302. else:
  8303. raise ValueError(f"Unsupported Janus aligner prefix: {name}")
  8304. if local_name.startswith("fc1."):
  8305. mm_index = 0
  8306. elif local_name.startswith("hidden_layers."):
  8307. parts = local_name.split(".", 2)
  8308. if len(parts) < 3:
  8309. raise ValueError(f"Unexpected Janus aligner tensor name: {name}")
  8310. mm_index = int(parts[1]) + 1
  8311. else:
  8312. raise ValueError(f"Unsupported Janus aligner tensor: {name}")
  8313. tensor_name = self.format_tensor_name(gguf.MODEL_TENSOR.V_MMPROJ, mm_index, suffix=suffix)
  8314. return [(tensor_name, data_torch)]
  8315. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  8316. del bid # unused
  8317. # Skip language model tensors as they will be handled by `JanusProModel`
  8318. if name.startswith(('model.language_model.', 'language_model.')):
  8319. return []
  8320. # Skip generation-related components
  8321. skip_generation_prefixes = (
  8322. 'model.vqmodel.',
  8323. 'vqmodel.',
  8324. 'model.generation_embeddings.',
  8325. 'generation_embeddings.',
  8326. 'model.generation_aligner.',
  8327. 'generation_aligner.',
  8328. 'model.generation_head.',
  8329. 'generation_head.',
  8330. )
  8331. if name.startswith(skip_generation_prefixes):
  8332. return []
  8333. # Handle aligner tensors
  8334. if name.startswith(('model.aligner.', 'aligner.')):
  8335. return list(self._map_aligner_tensor(data_torch, name))
  8336. # Handle vision tensors
  8337. if name.startswith(('model.vision_model.', 'vision_model.')):
  8338. return [(self.map_tensor_name(name), data_torch)]
  8339. return []
  8340. ###### CONVERSION LOGIC ######
  8341. # tree of lazy tensors
  8342. class LazyTorchTensor(gguf.LazyBase):
  8343. _tensor_type = torch.Tensor
  8344. # to keep the type-checker happy
  8345. dtype: torch.dtype
  8346. shape: torch.Size
  8347. # only used when converting a torch.Tensor to a np.ndarray
  8348. _dtype_map: dict[torch.dtype, type] = {
  8349. torch.float16: np.float16,
  8350. torch.float32: np.float32,
  8351. torch.uint8: np.uint8,
  8352. }
  8353. # only used when byteswapping data. Only correct size is needed
  8354. _dtype_byteswap_map: dict[torch.dtype, type] = {
  8355. torch.float64: np.float64,
  8356. torch.float32: np.float32,
  8357. torch.bfloat16: np.float16,
  8358. torch.float16: np.float16,
  8359. torch.int64: np.int64,
  8360. torch.uint64: np.uint64,
  8361. torch.int32: np.int32,
  8362. torch.uint32: np.uint32,
  8363. torch.int16: np.int16,
  8364. torch.uint16: np.uint16,
  8365. torch.int8: np.int8,
  8366. torch.uint8: np.uint8,
  8367. torch.bool: np.uint8,
  8368. torch.float8_e4m3fn: np.uint8,
  8369. torch.float8_e5m2: np.uint8,
  8370. }
  8371. # used for safetensors slices
  8372. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  8373. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  8374. _dtype_str_map: dict[str, torch.dtype] = {
  8375. "F64": torch.float64,
  8376. "F32": torch.float32,
  8377. "BF16": torch.bfloat16,
  8378. "F16": torch.float16,
  8379. # "U64": torch.uint64,
  8380. "I64": torch.int64,
  8381. # "U32": torch.uint32,
  8382. "I32": torch.int32,
  8383. # "U16": torch.uint16,
  8384. "I16": torch.int16,
  8385. "U8": torch.uint8,
  8386. "I8": torch.int8,
  8387. "BOOL": torch.bool,
  8388. "F8_E4M3": torch.float8_e4m3fn,
  8389. "F8_E5M2": torch.float8_e5m2,
  8390. }
  8391. def numpy(self) -> gguf.LazyNumpyTensor:
  8392. dtype = self._dtype_map[self.dtype]
  8393. return gguf.LazyNumpyTensor(
  8394. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  8395. args=(self,),
  8396. func=(lambda s: s.numpy())
  8397. )
  8398. @classmethod
  8399. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  8400. return torch.empty(size=shape, dtype=dtype, device="meta")
  8401. @classmethod
  8402. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  8403. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  8404. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  8405. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[...] if len(s.get_shape()) == 0 else s[:])
  8406. return cast(torch.Tensor, lazy)
  8407. @classmethod
  8408. def from_local_tensor(cls, t: gguf.utility.LocalTensor) -> Tensor:
  8409. def load_tensor(tensor: gguf.utility.LocalTensor) -> Tensor:
  8410. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8411. if sys.byteorder == 'big':
  8412. # switch data back to big endian
  8413. tensor = tensor.view(dtype).byteswap(inplace=False)
  8414. return tensor
  8415. dtype = cls._dtype_str_map[tensor.dtype]
  8416. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8417. return torch.from_numpy(byteswap_tensor(tensor.mmap_bytes(), numpy_dtype)).view(dtype).reshape(tensor.shape)
  8418. dtype = cls._dtype_str_map[t.dtype]
  8419. shape = t.shape
  8420. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(t,), func=lambda r: load_tensor(r))
  8421. return cast(torch.Tensor, lazy)
  8422. @classmethod
  8423. def from_remote_tensor(cls, remote_tensor: gguf.utility.RemoteTensor):
  8424. def byteswap_tensor(tensor: np.ndarray, dtype: type) -> np.ndarray:
  8425. if sys.byteorder == 'big':
  8426. # switch data back to big endian
  8427. tensor = tensor.view(dtype).byteswap(inplace=False)
  8428. return tensor
  8429. dtype = cls._dtype_str_map[remote_tensor.dtype]
  8430. numpy_dtype = cls._dtype_byteswap_map[dtype]
  8431. shape = remote_tensor.shape
  8432. meta = cls.meta_with_dtype_and_shape(dtype, shape)
  8433. lazy = cls(meta=meta, args=(remote_tensor,), func=lambda r: torch.from_numpy(byteswap_tensor(np.frombuffer(r.data(), dtype=numpy_dtype), numpy_dtype)).view(dtype).reshape(shape))
  8434. return cast(torch.Tensor, lazy)
  8435. @classmethod
  8436. def __torch_function__(cls, func, types, args=(), kwargs=None):
  8437. del types # unused
  8438. if kwargs is None:
  8439. kwargs = {}
  8440. if func is torch.Tensor.numpy:
  8441. return args[0].numpy()
  8442. return cls._wrap_fn(func)(*args, **kwargs)
  8443. def parse_args() -> argparse.Namespace:
  8444. parser = argparse.ArgumentParser(
  8445. description="Convert a huggingface model to a GGML compatible file")
  8446. parser.add_argument(
  8447. "--vocab-only", action="store_true",
  8448. help="extract only the vocab",
  8449. )
  8450. parser.add_argument(
  8451. "--outfile", type=Path,
  8452. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  8453. )
  8454. parser.add_argument(
  8455. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  8456. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  8457. )
  8458. parser.add_argument(
  8459. "--bigendian", action="store_true",
  8460. help="model is executed on big endian machine",
  8461. )
  8462. parser.add_argument(
  8463. "model", type=str,
  8464. help="directory containing model file or huggingface repository ID (if --remote)",
  8465. nargs="?",
  8466. )
  8467. parser.add_argument(
  8468. "--use-temp-file", action="store_true",
  8469. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  8470. )
  8471. parser.add_argument(
  8472. "--no-lazy", action="store_true",
  8473. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  8474. )
  8475. parser.add_argument(
  8476. "--model-name", type=str, default=None,
  8477. help="name of the model",
  8478. )
  8479. parser.add_argument(
  8480. "--verbose", action="store_true",
  8481. help="increase output verbosity",
  8482. )
  8483. parser.add_argument(
  8484. "--split-max-tensors", type=int, default=0,
  8485. help="max tensors in each split",
  8486. )
  8487. parser.add_argument(
  8488. "--split-max-size", type=str, default="0",
  8489. help="max size per split N(M|G)",
  8490. )
  8491. parser.add_argument(
  8492. "--dry-run", action="store_true",
  8493. help="only print out a split plan and exit, without writing any new files",
  8494. )
  8495. parser.add_argument(
  8496. "--no-tensor-first-split", action="store_true",
  8497. help="do not add tensors to the first split (disabled by default)"
  8498. )
  8499. parser.add_argument(
  8500. "--metadata", type=Path,
  8501. help="Specify the path for an authorship metadata override file"
  8502. )
  8503. parser.add_argument(
  8504. "--print-supported-models", action="store_true",
  8505. help="Print the supported models"
  8506. )
  8507. parser.add_argument(
  8508. "--remote", action="store_true",
  8509. help="(Experimental) Read safetensors file remotely without downloading to disk. Config and tokenizer files will still be downloaded. To use this feature, you need to specify Hugging Face model repo name instead of a local directory. For example: 'HuggingFaceTB/SmolLM2-1.7B-Instruct'. Note: To access gated repo, set HF_TOKEN environment variable to your Hugging Face token.",
  8510. )
  8511. parser.add_argument(
  8512. "--mmproj", action="store_true",
  8513. help="(Experimental) Export multimodal projector (mmproj) for vision models. This will only work on some vision models. A prefix 'mmproj-' will be added to the output file name.",
  8514. )
  8515. parser.add_argument(
  8516. "--mistral-format", action="store_true",
  8517. help="Whether the model is stored following the Mistral format.",
  8518. )
  8519. parser.add_argument(
  8520. "--disable-mistral-community-chat-template", action="store_true",
  8521. help=(
  8522. "Whether to disable usage of Mistral community chat templates. If set, use the Mistral official `mistral-common` library for tokenization and detokenization of Mistral models. "
  8523. "Using `mistral-common` ensure correctness and zero-day support of tokenization for models converted from the Mistral format but requires to manually setup the tokenization server."
  8524. )
  8525. )
  8526. parser.add_argument(
  8527. "--sentence-transformers-dense-modules", action="store_true",
  8528. help=("Whether to include sentence-transformers dense modules."
  8529. "It can be used for sentence-transformers models, like google/embeddinggemma-300m"
  8530. "Default these modules are not included.")
  8531. )
  8532. args = parser.parse_args()
  8533. if not args.print_supported_models and args.model is None:
  8534. parser.error("the following arguments are required: model")
  8535. return args
  8536. def split_str_to_n_bytes(split_str: str) -> int:
  8537. if split_str.endswith("K"):
  8538. n = int(split_str[:-1]) * 1000
  8539. elif split_str.endswith("M"):
  8540. n = int(split_str[:-1]) * 1000 * 1000
  8541. elif split_str.endswith("G"):
  8542. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  8543. elif split_str.isnumeric():
  8544. n = int(split_str)
  8545. else:
  8546. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  8547. if n < 0:
  8548. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  8549. return n
  8550. def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> str:
  8551. # TODO @ngxson : this won't work correctly if the model has both audio & vision encoders
  8552. # maybe we should fallback to text model's arch in that case, since not many models have both
  8553. text_config = hparams.get("text_config", {})
  8554. vision_config = hparams.get("vision_config", {})
  8555. arch = None
  8556. if (arches := hparams.get("architectures")) is not None and len(arches) > 0:
  8557. arch = arches[0]
  8558. elif "ssm_cfg" in hparams:
  8559. # For non-hf Mamba and Mamba2 models
  8560. arch = hparams["ssm_cfg"].get("layer", "Mamba") + "ForCausalLM"
  8561. # if "architectures" is found in the sub-config, use that instead
  8562. if model_type == ModelType.TEXT and text_config.get("architectures") is not None:
  8563. arch = text_config["architectures"][0]
  8564. elif model_type == ModelType.MMPROJ and vision_config.get("architectures") is not None:
  8565. arch = vision_config["architectures"][0]
  8566. if arch is None:
  8567. raise ValueError("Failed to detect model architecture")
  8568. return arch
  8569. def main() -> None:
  8570. args = parse_args()
  8571. if args.print_supported_models:
  8572. logger.error("Supported models:")
  8573. ModelBase.print_registered_models()
  8574. sys.exit(0)
  8575. if args.verbose:
  8576. logging.basicConfig(level=logging.DEBUG)
  8577. else:
  8578. logging.basicConfig(level=logging.INFO)
  8579. if args.remote:
  8580. hf_repo_id = args.model
  8581. from huggingface_hub import snapshot_download
  8582. allowed_patterns = ["LICENSE", "*.json", "*.md", "*.txt", "tokenizer.model"]
  8583. if args.sentence_transformers_dense_modules:
  8584. # include sentence-transformers dense modules safetensors files
  8585. allowed_patterns.append("*.safetensors")
  8586. local_dir = snapshot_download(
  8587. repo_id=hf_repo_id,
  8588. allow_patterns=allowed_patterns)
  8589. dir_model = Path(local_dir)
  8590. logger.info(f"Downloaded config and tokenizer to {local_dir}")
  8591. else:
  8592. hf_repo_id = None
  8593. dir_model = Path(args.model)
  8594. if not dir_model.is_dir():
  8595. logger.error(f'Error: {dir_model} is not a directory')
  8596. sys.exit(1)
  8597. ftype_map: dict[str, gguf.LlamaFileType] = {
  8598. "f32": gguf.LlamaFileType.ALL_F32,
  8599. "f16": gguf.LlamaFileType.MOSTLY_F16,
  8600. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  8601. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  8602. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  8603. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  8604. "auto": gguf.LlamaFileType.GUESSED,
  8605. }
  8606. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  8607. if args.use_temp_file and is_split:
  8608. logger.error("Error: Cannot use temp file when splitting")
  8609. sys.exit(1)
  8610. if args.outfile is not None:
  8611. fname_out = args.outfile
  8612. elif hf_repo_id:
  8613. # if remote, use the model ID as the output file name
  8614. fname_out = Path("./" + hf_repo_id.replace("/", "-") + "-{ftype}.gguf")
  8615. else:
  8616. fname_out = dir_model
  8617. logger.info(f"Loading model: {dir_model.name}")
  8618. is_mistral_format = args.mistral_format
  8619. if is_mistral_format and not _mistral_common_installed:
  8620. raise ImportError(_mistral_import_error_msg)
  8621. disable_mistral_community_chat_template = args.disable_mistral_community_chat_template
  8622. with torch.inference_mode():
  8623. output_type = ftype_map[args.outtype]
  8624. model_type = ModelType.MMPROJ if args.mmproj else ModelType.TEXT
  8625. hparams = ModelBase.load_hparams(dir_model, is_mistral_format)
  8626. if not is_mistral_format:
  8627. model_architecture = get_model_architecture(hparams, model_type)
  8628. logger.info(f"Model architecture: {model_architecture}")
  8629. try:
  8630. model_class = ModelBase.from_model_architecture(model_architecture, model_type=model_type)
  8631. except NotImplementedError:
  8632. logger.error(f"Model {model_architecture} is not supported")
  8633. sys.exit(1)
  8634. elif args.mmproj:
  8635. assert hparams.get("vision_encoder") is not None, "This model does not support multimodal"
  8636. model_class = PixtralModel
  8637. elif "moe" in hparams:
  8638. model_class = MistralMoeModel
  8639. else:
  8640. model_class = MistralModel
  8641. model_instance = model_class(dir_model, output_type, fname_out,
  8642. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  8643. eager=args.no_lazy,
  8644. metadata_override=args.metadata, model_name=args.model_name,
  8645. split_max_tensors=args.split_max_tensors,
  8646. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  8647. small_first_shard=args.no_tensor_first_split,
  8648. remote_hf_model_id=hf_repo_id, disable_mistral_community_chat_template=disable_mistral_community_chat_template,
  8649. sentence_transformers_dense_modules=args.sentence_transformers_dense_modules
  8650. )
  8651. if args.vocab_only:
  8652. logger.info("Exporting model vocab...")
  8653. model_instance.write_vocab()
  8654. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  8655. else:
  8656. logger.info("Exporting model...")
  8657. model_instance.write()
  8658. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  8659. logger.info(f"Model successfully exported to {out_path}")
  8660. if __name__ == '__main__':
  8661. main()