| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150 |
- #include "llama-memory-recurrent.h"
- #include "llama-impl.h"
- #include "llama-io.h"
- #include "llama-batch.h"
- #include "llama-model.h"
- #include <algorithm>
- #include <cassert>
- #include <limits>
- #include <map>
- #include <stdexcept>
- //
- // llama_memory_recurrent
- //
- llama_memory_recurrent::llama_memory_recurrent(
- const llama_model & model,
- ggml_type type_r,
- ggml_type type_s,
- bool offload,
- uint32_t mem_size,
- uint32_t n_seq_max,
- const layer_filter_cb & filter) : hparams(model.hparams), n_seq_max(n_seq_max) {
- const int32_t n_layer = hparams.n_layer;
- head = 0;
- size = mem_size;
- used = 0;
- cells.clear();
- cells.resize(mem_size);
- // create a context for each buffer type
- std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map;
- auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * {
- auto it = ctx_map.find(buft);
- if (it == ctx_map.end()) {
- ggml_init_params params = {
- /*.mem_size =*/ size_t(2u*n_layer*ggml_tensor_overhead()),
- /*.mem_buffer =*/ NULL,
- /*.no_alloc =*/ true,
- };
- ggml_context * ctx = ggml_init(params);
- if (!ctx) {
- return nullptr;
- }
- ctx_map[buft] = ctx;
- ctxs.emplace_back(ctx);
- return ctx;
- }
- return it->second;
- };
- r_l.resize(n_layer);
- s_l.resize(n_layer);
- for (int i = 0; i < n_layer; i++) {
- if (filter && !filter(i)) {
- LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, i);
- continue;
- }
- const char * dev_name = "CPU";
- ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type();
- if (offload) {
- auto * dev = model.dev_layer(i);
- buft = ggml_backend_dev_buffer_type(dev);
- dev_name = ggml_backend_dev_name(dev);
- }
- LLAMA_LOG_DEBUG("%s, layer %3d: dev = %s\n", __func__, i, dev_name);
- ggml_context * ctx = ctx_for_buft(buft);
- if (!ctx) {
- throw std::runtime_error("failed to create ggml context for rs cache");
- }
- ggml_tensor * r = ggml_new_tensor_1d(ctx, type_r, hparams.n_embd_r()*mem_size);
- ggml_tensor * s = ggml_new_tensor_1d(ctx, type_s, hparams.n_embd_s()*mem_size);
- ggml_format_name(r, "cache_r_l%d", i);
- ggml_format_name(s, "cache_s_l%d", i);
- r_l[i] = r;
- s_l[i] = s;
- }
- // allocate tensors and initialize the buffers to avoid NaNs in the padding
- for (auto it : ctx_map) {
- auto * buft = it.first;
- auto * ctx = it.second;
- ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft);
- if (!buf) {
- throw std::runtime_error("failed to allocate buffer for rs cache");
- }
- ggml_backend_buffer_clear(buf, 0);
- LLAMA_LOG_INFO("%s: %10s RS buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0);
- bufs.emplace_back(buf);
- }
- {
- const size_t memory_size_r = size_r_bytes();
- const size_t memory_size_s = size_s_bytes();
- LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), R (%s): %7.2f MiB, S (%s): %7.2f MiB\n", __func__,
- (float)(memory_size_r + memory_size_s) / (1024.0f * 1024.0f), mem_size, n_layer, n_seq_max,
- ggml_type_name(type_r), (float)memory_size_r / (1024.0f * 1024.0f),
- ggml_type_name(type_s), (float)memory_size_s / (1024.0f * 1024.0f));
- }
- }
- void llama_memory_recurrent::clear(bool data) {
- for (int32_t i = 0; i < (int32_t) size; ++i) {
- cells[i].pos = -1;
- cells[i].seq_id.clear();
- cells[i].src = -1;
- cells[i].tail = -1;
- }
- head = 0;
- used = 0;
- if (data) {
- for (auto & buf : bufs) {
- ggml_backend_buffer_clear(buf.get(), 0);
- }
- }
- }
- bool llama_memory_recurrent::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) {
- uint32_t new_head = size;
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // models like Mamba or RWKV can't have a state partially erased
- if (seq_id >= (int64_t) size) {
- // could be fatal
- return false;
- }
- if (0 <= seq_id) {
- int32_t & tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- const auto & cell = cells[tail_id];
- // partial intersection is invalid
- if ((0 < p0 && p0 <= cell.pos) || (0 < p1 && p1 <= cell.pos)) {
- return false;
- }
- // invalidate tails which will be cleared
- if (p0 <= cell.pos && cell.pos < p1) {
- tail_id = -1;
- }
- }
- } else {
- // seq_id is negative, then the range should include everything or nothing
- if (p0 != p1 && (p0 != 0 || p1 != std::numeric_limits<llama_pos>::max())) {
- return false;
- }
- }
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].pos >= p0 && cells[i].pos < p1) {
- if (seq_id < 0) {
- cells[i].seq_id.clear();
- } else if (cells[i].has_seq_id(seq_id)) {
- cells[i].seq_id.erase(seq_id);
- } else {
- continue;
- }
- if (cells[i].is_empty()) {
- // keep count of the number of used cells
- if (cells[i].pos >= 0) {
- used--;
- }
- cells[i].pos = -1;
- cells[i].src = -1;
- if (new_head == size) {
- new_head = i;
- }
- }
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != size && new_head < head) {
- head = new_head;
- }
- return true;
- }
- void llama_memory_recurrent::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) {
- if (seq_id_src == seq_id_dst) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- if ((uint32_t) seq_id_dst < size && (uint32_t) seq_id_src < size) {
- auto & tail_src = cells[seq_id_src];
- auto & tail_dst = cells[seq_id_dst];
- if (tail_dst.tail >= 0) {
- // clear destination seq_id if it wasn't empty
- auto & cell_dst = cells[tail_dst.tail];
- cell_dst.seq_id.erase(seq_id_dst);
- tail_dst.tail = -1;
- if (cell_dst.seq_id.empty()) {
- cell_dst.pos = -1;
- cell_dst.src = -1;
- used -= 1;
- }
- }
- if (tail_src.tail >= 0) {
- auto & cell_src = cells[tail_src.tail];
- cell_src.seq_id.insert(seq_id_dst);
- tail_dst.tail = tail_src.tail;
- }
- }
- }
- void llama_memory_recurrent::seq_keep(llama_seq_id seq_id) {
- uint32_t new_head = size;
- for (uint32_t i = 0; i < size; ++i) {
- if ((llama_seq_id) i != seq_id) {
- cells[i].tail = -1;
- }
- if (!cells[i].has_seq_id(seq_id)) {
- if (cells[i].pos >= 0) {
- used--;
- }
- cells[i].pos = -1;
- cells[i].src = -1;
- cells[i].seq_id.clear();
- if (new_head == size){
- new_head = i;
- }
- } else {
- cells[i].seq_id.clear();
- cells[i].seq_id.insert(seq_id);
- }
- }
- // If we freed up a slot, set head to it so searching can start there.
- if (new_head != size && new_head < head) {
- head = new_head;
- }
- }
- void llama_memory_recurrent::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) {
- if (shift == 0) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over the
- if (p0 == p1) {
- return;
- }
- // for Mamba-like or RWKV models, only the pos needs to be shifted
- if (0 <= seq_id && seq_id < (int64_t) size) {
- const int32_t tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- auto & cell = cells[tail_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos += shift;
- }
- }
- }
- }
- void llama_memory_recurrent::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) {
- if (d == 1) {
- return;
- }
- if (p0 < 0) {
- p0 = 0;
- }
- if (p1 < 0) {
- p1 = std::numeric_limits<llama_pos>::max();
- }
- // If there is no range then return early to avoid looping over the cache.
- if (p0 == p1) {
- return;
- }
- // for Mamba-like or RWKV models, only the pos needs to be changed
- if (0 <= seq_id && seq_id < (int64_t) size) {
- const int32_t tail_id = cells[seq_id].tail;
- if (tail_id >= 0) {
- auto & cell = cells[tail_id];
- if (cell.has_seq_id(seq_id) && p0 <= cell.pos && cell.pos < p1) {
- cell.pos /= d;
- }
- }
- }
- }
- llama_pos llama_memory_recurrent::seq_pos_min(llama_seq_id seq_id) const {
- llama_pos result = std::numeric_limits<llama_pos>::max();
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].has_seq_id(seq_id)) {
- result = std::min(result, cells[i].pos);
- }
- }
- if (result == std::numeric_limits<llama_pos>::max()) {
- result = -1;
- }
- return result;
- }
- llama_pos llama_memory_recurrent::seq_pos_max(llama_seq_id seq_id) const {
- llama_pos result = -1;
- for (uint32_t i = 0; i < size; ++i) {
- if (cells[i].has_seq_id(seq_id)) {
- result = std::max(result, cells[i].pos);
- }
- }
- return result;
- }
- llama_memory_context_ptr llama_memory_recurrent::init_batch(llama_batch_allocr & balloc, uint32_t n_ubatch, bool embd_all) {
- do {
- balloc.split_reset();
- std::vector<llama_ubatch> ubatches;
- while (true) {
- llama_ubatch ubatch;
- if (embd_all) {
- // if all tokens are output, split by sequence
- ubatch = balloc.split_seq(n_ubatch);
- } else {
- ubatch = balloc.split_equal(n_ubatch, false);
- }
- if (ubatch.n_tokens == 0) {
- break;
- }
- ubatches.push_back(std::move(ubatch)); // NOLINT
- }
- if (balloc.get_n_used() < balloc.get_n_tokens()) {
- // failed to find a suitable split
- break;
- }
- if (!prepare(ubatches)) {
- break;
- }
- return std::make_unique<llama_memory_recurrent_context>(this, std::move(ubatches));
- } while (false);
- return std::make_unique<llama_memory_recurrent_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE);
- }
- llama_memory_context_ptr llama_memory_recurrent::init_full() {
- return std::make_unique<llama_memory_recurrent_context>(this);
- }
- llama_memory_context_ptr llama_memory_recurrent::init_update(llama_context * lctx, bool optimize) {
- GGML_UNUSED(lctx);
- GGML_UNUSED(optimize);
- return std::make_unique<llama_memory_recurrent_context>(LLAMA_MEMORY_STATUS_NO_UPDATE);
- }
- bool llama_memory_recurrent::prepare(const std::vector<llama_ubatch> & ubatches) {
- // simply remember the full state because it is very small for this type of cache
- // TODO: optimize
- auto org_cells = cells;
- auto org_used = used;
- auto org_head = head;
- bool success = true;
- for (const auto & ubatch : ubatches) {
- if (!find_slot(ubatch)) {
- success = false;
- break;
- }
- }
- // restore the original state
- cells = std::move(org_cells);
- used = org_used;
- head = org_head;
- return success;
- }
- bool llama_memory_recurrent::find_slot(const llama_ubatch & ubatch) {
- const uint32_t n_seq_tokens = ubatch.n_seq_tokens;
- const uint32_t n_seqs = ubatch.n_seqs;
- // if we have enough unused cells before the current head ->
- // better to start searching from the beginning of the cache, hoping to fill it
- if (head > used + 2*n_seqs) {
- head = 0;
- }
- // For recurrent state architectures (like Mamba or RWKV),
- // each cache cell can store the state for a whole sequence.
- // A slot should be always be contiguous.
- // can only process batches with an equal number of new tokens in each sequence
- GGML_ASSERT(ubatch.equal_seqs());
- int32_t min = size - 1;
- int32_t max = 0;
- // everything should fit if all seq_ids are smaller than the max
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const uint32_t i = s*n_seq_tokens; // first token of sequence set s
- const uint32_t n_seq_id = ubatch.n_seq_id[i];
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- const llama_seq_id seq_id = ubatch.seq_id[i][j];
- if (seq_id < 0 || (uint32_t) seq_id >= size) {
- // too big seq_id
- // TODO: would it be possible to resize the cache instead?
- LLAMA_LOG_ERROR("%s: seq_id=%d >= n_seq_max=%u Try using a bigger --parallel value\n", __func__, seq_id, n_seq_max);
- return false;
- }
- if (j > 0) {
- auto & seq = cells[seq_id];
- if (seq.tail >= 0) {
- auto & cell = cells[seq.tail];
- // clear cells from seq_ids that become shared
- // (should not normally happen, but let's handle it anyway)
- cell.seq_id.erase(seq_id);
- seq.tail = -1;
- if (cell.seq_id.empty()) {
- cell.pos = -1;
- cell.src = -1;
- used -= 1;
- }
- }
- }
- }
- }
- #ifndef NDEBUG
- {
- std::vector<int32_t> tails_verif;
- tails_verif.assign(size, -1);
- for (uint32_t i = 0; i < size; ++i) {
- auto & cell = cells[i];
- for (llama_seq_id seq_id : cell.seq_id) {
- if (tails_verif[seq_id] != -1) {
- LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tails_verif[seq_id]);
- }
- tails_verif[seq_id] = i;
- }
- }
- for (uint32_t i = 0; i < size; ++i) {
- if (tails_verif[i] != cells[i].tail) {
- LLAMA_LOG_ERROR("%s: wrong tail for seq_id %d, (%d instead of %d)\n", __func__, i, cells[i].tail, tails_verif[i]);
- }
- }
- }
- #endif
- // find next empty cell
- uint32_t next_empty_cell = head;
- for (uint32_t i = 0; i < size; ++i) {
- if (next_empty_cell >= size) { next_empty_cell -= size; }
- auto & cell = cells[next_empty_cell];
- if (cell.is_empty()) { break; }
- next_empty_cell += 1;
- }
- // find usable cell range
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const uint32_t i = s*n_seq_tokens;
- const llama_seq_id seq_id = ubatch.seq_id[i][0];
- auto & seq_meta = cells[seq_id];
- bool has_cell = false;
- if (seq_meta.tail >= 0) {
- auto & cell = cells[seq_meta.tail];
- GGML_ASSERT(cell.has_seq_id(seq_id));
- // does this seq_id "own" the cell?
- if (cell.seq_id.size() == 1) { has_cell = true; }
- }
- if (!has_cell) {
- auto & empty_cell = cells[next_empty_cell];
- GGML_ASSERT(empty_cell.is_empty());
- // copy old tail into the empty cell
- if (seq_meta.tail >= 0) {
- auto & orig_cell = cells[seq_meta.tail];
- empty_cell.pos = orig_cell.pos;
- empty_cell.src = orig_cell.src;
- orig_cell.seq_id.erase(seq_id);
- empty_cell.seq_id.insert(seq_id); // will be overwritten
- GGML_ASSERT(!orig_cell.is_empty()); // has at least one remaining seq_id
- }
- seq_meta.tail = next_empty_cell;
- // find next empty cell
- if (s + 1 < n_seqs) {
- for (uint32_t j = 0; j < size; ++j) {
- next_empty_cell += 1;
- if (next_empty_cell >= size) { next_empty_cell -= size; }
- auto & cell = cells[next_empty_cell];
- if (cell.is_empty()) { break; }
- }
- }
- }
- if (min > seq_meta.tail) { min = seq_meta.tail; }
- if (max < seq_meta.tail) { max = seq_meta.tail; }
- }
- // gather and re-order
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const uint32_t i = s*n_seq_tokens;
- const int32_t dst_id = s + min;
- const int32_t src_id = cells[ubatch.seq_id[i][0]].tail;
- if (dst_id != src_id) {
- auto & dst_cell = cells[dst_id];
- auto & src_cell = cells[src_id];
- std::swap(dst_cell.pos, src_cell.pos);
- std::swap(dst_cell.src, src_cell.src);
- std::swap(dst_cell.seq_id, src_cell.seq_id);
- // swap tails
- for (uint32_t j = 0; j < size; ++j) {
- int32_t & tail = cells[j].tail;
- if (tail == src_id) {
- tail = dst_id;
- } else if (tail == dst_id) {
- tail = src_id;
- }
- }
- }
- }
- // update the pos of the used seqs
- for (uint32_t s = 0; s < n_seqs; ++s) {
- const uint32_t i = s*n_seq_tokens;
- const llama_pos last_pos = ubatch.pos[i + n_seq_tokens - 1];
- const int32_t cell_id = s + min;
- auto & cell = cells[cell_id];
- if (cell.pos >= 0 && last_pos != cell.pos + (llama_pos) n_seq_tokens) {
- // What should happen when the pos backtracks or skips a value?
- // Clearing the state mid-batch would require special-casing which isn't done.
- LLAMA_LOG_WARN("%s: non-consecutive token position %d after %d for sequence %d with %u new tokens\n",
- __func__, last_pos, cell.pos, ubatch.seq_id[i][0], n_seq_tokens);
- }
- cell.pos = last_pos;
- cell.seq_id.clear();
- for (int32_t j = 0; j < ubatch.n_seq_id[i]; ++j) {
- const llama_seq_id seq_id = ubatch.seq_id[i][j];
- cell.seq_id.insert(seq_id);
- cells[seq_id].tail = cell_id;
- }
- }
- // Find first cell without src refs, to use as the zero-ed state
- {
- // TODO: bake-in src refcounts in the cell metadata
- std::vector<int32_t> refcounts(size, 0);
- for (size_t i = 0; i < size; ++i) {
- const int32_t src = cells[i].src;
- if (src >= 0) {
- refcounts[src] += 1;
- }
- }
- rs_z = -1;
- for (int i = min; i <= max; ++i) {
- if (refcounts[i] == 0) {
- rs_z = i;
- break;
- }
- }
- for (int i = min; i <= max; ++i) {
- if (cells[i].src < 0) {
- GGML_ASSERT(rs_z >= 0);
- cells[i].src0 = rs_z;
- } else {
- // Stage the source ids for all used cells to allow correct seq_* behavior
- // and still make these values available when setting the inputs
- cells[i].src0 = cells[i].src;
- }
- cells[i].src = i; // avoid moving or clearing twice
- }
- }
- // allow getting the range of used cells, from head to head + n
- head = min;
- n = max - min + 1;
- used = std::count_if(cells.begin(), cells.end(),
- [](const mem_cell & cell){ return !cell.is_empty(); });
- // sanity check
- return n >= n_seqs;
- }
- bool llama_memory_recurrent::get_can_shift() const {
- // shifting the pos is trivial for recurrent models
- return true;
- }
- size_t llama_memory_recurrent::total_size() const {
- size_t size = 0;
- for (const auto & buf : bufs) {
- size += ggml_backend_buffer_get_size(buf.get());
- }
- return size;
- }
- size_t llama_memory_recurrent::size_r_bytes() const {
- size_t size_r_bytes = 0;
- for (const auto & r : r_l) {
- if (r != nullptr) {
- size_r_bytes += ggml_nbytes(r);
- }
- }
- return size_r_bytes;
- }
- size_t llama_memory_recurrent::size_s_bytes() const {
- size_t size_s_bytes = 0;
- for (const auto & s : s_l) {
- if (s != nullptr) {
- size_s_bytes += ggml_nbytes(s);
- }
- }
- return size_s_bytes;
- }
- void llama_memory_recurrent::state_write(llama_io_write_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) const {
- GGML_UNUSED(flags);
- std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive
- uint32_t cell_count = 0;
- // Count the number of cells with the specified seq_id
- // Find all the ranges of cells with this seq id (or all, when -1)
- uint32_t cell_range_begin = size;
- for (uint32_t i = 0; i < size; ++i) {
- const auto & cell = cells[i];
- if ((seq_id == -1 && !cell.is_empty()) || cell.has_seq_id(seq_id)) {
- ++cell_count;
- if (cell_range_begin == size) {
- cell_range_begin = i;
- }
- } else {
- if (cell_range_begin != size) {
- cell_ranges.emplace_back(cell_range_begin, i);
- cell_range_begin = size;
- }
- }
- }
- if (cell_range_begin != size) {
- cell_ranges.emplace_back(cell_range_begin, size);
- }
- // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count
- uint32_t cell_count_check = 0;
- for (const auto & range : cell_ranges) {
- cell_count_check += range.second - range.first;
- }
- GGML_ASSERT(cell_count == cell_count_check);
- io.write(&cell_count, sizeof(cell_count));
- state_write_meta(io, cell_ranges, seq_id);
- state_write_data(io, cell_ranges);
- }
- void llama_memory_recurrent::state_read(llama_io_read_i & io, llama_seq_id seq_id, llama_state_seq_flags flags) {
- GGML_UNUSED(flags);
- uint32_t cell_count;
- io.read_to(&cell_count, sizeof(cell_count));
- bool res = true;
- res = res && state_read_meta(io, cell_count, seq_id);
- res = res && state_read_data(io, cell_count);
- if (!res) {
- if (seq_id == -1) {
- clear(true);
- } else {
- seq_rm(seq_id, -1, -1);
- }
- throw std::runtime_error("failed to restore kv cache");
- }
- }
- void llama_memory_recurrent::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const {
- for (const auto & range : cell_ranges) {
- for (uint32_t i = range.first; i < range.second; ++i) {
- const auto & cell = cells[i];
- const llama_pos pos = cell.pos;
- const uint32_t n_seq_id = seq_id == -1 ? cell.seq_id.size() : 0;
- io.write(&pos, sizeof(pos));
- io.write(&n_seq_id, sizeof(n_seq_id));
- if (n_seq_id) {
- for (auto seq_id : cell.seq_id) {
- io.write(&seq_id, sizeof(seq_id));
- }
- }
- }
- }
- }
- void llama_memory_recurrent::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const {
- const uint32_t s_trans = 0;
- const uint32_t n_layer = hparams.n_layer;
- io.write(&s_trans, sizeof(s_trans));
- io.write(&n_layer, sizeof(n_layer));
- std::vector<uint8_t> tmp_buf;
- // Iterate and write all the keys first, each row is a cell
- // Get whole range at a time
- for (uint32_t il = 0; il < n_layer; ++il) {
- // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
- if (r_l[il] == nullptr) continue;
- // Write key type
- const int32_t r_type_i = (int32_t)r_l[il]->type;
- io.write(&r_type_i, sizeof(r_type_i));
- // Write row size of key
- const uint64_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
- io.write(&r_size_row, sizeof(r_size_row));
- // Read each range of cells of k_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * r_size_row;
- io.write_tensor(r_l[il], range.first * r_size_row, buf_size);
- }
- }
- if (!s_trans) {
- for (uint32_t il = 0; il < n_layer; ++il) {
- // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
- if (s_l[il] == nullptr) continue;
- // Write value type
- const int32_t s_type_i = (int32_t)s_l[il]->type;
- io.write(&s_type_i, sizeof(s_type_i));
- // Write row size of value
- const uint64_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
- io.write(&s_size_row, sizeof(s_size_row));
- // Read each range of cells of s_size length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t buf_size = range_size * s_size_row;
- io.write_tensor(s_l[il], range.first * s_size_row, buf_size);
- }
- }
- } else {
- // When v is transposed, we also need the element size and get the element ranges from each row
- const uint32_t mem_size = size;
- for (uint32_t il = 0; il < n_layer; ++il) {
- // skip null layers (read_data will handle this by checking "r_l" and "s_l" for null)
- if (s_l[il] == nullptr) continue;
- const uint32_t n_embd_s = hparams.n_embd_s();
- // Write value type
- const int32_t s_type_i = (int32_t)s_l[il]->type;
- io.write(&s_type_i, sizeof(s_type_i));
- // Write element size
- const uint32_t s_size_el = ggml_type_size(s_l[il]->type);
- io.write(&s_size_el, sizeof(s_size_el));
- // Write GQA embedding size
- io.write(&n_embd_s, sizeof(n_embd_s));
- // For each row, we get the element values of each cell
- for (uint32_t j = 0; j < n_embd_s; ++j) {
- // Read each range of cells of v_size_el length each into tmp_buf and write out
- for (const auto & range : cell_ranges) {
- const size_t range_size = range.second - range.first;
- const size_t src_offset = (range.first + j * mem_size) * s_size_el;
- const size_t buf_size = range_size * s_size_el;
- io.write_tensor(s_l[il], src_offset, buf_size);
- }
- }
- }
- }
- }
- bool llama_memory_recurrent::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) {
- if (dest_seq_id != -1) {
- // single sequence
- seq_rm(dest_seq_id, -1, -1);
- llama_batch_allocr balloc(hparams.n_pos_per_embd());
- llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1);
- for (uint32_t i = 0; i < cell_count; ++i) {
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- if (n_seq_id != 0) {
- LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__);
- return false;
- }
- ubatch.pos[i] = pos;
- }
- ubatch.n_seq_id[0] = 1;
- ubatch.seq_id[0] = &dest_seq_id;
- if (!find_slot(ubatch)) {
- LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__);
- return false;
- }
- // DEBUG CHECK: kv.head should be our first cell, kv.head + cell_count - 1 should be our last cell (verify seq_id and pos values)
- // Assume that this is one contiguous block of cells
- GGML_ASSERT(head + cell_count <= size);
- GGML_ASSERT(cells[head].pos == ubatch.pos[0]);
- GGML_ASSERT(cells[head + cell_count - 1].pos == ubatch.pos[cell_count - 1]);
- GGML_ASSERT(cells[head].has_seq_id(dest_seq_id));
- GGML_ASSERT(cells[head + cell_count - 1].has_seq_id(dest_seq_id));
- } else {
- // whole KV cache restore
- if (cell_count > size) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__);
- return false;
- }
- clear(true);
- for (uint32_t i = 0; i < cell_count; ++i) {
- auto & cell = cells[i];
- llama_pos pos;
- uint32_t n_seq_id;
- io.read_to(&pos, sizeof(pos));
- io.read_to(&n_seq_id, sizeof(n_seq_id));
- cell.pos = pos;
- for (uint32_t j = 0; j < n_seq_id; ++j) {
- llama_seq_id seq_id;
- io.read_to(&seq_id, sizeof(seq_id));
- // TODO: llama_memory_recurrent should have a notion of max sequences
- //if (seq_id < 0 || (uint32_t) seq_id >= llama_n_seq_max(ctx)) {
- if (seq_id < 0) {
- //LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, llama_n_seq_max(ctx));
- LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, inf)\n", __func__, seq_id);
- return false;
- }
- cell.seq_id.insert(seq_id);
- int32_t & tail = cells[seq_id].tail;
- if (tail != -1) {
- LLAMA_LOG_ERROR("%s: duplicate tail for seq_id %d in cell %d and %d\n", __func__, seq_id, i, tail);
- return false;
- }
- tail = i;
- }
- }
- head = 0;
- used = cell_count;
- }
- for (uint32_t i = 0; i < cell_count; ++i) {
- uint32_t cell_id = head + i;
- // make sure the recurrent states will keep their restored state
- cells[cell_id].src = cell_id;
- }
- return true;
- }
- bool llama_memory_recurrent::state_read_data(llama_io_read_i & io, uint32_t cell_count) {
- uint32_t s_trans;
- uint32_t n_layer;
- io.read_to(&s_trans, sizeof(s_trans));
- io.read_to(&n_layer, sizeof(n_layer));
- if (n_layer != hparams.n_layer) {
- LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, hparams.n_layer);
- return false;
- }
- if (cell_count > size) {
- LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, size);
- return false;
- }
- if (false != (bool) s_trans) {
- LLAMA_LOG_ERROR("%s: incompatible s transposition\n", __func__);
- return false;
- }
- // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block
- for (uint32_t il = 0; il < n_layer; ++il) {
- // skip null layers
- if (r_l[il] == nullptr) continue;
- // Read type of key
- int32_t r_type_i_ref;
- io.read_to(&r_type_i_ref, sizeof(r_type_i_ref));
- const int32_t r_type_i = (int32_t) r_l[il]->type;
- if (r_type_i != r_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched r type (%d != %d, layer %d)\n", __func__, r_type_i, r_type_i_ref, il);
- return false;
- }
- // Read row size of key
- uint64_t r_size_row_ref;
- io.read_to(&r_size_row_ref, sizeof(r_size_row_ref));
- const size_t r_size_row = ggml_row_size(r_l[il]->type, hparams.n_embd_r());
- if (r_size_row != r_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched r row size (%zu != %zu, layer %d)\n", __func__, r_size_row, (size_t) r_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the keys for the whole cell range
- ggml_backend_tensor_set(r_l[il], io.read(cell_count * r_size_row), head * r_size_row, cell_count * r_size_row);
- }
- }
- if (!s_trans) {
- for (uint32_t il = 0; il < n_layer; ++il) {
- // skip null layers
- if (s_l[il] == nullptr) continue;
- // Read type of value
- int32_t s_type_i_ref;
- io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
- const int32_t s_type_i = (int32_t)s_l[il]->type;
- if (s_type_i != s_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
- return false;
- }
- // Read row size of value
- uint64_t s_size_row_ref;
- io.read_to(&s_size_row_ref, sizeof(s_size_row_ref));
- const size_t s_size_row = ggml_row_size(s_l[il]->type, hparams.n_embd_s());
- if (s_size_row != s_size_row_ref) {
- LLAMA_LOG_ERROR("%s: mismatched s row size (%zu != %zu, layer %d)\n", __func__, s_size_row, (size_t) s_size_row_ref, il);
- return false;
- }
- if (cell_count) {
- // Read and set the values for the whole cell range
- ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_row), head * s_size_row, cell_count * s_size_row);
- }
- }
- } else {
- // For each layer, read the values for each cell (transposed)
- for (uint32_t il = 0; il < n_layer; ++il) {
- // skip null layers
- if (s_l[il] == nullptr) continue;
- const uint32_t n_embd_s = hparams.n_embd_s();
- // Read type of value
- int32_t s_type_i_ref;
- io.read_to(&s_type_i_ref, sizeof(s_type_i_ref));
- const int32_t s_type_i = (int32_t)s_l[il]->type;
- if (s_type_i != s_type_i_ref) {
- LLAMA_LOG_ERROR("%s: mismatched s type (%d != %d, layer %d)\n", __func__, s_type_i, s_type_i_ref, il);
- return false;
- }
- // Read element size of value
- uint32_t s_size_el_ref;
- io.read_to(&s_size_el_ref, sizeof(s_size_el_ref));
- const size_t s_size_el = ggml_type_size(s_l[il]->type);
- if (s_size_el != s_size_el_ref) {
- LLAMA_LOG_ERROR("%s: mismatched s element size (%zu != %zu, layer %d)\n", __func__, s_size_el, (size_t) s_size_el_ref, il);
- return false;
- }
- // Read state embedding size
- uint32_t n_embd_s_ref;
- io.read_to(&n_embd_s_ref, sizeof(n_embd_s_ref));
- if (n_embd_s != n_embd_s_ref) {
- LLAMA_LOG_ERROR("%s: mismatched s embedding size (%u != %u, layer %d)\n", __func__, n_embd_s, n_embd_s_ref, il);
- return false;
- }
- if (cell_count) {
- // For each row in the transposed matrix, read the values for the whole cell range
- for (uint32_t j = 0; j < n_embd_s; ++j) {
- const size_t dst_offset = (head + j * size) * s_size_el;
- ggml_backend_tensor_set(s_l[il], io.read(cell_count * s_size_el), dst_offset, cell_count * s_size_el);
- }
- }
- }
- }
- return true;
- }
- //
- // llama_memory_recurrent_context
- //
- llama_memory_recurrent_context::llama_memory_recurrent_context(llama_memory_status status) : status(status) {}
- llama_memory_recurrent_context::llama_memory_recurrent_context(
- llama_memory_recurrent * mem) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), is_full(true) {
- }
- llama_memory_recurrent_context::llama_memory_recurrent_context(
- llama_memory_recurrent * mem,
- std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), mem(mem), ubatches(std::move(ubatches)) {}
- llama_memory_recurrent_context::~llama_memory_recurrent_context() = default;
- bool llama_memory_recurrent_context::next() {
- assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
- if (++i_next >= ubatches.size()) {
- return false;
- }
- return true;
- }
- bool llama_memory_recurrent_context::apply() {
- assert(!llama_memory_status_is_fail(status));
- // no ubatches -> this is an update
- if (ubatches.empty()) {
- // recurrent cache never performs updates
- assert(status == LLAMA_MEMORY_STATUS_NO_UPDATE);
- return true;
- }
- mem->find_slot(ubatches[i_next]);
- return true;
- }
- llama_memory_status llama_memory_recurrent_context::get_status() const {
- return status;
- }
- const llama_ubatch & llama_memory_recurrent_context::get_ubatch() const {
- assert(status == LLAMA_MEMORY_STATUS_SUCCESS);
- return ubatches[i_next];
- }
- uint32_t llama_memory_recurrent_context::get_n_rs() const {
- return is_full ? mem->size : mem->n;
- }
- uint32_t llama_memory_recurrent_context::get_head() const {
- return is_full ? 0 : mem->head;
- }
- int32_t llama_memory_recurrent_context::get_rs_z() const {
- return is_full ? 0 : mem->rs_z;
- }
- uint32_t llama_memory_recurrent_context::get_size() const {
- return mem->size;
- }
- ggml_tensor * llama_memory_recurrent_context::get_r_l(int32_t il) const {
- return mem->r_l[il];
- }
- ggml_tensor * llama_memory_recurrent_context::get_s_l(int32_t il) const {
- return mem->s_l[il];
- }
- int32_t llama_memory_recurrent_context::s_copy(int i) const {
- return mem->cells[i + mem->head].src0;
- }
- bool llama_memory_recurrent_context::has_previous_state() const {
- return mem->cells[mem->head].pos >= 0;
- }
|