convert_hf_to_gguf.py 209 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}")
  155. else:
  156. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  157. f"Missing tensors: {missing}\n"
  158. f"Extra tensors: {extra}")
  159. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  160. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  161. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  162. name: str = gguf.TENSOR_NAMES[key]
  163. if "{bid}" in name:
  164. assert bid is not None
  165. name = name.format(bid=bid)
  166. return name + suffix
  167. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  168. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  169. return False
  170. key_name: str = gguf.TENSOR_NAMES[key]
  171. if "{bid}" in key_name:
  172. if bid is None:
  173. return False
  174. key_name = key_name.format(bid=bid)
  175. else:
  176. if bid is not None:
  177. return False
  178. return name == (key_name + suffix)
  179. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  180. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  181. if new_name is None:
  182. raise ValueError(f"Can not map tensor {name!r}")
  183. return new_name
  184. def set_gguf_parameters(self):
  185. self.gguf_writer.add_block_count(self.block_count)
  186. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  187. self.gguf_writer.add_context_length(n_ctx)
  188. logger.info(f"gguf: context length = {n_ctx}")
  189. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  190. self.gguf_writer.add_embedding_length(n_embd)
  191. logger.info(f"gguf: embedding length = {n_embd}")
  192. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  193. self.gguf_writer.add_feed_forward_length(n_ff)
  194. logger.info(f"gguf: feed forward length = {n_ff}")
  195. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  196. self.gguf_writer.add_head_count(n_head)
  197. logger.info(f"gguf: head count = {n_head}")
  198. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  199. self.gguf_writer.add_head_count_kv(n_head_kv)
  200. logger.info(f"gguf: key-value head count = {n_head_kv}")
  201. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  202. self.gguf_writer.add_rope_freq_base(rope_theta)
  203. logger.info(f"gguf: rope theta = {rope_theta}")
  204. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  205. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  206. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  207. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  208. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  209. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  210. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  211. self.gguf_writer.add_expert_count(n_experts)
  212. logger.info(f"gguf: expert count = {n_experts}")
  213. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  214. self.gguf_writer.add_expert_used_count(n_experts_used)
  215. logger.info(f"gguf: experts used count = {n_experts_used}")
  216. if (head_dim := self.hparams.get("head_dim")) is not None:
  217. self.gguf_writer.add_key_length(head_dim)
  218. self.gguf_writer.add_value_length(head_dim)
  219. self.gguf_writer.add_file_type(self.ftype)
  220. logger.info(f"gguf: file type = {self.ftype}")
  221. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  222. del bid # unused
  223. return [(self.map_tensor_name(name), data_torch)]
  224. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  225. del name, new_name, bid, n_dims # unused
  226. return False
  227. # some models need extra generated tensors (like rope_freqs)
  228. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  229. return ()
  230. def prepare_tensors(self):
  231. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  232. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  233. # we don't need these
  234. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  235. continue
  236. old_dtype = data_torch.dtype
  237. # convert any unsupported data types to float32
  238. if data_torch.dtype not in (torch.float16, torch.float32):
  239. data_torch = data_torch.to(torch.float32)
  240. # use the first number-like part of the tensor name as the block id
  241. bid = None
  242. for part in name.split("."):
  243. if part.isdecimal():
  244. bid = int(part)
  245. break
  246. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  247. # TODO: why do we squeeze here?
  248. # data = data_torch.squeeze().numpy()
  249. data = data_torch.numpy()
  250. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  251. if len(data.shape) == 0:
  252. data = data_torch.numpy()
  253. n_dims = len(data.shape)
  254. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  255. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  256. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  257. data_qtype = gguf.GGMLQuantizationType.F32
  258. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  259. # Some tensor types are always in float32
  260. if data_qtype is False and (
  261. any(
  262. self.match_model_tensor_name(new_name, key, bid)
  263. for key in (
  264. gguf.MODEL_TENSOR.FFN_GATE_INP,
  265. gguf.MODEL_TENSOR.POS_EMBD,
  266. gguf.MODEL_TENSOR.TOKEN_TYPES,
  267. gguf.MODEL_TENSOR.SSM_CONV1D,
  268. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  269. gguf.MODEL_TENSOR.TIME_MIX_W1,
  270. gguf.MODEL_TENSOR.TIME_MIX_W2,
  271. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  273. gguf.MODEL_TENSOR.POSNET_NORM1,
  274. gguf.MODEL_TENSOR.POSNET_NORM2,
  275. )
  276. )
  277. or not new_name.endswith(".weight")
  278. ):
  279. data_qtype = gguf.GGMLQuantizationType.F32
  280. if data_qtype is False and any(
  281. self.match_model_tensor_name(new_name, key, bid)
  282. for key in (
  283. gguf.MODEL_TENSOR.TOKEN_EMBD,
  284. gguf.MODEL_TENSOR.OUTPUT,
  285. )
  286. ):
  287. if self.ftype in (
  288. gguf.LlamaFileType.MOSTLY_TQ1_0,
  289. gguf.LlamaFileType.MOSTLY_TQ2_0,
  290. ):
  291. # TODO: use Q4_K and Q6_K
  292. data_qtype = gguf.GGMLQuantizationType.F16
  293. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  294. if isinstance(data_qtype, bool):
  295. if self.ftype == gguf.LlamaFileType.ALL_F32:
  296. data_qtype = gguf.GGMLQuantizationType.F32
  297. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  298. data_qtype = gguf.GGMLQuantizationType.F16
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  300. data_qtype = gguf.GGMLQuantizationType.BF16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  302. data_qtype = gguf.GGMLQuantizationType.Q8_0
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  304. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  307. else:
  308. raise ValueError(f"Unknown file type: {self.ftype.name}")
  309. try:
  310. data = gguf.quants.quantize(data, data_qtype)
  311. except gguf.QuantError as e:
  312. logger.warning("%s, %s", e, "falling back to F16")
  313. data_qtype = gguf.GGMLQuantizationType.F16
  314. data = gguf.quants.quantize(data, data_qtype)
  315. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  316. # reverse shape to make it similar to the internal ggml dimension order
  317. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  318. # n_dims is implicit in the shape
  319. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  320. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  321. def set_type(self):
  322. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  323. def prepare_metadata(self, vocab_only: bool):
  324. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  325. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  326. # Fallback to model directory name if metadata name is still missing
  327. if self.metadata.name is None:
  328. self.metadata.name = self.dir_model.name
  329. # Generate parameter weight class (useful for leader boards) if not yet determined
  330. if self.metadata.size_label is None and total_params > 0:
  331. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  332. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  333. output_type: str = self.ftype.name.partition("_")[2]
  334. # Filename Output
  335. if self.fname_out.is_dir():
  336. # Generate default filename based on model specification and available metadata
  337. if not vocab_only:
  338. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  339. else:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  341. # Use the default filename
  342. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  343. else:
  344. # Output path is a custom defined templated filename
  345. # Note: `not is_dir()` is used because `.is_file()` will not detect
  346. # file template strings as it doesn't actually exist as a file
  347. # Process templated file name with the output ftype, useful with the "auto" ftype
  348. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  349. self.set_type()
  350. logger.info("Set meta model")
  351. self.metadata.set_gguf_meta_model(self.gguf_writer)
  352. logger.info("Set model parameters")
  353. self.set_gguf_parameters()
  354. logger.info("Set model tokenizer")
  355. self.set_vocab()
  356. logger.info("Set model quantization version")
  357. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  358. def write(self):
  359. self.prepare_tensors()
  360. self.prepare_metadata(vocab_only=False)
  361. self.gguf_writer.write_header_to_file(path=self.fname_out)
  362. self.gguf_writer.write_kv_data_to_file()
  363. self.gguf_writer.write_tensors_to_file(progress=True)
  364. self.gguf_writer.close()
  365. def write_vocab(self):
  366. if len(self.gguf_writer.tensors) != 1:
  367. raise ValueError('Splitting the vocabulary is not supported')
  368. self.prepare_metadata(vocab_only=True)
  369. self.gguf_writer.write_header_to_file(path=self.fname_out)
  370. self.gguf_writer.write_kv_data_to_file()
  371. self.gguf_writer.close()
  372. @staticmethod
  373. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  374. part_names: list[str] = []
  375. for filename in os.listdir(dir_model):
  376. if filename.startswith(prefix) and filename.endswith(suffix):
  377. part_names.append(filename)
  378. part_names.sort()
  379. return part_names
  380. @staticmethod
  381. def load_hparams(dir_model: Path):
  382. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  383. return json.load(f)
  384. @classmethod
  385. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  386. assert names
  387. def func(modelcls: AnyModel) -> AnyModel:
  388. for name in names:
  389. cls._model_classes[name] = modelcls
  390. return modelcls
  391. return func
  392. @classmethod
  393. def from_model_architecture(cls, arch: str) -> type[Model]:
  394. try:
  395. return cls._model_classes[arch]
  396. except KeyError:
  397. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  398. def does_token_look_special(self, token: str | bytes) -> bool:
  399. if isinstance(token, (bytes, bytearray)):
  400. token_text = token.decode(encoding="utf-8")
  401. elif isinstance(token, memoryview):
  402. token_text = token.tobytes().decode(encoding="utf-8")
  403. else:
  404. token_text = token
  405. # Some models mark some added tokens which ought to be control tokens as not special.
  406. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  407. seems_special = token_text in (
  408. "<pad>", # deepseek-coder
  409. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  410. )
  411. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  412. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  413. # TODO: should these be marked as UNUSED instead? (maybe not)
  414. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  415. return seems_special
  416. # used for GPT-2 BPE and WordPiece vocabs
  417. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  418. tokens: list[str] = []
  419. toktypes: list[int] = []
  420. from transformers import AutoTokenizer
  421. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  422. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  423. assert max(tokenizer.vocab.values()) < vocab_size
  424. tokpre = self.get_vocab_base_pre(tokenizer)
  425. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  426. added_vocab = tokenizer.get_added_vocab()
  427. for i in range(vocab_size):
  428. if i not in reverse_vocab:
  429. tokens.append(f"[PAD{i}]")
  430. toktypes.append(gguf.TokenType.UNUSED)
  431. else:
  432. token: str = reverse_vocab[i]
  433. if token in added_vocab:
  434. if tokenizer.added_tokens_decoder[i].special or self.does_token_look_special(token):
  435. toktypes.append(gguf.TokenType.CONTROL)
  436. else:
  437. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  438. toktypes.append(gguf.TokenType.USER_DEFINED)
  439. else:
  440. toktypes.append(gguf.TokenType.NORMAL)
  441. tokens.append(token)
  442. return tokens, toktypes, tokpre
  443. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  444. # do not modify it manually!
  445. # ref: https://github.com/ggerganov/llama.cpp/pull/6920
  446. # Marker: Start get_vocab_base_pre
  447. def get_vocab_base_pre(self, tokenizer) -> str:
  448. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  449. # is specific for the BPE pre-tokenizer used by the model
  450. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  451. # use in llama.cpp to implement the same pre-tokenizer
  452. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  453. chktok = tokenizer.encode(chktxt)
  454. chkhsh = sha256(str(chktok).encode()).hexdigest()
  455. logger.debug(f"chktok: {chktok}")
  456. logger.debug(f"chkhsh: {chkhsh}")
  457. res = None
  458. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  459. # or pull the latest version of the model from Huggingface
  460. # don't edit the hashes manually!
  461. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  462. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  463. res = "llama-bpe"
  464. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  465. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  466. res = "deepseek-llm"
  467. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  468. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  469. res = "deepseek-coder"
  470. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  471. # ref: https://huggingface.co/tiiuae/falcon-7b
  472. res = "falcon"
  473. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  474. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  475. res = "bert-bge"
  476. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  477. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  478. res = "bert-bge-large"
  479. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  480. # ref: https://huggingface.co/mosaicml/mpt-7b
  481. res = "mpt"
  482. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  483. # ref: https://huggingface.co/bigcode/starcoder2-3b
  484. res = "starcoder"
  485. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  486. # ref: https://huggingface.co/openai-community/gpt2
  487. res = "gpt-2"
  488. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  489. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  490. res = "stablelm2"
  491. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  492. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  493. res = "refact"
  494. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  495. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  496. res = "command-r"
  497. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  498. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  499. res = "qwen2"
  500. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  501. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  502. res = "olmo"
  503. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  504. # ref: https://huggingface.co/databricks/dbrx-base
  505. res = "dbrx"
  506. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  507. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  508. res = "jina-v1-en"
  509. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  510. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  511. res = "jina-v2-en"
  512. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  513. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  514. res = "jina-v2-es"
  515. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  516. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  517. res = "jina-v2-de"
  518. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  519. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  520. res = "smaug-bpe"
  521. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  522. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  523. res = "poro-chat"
  524. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  525. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  526. res = "jina-v2-code"
  527. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b":
  528. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  529. res = "chatglm-bpe"
  530. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  531. # ref: https://huggingface.co/LumiOpen/Viking-7B
  532. res = "viking"
  533. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  534. # ref: https://huggingface.co/core42/jais-13b
  535. res = "jais"
  536. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  537. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  538. res = "codeshell"
  539. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  540. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  541. res = "tekken"
  542. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  543. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  544. res = "smollm"
  545. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  546. # ref: https://huggingface.co/bigscience/bloom
  547. res = "bloom"
  548. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  549. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  550. res = "gpt3-finnish"
  551. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  552. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  553. res = "exaone"
  554. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  555. # ref: https://huggingface.co/microsoft/phi-2
  556. res = "phi-2"
  557. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  558. # ref: https://huggingface.co/facebook/chameleon-7b
  559. res = "chameleon"
  560. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  561. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  562. res = "minerva-7b"
  563. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  564. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  565. res = "roberta-bpe"
  566. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  567. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  568. res = "gigachat"
  569. if res is None:
  570. logger.warning("\n")
  571. logger.warning("**************************************************************************************")
  572. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  573. logger.warning("** There are 2 possible reasons for this:")
  574. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  575. logger.warning("** - the pre-tokenization config has changed upstream")
  576. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  577. logger.warning("** ref: https://github.com/ggerganov/llama.cpp/pull/6920")
  578. logger.warning("**")
  579. logger.warning(f"** chkhsh: {chkhsh}")
  580. logger.warning("**************************************************************************************")
  581. logger.warning("\n")
  582. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  583. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  584. logger.debug(f"chkhsh: {chkhsh}")
  585. return res
  586. # Marker: End get_vocab_base_pre
  587. def _set_vocab_none(self) -> None:
  588. self.gguf_writer.add_tokenizer_model("none")
  589. def _set_vocab_gpt2(self) -> None:
  590. tokens, toktypes, tokpre = self.get_vocab_base()
  591. self.gguf_writer.add_tokenizer_model("gpt2")
  592. self.gguf_writer.add_tokenizer_pre(tokpre)
  593. self.gguf_writer.add_token_list(tokens)
  594. self.gguf_writer.add_token_types(toktypes)
  595. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  596. special_vocab.add_to_gguf(self.gguf_writer)
  597. def _set_vocab_qwen(self):
  598. dir_model = self.dir_model
  599. hparams = self.hparams
  600. tokens: list[str] = []
  601. toktypes: list[int] = []
  602. from transformers import AutoTokenizer
  603. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  604. vocab_size = hparams["vocab_size"]
  605. assert max(tokenizer.get_vocab().values()) < vocab_size
  606. tokpre = self.get_vocab_base_pre(tokenizer)
  607. merges = []
  608. vocab = {}
  609. mergeable_ranks = tokenizer.mergeable_ranks
  610. for token, rank in mergeable_ranks.items():
  611. vocab[QwenModel.token_bytes_to_string(token)] = rank
  612. if len(token) == 1:
  613. continue
  614. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  615. assert len(merged) == 2
  616. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  617. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  618. added_vocab = tokenizer.special_tokens
  619. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  620. for i in range(vocab_size):
  621. if i not in reverse_vocab:
  622. tokens.append(f"[PAD{i}]")
  623. toktypes.append(gguf.TokenType.UNUSED)
  624. elif reverse_vocab[i] in added_vocab:
  625. tokens.append(reverse_vocab[i])
  626. toktypes.append(gguf.TokenType.CONTROL)
  627. else:
  628. tokens.append(reverse_vocab[i])
  629. toktypes.append(gguf.TokenType.NORMAL)
  630. self.gguf_writer.add_tokenizer_model("gpt2")
  631. self.gguf_writer.add_tokenizer_pre(tokpre)
  632. self.gguf_writer.add_token_list(tokens)
  633. self.gguf_writer.add_token_types(toktypes)
  634. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  635. special_vocab.merges = merges
  636. # only add special tokens when they were not already loaded from config.json
  637. if len(special_vocab.special_token_ids) == 0:
  638. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  639. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  640. # this one is usually not in config.json anyway
  641. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  642. special_vocab.add_to_gguf(self.gguf_writer)
  643. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  644. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  645. self.gguf_writer.add_tokenizer_model("llama")
  646. self.gguf_writer.add_tokenizer_pre("default")
  647. self.gguf_writer.add_token_list(tokens)
  648. self.gguf_writer.add_token_scores(scores)
  649. self.gguf_writer.add_token_types(toktypes)
  650. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  651. special_vocab.add_to_gguf(self.gguf_writer)
  652. def _create_vocab_sentencepiece(self):
  653. from sentencepiece import SentencePieceProcessor
  654. tokenizer_path = self.dir_model / 'tokenizer.model'
  655. if not tokenizer_path.is_file():
  656. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  657. tokenizer = SentencePieceProcessor()
  658. tokenizer.LoadFromFile(str(tokenizer_path))
  659. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  660. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  661. scores: list[float] = [-10000.0] * vocab_size
  662. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  663. for token_id in range(tokenizer.vocab_size()):
  664. piece = tokenizer.IdToPiece(token_id)
  665. text = piece.encode("utf-8")
  666. score = tokenizer.GetScore(token_id)
  667. toktype = SentencePieceTokenTypes.NORMAL
  668. if tokenizer.IsUnknown(token_id):
  669. toktype = SentencePieceTokenTypes.UNKNOWN
  670. elif tokenizer.IsControl(token_id):
  671. toktype = SentencePieceTokenTypes.CONTROL
  672. elif tokenizer.IsUnused(token_id):
  673. toktype = SentencePieceTokenTypes.UNUSED
  674. elif tokenizer.IsByte(token_id):
  675. toktype = SentencePieceTokenTypes.BYTE
  676. tokens[token_id] = text
  677. scores[token_id] = score
  678. toktypes[token_id] = toktype
  679. added_tokens_file = self.dir_model / 'added_tokens.json'
  680. if added_tokens_file.is_file():
  681. with open(added_tokens_file, "r", encoding="utf-8") as f:
  682. added_tokens_json = json.load(f)
  683. for key in added_tokens_json:
  684. token_id = added_tokens_json[key]
  685. if token_id >= vocab_size:
  686. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  687. continue
  688. tokens[token_id] = key.encode("utf-8")
  689. scores[token_id] = -1000.0
  690. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  691. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  692. if tokenizer_config_file.is_file():
  693. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  694. tokenizer_config_json = json.load(f)
  695. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  696. for token_id, token_data in added_tokens_decoder.items():
  697. token_id = int(token_id)
  698. token: str = token_data["content"]
  699. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  700. if tokens[token_id] != token.encode("utf-8"):
  701. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  702. if token_data.get("special") or self.does_token_look_special(token):
  703. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  704. else:
  705. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  706. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  707. scores[token_id] = -1000.0
  708. tokens[token_id] = token.encode("utf-8")
  709. if vocab_size > len(tokens):
  710. pad_count = vocab_size - len(tokens)
  711. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  712. for i in range(1, pad_count + 1):
  713. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  714. scores.append(-1000.0)
  715. toktypes.append(SentencePieceTokenTypes.UNUSED)
  716. return tokens, scores, toktypes
  717. def _set_vocab_llama_hf(self):
  718. vocab = gguf.LlamaHfVocab(self.dir_model)
  719. tokens = []
  720. scores = []
  721. toktypes = []
  722. for text, score, toktype in vocab.all_tokens():
  723. tokens.append(text)
  724. scores.append(score)
  725. toktypes.append(toktype)
  726. assert len(tokens) == vocab.vocab_size
  727. self.gguf_writer.add_tokenizer_model("llama")
  728. self.gguf_writer.add_tokenizer_pre("default")
  729. self.gguf_writer.add_token_list(tokens)
  730. self.gguf_writer.add_token_scores(scores)
  731. self.gguf_writer.add_token_types(toktypes)
  732. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  733. special_vocab.add_to_gguf(self.gguf_writer)
  734. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  735. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  736. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  737. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  738. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  739. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  740. assert field # tokenizer model
  741. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  742. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  743. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  744. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  745. assert field # token list
  746. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  747. if model_name == "llama-spm":
  748. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  749. assert field # token scores
  750. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  751. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  752. assert field # token types
  753. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  754. if model_name != "llama-spm":
  755. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  756. assert field # token merges
  757. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  758. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  759. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  760. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  761. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  762. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  763. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  764. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  765. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  766. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  767. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  768. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  769. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  770. @Model.register("GPTNeoXForCausalLM")
  771. class GPTNeoXModel(Model):
  772. model_arch = gguf.MODEL_ARCH.GPTNEOX
  773. def set_gguf_parameters(self):
  774. block_count = self.hparams["num_hidden_layers"]
  775. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  776. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  777. self.gguf_writer.add_block_count(block_count)
  778. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  779. self.gguf_writer.add_rope_dimension_count(
  780. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  781. )
  782. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  783. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  784. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  786. del bid # unused
  787. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  788. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  789. tensors: list[tuple[str, Tensor]] = []
  790. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  791. # Map bloom-style qkv_linear to gpt-style qkv_linear
  792. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  793. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  794. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  795. data_torch = torch.cat(
  796. (
  797. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  798. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  799. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  800. ),
  801. dim=0,
  802. )
  803. logger.info("re-format attention.linear_qkv.weight")
  804. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  805. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  806. data_torch = torch.cat(
  807. (
  808. qkv_bias[:, 0, :].reshape((n_embed,)),
  809. qkv_bias[:, 1, :].reshape((n_embed,)),
  810. qkv_bias[:, 2, :].reshape((n_embed,)),
  811. ),
  812. dim=0,
  813. )
  814. logger.info("re-format attention.linear_qkv.bias")
  815. tensors.append((self.map_tensor_name(name), data_torch))
  816. return tensors
  817. @Model.register("BloomForCausalLM", "BloomModel")
  818. class BloomModel(Model):
  819. model_arch = gguf.MODEL_ARCH.BLOOM
  820. def set_gguf_parameters(self):
  821. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  822. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  823. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  824. self.gguf_writer.add_embedding_length(n_embed)
  825. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  826. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  827. self.gguf_writer.add_head_count(n_head)
  828. self.gguf_writer.add_head_count_kv(n_head)
  829. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  830. self.gguf_writer.add_file_type(self.ftype)
  831. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  832. del bid # unused
  833. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  834. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  835. name = re.sub(r'transformer\.', '', name)
  836. tensors: list[tuple[str, Tensor]] = []
  837. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  838. # Map bloom-style qkv_linear to gpt-style qkv_linear
  839. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  840. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  841. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  842. data_torch = torch.cat(
  843. (
  844. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  845. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  846. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  847. ),
  848. dim=0,
  849. )
  850. logger.info("re-format attention.linear_qkv.weight")
  851. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  852. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  853. data_torch = torch.cat(
  854. (
  855. qkv_bias[:, 0, :].reshape((n_embed,)),
  856. qkv_bias[:, 1, :].reshape((n_embed,)),
  857. qkv_bias[:, 2, :].reshape((n_embed,)),
  858. ),
  859. dim=0,
  860. )
  861. logger.info("re-format attention.linear_qkv.bias")
  862. tensors.append((self.map_tensor_name(name), data_torch))
  863. if name == "word_embeddings.weight":
  864. assert self.tensor_names is not None
  865. # TODO: tie them at runtime, don't duplicate in the model file
  866. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  867. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  868. return tensors
  869. @Model.register("MPTForCausalLM")
  870. class MPTModel(Model):
  871. model_arch = gguf.MODEL_ARCH.MPT
  872. def set_vocab(self):
  873. try:
  874. self._set_vocab_gpt2()
  875. except Exception:
  876. # Fallback for SEA-LION model
  877. self._set_vocab_sentencepiece()
  878. self.gguf_writer.add_add_bos_token(False)
  879. self.gguf_writer.add_pad_token_id(3)
  880. self.gguf_writer.add_eos_token_id(1)
  881. self.gguf_writer.add_unk_token_id(0)
  882. def set_gguf_parameters(self):
  883. block_count = self.hparams["n_layers"]
  884. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  885. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  886. self.gguf_writer.add_block_count(block_count)
  887. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  888. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  889. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  890. self.gguf_writer.add_head_count_kv(kv_n_heads)
  891. self.gguf_writer.add_layer_norm_eps(1e-5)
  892. if self.hparams["attn_config"]["clip_qkv"] is not None:
  893. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  894. if self.hparams["attn_config"]["alibi"]:
  895. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  896. else:
  897. self.gguf_writer.add_max_alibi_bias(0.0)
  898. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  899. del bid # unused
  900. if "scales" in name:
  901. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  902. new_name = new_name.replace("scales", "act.scales")
  903. else:
  904. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  905. return [(new_name, data_torch)]
  906. @Model.register("OrionForCausalLM")
  907. class OrionModel(Model):
  908. model_arch = gguf.MODEL_ARCH.ORION
  909. def set_vocab(self):
  910. self._set_vocab_sentencepiece()
  911. def set_gguf_parameters(self):
  912. block_count = self.hparams["num_hidden_layers"]
  913. head_count = self.hparams["num_attention_heads"]
  914. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  915. ctx_length = 0
  916. if "max_sequence_length" in self.hparams:
  917. ctx_length = self.hparams["max_sequence_length"]
  918. elif "max_position_embeddings" in self.hparams:
  919. ctx_length = self.hparams["max_position_embeddings"]
  920. elif "model_max_length" in self.hparams:
  921. ctx_length = self.hparams["model_max_length"]
  922. else:
  923. raise ValueError("gguf: can not find ctx length parameter.")
  924. self.gguf_writer.add_file_type(self.ftype)
  925. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  926. self.gguf_writer.add_context_length(ctx_length)
  927. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  928. self.gguf_writer.add_block_count(block_count)
  929. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  930. self.gguf_writer.add_head_count(head_count)
  931. self.gguf_writer.add_head_count_kv(head_count_kv)
  932. # note: config provides rms norm but it is actually layer norm
  933. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  934. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  935. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  936. class BaichuanModel(Model):
  937. model_arch = gguf.MODEL_ARCH.BAICHUAN
  938. def set_vocab(self):
  939. self._set_vocab_sentencepiece()
  940. def set_gguf_parameters(self):
  941. block_count = self.hparams["num_hidden_layers"]
  942. head_count = self.hparams["num_attention_heads"]
  943. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  944. ctx_length = 0
  945. if "max_sequence_length" in self.hparams:
  946. ctx_length = self.hparams["max_sequence_length"]
  947. elif "max_position_embeddings" in self.hparams:
  948. ctx_length = self.hparams["max_position_embeddings"]
  949. elif "model_max_length" in self.hparams:
  950. ctx_length = self.hparams["model_max_length"]
  951. else:
  952. raise ValueError("gguf: can not find ctx length parameter.")
  953. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  954. self.gguf_writer.add_context_length(ctx_length)
  955. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  956. self.gguf_writer.add_block_count(block_count)
  957. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  958. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  959. self.gguf_writer.add_head_count(head_count)
  960. self.gguf_writer.add_head_count_kv(head_count_kv)
  961. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  962. self.gguf_writer.add_file_type(self.ftype)
  963. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  964. if self.hparams["rope_scaling"].get("type") == "linear":
  965. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  966. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  967. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  968. head_count = self.hparams["num_attention_heads"]
  969. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  970. tensors: list[tuple[str, Tensor]] = []
  971. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  972. logger.info(f"Unpacking and permuting layer {bid}")
  973. tensors = [
  974. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  975. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  976. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  977. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  978. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  979. self._reverse_hf_part(data_torch, 2)),
  980. ]
  981. else:
  982. tensors = [(self.map_tensor_name(name), data_torch)]
  983. return tensors
  984. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  985. if n_kv_head is not None and n_head != n_kv_head:
  986. n_head //= n_kv_head
  987. return (
  988. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  989. .swapaxes(1, 2)
  990. .reshape(weights.shape)
  991. )
  992. def _reverse_hf_permute_part(
  993. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  994. ) -> Tensor:
  995. r = weights.shape[0] // 3
  996. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  997. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  998. r = weights.shape[0] // 3
  999. return weights[r * n_part:r * n_part + r, ...]
  1000. @Model.register("XverseForCausalLM")
  1001. class XverseModel(Model):
  1002. model_arch = gguf.MODEL_ARCH.XVERSE
  1003. def set_vocab(self):
  1004. assert (self.dir_model / "tokenizer.json").is_file()
  1005. dir_model = self.dir_model
  1006. hparams = self.hparams
  1007. tokens: list[bytes] = []
  1008. toktypes: list[int] = []
  1009. from transformers import AutoTokenizer
  1010. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1011. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1012. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1013. # because vocab_size is the count of items, and indexes start at 0.
  1014. max_vocab_index = max(tokenizer.get_vocab().values())
  1015. if max_vocab_index >= vocab_size:
  1016. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1017. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1018. added_vocab = tokenizer.get_added_vocab()
  1019. for token_id in range(vocab_size):
  1020. token_text = reverse_vocab[token_id].encode('utf-8')
  1021. # replace "\x00" to string with length > 0
  1022. if token_text == b"\x00":
  1023. toktype = gguf.TokenType.BYTE # special
  1024. token_text = f"<{token_text}>".encode('utf-8')
  1025. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1026. toktype = gguf.TokenType.BYTE # special
  1027. elif reverse_vocab[token_id] in added_vocab:
  1028. if tokenizer.added_tokens_decoder[token_id].special:
  1029. toktype = gguf.TokenType.CONTROL
  1030. else:
  1031. toktype = gguf.TokenType.USER_DEFINED
  1032. else:
  1033. toktype = gguf.TokenType.NORMAL
  1034. tokens.append(token_text)
  1035. toktypes.append(toktype)
  1036. self.gguf_writer.add_tokenizer_model("llama")
  1037. self.gguf_writer.add_tokenizer_pre("default")
  1038. self.gguf_writer.add_token_list(tokens)
  1039. self.gguf_writer.add_token_types(toktypes)
  1040. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1041. special_vocab.add_to_gguf(self.gguf_writer)
  1042. def set_gguf_parameters(self):
  1043. block_count = self.hparams["num_hidden_layers"]
  1044. head_count = self.hparams["num_attention_heads"]
  1045. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1046. ctx_length = 0
  1047. if "max_sequence_length" in self.hparams:
  1048. ctx_length = self.hparams["max_sequence_length"]
  1049. elif "max_position_embeddings" in self.hparams:
  1050. ctx_length = self.hparams["max_position_embeddings"]
  1051. elif "model_max_length" in self.hparams:
  1052. ctx_length = self.hparams["model_max_length"]
  1053. else:
  1054. raise ValueError("gguf: can not find ctx length parameter.")
  1055. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1056. self.gguf_writer.add_context_length(ctx_length)
  1057. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1058. self.gguf_writer.add_block_count(block_count)
  1059. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1060. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1061. self.gguf_writer.add_head_count(head_count)
  1062. self.gguf_writer.add_head_count_kv(head_count_kv)
  1063. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1064. self.gguf_writer.add_file_type(self.ftype)
  1065. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1066. if self.hparams["rope_scaling"].get("type") == "linear":
  1067. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1068. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1069. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1070. del bid # unused
  1071. head_count = self.hparams["num_attention_heads"]
  1072. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1073. # HF models permute some of the tensors, so we need to undo that
  1074. if name.endswith("q_proj.weight"):
  1075. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1076. if name.endswith("k_proj.weight"):
  1077. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1078. return [(self.map_tensor_name(name), data_torch)]
  1079. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1080. if n_kv_head is not None and n_head != n_kv_head:
  1081. n_head //= n_kv_head
  1082. return (
  1083. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1084. .swapaxes(1, 2)
  1085. .reshape(weights.shape)
  1086. )
  1087. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1088. class FalconModel(Model):
  1089. model_arch = gguf.MODEL_ARCH.FALCON
  1090. def set_gguf_parameters(self):
  1091. block_count = self.hparams.get("num_hidden_layers")
  1092. if block_count is None:
  1093. block_count = self.hparams["n_layer"] # old name
  1094. n_head = self.hparams.get("num_attention_heads")
  1095. if n_head is None:
  1096. n_head = self.hparams["n_head"] # old name
  1097. n_head_kv = self.hparams.get("num_kv_heads")
  1098. if n_head_kv is None:
  1099. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1100. self.gguf_writer.add_context_length(2048) # not in config.json
  1101. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1102. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1103. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1104. self.gguf_writer.add_block_count(block_count)
  1105. self.gguf_writer.add_head_count(n_head)
  1106. self.gguf_writer.add_head_count_kv(n_head_kv)
  1107. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1108. self.gguf_writer.add_file_type(self.ftype)
  1109. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1110. del bid # unused
  1111. # QKV tensor transform
  1112. # The original query_key_value tensor contains n_head_kv "kv groups",
  1113. # each consisting of n_head/n_head_kv query weights followed by one key
  1114. # and one value weight (shared by all query heads in the kv group).
  1115. # This layout makes it a big pain to work with in GGML.
  1116. # So we rearrange them here,, so that we have n_head query weights
  1117. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1118. # in contiguous fashion.
  1119. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1120. if "query_key_value" in name:
  1121. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1122. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1123. head_dim = self.hparams["hidden_size"] // n_head
  1124. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1125. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1126. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1127. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1128. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1129. return [(self.map_tensor_name(name), data_torch)]
  1130. @Model.register("GPTBigCodeForCausalLM")
  1131. class StarCoderModel(Model):
  1132. model_arch = gguf.MODEL_ARCH.STARCODER
  1133. def set_gguf_parameters(self):
  1134. block_count = self.hparams["n_layer"]
  1135. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1136. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1137. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1138. self.gguf_writer.add_block_count(block_count)
  1139. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1140. self.gguf_writer.add_head_count_kv(1)
  1141. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1142. self.gguf_writer.add_file_type(self.ftype)
  1143. @Model.register("GPTRefactForCausalLM")
  1144. class RefactModel(Model):
  1145. model_arch = gguf.MODEL_ARCH.REFACT
  1146. def set_vocab(self):
  1147. super().set_vocab()
  1148. # TODO: how to determine special FIM tokens automatically?
  1149. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1150. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1151. special_vocab._set_special_token("prefix", 1)
  1152. special_vocab._set_special_token("suffix", 3)
  1153. special_vocab._set_special_token("middle", 2)
  1154. special_vocab.chat_template = None # do not add it twice
  1155. special_vocab.add_to_gguf(self.gguf_writer)
  1156. def set_gguf_parameters(self):
  1157. hidden_dim = self.hparams["n_embd"]
  1158. inner_dim = 4 * hidden_dim
  1159. hidden_dim = int(2 * inner_dim / 3)
  1160. multiple_of = 256
  1161. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1162. block_count = self.hparams["n_layer"]
  1163. # refact uses Alibi. So this is from config.json which might be used by training.
  1164. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1165. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1166. self.gguf_writer.add_feed_forward_length(ff_dim)
  1167. self.gguf_writer.add_block_count(block_count)
  1168. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1169. self.gguf_writer.add_head_count_kv(1)
  1170. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1171. self.gguf_writer.add_file_type(self.ftype)
  1172. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1173. hidden_dim = self.hparams["n_embd"]
  1174. inner_dim = 4 * hidden_dim
  1175. hidden_dim = int(2 * inner_dim / 3)
  1176. multiple_of = 256
  1177. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1178. n_head = self.hparams["n_head"]
  1179. n_head_kv = 1
  1180. head_dim = self.hparams["n_embd"] // n_head
  1181. tensors: list[tuple[str, Tensor]] = []
  1182. if bid is not None:
  1183. if name == f"transformer.h.{bid}.attn.kv.weight":
  1184. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1185. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1186. elif name == f"transformer.h.{bid}.attn.q.weight":
  1187. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1188. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1189. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1190. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1191. if len(tensors) == 0:
  1192. tensors.append((self.map_tensor_name(name), data_torch))
  1193. return tensors
  1194. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1195. class StableLMModel(Model):
  1196. model_arch = gguf.MODEL_ARCH.STABLELM
  1197. def set_vocab(self):
  1198. if (self.dir_model / "tokenizer.json").is_file():
  1199. self._set_vocab_gpt2()
  1200. else:
  1201. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1202. self._set_vocab_qwen()
  1203. def set_gguf_parameters(self):
  1204. hparams = self.hparams
  1205. block_count = hparams["num_hidden_layers"]
  1206. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1207. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1208. self.gguf_writer.add_block_count(block_count)
  1209. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1210. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1211. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1212. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1213. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1214. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1215. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1216. self.gguf_writer.add_file_type(self.ftype)
  1217. _q_norms: list[dict[str, Tensor]] | None = None
  1218. _k_norms: list[dict[str, Tensor]] | None = None
  1219. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1220. n_head = self.hparams["num_attention_heads"]
  1221. n_kv_head = self.hparams["num_key_value_heads"]
  1222. if name.find("q_layernorm.norms") != -1:
  1223. assert bid is not None
  1224. if self._q_norms is None:
  1225. self._q_norms = [{} for _ in range(self.block_count)]
  1226. self._q_norms[bid][name] = data_torch
  1227. if len(self._q_norms[bid]) >= n_head:
  1228. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1229. else:
  1230. return []
  1231. if name.find("k_layernorm.norms") != -1:
  1232. assert bid is not None
  1233. if self._k_norms is None:
  1234. self._k_norms = [{} for _ in range(self.block_count)]
  1235. self._k_norms[bid][name] = data_torch
  1236. if len(self._k_norms[bid]) >= n_kv_head:
  1237. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1238. else:
  1239. return []
  1240. return [(self.map_tensor_name(name), data_torch)]
  1241. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1242. datas: list[Tensor] = []
  1243. # extract the norms in order
  1244. for xid in range(n_head):
  1245. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1246. datas.append(norms[ename])
  1247. del norms[ename]
  1248. data_torch = torch.stack(datas, dim=0)
  1249. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1250. new_name = self.map_tensor_name(merged_name)
  1251. return [(new_name, data_torch)]
  1252. def prepare_tensors(self):
  1253. super().prepare_tensors()
  1254. if self._q_norms is not None or self._k_norms is not None:
  1255. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1256. norms = (
  1257. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1258. ) + (
  1259. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1260. )
  1261. if len(norms) > 0:
  1262. raise ValueError(f"Unprocessed norms: {norms}")
  1263. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1264. class LlamaModel(Model):
  1265. model_arch = gguf.MODEL_ARCH.LLAMA
  1266. def set_vocab(self):
  1267. try:
  1268. self._set_vocab_sentencepiece()
  1269. except FileNotFoundError:
  1270. try:
  1271. self._set_vocab_llama_hf()
  1272. except (FileNotFoundError, TypeError):
  1273. # Llama 3
  1274. self._set_vocab_gpt2()
  1275. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1276. if self.hparams.get("vocab_size", 32000) == 32016:
  1277. special_vocab = gguf.SpecialVocab(
  1278. self.dir_model, load_merges=False,
  1279. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1280. )
  1281. special_vocab._set_special_token("prefix", 32007)
  1282. special_vocab._set_special_token("suffix", 32008)
  1283. special_vocab._set_special_token("middle", 32009)
  1284. special_vocab._set_special_token("eot", 32010)
  1285. special_vocab.add_to_gguf(self.gguf_writer)
  1286. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1287. if tokenizer_config_file.is_file():
  1288. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1289. tokenizer_config_json = json.load(f)
  1290. if "add_prefix_space" in tokenizer_config_json:
  1291. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1292. # Apply to granite small models only
  1293. if self.hparams.get("vocab_size", 32000) == 49152:
  1294. self.gguf_writer.add_add_bos_token(False)
  1295. def set_gguf_parameters(self):
  1296. super().set_gguf_parameters()
  1297. hparams = self.hparams
  1298. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1299. if "head_dim" in hparams:
  1300. rope_dim = hparams["head_dim"]
  1301. else:
  1302. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1303. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1304. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1305. if self.hparams["rope_scaling"].get("type") == "linear":
  1306. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1307. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1308. @staticmethod
  1309. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1310. if n_head_kv is not None and n_head != n_head_kv:
  1311. n_head = n_head_kv
  1312. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1313. .swapaxes(1, 2)
  1314. .reshape(weights.shape))
  1315. _experts: list[dict[str, Tensor]] | None = None
  1316. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1317. n_head = self.hparams["num_attention_heads"]
  1318. n_kv_head = self.hparams.get("num_key_value_heads")
  1319. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1320. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1321. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1322. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1323. # process the experts separately
  1324. if name.find("block_sparse_moe.experts") != -1:
  1325. n_experts = self.hparams["num_local_experts"]
  1326. assert bid is not None
  1327. if self._experts is None:
  1328. self._experts = [{} for _ in range(self.block_count)]
  1329. self._experts[bid][name] = data_torch
  1330. if len(self._experts[bid]) >= n_experts * 3:
  1331. tensors: list[tuple[str, Tensor]] = []
  1332. # merge the experts into a single 3d tensor
  1333. for wid in ["w1", "w2", "w3"]:
  1334. datas: list[Tensor] = []
  1335. for xid in range(n_experts):
  1336. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1337. datas.append(self._experts[bid][ename])
  1338. del self._experts[bid][ename]
  1339. data_torch = torch.stack(datas, dim=0)
  1340. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1341. new_name = self.map_tensor_name(merged_name)
  1342. tensors.append((new_name, data_torch))
  1343. return tensors
  1344. else:
  1345. return []
  1346. return [(self.map_tensor_name(name), data_torch)]
  1347. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1348. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1349. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1350. base = self.hparams.get("rope_theta", 10000.0)
  1351. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1352. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1353. factor = rope_scaling.get("factor", 8.0)
  1354. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1355. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1356. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1357. low_freq_wavelen = old_context_len / low_freq_factor
  1358. high_freq_wavelen = old_context_len / high_freq_factor
  1359. assert low_freq_wavelen != high_freq_wavelen
  1360. rope_factors = []
  1361. for freq in freqs:
  1362. wavelen = 2 * math.pi / freq
  1363. if wavelen < high_freq_wavelen:
  1364. rope_factors.append(1)
  1365. elif wavelen > low_freq_wavelen:
  1366. rope_factors.append(factor)
  1367. else:
  1368. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1369. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1370. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1371. def prepare_tensors(self):
  1372. super().prepare_tensors()
  1373. if self._experts is not None:
  1374. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1375. experts = [k for d in self._experts for k in d.keys()]
  1376. if len(experts) > 0:
  1377. raise ValueError(f"Unprocessed experts: {experts}")
  1378. @Model.register("BitnetForCausalLM")
  1379. class BitnetModel(Model):
  1380. model_arch = gguf.MODEL_ARCH.BITNET
  1381. def set_vocab(self):
  1382. self._set_vocab_sentencepiece()
  1383. def set_gguf_parameters(self):
  1384. super().set_gguf_parameters()
  1385. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1386. self.gguf_writer.add_rope_scaling_factor(1.0)
  1387. def weight_quant(self, weight: Tensor) -> Tensor:
  1388. dtype = weight.dtype
  1389. weight = weight.float()
  1390. scale = weight.abs().mean().clamp(min=1e-5)
  1391. iscale = 1 / scale
  1392. # TODO: multiply by the scale directly instead of inverting it twice
  1393. # (this is also unnecessarily doubly inverted upstream)
  1394. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1395. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1396. return result.type(dtype)
  1397. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1398. new_name = self.map_tensor_name(name)
  1399. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1400. gguf.MODEL_TENSOR.ATTN_Q,
  1401. gguf.MODEL_TENSOR.ATTN_K,
  1402. gguf.MODEL_TENSOR.ATTN_V,
  1403. gguf.MODEL_TENSOR.ATTN_OUT,
  1404. gguf.MODEL_TENSOR.FFN_UP,
  1405. gguf.MODEL_TENSOR.FFN_DOWN,
  1406. gguf.MODEL_TENSOR.FFN_GATE,
  1407. ]):
  1408. # transform weight into 1/0/-1 (in fp32)
  1409. data_torch = self.weight_quant(data_torch)
  1410. yield (new_name, data_torch)
  1411. @Model.register("GrokForCausalLM")
  1412. class GrokModel(Model):
  1413. model_arch = gguf.MODEL_ARCH.GROK
  1414. def set_vocab(self):
  1415. self._set_vocab_sentencepiece()
  1416. def __init__(self, *args, **kwargs):
  1417. super().__init__(*args, **kwargs)
  1418. def set_gguf_parameters(self):
  1419. super().set_gguf_parameters()
  1420. _experts: list[dict[str, Tensor]] | None = None
  1421. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1422. # process the experts separately
  1423. if name.find(".moe.") != -1:
  1424. n_experts = self.hparams["num_local_experts"]
  1425. assert bid is not None
  1426. if self._experts is None:
  1427. self._experts = [{} for _ in range(self.block_count)]
  1428. self._experts[bid][name] = data_torch
  1429. if len(self._experts[bid]) >= n_experts * 3:
  1430. tensors: list[tuple[str, Tensor]] = []
  1431. # merge the experts into a single 3d tensor
  1432. for wid in ["linear", "linear_1", "linear_v"]:
  1433. datas: list[Tensor] = []
  1434. for xid in range(n_experts):
  1435. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1436. datas.append(self._experts[bid][ename])
  1437. del self._experts[bid][ename]
  1438. data_torch = torch.stack(datas, dim=0)
  1439. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1440. new_name = self.map_tensor_name(merged_name)
  1441. tensors.append((new_name, data_torch))
  1442. return tensors
  1443. else:
  1444. return []
  1445. return [(self.map_tensor_name(name), data_torch)]
  1446. @Model.register("DbrxForCausalLM")
  1447. class DbrxModel(Model):
  1448. model_arch = gguf.MODEL_ARCH.DBRX
  1449. def set_gguf_parameters(self):
  1450. ffn_config = self.hparams["ffn_config"]
  1451. attn_config = self.hparams["attn_config"]
  1452. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1453. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1454. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1455. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1456. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1457. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1458. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1459. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1460. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1461. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1462. self.gguf_writer.add_layer_norm_eps(1e-5)
  1463. self.gguf_writer.add_file_type(self.ftype)
  1464. logger.info(f"gguf: file type = {self.ftype}")
  1465. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1466. del bid # unused
  1467. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1468. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1469. n_embd = self.hparams["d_model"]
  1470. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1471. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1472. # But llama.cpp moe graph works differently
  1473. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1474. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1475. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1476. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1477. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1478. experts = False
  1479. for exp_tensor_name in exp_tensor_names.keys():
  1480. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1481. experts = True
  1482. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1483. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1484. data_torch = data_torch.permute(*permute_tensor)
  1485. break
  1486. # map tensor names
  1487. # In MoE models the ffn tensors are typically most of the model weights,
  1488. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1489. # Every other model has the weight names ending in .weight,
  1490. # let's assume that is the convention which is not the case for dbrx:
  1491. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1492. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1493. return [(new_name, data_torch)]
  1494. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1495. del name, new_name, bid # unused
  1496. return n_dims > 1
  1497. @Model.register("MiniCPMForCausalLM")
  1498. class MiniCPMModel(Model):
  1499. model_arch = gguf.MODEL_ARCH.MINICPM
  1500. def set_gguf_parameters(self):
  1501. super().set_gguf_parameters()
  1502. embedding_scale = float(self.hparams["scale_emb"])
  1503. self.gguf_writer.add_embedding_scale(embedding_scale)
  1504. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1505. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1506. self.gguf_writer.add_residual_scale(residual_scale)
  1507. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1508. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1509. self.gguf_writer.add_logit_scale(logit_scale)
  1510. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1511. if self.hparams.get("rope_scaling") is not None:
  1512. if self.hparams["rope_scaling"].get("type") == "longrope":
  1513. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1514. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1515. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1516. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1517. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1518. if rope_scaling is not None:
  1519. long_factors = rope_scaling.get('long_factor', None)
  1520. short_factors = rope_scaling.get('short_factor', None)
  1521. if long_factors is None or short_factors is None:
  1522. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1523. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1524. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1525. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1526. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1527. def set_vocab(self):
  1528. self._set_vocab_sentencepiece()
  1529. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1530. del bid # unused
  1531. n_head = self.hparams["num_attention_heads"]
  1532. n_kv_head = self.hparams.get("num_key_value_heads")
  1533. # HF models permute some of the tensors, so we need to undo that
  1534. if name.endswith(("q_proj.weight")):
  1535. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1536. if name.endswith(("k_proj.weight")):
  1537. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1538. return [(self.map_tensor_name(name), data_torch)]
  1539. @Model.register("MiniCPM3ForCausalLM")
  1540. class MiniCPM3Model(Model):
  1541. model_arch = gguf.MODEL_ARCH.MINICPM3
  1542. def set_gguf_parameters(self):
  1543. hparams = self.hparams
  1544. self.gguf_writer.add_file_type(self.ftype)
  1545. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1546. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1547. self.gguf_writer.add_block_count(self.block_count)
  1548. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1549. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1550. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1551. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1552. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1553. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1554. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1555. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1556. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1557. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1558. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1559. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1560. if rope_scaling is not None:
  1561. rope_dims = self.hparams["qk_rope_head_dim"]
  1562. long_factors = rope_scaling.get('long_factor', None)
  1563. short_factors = rope_scaling.get('short_factor', None)
  1564. if long_factors is None or short_factors is None:
  1565. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1566. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1567. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1568. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1569. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1570. def set_vocab(self):
  1571. self._set_vocab_sentencepiece()
  1572. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1573. if n_kv_head is not None and n_head != n_kv_head:
  1574. n_head //= n_kv_head
  1575. return (
  1576. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1577. .swapaxes(1, 2)
  1578. .reshape(weights.shape)
  1579. )
  1580. @Model.register("QWenLMHeadModel")
  1581. class QwenModel(Model):
  1582. model_arch = gguf.MODEL_ARCH.QWEN
  1583. @staticmethod
  1584. def token_bytes_to_string(b):
  1585. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1586. byte_encoder = bytes_to_unicode()
  1587. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1588. @staticmethod
  1589. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1590. parts = [bytes([b]) for b in token]
  1591. while True:
  1592. min_idx = None
  1593. min_rank = None
  1594. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1595. rank = mergeable_ranks.get(pair[0] + pair[1])
  1596. if rank is not None and (min_rank is None or rank < min_rank):
  1597. min_idx = i
  1598. min_rank = rank
  1599. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1600. break
  1601. assert min_idx is not None
  1602. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1603. return parts
  1604. def set_vocab(self):
  1605. self._set_vocab_qwen()
  1606. def set_gguf_parameters(self):
  1607. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1608. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1609. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1610. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1611. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1612. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1613. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1614. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1615. self.gguf_writer.add_file_type(self.ftype)
  1616. @Model.register("Qwen2ForCausalLM")
  1617. class Qwen2Model(Model):
  1618. model_arch = gguf.MODEL_ARCH.QWEN2
  1619. def set_vocab(self):
  1620. try:
  1621. self._set_vocab_sentencepiece()
  1622. except FileNotFoundError:
  1623. self._set_vocab_gpt2()
  1624. def set_gguf_parameters(self):
  1625. super().set_gguf_parameters()
  1626. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1627. if self.hparams["rope_scaling"].get("type") == "yarn":
  1628. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1629. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1630. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1631. @Model.register("Qwen2VLForConditionalGeneration")
  1632. class Qwen2VLModel(Model):
  1633. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1634. def set_gguf_parameters(self):
  1635. super().set_gguf_parameters()
  1636. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1637. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1638. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1639. def set_vocab(self):
  1640. try:
  1641. self._set_vocab_sentencepiece()
  1642. except FileNotFoundError:
  1643. self._set_vocab_gpt2()
  1644. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1645. for name, data in super().get_tensors():
  1646. if name.startswith("visual."):
  1647. continue
  1648. yield name, data
  1649. @Model.register("WavTokenizerDec")
  1650. class WavTokenizerDecModel(Model):
  1651. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1652. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1653. del bid # unused
  1654. if \
  1655. name.endswith("codebook.cluster_size") or \
  1656. name.endswith("codebook.embed_avg") or \
  1657. name.endswith("codebook.inited"):
  1658. logger.debug(f"Skipping {name!r}")
  1659. return []
  1660. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1661. return [(self.map_tensor_name(name), data_torch)]
  1662. def set_vocab(self):
  1663. self._set_vocab_none()
  1664. def set_gguf_parameters(self):
  1665. super().set_gguf_parameters()
  1666. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1667. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1668. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1669. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1670. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1671. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1672. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1673. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1674. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1675. self.gguf_writer.add_causal_attention(False)
  1676. @Model.register("Qwen2MoeForCausalLM")
  1677. class Qwen2MoeModel(Model):
  1678. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1679. def set_gguf_parameters(self):
  1680. super().set_gguf_parameters()
  1681. if (n_experts := self.hparams.get("num_experts")) is not None:
  1682. self.gguf_writer.add_expert_count(n_experts)
  1683. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1684. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1685. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1686. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1687. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1688. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1689. _experts: list[dict[str, Tensor]] | None = None
  1690. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1691. # process the experts separately
  1692. if name.find("experts") != -1:
  1693. n_experts = self.hparams["num_experts"]
  1694. assert bid is not None
  1695. if self._experts is None:
  1696. self._experts = [{} for _ in range(self.block_count)]
  1697. self._experts[bid][name] = data_torch
  1698. if len(self._experts[bid]) >= n_experts * 3:
  1699. tensors: list[tuple[str, Tensor]] = []
  1700. # merge the experts into a single 3d tensor
  1701. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1702. datas: list[Tensor] = []
  1703. for xid in range(n_experts):
  1704. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1705. datas.append(self._experts[bid][ename])
  1706. del self._experts[bid][ename]
  1707. data_torch = torch.stack(datas, dim=0)
  1708. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1709. new_name = self.map_tensor_name(merged_name)
  1710. tensors.append((new_name, data_torch))
  1711. return tensors
  1712. else:
  1713. return []
  1714. return [(self.map_tensor_name(name), data_torch)]
  1715. def prepare_tensors(self):
  1716. super().prepare_tensors()
  1717. if self._experts is not None:
  1718. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1719. experts = [k for d in self._experts for k in d.keys()]
  1720. if len(experts) > 0:
  1721. raise ValueError(f"Unprocessed experts: {experts}")
  1722. @Model.register("GPT2LMHeadModel")
  1723. class GPT2Model(Model):
  1724. model_arch = gguf.MODEL_ARCH.GPT2
  1725. def set_gguf_parameters(self):
  1726. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  1727. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  1728. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1729. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1730. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1731. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1732. self.gguf_writer.add_file_type(self.ftype)
  1733. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1734. del bid # unused
  1735. tensors: list[tuple[str, Tensor]] = []
  1736. # we don't need these
  1737. if name.endswith((".attn.bias", ".attn.masked_bias")):
  1738. return tensors
  1739. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  1740. data_torch = data_torch.transpose(1, 0)
  1741. new_name = self.map_tensor_name(name)
  1742. tensors.append((new_name, data_torch))
  1743. # note: GPT2 output is tied to (same as) wte in original model
  1744. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1745. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1746. return tensors
  1747. @Model.register("PhiForCausalLM")
  1748. class Phi2Model(Model):
  1749. model_arch = gguf.MODEL_ARCH.PHI2
  1750. def set_gguf_parameters(self):
  1751. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1752. rot_pct = self.find_hparam(["partial_rotary_factor"])
  1753. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1754. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1755. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  1756. self.gguf_writer.add_embedding_length(n_embd)
  1757. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  1758. self.gguf_writer.add_block_count(block_count)
  1759. self.gguf_writer.add_head_count(n_head)
  1760. self.gguf_writer.add_head_count_kv(n_head)
  1761. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  1762. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  1763. self.gguf_writer.add_file_type(self.ftype)
  1764. self.gguf_writer.add_add_bos_token(False)
  1765. @Model.register("Phi3ForCausalLM")
  1766. class Phi3MiniModel(Model):
  1767. model_arch = gguf.MODEL_ARCH.PHI3
  1768. def set_vocab(self):
  1769. # Phi-4 model uses GPT2Tokenizer
  1770. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1771. if tokenizer_config_file.is_file():
  1772. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1773. tokenizer_config_json = json.load(f)
  1774. tokenizer_class = tokenizer_config_json['tokenizer_class']
  1775. if tokenizer_class == 'GPT2Tokenizer':
  1776. return self._set_vocab_gpt2()
  1777. from sentencepiece import SentencePieceProcessor
  1778. tokenizer_path = self.dir_model / 'tokenizer.model'
  1779. if not tokenizer_path.is_file():
  1780. raise ValueError(f'Error: Missing {tokenizer_path}')
  1781. tokenizer = SentencePieceProcessor()
  1782. tokenizer.LoadFromFile(str(tokenizer_path))
  1783. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1784. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  1785. scores: list[float] = [-10000.0] * vocab_size
  1786. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  1787. for token_id in range(tokenizer.vocab_size()):
  1788. piece = tokenizer.IdToPiece(token_id)
  1789. text = piece.encode("utf-8")
  1790. score = tokenizer.GetScore(token_id)
  1791. toktype = SentencePieceTokenTypes.NORMAL
  1792. if tokenizer.IsUnknown(token_id):
  1793. toktype = SentencePieceTokenTypes.UNKNOWN
  1794. elif tokenizer.IsControl(token_id):
  1795. toktype = SentencePieceTokenTypes.CONTROL
  1796. elif tokenizer.IsUnused(token_id):
  1797. toktype = SentencePieceTokenTypes.UNUSED
  1798. elif tokenizer.IsByte(token_id):
  1799. toktype = SentencePieceTokenTypes.BYTE
  1800. tokens[token_id] = text
  1801. scores[token_id] = score
  1802. toktypes[token_id] = toktype
  1803. added_tokens_file = self.dir_model / 'added_tokens.json'
  1804. if added_tokens_file.is_file():
  1805. with open(added_tokens_file, "r", encoding="utf-8") as f:
  1806. added_tokens_json = json.load(f)
  1807. for key in added_tokens_json:
  1808. token_id = added_tokens_json[key]
  1809. if token_id >= vocab_size:
  1810. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  1811. continue
  1812. tokens[token_id] = key.encode("utf-8")
  1813. scores[token_id] = -1000.0
  1814. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1815. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1816. if tokenizer_config_file.is_file():
  1817. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1818. tokenizer_config_json = json.load(f)
  1819. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  1820. for token_id, foken_data in added_tokens_decoder.items():
  1821. token_id = int(token_id)
  1822. token = foken_data["content"].encode("utf-8")
  1823. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1824. if tokens[token_id] != token:
  1825. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1826. tokens[token_id] = token
  1827. scores[token_id] = -1000.0
  1828. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1829. if foken_data.get("special"):
  1830. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1831. tokenizer_file = self.dir_model / 'tokenizer.json'
  1832. if tokenizer_file.is_file():
  1833. with open(tokenizer_file, "r", encoding="utf-8") as f:
  1834. tokenizer_json = json.load(f)
  1835. added_tokens = tokenizer_json.get("added_tokens", [])
  1836. for foken_data in added_tokens:
  1837. token_id = int(foken_data["id"])
  1838. token = foken_data["content"].encode("utf-8")
  1839. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  1840. if tokens[token_id] != token:
  1841. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  1842. tokens[token_id] = token
  1843. scores[token_id] = -1000.0
  1844. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  1845. if foken_data.get("special"):
  1846. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  1847. self.gguf_writer.add_tokenizer_model("llama")
  1848. self.gguf_writer.add_tokenizer_pre("default")
  1849. self.gguf_writer.add_token_list(tokens)
  1850. self.gguf_writer.add_token_scores(scores)
  1851. self.gguf_writer.add_token_types(toktypes)
  1852. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  1853. special_vocab.add_to_gguf(self.gguf_writer)
  1854. def set_gguf_parameters(self):
  1855. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  1856. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1857. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1858. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  1859. rms_eps = self.find_hparam(["rms_norm_eps"])
  1860. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1861. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1862. rope_dims = n_embd // n_head
  1863. self.gguf_writer.add_context_length(max_pos_embds)
  1864. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  1865. self.gguf_writer.add_embedding_length(n_embd)
  1866. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  1867. self.gguf_writer.add_block_count(block_count)
  1868. self.gguf_writer.add_head_count(n_head)
  1869. self.gguf_writer.add_head_count_kv(n_head_kv)
  1870. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  1871. self.gguf_writer.add_rope_dimension_count(rope_dims)
  1872. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  1873. self.gguf_writer.add_file_type(self.ftype)
  1874. sliding_window = self.hparams.get("sliding_window")
  1875. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  1876. if sliding_window is None:
  1877. sliding_window = 0
  1878. self.gguf_writer.add_sliding_window(sliding_window)
  1879. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1880. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  1881. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1882. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  1883. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  1884. rope_dims = n_embd // n_head
  1885. # write rope scaling for long context (128k) model
  1886. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1887. if rope_scaling is None:
  1888. return
  1889. scale = max_pos_embds / orig_max_pos_embds
  1890. rope_scaling_type = rope_scaling.get('type', '').lower()
  1891. if len(rope_scaling_type) == 0:
  1892. raise KeyError('Missing the required key rope_scaling.type')
  1893. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  1894. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  1895. elif rope_scaling_type == 'yarn':
  1896. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  1897. else:
  1898. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  1899. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  1900. long_factors = rope_scaling.get('long_factor', None)
  1901. short_factors = rope_scaling.get('short_factor', None)
  1902. if long_factors is None or short_factors is None:
  1903. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1904. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1905. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1906. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1907. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1908. @Model.register("PlamoForCausalLM")
  1909. class PlamoModel(Model):
  1910. model_arch = gguf.MODEL_ARCH.PLAMO
  1911. def set_vocab(self):
  1912. self._set_vocab_sentencepiece()
  1913. def set_gguf_parameters(self):
  1914. hparams = self.hparams
  1915. block_count = hparams["num_hidden_layers"]
  1916. self.gguf_writer.add_context_length(4096) # not in config.json
  1917. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1918. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1919. self.gguf_writer.add_block_count(block_count)
  1920. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1921. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  1922. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1923. self.gguf_writer.add_file_type(self.ftype)
  1924. def shuffle_attn_q_weight(self, data_torch):
  1925. assert data_torch.size() == (5120, 5120)
  1926. data_torch = data_torch.reshape(8, 5, 128, 5120)
  1927. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  1928. data_torch = torch.reshape(data_torch, (5120, 5120))
  1929. return data_torch
  1930. def shuffle_attn_output_weight(self, data_torch):
  1931. assert data_torch.size() == (5120, 5120)
  1932. data_torch = data_torch.reshape(5120, 8, 5, 128)
  1933. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  1934. data_torch = torch.reshape(data_torch, (5120, 5120))
  1935. return data_torch
  1936. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1937. del bid # unused
  1938. new_name = self.map_tensor_name(name)
  1939. # shuffle for broadcasting of gqa in ggml_mul_mat
  1940. if new_name.endswith("attn_q.weight"):
  1941. data_torch = self.shuffle_attn_q_weight(data_torch)
  1942. elif new_name.endswith("attn_output.weight"):
  1943. data_torch = self.shuffle_attn_output_weight(data_torch)
  1944. return [(new_name, data_torch)]
  1945. @Model.register("CodeShellForCausalLM")
  1946. class CodeShellModel(Model):
  1947. model_arch = gguf.MODEL_ARCH.CODESHELL
  1948. def set_gguf_parameters(self):
  1949. block_count = self.hparams["n_layer"]
  1950. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1951. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1952. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1953. self.gguf_writer.add_block_count(block_count)
  1954. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1955. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  1956. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1957. self.gguf_writer.add_file_type(self.ftype)
  1958. self.gguf_writer.add_rope_freq_base(10000.0)
  1959. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1960. self.gguf_writer.add_rope_scaling_factor(1.0)
  1961. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1962. del bid # unused
  1963. new_name = self.map_tensor_name(name)
  1964. tensors: list[tuple[str, Tensor]] = [(new_name, data_torch)]
  1965. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  1966. assert self.tensor_names is not None
  1967. if all(s not in self.tensor_names for s in ("lm_head.weight", "output.weight")):
  1968. # copy tok_embd.weight to output.weight
  1969. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT), data_torch))
  1970. return tensors
  1971. @Model.register("InternLM2ForCausalLM")
  1972. class InternLM2Model(Model):
  1973. model_arch = gguf.MODEL_ARCH.INTERNLM2
  1974. def set_vocab(self):
  1975. # (TODO): Is there a better way?
  1976. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  1977. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  1978. # recognized as an empty string in C++.
  1979. from sentencepiece import SentencePieceProcessor
  1980. from sentencepiece import sentencepiece_model_pb2 as model
  1981. tokenizer_path = self.dir_model / 'tokenizer.model'
  1982. tokens: list[bytes] = []
  1983. scores: list[float] = []
  1984. toktypes: list[int] = []
  1985. if not tokenizer_path.is_file():
  1986. logger.error(f'Error: Missing {tokenizer_path}')
  1987. sys.exit(1)
  1988. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  1989. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  1990. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  1991. tokenizer = SentencePieceProcessor()
  1992. tokenizer.LoadFromFile(str(tokenizer_path))
  1993. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  1994. for token_id in range(vocab_size):
  1995. piece = tokenizer.IdToPiece(token_id)
  1996. text = piece.encode("utf-8")
  1997. score = tokenizer.GetScore(token_id)
  1998. if text == b"\x00":
  1999. # (TODO): fixme
  2000. # Hack here and replace the \x00 characters.
  2001. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2002. text = "🐉".encode("utf-8")
  2003. toktype = SentencePieceTokenTypes.NORMAL
  2004. if tokenizer.IsUnknown(token_id):
  2005. toktype = SentencePieceTokenTypes.UNKNOWN
  2006. elif tokenizer.IsControl(token_id):
  2007. toktype = SentencePieceTokenTypes.CONTROL
  2008. elif tokenizer.IsUnused(token_id):
  2009. toktype = SentencePieceTokenTypes.UNUSED
  2010. elif tokenizer.IsByte(token_id):
  2011. toktype = SentencePieceTokenTypes.BYTE
  2012. # take care of ununsed raw token
  2013. if piece.startswith('[UNUSED'):
  2014. toktype = SentencePieceTokenTypes.UNUSED
  2015. tokens.append(text)
  2016. scores.append(score)
  2017. toktypes.append(toktype)
  2018. added_tokens_file = self.dir_model / 'added_tokens.json'
  2019. if added_tokens_file.is_file():
  2020. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2021. added_tokens_json = json.load(f)
  2022. for key in added_tokens_json:
  2023. tokens.append(key.encode("utf-8"))
  2024. scores.append(-1000.0)
  2025. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2026. chat_eos_token = '<|im_end|>'
  2027. chat_eos_token_id = None
  2028. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2029. if tokenizer_config_file.is_file():
  2030. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2031. tokenizer_config_json = json.load(f)
  2032. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2033. for token_id, foken_data in added_tokens_decoder.items():
  2034. token_id = int(token_id)
  2035. token = foken_data["content"]
  2036. if token == chat_eos_token:
  2037. chat_eos_token_id = token_id
  2038. token = token.encode("utf-8")
  2039. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2040. if tokens[token_id] != token:
  2041. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2042. tokens[token_id] = token
  2043. scores[token_id] = -1000.0
  2044. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2045. if foken_data.get("special"):
  2046. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2047. tokenizer_file = self.dir_model / 'tokenizer.json'
  2048. if tokenizer_file.is_file():
  2049. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2050. tokenizer_json = json.load(f)
  2051. added_tokens = tokenizer_json.get("added_tokens", [])
  2052. for foken_data in added_tokens:
  2053. token_id = int(foken_data["id"])
  2054. token = foken_data["content"]
  2055. if token == chat_eos_token:
  2056. chat_eos_token_id = token_id
  2057. token = token.encode("utf-8")
  2058. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2059. if tokens[token_id] != token:
  2060. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2061. tokens[token_id] = token
  2062. scores[token_id] = -1000.0
  2063. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2064. if foken_data.get("special"):
  2065. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2066. self.gguf_writer.add_tokenizer_model("llama")
  2067. self.gguf_writer.add_tokenizer_pre("default")
  2068. self.gguf_writer.add_token_list(tokens)
  2069. self.gguf_writer.add_token_scores(scores)
  2070. self.gguf_writer.add_token_types(toktypes)
  2071. self.gguf_writer.add_add_space_prefix(add_prefix)
  2072. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2073. old_eos = special_vocab.special_token_ids["eos"]
  2074. if chat_eos_token_id is not None:
  2075. # For the chat model, we replace the eos with '<|im_end|>'.
  2076. # TODO: this is a hack, should be fixed
  2077. # https://github.com/ggerganov/llama.cpp/pull/6745#issuecomment-2067687048
  2078. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2079. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2080. " in chat mode so that the conversation can end normally.")
  2081. special_vocab.add_to_gguf(self.gguf_writer)
  2082. def set_gguf_parameters(self):
  2083. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2084. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2085. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2086. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2087. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2088. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2089. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2090. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2091. self.gguf_writer.add_file_type(self.ftype)
  2092. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2093. if self.hparams["rope_scaling"].get("type") == "linear":
  2094. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2095. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2096. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2097. num_heads = self.hparams["num_attention_heads"]
  2098. num_kv_heads = self.hparams["num_key_value_heads"]
  2099. n_embd = self.hparams["hidden_size"]
  2100. q_per_kv = num_heads // num_kv_heads
  2101. head_dim = n_embd // num_heads
  2102. num_groups = num_heads // q_per_kv
  2103. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2104. qkv = data_torch
  2105. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2106. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2107. # The model weights of q and k equire additional reshape.
  2108. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2109. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2110. v = v.reshape((-1, v.shape[-1]))
  2111. return [
  2112. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2113. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2114. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2115. ]
  2116. else:
  2117. return [(self.map_tensor_name(name), data_torch)]
  2118. @Model.register("BertModel", "CamembertModel")
  2119. class BertModel(Model):
  2120. model_arch = gguf.MODEL_ARCH.BERT
  2121. def __init__(self, *args, **kwargs):
  2122. super().__init__(*args, **kwargs)
  2123. self.vocab_size = None
  2124. def set_gguf_parameters(self):
  2125. super().set_gguf_parameters()
  2126. self.gguf_writer.add_causal_attention(False)
  2127. # get pooling path
  2128. pooling_path = None
  2129. module_path = self.dir_model / "modules.json"
  2130. if module_path.is_file():
  2131. with open(module_path, encoding="utf-8") as f:
  2132. modules = json.load(f)
  2133. for mod in modules:
  2134. if mod["type"] == "sentence_transformers.models.Pooling":
  2135. pooling_path = mod["path"]
  2136. break
  2137. # get pooling type
  2138. if pooling_path is not None:
  2139. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2140. pooling = json.load(f)
  2141. if pooling["pooling_mode_mean_tokens"]:
  2142. pooling_type = gguf.PoolingType.MEAN
  2143. elif pooling["pooling_mode_cls_token"]:
  2144. pooling_type = gguf.PoolingType.CLS
  2145. else:
  2146. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2147. self.gguf_writer.add_pooling_type(pooling_type)
  2148. def set_vocab(self):
  2149. tokens, toktypes, tokpre = self.get_vocab_base()
  2150. self.vocab_size = len(tokens)
  2151. # we need this to validate the size of the token_type embeddings
  2152. # though currently we are passing all zeros to the token_type embeddings
  2153. # "Sequence A" or "Sequence B"
  2154. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2155. # convert to phantom space vocab
  2156. def phantom(tok):
  2157. if tok.startswith("[") and tok.endswith("]"):
  2158. return tok
  2159. if tok.startswith("##"):
  2160. return tok[2:]
  2161. return "\u2581" + tok
  2162. tokens = list(map(phantom, tokens))
  2163. # add vocab to gguf
  2164. self.gguf_writer.add_tokenizer_model("bert")
  2165. self.gguf_writer.add_tokenizer_pre(tokpre)
  2166. self.gguf_writer.add_token_list(tokens)
  2167. self.gguf_writer.add_token_types(toktypes)
  2168. # handle special tokens
  2169. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2170. special_vocab.add_to_gguf(self.gguf_writer)
  2171. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2172. del bid # unused
  2173. # we are only using BERT for embeddings so we don't need the pooling layer
  2174. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2175. return [] # we don't need these
  2176. return [(self.map_tensor_name(name), data_torch)]
  2177. @Model.register("RobertaModel")
  2178. class RobertaModel(BertModel):
  2179. model_arch = gguf.MODEL_ARCH.BERT
  2180. def __init__(self, *args, **kwargs):
  2181. super().__init__(*args, **kwargs)
  2182. # we need the pad_token_id to know how to chop down position_embd matrix
  2183. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2184. self._position_offset = 1 + pad_token_id
  2185. if "max_position_embeddings" in self.hparams:
  2186. self.hparams["max_position_embeddings"] -= self._position_offset
  2187. else:
  2188. self._position_offset = None
  2189. def set_vocab(self):
  2190. """Support BPE tokenizers for roberta models"""
  2191. bpe_tok_path = self.dir_model / "tokenizer.json"
  2192. if bpe_tok_path.exists():
  2193. self._set_vocab_gpt2()
  2194. self.gguf_writer.add_add_bos_token(True)
  2195. self.gguf_writer.add_add_eos_token(True)
  2196. # we need this to validate the size of the token_type embeddings
  2197. # though currently we are passing all zeros to the token_type embeddings
  2198. # "Sequence A" or "Sequence B"
  2199. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2200. else:
  2201. return super().set_vocab()
  2202. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2203. # if name starts with "roberta.", remove the prefix
  2204. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2205. if name.startswith("roberta."):
  2206. name = name[8:]
  2207. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2208. if name == "embeddings.position_embeddings.weight":
  2209. if self._position_offset is not None:
  2210. data_torch = data_torch[self._position_offset:,:]
  2211. return super().modify_tensors(data_torch, name, bid)
  2212. @Model.register("NomicBertModel")
  2213. class NomicBertModel(BertModel):
  2214. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2215. def __init__(self, *args, **kwargs):
  2216. super().__init__(*args, **kwargs)
  2217. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2218. self.hparams["n_ctx"] = 2048
  2219. # SwigLU activation
  2220. assert self.hparams["activation_function"] == "swiglu"
  2221. # this doesn't do anything in the HF version
  2222. assert self.hparams["causal"] is False
  2223. # no bias tensors
  2224. assert self.hparams["qkv_proj_bias"] is False
  2225. assert self.hparams["mlp_fc1_bias"] is False
  2226. assert self.hparams["mlp_fc2_bias"] is False
  2227. # norm at end of layer
  2228. assert self.hparams["prenorm"] is False
  2229. # standard RoPE
  2230. assert self.hparams["rotary_emb_fraction"] == 1.0
  2231. assert self.hparams["rotary_emb_interleaved"] is False
  2232. assert self.hparams["rotary_emb_scale_base"] is None
  2233. def set_gguf_parameters(self):
  2234. super().set_gguf_parameters()
  2235. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2236. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2237. class XLMRobertaModel(BertModel):
  2238. model_arch = gguf.MODEL_ARCH.BERT
  2239. def __init__(self, *args, **kwargs):
  2240. super().__init__(*args, **kwargs)
  2241. # we need the pad_token_id to know how to chop down position_embd matrix
  2242. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2243. self._position_offset = 1 + pad_token_id
  2244. if "max_position_embeddings" in self.hparams:
  2245. self.hparams["max_position_embeddings"] -= self._position_offset
  2246. else:
  2247. self._position_offset = None
  2248. def set_vocab(self):
  2249. # to avoid TypeError: Descriptors cannot be created directly
  2250. # exception when importing sentencepiece_model_pb2
  2251. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2252. from sentencepiece import SentencePieceProcessor
  2253. from sentencepiece import sentencepiece_model_pb2 as model
  2254. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2255. if not tokenizer_path.is_file():
  2256. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2257. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2258. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2259. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2260. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2261. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2262. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2263. tokenizer = SentencePieceProcessor()
  2264. tokenizer.LoadFromFile(str(tokenizer_path))
  2265. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2266. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2267. scores: list[float] = [-10000.0] * vocab_size
  2268. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2269. for token_id in range(tokenizer.vocab_size()):
  2270. piece = tokenizer.IdToPiece(token_id)
  2271. text = piece.encode("utf-8")
  2272. score = tokenizer.GetScore(token_id)
  2273. toktype = SentencePieceTokenTypes.NORMAL
  2274. if tokenizer.IsUnknown(token_id):
  2275. toktype = SentencePieceTokenTypes.UNKNOWN
  2276. elif tokenizer.IsControl(token_id):
  2277. toktype = SentencePieceTokenTypes.CONTROL
  2278. elif tokenizer.IsUnused(token_id):
  2279. toktype = SentencePieceTokenTypes.UNUSED
  2280. elif tokenizer.IsByte(token_id):
  2281. toktype = SentencePieceTokenTypes.BYTE
  2282. tokens[token_id] = text
  2283. scores[token_id] = score
  2284. toktypes[token_id] = toktype
  2285. if vocab_size > len(tokens):
  2286. pad_count = vocab_size - len(tokens)
  2287. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2288. for i in range(1, pad_count + 1):
  2289. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2290. scores.append(-1000.0)
  2291. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2292. # realign tokens (see HF tokenizer code)
  2293. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2294. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2295. toktypes = [
  2296. SentencePieceTokenTypes.CONTROL,
  2297. SentencePieceTokenTypes.CONTROL,
  2298. SentencePieceTokenTypes.CONTROL,
  2299. SentencePieceTokenTypes.UNKNOWN,
  2300. ] + toktypes[3:-1]
  2301. self.gguf_writer.add_tokenizer_model("t5")
  2302. self.gguf_writer.add_tokenizer_pre("default")
  2303. self.gguf_writer.add_token_list(tokens)
  2304. self.gguf_writer.add_token_scores(scores)
  2305. self.gguf_writer.add_token_types(toktypes)
  2306. self.gguf_writer.add_add_space_prefix(add_prefix)
  2307. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2308. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2309. if precompiled_charsmap:
  2310. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2311. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2312. special_vocab.add_to_gguf(self.gguf_writer)
  2313. self.gguf_writer.add_add_bos_token(True)
  2314. self.gguf_writer.add_add_eos_token(True)
  2315. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2316. # if name starts with "roberta.", remove the prefix
  2317. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2318. if name.startswith("roberta."):
  2319. name = name[8:]
  2320. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2321. if name == "embeddings.position_embeddings.weight":
  2322. if self._position_offset is not None:
  2323. data_torch = data_torch[self._position_offset:,:]
  2324. return super().modify_tensors(data_torch, name, bid)
  2325. @Model.register("GemmaForCausalLM")
  2326. class GemmaModel(Model):
  2327. model_arch = gguf.MODEL_ARCH.GEMMA
  2328. def set_vocab(self):
  2329. self._set_vocab_sentencepiece()
  2330. # TODO: these special tokens should be exported only for the CodeGemma family
  2331. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2332. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2333. special_vocab._set_special_token("prefix", 67)
  2334. special_vocab._set_special_token("suffix", 69)
  2335. special_vocab._set_special_token("middle", 68)
  2336. special_vocab._set_special_token("fsep", 70)
  2337. special_vocab._set_special_token("eot", 107)
  2338. special_vocab.chat_template = None # do not add it twice
  2339. special_vocab.add_to_gguf(self.gguf_writer)
  2340. self.gguf_writer.add_add_space_prefix(False)
  2341. def set_gguf_parameters(self):
  2342. hparams = self.hparams
  2343. block_count = hparams["num_hidden_layers"]
  2344. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2345. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2346. self.gguf_writer.add_block_count(block_count)
  2347. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2348. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2349. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2350. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2351. self.gguf_writer.add_key_length(hparams["head_dim"])
  2352. self.gguf_writer.add_value_length(hparams["head_dim"])
  2353. self.gguf_writer.add_file_type(self.ftype)
  2354. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2355. del bid # unused
  2356. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2357. # To prevent errors, skip loading lm_head.weight.
  2358. if name == "lm_head.weight":
  2359. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2360. return []
  2361. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2362. if name.endswith("norm.weight"):
  2363. data_torch = data_torch + 1
  2364. return [(self.map_tensor_name(name), data_torch)]
  2365. @Model.register("Gemma2ForCausalLM")
  2366. class Gemma2Model(Model):
  2367. model_arch = gguf.MODEL_ARCH.GEMMA2
  2368. def set_vocab(self):
  2369. self._set_vocab_sentencepiece()
  2370. self.gguf_writer.add_add_space_prefix(False)
  2371. def set_gguf_parameters(self):
  2372. hparams = self.hparams
  2373. block_count = hparams["num_hidden_layers"]
  2374. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2375. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2376. self.gguf_writer.add_block_count(block_count)
  2377. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2378. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2379. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2380. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2381. self.gguf_writer.add_key_length(hparams["head_dim"])
  2382. self.gguf_writer.add_value_length(hparams["head_dim"])
  2383. self.gguf_writer.add_file_type(self.ftype)
  2384. self.gguf_writer.add_attn_logit_softcapping(
  2385. self.hparams["attn_logit_softcapping"]
  2386. )
  2387. self.gguf_writer.add_final_logit_softcapping(
  2388. self.hparams["final_logit_softcapping"]
  2389. )
  2390. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2391. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2392. del bid # unused
  2393. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2394. # To prevent errors, skip loading lm_head.weight.
  2395. if name == "lm_head.weight":
  2396. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2397. return []
  2398. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2399. if name.endswith("norm.weight"):
  2400. data_torch = data_torch + 1
  2401. return [(self.map_tensor_name(name), data_torch)]
  2402. @Model.register("Starcoder2ForCausalLM")
  2403. class StarCoder2Model(Model):
  2404. model_arch = gguf.MODEL_ARCH.STARCODER2
  2405. @Model.register("Rwkv6ForCausalLM")
  2406. class Rwkv6Model(Model):
  2407. model_arch = gguf.MODEL_ARCH.RWKV6
  2408. def set_vocab(self):
  2409. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  2410. vocab_size = self.hparams.get("vocab_size", 65536)
  2411. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  2412. toktypes: list[int] = [gguf.TokenType.CONTROL]
  2413. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  2414. lines = f.readlines()
  2415. for line in lines:
  2416. parts = line.split(' ')
  2417. assert len(parts) >= 3
  2418. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  2419. token = token.encode("utf-8") if isinstance(token, str) else token
  2420. assert isinstance(token, bytes)
  2421. assert len(token) == token_len
  2422. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  2423. tokens.append(token_text.encode("utf-8"))
  2424. toktypes.append(gguf.TokenType.NORMAL)
  2425. remainder = vocab_size - len(tokens)
  2426. assert remainder >= 0
  2427. for i in range(len(tokens), vocab_size):
  2428. tokens.append(f"[PAD{i}]".encode("utf-8"))
  2429. toktypes.append(gguf.TokenType.UNUSED)
  2430. self.gguf_writer.add_tokenizer_model("rwkv")
  2431. self.gguf_writer.add_token_list(tokens)
  2432. self.gguf_writer.add_token_types(toktypes)
  2433. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  2434. special_vocab.chat_template = "rwkv-world"
  2435. # hack: Add '\n\n' as the EOT token to make it chat normally
  2436. special_vocab._set_special_token("eot", 261)
  2437. special_vocab.add_to_gguf(self.gguf_writer)
  2438. def set_gguf_parameters(self):
  2439. block_count = self.hparams["num_hidden_layers"]
  2440. head_size = self.hparams["head_size"]
  2441. hidden_size = self.hparams["hidden_size"]
  2442. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2443. rescale_every_n_layers = self.hparams["rescale_every"]
  2444. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2445. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2446. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2447. # RWKV isn't context limited
  2448. self.gguf_writer.add_context_length(1048576)
  2449. self.gguf_writer.add_embedding_length(hidden_size)
  2450. self.gguf_writer.add_block_count(block_count)
  2451. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2452. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2453. self.gguf_writer.add_wkv_head_size(head_size)
  2454. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2455. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2456. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2457. self.gguf_writer.add_file_type(self.ftype)
  2458. # required by llama.cpp, unused
  2459. self.gguf_writer.add_head_count(0)
  2460. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2461. new_name = self.map_tensor_name(name)
  2462. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2463. new_name += ".weight"
  2464. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2465. data_torch = data_torch.transpose(0, 1)
  2466. if new_name.endswith("time_mix_w2.weight"):
  2467. data_torch = data_torch.permute(0, 2, 1)
  2468. rescale_every_n_layers = self.hparams["rescale_every"]
  2469. if rescale_every_n_layers > 0:
  2470. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2471. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2472. yield (new_name, data_torch)
  2473. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  2474. class MambaModel(Model):
  2475. model_arch = gguf.MODEL_ARCH.MAMBA
  2476. def set_vocab(self):
  2477. vocab_size = self.hparams["vocab_size"]
  2478. # Round vocab size to next multiple of 8
  2479. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  2480. # pad using ceiling division
  2481. # ref: https://stackoverflow.com/a/17511341/22827863
  2482. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  2483. self.hparams["vocab_size"] = vocab_size
  2484. if (self.dir_model / "tokenizer.json").is_file():
  2485. self._set_vocab_gpt2()
  2486. elif (self.dir_model / "tokenizer.model").is_file():
  2487. self._set_vocab_sentencepiece()
  2488. else:
  2489. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  2490. self._set_vocab_builtin("gpt-neox", vocab_size)
  2491. def set_gguf_parameters(self):
  2492. d_model = self.find_hparam(["hidden_size", "d_model"])
  2493. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  2494. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  2495. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  2496. # ceiling division
  2497. # ref: https://stackoverflow.com/a/17511341/22827863
  2498. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  2499. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  2500. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  2501. use_dt_b_c_norm = False
  2502. # For falconmamba we do apply RMS norm on B / DT and C layers
  2503. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  2504. use_dt_b_c_norm = True
  2505. # Fail early for models which don't have a block expansion factor of 2
  2506. assert d_inner == 2 * d_model
  2507. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  2508. self.gguf_writer.add_embedding_length(d_model)
  2509. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  2510. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  2511. self.gguf_writer.add_block_count(self.block_count)
  2512. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  2513. self.gguf_writer.add_ssm_inner_size(d_inner)
  2514. self.gguf_writer.add_ssm_state_size(d_state)
  2515. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  2516. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2517. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  2518. self.gguf_writer.add_file_type(self.ftype)
  2519. _tok_embd = None
  2520. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2521. del bid # unused
  2522. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2523. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2524. new_name = self.map_tensor_name(name)
  2525. if name.endswith(".A_log"):
  2526. logger.debug("A_log --> A ==> " + new_name)
  2527. data_torch = -torch.exp(data_torch)
  2528. # assuming token_embd.weight is seen before output.weight
  2529. if self._tok_embd is not None and new_name == output_name:
  2530. if torch.equal(self._tok_embd, data_torch):
  2531. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  2532. return []
  2533. elif new_name == tok_embd_name:
  2534. self._tok_embd = data_torch
  2535. return [(new_name, data_torch)]
  2536. @Model.register("CohereForCausalLM")
  2537. class CommandR2Model(Model):
  2538. model_arch = gguf.MODEL_ARCH.COMMAND_R
  2539. def __init__(self, *args, **kwargs):
  2540. super().__init__(*args, **kwargs)
  2541. # max_position_embeddings = 8192 in config.json but model was actually
  2542. # trained on 128k context length
  2543. # aya-23 models don't have model_max_length specified
  2544. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  2545. def set_gguf_parameters(self):
  2546. super().set_gguf_parameters()
  2547. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  2548. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2549. @Model.register("OlmoForCausalLM")
  2550. @Model.register("OLMoForCausalLM")
  2551. class OlmoModel(Model):
  2552. model_arch = gguf.MODEL_ARCH.OLMO
  2553. def set_gguf_parameters(self):
  2554. super().set_gguf_parameters()
  2555. self.gguf_writer.add_layer_norm_eps(1e-5)
  2556. clip_qkv = self.hparams.get("clip_qkv")
  2557. if clip_qkv is not None:
  2558. self.gguf_writer.add_clamp_kqv(clip_qkv)
  2559. # Same as super class, but permuting q_proj, k_proj
  2560. # Copied from: LlamaModel
  2561. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2562. del bid # unused
  2563. n_head = self.hparams["num_attention_heads"]
  2564. n_kv_head = self.hparams.get("num_key_value_heads")
  2565. if name.endswith("q_proj.weight"):
  2566. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2567. if name.endswith("k_proj.weight"):
  2568. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2569. return [(self.map_tensor_name(name), data_torch)]
  2570. @Model.register("Olmo2ForCausalLM")
  2571. class Olmo2Model(Model):
  2572. model_arch = gguf.MODEL_ARCH.OLMO2
  2573. @Model.register("OlmoeForCausalLM")
  2574. class OlmoeModel(Model):
  2575. model_arch = gguf.MODEL_ARCH.OLMOE
  2576. def set_gguf_parameters(self):
  2577. super().set_gguf_parameters()
  2578. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  2579. if (n_experts := self.hparams.get("num_experts")) is not None:
  2580. self.gguf_writer.add_expert_count(n_experts)
  2581. _experts: list[dict[str, Tensor]] | None = None
  2582. # Copied from: Qwen2MoeModel
  2583. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2584. # process the experts separately
  2585. if name.find("experts") != -1:
  2586. n_experts = self.hparams["num_experts"]
  2587. assert bid is not None
  2588. if self._experts is None:
  2589. self._experts = [{} for _ in range(self.block_count)]
  2590. self._experts[bid][name] = data_torch
  2591. if len(self._experts[bid]) >= n_experts * 3:
  2592. tensors: list[tuple[str, Tensor]] = []
  2593. # merge the experts into a single 3d tensor
  2594. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2595. datas: list[Tensor] = []
  2596. for xid in range(n_experts):
  2597. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2598. datas.append(self._experts[bid][ename])
  2599. del self._experts[bid][ename]
  2600. data_torch = torch.stack(datas, dim=0)
  2601. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2602. new_name = self.map_tensor_name(merged_name)
  2603. tensors.append((new_name, data_torch))
  2604. return tensors
  2605. else:
  2606. return []
  2607. return [(self.map_tensor_name(name), data_torch)]
  2608. # Copied from: Qwen2MoeModel
  2609. def prepare_tensors(self):
  2610. super().prepare_tensors()
  2611. if self._experts is not None:
  2612. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2613. experts = [k for d in self._experts for k in d.keys()]
  2614. if len(experts) > 0:
  2615. raise ValueError(f"Unprocessed experts: {experts}")
  2616. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  2617. class JinaBertV2Model(BertModel):
  2618. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  2619. def __init__(self, *args, **kwargs):
  2620. super().__init__(*args, **kwargs)
  2621. self.intermediate_size = self.hparams["intermediate_size"]
  2622. def get_tensors(self):
  2623. for name, data in super().get_tensors():
  2624. if 'gated_layer' in name:
  2625. d1 = data[:self.intermediate_size, :]
  2626. name1 = name.replace('gated_layers', 'gated_layers_w')
  2627. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  2628. d2 = data[self.intermediate_size:, :]
  2629. name2 = name.replace('gated_layers', 'gated_layers_v')
  2630. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  2631. yield name1, d1
  2632. yield name2, d2
  2633. continue
  2634. yield name, data
  2635. def set_vocab(self):
  2636. tokenizer_class = 'BertTokenizer'
  2637. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  2638. tokenizer_class = json.load(f)['tokenizer_class']
  2639. if tokenizer_class == 'BertTokenizer':
  2640. super().set_vocab()
  2641. elif tokenizer_class == 'RobertaTokenizer':
  2642. self._set_vocab_gpt2()
  2643. self.gguf_writer.add_token_type_count(2)
  2644. else:
  2645. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  2646. self.gguf_writer.add_add_bos_token(True)
  2647. self.gguf_writer.add_add_eos_token(True)
  2648. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2649. # if name starts with "bert.", remove the prefix
  2650. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  2651. if name.startswith("bert."):
  2652. name = name[5:]
  2653. return super().modify_tensors(data_torch, name, bid)
  2654. @Model.register("OpenELMForCausalLM")
  2655. class OpenELMModel(Model):
  2656. model_arch = gguf.MODEL_ARCH.OPENELM
  2657. @staticmethod
  2658. def _make_divisible(v: float | int, divisor: int) -> int:
  2659. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  2660. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  2661. # Make sure that round down does not go down by more than 10%.
  2662. if new_v < 0.9 * v:
  2663. new_v += divisor
  2664. return new_v
  2665. def __init__(self, *args, **kwargs):
  2666. super().__init__(*args, **kwargs)
  2667. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  2668. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  2669. self._n_embd: int = self.hparams["model_dim"]
  2670. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  2671. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  2672. self._ffn_dims: list[int] = [
  2673. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  2674. for multiplier in ffn_multipliers
  2675. ]
  2676. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  2677. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  2678. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  2679. def set_vocab(self):
  2680. try:
  2681. self._set_vocab_sentencepiece()
  2682. except FileNotFoundError:
  2683. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  2684. def set_gguf_parameters(self):
  2685. n_embd = self._n_embd
  2686. head_dim = self.hparams["head_dim"]
  2687. rot_pct = 1.0
  2688. assert self.block_count == len(self._num_kv_heads)
  2689. assert self.block_count == len(self._num_query_heads)
  2690. assert self.block_count == len(self._ffn_dims)
  2691. self.gguf_writer.add_block_count(self.block_count)
  2692. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  2693. self.gguf_writer.add_embedding_length(n_embd)
  2694. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  2695. self.gguf_writer.add_head_count(self._num_query_heads)
  2696. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  2697. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  2698. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  2699. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  2700. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  2701. self.gguf_writer.add_key_length(head_dim)
  2702. self.gguf_writer.add_value_length(head_dim)
  2703. self.gguf_writer.add_file_type(self.ftype)
  2704. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  2705. if "n_layers" in keys:
  2706. return self.hparams["num_transformer_layers"]
  2707. return super().find_hparam(keys, optional)
  2708. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2709. # split ff
  2710. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  2711. ff_dim = self._ffn_dims[bid]
  2712. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  2713. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  2714. return
  2715. yield (self.map_tensor_name(name), data_torch)
  2716. @Model.register("ArcticForCausalLM")
  2717. class ArcticModel(Model):
  2718. model_arch = gguf.MODEL_ARCH.ARCTIC
  2719. def set_vocab(self):
  2720. # The reason for using a custom implementation here is that the
  2721. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  2722. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  2723. from sentencepiece import SentencePieceProcessor
  2724. tokenizer_path = self.dir_model / 'tokenizer.model'
  2725. if not tokenizer_path.is_file():
  2726. logger.error(f'Error: Missing {tokenizer_path}')
  2727. sys.exit(1)
  2728. # Read the whole vocabulary from the tokenizer.model file
  2729. tokenizer = SentencePieceProcessor()
  2730. tokenizer.LoadFromFile(str(tokenizer_path))
  2731. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2732. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2733. scores: list[float] = [-10000.0] * vocab_size
  2734. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2735. for token_id in range(tokenizer.vocab_size()):
  2736. piece = tokenizer.IdToPiece(token_id)
  2737. text = piece.encode("utf-8")
  2738. score = tokenizer.GetScore(token_id)
  2739. toktype = SentencePieceTokenTypes.NORMAL
  2740. if tokenizer.IsUnknown(token_id):
  2741. toktype = SentencePieceTokenTypes.UNKNOWN
  2742. elif tokenizer.IsControl(token_id):
  2743. toktype = SentencePieceTokenTypes.CONTROL
  2744. elif tokenizer.IsUnused(token_id):
  2745. toktype = SentencePieceTokenTypes.UNUSED
  2746. elif tokenizer.IsByte(token_id):
  2747. toktype = SentencePieceTokenTypes.BYTE
  2748. tokens[token_id] = text
  2749. scores[token_id] = score
  2750. toktypes[token_id] = toktype
  2751. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  2752. # of information about added/redefined tokens and modify them accordingly.
  2753. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2754. if tokenizer_config_file.is_file():
  2755. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2756. tokenizer_config_json = json.load(f)
  2757. if "added_tokens_decoder" in tokenizer_config_json:
  2758. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  2759. for token_id, token_json in added_tokens_decoder.items():
  2760. token_id = int(token_id)
  2761. if token_id >= vocab_size:
  2762. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2763. continue
  2764. token_content = token_json["content"]
  2765. token_type = SentencePieceTokenTypes.USER_DEFINED
  2766. token_score = -10000.0
  2767. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  2768. # Set the score to 0.0 as in the original tokenizer.model
  2769. if ("special" in token_json) and token_json["special"]:
  2770. if token_content == tokenizer_config_json["unk_token"]:
  2771. token_type = SentencePieceTokenTypes.UNKNOWN
  2772. else:
  2773. token_type = SentencePieceTokenTypes.CONTROL
  2774. token_score = 0.0
  2775. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  2776. tokens[token_id] = token_content.encode("utf-8")
  2777. toktypes[token_id] = token_type
  2778. scores[token_id] = token_score
  2779. self.gguf_writer.add_tokenizer_model("llama")
  2780. self.gguf_writer.add_tokenizer_pre("default")
  2781. self.gguf_writer.add_token_list(tokens)
  2782. self.gguf_writer.add_token_scores(scores)
  2783. self.gguf_writer.add_token_types(toktypes)
  2784. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2785. special_vocab.add_to_gguf(self.gguf_writer)
  2786. def set_gguf_parameters(self):
  2787. super().set_gguf_parameters()
  2788. hparams = self.hparams
  2789. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2790. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  2791. _experts: list[dict[str, Tensor]] | None = None
  2792. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2793. n_head = self.hparams["num_attention_heads"]
  2794. n_kv_head = self.hparams.get("num_key_value_heads")
  2795. if name.endswith("q_proj.weight"):
  2796. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2797. if name.endswith("k_proj.weight"):
  2798. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2799. # process the experts separately
  2800. if name.find("block_sparse_moe.experts") != -1:
  2801. n_experts = self.hparams["num_local_experts"]
  2802. assert bid is not None
  2803. if self._experts is None:
  2804. self._experts = [{} for _ in range(self.block_count)]
  2805. self._experts[bid][name] = data_torch
  2806. if len(self._experts[bid]) >= n_experts * 3:
  2807. tensors: list[tuple[str, Tensor]] = []
  2808. # merge the experts into a single 3d tensor
  2809. for wid in ["w1", "w2", "w3"]:
  2810. datas: list[Tensor] = []
  2811. for xid in range(n_experts):
  2812. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  2813. datas.append(self._experts[bid][ename])
  2814. del self._experts[bid][ename]
  2815. data_torch = torch.stack(datas, dim=0)
  2816. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  2817. new_name = self.map_tensor_name(merged_name)
  2818. tensors.append((new_name, data_torch))
  2819. return tensors
  2820. else:
  2821. return []
  2822. return [(self.map_tensor_name(name), data_torch)]
  2823. def prepare_tensors(self):
  2824. super().prepare_tensors()
  2825. if self._experts is not None:
  2826. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2827. experts = [k for d in self._experts for k in d.keys()]
  2828. if len(experts) > 0:
  2829. raise ValueError(f"Unprocessed experts: {experts}")
  2830. @Model.register("DeepseekForCausalLM")
  2831. class DeepseekModel(Model):
  2832. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  2833. def set_vocab(self):
  2834. try:
  2835. self._set_vocab_sentencepiece()
  2836. except FileNotFoundError:
  2837. self._set_vocab_gpt2()
  2838. def set_gguf_parameters(self):
  2839. super().set_gguf_parameters()
  2840. hparams = self.hparams
  2841. if "head_dim" in hparams:
  2842. rope_dim = hparams["head_dim"]
  2843. else:
  2844. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2845. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2846. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  2847. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2848. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2849. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2850. self.gguf_writer.add_expert_weights_scale(1.0)
  2851. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2852. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2853. _experts: list[dict[str, Tensor]] | None = None
  2854. @staticmethod
  2855. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  2856. if n_head_kv is not None and n_head != n_head_kv:
  2857. n_head = n_head_kv
  2858. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  2859. .swapaxes(1, 2)
  2860. .reshape(weights.shape))
  2861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2862. n_head = self.hparams["num_attention_heads"]
  2863. n_kv_head = self.hparams.get("num_key_value_heads")
  2864. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2865. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  2866. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2867. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  2868. # process the experts separately
  2869. if name.find("mlp.experts") != -1:
  2870. n_experts = self.hparams["n_routed_experts"]
  2871. assert bid is not None
  2872. if self._experts is None:
  2873. self._experts = [{} for _ in range(self.block_count)]
  2874. self._experts[bid][name] = data_torch
  2875. if len(self._experts[bid]) >= n_experts * 3:
  2876. tensors: list[tuple[str, Tensor]] = []
  2877. # merge the experts into a single 3d tensor
  2878. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2879. datas: list[Tensor] = []
  2880. for xid in range(n_experts):
  2881. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2882. datas.append(self._experts[bid][ename])
  2883. del self._experts[bid][ename]
  2884. data_torch = torch.stack(datas, dim=0)
  2885. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2886. new_name = self.map_tensor_name(merged_name)
  2887. tensors.append((new_name, data_torch))
  2888. return tensors
  2889. else:
  2890. return []
  2891. return [(self.map_tensor_name(name), data_torch)]
  2892. def prepare_tensors(self):
  2893. super().prepare_tensors()
  2894. if self._experts is not None:
  2895. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2896. experts = [k for d in self._experts for k in d.keys()]
  2897. if len(experts) > 0:
  2898. raise ValueError(f"Unprocessed experts: {experts}")
  2899. @Model.register("DeepseekV2ForCausalLM")
  2900. class DeepseekV2Model(Model):
  2901. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  2902. def set_vocab(self):
  2903. self._set_vocab_gpt2()
  2904. def set_gguf_parameters(self):
  2905. super().set_gguf_parameters()
  2906. hparams = self.hparams
  2907. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  2908. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2909. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  2910. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  2911. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  2912. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  2913. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  2914. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  2915. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  2916. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  2917. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  2918. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  2919. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2920. if self.hparams["rope_scaling"].get("type") == "yarn":
  2921. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  2922. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2923. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  2924. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  2925. _experts: list[dict[str, Tensor]] | None = None
  2926. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2927. # process the experts separately
  2928. if name.find("mlp.experts") != -1:
  2929. n_experts = self.hparams["n_routed_experts"]
  2930. assert bid is not None
  2931. if self._experts is None:
  2932. self._experts = [{} for _ in range(self.block_count)]
  2933. self._experts[bid][name] = data_torch
  2934. if len(self._experts[bid]) >= n_experts * 3:
  2935. tensors: list[tuple[str, Tensor]] = []
  2936. # merge the experts into a single 3d tensor
  2937. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  2938. datas: list[Tensor] = []
  2939. for xid in range(n_experts):
  2940. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  2941. datas.append(self._experts[bid][ename])
  2942. del self._experts[bid][ename]
  2943. data_torch = torch.stack(datas, dim=0)
  2944. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  2945. new_name = self.map_tensor_name(merged_name)
  2946. tensors.append((new_name, data_torch))
  2947. return tensors
  2948. else:
  2949. return []
  2950. return [(self.map_tensor_name(name), data_torch)]
  2951. def prepare_tensors(self):
  2952. super().prepare_tensors()
  2953. if self._experts is not None:
  2954. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2955. experts = [k for d in self._experts for k in d.keys()]
  2956. if len(experts) > 0:
  2957. raise ValueError(f"Unprocessed experts: {experts}")
  2958. @Model.register("T5WithLMHeadModel")
  2959. @Model.register("T5ForConditionalGeneration")
  2960. @Model.register("MT5ForConditionalGeneration")
  2961. @Model.register("UMT5ForConditionalGeneration")
  2962. class T5Model(Model):
  2963. model_arch = gguf.MODEL_ARCH.T5
  2964. def __init__(self, *args, **kwargs):
  2965. super().__init__(*args, **kwargs)
  2966. self.shared_token_embeddings_found = False
  2967. def set_vocab(self):
  2968. # to avoid TypeError: Descriptors cannot be created directly
  2969. # exception when importing sentencepiece_model_pb2
  2970. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2971. from sentencepiece import SentencePieceProcessor
  2972. from sentencepiece import sentencepiece_model_pb2 as model
  2973. tokenizer_path = self.dir_model / 'tokenizer.model'
  2974. # many older models use spiece.model tokenizer model filename
  2975. if not tokenizer_path.is_file():
  2976. tokenizer_path = self.dir_model / 'spiece.model'
  2977. if not tokenizer_path.is_file():
  2978. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2979. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2980. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2981. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  2982. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  2983. # assure the tokenizer model file name is correct
  2984. assert tokenizer_path.name == 'tokenizer.model'
  2985. return self._set_vocab_sentencepiece()
  2986. else:
  2987. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2988. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2989. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2990. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2991. tokenizer = SentencePieceProcessor()
  2992. tokenizer.LoadFromFile(str(tokenizer_path))
  2993. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2994. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2995. scores: list[float] = [-10000.0] * vocab_size
  2996. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2997. for token_id in range(tokenizer.vocab_size()):
  2998. piece = tokenizer.IdToPiece(token_id)
  2999. text = piece.encode("utf-8")
  3000. score = tokenizer.GetScore(token_id)
  3001. toktype = SentencePieceTokenTypes.NORMAL
  3002. if tokenizer.IsUnknown(token_id):
  3003. toktype = SentencePieceTokenTypes.UNKNOWN
  3004. elif tokenizer.IsControl(token_id):
  3005. toktype = SentencePieceTokenTypes.CONTROL
  3006. elif tokenizer.IsUnused(token_id):
  3007. toktype = SentencePieceTokenTypes.UNUSED
  3008. elif tokenizer.IsByte(token_id):
  3009. toktype = SentencePieceTokenTypes.BYTE
  3010. tokens[token_id] = text
  3011. scores[token_id] = score
  3012. toktypes[token_id] = toktype
  3013. added_tokens_file = self.dir_model / 'added_tokens.json'
  3014. if added_tokens_file.is_file():
  3015. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3016. added_tokens_json = json.load(f)
  3017. for key in added_tokens_json:
  3018. token_id = added_tokens_json[key]
  3019. if token_id >= vocab_size:
  3020. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3021. continue
  3022. tokens[token_id] = key.encode("utf-8")
  3023. scores[token_id] = -1000.0
  3024. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3025. if vocab_size > len(tokens):
  3026. pad_count = vocab_size - len(tokens)
  3027. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3028. for i in range(1, pad_count + 1):
  3029. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3030. scores.append(-1000.0)
  3031. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3032. self.gguf_writer.add_tokenizer_model("t5")
  3033. self.gguf_writer.add_tokenizer_pre("default")
  3034. self.gguf_writer.add_token_list(tokens)
  3035. self.gguf_writer.add_token_scores(scores)
  3036. self.gguf_writer.add_token_types(toktypes)
  3037. self.gguf_writer.add_add_space_prefix(add_prefix)
  3038. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3039. if precompiled_charsmap:
  3040. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3041. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3042. special_vocab.add_to_gguf(self.gguf_writer)
  3043. self.gguf_writer.add_add_bos_token(False)
  3044. self.gguf_writer.add_add_eos_token(True)
  3045. def set_gguf_parameters(self):
  3046. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3047. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3048. n_ctx = 512
  3049. self.gguf_writer.add_context_length(n_ctx)
  3050. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3051. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3052. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3053. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3054. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3055. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3056. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3057. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3058. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3059. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3060. self.gguf_writer.add_file_type(self.ftype)
  3061. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3062. del bid # unused
  3063. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3064. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3065. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3066. # and decoder and ignore the remaining ones.
  3067. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3068. if not self.shared_token_embeddings_found:
  3069. name = "shared.weight"
  3070. self.shared_token_embeddings_found = True
  3071. else:
  3072. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3073. return []
  3074. return [(self.map_tensor_name(name), data_torch)]
  3075. @Model.register("T5EncoderModel")
  3076. class T5EncoderModel(Model):
  3077. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3078. def __init__(self, *args, **kwargs):
  3079. super().__init__(*args, **kwargs)
  3080. self.shared_token_embeddings_found = False
  3081. def set_vocab(self):
  3082. # to avoid TypeError: Descriptors cannot be created directly
  3083. # exception when importing sentencepiece_model_pb2
  3084. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3085. from sentencepiece import SentencePieceProcessor
  3086. from sentencepiece import sentencepiece_model_pb2 as model
  3087. tokenizer_path = self.dir_model / 'tokenizer.model'
  3088. # many older models use spiece.model tokenizer model filename
  3089. if not tokenizer_path.is_file():
  3090. tokenizer_path = self.dir_model / 'spiece.model'
  3091. if not tokenizer_path.is_file():
  3092. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3093. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3094. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3095. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3096. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3097. # assure the tokenizer model file name is correct
  3098. assert tokenizer_path.name == 'tokenizer.model'
  3099. return self._set_vocab_sentencepiece()
  3100. else:
  3101. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3102. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3103. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3104. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3105. tokenizer = SentencePieceProcessor()
  3106. tokenizer.LoadFromFile(str(tokenizer_path))
  3107. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3108. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3109. scores: list[float] = [-10000.0] * vocab_size
  3110. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3111. for token_id in range(tokenizer.vocab_size()):
  3112. piece = tokenizer.IdToPiece(token_id)
  3113. text = piece.encode("utf-8")
  3114. score = tokenizer.GetScore(token_id)
  3115. toktype = SentencePieceTokenTypes.NORMAL
  3116. if tokenizer.IsUnknown(token_id):
  3117. toktype = SentencePieceTokenTypes.UNKNOWN
  3118. elif tokenizer.IsControl(token_id):
  3119. toktype = SentencePieceTokenTypes.CONTROL
  3120. elif tokenizer.IsUnused(token_id):
  3121. toktype = SentencePieceTokenTypes.UNUSED
  3122. elif tokenizer.IsByte(token_id):
  3123. toktype = SentencePieceTokenTypes.BYTE
  3124. tokens[token_id] = text
  3125. scores[token_id] = score
  3126. toktypes[token_id] = toktype
  3127. added_tokens_file = self.dir_model / 'added_tokens.json'
  3128. if added_tokens_file.is_file():
  3129. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3130. added_tokens_json = json.load(f)
  3131. for key in added_tokens_json:
  3132. token_id = added_tokens_json[key]
  3133. if token_id >= vocab_size:
  3134. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3135. continue
  3136. tokens[token_id] = key.encode("utf-8")
  3137. scores[token_id] = -1000.0
  3138. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3139. if vocab_size > len(tokens):
  3140. pad_count = vocab_size - len(tokens)
  3141. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3142. for i in range(1, pad_count + 1):
  3143. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3144. scores.append(-1000.0)
  3145. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3146. self.gguf_writer.add_tokenizer_model("t5")
  3147. self.gguf_writer.add_tokenizer_pre("default")
  3148. self.gguf_writer.add_token_list(tokens)
  3149. self.gguf_writer.add_token_scores(scores)
  3150. self.gguf_writer.add_token_types(toktypes)
  3151. self.gguf_writer.add_add_space_prefix(add_prefix)
  3152. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3153. if precompiled_charsmap:
  3154. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3155. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3156. special_vocab.add_to_gguf(self.gguf_writer)
  3157. self.gguf_writer.add_add_bos_token(False)
  3158. self.gguf_writer.add_add_eos_token(True)
  3159. def set_gguf_parameters(self):
  3160. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3161. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3162. n_ctx = 512
  3163. self.gguf_writer.add_context_length(n_ctx)
  3164. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3165. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3166. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3167. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3168. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3169. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3170. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3171. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3172. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3173. self.gguf_writer.add_file_type(self.ftype)
  3174. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3175. del bid # unused
  3176. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3177. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3178. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3179. # and decoder and ignore the remaining ones.
  3180. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3181. if not self.shared_token_embeddings_found:
  3182. name = "shared.weight"
  3183. self.shared_token_embeddings_found = True
  3184. else:
  3185. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3186. return []
  3187. return [(self.map_tensor_name(name), data_torch)]
  3188. @Model.register("JAISLMHeadModel")
  3189. class JaisModel(Model):
  3190. model_arch = gguf.MODEL_ARCH.JAIS
  3191. def __init__(self, *args, **kwargs):
  3192. super().__init__(*args, **kwargs)
  3193. # SwigLU activation
  3194. assert self.hparams["activation_function"] == "swiglu"
  3195. # ALiBi position embedding
  3196. assert self.hparams["position_embedding_type"] == "alibi"
  3197. # Embeddings scale
  3198. self.embeddings_scale = 1.0
  3199. if 'mup_embeddings_scale' in self.hparams:
  3200. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3201. elif 'embeddings_scale' in self.hparams:
  3202. self.embeddings_scale = self.hparams['embeddings_scale']
  3203. else:
  3204. assert False
  3205. self.width_scale = 1.0
  3206. if 'mup_output_alpha' in self.hparams:
  3207. assert 'mup_width_scale' in self.hparams
  3208. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3209. elif 'width_scale' in self.hparams:
  3210. self.width_scale = self.hparams['width_scale']
  3211. else:
  3212. assert False
  3213. self.max_alibi_bias = 8.0
  3214. def set_vocab(self):
  3215. self._set_vocab_gpt2()
  3216. def set_gguf_parameters(self):
  3217. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3218. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3219. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3220. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3221. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3222. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3223. self.gguf_writer.add_file_type(self.ftype)
  3224. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3225. del bid # unused
  3226. tensors: list[tuple[str, Tensor]] = []
  3227. # we don't need these
  3228. if name.endswith((".attn.bias")):
  3229. return tensors
  3230. if name.endswith(("relative_pe.slopes")):
  3231. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3232. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3233. # but Jais's PyTorch model simply precalculates the slope values and places them
  3234. # in relative_pes.slopes
  3235. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3236. first_val = float(data_torch[0].item())
  3237. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3238. return tensors
  3239. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3240. data_torch = data_torch.transpose(1, 0)
  3241. new_name = self.map_tensor_name(name)
  3242. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3243. tensors.append((new_name, data_torch * self.embeddings_scale))
  3244. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3245. tensors.append((new_name, data_torch * self.width_scale))
  3246. else:
  3247. tensors.append((new_name, data_torch))
  3248. return tensors
  3249. def prepare_tensors(self):
  3250. super().prepare_tensors()
  3251. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3252. @Model.register("ChatGLMModel", "ChatGLMForConditionalGeneration")
  3253. class ChatGLMModel(Model):
  3254. model_arch = gguf.MODEL_ARCH.CHATGLM
  3255. def set_vocab_chatglm3(self):
  3256. dir_model = self.dir_model
  3257. hparams = self.hparams
  3258. tokens: list[bytes] = []
  3259. toktypes: list[int] = []
  3260. scores: list[float] = []
  3261. from transformers import AutoTokenizer
  3262. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3263. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3264. assert max(tokenizer.get_vocab().values()) < vocab_size
  3265. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3266. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3267. for token_id in range(vocab_size):
  3268. piece = tokenizer._convert_id_to_token(token_id)
  3269. if token_id == 0:
  3270. piece = "<unk>"
  3271. elif token_id == 1:
  3272. piece = "<bos>"
  3273. elif token_id == 2:
  3274. piece = "<eos>"
  3275. text = piece.encode("utf-8")
  3276. score = 0.0
  3277. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3278. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3279. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3280. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3281. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3282. if piece in special_tokens:
  3283. toktype = SentencePieceTokenTypes.CONTROL
  3284. elif len(piece) == 0:
  3285. text = f"[PAD{token_id}]".encode("utf-8")
  3286. toktype = SentencePieceTokenTypes.UNUSED
  3287. else:
  3288. toktype = SentencePieceTokenTypes.USER_DEFINED
  3289. tokens.append(text)
  3290. scores.append(score)
  3291. toktypes.append(toktype)
  3292. continue
  3293. toktype = SentencePieceTokenTypes.NORMAL
  3294. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3295. toktype = SentencePieceTokenTypes.UNKNOWN
  3296. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3297. toktype = SentencePieceTokenTypes.CONTROL
  3298. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3299. toktype = SentencePieceTokenTypes.UNUSED
  3300. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3301. toktype = SentencePieceTokenTypes.BYTE
  3302. tokens.append(text)
  3303. scores.append(score)
  3304. toktypes.append(toktype)
  3305. self.gguf_writer.add_tokenizer_model("llama")
  3306. # glm3 needs prefix and suffix formatted as:
  3307. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3308. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3309. self.gguf_writer.add_token_list(tokens)
  3310. self.gguf_writer.add_token_scores(scores)
  3311. self.gguf_writer.add_token_types(toktypes)
  3312. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3313. special_vocab.add_to_gguf(self.gguf_writer)
  3314. @staticmethod
  3315. def token_bytes_to_string(b):
  3316. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3317. byte_encoder = bytes_to_unicode()
  3318. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3319. @staticmethod
  3320. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3321. parts = [bytes([b]) for b in token]
  3322. while True:
  3323. min_idx = None
  3324. min_rank = None
  3325. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  3326. rank = mergeable_ranks.get(pair[0] + pair[1])
  3327. if rank is not None and (min_rank is None or rank < min_rank):
  3328. min_idx = i
  3329. min_rank = rank
  3330. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  3331. break
  3332. assert min_idx is not None
  3333. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  3334. return parts
  3335. def set_vocab(self):
  3336. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  3337. self.set_vocab_chatglm3()
  3338. return
  3339. dir_model = self.dir_model
  3340. hparams = self.hparams
  3341. tokens: list[str] = []
  3342. toktypes: list[int] = []
  3343. from transformers import AutoTokenizer
  3344. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3345. vocab_size = hparams["padded_vocab_size"]
  3346. assert max(tokenizer.get_vocab().values()) < vocab_size
  3347. tokpre = self.get_vocab_base_pre(tokenizer)
  3348. merges = []
  3349. vocab = {}
  3350. mergeable_ranks = tokenizer.mergeable_ranks
  3351. for token, rank in mergeable_ranks.items():
  3352. vocab[ChatGLMModel.token_bytes_to_string(token)] = rank
  3353. if len(token) == 1:
  3354. continue
  3355. merged = ChatGLMModel.bpe(mergeable_ranks, token, max_rank=rank)
  3356. assert len(merged) >= 2 and len(merged) <= 7
  3357. merges.append(' '.join(map(ChatGLMModel.token_bytes_to_string, merged)))
  3358. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  3359. added_vocab = tokenizer.get_added_vocab()
  3360. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  3361. for i in range(vocab_size):
  3362. if i not in reverse_vocab:
  3363. tokens.append(f"[PAD{i}]")
  3364. toktypes.append(gguf.TokenType.UNUSED)
  3365. elif reverse_vocab[i] in added_vocab:
  3366. tokens.append(reverse_vocab[i])
  3367. if tokenizer.added_tokens_decoder[i].special:
  3368. toktypes.append(gguf.TokenType.CONTROL)
  3369. else:
  3370. toktypes.append(gguf.TokenType.USER_DEFINED)
  3371. else:
  3372. tokens.append(reverse_vocab[i])
  3373. toktypes.append(gguf.TokenType.NORMAL)
  3374. self.gguf_writer.add_tokenizer_model("gpt2")
  3375. self.gguf_writer.add_tokenizer_pre(tokpre)
  3376. self.gguf_writer.add_token_list(tokens)
  3377. self.gguf_writer.add_token_types(toktypes)
  3378. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  3379. special_vocab.merges = merges
  3380. # only add special tokens when they were not already loaded from config.json
  3381. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  3382. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  3383. # this one is usually not in config.json anyway
  3384. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  3385. special_vocab.add_to_gguf(self.gguf_writer)
  3386. def set_gguf_parameters(self):
  3387. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  3388. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  3389. n_head_kv = self.hparams.get("multi_query_group_num", n_head)
  3390. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  3391. self.gguf_writer.add_embedding_length(n_embed)
  3392. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", 4 * n_embed))
  3393. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3394. self.gguf_writer.add_head_count(n_head)
  3395. self.gguf_writer.add_head_count_kv(n_head_kv)
  3396. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layernorm_epsilon"])
  3397. self.gguf_writer.add_file_type(self.ftype)
  3398. self.gguf_writer.add_rope_dimension_count(64)
  3399. self.gguf_writer.add_add_bos_token(False)
  3400. rope_freq = 10000
  3401. if "rope_ratio" in self.hparams:
  3402. rope_freq = rope_freq * self.hparams["rope_ratio"]
  3403. self.gguf_writer.add_rope_freq_base(rope_freq)
  3404. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3405. del bid # unused
  3406. if name.endswith(".rotary_pos_emb.inv_freq"):
  3407. return []
  3408. name = name.removeprefix("transformer.")
  3409. return [(self.map_tensor_name(name), data_torch)]
  3410. @Model.register("NemotronForCausalLM")
  3411. class NemotronModel(Model):
  3412. model_arch = gguf.MODEL_ARCH.NEMOTRON
  3413. def set_vocab(self):
  3414. self._set_vocab_sentencepiece()
  3415. self.gguf_writer.add_pad_token_id(0)
  3416. self.gguf_writer.add_unk_token_id(1)
  3417. def set_gguf_parameters(self):
  3418. super().set_gguf_parameters()
  3419. hparams = self.hparams
  3420. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3421. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  3422. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  3423. # * Partial RoPE
  3424. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  3425. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  3426. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  3427. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  3428. # * RopeScaling for Nemotron
  3429. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  3430. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3431. else:
  3432. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3433. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  3434. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3435. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  3436. # model.layers.{l}.input_layernorm.weight
  3437. # model.layers.{l}.post_attention_layernorm.weight
  3438. # model.norm.weight
  3439. if name.endswith("norm.weight"):
  3440. data_torch = data_torch + 1
  3441. return [(self.map_tensor_name(name), data_torch)]
  3442. @Model.register("ExaoneForCausalLM")
  3443. class ExaoneModel(Model):
  3444. model_arch = gguf.MODEL_ARCH.EXAONE
  3445. def set_gguf_parameters(self):
  3446. hparams = self.hparams
  3447. assert (hparams["activation_function"] == "silu")
  3448. max_position_embeddings = hparams["max_position_embeddings"]
  3449. embed_dim = hparams["hidden_size"]
  3450. num_heads = hparams["num_attention_heads"]
  3451. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  3452. layer_norm_eps = hparams["layer_norm_epsilon"]
  3453. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  3454. num_layers = hparams["num_layers"]
  3455. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  3456. # attention_dropout_rate = hparams["attention_dropout"]
  3457. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  3458. # embed_dropout_rate = hparams["embed_dropout"]
  3459. self.gguf_writer.add_embedding_length(embed_dim)
  3460. self.gguf_writer.add_head_count(num_heads)
  3461. self.gguf_writer.add_head_count_kv(num_kv_heads)
  3462. self.gguf_writer.add_context_length(max_position_embeddings)
  3463. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  3464. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3465. self.gguf_writer.add_block_count(num_layers)
  3466. self.gguf_writer.add_file_type(self.ftype)
  3467. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  3468. self.gguf_writer.add_rope_freq_base(rope_theta)
  3469. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  3470. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  3471. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  3472. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  3473. if hparams["rope_scaling"].get("type") == "linear":
  3474. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  3475. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  3476. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  3477. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  3478. if rope_scaling.get("rope_type", '').lower() == "llama3":
  3479. base = self.hparams.get("rope_theta", 10000.0)
  3480. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  3481. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  3482. factor = rope_scaling.get("factor", 8.0)
  3483. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  3484. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  3485. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  3486. low_freq_wavelen = old_context_len / low_freq_factor
  3487. high_freq_wavelen = old_context_len / high_freq_factor
  3488. assert low_freq_wavelen != high_freq_wavelen
  3489. rope_factors = []
  3490. for freq in freqs:
  3491. wavelen = 2 * math.pi / freq
  3492. if wavelen < high_freq_wavelen:
  3493. rope_factors.append(1)
  3494. elif wavelen > low_freq_wavelen:
  3495. rope_factors.append(factor)
  3496. else:
  3497. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  3498. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  3499. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  3500. @Model.register("GraniteForCausalLM")
  3501. class GraniteModel(LlamaModel):
  3502. """Conversion for IBM's GraniteForCausalLM"""
  3503. model_arch = gguf.MODEL_ARCH.GRANITE
  3504. def set_gguf_parameters(self):
  3505. """Granite uses standard llama parameters with the following differences:
  3506. - No head_dim support
  3507. - New multiplier params:
  3508. - attention_scale
  3509. - embedding_scale
  3510. - residual_scale
  3511. - logits_scaling
  3512. """
  3513. if head_dim := self.hparams.pop("head_dim", None):
  3514. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  3515. super().set_gguf_parameters()
  3516. # NOTE: Convert _multiplier params to _scale params for naming
  3517. # consistency
  3518. if attention_scale := self.hparams.get("attention_multiplier"):
  3519. self.gguf_writer.add_attention_scale(attention_scale)
  3520. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  3521. if embedding_scale := self.hparams.get("embedding_multiplier"):
  3522. self.gguf_writer.add_embedding_scale(embedding_scale)
  3523. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  3524. if residual_scale := self.hparams.get("residual_multiplier"):
  3525. self.gguf_writer.add_residual_scale(residual_scale)
  3526. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  3527. if logits_scale := self.hparams.get("logits_scaling"):
  3528. self.gguf_writer.add_logit_scale(logits_scale)
  3529. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  3530. @Model.register("GraniteMoeForCausalLM")
  3531. class GraniteMoeModel(GraniteModel):
  3532. """Conversion for IBM's GraniteMoeForCausalLM"""
  3533. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  3534. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3535. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  3536. is used. This essentially merges w1 and w3 into a single tensor with 2x
  3537. the hidden size that is then split during forward. To keep compatibility
  3538. with existing mixtral support, we pull them apart here.
  3539. """
  3540. if name.endswith("block_sparse_moe.input_linear.weight"):
  3541. ffn_dim = self.hparams["intermediate_size"]
  3542. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  3543. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  3544. return [
  3545. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  3546. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  3547. ]
  3548. return super().modify_tensors(data_torch, name, bid)
  3549. @Model.register("ChameleonForConditionalGeneration")
  3550. @Model.register("ChameleonForCausalLM") # obsolete
  3551. class ChameleonModel(Model):
  3552. model_arch = gguf.MODEL_ARCH.CHAMELEON
  3553. def set_gguf_parameters(self):
  3554. super().set_gguf_parameters()
  3555. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  3556. def set_vocab(self):
  3557. self._set_vocab_gpt2()
  3558. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3559. # ignore image tokenizer for now
  3560. # TODO: remove this once image support is implemented for Chameleon
  3561. if name.startswith("model.vqmodel"):
  3562. return []
  3563. n_head = self.hparams["num_attention_heads"]
  3564. n_kv_head = self.hparams.get("num_key_value_heads")
  3565. hidden_dim = self.hparams.get("hidden_size")
  3566. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3567. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3568. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3569. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3570. if name.endswith(("q_norm.weight", "q_norm.bias")):
  3571. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  3572. if name.endswith(("k_norm.weight", "k_norm.bias")):
  3573. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  3574. return [(self.map_tensor_name(name), data_torch)]
  3575. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  3576. @staticmethod
  3577. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  3578. head_dim = hidden_dim // n_heads
  3579. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  3580. data_torch = data_torch.repeat_interleave(n_heads, 0)
  3581. return data_torch
  3582. ###### CONVERSION LOGIC ######
  3583. # tree of lazy tensors
  3584. class LazyTorchTensor(gguf.LazyBase):
  3585. _tensor_type = torch.Tensor
  3586. # to keep the type-checker happy
  3587. dtype: torch.dtype
  3588. shape: torch.Size
  3589. # only used when converting a torch.Tensor to a np.ndarray
  3590. _dtype_map: dict[torch.dtype, type] = {
  3591. torch.float16: np.float16,
  3592. torch.float32: np.float32,
  3593. }
  3594. # used for safetensors slices
  3595. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  3596. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  3597. _dtype_str_map: dict[str, torch.dtype] = {
  3598. "F64": torch.float64,
  3599. "F32": torch.float32,
  3600. "BF16": torch.bfloat16,
  3601. "F16": torch.float16,
  3602. # "U64": torch.uint64,
  3603. "I64": torch.int64,
  3604. # "U32": torch.uint32,
  3605. "I32": torch.int32,
  3606. # "U16": torch.uint16,
  3607. "I16": torch.int16,
  3608. "U8": torch.uint8,
  3609. "I8": torch.int8,
  3610. "BOOL": torch.bool,
  3611. "F8_E4M3": torch.float8_e4m3fn,
  3612. "F8_E5M2": torch.float8_e5m2,
  3613. }
  3614. def numpy(self) -> gguf.LazyNumpyTensor:
  3615. dtype = self._dtype_map[self.dtype]
  3616. return gguf.LazyNumpyTensor(
  3617. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  3618. args=(self,),
  3619. func=(lambda s: s.numpy())
  3620. )
  3621. @classmethod
  3622. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  3623. return torch.empty(size=shape, dtype=dtype, device="meta")
  3624. @classmethod
  3625. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  3626. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  3627. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  3628. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  3629. return cast(torch.Tensor, lazy)
  3630. @classmethod
  3631. def __torch_function__(cls, func, types, args=(), kwargs=None):
  3632. del types # unused
  3633. if kwargs is None:
  3634. kwargs = {}
  3635. if func is torch.Tensor.numpy:
  3636. return args[0].numpy()
  3637. return cls._wrap_fn(func)(*args, **kwargs)
  3638. def parse_args() -> argparse.Namespace:
  3639. parser = argparse.ArgumentParser(
  3640. description="Convert a huggingface model to a GGML compatible file")
  3641. parser.add_argument(
  3642. "--vocab-only", action="store_true",
  3643. help="extract only the vocab",
  3644. )
  3645. parser.add_argument(
  3646. "--outfile", type=Path,
  3647. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  3648. )
  3649. parser.add_argument(
  3650. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  3651. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  3652. )
  3653. parser.add_argument(
  3654. "--bigendian", action="store_true",
  3655. help="model is executed on big endian machine",
  3656. )
  3657. parser.add_argument(
  3658. "model", type=Path,
  3659. help="directory containing model file",
  3660. )
  3661. parser.add_argument(
  3662. "--use-temp-file", action="store_true",
  3663. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  3664. )
  3665. parser.add_argument(
  3666. "--no-lazy", action="store_true",
  3667. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  3668. )
  3669. parser.add_argument(
  3670. "--model-name", type=str, default=None,
  3671. help="name of the model",
  3672. )
  3673. parser.add_argument(
  3674. "--verbose", action="store_true",
  3675. help="increase output verbosity",
  3676. )
  3677. parser.add_argument(
  3678. "--split-max-tensors", type=int, default=0,
  3679. help="max tensors in each split",
  3680. )
  3681. parser.add_argument(
  3682. "--split-max-size", type=str, default="0",
  3683. help="max size per split N(M|G)",
  3684. )
  3685. parser.add_argument(
  3686. "--dry-run", action="store_true",
  3687. help="only print out a split plan and exit, without writing any new files",
  3688. )
  3689. parser.add_argument(
  3690. "--no-tensor-first-split", action="store_true",
  3691. help="do not add tensors to the first split (disabled by default)"
  3692. )
  3693. parser.add_argument(
  3694. "--metadata", type=Path,
  3695. help="Specify the path for an authorship metadata override file"
  3696. )
  3697. return parser.parse_args()
  3698. def split_str_to_n_bytes(split_str: str) -> int:
  3699. if split_str.endswith("K"):
  3700. n = int(split_str[:-1]) * 1000
  3701. elif split_str.endswith("M"):
  3702. n = int(split_str[:-1]) * 1000 * 1000
  3703. elif split_str.endswith("G"):
  3704. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  3705. elif split_str.isnumeric():
  3706. n = int(split_str)
  3707. else:
  3708. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  3709. if n < 0:
  3710. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  3711. return n
  3712. def main() -> None:
  3713. args = parse_args()
  3714. if args.verbose:
  3715. logging.basicConfig(level=logging.DEBUG)
  3716. else:
  3717. logging.basicConfig(level=logging.INFO)
  3718. dir_model = args.model
  3719. if not dir_model.is_dir():
  3720. logger.error(f'Error: {args.model} is not a directory')
  3721. sys.exit(1)
  3722. ftype_map: dict[str, gguf.LlamaFileType] = {
  3723. "f32": gguf.LlamaFileType.ALL_F32,
  3724. "f16": gguf.LlamaFileType.MOSTLY_F16,
  3725. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  3726. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  3727. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  3728. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  3729. "auto": gguf.LlamaFileType.GUESSED,
  3730. }
  3731. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  3732. if args.use_temp_file and is_split:
  3733. logger.error("Error: Cannot use temp file when splitting")
  3734. sys.exit(1)
  3735. if args.outfile is not None:
  3736. fname_out = args.outfile
  3737. else:
  3738. fname_out = dir_model
  3739. logger.info(f"Loading model: {dir_model.name}")
  3740. hparams = Model.load_hparams(dir_model)
  3741. with torch.inference_mode():
  3742. output_type = ftype_map[args.outtype]
  3743. model_architecture = hparams["architectures"][0]
  3744. try:
  3745. model_class = Model.from_model_architecture(model_architecture)
  3746. except NotImplementedError:
  3747. logger.error(f"Model {model_architecture} is not supported")
  3748. sys.exit(1)
  3749. model_instance = model_class(dir_model=dir_model, ftype=output_type, fname_out=fname_out,
  3750. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  3751. eager=args.no_lazy,
  3752. metadata_override=args.metadata, model_name=args.model_name,
  3753. split_max_tensors=args.split_max_tensors,
  3754. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  3755. small_first_shard=args.no_tensor_first_split)
  3756. if args.vocab_only:
  3757. logger.info("Exporting model vocab...")
  3758. model_instance.write_vocab()
  3759. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  3760. else:
  3761. logger.info("Exporting model...")
  3762. model_instance.write()
  3763. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  3764. logger.info(f"Model successfully exported to {out_path}")
  3765. if __name__ == '__main__':
  3766. main()