utils.py 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. # type: ignore[reportUnusedImport]
  4. import subprocess
  5. import os
  6. import re
  7. import json
  8. import sys
  9. import requests
  10. import time
  11. from concurrent.futures import ThreadPoolExecutor, as_completed
  12. from typing import (
  13. Any,
  14. Callable,
  15. ContextManager,
  16. Iterable,
  17. Iterator,
  18. List,
  19. Literal,
  20. Tuple,
  21. Set,
  22. )
  23. from re import RegexFlag
  24. class ServerResponse:
  25. headers: dict
  26. status_code: int
  27. body: dict | Any
  28. class ServerProcess:
  29. # default options
  30. debug: bool = False
  31. server_port: int = 8080
  32. server_host: str = "127.0.0.1"
  33. model_hf_repo: str = "ggml-org/models"
  34. model_hf_file: str = "tinyllamas/stories260K.gguf"
  35. model_alias: str = "tinyllama-2"
  36. temperature: float = 0.8
  37. seed: int = 42
  38. # custom options
  39. model_alias: str | None = None
  40. model_url: str | None = None
  41. model_file: str | None = None
  42. model_draft: str | None = None
  43. n_threads: int | None = None
  44. n_gpu_layer: int | None = None
  45. n_batch: int | None = None
  46. n_ubatch: int | None = None
  47. n_ctx: int | None = None
  48. n_ga: int | None = None
  49. n_ga_w: int | None = None
  50. n_predict: int | None = None
  51. n_prompts: int | None = 0
  52. slot_save_path: str | None = None
  53. id_slot: int | None = None
  54. cache_prompt: bool | None = None
  55. n_slots: int | None = None
  56. server_continuous_batching: bool | None = False
  57. server_embeddings: bool | None = False
  58. server_reranking: bool | None = False
  59. server_metrics: bool | None = False
  60. server_slots: bool | None = False
  61. pooling: str | None = None
  62. draft: int | None = None
  63. api_key: str | None = None
  64. response_format: str | None = None
  65. lora_files: List[str] | None = None
  66. disable_ctx_shift: int | None = False
  67. draft_min: int | None = None
  68. draft_max: int | None = None
  69. no_webui: bool | None = None
  70. # session variables
  71. process: subprocess.Popen | None = None
  72. def __init__(self):
  73. if "N_GPU_LAYERS" in os.environ:
  74. self.n_gpu_layer = int(os.environ["N_GPU_LAYERS"])
  75. if "DEBUG" in os.environ:
  76. self.debug = True
  77. if "PORT" in os.environ:
  78. self.server_port = int(os.environ["PORT"])
  79. def start(self, timeout_seconds: int = 10) -> None:
  80. if "LLAMA_SERVER_BIN_PATH" in os.environ:
  81. server_path = os.environ["LLAMA_SERVER_BIN_PATH"]
  82. elif os.name == "nt":
  83. server_path = "../../../build/bin/Release/llama-server.exe"
  84. else:
  85. server_path = "../../../build/bin/llama-server"
  86. server_args = [
  87. "--host",
  88. self.server_host,
  89. "--port",
  90. self.server_port,
  91. "--temp",
  92. self.temperature,
  93. "--seed",
  94. self.seed,
  95. ]
  96. if self.model_file:
  97. server_args.extend(["--model", self.model_file])
  98. if self.model_url:
  99. server_args.extend(["--model-url", self.model_url])
  100. if self.model_draft:
  101. server_args.extend(["--model-draft", self.model_draft])
  102. if self.model_hf_repo:
  103. server_args.extend(["--hf-repo", self.model_hf_repo])
  104. if self.model_hf_file:
  105. server_args.extend(["--hf-file", self.model_hf_file])
  106. if self.n_batch:
  107. server_args.extend(["--batch-size", self.n_batch])
  108. if self.n_ubatch:
  109. server_args.extend(["--ubatch-size", self.n_ubatch])
  110. if self.n_threads:
  111. server_args.extend(["--threads", self.n_threads])
  112. if self.n_gpu_layer:
  113. server_args.extend(["--n-gpu-layers", self.n_gpu_layer])
  114. if self.draft is not None:
  115. server_args.extend(["--draft", self.draft])
  116. if self.server_continuous_batching:
  117. server_args.append("--cont-batching")
  118. if self.server_embeddings:
  119. server_args.append("--embedding")
  120. if self.server_reranking:
  121. server_args.append("--reranking")
  122. if self.server_metrics:
  123. server_args.append("--metrics")
  124. if self.server_slots:
  125. server_args.append("--slots")
  126. if self.pooling:
  127. server_args.extend(["--pooling", self.pooling])
  128. if self.model_alias:
  129. server_args.extend(["--alias", self.model_alias])
  130. if self.n_ctx:
  131. server_args.extend(["--ctx-size", self.n_ctx])
  132. if self.n_slots:
  133. server_args.extend(["--parallel", self.n_slots])
  134. if self.n_predict:
  135. server_args.extend(["--n-predict", self.n_predict])
  136. if self.slot_save_path:
  137. server_args.extend(["--slot-save-path", self.slot_save_path])
  138. if self.n_ga:
  139. server_args.extend(["--grp-attn-n", self.n_ga])
  140. if self.n_ga_w:
  141. server_args.extend(["--grp-attn-w", self.n_ga_w])
  142. if self.debug:
  143. server_args.append("--verbose")
  144. if self.lora_files:
  145. for lora_file in self.lora_files:
  146. server_args.extend(["--lora", lora_file])
  147. if self.disable_ctx_shift:
  148. server_args.extend(["--no-context-shift"])
  149. if self.api_key:
  150. server_args.extend(["--api-key", self.api_key])
  151. if self.draft_max:
  152. server_args.extend(["--draft-max", self.draft_max])
  153. if self.draft_min:
  154. server_args.extend(["--draft-min", self.draft_min])
  155. if self.no_webui:
  156. server_args.append("--no-webui")
  157. args = [str(arg) for arg in [server_path, *server_args]]
  158. print(f"bench: starting server with: {' '.join(args)}")
  159. flags = 0
  160. if "nt" == os.name:
  161. flags |= subprocess.DETACHED_PROCESS
  162. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  163. flags |= subprocess.CREATE_NO_WINDOW
  164. self.process = subprocess.Popen(
  165. [str(arg) for arg in [server_path, *server_args]],
  166. creationflags=flags,
  167. stdout=sys.stdout,
  168. stderr=sys.stdout,
  169. env={**os.environ, "LLAMA_CACHE": "tmp"},
  170. )
  171. server_instances.add(self)
  172. print(f"server pid={self.process.pid}, pytest pid={os.getpid()}")
  173. # wait for server to start
  174. start_time = time.time()
  175. while time.time() - start_time < timeout_seconds:
  176. try:
  177. response = self.make_request("GET", "/health", headers={
  178. "Authorization": f"Bearer {self.api_key}" if self.api_key else None
  179. })
  180. if response.status_code == 200:
  181. self.ready = True
  182. return # server is ready
  183. except Exception as e:
  184. pass
  185. print(f"Waiting for server to start...")
  186. time.sleep(0.5)
  187. raise TimeoutError(f"Server did not start within {timeout_seconds} seconds")
  188. def stop(self) -> None:
  189. if self in server_instances:
  190. server_instances.remove(self)
  191. if self.process:
  192. print(f"Stopping server with pid={self.process.pid}")
  193. self.process.kill()
  194. self.process = None
  195. def make_request(
  196. self,
  197. method: str,
  198. path: str,
  199. data: dict | Any | None = None,
  200. headers: dict | None = None,
  201. ) -> ServerResponse:
  202. url = f"http://{self.server_host}:{self.server_port}{path}"
  203. parse_body = False
  204. if method == "GET":
  205. response = requests.get(url, headers=headers)
  206. parse_body = True
  207. elif method == "POST":
  208. response = requests.post(url, headers=headers, json=data)
  209. parse_body = True
  210. elif method == "OPTIONS":
  211. response = requests.options(url, headers=headers)
  212. else:
  213. raise ValueError(f"Unimplemented method: {method}")
  214. result = ServerResponse()
  215. result.headers = dict(response.headers)
  216. result.status_code = response.status_code
  217. result.body = response.json() if parse_body else None
  218. print("Response from server", json.dumps(result.body, indent=2))
  219. return result
  220. def make_stream_request(
  221. self,
  222. method: str,
  223. path: str,
  224. data: dict | None = None,
  225. headers: dict | None = None,
  226. ) -> Iterator[dict]:
  227. url = f"http://{self.server_host}:{self.server_port}{path}"
  228. if method == "POST":
  229. response = requests.post(url, headers=headers, json=data, stream=True)
  230. else:
  231. raise ValueError(f"Unimplemented method: {method}")
  232. for line_bytes in response.iter_lines():
  233. line = line_bytes.decode("utf-8")
  234. if '[DONE]' in line:
  235. break
  236. elif line.startswith('data: '):
  237. data = json.loads(line[6:])
  238. print("Partial response from server", json.dumps(data, indent=2))
  239. yield data
  240. server_instances: Set[ServerProcess] = set()
  241. class ServerPreset:
  242. @staticmethod
  243. def tinyllama2() -> ServerProcess:
  244. server = ServerProcess()
  245. server.model_hf_repo = "ggml-org/models"
  246. server.model_hf_file = "tinyllamas/stories260K.gguf"
  247. server.model_alias = "tinyllama-2"
  248. server.n_ctx = 256
  249. server.n_batch = 32
  250. server.n_slots = 2
  251. server.n_predict = 64
  252. server.seed = 42
  253. return server
  254. @staticmethod
  255. def bert_bge_small() -> ServerProcess:
  256. server = ServerProcess()
  257. server.model_hf_repo = "ggml-org/models"
  258. server.model_hf_file = "bert-bge-small/ggml-model-f16.gguf"
  259. server.model_alias = "bert-bge-small"
  260. server.n_ctx = 512
  261. server.n_batch = 128
  262. server.n_ubatch = 128
  263. server.n_slots = 2
  264. server.seed = 42
  265. server.server_embeddings = True
  266. return server
  267. @staticmethod
  268. def tinyllama_infill() -> ServerProcess:
  269. server = ServerProcess()
  270. server.model_hf_repo = "ggml-org/models"
  271. server.model_hf_file = "tinyllamas/stories260K-infill.gguf"
  272. server.model_alias = "tinyllama-infill"
  273. server.n_ctx = 2048
  274. server.n_batch = 1024
  275. server.n_slots = 1
  276. server.n_predict = 64
  277. server.temperature = 0.0
  278. server.seed = 42
  279. return server
  280. @staticmethod
  281. def stories15m_moe() -> ServerProcess:
  282. server = ServerProcess()
  283. server.model_hf_repo = "ggml-org/stories15M_MOE"
  284. server.model_hf_file = "stories15M_MOE-F16.gguf"
  285. server.model_alias = "stories15m-moe"
  286. server.n_ctx = 2048
  287. server.n_batch = 1024
  288. server.n_slots = 1
  289. server.n_predict = 64
  290. server.temperature = 0.0
  291. server.seed = 42
  292. return server
  293. @staticmethod
  294. def jina_reranker_tiny() -> ServerProcess:
  295. server = ServerProcess()
  296. server.model_hf_repo = "ggml-org/models"
  297. server.model_hf_file = "jina-reranker-v1-tiny-en/ggml-model-f16.gguf"
  298. server.model_alias = "jina-reranker"
  299. server.n_ctx = 512
  300. server.n_batch = 512
  301. server.n_slots = 1
  302. server.seed = 42
  303. server.server_reranking = True
  304. return server
  305. def parallel_function_calls(function_list: List[Tuple[Callable[..., Any], Tuple[Any, ...]]]) -> List[Any]:
  306. """
  307. Run multiple functions in parallel and return results in the same order as calls. Equivalent to Promise.all in JS.
  308. Example usage:
  309. results = parallel_function_calls([
  310. (func1, (arg1, arg2)),
  311. (func2, (arg3, arg4)),
  312. ])
  313. """
  314. results = [None] * len(function_list)
  315. exceptions = []
  316. def worker(index, func, args):
  317. try:
  318. result = func(*args)
  319. results[index] = result
  320. except Exception as e:
  321. exceptions.append((index, str(e)))
  322. with ThreadPoolExecutor() as executor:
  323. futures = []
  324. for i, (func, args) in enumerate(function_list):
  325. future = executor.submit(worker, i, func, args)
  326. futures.append(future)
  327. # Wait for all futures to complete
  328. for future in as_completed(futures):
  329. pass
  330. # Check if there were any exceptions
  331. if exceptions:
  332. print("Exceptions occurred:")
  333. for index, error in exceptions:
  334. print(f"Function at index {index}: {error}")
  335. return results
  336. def match_regex(regex: str, text: str) -> bool:
  337. return (
  338. re.compile(
  339. regex, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL
  340. ).search(text)
  341. is not None
  342. )
  343. def is_slow_test_allowed():
  344. return os.environ.get("SLOW_TESTS") == "1" or os.environ.get("SLOW_TESTS") == "ON"