tensor_mapping.py 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. from __future__ import annotations
  2. from typing import Sequence
  3. from .constants import MODEL_ARCH, MODEL_TENSOR, MODEL_TENSORS, TENSOR_NAMES
  4. class TensorNameMap:
  5. mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  6. # Token embeddings
  7. MODEL_TENSOR.TOKEN_EMBD: (
  8. "gpt_neox.embed_in", # gptneox
  9. "transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx jais exaone
  10. "transformer.word_embeddings", # falcon
  11. "word_embeddings", # bloom
  12. "model.embed_tokens", # llama-hf nemotron olmoe olmo2
  13. "tok_embeddings", # llama-pth
  14. "embeddings.word_embeddings", # bert nomic-bert
  15. "language_model.embedding.word_embeddings", # persimmon
  16. "wte", # gpt2
  17. "transformer.embd.wte", # phi2
  18. "model.tok_embeddings", # internlm2
  19. "model.embedding", # mamba-qbert
  20. "backbone.embedding", # mamba
  21. "backbone.embeddings", # mamba-hf
  22. "transformer.in_out_embed", # Grok
  23. "embedding.word_embeddings", # chatglm
  24. "transformer.token_embeddings", # openelm
  25. "shared", # t5
  26. "rwkv.embeddings", # rwkv
  27. ),
  28. # Token type embeddings
  29. MODEL_TENSOR.TOKEN_TYPES: (
  30. "embeddings.token_type_embeddings", # bert nomic-bert
  31. ),
  32. # Normalization of token embeddings
  33. MODEL_TENSOR.TOKEN_EMBD_NORM: (
  34. "word_embeddings_layernorm", # bloom
  35. "embeddings.LayerNorm", # bert
  36. "emb_ln", # nomic-bert
  37. "transformer.norm", # openelm
  38. "rwkv.blocks.0.pre_ln", # rwkv
  39. "backbone.norm", # wavtokenizer
  40. ),
  41. # Position embeddings
  42. MODEL_TENSOR.POS_EMBD: (
  43. "transformer.wpe", # gpt2
  44. "embeddings.position_embeddings", # bert
  45. "wpe", # gpt2
  46. ),
  47. # Output
  48. MODEL_TENSOR.OUTPUT: (
  49. "embed_out", # gptneox
  50. "lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx jais nemotron exaone olmoe olmo2
  51. "output", # llama-pth bloom internlm2
  52. "word_embeddings_for_head", # persimmon
  53. "lm_head.linear", # phi2
  54. "output_layer", # chatglm
  55. "head", # rwkv
  56. "head.out", # wavtokenizer
  57. ),
  58. # Output norm
  59. MODEL_TENSOR.OUTPUT_NORM: (
  60. "gpt_neox.final_layer_norm", # gptneox
  61. "transformer.ln_f", # gpt2 gpt-j falcon jais exaone
  62. "model.norm", # llama-hf baichuan internlm2 olmoe olmo2
  63. "norm", # llama-pth
  64. "transformer.norm_f", # mpt dbrx
  65. "ln_f", # refact bloom qwen gpt2
  66. "language_model.encoder.final_layernorm", # persimmon
  67. "model.final_layernorm", # persimmon
  68. "lm_head.ln", # phi2
  69. "model.norm_f", # mamba-qbert
  70. "backbone.norm_f", # mamba
  71. "transformer.rms_norm", # Grok
  72. "encoder.final_layernorm", # chatglm
  73. "transformer.norm", # openelm
  74. "model.norm", # nemotron
  75. "rwkv.ln_out", # rwkv
  76. "backbone.final_layer_norm", # wavtokenizer
  77. ),
  78. # Rope frequencies
  79. MODEL_TENSOR.ROPE_FREQS: (
  80. "rope.freqs", # llama-pth
  81. "rotary_pos_emb.inv_freq", # chatglm
  82. ),
  83. MODEL_TENSOR.ROPE_FACTORS_LONG: (),
  84. MODEL_TENSOR.ROPE_FACTORS_SHORT: (),
  85. MODEL_TENSOR.CONV1D: (
  86. "backbone.embed", # roberta
  87. ),
  88. }
  89. block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
  90. # Attention norm
  91. MODEL_TENSOR.ATTN_NORM: (
  92. "gpt_neox.layers.{bid}.input_layernorm", # gptneox
  93. "transformer.h.{bid}.ln_1", # gpt2 gpt-j refact qwen jais exaone
  94. "transformer.blocks.{bid}.norm_1", # mpt
  95. "transformer.h.{bid}.input_layernorm", # falcon7b
  96. "h.{bid}.input_layernorm", # bloom
  97. "transformer.h.{bid}.ln_mlp", # falcon40b
  98. "model.layers.{bid}.input_layernorm", # llama-hf nemotron olmoe
  99. "layers.{bid}.attention_norm", # llama-pth
  100. "language_model.encoder.layers.{bid}.input_layernorm", # persimmon
  101. "model.layers.{bid}.ln1", # yi
  102. "h.{bid}.ln_1", # gpt2
  103. "transformer.h.{bid}.ln", # phi2
  104. "model.layers.layers.{bid}.norm", # plamo
  105. "model.layers.{bid}.attention_norm", # internlm2
  106. "model.layers.{bid}.norm", # mamba-qbert
  107. "backbone.layers.{bid}.norm", # mamba
  108. "transformer.decoder_layer.{bid}.rms_norm", # Grok
  109. "transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
  110. "encoder.layers.{bid}.input_layernorm", # chatglm
  111. "transformer.layers.{bid}.attn_norm", # openelm
  112. "rwkv.blocks.{bid}.ln1", # rwkv
  113. ),
  114. # Attention norm 2
  115. MODEL_TENSOR.ATTN_NORM_2: (
  116. "transformer.h.{bid}.ln_attn", # falcon40b
  117. "encoder.layer.{bid}.layer_norm_1", # jina-v2-code
  118. "rwkv.blocks.{bid}.ln2", # rwkv
  119. ),
  120. # Attention query-key-value
  121. MODEL_TENSOR.ATTN_QKV: (
  122. "gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
  123. "transformer.h.{bid}.attn.c_attn", # gpt2 qwen jais
  124. "transformer.blocks.{bid}.attn.Wqkv", # mpt
  125. "transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
  126. "transformer.h.{bid}.self_attention.query_key_value", # falcon
  127. "h.{bid}.self_attention.query_key_value", # bloom
  128. "language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
  129. "model.layers.{bid}.self_attn.query_key_value", # persimmon
  130. "h.{bid}.attn.c_attn", # gpt2
  131. "transformer.h.{bid}.mixer.Wqkv", # phi2
  132. "encoder.layers.{bid}.attn.Wqkv", # nomic-bert
  133. "model.layers.{bid}.self_attn.qkv_proj", # phi3
  134. "encoder.layers.{bid}.self_attention.query_key_value", # chatglm
  135. "transformer.layers.{bid}.attn.qkv_proj", # openelm
  136. ),
  137. # Attention query
  138. MODEL_TENSOR.ATTN_Q: (
  139. "model.layers.{bid}.self_attn.q_proj", # llama-hf nemotron olmoe olmo2
  140. "model.layers.{bid}.self_attn.q_proj_no_perm", # llama-custom
  141. "layers.{bid}.attention.wq", # llama-pth
  142. "encoder.layer.{bid}.attention.self.query", # bert
  143. "transformer.h.{bid}.attn.q_proj", # gpt-j
  144. "model.layers.layers.{bid}.self_attn.q_proj", # plamo
  145. "model.layers.{bid}.attention.wq", # internlm2
  146. "transformer.decoder_layer.{bid}.multi_head_attention.query",# Grok
  147. "transformer.h.{bid}.attn.attention.q_proj", # exaone
  148. ),
  149. # Attention key
  150. MODEL_TENSOR.ATTN_K: (
  151. "model.layers.{bid}.self_attn.k_proj", # llama-hf nemotron olmoe olmo2
  152. "model.layers.{bid}.self_attn.k_proj_no_perm", # llama-custom
  153. "layers.{bid}.attention.wk", # llama-pth
  154. "encoder.layer.{bid}.attention.self.key", # bert
  155. "transformer.h.{bid}.attn.k_proj", # gpt-j
  156. "transformer.h.{bid}.attn.k", # refact
  157. "model.layers.layers.{bid}.self_attn.k_proj", # plamo
  158. "model.layers.{bid}.attention.wk", # internlm2
  159. "transformer.decoder_layer.{bid}.multi_head_attention.key",# Grok
  160. "transformer.h.{bid}.attn.attention.k_proj", # exaone
  161. ),
  162. # Attention value
  163. MODEL_TENSOR.ATTN_V: (
  164. "model.layers.{bid}.self_attn.v_proj", # llama-hf nemotron olmoe olmo2
  165. "layers.{bid}.attention.wv", # llama-pth
  166. "encoder.layer.{bid}.attention.self.value", # bert
  167. "transformer.h.{bid}.attn.v_proj", # gpt-j
  168. "transformer.h.{bid}.attn.v", # refact
  169. "model.layers.layers.{bid}.self_attn.v_proj", # plamo
  170. "model.layers.{bid}.attention.wv", # internlm2
  171. "transformer.decoder_layer.{bid}.multi_head_attention.value",# Grok
  172. "transformer.h.{bid}.attn.attention.v_proj", # exaone
  173. ),
  174. # Attention output
  175. MODEL_TENSOR.ATTN_OUT: (
  176. "gpt_neox.layers.{bid}.attention.dense", # gptneox
  177. "transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen jais
  178. "transformer.blocks.{bid}.attn.out_proj", # mpt
  179. "transformer.h.{bid}.self_attention.dense", # falcon
  180. "h.{bid}.self_attention.dense", # bloom
  181. "model.layers.{bid}.self_attn.o_proj", # llama-hf nemotron olmoe olmo2
  182. "layers.{bid}.attention.wo", # llama-pth
  183. "encoder.layer.{bid}.attention.output.dense", # bert
  184. "transformer.h.{bid}.attn.out_proj", # gpt-j
  185. "language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
  186. "model.layers.{bid}.self_attn.dense", # persimmon
  187. "h.{bid}.attn.c_proj", # gpt2
  188. "transformer.h.{bid}.mixer.out_proj", # phi2
  189. "model.layers.layers.{bid}.self_attn.o_proj", # plamo
  190. "model.layers.{bid}.attention.wo", # internlm2
  191. "encoder.layers.{bid}.attn.out_proj", # nomic-bert
  192. "transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
  193. "transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
  194. "encoder.layers.{bid}.self_attention.dense", # chatglm
  195. "transformer.layers.{bid}.attn.out_proj", # openelm
  196. "transformer.h.{bid}.attn.attention.out_proj", # exaone
  197. ),
  198. # Attention output norm
  199. MODEL_TENSOR.ATTN_OUT_NORM: (
  200. "encoder.layer.{bid}.attention.output.LayerNorm", # bert
  201. "encoder.layers.{bid}.norm1", # nomic-bert
  202. "transformer.decoder_layer.{bid}.rms_norm_1", # Grok
  203. "transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
  204. ),
  205. MODEL_TENSOR.ATTN_POST_NORM: (
  206. "model.layers.{bid}.post_attention_layernorm", # gemma2 olmo2
  207. ),
  208. # Rotary embeddings
  209. MODEL_TENSOR.ATTN_ROT_EMBD: (
  210. "model.layers.{bid}.self_attn.rotary_emb.inv_freq", # llama-hf
  211. "layers.{bid}.attention.inner_attention.rope.freqs", # llama-pth
  212. "model.layers.layers.{bid}.self_attn.rotary_emb.inv_freq", # plamo
  213. "transformer.h.{bid}.attn.rotary_emb.inv_freq", # codeshell
  214. ),
  215. # Feed-forward norm
  216. MODEL_TENSOR.FFN_NORM: (
  217. "gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
  218. "transformer.h.{bid}.ln_2", # gpt2 refact qwen jais exaone
  219. "h.{bid}.post_attention_layernorm", # bloom
  220. "transformer.blocks.{bid}.norm_2", # mpt
  221. "model.layers.{bid}.post_attention_layernorm", # llama-hf nemotron olmoe
  222. "layers.{bid}.ffn_norm", # llama-pth
  223. "language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
  224. "model.layers.{bid}.ln2", # yi
  225. "h.{bid}.ln_2", # gpt2
  226. "model.layers.{bid}.ffn_norm", # internlm2
  227. "transformer.decoder_layer.{bid}.rms_norm_2", # Grok
  228. "encoder.layers.{bid}.post_attention_layernorm", # chatglm
  229. "transformer.layers.{bid}.ffn_norm", # openelm
  230. ),
  231. # Post feed-forward norm
  232. MODEL_TENSOR.FFN_PRE_NORM: (
  233. "model.layers.{bid}.pre_feedforward_layernorm", # gemma2
  234. ),
  235. # Post feed-forward norm
  236. MODEL_TENSOR.FFN_POST_NORM: (
  237. "model.layers.{bid}.post_feedforward_layernorm", # gemma2 olmo2
  238. ),
  239. MODEL_TENSOR.FFN_GATE_INP: (
  240. "layers.{bid}.feed_forward.gate", # mixtral
  241. "model.layers.{bid}.block_sparse_moe.gate", # mixtral
  242. "model.layers.{bid}.mlp.gate", # qwen2moe olmoe
  243. "transformer.decoder_layer.{bid}.router", # Grok
  244. "transformer.blocks.{bid}.ffn.router.layer", # dbrx
  245. "model.layers.{bid}.block_sparse_moe.router.layer", # granitemoe
  246. ),
  247. MODEL_TENSOR.FFN_GATE_INP_SHEXP: (
  248. "model.layers.{bid}.mlp.shared_expert_gate", # qwen2moe
  249. ),
  250. # Feed-forward up
  251. MODEL_TENSOR.FFN_UP: (
  252. "gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
  253. "transformer.h.{bid}.mlp.c_fc", # gpt2 jais
  254. "transformer.blocks.{bid}.ffn.up_proj", # mpt
  255. "transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
  256. "h.{bid}.mlp.dense_h_to_4h", # bloom
  257. "model.layers.{bid}.mlp.up_proj", # llama-hf refact nemotron olmo2
  258. "layers.{bid}.feed_forward.w3", # llama-pth
  259. "encoder.layer.{bid}.intermediate.dense", # bert
  260. "transformer.h.{bid}.mlp.fc_in", # gpt-j
  261. "transformer.h.{bid}.mlp.linear_3", # refact
  262. "language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  263. "model.layers.{bid}.mlp.dense_h_to_4h", # persimmon
  264. "transformer.h.{bid}.mlp.w1", # qwen
  265. "h.{bid}.mlp.c_fc", # gpt2
  266. "transformer.h.{bid}.mlp.fc1", # phi2
  267. "model.layers.{bid}.mlp.fc1", # phi2
  268. "model.layers.{bid}.mlp.gate_up_proj", # phi3
  269. "model.layers.layers.{bid}.mlp.up_proj", # plamo
  270. "model.layers.{bid}.feed_forward.w3", # internlm2
  271. "encoder.layers.{bid}.mlp.fc11", # nomic-bert
  272. "model.layers.{bid}.mlp.c_fc", # starcoder2
  273. "encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
  274. "model.layers.{bid}.residual_mlp.w3", # arctic
  275. "encoder.layers.{bid}.mlp.dense_h_to_4h", # chatglm
  276. "transformer.h.{bid}.mlp.c_fc_1", # exaone
  277. ),
  278. MODEL_TENSOR.FFN_UP_EXP: (
  279. "layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
  280. "transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
  281. "transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
  282. "model.layers.{bid}.mlp.experts.up_proj", # qwen2moe olmoe (merged)
  283. ),
  284. MODEL_TENSOR.FFN_UP_SHEXP: (
  285. "model.layers.{bid}.mlp.shared_expert.up_proj", # qwen2moe
  286. "model.layers.{bid}.mlp.shared_experts.up_proj", # deepseek deepseek2
  287. ),
  288. # AWQ-activation gate
  289. MODEL_TENSOR.FFN_ACT: (
  290. "transformer.blocks.{bid}.ffn.act", # mpt
  291. ),
  292. # Feed-forward gate
  293. MODEL_TENSOR.FFN_GATE: (
  294. "model.layers.{bid}.mlp.gate_proj", # llama-hf refact olmo2
  295. "layers.{bid}.feed_forward.w1", # llama-pth
  296. "transformer.h.{bid}.mlp.w2", # qwen
  297. "transformer.h.{bid}.mlp.c_fc2", # jais
  298. "model.layers.layers.{bid}.mlp.gate_proj", # plamo
  299. "model.layers.{bid}.feed_forward.w1", # internlm2
  300. "encoder.layers.{bid}.mlp.fc12", # nomic-bert
  301. "encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
  302. "transformer.h.{bid}.mlp.linear_1", # refact
  303. "model.layers.{bid}.residual_mlp.w1", # arctic
  304. "transformer.h.{bid}.mlp.c_fc_0", # exaone
  305. ),
  306. MODEL_TENSOR.FFN_GATE_EXP: (
  307. "layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
  308. "transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
  309. "transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
  310. "model.layers.{bid}.mlp.experts.gate_proj", # qwen2moe olmoe (merged)
  311. ),
  312. MODEL_TENSOR.FFN_GATE_SHEXP: (
  313. "model.layers.{bid}.mlp.shared_expert.gate_proj", # qwen2moe
  314. "model.layers.{bid}.mlp.shared_experts.gate_proj", # deepseek deepseek2
  315. ),
  316. # Feed-forward down
  317. MODEL_TENSOR.FFN_DOWN: (
  318. "gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
  319. "transformer.h.{bid}.mlp.c_proj", # gpt2 refact qwen jais
  320. "transformer.blocks.{bid}.ffn.down_proj", # mpt
  321. "transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
  322. "h.{bid}.mlp.dense_4h_to_h", # bloom
  323. "model.layers.{bid}.mlp.down_proj", # llama-hf nemotron olmo2
  324. "layers.{bid}.feed_forward.w2", # llama-pth
  325. "encoder.layer.{bid}.output.dense", # bert
  326. "transformer.h.{bid}.mlp.fc_out", # gpt-j
  327. "language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  328. "model.layers.{bid}.mlp.dense_4h_to_h", # persimmon
  329. "h.{bid}.mlp.c_proj", # gpt2
  330. "transformer.h.{bid}.mlp.fc2", # phi2
  331. "model.layers.{bid}.mlp.fc2", # phi2
  332. "model.layers.layers.{bid}.mlp.down_proj", # plamo
  333. "model.layers.{bid}.feed_forward.w2", # internlm2
  334. "encoder.layers.{bid}.mlp.fc2", # nomic-bert
  335. "model.layers.{bid}.mlp.c_proj", # starcoder2
  336. "encoder.layer.{bid}.mlp.wo", # jina-bert-v2
  337. "transformer.layers.{bid}.ffn.proj_2", # openelm
  338. "model.layers.{bid}.residual_mlp.w2", # arctic
  339. "encoder.layer.{bid}.mlp.down_layer", # jina-bert-v2
  340. "encoder.layers.{bid}.mlp.dense_4h_to_h", # chatglm
  341. "model.layers.h.{bid}.mlp.c_proj", # exaone
  342. ),
  343. MODEL_TENSOR.FFN_DOWN_EXP: (
  344. "layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
  345. "transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
  346. "transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
  347. "model.layers.{bid}.mlp.experts.down_proj", # qwen2moe olmoe (merged)
  348. "model.layers.{bid}.block_sparse_moe.output_linear", # granitemoe
  349. ),
  350. MODEL_TENSOR.FFN_DOWN_SHEXP: (
  351. "model.layers.{bid}.mlp.shared_expert.down_proj", # qwen2moe
  352. "model.layers.{bid}.mlp.shared_experts.down_proj", # deepseek deepseek2
  353. ),
  354. MODEL_TENSOR.ATTN_Q_NORM: (
  355. "language_model.encoder.layers.{bid}.self_attention.q_layernorm",
  356. "model.layers.{bid}.self_attn.q_layernorm", # persimmon
  357. "model.layers.{bid}.self_attn.q_norm", # cohere olmoe chameleon olmo2
  358. "transformer.blocks.{bid}.attn.q_ln", # sea-lion
  359. "encoder.layer.{bid}.attention.self.layer_norm_q", # jina-bert-v2
  360. "transformer.layers.{bid}.attn.q_norm", # openelm
  361. ),
  362. MODEL_TENSOR.ATTN_K_NORM: (
  363. "language_model.encoder.layers.{bid}.self_attention.k_layernorm",
  364. "model.layers.{bid}.self_attn.k_layernorm", # persimmon
  365. "model.layers.{bid}.self_attn.k_norm", # cohere olmoe chameleon olmo2
  366. "transformer.blocks.{bid}.attn.k_ln", # sea-lion
  367. "encoder.layer.{bid}.attention.self.layer_norm_k", # jina-bert-v2
  368. "transformer.layers.{bid}.attn.k_norm", # openelm
  369. ),
  370. MODEL_TENSOR.ROPE_FREQS: (
  371. "language_model.encoder.layers.{bid}.self_attention.rotary_emb.inv_freq", # persimmon
  372. ),
  373. MODEL_TENSOR.LAYER_OUT_NORM: (
  374. "encoder.layer.{bid}.output.LayerNorm", # bert
  375. "encoder.layers.{bid}.norm2", # nomic-bert
  376. "transformer.decoder_layer.{bid}.rms_norm_3", # Grok
  377. "encoder.layer.{bid}.mlp.layernorm", # jina-bert-v2
  378. "encoder.layer.{bid}.layer_norm_2" # jina-v2-code
  379. ),
  380. MODEL_TENSOR.SSM_IN: (
  381. "model.layers.{bid}.in_proj",
  382. "backbone.layers.{bid}.mixer.in_proj",
  383. ),
  384. MODEL_TENSOR.SSM_CONV1D: (
  385. "model.layers.{bid}.conv1d",
  386. "backbone.layers.{bid}.mixer.conv1d",
  387. ),
  388. MODEL_TENSOR.SSM_X: (
  389. "model.layers.{bid}.x_proj",
  390. "backbone.layers.{bid}.mixer.x_proj",
  391. ),
  392. MODEL_TENSOR.SSM_DT: (
  393. "model.layers.{bid}.dt_proj",
  394. "backbone.layers.{bid}.mixer.dt_proj",
  395. ),
  396. MODEL_TENSOR.SSM_A: (
  397. "model.layers.{bid}.A_log",
  398. "backbone.layers.{bid}.mixer.A_log",
  399. ),
  400. MODEL_TENSOR.SSM_D: (
  401. "model.layers.{bid}.D",
  402. "backbone.layers.{bid}.mixer.D",
  403. ),
  404. MODEL_TENSOR.SSM_OUT: (
  405. "model.layers.{bid}.out_proj",
  406. "backbone.layers.{bid}.mixer.out_proj",
  407. ),
  408. MODEL_TENSOR.TIME_MIX_W1: (
  409. "rwkv.blocks.{bid}.attention.time_maa_w1", # rwkv v6
  410. ),
  411. MODEL_TENSOR.TIME_MIX_W2: (
  412. "rwkv.blocks.{bid}.attention.time_maa_w2", # rwkv v6
  413. ),
  414. MODEL_TENSOR.TIME_MIX_LERP_X: (
  415. "rwkv.blocks.{bid}.attention.time_maa_x", # rwkv v6
  416. ),
  417. MODEL_TENSOR.TIME_MIX_LERP_K: (
  418. "rwkv.blocks.{bid}.attention.time_maa_k", # rwkv v6
  419. ),
  420. MODEL_TENSOR.TIME_MIX_LERP_V: (
  421. "rwkv.blocks.{bid}.attention.time_maa_v", # rwkv v6
  422. ),
  423. MODEL_TENSOR.TIME_MIX_LERP_R: (
  424. "rwkv.blocks.{bid}.attention.time_maa_r", # rwkv v6
  425. ),
  426. MODEL_TENSOR.TIME_MIX_LERP_G: (
  427. "rwkv.blocks.{bid}.attention.time_maa_g", # rwkv v6
  428. ),
  429. MODEL_TENSOR.TIME_MIX_LERP_W: (
  430. "rwkv.blocks.{bid}.attention.time_maa_w", # rwkv v6
  431. ),
  432. MODEL_TENSOR.TIME_MIX_FIRST: (
  433. "rwkv.blocks.{bid}.attention.time_faaaa", # rwkv v6
  434. ),
  435. MODEL_TENSOR.TIME_MIX_DECAY: (
  436. "rwkv.blocks.{bid}.attention.time_decay", # rwkv v6
  437. ),
  438. MODEL_TENSOR.TIME_MIX_DECAY_W1: (
  439. "rwkv.blocks.{bid}.attention.time_decay_w1", # rwkv v6
  440. ),
  441. MODEL_TENSOR.TIME_MIX_DECAY_W2: (
  442. "rwkv.blocks.{bid}.attention.time_decay_w2", # rwkv v6
  443. ),
  444. MODEL_TENSOR.TIME_MIX_KEY: (
  445. "rwkv.blocks.{bid}.attention.key", # rwkv
  446. ),
  447. MODEL_TENSOR.TIME_MIX_VALUE: (
  448. "rwkv.blocks.{bid}.attention.value", # rwkv
  449. ),
  450. MODEL_TENSOR.TIME_MIX_RECEPTANCE: (
  451. "rwkv.blocks.{bid}.attention.receptance", # rwkv
  452. ),
  453. MODEL_TENSOR.TIME_MIX_GATE: (
  454. "rwkv.blocks.{bid}.attention.gate", # rwkv
  455. ),
  456. MODEL_TENSOR.TIME_MIX_LN: (
  457. "rwkv.blocks.{bid}.attention.ln_x", # rwkv
  458. ),
  459. MODEL_TENSOR.TIME_MIX_OUTPUT: (
  460. "rwkv.blocks.{bid}.attention.output", # rwkv
  461. ),
  462. MODEL_TENSOR.CHANNEL_MIX_LERP_K: (
  463. "rwkv.blocks.{bid}.feed_forward.time_maa_k", # rwkv v6
  464. ),
  465. MODEL_TENSOR.CHANNEL_MIX_LERP_R: (
  466. "rwkv.blocks.{bid}.feed_forward.time_maa_r", # rwkv v6
  467. ),
  468. MODEL_TENSOR.CHANNEL_MIX_KEY: (
  469. "rwkv.blocks.{bid}.feed_forward.key", # rwkv
  470. ),
  471. MODEL_TENSOR.CHANNEL_MIX_RECEPTANCE: (
  472. "rwkv.blocks.{bid}.feed_forward.receptance", # rwkv
  473. ),
  474. MODEL_TENSOR.CHANNEL_MIX_VALUE: (
  475. "rwkv.blocks.{bid}.feed_forward.value", # rwkv
  476. ),
  477. MODEL_TENSOR.ATTN_Q_A: (
  478. "model.layers.{bid}.self_attn.q_a_proj", # deepseek2
  479. ),
  480. MODEL_TENSOR.ATTN_Q_B: (
  481. "model.layers.{bid}.self_attn.q_b_proj", # deepseek2
  482. ),
  483. MODEL_TENSOR.ATTN_KV_A_MQA: (
  484. "model.layers.{bid}.self_attn.kv_a_proj_with_mqa", # deepseek2
  485. ),
  486. MODEL_TENSOR.ATTN_KV_B: (
  487. "model.layers.{bid}.self_attn.kv_b_proj", # deepseek2
  488. ),
  489. MODEL_TENSOR.ATTN_Q_A_NORM: (
  490. "model.layers.{bid}.self_attn.q_a_layernorm", # deepseek2
  491. ),
  492. MODEL_TENSOR.ATTN_KV_A_NORM: (
  493. "model.layers.{bid}.self_attn.kv_a_layernorm", # deepseek2
  494. ),
  495. MODEL_TENSOR.ATTN_SUB_NORM: (
  496. "model.layers.{bid}.self_attn.inner_attn_ln", # bitnet
  497. ),
  498. MODEL_TENSOR.FFN_SUB_NORM: (
  499. "model.layers.{bid}.mlp.ffn_layernorm", # bitnet
  500. ),
  501. MODEL_TENSOR.DEC_ATTN_NORM: (
  502. "decoder.block.{bid}.layer.0.layer_norm", # t5
  503. ),
  504. MODEL_TENSOR.DEC_ATTN_Q: (
  505. "decoder.block.{bid}.layer.0.SelfAttention.q", # t5
  506. ),
  507. MODEL_TENSOR.DEC_ATTN_K: (
  508. "decoder.block.{bid}.layer.0.SelfAttention.k", # t5
  509. ),
  510. MODEL_TENSOR.DEC_ATTN_V: (
  511. "decoder.block.{bid}.layer.0.SelfAttention.v", # t5
  512. ),
  513. MODEL_TENSOR.DEC_ATTN_OUT: (
  514. "decoder.block.{bid}.layer.0.SelfAttention.o", # t5
  515. ),
  516. MODEL_TENSOR.DEC_ATTN_REL_B: (
  517. "decoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  518. ),
  519. MODEL_TENSOR.DEC_CROSS_ATTN_NORM: (
  520. "decoder.block.{bid}.layer.1.layer_norm", # t5
  521. ),
  522. MODEL_TENSOR.DEC_CROSS_ATTN_Q: (
  523. "decoder.block.{bid}.layer.1.EncDecAttention.q", # t5
  524. ),
  525. MODEL_TENSOR.DEC_CROSS_ATTN_K: (
  526. "decoder.block.{bid}.layer.1.EncDecAttention.k", # t5
  527. ),
  528. MODEL_TENSOR.DEC_CROSS_ATTN_V: (
  529. "decoder.block.{bid}.layer.1.EncDecAttention.v", # t5
  530. ),
  531. MODEL_TENSOR.DEC_CROSS_ATTN_OUT: (
  532. "decoder.block.{bid}.layer.1.EncDecAttention.o", # t5
  533. ),
  534. MODEL_TENSOR.DEC_CROSS_ATTN_REL_B: (
  535. "decoder.block.{bid}.layer.1.EncDecAttention.relative_attention_bias", # t5
  536. ),
  537. MODEL_TENSOR.DEC_FFN_NORM: (
  538. "decoder.block.{bid}.layer.2.layer_norm", # t5
  539. ),
  540. MODEL_TENSOR.DEC_FFN_GATE: (
  541. "decoder.block.{bid}.layer.2.DenseReluDense.wi_0", # flan-t5
  542. ),
  543. MODEL_TENSOR.DEC_FFN_UP: (
  544. "decoder.block.{bid}.layer.2.DenseReluDense.wi", # t5
  545. "decoder.block.{bid}.layer.2.DenseReluDense.wi_1", # flan-t5
  546. ),
  547. MODEL_TENSOR.DEC_FFN_DOWN: (
  548. "decoder.block.{bid}.layer.2.DenseReluDense.wo", # t5
  549. ),
  550. MODEL_TENSOR.DEC_OUTPUT_NORM: (
  551. "decoder.final_layer_norm", # t5
  552. ),
  553. MODEL_TENSOR.ENC_ATTN_NORM: (
  554. "encoder.block.{bid}.layer.0.layer_norm", # t5
  555. ),
  556. MODEL_TENSOR.ENC_ATTN_Q: (
  557. "encoder.block.{bid}.layer.0.SelfAttention.q", # t5
  558. ),
  559. MODEL_TENSOR.ENC_ATTN_K: (
  560. "encoder.block.{bid}.layer.0.SelfAttention.k", # t5
  561. ),
  562. MODEL_TENSOR.ENC_ATTN_V: (
  563. "encoder.block.{bid}.layer.0.SelfAttention.v", # t5
  564. ),
  565. MODEL_TENSOR.ENC_ATTN_OUT: (
  566. "encoder.block.{bid}.layer.0.SelfAttention.o", # t5
  567. ),
  568. MODEL_TENSOR.ENC_ATTN_REL_B: (
  569. "encoder.block.{bid}.layer.0.SelfAttention.relative_attention_bias", # t5
  570. ),
  571. MODEL_TENSOR.ENC_FFN_NORM: (
  572. "encoder.block.{bid}.layer.1.layer_norm", # t5
  573. ),
  574. MODEL_TENSOR.ENC_FFN_GATE: (
  575. "encoder.block.{bid}.layer.1.DenseReluDense.wi_0", # flan-t5
  576. ),
  577. MODEL_TENSOR.ENC_FFN_UP: (
  578. "encoder.block.{bid}.layer.1.DenseReluDense.wi", # t5
  579. "encoder.block.{bid}.layer.1.DenseReluDense.wi_1", # flan-t5
  580. ),
  581. MODEL_TENSOR.ENC_FFN_DOWN: (
  582. "encoder.block.{bid}.layer.1.DenseReluDense.wo", # t5
  583. ),
  584. ############################################################################
  585. # TODO: these do not belong to block_mappings_cfg - move them to mappings_cfg
  586. MODEL_TENSOR.ENC_OUTPUT_NORM: (
  587. "encoder.final_layer_norm", # t5
  588. ),
  589. MODEL_TENSOR.CLS: (
  590. "classifier", # jina
  591. "classifier.dense", # roberta
  592. ),
  593. MODEL_TENSOR.CLS_OUT: (
  594. "classifier.out_proj", # roberta
  595. ),
  596. #############################################################################
  597. MODEL_TENSOR.CONVNEXT_DW: (
  598. "backbone.convnext.{bid}.dwconv", # wavtokenizer
  599. ),
  600. MODEL_TENSOR.CONVNEXT_NORM: (
  601. "backbone.convnext.{bid}.norm", # wavtokenizer
  602. ),
  603. MODEL_TENSOR.CONVNEXT_PW1: (
  604. "backbone.convnext.{bid}.pwconv1", # wavtokenizer
  605. ),
  606. MODEL_TENSOR.CONVNEXT_PW2: (
  607. "backbone.convnext.{bid}.pwconv2", # wavtokenizer
  608. ),
  609. MODEL_TENSOR.CONVNEXT_GAMMA: (
  610. "backbone.convnext.{bid}.gamma", # wavtokenizer
  611. ),
  612. MODEL_TENSOR.POSNET_CONV1: (
  613. "backbone.posnet.{bid}.conv1", # wavtokenizer
  614. ),
  615. MODEL_TENSOR.POSNET_CONV2: (
  616. "backbone.posnet.{bid}.conv2", # wavtokenizer
  617. ),
  618. MODEL_TENSOR.POSNET_NORM: (
  619. "backbone.posnet.{bid}.norm", # wavtokenizer
  620. ),
  621. MODEL_TENSOR.POSNET_NORM1: (
  622. "backbone.posnet.{bid}.norm1", # wavtokenizer
  623. ),
  624. MODEL_TENSOR.POSNET_NORM2: (
  625. "backbone.posnet.{bid}.norm2", # wavtokenizer
  626. ),
  627. MODEL_TENSOR.POSNET_ATTN_NORM: (
  628. "backbone.posnet.{bid}.norm", # wavtokenizer
  629. ),
  630. MODEL_TENSOR.POSNET_ATTN_Q: (
  631. "backbone.posnet.{bid}.q", # wavtokenizer
  632. ),
  633. MODEL_TENSOR.POSNET_ATTN_K: (
  634. "backbone.posnet.{bid}.k", # wavtokenizer
  635. ),
  636. MODEL_TENSOR.POSNET_ATTN_V: (
  637. "backbone.posnet.{bid}.v", # wavtokenizer
  638. ),
  639. MODEL_TENSOR.POSNET_ATTN_OUT: (
  640. "backbone.posnet.{bid}.proj_out", # wavtokenizer
  641. ),
  642. }
  643. # architecture-specific block mappings
  644. arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
  645. MODEL_ARCH.ARCTIC: {
  646. MODEL_TENSOR.FFN_NORM: (
  647. "model.layers.{bid}.residual_layernorm",
  648. ),
  649. MODEL_TENSOR.FFN_NORM_EXP: (
  650. "model.layers.{bid}.post_attention_layernorm",
  651. ),
  652. },
  653. }
  654. mapping: dict[str, tuple[MODEL_TENSOR, str]]
  655. def __init__(self, arch: MODEL_ARCH, n_blocks: int):
  656. self.mapping = {}
  657. for tensor, keys in self.mappings_cfg.items():
  658. if tensor not in MODEL_TENSORS[arch]:
  659. continue
  660. tensor_name = TENSOR_NAMES[tensor]
  661. self.mapping[tensor_name] = (tensor, tensor_name)
  662. for key in keys:
  663. self.mapping[key] = (tensor, tensor_name)
  664. if arch in self.arch_block_mappings_cfg:
  665. self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
  666. for bid in range(n_blocks):
  667. for tensor, keys in self.block_mappings_cfg.items():
  668. if tensor not in MODEL_TENSORS[arch]:
  669. continue
  670. tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
  671. self.mapping[tensor_name] = (tensor, tensor_name)
  672. for key in keys:
  673. key = key.format(bid = bid)
  674. self.mapping[key] = (tensor, tensor_name)
  675. def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
  676. result = self.mapping.get(key)
  677. if result is not None:
  678. return result
  679. for suffix in try_suffixes:
  680. if key.endswith(suffix):
  681. result = self.mapping.get(key[:-len(suffix)])
  682. if result is not None:
  683. return result[0], result[1] + suffix
  684. return None
  685. def get_name(self, key: str, try_suffixes: Sequence[str] = ()) -> str | None:
  686. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  687. if result is None:
  688. return None
  689. return result[1]
  690. def get_type(self, key: str, try_suffixes: Sequence[str] = ()) -> MODEL_TENSOR | None:
  691. result = self.get_type_and_name(key, try_suffixes = try_suffixes)
  692. if result is None:
  693. return None
  694. return result[0]
  695. def __getitem__(self, key: str) -> str:
  696. try:
  697. return self.mapping[key][1]
  698. except KeyError:
  699. raise KeyError(key)
  700. def __contains__(self, key: str) -> bool:
  701. return key in self.mapping
  702. def __repr__(self) -> str:
  703. return repr(self.mapping)
  704. def get_tensor_name_map(arch: MODEL_ARCH, n_blocks: int) -> TensorNameMap:
  705. return TensorNameMap(arch, n_blocks)