ggml-opencl.cpp 164 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026
  1. #define CL_TARGET_OPENCL_VERSION 220
  2. #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
  3. // suppress warnings in CL headers for GCC and Clang
  4. #pragma GCC diagnostic ignored "-Woverlength-strings"
  5. #ifdef __clang__
  6. #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
  7. #endif
  8. #include "ggml-opencl.h"
  9. #include "ggml-backend.h"
  10. #include "ggml-impl.h"
  11. #include "ggml-backend-impl.h"
  12. #include "ggml.h"
  13. #include <CL/cl.h>
  14. #include <string.h>
  15. #include <cstddef>
  16. #include <cstdint>
  17. #include <atomic>
  18. #include <fstream>
  19. #include <limits>
  20. #include <vector>
  21. #include <string>
  22. #include <cmath>
  23. #undef MIN
  24. #undef MAX
  25. #define MIN(a, b) ((a) < (b) ? (a) : (b))
  26. #define MAX(a, b) ((a) > (b) ? (a) : (b))
  27. #define UNUSED(x) (void)(x)
  28. #define CL_CHECK(err) \
  29. do { \
  30. cl_int err_ = (err); \
  31. if (err_ != CL_SUCCESS) { \
  32. GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
  33. #err, err_, __FILE__, __LINE__); \
  34. GGML_ASSERT(0); \
  35. } \
  36. } while (0)
  37. //------------------------------------------------------------------------------
  38. // OpenCL
  39. //------------------------------------------------------------------------------
  40. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
  41. enum GPU_FAMILY {
  42. ADRENO,
  43. INTEL,
  44. UNKNOWN,
  45. };
  46. enum ADRENO_GPU_GEN {
  47. ADRENO_UNKNOWN,
  48. A7X,
  49. A8X,
  50. X1E,
  51. };
  52. static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
  53. if (strstr(device_name, "730") ||
  54. strstr(device_name, "740") ||
  55. strstr(device_name, "750")) {
  56. return ADRENO_GPU_GEN::A7X;
  57. }
  58. if (strstr(device_name, "830")) {
  59. return ADRENO_GPU_GEN::A8X;
  60. }
  61. if (strstr(device_name, "X1")) {
  62. return ADRENO_GPU_GEN::X1E;
  63. }
  64. return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
  65. }
  66. static int get_adreno_cl_compiler_version(const char *driver_version) {
  67. std::string driver_ver_str(driver_version);
  68. size_t compiler_ver_pos = driver_ver_str.find("E031");
  69. size_t compiler_ver_len = 13;
  70. size_t compiler_ver_offset = 5;
  71. if (compiler_ver_pos == std::string::npos) {
  72. compiler_ver_pos = driver_ver_str.find("DX");
  73. if (compiler_ver_pos == std::string::npos) {
  74. return -1;
  75. }
  76. compiler_ver_len = 11;
  77. compiler_ver_offset = 3;
  78. }
  79. std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
  80. std::string major_ver_str = compiler_ver_str.substr(compiler_ver_offset, 2);
  81. return std::atoi(major_ver_str.c_str());
  82. }
  83. // backend device context
  84. struct ggml_backend_opencl_device_context {
  85. cl_platform_id platform;
  86. std::string platform_name;
  87. cl_device_id device;
  88. std::string device_name;
  89. };
  90. // backend context
  91. struct ggml_backend_opencl_context {
  92. cl_device_id device;
  93. std::string device_name;
  94. std::string driver_version;
  95. GPU_FAMILY gpu_family;
  96. ADRENO_GPU_GEN adreno_gen;
  97. cl_int alignment;
  98. size_t max_alloc_size;
  99. bool fp16_support;
  100. int adreno_wave_size;
  101. cl_context context;
  102. cl_command_queue queue;
  103. cl_program program;
  104. cl_program program_1;
  105. cl_program program_2;
  106. cl_kernel kernel_add, kernel_add_row;
  107. cl_kernel kernel_mul, kernel_mul_row;
  108. cl_kernel kernel_scale;
  109. cl_kernel kernel_silu, kernel_silu_4;
  110. cl_kernel kernel_gelu, kernel_gelu_4;
  111. cl_kernel kernel_relu;
  112. cl_kernel kernel_clamp;
  113. cl_kernel kernel_norm;
  114. cl_kernel kernel_rms_norm;
  115. cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
  116. cl_kernel kernel_soft_max, kernel_soft_max_4;
  117. cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
  118. cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
  119. cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
  120. cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
  121. cl_kernel kernel_mul_mat_f32_f32;
  122. cl_kernel kernel_mul_mat_f16_f16;
  123. cl_kernel kernel_mul_mat_f16_f32_1row;
  124. cl_kernel kernel_mul_mat_f16_f32;
  125. cl_kernel kernel_mul_mat_f16_f32_l4;
  126. cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
  127. cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0, kernel_mul_mat_q4_0_f32_flat;
  128. cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
  129. cl_kernel kernel_convert_block_q4_0_noshuffle, kernel_mul_mat_q4_0_f32_flat_v0,
  130. kernel_mul_mat_q4_0_f32_flat_img_v0;
  131. cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
  132. cl_kernel kernel_mul_mv_q6_K_f32;
  133. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  134. // Transpose kernels
  135. cl_program program_transpose_32;
  136. cl_program program_transpose_32_16;
  137. cl_program program_transpose_16;
  138. cl_kernel kernel_transpose_32;
  139. cl_kernel kernel_transpose_32_16;
  140. cl_kernel kernel_transpose_16;
  141. cl_mem A_s_d_max; // max scale buffer size for transpose
  142. cl_mem A_q_d_max; // max weight buffer size for transpose
  143. cl_mem B_d_max; // max activation buffer size for transpose
  144. // Gemm and Gemv related programs, kernels, etc
  145. cl_program program_CL_gemm;
  146. cl_program program_CL_gemv_general;
  147. cl_program program_CL_gemv_4096_1_11008;
  148. cl_program program_CL_gemv_4096_1_4096;
  149. cl_program program_CL_gemv_11008_1_4096;
  150. cl_program program_CL_gemv_32000_1_4096;
  151. cl_kernel CL_mul_mat_Ab_Bi_8x4;
  152. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  153. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  154. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  155. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  156. cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  157. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  158. };
  159. static ggml_backend_device g_ggml_backend_opencl_device;
  160. static ggml_backend_opencl_device_context g_ggml_ctx_dev_main {
  161. /*.platform =*/ nullptr,
  162. /*.platform_nane =*/ "",
  163. /*.device =*/ nullptr,
  164. /*.device_name =*/ "",
  165. };
  166. static int ggml_backend_opencl_n_devices = 0;
  167. // Profiling
  168. #ifdef GGML_OPENCL_PROFILING
  169. struct ProfilingInfo {
  170. std::string op_name;
  171. std::string kernel_name;
  172. // Kernel execution time in nanoseconds.
  173. cl_ulong duration_ns;
  174. // Global and local work sizes.
  175. size_t global_size[3];
  176. size_t local_size[3];
  177. // Op output size.
  178. size_t output_size[4];
  179. };
  180. std::vector<ProfilingInfo> g_profiling_info;
  181. #endif
  182. inline std::string read_file(const std::string &path) {
  183. std::ifstream ifs(path);
  184. if (!ifs) {
  185. return "";
  186. }
  187. std::string text;
  188. ifs.seekg(0, std::ios::end);
  189. text.resize(ifs.tellg());
  190. ifs.seekg(0, std::ios::beg);
  191. ifs.read(&text[0], text.size());
  192. return text;
  193. }
  194. static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
  195. cl_program p;
  196. char *program_log;
  197. size_t program_size;
  198. size_t log_size;
  199. int err;
  200. program_size = strlen(program_buffer);
  201. p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
  202. if(err < 0) {
  203. GGML_LOG_ERROR("OpenCL error creating program");
  204. exit(1);
  205. }
  206. err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
  207. if(err < 0) {
  208. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
  209. program_log = (char*) malloc(log_size + 1);
  210. program_log[log_size] = '\0';
  211. clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
  212. GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
  213. free(program_log);
  214. exit(1);
  215. }
  216. return p;
  217. }
  218. static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
  219. static bool initialized = false;
  220. static ggml_backend_opencl_context *backend_ctx = nullptr;
  221. if (initialized) {
  222. return backend_ctx;
  223. }
  224. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
  225. GGML_ASSERT(dev_ctx);
  226. GGML_ASSERT(dev_ctx->platform == nullptr);
  227. GGML_ASSERT(dev_ctx->device == nullptr);
  228. GGML_ASSERT(backend_ctx == nullptr);
  229. initialized = true;
  230. backend_ctx = new ggml_backend_opencl_context();
  231. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  232. cl_int err;
  233. #ifdef GGML_PROFILE_OPENCL
  234. GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
  235. #endif
  236. struct cl_device;
  237. struct cl_platform {
  238. cl_platform_id id;
  239. unsigned number;
  240. char name[128];
  241. char vendor[128];
  242. struct cl_device * devices;
  243. unsigned n_devices;
  244. struct cl_device * default_device;
  245. };
  246. struct cl_device {
  247. struct cl_platform * platform;
  248. cl_device_id id;
  249. unsigned number;
  250. cl_device_type type;
  251. char name[128];
  252. };
  253. enum { NPLAT = 16, NDEV = 16 };
  254. struct cl_platform platforms[NPLAT];
  255. unsigned n_platforms = 0;
  256. struct cl_device devices[NDEV];
  257. unsigned n_devices = 0;
  258. struct cl_device * default_device = NULL;
  259. cl_platform_id platform_ids[NPLAT];
  260. if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
  261. GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
  262. return backend_ctx;
  263. }
  264. for (unsigned i = 0; i < n_platforms; i++) {
  265. struct cl_platform * p = &platforms[i];
  266. p->number = i;
  267. p->id = platform_ids[i];
  268. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
  269. CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
  270. cl_device_id device_ids[NDEV];
  271. cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
  272. if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
  273. p->n_devices = 0;
  274. } else {
  275. CL_CHECK(clGetDeviceIDsError);
  276. }
  277. p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
  278. p->default_device = NULL;
  279. for (unsigned j = 0; j < p->n_devices; j++) {
  280. struct cl_device * d = &devices[n_devices];
  281. d->number = n_devices++;
  282. d->id = device_ids[j];
  283. d->platform = p;
  284. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
  285. CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
  286. if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
  287. p->default_device = d;
  288. }
  289. }
  290. if (default_device == NULL && p->default_device != NULL) {
  291. default_device = p->default_device;
  292. }
  293. }
  294. if (n_devices == 0) {
  295. GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
  296. return backend_ctx;
  297. }
  298. char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
  299. char * user_device_string = getenv("GGML_OPENCL_DEVICE");
  300. int user_platform_number = -1;
  301. int user_device_number = -1;
  302. unsigned n;
  303. if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
  304. user_platform_number = (int)n;
  305. }
  306. if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
  307. user_device_number = (int)n;
  308. }
  309. if (user_platform_number != -1 && user_device_number != -1) {
  310. cl_platform* platform = &platforms[user_platform_number];
  311. if ((unsigned)user_device_number >= platform->n_devices) {
  312. GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
  313. exit(1);
  314. }
  315. default_device = &platform->devices[user_device_number];
  316. } else {
  317. struct cl_device * selected_devices = devices;
  318. unsigned n_selected_devices = n_devices;
  319. if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
  320. for (unsigned i = 0; i < n_platforms; i++) {
  321. struct cl_platform * p = &platforms[i];
  322. if (strstr(p->name, user_platform_string) != NULL ||
  323. strstr(p->vendor, user_platform_string) != NULL) {
  324. user_platform_number = (int)i;
  325. break;
  326. }
  327. }
  328. if (user_platform_number == -1) {
  329. GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
  330. exit(1);
  331. }
  332. }
  333. if (user_platform_number != -1) {
  334. struct cl_platform * p = &platforms[user_platform_number];
  335. selected_devices = p->devices;
  336. n_selected_devices = p->n_devices;
  337. default_device = p->default_device;
  338. if (n_selected_devices == 0) {
  339. GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
  340. exit(1);
  341. }
  342. }
  343. if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
  344. for (unsigned i = 0; i < n_selected_devices; i++) {
  345. struct cl_device * d = &selected_devices[i];
  346. if (strstr(d->name, user_device_string) != NULL) {
  347. user_device_number = d->number;
  348. break;
  349. }
  350. }
  351. if (user_device_number == -1) {
  352. GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
  353. exit(1);
  354. }
  355. }
  356. if (user_device_number != -1) {
  357. selected_devices = &devices[user_device_number];
  358. n_selected_devices = 1;
  359. default_device = &selected_devices[0];
  360. }
  361. GGML_ASSERT(n_selected_devices > 0);
  362. if (default_device == NULL) {
  363. default_device = &selected_devices[0];
  364. }
  365. }
  366. GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
  367. GGML_LOG_INFO("ggml_opencl: selecting device: '%s'\n", default_device->name);
  368. if (default_device->type != CL_DEVICE_TYPE_GPU) {
  369. GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
  370. }
  371. dev_ctx->platform = default_device->platform->id;
  372. dev_ctx->device = default_device->id;
  373. backend_ctx->device = default_device->id;
  374. if (strstr(default_device->name, "Adreno")) {
  375. backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
  376. backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);
  377. // Default wave size is 128, A8x uses 64.
  378. if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A8X) {
  379. backend_ctx->adreno_wave_size = 64;
  380. } else if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A7X ||
  381. backend_ctx->adreno_gen == ADRENO_GPU_GEN::X1E) {
  382. backend_ctx->adreno_wave_size = 128;
  383. } else {
  384. backend_ctx->adreno_wave_size = 128;
  385. GGML_LOG_WARN("ggml_opencl: Unsupported Adreno GPU: %s, "
  386. "using wave size %d, "
  387. "may not work as expected\n",
  388. backend_ctx->device_name.c_str(), backend_ctx->adreno_wave_size);
  389. }
  390. } else if (strstr(default_device->name, "Intel")) {
  391. backend_ctx->gpu_family = GPU_FAMILY::INTEL;
  392. } else {
  393. GGML_LOG_ERROR("Unsupported GPU: %s\n", default_device->name);
  394. backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
  395. return backend_ctx;
  396. }
  397. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  398. if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
  399. GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
  400. "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
  401. return backend_ctx;
  402. }
  403. #endif
  404. // Populate backend device name
  405. dev_ctx->platform_name = default_device->platform->name;
  406. dev_ctx->device_name = default_device->name;
  407. backend_ctx->device_name = default_device->name;
  408. // A local ref of cl_device_id for convenience
  409. cl_device_id device = backend_ctx->device;
  410. // Check device OpenCL version, OpenCL 2.0 or above is required
  411. size_t device_ver_str_size;
  412. clGetDeviceInfo(device, CL_DEVICE_VERSION, 0, NULL, &device_ver_str_size);
  413. char *device_ver_buffer = (char *)alloca(device_ver_str_size + 1);
  414. clGetDeviceInfo(device, CL_DEVICE_VERSION, device_ver_str_size, device_ver_buffer, NULL);
  415. device_ver_buffer[device_ver_str_size] = '\0';
  416. GGML_LOG_INFO("ggml_opencl: device OpenCL version: %s\n", device_ver_buffer);
  417. if (strstr(device_ver_buffer, "OpenCL 2") == NULL &&
  418. strstr(device_ver_buffer, "OpenCL 3") == NULL) {
  419. GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
  420. return backend_ctx;
  421. }
  422. // Check driver version
  423. size_t driver_version_str_size;
  424. clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
  425. char *driver_version = (char *)alloca(driver_version_str_size + 1);
  426. clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
  427. driver_version[driver_version_str_size] = '\0';
  428. GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
  429. backend_ctx->driver_version = driver_version;
  430. int adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
  431. bool has_vector_subgroup_broadcast =
  432. adreno_cl_compiler_version >= 47 || adreno_cl_compiler_version == 17;
  433. GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
  434. has_vector_subgroup_broadcast ? "true" : "false");
  435. size_t ext_str_size;
  436. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
  437. char *ext_buffer = (char *)alloca(ext_str_size + 1);
  438. clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
  439. ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
  440. // Check if ext_buffer contains cl_khr_fp16
  441. backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
  442. GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
  443. // fp16 is required
  444. if (!backend_ctx->fp16_support) {
  445. GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
  446. return backend_ctx;
  447. }
  448. // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
  449. // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
  450. if (strstr(device_ver_buffer, "OpenCL 3") &&
  451. strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
  452. strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
  453. GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
  454. "(note that subgroups is an optional feature in OpenCL 3.0)\n");
  455. return backend_ctx;
  456. }
  457. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &backend_ctx->alignment, NULL));
  458. GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
  459. clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
  460. GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
  461. // Check SVM.
  462. cl_device_svm_capabilities svm_caps;
  463. CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
  464. GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
  465. svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
  466. GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
  467. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
  468. GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
  469. svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
  470. GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
  471. svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
  472. // Print out configurations
  473. #ifdef GGML_OPENCL_SOA_Q
  474. GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
  475. #endif // GGML_OPENCL_SOA_Q
  476. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  477. GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
  478. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  479. cl_context_properties properties[] = {
  480. (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)dev_ctx->platform, 0
  481. };
  482. CL_CHECK((backend_ctx->context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
  483. // A local ref of cl_context for convenience
  484. cl_context context = backend_ctx->context;
  485. //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
  486. // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
  487. // (queue = clCreateCommandQueue(context, device, 0, &err), err)
  488. //)));
  489. cl_command_queue_properties command_queue_props = 0;
  490. #ifdef GGML_OPENCL_PROFILING
  491. command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
  492. #endif
  493. CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
  494. #ifdef GGML_OPENCL_EMBED_KERNELS
  495. const std::string kernel_src {
  496. #include "ggml-opencl.cl.h"
  497. };
  498. #else
  499. const std::string kernel_src = read_file("ggml-opencl.cl");
  500. #endif
  501. std::string compile_opts =
  502. "-cl-std=CL2.0 -cl-mad-enable -cl-unsafe-math-optimizations "
  503. "-cl-finite-math-only -cl-fast-relaxed-math ";
  504. backend_ctx->program = build_program_from_source(context, device, kernel_src.c_str(), compile_opts);
  505. // Non matmul kernels.
  506. CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f32", &err), err));
  507. CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f16", &err), err));
  508. CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program, "kernel_get_rows_q4_0", &err), err));
  509. CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program, "kernel_add", &err), err));
  510. CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program, "kernel_add_row", &err), err));
  511. CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program, "kernel_mul", &err), err));
  512. CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program, "kernel_mul_row", &err), err));
  513. CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program, "kernel_scale", &err), err));
  514. CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program, "kernel_silu", &err), err));
  515. CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err));
  516. CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err));
  517. CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err));
  518. CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err));
  519. CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err));
  520. CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err));
  521. CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program, "kernel_rms_norm", &err), err));
  522. CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf", &err), err));
  523. CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf_8", &err), err));
  524. CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program, "kernel_soft_max", &err), err));
  525. CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4", &err), err));
  526. CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program, "kernel_soft_max_f16", &err), err));
  527. CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4_f16", &err), err));
  528. CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f32", &err), err));
  529. CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err));
  530. CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err));
  531. CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err));
  532. CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err));
  533. CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err));
  534. CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err));
  535. CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f32", &err), err));
  536. // Matmul kernels.
  537. CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f32_f32", &err), err));
  538. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f16", &err), err));
  539. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_1row", &err), err));
  540. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32", &err), err));
  541. CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_l4", &err), err));
  542. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32", &err), err));
  543. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_v", &err), err));
  544. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_flat", &err), err));
  545. CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_convert_block_q4_0", &err), err));
  546. CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_restore_block_q4_0", &err), err));
  547. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
  548. // Load additional mulmat kernels.
  549. #ifdef GGML_OPENCL_EMBED_KERNELS
  550. const std::string kernel_src_1 {
  551. #include "ggml-opencl_mm.cl.h"
  552. };
  553. #else
  554. const std::string kernel_src_1 = read_file("ggml-opencl_mm.cl");
  555. #endif
  556. backend_ctx->program_1 = build_program_from_source(context, device, kernel_src_1.c_str(), compile_opts);
  557. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
  558. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
  559. CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mv_q6_K_f32", &err), err));
  560. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_v0", &err), err));
  561. CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_img_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_img_v0", &err), err));
  562. // Load additional data conversion kernels.
  563. #ifdef GGML_OPENCL_EMBED_KERNELS
  564. const std::string kernel_src_2 {
  565. #include "ggml-opencl_cvt.cl.h"
  566. };
  567. #else
  568. const std::string kernel_src_2 = read_file("ggml-opencl_cvt.cl");
  569. #endif
  570. backend_ctx->program_2 = build_program_from_source(context, device, kernel_src_2.c_str(), compile_opts);
  571. CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err));
  572. // Kernels for Adreno
  573. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  574. #ifdef GGML_OPENCL_EMBED_KERNELS
  575. const std::string transpose_32_src {
  576. #include "ggml-opencl_transpose_32.cl.h"
  577. };
  578. #else
  579. const std::string transpose_32_src = read_file("ggml-opencl_transpose_32.cl");
  580. #endif
  581. backend_ctx->program_transpose_32 = build_program_from_source(context, device, transpose_32_src.c_str(), compile_opts);
  582. CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose_32, "kernel_transpose_32", &err), err));
  583. #ifdef GGML_OPENCL_EMBED_KERNELS
  584. const std::string transpose_32_16_src {
  585. #include "ggml-opencl_transpose_32_16.cl.h"
  586. };
  587. #else
  588. const std::string transpose_32_16_src = read_file("ggml-opencl_transpose_32_16.cl");
  589. #endif
  590. backend_ctx->program_transpose_32_16 = build_program_from_source(context, device, transpose_32_16_src.c_str(), compile_opts);
  591. CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose_32_16, "kernel_transpose_32_16", &err), err));
  592. #ifdef GGML_OPENCL_EMBED_KERNELS
  593. const std::string transpose_16_src {
  594. #include "ggml-opencl_transpose_16.cl.h"
  595. };
  596. #else
  597. const std::string transpose_16_src = read_file("ggml-opencl_transpose_16.cl");
  598. #endif
  599. backend_ctx->program_transpose_16 = build_program_from_source(context, device, transpose_16_src.c_str(), compile_opts);
  600. CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose_16, "kernel_transpose_16", &err), err));
  601. // Gemv general
  602. std::string CL_gemv_compile_opts =
  603. " -cl-std=CL2.0 "
  604. " -cl-mad-enable "
  605. " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
  606. if (has_vector_subgroup_broadcast) {
  607. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  608. }
  609. #ifdef GGML_OPENCL_EMBED_KERNELS
  610. const std::string kernel_src_CL_gemv_general {
  611. #include "ggml-opencl_gemv_noshuffle_general.cl.h"
  612. };
  613. #else
  614. const std::string kernel_src_CL_gemv_general = read_file("ggml-opencl_gemv_noshuffle_general.cl");
  615. #endif
  616. backend_ctx->program_CL_gemv_general = build_program_from_source(
  617. context, device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
  618. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
  619. // Gemv 2048, 16384
  620. CL_gemv_compile_opts =
  621. " -cl-std=CL2.0 "
  622. " -cl-mad-enable "
  623. " -DLINE_STRIDE_A=2048 "
  624. " -DBLOCK_STRIDE_A=16384 "
  625. " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
  626. if (has_vector_subgroup_broadcast) {
  627. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  628. }
  629. #ifdef GGML_OPENCL_EMBED_KERNELS
  630. const std::string kernel_src_CL_gemv {
  631. #include "ggml-opencl_gemv_noshuffle.cl.h"
  632. };
  633. #else
  634. const std::string kernel_src_CL_gemv = read_file("ggml-opencl_gemv_noshuffle.cl");
  635. #endif
  636. backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
  637. context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  638. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
  639. // Gemv 2048, 16384
  640. CL_gemv_compile_opts =
  641. " -cl-std=CL2.0 "
  642. " -cl-mad-enable "
  643. " -DLINE_STRIDE_A=2048 "
  644. " -DBLOCK_STRIDE_A=16384 "
  645. " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
  646. if (has_vector_subgroup_broadcast) {
  647. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  648. }
  649. backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
  650. context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  651. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
  652. // Gemv 5504, 44032
  653. CL_gemv_compile_opts =
  654. " -cl-std=CL2.0 "
  655. " -cl-mad-enable "
  656. " -DLINE_STRIDE_A=5504 "
  657. " -DBLOCK_STRIDE_A=44032 "
  658. " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
  659. if (has_vector_subgroup_broadcast) {
  660. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  661. }
  662. backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
  663. context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  664. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
  665. // Gemv 16000, 128000
  666. CL_gemv_compile_opts =
  667. " -cl-std=CL2.0 "
  668. " -cl-mad-enable "
  669. " -DLINE_STRIDE_A=16000 "
  670. " -DBLOCK_STRIDE_A=128000 "
  671. " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
  672. if (has_vector_subgroup_broadcast) {
  673. CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
  674. }
  675. backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
  676. CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
  677. // Gemm
  678. #ifdef GGML_OPENCL_EMBED_KERNELS
  679. const std::string kernel_src_CL_gemm {
  680. #include "ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h"
  681. };
  682. #else
  683. const std::string kernel_src_CL_gemm = read_file("ggml-opencl_mul_mat_Ab_Bi_8x4.cl");
  684. #endif
  685. backend_ctx->program_CL_gemm = build_program_from_source(context, device, kernel_src_CL_gemm.c_str(), compile_opts);
  686. CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
  687. // Allocate intermediate buffers and images
  688. size_t max_A_q_d_bytes = 311164928;
  689. size_t max_A_s_d_bytes = 38895616;
  690. size_t max_B_d_bytes = 45088768;
  691. CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
  692. CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
  693. CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
  694. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  695. // For now we support a single devices
  696. ggml_backend_opencl_n_devices = 1;
  697. return backend_ctx;
  698. }
  699. static void ggml_cl2_free(void) {
  700. #ifdef GGML_OPENCL_PROFILING
  701. FILE * fperf = fopen("cl_profiling.csv", "w");
  702. if (!fperf) {
  703. GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
  704. return;
  705. }
  706. float total_kernel_time = 0;
  707. fprintf(fperf, "op name, kernel name, duration (ms), global size, local size, output size\n");
  708. for (const ProfilingInfo & info : g_profiling_info) {
  709. total_kernel_time += info.duration_ns/1.e6f;
  710. fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
  711. info.op_name.c_str(), info.kernel_name.c_str(), info.duration_ns/1.e6f,
  712. info.global_size[0], info.global_size[1], info.global_size[2],
  713. info.local_size[0], info.local_size[2], info.local_size[2],
  714. info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
  715. }
  716. fclose(fperf);
  717. GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
  718. #endif
  719. }
  720. //------------------------------------------------------------------------------
  721. // Tensor extra management
  722. //------------------------------------------------------------------------------
  723. struct ggml_tensor_extra_cl {
  724. // The buffer object that holds the data.
  725. cl_mem data_device;
  726. // The offset into the buffer object. This is primarily for scratch buffer
  727. // and view operation.
  728. // NB: this offset no longer includes view offset (view_offs). Whenever this
  729. // offset is used, view_offs should be considered.
  730. cl_ulong offset;
  731. // The actual size of the cl_mem object. This is needed when returning the
  732. // block to the pool.
  733. size_t actual_size;
  734. void reset() {
  735. data_device = nullptr;
  736. offset = 0;
  737. actual_size = 0;
  738. }
  739. };
  740. // Additional tensor extra structs for quantized tensors.
  741. // These tensors are loaded from files and should not be allocated in scratch --
  742. // they should always be allocated from the pool. Hence, they do not have an
  743. // `offset`, which indicate their locations in the scratch buffer.
  744. struct ggml_tensor_extra_cl_q4_0 {
  745. // Quantized values.
  746. cl_mem q = nullptr;
  747. // Quantized values in image1d_buffer_t.
  748. cl_mem q_img = nullptr;
  749. // Scales.
  750. cl_mem d = nullptr;
  751. // Scales in image1d_buffer_t.
  752. cl_mem d_img = nullptr;
  753. // Size of quantized values.
  754. size_t size_q = 0;
  755. // Size of scales.
  756. size_t size_d = 0;
  757. ~ggml_tensor_extra_cl_q4_0() {
  758. reset();
  759. }
  760. void reset() {
  761. // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
  762. // They must be properly released so that the original buffer can be
  763. // properly released to avoid memory leak.
  764. if (q != nullptr) {
  765. CL_CHECK(clReleaseMemObject(q));
  766. q = nullptr;
  767. }
  768. if (d != nullptr) {
  769. CL_CHECK(clReleaseMemObject(d));
  770. d = nullptr;
  771. }
  772. // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
  773. // enabled. They point to the images in ggml_backend_opencl_buffer_context.
  774. // So, there is no need to release them here.
  775. // TODO: initialize them for non SMALL_PATH path, or remove them.
  776. q_img = nullptr;
  777. d_img = nullptr;
  778. size_q = 0;
  779. size_d = 0;
  780. }
  781. };
  782. //------------------------------------------------------------------------------
  783. // Backend API
  784. //------------------------------------------------------------------------------
  785. //
  786. // backend
  787. //
  788. static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
  789. return "OpenCL";
  790. UNUSED(backend);
  791. }
  792. static void ggml_backend_opencl_free(ggml_backend_t backend) {
  793. ggml_cl2_free();
  794. GGML_UNUSED(backend);
  795. }
  796. static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  797. GGML_UNUSED(backend);
  798. GGML_UNUSED(tensor);
  799. GGML_UNUSED(data);
  800. GGML_UNUSED(offset);
  801. GGML_UNUSED(size);
  802. }
  803. static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  804. GGML_UNUSED(backend);
  805. GGML_UNUSED(tensor);
  806. GGML_UNUSED(data);
  807. GGML_UNUSED(offset);
  808. GGML_UNUSED(size);
  809. }
  810. static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
  811. GGML_UNUSED(backend);
  812. GGML_UNUSED(src);
  813. GGML_UNUSED(dst);
  814. return false;
  815. }
  816. static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
  817. GGML_UNUSED(backend);
  818. }
  819. static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
  820. for (int i = 0; i < cgraph->n_nodes; i++) {
  821. ggml_tensor * node = cgraph->nodes[i];
  822. if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
  823. continue;
  824. }
  825. bool ok = ggml_cl_compute_forward(backend, node);
  826. if (!ok) {
  827. GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
  828. }
  829. GGML_ASSERT(ok);
  830. }
  831. return GGML_STATUS_SUCCESS;
  832. }
  833. static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  834. GGML_UNUSED(dev);
  835. switch (op->op) {
  836. case GGML_OP_NONE:
  837. return true;
  838. case GGML_OP_GET_ROWS:
  839. switch (op->src[0]->type) {
  840. case GGML_TYPE_F32:
  841. case GGML_TYPE_F16:
  842. return true;
  843. case GGML_TYPE_Q4_0:
  844. #ifdef GGML_OPENCL_SOA_Q
  845. // We do not support flattened Q4_0 (and possibly other Q's)
  846. return false;
  847. #else // GGML_OPENCL_SOA_Q
  848. return true;
  849. #endif // GGML_OPENCL_SOA_Q
  850. default:
  851. return false;
  852. }
  853. case GGML_OP_CPY:
  854. case GGML_OP_DUP:
  855. case GGML_OP_CONT:
  856. switch (op->src[0]->type) {
  857. case GGML_TYPE_F32:
  858. switch (op->type) {
  859. case GGML_TYPE_F16:
  860. case GGML_TYPE_F32:
  861. return true;
  862. default:
  863. return false;
  864. }
  865. case GGML_TYPE_F16:
  866. switch (op->type) {
  867. case GGML_TYPE_F16:
  868. case GGML_TYPE_F32:
  869. return true;
  870. default:
  871. return false;
  872. }
  873. default:
  874. return false;
  875. }
  876. case GGML_OP_ADD:
  877. case GGML_OP_SCALE:
  878. case GGML_OP_MUL:
  879. return true;
  880. case GGML_OP_UNARY:
  881. switch (ggml_get_unary_op(op)) {
  882. case GGML_UNARY_OP_GELU:
  883. case GGML_UNARY_OP_SILU:
  884. case GGML_UNARY_OP_RELU:
  885. return ggml_is_contiguous(op->src[0]);
  886. default:
  887. return false;
  888. }
  889. case GGML_OP_CLAMP:
  890. case GGML_OP_SOFT_MAX:
  891. case GGML_OP_NORM:
  892. case GGML_OP_RMS_NORM:
  893. return true;
  894. case GGML_OP_MUL_MAT:
  895. if (op->src[0]->type == GGML_TYPE_F16) {
  896. return true;
  897. } else if (op->src[0]->type == GGML_TYPE_F32) {
  898. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  899. } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
  900. op->src[0]->type == GGML_TYPE_Q6_K) {
  901. return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
  902. }
  903. return false;
  904. case GGML_OP_RESHAPE:
  905. case GGML_OP_VIEW:
  906. case GGML_OP_PERMUTE:
  907. case GGML_OP_TRANSPOSE:
  908. return true;
  909. case GGML_OP_DIAG_MASK_INF:
  910. return op->ne[3] == 1;
  911. case GGML_OP_ROPE: {
  912. const int mode = ((const int32_t *) op->op_params)[2];
  913. if (mode & GGML_ROPE_TYPE_MROPE) {
  914. return false;
  915. }
  916. if (mode & GGML_ROPE_TYPE_VISION) {
  917. return false;
  918. }
  919. return true;
  920. }
  921. default:
  922. return false;
  923. }
  924. }
  925. // Forward declaration - implementation appears later in the file.
  926. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
  927. static ggml_guid_t ggml_backend_opencl_guid() {
  928. static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
  929. return &guid;
  930. }
  931. static ggml_backend_i ggml_backend_opencl_i = {
  932. /* .get_name = */ ggml_backend_opencl_name,
  933. /* .free = */ ggml_backend_opencl_free,
  934. /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
  935. /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
  936. /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
  937. /* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */
  938. /* .graph_plan_create = */ NULL,
  939. /* .graph_plan_free = */ NULL,
  940. /* .graph_plan_update = */ NULL,
  941. /* .graph_plan_compute = */ NULL,
  942. /* .graph_compute = */ ggml_backend_opencl_graph_compute,
  943. /* .event_record = */ NULL,
  944. /* .event_wait = */ NULL,
  945. };
  946. ggml_backend_t ggml_backend_opencl_init(void) {
  947. ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
  948. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  949. ggml_backend_t backend = new ggml_backend {
  950. /* .guid = */ ggml_backend_opencl_guid(),
  951. /* .interface = */ ggml_backend_opencl_i,
  952. /* .device = */ dev,
  953. /* .context = */ backend_ctx
  954. };
  955. return backend;
  956. }
  957. bool ggml_backend_is_opencl(ggml_backend_t backend) {
  958. return backend && backend->iface.get_name == ggml_backend_opencl_name;
  959. }
  960. //
  961. // buffer
  962. //
  963. struct ggml_backend_opencl_buffer_context {
  964. // A buffer context can hold multiple cl_mem objects. This is for flattening
  965. // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
  966. // each tensor is allocated a separate buffer. When flattening is enabled
  967. // with small allocation, each tensor is backed by two cl_mem objects (for
  968. // quants and scales) packed into a backend_opencl_buffer.
  969. ggml_backend_opencl_buffer_context(cl_mem buf)
  970. : name("OpenCL") {
  971. buffer.push_back(buf);
  972. }
  973. ~ggml_backend_opencl_buffer_context() {
  974. for (cl_mem buf : buffer) {
  975. CL_CHECK(clReleaseMemObject(buf));
  976. }
  977. for (cl_mem im : img) {
  978. CL_CHECK(clReleaseMemObject(im));
  979. }
  980. // Delete all extras to trigger their destructors
  981. for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
  982. delete e;
  983. }
  984. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  985. delete e;
  986. }
  987. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
  988. delete e;
  989. }
  990. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  991. delete e;
  992. }
  993. }
  994. ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
  995. ggml_tensor_extra_cl * extra;
  996. if (temp_tensor_extras.empty()) {
  997. extra = new ggml_tensor_extra_cl();
  998. } else {
  999. extra = temp_tensor_extras.back();
  1000. temp_tensor_extras.pop_back();
  1001. }
  1002. temp_tensor_extras_in_use.push_back(extra);
  1003. extra->reset();
  1004. return extra;
  1005. }
  1006. ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
  1007. ggml_tensor_extra_cl_q4_0 * extra;
  1008. if (temp_tensor_extras_q4_0.empty()) {
  1009. extra = new ggml_tensor_extra_cl_q4_0();
  1010. } else {
  1011. extra = temp_tensor_extras_q4_0.back();
  1012. temp_tensor_extras_q4_0.pop_back();
  1013. }
  1014. temp_tensor_extras_q4_0_in_use.push_back(extra);
  1015. extra->reset();
  1016. return extra;
  1017. }
  1018. void reset() {
  1019. for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
  1020. temp_tensor_extras.push_back(e);
  1021. }
  1022. temp_tensor_extras_in_use.clear();
  1023. for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
  1024. temp_tensor_extras_q4_0.push_back(e);
  1025. }
  1026. temp_tensor_extras_q4_0_in_use.clear();
  1027. }
  1028. // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
  1029. // being used are in `temp_tensor_extras_in_use`. At the first run, new
  1030. // extras get created and put in `in_use`. When the buffer is reset via
  1031. // the `reset` callback, all extras in `in_use` get moved to available extras
  1032. // for reuse.
  1033. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
  1034. std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
  1035. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
  1036. std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
  1037. // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
  1038. // before any tensor is initialized (at the beginning of alloc_tensor_range).
  1039. // Hence, there is alway a buffer object in this vector. When each tensor is
  1040. // being initialized, this original buffer object will be released if both
  1041. // flattening and small allocation are enabled, and additional buffer
  1042. // objects will be created in init_tensor to represent flattened quantized
  1043. // weights.
  1044. std::vector<cl_mem> buffer;
  1045. // These are image1d_buffer_t objects that wrap around the quants and scales.
  1046. // For Q4_0 quantization, there should be two of them - one for quants and
  1047. // one for scales. They should be populated only when flattening and small
  1048. // allocation are enabled.
  1049. std::vector<cl_mem> img;
  1050. std::string name;
  1051. };
  1052. static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
  1053. static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
  1054. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  1055. delete ctx;
  1056. }
  1057. static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
  1058. return cl_ptr_base;
  1059. GGML_UNUSED(buffer);
  1060. }
  1061. static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
  1062. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  1063. ggml_cl2_init(buffer->buft->device);
  1064. if (tensor->view_src != nullptr) {
  1065. GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
  1066. ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
  1067. GGML_ASSERT(view_extra && "view_extra is nullptr?");
  1068. // Reuse extra of the parent tensor. The offset of this view tensor
  1069. // becomes `extra->offset + view_offs` and needs to be calculated when
  1070. // it is used. This changes is needed because of the change to
  1071. // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
  1072. // `buffer` passed in here will always be `tensor->buffer`. It is OK
  1073. // to allocate extras from the same buffer context for ordinary
  1074. // intermediate tensors. But for views into kv cache tensors, doing so
  1075. // would mess up the extras used by kv cache.
  1076. // Before #7640, `buffer` is for intermediate tensors, which is always
  1077. // different from that of kv cache tensors.
  1078. //
  1079. // NB: now extra->offset no longer accounts for view_offs.
  1080. // NB: this should not apply to weight tensors (for end-to-end runs, but
  1081. // may apply for test-backend-ops).
  1082. // FIXME: if any unexpected results are seen, double check the offset -
  1083. // there could be other places that need fix.
  1084. tensor->extra = view_extra;
  1085. } else {
  1086. {
  1087. size_t offset = (char *)tensor->data - (char *)cl_ptr_base;
  1088. ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
  1089. extra->offset = offset;
  1090. extra->data_device = ctx->buffer[0];
  1091. extra->actual_size = ggml_nbytes(tensor);
  1092. tensor->extra = extra;
  1093. }
  1094. }
  1095. }
  1096. // The optimized gemm and gemv kernels are used for large matrices without batch.
  1097. // tensor is the quantized weights matrix.
  1098. inline bool use_adreno_kernels(const ggml_tensor *tensor) {
  1099. return tensor->ne[0] >= 512 && tensor->ne[1] >= 512 &&
  1100. tensor->ne[2] == 1 && tensor->ne[3] == 1;
  1101. }
  1102. static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
  1103. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  1104. cl_context context = backend_ctx->context;
  1105. cl_command_queue queue = backend_ctx->queue;
  1106. #ifdef GGML_OPENCL_SOA_Q
  1107. // We separate the quantized bits and scale from block_q4_0 by using an
  1108. // additional kernel, where each thread handles a block. We first read the
  1109. // original weights into a temporary buffer, then create two separate
  1110. // buffers for quantized bits and scales, which are then populated by the
  1111. // conversion kernel.
  1112. if (tensor->type == GGML_TYPE_Q4_0) {
  1113. // Tensors should have been preallocated, therefore they should
  1114. // already have ggml_tensor_extra_cl as extra.
  1115. ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
  1116. GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
  1117. // Allocate the new extra and create aliases from the original.
  1118. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  1119. ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
  1120. size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
  1121. size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
  1122. GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
  1123. cl_int err;
  1124. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  1125. ggml_nbytes(tensor), NULL, &err);
  1126. CL_CHECK(err);
  1127. CL_CHECK(clEnqueueWriteBuffer(
  1128. queue, data_device, CL_TRUE, 0,
  1129. ggml_nbytes(tensor), data, 0, NULL, NULL));
  1130. // We consider the specified offset arg as always, although For weights
  1131. // the offset arg should be 0 (we do not assert this).
  1132. //GGML_ASSERT(offset == 0);
  1133. // We create subbuffers from the original tensor buffer for scales and
  1134. // quants - i.e., scales and quants are aliases into the buffer obejct
  1135. // that backs the original tensor. This is a cleaner way to adapt to the
  1136. // new memory management.
  1137. // In the old code, we allocate new buffers for scales and quants
  1138. // respectively, which could still be done but would result in double
  1139. // allocation; properly deallocating the preallocated buffer that backs
  1140. // the tensors is tricky and would leak the backend specific information
  1141. // into the general backend code.
  1142. // Does this create misaligned subbuffers (alignment is 1024) in certain
  1143. // cases ?
  1144. cl_buffer_region region;
  1145. // The original tensor memory is divided into scales and quants, i.e.,
  1146. // we first store scales, then quants.
  1147. // Create subbuffer for scales.
  1148. region.origin = extra_orig->offset + tensor->view_offs + offset;
  1149. region.size = size_d;
  1150. extra->d = clCreateSubBuffer(
  1151. extra_orig->data_device, CL_MEM_READ_WRITE,
  1152. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  1153. CL_CHECK(err);
  1154. // Create subbuffer for quants.
  1155. region.origin = extra_orig->offset + tensor->view_offs + offset + size_d;
  1156. region.size = size_q;
  1157. extra->q = clCreateSubBuffer(
  1158. extra_orig->data_device, CL_MEM_READ_WRITE,
  1159. CL_BUFFER_CREATE_TYPE_REGION, &region, &err);
  1160. CL_CHECK(err);
  1161. //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  1162. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1163. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  1164. // The optimized kernels need weights in natural order, so unshuffle.
  1165. if (use_adreno_kernels(tensor)) {
  1166. kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
  1167. }
  1168. #else
  1169. cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
  1170. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1171. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
  1172. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
  1173. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
  1174. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  1175. size_t local_work_size[] = {64, 1, 1};
  1176. cl_event evt;
  1177. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  1178. CL_CHECK(clWaitForEvents(1, &evt));
  1179. CL_CHECK(clReleaseMemObject(data_device));
  1180. tensor->extra = extra;
  1181. // transpose the weights and scales
  1182. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  1183. // Only do transpose for large, non batched matrix
  1184. // TODO: use preallocated images instead of sub-buffer then image
  1185. if (use_adreno_kernels(tensor)) {
  1186. // <----------------------------------------------------------------------------------> //
  1187. // start transpose
  1188. // <----------------------------------------------------------------------------------> //
  1189. int M = tensor->ne[1]; // ne01
  1190. int K = tensor->ne[0]; // ne00
  1191. // transpose is out of place, so we need to allocate transposed buffers
  1192. // <----------------------------------------------------------------------------------> //
  1193. // use sub_buffer of max buffer size instead
  1194. size_t q_size_bytes = K * M / 8 * sizeof(float);
  1195. cl_buffer_region region;
  1196. region.origin = 0;
  1197. region.size = q_size_bytes;
  1198. cl_mem qT_d = clCreateSubBuffer(
  1199. backend_ctx->A_q_d_max,
  1200. 0,
  1201. CL_BUFFER_CREATE_TYPE_REGION,
  1202. &region,
  1203. &err);
  1204. // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
  1205. CL_CHECK(err);
  1206. // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
  1207. size_t d_size_bytes = M * (K / 32) * 2;
  1208. region.origin = 0;
  1209. region.size = d_size_bytes;
  1210. cl_mem dT_d = clCreateSubBuffer(
  1211. backend_ctx->A_s_d_max,
  1212. 0,
  1213. CL_BUFFER_CREATE_TYPE_REGION,
  1214. &region,
  1215. &err);
  1216. // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
  1217. CL_CHECK(err);
  1218. // <----------------------------------------------------------------------------------> //
  1219. // create images from the buffers
  1220. // <----------------------------------------------------------------------------------> //
  1221. cl_mem q_d_image1D;
  1222. cl_mem d_d_image1D;
  1223. cl_mem qT_d_image1D;
  1224. cl_mem dT_d_image1D;
  1225. cl_image_format img_fmt_1d = { CL_RGBA, CL_FLOAT };
  1226. cl_image_desc img_desc_1d;
  1227. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  1228. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  1229. img_desc_1d.image_width = M * K / 8 / 4;
  1230. img_desc_1d.buffer = extra->q;
  1231. q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  1232. CL_CHECK(err);
  1233. img_fmt_1d = { CL_RGBA, CL_FLOAT };
  1234. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  1235. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  1236. img_desc_1d.image_width = M * K / 8 / 4;
  1237. img_desc_1d.buffer = qT_d;
  1238. qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  1239. CL_CHECK(err);
  1240. img_fmt_1d = { CL_RGBA, CL_FLOAT };
  1241. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  1242. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  1243. img_desc_1d.image_width = M * K / 32 / 4 / 2;
  1244. img_desc_1d.buffer = extra->d;
  1245. d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  1246. CL_CHECK(err);
  1247. img_fmt_1d = { CL_RGBA, CL_FLOAT };
  1248. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  1249. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  1250. img_desc_1d.image_width = M * K / 32 / 4 / 2;
  1251. img_desc_1d.buffer = dT_d;
  1252. dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
  1253. CL_CHECK(err);
  1254. // <----------------------------------------------------------------------------------> //
  1255. // set up and call the transpose kernels
  1256. // <----------------------------------------------------------------------------------> //
  1257. // weights
  1258. int height_q = M / 8;
  1259. int width_q = K / 8 / 4;
  1260. kernel = backend_ctx->kernel_transpose_16;
  1261. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
  1262. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
  1263. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
  1264. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
  1265. size_t local_size_q[3] = {4, 16, 1};
  1266. size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
  1267. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
  1268. CL_CHECK(clWaitForEvents(1, &evt));
  1269. // scales
  1270. int height_s = M / 8;
  1271. int width_s = K / 32 / 8;
  1272. kernel = backend_ctx->kernel_transpose_16;
  1273. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
  1274. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
  1275. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
  1276. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
  1277. size_t local_size_s[3] = {4, 16, 1};
  1278. size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
  1279. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
  1280. CL_CHECK(clWaitForEvents(1, &evt));
  1281. // <----------------------------------------------------------------------------------> //
  1282. // copy transposed buffer contents to original buffers
  1283. // <----------------------------------------------------------------------------------> //
  1284. // weights
  1285. CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
  1286. CL_CHECK(clWaitForEvents(1, &evt));
  1287. // scales
  1288. CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
  1289. CL_CHECK(clWaitForEvents(1, &evt));
  1290. // <----------------------------------------------------------------------------------> //
  1291. // deallocate transpose buffers
  1292. // <----------------------------------------------------------------------------------> //
  1293. CL_CHECK(clReleaseMemObject(qT_d));
  1294. CL_CHECK(clReleaseMemObject(dT_d));
  1295. // deallocate temporary images
  1296. CL_CHECK(clReleaseMemObject(q_d_image1D));
  1297. CL_CHECK(clReleaseMemObject(d_d_image1D));
  1298. CL_CHECK(clReleaseMemObject(qT_d_image1D));
  1299. CL_CHECK(clReleaseMemObject(dT_d_image1D));
  1300. // <----------------------------------------------------------------------------------> //
  1301. // end transpose
  1302. // <----------------------------------------------------------------------------------> //
  1303. }
  1304. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  1305. return;
  1306. }
  1307. #endif // GGML_OPENCL_SOA_Q
  1308. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  1309. GGML_ASSERT(extra);
  1310. CL_CHECK(clEnqueueWriteBuffer(
  1311. queue, extra->data_device, CL_TRUE, extra->offset + offset,
  1312. size, data, 0, NULL, NULL));
  1313. GGML_UNUSED(buffer);
  1314. }
  1315. static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
  1316. GGML_ASSERT(tensor->extra);
  1317. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
  1318. cl_context context = backend_ctx->context;
  1319. cl_command_queue queue = backend_ctx->queue;
  1320. // Make sure all previously submitted commands are finished.
  1321. CL_CHECK(clFinish(queue));
  1322. #ifdef GGML_OPENCL_SOA_Q
  1323. // In end-to-end runs, get_tensor is usually used to get back the logits,
  1324. // where we can simply do clEnqueueReadBuffer since they are f32.
  1325. // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
  1326. // which requires reading back quantized weight tensors.
  1327. // To properly support this, we need to restore block_q4_0 struct arrays
  1328. // from the flattened buffers.
  1329. if (tensor->type == GGML_TYPE_Q4_0) {
  1330. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
  1331. cl_int err;
  1332. cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
  1333. ggml_nbytes(tensor), NULL, &err);
  1334. CL_CHECK(err);
  1335. cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
  1336. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
  1337. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
  1338. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
  1339. size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
  1340. size_t local_work_size[] = {1, 1, 1};
  1341. cl_event evt;
  1342. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
  1343. global_work_size, local_work_size, 0, NULL, &evt));
  1344. CL_CHECK(clWaitForEvents(1, &evt));
  1345. CL_CHECK(clEnqueueReadBuffer(
  1346. queue, data_device, CL_TRUE, offset,
  1347. size, data, 0, NULL, NULL));
  1348. CL_CHECK(clReleaseMemObject(data_device));
  1349. return;
  1350. }
  1351. #endif // GGML_OPENCL_SOA_Q
  1352. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  1353. CL_CHECK(clEnqueueReadBuffer(
  1354. queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
  1355. size, data, 0, NULL, NULL));
  1356. GGML_UNUSED(buffer);
  1357. }
  1358. static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
  1359. ggml_backend_dev_t dev = buffer->buft->device;
  1360. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
  1361. cl_command_queue queue = backend_ctx->queue;
  1362. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  1363. for (cl_mem buf : ctx->buffer) {
  1364. CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
  1365. }
  1366. CL_CHECK(clFinish(queue));
  1367. }
  1368. static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
  1369. ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
  1370. ctx->reset();
  1371. }
  1372. static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
  1373. /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
  1374. /* .get_base = */ ggml_backend_opencl_buffer_get_base,
  1375. /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
  1376. /* .memset_tensor = */ NULL,
  1377. /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
  1378. /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
  1379. /* .cpy_tensor = */ NULL,
  1380. /* .clear = */ ggml_backend_opencl_buffer_clear,
  1381. /* .reset = */ ggml_backend_opencl_buffer_reset,
  1382. };
  1383. //
  1384. // buffer type
  1385. //
  1386. static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
  1387. return "OpenCL";
  1388. GGML_UNUSED(buffer_type);
  1389. }
  1390. static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
  1391. ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
  1392. // clCreateBuffer returns -61 for size 0
  1393. size = std::max(size, (size_t)1);
  1394. cl_int err;
  1395. cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
  1396. if (err != CL_SUCCESS) {
  1397. GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
  1398. return nullptr;
  1399. }
  1400. ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
  1401. return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
  1402. }
  1403. static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
  1404. // FIXME: not thread safe, device may not be initialized yet
  1405. static cl_uint alignment = -1;
  1406. if (alignment == (cl_uint)-1) {
  1407. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  1408. alignment = backend_ctx->alignment;
  1409. }
  1410. return alignment;
  1411. }
  1412. static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
  1413. static size_t max_size = -1;
  1414. if (max_size == (size_t)-1) {
  1415. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
  1416. max_size = backend_ctx->max_alloc_size;
  1417. }
  1418. return max_size;
  1419. }
  1420. static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
  1421. return ggml_backend_is_opencl(backend);
  1422. UNUSED(buft);
  1423. }
  1424. static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
  1425. /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
  1426. /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
  1427. /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
  1428. /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
  1429. /* .get_alloc_size = */ NULL,
  1430. /* .is_host = */ NULL,
  1431. };
  1432. ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
  1433. static ggml_backend_buffer_type buffer_type = {
  1434. /* .iface = */ ggml_backend_opencl_buffer_type_interface,
  1435. /* .device = */ &g_ggml_backend_opencl_device,
  1436. /* .context = */ nullptr,
  1437. };
  1438. return &buffer_type;
  1439. }
  1440. //
  1441. // backend device
  1442. //
  1443. static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
  1444. return "GPUOpenCL";
  1445. GGML_UNUSED(dev);
  1446. }
  1447. static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
  1448. ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
  1449. return dev_ctx->device_name.c_str();
  1450. }
  1451. static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
  1452. *free = 1;
  1453. *total = 1;
  1454. GGML_UNUSED(dev);
  1455. }
  1456. static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
  1457. return GGML_BACKEND_DEVICE_TYPE_GPU;
  1458. GGML_UNUSED(dev);
  1459. }
  1460. static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
  1461. props->name = ggml_backend_opencl_device_get_name(dev);
  1462. props->description = ggml_backend_opencl_device_get_description(dev);
  1463. props->type = ggml_backend_opencl_device_get_type(dev);
  1464. ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
  1465. props->caps = ggml_backend_dev_caps {
  1466. /* .async = */ false,
  1467. /* .host_buffer = */ false,
  1468. /* .buffer_from_host_ptr = */ false,
  1469. /* .events = */ false,
  1470. };
  1471. }
  1472. static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
  1473. ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
  1474. ggml_backend_t backend = new ggml_backend {
  1475. /* .guid = */ ggml_backend_opencl_guid(),
  1476. /* .interface = */ ggml_backend_opencl_i,
  1477. /* .device = */ dev,
  1478. /* .context = */ backend_ctx,
  1479. };
  1480. return backend;
  1481. GGML_UNUSED(params);
  1482. }
  1483. static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
  1484. return ggml_backend_opencl_buffer_type();
  1485. GGML_UNUSED(dev);
  1486. }
  1487. static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
  1488. GGML_UNUSED(dev);
  1489. GGML_UNUSED(ptr);
  1490. GGML_UNUSED(size);
  1491. GGML_UNUSED(max_tensor_size);
  1492. return nullptr;
  1493. }
  1494. static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
  1495. return ggml_opencl_supports_op(dev, op);
  1496. }
  1497. static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
  1498. return buft->iface.get_name == ggml_backend_opencl_buffer_type_get_name;
  1499. GGML_UNUSED(dev);
  1500. }
  1501. static struct ggml_backend_device_i ggml_backend_opencl_device_i = {
  1502. /* .get_name = */ ggml_backend_opencl_device_get_name,
  1503. /* .get_description = */ ggml_backend_opencl_device_get_description,
  1504. /* .get_memory = */ ggml_backend_opencl_device_get_memory,
  1505. /* .get_type = */ ggml_backend_opencl_device_get_type,
  1506. /* .get_props = */ ggml_backend_opencl_device_get_props,
  1507. /* .init_backend = */ ggml_backend_opencl_device_init,
  1508. /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
  1509. /* .get_host_buffer_type = */ NULL,
  1510. /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
  1511. /* .supports_op = */ ggml_backend_opencl_device_supports_op,
  1512. /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
  1513. /* .offload_op = */ NULL,
  1514. /* .event_new = */ NULL,
  1515. /* .event_free = */ NULL,
  1516. /* .event_synchronize = */ NULL,
  1517. };
  1518. // Backend registry
  1519. static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
  1520. return "OpenCL";
  1521. GGML_UNUSED(reg);
  1522. }
  1523. static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
  1524. return ggml_backend_opencl_n_devices;
  1525. GGML_UNUSED(reg);
  1526. }
  1527. static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
  1528. GGML_ASSERT(index == 0);
  1529. return &g_ggml_backend_opencl_device;
  1530. GGML_UNUSED(reg);
  1531. GGML_UNUSED(index);
  1532. }
  1533. static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
  1534. /* .get_name = */ ggml_backend_opencl_reg_get_name,
  1535. /* .device_count = */ ggml_backend_opencl_reg_device_count,
  1536. /* .device_get = */ ggml_backend_opencl_reg_device_get,
  1537. /* .get_proc_address = */ NULL,
  1538. };
  1539. ggml_backend_reg_t ggml_backend_opencl_reg(void) {
  1540. // TODO: make this thread-safe somehow?
  1541. static ggml_backend_reg reg;
  1542. static bool initialized = false;
  1543. if (!initialized) {
  1544. reg = ggml_backend_reg {
  1545. /* .api_version = */ GGML_BACKEND_API_VERSION,
  1546. /* .iface = */ ggml_backend_opencl_reg_i,
  1547. /* .context = */ NULL,
  1548. };
  1549. g_ggml_backend_opencl_device = ggml_backend_device {
  1550. /* .iface = */ ggml_backend_opencl_device_i,
  1551. /* .reg = */ &reg,
  1552. /* .context = */ &g_ggml_ctx_dev_main,
  1553. };
  1554. ggml_cl2_init(&g_ggml_backend_opencl_device);
  1555. initialized = true;
  1556. }
  1557. return &reg;
  1558. }
  1559. GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
  1560. //------------------------------------------------------------------------------
  1561. // Debugging utils
  1562. //------------------------------------------------------------------------------
  1563. #if 0
  1564. #define QK4_0 32
  1565. typedef struct {
  1566. ggml_fp16_t d; // delta
  1567. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  1568. } block_q4_0;
  1569. static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
  1570. "wrong q4_0 block size/padding");
  1571. #include <math.h>
  1572. #ifdef __cplusplus
  1573. #include "half.hpp"
  1574. #endif
  1575. static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
  1576. void * buf = malloc(ggml_nbytes(tensor));
  1577. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  1578. cl_command_queue queue = backend_ctx->queue;
  1579. #ifdef GGML_OPENCL_SOA_Q
  1580. void * buf_q;
  1581. void * buf_d;
  1582. #endif
  1583. #ifdef GGML_USE_OPENCL
  1584. // Make sure everything is done.
  1585. CL_CHECK(clFinish(queue));
  1586. #ifdef GGML_OPENCL_SOA_Q
  1587. if (tensor->type == GGML_TYPE_Q4_0) {
  1588. ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
  1589. GGML_ASSERT(extra);
  1590. size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
  1591. size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
  1592. GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
  1593. buf_q = malloc(size_q);
  1594. buf_d = malloc(size_d);
  1595. CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
  1596. CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
  1597. CL_CHECK(clFinish(queue));
  1598. } else {
  1599. // Read out the tensor from GPU memory.
  1600. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  1601. GGML_ASSERT(extra);
  1602. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  1603. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  1604. CL_CHECK(clFinish(queue));
  1605. }
  1606. #else
  1607. // Read out the tensor from GPU memory.
  1608. ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
  1609. GGML_ASSERT(extra);
  1610. CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
  1611. extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
  1612. CL_CHECK(clFinish(queue));
  1613. #endif // GGML_OPENCL_SOA_Q
  1614. #endif // GGML_USE_OPENCL
  1615. // Open file and dump.
  1616. char fname[512];
  1617. sprintf(fname, "./tensor-dumps/%s.txt", tensor->name);
  1618. FILE * f = fopen(fname, "w");
  1619. if (!f) {
  1620. printf("Failed to open %s\n", fname);
  1621. return;
  1622. }
  1623. if (tensor->type == GGML_TYPE_F32) {
  1624. float * data = (float *) buf;
  1625. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  1626. if (isnan(data[i])) {
  1627. printf("NaN found: %s\n", tensor->name);
  1628. break;
  1629. }
  1630. fprintf(f, "%f\n", data[i]);
  1631. }
  1632. } else if (tensor->type == GGML_TYPE_I32) {
  1633. int * data = (int *) buf;
  1634. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  1635. if (isnan(data[i])) {
  1636. printf("NaN found: %s\n", tensor->name);
  1637. break;
  1638. }
  1639. fprintf(f, "%d\n", data[i]);
  1640. }
  1641. } else if (tensor->type == GGML_TYPE_F16) {
  1642. #ifdef __cplusplus
  1643. half_float::half * data = (half_float::half *) buf;
  1644. for (int i = 0; i < ggml_nelements(tensor); ++i) {
  1645. if (std::isnan(data[i])) {
  1646. printf("NaN found: %s\n", tensor->name);
  1647. break;
  1648. }
  1649. fprintf(f, "%f\n", float(data[i]));
  1650. }
  1651. #endif
  1652. } else if (tensor->type == GGML_TYPE_Q4_0) {
  1653. #ifdef GGML_OPENCL_SOA_Q
  1654. ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
  1655. unsigned char * data_q = (unsigned char *)buf_q;
  1656. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  1657. fprintf(f, "%04x, ", data_d[i]);
  1658. for (int k = 0; k < QK4_0/2; ++k) {
  1659. fprintf(f, "%02x, ", data_q[k]);
  1660. }
  1661. fprintf(f, "\n");
  1662. data_q += QK4_0/2;
  1663. }
  1664. free(buf_d);
  1665. free(buf_q);
  1666. #else
  1667. block_q4_0 * data = (block_q4_0 *) buf;
  1668. for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
  1669. fprintf(f, "%04x, ", data[i].d);
  1670. for (int k = 0; k < QK4_0/2; ++k) {
  1671. fprintf(f, "%02x, ", data[i].qs[k]);
  1672. }
  1673. fprintf(f, "\n");
  1674. }
  1675. #endif // GGML_OPENCL_SOA_Q
  1676. }
  1677. free(buf);
  1678. fflush(f);
  1679. fclose(f);
  1680. }
  1681. #else
  1682. #define dump_tensor(tensor)
  1683. #endif
  1684. //------------------------------------------------------------------------------
  1685. // Profiling utility
  1686. //------------------------------------------------------------------------------
  1687. #ifdef GGML_OPENCL_PROFILING
  1688. void populateProfilingInfo(
  1689. ProfilingInfo& info, cl_event evt, cl_kernel kernel,
  1690. size_t global_size[3], size_t local_size[3],
  1691. const ggml_tensor * tensor) {
  1692. cl_ulong start;
  1693. cl_ulong end;
  1694. CL_CHECK(clWaitForEvents(1, &evt));
  1695. CL_CHECK(clGetEventProfilingInfo(
  1696. evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL));
  1697. CL_CHECK(clGetEventProfilingInfo(
  1698. evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL));
  1699. char kernel_name[512];
  1700. CL_CHECK(clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME,
  1701. sizeof(kernel_name), kernel_name, NULL));
  1702. info.duration_ns = end - start;
  1703. info.op_name = tensor->name;
  1704. info.kernel_name = kernel_name;
  1705. info.local_size[0] = local_size[0];
  1706. info.local_size[1] = local_size[1];
  1707. info.local_size[2] = local_size[2];
  1708. info.global_size[0] = global_size[0];
  1709. info.global_size[1] = global_size[1];
  1710. info.global_size[2] = global_size[2];
  1711. info.output_size[0] = tensor->ne[0];
  1712. info.output_size[1] = tensor->ne[1];
  1713. info.output_size[2] = tensor->ne[2];
  1714. info.output_size[3] = tensor->ne[3];
  1715. }
  1716. #endif
  1717. //------------------------------------------------------------------------------
  1718. // Ops
  1719. //------------------------------------------------------------------------------
  1720. static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
  1721. const int64_t ne10 = src1->ne[0];
  1722. const int64_t ne0 = dst->ne[0];
  1723. const int64_t ne1 = dst->ne[1];
  1724. // TODO: find the optimal values for these
  1725. return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
  1726. src1->type == GGML_TYPE_F32 &&
  1727. dst->type == GGML_TYPE_F32 &&
  1728. (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
  1729. }
  1730. static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1731. UNUSED(backend);
  1732. UNUSED(src0);
  1733. UNUSED(src1);
  1734. UNUSED(dst);
  1735. }
  1736. static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1737. GGML_ASSERT(src0);
  1738. GGML_ASSERT(src0->extra);
  1739. GGML_ASSERT(src1);
  1740. GGML_ASSERT(src1->extra);
  1741. GGML_ASSERT(dst);
  1742. GGML_ASSERT(dst->extra);
  1743. const int ne00 = src0 ? src0->ne[0] : 0;
  1744. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  1745. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  1746. const int ne10 = src1 ? src1->ne[0] : 0;
  1747. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  1748. const int ne11 = src1 ? src1->ne[1] : 0;
  1749. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  1750. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  1751. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  1752. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  1753. cl_command_queue queue = backend_ctx->queue;
  1754. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  1755. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  1756. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  1757. cl_ulong offset0 = extra0->offset + src0->view_offs;
  1758. cl_ulong offset1 = extra1->offset + src1->view_offs;
  1759. cl_ulong offsetd = extrad->offset + dst->view_offs;
  1760. cl_kernel kernel;
  1761. switch (src0->type) {
  1762. case GGML_TYPE_F32:
  1763. kernel = backend_ctx->kernel_get_rows_f32;
  1764. break;
  1765. case GGML_TYPE_F16:
  1766. kernel = backend_ctx->kernel_get_rows_f16;
  1767. break;
  1768. case GGML_TYPE_Q4_0:
  1769. kernel = backend_ctx->kernel_get_rows_q4_0;
  1770. break;
  1771. default:
  1772. GGML_ASSERT(false && "not implemented");
  1773. }
  1774. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  1775. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  1776. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  1777. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  1778. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  1779. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  1780. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  1781. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
  1782. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
  1783. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  1784. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
  1785. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
  1786. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
  1787. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
  1788. size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
  1789. size_t local_work_size[] = {1, 1, 1};
  1790. #ifdef GGML_OPENCL_PROFILING
  1791. cl_event evt;
  1792. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  1793. g_profiling_info.emplace_back();
  1794. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  1795. #else
  1796. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  1797. #endif
  1798. }
  1799. static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1800. GGML_ASSERT(src0);
  1801. GGML_ASSERT(src0->extra);
  1802. GGML_ASSERT(src1);
  1803. GGML_ASSERT(src1->extra);
  1804. GGML_ASSERT(dst);
  1805. GGML_ASSERT(dst->extra);
  1806. const int ne00 = src0 ? src0->ne[0] : 0;
  1807. const int ne01 = src0 ? src0->ne[1] : 0;
  1808. const int ne02 = src0 ? src0->ne[2] : 0;
  1809. const int ne03 = src0 ? src0->ne[3] : 0;
  1810. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  1811. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  1812. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  1813. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  1814. const int ne10 = src1 ? src1->ne[0] : 0;
  1815. const int ne11 = src1 ? src1->ne[1] : 0;
  1816. const int ne12 = src1 ? src1->ne[2] : 0;
  1817. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  1818. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  1819. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  1820. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  1821. const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  1822. const int ne0 = dst ? dst->ne[0] : 0;
  1823. const int ne1 = dst ? dst->ne[1] : 0;
  1824. const int ne2 = dst ? dst->ne[2] : 0;
  1825. const int ne3 = dst ? dst->ne[3] : 0;
  1826. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  1827. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  1828. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  1829. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  1830. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  1831. cl_command_queue queue = backend_ctx->queue;
  1832. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  1833. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  1834. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  1835. cl_ulong offset0 = extra0->offset + src0->view_offs;
  1836. cl_ulong offset1 = extra1->offset + src1->view_offs;
  1837. cl_ulong offsetd = extrad->offset + dst->view_offs;
  1838. bool bcast_row = false;
  1839. cl_kernel kernel;
  1840. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  1841. GGML_ASSERT(ggml_is_contiguous(src0));
  1842. // src1 is a row
  1843. GGML_ASSERT(ne11 == 1);
  1844. bcast_row = true;
  1845. int ne = ne00 / 4;
  1846. kernel = backend_ctx->kernel_add_row;
  1847. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  1848. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  1849. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  1850. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  1851. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  1852. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  1853. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  1854. } else {
  1855. kernel = backend_ctx->kernel_add;
  1856. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  1857. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  1858. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  1859. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  1860. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  1861. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  1862. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  1863. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  1864. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  1865. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  1866. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  1867. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  1868. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  1869. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  1870. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  1871. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  1872. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  1873. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  1874. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  1875. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  1876. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  1877. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  1878. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  1879. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  1880. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  1881. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  1882. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  1883. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  1884. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  1885. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  1886. }
  1887. if (bcast_row) {
  1888. int n = ggml_nelements(dst)/4;
  1889. size_t global_work_size[] = {(size_t)n, 1, 1};
  1890. size_t local_work_size[] = {64, 1, 1};
  1891. #ifdef GGML_OPENCL_PROFILING
  1892. cl_event evt;
  1893. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  1894. g_profiling_info.emplace_back();
  1895. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  1896. #else
  1897. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  1898. #endif
  1899. } else {
  1900. unsigned int nth = MIN(64, ne0);
  1901. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  1902. size_t local_work_size[] = {nth, 1, 1};
  1903. #ifdef GGML_OPENCL_PROFILING
  1904. cl_event evt;
  1905. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  1906. g_profiling_info.emplace_back();
  1907. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  1908. #else
  1909. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  1910. #endif
  1911. }
  1912. }
  1913. static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  1914. GGML_ASSERT(src0);
  1915. GGML_ASSERT(src0->extra);
  1916. GGML_ASSERT(src1);
  1917. GGML_ASSERT(src1->extra);
  1918. GGML_ASSERT(dst);
  1919. GGML_ASSERT(dst->extra);
  1920. const int ne00 = src0 ? src0->ne[0] : 0;
  1921. const int ne01 = src0 ? src0->ne[1] : 0;
  1922. const int ne02 = src0 ? src0->ne[2] : 0;
  1923. const int ne03 = src0 ? src0->ne[3] : 0;
  1924. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  1925. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  1926. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  1927. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  1928. const int ne10 = src1 ? src1->ne[0] : 0;
  1929. const int ne11 = src1 ? src1->ne[1] : 0;
  1930. const int ne12 = src1 ? src1->ne[2] : 0;
  1931. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  1932. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  1933. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  1934. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  1935. const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
  1936. const int ne0 = dst ? dst->ne[0] : 0;
  1937. const int ne1 = dst ? dst->ne[1] : 0;
  1938. const int ne2 = dst ? dst->ne[2] : 0;
  1939. const int ne3 = dst ? dst->ne[3] : 0;
  1940. const cl_ulong nb0 = dst ? dst->nb[0] : 0;
  1941. const cl_ulong nb1 = dst ? dst->nb[1] : 0;
  1942. const cl_ulong nb2 = dst ? dst->nb[2] : 0;
  1943. const cl_ulong nb3 = dst ? dst->nb[3] : 0;
  1944. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  1945. cl_command_queue queue = backend_ctx->queue;
  1946. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  1947. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  1948. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  1949. cl_ulong offset0 = extra0->offset + src0->view_offs;
  1950. cl_ulong offset1 = extra1->offset + src1->view_offs;
  1951. cl_ulong offsetd = extrad->offset + dst->view_offs;
  1952. bool bcast_row = false;
  1953. cl_kernel kernel;
  1954. if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
  1955. GGML_ASSERT(ggml_is_contiguous(src0));
  1956. // src1 is a row
  1957. GGML_ASSERT(ne11 == 1);
  1958. bcast_row = true;
  1959. int ne = ne00 / 4;
  1960. kernel = backend_ctx->kernel_mul_row;
  1961. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  1962. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  1963. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  1964. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  1965. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  1966. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  1967. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
  1968. } else {
  1969. kernel = backend_ctx->kernel_mul;
  1970. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  1971. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  1972. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  1973. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  1974. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  1975. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  1976. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  1977. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  1978. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  1979. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
  1980. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
  1981. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
  1982. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
  1983. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
  1984. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
  1985. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
  1986. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
  1987. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
  1988. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
  1989. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
  1990. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
  1991. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
  1992. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
  1993. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
  1994. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
  1995. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
  1996. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
  1997. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
  1998. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
  1999. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
  2000. }
  2001. if (bcast_row) {
  2002. int n = ggml_nelements(dst)/4;
  2003. size_t global_work_size[] = {(size_t)n, 1, 1};
  2004. size_t local_work_size[] = {64, 1, 1};
  2005. #ifdef GGML_OPENCL_PROFILING
  2006. cl_event evt;
  2007. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2008. g_profiling_info.emplace_back();
  2009. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2010. #else
  2011. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2012. #endif
  2013. } else {
  2014. unsigned int nth = MIN(64, ne0);
  2015. size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
  2016. size_t local_work_size[] = {nth, 1, 1};
  2017. #ifdef GGML_OPENCL_PROFILING
  2018. cl_event evt;
  2019. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2020. g_profiling_info.emplace_back();
  2021. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2022. #else
  2023. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2024. #endif
  2025. }
  2026. }
  2027. static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2028. GGML_ASSERT(src0);
  2029. GGML_ASSERT(src0->extra);
  2030. GGML_ASSERT(dst);
  2031. GGML_ASSERT(dst->extra);
  2032. UNUSED(src1);
  2033. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2034. cl_command_queue queue = backend_ctx->queue;
  2035. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2036. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2037. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2038. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2039. cl_kernel kernel;
  2040. int n = ggml_nelements(dst);
  2041. if (n % 4 == 0) {
  2042. kernel = backend_ctx->kernel_gelu_4;
  2043. n /= 4;
  2044. } else {
  2045. kernel = backend_ctx->kernel_gelu;
  2046. }
  2047. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2048. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2049. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2050. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2051. size_t global_work_size[] = {(size_t)n, 1, 1};
  2052. size_t local_work_size[] = {64, 1, 1};
  2053. #ifdef GGML_OPENCL_PROFILING
  2054. cl_event evt;
  2055. clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
  2056. g_profiling_info.emplace_back();
  2057. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2058. #else
  2059. clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
  2060. #endif
  2061. }
  2062. static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2063. GGML_ASSERT(src0);
  2064. GGML_ASSERT(src0->extra);
  2065. GGML_ASSERT(dst);
  2066. GGML_ASSERT(dst->extra);
  2067. UNUSED(src1);
  2068. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2069. cl_command_queue queue = backend_ctx->queue;
  2070. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2071. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2072. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2073. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2074. cl_kernel kernel;
  2075. int n = ggml_nelements(dst);
  2076. if (n % 4 == 0) {
  2077. kernel = backend_ctx->kernel_silu_4;
  2078. n /= 4;
  2079. } else {
  2080. kernel = backend_ctx->kernel_silu;
  2081. }
  2082. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2083. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2084. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2085. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2086. size_t global_work_size[] = {(size_t)n, 1, 1};
  2087. size_t local_work_size[] = {64, 1, 1};
  2088. #ifdef GGML_OPENCL_PROFILING
  2089. cl_event evt;
  2090. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2091. g_profiling_info.emplace_back();
  2092. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2093. #else
  2094. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2095. #endif
  2096. }
  2097. static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2098. GGML_ASSERT(src0);
  2099. GGML_ASSERT(src0->extra);
  2100. GGML_ASSERT(dst);
  2101. GGML_ASSERT(dst->extra);
  2102. UNUSED(src1);
  2103. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2104. cl_command_queue queue = backend_ctx->queue;
  2105. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2106. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2107. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2108. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2109. cl_kernel kernel = backend_ctx->kernel_relu;
  2110. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2111. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2112. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2113. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2114. const int64_t n = ggml_nelements(dst);
  2115. size_t global_work_size[] = {(size_t)n, 1, 1};
  2116. size_t local_work_size[] = {64, 1, 1};
  2117. #ifdef GGML_OPENCL_PROFILING
  2118. cl_event evt;
  2119. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2120. g_profiling_info.emplace_back();
  2121. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2122. #else
  2123. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2124. #endif
  2125. }
  2126. static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2127. GGML_ASSERT(src0);
  2128. GGML_ASSERT(src0->extra);
  2129. GGML_ASSERT(dst);
  2130. GGML_ASSERT(dst->extra);
  2131. UNUSED(src1);
  2132. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2133. cl_command_queue queue = backend_ctx->queue;
  2134. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2135. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2136. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2137. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2138. float min;
  2139. float max;
  2140. memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
  2141. memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
  2142. cl_kernel kernel = backend_ctx->kernel_clamp;
  2143. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2144. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2145. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2146. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2147. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
  2148. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
  2149. const int64_t n = ggml_nelements(dst);
  2150. size_t global_work_size[] = {(size_t)n, 1, 1};
  2151. size_t local_work_size[] = {64, 1, 1};
  2152. #ifdef GGML_OPENCL_PROFILING
  2153. cl_event evt;
  2154. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2155. g_profiling_info.emplace_back();
  2156. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2157. #else
  2158. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2159. #endif
  2160. }
  2161. static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2162. GGML_ASSERT(src0);
  2163. GGML_ASSERT(src0->extra);
  2164. GGML_ASSERT(dst);
  2165. GGML_ASSERT(dst->extra);
  2166. UNUSED(src1);
  2167. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2168. cl_command_queue queue = backend_ctx->queue;
  2169. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2170. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2171. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2172. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2173. float eps;
  2174. memcpy(&eps, dst->op_params, sizeof(float));
  2175. const int ne00 = src0 ? src0->ne[0] : 0;
  2176. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2177. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2178. const int nth = MIN(64, ne00);
  2179. cl_kernel kernel = backend_ctx->kernel_norm;
  2180. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2181. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2182. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2183. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2184. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  2185. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  2186. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  2187. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth, NULL));
  2188. const int64_t nrows = ggml_nrows(src0);
  2189. size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
  2190. size_t local_work_size[] = {(size_t)nth, 1, 1};
  2191. #ifdef GGML_OPENCL_PROFILING
  2192. cl_event evt;
  2193. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2194. g_profiling_info.emplace_back();
  2195. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2196. #else
  2197. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2198. #endif
  2199. }
  2200. static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2201. GGML_ASSERT(src0);
  2202. GGML_ASSERT(src0->extra);
  2203. GGML_ASSERT(dst);
  2204. GGML_ASSERT(dst->extra);
  2205. UNUSED(src1);
  2206. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2207. cl_command_queue queue = backend_ctx->queue;
  2208. ggml_backend_opencl_device_context * dev_ctx =
  2209. (ggml_backend_opencl_device_context *)backend->device->context;
  2210. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2211. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2212. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2213. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2214. float eps;
  2215. memcpy(&eps, dst->op_params, sizeof(float));
  2216. const int ne00 = src0 ? src0->ne[0] : 0;
  2217. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2218. GGML_ASSERT(ne00 % 4 == 0);
  2219. GGML_ASSERT(ggml_is_contiguous_1(src0));
  2220. const int nth = MIN(64, ne00);
  2221. const int64_t nrows = ggml_nrows(src0);
  2222. size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
  2223. size_t local_work_size[] = {(size_t)nth, 1, 1};
  2224. cl_kernel kernel = backend_ctx->kernel_rms_norm;
  2225. // Note, this kernel declares local memory in kernel args and the size
  2226. // depends on subgroup size.
  2227. // Retrieve subgroup size.
  2228. // Note, this requires OpenCL 2.1 and above
  2229. size_t sgs;
  2230. CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
  2231. CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
  2232. sizeof(local_work_size), local_work_size,
  2233. sizeof(size_t), &sgs, NULL));
  2234. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2235. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2236. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2237. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2238. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  2239. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
  2240. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
  2241. // This is local memory - the size depends on subgroup size.
  2242. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth/sgs, NULL));
  2243. #ifdef GGML_OPENCL_PROFILING
  2244. cl_event evt;
  2245. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2246. g_profiling_info.emplace_back();
  2247. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2248. #else
  2249. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2250. #endif
  2251. }
  2252. static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2253. GGML_ASSERT(src0);
  2254. GGML_ASSERT(src0->extra);
  2255. GGML_ASSERT(src1);
  2256. GGML_ASSERT(src1->extra);
  2257. GGML_ASSERT(dst);
  2258. GGML_ASSERT(dst->extra);
  2259. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  2260. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  2261. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2262. cl_command_queue queue = backend_ctx->queue;
  2263. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2264. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  2265. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2266. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2267. cl_ulong offset1 = extra1->offset + src1->view_offs;
  2268. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2269. #ifdef GGML_OPENCL_SOA_Q
  2270. ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
  2271. #endif
  2272. const int ne00 = src0 ? src0->ne[0] : 0;
  2273. const int ne01 = src0 ? src0->ne[1] : 0;
  2274. const int ne02 = src0 ? src0->ne[2] : 0;
  2275. const int ne03 = src0 ? src0->ne[3] : 0;
  2276. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  2277. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2278. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2279. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  2280. const int ne10 = src1 ? src1->ne[0] : 0;
  2281. const int ne11 = src1 ? src1->ne[1] : 0;
  2282. const int ne12 = src1 ? src1->ne[2] : 0;
  2283. const int ne13 = src1 ? src1->ne[3] : 0;
  2284. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  2285. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  2286. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  2287. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  2288. const int ne0 = dst ? dst->ne[0] : 0;
  2289. const int ne1 = dst ? dst->ne[1] : 0;
  2290. int r2 = ne12/ne02;
  2291. int r3 = ne13/ne03;
  2292. GGML_ASSERT(ne00 == ne10);
  2293. int nth0 = 32;
  2294. int nth1 = 1;
  2295. int nrows = 1;
  2296. // The number of values produced by each subgroup
  2297. int ndst = 4;
  2298. cl_kernel kernel;
  2299. #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
  2300. cl_context context = backend_ctx->context;
  2301. if (ne01 && ne1 && use_adreno_kernels(src0)) {
  2302. // init CL objects
  2303. // <--------------------------------------------> //
  2304. cl_int status;
  2305. cl_image_format img_fmt_1d;
  2306. cl_image_desc img_desc_1d;
  2307. cl_buffer_region region;
  2308. cl_mem A_image1d = nullptr;
  2309. cl_mem B_image1d = nullptr;
  2310. cl_mem B_sub_buffer = nullptr;
  2311. cl_mem C_d = nullptr;
  2312. // for B transpose
  2313. cl_mem B_d = nullptr;
  2314. cl_mem B_d_input_image = nullptr;
  2315. // <--------------------------------------------> //
  2316. // define matrix dimensions
  2317. // <--------------------------------------------> //
  2318. int M = ne01;
  2319. int N = ne1;
  2320. int K = ne00;
  2321. int padding;
  2322. // <--------------------------------------------> //
  2323. // q4_0 x fp32
  2324. if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
  2325. // TODO: remove duplicate definitions of image description + format -- move to top
  2326. // create an image for A
  2327. // <--------------------------------------------> //
  2328. if (N == 1) {
  2329. img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
  2330. } else {
  2331. img_fmt_1d = { CL_R, CL_FLOAT};
  2332. }
  2333. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2334. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2335. img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
  2336. img_desc_1d.buffer = extra0_q4_0->q;
  2337. A_image1d = clCreateImage(
  2338. context,
  2339. CL_MEM_READ_ONLY,
  2340. &img_fmt_1d,
  2341. &img_desc_1d,
  2342. NULL,
  2343. &status);
  2344. CL_CHECK(status);
  2345. // <--------------------------------------------> //
  2346. // create a sub_buffer for B
  2347. // <--------------------------------------------> //
  2348. region.origin = (extra1->offset);
  2349. region.size = K * N * sizeof(float);
  2350. B_sub_buffer = clCreateSubBuffer(
  2351. extra1->data_device,
  2352. 0,
  2353. CL_BUFFER_CREATE_TYPE_REGION,
  2354. &region,
  2355. &status);
  2356. CL_CHECK(status);
  2357. // <--------------------------------------------> //
  2358. // transpose activation for Skyler's gemm
  2359. if (N != 1) {
  2360. //how many extra elements beyond multiple of 8
  2361. int extra_elements = N % 8;
  2362. //how much padding to add
  2363. padding = 0;
  2364. if (extra_elements > 0){
  2365. padding = 8 - extra_elements;
  2366. }
  2367. // Specify the starting offset (in bytes)
  2368. region.origin = 0;
  2369. // Specify the size of the sub-buffer (divide by 2 for FP16)
  2370. region.size = K * (N + padding) * sizeof(float)/2;
  2371. B_d = clCreateSubBuffer(
  2372. backend_ctx->B_d_max,
  2373. 0,
  2374. CL_BUFFER_CREATE_TYPE_REGION,
  2375. &region,
  2376. &status);
  2377. CL_CHECK(status);
  2378. cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
  2379. cl_image_desc image_desc_B_d_input = {
  2380. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  2381. static_cast<size_t>(K * N / 4),
  2382. 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
  2383. };
  2384. B_d_input_image = clCreateImage(
  2385. context,
  2386. 0,
  2387. &image_format_B_d_input,
  2388. &image_desc_B_d_input,
  2389. NULL,
  2390. &status);
  2391. CL_CHECK(status);
  2392. cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
  2393. cl_image_desc image_desc_B_d_output = {
  2394. CL_MEM_OBJECT_IMAGE1D_BUFFER,
  2395. static_cast<size_t>(K * (N + padding)/4),
  2396. 0, 0, 0, 0, 0, 0, 0, { B_d }
  2397. };
  2398. B_image1d = clCreateImage(
  2399. context,
  2400. 0,
  2401. &image_format_B_d_output,
  2402. &image_desc_B_d_output,
  2403. NULL,
  2404. &status);
  2405. CL_CHECK(status);
  2406. int height_B = N/4;
  2407. int width_B = K/4;
  2408. int padded_height_B = (N + padding)/4;
  2409. kernel = backend_ctx->kernel_transpose_32_16;
  2410. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
  2411. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
  2412. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
  2413. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
  2414. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
  2415. size_t local_size_t[2] = { 1, 16 };
  2416. //WGS tuning
  2417. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  2418. local_size_t[0]=4;
  2419. local_size_t[1]=8;
  2420. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  2421. local_size_t[0]=2;
  2422. local_size_t[1]=8;
  2423. } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  2424. local_size_t[0]=1;
  2425. local_size_t[1]=8;
  2426. } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  2427. local_size_t[0]=2;
  2428. local_size_t[1]=8;
  2429. }
  2430. size_t global_size_t[2] = {
  2431. static_cast<size_t>(width_B),
  2432. static_cast<size_t>(padded_height_B)
  2433. };
  2434. #ifdef GGML_OPENCL_PROFILING
  2435. cl_event evt;
  2436. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, &evt));
  2437. g_profiling_info.emplace_back();
  2438. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_size_t, local_size_t, dst);
  2439. #else
  2440. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, NULL));
  2441. #endif
  2442. } else {
  2443. // no need to transpose B in other cases
  2444. // create an image for B from sub_buffer
  2445. // <--------------------------------------------> //
  2446. img_fmt_1d = {CL_RGBA, CL_FLOAT};
  2447. memset(&img_desc_1d, 0, sizeof(img_desc_1d));
  2448. img_desc_1d.image_width = K * N / 4;
  2449. img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
  2450. img_desc_1d.buffer = B_sub_buffer;
  2451. B_image1d = clCreateImage(
  2452. context,
  2453. CL_MEM_READ_ONLY,
  2454. &img_fmt_1d,
  2455. &img_desc_1d,
  2456. NULL,
  2457. &status);
  2458. CL_CHECK(status);
  2459. // <--------------------------------------------> //
  2460. }
  2461. // choose gemm or gemv kernel
  2462. // <--------------------------------------------> //
  2463. if (N == 1) {
  2464. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
  2465. if (M == 4096 && K == 4096) {
  2466. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
  2467. } else if (M == 4096 && K == 11008) {
  2468. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
  2469. } else if (M == 11008 && K == 4096) {
  2470. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
  2471. } else if (M == 32000 && K == 4096) {
  2472. kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
  2473. }
  2474. } else {
  2475. kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
  2476. }
  2477. // <--------------------------------------------> //
  2478. // set kernel args
  2479. // <--------------------------------------------> //
  2480. cl_uint k_arg = 0;
  2481. if (N == 1) {
  2482. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
  2483. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
  2484. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
  2485. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
  2486. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
  2487. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
  2488. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
  2489. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
  2490. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
  2491. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
  2492. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
  2493. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
  2494. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
  2495. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
  2496. CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
  2497. } else {
  2498. region.origin = extrad->offset; // Specify the starting offset (in bytes)
  2499. region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
  2500. C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, &region, &status);
  2501. CL_CHECK(status);
  2502. int padded_N = ne1 + padding;
  2503. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
  2504. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
  2505. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
  2506. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
  2507. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
  2508. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
  2509. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
  2510. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
  2511. }
  2512. // <--------------------------------------------> //
  2513. // choose workgroup size
  2514. // <--------------------------------------------> //
  2515. size_t global_work_size[3] = {
  2516. 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
  2517. size_t local_work_size[3] = {64, 2, 4};
  2518. global_work_size[0] = (size_t)(ceil((float)ne1/8));
  2519. global_work_size[1] = (size_t)(ne01/4);
  2520. global_work_size[2] = (size_t)(1);
  2521. local_work_size[0] = (size_t)(1); //4x32 for FP32
  2522. local_work_size[1] = (size_t)(128);
  2523. local_work_size[2] = (size_t)(1);
  2524. //WGS tuning
  2525. if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
  2526. local_work_size[0] = 1;
  2527. local_work_size[1] = 128;
  2528. } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
  2529. local_work_size[0] = 2;
  2530. local_work_size[1] = 64;
  2531. } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
  2532. local_work_size[0] = 2;
  2533. local_work_size[1] = 64;
  2534. } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
  2535. local_work_size[0] = 2;
  2536. local_work_size[1] = 64;
  2537. }
  2538. if (N == 1) {
  2539. local_work_size[0] = backend_ctx->adreno_wave_size; // localsize
  2540. local_work_size[1] = 4; // reduce factor
  2541. local_work_size[2] = 1;
  2542. global_work_size[0] = M / 2;
  2543. global_work_size[1] = 4; // reduce factor
  2544. global_work_size[2] = 1;
  2545. }
  2546. // <--------------------------------------------> //
  2547. // enqueue kernel with profiling
  2548. // <--------------------------------------------> //
  2549. #ifdef GGML_OPENCL_PROFILING
  2550. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2551. g_profiling_info.emplace_back();
  2552. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2553. // enqueue kernel without profiling
  2554. #else
  2555. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2556. #endif
  2557. // <--------------------------------------------> //
  2558. // deallocate sub buffers and images
  2559. // <--------------------------------------------> //
  2560. CL_CHECK(clReleaseMemObject(A_image1d));
  2561. CL_CHECK(clReleaseMemObject(B_sub_buffer));
  2562. CL_CHECK(clReleaseMemObject(B_image1d));
  2563. if (N != 1) {
  2564. CL_CHECK(clReleaseMemObject(B_d));
  2565. CL_CHECK(clReleaseMemObject(B_d_input_image));
  2566. CL_CHECK(clReleaseMemObject(C_d));
  2567. }
  2568. // <--------------------------------------------> //
  2569. return;
  2570. }
  2571. } // if (ne01 && ne1)
  2572. #endif // GGML_OPENCL_USE_ADRENO_KERNELS
  2573. if (!ggml_is_transposed(src0) &&
  2574. !ggml_is_transposed(src1) &&
  2575. src1t == GGML_TYPE_F32 &&
  2576. ne00%32 == 0 &&
  2577. ne11 > 2) {
  2578. #ifdef GGML_OPENCL_SOA_Q
  2579. // Set up kernel.
  2580. switch(src0t) {
  2581. case GGML_TYPE_Q4_0:
  2582. // This should have been satisfied.
  2583. GGML_ASSERT(ne11 == ne1);
  2584. GGML_ASSERT(ne01 == ne0);
  2585. if (backend_ctx->gpu_family == INTEL) {
  2586. nth0 = 16;
  2587. nth1 = 1;
  2588. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
  2589. } else if (backend_ctx->gpu_family == ADRENO) {
  2590. nth0 = 64;
  2591. nth1 = 1;
  2592. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
  2593. } else {
  2594. GGML_ASSERT(false && "TODO: Unknown GPU");
  2595. }
  2596. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  2597. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  2598. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2599. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2600. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2601. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2602. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2603. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  2604. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  2605. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  2606. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  2607. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  2608. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  2609. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  2610. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  2611. break;
  2612. default:
  2613. break;
  2614. }
  2615. // Launch kernel.
  2616. if (src0t == GGML_TYPE_Q4_0) {
  2617. size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  2618. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  2619. if (backend_ctx->gpu_family == INTEL) {
  2620. // Set global size for Intel. It uses 16x output values.
  2621. global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
  2622. global_work_size[1] = (size_t)ne11*nth1;
  2623. global_work_size[2] = (size_t)ne12*ne13;
  2624. }
  2625. #ifdef GGML_OPENCL_PROFILING
  2626. cl_event evt;
  2627. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2628. g_profiling_info.emplace_back();
  2629. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2630. #else
  2631. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2632. #endif
  2633. return;
  2634. }
  2635. #else // GGML_OPENCL_SOA_Q
  2636. // TODO: add block_q4_0 variant.
  2637. #endif // GGML_OPENCL_SOA_Q
  2638. }
  2639. // use custom matrix x vector kernel
  2640. switch (src0t) {
  2641. case GGML_TYPE_F32:
  2642. //GGML_ASSERT(ne02 == ne12);
  2643. GGML_ASSERT(src1t == GGML_TYPE_F32);
  2644. kernel = backend_ctx->kernel_mul_mat_f32_f32;
  2645. nrows = 4;
  2646. if (backend_ctx->gpu_family == INTEL) {
  2647. nth0 = 32;
  2648. nth1 = 1;
  2649. } else if (backend_ctx->gpu_family == ADRENO) {
  2650. nth0 = 64;
  2651. nth1 = 1;
  2652. } else {
  2653. GGML_ASSERT(false && "TODO: Unknown GPU");
  2654. }
  2655. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2656. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2657. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2658. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2659. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2660. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2661. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2662. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  2663. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  2664. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  2665. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  2666. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  2667. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  2668. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  2669. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  2670. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  2671. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  2672. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  2673. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  2674. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  2675. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  2676. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  2677. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  2678. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  2679. break;
  2680. case GGML_TYPE_F16:
  2681. //GGML_ASSERT(ne02 == ne12);
  2682. if (backend_ctx->gpu_family == INTEL) {
  2683. nth0 = 32;
  2684. nth1 = 1;
  2685. } else if (backend_ctx->gpu_family == ADRENO) {
  2686. nth0 = 64;
  2687. nth1 = 1;
  2688. } else {
  2689. GGML_ASSERT(false && "TODO: Unknown GPU");
  2690. }
  2691. if (src1t == GGML_TYPE_F32) {
  2692. if (ne11 * ne12 < 4) {
  2693. kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
  2694. } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
  2695. kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
  2696. nrows = ne11;
  2697. } else {
  2698. kernel = backend_ctx->kernel_mul_mat_f16_f32;
  2699. nrows = 4;
  2700. }
  2701. } else {
  2702. kernel = backend_ctx->kernel_mul_mat_f16_f16;
  2703. nrows = 4;
  2704. }
  2705. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2706. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2707. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2708. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2709. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2710. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2711. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2712. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  2713. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  2714. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
  2715. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
  2716. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
  2717. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
  2718. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
  2719. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
  2720. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
  2721. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  2722. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  2723. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  2724. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  2725. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
  2726. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
  2727. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
  2728. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
  2729. break;
  2730. case GGML_TYPE_Q4_0:
  2731. // This should have been satisfied.
  2732. GGML_ASSERT(ne11 == ne1);
  2733. GGML_ASSERT(ne01 == ne0);
  2734. #ifdef GGML_OPENCL_SOA_Q
  2735. if (backend_ctx->gpu_family == INTEL) {
  2736. nth0 = 16;
  2737. nth1 = 1;
  2738. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  2739. ndst = 8;
  2740. } else if (backend_ctx->gpu_family == ADRENO) {
  2741. nth0 = 64;
  2742. nth1 = 1;
  2743. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
  2744. ndst =8;
  2745. } else {
  2746. GGML_ASSERT(false && "TODO: Unknown GPU");
  2747. }
  2748. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
  2749. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
  2750. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2751. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2752. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2753. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2754. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2755. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  2756. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  2757. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  2758. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  2759. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  2760. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  2761. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  2762. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  2763. #else // GGML_OPENCL_SOA_Q
  2764. if (backend_ctx->gpu_family == INTEL) {
  2765. // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
  2766. // group produces N_DST (4 for Q4_0 kernel) values in the result.
  2767. // The number of workgroups on dim 0 (the leading dimension) is
  2768. // the nearest multiple of 4 that covers ne0 (equals ne01).
  2769. nth0 = 16;
  2770. nth1 = 1;
  2771. kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
  2772. ndst = 4;
  2773. } else if (backend_ctx->gpu_family == ADRENO) {
  2774. nth0 = 64;
  2775. nth1 = 1;
  2776. kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
  2777. ndst = 4;
  2778. } else {
  2779. GGML_ASSERT(false && "TODO: Unknown GPU");
  2780. }
  2781. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2782. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2783. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2784. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2785. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2786. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2787. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2788. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  2789. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  2790. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  2791. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  2792. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  2793. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  2794. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  2795. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  2796. #endif // GGML_OPENCL_SOA_Q
  2797. break;
  2798. case GGML_TYPE_Q4_1:
  2799. case GGML_TYPE_Q8_0:
  2800. case GGML_TYPE_Q2_K:
  2801. case GGML_TYPE_Q3_K:
  2802. case GGML_TYPE_Q4_K:
  2803. case GGML_TYPE_Q5_K:
  2804. case GGML_TYPE_Q6_K:
  2805. kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
  2806. if (backend_ctx->gpu_family == INTEL) {
  2807. nth0 = 2;
  2808. nth1 = 16;
  2809. } else if (backend_ctx->gpu_family == ADRENO) {
  2810. nth0 = 2;
  2811. nth1 = 64;
  2812. } else {
  2813. GGML_ASSERT(false && "TODO: Unknown GPU");
  2814. }
  2815. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2816. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2817. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2818. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2819. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  2820. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  2821. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  2822. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  2823. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  2824. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
  2825. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
  2826. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
  2827. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
  2828. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
  2829. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
  2830. break;
  2831. default:
  2832. GGML_ASSERT(false && "not implemented");
  2833. }
  2834. if (src0t == GGML_TYPE_Q4_0 ||
  2835. src0t == GGML_TYPE_Q4_1 ||
  2836. src0t == GGML_TYPE_Q8_0 ||
  2837. src0t == GGML_TYPE_Q2_K) {
  2838. // Each SIMD group produces N_DST values in the result. Assuming each
  2839. // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
  2840. // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
  2841. // (number of workgroups) will be a nearest multiple of
  2842. // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
  2843. // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
  2844. size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  2845. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  2846. #ifdef GGML_OPENCL_PROFILING
  2847. cl_event evt;
  2848. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2849. g_profiling_info.emplace_back();
  2850. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2851. #else
  2852. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2853. #endif
  2854. } else if (src0t == GGML_TYPE_Q4_K) {
  2855. GGML_ASSERT(false && "not implemented");
  2856. } else if (src0t == GGML_TYPE_Q3_K) {
  2857. GGML_ASSERT(false && "not implemented");
  2858. } else if (src0t == GGML_TYPE_Q5_K) {
  2859. GGML_ASSERT(false && "not implemented");
  2860. } else if (src0t == GGML_TYPE_Q6_K) {
  2861. size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
  2862. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  2863. #ifdef GGML_OPENCL_PROFILING
  2864. cl_event evt;
  2865. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2866. g_profiling_info.emplace_back();
  2867. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2868. #else
  2869. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2870. #endif
  2871. } else {
  2872. int64_t ny = (ne11 + nrows - 1)/nrows;
  2873. size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
  2874. size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
  2875. #ifdef GGML_OPENCL_PROFILING
  2876. cl_event evt;
  2877. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2878. g_profiling_info.emplace_back();
  2879. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2880. #else
  2881. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2882. #endif
  2883. }
  2884. }
  2885. static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2886. GGML_ASSERT(src0);
  2887. GGML_ASSERT(src0->extra);
  2888. GGML_ASSERT(dst);
  2889. GGML_ASSERT(dst->extra);
  2890. GGML_UNUSED(src1);
  2891. GGML_ASSERT(ggml_is_contiguous(src0));
  2892. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2893. cl_command_queue queue = backend_ctx->queue;
  2894. float scale;
  2895. memcpy(&scale, dst->op_params, sizeof(scale));
  2896. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2897. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  2898. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2899. cl_ulong offsetd = extrad->offset + dst->view_offs;
  2900. cl_kernel kernel = backend_ctx->kernel_scale;
  2901. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2902. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2903. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  2904. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  2905. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
  2906. int n = ggml_nelements(dst)/4;
  2907. size_t global_work_size[] = {(size_t)n, 1, 1};
  2908. size_t local_work_size[] = {64, 1, 1};
  2909. #ifdef GGML_OPENCL_PROFILING
  2910. cl_event evt;
  2911. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  2912. g_profiling_info.emplace_back();
  2913. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  2914. #else
  2915. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  2916. #endif
  2917. }
  2918. static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  2919. GGML_ASSERT(src0);
  2920. GGML_ASSERT(src0->extra);
  2921. GGML_ASSERT(src1);
  2922. GGML_ASSERT(src1->extra);
  2923. // GGML_OP_CPY happens between src0 and src1.
  2924. // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
  2925. UNUSED(dst);
  2926. const int ne00 = src0 ? src0->ne[0] : 0;
  2927. const int ne01 = src0 ? src0->ne[1] : 0;
  2928. const int ne02 = src0 ? src0->ne[2] : 0;
  2929. const int ne03 = src0 ? src0->ne[3] : 0;
  2930. const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
  2931. const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
  2932. const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
  2933. const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
  2934. const int ne10 = src1 ? src1->ne[0] : 0;
  2935. const int ne11 = src1 ? src1->ne[1] : 0;
  2936. const int ne12 = src1 ? src1->ne[2] : 0;
  2937. const int ne13 = src1 ? src1->ne[3] : 0;
  2938. const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
  2939. const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
  2940. const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
  2941. const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
  2942. const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
  2943. const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
  2944. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  2945. cl_command_queue queue = backend_ctx->queue;
  2946. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  2947. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  2948. cl_ulong offset0 = extra0->offset + src0->view_offs;
  2949. cl_ulong offset1 = extra1->offset + src1->view_offs;
  2950. cl_kernel kernel;
  2951. switch (src0t) {
  2952. case GGML_TYPE_F32:
  2953. switch (src1t) {
  2954. case GGML_TYPE_F16:
  2955. kernel = backend_ctx->kernel_cpy_f32_f16;
  2956. break;
  2957. case GGML_TYPE_F32:
  2958. kernel = backend_ctx->kernel_cpy_f32_f32;
  2959. break;
  2960. default:
  2961. GGML_ASSERT(false && "not implemented");
  2962. }
  2963. break;
  2964. case GGML_TYPE_F16:
  2965. switch (src1t) {
  2966. case GGML_TYPE_F16:
  2967. kernel = backend_ctx->kernel_cpy_f16_f16;
  2968. break;
  2969. case GGML_TYPE_F32:
  2970. kernel = backend_ctx->kernel_cpy_f16_f32;
  2971. break;
  2972. default:
  2973. GGML_ASSERT(false && "not implemented");
  2974. }
  2975. break;
  2976. default:
  2977. GGML_ASSERT(false && "not implemented");
  2978. }
  2979. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  2980. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  2981. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  2982. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  2983. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  2984. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  2985. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
  2986. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
  2987. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
  2988. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
  2989. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
  2990. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
  2991. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
  2992. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
  2993. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
  2994. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
  2995. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
  2996. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
  2997. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
  2998. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
  2999. const int nth = MIN(64, ne00);
  3000. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3001. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3002. #ifdef GGML_OPENCL_PROFILING
  3003. cl_event evt;
  3004. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3005. g_profiling_info.emplace_back();
  3006. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, src1);
  3007. #else
  3008. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3009. #endif
  3010. }
  3011. static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3012. ggml_cl_cpy(backend, src0, dst, nullptr);
  3013. UNUSED(src1);
  3014. }
  3015. static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3016. GGML_ASSERT(src0);
  3017. GGML_ASSERT(src0->extra);
  3018. GGML_ASSERT(dst);
  3019. GGML_ASSERT(dst->extra);
  3020. UNUSED(src1);
  3021. int n_past = ((int32_t *)(dst->op_params))[0];
  3022. const int ne00 = src0 ? src0->ne[0] : 0;
  3023. const int ne01 = src0 ? src0->ne[1] : 0;
  3024. const int ne02 = src0 ? src0->ne[2] : 0;
  3025. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3026. cl_command_queue queue = backend_ctx->queue;
  3027. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3028. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3029. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3030. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3031. cl_kernel kernel;
  3032. if (ne00%8 == 0) {
  3033. kernel = backend_ctx->kernel_diag_mask_inf_8;
  3034. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3035. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3036. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3037. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3038. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3039. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3040. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  3041. size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
  3042. size_t local_work_size[] = {64, 1, 1};
  3043. #ifdef GGML_OPENCL_PROFILING
  3044. cl_event evt;
  3045. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3046. g_profiling_info.emplace_back();
  3047. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3048. #else
  3049. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3050. #endif
  3051. } else {
  3052. kernel = backend_ctx->kernel_diag_mask_inf;
  3053. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3054. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3055. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
  3056. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
  3057. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
  3058. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
  3059. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
  3060. size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
  3061. size_t local_work_size[] = {64, 1, 1};
  3062. #ifdef GGML_OPENCL_PROFILING
  3063. cl_event evt;
  3064. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3065. g_profiling_info.emplace_back();
  3066. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3067. #else
  3068. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3069. #endif
  3070. }
  3071. }
  3072. static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3073. GGML_ASSERT(src0);
  3074. GGML_ASSERT(src0->extra);
  3075. GGML_ASSERT(dst);
  3076. GGML_ASSERT(dst->extra);
  3077. // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
  3078. // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
  3079. // alibi is not used; however, for some other models, it is used.
  3080. // KQ_mask
  3081. if (src1) {
  3082. GGML_ASSERT(src1);
  3083. GGML_ASSERT(src1->extra);
  3084. }
  3085. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3086. cl_command_queue queue = backend_ctx->queue;
  3087. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3088. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3089. ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
  3090. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3091. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3092. cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
  3093. const int ne00 = src0 ? src0->ne[0] : 0;
  3094. const int ne01 = src0 ? src0->ne[1] : 0;
  3095. const int ne02 = src0 ? src0->ne[2] : 0;
  3096. const int ne03 = src0 ? src0->ne[3] : 0;
  3097. float scale, max_bias;
  3098. memcpy(&scale, dst->op_params + 0, sizeof(float));
  3099. memcpy(&max_bias, dst->op_params + 1, sizeof(float));
  3100. const int nrows_x = ggml_nrows(src0);
  3101. const int nrows_y = src0->ne[1];
  3102. const int n_head = nrows_x/nrows_y;
  3103. const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
  3104. const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
  3105. const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
  3106. const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
  3107. // Local size must be wave size. Each workgroup is a wave, working on a row,
  3108. // where a row corresponds to leading dimension.
  3109. int nth = MIN(32, ne00);
  3110. if (backend_ctx->gpu_family == INTEL) {
  3111. // This is the same as the initial value.
  3112. nth = MIN(32, ne00);
  3113. }
  3114. else if (backend_ctx->gpu_family == ADRENO) {
  3115. nth = 64;
  3116. } else {
  3117. GGML_ASSERT(false && "TODO: Unknown GPU");
  3118. }
  3119. cl_kernel kernel;
  3120. if (ne00%4 == 0) {
  3121. if (use_f16) {
  3122. kernel = backend_ctx->kernel_soft_max_4_f16;
  3123. } else {
  3124. kernel = backend_ctx->kernel_soft_max_4;
  3125. }
  3126. } else {
  3127. if (use_f16) {
  3128. kernel = backend_ctx->kernel_soft_max_f16;
  3129. } else {
  3130. kernel = backend_ctx->kernel_soft_max;
  3131. }
  3132. }
  3133. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3134. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3135. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
  3136. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3137. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
  3138. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
  3139. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
  3140. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
  3141. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
  3142. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(float), &scale));
  3143. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &max_bias));
  3144. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &m0));
  3145. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &m1));
  3146. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &n_head_log2));
  3147. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3148. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3149. #ifdef GGML_OPENCL_PROFILING
  3150. cl_event evt;
  3151. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3152. g_profiling_info.emplace_back();
  3153. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3154. #else
  3155. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3156. #endif
  3157. }
  3158. static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
  3159. GGML_ASSERT(src0);
  3160. GGML_ASSERT(src0->extra);
  3161. GGML_ASSERT(src1);
  3162. GGML_ASSERT(src1->extra);
  3163. GGML_ASSERT(dst);
  3164. GGML_ASSERT(dst->extra);
  3165. ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
  3166. cl_command_queue queue = backend_ctx->queue;
  3167. ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
  3168. ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
  3169. ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
  3170. cl_ulong offset0 = extra0->offset + src0->view_offs;
  3171. cl_ulong offset1 = extra1->offset + src1->view_offs;
  3172. cl_ulong offsetd = extrad->offset + dst->view_offs;
  3173. ggml_tensor * src2 = dst->src[2];
  3174. ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
  3175. cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
  3176. const int ne00 = src0 ? src0->ne[0] : 0;
  3177. const int ne01 = src0 ? src0->ne[1] : 0;
  3178. const int ne02 = src0 ? src0->ne[2] : 0;
  3179. const int ne03 = src0 ? src0->ne[3] : 0;
  3180. const int nb00 = src0 ? src0->nb[0] : 0;
  3181. const int nb01 = src0 ? src0->nb[1] : 0;
  3182. const int nb02 = src0 ? src0->nb[2] : 0;
  3183. const int nb03 = src0 ? src0->nb[3] : 0;
  3184. const int ne10 = src1 ? src1->ne[0] : 0;
  3185. const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
  3186. const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
  3187. const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
  3188. const int ne0 = dst ? dst->ne[0] : 0;
  3189. const int ne1 = dst ? dst->ne[1] : 0;
  3190. const int ne2 = dst ? dst->ne[2] : 0;
  3191. const int ne3 = dst ? dst->ne[3] : 0;
  3192. const int nb0 = dst ? dst->nb[0] : 0;
  3193. const int nb1 = dst ? dst->nb[1] : 0;
  3194. const int nb2 = dst ? dst->nb[2] : 0;
  3195. const int nb3 = dst ? dst->nb[3] : 0;
  3196. GGML_ASSERT(ne10 % ne02 == 0);
  3197. GGML_ASSERT(ne10 >= ne02);
  3198. int nth = MIN(64, ne00);
  3199. const int n_past = ((int *) dst->op_params)[0];
  3200. const int n_dims = ((int *) dst->op_params)[1];
  3201. const int mode = ((int *) dst->op_params)[2];
  3202. const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
  3203. float freq_base;
  3204. float freq_scale;
  3205. float ext_factor;
  3206. float attn_factor;
  3207. float beta_fast;
  3208. float beta_slow;
  3209. memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
  3210. memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
  3211. memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
  3212. memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
  3213. memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
  3214. memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
  3215. const bool is_neox = mode & 2;
  3216. cl_kernel kernel;
  3217. if (!is_neox) {
  3218. switch (src0->type) {
  3219. case GGML_TYPE_F32:
  3220. kernel = backend_ctx->kernel_rope_norm_f32;
  3221. break;
  3222. case GGML_TYPE_F16:
  3223. kernel = backend_ctx->kernel_rope_norm_f16;
  3224. break;
  3225. default:
  3226. GGML_ASSERT(false);
  3227. };
  3228. } else {
  3229. switch (src0->type) {
  3230. case GGML_TYPE_F32:
  3231. kernel = backend_ctx->kernel_rope_neox_f32;
  3232. break;
  3233. case GGML_TYPE_F16:
  3234. kernel = backend_ctx->kernel_rope_neox_f16;
  3235. break;
  3236. default:
  3237. GGML_ASSERT(false);
  3238. };
  3239. }
  3240. CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
  3241. CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
  3242. CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
  3243. CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
  3244. CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
  3245. CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
  3246. CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
  3247. CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
  3248. CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
  3249. CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
  3250. CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
  3251. CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
  3252. CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
  3253. CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
  3254. CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
  3255. CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
  3256. CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
  3257. CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
  3258. CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
  3259. CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
  3260. CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
  3261. CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
  3262. CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
  3263. CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
  3264. CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
  3265. CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
  3266. CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
  3267. CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
  3268. CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
  3269. CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
  3270. CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
  3271. CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
  3272. CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
  3273. size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
  3274. size_t local_work_size[] = {(size_t)nth, 1, 1};
  3275. #ifdef GGML_OPENCL_PROFILING
  3276. cl_event evt;
  3277. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
  3278. g_profiling_info.emplace_back();
  3279. populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
  3280. #else
  3281. CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
  3282. #endif
  3283. }
  3284. //------------------------------------------------------------------------------
  3285. // Op offloading
  3286. //------------------------------------------------------------------------------
  3287. typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
  3288. bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
  3289. ggml_cl_func_t func = nullptr;
  3290. ggml_tensor * src0 = tensor->src[0];
  3291. ggml_tensor * src1 = tensor->src[1];
  3292. const bool any_on_device = tensor->extra
  3293. || (src0 != nullptr && src0->extra)
  3294. || (src1 != nullptr && src1->extra);
  3295. switch (tensor->op) {
  3296. case GGML_OP_GET_ROWS:
  3297. if (!any_on_device) {
  3298. return false;
  3299. }
  3300. func = ggml_cl_get_rows;
  3301. break;
  3302. case GGML_OP_CPY:
  3303. if (!any_on_device) {
  3304. return false;
  3305. }
  3306. func = ggml_cl_cpy;
  3307. break;
  3308. case GGML_OP_DUP:
  3309. case GGML_OP_CONT:
  3310. if (!any_on_device) {
  3311. return false;
  3312. }
  3313. func = ggml_cl_dup;
  3314. break;
  3315. case GGML_OP_ADD:
  3316. if (!any_on_device) {
  3317. return false;
  3318. }
  3319. GGML_ASSERT(ggml_is_contiguous(src0));
  3320. GGML_ASSERT(ggml_is_contiguous(src1));
  3321. func = ggml_cl_add;
  3322. break;
  3323. case GGML_OP_MUL:
  3324. if (!any_on_device) {
  3325. return false;
  3326. }
  3327. func = ggml_cl_mul;
  3328. break;
  3329. case GGML_OP_UNARY:
  3330. switch (ggml_get_unary_op(tensor)) {
  3331. case GGML_UNARY_OP_GELU:
  3332. if (!any_on_device) {
  3333. return false;
  3334. }
  3335. func = ggml_cl_gelu;
  3336. break;
  3337. case GGML_UNARY_OP_SILU:
  3338. if (!any_on_device) {
  3339. return false;
  3340. }
  3341. func = ggml_cl_silu;
  3342. break;
  3343. case GGML_UNARY_OP_RELU:
  3344. if (!any_on_device) {
  3345. return false;
  3346. }
  3347. func = ggml_cl_relu;
  3348. break;
  3349. default:
  3350. return false;
  3351. } break;
  3352. case GGML_OP_CLAMP:
  3353. if (!any_on_device) {
  3354. return false;
  3355. }
  3356. func = ggml_cl_clamp;
  3357. break;
  3358. case GGML_OP_NORM:
  3359. if (!any_on_device) {
  3360. return false;
  3361. }
  3362. func = ggml_cl_norm;
  3363. break;
  3364. case GGML_OP_RMS_NORM:
  3365. if (!any_on_device) {
  3366. return false;
  3367. }
  3368. func = ggml_cl_rms_norm;
  3369. break;
  3370. case GGML_OP_MUL_MAT:
  3371. if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
  3372. return false;
  3373. }
  3374. func = ggml_cl_mul_mat;
  3375. break;
  3376. case GGML_OP_SCALE:
  3377. if (!any_on_device) {
  3378. return false;
  3379. }
  3380. func = ggml_cl_scale;
  3381. break;
  3382. case GGML_OP_RESHAPE:
  3383. case GGML_OP_VIEW:
  3384. case GGML_OP_PERMUTE:
  3385. case GGML_OP_TRANSPOSE:
  3386. if (!any_on_device) {
  3387. return false;
  3388. }
  3389. func = ggml_cl_nop;
  3390. break;
  3391. case GGML_OP_DIAG_MASK_INF:
  3392. if (!any_on_device) {
  3393. return false;
  3394. }
  3395. func = ggml_cl_diag_mask_inf;
  3396. break;
  3397. case GGML_OP_SOFT_MAX:
  3398. if (!any_on_device) {
  3399. return false;
  3400. }
  3401. func = ggml_cl_soft_max;
  3402. break;
  3403. case GGML_OP_ROPE:
  3404. if (!any_on_device) {
  3405. return false;
  3406. }
  3407. func = ggml_cl_rope;
  3408. break;
  3409. default:
  3410. return false;
  3411. }
  3412. func(backend, tensor->src[0], tensor->src[1], tensor);
  3413. return true;
  3414. }