| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026 |
- #define CL_TARGET_OPENCL_VERSION 220
- #define CL_USE_DEPRECATED_OPENCL_1_2_APIS
- // suppress warnings in CL headers for GCC and Clang
- #pragma GCC diagnostic ignored "-Woverlength-strings"
- #ifdef __clang__
- #pragma GCC diagnostic ignored "-Wgnu-anonymous-struct"
- #endif
- #include "ggml-opencl.h"
- #include "ggml-backend.h"
- #include "ggml-impl.h"
- #include "ggml-backend-impl.h"
- #include "ggml.h"
- #include <CL/cl.h>
- #include <string.h>
- #include <cstddef>
- #include <cstdint>
- #include <atomic>
- #include <fstream>
- #include <limits>
- #include <vector>
- #include <string>
- #include <cmath>
- #undef MIN
- #undef MAX
- #define MIN(a, b) ((a) < (b) ? (a) : (b))
- #define MAX(a, b) ((a) > (b) ? (a) : (b))
- #define UNUSED(x) (void)(x)
- #define CL_CHECK(err) \
- do { \
- cl_int err_ = (err); \
- if (err_ != CL_SUCCESS) { \
- GGML_LOG_ERROR("ggml_opencl: %s error %d at %s:%d\n", \
- #err, err_, __FILE__, __LINE__); \
- GGML_ASSERT(0); \
- } \
- } while (0)
- //------------------------------------------------------------------------------
- // OpenCL
- //------------------------------------------------------------------------------
- bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor);
- enum GPU_FAMILY {
- ADRENO,
- INTEL,
- UNKNOWN,
- };
- enum ADRENO_GPU_GEN {
- ADRENO_UNKNOWN,
- A7X,
- A8X,
- X1E,
- };
- static ADRENO_GPU_GEN get_adreno_gpu_gen(const char *device_name) {
- if (strstr(device_name, "730") ||
- strstr(device_name, "740") ||
- strstr(device_name, "750")) {
- return ADRENO_GPU_GEN::A7X;
- }
- if (strstr(device_name, "830")) {
- return ADRENO_GPU_GEN::A8X;
- }
- if (strstr(device_name, "X1")) {
- return ADRENO_GPU_GEN::X1E;
- }
- return ADRENO_GPU_GEN::ADRENO_UNKNOWN;
- }
- static int get_adreno_cl_compiler_version(const char *driver_version) {
- std::string driver_ver_str(driver_version);
- size_t compiler_ver_pos = driver_ver_str.find("E031");
- size_t compiler_ver_len = 13;
- size_t compiler_ver_offset = 5;
- if (compiler_ver_pos == std::string::npos) {
- compiler_ver_pos = driver_ver_str.find("DX");
- if (compiler_ver_pos == std::string::npos) {
- return -1;
- }
- compiler_ver_len = 11;
- compiler_ver_offset = 3;
- }
- std::string compiler_ver_str = driver_ver_str.substr(compiler_ver_pos, compiler_ver_len);
- std::string major_ver_str = compiler_ver_str.substr(compiler_ver_offset, 2);
- return std::atoi(major_ver_str.c_str());
- }
- // backend device context
- struct ggml_backend_opencl_device_context {
- cl_platform_id platform;
- std::string platform_name;
- cl_device_id device;
- std::string device_name;
- };
- // backend context
- struct ggml_backend_opencl_context {
- cl_device_id device;
- std::string device_name;
- std::string driver_version;
- GPU_FAMILY gpu_family;
- ADRENO_GPU_GEN adreno_gen;
- cl_int alignment;
- size_t max_alloc_size;
- bool fp16_support;
- int adreno_wave_size;
- cl_context context;
- cl_command_queue queue;
- cl_program program;
- cl_program program_1;
- cl_program program_2;
- cl_kernel kernel_add, kernel_add_row;
- cl_kernel kernel_mul, kernel_mul_row;
- cl_kernel kernel_scale;
- cl_kernel kernel_silu, kernel_silu_4;
- cl_kernel kernel_gelu, kernel_gelu_4;
- cl_kernel kernel_relu;
- cl_kernel kernel_clamp;
- cl_kernel kernel_norm;
- cl_kernel kernel_rms_norm;
- cl_kernel kernel_diag_mask_inf, kernel_diag_mask_inf_8;
- cl_kernel kernel_soft_max, kernel_soft_max_4;
- cl_kernel kernel_soft_max_f16, kernel_soft_max_4_f16;
- cl_kernel kernel_get_rows_f32, kernel_get_rows_f16, kernel_get_rows_q4_0;
- cl_kernel kernel_rope_norm_f32, kernel_rope_norm_f16, kernel_rope_neox_f32, kernel_rope_neox_f16;
- cl_kernel kernel_cpy_f16_f16, kernel_cpy_f16_f32, kernel_cpy_f32_f16, kernel_cpy_f32_f32;
- cl_kernel kernel_mul_mat_f32_f32;
- cl_kernel kernel_mul_mat_f16_f16;
- cl_kernel kernel_mul_mat_f16_f32_1row;
- cl_kernel kernel_mul_mat_f16_f32;
- cl_kernel kernel_mul_mat_f16_f32_l4;
- cl_kernel kernel_mul_mat_q4_0_f32, kernel_mul_mat_q4_0_f32_v;
- cl_kernel kernel_convert_block_q4_0, kernel_restore_block_q4_0, kernel_mul_mat_q4_0_f32_flat;
- cl_kernel kernel_mul_mat_q4_0_f32_8x_flat;
- cl_kernel kernel_convert_block_q4_0_noshuffle, kernel_mul_mat_q4_0_f32_flat_v0,
- kernel_mul_mat_q4_0_f32_flat_img_v0;
- cl_kernel kernel_mul_mat_q4_0_f32_1d_8x_flat, kernel_mul_mat_q4_0_f32_1d_16x_flat;
- cl_kernel kernel_mul_mv_q6_K_f32;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Transpose kernels
- cl_program program_transpose_32;
- cl_program program_transpose_32_16;
- cl_program program_transpose_16;
- cl_kernel kernel_transpose_32;
- cl_kernel kernel_transpose_32_16;
- cl_kernel kernel_transpose_16;
- cl_mem A_s_d_max; // max scale buffer size for transpose
- cl_mem A_q_d_max; // max weight buffer size for transpose
- cl_mem B_d_max; // max activation buffer size for transpose
- // Gemm and Gemv related programs, kernels, etc
- cl_program program_CL_gemm;
- cl_program program_CL_gemv_general;
- cl_program program_CL_gemv_4096_1_11008;
- cl_program program_CL_gemv_4096_1_4096;
- cl_program program_CL_gemv_11008_1_4096;
- cl_program program_CL_gemv_32000_1_4096;
- cl_kernel CL_mul_mat_Ab_Bi_8x4;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
- cl_kernel CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- };
- static ggml_backend_device g_ggml_backend_opencl_device;
- static ggml_backend_opencl_device_context g_ggml_ctx_dev_main {
- /*.platform =*/ nullptr,
- /*.platform_nane =*/ "",
- /*.device =*/ nullptr,
- /*.device_name =*/ "",
- };
- static int ggml_backend_opencl_n_devices = 0;
- // Profiling
- #ifdef GGML_OPENCL_PROFILING
- struct ProfilingInfo {
- std::string op_name;
- std::string kernel_name;
- // Kernel execution time in nanoseconds.
- cl_ulong duration_ns;
- // Global and local work sizes.
- size_t global_size[3];
- size_t local_size[3];
- // Op output size.
- size_t output_size[4];
- };
- std::vector<ProfilingInfo> g_profiling_info;
- #endif
- inline std::string read_file(const std::string &path) {
- std::ifstream ifs(path);
- if (!ifs) {
- return "";
- }
- std::string text;
- ifs.seekg(0, std::ios::end);
- text.resize(ifs.tellg());
- ifs.seekg(0, std::ios::beg);
- ifs.read(&text[0], text.size());
- return text;
- }
- static cl_program build_program_from_source(cl_context ctx, cl_device_id dev, const char* program_buffer, const std::string &compile_opts) {
- cl_program p;
- char *program_log;
- size_t program_size;
- size_t log_size;
- int err;
- program_size = strlen(program_buffer);
- p = clCreateProgramWithSource(ctx, 1, (const char**)&program_buffer, &program_size, &err);
- if(err < 0) {
- GGML_LOG_ERROR("OpenCL error creating program");
- exit(1);
- }
- err = clBuildProgram(p, 0, NULL, compile_opts.c_str(), NULL, NULL);
- if(err < 0) {
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, 0, NULL, &log_size);
- program_log = (char*) malloc(log_size + 1);
- program_log[log_size] = '\0';
- clGetProgramBuildInfo(p, dev, CL_PROGRAM_BUILD_LOG, log_size + 1, program_log, NULL);
- GGML_LOG_ERROR("ggml_opencl: kernel compile error:\n\n%s\n", program_log);
- free(program_log);
- exit(1);
- }
- return p;
- }
- static ggml_backend_opencl_context * ggml_cl2_init(ggml_backend_dev_t dev) {
- static bool initialized = false;
- static ggml_backend_opencl_context *backend_ctx = nullptr;
- if (initialized) {
- return backend_ctx;
- }
- ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *)dev->context;
- GGML_ASSERT(dev_ctx);
- GGML_ASSERT(dev_ctx->platform == nullptr);
- GGML_ASSERT(dev_ctx->device == nullptr);
- GGML_ASSERT(backend_ctx == nullptr);
- initialized = true;
- backend_ctx = new ggml_backend_opencl_context();
- backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
- cl_int err;
- #ifdef GGML_PROFILE_OPENCL
- GGML_LOG_INFO("ggml_opencl: OpenCL profiling enabled\n");
- #endif
- struct cl_device;
- struct cl_platform {
- cl_platform_id id;
- unsigned number;
- char name[128];
- char vendor[128];
- struct cl_device * devices;
- unsigned n_devices;
- struct cl_device * default_device;
- };
- struct cl_device {
- struct cl_platform * platform;
- cl_device_id id;
- unsigned number;
- cl_device_type type;
- char name[128];
- };
- enum { NPLAT = 16, NDEV = 16 };
- struct cl_platform platforms[NPLAT];
- unsigned n_platforms = 0;
- struct cl_device devices[NDEV];
- unsigned n_devices = 0;
- struct cl_device * default_device = NULL;
- cl_platform_id platform_ids[NPLAT];
- if (clGetPlatformIDs(NPLAT, platform_ids, &n_platforms) != CL_SUCCESS) {
- GGML_LOG_ERROR("ggml_opencl: plaform IDs not available.\n");
- return backend_ctx;
- }
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- p->number = i;
- p->id = platform_ids[i];
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_NAME, sizeof(p->name), &p->name, NULL));
- CL_CHECK(clGetPlatformInfo(p->id, CL_PLATFORM_VENDOR, sizeof(p->vendor), &p->vendor, NULL));
- cl_device_id device_ids[NDEV];
- cl_int clGetDeviceIDsError = clGetDeviceIDs(p->id, CL_DEVICE_TYPE_ALL, NDEV, device_ids, &p->n_devices);
- if (clGetDeviceIDsError == CL_DEVICE_NOT_FOUND) {
- p->n_devices = 0;
- } else {
- CL_CHECK(clGetDeviceIDsError);
- }
- p->devices = p->n_devices > 0 ? &devices[n_devices] : NULL;
- p->default_device = NULL;
- for (unsigned j = 0; j < p->n_devices; j++) {
- struct cl_device * d = &devices[n_devices];
- d->number = n_devices++;
- d->id = device_ids[j];
- d->platform = p;
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_NAME, sizeof(d->name), &d->name, NULL));
- CL_CHECK(clGetDeviceInfo(d->id, CL_DEVICE_TYPE, sizeof(d->type), &d->type, NULL));
- if (p->default_device == NULL && d->type == CL_DEVICE_TYPE_GPU) {
- p->default_device = d;
- }
- }
- if (default_device == NULL && p->default_device != NULL) {
- default_device = p->default_device;
- }
- }
- if (n_devices == 0) {
- GGML_LOG_ERROR("ggml_opencl: could find any OpenCL devices.\n");
- return backend_ctx;
- }
- char * user_platform_string = getenv("GGML_OPENCL_PLATFORM");
- char * user_device_string = getenv("GGML_OPENCL_DEVICE");
- int user_platform_number = -1;
- int user_device_number = -1;
- unsigned n;
- if (user_platform_string != NULL && sscanf(user_platform_string, " %u", &n) == 1 && n < n_platforms) {
- user_platform_number = (int)n;
- }
- if (user_device_string != NULL && sscanf(user_device_string, " %u", &n) == 1 && n < n_devices) {
- user_device_number = (int)n;
- }
- if (user_platform_number != -1 && user_device_number != -1) {
- cl_platform* platform = &platforms[user_platform_number];
- if ((unsigned)user_device_number >= platform->n_devices) {
- GGML_LOG_ERROR("ggml_opencl: invalid device number %d\n", user_device_number);
- exit(1);
- }
- default_device = &platform->devices[user_device_number];
- } else {
- struct cl_device * selected_devices = devices;
- unsigned n_selected_devices = n_devices;
- if (user_platform_number == -1 && user_platform_string != NULL && user_platform_string[0] != 0) {
- for (unsigned i = 0; i < n_platforms; i++) {
- struct cl_platform * p = &platforms[i];
- if (strstr(p->name, user_platform_string) != NULL ||
- strstr(p->vendor, user_platform_string) != NULL) {
- user_platform_number = (int)i;
- break;
- }
- }
- if (user_platform_number == -1) {
- GGML_LOG_ERROR("ggml_opencl: no platform matching '%s' was found.\n", user_platform_string);
- exit(1);
- }
- }
- if (user_platform_number != -1) {
- struct cl_platform * p = &platforms[user_platform_number];
- selected_devices = p->devices;
- n_selected_devices = p->n_devices;
- default_device = p->default_device;
- if (n_selected_devices == 0) {
- GGML_LOG_ERROR("ggml_opencl: selected platform '%s' does not have any devices.\n", p->name);
- exit(1);
- }
- }
- if (user_device_number == -1 && user_device_string != NULL && user_device_string[0] != 0) {
- for (unsigned i = 0; i < n_selected_devices; i++) {
- struct cl_device * d = &selected_devices[i];
- if (strstr(d->name, user_device_string) != NULL) {
- user_device_number = d->number;
- break;
- }
- }
- if (user_device_number == -1) {
- GGML_LOG_ERROR("ggml_opencl: no device matching '%s' was found.\n", user_device_string);
- exit(1);
- }
- }
- if (user_device_number != -1) {
- selected_devices = &devices[user_device_number];
- n_selected_devices = 1;
- default_device = &selected_devices[0];
- }
- GGML_ASSERT(n_selected_devices > 0);
- if (default_device == NULL) {
- default_device = &selected_devices[0];
- }
- }
- GGML_LOG_INFO("ggml_opencl: selecting platform: '%s'\n", default_device->platform->name);
- GGML_LOG_INFO("ggml_opencl: selecting device: '%s'\n", default_device->name);
- if (default_device->type != CL_DEVICE_TYPE_GPU) {
- GGML_LOG_WARN("ggml_opencl: warning, not a GPU: '%s'.\n", default_device->name);
- }
- dev_ctx->platform = default_device->platform->id;
- dev_ctx->device = default_device->id;
- backend_ctx->device = default_device->id;
- if (strstr(default_device->name, "Adreno")) {
- backend_ctx->gpu_family = GPU_FAMILY::ADRENO;
- backend_ctx->adreno_gen = get_adreno_gpu_gen(default_device->name);
- // Default wave size is 128, A8x uses 64.
- if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A8X) {
- backend_ctx->adreno_wave_size = 64;
- } else if (backend_ctx->adreno_gen == ADRENO_GPU_GEN::A7X ||
- backend_ctx->adreno_gen == ADRENO_GPU_GEN::X1E) {
- backend_ctx->adreno_wave_size = 128;
- } else {
- backend_ctx->adreno_wave_size = 128;
- GGML_LOG_WARN("ggml_opencl: Unsupported Adreno GPU: %s, "
- "using wave size %d, "
- "may not work as expected\n",
- backend_ctx->device_name.c_str(), backend_ctx->adreno_wave_size);
- }
- } else if (strstr(default_device->name, "Intel")) {
- backend_ctx->gpu_family = GPU_FAMILY::INTEL;
- } else {
- GGML_LOG_ERROR("Unsupported GPU: %s\n", default_device->name);
- backend_ctx->gpu_family = GPU_FAMILY::UNKNOWN;
- return backend_ctx;
- }
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- if (backend_ctx->gpu_family != GPU_FAMILY::ADRENO) {
- GGML_LOG_ERROR("ggml_opencl: Adreno-specific kernels should not be enabled for non-Adreno GPUs; "
- "run on an Adreno GPU or recompile with CMake option `-DGGML_OPENCL_USE_ADRENO_KERNELS=OFF`\n");
- return backend_ctx;
- }
- #endif
- // Populate backend device name
- dev_ctx->platform_name = default_device->platform->name;
- dev_ctx->device_name = default_device->name;
- backend_ctx->device_name = default_device->name;
- // A local ref of cl_device_id for convenience
- cl_device_id device = backend_ctx->device;
- // Check device OpenCL version, OpenCL 2.0 or above is required
- size_t device_ver_str_size;
- clGetDeviceInfo(device, CL_DEVICE_VERSION, 0, NULL, &device_ver_str_size);
- char *device_ver_buffer = (char *)alloca(device_ver_str_size + 1);
- clGetDeviceInfo(device, CL_DEVICE_VERSION, device_ver_str_size, device_ver_buffer, NULL);
- device_ver_buffer[device_ver_str_size] = '\0';
- GGML_LOG_INFO("ggml_opencl: device OpenCL version: %s\n", device_ver_buffer);
- if (strstr(device_ver_buffer, "OpenCL 2") == NULL &&
- strstr(device_ver_buffer, "OpenCL 3") == NULL) {
- GGML_LOG_ERROR("ggml_opencl: OpenCL 2.0 or above is required\n");
- return backend_ctx;
- }
- // Check driver version
- size_t driver_version_str_size;
- clGetDeviceInfo(device, CL_DRIVER_VERSION, 0, NULL, &driver_version_str_size);
- char *driver_version = (char *)alloca(driver_version_str_size + 1);
- clGetDeviceInfo(device, CL_DRIVER_VERSION, driver_version_str_size, driver_version, NULL);
- driver_version[driver_version_str_size] = '\0';
- GGML_LOG_INFO("ggml_opencl: OpenCL driver: %s\n", driver_version);
- backend_ctx->driver_version = driver_version;
- int adreno_cl_compiler_version = get_adreno_cl_compiler_version(driver_version);
- bool has_vector_subgroup_broadcast =
- adreno_cl_compiler_version >= 47 || adreno_cl_compiler_version == 17;
- GGML_LOG_INFO("ggml_opencl: vector subgroup broadcast support: %s\n",
- has_vector_subgroup_broadcast ? "true" : "false");
- size_t ext_str_size;
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &ext_str_size);
- char *ext_buffer = (char *)alloca(ext_str_size + 1);
- clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, ext_str_size, ext_buffer, NULL);
- ext_buffer[ext_str_size] = '\0'; // ensure it is null terminated
- // Check if ext_buffer contains cl_khr_fp16
- backend_ctx->fp16_support = strstr(ext_buffer, "cl_khr_fp16") != NULL;
- GGML_LOG_INFO("ggml_opencl: device FP16 support: %s\n", backend_ctx->fp16_support ? "true" : "false");
- // fp16 is required
- if (!backend_ctx->fp16_support) {
- GGML_LOG_ERROR("ggml_opencl: device does not support FP16\n");
- return backend_ctx;
- }
- // If OpenCL 3.0 is supported, then check for cl_khr_subgroups, which becomes
- // optional in OpenCL 3.0 (cl_khr_subgroup is mandatory in OpenCL 2.x)
- if (strstr(device_ver_buffer, "OpenCL 3") &&
- strstr(ext_buffer, "cl_khr_subgroups") == NULL &&
- strstr(ext_buffer, "cl_intel_subgroups") == NULL) {
- GGML_LOG_ERROR("ggml_opencl: device does not support subgroups (cl_khr_subgroups or cl_intel_subgroups) "
- "(note that subgroups is an optional feature in OpenCL 3.0)\n");
- return backend_ctx;
- }
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_MEM_BASE_ADDR_ALIGN, sizeof(cl_uint), &backend_ctx->alignment, NULL));
- GGML_LOG_INFO("ggml_opencl: mem base addr align: %u\n", backend_ctx->alignment);
- clGetDeviceInfo(device, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &backend_ctx->max_alloc_size, NULL);
- GGML_LOG_INFO("ggml_opencl: max mem alloc size: %zu MB\n", backend_ctx->max_alloc_size/1024/1024);
- // Check SVM.
- cl_device_svm_capabilities svm_caps;
- CL_CHECK(clGetDeviceInfo(device, CL_DEVICE_SVM_CAPABILITIES, sizeof(cl_device_svm_capabilities), &svm_caps, 0));
- GGML_LOG_INFO("ggml_opencl: SVM coarse grain buffer support: %s\n",
- svm_caps & CL_DEVICE_SVM_COARSE_GRAIN_BUFFER ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM fine grain buffer support: %s\n",
- svm_caps & CL_DEVICE_SVM_FINE_GRAIN_BUFFER ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM fine grain system support: %s\n",
- svm_caps & CL_DEVICE_SVM_FINE_GRAIN_SYSTEM ? "true" : "false");
- GGML_LOG_INFO("ggml_opencl: SVM atomics support: %s\n",
- svm_caps & CL_DEVICE_SVM_ATOMICS ? "true" : "false");
- // Print out configurations
- #ifdef GGML_OPENCL_SOA_Q
- GGML_LOG_INFO("ggml_opencl: flattening quantized weights representation as struct of arrays (GGML_OPENCL_SOA_Q)\n");
- #endif // GGML_OPENCL_SOA_Q
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- GGML_LOG_INFO("ggml_opencl: using kernels optimized for Adreno (GGML_OPENCL_USE_ADRENO_KERNELS)\n");
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- cl_context_properties properties[] = {
- (intptr_t)CL_CONTEXT_PLATFORM, (intptr_t)dev_ctx->platform, 0
- };
- CL_CHECK((backend_ctx->context = clCreateContext(properties, 1, &device, NULL, NULL, &err), err));
- // A local ref of cl_context for convenience
- cl_context context = backend_ctx->context;
- //CL_CHECK((queue = clCreateCommandQueue(context, device, CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE, &err),
- // (err != CL_INVALID_QUEUE_PROPERTIES && err != CL_INVALID_VALUE ? err :
- // (queue = clCreateCommandQueue(context, device, 0, &err), err)
- //)));
- cl_command_queue_properties command_queue_props = 0;
- #ifdef GGML_OPENCL_PROFILING
- command_queue_props |= CL_QUEUE_PROFILING_ENABLE;
- #endif
- CL_CHECK((backend_ctx->queue = clCreateCommandQueue(context, device, command_queue_props, &err), err));
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src {
- #include "ggml-opencl.cl.h"
- };
- #else
- const std::string kernel_src = read_file("ggml-opencl.cl");
- #endif
- std::string compile_opts =
- "-cl-std=CL2.0 -cl-mad-enable -cl-unsafe-math-optimizations "
- "-cl-finite-math-only -cl-fast-relaxed-math ";
- backend_ctx->program = build_program_from_source(context, device, kernel_src.c_str(), compile_opts);
- // Non matmul kernels.
- CL_CHECK((backend_ctx->kernel_get_rows_f32 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_f16 = clCreateKernel(backend_ctx->program, "kernel_get_rows_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_get_rows_q4_0 = clCreateKernel(backend_ctx->program, "kernel_get_rows_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_add = clCreateKernel(backend_ctx->program, "kernel_add", &err), err));
- CL_CHECK((backend_ctx->kernel_add_row = clCreateKernel(backend_ctx->program, "kernel_add_row", &err), err));
- CL_CHECK((backend_ctx->kernel_mul = clCreateKernel(backend_ctx->program, "kernel_mul", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_row = clCreateKernel(backend_ctx->program, "kernel_mul_row", &err), err));
- CL_CHECK((backend_ctx->kernel_scale = clCreateKernel(backend_ctx->program, "kernel_scale", &err), err));
- CL_CHECK((backend_ctx->kernel_silu = clCreateKernel(backend_ctx->program, "kernel_silu", &err), err));
- CL_CHECK((backend_ctx->kernel_silu_4 = clCreateKernel(backend_ctx->program, "kernel_silu_4", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu = clCreateKernel(backend_ctx->program, "kernel_gelu", &err), err));
- CL_CHECK((backend_ctx->kernel_gelu_4 = clCreateKernel(backend_ctx->program, "kernel_gelu_4", &err), err));
- CL_CHECK((backend_ctx->kernel_relu = clCreateKernel(backend_ctx->program, "kernel_relu", &err), err));
- CL_CHECK((backend_ctx->kernel_clamp = clCreateKernel(backend_ctx->program, "kernel_clamp", &err), err));
- CL_CHECK((backend_ctx->kernel_norm = clCreateKernel(backend_ctx->program, "kernel_norm", &err), err));
- CL_CHECK((backend_ctx->kernel_rms_norm = clCreateKernel(backend_ctx->program, "kernel_rms_norm", &err), err));
- CL_CHECK((backend_ctx->kernel_diag_mask_inf = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf", &err), err));
- CL_CHECK((backend_ctx->kernel_diag_mask_inf_8 = clCreateKernel(backend_ctx->program, "kernel_diag_mask_inf_8", &err), err));
- CL_CHECK((backend_ctx->kernel_soft_max = clCreateKernel(backend_ctx->program, "kernel_soft_max", &err), err));
- CL_CHECK((backend_ctx->kernel_soft_max_4 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4", &err), err));
- CL_CHECK((backend_ctx->kernel_soft_max_f16 = clCreateKernel(backend_ctx->program, "kernel_soft_max_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_soft_max_4_f16 = clCreateKernel(backend_ctx->program, "kernel_soft_max_4_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_norm_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_norm_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_norm_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f32 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_rope_neox_f16 = clCreateKernel(backend_ctx->program, "kernel_rope_neox_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f16_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f16 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_cpy_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_cpy_f32_f32", &err), err));
- // Matmul kernels.
- CL_CHECK((backend_ctx->kernel_mul_mat_f32_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f32_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f16 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f16", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_1row = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_1row", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_f16_f32_l4 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_f16_f32_l4", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32 = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_v = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_v", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_flat", &err), err));
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_convert_block_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_restore_block_q4_0 = clCreateKernel(backend_ctx->program, "kernel_restore_block_q4_0", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat = clCreateKernel(backend_ctx->program, "kernel_mul_mat_q4_0_f32_8x_flat", &err), err));
- // Load additional mulmat kernels.
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_1 {
- #include "ggml-opencl_mm.cl.h"
- };
- #else
- const std::string kernel_src_1 = read_file("ggml-opencl_mm.cl");
- #endif
- backend_ctx->program_1 = build_program_from_source(context, device, kernel_src_1.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_8x_flat", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_1d_16x_flat", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mv_q6_K_f32 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mv_q6_K_f32", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_v0", &err), err));
- CL_CHECK((backend_ctx->kernel_mul_mat_q4_0_f32_flat_img_v0 = clCreateKernel(backend_ctx->program_1, "kernel_mul_mat_q4_0_f32_flat_img_v0", &err), err));
- // Load additional data conversion kernels.
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_2 {
- #include "ggml-opencl_cvt.cl.h"
- };
- #else
- const std::string kernel_src_2 = read_file("ggml-opencl_cvt.cl");
- #endif
- backend_ctx->program_2 = build_program_from_source(context, device, kernel_src_2.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_convert_block_q4_0_noshuffle = clCreateKernel(backend_ctx->program_2, "kernel_convert_block_q4_0_noshuffle", &err), err));
- // Kernels for Adreno
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string transpose_32_src {
- #include "ggml-opencl_transpose_32.cl.h"
- };
- #else
- const std::string transpose_32_src = read_file("ggml-opencl_transpose_32.cl");
- #endif
- backend_ctx->program_transpose_32 = build_program_from_source(context, device, transpose_32_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_32 = clCreateKernel(backend_ctx->program_transpose_32, "kernel_transpose_32", &err), err));
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string transpose_32_16_src {
- #include "ggml-opencl_transpose_32_16.cl.h"
- };
- #else
- const std::string transpose_32_16_src = read_file("ggml-opencl_transpose_32_16.cl");
- #endif
- backend_ctx->program_transpose_32_16 = build_program_from_source(context, device, transpose_32_16_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_32_16 = clCreateKernel(backend_ctx->program_transpose_32_16, "kernel_transpose_32_16", &err), err));
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string transpose_16_src {
- #include "ggml-opencl_transpose_16.cl.h"
- };
- #else
- const std::string transpose_16_src = read_file("ggml-opencl_transpose_16.cl");
- #endif
- backend_ctx->program_transpose_16 = build_program_from_source(context, device, transpose_16_src.c_str(), compile_opts);
- CL_CHECK((backend_ctx->kernel_transpose_16 = clCreateKernel(backend_ctx->program_transpose_16, "kernel_transpose_16", &err), err));
- // Gemv general
- std::string CL_gemv_compile_opts =
- " -cl-std=CL2.0 "
- " -cl-mad-enable "
- " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv_general {
- #include "ggml-opencl_gemv_noshuffle_general.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemv_general = read_file("ggml-opencl_gemv_noshuffle_general.cl");
- #endif
- backend_ctx->program_CL_gemv_general = build_program_from_source(
- context, device, kernel_src_CL_gemv_general.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general = clCreateKernel(backend_ctx->program_CL_gemv_general, "kernel_gemv_noshuffle", &err), err));
- // Gemv 2048, 16384
- CL_gemv_compile_opts =
- " -cl-std=CL2.0 "
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemv {
- #include "ggml-opencl_gemv_noshuffle.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemv = read_file("ggml-opencl_gemv_noshuffle.cl");
- #endif
- backend_ctx->program_CL_gemv_4096_1_4096 = build_program_from_source(
- context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_4096, "kernel_gemv_noshuffle", &err), err));
- // Gemv 2048, 16384
- CL_gemv_compile_opts =
- " -cl-std=CL2.0 "
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=2048 "
- " -DBLOCK_STRIDE_A=16384 "
- " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_4096_1_11008 = build_program_from_source(
- context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008 = clCreateKernel(backend_ctx->program_CL_gemv_4096_1_11008, "kernel_gemv_noshuffle", &err), err));
- // Gemv 5504, 44032
- CL_gemv_compile_opts =
- " -cl-std=CL2.0 "
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=5504 "
- " -DBLOCK_STRIDE_A=44032 "
- " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_11008_1_4096 = build_program_from_source(
- context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_11008_1_4096, "kernel_gemv_noshuffle", &err), err));
- // Gemv 16000, 128000
- CL_gemv_compile_opts =
- " -cl-std=CL2.0 "
- " -cl-mad-enable "
- " -DLINE_STRIDE_A=16000 "
- " -DBLOCK_STRIDE_A=128000 "
- " -DSIMDGROUP_WIDTH=" + std::to_string(backend_ctx->adreno_wave_size);
- if (has_vector_subgroup_broadcast) {
- CL_gemv_compile_opts += " -DVECTOR_SUB_GROUP_BROADCAT ";
- }
- backend_ctx->program_CL_gemv_32000_1_4096 = build_program_from_source(context, device, kernel_src_CL_gemv.c_str(), CL_gemv_compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096 = clCreateKernel(backend_ctx->program_CL_gemv_32000_1_4096, "kernel_gemv_noshuffle", &err), err));
- // Gemm
- #ifdef GGML_OPENCL_EMBED_KERNELS
- const std::string kernel_src_CL_gemm {
- #include "ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h"
- };
- #else
- const std::string kernel_src_CL_gemm = read_file("ggml-opencl_mul_mat_Ab_Bi_8x4.cl");
- #endif
- backend_ctx->program_CL_gemm = build_program_from_source(context, device, kernel_src_CL_gemm.c_str(), compile_opts);
- CL_CHECK((backend_ctx->CL_mul_mat_Ab_Bi_8x4 = clCreateKernel(backend_ctx->program_CL_gemm, "kernel_mul_mat_Ab_Bi_8x4", &err), err));
- // Allocate intermediate buffers and images
- size_t max_A_q_d_bytes = 311164928;
- size_t max_A_s_d_bytes = 38895616;
- size_t max_B_d_bytes = 45088768;
- CL_CHECK((backend_ctx->A_q_d_max = clCreateBuffer(context, 0, max_A_q_d_bytes, NULL, &err), err));
- CL_CHECK((backend_ctx->A_s_d_max = clCreateBuffer(context, 0, max_A_s_d_bytes, NULL, &err), err));
- CL_CHECK((backend_ctx->B_d_max = clCreateBuffer(context, 0, max_B_d_bytes, NULL, &err), err));
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- // For now we support a single devices
- ggml_backend_opencl_n_devices = 1;
- return backend_ctx;
- }
- static void ggml_cl2_free(void) {
- #ifdef GGML_OPENCL_PROFILING
- FILE * fperf = fopen("cl_profiling.csv", "w");
- if (!fperf) {
- GGML_LOG_ERROR("Failed to open cl_profiling.csv\n");
- return;
- }
- float total_kernel_time = 0;
- fprintf(fperf, "op name, kernel name, duration (ms), global size, local size, output size\n");
- for (const ProfilingInfo & info : g_profiling_info) {
- total_kernel_time += info.duration_ns/1.e6f;
- fprintf(fperf, "%s,%s,%f,%zux%zux%zu,%zux%zux%zu,%zux%zux%zux%zu\n",
- info.op_name.c_str(), info.kernel_name.c_str(), info.duration_ns/1.e6f,
- info.global_size[0], info.global_size[1], info.global_size[2],
- info.local_size[0], info.local_size[2], info.local_size[2],
- info.output_size[0], info.output_size[1], info.output_size[2], info.output_size[3]);
- }
- fclose(fperf);
- GGML_LOG_INFO("ggml_opencl: total kernel time: %f\n", total_kernel_time);
- #endif
- }
- //------------------------------------------------------------------------------
- // Tensor extra management
- //------------------------------------------------------------------------------
- struct ggml_tensor_extra_cl {
- // The buffer object that holds the data.
- cl_mem data_device;
- // The offset into the buffer object. This is primarily for scratch buffer
- // and view operation.
- // NB: this offset no longer includes view offset (view_offs). Whenever this
- // offset is used, view_offs should be considered.
- cl_ulong offset;
- // The actual size of the cl_mem object. This is needed when returning the
- // block to the pool.
- size_t actual_size;
- void reset() {
- data_device = nullptr;
- offset = 0;
- actual_size = 0;
- }
- };
- // Additional tensor extra structs for quantized tensors.
- // These tensors are loaded from files and should not be allocated in scratch --
- // they should always be allocated from the pool. Hence, they do not have an
- // `offset`, which indicate their locations in the scratch buffer.
- struct ggml_tensor_extra_cl_q4_0 {
- // Quantized values.
- cl_mem q = nullptr;
- // Quantized values in image1d_buffer_t.
- cl_mem q_img = nullptr;
- // Scales.
- cl_mem d = nullptr;
- // Scales in image1d_buffer_t.
- cl_mem d_img = nullptr;
- // Size of quantized values.
- size_t size_q = 0;
- // Size of scales.
- size_t size_d = 0;
- ~ggml_tensor_extra_cl_q4_0() {
- reset();
- }
- void reset() {
- // q and d are subbuffers into the bigger buffer allocated in ggml_backend_buffer.
- // They must be properly released so that the original buffer can be
- // properly released to avoid memory leak.
- if (q != nullptr) {
- CL_CHECK(clReleaseMemObject(q));
- q = nullptr;
- }
- if (d != nullptr) {
- CL_CHECK(clReleaseMemObject(d));
- d = nullptr;
- }
- // Currently, q_img and d_img are only initialized when SMALL_ALLOC is
- // enabled. They point to the images in ggml_backend_opencl_buffer_context.
- // So, there is no need to release them here.
- // TODO: initialize them for non SMALL_PATH path, or remove them.
- q_img = nullptr;
- d_img = nullptr;
- size_q = 0;
- size_d = 0;
- }
- };
- //------------------------------------------------------------------------------
- // Backend API
- //------------------------------------------------------------------------------
- //
- // backend
- //
- static const char * ggml_backend_opencl_name(ggml_backend_t backend) {
- return "OpenCL";
- UNUSED(backend);
- }
- static void ggml_backend_opencl_free(ggml_backend_t backend) {
- ggml_cl2_free();
- GGML_UNUSED(backend);
- }
- static void ggml_backend_opencl_set_tensor_async(ggml_backend_t backend, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- GGML_UNUSED(backend);
- GGML_UNUSED(tensor);
- GGML_UNUSED(data);
- GGML_UNUSED(offset);
- GGML_UNUSED(size);
- }
- static void ggml_backend_opencl_get_tensor_async(ggml_backend_t backend, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_UNUSED(backend);
- GGML_UNUSED(tensor);
- GGML_UNUSED(data);
- GGML_UNUSED(offset);
- GGML_UNUSED(size);
- }
- static bool ggml_backend_opencl_cpy_tensor_async(ggml_backend_t backend, const ggml_tensor * src, ggml_tensor * dst) {
- GGML_UNUSED(backend);
- GGML_UNUSED(src);
- GGML_UNUSED(dst);
- return false;
- }
- static void ggml_backend_opencl_synchronize(ggml_backend_t backend) {
- GGML_UNUSED(backend);
- }
- static ggml_status ggml_backend_opencl_graph_compute(ggml_backend_t backend, ggml_cgraph * cgraph) {
- for (int i = 0; i < cgraph->n_nodes; i++) {
- ggml_tensor * node = cgraph->nodes[i];
- if (node->op == GGML_OP_RESHAPE || node->op == GGML_OP_TRANSPOSE || node->op == GGML_OP_VIEW || node->op == GGML_OP_PERMUTE || node->op == GGML_OP_NONE) {
- continue;
- }
- bool ok = ggml_cl_compute_forward(backend, node);
- if (!ok) {
- GGML_LOG_ERROR("%s: error: op not supported %s (%s)\n", __func__, node->name, ggml_op_name(node->op));
- }
- GGML_ASSERT(ok);
- }
- return GGML_STATUS_SUCCESS;
- }
- static bool ggml_opencl_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- GGML_UNUSED(dev);
- switch (op->op) {
- case GGML_OP_NONE:
- return true;
- case GGML_OP_GET_ROWS:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- case GGML_TYPE_F16:
- return true;
- case GGML_TYPE_Q4_0:
- #ifdef GGML_OPENCL_SOA_Q
- // We do not support flattened Q4_0 (and possibly other Q's)
- return false;
- #else // GGML_OPENCL_SOA_Q
- return true;
- #endif // GGML_OPENCL_SOA_Q
- default:
- return false;
- }
- case GGML_OP_CPY:
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- switch (op->src[0]->type) {
- case GGML_TYPE_F32:
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- case GGML_TYPE_F16:
- switch (op->type) {
- case GGML_TYPE_F16:
- case GGML_TYPE_F32:
- return true;
- default:
- return false;
- }
- default:
- return false;
- }
- case GGML_OP_ADD:
- case GGML_OP_SCALE:
- case GGML_OP_MUL:
- return true;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(op)) {
- case GGML_UNARY_OP_GELU:
- case GGML_UNARY_OP_SILU:
- case GGML_UNARY_OP_RELU:
- return ggml_is_contiguous(op->src[0]);
- default:
- return false;
- }
- case GGML_OP_CLAMP:
- case GGML_OP_SOFT_MAX:
- case GGML_OP_NORM:
- case GGML_OP_RMS_NORM:
- return true;
- case GGML_OP_MUL_MAT:
- if (op->src[0]->type == GGML_TYPE_F16) {
- return true;
- } else if (op->src[0]->type == GGML_TYPE_F32) {
- return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
- } else if (op->src[0]->type == GGML_TYPE_Q4_0 ||
- op->src[0]->type == GGML_TYPE_Q6_K) {
- return op->src[1]->type == GGML_TYPE_F32 && ggml_is_contiguous(op->src[0]) && ggml_is_contiguous(op->src[1]);
- }
- return false;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- return true;
- case GGML_OP_DIAG_MASK_INF:
- return op->ne[3] == 1;
- case GGML_OP_ROPE: {
- const int mode = ((const int32_t *) op->op_params)[2];
- if (mode & GGML_ROPE_TYPE_MROPE) {
- return false;
- }
- if (mode & GGML_ROPE_TYPE_VISION) {
- return false;
- }
- return true;
- }
- default:
- return false;
- }
- }
- // Forward declaration - implementation appears later in the file.
- static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type);
- static ggml_guid_t ggml_backend_opencl_guid() {
- static ggml_guid guid = { 0xde, 0xe0, 0x70, 0xa2, 0x73, 0x4e, 0x4d, 0xbc, 0xb0, 0xc7, 0x4f, 0xd4, 0x6d, 0x4e, 0x90, 0xfe };
- return &guid;
- }
- static ggml_backend_i ggml_backend_opencl_i = {
- /* .get_name = */ ggml_backend_opencl_name,
- /* .free = */ ggml_backend_opencl_free,
- /* .set_tensor_async = */ NULL, /* ggml_backend_opencl_set_tensor_async */
- /* .get_tensor_async = */ NULL, /* ggml_backend_opencl_get_tensor_async */
- /* .cpy_tensor_async = */ NULL, /* ggml_backend_opencl_cpy_tensor_async */
- /* .synchronize = */ NULL, /* ggml_backend_opencl_synchronize */
- /* .graph_plan_create = */ NULL,
- /* .graph_plan_free = */ NULL,
- /* .graph_plan_update = */ NULL,
- /* .graph_plan_compute = */ NULL,
- /* .graph_compute = */ ggml_backend_opencl_graph_compute,
- /* .event_record = */ NULL,
- /* .event_wait = */ NULL,
- };
- ggml_backend_t ggml_backend_opencl_init(void) {
- ggml_backend_dev_t dev = ggml_backend_reg_dev_get(ggml_backend_opencl_reg(), 0);
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_opencl_guid(),
- /* .interface = */ ggml_backend_opencl_i,
- /* .device = */ dev,
- /* .context = */ backend_ctx
- };
- return backend;
- }
- bool ggml_backend_is_opencl(ggml_backend_t backend) {
- return backend && backend->iface.get_name == ggml_backend_opencl_name;
- }
- //
- // buffer
- //
- struct ggml_backend_opencl_buffer_context {
- // A buffer context can hold multiple cl_mem objects. This is for flattening
- // quantized weights and should be used with GGML_OPENCL_SMALL_ALLOC where
- // each tensor is allocated a separate buffer. When flattening is enabled
- // with small allocation, each tensor is backed by two cl_mem objects (for
- // quants and scales) packed into a backend_opencl_buffer.
- ggml_backend_opencl_buffer_context(cl_mem buf)
- : name("OpenCL") {
- buffer.push_back(buf);
- }
- ~ggml_backend_opencl_buffer_context() {
- for (cl_mem buf : buffer) {
- CL_CHECK(clReleaseMemObject(buf));
- }
- for (cl_mem im : img) {
- CL_CHECK(clReleaseMemObject(im));
- }
- // Delete all extras to trigger their destructors
- for (ggml_tensor_extra_cl * e : temp_tensor_extras) {
- delete e;
- }
- for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0) {
- delete e;
- }
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
- delete e;
- }
- }
- ggml_tensor_extra_cl * ggml_opencl_alloc_temp_tensor_extra() {
- ggml_tensor_extra_cl * extra;
- if (temp_tensor_extras.empty()) {
- extra = new ggml_tensor_extra_cl();
- } else {
- extra = temp_tensor_extras.back();
- temp_tensor_extras.pop_back();
- }
- temp_tensor_extras_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- ggml_tensor_extra_cl_q4_0 * ggml_opencl_alloc_temp_tensor_extra_q4_0() {
- ggml_tensor_extra_cl_q4_0 * extra;
- if (temp_tensor_extras_q4_0.empty()) {
- extra = new ggml_tensor_extra_cl_q4_0();
- } else {
- extra = temp_tensor_extras_q4_0.back();
- temp_tensor_extras_q4_0.pop_back();
- }
- temp_tensor_extras_q4_0_in_use.push_back(extra);
- extra->reset();
- return extra;
- }
- void reset() {
- for (ggml_tensor_extra_cl * e : temp_tensor_extras_in_use) {
- temp_tensor_extras.push_back(e);
- }
- temp_tensor_extras_in_use.clear();
- for (ggml_tensor_extra_cl_q4_0 * e : temp_tensor_extras_q4_0_in_use) {
- temp_tensor_extras_q4_0.push_back(e);
- }
- temp_tensor_extras_q4_0_in_use.clear();
- }
- // Pools for extras. Available extras are in `temp_tensor_extras`. Extras
- // being used are in `temp_tensor_extras_in_use`. At the first run, new
- // extras get created and put in `in_use`. When the buffer is reset via
- // the `reset` callback, all extras in `in_use` get moved to available extras
- // for reuse.
- std::vector<ggml_tensor_extra_cl *> temp_tensor_extras;
- std::vector<ggml_tensor_extra_cl *> temp_tensor_extras_in_use;
- std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0;
- std::vector<ggml_tensor_extra_cl_q4_0 *> temp_tensor_extras_q4_0_in_use;
- // The buffer_context is initially created by ggml_backend_buft_alloc_buffer
- // before any tensor is initialized (at the beginning of alloc_tensor_range).
- // Hence, there is alway a buffer object in this vector. When each tensor is
- // being initialized, this original buffer object will be released if both
- // flattening and small allocation are enabled, and additional buffer
- // objects will be created in init_tensor to represent flattened quantized
- // weights.
- std::vector<cl_mem> buffer;
- // These are image1d_buffer_t objects that wrap around the quants and scales.
- // For Q4_0 quantization, there should be two of them - one for quants and
- // one for scales. They should be populated only when flattening and small
- // allocation are enabled.
- std::vector<cl_mem> img;
- std::string name;
- };
- static void * const cl_ptr_base = (void *)(uintptr_t) 0x1000;
- static void ggml_backend_opencl_buffer_free_buffer(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- delete ctx;
- }
- static void * ggml_backend_opencl_buffer_get_base(ggml_backend_buffer_t buffer) {
- return cl_ptr_base;
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_init_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_cl2_init(buffer->buft->device);
- if (tensor->view_src != nullptr) {
- GGML_ASSERT(tensor->view_src->buffer->buft == buffer->buft);
- ggml_tensor_extra_cl * view_extra = (ggml_tensor_extra_cl *) tensor->view_src->extra;
- GGML_ASSERT(view_extra && "view_extra is nullptr?");
- // Reuse extra of the parent tensor. The offset of this view tensor
- // becomes `extra->offset + view_offs` and needs to be calculated when
- // it is used. This changes is needed because of the change to
- // ggml_alloc.c in https://github.com/ggerganov/llama.cpp/pull/7640.
- // `buffer` passed in here will always be `tensor->buffer`. It is OK
- // to allocate extras from the same buffer context for ordinary
- // intermediate tensors. But for views into kv cache tensors, doing so
- // would mess up the extras used by kv cache.
- // Before #7640, `buffer` is for intermediate tensors, which is always
- // different from that of kv cache tensors.
- //
- // NB: now extra->offset no longer accounts for view_offs.
- // NB: this should not apply to weight tensors (for end-to-end runs, but
- // may apply for test-backend-ops).
- // FIXME: if any unexpected results are seen, double check the offset -
- // there could be other places that need fix.
- tensor->extra = view_extra;
- } else {
- {
- size_t offset = (char *)tensor->data - (char *)cl_ptr_base;
- ggml_tensor_extra_cl * extra = ctx->ggml_opencl_alloc_temp_tensor_extra();
- extra->offset = offset;
- extra->data_device = ctx->buffer[0];
- extra->actual_size = ggml_nbytes(tensor);
- tensor->extra = extra;
- }
- }
- }
- // The optimized gemm and gemv kernels are used for large matrices without batch.
- // tensor is the quantized weights matrix.
- inline bool use_adreno_kernels(const ggml_tensor *tensor) {
- return tensor->ne[0] >= 512 && tensor->ne[1] >= 512 &&
- tensor->ne[2] == 1 && tensor->ne[3] == 1;
- }
- static void ggml_backend_opencl_buffer_set_tensor(ggml_backend_buffer_t buffer, ggml_tensor * tensor, const void * data, size_t offset, size_t size) {
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
- cl_context context = backend_ctx->context;
- cl_command_queue queue = backend_ctx->queue;
- #ifdef GGML_OPENCL_SOA_Q
- // We separate the quantized bits and scale from block_q4_0 by using an
- // additional kernel, where each thread handles a block. We first read the
- // original weights into a temporary buffer, then create two separate
- // buffers for quantized bits and scales, which are then populated by the
- // conversion kernel.
- if (tensor->type == GGML_TYPE_Q4_0) {
- // Tensors should have been preallocated, therefore they should
- // already have ggml_tensor_extra_cl as extra.
- ggml_tensor_extra_cl * extra_orig = (ggml_tensor_extra_cl *)tensor->extra;
- GGML_ASSERT(extra_orig && "Tesnors in OpenCL backend should have been allocated and initialized");
- // Allocate the new extra and create aliases from the original.
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ggml_tensor_extra_cl_q4_0 * extra = ctx->ggml_opencl_alloc_temp_tensor_extra_q4_0();
- size_t size_d = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*sizeof(ggml_fp16_t);
- size_t size_q = ggml_nelements(tensor)/ggml_blck_size(tensor->type)*ggml_blck_size(tensor->type)/2;
- GGML_ASSERT(size_d + size_q == ggml_nbytes(tensor) && "Incorrect tensor size");
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, data_device, CL_TRUE, 0,
- ggml_nbytes(tensor), data, 0, NULL, NULL));
- // We consider the specified offset arg as always, although For weights
- // the offset arg should be 0 (we do not assert this).
- //GGML_ASSERT(offset == 0);
- // We create subbuffers from the original tensor buffer for scales and
- // quants - i.e., scales and quants are aliases into the buffer obejct
- // that backs the original tensor. This is a cleaner way to adapt to the
- // new memory management.
- // In the old code, we allocate new buffers for scales and quants
- // respectively, which could still be done but would result in double
- // allocation; properly deallocating the preallocated buffer that backs
- // the tensors is tricky and would leak the backend specific information
- // into the general backend code.
- // Does this create misaligned subbuffers (alignment is 1024) in certain
- // cases ?
- cl_buffer_region region;
- // The original tensor memory is divided into scales and quants, i.e.,
- // we first store scales, then quants.
- // Create subbuffer for scales.
- region.origin = extra_orig->offset + tensor->view_offs + offset;
- region.size = size_d;
- extra->d = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- // Create subbuffer for quants.
- region.origin = extra_orig->offset + tensor->view_offs + offset + size_d;
- region.size = size_q;
- extra->q = clCreateSubBuffer(
- extra_orig->data_device, CL_MEM_READ_WRITE,
- CL_BUFFER_CREATE_TYPE_REGION, ®ion, &err);
- CL_CHECK(err);
- //cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- // The optimized kernels need weights in natural order, so unshuffle.
- if (use_adreno_kernels(tensor)) {
- kernel = backend_ctx->kernel_convert_block_q4_0_noshuffle;
- }
- #else
- cl_kernel kernel = backend_ctx->kernel_convert_block_q4_0;
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra->d));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clReleaseMemObject(data_device));
- tensor->extra = extra;
- // transpose the weights and scales
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- // Only do transpose for large, non batched matrix
- // TODO: use preallocated images instead of sub-buffer then image
- if (use_adreno_kernels(tensor)) {
- // <----------------------------------------------------------------------------------> //
- // start transpose
- // <----------------------------------------------------------------------------------> //
- int M = tensor->ne[1]; // ne01
- int K = tensor->ne[0]; // ne00
- // transpose is out of place, so we need to allocate transposed buffers
- // <----------------------------------------------------------------------------------> //
- // use sub_buffer of max buffer size instead
- size_t q_size_bytes = K * M / 8 * sizeof(float);
- cl_buffer_region region;
- region.origin = 0;
- region.size = q_size_bytes;
- cl_mem qT_d = clCreateSubBuffer(
- backend_ctx->A_q_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &err);
- // cl_mem qT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, q_size_bytes, NULL, &err);
- CL_CHECK(err);
- // size_t d_size_bytes = M * (K / 32) / 2 * sizeof(float);
- size_t d_size_bytes = M * (K / 32) * 2;
- region.origin = 0;
- region.size = d_size_bytes;
- cl_mem dT_d = clCreateSubBuffer(
- backend_ctx->A_s_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &err);
- // cl_mem dT_d = clCreateBuffer(context, CL_MEM_READ_WRITE, d_size_bytes, NULL, &err);
- CL_CHECK(err);
- // <----------------------------------------------------------------------------------> //
- // create images from the buffers
- // <----------------------------------------------------------------------------------> //
- cl_mem q_d_image1D;
- cl_mem d_d_image1D;
- cl_mem qT_d_image1D;
- cl_mem dT_d_image1D;
- cl_image_format img_fmt_1d = { CL_RGBA, CL_FLOAT };
- cl_image_desc img_desc_1d;
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 8 / 4;
- img_desc_1d.buffer = extra->q;
- q_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 8 / 4;
- img_desc_1d.buffer = qT_d;
- qT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 32 / 4 / 2;
- img_desc_1d.buffer = extra->d;
- d_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- img_fmt_1d = { CL_RGBA, CL_FLOAT };
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 32 / 4 / 2;
- img_desc_1d.buffer = dT_d;
- dT_d_image1D = clCreateImage(context, 0, &img_fmt_1d, &img_desc_1d, NULL, &err);
- CL_CHECK(err);
- // <----------------------------------------------------------------------------------> //
- // set up and call the transpose kernels
- // <----------------------------------------------------------------------------------> //
- // weights
- int height_q = M / 8;
- int width_q = K / 8 / 4;
- kernel = backend_ctx->kernel_transpose_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &q_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &qT_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_q));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_q));
- size_t local_size_q[3] = {4, 16, 1};
- size_t global_size_q[3] = {static_cast<size_t>(width_q), static_cast<size_t>(height_q), 1};
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_q, local_size_q, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // scales
- int height_s = M / 8;
- int width_s = K / 32 / 8;
- kernel = backend_ctx->kernel_transpose_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &dT_d_image1D));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_s));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_s));
- size_t local_size_s[3] = {4, 16, 1};
- size_t global_size_s[3] = {static_cast<size_t>(width_s), static_cast<size_t>(height_s), 1};
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_size_s, local_size_s, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // <----------------------------------------------------------------------------------> //
- // copy transposed buffer contents to original buffers
- // <----------------------------------------------------------------------------------> //
- // weights
- CL_CHECK(clEnqueueCopyBuffer(queue, qT_d, extra->q, 0, 0, q_size_bytes, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // scales
- CL_CHECK(clEnqueueCopyBuffer(queue, dT_d, extra->d, 0, 0, d_size_bytes, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- // <----------------------------------------------------------------------------------> //
- // deallocate transpose buffers
- // <----------------------------------------------------------------------------------> //
- CL_CHECK(clReleaseMemObject(qT_d));
- CL_CHECK(clReleaseMemObject(dT_d));
- // deallocate temporary images
- CL_CHECK(clReleaseMemObject(q_d_image1D));
- CL_CHECK(clReleaseMemObject(d_d_image1D));
- CL_CHECK(clReleaseMemObject(qT_d_image1D));
- CL_CHECK(clReleaseMemObject(dT_d_image1D));
- // <----------------------------------------------------------------------------------> //
- // end transpose
- // <----------------------------------------------------------------------------------> //
- }
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- return;
- }
- #endif // GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueWriteBuffer(
- queue, extra->data_device, CL_TRUE, extra->offset + offset,
- size, data, 0, NULL, NULL));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_get_tensor(ggml_backend_buffer_t buffer, const ggml_tensor * tensor, void * data, size_t offset, size_t size) {
- GGML_ASSERT(tensor->extra);
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer->buft->device);
- cl_context context = backend_ctx->context;
- cl_command_queue queue = backend_ctx->queue;
- // Make sure all previously submitted commands are finished.
- CL_CHECK(clFinish(queue));
- #ifdef GGML_OPENCL_SOA_Q
- // In end-to-end runs, get_tensor is usually used to get back the logits,
- // where we can simply do clEnqueueReadBuffer since they are f32.
- // However, in test-backend-ops, the GPU graph is copied to the CPU backend,
- // which requires reading back quantized weight tensors.
- // To properly support this, we need to restore block_q4_0 struct arrays
- // from the flattened buffers.
- if (tensor->type == GGML_TYPE_Q4_0) {
- ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *)tensor->extra;
- cl_int err;
- cl_mem data_device = clCreateBuffer(context, CL_MEM_READ_WRITE,
- ggml_nbytes(tensor), NULL, &err);
- CL_CHECK(err);
- cl_kernel kernel = backend_ctx->kernel_restore_block_q4_0;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &data_device));
- size_t global_work_size[] = {(size_t)ggml_nelements(tensor)/ggml_blck_size(tensor->type), 1, 1};
- size_t local_work_size[] = {1, 1, 1};
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL,
- global_work_size, local_work_size, 0, NULL, &evt));
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clEnqueueReadBuffer(
- queue, data_device, CL_TRUE, offset,
- size, data, 0, NULL, NULL));
- CL_CHECK(clReleaseMemObject(data_device));
- return;
- }
- #endif // GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- CL_CHECK(clEnqueueReadBuffer(
- queue, extra->data_device, CL_TRUE, extra->offset + tensor->view_offs + offset,
- size, data, 0, NULL, NULL));
- GGML_UNUSED(buffer);
- }
- static void ggml_backend_opencl_buffer_clear(ggml_backend_buffer_t buffer, uint8_t value) {
- ggml_backend_dev_t dev = buffer->buft->device;
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(dev);
- cl_command_queue queue = backend_ctx->queue;
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- for (cl_mem buf : ctx->buffer) {
- CL_CHECK(clEnqueueFillBuffer(queue, buf, &value, sizeof(value), 0, buffer->size, 0, NULL, NULL));
- }
- CL_CHECK(clFinish(queue));
- }
- static void ggml_backend_opencl_buffer_reset(ggml_backend_buffer_t buffer) {
- ggml_backend_opencl_buffer_context * ctx = (ggml_backend_opencl_buffer_context *) buffer->context;
- ctx->reset();
- }
- static ggml_backend_buffer_i ggml_backend_opencl_buffer_interface = {
- /* .free_buffer = */ ggml_backend_opencl_buffer_free_buffer,
- /* .get_base = */ ggml_backend_opencl_buffer_get_base,
- /* .init_tensor = */ ggml_backend_opencl_buffer_init_tensor,
- /* .memset_tensor = */ NULL,
- /* .set_tensor = */ ggml_backend_opencl_buffer_set_tensor,
- /* .get_tensor = */ ggml_backend_opencl_buffer_get_tensor,
- /* .cpy_tensor = */ NULL,
- /* .clear = */ ggml_backend_opencl_buffer_clear,
- /* .reset = */ ggml_backend_opencl_buffer_reset,
- };
- //
- // buffer type
- //
- static const char * ggml_backend_opencl_buffer_type_get_name(ggml_backend_buffer_type_t buffer_type) {
- return "OpenCL";
- GGML_UNUSED(buffer_type);
- }
- static ggml_backend_buffer_t ggml_backend_opencl_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buffer_type, size_t size) {
- ggml_backend_opencl_context *backend_ctx = ggml_cl2_init(buffer_type->device);
- // clCreateBuffer returns -61 for size 0
- size = std::max(size, (size_t)1);
- cl_int err;
- cl_mem mem = clCreateBuffer(backend_ctx->context, CL_MEM_READ_WRITE, size, NULL, &err);
- if (err != CL_SUCCESS) {
- GGML_LOG_INFO("%s: failed to allocate %.2f MiB\n", __func__, size / 1024.0 / 1024.0);
- return nullptr;
- }
- ggml_backend_opencl_buffer_context * ctx = new ggml_backend_opencl_buffer_context(mem);
- return ggml_backend_buffer_init(buffer_type, ggml_backend_opencl_buffer_interface, ctx, size);
- }
- static size_t ggml_backend_opencl_buffer_type_get_alignment(ggml_backend_buffer_type_t buffer_type) {
- // FIXME: not thread safe, device may not be initialized yet
- static cl_uint alignment = -1;
- if (alignment == (cl_uint)-1) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
- alignment = backend_ctx->alignment;
- }
- return alignment;
- }
- static size_t ggml_backend_opencl_buffer_type_get_max_size(ggml_backend_buffer_type_t buffer_type) {
- static size_t max_size = -1;
- if (max_size == (size_t)-1) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(buffer_type->device);
- max_size = backend_ctx->max_alloc_size;
- }
- return max_size;
- }
- static bool ggml_backend_opencl_buffer_type_supports_backend(ggml_backend_buffer_type_t buft, ggml_backend_t backend) {
- return ggml_backend_is_opencl(backend);
- UNUSED(buft);
- }
- static ggml_backend_buffer_type_i ggml_backend_opencl_buffer_type_interface = {
- /* .get_name = */ ggml_backend_opencl_buffer_type_get_name,
- /* .alloc_buffer = */ ggml_backend_opencl_buffer_type_alloc_buffer,
- /* .get_alignment = */ ggml_backend_opencl_buffer_type_get_alignment,
- /* .get_max_size = */ ggml_backend_opencl_buffer_type_get_max_size,
- /* .get_alloc_size = */ NULL,
- /* .is_host = */ NULL,
- };
- ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type() {
- static ggml_backend_buffer_type buffer_type = {
- /* .iface = */ ggml_backend_opencl_buffer_type_interface,
- /* .device = */ &g_ggml_backend_opencl_device,
- /* .context = */ nullptr,
- };
- return &buffer_type;
- }
- //
- // backend device
- //
- static const char * ggml_backend_opencl_device_get_name(ggml_backend_dev_t dev) {
- return "GPUOpenCL";
- GGML_UNUSED(dev);
- }
- static const char * ggml_backend_opencl_device_get_description(ggml_backend_dev_t dev) {
- ggml_backend_opencl_device_context *dev_ctx = (ggml_backend_opencl_device_context *) dev->context;
- return dev_ctx->device_name.c_str();
- }
- static void ggml_backend_opencl_device_get_memory(ggml_backend_dev_t dev, size_t * free, size_t * total) {
- *free = 1;
- *total = 1;
- GGML_UNUSED(dev);
- }
- static enum ggml_backend_dev_type ggml_backend_opencl_device_get_type(ggml_backend_dev_t dev) {
- return GGML_BACKEND_DEVICE_TYPE_GPU;
- GGML_UNUSED(dev);
- }
- static void ggml_backend_opencl_device_get_props(ggml_backend_dev_t dev, struct ggml_backend_dev_props * props) {
- props->name = ggml_backend_opencl_device_get_name(dev);
- props->description = ggml_backend_opencl_device_get_description(dev);
- props->type = ggml_backend_opencl_device_get_type(dev);
- ggml_backend_opencl_device_get_memory(dev, &props->memory_free, &props->memory_total);
- props->caps = ggml_backend_dev_caps {
- /* .async = */ false,
- /* .host_buffer = */ false,
- /* .buffer_from_host_ptr = */ false,
- /* .events = */ false,
- };
- }
- static ggml_backend_t ggml_backend_opencl_device_init(ggml_backend_dev_t dev, const char * params) {
- ggml_backend_opencl_context * backend_ctx = ggml_cl2_init(dev);
- ggml_backend_t backend = new ggml_backend {
- /* .guid = */ ggml_backend_opencl_guid(),
- /* .interface = */ ggml_backend_opencl_i,
- /* .device = */ dev,
- /* .context = */ backend_ctx,
- };
- return backend;
- GGML_UNUSED(params);
- }
- static ggml_backend_buffer_type_t ggml_backend_opencl_device_get_buffer_type(ggml_backend_dev_t dev) {
- return ggml_backend_opencl_buffer_type();
- GGML_UNUSED(dev);
- }
- static ggml_backend_buffer_t ggml_backend_opencl_device_buffer_from_ptr(ggml_backend_dev_t dev, void * ptr, size_t size, size_t max_tensor_size) {
- GGML_UNUSED(dev);
- GGML_UNUSED(ptr);
- GGML_UNUSED(size);
- GGML_UNUSED(max_tensor_size);
- return nullptr;
- }
- static bool ggml_backend_opencl_device_supports_op(ggml_backend_dev_t dev, const struct ggml_tensor * op) {
- return ggml_opencl_supports_op(dev, op);
- }
- static bool ggml_backend_opencl_device_supports_buft(ggml_backend_dev_t dev, ggml_backend_buffer_type_t buft) {
- return buft->iface.get_name == ggml_backend_opencl_buffer_type_get_name;
- GGML_UNUSED(dev);
- }
- static struct ggml_backend_device_i ggml_backend_opencl_device_i = {
- /* .get_name = */ ggml_backend_opencl_device_get_name,
- /* .get_description = */ ggml_backend_opencl_device_get_description,
- /* .get_memory = */ ggml_backend_opencl_device_get_memory,
- /* .get_type = */ ggml_backend_opencl_device_get_type,
- /* .get_props = */ ggml_backend_opencl_device_get_props,
- /* .init_backend = */ ggml_backend_opencl_device_init,
- /* .get_buffer_type = */ ggml_backend_opencl_device_get_buffer_type,
- /* .get_host_buffer_type = */ NULL,
- /* .buffer_from_host_ptr = */ ggml_backend_opencl_device_buffer_from_ptr,
- /* .supports_op = */ ggml_backend_opencl_device_supports_op,
- /* .supports_buft = */ ggml_backend_opencl_device_supports_buft,
- /* .offload_op = */ NULL,
- /* .event_new = */ NULL,
- /* .event_free = */ NULL,
- /* .event_synchronize = */ NULL,
- };
- // Backend registry
- static const char * ggml_backend_opencl_reg_get_name(ggml_backend_reg_t reg) {
- return "OpenCL";
- GGML_UNUSED(reg);
- }
- static size_t ggml_backend_opencl_reg_device_count(ggml_backend_reg_t reg) {
- return ggml_backend_opencl_n_devices;
- GGML_UNUSED(reg);
- }
- static ggml_backend_dev_t ggml_backend_opencl_reg_device_get(ggml_backend_reg_t reg, size_t index) {
- GGML_ASSERT(index == 0);
- return &g_ggml_backend_opencl_device;
- GGML_UNUSED(reg);
- GGML_UNUSED(index);
- }
- static struct ggml_backend_reg_i ggml_backend_opencl_reg_i = {
- /* .get_name = */ ggml_backend_opencl_reg_get_name,
- /* .device_count = */ ggml_backend_opencl_reg_device_count,
- /* .device_get = */ ggml_backend_opencl_reg_device_get,
- /* .get_proc_address = */ NULL,
- };
- ggml_backend_reg_t ggml_backend_opencl_reg(void) {
- // TODO: make this thread-safe somehow?
- static ggml_backend_reg reg;
- static bool initialized = false;
- if (!initialized) {
- reg = ggml_backend_reg {
- /* .api_version = */ GGML_BACKEND_API_VERSION,
- /* .iface = */ ggml_backend_opencl_reg_i,
- /* .context = */ NULL,
- };
- g_ggml_backend_opencl_device = ggml_backend_device {
- /* .iface = */ ggml_backend_opencl_device_i,
- /* .reg = */ ®,
- /* .context = */ &g_ggml_ctx_dev_main,
- };
- ggml_cl2_init(&g_ggml_backend_opencl_device);
- initialized = true;
- }
- return ®
- }
- GGML_BACKEND_DL_IMPL(ggml_backend_opencl_reg)
- //------------------------------------------------------------------------------
- // Debugging utils
- //------------------------------------------------------------------------------
- #if 0
- #define QK4_0 32
- typedef struct {
- ggml_fp16_t d; // delta
- uint8_t qs[QK4_0 / 2]; // nibbles / quants
- } block_q4_0;
- static_assert(sizeof(block_q4_0) == sizeof(ggml_fp16_t) + QK4_0 / 2,
- "wrong q4_0 block size/padding");
- #include <math.h>
- #ifdef __cplusplus
- #include "half.hpp"
- #endif
- static void dump_tensor(ggml_backend_t backend, const struct ggml_tensor * tensor) {
- void * buf = malloc(ggml_nbytes(tensor));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- #ifdef GGML_OPENCL_SOA_Q
- void * buf_q;
- void * buf_d;
- #endif
- #ifdef GGML_USE_OPENCL
- // Make sure everything is done.
- CL_CHECK(clFinish(queue));
- #ifdef GGML_OPENCL_SOA_Q
- if (tensor->type == GGML_TYPE_Q4_0) {
- ggml_tensor_extra_cl_q4_0 * extra = (ggml_tensor_extra_cl_q4_0 *) tensor->extra;
- GGML_ASSERT(extra);
- size_t size_q = ggml_nelements(tensor)/QK4_0 * QK4_0/2;
- size_t size_d = ggml_nelements(tensor)/QK4_0 * sizeof(ggml_fp16_t);
- GGML_ASSERT(size_q + size_d == ggml_nbytes(tensor));
- buf_q = malloc(size_q);
- buf_d = malloc(size_d);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->q, CL_TRUE, 0, size_q, buf_q, 0, NULL, NULL));
- CL_CHECK(clEnqueueReadBuffer(queue, extra->d, CL_TRUE, 0, size_d, buf_d, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- } else {
- // Read out the tensor from GPU memory.
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
- extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- }
- #else
- // Read out the tensor from GPU memory.
- ggml_tensor_extra_cl * extra = (ggml_tensor_extra_cl *) tensor->extra;
- GGML_ASSERT(extra);
- CL_CHECK(clEnqueueReadBuffer(queue, extra->data_device, CL_TRUE,
- extra->offset, ggml_nbytes(tensor), buf, 0, NULL, NULL));
- CL_CHECK(clFinish(queue));
- #endif // GGML_OPENCL_SOA_Q
- #endif // GGML_USE_OPENCL
- // Open file and dump.
- char fname[512];
- sprintf(fname, "./tensor-dumps/%s.txt", tensor->name);
- FILE * f = fopen(fname, "w");
- if (!f) {
- printf("Failed to open %s\n", fname);
- return;
- }
- if (tensor->type == GGML_TYPE_F32) {
- float * data = (float *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%f\n", data[i]);
- }
- } else if (tensor->type == GGML_TYPE_I32) {
- int * data = (int *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%d\n", data[i]);
- }
- } else if (tensor->type == GGML_TYPE_F16) {
- #ifdef __cplusplus
- half_float::half * data = (half_float::half *) buf;
- for (int i = 0; i < ggml_nelements(tensor); ++i) {
- if (std::isnan(data[i])) {
- printf("NaN found: %s\n", tensor->name);
- break;
- }
- fprintf(f, "%f\n", float(data[i]));
- }
- #endif
- } else if (tensor->type == GGML_TYPE_Q4_0) {
- #ifdef GGML_OPENCL_SOA_Q
- ggml_fp16_t * data_d = (ggml_fp16_t *)buf_d;
- unsigned char * data_q = (unsigned char *)buf_q;
- for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
- fprintf(f, "%04x, ", data_d[i]);
- for (int k = 0; k < QK4_0/2; ++k) {
- fprintf(f, "%02x, ", data_q[k]);
- }
- fprintf(f, "\n");
- data_q += QK4_0/2;
- }
- free(buf_d);
- free(buf_q);
- #else
- block_q4_0 * data = (block_q4_0 *) buf;
- for (int i = 0; i < ggml_nelements(tensor)/QK4_0; ++i) {
- fprintf(f, "%04x, ", data[i].d);
- for (int k = 0; k < QK4_0/2; ++k) {
- fprintf(f, "%02x, ", data[i].qs[k]);
- }
- fprintf(f, "\n");
- }
- #endif // GGML_OPENCL_SOA_Q
- }
- free(buf);
- fflush(f);
- fclose(f);
- }
- #else
- #define dump_tensor(tensor)
- #endif
- //------------------------------------------------------------------------------
- // Profiling utility
- //------------------------------------------------------------------------------
- #ifdef GGML_OPENCL_PROFILING
- void populateProfilingInfo(
- ProfilingInfo& info, cl_event evt, cl_kernel kernel,
- size_t global_size[3], size_t local_size[3],
- const ggml_tensor * tensor) {
- cl_ulong start;
- cl_ulong end;
- CL_CHECK(clWaitForEvents(1, &evt));
- CL_CHECK(clGetEventProfilingInfo(
- evt, CL_PROFILING_COMMAND_START, sizeof(cl_ulong), &start, NULL));
- CL_CHECK(clGetEventProfilingInfo(
- evt, CL_PROFILING_COMMAND_END, sizeof(cl_ulong), &end, NULL));
- char kernel_name[512];
- CL_CHECK(clGetKernelInfo(kernel, CL_KERNEL_FUNCTION_NAME,
- sizeof(kernel_name), kernel_name, NULL));
- info.duration_ns = end - start;
- info.op_name = tensor->name;
- info.kernel_name = kernel_name;
- info.local_size[0] = local_size[0];
- info.local_size[1] = local_size[1];
- info.local_size[2] = local_size[2];
- info.global_size[0] = global_size[0];
- info.global_size[1] = global_size[1];
- info.global_size[2] = global_size[2];
- info.output_size[0] = tensor->ne[0];
- info.output_size[1] = tensor->ne[1];
- info.output_size[2] = tensor->ne[2];
- info.output_size[3] = tensor->ne[3];
- }
- #endif
- //------------------------------------------------------------------------------
- // Ops
- //------------------------------------------------------------------------------
- static bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst) {
- const int64_t ne10 = src1->ne[0];
- const int64_t ne0 = dst->ne[0];
- const int64_t ne1 = dst->ne[1];
- // TODO: find the optimal values for these
- return (src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
- src1->type == GGML_TYPE_F32 &&
- dst->type == GGML_TYPE_F32 &&
- (ne0 >= 32 && ne1 >= 32 && ne10 >= 32);
- }
- static void ggml_cl_nop(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- UNUSED(backend);
- UNUSED(src0);
- UNUSED(src1);
- UNUSED(dst);
- }
- static void ggml_cl_get_rows(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_get_rows_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_get_rows_f16;
- break;
- case GGML_TYPE_Q4_0:
- kernel = backend_ctx->kernel_get_rows_q4_0;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb2));
- size_t global_work_size[] = {(size_t)ne10, (size_t)ne11, 1};
- size_t local_work_size[] = {1, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_add(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- kernel = backend_ctx->kernel_add_row;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_add;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- }
- static void ggml_cl_mul(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0; UNUSED(nb13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const cl_ulong nb0 = dst ? dst->nb[0] : 0;
- const cl_ulong nb1 = dst ? dst->nb[1] : 0;
- const cl_ulong nb2 = dst ? dst->nb[2] : 0;
- const cl_ulong nb3 = dst ? dst->nb[3] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- bool bcast_row = false;
- cl_kernel kernel;
- if (ggml_nelements(src1) == ne10 && ggml_is_contiguous(src1) && ne00 % 4 == 0 && ne10 % 4 == 0) {
- GGML_ASSERT(ggml_is_contiguous(src0));
- // src1 is a row
- GGML_ASSERT(ne11 == 1);
- bcast_row = true;
- int ne = ne00 / 4;
- kernel = backend_ctx->kernel_mul_row;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne));
- } else {
- kernel = backend_ctx->kernel_mul;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(cl_ulong), &nb3));
- }
- if (bcast_row) {
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else {
- unsigned int nth = MIN(64, ne0);
- size_t global_work_size[] = {ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- }
- static void ggml_cl_gelu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_gelu_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_gelu;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt);
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL);
- #endif
- }
- static void ggml_cl_silu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- int n = ggml_nelements(dst);
- if (n % 4 == 0) {
- kernel = backend_ctx->kernel_silu_4;
- n /= 4;
- } else {
- kernel = backend_ctx->kernel_silu;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_relu(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_relu;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_clamp(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float min;
- float max;
- memcpy(&min, ((int32_t *) dst->op_params) + 0, sizeof(float));
- memcpy(&max, ((int32_t *) dst->op_params) + 1, sizeof(float));
- cl_kernel kernel = backend_ctx->kernel_clamp;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &min));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(float), &max));
- const int64_t n = ggml_nelements(dst);
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- const int ne00 = src0 ? src0->ne[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- const int nth = MIN(64, ne00);
- cl_kernel kernel = backend_ctx->kernel_norm;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth, NULL));
- const int64_t nrows = ggml_nrows(src0);
- size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_rms_norm(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_backend_opencl_device_context * dev_ctx =
- (ggml_backend_opencl_device_context *)backend->device->context;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- float eps;
- memcpy(&eps, dst->op_params, sizeof(float));
- const int ne00 = src0 ? src0->ne[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- GGML_ASSERT(ne00 % 4 == 0);
- GGML_ASSERT(ggml_is_contiguous_1(src0));
- const int nth = MIN(64, ne00);
- const int64_t nrows = ggml_nrows(src0);
- size_t global_work_size[] = {(size_t)nrows*nth, 1, 1};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- cl_kernel kernel = backend_ctx->kernel_rms_norm;
- // Note, this kernel declares local memory in kernel args and the size
- // depends on subgroup size.
- // Retrieve subgroup size.
- // Note, this requires OpenCL 2.1 and above
- size_t sgs;
- CL_CHECK(clGetKernelSubGroupInfo(kernel, dev_ctx->device,
- CL_KERNEL_MAX_SUB_GROUP_SIZE_FOR_NDRANGE,
- sizeof(local_work_size), local_work_size,
- sizeof(size_t), &sgs, NULL));
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(float), &eps));
- // This is local memory - the size depends on subgroup size.
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(float)*nth/sgs, NULL));
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_mul_mat(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- #ifdef GGML_OPENCL_SOA_Q
- ggml_tensor_extra_cl_q4_0 * extra0_q4_0 = (ggml_tensor_extra_cl_q4_0 *)src0->extra;
- #endif
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- int r2 = ne12/ne02;
- int r3 = ne13/ne03;
- GGML_ASSERT(ne00 == ne10);
- int nth0 = 32;
- int nth1 = 1;
- int nrows = 1;
- // The number of values produced by each subgroup
- int ndst = 4;
- cl_kernel kernel;
- #ifdef GGML_OPENCL_USE_ADRENO_KERNELS
- cl_context context = backend_ctx->context;
- if (ne01 && ne1 && use_adreno_kernels(src0)) {
- // init CL objects
- // <--------------------------------------------> //
- cl_int status;
- cl_image_format img_fmt_1d;
- cl_image_desc img_desc_1d;
- cl_buffer_region region;
- cl_mem A_image1d = nullptr;
- cl_mem B_image1d = nullptr;
- cl_mem B_sub_buffer = nullptr;
- cl_mem C_d = nullptr;
- // for B transpose
- cl_mem B_d = nullptr;
- cl_mem B_d_input_image = nullptr;
- // <--------------------------------------------> //
- // define matrix dimensions
- // <--------------------------------------------> //
- int M = ne01;
- int N = ne1;
- int K = ne00;
- int padding;
- // <--------------------------------------------> //
- // q4_0 x fp32
- if(src0t == GGML_TYPE_Q4_0 && src1t == GGML_TYPE_F32) {
- // TODO: remove duplicate definitions of image description + format -- move to top
- // create an image for A
- // <--------------------------------------------> //
- if (N == 1) {
- img_fmt_1d = { CL_R, CL_UNSIGNED_INT32};
- } else {
- img_fmt_1d = { CL_R, CL_FLOAT};
- }
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.image_width = M * K / 2 / 4; // Divide by 4 for char -> float
- img_desc_1d.buffer = extra0_q4_0->q;
- A_image1d = clCreateImage(
- context,
- CL_MEM_READ_ONLY,
- &img_fmt_1d,
- &img_desc_1d,
- NULL,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // create a sub_buffer for B
- // <--------------------------------------------> //
- region.origin = (extra1->offset);
- region.size = K * N * sizeof(float);
- B_sub_buffer = clCreateSubBuffer(
- extra1->data_device,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- // transpose activation for Skyler's gemm
- if (N != 1) {
- //how many extra elements beyond multiple of 8
- int extra_elements = N % 8;
- //how much padding to add
- padding = 0;
- if (extra_elements > 0){
- padding = 8 - extra_elements;
- }
- // Specify the starting offset (in bytes)
- region.origin = 0;
- // Specify the size of the sub-buffer (divide by 2 for FP16)
- region.size = K * (N + padding) * sizeof(float)/2;
- B_d = clCreateSubBuffer(
- backend_ctx->B_d_max,
- 0,
- CL_BUFFER_CREATE_TYPE_REGION,
- ®ion,
- &status);
- CL_CHECK(status);
- cl_image_format image_format_B_d_input = { CL_RGBA, CL_FLOAT };
- cl_image_desc image_desc_B_d_input = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(K * N / 4),
- 0, 0, 0, 0, 0, 0, 0, { B_sub_buffer }
- };
- B_d_input_image = clCreateImage(
- context,
- 0,
- &image_format_B_d_input,
- &image_desc_B_d_input,
- NULL,
- &status);
- CL_CHECK(status);
- cl_image_format image_format_B_d_output = { CL_RGBA, CL_HALF_FLOAT }; //(CL_HALF_FLOAT for FP16)
- cl_image_desc image_desc_B_d_output = {
- CL_MEM_OBJECT_IMAGE1D_BUFFER,
- static_cast<size_t>(K * (N + padding)/4),
- 0, 0, 0, 0, 0, 0, 0, { B_d }
- };
- B_image1d = clCreateImage(
- context,
- 0,
- &image_format_B_d_output,
- &image_desc_B_d_output,
- NULL,
- &status);
- CL_CHECK(status);
- int height_B = N/4;
- int width_B = K/4;
- int padded_height_B = (N + padding)/4;
- kernel = backend_ctx->kernel_transpose_32_16;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &B_d_input_image));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &B_image1d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(int), &height_B));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(int), &width_B));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &padded_height_B));
- size_t local_size_t[2] = { 1, 16 };
- //WGS tuning
- if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=4;
- local_size_t[1]=8;
- } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=2;
- local_size_t[1]=8;
- } else if(ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
- local_size_t[0]=1;
- local_size_t[1]=8;
- } else if(ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
- local_size_t[0]=2;
- local_size_t[1]=8;
- }
- size_t global_size_t[2] = {
- static_cast<size_t>(width_B),
- static_cast<size_t>(padded_height_B)
- };
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_size_t, local_size_t, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 2, NULL, global_size_t, local_size_t, 0, NULL, NULL));
- #endif
- } else {
- // no need to transpose B in other cases
- // create an image for B from sub_buffer
- // <--------------------------------------------> //
- img_fmt_1d = {CL_RGBA, CL_FLOAT};
- memset(&img_desc_1d, 0, sizeof(img_desc_1d));
- img_desc_1d.image_width = K * N / 4;
- img_desc_1d.image_type = CL_MEM_OBJECT_IMAGE1D_BUFFER;
- img_desc_1d.buffer = B_sub_buffer;
- B_image1d = clCreateImage(
- context,
- CL_MEM_READ_ONLY,
- &img_fmt_1d,
- &img_desc_1d,
- NULL,
- &status);
- CL_CHECK(status);
- // <--------------------------------------------> //
- }
- // choose gemm or gemv kernel
- // <--------------------------------------------> //
- if (N == 1) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_general;
- if (M == 4096 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_4096;
- } else if (M == 4096 && K == 11008) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_4096_1_11008;
- } else if (M == 11008 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_11008_1_4096;
- } else if (M == 32000 && K == 4096) {
- kernel = backend_ctx->CL_mul_mat_vec_q4_0_f32_1d_4x_flat_32000_1_4096;
- }
- } else {
- kernel = backend_ctx->CL_mul_mat_Ab_Bi_8x4;
- }
- // <--------------------------------------------> //
- // set kernel args
- // <--------------------------------------------> //
- cl_uint k_arg = 0;
- if (N == 1) {
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &A_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &B_image1d));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extra1->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(cl_ulong), &extrad->offset));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, k_arg++, sizeof(int), &r3));
- } else {
- region.origin = extrad->offset; // Specify the starting offset (in bytes)
- region.size = M * N * sizeof(float); // Specify the size of the sub-buffer
- C_d = clCreateSubBuffer(extrad->data_device, CL_MEM_WRITE_ONLY, CL_BUFFER_CREATE_TYPE_REGION, ®ion, &status);
- CL_CHECK(status);
- int padded_N = ne1 + padding;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q)); //A_q_dextra0_q4_0->q
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d)); //A_s_d
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &B_image1d)); //B_d
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_mem), &C_d)); //C_d
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne01)); //M
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &padded_N)); //N with padding
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00)); //K
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne1)); //N without padding
- }
- // <--------------------------------------------> //
- // choose workgroup size
- // <--------------------------------------------> //
- size_t global_work_size[3] = {
- 64, static_cast<size_t>((M+63)/64), static_cast<size_t>((N+31)/32)};
- size_t local_work_size[3] = {64, 2, 4};
- global_work_size[0] = (size_t)(ceil((float)ne1/8));
- global_work_size[1] = (size_t)(ne01/4);
- global_work_size[2] = (size_t)(1);
- local_work_size[0] = (size_t)(1); //4x32 for FP32
- local_work_size[1] = (size_t)(128);
- local_work_size[2] = (size_t)(1);
- //WGS tuning
- if (ne0 == 4096 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 1;
- local_work_size[1] = 128;
- } else if (ne0 == 11008 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- } else if (ne0 == 4096 && ne1 == 128 && ne10 == 11008) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- } else if (ne0 == 32000 && ne1 == 128 && ne10 == 4096) {
- local_work_size[0] = 2;
- local_work_size[1] = 64;
- }
- if (N == 1) {
- local_work_size[0] = backend_ctx->adreno_wave_size; // localsize
- local_work_size[1] = 4; // reduce factor
- local_work_size[2] = 1;
- global_work_size[0] = M / 2;
- global_work_size[1] = 4; // reduce factor
- global_work_size[2] = 1;
- }
- // <--------------------------------------------> //
- // enqueue kernel with profiling
- // <--------------------------------------------> //
- #ifdef GGML_OPENCL_PROFILING
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- // enqueue kernel without profiling
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- // <--------------------------------------------> //
- // deallocate sub buffers and images
- // <--------------------------------------------> //
- CL_CHECK(clReleaseMemObject(A_image1d));
- CL_CHECK(clReleaseMemObject(B_sub_buffer));
- CL_CHECK(clReleaseMemObject(B_image1d));
- if (N != 1) {
- CL_CHECK(clReleaseMemObject(B_d));
- CL_CHECK(clReleaseMemObject(B_d_input_image));
- CL_CHECK(clReleaseMemObject(C_d));
- }
- // <--------------------------------------------> //
- return;
- }
- } // if (ne01 && ne1)
- #endif // GGML_OPENCL_USE_ADRENO_KERNELS
- if (!ggml_is_transposed(src0) &&
- !ggml_is_transposed(src1) &&
- src1t == GGML_TYPE_F32 &&
- ne00%32 == 0 &&
- ne11 > 2) {
- #ifdef GGML_OPENCL_SOA_Q
- // Set up kernel.
- switch(src0t) {
- case GGML_TYPE_Q4_0:
- // This should have been satisfied.
- GGML_ASSERT(ne11 == ne1);
- GGML_ASSERT(ne01 == ne0);
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_16x_flat;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_1d_8x_flat;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- break;
- default:
- break;
- }
- // Launch kernel.
- if (src0t == GGML_TYPE_Q4_0) {
- size_t global_work_size[] = {(size_t)(ne01 + 7)/8*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- if (backend_ctx->gpu_family == INTEL) {
- // Set global size for Intel. It uses 16x output values.
- global_work_size[0] = (size_t)(ne01 + 15)/16*nth0;
- global_work_size[1] = (size_t)ne11*nth1;
- global_work_size[2] = (size_t)ne12*ne13;
- }
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- return;
- }
- #else // GGML_OPENCL_SOA_Q
- // TODO: add block_q4_0 variant.
- #endif // GGML_OPENCL_SOA_Q
- }
- // use custom matrix x vector kernel
- switch (src0t) {
- case GGML_TYPE_F32:
- //GGML_ASSERT(ne02 == ne12);
- GGML_ASSERT(src1t == GGML_TYPE_F32);
- kernel = backend_ctx->kernel_mul_mat_f32_f32;
- nrows = 4;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- nth1 = 1;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- break;
- case GGML_TYPE_F16:
- //GGML_ASSERT(ne02 == ne12);
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 32;
- nth1 = 1;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- if (src1t == GGML_TYPE_F32) {
- if (ne11 * ne12 < 4) {
- kernel = backend_ctx->kernel_mul_mat_f16_f32_1row;
- } else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
- kernel = backend_ctx->kernel_mul_mat_f16_f32_l4;
- nrows = ne11;
- } else {
- kernel = backend_ctx->kernel_mul_mat_f16_f32;
- nrows = 4;
- }
- } else {
- kernel = backend_ctx->kernel_mul_mat_f16_f16;
- nrows = 4;
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(int), &r3));
- break;
- case GGML_TYPE_Q4_0:
- // This should have been satisfied.
- GGML_ASSERT(ne11 == ne1);
- GGML_ASSERT(ne01 == ne0);
- #ifdef GGML_OPENCL_SOA_Q
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
- ndst = 8;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_8x_flat;
- ndst =8;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0_q4_0->q));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_mem), &extra0_q4_0->d));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- #else // GGML_OPENCL_SOA_Q
- if (backend_ctx->gpu_family == INTEL) {
- // Use 1D local size. Each workgroup is a SIMD group. Each SIMD
- // group produces N_DST (4 for Q4_0 kernel) values in the result.
- // The number of workgroups on dim 0 (the leading dimension) is
- // the nearest multiple of 4 that covers ne0 (equals ne01).
- nth0 = 16;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32;
- ndst = 4;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 64;
- nth1 = 1;
- kernel = backend_ctx->kernel_mul_mat_q4_0_f32_v;
- ndst = 4;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- #endif // GGML_OPENCL_SOA_Q
- break;
- case GGML_TYPE_Q4_1:
- case GGML_TYPE_Q8_0:
- case GGML_TYPE_Q2_K:
- case GGML_TYPE_Q3_K:
- case GGML_TYPE_Q4_K:
- case GGML_TYPE_Q5_K:
- case GGML_TYPE_Q6_K:
- kernel = backend_ctx->kernel_mul_mv_q6_K_f32;
- if (backend_ctx->gpu_family == INTEL) {
- nth0 = 2;
- nth1 = 16;
- } else if (backend_ctx->gpu_family == ADRENO) {
- nth0 = 2;
- nth1 = 64;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &r2));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &r3));
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- if (src0t == GGML_TYPE_Q4_0 ||
- src0t == GGML_TYPE_Q4_1 ||
- src0t == GGML_TYPE_Q8_0 ||
- src0t == GGML_TYPE_Q2_K) {
- // Each SIMD group produces N_DST values in the result. Assuming each
- // workgroup has N_SIMDGROUP SIMD groups, then each workgroup will
- // produce N_DST*N_SIMDGROUP values in the result. Hence, the grid size
- // (number of workgroups) will be a nearest multiple of
- // N_DST*N_SIMDGROUP to cover the size of the dimension. Below, 4 is
- // N_DST*N_SIMDGROUP (see the kernel for Q4_0 matmul).
- size_t global_work_size[] = {(size_t)(ne01 + ndst-1)/ndst*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else if (src0t == GGML_TYPE_Q4_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q3_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q5_K) {
- GGML_ASSERT(false && "not implemented");
- } else if (src0t == GGML_TYPE_Q6_K) {
- size_t global_work_size[] = {(size_t)(ne01+1)/2*nth0, (size_t)ne11*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else {
- int64_t ny = (ne11 + nrows - 1)/nrows;
- size_t global_work_size[] = {(size_t)ne01*nth0, (size_t)ny*nth1, (size_t)ne12*ne13};
- size_t local_work_size[] = {(size_t)nth0, (size_t)nth1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- }
- static void ggml_cl_scale(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- GGML_UNUSED(src1);
- GGML_ASSERT(ggml_is_contiguous(src0));
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- float scale;
- memcpy(&scale, dst->op_params, sizeof(scale));
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel = backend_ctx->kernel_scale;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(float), &scale));
- int n = ggml_nelements(dst)/4;
- size_t global_work_size[] = {(size_t)n, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_cpy(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- // GGML_OP_CPY happens between src0 and src1.
- // GGML_OP_DUP and GGML_OP_CONT happen between src0 and dst.
- UNUSED(dst);
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const cl_ulong nb00 = src0 ? src0->nb[0] : 0;
- const cl_ulong nb01 = src0 ? src0->nb[1] : 0;
- const cl_ulong nb02 = src0 ? src0->nb[2] : 0;
- const cl_ulong nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0;
- const int ne12 = src1 ? src1->ne[2] : 0;
- const int ne13 = src1 ? src1->ne[3] : 0;
- const cl_ulong nb10 = src1 ? src1->nb[0] : 0;
- const cl_ulong nb11 = src1 ? src1->nb[1] : 0;
- const cl_ulong nb12 = src1 ? src1->nb[2] : 0;
- const cl_ulong nb13 = src1 ? src1->nb[3] : 0;
- const enum ggml_type src0t = src0 ? src0->type : GGML_TYPE_COUNT;
- const enum ggml_type src1t = src1 ? src1->type : GGML_TYPE_COUNT;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_kernel kernel;
- switch (src0t) {
- case GGML_TYPE_F32:
- switch (src1t) {
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_cpy_f32_f16;
- break;
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_cpy_f32_f32;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- break;
- case GGML_TYPE_F16:
- switch (src1t) {
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_cpy_f16_f16;
- break;
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_cpy_f16_f32;
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- break;
- default:
- GGML_ASSERT(false && "not implemented");
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(int), &ne10));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &ne11));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(int), &ne12));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(int), &ne13));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(cl_ulong), &nb10));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(cl_ulong), &nb11));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(cl_ulong), &nb12));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(cl_ulong), &nb13));
- const int nth = MIN(64, ne00);
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, src1);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_dup(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- ggml_cl_cpy(backend, src0, dst, nullptr);
- UNUSED(src1);
- }
- static void ggml_cl_diag_mask_inf(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- UNUSED(src1);
- int n_past = ((int32_t *)(dst->op_params))[0];
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_kernel kernel;
- if (ne00%8 == 0) {
- kernel = backend_ctx->kernel_diag_mask_inf_8;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
- size_t global_work_size[] = {(size_t)ne00*ne01*ne02/8, 1, 1};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- } else {
- kernel = backend_ctx->kernel_diag_mask_inf;
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &n_past));
- size_t global_work_size[] = {(size_t)ne00, (size_t)ne01, (size_t)ne02};
- size_t local_work_size[] = {64, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- }
- static void ggml_cl_soft_max(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- // Softmax can now fuse KQ mask and KQ scale, which used to be two additional
- // ops before softmax. It now also fuses alibi if `max_bias > 0`. For llama,
- // alibi is not used; however, for some other models, it is used.
- // KQ_mask
- if (src1) {
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- }
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- ggml_tensor_extra_cl * extra1 = src1 ? (ggml_tensor_extra_cl *)src1->extra : nullptr;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- cl_ulong offset1 = extra1 ? extra1->offset + src1->view_offs : offset0;
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- float scale, max_bias;
- memcpy(&scale, dst->op_params + 0, sizeof(float));
- memcpy(&max_bias, dst->op_params + 1, sizeof(float));
- const int nrows_x = ggml_nrows(src0);
- const int nrows_y = src0->ne[1];
- const int n_head = nrows_x/nrows_y;
- const int n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head));
- const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
- const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
- const bool use_f16 = (src1 && src1->type == GGML_TYPE_F16);
- // Local size must be wave size. Each workgroup is a wave, working on a row,
- // where a row corresponds to leading dimension.
- int nth = MIN(32, ne00);
- if (backend_ctx->gpu_family == INTEL) {
- // This is the same as the initial value.
- nth = MIN(32, ne00);
- }
- else if (backend_ctx->gpu_family == ADRENO) {
- nth = 64;
- } else {
- GGML_ASSERT(false && "TODO: Unknown GPU");
- }
- cl_kernel kernel;
- if (ne00%4 == 0) {
- if (use_f16) {
- kernel = backend_ctx->kernel_soft_max_4_f16;
- } else {
- kernel = backend_ctx->kernel_soft_max_4;
- }
- } else {
- if (use_f16) {
- kernel = backend_ctx->kernel_soft_max_f16;
- } else {
- kernel = backend_ctx->kernel_soft_max;
- }
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), extra1 ? &extra1->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(float), &scale));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(float), &max_bias));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(float), &m0));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(float), &m1));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(int), &n_head_log2));
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- static void ggml_cl_rope(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
- GGML_ASSERT(src0);
- GGML_ASSERT(src0->extra);
- GGML_ASSERT(src1);
- GGML_ASSERT(src1->extra);
- GGML_ASSERT(dst);
- GGML_ASSERT(dst->extra);
- ggml_backend_opencl_context *backend_ctx = (ggml_backend_opencl_context *)backend->context;
- cl_command_queue queue = backend_ctx->queue;
- ggml_tensor_extra_cl * extra0 = (ggml_tensor_extra_cl *)src0->extra;
- ggml_tensor_extra_cl * extra1 = (ggml_tensor_extra_cl *)src1->extra;
- ggml_tensor_extra_cl * extrad = (ggml_tensor_extra_cl *)dst->extra;
- cl_ulong offset0 = extra0->offset + src0->view_offs;
- cl_ulong offset1 = extra1->offset + src1->view_offs;
- cl_ulong offsetd = extrad->offset + dst->view_offs;
- ggml_tensor * src2 = dst->src[2];
- ggml_tensor_extra_cl * extra2 = src2 ? (ggml_tensor_extra_cl *)src2->extra : nullptr;
- cl_ulong offset2 = extra2 ? extra2->offset + src2->view_offs : offset0;
- const int ne00 = src0 ? src0->ne[0] : 0;
- const int ne01 = src0 ? src0->ne[1] : 0;
- const int ne02 = src0 ? src0->ne[2] : 0;
- const int ne03 = src0 ? src0->ne[3] : 0;
- const int nb00 = src0 ? src0->nb[0] : 0;
- const int nb01 = src0 ? src0->nb[1] : 0;
- const int nb02 = src0 ? src0->nb[2] : 0;
- const int nb03 = src0 ? src0->nb[3] : 0;
- const int ne10 = src1 ? src1->ne[0] : 0;
- const int ne11 = src1 ? src1->ne[1] : 0; UNUSED(ne11);
- const int ne12 = src1 ? src1->ne[2] : 0; UNUSED(ne12);
- const int ne13 = src1 ? src1->ne[3] : 0; UNUSED(ne13);
- const int ne0 = dst ? dst->ne[0] : 0;
- const int ne1 = dst ? dst->ne[1] : 0;
- const int ne2 = dst ? dst->ne[2] : 0;
- const int ne3 = dst ? dst->ne[3] : 0;
- const int nb0 = dst ? dst->nb[0] : 0;
- const int nb1 = dst ? dst->nb[1] : 0;
- const int nb2 = dst ? dst->nb[2] : 0;
- const int nb3 = dst ? dst->nb[3] : 0;
- GGML_ASSERT(ne10 % ne02 == 0);
- GGML_ASSERT(ne10 >= ne02);
- int nth = MIN(64, ne00);
- const int n_past = ((int *) dst->op_params)[0];
- const int n_dims = ((int *) dst->op_params)[1];
- const int mode = ((int *) dst->op_params)[2];
- const int n_ctx_orig = ((int32_t *) dst->op_params)[4];
- float freq_base;
- float freq_scale;
- float ext_factor;
- float attn_factor;
- float beta_fast;
- float beta_slow;
- memcpy(&freq_base, (int32_t *) dst->op_params + 5, sizeof(float));
- memcpy(&freq_scale, (int32_t *) dst->op_params + 6, sizeof(float));
- memcpy(&ext_factor, (int32_t *) dst->op_params + 7, sizeof(float));
- memcpy(&attn_factor, (int32_t *) dst->op_params + 8, sizeof(float));
- memcpy(&beta_fast, (int32_t *) dst->op_params + 9, sizeof(float));
- memcpy(&beta_slow, (int32_t *) dst->op_params + 10, sizeof(float));
- const bool is_neox = mode & 2;
- cl_kernel kernel;
- if (!is_neox) {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_norm_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_norm_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- } else {
- switch (src0->type) {
- case GGML_TYPE_F32:
- kernel = backend_ctx->kernel_rope_neox_f32;
- break;
- case GGML_TYPE_F16:
- kernel = backend_ctx->kernel_rope_neox_f16;
- break;
- default:
- GGML_ASSERT(false);
- };
- }
- CL_CHECK(clSetKernelArg(kernel, 0, sizeof(cl_mem), &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 1, sizeof(cl_ulong), &offset0));
- CL_CHECK(clSetKernelArg(kernel, 2, sizeof(cl_mem), &extra1->data_device));
- CL_CHECK(clSetKernelArg(kernel, 3, sizeof(cl_ulong), &offset1));
- CL_CHECK(clSetKernelArg(kernel, 4, sizeof(cl_mem), extra2 ? &extra2->data_device : &extra0->data_device));
- CL_CHECK(clSetKernelArg(kernel, 5, sizeof(cl_ulong), &offset2));
- CL_CHECK(clSetKernelArg(kernel, 6, sizeof(cl_mem), &extrad->data_device));
- CL_CHECK(clSetKernelArg(kernel, 7, sizeof(cl_ulong), &offsetd));
- CL_CHECK(clSetKernelArg(kernel, 8, sizeof(int), &ne00));
- CL_CHECK(clSetKernelArg(kernel, 9, sizeof(int), &ne01));
- CL_CHECK(clSetKernelArg(kernel, 10, sizeof(int), &ne02));
- CL_CHECK(clSetKernelArg(kernel, 11, sizeof(int), &ne03));
- CL_CHECK(clSetKernelArg(kernel, 12, sizeof(cl_ulong), &nb00));
- CL_CHECK(clSetKernelArg(kernel, 13, sizeof(cl_ulong), &nb01));
- CL_CHECK(clSetKernelArg(kernel, 14, sizeof(cl_ulong), &nb02));
- CL_CHECK(clSetKernelArg(kernel, 15, sizeof(cl_ulong), &nb03));
- CL_CHECK(clSetKernelArg(kernel, 16, sizeof(int), &ne0));
- CL_CHECK(clSetKernelArg(kernel, 17, sizeof(int), &ne1));
- CL_CHECK(clSetKernelArg(kernel, 18, sizeof(int), &ne2));
- CL_CHECK(clSetKernelArg(kernel, 19, sizeof(int), &ne3));
- CL_CHECK(clSetKernelArg(kernel, 20, sizeof(cl_ulong), &nb0));
- CL_CHECK(clSetKernelArg(kernel, 21, sizeof(cl_ulong), &nb1));
- CL_CHECK(clSetKernelArg(kernel, 22, sizeof(cl_ulong), &nb2));
- CL_CHECK(clSetKernelArg(kernel, 23, sizeof(cl_ulong), &nb3));
- CL_CHECK(clSetKernelArg(kernel, 24, sizeof(int), &n_past));
- CL_CHECK(clSetKernelArg(kernel, 25, sizeof(int), &n_dims));
- CL_CHECK(clSetKernelArg(kernel, 26, sizeof(int), &n_ctx_orig));
- CL_CHECK(clSetKernelArg(kernel, 27, sizeof(float), &freq_base));
- CL_CHECK(clSetKernelArg(kernel, 28, sizeof(float), &freq_scale));
- CL_CHECK(clSetKernelArg(kernel, 29, sizeof(float), &ext_factor));
- CL_CHECK(clSetKernelArg(kernel, 30, sizeof(float), &attn_factor));
- CL_CHECK(clSetKernelArg(kernel, 31, sizeof(float), &beta_fast));
- CL_CHECK(clSetKernelArg(kernel, 32, sizeof(float), &beta_slow));
- size_t global_work_size[] = {(size_t)ne01*nth, (size_t)ne02, (size_t)ne03};
- size_t local_work_size[] = {(size_t)nth, 1, 1};
- #ifdef GGML_OPENCL_PROFILING
- cl_event evt;
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, &evt));
- g_profiling_info.emplace_back();
- populateProfilingInfo(g_profiling_info.back(), evt, kernel, global_work_size, local_work_size, dst);
- #else
- CL_CHECK(clEnqueueNDRangeKernel(queue, kernel, 3, NULL, global_work_size, local_work_size, 0, NULL, NULL));
- #endif
- }
- //------------------------------------------------------------------------------
- // Op offloading
- //------------------------------------------------------------------------------
- typedef void (*ggml_cl_func_t)(ggml_backend_t backend, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
- bool ggml_cl_compute_forward(ggml_backend_t backend, struct ggml_tensor * tensor) {
- ggml_cl_func_t func = nullptr;
- ggml_tensor * src0 = tensor->src[0];
- ggml_tensor * src1 = tensor->src[1];
- const bool any_on_device = tensor->extra
- || (src0 != nullptr && src0->extra)
- || (src1 != nullptr && src1->extra);
- switch (tensor->op) {
- case GGML_OP_GET_ROWS:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_get_rows;
- break;
- case GGML_OP_CPY:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_cpy;
- break;
- case GGML_OP_DUP:
- case GGML_OP_CONT:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_dup;
- break;
- case GGML_OP_ADD:
- if (!any_on_device) {
- return false;
- }
- GGML_ASSERT(ggml_is_contiguous(src0));
- GGML_ASSERT(ggml_is_contiguous(src1));
- func = ggml_cl_add;
- break;
- case GGML_OP_MUL:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_mul;
- break;
- case GGML_OP_UNARY:
- switch (ggml_get_unary_op(tensor)) {
- case GGML_UNARY_OP_GELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_gelu;
- break;
- case GGML_UNARY_OP_SILU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_silu;
- break;
- case GGML_UNARY_OP_RELU:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_relu;
- break;
- default:
- return false;
- } break;
- case GGML_OP_CLAMP:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_clamp;
- break;
- case GGML_OP_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_norm;
- break;
- case GGML_OP_RMS_NORM:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_rms_norm;
- break;
- case GGML_OP_MUL_MAT:
- if (!any_on_device && !ggml_cl_can_mul_mat(tensor->src[0], tensor->src[1], tensor)) {
- return false;
- }
- func = ggml_cl_mul_mat;
- break;
- case GGML_OP_SCALE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_scale;
- break;
- case GGML_OP_RESHAPE:
- case GGML_OP_VIEW:
- case GGML_OP_PERMUTE:
- case GGML_OP_TRANSPOSE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_nop;
- break;
- case GGML_OP_DIAG_MASK_INF:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_diag_mask_inf;
- break;
- case GGML_OP_SOFT_MAX:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_soft_max;
- break;
- case GGML_OP_ROPE:
- if (!any_on_device) {
- return false;
- }
- func = ggml_cl_rope;
- break;
- default:
- return false;
- }
- func(backend, tensor->src[0], tensor->src[1], tensor);
- return true;
- }
|