steps.py 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086
  1. import asyncio
  2. import collections
  3. import json
  4. import os
  5. import re
  6. import socket
  7. import subprocess
  8. import time
  9. from contextlib import closing
  10. from re import RegexFlag
  11. import aiohttp
  12. import numpy as np
  13. import openai
  14. from behave import step
  15. from behave.api.async_step import async_run_until_complete
  16. from huggingface_hub import hf_hub_download
  17. from prometheus_client import parser
  18. @step("a server listening on {server_fqdn}:{server_port}")
  19. def step_server_config(context, server_fqdn, server_port):
  20. context.server_fqdn = server_fqdn
  21. context.server_port = int(server_port)
  22. if 'PORT' in os.environ:
  23. context.server_port = int(os.environ['PORT'])
  24. print(f"$PORT set, overriding server port with to {context.server_port}")
  25. if 'FQDN' in os.environ:
  26. context.server_fqdn = os.environ['FQDN']
  27. print(f"$FQDN set, overriding server fqdn with to {context.server_fqdn}")
  28. context.base_url = f'http://{context.server_fqdn}:{context.server_port}'
  29. context.model_alias = None
  30. context.n_batch = None
  31. context.n_ubatch = None
  32. context.n_ctx = None
  33. context.n_ga = None
  34. context.n_ga_w = None
  35. context.n_gpu_layer = None
  36. context.n_predict = None
  37. context.n_prompts = 0
  38. context.n_server_predict = None
  39. context.n_slots = None
  40. context.prompt_prefix = None
  41. context.prompt_suffix = None
  42. context.server_api_key = None
  43. context.server_continuous_batching = False
  44. context.server_embeddings = False
  45. context.server_metrics = False
  46. context.server_process = None
  47. context.seed = None
  48. context.server_seed = None
  49. context.user_api_key = None
  50. context.tasks_result = []
  51. context.concurrent_tasks = []
  52. context.prompts = []
  53. @step('a model file {hf_file} from HF repo {hf_repo}')
  54. def step_download_hf_model(context, hf_file, hf_repo):
  55. context.model_file = hf_hub_download(repo_id=hf_repo, filename=hf_file)
  56. if context.debug:
  57. print(f"model file: {context.model_file}\n")
  58. @step('a model alias {model_alias}')
  59. def step_model_alias(context, model_alias):
  60. context.model_alias = model_alias
  61. @step('{seed:d} as server seed')
  62. def step_seed(context, seed):
  63. context.server_seed = seed
  64. @step('{ngl:d} GPU offloaded layers')
  65. def step_n_gpu_layer(context, ngl):
  66. if 'N_GPU_LAYERS' in os.environ:
  67. new_ngl = int(os.environ['N_GPU_LAYERS'])
  68. if context.debug:
  69. print(f"-ngl upgraded from {ngl} to {new_ngl}")
  70. ngl = new_ngl
  71. context.n_gpu_layer = ngl
  72. @step('{n_ctx:d} KV cache size')
  73. def step_n_ctx(context, n_ctx):
  74. context.n_ctx = n_ctx
  75. @step('{n_slots:d} slots')
  76. def step_n_slots(context, n_slots):
  77. context.n_slots = n_slots
  78. @step('{n_predict:d} server max tokens to predict')
  79. def step_server_n_predict(context, n_predict):
  80. context.n_server_predict = n_predict
  81. @step('continuous batching')
  82. def step_server_continuous_batching(context):
  83. context.server_continuous_batching = True
  84. @step('embeddings extraction')
  85. def step_server_embeddings(context):
  86. context.server_embeddings = True
  87. @step('prometheus compatible metrics exposed')
  88. def step_server_metrics(context):
  89. context.server_metrics = True
  90. @step("the server is starting")
  91. def step_start_server(context):
  92. start_server_background(context)
  93. attempts = 0
  94. max_attempts = 20
  95. if 'GITHUB_ACTIONS' in os.environ:
  96. max_attempts *= 2
  97. while True:
  98. with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
  99. result = sock.connect_ex((context.server_fqdn, context.server_port))
  100. if result == 0:
  101. print("\x1b[33;46mserver started!\x1b[0m")
  102. return
  103. attempts += 1
  104. if attempts > max_attempts:
  105. assert False, "server not started"
  106. print(f"waiting for server to start, connect error code = {result}...")
  107. time.sleep(0.1)
  108. @step("the server is {expecting_status}")
  109. @async_run_until_complete
  110. async def step_wait_for_the_server_to_be_started(context, expecting_status):
  111. match expecting_status:
  112. case 'healthy':
  113. await wait_for_health_status(context, context.base_url, 200, 'ok')
  114. case 'ready' | 'idle':
  115. await wait_for_health_status(context, context.base_url, 200, 'ok',
  116. timeout=10,
  117. params={'fail_on_no_slot': 0, 'include_slots': 0},
  118. slots_idle=context.n_slots,
  119. slots_processing=0,
  120. expected_slots=[{'id': slot_id, 'state': 0}
  121. for slot_id in
  122. range(context.n_slots if context.n_slots else 1)])
  123. case 'busy':
  124. await wait_for_health_status(context, context.base_url, 503,
  125. 'no slot available',
  126. params={'fail_on_no_slot': 0, 'include_slots': 0},
  127. slots_idle=0,
  128. slots_processing=context.n_slots,
  129. expected_slots=[{'id': slot_id, 'state': 1}
  130. for slot_id in
  131. range(context.n_slots if context.n_slots else 1)])
  132. case _:
  133. assert False, "unknown status"
  134. @step('all slots are {expected_slot_status_string}')
  135. @async_run_until_complete
  136. async def step_all_slots_status(context, expected_slot_status_string):
  137. match expected_slot_status_string:
  138. case 'idle':
  139. expected_slot_status = 0
  140. case 'busy':
  141. expected_slot_status = 1
  142. case _:
  143. assert False, "unknown status"
  144. expected_slots = [{'id': slot_id, 'state': expected_slot_status}
  145. for slot_id in range(context.n_slots)]
  146. await request_slots_status(context, expected_slots)
  147. @step('a completion request with {api_error} api error')
  148. @async_run_until_complete
  149. async def step_request_completion(context, api_error):
  150. expect_api_error = api_error == 'raised'
  151. completion = await request_completion(context.prompts.pop(),
  152. context.base_url,
  153. debug=context.debug,
  154. n_predict=context.n_predict,
  155. seed=await completions_seed(context),
  156. expect_api_error=expect_api_error,
  157. user_api_key=context.user_api_key)
  158. context.tasks_result.append(completion)
  159. if context.debug:
  160. print(f"Completion response: {completion}\n")
  161. if expect_api_error:
  162. assert completion == 401, f"completion must be an 401 status code: {completion}"
  163. @step('{predicted_n:d} tokens are predicted matching {re_content}')
  164. def step_n_tokens_predicted_with_content(context, predicted_n, re_content):
  165. context.completion = context.tasks_result.pop()
  166. assert_n_tokens_predicted(context.completion, predicted_n, re_content)
  167. @step('{predicted_n:d} tokens are predicted')
  168. def step_n_tokens_predicted(context, predicted_n):
  169. context.completion = context.tasks_result.pop()
  170. assert_n_tokens_predicted(context.completion, predicted_n)
  171. @step('the completion is truncated')
  172. def step_assert_completion_truncated(context):
  173. step_assert_completion_truncated(context, '')
  174. @step('the completion is {truncated} truncated')
  175. def step_assert_completion_truncated(context, truncated):
  176. truncated = truncated != "not"
  177. assert context.completion['truncated'] == truncated, f'{context.completion}'
  178. @step('{n_prompt:d} prompt tokens are processed')
  179. def step_impl(context, n_prompt):
  180. assert n_prompt < 0 or n_prompt == context.completion['timings']['prompt_n'], f"n_prompt={context.completion['timings']['prompt_n']}"
  181. @step('a user prompt {user_prompt}')
  182. def step_user_prompt(context, user_prompt):
  183. context.prompts.append(user_prompt)
  184. context.n_prompts = len(context.prompts)
  185. @step('a system prompt {system_prompt}')
  186. def step_system_prompt(context, system_prompt):
  187. context.system_prompt = system_prompt
  188. @step('a model {model}')
  189. def step_model(context, model):
  190. context.model = model
  191. @step('{max_tokens:d} max tokens to predict')
  192. def step_max_tokens(context, max_tokens):
  193. context.n_predict = max_tokens
  194. @step('streaming is {enable_streaming}')
  195. def step_streaming(context, enable_streaming):
  196. context.enable_streaming = enable_streaming == 'enabled'
  197. @step('a user api key {user_api_key}')
  198. def step_user_api_key(context, user_api_key):
  199. context.user_api_key = user_api_key
  200. @step('no user api key')
  201. def step_no_user_api_key(context):
  202. context.user_api_key = None
  203. @step('a user api key ')
  204. def step_no_user_api_key_space(context):
  205. context.user_api_key = None
  206. @step('a server api key {server_api_key}')
  207. def step_server_api_key(context, server_api_key):
  208. context.server_api_key = server_api_key
  209. @step('{n_junk:d} as number of junk')
  210. def step_n_junk(context, n_junk):
  211. context.n_junk = n_junk
  212. @step('{n_batch:d} as batch size')
  213. def step_n_batch(context, n_batch):
  214. context.n_batch = n_batch
  215. @step('{n_ubatch:d} as ubatch size')
  216. def step_n_ubatch(context, n_ubatch):
  217. context.n_ubatch = n_ubatch
  218. @step('{seed:d} as seed')
  219. def step_seed(context, seed):
  220. context.seed = seed
  221. @step('a prefix prompt')
  222. def step_prompt_prefix(context):
  223. context.prompt_prefix = context_text(context)
  224. @step('a junk suffix prompt')
  225. def step_prompt_junk_suffix(context):
  226. context.prompt_junk_suffix = context_text(context)
  227. @step('a suffix prompt')
  228. def step_prompt_suffix(context):
  229. context.prompt_suffix = context_text(context)
  230. @step('{n_ga:d} group attention factor'
  231. ' to extend context size through self-extend')
  232. def step_impl(context, n_ga):
  233. context.n_ga = n_ga
  234. @step('{n_ga_w:d} group attention width to extend context size through self-extend')
  235. def step_impl(context, n_ga_w):
  236. context.n_ga_w = n_ga_w
  237. @step('a passkey prompt template')
  238. def step_prompt_passkey(context):
  239. context.prompt_passkey = context_text(context)
  240. @step('{n_prompts:d} fixed prompts')
  241. def step_fixed_prompts(context, n_prompts):
  242. context.prompts.extend([str(0)*(context.n_batch if context.n_batch is not None else 512) for i in range(n_prompts)])
  243. context.n_prompts = n_prompts
  244. @step('a "{passkey}" passkey challenge prompt with the passkey inserted every {i_pos:d} junk')
  245. def step_prompt_passkey(context, passkey, i_pos):
  246. prompt = ""
  247. for i in range(context.n_junk):
  248. if i % context.n_junk == i_pos:
  249. prompt += context.prompt_passkey # the passkey is already substituted
  250. prompt += context.prompt_junk_suffix
  251. if context.debug:
  252. passkey_highlight = "\x1b[33m" + passkey + "\x1b[0m"
  253. print(f"Passkey challenge:\n```{prompt.replace(passkey, passkey_highlight)}```\n")
  254. context.prompts.append(context.prompt_prefix + prompt + context.prompt_suffix)
  255. context.n_prompts = len(context.prompts)
  256. @step('an OAI compatible chat completions request with {api_error} api error')
  257. @async_run_until_complete
  258. async def step_oai_chat_completions(context, api_error):
  259. if context.debug:
  260. print(f"Submitting OAI compatible completions request...\n")
  261. expect_api_error = api_error == 'raised'
  262. completion = await oai_chat_completions(context.prompts.pop(),
  263. context.system_prompt,
  264. context.base_url,
  265. '/v1/chat',
  266. False,
  267. model=context.model if hasattr(context, 'model') else None,
  268. n_predict=context.n_predict
  269. if hasattr(context, 'n_predict') else None,
  270. enable_streaming=context.enable_streaming
  271. if hasattr(context, 'enable_streaming') else None,
  272. seed=await completions_seed(context),
  273. user_api_key=context.user_api_key
  274. if hasattr(context, 'user_api_key') else None,
  275. expect_api_error=expect_api_error)
  276. context.tasks_result.append(completion)
  277. if context.debug:
  278. print(f"Completion response: {completion}")
  279. if expect_api_error:
  280. assert completion == 401, f"completion must be an 401 status code: {completion}"
  281. if context.debug:
  282. print(f"Completion response: {completion}")
  283. @step('a prompt')
  284. def step_a_prompt(context):
  285. context.prompts.append(context_text(context))
  286. context.n_prompts = len(context.prompts)
  287. @step('a prompt {prompt}')
  288. def step_a_prompt_prompt(context, prompt):
  289. context.prompts.append(prompt)
  290. context.n_prompts = len(context.prompts)
  291. @step('concurrent completion requests')
  292. @async_run_until_complete()
  293. async def step_concurrent_completion_requests(context):
  294. await concurrent_requests(context,
  295. request_completion,
  296. # prompt is inserted automatically
  297. context.base_url,
  298. debug=context.debug,
  299. prompt_prefix=context.prompt_prefix,
  300. prompt_suffix=context.prompt_suffix,
  301. n_predict=context.n_predict if hasattr(context, 'n_predict') else None,
  302. seed=await completions_seed(context),
  303. user_api_key=context.user_api_key if hasattr(context,
  304. 'user_api_key') else None)
  305. @step('concurrent OAI completions requests')
  306. @async_run_until_complete
  307. async def step_oai_chat_completions(context):
  308. await concurrent_requests(context, oai_chat_completions,
  309. # user_prompt is inserted automatically
  310. context.system_prompt,
  311. context.base_url,
  312. '/v1/chat/completions',
  313. True, # async_client
  314. model=context.model
  315. if hasattr(context, 'model') else None,
  316. n_predict=context.n_predict
  317. if hasattr(context, 'n_predict') else None,
  318. enable_streaming=context.enable_streaming
  319. if hasattr(context, 'enable_streaming') else None,
  320. seed=await completions_seed(context),
  321. user_api_key=context.user_api_key
  322. if hasattr(context, 'user_api_key') else None)
  323. @step('concurrent OAI completions requests no v1')
  324. @async_run_until_complete
  325. async def step_oai_chat_completions(context):
  326. await concurrent_requests(context, oai_chat_completions,
  327. # user_prompt is inserted automatically
  328. context.system_prompt,
  329. context.base_url,
  330. '/chat/completions',
  331. True, # async_client
  332. model=context.model
  333. if hasattr(context, 'model') else None,
  334. n_predict=context.n_predict
  335. if hasattr(context, 'n_predict') else None,
  336. enable_streaming=context.enable_streaming
  337. if hasattr(context, 'enable_streaming') else None,
  338. seed=context.seed
  339. if hasattr(context, 'seed') else
  340. context.server_seed
  341. if hasattr(context, 'server_seed') else None,
  342. user_api_key=context.user_api_key
  343. if hasattr(context, 'user_api_key') else None)
  344. @step('all prompts are predicted')
  345. @async_run_until_complete
  346. async def step_all_prompts_are_predicted(context):
  347. await all_prompts_are_predicted(context)
  348. @step('all prompts are predicted with {n_expected_predicted:d} tokens')
  349. @async_run_until_complete
  350. async def step_all_prompts_are_predicted_with_n_tokens(context, n_expected_predicted):
  351. await all_prompts_are_predicted(context, n_expected_predicted)
  352. async def all_prompts_are_predicted(context, expected_predicted_n=None):
  353. n_completions = await gather_tasks_results(context)
  354. assert n_completions > 0
  355. for i in range(n_completions):
  356. assert_n_tokens_predicted(context.tasks_result.pop(), expected_predicted_n=expected_predicted_n)
  357. assert len(context.concurrent_tasks) == 0, f"{len(context.concurrent_tasks)} pending requests"
  358. @step('embeddings are computed for')
  359. @async_run_until_complete
  360. async def step_compute_embedding(context):
  361. context.n_prompts = 1
  362. context.embeddings = await request_embedding(context_text(context), base_url=context.base_url)
  363. @step('all embeddings are the same')
  364. @async_run_until_complete
  365. async def step_all_embeddings_are_the_same(context):
  366. n_embedding_requests = await gather_tasks_results(context)
  367. assert n_embedding_requests > 0
  368. embeddings = []
  369. for i in range(n_embedding_requests):
  370. embedding = context.tasks_result.pop().pop()
  371. embeddings.append(embedding)
  372. assert_embeddings(embedding)
  373. n = len(embeddings)
  374. for i in range(n-1):
  375. for j in range(i+1, n):
  376. embedding1 = np.array(embeddings[i])
  377. embedding2 = np.array(embeddings[j])
  378. if context.debug:
  379. print(f"embedding1: {embedding1[-8:]}\n")
  380. print(f"embedding2: {embedding2[-8:]}\n")
  381. similarity = np.dot(embedding1, embedding2) / (np.linalg.norm(embedding1) * np.linalg.norm(embedding2))
  382. msg = f"Similarity between {i} and {j}: {similarity:.10f}"
  383. if context.debug:
  384. print(f"{msg}\n")
  385. assert np.isclose(similarity, 1.0, rtol=1e-05, atol=1e-08, equal_nan=False), msg
  386. @step('embeddings are generated')
  387. def step_assert_embeddings(context):
  388. assert context.n_prompts == len(context.embeddings), (f"unexpected response:\n"
  389. f"context.n_prompts={context.n_prompts}\n"
  390. f"context.embeddings={context.embeddings}")
  391. for embedding in context.embeddings:
  392. assert_embeddings(embedding)
  393. @step('an OAI compatible embeddings computation request for')
  394. @async_run_until_complete
  395. async def step_oai_compute_embeddings(context):
  396. context.n_prompts = 1
  397. context.embeddings = await request_oai_embeddings(context_text(context),
  398. base_url=context.base_url,
  399. user_api_key=context.user_api_key,
  400. model=context.model)
  401. @step('an OAI compatible embeddings computation request for multiple inputs')
  402. @async_run_until_complete
  403. async def step_oai_compute_embeddings_multiple_inputs(context):
  404. context.embeddings = await request_oai_embeddings(context.prompts,
  405. base_url=context.base_url,
  406. user_api_key=context.user_api_key,
  407. model=context.model)
  408. context.prompts.clear()
  409. @step('concurrent embedding requests')
  410. @async_run_until_complete()
  411. async def step_concurrent_embedding_requests(context):
  412. await concurrent_requests(context,
  413. request_embedding,
  414. # prompt is inserted automatically
  415. base_url=context.base_url)
  416. @step('concurrent OAI embedding requests')
  417. @async_run_until_complete()
  418. async def step_concurrent_oai_embedding_requests(context):
  419. await concurrent_requests(context,
  420. request_oai_embeddings,
  421. # prompt is inserted automatically
  422. base_url=context.base_url,
  423. async_client=True,
  424. model=context.model)
  425. @step('all embeddings are generated')
  426. @async_run_until_complete()
  427. async def all_embeddings_are_generated(context):
  428. n_embedding_requests = await gather_tasks_results(context)
  429. assert n_embedding_requests == context.n_prompts
  430. for i in range(n_embedding_requests):
  431. assert_embeddings(context.tasks_result.pop().pop())
  432. @step('tokenizing')
  433. @async_run_until_complete
  434. async def step_tokenize(context):
  435. context.tokenized_text = context_text(context)
  436. async with aiohttp.ClientSession() as session:
  437. async with session.post(f'{context.base_url}/tokenize',
  438. json={
  439. "content": context.tokenized_text,
  440. }) as response:
  441. assert response.status == 200
  442. tokenize_json = await response.json()
  443. context.tokens = tokenize_json['tokens']
  444. @step('tokens can be detokenize')
  445. @async_run_until_complete
  446. async def step_detokenize(context):
  447. assert len(context.tokens) > 0
  448. async with aiohttp.ClientSession() as session:
  449. async with session.post(f'{context.base_url}/detokenize',
  450. json={
  451. "tokens": context.tokens,
  452. }) as response:
  453. assert response.status == 200
  454. detokenize_json = await response.json()
  455. # SPM tokenizer adds a whitespace prefix: https://github.com/google/sentencepiece/issues/15
  456. assert context.tokenized_text == detokenize_json['content'].strip()
  457. @step('an OPTIONS request is sent from {origin}')
  458. @async_run_until_complete
  459. async def step_options_request(context, origin):
  460. async with aiohttp.ClientSession() as session:
  461. headers = {'Authorization': f'Bearer {context.user_api_key}', 'Origin': origin}
  462. async with session.options(f'{context.base_url}/v1/chat/completions',
  463. headers=headers) as response:
  464. assert response.status == 200
  465. context.options_response = response
  466. @step('CORS header {cors_header} is set to {cors_header_value}')
  467. def step_check_options_header_value(context, cors_header, cors_header_value):
  468. assert context.options_response.headers[cors_header] == cors_header_value
  469. @step('prometheus metrics are exposed')
  470. @async_run_until_complete
  471. async def step_prometheus_metrics_exported(context):
  472. async with aiohttp.ClientSession() as session:
  473. async with await session.get(f'{context.base_url}/metrics') as metrics_response:
  474. assert metrics_response.status == 200
  475. assert metrics_response.headers['Content-Type'] == "text/plain; version=0.0.4"
  476. metrics_raw = await metrics_response.text()
  477. metric_exported = False
  478. if context.debug:
  479. print(f"/metrics answer:\n{metrics_raw}\n")
  480. context.metrics = {}
  481. for metric in parser.text_string_to_metric_families(metrics_raw):
  482. match metric.name:
  483. case "llamacpp:kv_cache_usage_ratio":
  484. assert len(metric.samples) > 0
  485. metric_exported = True
  486. context.metrics[metric.name] = metric
  487. assert int(metrics_response.headers["Process-Start-Time-Unix"]) > 0, "no header process start time"
  488. assert metric_exported, "No metrics exported"
  489. @step('metric {metric_name} is {metric_value:d}')
  490. def step_assert_metric_value(context, metric_name, metric_value):
  491. if metric_name not in context.metrics:
  492. assert False, f"no metric {metric_name} in {context.metrics.keys()}"
  493. assert context.metrics[metric_name].samples[0].value == metric_value, f"metric: {context.metrics[metric_name]}"
  494. @step('available models')
  495. def step_available_models(context):
  496. # openai client always expects an api_key
  497. openai.api_key = context.user_api_key if context.user_api_key is not None else 'nope'
  498. openai.api_base = f'{context.base_url}/v1'
  499. context.models = openai.Model.list().data
  500. @step('{n_model:d} models are supported')
  501. def step_supported_models(context, n_model):
  502. if context.debug:
  503. print("server models available:", context.models)
  504. assert len(context.models) == n_model
  505. @step('model {i_model:d} is {param} {preposition} {param_value}')
  506. def step_supported_models(context, i_model, param, preposition, param_value):
  507. assert i_model < len(context.models)
  508. model = context.models[i_model]
  509. param_value = param_value.split(' ', 1)[0]
  510. match param:
  511. case 'identified':
  512. value = model.id
  513. case 'trained':
  514. value = str(model.meta.n_ctx_train)
  515. case _:
  516. assert False, "param {param} not supported"
  517. assert param_value == value, f"model param {param} {value} != {param_value}"
  518. async def concurrent_requests(context, f_completion, *args, **kwargs):
  519. context.n_prompts = len(context.prompts)
  520. if context.debug:
  521. print(f"starting {context.n_prompts} concurrent completion requests...")
  522. assert context.n_prompts > 0
  523. for prompt_no in range(context.n_prompts):
  524. shifted_args = [context.prompts.pop(), *args]
  525. context.concurrent_tasks.append(asyncio.create_task(f_completion(*shifted_args, **kwargs)))
  526. await asyncio.sleep(0.1)
  527. async def request_completion(prompt,
  528. base_url,
  529. debug=False,
  530. prompt_prefix=None,
  531. prompt_suffix=None,
  532. n_predict=None,
  533. seed=None,
  534. expect_api_error=None,
  535. user_api_key=None):
  536. if debug:
  537. print(f"Sending completion request: {prompt}")
  538. origin = "my.super.domain"
  539. headers = {
  540. 'Origin': origin
  541. }
  542. if user_api_key is not None:
  543. if debug:
  544. print(f"Set user_api_key: {user_api_key}")
  545. headers['Authorization'] = f'Bearer {user_api_key}'
  546. async with aiohttp.ClientSession() as session:
  547. async with session.post(f'{base_url}/completion',
  548. json={
  549. "input_prefix": prompt_prefix,
  550. "prompt": prompt,
  551. "input_suffix": prompt_suffix,
  552. "n_predict": n_predict if n_predict is not None else -1,
  553. "seed": seed if seed is not None else 42
  554. },
  555. headers=headers,
  556. timeout=3600) as response:
  557. if expect_api_error is None or not expect_api_error:
  558. assert response.status == 200
  559. assert response.headers['Access-Control-Allow-Origin'] == origin
  560. return await response.json()
  561. else:
  562. return response.status
  563. async def oai_chat_completions(user_prompt,
  564. system_prompt,
  565. base_url,
  566. base_path,
  567. async_client,
  568. debug=False,
  569. model=None,
  570. n_predict=None,
  571. enable_streaming=None,
  572. seed=None,
  573. user_api_key=None,
  574. expect_api_error=None):
  575. if debug:
  576. print(f"Sending OAI Chat completions request: {user_prompt}")
  577. # openai client always expects an api key
  578. user_api_key = user_api_key if user_api_key is not None else 'nope'
  579. seed = seed if seed is not None else 42
  580. enable_streaming = enable_streaming if enable_streaming is not None else False
  581. payload = {
  582. "messages": [
  583. {
  584. "role": "system",
  585. "content": system_prompt,
  586. },
  587. {
  588. "role": "user",
  589. "content": user_prompt,
  590. }
  591. ],
  592. "model": model,
  593. "max_tokens": n_predict,
  594. "stream": enable_streaming,
  595. "seed": seed
  596. }
  597. completion_response = {
  598. 'content': '',
  599. 'timings': {
  600. 'predicted_n': 0,
  601. 'prompt_n': 0
  602. }
  603. }
  604. if async_client:
  605. origin = 'llama.cpp'
  606. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  607. async with aiohttp.ClientSession() as session:
  608. async with session.post(f'{base_url}{base_path}',
  609. json=payload,
  610. headers=headers) as response:
  611. if enable_streaming:
  612. assert response.status == 200
  613. assert response.headers['Access-Control-Allow-Origin'] == origin
  614. assert response.headers['Content-Type'] == "text/event-stream"
  615. event_received = True
  616. while event_received:
  617. event_received = False
  618. async for line_in_bytes in response.content:
  619. line = line_in_bytes.decode('utf8')
  620. line = line.rstrip('\n').rstrip('\r')
  621. if line == '':
  622. continue
  623. event_data = line.split(': ', 1)
  624. assert event_data[0] == 'data', f'Bad event code received: ```{event_data}```'
  625. chunk_raw = event_data[1]
  626. chunk = json.loads(chunk_raw)
  627. assert len(chunk['choices']) == 1, f"no choices provided, line ```{line}```"
  628. delta = chunk['choices'][0]['delta']
  629. if 'content' in delta:
  630. completion_response['content'] += delta['content']
  631. completion_response['timings']['predicted_n'] += 1
  632. else:
  633. if expect_api_error is None or not expect_api_error:
  634. assert response.status == 200
  635. assert response.headers['Access-Control-Allow-Origin'] == origin
  636. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  637. chat_completion_raw = await response.json()
  638. completion_response = {
  639. 'content': chat_completion_raw['choices'][0]['message'],
  640. 'timings': {
  641. 'predicted_n': chat_completion_raw['usage']['completion_tokens'],
  642. 'prompt_n': chat_completion_raw['usage']['prompt_tokens']
  643. }
  644. }
  645. else:
  646. return response.status
  647. else:
  648. try:
  649. openai.api_key = user_api_key
  650. openai.api_base = f'{base_url}{base_path}'
  651. chat_completion = openai.Completion.create(
  652. messages=payload['messages'],
  653. model=model,
  654. max_tokens=n_predict,
  655. stream=enable_streaming,
  656. seed=seed
  657. )
  658. except openai.error.AuthenticationError as e:
  659. if expect_api_error is not None and expect_api_error:
  660. return 401
  661. else:
  662. assert False, f'error raised: {e}'
  663. if enable_streaming:
  664. for chunk in chat_completion:
  665. assert len(chunk.choices) == 1
  666. delta = chunk.choices[0].delta
  667. if 'content' in delta:
  668. completion_response['content'] += delta['content']
  669. completion_response['timings']['predicted_n'] += 1
  670. completion_response['truncated'] = chunk.choices[0].finish_reason != 'stop'
  671. else:
  672. assert len(chat_completion.choices) == 1
  673. completion_response = {
  674. 'content': chat_completion.choices[0].message.content,
  675. 'timings': {
  676. 'predicted_n': chat_completion.usage.completion_tokens,
  677. 'prompt_n': chat_completion.usage.prompt_tokens
  678. },
  679. 'truncated': chat_completion.choices[0].finish_reason != 'stop'
  680. }
  681. if debug:
  682. print("OAI response formatted to llama.cpp:", completion_response)
  683. return completion_response
  684. async def request_embedding(content, base_url=None):
  685. async with aiohttp.ClientSession() as session:
  686. async with session.post(f'{base_url}/embedding',
  687. json={
  688. "content": content,
  689. }) as response:
  690. assert response.status == 200
  691. response_json = await response.json()
  692. return [response_json['embedding']]
  693. async def request_oai_embeddings(input,
  694. base_url=None, user_api_key=None,
  695. model=None, async_client=False):
  696. # openai client always expects an api_key
  697. user_api_key = user_api_key if user_api_key is not None else 'nope'
  698. if async_client:
  699. origin = 'llama.cpp'
  700. headers=[]
  701. if user_api_key is not None:
  702. headers = {'Authorization': f'Bearer {user_api_key}', 'Origin': origin}
  703. async with aiohttp.ClientSession() as session:
  704. async with session.post(f'{base_url}/v1/embeddings',
  705. json={
  706. "input": input,
  707. "model": model,
  708. },
  709. headers=headers,
  710. timeout=3600) as response:
  711. assert response.status == 200, f"received status code not expected: {response.status}"
  712. assert response.headers['Access-Control-Allow-Origin'] == origin
  713. assert response.headers['Content-Type'] == "application/json; charset=utf-8"
  714. response_json = await response.json()
  715. assert response_json['model'] == model, f"invalid model received: {response_json['model']}"
  716. assert response_json['object'] == 'list'
  717. if isinstance(input, collections.abc.Sequence):
  718. embeddings = []
  719. for an_oai_embeddings in response_json['data']:
  720. embeddings.append(an_oai_embeddings['embedding'])
  721. else:
  722. embeddings = [response_json['data']['embedding']]
  723. return embeddings
  724. else:
  725. openai.api_key = user_api_key
  726. openai.api_base = f'{base_url}/v1'
  727. oai_embeddings = openai.Embedding.create(
  728. model=model,
  729. input=input,
  730. )
  731. if isinstance(input, collections.abc.Sequence):
  732. embeddings = []
  733. for an_oai_embeddings in oai_embeddings.data:
  734. embeddings.append(an_oai_embeddings.embedding)
  735. else:
  736. embeddings = [oai_embeddings.data.embedding]
  737. return embeddings
  738. def assert_n_tokens_predicted(completion_response, expected_predicted_n=None, re_content=None):
  739. content = completion_response['content']
  740. n_predicted = completion_response['timings']['predicted_n']
  741. assert len(content) > 0, "no token predicted"
  742. if re_content is not None:
  743. p = re.compile(re_content, flags=RegexFlag.IGNORECASE | RegexFlag.MULTILINE | RegexFlag.DOTALL)
  744. matches = p.finditer(content)
  745. last_match = 0
  746. highlighted = ''
  747. for match in matches:
  748. start, end = match.span()
  749. highlighted += content[last_match: start]
  750. highlighted += '\x1b[33m'
  751. highlighted += content[start: end]
  752. highlighted += '\x1b[0m'
  753. last_match = end
  754. highlighted += content[last_match:]
  755. if 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON':
  756. print(f"Checking completion response: {highlighted}\n")
  757. assert last_match > 0, f'/{re_content}/ must match ```{highlighted}```'
  758. if expected_predicted_n and expected_predicted_n > 0:
  759. assert n_predicted == expected_predicted_n, (f'invalid number of tokens predicted:'
  760. f' {n_predicted} <> {expected_predicted_n}')
  761. async def gather_tasks_results(context):
  762. n_tasks = len(context.concurrent_tasks)
  763. if context.debug:
  764. print(f"Waiting for all {n_tasks} tasks results...\n")
  765. for task_no in range(n_tasks):
  766. context.tasks_result.append(await context.concurrent_tasks.pop())
  767. n_completions = len(context.tasks_result)
  768. return n_completions
  769. async def wait_for_health_status(context,
  770. base_url,
  771. expected_http_status_code,
  772. expected_health_status,
  773. timeout=3,
  774. params=None,
  775. slots_idle=None,
  776. slots_processing=None,
  777. expected_slots=None):
  778. if context.debug:
  779. print(f"Starting checking for health for expected_health_status={expected_health_status}\n")
  780. interval = 0.5
  781. counter = 0
  782. if 'GITHUB_ACTIONS' in os.environ:
  783. timeout *= 2
  784. async with aiohttp.ClientSession() as session:
  785. while True:
  786. async with await session.get(f'{base_url}/health', params=params) as health_response:
  787. status_code = health_response.status
  788. health = await health_response.json()
  789. if context.debug:
  790. print(f"HEALTH - response for expected health status='{expected_health_status}' on "
  791. f"'{base_url}/health'?{params} is {health}\n")
  792. if (status_code == expected_http_status_code
  793. and health['status'] == expected_health_status
  794. and (slots_idle is None or health['slots_idle'] == slots_idle)
  795. and (slots_processing is None or health['slots_processing'] == slots_processing)):
  796. if expected_slots is not None:
  797. assert_slots_status(health['slots'], expected_slots)
  798. return
  799. if (status_code == expected_http_status_code
  800. and health['status'] == expected_health_status
  801. and (slots_idle is None or health['slots_idle'] == slots_idle)
  802. and (slots_processing is None or health['slots_processing'] == slots_processing)):
  803. if expected_slots is not None:
  804. assert_slots_status(health['slots'], expected_slots)
  805. return
  806. await asyncio.sleep(interval)
  807. counter += interval
  808. if counter >= timeout:
  809. # Sometimes health requests are triggered after completions are predicted
  810. if expected_http_status_code == 503:
  811. if len(context.tasks_result) == 0:
  812. print("\x1b[5;37;43mWARNING: forcing concurrent tasks,"
  813. " busy health check missed, probably too fast inference\x1b[0m\n")
  814. n_completions = await gather_tasks_results(context)
  815. if n_completions > 0:
  816. return
  817. assert False, f'{expected_health_status} timeout exceeded {counter}s>={timeout}'
  818. def assert_embeddings(embeddings):
  819. assert len(embeddings) > 0
  820. embeddings_computed = False
  821. for emb in embeddings:
  822. if not isinstance(emb, float):
  823. assert False, f"Bad embeddings: {embeddings}"
  824. if emb != 0:
  825. embeddings_computed = True
  826. assert embeddings_computed, f"Embeddings: {embeddings}"
  827. async def request_slots_status(context, expected_slots):
  828. async with aiohttp.ClientSession() as session:
  829. async with await session.get(f'{context.base_url}/slots') as slots_response:
  830. assert slots_response.status == 200
  831. slots = await slots_response.json()
  832. assert_slots_status(slots, expected_slots)
  833. def assert_slots_status(slots, expected_slots):
  834. assert len(slots) == len(expected_slots)
  835. for slot_id, (expected, slot) in enumerate(zip(expected_slots, slots)):
  836. for key in expected:
  837. assert expected[key] == slot[key], (f"invalid slot {slot_id}"
  838. f" expected[{key}] != slot[{key}]"
  839. f" = {expected[key]} != {slot[key]}")
  840. async def completions_seed(context):
  841. return context.seed if hasattr(context, 'seed') and context.seed is not None \
  842. else context.server_seed if hasattr(context, 'server_seed') else None
  843. def context_text(context):
  844. return context.text.replace('\r', '')
  845. def start_server_background(context):
  846. if os.name == 'nt':
  847. context.server_path = '../../../build/bin/Release/server.exe'
  848. else:
  849. context.server_path = '../../../build/bin/server'
  850. if 'LLAMA_SERVER_BIN_PATH' in os.environ:
  851. context.server_path = os.environ['LLAMA_SERVER_BIN_PATH']
  852. server_listen_addr = context.server_fqdn
  853. if os.name == 'nt':
  854. server_listen_addr = '0.0.0.0'
  855. server_args = [
  856. '--host', server_listen_addr,
  857. '--port', context.server_port,
  858. '--model', context.model_file
  859. ]
  860. if context.n_batch:
  861. server_args.extend(['--batch-size', context.n_batch])
  862. if context.n_ubatch:
  863. server_args.extend(['--ubatch-size', context.n_ubatch])
  864. if context.n_gpu_layer:
  865. server_args.extend(['--n-gpu-layers', context.n_gpu_layer])
  866. if context.server_continuous_batching:
  867. server_args.append('--cont-batching')
  868. if context.server_embeddings:
  869. server_args.append('--embedding')
  870. if context.server_metrics:
  871. server_args.append('--metrics')
  872. if context.model_alias:
  873. server_args.extend(['--alias', context.model_alias])
  874. if context.n_ctx:
  875. server_args.extend(['--ctx-size', context.n_ctx])
  876. if context.n_slots:
  877. server_args.extend(['--parallel', context.n_slots])
  878. if context.n_server_predict:
  879. server_args.extend(['--n-predict', context.n_server_predict])
  880. if context.server_api_key:
  881. server_args.extend(['--api-key', context.server_api_key])
  882. if context.n_ga:
  883. server_args.extend(['--grp-attn-n', context.n_ga])
  884. if context.n_ga_w:
  885. server_args.extend(['--grp-attn-w', context.n_ga_w])
  886. if context.debug:
  887. server_args.append('--verbose')
  888. if 'SERVER_LOG_FORMAT_JSON' not in os.environ:
  889. server_args.extend(['--log-format', "text"])
  890. print(f"starting server with: {context.server_path} {server_args}\n")
  891. flags = 0
  892. if 'nt' == os.name:
  893. flags |= subprocess.DETACHED_PROCESS
  894. flags |= subprocess.CREATE_NEW_PROCESS_GROUP
  895. flags |= subprocess.CREATE_NO_WINDOW
  896. pkwargs = {
  897. 'creationflags': flags,
  898. }
  899. context.server_process = subprocess.Popen(
  900. [str(arg) for arg in [context.server_path, *server_args]],
  901. **pkwargs)
  902. print(f"server pid={context.server_process.pid}, behave pid={os.getpid()}")