server.cpp 116 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061
  1. #include "common.h"
  2. #include "llama.h"
  3. #include "grammar-parser.h"
  4. #include "utils.hpp"
  5. #include "oai.hpp"
  6. #include "../llava/clip.h"
  7. #include "stb_image.h"
  8. #ifndef NDEBUG
  9. // crash the server in debug mode, otherwise send an http 500 error
  10. #define CPPHTTPLIB_NO_EXCEPTIONS 1
  11. #endif
  12. // increase max payload length to allow use of larger context size
  13. #define CPPHTTPLIB_FORM_URL_ENCODED_PAYLOAD_MAX_LENGTH 1048576
  14. #include "httplib.h"
  15. #include "json.hpp"
  16. // auto generated files (update with ./deps.sh)
  17. #include "index.html.hpp"
  18. #include "index.js.hpp"
  19. #include "completion.js.hpp"
  20. #include "json-schema-to-grammar.mjs.hpp"
  21. #include <cstddef>
  22. #include <thread>
  23. #include <chrono>
  24. #include <condition_variable>
  25. #include <atomic>
  26. using json = nlohmann::json;
  27. struct server_params
  28. {
  29. std::string hostname = "127.0.0.1";
  30. std::vector<std::string> api_keys;
  31. std::string public_path = "examples/server/public";
  32. int32_t port = 8080;
  33. int32_t read_timeout = 600;
  34. int32_t write_timeout = 600;
  35. };
  36. bool server_verbose = false;
  37. static size_t common_part(const std::vector<llama_token> &a, const std::vector<llama_token> &b)
  38. {
  39. size_t i;
  40. for (i = 0; i < a.size() && i < b.size() && a[i] == b[i]; i++)
  41. {
  42. }
  43. return i;
  44. }
  45. enum stop_type
  46. {
  47. STOP_FULL,
  48. STOP_PARTIAL,
  49. };
  50. static bool ends_with(const std::string &str, const std::string &suffix)
  51. {
  52. return str.size() >= suffix.size() &&
  53. 0 == str.compare(str.size() - suffix.size(), suffix.size(), suffix);
  54. }
  55. static size_t find_partial_stop_string(const std::string &stop,
  56. const std::string &text)
  57. {
  58. if (!text.empty() && !stop.empty())
  59. {
  60. const char text_last_char = text.back();
  61. for (int64_t char_index = stop.size() - 1; char_index >= 0; char_index--)
  62. {
  63. if (stop[char_index] == text_last_char)
  64. {
  65. const std::string current_partial = stop.substr(0, char_index + 1);
  66. if (ends_with(text, current_partial))
  67. {
  68. return text.size() - char_index - 1;
  69. }
  70. }
  71. }
  72. }
  73. return std::string::npos;
  74. }
  75. // TODO: reuse llama_detokenize
  76. template <class Iter>
  77. static std::string tokens_to_str(llama_context *ctx, Iter begin, Iter end)
  78. {
  79. std::string ret;
  80. for (; begin != end; ++begin)
  81. {
  82. ret += llama_token_to_piece(ctx, *begin);
  83. }
  84. return ret;
  85. }
  86. // format incomplete utf-8 multibyte character for output
  87. static std::string tokens_to_output_formatted_string(const llama_context *ctx, const llama_token token)
  88. {
  89. std::string out = token == -1 ? "" : llama_token_to_piece(ctx, token);
  90. // if the size is 1 and first bit is 1, meaning it's a partial character
  91. // (size > 1 meaning it's already a known token)
  92. if (out.size() == 1 && (out[0] & 0x80) == 0x80)
  93. {
  94. std::stringstream ss;
  95. ss << std::hex << (out[0] & 0xff);
  96. std::string res(ss.str());
  97. out = "byte: \\x" + res;
  98. }
  99. return out;
  100. }
  101. // convert a vector of completion_token_output to json
  102. static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> &probs)
  103. {
  104. json out = json::array();
  105. for (const auto &prob : probs)
  106. {
  107. json probs_for_token = json::array();
  108. for (const auto &p : prob.probs)
  109. {
  110. std::string tok_str = tokens_to_output_formatted_string(ctx, p.tok);
  111. probs_for_token.push_back(json
  112. {
  113. {"tok_str", tok_str},
  114. {"prob", p.prob},
  115. });
  116. }
  117. std::string tok_str = tokens_to_output_formatted_string(ctx, prob.tok);
  118. out.push_back(json{
  119. {"content", tok_str},
  120. {"probs", probs_for_token},
  121. });
  122. }
  123. return out;
  124. }
  125. struct llama_client_slot
  126. {
  127. int id;
  128. int task_id = -1;
  129. struct slot_params params;
  130. slot_state state = IDLE;
  131. slot_command command = NONE;
  132. // used to determine the slot that has been used the longest
  133. int64_t t_last_used = -1;
  134. // generation props
  135. int32_t n_ctx = 0; // context size per slot
  136. int32_t n_past = 0;
  137. int32_t n_decoded = 0;
  138. int32_t n_remaining = -1;
  139. int32_t i_batch = -1;
  140. int32_t num_prompt_tokens = 0;
  141. int32_t num_prompt_tokens_processed = 0;
  142. json prompt;
  143. std::string generated_text;
  144. llama_token sampled;
  145. std::vector<llama_token> cache_tokens;
  146. std::vector<completion_token_output> generated_token_probs;
  147. bool infill = false;
  148. bool embedding = false;
  149. bool has_next_token = true;
  150. bool truncated = false;
  151. bool stopped_eos = false;
  152. bool stopped_word = false;
  153. bool stopped_limit = false;
  154. bool oaicompat = false;
  155. std::string oaicompat_model;
  156. std::string stopping_word;
  157. // sampling
  158. struct llama_sampling_params sparams;
  159. llama_sampling_context *ctx_sampling = nullptr;
  160. int32_t ga_i = 0; // group-attention state
  161. int32_t ga_n = 1; // group-attention factor
  162. int32_t ga_w = 512; // group-attention width
  163. int32_t n_past_se = 0; // self-extend
  164. // multimodal
  165. std::vector<slot_image> images;
  166. // stats
  167. size_t sent_count = 0;
  168. size_t sent_token_probs_index = 0;
  169. int64_t t_start_process_prompt;
  170. int64_t t_start_genereration;
  171. double t_prompt_processing; // ms
  172. double t_token_generation; // ms
  173. // multitasks
  174. int multitask_id = -1;
  175. void reset() {
  176. num_prompt_tokens = 0;
  177. generated_text = "";
  178. truncated = false;
  179. stopped_eos = false;
  180. stopped_word = false;
  181. stopped_limit = false;
  182. stopping_word = "";
  183. n_past = 0;
  184. sent_count = 0;
  185. sent_token_probs_index = 0;
  186. infill = false;
  187. ga_i = 0;
  188. n_past_se = 0;
  189. generated_token_probs.clear();
  190. for (slot_image & img : images)
  191. {
  192. free(img.image_embedding);
  193. if (img.img_data) {
  194. clip_image_u8_free(img.img_data);
  195. }
  196. img.prefix_prompt = "";
  197. }
  198. images.clear();
  199. }
  200. bool has_budget(gpt_params &global_params) {
  201. if (params.n_predict == -1 && global_params.n_predict == -1)
  202. {
  203. return true; // limitless
  204. }
  205. n_remaining = -1;
  206. if (params.n_predict != -1)
  207. {
  208. n_remaining = params.n_predict - n_decoded;
  209. }
  210. else if (global_params.n_predict != -1)
  211. {
  212. n_remaining = global_params.n_predict - n_decoded;
  213. }
  214. return n_remaining > 0; // no budget
  215. }
  216. bool available() const {
  217. return state == IDLE && command == NONE;
  218. }
  219. bool is_processing() const {
  220. return (state == IDLE && command == LOAD_PROMPT) || state == PROCESSING;
  221. }
  222. void add_token_string(const completion_token_output &token) {
  223. if (command == RELEASE)
  224. {
  225. return;
  226. }
  227. cache_tokens.push_back(token.tok);
  228. generated_token_probs.push_back(token);
  229. }
  230. void release() {
  231. if (state == PROCESSING)
  232. {
  233. t_token_generation = (ggml_time_us() - t_start_genereration) / 1e3;
  234. command = RELEASE;
  235. }
  236. }
  237. json get_formated_timings() {
  238. return json
  239. {
  240. {"prompt_n", num_prompt_tokens_processed},
  241. {"prompt_ms", t_prompt_processing},
  242. {"prompt_per_token_ms", t_prompt_processing / num_prompt_tokens_processed},
  243. {"prompt_per_second", 1e3 / t_prompt_processing * num_prompt_tokens_processed},
  244. {"predicted_n", n_decoded},
  245. {"predicted_ms", t_token_generation},
  246. {"predicted_per_token_ms", t_token_generation / n_decoded},
  247. {"predicted_per_second", 1e3 / t_token_generation * n_decoded},
  248. };
  249. }
  250. void print_timings() const {
  251. LOG_TEE("\n");
  252. LOG_TEE("%s: prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n",
  253. __func__, t_prompt_processing, num_prompt_tokens_processed, t_prompt_processing / num_prompt_tokens_processed, 1e3 / t_prompt_processing * num_prompt_tokens_processed);
  254. LOG_TEE("%s: eval time = %10.2f ms / %5d runs (%8.2f ms per token, %8.2f tokens per second)\n",
  255. __func__, t_token_generation, n_decoded,t_token_generation / n_decoded, 1e3 / t_token_generation * n_decoded);
  256. LOG_TEE("%s: total time = %10.2f ms\n", __func__, t_prompt_processing + t_token_generation);
  257. }
  258. };
  259. struct llama_server_context
  260. {
  261. llama_model *model = nullptr;
  262. llama_context *ctx = nullptr;
  263. clip_ctx *clp_ctx = nullptr;
  264. gpt_params params;
  265. llama_batch batch;
  266. bool multimodal = false;
  267. bool clean_kv_cache = true;
  268. bool all_slots_are_idle = false;
  269. bool add_bos_token = true;
  270. int32_t n_ctx; // total context for all clients / slots
  271. // system prompt
  272. bool system_need_update = false;
  273. std::string system_prompt;
  274. std::vector<llama_token> system_tokens;
  275. std::string name_user; // this should be the antiprompt
  276. std::string name_assistant;
  277. // slots / clients
  278. std::vector<llama_client_slot> slots;
  279. json default_generation_settings_for_props;
  280. llama_server_queue queue_tasks;
  281. llama_server_response queue_results;
  282. ~llama_server_context()
  283. {
  284. if (ctx)
  285. {
  286. llama_free(ctx);
  287. ctx = nullptr;
  288. }
  289. if (model)
  290. {
  291. llama_free_model(model);
  292. model = nullptr;
  293. }
  294. }
  295. bool load_model(const gpt_params &params_)
  296. {
  297. params = params_;
  298. if (!params.mmproj.empty()) {
  299. multimodal = true;
  300. LOG_TEE("Multi Modal Mode Enabled");
  301. clp_ctx = clip_model_load(params.mmproj.c_str(), /*verbosity=*/ 1);
  302. if(clp_ctx == nullptr) {
  303. LOG_ERROR("unable to load clip model", {{"model", params.mmproj}});
  304. return false;
  305. }
  306. if (params.n_ctx < 2048) { // request larger context for the image embedding
  307. params.n_ctx = 2048;
  308. }
  309. }
  310. std::tie(model, ctx) = llama_init_from_gpt_params(params);
  311. if (model == nullptr)
  312. {
  313. LOG_ERROR("unable to load model", {{"model", params.model}});
  314. return false;
  315. }
  316. if (multimodal) {
  317. const int n_embd_clip = clip_n_mmproj_embd(clp_ctx);
  318. const int n_embd_llm = llama_n_embd(model);
  319. if (n_embd_clip != n_embd_llm) {
  320. LOG_TEE("%s: embedding dim of the multimodal projector (%d) is not equal to that of LLaMA (%d). Make sure that you use the correct mmproj file.\n", __func__, n_embd_clip, n_embd_llm);
  321. llama_free(ctx);
  322. llama_free_model(model);
  323. return false;
  324. }
  325. }
  326. n_ctx = llama_n_ctx(ctx);
  327. add_bos_token = llama_should_add_bos_token(model);
  328. return true;
  329. }
  330. void initialize() {
  331. // create slots
  332. all_slots_are_idle = true;
  333. const int32_t n_ctx_slot = n_ctx / params.n_parallel;
  334. LOG_TEE("Available slots:\n");
  335. for (int i = 0; i < params.n_parallel; i++)
  336. {
  337. llama_client_slot slot;
  338. slot.id = i;
  339. slot.n_ctx = n_ctx_slot;
  340. LOG_TEE(" -> Slot %i - max context: %i\n", slot.id, n_ctx_slot);
  341. const int ga_n = params.grp_attn_n;
  342. const int ga_w = params.grp_attn_w;
  343. if (ga_n != 1) {
  344. GGML_ASSERT(ga_n > 0 && "ga_n must be positive"); // NOLINT
  345. GGML_ASSERT(ga_w % ga_n == 0 && "ga_w must be a multiple of ga_n"); // NOLINT
  346. //GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of ga_w"); // NOLINT
  347. //GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * ga_n"); // NOLINT
  348. LOG_TEE(" -> Slot %i - self-extend: ga_n = %d, ga_w = %d\n", slot.id, ga_n, ga_w);
  349. }
  350. slot.ga_i = 0;
  351. slot.ga_n = ga_n;
  352. slot.ga_w = ga_w;
  353. slot.reset();
  354. slots.push_back(slot);
  355. }
  356. default_generation_settings_for_props = get_formated_generation(slots.front());
  357. default_generation_settings_for_props["seed"] = -1;
  358. batch = llama_batch_init(n_ctx, 0, params.n_parallel);
  359. // empty system prompt
  360. system_prompt = "";
  361. system_tokens.clear();
  362. }
  363. std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
  364. {
  365. // TODO: currently, we tokenize using special tokens by default
  366. // this is not always correct (see https://github.com/ggerganov/llama.cpp/pull/4160#issuecomment-1824826216)
  367. // but it's better compared to completely ignoring ChatML and other chat templates
  368. const bool TMP_FORCE_SPECIAL = true;
  369. // If `add_bos` is true, we only add BOS, when json_prompt is a string,
  370. // or the first element of the json_prompt array is a string.
  371. std::vector<llama_token> prompt_tokens;
  372. if (json_prompt.is_array())
  373. {
  374. bool first = true;
  375. for (const auto& p : json_prompt)
  376. {
  377. if (p.is_string())
  378. {
  379. auto s = p.template get<std::string>();
  380. std::vector<llama_token> p;
  381. if (first)
  382. {
  383. p = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  384. first = false;
  385. }
  386. else
  387. {
  388. p = ::llama_tokenize(ctx, s, false, TMP_FORCE_SPECIAL);
  389. }
  390. prompt_tokens.insert(prompt_tokens.end(), p.begin(), p.end());
  391. }
  392. else
  393. {
  394. if (first)
  395. {
  396. first = false;
  397. }
  398. prompt_tokens.push_back(p.template get<llama_token>());
  399. }
  400. }
  401. }
  402. else
  403. {
  404. auto s = json_prompt.template get<std::string>();
  405. prompt_tokens = ::llama_tokenize(ctx, s, add_bos, TMP_FORCE_SPECIAL);
  406. }
  407. return prompt_tokens;
  408. }
  409. llama_client_slot* get_slot(int id) {
  410. int64_t t_last = ggml_time_us();
  411. llama_client_slot *last_used = nullptr;
  412. for (llama_client_slot & slot : slots)
  413. {
  414. if (slot.id == id && slot.available())
  415. {
  416. return &slot;
  417. }
  418. if (slot.available() && slot.t_last_used < t_last)
  419. {
  420. last_used = &slot;
  421. t_last = slot.t_last_used;
  422. }
  423. }
  424. return last_used;
  425. }
  426. bool launch_slot_with_data(llama_client_slot* &slot, json data) {
  427. slot_params default_params;
  428. llama_sampling_params default_sparams;
  429. if (data.count("__oaicompat") != 0) {
  430. slot->oaicompat = true;
  431. slot->oaicompat_model = json_value(data, "model", std::string(DEFAULT_OAICOMPAT_MODEL));
  432. } else {
  433. slot->oaicompat = false;
  434. slot->oaicompat_model = "";
  435. }
  436. slot->params.stream = json_value(data, "stream", false);
  437. slot->params.cache_prompt = json_value(data, "cache_prompt", false);
  438. slot->params.n_predict = json_value(data, "n_predict", default_params.n_predict);
  439. slot->sparams.top_k = json_value(data, "top_k", default_sparams.top_k);
  440. slot->sparams.top_p = json_value(data, "top_p", default_sparams.top_p);
  441. slot->sparams.min_p = json_value(data, "min_p", default_sparams.min_p);
  442. slot->sparams.tfs_z = json_value(data, "tfs_z", default_sparams.tfs_z);
  443. slot->sparams.typical_p = json_value(data, "typical_p", default_sparams.typical_p);
  444. slot->sparams.temp = json_value(data, "temperature", default_sparams.temp);
  445. slot->sparams.dynatemp_range = json_value(data, "dynatemp_range", default_sparams.dynatemp_range);
  446. slot->sparams.dynatemp_exponent = json_value(data, "dynatemp_exponent", default_sparams.dynatemp_exponent);
  447. slot->sparams.penalty_last_n = json_value(data, "repeat_last_n", default_sparams.penalty_last_n);
  448. slot->sparams.penalty_repeat = json_value(data, "repeat_penalty", default_sparams.penalty_repeat);
  449. slot->sparams.penalty_freq = json_value(data, "frequency_penalty", default_sparams.penalty_freq);
  450. slot->sparams.penalty_present = json_value(data, "presence_penalty", default_sparams.penalty_present);
  451. slot->sparams.mirostat = json_value(data, "mirostat", default_sparams.mirostat);
  452. slot->sparams.mirostat_tau = json_value(data, "mirostat_tau", default_sparams.mirostat_tau);
  453. slot->sparams.mirostat_eta = json_value(data, "mirostat_eta", default_sparams.mirostat_eta);
  454. slot->sparams.penalize_nl = json_value(data, "penalize_nl", default_sparams.penalize_nl);
  455. slot->params.n_keep = json_value(data, "n_keep", slot->params.n_keep);
  456. slot->params.seed = json_value(data, "seed", default_params.seed);
  457. slot->sparams.grammar = json_value(data, "grammar", default_sparams.grammar);
  458. slot->sparams.n_probs = json_value(data, "n_probs", default_sparams.n_probs);
  459. // infill
  460. if (data.count("input_prefix") != 0)
  461. {
  462. slot->params.input_prefix = data["input_prefix"];
  463. }
  464. else
  465. {
  466. slot->params.input_prefix = "";
  467. }
  468. if (data.count("input_suffix") != 0)
  469. {
  470. slot->params.input_suffix = data["input_suffix"];
  471. }
  472. else
  473. {
  474. slot->params.input_suffix = "";
  475. }
  476. if (data.count("prompt") != 0)
  477. {
  478. slot->prompt = data["prompt"];
  479. }
  480. else
  481. {
  482. slot->prompt = "";
  483. }
  484. slot->sparams.penalty_prompt_tokens.clear();
  485. slot->sparams.use_penalty_prompt_tokens = false;
  486. const auto &penalty_prompt = data.find("penalty_prompt");
  487. if (penalty_prompt != data.end())
  488. {
  489. if (penalty_prompt->is_string())
  490. {
  491. const auto penalty_prompt_string = penalty_prompt->get<std::string>();
  492. auto penalty_tokens = llama_tokenize(model, penalty_prompt_string, false);
  493. slot->sparams.penalty_prompt_tokens.swap(penalty_tokens);
  494. if (slot->params.n_predict > 0)
  495. {
  496. slot->sparams.penalty_prompt_tokens.reserve(slot->sparams.penalty_prompt_tokens.size() + slot->params.n_predict);
  497. }
  498. slot->sparams.use_penalty_prompt_tokens = true;
  499. }
  500. else if (penalty_prompt->is_array())
  501. {
  502. const auto n_tokens = penalty_prompt->size();
  503. slot->sparams.penalty_prompt_tokens.reserve(n_tokens + std::max(0, slot->params.n_predict));
  504. const int n_vocab = llama_n_vocab(model);
  505. for (const auto &penalty_token : *penalty_prompt)
  506. {
  507. if (penalty_token.is_number_integer())
  508. {
  509. const auto tok = penalty_token.get<llama_token>();
  510. if (tok >= 0 && tok < n_vocab)
  511. {
  512. slot->sparams.penalty_prompt_tokens.push_back(tok);
  513. }
  514. }
  515. }
  516. slot->sparams.use_penalty_prompt_tokens = true;
  517. }
  518. }
  519. slot->sparams.logit_bias.clear();
  520. if (json_value(data, "ignore_eos", false))
  521. {
  522. slot->sparams.logit_bias[llama_token_eos(model)] = -INFINITY;
  523. }
  524. const auto &logit_bias = data.find("logit_bias");
  525. if (logit_bias != data.end() && logit_bias->is_array())
  526. {
  527. const int n_vocab = llama_n_vocab(model);
  528. for (const auto &el : *logit_bias)
  529. {
  530. if (el.is_array() && el.size() == 2 && el[0].is_number_integer())
  531. {
  532. llama_token tok = el[0].get<llama_token>();
  533. if (tok >= 0 && tok < n_vocab)
  534. {
  535. if (el[1].is_number())
  536. {
  537. slot->sparams.logit_bias[tok] = el[1].get<float>();
  538. }
  539. else if (el[1].is_boolean() && !el[1].get<bool>())
  540. {
  541. slot->sparams.logit_bias[tok] = -INFINITY;
  542. }
  543. }
  544. }
  545. }
  546. }
  547. slot->params.antiprompt.clear();
  548. const auto &stop = data.find("stop");
  549. if (stop != data.end() && stop->is_array())
  550. {
  551. for (const auto &word : *stop)
  552. {
  553. if (!word.empty())
  554. {
  555. slot->params.antiprompt.push_back(word);
  556. }
  557. }
  558. }
  559. if (multimodal)
  560. {
  561. const auto &images_data = data.find("image_data");
  562. if (images_data != data.end() && images_data->is_array())
  563. {
  564. for (const auto &img : *images_data)
  565. {
  566. const std::vector<uint8_t> image_buffer = base64_decode(img["data"].get<std::string>());
  567. slot_image img_sl;
  568. img_sl.id = img.count("id") != 0 ? img["id"].get<int>() : slot->images.size();
  569. img_sl.img_data = clip_image_u8_init();
  570. if (!clip_image_load_from_bytes(image_buffer.data(), image_buffer.size(), img_sl.img_data))
  571. {
  572. LOG_TEE("slot %i - failed to load image [id: %i]\n", slot->id, img_sl.id);
  573. return false;
  574. }
  575. LOG_TEE("slot %i - loaded image\n", slot->id);
  576. img_sl.request_encode_image = true;
  577. slot->images.push_back(img_sl);
  578. }
  579. // process prompt
  580. // example: system prompt [img-102] user [img-103] describe [img-134] -> [{id: 102, prefix: 'system prompt '}, {id: 103, prefix: ' user '}, {id: 134, prefix: ' describe '}]}
  581. if (slot->images.size() > 0 && !slot->prompt.is_array())
  582. {
  583. std::string prompt = slot->prompt.get<std::string>();
  584. size_t pos = 0, begin_prefix = 0;
  585. std::string pattern = "[img-";
  586. while ((pos = prompt.find(pattern, pos)) != std::string::npos) {
  587. size_t end_prefix = pos;
  588. pos += pattern.length();
  589. size_t end_pos = prompt.find(']', pos);
  590. if (end_pos != std::string::npos)
  591. {
  592. std::string image_id = prompt.substr(pos, end_pos - pos);
  593. try
  594. {
  595. int img_id = std::stoi(image_id);
  596. bool found = false;
  597. for (slot_image &img : slot->images)
  598. {
  599. if (img.id == img_id) {
  600. found = true;
  601. img.prefix_prompt = prompt.substr(begin_prefix, end_prefix - begin_prefix);
  602. begin_prefix = end_pos + 1;
  603. break;
  604. }
  605. }
  606. if (!found) {
  607. LOG_TEE("ERROR: Image with id: %i, not found.\n", img_id);
  608. slot->images.clear();
  609. return false;
  610. }
  611. } catch (const std::invalid_argument& e) {
  612. LOG_TEE("Invalid image number id in prompt\n");
  613. slot->images.clear();
  614. return false;
  615. }
  616. }
  617. }
  618. slot->prompt = "";
  619. slot->params.input_suffix = prompt.substr(begin_prefix);
  620. slot->params.cache_prompt = false; // multimodal doesn't support cache prompt
  621. }
  622. }
  623. }
  624. if (slot->ctx_sampling != nullptr)
  625. {
  626. llama_sampling_free(slot->ctx_sampling);
  627. }
  628. slot->ctx_sampling = llama_sampling_init(slot->sparams);
  629. llama_set_rng_seed(ctx, slot->params.seed);
  630. slot->command = LOAD_PROMPT;
  631. all_slots_are_idle = false;
  632. LOG_TEE("slot %i is processing [task id: %i]\n", slot->id, slot->task_id);
  633. return true;
  634. }
  635. void kv_cache_clear() {
  636. // clear the entire KV cache
  637. llama_kv_cache_clear(ctx);
  638. clean_kv_cache = false;
  639. }
  640. void update_system_prompt() {
  641. system_tokens = ::llama_tokenize(ctx, system_prompt, add_bos_token);
  642. llama_batch_clear(batch);
  643. kv_cache_clear();
  644. for (int i = 0; i < (int) system_tokens.size(); ++i)
  645. {
  646. llama_batch_add(batch, system_tokens[i], i, { 0 }, false);
  647. }
  648. if (llama_decode(ctx, batch) != 0)
  649. {
  650. LOG_TEE("%s: llama_decode() failed\n", __func__);
  651. return;
  652. }
  653. // assign the system KV cache to all parallel sequences
  654. for (int32_t i = 1; i < params.n_parallel; ++i)
  655. {
  656. llama_kv_cache_seq_cp(ctx, 0, i, 0, system_tokens.size());
  657. }
  658. LOG_TEE("system prompt updated\n");
  659. system_need_update = false;
  660. }
  661. void notify_system_prompt_changed() {
  662. // release all slots
  663. for (llama_client_slot &slot : slots)
  664. {
  665. slot.release();
  666. }
  667. system_need_update = true;
  668. }
  669. void process_system_prompt_data(const json &sys_props) {
  670. system_prompt = sys_props.value("prompt", "");
  671. name_user = sys_props.value("anti_prompt", "");
  672. name_assistant = sys_props.value("assistant_name", "");
  673. if (slots.size() > 0)
  674. {
  675. notify_system_prompt_changed();
  676. }
  677. }
  678. static size_t find_stopping_strings(const std::string &text, const size_t last_token_size,
  679. const stop_type type, llama_client_slot &slot)
  680. {
  681. size_t stop_pos = std::string::npos;
  682. for (const std::string &word : slot.params.antiprompt)
  683. {
  684. size_t pos;
  685. if (type == STOP_FULL)
  686. {
  687. const size_t tmp = word.size() + last_token_size;
  688. const size_t from_pos = text.size() > tmp ? text.size() - tmp : 0;
  689. pos = text.find(word, from_pos);
  690. }
  691. else
  692. {
  693. pos = find_partial_stop_string(word, text);
  694. }
  695. if (pos != std::string::npos &&
  696. (stop_pos == std::string::npos || pos < stop_pos))
  697. {
  698. if (type == STOP_FULL)
  699. {
  700. slot.stopped_word = true;
  701. slot.stopping_word = word;
  702. slot.has_next_token = false;
  703. }
  704. stop_pos = pos;
  705. }
  706. }
  707. return stop_pos;
  708. }
  709. bool process_token(completion_token_output &result, llama_client_slot &slot) {
  710. // remember which tokens were sampled - used for repetition penalties during sampling
  711. const std::string token_str = llama_token_to_piece(ctx, result.tok);
  712. slot.sampled = result.tok;
  713. // search stop word and delete it
  714. slot.generated_text += token_str;
  715. slot.has_next_token = true;
  716. if (slot.ctx_sampling->params.use_penalty_prompt_tokens && result.tok != -1)
  717. {
  718. // we can change penalty_prompt_tokens because it is always created from scratch each request
  719. slot.ctx_sampling->params.penalty_prompt_tokens.push_back(result.tok);
  720. }
  721. // check if there is incomplete UTF-8 character at the end
  722. bool incomplete = false;
  723. for (unsigned i = 1; i < 5 && i <= slot.generated_text.size(); ++i)
  724. {
  725. unsigned char c = slot.generated_text[slot.generated_text.size() - i];
  726. if ((c & 0xC0) == 0x80)
  727. {
  728. // continuation byte: 10xxxxxx
  729. continue;
  730. }
  731. if ((c & 0xE0) == 0xC0)
  732. {
  733. // 2-byte character: 110xxxxx ...
  734. incomplete = i < 2;
  735. }
  736. else if ((c & 0xF0) == 0xE0)
  737. {
  738. // 3-byte character: 1110xxxx ...
  739. incomplete = i < 3;
  740. }
  741. else if ((c & 0xF8) == 0xF0)
  742. {
  743. // 4-byte character: 11110xxx ...
  744. incomplete = i < 4;
  745. }
  746. // else 1-byte character or invalid byte
  747. break;
  748. }
  749. if (!incomplete)
  750. {
  751. size_t pos = std::min(slot.sent_count, slot.generated_text.size());
  752. const std::string str_test = slot.generated_text.substr(pos);
  753. bool is_stop_full = false;
  754. size_t stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_FULL, slot);
  755. if (stop_pos != std::string::npos)
  756. {
  757. is_stop_full = true;
  758. slot.generated_text.erase(
  759. slot.generated_text.begin() + pos + stop_pos,
  760. slot.generated_text.end());
  761. pos = std::min(slot.sent_count, slot.generated_text.size());
  762. }
  763. else
  764. {
  765. is_stop_full = false;
  766. stop_pos = find_stopping_strings(str_test, token_str.size(), STOP_PARTIAL, slot);
  767. }
  768. // check if there is any token to predict
  769. if (stop_pos == std::string::npos || (!slot.has_next_token && !is_stop_full && stop_pos > 0))
  770. {
  771. // no send the stop word in the response
  772. result.text_to_send = slot.generated_text.substr(pos, std::string::npos);
  773. slot.sent_count += result.text_to_send.size();
  774. // add the token to slot queue and cache
  775. }
  776. slot.add_token_string(result);
  777. if (slot.params.stream)
  778. {
  779. send_partial_response(slot, result);
  780. }
  781. }
  782. if (incomplete)
  783. {
  784. slot.has_next_token = true;
  785. }
  786. // check the limits
  787. if (slot.n_decoded > 0 && slot.has_next_token && !slot.has_budget(params))
  788. {
  789. slot.stopped_limit = true;
  790. slot.has_next_token = false;
  791. }
  792. if (!slot.cache_tokens.empty() && result.tok == llama_token_eos(model))
  793. {
  794. slot.stopped_eos = true;
  795. slot.has_next_token = false;
  796. LOG_VERBOSE("eos token found", {});
  797. }
  798. LOG_VERBOSE("next token", {
  799. {"token", result.tok},
  800. {"token_text", tokens_to_output_formatted_string(ctx, result.tok)},
  801. {"has_next_token", slot.has_next_token},
  802. {"n_remain", slot.n_remaining},
  803. {"num_tokens_predicted", slot.n_decoded},
  804. {"stopped_eos", slot.stopped_eos},
  805. {"stopped_word", slot.stopped_word},
  806. {"stopped_limit", slot.stopped_limit},
  807. {"stopping_word", slot.stopping_word},
  808. });
  809. return slot.has_next_token; // continue
  810. }
  811. bool process_images(llama_client_slot &slot) const
  812. {
  813. for (slot_image &img : slot.images)
  814. {
  815. if (!img.request_encode_image)
  816. {
  817. continue;
  818. }
  819. clip_image_f32 * img_res = clip_image_f32_init();
  820. if (!clip_image_preprocess(clp_ctx, img.img_data, img_res, /*pad2square =*/ true))
  821. {
  822. LOG_TEE("Error processing the given image");
  823. clip_free(clp_ctx);
  824. return false;
  825. }
  826. img.image_tokens = clip_n_patches(clp_ctx);
  827. img.image_embedding = (float *)malloc(clip_embd_nbytes(clp_ctx));
  828. if (!img.image_embedding)
  829. {
  830. LOG_TEE("Unable to allocate memory for image embeddings\n");
  831. clip_free(clp_ctx);
  832. return false;
  833. }
  834. LOG_TEE("slot %i - encoding image [id: %i]\n", slot.id, img.id);
  835. if (!clip_image_encode(clp_ctx, params.n_threads, img_res, img.image_embedding))
  836. {
  837. LOG_TEE("Unable to encode image\n");
  838. return false;
  839. }
  840. clip_image_f32_free(img_res);
  841. img.request_encode_image = false;
  842. }
  843. return slot.images.size() > 0;
  844. }
  845. void send_error(task_server& task, const std::string &error)
  846. {
  847. LOG_TEE("task %i - error: %s\n", task.id, error.c_str());
  848. task_result res;
  849. res.id = task.id;
  850. res.multitask_id = task.multitask_id;
  851. res.stop = false;
  852. res.error = true;
  853. res.result_json = { { "content", error } };
  854. queue_results.send(res);
  855. }
  856. json get_model_props()
  857. {
  858. return get_formated_generation(slots[0]);
  859. }
  860. json get_formated_generation(llama_client_slot &slot)
  861. {
  862. const auto eos_bias = slot.sparams.logit_bias.find(llama_token_eos(model));
  863. const bool ignore_eos = eos_bias != slot.sparams.logit_bias.end() &&
  864. eos_bias->second < 0.0f && std::isinf(eos_bias->second);
  865. return json {
  866. {"n_ctx", slot.n_ctx},
  867. {"model", params.model_alias},
  868. {"seed", slot.params.seed},
  869. {"temperature", slot.sparams.temp},
  870. {"dynatemp_range", slot.sparams.dynatemp_range},
  871. {"dynatemp_exponent", slot.sparams.dynatemp_exponent},
  872. {"top_k", slot.sparams.top_k},
  873. {"top_p", slot.sparams.top_p},
  874. {"min_p", slot.sparams.min_p},
  875. {"tfs_z", slot.sparams.tfs_z},
  876. {"typical_p", slot.sparams.typical_p},
  877. {"repeat_last_n", slot.sparams.penalty_last_n},
  878. {"repeat_penalty", slot.sparams.penalty_repeat},
  879. {"presence_penalty", slot.sparams.penalty_present},
  880. {"frequency_penalty", slot.sparams.penalty_freq},
  881. {"penalty_prompt_tokens", slot.sparams.penalty_prompt_tokens},
  882. {"use_penalty_prompt_tokens", slot.sparams.use_penalty_prompt_tokens},
  883. {"mirostat", slot.sparams.mirostat},
  884. {"mirostat_tau", slot.sparams.mirostat_tau},
  885. {"mirostat_eta", slot.sparams.mirostat_eta},
  886. {"penalize_nl", slot.sparams.penalize_nl},
  887. {"stop", slot.params.antiprompt},
  888. {"n_predict", slot.params.n_predict},
  889. {"n_keep", params.n_keep},
  890. {"ignore_eos", ignore_eos},
  891. {"stream", slot.params.stream},
  892. {"logit_bias", slot.sparams.logit_bias},
  893. {"n_probs", slot.sparams.n_probs},
  894. {"grammar", slot.sparams.grammar},
  895. };
  896. }
  897. void send_partial_response(llama_client_slot &slot, completion_token_output tkn)
  898. {
  899. task_result res;
  900. res.id = slot.task_id;
  901. res.multitask_id = slot.multitask_id;
  902. res.error = false;
  903. res.stop = false;
  904. res.result_json = json
  905. {
  906. {"content", tkn.text_to_send},
  907. {"stop", false},
  908. {"slot_id", slot.id},
  909. {"multimodal", multimodal}
  910. };
  911. if (slot.sparams.n_probs > 0)
  912. {
  913. std::vector<completion_token_output> probs_output = {};
  914. const std::vector<llama_token> to_send_toks = llama_tokenize(ctx, tkn.text_to_send, false);
  915. size_t probs_pos = std::min(slot.sent_token_probs_index, slot.generated_token_probs.size());
  916. size_t probs_stop_pos = std::min(slot.sent_token_probs_index + to_send_toks.size(), slot.generated_token_probs.size());
  917. if (probs_pos < probs_stop_pos)
  918. {
  919. probs_output = std::vector<completion_token_output>(slot.generated_token_probs.begin() + probs_pos, slot.generated_token_probs.begin() + probs_stop_pos);
  920. }
  921. slot.sent_token_probs_index = probs_stop_pos;
  922. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs_output);
  923. }
  924. if (slot.oaicompat)
  925. {
  926. res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
  927. res.result_json["model"] = slot.oaicompat_model;
  928. }
  929. queue_results.send(res);
  930. }
  931. void send_final_response(llama_client_slot &slot)
  932. {
  933. task_result res;
  934. res.id = slot.task_id;
  935. res.multitask_id = slot.multitask_id;
  936. res.error = false;
  937. res.stop = true;
  938. res.result_json = json
  939. {
  940. {"content", !slot.params.stream ? slot.generated_text : ""},
  941. {"slot_id", slot.id},
  942. {"stop", true},
  943. {"model", params.model_alias},
  944. {"tokens_predicted", slot.n_decoded},
  945. {"tokens_evaluated", slot.num_prompt_tokens},
  946. {"generation_settings", get_formated_generation(slot)},
  947. {"prompt", slot.prompt},
  948. {"truncated", slot.truncated},
  949. {"stopped_eos", slot.stopped_eos},
  950. {"stopped_word", slot.stopped_word},
  951. {"stopped_limit", slot.stopped_limit},
  952. {"stopping_word", slot.stopping_word},
  953. {"tokens_cached", slot.n_past},
  954. {"timings", slot.get_formated_timings()}
  955. };
  956. if (slot.sparams.n_probs > 0)
  957. {
  958. std::vector<completion_token_output> probs = {};
  959. if (!slot.params.stream && slot.stopped_word)
  960. {
  961. const std::vector<llama_token> stop_word_toks = llama_tokenize(ctx, slot.stopping_word, false);
  962. probs = std::vector<completion_token_output>(slot.generated_token_probs.begin(), slot.generated_token_probs.end() - stop_word_toks.size());
  963. }
  964. else
  965. {
  966. probs = std::vector<completion_token_output>(
  967. slot.generated_token_probs.begin(),
  968. slot.generated_token_probs.end());
  969. }
  970. res.result_json["completion_probabilities"] = probs_vector_to_json(ctx, probs);
  971. }
  972. if (slot.oaicompat)
  973. {
  974. res.result_json["oaicompat_token_ctr"] = slot.n_decoded;
  975. res.result_json["model"] = slot.oaicompat_model;
  976. }
  977. queue_results.send(res);
  978. }
  979. void send_embedding(llama_client_slot &slot)
  980. {
  981. task_result res;
  982. res.id = slot.task_id;
  983. res.multitask_id = slot.multitask_id;
  984. res.error = false;
  985. res.stop = true;
  986. const int n_embd = llama_n_embd(model);
  987. if (!params.embedding)
  988. {
  989. LOG_WARNING("embedding disabled", {
  990. {"params.embedding", params.embedding},
  991. });
  992. res.result_json = json
  993. {
  994. {"embedding", std::vector<float>(n_embd, 0.0f)},
  995. };
  996. }
  997. else
  998. {
  999. const float *data = llama_get_embeddings(ctx);
  1000. std::vector<float> embedding(data, data + n_embd);
  1001. res.result_json = json
  1002. {
  1003. {"embedding", embedding },
  1004. };
  1005. }
  1006. queue_results.send(res);
  1007. }
  1008. void request_completion(int task_id, json data, bool infill, bool embedding, int multitask_id)
  1009. {
  1010. task_server task;
  1011. task.id = task_id;
  1012. task.target_id = 0;
  1013. task.data = std::move(data);
  1014. task.infill_mode = infill;
  1015. task.embedding_mode = embedding;
  1016. task.type = TASK_TYPE_COMPLETION;
  1017. task.multitask_id = multitask_id;
  1018. // when a completion task's prompt array is not a singleton, we split it into multiple requests
  1019. // otherwise, it's a single-prompt task, we actually queue it
  1020. // if there's numbers in the prompt array it will be treated as an array of tokens
  1021. if (task.data.count("prompt") != 0 && task.data.at("prompt").size() > 1) {
  1022. bool numbers = false;
  1023. for (const auto& e : task.data.at("prompt")) {
  1024. if (e.is_number()) {
  1025. numbers = true;
  1026. break;
  1027. }
  1028. }
  1029. // NOTE: split_multiprompt_task() does not handle a mix of strings and numbers,
  1030. // it will completely stall the server. I don't know where the bug for this is.
  1031. //
  1032. // if there are numbers, it needs to be treated like a single prompt,
  1033. // queue_tasks handles a mix of strings and numbers just fine.
  1034. if (numbers) {
  1035. queue_tasks.post(task);
  1036. } else {
  1037. split_multiprompt_task(task_id, task);
  1038. }
  1039. } else {
  1040. queue_tasks.post(task);
  1041. }
  1042. }
  1043. // for multiple images processing
  1044. bool ingest_images(llama_client_slot &slot, int n_batch)
  1045. {
  1046. int image_idx = 0;
  1047. while (image_idx < (int) slot.images.size())
  1048. {
  1049. slot_image &img = slot.images[image_idx];
  1050. // process prefix prompt
  1051. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1052. {
  1053. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1054. llama_batch batch_view = {
  1055. n_tokens,
  1056. batch.token + i,
  1057. nullptr,
  1058. batch.pos + i,
  1059. batch.n_seq_id + i,
  1060. batch.seq_id + i,
  1061. batch.logits + i,
  1062. 0, 0, 0, // unused
  1063. };
  1064. if (llama_decode(ctx, batch_view))
  1065. {
  1066. LOG_TEE("%s : failed to eval\n", __func__);
  1067. return false;
  1068. }
  1069. }
  1070. // process image with llm
  1071. for (int i = 0; i < img.image_tokens; i += n_batch)
  1072. {
  1073. int n_eval = img.image_tokens - i;
  1074. if (n_eval > n_batch)
  1075. {
  1076. n_eval = n_batch;
  1077. }
  1078. const int n_embd = llama_n_embd(model);
  1079. llama_batch batch_img = { n_eval, nullptr, (img.image_embedding + i * n_embd), nullptr, nullptr, nullptr, nullptr, slot.n_past, 1, 0, };
  1080. if (llama_decode(ctx, batch_img))
  1081. {
  1082. LOG_TEE("%s : failed to eval image\n", __func__);
  1083. return false;
  1084. }
  1085. slot.n_past += n_eval;
  1086. }
  1087. image_idx++;
  1088. llama_batch_clear(batch);
  1089. // append prefix of next image
  1090. const auto json_prompt = (image_idx >= (int) slot.images.size()) ?
  1091. slot.params.input_suffix : // no more images, then process suffix prompt
  1092. (json)(slot.images[image_idx].prefix_prompt);
  1093. std::vector<llama_token> append_tokens = tokenize(json_prompt, false); // has next image
  1094. for (int i = 0; i < (int) append_tokens.size(); ++i)
  1095. {
  1096. llama_batch_add(batch, append_tokens[i], system_tokens.size() + slot.n_past, { slot.id }, true);
  1097. slot.n_past += 1;
  1098. }
  1099. }
  1100. return true;
  1101. }
  1102. void request_cancel(int task_id)
  1103. {
  1104. task_server task;
  1105. task.type = TASK_TYPE_CANCEL;
  1106. task.target_id = task_id;
  1107. queue_tasks.post(task);
  1108. }
  1109. void split_multiprompt_task(int multitask_id, task_server& multiprompt_task)
  1110. {
  1111. int prompt_count = multiprompt_task.data.at("prompt").size();
  1112. if (prompt_count <= 1) {
  1113. send_error(multiprompt_task, "error while handling multiple prompts");
  1114. return;
  1115. }
  1116. // generate all the ID for subtask
  1117. std::vector<int> subtask_ids(prompt_count);
  1118. for (int i = 0; i < prompt_count; i++)
  1119. {
  1120. subtask_ids[i] = queue_tasks.get_new_id();
  1121. }
  1122. // queue up the multitask so we can track its subtask progression
  1123. queue_tasks.add_multitask(multitask_id, subtask_ids);
  1124. // add subtasks
  1125. for (int i = 0; i < prompt_count; i++)
  1126. {
  1127. json subtask_data = multiprompt_task.data;
  1128. subtask_data["prompt"] = subtask_data["prompt"][i];
  1129. // subtasks inherit everything else (infill mode, embedding mode, etc.)
  1130. request_completion(subtask_ids[i], subtask_data, multiprompt_task.infill_mode, multiprompt_task.embedding_mode, multitask_id);
  1131. }
  1132. }
  1133. void process_single_task(task_server& task)
  1134. {
  1135. switch (task.type)
  1136. {
  1137. case TASK_TYPE_COMPLETION: {
  1138. llama_client_slot *slot = get_slot(json_value(task.data, "slot_id", -1));
  1139. if (slot == nullptr)
  1140. {
  1141. // if no slot is available, we defer this task for processing later
  1142. LOG_VERBOSE("no slot is available", {});
  1143. queue_tasks.defer(task);
  1144. break;
  1145. }
  1146. if (task.data.contains("system_prompt"))
  1147. {
  1148. if (!all_slots_are_idle) {
  1149. send_error(task, "system prompt can only be updated when all slots are idle");
  1150. break;
  1151. }
  1152. process_system_prompt_data(task.data["system_prompt"]);
  1153. // reset cache_tokens for all slots
  1154. for (llama_client_slot &slot : slots)
  1155. {
  1156. slot.cache_tokens.clear();
  1157. slot.n_past = 0;
  1158. slot.n_past_se = 0;
  1159. }
  1160. }
  1161. slot->reset();
  1162. slot->infill = task.infill_mode;
  1163. slot->embedding = task.embedding_mode;
  1164. slot->task_id = task.id;
  1165. slot->multitask_id = task.multitask_id;
  1166. if (!launch_slot_with_data(slot, task.data))
  1167. {
  1168. // send error result
  1169. send_error(task, "internal_error");
  1170. break;
  1171. }
  1172. } break;
  1173. case TASK_TYPE_CANCEL: { // release slot linked with the task id
  1174. for (auto & slot : slots)
  1175. {
  1176. if (slot.task_id == task.target_id)
  1177. {
  1178. slot.release();
  1179. break;
  1180. }
  1181. }
  1182. } break;
  1183. case TASK_TYPE_NEXT_RESPONSE: {
  1184. // do nothing
  1185. } break;
  1186. }
  1187. }
  1188. void on_finish_multitask(task_multi& multitask)
  1189. {
  1190. // all subtasks done == multitask is done
  1191. task_result result;
  1192. result.id = multitask.id;
  1193. result.stop = true;
  1194. result.error = false;
  1195. // collect json results into one json result
  1196. std::vector<json> result_jsons;
  1197. for (auto& subres : multitask.results)
  1198. {
  1199. result_jsons.push_back(subres.result_json);
  1200. result.error = result.error && subres.error;
  1201. }
  1202. result.result_json = json{ { "results", result_jsons } };
  1203. queue_results.send(result);
  1204. }
  1205. bool update_slots() {
  1206. if (system_need_update)
  1207. {
  1208. LOG_TEE("updating system prompt\n");
  1209. update_system_prompt();
  1210. }
  1211. llama_batch_clear(batch);
  1212. if (all_slots_are_idle)
  1213. {
  1214. if (system_prompt.empty() && clean_kv_cache)
  1215. {
  1216. LOG_TEE("all slots are idle and system prompt is empty, clear the KV cache\n");
  1217. kv_cache_clear();
  1218. }
  1219. return true;
  1220. }
  1221. task_server task;
  1222. task.type = TASK_TYPE_NEXT_RESPONSE;
  1223. task.target_id = -1;
  1224. queue_tasks.post(task);
  1225. for (llama_client_slot &slot : slots)
  1226. {
  1227. if (slot.ga_n == 1)
  1228. {
  1229. if (slot.is_processing() && system_tokens.size() + slot.cache_tokens.size() >= (size_t) slot.n_ctx)
  1230. {
  1231. // Shift context
  1232. const int n_left = system_tokens.size() + slot.n_past - slot.params.n_keep - 1;
  1233. const int n_discard = n_left / 2;
  1234. LOG_TEE("slot %d: context shift - n_keep = %d, n_left = %d, n_discard = %d\n", slot.id, slot.params.n_keep, n_left, n_discard);
  1235. llama_kv_cache_seq_rm (ctx, slot.id, slot.params.n_keep + 1 , slot.params.n_keep + n_discard + 1);
  1236. llama_kv_cache_seq_shift(ctx, slot.id, slot.params.n_keep + 1 + n_discard, system_tokens.size() + slot.n_past, -n_discard);
  1237. for (size_t i = slot.params.n_keep + 1 + n_discard; i < slot.cache_tokens.size(); i++)
  1238. {
  1239. slot.cache_tokens[i - n_discard] = slot.cache_tokens[i];
  1240. }
  1241. slot.cache_tokens.resize(slot.cache_tokens.size() - n_discard);
  1242. slot.n_past -= n_discard;
  1243. slot.truncated = true;
  1244. LOG_VERBOSE("context shift", {
  1245. { "n_ctx", n_ctx },
  1246. { "n_keep", params.n_keep },
  1247. { "n_left", n_left },
  1248. });
  1249. }
  1250. }
  1251. }
  1252. // decode any currently ongoing sequences
  1253. for (auto & slot : slots)
  1254. {
  1255. // release the slot
  1256. if (slot.command == RELEASE)
  1257. {
  1258. slot.state = IDLE;
  1259. slot.command = NONE;
  1260. slot.t_last_used = ggml_time_us();
  1261. LOG_TEE("slot %d released (%d tokens in cache)\n", slot.id, (int) slot.cache_tokens.size());
  1262. queue_tasks.notify_slot_changed();
  1263. continue;
  1264. }
  1265. if (slot.state == IDLE)
  1266. {
  1267. continue;
  1268. }
  1269. slot.i_batch = batch.n_tokens;
  1270. const int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1271. // TODO: we always have to take into account the "system_tokens"
  1272. // this is not great and needs to be improved somehow
  1273. llama_batch_add(batch, slot.sampled, system_tokens.size() + slot_npast, { slot.id }, true);
  1274. slot.n_past += 1;
  1275. }
  1276. // process in chunks of params.n_batch
  1277. int32_t n_batch = params.n_batch;
  1278. // assign workload to the slots
  1279. if (params.cont_batching || batch.n_tokens == 0)
  1280. {
  1281. for (auto & slot : slots)
  1282. {
  1283. const bool has_prompt = slot.prompt.is_array() || (slot.prompt.is_string() && !slot.prompt.get<std::string>().empty()) || !slot.images.empty();
  1284. // empty prompt passed -> release the slot and send empty response
  1285. // note: infill mode allows empty prompt
  1286. if (slot.state == IDLE && slot.command == LOAD_PROMPT && !has_prompt && !slot.infill)
  1287. {
  1288. slot.release();
  1289. slot.print_timings();
  1290. send_final_response(slot);
  1291. continue;
  1292. }
  1293. // need process the prompt
  1294. if (slot.state == IDLE && slot.command == LOAD_PROMPT)
  1295. {
  1296. slot.state = PROCESSING;
  1297. slot.command = NONE;
  1298. std::vector<llama_token> prompt_tokens;
  1299. slot.t_start_process_prompt = ggml_time_us();
  1300. slot.t_start_genereration = 0;
  1301. if (slot.infill)
  1302. {
  1303. bool suff_rm_leading_spc = true;
  1304. if (params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1)
  1305. {
  1306. params.input_suffix.erase(0, 1);
  1307. suff_rm_leading_spc = false;
  1308. }
  1309. auto prefix_tokens = tokenize(slot.params.input_prefix, false);
  1310. auto suffix_tokens = tokenize(slot.params.input_suffix, false);
  1311. const int space_token = 29871; // TODO: this should not be hardcoded
  1312. if (suff_rm_leading_spc && !suffix_tokens.empty() && suffix_tokens[0] == space_token) {
  1313. suffix_tokens.erase(suffix_tokens.begin());
  1314. }
  1315. prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(model));
  1316. prefix_tokens.insert(prefix_tokens.begin(), llama_token_bos(model)); // always add BOS
  1317. prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(model));
  1318. prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
  1319. prefix_tokens.push_back(llama_token_middle(model));
  1320. prompt_tokens = prefix_tokens;
  1321. }
  1322. else
  1323. {
  1324. prompt_tokens = tokenize(slot.prompt, system_prompt.empty() && add_bos_token); // add BOS if there isn't system prompt
  1325. }
  1326. slot.num_prompt_tokens = prompt_tokens.size();
  1327. if (slot.params.n_keep < 0)
  1328. {
  1329. slot.params.n_keep = slot.num_prompt_tokens;
  1330. }
  1331. slot.params.n_keep = std::min(slot.n_ctx - 4, slot.params.n_keep);
  1332. // if input prompt is too big, truncate it
  1333. if (slot.num_prompt_tokens >= slot.n_ctx)
  1334. {
  1335. const int n_left = slot.n_ctx - slot.params.n_keep;
  1336. const int n_block_size = n_left / 2;
  1337. const int erased_blocks = (slot.num_prompt_tokens - slot.params.n_keep - n_block_size) / n_block_size;
  1338. std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + slot.params.n_keep);
  1339. new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + slot.params.n_keep + erased_blocks * n_block_size, prompt_tokens.end());
  1340. LOG_VERBOSE("input truncated", {
  1341. {"n_ctx", slot.n_ctx},
  1342. {"n_keep", slot.params.n_keep},
  1343. {"n_left", n_left},
  1344. {"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
  1345. });
  1346. slot.truncated = true;
  1347. prompt_tokens = new_tokens;
  1348. slot.num_prompt_tokens = prompt_tokens.size();
  1349. GGML_ASSERT(slot.num_prompt_tokens < slot.n_ctx);
  1350. }
  1351. if (!slot.params.cache_prompt)
  1352. {
  1353. llama_sampling_reset(slot.ctx_sampling);
  1354. slot.n_past = 0;
  1355. slot.n_past_se = 0;
  1356. slot.ga_i = 0;
  1357. slot.num_prompt_tokens_processed = slot.num_prompt_tokens;
  1358. }
  1359. else
  1360. {
  1361. // push the prompt into the sampling context (do not apply grammar)
  1362. for (auto &token : prompt_tokens)
  1363. {
  1364. llama_sampling_accept(slot.ctx_sampling, ctx, token, false);
  1365. }
  1366. slot.n_past = common_part(slot.cache_tokens, prompt_tokens);
  1367. slot.num_prompt_tokens_processed = slot.num_prompt_tokens - slot.n_past;
  1368. if (slot.ga_n != 1)
  1369. {
  1370. int ga_i = 0;
  1371. int32_t ga_n = slot.ga_n;
  1372. int32_t ga_w = slot.ga_w;
  1373. int32_t slot_npast = 0;
  1374. for (int k = 0; k < slot.n_past; ++k)
  1375. {
  1376. while (slot_npast >= ga_i + ga_w) {
  1377. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1378. slot_npast -= bd;
  1379. ga_i += ga_w/ga_n;
  1380. }
  1381. slot_npast++;
  1382. }
  1383. slot.n_past_se = slot_npast;
  1384. slot.ga_i = ga_i;
  1385. }
  1386. LOG_TEE("slot %d : in cache: %i tokens | to process: %i tokens\n", slot.id, slot.n_past, slot.num_prompt_tokens_processed);
  1387. }
  1388. LOG_TEE("slot %d : kv cache rm - [%d, end)\n", slot.id, (int) system_tokens.size() + slot.n_past);
  1389. llama_kv_cache_seq_rm(ctx, slot.id, system_tokens.size() + slot.n_past, -1);
  1390. slot.cache_tokens = prompt_tokens;
  1391. if (slot.n_past == slot.num_prompt_tokens && slot.n_past > 0)
  1392. {
  1393. // we have to evaluate at least 1 token to generate logits.
  1394. LOG_TEE("slot %d : we have to evaluate at least 1 token to generate logits\n", slot.id);
  1395. slot.n_past--;
  1396. if (slot.ga_i > 0)
  1397. {
  1398. slot.n_past_se--;
  1399. }
  1400. }
  1401. LOG_VERBOSE("prompt ingested", {
  1402. {"n_past", slot.n_past},
  1403. {"cached", tokens_to_str(ctx, slot.cache_tokens.cbegin(), slot.cache_tokens.cbegin() + slot.n_past)},
  1404. {"to_eval", tokens_to_str(ctx, slot.cache_tokens.cbegin() + slot.n_past, slot.cache_tokens.cend())},
  1405. });
  1406. const bool has_images = process_images(slot);
  1407. // process the prefix of first image
  1408. std::vector<llama_token> prefix_tokens = has_images ? tokenize(slot.images[0].prefix_prompt, add_bos_token) : prompt_tokens;
  1409. int32_t slot_npast = slot.n_past_se > 0 ? slot.n_past_se : slot.n_past;
  1410. int32_t ga_i = slot.ga_i;
  1411. int32_t ga_n = slot.ga_n;
  1412. int32_t ga_w = slot.ga_w;
  1413. for (; slot.n_past < (int) prefix_tokens.size(); ++slot.n_past)
  1414. {
  1415. if (slot.ga_n != 1)
  1416. {
  1417. while (slot_npast >= ga_i + ga_w) {
  1418. const int bd = (ga_w/ga_n)*(ga_n - 1);
  1419. slot_npast -= bd;
  1420. ga_i += ga_w/ga_n;
  1421. }
  1422. }
  1423. llama_batch_add(batch, prefix_tokens[slot.n_past], system_tokens.size() + slot_npast, {slot.id }, false);
  1424. slot_npast++;
  1425. }
  1426. if (has_images && !ingest_images(slot, n_batch))
  1427. {
  1428. LOG_TEE("failed processing images\n");
  1429. return false;
  1430. }
  1431. // extract the logits only for the last token
  1432. if (batch.n_tokens > 0)
  1433. {
  1434. batch.logits[batch.n_tokens - 1] = true;
  1435. }
  1436. slot.n_decoded = 0;
  1437. slot.i_batch = batch.n_tokens - 1;
  1438. }
  1439. }
  1440. }
  1441. if (batch.n_tokens == 0)
  1442. {
  1443. all_slots_are_idle = true;
  1444. return true;
  1445. }
  1446. for (int32_t i = 0; i < (int32_t) batch.n_tokens; i += n_batch)
  1447. {
  1448. const int32_t n_tokens = std::min(n_batch, (int32_t) (batch.n_tokens - i));
  1449. for (auto & slot : slots)
  1450. {
  1451. if (slot.ga_n != 1)
  1452. {
  1453. // context extension via Self-Extend
  1454. while (slot.n_past_se >= slot.ga_i + slot.ga_w)
  1455. {
  1456. const int ib = (slot.ga_n * slot.ga_i) / slot.ga_w;
  1457. const int bd = (slot.ga_w / slot.ga_n) * (slot.ga_n - 1);
  1458. const int dd = (slot.ga_w / slot.ga_n) - ib * bd - slot.ga_w;
  1459. LOG_TEE("\n");
  1460. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i, slot.n_past_se, ib * bd, slot.ga_i + ib * bd, slot.n_past_se + ib * bd);
  1461. LOG_TEE("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w, slot.ga_n, (slot.ga_i + ib * bd) / slot.ga_n, (slot.ga_i + ib * bd + slot.ga_w) / slot.ga_n);
  1462. LOG_TEE("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", slot.ga_i + ib * bd + slot.ga_w, slot.n_past_se + ib * bd, dd, slot.ga_i + ib * bd + slot.ga_w + dd, slot.n_past_se + ib * bd + dd);
  1463. llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i, slot.n_past_se, ib * bd);
  1464. llama_kv_cache_seq_div(ctx, slot.id, slot.ga_i + ib * bd, slot.ga_i + ib * bd + slot.ga_w,slot.ga_n);
  1465. llama_kv_cache_seq_shift(ctx, slot.id, slot.ga_i + ib * bd + slot.ga_w,slot.n_past_se + ib * bd, dd);
  1466. slot.n_past_se -= bd;
  1467. slot.ga_i += slot.ga_w / slot.ga_n;
  1468. LOG_TEE("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", slot.n_past_se + bd, slot.n_past_se, slot.ga_i);
  1469. }
  1470. slot.n_past_se += n_tokens;
  1471. }
  1472. }
  1473. llama_batch batch_view =
  1474. {
  1475. n_tokens,
  1476. batch.token + i,
  1477. nullptr,
  1478. batch.pos + i,
  1479. batch.n_seq_id + i,
  1480. batch.seq_id + i,
  1481. batch.logits + i,
  1482. 0, 0, 0, // unused
  1483. };
  1484. const int ret = llama_decode(ctx, batch_view);
  1485. if (ret != 0)
  1486. {
  1487. if (n_batch == 1 || ret < 0)
  1488. {
  1489. // if you get here, it means the KV cache is full - try increasing it via the context size
  1490. LOG_TEE("%s : failed to decode the batch, n_batch = %d, ret = %d\n", __func__, n_batch, ret);
  1491. return false;
  1492. }
  1493. LOG_TEE("%s : failed to find free space in the KV cache, retrying with smaller n_batch = %d\n", __func__, n_batch / 2);
  1494. // retry with half the batch size to try to find a free slot in the KV cache
  1495. n_batch /= 2;
  1496. i -= n_batch;
  1497. continue;
  1498. }
  1499. for (auto & slot : slots)
  1500. {
  1501. if (slot.i_batch < (int) i || slot.i_batch >= (int) (i + n_tokens))
  1502. {
  1503. continue;
  1504. }
  1505. // prompt evaluated for embedding
  1506. if (slot.embedding)
  1507. {
  1508. send_embedding(slot);
  1509. slot.release();
  1510. slot.i_batch = -1;
  1511. return true;
  1512. }
  1513. completion_token_output result;
  1514. const llama_token id = llama_sampling_sample(slot.ctx_sampling, ctx, NULL, slot.i_batch - i);
  1515. llama_sampling_accept(slot.ctx_sampling, ctx, id, true);
  1516. slot.n_decoded += 1;
  1517. if (slot.n_decoded == 1)
  1518. {
  1519. slot.t_start_genereration = ggml_time_us();
  1520. slot.t_prompt_processing = (slot.t_start_genereration - slot.t_start_process_prompt) / 1e3;
  1521. }
  1522. llama_token_data_array cur_p = { slot.ctx_sampling->cur.data(), slot.ctx_sampling->cur.size(), false };
  1523. result.tok = id;
  1524. const int32_t n_probs = slot.sparams.n_probs;
  1525. if (slot.sparams.temp <= 0 && n_probs > 0)
  1526. {
  1527. // for llama_sample_token_greedy we need to sort candidates
  1528. llama_sample_softmax(ctx, &cur_p);
  1529. }
  1530. for (size_t i = 0; i < std::min(cur_p.size, (size_t)n_probs); ++i)
  1531. {
  1532. result.probs.push_back({cur_p.data[i].id, cur_p.data[i].p});
  1533. }
  1534. if (!process_token(result, slot))
  1535. {
  1536. slot.release();
  1537. slot.print_timings();
  1538. send_final_response(slot);
  1539. }
  1540. slot.i_batch = -1;
  1541. }
  1542. }
  1543. return true;
  1544. }
  1545. void run_on_all_tasks_finished() {
  1546. update_slots();
  1547. }
  1548. };
  1549. static void server_print_usage(const char *argv0, const gpt_params &params,
  1550. const server_params &sparams)
  1551. {
  1552. printf("usage: %s [options]\n", argv0);
  1553. printf("\n");
  1554. printf("options:\n");
  1555. printf(" -h, --help show this help message and exit\n");
  1556. printf(" -v, --verbose verbose output (default: %s)\n", server_verbose ? "enabled" : "disabled");
  1557. printf(" -t N, --threads N number of threads to use during computation (default: %d)\n", params.n_threads);
  1558. printf(" -tb N, --threads-batch N number of threads to use during batch and prompt processing (default: same as --threads)\n");
  1559. printf(" -c N, --ctx-size N size of the prompt context (default: %d)\n", params.n_ctx);
  1560. printf(" --rope-scaling {none,linear,yarn}\n");
  1561. printf(" RoPE frequency scaling method, defaults to linear unless specified by the model\n");
  1562. printf(" --rope-freq-base N RoPE base frequency (default: loaded from model)\n");
  1563. printf(" --rope-freq-scale N RoPE frequency scaling factor, expands context by a factor of 1/N\n");
  1564. printf(" --yarn-ext-factor N YaRN: extrapolation mix factor (default: 1.0, 0.0 = full interpolation)\n");
  1565. printf(" --yarn-attn-factor N YaRN: scale sqrt(t) or attention magnitude (default: 1.0)\n");
  1566. printf(" --yarn-beta-slow N YaRN: high correction dim or alpha (default: %.1f)\n", params.yarn_beta_slow);
  1567. printf(" --yarn-beta-fast N YaRN: low correction dim or beta (default: %.1f)\n", params.yarn_beta_fast);
  1568. printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
  1569. printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
  1570. printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
  1571. if (llama_supports_mlock())
  1572. {
  1573. printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
  1574. }
  1575. if (llama_supports_mmap())
  1576. {
  1577. printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
  1578. }
  1579. printf(" --numa attempt optimizations that help on some NUMA systems\n");
  1580. if (llama_supports_gpu_offload()) {
  1581. printf(" -ngl N, --n-gpu-layers N\n");
  1582. printf(" number of layers to store in VRAM\n");
  1583. printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
  1584. printf(" how to split the model across multiple GPUs, one of:\n");
  1585. printf(" - none: use one GPU only\n");
  1586. printf(" - layer (default): split layers and KV across GPUs\n");
  1587. printf(" - row: split rows across GPUs\n");
  1588. printf(" -ts SPLIT --tensor-split SPLIT\n");
  1589. printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
  1590. printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
  1591. printf(" or for intermediate results and KV (with split-mode = row)\n");
  1592. }
  1593. printf(" -m FNAME, --model FNAME\n");
  1594. printf(" model path (default: %s)\n", params.model.c_str());
  1595. printf(" -a ALIAS, --alias ALIAS\n");
  1596. printf(" set an alias for the model, will be added as `model` field in completion response\n");
  1597. printf(" --lora FNAME apply LoRA adapter (implies --no-mmap)\n");
  1598. printf(" --lora-base FNAME optional model to use as a base for the layers modified by the LoRA adapter\n");
  1599. printf(" --host ip address to listen (default (default: %s)\n", sparams.hostname.c_str());
  1600. printf(" --port PORT port to listen (default (default: %d)\n", sparams.port);
  1601. printf(" --path PUBLIC_PATH path from which to serve static files (default %s)\n", sparams.public_path.c_str());
  1602. printf(" --api-key API_KEY optional api key to enhance server security. If set, requests must include this key for access.\n");
  1603. printf(" --api-key-file FNAME path to file containing api keys delimited by new lines. If set, requests must include one of the keys for access.\n");
  1604. printf(" -to N, --timeout N server read/write timeout in seconds (default: %d)\n", sparams.read_timeout);
  1605. printf(" --embedding enable embedding vector output (default: %s)\n", params.embedding ? "enabled" : "disabled");
  1606. printf(" -np N, --parallel N number of slots for process requests (default: %d)\n", params.n_parallel);
  1607. printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
  1608. printf(" -spf FNAME, --system-prompt-file FNAME\n");
  1609. printf(" set a file to load a system prompt (initial prompt of all slots), this is useful for chat applications.\n");
  1610. printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA.\n");
  1611. printf(" --log-disable disables logging to a file.\n");
  1612. printf("\n");
  1613. printf(" --override-kv KEY=TYPE:VALUE\n");
  1614. printf(" advanced option to override model metadata by key. may be specified multiple times.\n");
  1615. printf(" types: int, float, bool. example: --override-kv tokenizer.ggml.add_bos_token=bool:false\n");
  1616. printf(" -gan N, --grp-attn-n N set the group attention factor to extend context size through self-extend(default: 1=disabled), used together with group attention width `--grp-attn-w`");
  1617. printf(" -gaw N, --grp-attn-w N set the group attention width to extend context size through self-extend(default: 512), used together with group attention factor `--grp-attn-n`");
  1618. printf("\n");
  1619. }
  1620. static void server_params_parse(int argc, char **argv, server_params &sparams,
  1621. gpt_params &params, llama_server_context& llama)
  1622. {
  1623. gpt_params default_params;
  1624. server_params default_sparams;
  1625. std::string arg;
  1626. bool invalid_param = false;
  1627. for (int i = 1; i < argc; i++)
  1628. {
  1629. arg = argv[i];
  1630. if (arg == "--port")
  1631. {
  1632. if (++i >= argc)
  1633. {
  1634. invalid_param = true;
  1635. break;
  1636. }
  1637. sparams.port = std::stoi(argv[i]);
  1638. }
  1639. else if (arg == "--host")
  1640. {
  1641. if (++i >= argc)
  1642. {
  1643. invalid_param = true;
  1644. break;
  1645. }
  1646. sparams.hostname = argv[i];
  1647. }
  1648. else if (arg == "--path")
  1649. {
  1650. if (++i >= argc)
  1651. {
  1652. invalid_param = true;
  1653. break;
  1654. }
  1655. sparams.public_path = argv[i];
  1656. }
  1657. else if (arg == "--api-key")
  1658. {
  1659. if (++i >= argc)
  1660. {
  1661. invalid_param = true;
  1662. break;
  1663. }
  1664. sparams.api_keys.emplace_back(argv[i]);
  1665. }
  1666. else if (arg == "--api-key-file")
  1667. {
  1668. if (++i >= argc)
  1669. {
  1670. invalid_param = true;
  1671. break;
  1672. }
  1673. std::ifstream key_file(argv[i]);
  1674. if (!key_file) {
  1675. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  1676. invalid_param = true;
  1677. break;
  1678. }
  1679. std::string key;
  1680. while (std::getline(key_file, key)) {
  1681. if (key.size() > 0) {
  1682. sparams.api_keys.push_back(key);
  1683. }
  1684. }
  1685. key_file.close();
  1686. }
  1687. else if (arg == "--timeout" || arg == "-to")
  1688. {
  1689. if (++i >= argc)
  1690. {
  1691. invalid_param = true;
  1692. break;
  1693. }
  1694. sparams.read_timeout = std::stoi(argv[i]);
  1695. sparams.write_timeout = std::stoi(argv[i]);
  1696. }
  1697. else if (arg == "-m" || arg == "--model")
  1698. {
  1699. if (++i >= argc)
  1700. {
  1701. invalid_param = true;
  1702. break;
  1703. }
  1704. params.model = argv[i];
  1705. }
  1706. else if (arg == "-a" || arg == "--alias")
  1707. {
  1708. if (++i >= argc)
  1709. {
  1710. invalid_param = true;
  1711. break;
  1712. }
  1713. params.model_alias = argv[i];
  1714. }
  1715. else if (arg == "-h" || arg == "--help")
  1716. {
  1717. server_print_usage(argv[0], default_params, default_sparams);
  1718. exit(0);
  1719. }
  1720. else if (arg == "-c" || arg == "--ctx-size" || arg == "--ctx_size")
  1721. {
  1722. if (++i >= argc)
  1723. {
  1724. invalid_param = true;
  1725. break;
  1726. }
  1727. params.n_ctx = std::stoi(argv[i]);
  1728. }
  1729. else if (arg == "--rope-scaling")
  1730. {
  1731. if (++i >= argc)
  1732. {
  1733. invalid_param = true;
  1734. break;
  1735. }
  1736. std::string value(argv[i]);
  1737. /**/ if (value == "none") { params.rope_scaling_type = LLAMA_ROPE_SCALING_NONE; }
  1738. else if (value == "linear") { params.rope_scaling_type = LLAMA_ROPE_SCALING_LINEAR; }
  1739. else if (value == "yarn") { params.rope_scaling_type = LLAMA_ROPE_SCALING_YARN; }
  1740. else { invalid_param = true; break; }
  1741. }
  1742. else if (arg == "--rope-freq-base")
  1743. {
  1744. if (++i >= argc)
  1745. {
  1746. invalid_param = true;
  1747. break;
  1748. }
  1749. params.rope_freq_base = std::stof(argv[i]);
  1750. }
  1751. else if (arg == "--rope-freq-scale")
  1752. {
  1753. if (++i >= argc)
  1754. {
  1755. invalid_param = true;
  1756. break;
  1757. }
  1758. params.rope_freq_scale = std::stof(argv[i]);
  1759. }
  1760. else if (arg == "--yarn-ext-factor")
  1761. {
  1762. if (++i >= argc) {
  1763. invalid_param = true;
  1764. break;
  1765. }
  1766. params.yarn_ext_factor = std::stof(argv[i]);
  1767. }
  1768. else if (arg == "--yarn-attn-factor")
  1769. {
  1770. if (++i >= argc) {
  1771. invalid_param = true;
  1772. break;
  1773. }
  1774. params.yarn_attn_factor = std::stof(argv[i]);
  1775. }
  1776. else if (arg == "--yarn-beta-fast")
  1777. {
  1778. if (++i >= argc) {
  1779. invalid_param = true;
  1780. break;
  1781. }
  1782. params.yarn_beta_fast = std::stof(argv[i]);
  1783. }
  1784. else if (arg == "--yarn-beta-slow")
  1785. {
  1786. if (++i >= argc) {
  1787. invalid_param = true;
  1788. break;
  1789. }
  1790. params.yarn_beta_slow = std::stof(argv[i]);
  1791. }
  1792. else if (arg == "--threads" || arg == "-t")
  1793. {
  1794. if (++i >= argc)
  1795. {
  1796. invalid_param = true;
  1797. break;
  1798. }
  1799. params.n_threads = std::stoi(argv[i]);
  1800. }
  1801. else if (arg == "--grp-attn-n" || arg == "-gan")
  1802. {
  1803. if (++i >= argc) {
  1804. invalid_param = true;
  1805. break;
  1806. }
  1807. params.grp_attn_n = std::stoi(argv[i]);
  1808. }
  1809. else if (arg == "--grp-attn-w" || arg == "-gaw")
  1810. {
  1811. if (++i >= argc)
  1812. {
  1813. invalid_param = true;
  1814. break;
  1815. }
  1816. params.grp_attn_w = std::stoi(argv[i]);
  1817. }
  1818. else if (arg == "--threads-batch" || arg == "-tb")
  1819. {
  1820. if (++i >= argc)
  1821. {
  1822. invalid_param = true;
  1823. break;
  1824. }
  1825. params.n_threads_batch = std::stoi(argv[i]);
  1826. }
  1827. else if (arg == "-b" || arg == "--batch-size")
  1828. {
  1829. if (++i >= argc)
  1830. {
  1831. invalid_param = true;
  1832. break;
  1833. }
  1834. params.n_batch = std::stoi(argv[i]);
  1835. params.n_batch = std::min(512, params.n_batch);
  1836. }
  1837. else if (arg == "--gpu-layers" || arg == "-ngl" || arg == "--n-gpu-layers")
  1838. {
  1839. if (++i >= argc)
  1840. {
  1841. invalid_param = true;
  1842. break;
  1843. }
  1844. if (llama_supports_gpu_offload()) {
  1845. params.n_gpu_layers = std::stoi(argv[i]);
  1846. } else {
  1847. LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
  1848. "See main README.md for information on enabling GPU BLAS support",
  1849. {{"n_gpu_layers", params.n_gpu_layers}});
  1850. }
  1851. }
  1852. else if (arg == "--split-mode" || arg == "-sm")
  1853. {
  1854. if (++i >= argc) {
  1855. invalid_param = true;
  1856. break;
  1857. }
  1858. std::string arg_next = argv[i];
  1859. if (arg_next == "none")
  1860. {
  1861. params.split_mode = LLAMA_SPLIT_NONE;
  1862. }
  1863. else if (arg_next == "layer")
  1864. {
  1865. params.split_mode = LLAMA_SPLIT_LAYER;
  1866. }
  1867. else if (arg_next == "row")
  1868. {
  1869. params.split_mode = LLAMA_SPLIT_ROW;
  1870. }
  1871. else {
  1872. invalid_param = true;
  1873. break;
  1874. }
  1875. #ifndef GGML_USE_CUBLAS
  1876. fprintf(stderr, "warning: llama.cpp was compiled without cuBLAS. Setting the split mode has no effect.\n");
  1877. #endif // GGML_USE_CUBLAS
  1878. }
  1879. else if (arg == "--tensor-split" || arg == "-ts")
  1880. {
  1881. if (++i >= argc)
  1882. {
  1883. invalid_param = true;
  1884. break;
  1885. }
  1886. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
  1887. std::string arg_next = argv[i];
  1888. // split string by , and /
  1889. const std::regex regex{R"([,/]+)"};
  1890. std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
  1891. std::vector<std::string> split_arg{it, {}};
  1892. GGML_ASSERT(split_arg.size() <= llama_max_devices());
  1893. for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
  1894. {
  1895. if (i_device < split_arg.size())
  1896. {
  1897. params.tensor_split[i_device] = std::stof(split_arg[i_device]);
  1898. }
  1899. else
  1900. {
  1901. params.tensor_split[i_device] = 0.0f;
  1902. }
  1903. }
  1904. #else
  1905. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n", {});
  1906. #endif // GGML_USE_CUBLAS
  1907. }
  1908. else if (arg == "--no-mul-mat-q" || arg == "-nommq")
  1909. {
  1910. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
  1911. params.mul_mat_q = false;
  1912. #else
  1913. LOG_WARNING("warning: llama.cpp was compiled without cuBLAS. Disabling mul_mat_q kernels has no effect.\n", {});
  1914. #endif // GGML_USE_CUBLAS
  1915. }
  1916. else if (arg == "--main-gpu" || arg == "-mg")
  1917. {
  1918. if (++i >= argc)
  1919. {
  1920. invalid_param = true;
  1921. break;
  1922. }
  1923. #if defined(GGML_USE_CUBLAS) || defined(GGML_USE_SYCL)
  1924. params.main_gpu = std::stoi(argv[i]);
  1925. #else
  1926. LOG_WARNING("llama.cpp was compiled without cuBLAS. It is not possible to set a main GPU.", {});
  1927. #endif
  1928. }
  1929. else if (arg == "--lora")
  1930. {
  1931. if (++i >= argc)
  1932. {
  1933. invalid_param = true;
  1934. break;
  1935. }
  1936. params.lora_adapter.emplace_back(argv[i], 1.0f);
  1937. params.use_mmap = false;
  1938. }
  1939. else if (arg == "--lora-scaled")
  1940. {
  1941. if (++i >= argc)
  1942. {
  1943. invalid_param = true;
  1944. break;
  1945. }
  1946. const char * lora_adapter = argv[i];
  1947. if (++i >= argc)
  1948. {
  1949. invalid_param = true;
  1950. break;
  1951. }
  1952. params.lora_adapter.emplace_back(lora_adapter, std::stof(argv[i]));
  1953. params.use_mmap = false;
  1954. }
  1955. else if (arg == "--lora-base")
  1956. {
  1957. if (++i >= argc)
  1958. {
  1959. invalid_param = true;
  1960. break;
  1961. }
  1962. params.lora_base = argv[i];
  1963. }
  1964. else if (arg == "-v" || arg == "--verbose")
  1965. {
  1966. #if SERVER_VERBOSE != 1
  1967. LOG_WARNING("server.cpp is not built with verbose logging.", {});
  1968. #else
  1969. server_verbose = true;
  1970. #endif
  1971. }
  1972. else if (arg == "--mlock")
  1973. {
  1974. params.use_mlock = true;
  1975. }
  1976. else if (arg == "--no-mmap")
  1977. {
  1978. params.use_mmap = false;
  1979. }
  1980. else if (arg == "--numa")
  1981. {
  1982. params.numa = true;
  1983. }
  1984. else if (arg == "--embedding")
  1985. {
  1986. params.embedding = true;
  1987. }
  1988. else if (arg == "-cb" || arg == "--cont-batching")
  1989. {
  1990. params.cont_batching = true;
  1991. }
  1992. else if (arg == "-np" || arg == "--parallel")
  1993. {
  1994. if (++i >= argc)
  1995. {
  1996. invalid_param = true;
  1997. break;
  1998. }
  1999. params.n_parallel = std::stoi(argv[i]);
  2000. } else if (arg == "-n" || arg == "--n-predict")
  2001. {
  2002. if (++i >= argc)
  2003. {
  2004. invalid_param = true;
  2005. break;
  2006. }
  2007. params.n_predict = std::stoi(argv[i]);
  2008. } else if (arg == "-spf" || arg == "--system-prompt-file")
  2009. {
  2010. if (++i >= argc)
  2011. {
  2012. invalid_param = true;
  2013. break;
  2014. }
  2015. std::ifstream file(argv[i]);
  2016. if (!file) {
  2017. fprintf(stderr, "error: failed to open file '%s'\n", argv[i]);
  2018. invalid_param = true;
  2019. break;
  2020. }
  2021. std::string systm_content;
  2022. std::copy(
  2023. std::istreambuf_iterator<char>(file),
  2024. std::istreambuf_iterator<char>(),
  2025. std::back_inserter(systm_content)
  2026. );
  2027. llama.process_system_prompt_data(json::parse(systm_content));
  2028. }
  2029. else if(arg == "--mmproj")
  2030. {
  2031. if (++i >= argc)
  2032. {
  2033. invalid_param = true;
  2034. break;
  2035. }
  2036. params.mmproj = argv[i];
  2037. }
  2038. else if (arg == "--log-disable")
  2039. {
  2040. log_set_target(stdout);
  2041. LOG_INFO("logging to file is disabled.", {});
  2042. }
  2043. else if (arg == "--override-kv")
  2044. {
  2045. if (++i >= argc) {
  2046. invalid_param = true;
  2047. break;
  2048. }
  2049. char * sep = strchr(argv[i], '=');
  2050. if (sep == nullptr || sep - argv[i] >= 128) {
  2051. fprintf(stderr, "error: Malformed KV override: %s\n", argv[i]);
  2052. invalid_param = true;
  2053. break;
  2054. }
  2055. struct llama_model_kv_override kvo;
  2056. std::strncpy(kvo.key, argv[i], sep - argv[i]);
  2057. kvo.key[sep - argv[i]] = 0;
  2058. sep++;
  2059. if (strncmp(sep, "int:", 4) == 0) {
  2060. sep += 4;
  2061. kvo.tag = LLAMA_KV_OVERRIDE_INT;
  2062. kvo.int_value = std::atol(sep);
  2063. } else if (strncmp(sep, "float:", 6) == 0) {
  2064. sep += 6;
  2065. kvo.tag = LLAMA_KV_OVERRIDE_FLOAT;
  2066. kvo.float_value = std::atof(sep);
  2067. } else if (strncmp(sep, "bool:", 5) == 0) {
  2068. sep += 5;
  2069. kvo.tag = LLAMA_KV_OVERRIDE_BOOL;
  2070. if (std::strcmp(sep, "true") == 0) {
  2071. kvo.bool_value = true;
  2072. } else if (std::strcmp(sep, "false") == 0) {
  2073. kvo.bool_value = false;
  2074. } else {
  2075. fprintf(stderr, "error: Invalid boolean value for KV override: %s\n", argv[i]);
  2076. invalid_param = true;
  2077. break;
  2078. }
  2079. } else {
  2080. fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
  2081. invalid_param = true;
  2082. break;
  2083. }
  2084. params.kv_overrides.push_back(kvo);
  2085. }
  2086. else
  2087. {
  2088. fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
  2089. server_print_usage(argv[0], default_params, default_sparams);
  2090. exit(1);
  2091. }
  2092. }
  2093. if (!params.kv_overrides.empty()) {
  2094. params.kv_overrides.emplace_back();
  2095. params.kv_overrides.back().key[0] = 0;
  2096. }
  2097. if (invalid_param)
  2098. {
  2099. fprintf(stderr, "error: invalid parameter for argument: %s\n", arg.c_str());
  2100. server_print_usage(argv[0], default_params, default_sparams);
  2101. exit(1);
  2102. }
  2103. }
  2104. /* llama.cpp completion api semantics */
  2105. static json format_partial_response(
  2106. llama_server_context &llama, llama_client_slot *slot, const std::string &content, const std::vector<completion_token_output> &probs
  2107. ) {
  2108. json res = json
  2109. {
  2110. {"content", content },
  2111. {"stop", false},
  2112. {"slot_id", slot->id },
  2113. {"multimodal", llama.multimodal }
  2114. };
  2115. if (slot->sparams.n_probs > 0)
  2116. {
  2117. res["completion_probabilities"] = probs_vector_to_json(llama.ctx, probs);
  2118. }
  2119. return res;
  2120. }
  2121. static json format_tokenizer_response(const std::vector<llama_token> &tokens)
  2122. {
  2123. return json{
  2124. {"tokens", tokens}};
  2125. }
  2126. static json format_detokenized_response(std::string content)
  2127. {
  2128. return json{
  2129. {"content", content}};
  2130. }
  2131. static void log_server_request(const httplib::Request &req, const httplib::Response &res)
  2132. {
  2133. LOG_INFO("request", {
  2134. {"remote_addr", req.remote_addr},
  2135. {"remote_port", req.remote_port},
  2136. {"status", res.status},
  2137. {"method", req.method},
  2138. {"path", req.path},
  2139. {"params", req.params},
  2140. });
  2141. LOG_VERBOSE("request", {
  2142. {"request", req.body},
  2143. {"response", res.body},
  2144. });
  2145. }
  2146. struct token_translator
  2147. {
  2148. llama_context * ctx;
  2149. std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
  2150. std::string operator()(const completion_token_output &cto) const { return (*this)(cto.tok); }
  2151. };
  2152. static void append_to_generated_text_from_generated_token_probs(llama_server_context &llama, llama_client_slot *slot)
  2153. {
  2154. auto & gtps = slot->generated_token_probs;
  2155. auto translator = token_translator{llama.ctx};
  2156. auto add_strlen = [=](size_t sum, const completion_token_output & cto) { return sum + translator(cto).size(); };
  2157. const size_t len = std::accumulate(gtps.begin(), gtps.end(), size_t(0), add_strlen);
  2158. if (slot->generated_text.capacity() < slot->generated_text.size() + len)
  2159. {
  2160. slot->generated_text.reserve(slot->generated_text.size() + len);
  2161. }
  2162. for (const completion_token_output & cto : gtps)
  2163. {
  2164. slot->generated_text += translator(cto);
  2165. }
  2166. }
  2167. int main(int argc, char **argv)
  2168. {
  2169. #if SERVER_VERBOSE != 1
  2170. log_disable();
  2171. #endif
  2172. // own arguments required by this example
  2173. gpt_params params;
  2174. server_params sparams;
  2175. // struct that contains llama context and inference
  2176. llama_server_context llama;
  2177. server_params_parse(argc, argv, sparams, params, llama);
  2178. if (params.model_alias == "unknown")
  2179. {
  2180. params.model_alias = params.model;
  2181. }
  2182. llama_backend_init(params.numa);
  2183. LOG_INFO("build info", {{"build", LLAMA_BUILD_NUMBER},
  2184. {"commit", LLAMA_COMMIT}});
  2185. LOG_INFO("system info", {
  2186. {"n_threads", params.n_threads},
  2187. {"n_threads_batch", params.n_threads_batch},
  2188. {"total_threads", std::thread::hardware_concurrency()},
  2189. {"system_info", llama_print_system_info()},
  2190. });
  2191. httplib::Server svr;
  2192. std::atomic<server_state> state{SERVER_STATE_LOADING_MODEL};
  2193. svr.set_default_headers({{"Server", "llama.cpp"}});
  2194. // CORS preflight
  2195. svr.Options(R"(.*)", [](const httplib::Request &req, httplib::Response &res) {
  2196. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2197. res.set_header("Access-Control-Allow-Credentials", "true");
  2198. res.set_header("Access-Control-Allow-Methods", "POST");
  2199. res.set_header("Access-Control-Allow-Headers", "*");
  2200. });
  2201. svr.Get("/health", [&](const httplib::Request&, httplib::Response& res) {
  2202. server_state current_state = state.load();
  2203. switch(current_state) {
  2204. case SERVER_STATE_READY:
  2205. res.set_content(R"({"status": "ok"})", "application/json");
  2206. res.status = 200; // HTTP OK
  2207. break;
  2208. case SERVER_STATE_LOADING_MODEL:
  2209. res.set_content(R"({"status": "loading model"})", "application/json");
  2210. res.status = 503; // HTTP Service Unavailable
  2211. break;
  2212. case SERVER_STATE_ERROR:
  2213. res.set_content(R"({"status": "error", "error": "Model failed to load"})", "application/json");
  2214. res.status = 500; // HTTP Internal Server Error
  2215. break;
  2216. }
  2217. });
  2218. svr.set_logger(log_server_request);
  2219. svr.set_exception_handler([](const httplib::Request &, httplib::Response &res, std::exception_ptr ep)
  2220. {
  2221. const char fmt[] = "500 Internal Server Error\n%s";
  2222. char buf[BUFSIZ];
  2223. try
  2224. {
  2225. std::rethrow_exception(std::move(ep));
  2226. }
  2227. catch (std::exception &e)
  2228. {
  2229. snprintf(buf, sizeof(buf), fmt, e.what());
  2230. }
  2231. catch (...)
  2232. {
  2233. snprintf(buf, sizeof(buf), fmt, "Unknown Exception");
  2234. }
  2235. res.set_content(buf, "text/plain; charset=utf-8");
  2236. res.status = 500;
  2237. });
  2238. svr.set_error_handler([](const httplib::Request &, httplib::Response &res)
  2239. {
  2240. if (res.status == 401)
  2241. {
  2242. res.set_content("Unauthorized", "text/plain; charset=utf-8");
  2243. }
  2244. if (res.status == 400)
  2245. {
  2246. res.set_content("Invalid request", "text/plain; charset=utf-8");
  2247. }
  2248. else if (res.status == 404)
  2249. {
  2250. res.set_content("File Not Found", "text/plain; charset=utf-8");
  2251. res.status = 404;
  2252. }
  2253. });
  2254. // set timeouts and change hostname and port
  2255. svr.set_read_timeout (sparams.read_timeout);
  2256. svr.set_write_timeout(sparams.write_timeout);
  2257. if (!svr.bind_to_port(sparams.hostname, sparams.port))
  2258. {
  2259. fprintf(stderr, "\ncouldn't bind to server socket: hostname=%s port=%d\n\n", sparams.hostname.c_str(), sparams.port);
  2260. return 1;
  2261. }
  2262. // Set the base directory for serving static files
  2263. svr.set_base_dir(sparams.public_path);
  2264. // to make it ctrl+clickable:
  2265. LOG_TEE("\nllama server listening at http://%s:%d\n\n", sparams.hostname.c_str(), sparams.port);
  2266. std::unordered_map<std::string, std::string> log_data;
  2267. log_data["hostname"] = sparams.hostname;
  2268. log_data["port"] = std::to_string(sparams.port);
  2269. if (sparams.api_keys.size() == 1) {
  2270. log_data["api_key"] = "api_key: ****" + sparams.api_keys[0].substr(sparams.api_keys[0].length() - 4);
  2271. } else if (sparams.api_keys.size() > 1) {
  2272. log_data["api_key"] = "api_key: " + std::to_string(sparams.api_keys.size()) + " keys loaded";
  2273. }
  2274. LOG_INFO("HTTP server listening", log_data);
  2275. // run the HTTP server in a thread - see comment below
  2276. std::thread t([&]()
  2277. {
  2278. if (!svr.listen_after_bind())
  2279. {
  2280. state.store(SERVER_STATE_ERROR);
  2281. return 1;
  2282. }
  2283. return 0;
  2284. });
  2285. // load the model
  2286. if (!llama.load_model(params))
  2287. {
  2288. state.store(SERVER_STATE_ERROR);
  2289. return 1;
  2290. } else {
  2291. llama.initialize();
  2292. state.store(SERVER_STATE_READY);
  2293. LOG_INFO("model loaded", {});
  2294. }
  2295. // Middleware for API key validation
  2296. auto validate_api_key = [&sparams](const httplib::Request &req, httplib::Response &res) -> bool {
  2297. // If API key is not set, skip validation
  2298. if (sparams.api_keys.empty()) {
  2299. return true;
  2300. }
  2301. // Check for API key in the header
  2302. auto auth_header = req.get_header_value("Authorization");
  2303. std::string prefix = "Bearer ";
  2304. if (auth_header.substr(0, prefix.size()) == prefix) {
  2305. std::string received_api_key = auth_header.substr(prefix.size());
  2306. if (std::find(sparams.api_keys.begin(), sparams.api_keys.end(), received_api_key) != sparams.api_keys.end()) {
  2307. return true; // API key is valid
  2308. }
  2309. }
  2310. // API key is invalid or not provided
  2311. res.set_content("Unauthorized: Invalid API Key", "text/plain; charset=utf-8");
  2312. res.status = 401; // Unauthorized
  2313. LOG_WARNING("Unauthorized: Invalid API Key", {});
  2314. return false;
  2315. };
  2316. // this is only called if no index.html is found in the public --path
  2317. svr.Get("/", [](const httplib::Request &, httplib::Response &res)
  2318. {
  2319. res.set_content(reinterpret_cast<const char*>(&index_html), index_html_len, "text/html; charset=utf-8");
  2320. return false;
  2321. });
  2322. // this is only called if no index.js is found in the public --path
  2323. svr.Get("/index.js", [](const httplib::Request &, httplib::Response &res)
  2324. {
  2325. res.set_content(reinterpret_cast<const char *>(&index_js), index_js_len, "text/javascript; charset=utf-8");
  2326. return false;
  2327. });
  2328. // this is only called if no index.html is found in the public --path
  2329. svr.Get("/completion.js", [](const httplib::Request &, httplib::Response &res)
  2330. {
  2331. res.set_content(reinterpret_cast<const char*>(&completion_js), completion_js_len, "application/javascript; charset=utf-8");
  2332. return false;
  2333. });
  2334. // this is only called if no index.html is found in the public --path
  2335. svr.Get("/json-schema-to-grammar.mjs", [](const httplib::Request &, httplib::Response &res)
  2336. {
  2337. res.set_content(reinterpret_cast<const char*>(&json_schema_to_grammar_mjs), json_schema_to_grammar_mjs_len, "application/javascript; charset=utf-8");
  2338. return false;
  2339. });
  2340. svr.Get("/props", [&llama](const httplib::Request & req, httplib::Response &res)
  2341. {
  2342. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2343. json data = {
  2344. { "user_name", llama.name_user.c_str() },
  2345. { "assistant_name", llama.name_assistant.c_str() },
  2346. { "default_generation_settings", llama.default_generation_settings_for_props }
  2347. };
  2348. res.set_content(data.dump(), "application/json; charset=utf-8");
  2349. });
  2350. svr.Post("/completion", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2351. {
  2352. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2353. if (!validate_api_key(req, res)) {
  2354. return;
  2355. }
  2356. json data = json::parse(req.body);
  2357. const int task_id = llama.queue_tasks.get_new_id();
  2358. llama.queue_results.add_waiting_task_id(task_id);
  2359. llama.request_completion(task_id, data, false, false, -1);
  2360. if (!json_value(data, "stream", false)) {
  2361. std::string completion_text;
  2362. task_result result = llama.queue_results.recv(task_id);
  2363. if (!result.error && result.stop) {
  2364. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2365. }
  2366. else
  2367. {
  2368. res.status = 404;
  2369. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2370. }
  2371. llama.queue_results.remove_waiting_task_id(task_id);
  2372. } else {
  2373. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink)
  2374. {
  2375. while (true)
  2376. {
  2377. task_result result = llama.queue_results.recv(task_id);
  2378. if (!result.error) {
  2379. const std::string str =
  2380. "data: " +
  2381. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2382. "\n\n";
  2383. LOG_VERBOSE("data stream", {
  2384. { "to_send", str }
  2385. });
  2386. if (!sink.write(str.c_str(), str.size()))
  2387. {
  2388. llama.queue_results.remove_waiting_task_id(task_id);
  2389. return false;
  2390. }
  2391. if (result.stop) {
  2392. break;
  2393. }
  2394. } else {
  2395. const std::string str =
  2396. "error: " +
  2397. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2398. "\n\n";
  2399. LOG_VERBOSE("data stream", {
  2400. { "to_send", str }
  2401. });
  2402. if (!sink.write(str.c_str(), str.size()))
  2403. {
  2404. llama.queue_results.remove_waiting_task_id(task_id);
  2405. return false;
  2406. }
  2407. break;
  2408. }
  2409. }
  2410. llama.queue_results.remove_waiting_task_id(task_id);
  2411. sink.done();
  2412. return true;
  2413. };
  2414. auto on_complete = [task_id, &llama] (bool)
  2415. {
  2416. // cancel
  2417. llama.request_cancel(task_id);
  2418. llama.queue_results.remove_waiting_task_id(task_id);
  2419. };
  2420. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2421. }
  2422. });
  2423. svr.Get("/v1/models", [&params](const httplib::Request& req, httplib::Response& res)
  2424. {
  2425. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2426. std::time_t t = std::time(0);
  2427. json models = {
  2428. {"object", "list"},
  2429. {"data", {
  2430. {
  2431. {"id", params.model_alias},
  2432. {"object", "model"},
  2433. {"created", t},
  2434. {"owned_by", "llamacpp"}
  2435. },
  2436. }}
  2437. };
  2438. res.set_content(models.dump(), "application/json; charset=utf-8");
  2439. });
  2440. // TODO: add mount point without "/v1" prefix -- how?
  2441. svr.Post("/v1/chat/completions", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2442. {
  2443. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2444. if (!validate_api_key(req, res)) {
  2445. return;
  2446. }
  2447. json data = oaicompat_completion_params_parse(json::parse(req.body));
  2448. const int task_id = llama.queue_tasks.get_new_id();
  2449. llama.queue_results.add_waiting_task_id(task_id);
  2450. llama.request_completion(task_id, data, false, false, -1);
  2451. if (!json_value(data, "stream", false)) {
  2452. std::string completion_text;
  2453. task_result result = llama.queue_results.recv(task_id);
  2454. if (!result.error && result.stop) {
  2455. json oaicompat_result = format_final_response_oaicompat(data, result);
  2456. res.set_content(oaicompat_result.dump(-1, ' ', false,
  2457. json::error_handler_t::replace),
  2458. "application/json; charset=utf-8");
  2459. } else {
  2460. res.status = 500;
  2461. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2462. }
  2463. llama.queue_results.remove_waiting_task_id(task_id);
  2464. } else {
  2465. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink &sink) {
  2466. while (true) {
  2467. task_result llama_result = llama.queue_results.recv(task_id);
  2468. if (!llama_result.error) {
  2469. std::vector<json> result_array = format_partial_response_oaicompat( llama_result);
  2470. for (auto it = result_array.begin(); it != result_array.end(); ++it)
  2471. {
  2472. if (!it->empty()) {
  2473. const std::string str =
  2474. "data: " +
  2475. it->dump(-1, ' ', false, json::error_handler_t::replace) +
  2476. "\n\n";
  2477. LOG_VERBOSE("data stream", {{"to_send", str}});
  2478. if (!sink.write(str.c_str(), str.size())) {
  2479. llama.queue_results.remove_waiting_task_id(task_id);
  2480. return false;
  2481. }
  2482. }
  2483. }
  2484. if (llama_result.stop) {
  2485. break;
  2486. }
  2487. } else {
  2488. const std::string str =
  2489. "error: " +
  2490. llama_result.result_json.dump(-1, ' ', false,
  2491. json::error_handler_t::replace) +
  2492. "\n\n";
  2493. LOG_VERBOSE("data stream", {{"to_send", str}});
  2494. if (!sink.write(str.c_str(), str.size())) {
  2495. llama.queue_results.remove_waiting_task_id(task_id);
  2496. return false;
  2497. }
  2498. break;
  2499. }
  2500. }
  2501. sink.done();
  2502. llama.queue_results.remove_waiting_task_id(task_id);
  2503. return true;
  2504. };
  2505. auto on_complete = [task_id, &llama](bool) {
  2506. // cancel request
  2507. llama.request_cancel(task_id);
  2508. llama.queue_results.remove_waiting_task_id(task_id);
  2509. };
  2510. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2511. }
  2512. });
  2513. svr.Post("/infill", [&llama, &validate_api_key](const httplib::Request &req, httplib::Response &res)
  2514. {
  2515. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2516. if (!validate_api_key(req, res)) {
  2517. return;
  2518. }
  2519. json data = json::parse(req.body);
  2520. const int task_id = llama.queue_tasks.get_new_id();
  2521. llama.queue_results.add_waiting_task_id(task_id);
  2522. llama.request_completion(task_id, data, true, false, -1);
  2523. if (!json_value(data, "stream", false)) {
  2524. std::string completion_text;
  2525. task_result result = llama.queue_results.recv(task_id);
  2526. if (!result.error && result.stop)
  2527. {
  2528. res.set_content(result.result_json.dump(-1, ' ', false, json::error_handler_t::replace), "application/json; charset=utf-8");
  2529. }
  2530. else
  2531. {
  2532. res.status = 404;
  2533. res.set_content(result.result_json["content"], "text/plain; charset=utf-8");
  2534. }
  2535. llama.queue_results.remove_waiting_task_id(task_id);
  2536. } else {
  2537. const auto chunked_content_provider = [task_id, &llama](size_t, httplib::DataSink & sink) {
  2538. while (true)
  2539. {
  2540. task_result result = llama.queue_results.recv(task_id);
  2541. if (!result.error) {
  2542. const std::string str =
  2543. "data: " +
  2544. result.result_json.dump(-1, ' ', false, json::error_handler_t::replace) +
  2545. "\n\n";
  2546. LOG_VERBOSE("data stream", {
  2547. { "to_send", str }
  2548. });
  2549. if (!sink.write(str.c_str(), str.size()))
  2550. {
  2551. llama.queue_results.remove_waiting_task_id(task_id);
  2552. return false;
  2553. }
  2554. if (result.stop)
  2555. {
  2556. break;
  2557. }
  2558. }
  2559. else
  2560. {
  2561. break;
  2562. }
  2563. }
  2564. llama.queue_results.remove_waiting_task_id(task_id);
  2565. sink.done();
  2566. return true;
  2567. };
  2568. auto on_complete = [task_id, &llama] (bool)
  2569. {
  2570. // cancel
  2571. llama.request_cancel(task_id);
  2572. };
  2573. res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
  2574. }
  2575. });
  2576. svr.Get("/model.json", [&llama](const httplib::Request &, httplib::Response &res)
  2577. {
  2578. const json data = llama.get_model_props();
  2579. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2580. });
  2581. svr.Options(R"(/.*)", [](const httplib::Request &, httplib::Response &res)
  2582. { return res.set_content("", "application/json; charset=utf-8"); });
  2583. svr.Post("/tokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2584. {
  2585. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2586. const json body = json::parse(req.body);
  2587. std::vector<llama_token> tokens;
  2588. if (body.count("content") != 0)
  2589. {
  2590. tokens = llama.tokenize(body["content"], false);
  2591. }
  2592. const json data = format_tokenizer_response(tokens);
  2593. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2594. });
  2595. svr.Post("/detokenize", [&llama](const httplib::Request &req, httplib::Response &res)
  2596. {
  2597. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2598. const json body = json::parse(req.body);
  2599. std::string content;
  2600. if (body.count("tokens") != 0)
  2601. {
  2602. const std::vector<llama_token> tokens = body["tokens"];
  2603. content = tokens_to_str(llama.ctx, tokens.cbegin(), tokens.cend());
  2604. }
  2605. const json data = format_detokenized_response(content);
  2606. return res.set_content(data.dump(), "application/json; charset=utf-8");
  2607. });
  2608. svr.Post("/embedding", [&llama](const httplib::Request &req, httplib::Response &res)
  2609. {
  2610. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2611. const json body = json::parse(req.body);
  2612. json prompt;
  2613. if (body.count("content") != 0)
  2614. {
  2615. prompt = body["content"];
  2616. }
  2617. else
  2618. {
  2619. prompt = "";
  2620. }
  2621. json image_data;
  2622. if (body.count("image_data") != 0) {
  2623. image_data = body["image_data"];
  2624. }
  2625. else
  2626. {
  2627. image_data = "";
  2628. }
  2629. // create and queue the task
  2630. const int task_id = llama.queue_tasks.get_new_id();
  2631. llama.queue_results.add_waiting_task_id(task_id);
  2632. llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}, {"image_data", image_data} }, false, true, -1);
  2633. // get the result
  2634. task_result result = llama.queue_results.recv(task_id);
  2635. llama.queue_results.remove_waiting_task_id(task_id);
  2636. // send the result
  2637. return res.set_content(result.result_json.dump(), "application/json; charset=utf-8");
  2638. });
  2639. svr.Post("/v1/embeddings", [&llama](const httplib::Request &req, httplib::Response &res)
  2640. {
  2641. res.set_header("Access-Control-Allow-Origin", req.get_header_value("Origin"));
  2642. const json body = json::parse(req.body);
  2643. json prompt;
  2644. if (body.count("input") != 0)
  2645. {
  2646. prompt = body["input"];
  2647. // batch
  2648. if(prompt.is_array()) {
  2649. json data = json::array();
  2650. int i = 0;
  2651. for (const json &elem : prompt) {
  2652. const int task_id = llama.queue_tasks.get_new_id();
  2653. llama.queue_results.add_waiting_task_id(task_id);
  2654. llama.request_completion(task_id, { {"prompt", elem}, { "n_predict", 0} }, false, true, -1);
  2655. // get the result
  2656. task_result result = llama.queue_results.recv(task_id);
  2657. llama.queue_results.remove_waiting_task_id(task_id);
  2658. json embedding = json{
  2659. {"embedding", json_value(result.result_json, "embedding", json::array())},
  2660. {"index", i++},
  2661. {"object", "embedding"}
  2662. };
  2663. data.push_back(embedding);
  2664. }
  2665. json result = format_embeddings_response_oaicompat(body, data);
  2666. return res.set_content(result.dump(), "application/json; charset=utf-8");
  2667. }
  2668. }
  2669. else
  2670. {
  2671. prompt = "";
  2672. }
  2673. // create and queue the task
  2674. const int task_id = llama.queue_tasks.get_new_id();
  2675. llama.queue_results.add_waiting_task_id(task_id);
  2676. llama.request_completion(task_id, { {"prompt", prompt}, { "n_predict", 0}}, false, true, -1);
  2677. // get the result
  2678. task_result result = llama.queue_results.recv(task_id);
  2679. llama.queue_results.remove_waiting_task_id(task_id);
  2680. json data = json::array({json{
  2681. {"embedding", json_value(result.result_json, "embedding", json::array())},
  2682. {"index", 0},
  2683. {"object", "embedding"}
  2684. }}
  2685. );
  2686. json root = format_embeddings_response_oaicompat(body, data);
  2687. // send the result
  2688. return res.set_content(root.dump(), "application/json; charset=utf-8");
  2689. });
  2690. // GG: if I put the main loop inside a thread, it crashes on the first request when build in Debug!?
  2691. // "Bus error: 10" - this is on macOS, it does not crash on Linux
  2692. //std::thread t2([&]()
  2693. /*{
  2694. bool running = true;
  2695. while (running)
  2696. {
  2697. running = llama.update_slots();
  2698. }
  2699. }*/
  2700. //);
  2701. llama.queue_tasks.on_new_task(std::bind(
  2702. &llama_server_context::process_single_task, &llama, std::placeholders::_1));
  2703. llama.queue_tasks.on_finish_multitask(std::bind(
  2704. &llama_server_context::on_finish_multitask, &llama, std::placeholders::_1));
  2705. llama.queue_tasks.on_all_tasks_finished(std::bind(
  2706. &llama_server_context::run_on_all_tasks_finished, &llama));
  2707. llama.queue_results.on_multitask_update(std::bind(
  2708. &llama_server_queue::update_multitask,
  2709. &llama.queue_tasks,
  2710. std::placeholders::_1,
  2711. std::placeholders::_2,
  2712. std::placeholders::_3
  2713. ));
  2714. llama.queue_tasks.start_loop();
  2715. t.join();
  2716. llama_backend_free();
  2717. return 0;
  2718. }