convert_hf_to_gguf.py 251 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581
  1. #!/usr/bin/env python3
  2. # -*- coding: utf-8 -*-
  3. from __future__ import annotations
  4. import ast
  5. import logging
  6. import argparse
  7. import contextlib
  8. import json
  9. import os
  10. import re
  11. import sys
  12. from enum import IntEnum
  13. from pathlib import Path
  14. from hashlib import sha256
  15. from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
  16. from itertools import chain
  17. import math
  18. import numpy as np
  19. import torch
  20. if TYPE_CHECKING:
  21. from torch import Tensor
  22. if 'NO_LOCAL_GGUF' not in os.environ:
  23. sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
  24. import gguf
  25. logger = logging.getLogger("hf-to-gguf")
  26. ###### MODEL DEFINITIONS ######
  27. class SentencePieceTokenTypes(IntEnum):
  28. NORMAL = 1
  29. UNKNOWN = 2
  30. CONTROL = 3
  31. USER_DEFINED = 4
  32. UNUSED = 5
  33. BYTE = 6
  34. AnyModel = TypeVar("AnyModel", bound="type[Model]")
  35. class Model:
  36. _model_classes: dict[str, type[Model]] = {}
  37. dir_model: Path
  38. ftype: gguf.LlamaFileType
  39. fname_out: Path
  40. is_big_endian: bool
  41. endianess: gguf.GGUFEndian
  42. use_temp_file: bool
  43. lazy: bool
  44. part_names: list[str]
  45. is_safetensors: bool
  46. hparams: dict[str, Any]
  47. block_count: int
  48. tensor_map: gguf.TensorNameMap
  49. tensor_names: set[str] | None
  50. gguf_writer: gguf.GGUFWriter
  51. model_name: str | None
  52. metadata_override: Path | None
  53. dir_model_card: Path
  54. # subclasses should define this!
  55. model_arch: gguf.MODEL_ARCH
  56. def __init__(self, dir_model: Path, ftype: gguf.LlamaFileType, fname_out: Path, is_big_endian: bool = False,
  57. use_temp_file: bool = False, eager: bool = False,
  58. metadata_override: Path | None = None, model_name: str | None = None,
  59. split_max_tensors: int = 0, split_max_size: int = 0, dry_run: bool = False,
  60. small_first_shard: bool = False, hparams: dict[str, Any] | None = None):
  61. if type(self) is Model:
  62. raise TypeError(f"{type(self).__name__!r} should not be directly instantiated")
  63. self.dir_model = dir_model
  64. self.ftype = ftype
  65. self.fname_out = fname_out
  66. self.is_big_endian = is_big_endian
  67. self.endianess = gguf.GGUFEndian.BIG if is_big_endian else gguf.GGUFEndian.LITTLE
  68. self.use_temp_file = use_temp_file
  69. self.lazy = not eager
  70. self.part_names = Model.get_model_part_names(self.dir_model, "model", ".safetensors")
  71. self.is_safetensors = len(self.part_names) > 0
  72. if not self.is_safetensors:
  73. self.part_names = Model.get_model_part_names(self.dir_model, "pytorch_model", ".bin")
  74. self.hparams = Model.load_hparams(self.dir_model) if hparams is None else hparams
  75. self.block_count = self.find_hparam(["n_layers", "num_hidden_layers", "n_layer", "num_layers"])
  76. self.tensor_map = gguf.get_tensor_name_map(self.model_arch, self.block_count)
  77. self.tensor_names = None
  78. self.metadata_override = metadata_override
  79. self.model_name = model_name
  80. self.dir_model_card = dir_model # overridden in convert_lora_to_gguf.py
  81. # Apply heuristics to figure out typical tensor encoding based on first layer tensor encoding type
  82. if self.ftype == gguf.LlamaFileType.GUESSED:
  83. # NOTE: can't use field "torch_dtype" in config.json, because some finetunes lie.
  84. _, first_tensor = next(self.get_tensors())
  85. if first_tensor.dtype == torch.float16:
  86. logger.info(f"choosing --outtype f16 from first tensor type ({first_tensor.dtype})")
  87. self.ftype = gguf.LlamaFileType.MOSTLY_F16
  88. else:
  89. logger.info(f"choosing --outtype bf16 from first tensor type ({first_tensor.dtype})")
  90. self.ftype = gguf.LlamaFileType.MOSTLY_BF16
  91. # Configure GGUF Writer
  92. self.gguf_writer = gguf.GGUFWriter(path=None, arch=gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=self.use_temp_file,
  93. split_max_tensors=split_max_tensors, split_max_size=split_max_size, dry_run=dry_run, small_first_shard=small_first_shard)
  94. @classmethod
  95. def __init_subclass__(cls):
  96. # can't use an abstract property, because overriding it without type errors
  97. # would require using decorated functions instead of simply defining the property
  98. if "model_arch" not in cls.__dict__:
  99. raise TypeError(f"Missing property 'model_arch' for {cls.__name__!r}")
  100. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  101. key = next((k for k in keys if k in self.hparams), None)
  102. if key is not None:
  103. return self.hparams[key]
  104. if optional:
  105. return None
  106. raise KeyError(f"could not find any of: {keys}")
  107. def set_vocab(self):
  108. self._set_vocab_gpt2()
  109. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  110. tensor_names_from_parts: set[str] = set()
  111. index_name = "model.safetensors" if self.is_safetensors else "pytorch_model.bin"
  112. index_name += ".index.json"
  113. index_file = self.dir_model / index_name
  114. if index_file.is_file():
  115. self.tensor_names = set()
  116. logger.info(f"gguf: loading model weight map from '{index_name}'")
  117. with open(index_file, "r", encoding="utf-8") as f:
  118. index: dict[str, Any] = json.load(f)
  119. weight_map = index.get("weight_map")
  120. if weight_map is None or not isinstance(weight_map, dict):
  121. raise ValueError(f"Can't load 'weight_map' from {index_name!r}")
  122. self.tensor_names.update(weight_map.keys())
  123. else:
  124. self.tensor_names = tensor_names_from_parts
  125. weight_map = {}
  126. for part_name in self.part_names:
  127. logger.info(f"gguf: loading model part '{part_name}'")
  128. ctx: ContextManager[Any]
  129. if self.is_safetensors:
  130. from safetensors import safe_open
  131. ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
  132. else:
  133. ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
  134. with ctx as model_part:
  135. tensor_names_from_parts.update(model_part.keys())
  136. for name in model_part.keys():
  137. if self.is_safetensors:
  138. if self.lazy:
  139. data = model_part.get_slice(name)
  140. data = LazyTorchTensor.from_safetensors_slice(data)
  141. else:
  142. data = model_part.get_tensor(name)
  143. else:
  144. data = model_part[name]
  145. if self.lazy:
  146. data = LazyTorchTensor.from_eager(data)
  147. yield name, data
  148. # verify tensor name presence and identify potentially missing files
  149. if len(tensor_names_from_parts.symmetric_difference(self.tensor_names)) > 0:
  150. missing = sorted(self.tensor_names.difference(tensor_names_from_parts))
  151. extra = sorted(tensor_names_from_parts.difference(self.tensor_names))
  152. missing_files = sorted(set(weight_map[n] for n in missing if n in weight_map))
  153. if len(extra) == 0 and len(missing_files) > 0:
  154. raise ValueError(f"Missing or incomplete model files: {missing_files}\n"
  155. f"Missing tensors: {missing}")
  156. else:
  157. raise ValueError("Mismatch between weight map and model parts for tensor names:\n"
  158. f"Missing tensors: {missing}\n"
  159. f"Extra tensors: {extra}")
  160. def format_tensor_name(self, key: gguf.MODEL_TENSOR, bid: int | None = None, suffix: str = ".weight") -> str:
  161. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  162. raise ValueError(f"Missing {key!r} for MODEL_TENSORS of {self.model_arch!r}")
  163. name: str = gguf.TENSOR_NAMES[key]
  164. if "{bid}" in name:
  165. assert bid is not None
  166. name = name.format(bid=bid)
  167. return name + suffix
  168. def match_model_tensor_name(self, name: str, key: gguf.MODEL_TENSOR, bid: int | None, suffix: str = ".weight") -> bool:
  169. if key not in gguf.MODEL_TENSORS[self.model_arch]:
  170. return False
  171. key_name: str = gguf.TENSOR_NAMES[key]
  172. if "{bid}" in key_name:
  173. if bid is None:
  174. return False
  175. key_name = key_name.format(bid=bid)
  176. else:
  177. if bid is not None:
  178. return False
  179. return name == (key_name + suffix)
  180. def map_tensor_name(self, name: str, try_suffixes: Sequence[str] = (".weight", ".bias")) -> str:
  181. new_name = self.tensor_map.get_name(key=name, try_suffixes=try_suffixes)
  182. if new_name is None:
  183. raise ValueError(f"Can not map tensor {name!r}")
  184. return new_name
  185. def set_gguf_parameters(self):
  186. self.gguf_writer.add_block_count(self.block_count)
  187. if (n_ctx := self.find_hparam(["max_position_embeddings", "n_ctx"], optional=True)) is not None:
  188. self.gguf_writer.add_context_length(n_ctx)
  189. logger.info(f"gguf: context length = {n_ctx}")
  190. if (n_embd := self.find_hparam(["hidden_size", "n_embd"], optional=True)) is not None:
  191. self.gguf_writer.add_embedding_length(n_embd)
  192. logger.info(f"gguf: embedding length = {n_embd}")
  193. if (n_ff := self.find_hparam(["intermediate_size", "n_inner"], optional=True)) is not None:
  194. self.gguf_writer.add_feed_forward_length(n_ff)
  195. logger.info(f"gguf: feed forward length = {n_ff}")
  196. if (n_head := self.find_hparam(["num_attention_heads", "n_head"], optional=True)) is not None:
  197. self.gguf_writer.add_head_count(n_head)
  198. logger.info(f"gguf: head count = {n_head}")
  199. if (n_head_kv := self.hparams.get("num_key_value_heads")) is not None:
  200. self.gguf_writer.add_head_count_kv(n_head_kv)
  201. logger.info(f"gguf: key-value head count = {n_head_kv}")
  202. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  203. self.gguf_writer.add_rope_freq_base(rope_theta)
  204. logger.info(f"gguf: rope theta = {rope_theta}")
  205. if (f_rms_eps := self.hparams.get("rms_norm_eps")) is not None:
  206. self.gguf_writer.add_layer_norm_rms_eps(f_rms_eps)
  207. logger.info(f"gguf: rms norm epsilon = {f_rms_eps}")
  208. if (f_norm_eps := self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon"], optional=True)) is not None:
  209. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  210. logger.info(f"gguf: layer norm epsilon = {f_norm_eps}")
  211. if (n_experts := self.hparams.get("num_local_experts")) is not None:
  212. self.gguf_writer.add_expert_count(n_experts)
  213. logger.info(f"gguf: expert count = {n_experts}")
  214. if (n_experts_used := self.hparams.get("num_experts_per_tok")) is not None:
  215. self.gguf_writer.add_expert_used_count(n_experts_used)
  216. logger.info(f"gguf: experts used count = {n_experts_used}")
  217. if (head_dim := self.hparams.get("head_dim")) is not None:
  218. self.gguf_writer.add_key_length(head_dim)
  219. self.gguf_writer.add_value_length(head_dim)
  220. self.gguf_writer.add_file_type(self.ftype)
  221. logger.info(f"gguf: file type = {self.ftype}")
  222. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  223. del bid # unused
  224. return [(self.map_tensor_name(name), data_torch)]
  225. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  226. del name, new_name, bid, n_dims # unused
  227. return False
  228. # some models need extra generated tensors (like rope_freqs)
  229. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  230. return ()
  231. def prepare_tensors(self):
  232. max_name_len = max(len(s) for _, s in self.tensor_map.mapping.values()) + len(".weight,")
  233. for name, data_torch in chain(self.generate_extra_tensors(), self.get_tensors()):
  234. # we don't need these
  235. if name.endswith((".attention.masked_bias", ".attention.bias", ".rotary_emb.inv_freq")):
  236. continue
  237. old_dtype = data_torch.dtype
  238. # convert any unsupported data types to float32
  239. if data_torch.dtype not in (torch.float16, torch.float32):
  240. data_torch = data_torch.to(torch.float32)
  241. # use the first number-like part of the tensor name as the block id
  242. bid = None
  243. for part in name.split("."):
  244. if part.isdecimal():
  245. bid = int(part)
  246. break
  247. for new_name, data_torch in (self.modify_tensors(data_torch, name, bid)):
  248. # TODO: why do we squeeze here?
  249. # data = data_torch.squeeze().numpy()
  250. data = data_torch.numpy()
  251. # if data ends up empty, it means data_torch was a scalar tensor -> restore
  252. if len(data.shape) == 0:
  253. data = data_torch.numpy()
  254. n_dims = len(data.shape)
  255. data_qtype: gguf.GGMLQuantizationType | bool = self.tensor_force_quant(name, new_name, bid, n_dims)
  256. # Most of the codebase that takes in 1D tensors or norms only handles F32 tensors
  257. if n_dims <= 1 or new_name.endswith("_norm.weight"):
  258. data_qtype = gguf.GGMLQuantizationType.F32
  259. # Conditions should closely match those in llama_model_quantize_internal in llama.cpp
  260. # Some tensor types are always in float32
  261. if data_qtype is False and (
  262. any(
  263. self.match_model_tensor_name(new_name, key, bid)
  264. for key in (
  265. gguf.MODEL_TENSOR.FFN_GATE_INP,
  266. gguf.MODEL_TENSOR.POS_EMBD,
  267. gguf.MODEL_TENSOR.TOKEN_TYPES,
  268. gguf.MODEL_TENSOR.SSM_CONV1D,
  269. gguf.MODEL_TENSOR.TIME_MIX_FIRST,
  270. gguf.MODEL_TENSOR.TIME_MIX_W1,
  271. gguf.MODEL_TENSOR.TIME_MIX_W2,
  272. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W1,
  273. gguf.MODEL_TENSOR.TIME_MIX_DECAY_W2,
  274. gguf.MODEL_TENSOR.TIME_MIX_LERP_FUSED,
  275. gguf.MODEL_TENSOR.POSNET_NORM1,
  276. gguf.MODEL_TENSOR.POSNET_NORM2,
  277. )
  278. )
  279. or not new_name.endswith(".weight")
  280. ):
  281. data_qtype = gguf.GGMLQuantizationType.F32
  282. if data_qtype is False and any(
  283. self.match_model_tensor_name(new_name, key, bid)
  284. for key in (
  285. gguf.MODEL_TENSOR.TOKEN_EMBD,
  286. gguf.MODEL_TENSOR.OUTPUT,
  287. )
  288. ):
  289. if self.ftype in (
  290. gguf.LlamaFileType.MOSTLY_TQ1_0,
  291. gguf.LlamaFileType.MOSTLY_TQ2_0,
  292. ):
  293. # TODO: use Q4_K and Q6_K
  294. data_qtype = gguf.GGMLQuantizationType.F16
  295. # No override (data_qtype is False), or wants to be quantized (data_qtype is True)
  296. if isinstance(data_qtype, bool):
  297. if self.ftype == gguf.LlamaFileType.ALL_F32:
  298. data_qtype = gguf.GGMLQuantizationType.F32
  299. elif self.ftype == gguf.LlamaFileType.MOSTLY_F16:
  300. data_qtype = gguf.GGMLQuantizationType.F16
  301. elif self.ftype == gguf.LlamaFileType.MOSTLY_BF16:
  302. data_qtype = gguf.GGMLQuantizationType.BF16
  303. elif self.ftype == gguf.LlamaFileType.MOSTLY_Q8_0:
  304. data_qtype = gguf.GGMLQuantizationType.Q8_0
  305. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ1_0:
  306. data_qtype = gguf.GGMLQuantizationType.TQ1_0
  307. elif self.ftype == gguf.LlamaFileType.MOSTLY_TQ2_0:
  308. data_qtype = gguf.GGMLQuantizationType.TQ2_0
  309. else:
  310. raise ValueError(f"Unknown file type: {self.ftype.name}")
  311. try:
  312. data = gguf.quants.quantize(data, data_qtype)
  313. except gguf.QuantError as e:
  314. logger.warning("%s, %s", e, "falling back to F16")
  315. data_qtype = gguf.GGMLQuantizationType.F16
  316. data = gguf.quants.quantize(data, data_qtype)
  317. shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
  318. # reverse shape to make it similar to the internal ggml dimension order
  319. shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
  320. # n_dims is implicit in the shape
  321. logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
  322. self.gguf_writer.add_tensor(new_name, data, raw_dtype=data_qtype)
  323. def set_type(self):
  324. self.gguf_writer.add_type(gguf.GGUFType.MODEL)
  325. def prepare_metadata(self, vocab_only: bool):
  326. total_params, shared_params, expert_params, expert_count = self.gguf_writer.get_total_parameter_count()
  327. self.metadata = gguf.Metadata.load(self.metadata_override, self.dir_model_card, self.model_name, total_params)
  328. # Fallback to model directory name if metadata name is still missing
  329. if self.metadata.name is None:
  330. self.metadata.name = self.dir_model.name
  331. # Generate parameter weight class (useful for leader boards) if not yet determined
  332. if self.metadata.size_label is None and total_params > 0:
  333. self.metadata.size_label = gguf.size_label(total_params, shared_params, expert_params, expert_count)
  334. # Extract the encoding scheme from the file type name. e.g. 'gguf.LlamaFileType.MOSTLY_Q8_0' --> 'Q8_0'
  335. output_type: str = self.ftype.name.partition("_")[2]
  336. # Filename Output
  337. if self.fname_out.is_dir():
  338. # Generate default filename based on model specification and available metadata
  339. if not vocab_only:
  340. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, self.metadata.size_label, output_type, model_type="LoRA" if total_params < 0 else None)
  341. else:
  342. fname_default: str = gguf.naming_convention(self.metadata.name, self.metadata.basename, self.metadata.finetune, self.metadata.version, size_label=None, output_type=None, model_type="vocab")
  343. # Use the default filename
  344. self.fname_out = self.fname_out / f"{fname_default}.gguf"
  345. else:
  346. # Output path is a custom defined templated filename
  347. # Note: `not is_dir()` is used because `.is_file()` will not detect
  348. # file template strings as it doesn't actually exist as a file
  349. # Process templated file name with the output ftype, useful with the "auto" ftype
  350. self.fname_out = self.fname_out.parent / gguf.fill_templated_filename(self.fname_out.name, output_type)
  351. self.set_type()
  352. logger.info("Set meta model")
  353. self.metadata.set_gguf_meta_model(self.gguf_writer)
  354. logger.info("Set model parameters")
  355. self.set_gguf_parameters()
  356. logger.info("Set model tokenizer")
  357. self.set_vocab()
  358. logger.info("Set model quantization version")
  359. self.gguf_writer.add_quantization_version(gguf.GGML_QUANT_VERSION)
  360. def write(self):
  361. self.prepare_tensors()
  362. self.prepare_metadata(vocab_only=False)
  363. self.gguf_writer.write_header_to_file(path=self.fname_out)
  364. self.gguf_writer.write_kv_data_to_file()
  365. self.gguf_writer.write_tensors_to_file(progress=True)
  366. self.gguf_writer.close()
  367. def write_vocab(self):
  368. if len(self.gguf_writer.tensors) != 1:
  369. raise ValueError('Splitting the vocabulary is not supported')
  370. self.prepare_metadata(vocab_only=True)
  371. self.gguf_writer.write_header_to_file(path=self.fname_out)
  372. self.gguf_writer.write_kv_data_to_file()
  373. self.gguf_writer.close()
  374. @staticmethod
  375. def get_model_part_names(dir_model: Path, prefix: str, suffix: str) -> list[str]:
  376. part_names: list[str] = []
  377. for filename in os.listdir(dir_model):
  378. if filename.startswith(prefix) and filename.endswith(suffix):
  379. part_names.append(filename)
  380. part_names.sort()
  381. return part_names
  382. @staticmethod
  383. def load_hparams(dir_model: Path):
  384. with open(dir_model / "config.json", "r", encoding="utf-8") as f:
  385. return json.load(f)
  386. @classmethod
  387. def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
  388. assert names
  389. def func(modelcls: AnyModel) -> AnyModel:
  390. for name in names:
  391. cls._model_classes[name] = modelcls
  392. return modelcls
  393. return func
  394. @classmethod
  395. def print_registered_models(cls):
  396. for name in sorted(cls._model_classes.keys()):
  397. logger.error(f"- {name}")
  398. @classmethod
  399. def from_model_architecture(cls, arch: str) -> type[Model]:
  400. try:
  401. return cls._model_classes[arch]
  402. except KeyError:
  403. raise NotImplementedError(f'Architecture {arch!r} not supported!') from None
  404. def does_token_look_special(self, token: str | bytes) -> bool:
  405. if isinstance(token, (bytes, bytearray)):
  406. token_text = token.decode(encoding="utf-8")
  407. elif isinstance(token, memoryview):
  408. token_text = token.tobytes().decode(encoding="utf-8")
  409. else:
  410. token_text = token
  411. # Some models mark some added tokens which ought to be control tokens as not special.
  412. # (e.g. command-r, command-r-plus, deepseek-coder, gemma{,-2})
  413. seems_special = token_text in (
  414. "<pad>", # deepseek-coder
  415. "<mask>", "<2mass>", "[@BOS@]", # gemma{,-2}
  416. )
  417. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>"))
  418. seems_special = seems_special or (token_text.startswith("<|") and token_text.endswith("|>")) # deepseek-coder
  419. # TODO: should these be marked as UNUSED instead? (maybe not)
  420. seems_special = seems_special or (token_text.startswith("<unused") and token_text.endswith(">")) # gemma{,-2}
  421. return seems_special
  422. # used for GPT-2 BPE and WordPiece vocabs
  423. def get_vocab_base(self) -> tuple[list[str], list[int], str]:
  424. tokens: list[str] = []
  425. toktypes: list[int] = []
  426. from transformers import AutoTokenizer
  427. tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
  428. vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
  429. assert max(tokenizer.vocab.values()) < vocab_size
  430. tokpre = self.get_vocab_base_pre(tokenizer)
  431. reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  432. added_vocab = tokenizer.get_added_vocab()
  433. added_tokens_decoder = tokenizer.added_tokens_decoder
  434. for i in range(vocab_size):
  435. if i not in reverse_vocab:
  436. tokens.append(f"[PAD{i}]")
  437. toktypes.append(gguf.TokenType.UNUSED)
  438. else:
  439. token: str = reverse_vocab[i]
  440. if token in added_vocab:
  441. # The tokenizer in llama.cpp assumes the CONTROL and USER_DEFINED tokens are pre-normalized.
  442. # To avoid unexpected issues - we make sure to normalize non-normalized tokens
  443. if not added_tokens_decoder[i].normalized:
  444. previous_token = token
  445. token = tokenizer.decode(tokenizer.encode(token, add_special_tokens=False))
  446. if previous_token != token:
  447. logger.info(f"{repr(previous_token)} is encoded and decoded back to {repr(token)} using AutoTokenizer")
  448. if added_tokens_decoder[i].special or self.does_token_look_special(token):
  449. toktypes.append(gguf.TokenType.CONTROL)
  450. else:
  451. # NOTE: this was added for Gemma.
  452. # Encoding and decoding the tokens above isn't sufficient for this case.
  453. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  454. toktypes.append(gguf.TokenType.USER_DEFINED)
  455. else:
  456. toktypes.append(gguf.TokenType.NORMAL)
  457. tokens.append(token)
  458. return tokens, toktypes, tokpre
  459. # NOTE: this function is generated by convert_hf_to_gguf_update.py
  460. # do not modify it manually!
  461. # ref: https://github.com/ggml-org/llama.cpp/pull/6920
  462. # Marker: Start get_vocab_base_pre
  463. def get_vocab_base_pre(self, tokenizer) -> str:
  464. # encoding this string and hashing the resulting tokens would (hopefully) give us a unique identifier that
  465. # is specific for the BPE pre-tokenizer used by the model
  466. # we will use this unique identifier to write a "tokenizer.ggml.pre" entry in the GGUF file which we can
  467. # use in llama.cpp to implement the same pre-tokenizer
  468. chktxt = '\n \n\n \n\n\n \t \t\t \t\n \n \n \n \n🚀 (normal) 😶\u200d🌫️ (multiple emojis concatenated) ✅ 🦙🦙 3 33 333 3333 33333 333333 3333333 33333333 3.3 3..3 3...3 កាន់តែពិសេសអាច😁 ?我想在apple工作1314151天~ ------======= нещо на Български \'\'\'\'\'\'```````""""......!!!!!!?????? I\'ve been \'told he\'s there, \'RE you sure? \'M not sure I\'ll make it, \'D you like some tea? We\'Ve a\'lL'
  469. chktok = tokenizer.encode(chktxt)
  470. chkhsh = sha256(str(chktok).encode()).hexdigest()
  471. logger.debug(f"chktok: {chktok}")
  472. logger.debug(f"chkhsh: {chkhsh}")
  473. res = None
  474. # NOTE: if you get an error here, you need to update the convert_hf_to_gguf_update.py script
  475. # or pull the latest version of the model from Huggingface
  476. # don't edit the hashes manually!
  477. if chkhsh == "0ef9807a4087ebef797fc749390439009c3b9eda9ad1a097abbe738f486c01e5":
  478. # ref: https://huggingface.co/meta-llama/Meta-Llama-3-8B
  479. res = "llama-bpe"
  480. if chkhsh == "049ecf7629871e3041641907f3de7c733e4dbfdc736f57d882ba0b0845599754":
  481. # ref: https://huggingface.co/deepseek-ai/deepseek-llm-7b-base
  482. res = "deepseek-llm"
  483. if chkhsh == "347715f544604f9118bb75ed199f68779f423cabb20db6de6f31b908d04d7821":
  484. # ref: https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base
  485. res = "deepseek-coder"
  486. if chkhsh == "8aeee3860c56296a157a1fe2fad249ec40aa59b1bb5709f4ade11c4e6fe652ed":
  487. # ref: https://huggingface.co/tiiuae/falcon-7b
  488. res = "falcon"
  489. if chkhsh == "9d032fcbd5501f4a38150912590928bfb36091efb5df11b8e2124b0390e3fb1e":
  490. # ref: https://huggingface.co/tiiuae/Falcon3-7B-Base
  491. res = "falcon3"
  492. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  493. # ref: https://huggingface.co/BAAI/bge-small-en-v1.5
  494. res = "bert-bge"
  495. if chkhsh == "8e62295832751ca1e8f92f2226f403dea30dc5165e448b5bfa05af5340c64ec7":
  496. # ref: https://huggingface.co/BAAI/bge-large-zh-v1.5
  497. res = "bert-bge-large"
  498. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  499. # ref: https://huggingface.co/mosaicml/mpt-7b
  500. res = "mpt"
  501. if chkhsh == "35d91631860c815f952d711435f48d356ebac988362536bed955d43bfa436e34":
  502. # ref: https://huggingface.co/bigcode/starcoder2-3b
  503. res = "starcoder"
  504. if chkhsh == "3ce83efda5659b07b1ad37ca97ca5797ea4285d9b9ab0dc679e4a720c9da7454":
  505. # ref: https://huggingface.co/openai-community/gpt2
  506. res = "gpt-2"
  507. if chkhsh == "32d85c31273f8019248f2559fed492d929ea28b17e51d81d3bb36fff23ca72b3":
  508. # ref: https://huggingface.co/stabilityai/stablelm-2-zephyr-1_6b
  509. res = "stablelm2"
  510. if chkhsh == "6221ad2852e85ce96f791f476e0b390cf9b474c9e3d1362f53a24a06dc8220ff":
  511. # ref: https://huggingface.co/smallcloudai/Refact-1_6-base
  512. res = "refact"
  513. if chkhsh == "9c2227e4dd922002fb81bde4fc02b0483ca4f12911410dee2255e4987644e3f8":
  514. # ref: https://huggingface.co/CohereForAI/c4ai-command-r-v01
  515. res = "command-r"
  516. if chkhsh == "e636dc30a262dcc0d8c323492e32ae2b70728f4df7dfe9737d9f920a282b8aea":
  517. # ref: https://huggingface.co/Qwen/Qwen1.5-7B
  518. res = "qwen2"
  519. if chkhsh == "b6dc8df998e1cfbdc4eac8243701a65afe638679230920b50d6f17d81c098166":
  520. # ref: https://huggingface.co/allenai/OLMo-1.7-7B-hf
  521. res = "olmo"
  522. if chkhsh == "a8594e3edff7c29c003940395316294b2c623e09894deebbc65f33f1515df79e":
  523. # ref: https://huggingface.co/databricks/dbrx-base
  524. res = "dbrx"
  525. if chkhsh == "c7699093ba4255a91e702aa38a596aa81669f3525dae06c2953267dde580f448":
  526. # ref: https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  527. res = "jina-v1-en"
  528. if chkhsh == "0876d13b50744004aa9aeae05e7b0647eac9d801b5ba4668afc01e709c15e19f":
  529. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-en
  530. res = "jina-v2-en"
  531. if chkhsh == "171aeeedd6fb548d418a7461d053f11b6f1f1fc9b387bd66640d28a4b9f5c643":
  532. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-es
  533. res = "jina-v2-es"
  534. if chkhsh == "27949a2493fc4a9f53f5b9b029c82689cfbe5d3a1929bb25e043089e28466de6":
  535. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-de
  536. res = "jina-v2-de"
  537. if chkhsh == "c136ed14d01c2745d4f60a9596ae66800e2b61fa45643e72436041855ad4089d":
  538. # ref: https://huggingface.co/abacusai/Smaug-Llama-3-70B-Instruct
  539. res = "smaug-bpe"
  540. if chkhsh == "c7ea5862a53e4272c035c8238367063e2b270d51faa48c0f09e9d5b54746c360":
  541. # ref: https://huggingface.co/LumiOpen/Poro-34B-chat
  542. res = "poro-chat"
  543. if chkhsh == "7967bfa498ade6b757b064f31e964dddbb80f8f9a4d68d4ba7998fcf281c531a":
  544. # ref: https://huggingface.co/jinaai/jina-embeddings-v2-base-code
  545. res = "jina-v2-code"
  546. if chkhsh == "b6e8e1518dc4305be2fe39c313ed643381c4da5db34a98f6a04c093f8afbe99b" or chkhsh == "81d72c7348a9f0ebe86f23298d37debe0a5e71149e29bd283904c02262b27516":
  547. # ref: https://huggingface.co/THUDM/glm-4-9b-chat
  548. res = "chatglm-bpe"
  549. if chkhsh == "7fc505bd3104ca1083b150b17d088b59534ede9bde81f0dd2090967d7fe52cee":
  550. # ref: https://huggingface.co/LumiOpen/Viking-7B
  551. res = "viking"
  552. if chkhsh == "b53802fb28e26d645c3a310b34bfe07da813026ec7c7716883404d5e0f8b1901":
  553. # ref: https://huggingface.co/core42/jais-13b
  554. res = "jais"
  555. if chkhsh == "7b3e7548e4308f52a76e8229e4e6cc831195d0d1df43aed21ac6c93da05fec5f":
  556. # ref: https://huggingface.co/WisdomShell/CodeShell-7B
  557. res = "codeshell"
  558. if chkhsh == "63b97e4253352e6f357cc59ea5b583e3a680eaeaf2632188c2b952de2588485e":
  559. # ref: https://huggingface.co/mistralai/Mistral-Nemo-Base-2407
  560. res = "tekken"
  561. if chkhsh == "855059429035d75a914d1eda9f10a876752e281a054a7a3d421ef0533e5b6249":
  562. # ref: https://huggingface.co/HuggingFaceTB/SmolLM-135M
  563. res = "smollm"
  564. if chkhsh == "3c30d3ad1d6b64202cd222813e7736c2db6e1bd6d67197090fc1211fbc612ae7":
  565. # ref: https://huggingface.co/bigscience/bloom
  566. res = "bloom"
  567. if chkhsh == "bc01ce58980e1db43859146dc51b1758b3b88729b217a74792e9f8d43e479d21":
  568. # ref: https://huggingface.co/TurkuNLP/gpt3-finnish-small
  569. res = "gpt3-finnish"
  570. if chkhsh == "4e2b24cc4770243d65a2c9ec19770a72f08cffc161adbb73fcbb6b7dd45a0aae":
  571. # ref: https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct
  572. res = "exaone"
  573. if chkhsh == "fcace8b9cac38ce847670c970cd5892031a753a1ef381abd1d9af00f713da085":
  574. # ref: https://huggingface.co/microsoft/phi-2
  575. res = "phi-2"
  576. if chkhsh == "60824e3c0d9401f89943cbb2fff727f0e2d4c545ba4df2d6e4f09a6db0f5b450":
  577. # ref: https://huggingface.co/facebook/chameleon-7b
  578. res = "chameleon"
  579. if chkhsh == "1431a23e583c97432bc230bff598d103ddb5a1f89960c8f1d1051aaa944d0b35":
  580. # ref: https://huggingface.co/sapienzanlp/Minerva-7B-base-v1.0
  581. res = "minerva-7b"
  582. if chkhsh == "8b5a93ed704057481f240da0be7e7dca721d7f8f4755263b6807227a2cbeae65":
  583. # ref: https://huggingface.co/sentence-transformers/stsb-roberta-base
  584. res = "roberta-bpe"
  585. if chkhsh == "ad851be1dba641f2e3711822f816db2c265f788b37c63b4e1aeacb9ee92de8eb":
  586. # ref: https://huggingface.co/ai-sage/GigaChat-20B-A3B-instruct
  587. res = "gigachat"
  588. if chkhsh == "d4c8f286ea6b520b3d495c4455483cfa2302c0cfcd4be05d781b6a8a0a7cdaf1":
  589. # ref: https://huggingface.co/Infinigence/Megrez-3B-Instruct
  590. res = "megrez"
  591. if chkhsh == "877081d19cf6996e2c4ff0e1236341e9b7bde288f5311a56a937f0afbbb3aeb5":
  592. # ref: https://huggingface.co/deepseek-ai/DeepSeek-V3
  593. res = "deepseek-v3"
  594. if chkhsh == "b3f499bb4255f8ca19fccd664443283318f2fd2414d5e0b040fbdd0cc195d6c5":
  595. # ref: https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
  596. res = "deepseek-r1-qwen"
  597. if chkhsh == "ccc2ef013c104be7bae2965776d611e1d7a8a2a9c547dd93a682c9a9fc80352e":
  598. # ref: https://huggingface.co/Xenova/gpt-4o
  599. res = "gpt-4o"
  600. if chkhsh == "7dec86086fcc38b66b7bc1575a160ae21cf705be7718b9d5598190d7c12db76f":
  601. # ref: https://huggingface.co/UW/OLMo2-8B-SuperBPE-t180k
  602. res = "superbpe"
  603. if chkhsh == "1994ffd01900cfb37395608534236ecd63f2bd5995d6cb1004dda1af50240f15":
  604. # ref: https://huggingface.co/trillionlabs/Trillion-7B-preview
  605. res = "trillion"
  606. if chkhsh == "96a5f08be6259352137b512d4157e333e21df7edd3fcd152990608735a65b224":
  607. # ref: https://huggingface.co/inclusionAI/Ling-lite
  608. res = "bailingmoe"
  609. if chkhsh == "d353350c764d8c3b39c763113960e4fb4919bea5fbf208a0e3b22e8469dc7406":
  610. # ref: https://huggingface.co/meta-llama/Llama-4-Scout-17B-16E-Instruct
  611. res = "llama4"
  612. if res is None:
  613. logger.warning("\n")
  614. logger.warning("**************************************************************************************")
  615. logger.warning("** WARNING: The BPE pre-tokenizer was not recognized!")
  616. logger.warning("** There are 2 possible reasons for this:")
  617. logger.warning("** - the model has not been added to convert_hf_to_gguf_update.py yet")
  618. logger.warning("** - the pre-tokenization config has changed upstream")
  619. logger.warning("** Check your model files and convert_hf_to_gguf_update.py and update them accordingly.")
  620. logger.warning("** ref: https://github.com/ggml-org/llama.cpp/pull/6920")
  621. logger.warning("**")
  622. logger.warning(f"** chkhsh: {chkhsh}")
  623. logger.warning("**************************************************************************************")
  624. logger.warning("\n")
  625. raise NotImplementedError("BPE pre-tokenizer was not recognized - update get_vocab_base_pre()")
  626. logger.debug(f"tokenizer.ggml.pre: {repr(res)}")
  627. logger.debug(f"chkhsh: {chkhsh}")
  628. return res
  629. # Marker: End get_vocab_base_pre
  630. def _set_vocab_none(self) -> None:
  631. self.gguf_writer.add_tokenizer_model("none")
  632. def _set_vocab_gpt2(self) -> None:
  633. tokens, toktypes, tokpre = self.get_vocab_base()
  634. self.gguf_writer.add_tokenizer_model("gpt2")
  635. self.gguf_writer.add_tokenizer_pre(tokpre)
  636. self.gguf_writer.add_token_list(tokens)
  637. self.gguf_writer.add_token_types(toktypes)
  638. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  639. special_vocab.add_to_gguf(self.gguf_writer)
  640. def _set_vocab_qwen(self):
  641. dir_model = self.dir_model
  642. hparams = self.hparams
  643. tokens: list[str] = []
  644. toktypes: list[int] = []
  645. from transformers import AutoTokenizer
  646. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  647. vocab_size = hparams["vocab_size"]
  648. assert max(tokenizer.get_vocab().values()) < vocab_size
  649. tokpre = self.get_vocab_base_pre(tokenizer)
  650. merges = []
  651. vocab = {}
  652. mergeable_ranks = tokenizer.mergeable_ranks
  653. for token, rank in mergeable_ranks.items():
  654. vocab[QwenModel.token_bytes_to_string(token)] = rank
  655. if len(token) == 1:
  656. continue
  657. merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
  658. assert len(merged) == 2
  659. merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
  660. # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined
  661. added_vocab = tokenizer.special_tokens
  662. reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in {**vocab, **added_vocab}.items()}
  663. for i in range(vocab_size):
  664. if i not in reverse_vocab:
  665. tokens.append(f"[PAD{i}]")
  666. toktypes.append(gguf.TokenType.UNUSED)
  667. elif reverse_vocab[i] in added_vocab:
  668. tokens.append(reverse_vocab[i])
  669. toktypes.append(gguf.TokenType.CONTROL)
  670. else:
  671. tokens.append(reverse_vocab[i])
  672. toktypes.append(gguf.TokenType.NORMAL)
  673. self.gguf_writer.add_tokenizer_model("gpt2")
  674. self.gguf_writer.add_tokenizer_pre(tokpre)
  675. self.gguf_writer.add_token_list(tokens)
  676. self.gguf_writer.add_token_types(toktypes)
  677. special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
  678. special_vocab.merges = merges
  679. # only add special tokens when they were not already loaded from config.json
  680. if len(special_vocab.special_token_ids) == 0:
  681. special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"])
  682. special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"])
  683. # this one is usually not in config.json anyway
  684. special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"])
  685. special_vocab.add_to_gguf(self.gguf_writer)
  686. def _set_vocab_sentencepiece(self, add_to_gguf=True):
  687. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  688. self.gguf_writer.add_tokenizer_model("llama")
  689. self.gguf_writer.add_tokenizer_pre("default")
  690. self.gguf_writer.add_token_list(tokens)
  691. self.gguf_writer.add_token_scores(scores)
  692. self.gguf_writer.add_token_types(toktypes)
  693. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  694. special_vocab.add_to_gguf(self.gguf_writer)
  695. def _create_vocab_sentencepiece(self):
  696. from sentencepiece import SentencePieceProcessor
  697. tokenizer_path = self.dir_model / 'tokenizer.model'
  698. if not tokenizer_path.is_file():
  699. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  700. tokenizer = SentencePieceProcessor()
  701. tokenizer.LoadFromFile(str(tokenizer_path))
  702. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  703. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  704. scores: list[float] = [-10000.0] * vocab_size
  705. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  706. for token_id in range(tokenizer.vocab_size()):
  707. piece = tokenizer.IdToPiece(token_id)
  708. text = piece.encode("utf-8")
  709. score = tokenizer.GetScore(token_id)
  710. toktype = SentencePieceTokenTypes.NORMAL
  711. if tokenizer.IsUnknown(token_id):
  712. toktype = SentencePieceTokenTypes.UNKNOWN
  713. elif tokenizer.IsControl(token_id):
  714. toktype = SentencePieceTokenTypes.CONTROL
  715. elif tokenizer.IsUnused(token_id):
  716. toktype = SentencePieceTokenTypes.UNUSED
  717. elif tokenizer.IsByte(token_id):
  718. toktype = SentencePieceTokenTypes.BYTE
  719. tokens[token_id] = text
  720. scores[token_id] = score
  721. toktypes[token_id] = toktype
  722. added_tokens_file = self.dir_model / 'added_tokens.json'
  723. if added_tokens_file.is_file():
  724. with open(added_tokens_file, "r", encoding="utf-8") as f:
  725. added_tokens_json = json.load(f)
  726. for key in added_tokens_json:
  727. token_id = added_tokens_json[key]
  728. if token_id >= vocab_size:
  729. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  730. continue
  731. tokens[token_id] = key.encode("utf-8")
  732. scores[token_id] = -1000.0
  733. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  734. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  735. if tokenizer_config_file.is_file():
  736. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  737. tokenizer_config_json = json.load(f)
  738. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  739. for token_id, token_data in added_tokens_decoder.items():
  740. token_id = int(token_id)
  741. token: str = token_data["content"]
  742. if token_id >= vocab_size:
  743. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  744. continue
  745. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  746. if tokens[token_id] != token.encode("utf-8"):
  747. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token!r}')
  748. if token_data.get("special") or self.does_token_look_special(token):
  749. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  750. else:
  751. token = token.replace(b"\xe2\x96\x81".decode("utf-8"), " ") # pre-normalize user-defined spaces
  752. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  753. scores[token_id] = -1000.0
  754. tokens[token_id] = token.encode("utf-8")
  755. if vocab_size > len(tokens):
  756. pad_count = vocab_size - len(tokens)
  757. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  758. for i in range(1, pad_count + 1):
  759. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  760. scores.append(-1000.0)
  761. toktypes.append(SentencePieceTokenTypes.UNUSED)
  762. return tokens, scores, toktypes
  763. def _set_vocab_llama_hf(self):
  764. vocab = gguf.LlamaHfVocab(self.dir_model)
  765. tokens = []
  766. scores = []
  767. toktypes = []
  768. for text, score, toktype in vocab.all_tokens():
  769. tokens.append(text)
  770. scores.append(score)
  771. toktypes.append(toktype)
  772. assert len(tokens) == vocab.vocab_size
  773. self.gguf_writer.add_tokenizer_model("llama")
  774. self.gguf_writer.add_tokenizer_pre("default")
  775. self.gguf_writer.add_token_list(tokens)
  776. self.gguf_writer.add_token_scores(scores)
  777. self.gguf_writer.add_token_types(toktypes)
  778. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  779. special_vocab.add_to_gguf(self.gguf_writer)
  780. def _set_vocab_rwkv_world(self):
  781. assert (self.dir_model / "rwkv_vocab_v20230424.txt").is_file()
  782. vocab_size = self.hparams.get("vocab_size", 65536)
  783. tokens: list[bytes] = ['<s>'.encode("utf-8")]
  784. toktypes: list[int] = [gguf.TokenType.CONTROL]
  785. with open(self.dir_model / "rwkv_vocab_v20230424.txt", "r", encoding="utf-8") as f:
  786. lines = f.readlines()
  787. for line in lines:
  788. parts = line.split(' ')
  789. assert len(parts) >= 3
  790. token, token_len = ast.literal_eval(' '.join(parts[1:-1])), int(parts[-1])
  791. token = token.encode("utf-8") if isinstance(token, str) else token
  792. assert isinstance(token, bytes)
  793. assert len(token) == token_len
  794. token_text: str = repr(token)[2:-1] # "b'\xff'" -> "\xff"
  795. tokens.append(token_text.encode("utf-8"))
  796. toktypes.append(gguf.TokenType.NORMAL)
  797. remainder = vocab_size - len(tokens)
  798. assert remainder >= 0
  799. for i in range(len(tokens), vocab_size):
  800. tokens.append(f"[PAD{i}]".encode("utf-8"))
  801. toktypes.append(gguf.TokenType.UNUSED)
  802. self.gguf_writer.add_tokenizer_model("rwkv")
  803. self.gguf_writer.add_token_list(tokens)
  804. self.gguf_writer.add_token_types(toktypes)
  805. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False)
  806. special_vocab.chat_template = "rwkv-world"
  807. # hack: Add '\n\n' as the EOT token to make it chat normally
  808. special_vocab._set_special_token("eot", 261)
  809. special_vocab.add_to_gguf(self.gguf_writer)
  810. def _set_vocab_builtin(self, model_name: Literal["gpt-neox", "llama-spm"], vocab_size: int):
  811. tokenizer_path = Path(sys.path[0]) / "models" / f"ggml-vocab-{model_name}.gguf"
  812. logger.warning(f"Using tokenizer from '{os.path.relpath(tokenizer_path, os.getcwd())}'")
  813. vocab_reader = gguf.GGUFReader(tokenizer_path, "r")
  814. default_pre = "mpt" if model_name == "gpt-neox" else "default"
  815. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MODEL)
  816. assert field # tokenizer model
  817. self.gguf_writer.add_tokenizer_model(bytes(field.parts[-1]).decode("utf-8"))
  818. field = vocab_reader.get_field(gguf.Keys.Tokenizer.PRE)
  819. self.gguf_writer.add_tokenizer_pre(bytes(field.parts[-1]).decode("utf-8") if field else default_pre)
  820. field = vocab_reader.get_field(gguf.Keys.Tokenizer.LIST)
  821. assert field # token list
  822. self.gguf_writer.add_token_list([bytes(field.parts[i]) for i in field.data][:vocab_size])
  823. if model_name == "llama-spm":
  824. field = vocab_reader.get_field(gguf.Keys.Tokenizer.SCORES)
  825. assert field # token scores
  826. self.gguf_writer.add_token_scores([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  827. field = vocab_reader.get_field(gguf.Keys.Tokenizer.TOKEN_TYPE)
  828. assert field # token types
  829. self.gguf_writer.add_token_types([field.parts[i].tolist()[0] for i in field.data][:vocab_size])
  830. if model_name != "llama-spm":
  831. field = vocab_reader.get_field(gguf.Keys.Tokenizer.MERGES)
  832. assert field # token merges
  833. self.gguf_writer.add_token_merges([bytes(field.parts[i]) for i in field.data])
  834. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.BOS_ID)) is not None:
  835. self.gguf_writer.add_bos_token_id(field.parts[-1].tolist()[0])
  836. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.EOS_ID)) is not None:
  837. self.gguf_writer.add_eos_token_id(field.parts[-1].tolist()[0])
  838. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.UNK_ID)) is not None:
  839. self.gguf_writer.add_unk_token_id(field.parts[-1].tolist()[0])
  840. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.PAD_ID)) is not None:
  841. self.gguf_writer.add_pad_token_id(field.parts[-1].tolist()[0])
  842. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_BOS)) is not None:
  843. self.gguf_writer.add_add_bos_token(field.parts[-1].tolist()[0])
  844. if (field := vocab_reader.get_field(gguf.Keys.Tokenizer.ADD_EOS)) is not None:
  845. self.gguf_writer.add_add_eos_token(field.parts[-1].tolist()[0])
  846. @Model.register("GPTNeoXForCausalLM")
  847. class GPTNeoXModel(Model):
  848. model_arch = gguf.MODEL_ARCH.GPTNEOX
  849. def set_gguf_parameters(self):
  850. block_count = self.hparams["num_hidden_layers"]
  851. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  852. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  853. self.gguf_writer.add_block_count(block_count)
  854. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  855. self.gguf_writer.add_rope_dimension_count(
  856. int(self.hparams["rotary_pct"] * (self.hparams["hidden_size"] // self.hparams["num_attention_heads"])),
  857. )
  858. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  859. self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
  860. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
  861. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  862. del bid # unused
  863. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  864. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  865. tensors: list[tuple[str, Tensor]] = []
  866. if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
  867. # Map bloom-style qkv_linear to gpt-style qkv_linear
  868. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  869. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  870. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  871. data_torch = torch.cat(
  872. (
  873. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  874. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  875. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  876. ),
  877. dim=0,
  878. )
  879. logger.info("re-format attention.linear_qkv.weight")
  880. elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
  881. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  882. data_torch = torch.cat(
  883. (
  884. qkv_bias[:, 0, :].reshape((n_embed,)),
  885. qkv_bias[:, 1, :].reshape((n_embed,)),
  886. qkv_bias[:, 2, :].reshape((n_embed,)),
  887. ),
  888. dim=0,
  889. )
  890. logger.info("re-format attention.linear_qkv.bias")
  891. tensors.append((self.map_tensor_name(name), data_torch))
  892. return tensors
  893. @Model.register("BloomForCausalLM", "BloomModel")
  894. class BloomModel(Model):
  895. model_arch = gguf.MODEL_ARCH.BLOOM
  896. def set_gguf_parameters(self):
  897. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  898. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  899. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  900. self.gguf_writer.add_embedding_length(n_embed)
  901. self.gguf_writer.add_feed_forward_length(4 * n_embed)
  902. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  903. self.gguf_writer.add_head_count(n_head)
  904. self.gguf_writer.add_head_count_kv(n_head)
  905. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  906. self.gguf_writer.add_file_type(self.ftype)
  907. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  908. del bid # unused
  909. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  910. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  911. name = re.sub(r'transformer\.', '', name)
  912. tensors: list[tuple[str, Tensor]] = []
  913. if re.match(r"h\.\d+\.self_attention\.query_key_value\.weight", name):
  914. # Map bloom-style qkv_linear to gpt-style qkv_linear
  915. # bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
  916. # gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
  917. qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
  918. data_torch = torch.cat(
  919. (
  920. qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
  921. qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
  922. qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
  923. ),
  924. dim=0,
  925. )
  926. logger.info("re-format attention.linear_qkv.weight")
  927. elif re.match(r"h\.\d+\.self_attention\.query_key_value\.bias", name):
  928. qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
  929. data_torch = torch.cat(
  930. (
  931. qkv_bias[:, 0, :].reshape((n_embed,)),
  932. qkv_bias[:, 1, :].reshape((n_embed,)),
  933. qkv_bias[:, 2, :].reshape((n_embed,)),
  934. ),
  935. dim=0,
  936. )
  937. logger.info("re-format attention.linear_qkv.bias")
  938. tensors.append((self.map_tensor_name(name), data_torch))
  939. return tensors
  940. @Model.register("MPTForCausalLM")
  941. class MPTModel(Model):
  942. model_arch = gguf.MODEL_ARCH.MPT
  943. def set_vocab(self):
  944. try:
  945. self._set_vocab_gpt2()
  946. except Exception:
  947. # Fallback for SEA-LION model
  948. self._set_vocab_sentencepiece()
  949. self.gguf_writer.add_add_bos_token(False)
  950. self.gguf_writer.add_pad_token_id(3)
  951. self.gguf_writer.add_eos_token_id(1)
  952. self.gguf_writer.add_unk_token_id(0)
  953. def set_gguf_parameters(self):
  954. block_count = self.hparams["n_layers"]
  955. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  956. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  957. self.gguf_writer.add_block_count(block_count)
  958. self.gguf_writer.add_feed_forward_length(4 * self.hparams["d_model"])
  959. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  960. if kv_n_heads := self.hparams["attn_config"].get("kv_n_heads"):
  961. self.gguf_writer.add_head_count_kv(kv_n_heads)
  962. self.gguf_writer.add_layer_norm_eps(1e-5)
  963. if self.hparams["attn_config"]["clip_qkv"] is not None:
  964. self.gguf_writer.add_clamp_kqv(self.hparams["attn_config"]["clip_qkv"])
  965. if self.hparams["attn_config"]["alibi"]:
  966. self.gguf_writer.add_max_alibi_bias(self.hparams["attn_config"]["alibi_bias_max"])
  967. else:
  968. self.gguf_writer.add_max_alibi_bias(0.0)
  969. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  970. del bid # unused
  971. if "scales" in name:
  972. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias", ".scales"))
  973. new_name = new_name.replace("scales", "act.scales")
  974. else:
  975. new_name = self.map_tensor_name(name, try_suffixes=(".weight", ".bias"))
  976. return [(new_name, data_torch)]
  977. @Model.register("OrionForCausalLM")
  978. class OrionModel(Model):
  979. model_arch = gguf.MODEL_ARCH.ORION
  980. def set_vocab(self):
  981. self._set_vocab_sentencepiece()
  982. def set_gguf_parameters(self):
  983. block_count = self.hparams["num_hidden_layers"]
  984. head_count = self.hparams["num_attention_heads"]
  985. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  986. ctx_length = 0
  987. if "max_sequence_length" in self.hparams:
  988. ctx_length = self.hparams["max_sequence_length"]
  989. elif "max_position_embeddings" in self.hparams:
  990. ctx_length = self.hparams["max_position_embeddings"]
  991. elif "model_max_length" in self.hparams:
  992. ctx_length = self.hparams["model_max_length"]
  993. else:
  994. raise ValueError("gguf: can not find ctx length parameter.")
  995. self.gguf_writer.add_file_type(self.ftype)
  996. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  997. self.gguf_writer.add_context_length(ctx_length)
  998. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  999. self.gguf_writer.add_block_count(block_count)
  1000. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1001. self.gguf_writer.add_head_count(head_count)
  1002. self.gguf_writer.add_head_count_kv(head_count_kv)
  1003. # note: config provides rms norm but it is actually layer norm
  1004. # ref: https://huggingface.co/OrionStarAI/Orion-14B-Chat/blob/276a17221ce42beb45f66fac657a41540e71f4f5/modeling_orion.py#L570-L571
  1005. self.gguf_writer.add_layer_norm_eps(self.hparams["rms_norm_eps"])
  1006. @Model.register("BaichuanForCausalLM", "BaiChuanForCausalLM")
  1007. class BaichuanModel(Model):
  1008. model_arch = gguf.MODEL_ARCH.BAICHUAN
  1009. def set_vocab(self):
  1010. self._set_vocab_sentencepiece()
  1011. def set_gguf_parameters(self):
  1012. block_count = self.hparams["num_hidden_layers"]
  1013. head_count = self.hparams["num_attention_heads"]
  1014. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1015. ctx_length = 0
  1016. if "max_sequence_length" in self.hparams:
  1017. ctx_length = self.hparams["max_sequence_length"]
  1018. elif "max_position_embeddings" in self.hparams:
  1019. ctx_length = self.hparams["max_position_embeddings"]
  1020. elif "model_max_length" in self.hparams:
  1021. ctx_length = self.hparams["model_max_length"]
  1022. else:
  1023. raise ValueError("gguf: can not find ctx length parameter.")
  1024. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1025. self.gguf_writer.add_context_length(ctx_length)
  1026. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1027. self.gguf_writer.add_block_count(block_count)
  1028. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1029. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1030. self.gguf_writer.add_head_count(head_count)
  1031. self.gguf_writer.add_head_count_kv(head_count_kv)
  1032. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1033. self.gguf_writer.add_file_type(self.ftype)
  1034. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1035. if self.hparams["rope_scaling"].get("type") == "linear":
  1036. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1037. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1038. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1039. head_count = self.hparams["num_attention_heads"]
  1040. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1041. tensors: list[tuple[str, Tensor]] = []
  1042. if bid is not None and name == f"model.layers.{bid}.self_attn.W_pack.weight":
  1043. logger.info(f"Unpacking and permuting layer {bid}")
  1044. tensors = [
  1045. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid),
  1046. self._reverse_hf_permute_part(data_torch, 0, head_count, head_count)),
  1047. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid),
  1048. self._reverse_hf_permute_part(data_torch, 1, head_count, head_count_kv)),
  1049. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid),
  1050. self._reverse_hf_part(data_torch, 2)),
  1051. ]
  1052. else:
  1053. tensors = [(self.map_tensor_name(name), data_torch)]
  1054. return tensors
  1055. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1056. if n_kv_head is not None and n_head != n_kv_head:
  1057. n_head //= n_kv_head
  1058. return (
  1059. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1060. .swapaxes(1, 2)
  1061. .reshape(weights.shape)
  1062. )
  1063. def _reverse_hf_permute_part(
  1064. self, weights: Tensor, n_part: int, n_head: int, n_head_kv: int | None = None,
  1065. ) -> Tensor:
  1066. r = weights.shape[0] // 3
  1067. return self._reverse_hf_permute(weights[r * n_part:r * n_part + r, ...], n_head, n_head_kv)
  1068. def _reverse_hf_part(self, weights: Tensor, n_part: int) -> Tensor:
  1069. r = weights.shape[0] // 3
  1070. return weights[r * n_part:r * n_part + r, ...]
  1071. @Model.register("XverseForCausalLM")
  1072. class XverseModel(Model):
  1073. model_arch = gguf.MODEL_ARCH.XVERSE
  1074. def set_vocab(self):
  1075. assert (self.dir_model / "tokenizer.json").is_file()
  1076. dir_model = self.dir_model
  1077. hparams = self.hparams
  1078. tokens: list[bytes] = []
  1079. toktypes: list[int] = []
  1080. from transformers import AutoTokenizer
  1081. tokenizer = AutoTokenizer.from_pretrained(dir_model)
  1082. vocab_size = hparams.get("vocab_size", len(tokenizer.vocab))
  1083. # Since we are checking the maximum index, we need to ensure it's strictly less than vocab_size,
  1084. # because vocab_size is the count of items, and indexes start at 0.
  1085. max_vocab_index = max(tokenizer.get_vocab().values())
  1086. if max_vocab_index >= vocab_size:
  1087. raise ValueError("Vocabulary size exceeds expected maximum size.")
  1088. reverse_vocab: dict[int, str] = {id_: encoded_tok for encoded_tok, id_ in tokenizer.vocab.items()}
  1089. added_vocab = tokenizer.get_added_vocab()
  1090. for token_id in range(vocab_size):
  1091. token_text = reverse_vocab[token_id].encode('utf-8')
  1092. # replace "\x00" to string with length > 0
  1093. if token_text == b"\x00":
  1094. toktype = gguf.TokenType.BYTE # special
  1095. token_text = f"<{token_text}>".encode('utf-8')
  1096. elif re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
  1097. toktype = gguf.TokenType.BYTE # special
  1098. elif reverse_vocab[token_id] in added_vocab:
  1099. if tokenizer.added_tokens_decoder[token_id].special:
  1100. toktype = gguf.TokenType.CONTROL
  1101. else:
  1102. toktype = gguf.TokenType.USER_DEFINED
  1103. else:
  1104. toktype = gguf.TokenType.NORMAL
  1105. tokens.append(token_text)
  1106. toktypes.append(toktype)
  1107. self.gguf_writer.add_tokenizer_model("llama")
  1108. self.gguf_writer.add_tokenizer_pre("default")
  1109. self.gguf_writer.add_token_list(tokens)
  1110. self.gguf_writer.add_token_types(toktypes)
  1111. special_vocab = gguf.SpecialVocab(dir_model, n_vocab=len(tokens))
  1112. special_vocab.add_to_gguf(self.gguf_writer)
  1113. def set_gguf_parameters(self):
  1114. block_count = self.hparams["num_hidden_layers"]
  1115. head_count = self.hparams["num_attention_heads"]
  1116. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1117. ctx_length = 0
  1118. if "max_sequence_length" in self.hparams:
  1119. ctx_length = self.hparams["max_sequence_length"]
  1120. elif "max_position_embeddings" in self.hparams:
  1121. ctx_length = self.hparams["max_position_embeddings"]
  1122. elif "model_max_length" in self.hparams:
  1123. ctx_length = self.hparams["model_max_length"]
  1124. else:
  1125. raise ValueError("gguf: can not find ctx length parameter.")
  1126. self.gguf_writer.add_tensor_data_layout("Meta AI original pth")
  1127. self.gguf_writer.add_context_length(ctx_length)
  1128. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1129. self.gguf_writer.add_block_count(block_count)
  1130. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1131. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1132. self.gguf_writer.add_head_count(head_count)
  1133. self.gguf_writer.add_head_count_kv(head_count_kv)
  1134. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1135. self.gguf_writer.add_file_type(self.ftype)
  1136. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1137. if self.hparams["rope_scaling"].get("type") == "linear":
  1138. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1139. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1140. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1141. del bid # unused
  1142. head_count = self.hparams["num_attention_heads"]
  1143. head_count_kv = self.hparams.get("num_key_value_heads", head_count)
  1144. # HF models permute some of the tensors, so we need to undo that
  1145. if name.endswith("q_proj.weight"):
  1146. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count)
  1147. if name.endswith("k_proj.weight"):
  1148. data_torch = self._reverse_hf_permute(data_torch, head_count, head_count_kv)
  1149. return [(self.map_tensor_name(name), data_torch)]
  1150. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1151. if n_kv_head is not None and n_head != n_kv_head:
  1152. n_head //= n_kv_head
  1153. return (
  1154. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1155. .swapaxes(1, 2)
  1156. .reshape(weights.shape)
  1157. )
  1158. @Model.register("FalconForCausalLM", "RWForCausalLM")
  1159. class FalconModel(Model):
  1160. model_arch = gguf.MODEL_ARCH.FALCON
  1161. def set_gguf_parameters(self):
  1162. block_count = self.hparams.get("num_hidden_layers")
  1163. if block_count is None:
  1164. block_count = self.hparams["n_layer"] # old name
  1165. n_head = self.hparams.get("num_attention_heads")
  1166. if n_head is None:
  1167. n_head = self.hparams["n_head"] # old name
  1168. n_head_kv = self.hparams.get("num_kv_heads")
  1169. if n_head_kv is None:
  1170. n_head_kv = self.hparams.get("n_head_kv", 1) # old name
  1171. self.gguf_writer.add_context_length(2048) # not in config.json
  1172. self.gguf_writer.add_tensor_data_layout("jploski") # qkv tensor transform
  1173. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1174. self.gguf_writer.add_feed_forward_length(4 * self.hparams["hidden_size"])
  1175. self.gguf_writer.add_block_count(block_count)
  1176. self.gguf_writer.add_head_count(n_head)
  1177. self.gguf_writer.add_head_count_kv(n_head_kv)
  1178. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1179. self.gguf_writer.add_file_type(self.ftype)
  1180. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1181. del bid # unused
  1182. # QKV tensor transform
  1183. # The original query_key_value tensor contains n_head_kv "kv groups",
  1184. # each consisting of n_head/n_head_kv query weights followed by one key
  1185. # and one value weight (shared by all query heads in the kv group).
  1186. # This layout makes it a big pain to work with in GGML.
  1187. # So we rearrange them here,, so that we have n_head query weights
  1188. # followed by n_head_kv key weights followed by n_head_kv value weights,
  1189. # in contiguous fashion.
  1190. # ref: https://github.com/jploski/ggml/blob/falcon40b/examples/falcon/convert-hf-to-ggml.py
  1191. if "query_key_value" in name:
  1192. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  1193. n_head_kv = self.find_hparam(["num_kv_heads", "n_head_kv"], optional=True) or 1
  1194. head_dim = self.hparams["hidden_size"] // n_head
  1195. qkv = data_torch.view(n_head_kv, n_head // n_head_kv + 2, head_dim, head_dim * n_head)
  1196. q = qkv[:, :-2].reshape(n_head * head_dim, head_dim * n_head)
  1197. k = qkv[:, [-2]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1198. v = qkv[:, [-1]].reshape(n_head_kv * head_dim, head_dim * n_head)
  1199. data_torch = torch.cat((q, k, v)).reshape_as(data_torch)
  1200. return [(self.map_tensor_name(name), data_torch)]
  1201. @Model.register("GPTBigCodeForCausalLM")
  1202. class StarCoderModel(Model):
  1203. model_arch = gguf.MODEL_ARCH.STARCODER
  1204. def set_gguf_parameters(self):
  1205. block_count = self.hparams["n_layer"]
  1206. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1207. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1208. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  1209. self.gguf_writer.add_block_count(block_count)
  1210. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1211. self.gguf_writer.add_head_count_kv(1)
  1212. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  1213. self.gguf_writer.add_file_type(self.ftype)
  1214. @Model.register("GPTRefactForCausalLM")
  1215. class RefactModel(Model):
  1216. model_arch = gguf.MODEL_ARCH.REFACT
  1217. def set_vocab(self):
  1218. super().set_vocab()
  1219. # TODO: how to determine special FIM tokens automatically?
  1220. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  1221. special_token_types = ['prefix', 'suffix', 'middle', 'eot'])
  1222. special_vocab._set_special_token("prefix", 1)
  1223. special_vocab._set_special_token("suffix", 3)
  1224. special_vocab._set_special_token("middle", 2)
  1225. special_vocab.chat_template = None # do not add it twice
  1226. special_vocab.add_to_gguf(self.gguf_writer)
  1227. def set_gguf_parameters(self):
  1228. hidden_dim = self.hparams["n_embd"]
  1229. inner_dim = 4 * hidden_dim
  1230. hidden_dim = int(2 * inner_dim / 3)
  1231. multiple_of = 256
  1232. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1233. block_count = self.hparams["n_layer"]
  1234. # refact uses Alibi. So this is from config.json which might be used by training.
  1235. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  1236. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  1237. self.gguf_writer.add_feed_forward_length(ff_dim)
  1238. self.gguf_writer.add_block_count(block_count)
  1239. self.gguf_writer.add_head_count(self.hparams["n_head"])
  1240. self.gguf_writer.add_head_count_kv(1)
  1241. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1242. self.gguf_writer.add_file_type(self.ftype)
  1243. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1244. hidden_dim = self.hparams["n_embd"]
  1245. inner_dim = 4 * hidden_dim
  1246. hidden_dim = int(2 * inner_dim / 3)
  1247. multiple_of = 256
  1248. ff_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
  1249. n_head = self.hparams["n_head"]
  1250. n_head_kv = 1
  1251. head_dim = self.hparams["n_embd"] // n_head
  1252. tensors: list[tuple[str, Tensor]] = []
  1253. if bid is not None:
  1254. if name == f"transformer.h.{bid}.attn.kv.weight":
  1255. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), data_torch[:n_head_kv * head_dim]))
  1256. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), data_torch[n_head_kv * head_dim:]))
  1257. elif name == f"transformer.h.{bid}.attn.q.weight":
  1258. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), data_torch))
  1259. elif name == f"transformer.h.{bid}.mlp.gate_up_proj.weight":
  1260. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim]))
  1261. tensors.append((self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:]))
  1262. if len(tensors) == 0:
  1263. tensors.append((self.map_tensor_name(name), data_torch))
  1264. return tensors
  1265. @Model.register("StableLmForCausalLM", "StableLMEpochForCausalLM", "LlavaStableLMEpochForCausalLM")
  1266. class StableLMModel(Model):
  1267. model_arch = gguf.MODEL_ARCH.STABLELM
  1268. def set_vocab(self):
  1269. if (self.dir_model / "tokenizer.json").is_file():
  1270. self._set_vocab_gpt2()
  1271. else:
  1272. # StableLM 2 1.6B used to have a vocab in a similar format to Qwen's vocab
  1273. self._set_vocab_qwen()
  1274. def set_gguf_parameters(self):
  1275. hparams = self.hparams
  1276. block_count = hparams["num_hidden_layers"]
  1277. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1278. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1279. self.gguf_writer.add_block_count(block_count)
  1280. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1281. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"])
  1282. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  1283. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1284. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1285. self.gguf_writer.add_parallel_residual(hparams["use_parallel_residual"] if "use_parallel_residual" in hparams else True)
  1286. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_eps", "norm_eps"]))
  1287. self.gguf_writer.add_file_type(self.ftype)
  1288. _q_norms: list[dict[str, Tensor]] | None = None
  1289. _k_norms: list[dict[str, Tensor]] | None = None
  1290. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1291. n_head = self.hparams["num_attention_heads"]
  1292. n_kv_head = self.hparams["num_key_value_heads"]
  1293. if name.find("q_layernorm.norms") != -1:
  1294. assert bid is not None
  1295. if self._q_norms is None:
  1296. self._q_norms = [{} for _ in range(self.block_count)]
  1297. self._q_norms[bid][name] = data_torch
  1298. if len(self._q_norms[bid]) >= n_head:
  1299. return self._stack_qk_norm(bid, n_head, self._q_norms[bid], "q_layernorm")
  1300. else:
  1301. return []
  1302. if name.find("k_layernorm.norms") != -1:
  1303. assert bid is not None
  1304. if self._k_norms is None:
  1305. self._k_norms = [{} for _ in range(self.block_count)]
  1306. self._k_norms[bid][name] = data_torch
  1307. if len(self._k_norms[bid]) >= n_kv_head:
  1308. return self._stack_qk_norm(bid, n_kv_head, self._k_norms[bid], "k_layernorm")
  1309. else:
  1310. return []
  1311. return [(self.map_tensor_name(name), data_torch)]
  1312. def _stack_qk_norm(self, bid: int, n_head: int, norms: dict[str, Tensor], layer_name: str = "q_layernorm"):
  1313. datas: list[Tensor] = []
  1314. # extract the norms in order
  1315. for xid in range(n_head):
  1316. ename = f"model.layers.{bid}.self_attn.{layer_name}.norms.{xid}.weight"
  1317. datas.append(norms[ename])
  1318. del norms[ename]
  1319. data_torch = torch.stack(datas, dim=0)
  1320. merged_name = f"model.layers.{bid}.self_attn.{layer_name}.weight"
  1321. new_name = self.map_tensor_name(merged_name)
  1322. return [(new_name, data_torch)]
  1323. def prepare_tensors(self):
  1324. super().prepare_tensors()
  1325. if self._q_norms is not None or self._k_norms is not None:
  1326. # flatten two `list[dict[str, Tensor]]` into a single `list[str]`
  1327. norms = (
  1328. [k for d in self._q_norms for k in d.keys()] if self._q_norms is not None else []
  1329. ) + (
  1330. [k for d in self._k_norms for k in d.keys()] if self._k_norms is not None else []
  1331. )
  1332. if len(norms) > 0:
  1333. raise ValueError(f"Unprocessed norms: {norms}")
  1334. @Model.register("LLaMAForCausalLM", "LlamaForCausalLM", "MistralForCausalLM", "MixtralForCausalLM")
  1335. class LlamaModel(Model):
  1336. model_arch = gguf.MODEL_ARCH.LLAMA
  1337. undo_permute = True
  1338. def set_vocab(self):
  1339. try:
  1340. self._set_vocab_sentencepiece()
  1341. except FileNotFoundError:
  1342. try:
  1343. self._set_vocab_llama_hf()
  1344. except (FileNotFoundError, TypeError):
  1345. # Llama 3
  1346. self._set_vocab_gpt2()
  1347. # Apply to CodeLlama only (and ignore for Llama 3 with a vocab size of 128256)
  1348. if self.hparams.get("vocab_size", 32000) == 32016:
  1349. special_vocab = gguf.SpecialVocab(
  1350. self.dir_model, load_merges=False,
  1351. special_token_types = ['prefix', 'suffix', 'middle', 'eot']
  1352. )
  1353. special_vocab._set_special_token("prefix", 32007)
  1354. special_vocab._set_special_token("suffix", 32008)
  1355. special_vocab._set_special_token("middle", 32009)
  1356. special_vocab._set_special_token("eot", 32010)
  1357. special_vocab.add_to_gguf(self.gguf_writer)
  1358. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  1359. if tokenizer_config_file.is_file():
  1360. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  1361. tokenizer_config_json = json.load(f)
  1362. if "add_prefix_space" in tokenizer_config_json:
  1363. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  1364. # Apply to granite small models only
  1365. if self.hparams.get("vocab_size", 32000) == 49152:
  1366. self.gguf_writer.add_add_bos_token(False)
  1367. def set_gguf_parameters(self):
  1368. super().set_gguf_parameters()
  1369. hparams = self.hparams
  1370. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1371. if "head_dim" in hparams:
  1372. rope_dim = hparams["head_dim"]
  1373. else:
  1374. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1375. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1376. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1377. if self.hparams["rope_scaling"].get("type") == "linear":
  1378. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1379. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1380. @staticmethod
  1381. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1382. if n_head_kv is not None and n_head != n_head_kv:
  1383. n_head = n_head_kv
  1384. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1385. .swapaxes(1, 2)
  1386. .reshape(weights.shape))
  1387. _experts: list[dict[str, Tensor]] | None = None
  1388. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1389. n_head = self.hparams["num_attention_heads"]
  1390. n_kv_head = self.hparams.get("num_key_value_heads")
  1391. if self.undo_permute:
  1392. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1393. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1394. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1395. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1396. # process the experts separately
  1397. if name.find("block_sparse_moe.experts") != -1:
  1398. n_experts = self.hparams["num_local_experts"]
  1399. assert bid is not None
  1400. if self._experts is None:
  1401. self._experts = [{} for _ in range(self.block_count)]
  1402. self._experts[bid][name] = data_torch
  1403. if len(self._experts[bid]) >= n_experts * 3:
  1404. tensors: list[tuple[str, Tensor]] = []
  1405. # merge the experts into a single 3d tensor
  1406. for wid in ["w1", "w2", "w3"]:
  1407. datas: list[Tensor] = []
  1408. for xid in range(n_experts):
  1409. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  1410. datas.append(self._experts[bid][ename])
  1411. del self._experts[bid][ename]
  1412. data_torch = torch.stack(datas, dim=0)
  1413. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  1414. new_name = self.map_tensor_name(merged_name)
  1415. tensors.append((new_name, data_torch))
  1416. return tensors
  1417. else:
  1418. return []
  1419. return [(self.map_tensor_name(name), data_torch)]
  1420. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1421. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1422. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1423. base = self.hparams.get("rope_theta", 10000.0)
  1424. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1425. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1426. factor = rope_scaling.get("factor", 8.0)
  1427. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1428. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1429. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1430. low_freq_wavelen = old_context_len / low_freq_factor
  1431. high_freq_wavelen = old_context_len / high_freq_factor
  1432. assert low_freq_wavelen != high_freq_wavelen
  1433. rope_factors = []
  1434. for freq in freqs:
  1435. wavelen = 2 * math.pi / freq
  1436. if wavelen < high_freq_wavelen:
  1437. rope_factors.append(1)
  1438. elif wavelen > low_freq_wavelen:
  1439. rope_factors.append(factor)
  1440. else:
  1441. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1442. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1443. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1444. def prepare_tensors(self):
  1445. super().prepare_tensors()
  1446. if self._experts is not None:
  1447. # flatten `list[dict[str, Tensor]]` into `list[str]`
  1448. experts = [k for d in self._experts for k in d.keys()]
  1449. if len(experts) > 0:
  1450. raise ValueError(f"Unprocessed experts: {experts}")
  1451. @Model.register("Llama4ForConditionalGeneration")
  1452. class Llama4Model(LlamaModel):
  1453. model_arch = gguf.MODEL_ARCH.LLAMA4
  1454. has_vision: bool = False
  1455. undo_permute = False
  1456. # TODO @ngxson : avoid duplicate this code everywhere by at least support "text_config"
  1457. # same with llama, but we need to merge the text_config into the root level of hparams
  1458. def __init__(self, *args, **kwargs):
  1459. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  1460. if "text_config" in hparams:
  1461. hparams = {**hparams, **hparams["text_config"]}
  1462. kwargs["hparams"] = hparams
  1463. super().__init__(*args, **kwargs)
  1464. if "vision_config" in hparams:
  1465. logger.info("Has vision encoder, but it will be ignored")
  1466. self.has_vision = True
  1467. # IMPORTANT: the normal "intermediate_size" is renamed to "intermediate_size_mlp", we need to undo this
  1468. self.hparams["intermediate_size_moe"] = self.hparams["intermediate_size"]
  1469. self.hparams["intermediate_size"] = self.hparams["intermediate_size_mlp"]
  1470. def set_vocab(self):
  1471. self._set_vocab_gpt2()
  1472. self.gguf_writer.add_add_bos_token(True)
  1473. def set_gguf_parameters(self):
  1474. super().set_gguf_parameters()
  1475. self.gguf_writer.add_interleave_moe_layer_step(self.hparams["interleave_moe_layer_step"])
  1476. self.gguf_writer.add_expert_feed_forward_length(self.hparams["intermediate_size_moe"])
  1477. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1478. name = name.replace("language_model.", "")
  1479. name = name.replace("feed_forward.", "mlp.") # a bit hacky for now
  1480. name = name.replace(".router.weight", ".gate.weight") # a bit hacky for now
  1481. # split the gate_up into gate and up
  1482. if "gate_up_proj" in name:
  1483. name_up = name.replace("gate_up_proj", "up_proj.weight")
  1484. name_gate = name.replace("gate_up_proj", "gate_proj.weight")
  1485. dim_half = data_torch.shape[-1] // 2
  1486. gate_proj_weight, up_proj_weight = data_torch.transpose(-1, -2).split(dim_half, dim=-2)
  1487. return [
  1488. (self.map_tensor_name(name_gate), gate_proj_weight),
  1489. (self.map_tensor_name(name_up), up_proj_weight)
  1490. ]
  1491. if name.endswith("down_proj"):
  1492. name += ".weight"
  1493. data_torch = data_torch.transpose(-1, -2)
  1494. if "multi_modal_projector" in name or "vision_model" in name:
  1495. return []
  1496. return super().modify_tensors(data_torch, name, bid)
  1497. @Model.register("Mistral3ForConditionalGeneration")
  1498. class Mistral3Model(LlamaModel):
  1499. model_arch = gguf.MODEL_ARCH.LLAMA
  1500. # we need to merge the text_config into the root level of hparams
  1501. def __init__(self, *args, **kwargs):
  1502. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  1503. if "text_config" in hparams:
  1504. hparams = {**hparams, **hparams["text_config"]}
  1505. kwargs["hparams"] = hparams
  1506. super().__init__(*args, **kwargs)
  1507. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None):
  1508. name = name.replace("language_model.", "")
  1509. if "multi_modal_projector" in name or "vision_tower" in name:
  1510. return []
  1511. return super().modify_tensors(data_torch, name, bid)
  1512. @Model.register("DeciLMForCausalLM")
  1513. class DeciModel(Model):
  1514. model_arch = gguf.MODEL_ARCH.DECI
  1515. @staticmethod
  1516. def _ffn_mult_to_intermediate_size(ffn_mult: float, n_embd: int) -> int:
  1517. # DeciLM-specific code
  1518. intermediate_size = int(2 * ffn_mult * n_embd / 3)
  1519. return DeciModel._find_multiple(intermediate_size, 256)
  1520. @staticmethod
  1521. def _find_multiple(n: int, k: int) -> int:
  1522. # DeciLM-specific code
  1523. if n % k == 0:
  1524. return n
  1525. return n + k - (n % k)
  1526. def __init__(self, *args, **kwargs):
  1527. super().__init__(*args, **kwargs)
  1528. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1529. _block_configs: list[dict[str,Any]] = self.hparams["block_configs"]
  1530. assert self.block_count == len(_block_configs)
  1531. self._num_kv_heads = list()
  1532. self._num_heads = list()
  1533. _ffn_multipliers = list()
  1534. # ***linear attention layer***
  1535. # if n_heads_in_group is None and replace_with_linear is True
  1536. # then _num_kv_heads[il] is 0 and _num_heads[il] is num_attention_heads
  1537. # ***attention-free layer***
  1538. # if n_heads_in_group is None and replace_with_linear is False
  1539. # then _num_kv_heads[il] is 0 and _num_heads[il] is 0
  1540. # ***normal attention-layer***
  1541. # if n_heads_in_group is not None, then
  1542. # _num_kv_heads[il] is num_attention_head // n_heads_in_group and
  1543. # _num_heads[il] is num_attention_head
  1544. for il in range(len(_block_configs)):
  1545. if _block_configs[il]["attention"]["n_heads_in_group"] is None:
  1546. if _block_configs[il]["attention"]["replace_with_linear"] is True:
  1547. self._num_kv_heads.append(0)
  1548. self._num_heads.append(self.hparams["num_attention_heads"])
  1549. else:
  1550. self._num_kv_heads.append(0)
  1551. self._num_heads.append(0)
  1552. else:
  1553. self._num_kv_heads.append(self.hparams["num_attention_heads"] // _block_configs[il]["attention"]["n_heads_in_group"])
  1554. self._num_heads.append(self.hparams["num_attention_heads"])
  1555. _ffn_multipliers.append(_block_configs[il]["ffn"]["ffn_mult"])
  1556. assert self.block_count == len(self._num_kv_heads)
  1557. assert self.block_count == len(self._num_heads)
  1558. assert self.block_count == len(_ffn_multipliers)
  1559. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  1560. assert isinstance(self._num_heads, list) and isinstance(self._num_heads[0], int)
  1561. assert isinstance(_ffn_multipliers, list) and isinstance(_ffn_multipliers[0], float)
  1562. self._ffn_dims: list[int] = [
  1563. DeciModel._ffn_mult_to_intermediate_size(multiplier, self.hparams["hidden_size"])
  1564. for multiplier in _ffn_multipliers
  1565. ]
  1566. def set_vocab(self):
  1567. # Please change tokenizer_config.json of Llama-3_1-Nemotron-51B's
  1568. # eos_token from '|eot_id|' to '|end_of_text|'
  1569. if self.hparams.get("vocab_size", 128256) == 128256:
  1570. tokens, toktypes, tokpre = self.get_vocab_base()
  1571. self.gguf_writer.add_tokenizer_model("gpt2")
  1572. self.gguf_writer.add_tokenizer_pre(tokpre)
  1573. self.gguf_writer.add_token_list(tokens)
  1574. self.gguf_writer.add_token_types(toktypes)
  1575. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  1576. special_vocab.add_to_gguf(self.gguf_writer)
  1577. else:
  1578. # DeciLM-7B
  1579. self._set_vocab_llama_hf()
  1580. def set_gguf_parameters(self):
  1581. if "block_configs" in self.hparams: # Llama-3_1-Nemotron-51B
  1582. assert self.block_count == len(self._num_kv_heads)
  1583. assert self.block_count == len(self._num_heads)
  1584. assert self.block_count == len(self._ffn_dims)
  1585. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  1586. self.gguf_writer.add_rope_freq_base(rope_theta)
  1587. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1588. self.gguf_writer.add_head_count(self._num_heads)
  1589. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  1590. self.gguf_writer.add_block_count(self.block_count)
  1591. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1592. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1593. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  1594. self.gguf_writer.add_key_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1595. self.gguf_writer.add_value_length(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1596. self.gguf_writer.add_file_type(self.ftype)
  1597. else: # DeciLM-7B
  1598. super().set_gguf_parameters()
  1599. if "num_key_value_heads_per_layer" in self.hparams: # DeciLM-7B
  1600. self._num_kv_heads: list[int] = self.hparams["num_key_value_heads_per_layer"]
  1601. assert self.block_count == len(self._num_kv_heads)
  1602. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  1603. hparams = self.hparams
  1604. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1605. if "head_dim" in hparams:
  1606. rope_dim = hparams["head_dim"]
  1607. else:
  1608. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  1609. self.gguf_writer.add_rope_dimension_count(rope_dim)
  1610. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1611. if self.hparams["rope_scaling"].get("type") == "linear":
  1612. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1613. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1614. @staticmethod
  1615. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  1616. if n_head_kv is not None and n_head != n_head_kv:
  1617. n_head = n_head_kv
  1618. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1619. .swapaxes(1, 2)
  1620. .reshape(weights.shape))
  1621. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1622. n_head = self.hparams["num_attention_heads"]
  1623. if bid is not None:
  1624. if "num_key_value_heads_per_layer" in self.hparams:
  1625. n_kv_head = self.hparams["num_key_value_heads_per_layer"][bid]
  1626. elif "block_configs" in self.hparams:
  1627. n_kv_head = self._num_kv_heads[bid]
  1628. n_head = self._num_heads[bid]
  1629. else:
  1630. n_kv_head = self.hparams.get("num_key_value_heads")
  1631. else:
  1632. n_kv_head = self.hparams.get("num_key_value_heads")
  1633. if name.endswith(("q_proj.weight", "q_proj.bias")):
  1634. data_torch = DeciModel.permute(data_torch, n_head, n_head)
  1635. if name.endswith(("k_proj.weight", "k_proj.bias")):
  1636. data_torch = DeciModel.permute(data_torch, n_head, n_kv_head)
  1637. return [(self.map_tensor_name(name), data_torch)]
  1638. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1639. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  1640. if rope_scaling.get("rope_type", '').lower() == "llama3":
  1641. base = self.hparams.get("rope_theta", 10000.0)
  1642. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1643. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  1644. factor = rope_scaling.get("factor", 8.0)
  1645. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  1646. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  1647. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  1648. low_freq_wavelen = old_context_len / low_freq_factor
  1649. high_freq_wavelen = old_context_len / high_freq_factor
  1650. assert low_freq_wavelen != high_freq_wavelen
  1651. rope_factors = []
  1652. for freq in freqs:
  1653. wavelen = 2 * math.pi / freq
  1654. if wavelen < high_freq_wavelen:
  1655. rope_factors.append(1)
  1656. elif wavelen > low_freq_wavelen:
  1657. rope_factors.append(factor)
  1658. else:
  1659. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  1660. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  1661. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  1662. def prepare_tensors(self):
  1663. super().prepare_tensors()
  1664. @Model.register("BitnetForCausalLM")
  1665. class BitnetModel(Model):
  1666. model_arch = gguf.MODEL_ARCH.BITNET
  1667. def set_vocab(self):
  1668. self._set_vocab_sentencepiece()
  1669. def set_gguf_parameters(self):
  1670. super().set_gguf_parameters()
  1671. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  1672. self.gguf_writer.add_rope_scaling_factor(1.0)
  1673. def weight_quant(self, weight: Tensor) -> Tensor:
  1674. dtype = weight.dtype
  1675. weight = weight.float()
  1676. scale = weight.abs().mean().clamp(min=1e-5)
  1677. iscale = 1 / scale
  1678. # TODO: multiply by the scale directly instead of inverting it twice
  1679. # (this is also unnecessarily doubly inverted upstream)
  1680. # ref: https://huggingface.co/1bitLLM/bitnet_b1_58-3B/blob/af89e318d78a70802061246bf037199d2fb97020/utils_quant.py#L10
  1681. result = (weight * iscale).round().clamp(-1, 1) / iscale
  1682. return result.type(dtype)
  1683. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1684. new_name = self.map_tensor_name(name)
  1685. if any(self.match_model_tensor_name(new_name, key, bid) for key in [
  1686. gguf.MODEL_TENSOR.ATTN_Q,
  1687. gguf.MODEL_TENSOR.ATTN_K,
  1688. gguf.MODEL_TENSOR.ATTN_V,
  1689. gguf.MODEL_TENSOR.ATTN_OUT,
  1690. gguf.MODEL_TENSOR.FFN_UP,
  1691. gguf.MODEL_TENSOR.FFN_DOWN,
  1692. gguf.MODEL_TENSOR.FFN_GATE,
  1693. ]):
  1694. # transform weight into 1/0/-1 (in fp32)
  1695. data_torch = self.weight_quant(data_torch)
  1696. yield (new_name, data_torch)
  1697. @Model.register("GrokForCausalLM")
  1698. class GrokModel(Model):
  1699. model_arch = gguf.MODEL_ARCH.GROK
  1700. def set_vocab(self):
  1701. self._set_vocab_sentencepiece()
  1702. def __init__(self, *args, **kwargs):
  1703. super().__init__(*args, **kwargs)
  1704. def set_gguf_parameters(self):
  1705. super().set_gguf_parameters()
  1706. _experts: list[dict[str, Tensor]] | None = None
  1707. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1708. # process the experts separately
  1709. if name.find(".moe.") != -1:
  1710. n_experts = self.hparams["num_local_experts"]
  1711. assert bid is not None
  1712. if self._experts is None:
  1713. self._experts = [{} for _ in range(self.block_count)]
  1714. self._experts[bid][name] = data_torch
  1715. if len(self._experts[bid]) >= n_experts * 3:
  1716. tensors: list[tuple[str, Tensor]] = []
  1717. # merge the experts into a single 3d tensor
  1718. for wid in ["linear", "linear_1", "linear_v"]:
  1719. datas: list[Tensor] = []
  1720. for xid in range(n_experts):
  1721. ename = f"transformer.decoder_layer.{bid}.moe.{xid}.{wid}.weight"
  1722. datas.append(self._experts[bid][ename])
  1723. del self._experts[bid][ename]
  1724. data_torch = torch.stack(datas, dim=0)
  1725. merged_name = f"transformer.decoder_layer.{bid}.moe.{wid}.weight"
  1726. new_name = self.map_tensor_name(merged_name)
  1727. tensors.append((new_name, data_torch))
  1728. return tensors
  1729. else:
  1730. return []
  1731. return [(self.map_tensor_name(name), data_torch)]
  1732. @Model.register("DbrxForCausalLM")
  1733. class DbrxModel(Model):
  1734. model_arch = gguf.MODEL_ARCH.DBRX
  1735. def set_gguf_parameters(self):
  1736. ffn_config = self.hparams["ffn_config"]
  1737. attn_config = self.hparams["attn_config"]
  1738. self.gguf_writer.add_block_count(self.hparams["n_layers"])
  1739. self.gguf_writer.add_context_length(self.hparams["max_seq_len"])
  1740. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  1741. self.gguf_writer.add_feed_forward_length(ffn_config["ffn_hidden_size"])
  1742. self.gguf_writer.add_head_count(self.hparams["n_heads"])
  1743. self.gguf_writer.add_head_count_kv(attn_config["kv_n_heads"])
  1744. self.gguf_writer.add_rope_freq_base(attn_config["rope_theta"])
  1745. self.gguf_writer.add_clamp_kqv(attn_config["clip_qkv"])
  1746. self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
  1747. self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
  1748. self.gguf_writer.add_layer_norm_eps(1e-5)
  1749. self.gguf_writer.add_file_type(self.ftype)
  1750. logger.info(f"gguf: file type = {self.ftype}")
  1751. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1752. del bid # unused
  1753. n_expert = self.hparams["ffn_config"]["moe_num_experts"]
  1754. n_ff = self.hparams["ffn_config"]["ffn_hidden_size"]
  1755. n_embd = self.hparams["d_model"]
  1756. # Specific behavior for experts tensors: suffix .weight, view as 3D and transpose
  1757. # original implementation expects (n_expert, n_ff, n_embd) for all experts weights
  1758. # But llama.cpp moe graph works differently
  1759. # AND the dimensions in ggml are typically in the reverse order of the pytorch dimensions
  1760. # so (n_expert, n_ff, n_embd) in pytorch is {n_embd, n_ff, n_expert} in ggml_tensor
  1761. exp_tensor_names = {"ffn.experts.mlp.w1": None, # LLM_TENSOR_FFN_GATE_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1762. "ffn.experts.mlp.w2": (0, 2, 1), # LLM_TENSOR_FFN_DOWN_EXPS ggml_tensor->ne{n_ff, n_embd, n_expert}
  1763. "ffn.experts.mlp.v1": None} # LLM_TENSOR_FFN_UP_EXPS ggml_tensor->ne{n_embd, n_ff, n_expert}
  1764. experts = False
  1765. for exp_tensor_name in exp_tensor_names.keys():
  1766. if name.find(exp_tensor_name) != -1 and name.find(".weight") == -1:
  1767. experts = True
  1768. data_torch = data_torch.view(n_expert, n_ff, n_embd)
  1769. if (permute_tensor := exp_tensor_names[exp_tensor_name]) is not None:
  1770. data_torch = data_torch.permute(*permute_tensor)
  1771. break
  1772. # map tensor names
  1773. # In MoE models the ffn tensors are typically most of the model weights,
  1774. # and need to be quantizable. Quantize expects tensor names to be suffixed by .weight.
  1775. # Every other model has the weight names ending in .weight,
  1776. # let's assume that is the convention which is not the case for dbrx:
  1777. # https://huggingface.co/databricks/dbrx-instruct/blob/main/model.safetensors.index.json#L15
  1778. new_name = self.map_tensor_name(name if not experts else name + ".weight", try_suffixes=(".weight",))
  1779. return [(new_name, data_torch)]
  1780. def tensor_force_quant(self, name: str, new_name: str, bid: int | None, n_dims: int) -> gguf.GGMLQuantizationType | bool:
  1781. del name, new_name, bid # unused
  1782. return n_dims > 1
  1783. @Model.register("MiniCPMForCausalLM")
  1784. class MiniCPMModel(Model):
  1785. model_arch = gguf.MODEL_ARCH.MINICPM
  1786. def set_gguf_parameters(self):
  1787. super().set_gguf_parameters()
  1788. embedding_scale = float(self.hparams["scale_emb"])
  1789. self.gguf_writer.add_embedding_scale(embedding_scale)
  1790. logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
  1791. residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
  1792. self.gguf_writer.add_residual_scale(residual_scale)
  1793. logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
  1794. logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
  1795. self.gguf_writer.add_logit_scale(logit_scale)
  1796. logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
  1797. if self.hparams.get("rope_scaling") is not None:
  1798. if self.hparams["rope_scaling"].get("type") == "longrope":
  1799. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
  1800. logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
  1801. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1802. rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  1803. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1804. if rope_scaling is not None:
  1805. long_factors = rope_scaling.get('long_factor', None)
  1806. short_factors = rope_scaling.get('short_factor', None)
  1807. if long_factors is None or short_factors is None:
  1808. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1809. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1810. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1811. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1812. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1813. def set_vocab(self):
  1814. self._set_vocab_sentencepiece()
  1815. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1816. del bid # unused
  1817. n_head = self.hparams["num_attention_heads"]
  1818. n_kv_head = self.hparams.get("num_key_value_heads")
  1819. # HF models permute some of the tensors, so we need to undo that
  1820. if name.endswith(("q_proj.weight")):
  1821. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  1822. if name.endswith(("k_proj.weight")):
  1823. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  1824. return [(self.map_tensor_name(name), data_torch)]
  1825. @Model.register("MiniCPM3ForCausalLM")
  1826. class MiniCPM3Model(Model):
  1827. model_arch = gguf.MODEL_ARCH.MINICPM3
  1828. def set_gguf_parameters(self):
  1829. hparams = self.hparams
  1830. self.gguf_writer.add_file_type(self.ftype)
  1831. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  1832. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  1833. self.gguf_writer.add_block_count(self.block_count)
  1834. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  1835. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  1836. self.gguf_writer.add_head_count_kv(hparams["num_key_value_heads"])
  1837. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  1838. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  1839. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  1840. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  1841. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  1842. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  1843. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  1844. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  1845. rope_scaling = self.find_hparam(['rope_scaling'], True)
  1846. if rope_scaling is not None:
  1847. rope_dims = self.hparams["qk_rope_head_dim"]
  1848. long_factors = rope_scaling.get('long_factor', None)
  1849. short_factors = rope_scaling.get('short_factor', None)
  1850. if long_factors is None or short_factors is None:
  1851. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  1852. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  1853. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}')
  1854. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  1855. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  1856. def set_vocab(self):
  1857. self._set_vocab_sentencepiece()
  1858. def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
  1859. if n_kv_head is not None and n_head != n_kv_head:
  1860. n_head //= n_kv_head
  1861. return (
  1862. weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  1863. .swapaxes(1, 2)
  1864. .reshape(weights.shape)
  1865. )
  1866. @Model.register("QWenLMHeadModel")
  1867. class QwenModel(Model):
  1868. model_arch = gguf.MODEL_ARCH.QWEN
  1869. @staticmethod
  1870. def token_bytes_to_string(b):
  1871. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  1872. byte_encoder = bytes_to_unicode()
  1873. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  1874. @staticmethod
  1875. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  1876. parts = [bytes([b]) for b in token]
  1877. while True:
  1878. min_idx = None
  1879. min_rank = None
  1880. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  1881. rank = mergeable_ranks.get(pair[0] + pair[1])
  1882. if rank is not None and (min_rank is None or rank < min_rank):
  1883. min_idx = i
  1884. min_rank = rank
  1885. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  1886. break
  1887. assert min_idx is not None
  1888. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  1889. return parts
  1890. def set_vocab(self):
  1891. self._set_vocab_qwen()
  1892. def set_gguf_parameters(self):
  1893. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  1894. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  1895. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  1896. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  1897. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  1898. self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  1899. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  1900. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  1901. self.gguf_writer.add_file_type(self.ftype)
  1902. @Model.register("Qwen2ForCausalLM")
  1903. class Qwen2Model(Model):
  1904. model_arch = gguf.MODEL_ARCH.QWEN2
  1905. def set_vocab(self):
  1906. try:
  1907. self._set_vocab_sentencepiece()
  1908. except FileNotFoundError:
  1909. self._set_vocab_gpt2()
  1910. def set_gguf_parameters(self):
  1911. super().set_gguf_parameters()
  1912. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  1913. if self.hparams["rope_scaling"].get("type") == "yarn":
  1914. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  1915. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  1916. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  1917. @Model.register("Qwen2VLForConditionalGeneration", "Qwen2_5_VLForConditionalGeneration")
  1918. class Qwen2VLModel(Model):
  1919. model_arch = gguf.MODEL_ARCH.QWEN2VL
  1920. def set_gguf_parameters(self):
  1921. super().set_gguf_parameters()
  1922. mrope_section = self.hparams["rope_scaling"]["mrope_section"]
  1923. mrope_section += [0] * max(0, 4 - len(mrope_section))
  1924. self.gguf_writer.add_rope_dimension_sections(mrope_section)
  1925. def set_vocab(self):
  1926. try:
  1927. self._set_vocab_sentencepiece()
  1928. except FileNotFoundError:
  1929. self._set_vocab_gpt2()
  1930. def get_tensors(self) -> Iterator[tuple[str, Tensor]]:
  1931. for name, data in super().get_tensors():
  1932. if name.startswith("visual."):
  1933. continue
  1934. yield name, data
  1935. @Model.register("WavTokenizerDec")
  1936. class WavTokenizerDecModel(Model):
  1937. model_arch = gguf.MODEL_ARCH.WAVTOKENIZER_DEC
  1938. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1939. del bid # unused
  1940. if \
  1941. name.endswith("codebook.cluster_size") or \
  1942. name.endswith("codebook.embed_avg") or \
  1943. name.endswith("codebook.inited"):
  1944. logger.debug(f"Skipping {name!r}")
  1945. return []
  1946. logger.info(f"{self.map_tensor_name(name)} -> {data_torch.shape}")
  1947. return [(self.map_tensor_name(name), data_torch)]
  1948. def set_vocab(self):
  1949. self._set_vocab_none()
  1950. def set_gguf_parameters(self):
  1951. super().set_gguf_parameters()
  1952. self.gguf_writer.add_vocab_size (self.hparams["vocab_size"])
  1953. self.gguf_writer.add_features_length (self.hparams["n_embd_features"])
  1954. self.gguf_writer.add_feed_forward_length(self.hparams["n_ff"])
  1955. self.gguf_writer.add_group_norm_eps (self.hparams["group_norm_epsilon"])
  1956. self.gguf_writer.add_group_norm_groups (self.hparams["group_norm_groups"])
  1957. self.gguf_writer.add_posnet_embedding_length(self.hparams["posnet"]["n_embd"])
  1958. self.gguf_writer.add_posnet_block_count (self.hparams["posnet"]["n_layer"])
  1959. self.gguf_writer.add_convnext_embedding_length(self.hparams["convnext"]["n_embd"])
  1960. self.gguf_writer.add_convnext_block_count (self.hparams["convnext"]["n_layer"])
  1961. self.gguf_writer.add_causal_attention(False)
  1962. @Model.register("Qwen2MoeForCausalLM")
  1963. class Qwen2MoeModel(Model):
  1964. model_arch = gguf.MODEL_ARCH.QWEN2MOE
  1965. def set_gguf_parameters(self):
  1966. super().set_gguf_parameters()
  1967. if (n_experts := self.hparams.get("num_experts")) is not None:
  1968. self.gguf_writer.add_expert_count(n_experts)
  1969. if (moe_intermediate_size := self.hparams.get("moe_intermediate_size")) is not None:
  1970. self.gguf_writer.add_expert_feed_forward_length(moe_intermediate_size)
  1971. logger.info(f"gguf: expert feed forward length = {moe_intermediate_size}")
  1972. if (shared_expert_intermediate_size := self.hparams.get('shared_expert_intermediate_size')) is not None:
  1973. self.gguf_writer.add_expert_shared_feed_forward_length(shared_expert_intermediate_size)
  1974. logger.info(f"gguf: expert shared feed forward length = {shared_expert_intermediate_size}")
  1975. _experts: list[dict[str, Tensor]] | None = None
  1976. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  1977. # process the experts separately
  1978. if name.find("experts") != -1:
  1979. n_experts = self.hparams["num_experts"]
  1980. assert bid is not None
  1981. if self._experts is None:
  1982. self._experts = [{} for _ in range(self.block_count)]
  1983. self._experts[bid][name] = data_torch
  1984. if len(self._experts[bid]) >= n_experts * 3:
  1985. tensors: list[tuple[str, Tensor]] = []
  1986. # merge the experts into a single 3d tensor
  1987. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  1988. datas: list[Tensor] = []
  1989. for xid in range(n_experts):
  1990. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  1991. datas.append(self._experts[bid][ename])
  1992. del self._experts[bid][ename]
  1993. data_torch = torch.stack(datas, dim=0)
  1994. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  1995. new_name = self.map_tensor_name(merged_name)
  1996. tensors.append((new_name, data_torch))
  1997. return tensors
  1998. else:
  1999. return []
  2000. return [(self.map_tensor_name(name), data_torch)]
  2001. def prepare_tensors(self):
  2002. super().prepare_tensors()
  2003. if self._experts is not None:
  2004. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2005. experts = [k for d in self._experts for k in d.keys()]
  2006. if len(experts) > 0:
  2007. raise ValueError(f"Unprocessed experts: {experts}")
  2008. @Model.register("Qwen3ForCausalLM")
  2009. class Qwen3Model(Qwen2Model):
  2010. model_arch = gguf.MODEL_ARCH.QWEN3
  2011. @Model.register("Qwen3MoeForCausalLM")
  2012. class Qwen3MoeModel(Qwen2MoeModel):
  2013. model_arch = gguf.MODEL_ARCH.QWEN3MOE
  2014. @Model.register("GPT2LMHeadModel")
  2015. class GPT2Model(Model):
  2016. model_arch = gguf.MODEL_ARCH.GPT2
  2017. def set_gguf_parameters(self):
  2018. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  2019. self.gguf_writer.add_context_length(self.hparams["n_ctx"])
  2020. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2021. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2022. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2023. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2024. self.gguf_writer.add_file_type(self.ftype)
  2025. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2026. del bid # unused
  2027. tensors: list[tuple[str, Tensor]] = []
  2028. # we don't need these
  2029. if name.endswith((".attn.bias", ".attn.masked_bias")):
  2030. return tensors
  2031. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_proj.weight")):
  2032. data_torch = data_torch.transpose(1, 0)
  2033. new_name = self.map_tensor_name(name)
  2034. tensors.append((new_name, data_torch))
  2035. return tensors
  2036. @Model.register("PhiForCausalLM")
  2037. class Phi2Model(Model):
  2038. model_arch = gguf.MODEL_ARCH.PHI2
  2039. def set_gguf_parameters(self):
  2040. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2041. rot_pct = self.find_hparam(["partial_rotary_factor"])
  2042. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2043. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2044. self.gguf_writer.add_context_length(self.find_hparam(["n_positions", "max_position_embeddings"]))
  2045. self.gguf_writer.add_embedding_length(n_embd)
  2046. self.gguf_writer.add_feed_forward_length(4 * n_embd)
  2047. self.gguf_writer.add_block_count(block_count)
  2048. self.gguf_writer.add_head_count(n_head)
  2049. self.gguf_writer.add_head_count_kv(n_head)
  2050. self.gguf_writer.add_layer_norm_eps(self.find_hparam(["layer_norm_epsilon", "layer_norm_eps"]))
  2051. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  2052. self.gguf_writer.add_file_type(self.ftype)
  2053. self.gguf_writer.add_add_bos_token(False)
  2054. @Model.register("Phi3ForCausalLM")
  2055. class Phi3MiniModel(Model):
  2056. model_arch = gguf.MODEL_ARCH.PHI3
  2057. def set_vocab(self):
  2058. # Phi-4 model uses GPT2Tokenizer
  2059. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2060. if tokenizer_config_file.is_file():
  2061. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2062. tokenizer_config_json = json.load(f)
  2063. tokenizer_class = tokenizer_config_json['tokenizer_class']
  2064. if tokenizer_class == 'GPT2Tokenizer':
  2065. return self._set_vocab_gpt2()
  2066. from sentencepiece import SentencePieceProcessor
  2067. tokenizer_path = self.dir_model / 'tokenizer.model'
  2068. if not tokenizer_path.is_file():
  2069. raise ValueError(f'Error: Missing {tokenizer_path}')
  2070. tokenizer = SentencePieceProcessor()
  2071. tokenizer.LoadFromFile(str(tokenizer_path))
  2072. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2073. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2074. scores: list[float] = [-10000.0] * vocab_size
  2075. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2076. for token_id in range(tokenizer.vocab_size()):
  2077. piece = tokenizer.IdToPiece(token_id)
  2078. text = piece.encode("utf-8")
  2079. score = tokenizer.GetScore(token_id)
  2080. toktype = SentencePieceTokenTypes.NORMAL
  2081. if tokenizer.IsUnknown(token_id):
  2082. toktype = SentencePieceTokenTypes.UNKNOWN
  2083. elif tokenizer.IsControl(token_id):
  2084. toktype = SentencePieceTokenTypes.CONTROL
  2085. elif tokenizer.IsUnused(token_id):
  2086. toktype = SentencePieceTokenTypes.UNUSED
  2087. elif tokenizer.IsByte(token_id):
  2088. toktype = SentencePieceTokenTypes.BYTE
  2089. tokens[token_id] = text
  2090. scores[token_id] = score
  2091. toktypes[token_id] = toktype
  2092. added_tokens_file = self.dir_model / 'added_tokens.json'
  2093. if added_tokens_file.is_file():
  2094. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2095. added_tokens_json = json.load(f)
  2096. for key in added_tokens_json:
  2097. token_id = added_tokens_json[key]
  2098. if token_id >= vocab_size:
  2099. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  2100. continue
  2101. tokens[token_id] = key.encode("utf-8")
  2102. scores[token_id] = -1000.0
  2103. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2104. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2105. if tokenizer_config_file.is_file():
  2106. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2107. tokenizer_config_json = json.load(f)
  2108. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2109. for token_id, foken_data in added_tokens_decoder.items():
  2110. token_id = int(token_id)
  2111. token = foken_data["content"].encode("utf-8")
  2112. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2113. if tokens[token_id] != token:
  2114. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2115. tokens[token_id] = token
  2116. scores[token_id] = -1000.0
  2117. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2118. if foken_data.get("special"):
  2119. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2120. tokenizer_file = self.dir_model / 'tokenizer.json'
  2121. if tokenizer_file.is_file():
  2122. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2123. tokenizer_json = json.load(f)
  2124. added_tokens = tokenizer_json.get("added_tokens", [])
  2125. for foken_data in added_tokens:
  2126. token_id = int(foken_data["id"])
  2127. token = foken_data["content"].encode("utf-8")
  2128. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2129. if tokens[token_id] != token:
  2130. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2131. tokens[token_id] = token
  2132. scores[token_id] = -1000.0
  2133. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2134. if foken_data.get("special"):
  2135. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2136. self.gguf_writer.add_tokenizer_model("llama")
  2137. self.gguf_writer.add_tokenizer_pre("default")
  2138. self.gguf_writer.add_token_list(tokens)
  2139. self.gguf_writer.add_token_scores(scores)
  2140. self.gguf_writer.add_token_types(toktypes)
  2141. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2142. special_vocab.add_to_gguf(self.gguf_writer)
  2143. def set_gguf_parameters(self):
  2144. block_count = self.find_hparam(["num_hidden_layers", "n_layer"])
  2145. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2146. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2147. n_head_kv = self.find_hparam(["num_key_value_heads", "n_head_kv"])
  2148. rms_eps = self.find_hparam(["rms_norm_eps"])
  2149. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2150. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2151. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2152. rope_dims = int(rot_pct * n_embd) // n_head
  2153. self.gguf_writer.add_context_length(max_pos_embds)
  2154. self.gguf_writer.add_rope_scaling_orig_ctx_len(orig_max_pos_embds)
  2155. self.gguf_writer.add_embedding_length(n_embd)
  2156. self.gguf_writer.add_feed_forward_length(self.find_hparam(["intermediate_size"]))
  2157. self.gguf_writer.add_block_count(block_count)
  2158. self.gguf_writer.add_head_count(n_head)
  2159. self.gguf_writer.add_head_count_kv(n_head_kv)
  2160. self.gguf_writer.add_layer_norm_rms_eps(rms_eps)
  2161. self.gguf_writer.add_rope_dimension_count(rope_dims)
  2162. self.gguf_writer.add_rope_freq_base(self.find_hparam(["rope_theta"]))
  2163. self.gguf_writer.add_file_type(self.ftype)
  2164. sliding_window = self.hparams.get("sliding_window")
  2165. # use zero value of sliding_window to distinguish Phi-4 from other PHI3 models
  2166. if sliding_window is None:
  2167. sliding_window = 0
  2168. self.gguf_writer.add_sliding_window(sliding_window)
  2169. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  2170. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  2171. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  2172. max_pos_embds = self.find_hparam(["n_positions", "max_position_embeddings"])
  2173. orig_max_pos_embds = self.find_hparam(["original_max_position_embeddings"])
  2174. rot_pct = self.hparams.get("partial_rotary_factor", 1.0)
  2175. rope_dims = int(rot_pct * n_embd) // n_head
  2176. # write rope scaling for long context (128k) model
  2177. rope_scaling = self.find_hparam(['rope_scaling'], True)
  2178. if rope_scaling is None:
  2179. return
  2180. scale = max_pos_embds / orig_max_pos_embds
  2181. rope_scaling_type = rope_scaling.get('type', '').lower()
  2182. if len(rope_scaling_type) == 0:
  2183. raise KeyError('Missing the required key rope_scaling.type')
  2184. if rope_scaling_type == 'su' or rope_scaling_type == 'longrope':
  2185. attn_factor = math.sqrt(1 + math.log(scale) / math.log(orig_max_pos_embds)) if scale > 1.0 else 1.0
  2186. elif rope_scaling_type == 'yarn':
  2187. attn_factor = 0.1 * math.log(scale) + 1.0 if scale > 1.0 else 1.0
  2188. else:
  2189. raise NotImplementedError(f'The rope scaling type {rope_scaling_type} is not supported yet')
  2190. self.gguf_writer.add_rope_scaling_attn_factors(attn_factor)
  2191. long_factors = rope_scaling.get('long_factor', None)
  2192. short_factors = rope_scaling.get('short_factor', None)
  2193. if long_factors is None or short_factors is None:
  2194. raise KeyError('Missing the required key rope_scaling.long_factor or rope_scaling_short_factor')
  2195. if len(long_factors) != len(short_factors) or len(long_factors) != rope_dims / 2:
  2196. raise ValueError(f'The length of rope long and short factors must be {rope_dims / 2}. long_factors = {len(long_factors)}, short_factors = {len(short_factors)}.')
  2197. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_LONG), torch.tensor(long_factors, dtype=torch.float32))
  2198. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
  2199. @Model.register("PhiMoEForCausalLM")
  2200. class PhiMoeModel(Phi3MiniModel):
  2201. model_arch = gguf.MODEL_ARCH.PHIMOE
  2202. _experts: list[dict[str, Tensor]] | None = None
  2203. def set_gguf_parameters(self):
  2204. super().set_gguf_parameters()
  2205. self.gguf_writer.add_expert_used_count(self.hparams["num_experts_per_tok"])
  2206. self.gguf_writer.add_expert_count(self.hparams["num_local_experts"])
  2207. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2208. # process the experts separately
  2209. if name.find("block_sparse_moe.experts") != -1:
  2210. n_experts = self.hparams["num_local_experts"]
  2211. assert bid is not None
  2212. if self._experts is None:
  2213. self._experts = [{} for _ in range(self.block_count)]
  2214. self._experts[bid][name] = data_torch
  2215. if len(self._experts[bid]) >= n_experts * 3:
  2216. tensors: list[tuple[str, Tensor]] = []
  2217. # merge the experts into a single 3d tensor
  2218. for w_name in ["w1", "w2", "w3"]:
  2219. datas: list[Tensor] = []
  2220. for xid in range(n_experts):
  2221. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{w_name}.weight"
  2222. datas.append(self._experts[bid][ename])
  2223. del self._experts[bid][ename]
  2224. data_torch = torch.stack(datas, dim=0)
  2225. merged_name = f"model.layers.{bid}.block_sparse_moe.experts.{w_name}.weight"
  2226. new_name = self.map_tensor_name(merged_name)
  2227. tensors.append((new_name, data_torch))
  2228. return tensors
  2229. else:
  2230. return []
  2231. return [(self.map_tensor_name(name), data_torch)]
  2232. def prepare_tensors(self):
  2233. super().prepare_tensors()
  2234. if self._experts is not None:
  2235. # flatten `list[dict[str, Tensor]]` into `list[str]`
  2236. experts = [k for d in self._experts for k in d.keys()]
  2237. if len(experts) > 0:
  2238. raise ValueError(f"Unprocessed experts: {experts}")
  2239. @Model.register("PlamoForCausalLM")
  2240. class PlamoModel(Model):
  2241. model_arch = gguf.MODEL_ARCH.PLAMO
  2242. def set_vocab(self):
  2243. self._set_vocab_sentencepiece()
  2244. def set_gguf_parameters(self):
  2245. hparams = self.hparams
  2246. block_count = hparams["num_hidden_layers"]
  2247. self.gguf_writer.add_context_length(4096) # not in config.json
  2248. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2249. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2250. self.gguf_writer.add_block_count(block_count)
  2251. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2252. self.gguf_writer.add_head_count_kv(5) # hparams["num_key_value_heads"]) is wrong
  2253. self.gguf_writer.add_layer_norm_rms_eps(hparams["rms_norm_eps"])
  2254. self.gguf_writer.add_file_type(self.ftype)
  2255. def shuffle_attn_q_weight(self, data_torch):
  2256. assert data_torch.size() == (5120, 5120)
  2257. data_torch = data_torch.reshape(8, 5, 128, 5120)
  2258. data_torch = torch.permute(data_torch, (1, 0, 2, 3))
  2259. data_torch = torch.reshape(data_torch, (5120, 5120))
  2260. return data_torch
  2261. def shuffle_attn_output_weight(self, data_torch):
  2262. assert data_torch.size() == (5120, 5120)
  2263. data_torch = data_torch.reshape(5120, 8, 5, 128)
  2264. data_torch = torch.permute(data_torch, (0, 2, 1, 3))
  2265. data_torch = torch.reshape(data_torch, (5120, 5120))
  2266. return data_torch
  2267. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2268. del bid # unused
  2269. new_name = self.map_tensor_name(name)
  2270. # shuffle for broadcasting of gqa in ggml_mul_mat
  2271. if new_name.endswith("attn_q.weight"):
  2272. data_torch = self.shuffle_attn_q_weight(data_torch)
  2273. elif new_name.endswith("attn_output.weight"):
  2274. data_torch = self.shuffle_attn_output_weight(data_torch)
  2275. return [(new_name, data_torch)]
  2276. @Model.register("CodeShellForCausalLM")
  2277. class CodeShellModel(Model):
  2278. model_arch = gguf.MODEL_ARCH.CODESHELL
  2279. def set_gguf_parameters(self):
  2280. block_count = self.hparams["n_layer"]
  2281. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  2282. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  2283. self.gguf_writer.add_feed_forward_length(4 * self.hparams["n_embd"])
  2284. self.gguf_writer.add_block_count(block_count)
  2285. self.gguf_writer.add_head_count(self.hparams["n_head"])
  2286. self.gguf_writer.add_head_count_kv(self.hparams["num_query_groups"])
  2287. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  2288. self.gguf_writer.add_file_type(self.ftype)
  2289. self.gguf_writer.add_rope_freq_base(10000.0)
  2290. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2291. self.gguf_writer.add_rope_scaling_factor(1.0)
  2292. _has_tok_embd = False
  2293. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2294. del bid # unused
  2295. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  2296. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  2297. new_name = self.map_tensor_name(name)
  2298. # assuming token_embd.weight is seen before output.weight
  2299. if not self._has_tok_embd and new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  2300. # even though the tensor file(s) does not contain the word embeddings they are still in the weight map
  2301. if self.tensor_names and "transformer.wte.weight" in self.tensor_names:
  2302. logger.debug(f"{tok_embd_name} not found before {output_name}, assuming they are tied")
  2303. self.tensor_names.remove("transformer.wte.weight")
  2304. elif new_name == tok_embd_name:
  2305. self._has_tok_embd = True
  2306. return [(new_name, data_torch)]
  2307. @Model.register("InternLM2ForCausalLM")
  2308. class InternLM2Model(Model):
  2309. model_arch = gguf.MODEL_ARCH.INTERNLM2
  2310. def set_vocab(self):
  2311. # (TODO): Is there a better way?
  2312. # Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
  2313. # \x00 specially and convert it into an emoji character to prevent it from being mistakenly
  2314. # recognized as an empty string in C++.
  2315. from sentencepiece import SentencePieceProcessor
  2316. from sentencepiece import sentencepiece_model_pb2 as model
  2317. tokenizer_path = self.dir_model / 'tokenizer.model'
  2318. tokens: list[bytes] = []
  2319. scores: list[float] = []
  2320. toktypes: list[int] = []
  2321. if not tokenizer_path.is_file():
  2322. logger.error(f'Error: Missing {tokenizer_path}')
  2323. sys.exit(1)
  2324. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2325. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2326. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2327. tokenizer = SentencePieceProcessor()
  2328. tokenizer.LoadFromFile(str(tokenizer_path))
  2329. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2330. for token_id in range(vocab_size):
  2331. piece = tokenizer.IdToPiece(token_id)
  2332. text = piece.encode("utf-8")
  2333. score = tokenizer.GetScore(token_id)
  2334. if text == b"\x00":
  2335. # (TODO): fixme
  2336. # Hack here and replace the \x00 characters.
  2337. logger.warning(f"InternLM2 convert token '{text}' to '🐉'!")
  2338. text = "🐉".encode("utf-8")
  2339. toktype = SentencePieceTokenTypes.NORMAL
  2340. if tokenizer.IsUnknown(token_id):
  2341. toktype = SentencePieceTokenTypes.UNKNOWN
  2342. elif tokenizer.IsControl(token_id):
  2343. toktype = SentencePieceTokenTypes.CONTROL
  2344. elif tokenizer.IsUnused(token_id):
  2345. toktype = SentencePieceTokenTypes.UNUSED
  2346. elif tokenizer.IsByte(token_id):
  2347. toktype = SentencePieceTokenTypes.BYTE
  2348. # take care of ununsed raw token
  2349. if piece.startswith('[UNUSED'):
  2350. toktype = SentencePieceTokenTypes.UNUSED
  2351. tokens.append(text)
  2352. scores.append(score)
  2353. toktypes.append(toktype)
  2354. added_tokens_file = self.dir_model / 'added_tokens.json'
  2355. if added_tokens_file.is_file():
  2356. with open(added_tokens_file, "r", encoding="utf-8") as f:
  2357. added_tokens_json = json.load(f)
  2358. for key in added_tokens_json:
  2359. tokens.append(key.encode("utf-8"))
  2360. scores.append(-1000.0)
  2361. toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
  2362. chat_eos_token = '<|im_end|>'
  2363. chat_eos_token_id = None
  2364. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2365. if tokenizer_config_file.is_file():
  2366. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2367. tokenizer_config_json = json.load(f)
  2368. added_tokens_decoder = tokenizer_config_json.get("added_tokens_decoder", {})
  2369. for token_id, foken_data in added_tokens_decoder.items():
  2370. token_id = int(token_id)
  2371. token = foken_data["content"]
  2372. if token == chat_eos_token:
  2373. chat_eos_token_id = token_id
  2374. token = token.encode("utf-8")
  2375. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2376. if tokens[token_id] != token:
  2377. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2378. tokens[token_id] = token
  2379. scores[token_id] = -1000.0
  2380. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2381. if foken_data.get("special"):
  2382. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2383. tokenizer_file = self.dir_model / 'tokenizer.json'
  2384. if tokenizer_file.is_file():
  2385. with open(tokenizer_file, "r", encoding="utf-8") as f:
  2386. tokenizer_json = json.load(f)
  2387. added_tokens = tokenizer_json.get("added_tokens", [])
  2388. for foken_data in added_tokens:
  2389. token_id = int(foken_data["id"])
  2390. token = foken_data["content"]
  2391. if token == chat_eos_token:
  2392. chat_eos_token_id = token_id
  2393. token = token.encode("utf-8")
  2394. if toktypes[token_id] != SentencePieceTokenTypes.UNUSED:
  2395. if tokens[token_id] != token:
  2396. logger.warning(f'replacing token {token_id}: {tokens[token_id].decode("utf-8")!r} -> {token.decode("utf-8")!r}')
  2397. tokens[token_id] = token
  2398. scores[token_id] = -1000.0
  2399. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  2400. if foken_data.get("special"):
  2401. toktypes[token_id] = SentencePieceTokenTypes.CONTROL
  2402. self.gguf_writer.add_tokenizer_model("llama")
  2403. self.gguf_writer.add_tokenizer_pre("default")
  2404. self.gguf_writer.add_token_list(tokens)
  2405. self.gguf_writer.add_token_scores(scores)
  2406. self.gguf_writer.add_token_types(toktypes)
  2407. self.gguf_writer.add_add_space_prefix(add_prefix)
  2408. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2409. old_eos = special_vocab.special_token_ids["eos"]
  2410. if chat_eos_token_id is not None:
  2411. # For the chat model, we replace the eos with '<|im_end|>'.
  2412. # TODO: this is a hack, should be fixed
  2413. # https://github.com/ggml-org/llama.cpp/pull/6745#issuecomment-2067687048
  2414. special_vocab.special_token_ids["eos"] = chat_eos_token_id
  2415. logger.warning(f"Replace eos:{old_eos} with a special token:{chat_eos_token_id}"
  2416. " in chat mode so that the conversation can end normally.")
  2417. special_vocab.add_to_gguf(self.gguf_writer)
  2418. def set_gguf_parameters(self):
  2419. self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
  2420. self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
  2421. self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
  2422. self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
  2423. self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
  2424. self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
  2425. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2426. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
  2427. self.gguf_writer.add_file_type(self.ftype)
  2428. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2429. if self.hparams["rope_scaling"].get("type") == "linear":
  2430. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2431. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2432. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2433. num_heads = self.hparams["num_attention_heads"]
  2434. num_kv_heads = self.hparams["num_key_value_heads"]
  2435. n_embd = self.hparams["hidden_size"]
  2436. q_per_kv = num_heads // num_kv_heads
  2437. head_dim = n_embd // num_heads
  2438. num_groups = num_heads // q_per_kv
  2439. if bid is not None and f"model.layers.{bid}.attention.wqkv" in name:
  2440. qkv = data_torch
  2441. qkv = qkv.reshape((num_groups, q_per_kv + 2, head_dim, n_embd))
  2442. q, k, v = qkv[:, : q_per_kv], qkv[:, -2], qkv[:, -1]
  2443. # The model weights of q and k equire additional reshape.
  2444. q = LlamaModel.permute(q.reshape((-1, q.shape[-1])), num_heads, num_heads)
  2445. k = LlamaModel.permute(k.reshape((-1, k.shape[-1])), num_heads, num_kv_heads)
  2446. v = v.reshape((-1, v.shape[-1]))
  2447. return [
  2448. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), q),
  2449. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), k),
  2450. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v),
  2451. ]
  2452. else:
  2453. return [(self.map_tensor_name(name), data_torch)]
  2454. @Model.register("InternLM3ForCausalLM")
  2455. class InternLM3Model(Model):
  2456. model_arch = gguf.MODEL_ARCH.LLAMA
  2457. def set_vocab(self):
  2458. tokens, scores, toktypes = self._create_vocab_sentencepiece()
  2459. self.gguf_writer.add_tokenizer_model("llama")
  2460. self.gguf_writer.add_tokenizer_pre("default")
  2461. self.gguf_writer.add_token_list(tokens)
  2462. self.gguf_writer.add_token_scores(scores)
  2463. self.gguf_writer.add_token_types(toktypes)
  2464. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2465. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  2466. if tokenizer_config_file.is_file():
  2467. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  2468. tokenizer_config_json = json.load(f)
  2469. if "add_prefix_space" in tokenizer_config_json:
  2470. self.gguf_writer.add_add_space_prefix(tokenizer_config_json["add_prefix_space"])
  2471. if "added_tokens_decoder" in tokenizer_config_json:
  2472. for token_id, token_data in tokenizer_config_json["added_tokens_decoder"].items():
  2473. if token_data.get("special"):
  2474. token_id = int(token_id)
  2475. token = token_data["content"]
  2476. special_vocab._set_special_token(token, token_id)
  2477. # update eos token
  2478. if token == '<|im_end|>' and "eos" in special_vocab.special_token_ids:
  2479. special_vocab.special_token_ids["eos"] = token_id
  2480. special_vocab.add_to_gguf(self.gguf_writer)
  2481. def set_gguf_parameters(self):
  2482. super().set_gguf_parameters()
  2483. hparams = self.hparams
  2484. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  2485. if "head_dim" in hparams:
  2486. rope_dim = hparams["head_dim"]
  2487. else:
  2488. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  2489. self.gguf_writer.add_rope_dimension_count(rope_dim)
  2490. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  2491. if self.hparams["rope_scaling"].get("type") == "linear" or self.hparams["rope_scaling"].get("rope_type") == "linear":
  2492. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2493. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  2494. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2495. n_head = self.hparams["num_attention_heads"]
  2496. n_kv_head = self.hparams.get("num_key_value_heads")
  2497. if name.endswith(("q_proj.weight", "q_proj.bias")):
  2498. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  2499. if name.endswith(("k_proj.weight", "k_proj.bias")):
  2500. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  2501. return [(self.map_tensor_name(name), data_torch)]
  2502. @Model.register("BertModel", "BertForMaskedLM", "CamembertModel")
  2503. class BertModel(Model):
  2504. model_arch = gguf.MODEL_ARCH.BERT
  2505. def __init__(self, *args, **kwargs):
  2506. super().__init__(*args, **kwargs)
  2507. self.vocab_size = None
  2508. def set_gguf_parameters(self):
  2509. super().set_gguf_parameters()
  2510. self.gguf_writer.add_causal_attention(False)
  2511. # get pooling path
  2512. pooling_path = None
  2513. module_path = self.dir_model / "modules.json"
  2514. if module_path.is_file():
  2515. with open(module_path, encoding="utf-8") as f:
  2516. modules = json.load(f)
  2517. for mod in modules:
  2518. if mod["type"] == "sentence_transformers.models.Pooling":
  2519. pooling_path = mod["path"]
  2520. break
  2521. # get pooling type
  2522. if pooling_path is not None:
  2523. with open(self.dir_model / pooling_path / "config.json", encoding="utf-8") as f:
  2524. pooling = json.load(f)
  2525. if pooling["pooling_mode_mean_tokens"]:
  2526. pooling_type = gguf.PoolingType.MEAN
  2527. elif pooling["pooling_mode_cls_token"]:
  2528. pooling_type = gguf.PoolingType.CLS
  2529. else:
  2530. raise NotImplementedError("Only MEAN and CLS pooling types supported")
  2531. self.gguf_writer.add_pooling_type(pooling_type)
  2532. def set_vocab(self):
  2533. tokens, toktypes, tokpre = self.get_vocab_base()
  2534. self.vocab_size = len(tokens)
  2535. # we need this to validate the size of the token_type embeddings
  2536. # though currently we are passing all zeros to the token_type embeddings
  2537. # "Sequence A" or "Sequence B"
  2538. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2539. # convert to phantom space vocab
  2540. def phantom(tok):
  2541. if tok.startswith("[") and tok.endswith("]"):
  2542. return tok
  2543. if tok.startswith("##"):
  2544. return tok[2:]
  2545. return "\u2581" + tok
  2546. tokens = list(map(phantom, tokens))
  2547. # add vocab to gguf
  2548. self.gguf_writer.add_tokenizer_model("bert")
  2549. self.gguf_writer.add_tokenizer_pre(tokpre)
  2550. self.gguf_writer.add_token_list(tokens)
  2551. self.gguf_writer.add_token_types(toktypes)
  2552. # handle special tokens
  2553. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2554. special_vocab.add_to_gguf(self.gguf_writer)
  2555. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2556. del bid # unused
  2557. if name.startswith("bert."):
  2558. name = name[5:]
  2559. if name.endswith(".gamma"):
  2560. name = name[:-6] + ".weight"
  2561. if name.endswith(".beta"):
  2562. name = name[:-5] + ".bias"
  2563. # we are only using BERT for embeddings so we don't need the pooling layer
  2564. if name in ("embeddings.position_ids", "pooler.dense.weight", "pooler.dense.bias"):
  2565. return [] # we don't need these
  2566. if name.startswith("cls.predictions"):
  2567. return []
  2568. if name.startswith("cls.seq_relationship"):
  2569. return []
  2570. return [(self.map_tensor_name(name), data_torch)]
  2571. @Model.register("RobertaModel")
  2572. class RobertaModel(BertModel):
  2573. model_arch = gguf.MODEL_ARCH.BERT
  2574. def __init__(self, *args, **kwargs):
  2575. super().__init__(*args, **kwargs)
  2576. # we need the pad_token_id to know how to chop down position_embd matrix
  2577. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2578. self._position_offset = 1 + pad_token_id
  2579. if "max_position_embeddings" in self.hparams:
  2580. self.hparams["max_position_embeddings"] -= self._position_offset
  2581. else:
  2582. self._position_offset = None
  2583. def set_vocab(self):
  2584. """Support BPE tokenizers for roberta models"""
  2585. bpe_tok_path = self.dir_model / "tokenizer.json"
  2586. if bpe_tok_path.exists():
  2587. self._set_vocab_gpt2()
  2588. self.gguf_writer.add_add_bos_token(True)
  2589. self.gguf_writer.add_add_eos_token(True)
  2590. # we need this to validate the size of the token_type embeddings
  2591. # though currently we are passing all zeros to the token_type embeddings
  2592. # "Sequence A" or "Sequence B"
  2593. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2594. else:
  2595. return super().set_vocab()
  2596. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2597. # if name starts with "roberta.", remove the prefix
  2598. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2599. if name.startswith("roberta."):
  2600. name = name[8:]
  2601. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2602. if name == "embeddings.position_embeddings.weight":
  2603. if self._position_offset is not None:
  2604. data_torch = data_torch[self._position_offset:,:]
  2605. return super().modify_tensors(data_torch, name, bid)
  2606. @Model.register("NomicBertModel")
  2607. class NomicBertModel(BertModel):
  2608. model_arch = gguf.MODEL_ARCH.NOMIC_BERT
  2609. def __init__(self, *args, **kwargs):
  2610. super().__init__(*args, **kwargs)
  2611. # the HF config claims n_ctx=8192, but it uses RoPE scaling
  2612. self.hparams["n_ctx"] = 2048
  2613. # SwigLU activation
  2614. assert self.hparams["activation_function"] == "swiglu"
  2615. # this doesn't do anything in the HF version
  2616. assert self.hparams["causal"] is False
  2617. # no bias tensors
  2618. assert self.hparams["qkv_proj_bias"] is False
  2619. assert self.hparams["mlp_fc1_bias"] is False
  2620. assert self.hparams["mlp_fc2_bias"] is False
  2621. # norm at end of layer
  2622. assert self.hparams["prenorm"] is False
  2623. # standard RoPE
  2624. assert self.hparams["rotary_emb_fraction"] == 1.0
  2625. assert self.hparams["rotary_emb_interleaved"] is False
  2626. assert self.hparams["rotary_emb_scale_base"] is None
  2627. def set_gguf_parameters(self):
  2628. super().set_gguf_parameters()
  2629. self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
  2630. @Model.register("XLMRobertaModel", "XLMRobertaForSequenceClassification")
  2631. class XLMRobertaModel(BertModel):
  2632. model_arch = gguf.MODEL_ARCH.BERT
  2633. def __init__(self, *args, **kwargs):
  2634. super().__init__(*args, **kwargs)
  2635. # we need the pad_token_id to know how to chop down position_embd matrix
  2636. if (pad_token_id := self.hparams.get("pad_token_id")) is not None:
  2637. self._position_offset = 1 + pad_token_id
  2638. if "max_position_embeddings" in self.hparams:
  2639. self.hparams["max_position_embeddings"] -= self._position_offset
  2640. else:
  2641. self._position_offset = None
  2642. def set_vocab(self):
  2643. # to avoid TypeError: Descriptors cannot be created directly
  2644. # exception when importing sentencepiece_model_pb2
  2645. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  2646. from sentencepiece import SentencePieceProcessor
  2647. from sentencepiece import sentencepiece_model_pb2 as model
  2648. tokenizer_path = self.dir_model / 'sentencepiece.bpe.model'
  2649. if not tokenizer_path.is_file():
  2650. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  2651. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  2652. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  2653. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  2654. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  2655. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  2656. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  2657. tokenizer = SentencePieceProcessor()
  2658. tokenizer.LoadFromFile(str(tokenizer_path))
  2659. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  2660. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  2661. scores: list[float] = [-10000.0] * vocab_size
  2662. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  2663. for token_id in range(tokenizer.vocab_size()):
  2664. piece = tokenizer.IdToPiece(token_id)
  2665. text = piece.encode("utf-8")
  2666. score = tokenizer.GetScore(token_id)
  2667. toktype = SentencePieceTokenTypes.NORMAL
  2668. if tokenizer.IsUnknown(token_id):
  2669. toktype = SentencePieceTokenTypes.UNKNOWN
  2670. elif tokenizer.IsControl(token_id):
  2671. toktype = SentencePieceTokenTypes.CONTROL
  2672. elif tokenizer.IsUnused(token_id):
  2673. toktype = SentencePieceTokenTypes.UNUSED
  2674. elif tokenizer.IsByte(token_id):
  2675. toktype = SentencePieceTokenTypes.BYTE
  2676. tokens[token_id] = text
  2677. scores[token_id] = score
  2678. toktypes[token_id] = toktype
  2679. if vocab_size > len(tokens):
  2680. pad_count = vocab_size - len(tokens)
  2681. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  2682. for i in range(1, pad_count + 1):
  2683. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  2684. scores.append(-1000.0)
  2685. toktypes.append(SentencePieceTokenTypes.UNUSED)
  2686. # realign tokens (see HF tokenizer code)
  2687. tokens = [b'<s>', b'<pad>', b'</s>', b'<unk>'] + tokens[3:-1]
  2688. scores = [0.0, 0.0, 0.0, 0.0] + scores[3:-1]
  2689. toktypes = [
  2690. SentencePieceTokenTypes.CONTROL,
  2691. SentencePieceTokenTypes.CONTROL,
  2692. SentencePieceTokenTypes.CONTROL,
  2693. SentencePieceTokenTypes.UNKNOWN,
  2694. ] + toktypes[3:-1]
  2695. self.gguf_writer.add_tokenizer_model("t5")
  2696. self.gguf_writer.add_tokenizer_pre("default")
  2697. self.gguf_writer.add_token_list(tokens)
  2698. self.gguf_writer.add_token_scores(scores)
  2699. self.gguf_writer.add_token_types(toktypes)
  2700. self.gguf_writer.add_add_space_prefix(add_prefix)
  2701. self.gguf_writer.add_token_type_count(self.hparams.get("type_vocab_size", 1))
  2702. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  2703. if precompiled_charsmap:
  2704. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  2705. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  2706. special_vocab.add_to_gguf(self.gguf_writer)
  2707. self.gguf_writer.add_add_bos_token(True)
  2708. self.gguf_writer.add_add_eos_token(True)
  2709. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2710. # if name starts with "roberta.", remove the prefix
  2711. # e.g. https://huggingface.co/BAAI/bge-reranker-v2-m3/tree/main
  2712. if name.startswith("roberta."):
  2713. name = name[8:]
  2714. # position embeddings start at pad_token_id + 1, so just chop down the weight tensor
  2715. if name == "embeddings.position_embeddings.weight":
  2716. if self._position_offset is not None:
  2717. data_torch = data_torch[self._position_offset:,:]
  2718. return super().modify_tensors(data_torch, name, bid)
  2719. @Model.register("GemmaForCausalLM")
  2720. class GemmaModel(Model):
  2721. model_arch = gguf.MODEL_ARCH.GEMMA
  2722. def set_vocab(self):
  2723. self._set_vocab_sentencepiece()
  2724. # TODO: these special tokens should be exported only for the CodeGemma family
  2725. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=False,
  2726. special_token_types = ['prefix', 'suffix', 'middle', 'fsep', 'eot'])
  2727. special_vocab._set_special_token("prefix", 67)
  2728. special_vocab._set_special_token("suffix", 69)
  2729. special_vocab._set_special_token("middle", 68)
  2730. special_vocab._set_special_token("fsep", 70)
  2731. special_vocab._set_special_token("eot", 107)
  2732. special_vocab.chat_template = None # do not add it twice
  2733. special_vocab.add_to_gguf(self.gguf_writer)
  2734. self.gguf_writer.add_add_space_prefix(False)
  2735. def set_gguf_parameters(self):
  2736. hparams = self.hparams
  2737. block_count = hparams["num_hidden_layers"]
  2738. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2739. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2740. self.gguf_writer.add_block_count(block_count)
  2741. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2742. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2743. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2744. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2745. self.gguf_writer.add_key_length(hparams["head_dim"])
  2746. self.gguf_writer.add_value_length(hparams["head_dim"])
  2747. self.gguf_writer.add_file_type(self.ftype)
  2748. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2749. del bid # unused
  2750. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2751. # To prevent errors, skip loading lm_head.weight.
  2752. if name == "lm_head.weight":
  2753. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2754. return []
  2755. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2756. if name.endswith("norm.weight"):
  2757. data_torch = data_torch + 1
  2758. return [(self.map_tensor_name(name), data_torch)]
  2759. @Model.register("Gemma2ForCausalLM")
  2760. class Gemma2Model(Model):
  2761. model_arch = gguf.MODEL_ARCH.GEMMA2
  2762. def set_vocab(self):
  2763. self._set_vocab_sentencepiece()
  2764. self.gguf_writer.add_add_space_prefix(False)
  2765. def set_gguf_parameters(self):
  2766. hparams = self.hparams
  2767. block_count = hparams["num_hidden_layers"]
  2768. self.gguf_writer.add_context_length(hparams["max_position_embeddings"])
  2769. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2770. self.gguf_writer.add_block_count(block_count)
  2771. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2772. self.gguf_writer.add_head_count(hparams["num_attention_heads"])
  2773. self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"] if "num_key_value_heads" in hparams else hparams["num_attention_heads"])
  2774. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
  2775. self.gguf_writer.add_key_length(hparams["head_dim"])
  2776. self.gguf_writer.add_value_length(hparams["head_dim"])
  2777. self.gguf_writer.add_file_type(self.ftype)
  2778. self.gguf_writer.add_attn_logit_softcapping(
  2779. self.hparams["attn_logit_softcapping"]
  2780. )
  2781. self.gguf_writer.add_final_logit_softcapping(
  2782. self.hparams["final_logit_softcapping"]
  2783. )
  2784. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  2785. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2786. del bid # unused
  2787. # lm_head is not used in llama.cpp, while autoawq will include this tensor in model
  2788. # To prevent errors, skip loading lm_head.weight.
  2789. if name == "lm_head.weight":
  2790. logger.debug(f"Skipping get tensor {name!r} in safetensors so that convert can end normally.")
  2791. return []
  2792. # ref: https://github.com/huggingface/transformers/blob/fc37f38915372c15992b540dfcbbe00a916d4fc6/src/transformers/models/gemma/modeling_gemma.py#L89
  2793. if name.endswith("norm.weight"):
  2794. data_torch = data_torch + 1
  2795. return [(self.map_tensor_name(name), data_torch)]
  2796. @Model.register("Gemma3ForCausalLM", "Gemma3ForConditionalGeneration")
  2797. class Gemma3Model(Model):
  2798. model_arch = gguf.MODEL_ARCH.GEMMA3
  2799. has_vision: bool = False
  2800. # we need to merge the text_config into the root level of hparams
  2801. def __init__(self, *args, **kwargs):
  2802. hparams = kwargs["hparams"] if "hparams" in kwargs else Model.load_hparams(args[0])
  2803. if "text_config" in hparams:
  2804. hparams = {**hparams, **hparams["text_config"]}
  2805. kwargs["hparams"] = hparams
  2806. super().__init__(*args, **kwargs)
  2807. if "vision_config" in hparams:
  2808. logger.info("Has vision encoder, but it will be ignored")
  2809. self.has_vision = True
  2810. def write(self):
  2811. super().write()
  2812. if self.has_vision:
  2813. logger.info("NOTE: this script only convert the language model to GGUF")
  2814. logger.info(" for the vision model, please use gemma3_convert_encoder_to_gguf.py")
  2815. def set_vocab(self):
  2816. self._set_vocab_sentencepiece()
  2817. self.gguf_writer.add_add_space_prefix(False)
  2818. def set_gguf_parameters(self):
  2819. hparams = self.hparams
  2820. block_count = hparams["num_hidden_layers"]
  2821. # some default values are not specified in the hparams
  2822. self.gguf_writer.add_context_length(hparams.get("max_position_embeddings", 131072))
  2823. self.gguf_writer.add_embedding_length(hparams["hidden_size"])
  2824. self.gguf_writer.add_block_count(block_count)
  2825. self.gguf_writer.add_feed_forward_length(hparams["intermediate_size"])
  2826. self.gguf_writer.add_head_count(hparams.get("num_attention_heads", 8))
  2827. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("rms_norm_eps", 1e-6))
  2828. self.gguf_writer.add_key_length(hparams.get("head_dim", 256))
  2829. self.gguf_writer.add_value_length(hparams.get("head_dim", 256))
  2830. self.gguf_writer.add_file_type(self.ftype)
  2831. self.gguf_writer.add_rope_freq_base(hparams.get("rope_theta", 1_000_000.0)) # for global layers
  2832. # both attn_logit_softcapping and final_logit_softcapping are removed in Gemma3
  2833. assert hparams.get("attn_logit_softcapping") is None
  2834. assert hparams.get("final_logit_softcapping") is None
  2835. self.gguf_writer.add_sliding_window(hparams["sliding_window"])
  2836. self.gguf_writer.add_head_count_kv(hparams.get("num_key_value_heads", 4))
  2837. if hparams.get("rope_scaling") is not None:
  2838. assert hparams["rope_scaling"]["rope_type"] == "linear"
  2839. # important: this rope_scaling is only applied for global layers, and not used by 1B model
  2840. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  2841. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  2842. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2843. del bid # unused
  2844. if name.startswith("language_model."):
  2845. name = name.replace("language_model.", "")
  2846. elif name.startswith("multi_modal_projector.") or name.startswith("vision_tower.") \
  2847. or name.startswith("multimodal_projector.") or name.startswith("vision_model."): # this is for old HF model, should be removed later
  2848. # ignore vision tensors
  2849. return []
  2850. # remove OOV (out-of-vocabulary) rows in token_embd
  2851. if "embed_tokens.weight" in name:
  2852. vocab = self._create_vocab_sentencepiece()
  2853. tokens = vocab[0]
  2854. data_torch = data_torch[:len(tokens)]
  2855. # ref code in Gemma3RMSNorm
  2856. # output = output * (1.0 + self.weight.float())
  2857. if name.endswith("norm.weight"):
  2858. data_torch = data_torch + 1
  2859. return [(self.map_tensor_name(name), data_torch)]
  2860. @Model.register("Starcoder2ForCausalLM")
  2861. class StarCoder2Model(Model):
  2862. model_arch = gguf.MODEL_ARCH.STARCODER2
  2863. @Model.register("Rwkv6ForCausalLM")
  2864. class Rwkv6Model(Model):
  2865. model_arch = gguf.MODEL_ARCH.RWKV6
  2866. def set_vocab(self):
  2867. self._set_vocab_rwkv_world()
  2868. def set_gguf_parameters(self):
  2869. block_count = self.hparams["num_hidden_layers"]
  2870. head_size = self.hparams["head_size"]
  2871. hidden_size = self.hparams["hidden_size"]
  2872. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2873. rescale_every_n_layers = self.hparams["rescale_every"]
  2874. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else int((hidden_size * 3.5) // 32 * 32)
  2875. time_mix_extra_dim = 64 if hidden_size == 4096 else 32
  2876. time_decay_extra_dim = 128 if hidden_size == 4096 else 64
  2877. # RWKV isn't context limited
  2878. self.gguf_writer.add_context_length(1048576)
  2879. self.gguf_writer.add_embedding_length(hidden_size)
  2880. self.gguf_writer.add_block_count(block_count)
  2881. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  2882. self.gguf_writer.add_rescale_every_n_layers(rescale_every_n_layers)
  2883. self.gguf_writer.add_wkv_head_size(head_size)
  2884. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2885. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2886. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2887. self.gguf_writer.add_file_type(self.ftype)
  2888. # required by llama.cpp, unused
  2889. self.gguf_writer.add_head_count(0)
  2890. lerp_weights: dict[int, dict[str, Tensor]] = {}
  2891. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2892. new_name = self.map_tensor_name(name)
  2893. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  2894. new_name += ".weight"
  2895. if new_name.endswith("time_mix_w1.weight") or new_name.endswith("time_mix_decay_w1.weight") or new_name.endswith("time_mix_decay_w2.weight"):
  2896. data_torch = data_torch.transpose(0, 1)
  2897. if new_name.endswith("time_mix_w2.weight"):
  2898. data_torch = data_torch.permute(0, 2, 1)
  2899. if new_name.endswith("time_mix_decay.weight") or "lerp" in new_name:
  2900. data_torch = data_torch.squeeze()
  2901. try:
  2902. rescale_every_n_layers = self.hparams["rescale_every"]
  2903. if rescale_every_n_layers > 0:
  2904. if new_name.endswith("time_mix_output.weight") or new_name.endswith("channel_mix_value.weight"):
  2905. data_torch = data_torch.div_(2 ** int(bid // rescale_every_n_layers))
  2906. except KeyError:
  2907. pass
  2908. # concat time_mix_lerp weights to reduce some cpu overhead
  2909. # also reduces the number of tensors in the model
  2910. if bid is not None and "time_mix_lerp" in new_name and "time_mix_lerp_x" not in new_name:
  2911. try:
  2912. self.lerp_weights[bid][new_name] = data_torch
  2913. except KeyError:
  2914. self.lerp_weights[bid] = {new_name: data_torch}
  2915. if all(f"blk.{bid}.time_mix_lerp_{i}.weight" in self.lerp_weights[bid].keys() for i in ["w", "k", "v", "r", "g"]):
  2916. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  2917. data = torch.stack([self.lerp_weights[bid][f"blk.{bid}.time_mix_lerp_{i}.weight"].unsqueeze(0) for i in ["w", "k", "v", "r", "g"]], dim=0).unsqueeze(1)
  2918. yield (new_name, data)
  2919. return
  2920. yield (new_name, data_torch)
  2921. @Model.register("RWKV6Qwen2ForCausalLM")
  2922. class RWKV6Qwen2Model(Rwkv6Model):
  2923. model_arch = gguf.MODEL_ARCH.RWKV6QWEN2
  2924. def set_vocab(self):
  2925. try:
  2926. self._set_vocab_sentencepiece()
  2927. except FileNotFoundError:
  2928. self._set_vocab_gpt2()
  2929. def set_gguf_parameters(self):
  2930. block_count = self.hparams["num_hidden_layers"]
  2931. num_attention_heads = self.hparams["num_attention_heads"]
  2932. num_key_value_heads = self.hparams["num_key_value_heads"]
  2933. hidden_size = self.hparams["hidden_size"]
  2934. head_size = hidden_size // num_attention_heads
  2935. rms_norm_eps = self.hparams["rms_norm_eps"]
  2936. intermediate_size = self.hparams["intermediate_size"]
  2937. time_mix_extra_dim = self.hparams.get("lora_rank_tokenshift", 64 if hidden_size >= 4096 else 32)
  2938. time_decay_extra_dim = self.hparams.get("lora_rank_decay", 128 if hidden_size >= 4096 else 64)
  2939. # RWKV isn't context limited
  2940. self.gguf_writer.add_context_length(1048576)
  2941. self.gguf_writer.add_embedding_length(hidden_size)
  2942. self.gguf_writer.add_block_count(block_count)
  2943. self.gguf_writer.add_wkv_head_size(head_size)
  2944. self.gguf_writer.add_time_mix_extra_dim(time_mix_extra_dim)
  2945. self.gguf_writer.add_time_decay_extra_dim(time_decay_extra_dim)
  2946. self.gguf_writer.add_feed_forward_length(intermediate_size)
  2947. self.gguf_writer.add_file_type(self.ftype)
  2948. # special parameters for time_mixing in RWKV6QWEN2
  2949. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  2950. self.gguf_writer.add_token_shift_count(1)
  2951. # RWKV6QWEN2 use grouped key/value like GQA
  2952. self.gguf_writer.add_head_count_kv(num_key_value_heads)
  2953. # required by llama.cpp, unused
  2954. self.gguf_writer.add_head_count(0)
  2955. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  2956. for new_name, data in super().modify_tensors(data_torch, name, bid):
  2957. if "time_mix_w1" in new_name or "time_mix_w2" in new_name:
  2958. data = data.view(5, -1, data.shape[-1])
  2959. # rwkv6qwen2 has a different order of rkvwg instead of the original wkvrg
  2960. # permute them here to avoid code changes
  2961. data = torch.stack([data[3], data[1], data[2], data[0], data[4]], dim=0).view(-1, data.shape[-1])
  2962. if "w2" in new_name:
  2963. data = data.view(5, -1, data.shape[-1])
  2964. yield (new_name, data)
  2965. continue
  2966. yield (new_name, data)
  2967. @Model.register("Rwkv7ForCausalLM", "RWKV7ForCausalLM")
  2968. class Rwkv7Model(Model):
  2969. model_arch = gguf.MODEL_ARCH.RWKV7
  2970. def set_vocab(self):
  2971. self._set_vocab_rwkv_world()
  2972. def calc_lora_rank(self, hidden_size, exponent, multiplier):
  2973. return max(1, round(hidden_size ** exponent * multiplier / 32)) * 32
  2974. def set_gguf_parameters(self):
  2975. block_count = self.hparams["num_hidden_layers"]
  2976. try:
  2977. head_size = self.hparams["head_size"]
  2978. layer_norm_eps = self.hparams["layer_norm_epsilon"]
  2979. except KeyError:
  2980. head_size = self.hparams["head_dim"]
  2981. layer_norm_eps = self.hparams["norm_eps"]
  2982. hidden_size = self.hparams["hidden_size"]
  2983. intermediate_size = self.hparams["intermediate_size"] if self.hparams["intermediate_size"] is not None else (hidden_size * 4)
  2984. # ICLR: In-Context-Learning-Rate
  2985. try:
  2986. lora_rank_decay = self.hparams["lora_rank_decay"] if self.hparams["lora_rank_decay"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2987. lora_rank_iclr = self.hparams["lora_rank_iclr"] if self.hparams["lora_rank_iclr"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2988. lora_rank_value_residual_mix = self.hparams["lora_rank_value_residual_mix"] if self.hparams["lora_rank_value_residual_mix"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2989. lora_rank_gate = self.hparams["lora_rank_gate"] if self.hparams["lora_rank_gate"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2990. except KeyError:
  2991. lora_rank_decay = self.hparams["decay_low_rank_dim"] if self.hparams["decay_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2992. lora_rank_iclr = self.hparams["a_low_rank_dim"] if self.hparams["a_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.8)
  2993. lora_rank_value_residual_mix = self.hparams["v_low_rank_dim"] if self.hparams["v_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.5, 1.3)
  2994. lora_rank_gate = self.hparams["gate_low_rank_dim"] if self.hparams["gate_low_rank_dim"] is not None else self.calc_lora_rank(hidden_size, 0.8, 0.6)
  2995. # RWKV isn't context limited
  2996. self.gguf_writer.add_context_length(1048576)
  2997. self.gguf_writer.add_embedding_length(hidden_size)
  2998. self.gguf_writer.add_block_count(block_count)
  2999. self.gguf_writer.add_layer_norm_eps(layer_norm_eps)
  3000. self.gguf_writer.add_wkv_head_size(head_size)
  3001. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3002. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3003. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3004. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3005. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3006. self.gguf_writer.add_file_type(self.ftype)
  3007. # required by llama.cpp, unused
  3008. self.gguf_writer.add_head_count(0)
  3009. lerp_weights: dict[int, dict[str, Tensor]] = {}
  3010. lora_needs_transpose: bool = True
  3011. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3012. # unify tensor names here to make life easier
  3013. name = name.replace("blocks", "layers").replace("ffn", "feed_forward")
  3014. name = name.replace("self_attn", "attention").replace("attn", "attention")
  3015. name = name.replace("time_mixer.", "")
  3016. # lora layer names in fla-hub's impl
  3017. if "_lora.lora" in name:
  3018. self.lora_needs_transpose = False
  3019. name = name.replace("_lora.lora.0.weight", "1.weight")
  3020. name = name.replace("_lora.lora.2.weight", "2.weight")
  3021. name = name.replace("_lora.lora.2.bias", "0.weight")
  3022. name = name.replace("feed_forward_norm", "ln2")
  3023. name = name.replace("g_norm", "ln_x")
  3024. if "attention.v" in name and "value" not in self.map_tensor_name(name) and bid == 0:
  3025. # some models have dummy v0/v1/v2 on first layer while others don't
  3026. # ignore them all since they are not used
  3027. return
  3028. wkv_has_gate = self.hparams.get("wkv_has_gate", True)
  3029. lerp_list = ["r", "w", "k", "v", "a", "g"] if wkv_has_gate else ["r", "w", "k", "v", "a"]
  3030. if bid is not None and "attention.x_" in name:
  3031. if "attention.x_x" in name:
  3032. # already concatenated
  3033. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3034. data = data_torch.reshape(len(lerp_list), 1, 1, -1)
  3035. yield (new_name, data)
  3036. else:
  3037. try:
  3038. self.lerp_weights[bid][name] = data_torch
  3039. except KeyError:
  3040. self.lerp_weights[bid] = {name: data_torch}
  3041. if all(f"model.layers.{bid}.attention.x_{i}" in self.lerp_weights[bid].keys() for i in lerp_list):
  3042. new_name = f"blk.{bid}.time_mix_lerp_fused.weight"
  3043. data = torch.stack([self.lerp_weights[bid][f"model.layers.{bid}.attention.x_{i}"] for i in lerp_list], dim=0)
  3044. yield (new_name, data)
  3045. return
  3046. else:
  3047. data_torch = data_torch.squeeze()
  3048. new_name = self.map_tensor_name(name)
  3049. if not (new_name.endswith(".weight") or new_name.endswith(".bias")):
  3050. new_name += ".weight"
  3051. if self.lora_needs_transpose and any(
  3052. new_name.endswith(t) for t in [
  3053. "time_mix_w1.weight", "time_mix_w2.weight",
  3054. "time_mix_a1.weight", "time_mix_a2.weight",
  3055. "time_mix_v1.weight", "time_mix_v2.weight",
  3056. "time_mix_g1.weight", "time_mix_g2.weight",
  3057. ]
  3058. ):
  3059. data_torch = data_torch.transpose(0, 1)
  3060. if 'r_k' in new_name:
  3061. data_torch = data_torch.flatten()
  3062. if bid == 0 and "time_mix_a" in new_name:
  3063. # dummy v0/v1/v2 on first layer
  3064. # easist way to make llama happy
  3065. yield (new_name.replace("time_mix_a", "time_mix_v"), data_torch)
  3066. yield (new_name, data_torch)
  3067. @Model.register("RwkvHybridForCausalLM")
  3068. class ARwkv7Model(Rwkv7Model):
  3069. model_arch = gguf.MODEL_ARCH.ARWKV7
  3070. def set_vocab(self):
  3071. try:
  3072. self._set_vocab_sentencepiece()
  3073. except FileNotFoundError:
  3074. self._set_vocab_gpt2()
  3075. def set_gguf_parameters(self):
  3076. block_count = self.hparams["num_hidden_layers"]
  3077. hidden_size = self.hparams["hidden_size"]
  3078. head_size = self.hparams["head_size"]
  3079. rms_norm_eps = self.hparams["rms_norm_eps"]
  3080. intermediate_size = self.hparams["intermediate_size"]
  3081. wkv_has_gate = self.hparams["wkv_has_gate"]
  3082. assert self.hparams["wkv_version"] == 7
  3083. # ICLR: In-Context-Learning-Rate
  3084. lora_rank_decay = 64
  3085. lora_rank_iclr = 64
  3086. lora_rank_value_residual_mix = 32
  3087. lora_rank_gate = 128 if wkv_has_gate else 0
  3088. # RWKV isn't context limited
  3089. self.gguf_writer.add_context_length(1048576)
  3090. self.gguf_writer.add_embedding_length(hidden_size)
  3091. self.gguf_writer.add_block_count(block_count)
  3092. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3093. self.gguf_writer.add_wkv_head_size(head_size)
  3094. self.gguf_writer.add_decay_lora_rank(lora_rank_decay)
  3095. self.gguf_writer.add_iclr_lora_rank(lora_rank_iclr)
  3096. self.gguf_writer.add_value_residual_mix_lora_rank(lora_rank_value_residual_mix)
  3097. self.gguf_writer.add_gate_lora_rank(lora_rank_gate)
  3098. self.gguf_writer.add_feed_forward_length(intermediate_size)
  3099. self.gguf_writer.add_file_type(self.ftype)
  3100. self.gguf_writer.add_token_shift_count(1)
  3101. # required by llama.cpp, unused
  3102. self.gguf_writer.add_head_count(0)
  3103. @Model.register("MambaForCausalLM", "MambaLMHeadModel", "FalconMambaForCausalLM")
  3104. class MambaModel(Model):
  3105. model_arch = gguf.MODEL_ARCH.MAMBA
  3106. def set_vocab(self):
  3107. vocab_size = self.hparams["vocab_size"]
  3108. # Round vocab size to next multiple of 8
  3109. pad_vocab = self.hparams.get("pad_vocab_size_multiple", 8)
  3110. # pad using ceiling division
  3111. # ref: https://stackoverflow.com/a/17511341/22827863
  3112. vocab_size = -(vocab_size // -pad_vocab) * pad_vocab
  3113. self.hparams["vocab_size"] = vocab_size
  3114. if (self.dir_model / "tokenizer.json").is_file():
  3115. self._set_vocab_gpt2()
  3116. elif (self.dir_model / "tokenizer.model").is_file():
  3117. self._set_vocab_sentencepiece()
  3118. else:
  3119. # Use the GPT-NeoX tokenizer when no tokenizer files are present
  3120. self._set_vocab_builtin("gpt-neox", vocab_size)
  3121. def set_gguf_parameters(self):
  3122. d_model = self.find_hparam(["hidden_size", "d_model"])
  3123. d_conv = self.find_hparam(["conv_kernel", "d_conv"], optional=True) or 4
  3124. d_inner = self.find_hparam(["intermediate_size", "d_inner"], optional=True) or 2 * d_model
  3125. d_state = self.find_hparam(["state_size", "d_state"], optional=True) or 16
  3126. # ceiling division
  3127. # ref: https://stackoverflow.com/a/17511341/22827863
  3128. # ref: https://github.com/state-spaces/mamba/blob/ce59daea3a090d011d6476c6e5b97f6d58ddad8b/mamba_ssm/modules/mamba_simple.py#L58
  3129. dt_rank = self.find_hparam(["time_step_rank", "dt_rank"], optional=True) or -(d_model // -16)
  3130. rms_norm_eps = self.find_hparam(["layer_norm_epsilon", "rms_norm_eps"], optional=True) or 1e-5
  3131. use_dt_b_c_norm = False
  3132. # For falconmamba we do apply RMS norm on B / DT and C layers
  3133. if self.find_hparam(["model_type"], optional=True) in ("falcon_mamba",):
  3134. use_dt_b_c_norm = True
  3135. # Fail early for models which don't have a block expansion factor of 2
  3136. assert d_inner == 2 * d_model
  3137. self.gguf_writer.add_context_length(2**20) # arbitrary value; for those who use the default
  3138. self.gguf_writer.add_embedding_length(d_model)
  3139. self.gguf_writer.add_feed_forward_length(0) # unused, but seemingly required when loading
  3140. self.gguf_writer.add_head_count(0) # unused, but seemingly required when loading
  3141. self.gguf_writer.add_block_count(self.block_count)
  3142. self.gguf_writer.add_ssm_conv_kernel(d_conv)
  3143. self.gguf_writer.add_ssm_inner_size(d_inner)
  3144. self.gguf_writer.add_ssm_state_size(d_state)
  3145. self.gguf_writer.add_ssm_time_step_rank(dt_rank)
  3146. self.gguf_writer.add_layer_norm_rms_eps(rms_norm_eps)
  3147. self.gguf_writer.add_ssm_dt_b_c_rms(use_dt_b_c_norm) # For classic Mamba we don't apply rms norm on B / DT layers
  3148. self.gguf_writer.add_file_type(self.ftype)
  3149. _tok_embd = None
  3150. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3151. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  3152. tok_embd_name = self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD)
  3153. new_name = self.map_tensor_name(name)
  3154. if name.endswith(".A_log"):
  3155. logger.debug("A_log --> A ==> " + new_name)
  3156. data_torch = -torch.exp(data_torch)
  3157. # [4 1 8192 1] -> [4 8192 1 1]
  3158. if self.match_model_tensor_name(new_name, gguf.MODEL_TENSOR.SSM_CONV1D, bid):
  3159. data_torch = data_torch.squeeze()
  3160. # assuming token_embd.weight is seen before output.weight
  3161. if self._tok_embd is not None and new_name == output_name:
  3162. if torch.equal(self._tok_embd, data_torch):
  3163. logger.debug(f"{output_name} is equivalent to {tok_embd_name}, omitting")
  3164. return []
  3165. elif new_name == tok_embd_name:
  3166. self._tok_embd = data_torch
  3167. return [(new_name, data_torch)]
  3168. @Model.register("CohereForCausalLM")
  3169. class CommandR2Model(Model):
  3170. model_arch = gguf.MODEL_ARCH.COMMAND_R
  3171. def __init__(self, *args, **kwargs):
  3172. super().__init__(*args, **kwargs)
  3173. # max_position_embeddings = 8192 in config.json but model was actually
  3174. # trained on 128k context length
  3175. # aya-23 models don't have model_max_length specified
  3176. self.hparams["max_position_embeddings"] = self.find_hparam(["model_max_length", "max_position_embeddings"])
  3177. def set_gguf_parameters(self):
  3178. super().set_gguf_parameters()
  3179. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3180. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3181. @Model.register("Cohere2ForCausalLM")
  3182. class Cohere2Model(Model):
  3183. model_arch = gguf.MODEL_ARCH.COHERE2
  3184. def set_gguf_parameters(self):
  3185. super().set_gguf_parameters()
  3186. self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
  3187. self.gguf_writer.add_sliding_window(self.hparams["sliding_window"])
  3188. self.gguf_writer.add_vocab_size(self.hparams["vocab_size"])
  3189. rotary_pct = self.hparams["rotary_pct"]
  3190. hidden_size = self.hparams["hidden_size"]
  3191. num_attention_heads = self.hparams["num_attention_heads"]
  3192. self.gguf_writer.add_rope_dimension_count(int(rotary_pct * (hidden_size // num_attention_heads)))
  3193. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3194. @Model.register("OlmoForCausalLM")
  3195. @Model.register("OLMoForCausalLM")
  3196. class OlmoModel(Model):
  3197. model_arch = gguf.MODEL_ARCH.OLMO
  3198. def set_gguf_parameters(self):
  3199. super().set_gguf_parameters()
  3200. self.gguf_writer.add_layer_norm_eps(1e-5)
  3201. clip_qkv = self.hparams.get("clip_qkv")
  3202. if clip_qkv is not None:
  3203. self.gguf_writer.add_clamp_kqv(clip_qkv)
  3204. # Same as super class, but permuting q_proj, k_proj
  3205. # Copied from: LlamaModel
  3206. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3207. del bid # unused
  3208. n_head = self.hparams["num_attention_heads"]
  3209. n_kv_head = self.hparams.get("num_key_value_heads")
  3210. if name.endswith("q_proj.weight"):
  3211. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3212. if name.endswith("k_proj.weight"):
  3213. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3214. return [(self.map_tensor_name(name), data_torch)]
  3215. @Model.register("Olmo2ForCausalLM")
  3216. class Olmo2Model(Model):
  3217. model_arch = gguf.MODEL_ARCH.OLMO2
  3218. @Model.register("OlmoeForCausalLM")
  3219. class OlmoeModel(Model):
  3220. model_arch = gguf.MODEL_ARCH.OLMOE
  3221. def set_gguf_parameters(self):
  3222. super().set_gguf_parameters()
  3223. self.gguf_writer.add_layer_norm_rms_eps(1e-5)
  3224. if (n_experts := self.hparams.get("num_experts")) is not None:
  3225. self.gguf_writer.add_expert_count(n_experts)
  3226. _experts: list[dict[str, Tensor]] | None = None
  3227. # Copied from: Qwen2MoeModel
  3228. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3229. # process the experts separately
  3230. if name.find("experts") != -1:
  3231. n_experts = self.hparams["num_experts"]
  3232. assert bid is not None
  3233. if self._experts is None:
  3234. self._experts = [{} for _ in range(self.block_count)]
  3235. self._experts[bid][name] = data_torch
  3236. if len(self._experts[bid]) >= n_experts * 3:
  3237. tensors: list[tuple[str, Tensor]] = []
  3238. # merge the experts into a single 3d tensor
  3239. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3240. datas: list[Tensor] = []
  3241. for xid in range(n_experts):
  3242. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3243. datas.append(self._experts[bid][ename])
  3244. del self._experts[bid][ename]
  3245. data_torch = torch.stack(datas, dim=0)
  3246. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3247. new_name = self.map_tensor_name(merged_name)
  3248. tensors.append((new_name, data_torch))
  3249. return tensors
  3250. else:
  3251. return []
  3252. return [(self.map_tensor_name(name), data_torch)]
  3253. # Copied from: Qwen2MoeModel
  3254. def prepare_tensors(self):
  3255. super().prepare_tensors()
  3256. if self._experts is not None:
  3257. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3258. experts = [k for d in self._experts for k in d.keys()]
  3259. if len(experts) > 0:
  3260. raise ValueError(f"Unprocessed experts: {experts}")
  3261. @Model.register("JinaBertModel", "JinaBertForMaskedLM")
  3262. class JinaBertV2Model(BertModel):
  3263. model_arch = gguf.MODEL_ARCH.JINA_BERT_V2
  3264. def __init__(self, *args, **kwargs):
  3265. super().__init__(*args, **kwargs)
  3266. self.intermediate_size = self.hparams["intermediate_size"]
  3267. def get_tensors(self):
  3268. for name, data in super().get_tensors():
  3269. if 'gated_layer' in name:
  3270. d1 = data[:self.intermediate_size, :]
  3271. name1 = name.replace('gated_layers', 'gated_layers_w')
  3272. name1 = name1.replace('up_gated_layer', 'gated_layers_v')
  3273. d2 = data[self.intermediate_size:, :]
  3274. name2 = name.replace('gated_layers', 'gated_layers_v')
  3275. name2 = name2.replace('up_gated_layer', 'gated_layers_w')
  3276. yield name1, d1
  3277. yield name2, d2
  3278. continue
  3279. yield name, data
  3280. def set_vocab(self):
  3281. tokenizer_class = 'BertTokenizer'
  3282. with open(self.dir_model / "tokenizer_config.json", "r", encoding="utf-8") as f:
  3283. tokenizer_class = json.load(f)['tokenizer_class']
  3284. if tokenizer_class == 'BertTokenizer':
  3285. super().set_vocab()
  3286. elif tokenizer_class == 'RobertaTokenizer':
  3287. self._set_vocab_gpt2()
  3288. self.gguf_writer.add_token_type_count(2)
  3289. else:
  3290. raise NotImplementedError(f'Tokenizer {tokenizer_class} is not supported for JinaBertModel')
  3291. self.gguf_writer.add_add_bos_token(True)
  3292. self.gguf_writer.add_add_eos_token(True)
  3293. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3294. # if name starts with "bert.", remove the prefix
  3295. # e.g. https://huggingface.co/jinaai/jina-reranker-v1-tiny-en
  3296. if name.startswith("bert."):
  3297. name = name[5:]
  3298. return super().modify_tensors(data_torch, name, bid)
  3299. @Model.register("OpenELMForCausalLM")
  3300. class OpenELMModel(Model):
  3301. model_arch = gguf.MODEL_ARCH.OPENELM
  3302. @staticmethod
  3303. def _make_divisible(v: float | int, divisor: int) -> int:
  3304. # ref: https://huggingface.co/apple/OpenELM-270M-Instruct/blob/eb111ff2e6724348e5b905984063d4064d4bc579/configuration_openelm.py#L34-L38
  3305. new_v = max(divisor, int(v + divisor / 2) // divisor * divisor)
  3306. # Make sure that round down does not go down by more than 10%.
  3307. if new_v < 0.9 * v:
  3308. new_v += divisor
  3309. return new_v
  3310. def __init__(self, *args, **kwargs):
  3311. super().__init__(*args, **kwargs)
  3312. ffn_multipliers: list[float] = self.hparams["ffn_multipliers"]
  3313. ffn_dim_divisor: int = self.hparams["ffn_dim_divisor"]
  3314. self._n_embd: int = self.hparams["model_dim"]
  3315. self._num_kv_heads: list[int] = self.hparams["num_kv_heads"]
  3316. self._num_query_heads: list[int] = self.hparams["num_query_heads"]
  3317. self._ffn_dims: list[int] = [
  3318. OpenELMModel._make_divisible(multiplier * self._n_embd, ffn_dim_divisor)
  3319. for multiplier in ffn_multipliers
  3320. ]
  3321. assert isinstance(self._num_kv_heads, list) and isinstance(self._num_kv_heads[0], int)
  3322. assert isinstance(self._num_query_heads, list) and isinstance(self._num_query_heads[0], int)
  3323. # Uses the tokenizer from meta-llama/Llama-2-7b-hf
  3324. def set_vocab(self):
  3325. try:
  3326. self._set_vocab_sentencepiece()
  3327. except FileNotFoundError:
  3328. self._set_vocab_builtin("llama-spm", self.hparams["vocab_size"])
  3329. def set_gguf_parameters(self):
  3330. n_embd = self._n_embd
  3331. head_dim = self.hparams["head_dim"]
  3332. rot_pct = 1.0
  3333. assert self.block_count == len(self._num_kv_heads)
  3334. assert self.block_count == len(self._num_query_heads)
  3335. assert self.block_count == len(self._ffn_dims)
  3336. self.gguf_writer.add_block_count(self.block_count)
  3337. self.gguf_writer.add_context_length(self.hparams["max_context_length"])
  3338. self.gguf_writer.add_embedding_length(n_embd)
  3339. self.gguf_writer.add_feed_forward_length(self._ffn_dims)
  3340. self.gguf_writer.add_head_count(self._num_query_heads)
  3341. self.gguf_writer.add_head_count_kv(self._num_kv_heads)
  3342. self.gguf_writer.add_rope_freq_base(self.hparams["rope_freq_constant"])
  3343. # https://huggingface.co/apple/OpenELM-270M-Instruct/blob/c401df2/modeling_openelm.py#L30
  3344. self.gguf_writer.add_layer_norm_rms_eps(1e-6)
  3345. self.gguf_writer.add_rope_dimension_count(int(rot_pct * head_dim))
  3346. self.gguf_writer.add_key_length(head_dim)
  3347. self.gguf_writer.add_value_length(head_dim)
  3348. self.gguf_writer.add_file_type(self.ftype)
  3349. def find_hparam(self, keys: Iterable[str], optional: bool = False) -> Any:
  3350. if "n_layers" in keys:
  3351. return self.hparams["num_transformer_layers"]
  3352. return super().find_hparam(keys, optional)
  3353. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3354. # split ff
  3355. if bid is not None and name == f"transformer.layers.{bid}.ffn.proj_1.weight":
  3356. ff_dim = self._ffn_dims[bid]
  3357. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE, bid), data_torch[:ff_dim])
  3358. yield (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP, bid), data_torch[ff_dim:])
  3359. return
  3360. yield (self.map_tensor_name(name), data_torch)
  3361. @Model.register("ArcticForCausalLM")
  3362. class ArcticModel(Model):
  3363. model_arch = gguf.MODEL_ARCH.ARCTIC
  3364. def set_vocab(self):
  3365. # The reason for using a custom implementation here is that the
  3366. # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
  3367. # tokenizer.model and used them as BOS and EOS instead of adding new tokens.
  3368. from sentencepiece import SentencePieceProcessor
  3369. tokenizer_path = self.dir_model / 'tokenizer.model'
  3370. if not tokenizer_path.is_file():
  3371. logger.error(f'Error: Missing {tokenizer_path}')
  3372. sys.exit(1)
  3373. # Read the whole vocabulary from the tokenizer.model file
  3374. tokenizer = SentencePieceProcessor()
  3375. tokenizer.LoadFromFile(str(tokenizer_path))
  3376. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3377. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3378. scores: list[float] = [-10000.0] * vocab_size
  3379. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3380. for token_id in range(tokenizer.vocab_size()):
  3381. piece = tokenizer.IdToPiece(token_id)
  3382. text = piece.encode("utf-8")
  3383. score = tokenizer.GetScore(token_id)
  3384. toktype = SentencePieceTokenTypes.NORMAL
  3385. if tokenizer.IsUnknown(token_id):
  3386. toktype = SentencePieceTokenTypes.UNKNOWN
  3387. elif tokenizer.IsControl(token_id):
  3388. toktype = SentencePieceTokenTypes.CONTROL
  3389. elif tokenizer.IsUnused(token_id):
  3390. toktype = SentencePieceTokenTypes.UNUSED
  3391. elif tokenizer.IsByte(token_id):
  3392. toktype = SentencePieceTokenTypes.BYTE
  3393. tokens[token_id] = text
  3394. scores[token_id] = score
  3395. toktypes[token_id] = toktype
  3396. # Use the added_tokens_decoder field from tokeniser_config.json as the source
  3397. # of information about added/redefined tokens and modify them accordingly.
  3398. tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
  3399. if tokenizer_config_file.is_file():
  3400. with open(tokenizer_config_file, "r", encoding="utf-8") as f:
  3401. tokenizer_config_json = json.load(f)
  3402. if "added_tokens_decoder" in tokenizer_config_json:
  3403. added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
  3404. for token_id, token_json in added_tokens_decoder.items():
  3405. token_id = int(token_id)
  3406. if token_id >= vocab_size:
  3407. logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3408. continue
  3409. token_content = token_json["content"]
  3410. token_type = SentencePieceTokenTypes.USER_DEFINED
  3411. token_score = -10000.0
  3412. # Map unk_token to UNKNOWN, other special tokens to CONTROL
  3413. # Set the score to 0.0 as in the original tokenizer.model
  3414. if ("special" in token_json) and token_json["special"]:
  3415. if token_content == tokenizer_config_json["unk_token"]:
  3416. token_type = SentencePieceTokenTypes.UNKNOWN
  3417. else:
  3418. token_type = SentencePieceTokenTypes.CONTROL
  3419. token_score = 0.0
  3420. logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
  3421. tokens[token_id] = token_content.encode("utf-8")
  3422. toktypes[token_id] = token_type
  3423. scores[token_id] = token_score
  3424. self.gguf_writer.add_tokenizer_model("llama")
  3425. self.gguf_writer.add_tokenizer_pre("default")
  3426. self.gguf_writer.add_token_list(tokens)
  3427. self.gguf_writer.add_token_scores(scores)
  3428. self.gguf_writer.add_token_types(toktypes)
  3429. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3430. special_vocab.add_to_gguf(self.gguf_writer)
  3431. def set_gguf_parameters(self):
  3432. super().set_gguf_parameters()
  3433. hparams = self.hparams
  3434. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3435. self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
  3436. _experts: list[dict[str, Tensor]] | None = None
  3437. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3438. n_head = self.hparams["num_attention_heads"]
  3439. n_kv_head = self.hparams.get("num_key_value_heads")
  3440. if name.endswith("q_proj.weight"):
  3441. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  3442. if name.endswith("k_proj.weight"):
  3443. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  3444. # process the experts separately
  3445. if name.find("block_sparse_moe.experts") != -1:
  3446. n_experts = self.hparams["num_local_experts"]
  3447. assert bid is not None
  3448. if self._experts is None:
  3449. self._experts = [{} for _ in range(self.block_count)]
  3450. self._experts[bid][name] = data_torch
  3451. if len(self._experts[bid]) >= n_experts * 3:
  3452. tensors: list[tuple[str, Tensor]] = []
  3453. # merge the experts into a single 3d tensor
  3454. for wid in ["w1", "w2", "w3"]:
  3455. datas: list[Tensor] = []
  3456. for xid in range(n_experts):
  3457. ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
  3458. datas.append(self._experts[bid][ename])
  3459. del self._experts[bid][ename]
  3460. data_torch = torch.stack(datas, dim=0)
  3461. merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
  3462. new_name = self.map_tensor_name(merged_name)
  3463. tensors.append((new_name, data_torch))
  3464. return tensors
  3465. else:
  3466. return []
  3467. return [(self.map_tensor_name(name), data_torch)]
  3468. def prepare_tensors(self):
  3469. super().prepare_tensors()
  3470. if self._experts is not None:
  3471. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3472. experts = [k for d in self._experts for k in d.keys()]
  3473. if len(experts) > 0:
  3474. raise ValueError(f"Unprocessed experts: {experts}")
  3475. @Model.register("DeepseekForCausalLM")
  3476. class DeepseekModel(Model):
  3477. model_arch = gguf.MODEL_ARCH.DEEPSEEK
  3478. def set_vocab(self):
  3479. try:
  3480. self._set_vocab_sentencepiece()
  3481. except FileNotFoundError:
  3482. self._set_vocab_gpt2()
  3483. def set_gguf_parameters(self):
  3484. super().set_gguf_parameters()
  3485. hparams = self.hparams
  3486. if "head_dim" in hparams:
  3487. rope_dim = hparams["head_dim"]
  3488. else:
  3489. rope_dim = hparams["hidden_size"] // hparams["num_attention_heads"]
  3490. self.gguf_writer.add_rope_dimension_count(rope_dim)
  3491. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  3492. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3493. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3494. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3495. self.gguf_writer.add_expert_weights_scale(1.0)
  3496. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3497. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3498. _experts: list[dict[str, Tensor]] | None = None
  3499. @staticmethod
  3500. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  3501. if n_head_kv is not None and n_head != n_head_kv:
  3502. n_head = n_head_kv
  3503. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  3504. .swapaxes(1, 2)
  3505. .reshape(weights.shape))
  3506. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3507. n_head = self.hparams["num_attention_heads"]
  3508. n_kv_head = self.hparams.get("num_key_value_heads")
  3509. if name.endswith(("q_proj.weight", "q_proj.bias")):
  3510. data_torch = DeepseekModel.permute(data_torch, n_head, n_head)
  3511. if name.endswith(("k_proj.weight", "k_proj.bias")):
  3512. data_torch = DeepseekModel.permute(data_torch, n_head, n_kv_head)
  3513. # process the experts separately
  3514. if name.find("mlp.experts") != -1:
  3515. n_experts = self.hparams["n_routed_experts"]
  3516. assert bid is not None
  3517. if self._experts is None:
  3518. self._experts = [{} for _ in range(self.block_count)]
  3519. self._experts[bid][name] = data_torch
  3520. if len(self._experts[bid]) >= n_experts * 3:
  3521. tensors: list[tuple[str, Tensor]] = []
  3522. # merge the experts into a single 3d tensor
  3523. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3524. datas: list[Tensor] = []
  3525. for xid in range(n_experts):
  3526. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3527. datas.append(self._experts[bid][ename])
  3528. del self._experts[bid][ename]
  3529. data_torch = torch.stack(datas, dim=0)
  3530. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3531. new_name = self.map_tensor_name(merged_name)
  3532. tensors.append((new_name, data_torch))
  3533. return tensors
  3534. else:
  3535. return []
  3536. return [(self.map_tensor_name(name), data_torch)]
  3537. def prepare_tensors(self):
  3538. super().prepare_tensors()
  3539. if self._experts is not None:
  3540. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3541. experts = [k for d in self._experts for k in d.keys()]
  3542. if len(experts) > 0:
  3543. raise ValueError(f"Unprocessed experts: {experts}")
  3544. @Model.register("DeepseekV2ForCausalLM")
  3545. @Model.register("DeepseekV3ForCausalLM")
  3546. class DeepseekV2Model(Model):
  3547. model_arch = gguf.MODEL_ARCH.DEEPSEEK2
  3548. def set_vocab(self):
  3549. self._set_vocab_gpt2()
  3550. def set_gguf_parameters(self):
  3551. super().set_gguf_parameters()
  3552. hparams = self.hparams
  3553. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  3554. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3555. if "q_lora_rank" in hparams and hparams["q_lora_rank"] is not None:
  3556. self.gguf_writer.add_q_lora_rank(hparams["q_lora_rank"])
  3557. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3558. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3559. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3560. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  3561. self.gguf_writer.add_expert_count(hparams["n_routed_experts"])
  3562. self.gguf_writer.add_expert_shared_count(hparams["n_shared_experts"])
  3563. self.gguf_writer.add_expert_weights_scale(hparams["routed_scaling_factor"])
  3564. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  3565. if hparams["scoring_func"] == "sigmoid":
  3566. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SIGMOID)
  3567. elif hparams["scoring_func"] == "softmax":
  3568. self.gguf_writer.add_expert_gating_func(gguf.ExpertGatingFuncType.SOFTMAX)
  3569. else:
  3570. raise ValueError(f"Unsupported scoring_func value: {hparams['scoring_func']}")
  3571. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3572. if self.hparams.get("rope_scaling") is not None and "factor" in self.hparams["rope_scaling"]:
  3573. if self.hparams["rope_scaling"].get("type") == "yarn":
  3574. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN)
  3575. self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
  3576. self.gguf_writer.add_rope_scaling_orig_ctx_len(self.hparams["rope_scaling"]["original_max_position_embeddings"])
  3577. self.gguf_writer.add_rope_scaling_yarn_log_mul(0.1 * hparams["rope_scaling"]["mscale_all_dim"])
  3578. _experts: list[dict[str, Tensor]] | None = None
  3579. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3580. # rename e_score_correction_bias tensors
  3581. if name.endswith("e_score_correction_bias"):
  3582. name = name.replace("e_score_correction_bias", "e_score_correction.bias")
  3583. # skip Multi-Token Prediction (MTP) layers
  3584. block_count = self.hparams["num_hidden_layers"]
  3585. match = re.match(r"model.layers.(\d+)", name)
  3586. if match and int(match.group(1)) >= block_count:
  3587. return []
  3588. # process the experts separately
  3589. if name.find("mlp.experts") != -1:
  3590. n_experts = self.hparams["n_routed_experts"]
  3591. assert bid is not None
  3592. if self._experts is None:
  3593. self._experts = [{} for _ in range(self.block_count)]
  3594. self._experts[bid][name] = data_torch
  3595. if len(self._experts[bid]) >= n_experts * 3:
  3596. tensors: list[tuple[str, Tensor]] = []
  3597. # merge the experts into a single 3d tensor
  3598. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  3599. datas: list[Tensor] = []
  3600. for xid in range(n_experts):
  3601. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  3602. datas.append(self._experts[bid][ename])
  3603. del self._experts[bid][ename]
  3604. data_torch = torch.stack(datas, dim=0)
  3605. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  3606. new_name = self.map_tensor_name(merged_name)
  3607. tensors.append((new_name, data_torch))
  3608. return tensors
  3609. else:
  3610. return []
  3611. return [(self.map_tensor_name(name), data_torch)]
  3612. def prepare_tensors(self):
  3613. super().prepare_tensors()
  3614. if self._experts is not None:
  3615. # flatten `list[dict[str, Tensor]]` into `list[str]`
  3616. experts = [k for d in self._experts for k in d.keys()]
  3617. if len(experts) > 0:
  3618. raise ValueError(f"Unprocessed experts: {experts}")
  3619. @Model.register("PLMForCausalLM")
  3620. class PLMModel(Model):
  3621. model_arch = gguf.MODEL_ARCH.PLM
  3622. def set_vocab(self):
  3623. self._set_vocab_gpt2()
  3624. def set_gguf_parameters(self):
  3625. super().set_gguf_parameters()
  3626. hparams = self.hparams
  3627. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  3628. self.gguf_writer.add_kv_lora_rank(hparams["kv_lora_rank"])
  3629. self.gguf_writer.add_key_length(hparams["qk_nope_head_dim"] + hparams["qk_rope_head_dim"])
  3630. self.gguf_writer.add_value_length(hparams["v_head_dim"])
  3631. self.gguf_writer.add_rope_dimension_count(hparams["qk_rope_head_dim"])
  3632. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3633. return [(self.map_tensor_name(name), data_torch)]
  3634. def prepare_tensors(self):
  3635. super().prepare_tensors()
  3636. @Model.register("T5WithLMHeadModel")
  3637. @Model.register("T5ForConditionalGeneration")
  3638. @Model.register("MT5ForConditionalGeneration")
  3639. @Model.register("UMT5ForConditionalGeneration")
  3640. class T5Model(Model):
  3641. model_arch = gguf.MODEL_ARCH.T5
  3642. def __init__(self, *args, **kwargs):
  3643. super().__init__(*args, **kwargs)
  3644. self.shared_token_embeddings_found = False
  3645. def set_vocab(self):
  3646. # to avoid TypeError: Descriptors cannot be created directly
  3647. # exception when importing sentencepiece_model_pb2
  3648. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3649. from sentencepiece import SentencePieceProcessor
  3650. from sentencepiece import sentencepiece_model_pb2 as model
  3651. tokenizer_path = self.dir_model / 'tokenizer.model'
  3652. # many older models use spiece.model tokenizer model filename
  3653. if not tokenizer_path.is_file():
  3654. tokenizer_path = self.dir_model / 'spiece.model'
  3655. if not tokenizer_path.is_file():
  3656. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3657. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3658. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3659. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3660. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3661. # assure the tokenizer model file name is correct
  3662. assert tokenizer_path.name == 'tokenizer.model'
  3663. return self._set_vocab_sentencepiece()
  3664. else:
  3665. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3666. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3667. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3668. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3669. tokenizer = SentencePieceProcessor()
  3670. tokenizer.LoadFromFile(str(tokenizer_path))
  3671. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3672. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3673. scores: list[float] = [-10000.0] * vocab_size
  3674. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3675. for token_id in range(tokenizer.vocab_size()):
  3676. piece = tokenizer.IdToPiece(token_id)
  3677. text = piece.encode("utf-8")
  3678. score = tokenizer.GetScore(token_id)
  3679. toktype = SentencePieceTokenTypes.NORMAL
  3680. if tokenizer.IsUnknown(token_id):
  3681. toktype = SentencePieceTokenTypes.UNKNOWN
  3682. elif tokenizer.IsControl(token_id):
  3683. toktype = SentencePieceTokenTypes.CONTROL
  3684. elif tokenizer.IsUnused(token_id):
  3685. toktype = SentencePieceTokenTypes.UNUSED
  3686. elif tokenizer.IsByte(token_id):
  3687. toktype = SentencePieceTokenTypes.BYTE
  3688. tokens[token_id] = text
  3689. scores[token_id] = score
  3690. toktypes[token_id] = toktype
  3691. added_tokens_file = self.dir_model / 'added_tokens.json'
  3692. if added_tokens_file.is_file():
  3693. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3694. added_tokens_json = json.load(f)
  3695. for key in added_tokens_json:
  3696. token_id = added_tokens_json[key]
  3697. if token_id >= vocab_size:
  3698. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3699. continue
  3700. tokens[token_id] = key.encode("utf-8")
  3701. scores[token_id] = -1000.0
  3702. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3703. if vocab_size > len(tokens):
  3704. pad_count = vocab_size - len(tokens)
  3705. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3706. for i in range(1, pad_count + 1):
  3707. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3708. scores.append(-1000.0)
  3709. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3710. self.gguf_writer.add_tokenizer_model("t5")
  3711. self.gguf_writer.add_tokenizer_pre("default")
  3712. self.gguf_writer.add_token_list(tokens)
  3713. self.gguf_writer.add_token_scores(scores)
  3714. self.gguf_writer.add_token_types(toktypes)
  3715. self.gguf_writer.add_add_space_prefix(add_prefix)
  3716. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3717. if precompiled_charsmap:
  3718. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3719. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3720. special_vocab.add_to_gguf(self.gguf_writer)
  3721. self.gguf_writer.add_add_bos_token(False)
  3722. self.gguf_writer.add_add_eos_token(True)
  3723. def set_gguf_parameters(self):
  3724. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3725. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3726. n_ctx = 512
  3727. self.gguf_writer.add_context_length(n_ctx)
  3728. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3729. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3730. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3731. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3732. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3733. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3734. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3735. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3736. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3737. self.gguf_writer.add_decoder_start_token_id(self.hparams["decoder_start_token_id"])
  3738. self.gguf_writer.add_file_type(self.ftype)
  3739. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3740. del bid # unused
  3741. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3742. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3743. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3744. # and decoder and ignore the remaining ones.
  3745. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3746. if not self.shared_token_embeddings_found:
  3747. name = "shared.weight"
  3748. self.shared_token_embeddings_found = True
  3749. else:
  3750. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3751. return []
  3752. return [(self.map_tensor_name(name), data_torch)]
  3753. @Model.register("T5EncoderModel")
  3754. class T5EncoderModel(Model):
  3755. model_arch = gguf.MODEL_ARCH.T5ENCODER
  3756. def __init__(self, *args, **kwargs):
  3757. super().__init__(*args, **kwargs)
  3758. self.shared_token_embeddings_found = False
  3759. def set_vocab(self):
  3760. # to avoid TypeError: Descriptors cannot be created directly
  3761. # exception when importing sentencepiece_model_pb2
  3762. os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
  3763. from sentencepiece import SentencePieceProcessor
  3764. from sentencepiece import sentencepiece_model_pb2 as model
  3765. tokenizer_path = self.dir_model / 'tokenizer.model'
  3766. # many older models use spiece.model tokenizer model filename
  3767. if not tokenizer_path.is_file():
  3768. tokenizer_path = self.dir_model / 'spiece.model'
  3769. if not tokenizer_path.is_file():
  3770. raise FileNotFoundError(f"File not found: {tokenizer_path}")
  3771. sentencepiece_model = model.ModelProto() # pyright: ignore[reportAttributeAccessIssue]
  3772. sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
  3773. # some models like Pile-T5 family use BPE tokenizer instead of Unigram
  3774. if sentencepiece_model.trainer_spec.model_type == 2: # BPE
  3775. # assure the tokenizer model file name is correct
  3776. assert tokenizer_path.name == 'tokenizer.model'
  3777. return self._set_vocab_sentencepiece()
  3778. else:
  3779. assert sentencepiece_model.trainer_spec.model_type == 1 # UNIGRAM
  3780. add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
  3781. remove_whitespaces = sentencepiece_model.normalizer_spec.remove_extra_whitespaces
  3782. precompiled_charsmap = sentencepiece_model.normalizer_spec.precompiled_charsmap
  3783. tokenizer = SentencePieceProcessor()
  3784. tokenizer.LoadFromFile(str(tokenizer_path))
  3785. vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
  3786. tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
  3787. scores: list[float] = [-10000.0] * vocab_size
  3788. toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size
  3789. for token_id in range(tokenizer.vocab_size()):
  3790. piece = tokenizer.IdToPiece(token_id)
  3791. text = piece.encode("utf-8")
  3792. score = tokenizer.GetScore(token_id)
  3793. toktype = SentencePieceTokenTypes.NORMAL
  3794. if tokenizer.IsUnknown(token_id):
  3795. toktype = SentencePieceTokenTypes.UNKNOWN
  3796. elif tokenizer.IsControl(token_id):
  3797. toktype = SentencePieceTokenTypes.CONTROL
  3798. elif tokenizer.IsUnused(token_id):
  3799. toktype = SentencePieceTokenTypes.UNUSED
  3800. elif tokenizer.IsByte(token_id):
  3801. toktype = SentencePieceTokenTypes.BYTE
  3802. tokens[token_id] = text
  3803. scores[token_id] = score
  3804. toktypes[token_id] = toktype
  3805. added_tokens_file = self.dir_model / 'added_tokens.json'
  3806. if added_tokens_file.is_file():
  3807. with open(added_tokens_file, "r", encoding="utf-8") as f:
  3808. added_tokens_json = json.load(f)
  3809. for key in added_tokens_json:
  3810. token_id = added_tokens_json[key]
  3811. if token_id >= vocab_size:
  3812. logger.warning(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
  3813. continue
  3814. tokens[token_id] = key.encode("utf-8")
  3815. scores[token_id] = -1000.0
  3816. toktypes[token_id] = SentencePieceTokenTypes.USER_DEFINED
  3817. if vocab_size > len(tokens):
  3818. pad_count = vocab_size - len(tokens)
  3819. logger.debug(f"Padding vocab with {pad_count} token(s) - [PAD1] through [PAD{pad_count}]")
  3820. for i in range(1, pad_count + 1):
  3821. tokens.append(bytes(f"[PAD{i}]", encoding="utf-8"))
  3822. scores.append(-1000.0)
  3823. toktypes.append(SentencePieceTokenTypes.UNUSED)
  3824. self.gguf_writer.add_tokenizer_model("t5")
  3825. self.gguf_writer.add_tokenizer_pre("default")
  3826. self.gguf_writer.add_token_list(tokens)
  3827. self.gguf_writer.add_token_scores(scores)
  3828. self.gguf_writer.add_token_types(toktypes)
  3829. self.gguf_writer.add_add_space_prefix(add_prefix)
  3830. self.gguf_writer.add_remove_extra_whitespaces(remove_whitespaces)
  3831. if precompiled_charsmap:
  3832. self.gguf_writer.add_precompiled_charsmap(precompiled_charsmap)
  3833. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3834. special_vocab.add_to_gguf(self.gguf_writer)
  3835. self.gguf_writer.add_add_bos_token(False)
  3836. self.gguf_writer.add_add_eos_token(True)
  3837. def set_gguf_parameters(self):
  3838. if (n_ctx := self.find_hparam(["n_positions"], optional=True)) is None:
  3839. logger.warning("Couldn't find context length in config.json, assuming default value of 512")
  3840. n_ctx = 512
  3841. self.gguf_writer.add_context_length(n_ctx)
  3842. self.gguf_writer.add_embedding_length(self.hparams["d_model"])
  3843. self.gguf_writer.add_feed_forward_length(self.hparams["d_ff"])
  3844. self.gguf_writer.add_block_count(self.hparams["num_layers"])
  3845. self.gguf_writer.add_head_count(self.hparams["num_heads"])
  3846. self.gguf_writer.add_key_length(self.hparams["d_kv"])
  3847. self.gguf_writer.add_value_length(self.hparams["d_kv"])
  3848. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3849. self.gguf_writer.add_relative_attn_buckets_count(self.hparams["relative_attention_num_buckets"])
  3850. self.gguf_writer.add_layer_norm_rms_eps(self.hparams["layer_norm_epsilon"])
  3851. self.gguf_writer.add_file_type(self.ftype)
  3852. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3853. del bid # unused
  3854. # T5 based models contain shared token embeddings tensors saved randomly as either "encoder.embed_tokens.weight",
  3855. # "decoder.embed_tokens.weight" or "shared.weight" tensor. In some models there are even multiple of them stored
  3856. # in the safetensors files. We use the first tensor from these three as the token embeddings for both encoder
  3857. # and decoder and ignore the remaining ones.
  3858. if name in ["decoder.embed_tokens.weight", "encoder.embed_tokens.weight", "shared.weight"]:
  3859. if not self.shared_token_embeddings_found:
  3860. name = "shared.weight"
  3861. self.shared_token_embeddings_found = True
  3862. else:
  3863. logger.debug(f"Skipping shared tensor {name!r} in safetensors so that convert can end normally.")
  3864. return []
  3865. return [(self.map_tensor_name(name), data_torch)]
  3866. @Model.register("JAISLMHeadModel")
  3867. class JaisModel(Model):
  3868. model_arch = gguf.MODEL_ARCH.JAIS
  3869. def __init__(self, *args, **kwargs):
  3870. super().__init__(*args, **kwargs)
  3871. # SwigLU activation
  3872. assert self.hparams["activation_function"] == "swiglu"
  3873. # ALiBi position embedding
  3874. assert self.hparams["position_embedding_type"] == "alibi"
  3875. # Embeddings scale
  3876. self.embeddings_scale = 1.0
  3877. if 'mup_embeddings_scale' in self.hparams:
  3878. self.embeddings_scale = self.hparams['mup_embeddings_scale']
  3879. elif 'embeddings_scale' in self.hparams:
  3880. self.embeddings_scale = self.hparams['embeddings_scale']
  3881. else:
  3882. assert False
  3883. self.width_scale = 1.0
  3884. if 'mup_output_alpha' in self.hparams:
  3885. assert 'mup_width_scale' in self.hparams
  3886. self.width_scale = self.hparams['mup_output_alpha'] * self.hparams['mup_width_scale']
  3887. elif 'width_scale' in self.hparams:
  3888. self.width_scale = self.hparams['width_scale']
  3889. else:
  3890. assert False
  3891. self.max_alibi_bias = 8.0
  3892. def set_vocab(self):
  3893. self._set_vocab_gpt2()
  3894. def set_gguf_parameters(self):
  3895. self.gguf_writer.add_block_count(self.hparams["n_layer"])
  3896. self.gguf_writer.add_context_length(self.hparams["n_positions"])
  3897. self.gguf_writer.add_embedding_length(self.hparams["n_embd"])
  3898. self.gguf_writer.add_feed_forward_length(self.hparams["n_inner"])
  3899. self.gguf_writer.add_head_count(self.hparams["n_head"])
  3900. self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_epsilon"])
  3901. self.gguf_writer.add_file_type(self.ftype)
  3902. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  3903. del bid # unused
  3904. tensors: list[tuple[str, Tensor]] = []
  3905. # we don't need these
  3906. if name.endswith((".attn.bias")):
  3907. return tensors
  3908. if name.endswith(("relative_pe.slopes")):
  3909. # Calculate max ALiBi bias (this is the inverse of the ALiBi calculation)
  3910. # Some other models has max_alibi_bias spelled out explicitly in the hyperparams,
  3911. # but Jais's PyTorch model simply precalculates the slope values and places them
  3912. # in relative_pes.slopes
  3913. n_head_closest_log2 = 2 ** math.floor(math.log2(self.hparams["n_head"]))
  3914. first_val = float(data_torch[0].item())
  3915. self.max_alibi_bias = -round(math.log2(first_val) * n_head_closest_log2)
  3916. return tensors
  3917. if name.endswith((".c_attn.weight", ".c_proj.weight", ".c_fc.weight", ".c_fc2.weight")):
  3918. data_torch = data_torch.transpose(1, 0)
  3919. new_name = self.map_tensor_name(name)
  3920. if new_name == self.format_tensor_name(gguf.MODEL_TENSOR.TOKEN_EMBD):
  3921. tensors.append((new_name, data_torch * self.embeddings_scale))
  3922. elif new_name == self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT):
  3923. tensors.append((new_name, data_torch * self.width_scale))
  3924. else:
  3925. tensors.append((new_name, data_torch))
  3926. return tensors
  3927. def prepare_tensors(self):
  3928. super().prepare_tensors()
  3929. self.gguf_writer.add_max_alibi_bias(self.max_alibi_bias)
  3930. @Model.register("GlmForCausalLM", "ChatGLMModel", "ChatGLMForConditionalGeneration")
  3931. class ChatGLMModel(Model):
  3932. model_arch = gguf.MODEL_ARCH.CHATGLM
  3933. def set_vocab_chatglm3(self):
  3934. dir_model = self.dir_model
  3935. hparams = self.hparams
  3936. tokens: list[bytes] = []
  3937. toktypes: list[int] = []
  3938. scores: list[float] = []
  3939. from transformers import AutoTokenizer
  3940. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  3941. vocab_size = hparams.get("padded_vocab_size", len(tokenizer.get_vocab()))
  3942. assert max(tokenizer.get_vocab().values()) < vocab_size
  3943. role_special_tokens = ["<|system|>", "<|user|>", "<|assistant|>", "<|observation|>"]
  3944. special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "sop", "eop"] + role_special_tokens
  3945. for token_id in range(vocab_size):
  3946. piece = tokenizer._convert_id_to_token(token_id)
  3947. if token_id == 0:
  3948. piece = "<unk>"
  3949. elif token_id == 1:
  3950. piece = "<bos>"
  3951. elif token_id == 2:
  3952. piece = "<eos>"
  3953. text = piece.encode("utf-8")
  3954. score = 0.0
  3955. # Referencing the tokenizer Python implementation(https://huggingface.co/THUDM/chatglm3-6b/blob/main/tokenization_chatglm.py),
  3956. # it is only valid if it is less than tokenizer.tokenizer.sp_model.vocab_size()
  3957. if len(piece) != 0 and token_id < tokenizer.tokenizer.sp_model.vocab_size():
  3958. score = tokenizer.tokenizer.sp_model.get_score(token_id)
  3959. if token_id >= tokenizer.tokenizer.sp_model.vocab_size():
  3960. if piece in special_tokens:
  3961. toktype = SentencePieceTokenTypes.CONTROL
  3962. elif len(piece) == 0:
  3963. text = f"[PAD{token_id}]".encode("utf-8")
  3964. toktype = SentencePieceTokenTypes.UNUSED
  3965. else:
  3966. toktype = SentencePieceTokenTypes.USER_DEFINED
  3967. tokens.append(text)
  3968. scores.append(score)
  3969. toktypes.append(toktype)
  3970. continue
  3971. toktype = SentencePieceTokenTypes.NORMAL
  3972. if tokenizer.tokenizer.sp_model.is_unknown(token_id):
  3973. toktype = SentencePieceTokenTypes.UNKNOWN
  3974. elif tokenizer.tokenizer.sp_model.is_control(token_id):
  3975. toktype = SentencePieceTokenTypes.CONTROL
  3976. elif tokenizer.tokenizer.sp_model.is_unused(token_id):
  3977. toktype = SentencePieceTokenTypes.UNUSED
  3978. elif tokenizer.tokenizer.sp_model.is_byte(token_id):
  3979. toktype = SentencePieceTokenTypes.BYTE
  3980. tokens.append(text)
  3981. scores.append(score)
  3982. toktypes.append(toktype)
  3983. self.gguf_writer.add_tokenizer_model("llama")
  3984. # glm3 needs prefix and suffix formatted as:
  3985. # prompt = "[gMASK]sop<|user|>\n" + prompt + "<|assistant|>"
  3986. self.gguf_writer.add_tokenizer_pre("chatglm-spm")
  3987. self.gguf_writer.add_token_list(tokens)
  3988. self.gguf_writer.add_token_scores(scores)
  3989. self.gguf_writer.add_token_types(toktypes)
  3990. special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
  3991. special_vocab.add_to_gguf(self.gguf_writer)
  3992. @staticmethod
  3993. def token_bytes_to_string(b):
  3994. from transformers.models.gpt2.tokenization_gpt2 import bytes_to_unicode
  3995. byte_encoder = bytes_to_unicode()
  3996. return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')])
  3997. @staticmethod
  3998. def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]:
  3999. parts = [bytes([b]) for b in token]
  4000. while True:
  4001. min_idx = None
  4002. min_rank = None
  4003. for i, pair in enumerate(zip(parts[:-1], parts[1:])):
  4004. rank = mergeable_ranks.get(pair[0] + pair[1])
  4005. if rank is not None and (min_rank is None or rank < min_rank):
  4006. min_idx = i
  4007. min_rank = rank
  4008. if min_rank is None or (max_rank is not None and min_rank >= max_rank):
  4009. break
  4010. assert min_idx is not None
  4011. parts = parts[:min_idx] + [parts[min_idx] + parts[min_idx + 1]] + parts[min_idx + 2:]
  4012. return parts
  4013. def set_vocab(self):
  4014. if "THUDM/chatglm3-6b" in self.hparams.get("_name_or_path", ""):
  4015. self.set_vocab_chatglm3()
  4016. return
  4017. dir_model = self.dir_model
  4018. hparams = self.hparams
  4019. tokens: list[str] = []
  4020. toktypes: list[int] = []
  4021. from transformers import AutoTokenizer
  4022. tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
  4023. vocab_size = hparams.get("padded_vocab_size",hparams["vocab_size"])
  4024. assert max(tokenizer.get_vocab().values()) < vocab_size
  4025. tokens, toktypes, tokpre = self.get_vocab_base()
  4026. self.gguf_writer.add_tokenizer_model("gpt2")
  4027. self.gguf_writer.add_tokenizer_pre(tokpre)
  4028. self.gguf_writer.add_token_list(tokens)
  4029. self.gguf_writer.add_token_types(toktypes)
  4030. special_vocab = gguf.SpecialVocab(self.dir_model, load_merges=True)
  4031. # only add special tokens when they were not already loaded from config.json
  4032. special_vocab._set_special_token("eos", tokenizer.get_added_vocab()["<|endoftext|>"])
  4033. special_vocab._set_special_token("eot", tokenizer.get_added_vocab()["<|user|>"])
  4034. # this one is usually not in config.json anyway
  4035. special_vocab._set_special_token("unk", tokenizer.get_added_vocab()["<|endoftext|>"])
  4036. special_vocab.add_to_gguf(self.gguf_writer)
  4037. def set_gguf_parameters(self):
  4038. n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
  4039. n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
  4040. n_head_kv = self.hparams.get("multi_query_group_num", self.hparams.get("num_key_value_heads", n_head))
  4041. self.gguf_writer.add_context_length(self.hparams.get("seq_length", n_embed))
  4042. self.gguf_writer.add_embedding_length(n_embed)
  4043. self.gguf_writer.add_feed_forward_length(self.hparams.get("ffn_hidden_size", self.hparams.get("intermediate_size", 4 * n_embed)))
  4044. self.gguf_writer.add_block_count(self.hparams.get("num_layers", self.hparams["num_hidden_layers"]))
  4045. self.gguf_writer.add_head_count(n_head)
  4046. self.gguf_writer.add_head_count_kv(n_head_kv)
  4047. self.gguf_writer.add_layer_norm_rms_eps(self.hparams.get("layernorm_epsilon",1e-5))
  4048. self.gguf_writer.add_file_type(self.ftype)
  4049. if "attention_dim" in self.hparams:
  4050. rope_dim = self.hparams["attention_dim"]
  4051. else:
  4052. rope_dim = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
  4053. self.gguf_writer.add_rope_dimension_count(int(rope_dim * self.hparams.get("partial_rotary_factor", 0.5)))
  4054. self.gguf_writer.add_add_bos_token(False)
  4055. rope_freq = 10000
  4056. if "rope_ratio" in self.hparams:
  4057. rope_freq = rope_freq * self.hparams["rope_ratio"]
  4058. self.gguf_writer.add_rope_freq_base(rope_freq)
  4059. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4060. del bid # unused
  4061. if name.endswith(".rotary_pos_emb.inv_freq") or name.startswith("model.vision."):
  4062. return []
  4063. name = name.removeprefix("transformer.")
  4064. return [(self.map_tensor_name(name), data_torch)]
  4065. @Model.register("NemotronForCausalLM")
  4066. class NemotronModel(Model):
  4067. model_arch = gguf.MODEL_ARCH.NEMOTRON
  4068. def set_vocab(self):
  4069. self._set_vocab_sentencepiece()
  4070. self.gguf_writer.add_pad_token_id(0)
  4071. self.gguf_writer.add_unk_token_id(1)
  4072. def set_gguf_parameters(self):
  4073. super().set_gguf_parameters()
  4074. hparams = self.hparams
  4075. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4076. f_norm_eps = self.find_hparam(["layer_norm_eps", "layer_norm_epsilon", "norm_epsilon", "norm_eps"])
  4077. self.gguf_writer.add_layer_norm_eps(f_norm_eps)
  4078. # * Partial RoPE
  4079. rot_pct = self.find_hparam(["partial_rotary_factor", "rope_pct", "rope_percent"])
  4080. n_embd = self.find_hparam(["hidden_size", "n_embd"])
  4081. n_head = self.find_hparam(["num_attention_heads", "n_head"])
  4082. self.gguf_writer.add_rope_dimension_count(int(rot_pct * n_embd) // n_head)
  4083. # * RopeScaling for Nemotron
  4084. if "rope_scaling" not in self.hparams or self.hparams["rope_scaling"] is None:
  4085. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4086. else:
  4087. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4088. self.gguf_writer.add_rope_scaling_factor(self.hparams["factor"])
  4089. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4090. # * Adding +1 to LayerNorm's weights here to implement layernorm1p w/o changing anything on the GGML engine side
  4091. # model.layers.{l}.input_layernorm.weight
  4092. # model.layers.{l}.post_attention_layernorm.weight
  4093. # model.norm.weight
  4094. if name.endswith("norm.weight"):
  4095. data_torch = data_torch + 1
  4096. return [(self.map_tensor_name(name), data_torch)]
  4097. @Model.register("ExaoneForCausalLM")
  4098. class ExaoneModel(Model):
  4099. model_arch = gguf.MODEL_ARCH.EXAONE
  4100. def set_gguf_parameters(self):
  4101. hparams = self.hparams
  4102. assert (hparams["activation_function"] == "silu")
  4103. max_position_embeddings = hparams["max_position_embeddings"]
  4104. embed_dim = hparams["hidden_size"]
  4105. num_heads = hparams["num_attention_heads"]
  4106. num_kv_heads = hparams.get("num_key_value_heads", num_heads)
  4107. layer_norm_eps = hparams["layer_norm_epsilon"]
  4108. intermediate_size = hparams["intermediate_size"] if "intermediate_size" in hparams else 4 * embed_dim
  4109. num_layers = hparams["num_layers"]
  4110. # ignore for now as EXAONE-3.0-7.8B-Instruct attentino_dropout is 0.0
  4111. # attention_dropout_rate = hparams["attention_dropout"]
  4112. # ignore for now as EXAONE-3.0-7.8B-Instruct embed_dropout is 0.0
  4113. # embed_dropout_rate = hparams["embed_dropout"]
  4114. self.gguf_writer.add_embedding_length(embed_dim)
  4115. self.gguf_writer.add_head_count(num_heads)
  4116. self.gguf_writer.add_head_count_kv(num_kv_heads)
  4117. self.gguf_writer.add_context_length(max_position_embeddings)
  4118. self.gguf_writer.add_layer_norm_rms_eps(layer_norm_eps)
  4119. self.gguf_writer.add_feed_forward_length(intermediate_size)
  4120. self.gguf_writer.add_block_count(num_layers)
  4121. self.gguf_writer.add_file_type(self.ftype)
  4122. if (rope_theta := self.hparams.get("rope_theta")) is not None:
  4123. self.gguf_writer.add_rope_freq_base(rope_theta)
  4124. rotary_factor = self.find_hparam(["partial_rotary_factor", "rope_pct"], optional=True)
  4125. rotary_factor = rotary_factor if rotary_factor is not None else 1.0
  4126. self.gguf_writer.add_rope_dimension_count(int(rotary_factor * (hparams["hidden_size"] // hparams["num_attention_heads"])))
  4127. if hparams.get("rope_scaling") is not None and "factor" in hparams["rope_scaling"]:
  4128. if hparams["rope_scaling"].get("type") == "linear":
  4129. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
  4130. self.gguf_writer.add_rope_scaling_factor(hparams["rope_scaling"]["factor"])
  4131. def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
  4132. if rope_scaling := self.find_hparam(["rope_scaling"], optional=True):
  4133. if rope_scaling.get("rope_type", '').lower() == "llama3":
  4134. base = self.hparams.get("rope_theta", 10000.0)
  4135. dim = self.hparams.get("head_dim", self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
  4136. freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
  4137. factor = rope_scaling.get("factor", 8.0)
  4138. low_freq_factor = rope_scaling.get("low_freq_factor", 1.0)
  4139. high_freq_factor = rope_scaling.get("high_freq_factor", 4.0)
  4140. old_context_len = self.hparams.get("original_max_position_embeddings", 8192)
  4141. low_freq_wavelen = old_context_len / low_freq_factor
  4142. high_freq_wavelen = old_context_len / high_freq_factor
  4143. assert low_freq_wavelen != high_freq_wavelen
  4144. rope_factors = []
  4145. for freq in freqs:
  4146. wavelen = 2 * math.pi / freq
  4147. if wavelen < high_freq_wavelen:
  4148. rope_factors.append(1)
  4149. elif wavelen > low_freq_wavelen:
  4150. rope_factors.append(factor)
  4151. else:
  4152. smooth = (old_context_len / wavelen - low_freq_factor) / (high_freq_factor - low_freq_factor)
  4153. rope_factors.append(1 / ((1 - smooth) / factor + smooth))
  4154. yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FREQS), torch.tensor(rope_factors, dtype=torch.float32))
  4155. @Model.register("GraniteForCausalLM")
  4156. class GraniteModel(LlamaModel):
  4157. """Conversion for IBM's GraniteForCausalLM"""
  4158. model_arch = gguf.MODEL_ARCH.GRANITE
  4159. def set_gguf_parameters(self):
  4160. """Granite uses standard llama parameters with the following differences:
  4161. - No head_dim support
  4162. - New multiplier params:
  4163. - attention_scale
  4164. - embedding_scale
  4165. - residual_scale
  4166. - logits_scaling
  4167. """
  4168. if head_dim := self.hparams.pop("head_dim", None):
  4169. logger.warning("Ignoring head_dim (%s) from config for Granite", head_dim)
  4170. super().set_gguf_parameters()
  4171. # NOTE: Convert _multiplier params to _scale params for naming
  4172. # consistency
  4173. if attention_scale := self.hparams.get("attention_multiplier"):
  4174. self.gguf_writer.add_attention_scale(attention_scale)
  4175. logger.info("gguf: (granite) attention_scale = %s", attention_scale)
  4176. if embedding_scale := self.hparams.get("embedding_multiplier"):
  4177. self.gguf_writer.add_embedding_scale(embedding_scale)
  4178. logger.info("gguf: (granite) embedding_scale = %s", embedding_scale)
  4179. if residual_scale := self.hparams.get("residual_multiplier"):
  4180. self.gguf_writer.add_residual_scale(residual_scale)
  4181. logger.info("gguf: (granite) residual_scale = %s", residual_scale)
  4182. if logits_scale := self.hparams.get("logits_scaling"):
  4183. self.gguf_writer.add_logit_scale(logits_scale)
  4184. logger.info("gguf: (granite) logits_scale = %s", logits_scale)
  4185. @Model.register("GraniteMoeForCausalLM")
  4186. class GraniteMoeModel(GraniteModel):
  4187. """Conversion for IBM's GraniteMoeForCausalLM"""
  4188. model_arch = gguf.MODEL_ARCH.GRANITE_MOE
  4189. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4190. """In modeling_granitemoe, the JetMoe implementation of parallel experts
  4191. is used. This essentially merges w1 and w3 into a single tensor with 2x
  4192. the hidden size that is then split during forward. To keep compatibility
  4193. with existing mixtral support, we pull them apart here.
  4194. """
  4195. if name.endswith("block_sparse_moe.input_linear.weight"):
  4196. ffn_dim = self.hparams["intermediate_size"]
  4197. assert data_torch.shape[-2] == 2 * ffn_dim, "Merged FFN tensor size must be 2 * intermediate_size"
  4198. gate, up = data_torch[..., :ffn_dim, :], data_torch[..., ffn_dim:, :]
  4199. return [
  4200. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_GATE_EXP, bid), gate),
  4201. (self.format_tensor_name(gguf.MODEL_TENSOR.FFN_UP_EXP, bid), up),
  4202. ]
  4203. return super().modify_tensors(data_torch, name, bid)
  4204. @Model.register("BailingMoeForCausalLM")
  4205. class BailingMoeModel(Model):
  4206. model_arch = gguf.MODEL_ARCH.BAILINGMOE
  4207. def set_vocab(self):
  4208. self._set_vocab_gpt2()
  4209. def set_gguf_parameters(self):
  4210. super().set_gguf_parameters()
  4211. hparams = self.hparams
  4212. rope_dim = hparams.get("head_dim") or hparams["hidden_size"] // hparams["num_attention_heads"]
  4213. self.gguf_writer.add_rope_dimension_count(rope_dim)
  4214. self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
  4215. self.gguf_writer.add_leading_dense_block_count(hparams["first_k_dense_replace"])
  4216. self.gguf_writer.add_vocab_size(hparams["vocab_size"])
  4217. self.gguf_writer.add_expert_feed_forward_length(hparams["moe_intermediate_size"])
  4218. self.gguf_writer.add_expert_weights_scale(1.0)
  4219. self.gguf_writer.add_expert_count(hparams["num_experts"])
  4220. self.gguf_writer.add_expert_shared_count(hparams["num_shared_experts"])
  4221. self.gguf_writer.add_expert_weights_norm(hparams["norm_topk_prob"])
  4222. _experts: list[dict[str, Tensor]] | None = None
  4223. @staticmethod
  4224. def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
  4225. if n_head_kv is not None and n_head != n_head_kv:
  4226. n_head = n_head_kv
  4227. return (weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
  4228. .swapaxes(1, 2)
  4229. .reshape(weights.shape))
  4230. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4231. n_head = self.hparams["num_attention_heads"]
  4232. n_kv_head = self.hparams.get("num_key_value_heads")
  4233. n_embd = self.hparams["hidden_size"]
  4234. head_dim = self.hparams.get("head_dim") or n_embd // n_head
  4235. output_name = self.format_tensor_name(gguf.MODEL_TENSOR.OUTPUT)
  4236. if name.endswith("attention.dense.weight"):
  4237. return [(self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_OUT, bid), data_torch)]
  4238. elif name.endswith("query_key_value.weight"):
  4239. q, k, v = data_torch.split([n_head * head_dim, n_kv_head * head_dim, n_kv_head * head_dim], dim=-2)
  4240. return [
  4241. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_Q, bid), BailingMoeModel.permute(q, n_head, n_head)),
  4242. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_K, bid), BailingMoeModel.permute(k, n_head, n_kv_head)),
  4243. (self.format_tensor_name(gguf.MODEL_TENSOR.ATTN_V, bid), v)
  4244. ]
  4245. elif name.find("mlp.experts") != -1:
  4246. n_experts = self.hparams["num_experts"]
  4247. assert bid is not None
  4248. tensors: list[tuple[str, Tensor]] = []
  4249. if self._experts is None:
  4250. self._experts = [{} for _ in range(self.block_count)]
  4251. self._experts[bid][name] = data_torch
  4252. if len(self._experts[bid]) >= n_experts * 3:
  4253. # merge the experts into a single 3d tensor
  4254. for w_name in ["down_proj", "gate_proj", "up_proj"]:
  4255. datas: list[Tensor] = []
  4256. for xid in range(n_experts):
  4257. ename = f"model.layers.{bid}.mlp.experts.{xid}.{w_name}.weight"
  4258. datas.append(self._experts[bid][ename])
  4259. del self._experts[bid][ename]
  4260. data_torch = torch.stack(datas, dim=0)
  4261. merged_name = f"model.layers.{bid}.mlp.experts.{w_name}.weight"
  4262. new_name = self.map_tensor_name(merged_name)
  4263. tensors.append((new_name, data_torch))
  4264. return tensors
  4265. new_name = self.map_tensor_name(name)
  4266. if new_name == output_name and self.hparams.get("norm_head"):
  4267. data_torch = data_torch.float()
  4268. data_torch /= torch.norm(data_torch, p=2, dim=0, keepdim=True) + 1e-7
  4269. return [(new_name, data_torch)]
  4270. def prepare_tensors(self):
  4271. super().prepare_tensors()
  4272. if self._experts is not None:
  4273. # flatten `list[dict[str, Tensor]]` into `list[str]`
  4274. experts = [k for d in self._experts for k in d.keys()]
  4275. if len(experts) > 0:
  4276. raise ValueError(f"Unprocessed experts: {experts}")
  4277. @Model.register("ChameleonForConditionalGeneration")
  4278. @Model.register("ChameleonForCausalLM") # obsolete
  4279. class ChameleonModel(Model):
  4280. model_arch = gguf.MODEL_ARCH.CHAMELEON
  4281. def set_gguf_parameters(self):
  4282. super().set_gguf_parameters()
  4283. self.gguf_writer.add_swin_norm(self.hparams.get("swin_norm", False))
  4284. def set_vocab(self):
  4285. self._set_vocab_gpt2()
  4286. def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
  4287. # ignore image tokenizer for now
  4288. # TODO: remove this once image support is implemented for Chameleon
  4289. if name.startswith("model.vqmodel"):
  4290. return []
  4291. n_head = self.hparams["num_attention_heads"]
  4292. n_kv_head = self.hparams.get("num_key_value_heads")
  4293. hidden_dim = self.hparams.get("hidden_size")
  4294. if name.endswith(("q_proj.weight", "q_proj.bias")):
  4295. data_torch = LlamaModel.permute(data_torch, n_head, n_head)
  4296. if name.endswith(("k_proj.weight", "k_proj.bias")):
  4297. data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
  4298. if name.endswith(("q_norm.weight", "q_norm.bias")):
  4299. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_head, hidden_dim)
  4300. if name.endswith(("k_norm.weight", "k_norm.bias")):
  4301. data_torch = ChameleonModel._reverse_hf_permute(data_torch, n_kv_head, hidden_dim)
  4302. return [(self.map_tensor_name(name), data_torch)]
  4303. # see: https://github.com/huggingface/transformers/blob/72fb02c47dbbe1999ae105319f24631cad6e2e00/src/transformers/models/chameleon/convert_chameleon_weights_to_hf.py#L176-L203
  4304. @staticmethod
  4305. def _reverse_hf_permute(data_torch, n_heads, hidden_dim):
  4306. head_dim = hidden_dim // n_heads
  4307. data_torch = data_torch[0].view(2, head_dim // 2).t().reshape(1, -1)
  4308. data_torch = data_torch.repeat_interleave(n_heads, 0)
  4309. return data_torch
  4310. ###### CONVERSION LOGIC ######
  4311. # tree of lazy tensors
  4312. class LazyTorchTensor(gguf.LazyBase):
  4313. _tensor_type = torch.Tensor
  4314. # to keep the type-checker happy
  4315. dtype: torch.dtype
  4316. shape: torch.Size
  4317. # only used when converting a torch.Tensor to a np.ndarray
  4318. _dtype_map: dict[torch.dtype, type] = {
  4319. torch.float16: np.float16,
  4320. torch.float32: np.float32,
  4321. }
  4322. # used for safetensors slices
  4323. # ref: https://github.com/huggingface/safetensors/blob/079781fd0dc455ba0fe851e2b4507c33d0c0d407/bindings/python/src/lib.rs#L1046
  4324. # TODO: uncomment U64, U32, and U16, ref: https://github.com/pytorch/pytorch/issues/58734
  4325. _dtype_str_map: dict[str, torch.dtype] = {
  4326. "F64": torch.float64,
  4327. "F32": torch.float32,
  4328. "BF16": torch.bfloat16,
  4329. "F16": torch.float16,
  4330. # "U64": torch.uint64,
  4331. "I64": torch.int64,
  4332. # "U32": torch.uint32,
  4333. "I32": torch.int32,
  4334. # "U16": torch.uint16,
  4335. "I16": torch.int16,
  4336. "U8": torch.uint8,
  4337. "I8": torch.int8,
  4338. "BOOL": torch.bool,
  4339. "F8_E4M3": torch.float8_e4m3fn,
  4340. "F8_E5M2": torch.float8_e5m2,
  4341. }
  4342. def numpy(self) -> gguf.LazyNumpyTensor:
  4343. dtype = self._dtype_map[self.dtype]
  4344. return gguf.LazyNumpyTensor(
  4345. meta=gguf.LazyNumpyTensor.meta_with_dtype_and_shape(dtype, self.shape),
  4346. args=(self,),
  4347. func=(lambda s: s.numpy())
  4348. )
  4349. @classmethod
  4350. def meta_with_dtype_and_shape(cls, dtype: torch.dtype, shape: tuple[int, ...]) -> Tensor:
  4351. return torch.empty(size=shape, dtype=dtype, device="meta")
  4352. @classmethod
  4353. def from_safetensors_slice(cls, st_slice: Any) -> Tensor:
  4354. dtype = cls._dtype_str_map[st_slice.get_dtype()]
  4355. shape: tuple[int, ...] = tuple(st_slice.get_shape())
  4356. lazy = cls(meta=cls.meta_with_dtype_and_shape(dtype, shape), args=(st_slice,), func=lambda s: s[:])
  4357. return cast(torch.Tensor, lazy)
  4358. @classmethod
  4359. def __torch_function__(cls, func, types, args=(), kwargs=None):
  4360. del types # unused
  4361. if kwargs is None:
  4362. kwargs = {}
  4363. if func is torch.Tensor.numpy:
  4364. return args[0].numpy()
  4365. return cls._wrap_fn(func)(*args, **kwargs)
  4366. def parse_args() -> argparse.Namespace:
  4367. parser = argparse.ArgumentParser(
  4368. description="Convert a huggingface model to a GGML compatible file")
  4369. parser.add_argument(
  4370. "--vocab-only", action="store_true",
  4371. help="extract only the vocab",
  4372. )
  4373. parser.add_argument(
  4374. "--outfile", type=Path,
  4375. help="path to write to; default: based on input. {ftype} will be replaced by the outtype.",
  4376. )
  4377. parser.add_argument(
  4378. "--outtype", type=str, choices=["f32", "f16", "bf16", "q8_0", "tq1_0", "tq2_0", "auto"], default="f16",
  4379. help="output format - use f32 for float32, f16 for float16, bf16 for bfloat16, q8_0 for Q8_0, tq1_0 or tq2_0 for ternary, and auto for the highest-fidelity 16-bit float type depending on the first loaded tensor type",
  4380. )
  4381. parser.add_argument(
  4382. "--bigendian", action="store_true",
  4383. help="model is executed on big endian machine",
  4384. )
  4385. parser.add_argument(
  4386. "model", type=Path,
  4387. help="directory containing model file",
  4388. nargs="?",
  4389. )
  4390. parser.add_argument(
  4391. "--use-temp-file", action="store_true",
  4392. help="use the tempfile library while processing (helpful when running out of memory, process killed)",
  4393. )
  4394. parser.add_argument(
  4395. "--no-lazy", action="store_true",
  4396. help="use more RAM by computing all outputs before writing (use in case lazy evaluation is broken)",
  4397. )
  4398. parser.add_argument(
  4399. "--model-name", type=str, default=None,
  4400. help="name of the model",
  4401. )
  4402. parser.add_argument(
  4403. "--verbose", action="store_true",
  4404. help="increase output verbosity",
  4405. )
  4406. parser.add_argument(
  4407. "--split-max-tensors", type=int, default=0,
  4408. help="max tensors in each split",
  4409. )
  4410. parser.add_argument(
  4411. "--split-max-size", type=str, default="0",
  4412. help="max size per split N(M|G)",
  4413. )
  4414. parser.add_argument(
  4415. "--dry-run", action="store_true",
  4416. help="only print out a split plan and exit, without writing any new files",
  4417. )
  4418. parser.add_argument(
  4419. "--no-tensor-first-split", action="store_true",
  4420. help="do not add tensors to the first split (disabled by default)"
  4421. )
  4422. parser.add_argument(
  4423. "--metadata", type=Path,
  4424. help="Specify the path for an authorship metadata override file"
  4425. )
  4426. parser.add_argument(
  4427. "--print-supported-models", action="store_true",
  4428. help="Print the supported models"
  4429. )
  4430. args = parser.parse_args()
  4431. if not args.print_supported_models and args.model is None:
  4432. parser.error("the following arguments are required: model")
  4433. return args
  4434. def split_str_to_n_bytes(split_str: str) -> int:
  4435. if split_str.endswith("K"):
  4436. n = int(split_str[:-1]) * 1000
  4437. elif split_str.endswith("M"):
  4438. n = int(split_str[:-1]) * 1000 * 1000
  4439. elif split_str.endswith("G"):
  4440. n = int(split_str[:-1]) * 1000 * 1000 * 1000
  4441. elif split_str.isnumeric():
  4442. n = int(split_str)
  4443. else:
  4444. raise ValueError(f"Invalid split size: {split_str}, must be a number, optionally followed by K, M, or G")
  4445. if n < 0:
  4446. raise ValueError(f"Invalid split size: {split_str}, must be positive")
  4447. return n
  4448. def main() -> None:
  4449. args = parse_args()
  4450. if args.print_supported_models:
  4451. logger.error("Supported models:")
  4452. Model.print_registered_models()
  4453. sys.exit(0)
  4454. if args.verbose:
  4455. logging.basicConfig(level=logging.DEBUG)
  4456. else:
  4457. logging.basicConfig(level=logging.INFO)
  4458. dir_model = args.model
  4459. if not dir_model.is_dir():
  4460. logger.error(f'Error: {args.model} is not a directory')
  4461. sys.exit(1)
  4462. ftype_map: dict[str, gguf.LlamaFileType] = {
  4463. "f32": gguf.LlamaFileType.ALL_F32,
  4464. "f16": gguf.LlamaFileType.MOSTLY_F16,
  4465. "bf16": gguf.LlamaFileType.MOSTLY_BF16,
  4466. "q8_0": gguf.LlamaFileType.MOSTLY_Q8_0,
  4467. "tq1_0": gguf.LlamaFileType.MOSTLY_TQ1_0,
  4468. "tq2_0": gguf.LlamaFileType.MOSTLY_TQ2_0,
  4469. "auto": gguf.LlamaFileType.GUESSED,
  4470. }
  4471. is_split = args.split_max_tensors > 0 or args.split_max_size != "0"
  4472. if args.use_temp_file and is_split:
  4473. logger.error("Error: Cannot use temp file when splitting")
  4474. sys.exit(1)
  4475. if args.outfile is not None:
  4476. fname_out = args.outfile
  4477. else:
  4478. fname_out = dir_model
  4479. logger.info(f"Loading model: {dir_model.name}")
  4480. hparams = Model.load_hparams(dir_model)
  4481. with torch.inference_mode():
  4482. output_type = ftype_map[args.outtype]
  4483. model_architecture = hparams["architectures"][0]
  4484. try:
  4485. model_class = Model.from_model_architecture(model_architecture)
  4486. except NotImplementedError:
  4487. logger.error(f"Model {model_architecture} is not supported")
  4488. sys.exit(1)
  4489. model_instance = model_class(dir_model, output_type, fname_out,
  4490. is_big_endian=args.bigendian, use_temp_file=args.use_temp_file,
  4491. eager=args.no_lazy,
  4492. metadata_override=args.metadata, model_name=args.model_name,
  4493. split_max_tensors=args.split_max_tensors,
  4494. split_max_size=split_str_to_n_bytes(args.split_max_size), dry_run=args.dry_run,
  4495. small_first_shard=args.no_tensor_first_split)
  4496. if args.vocab_only:
  4497. logger.info("Exporting model vocab...")
  4498. model_instance.write_vocab()
  4499. logger.info(f"Model vocab successfully exported to {model_instance.fname_out}")
  4500. else:
  4501. logger.info("Exporting model...")
  4502. model_instance.write()
  4503. out_path = f"{model_instance.fname_out.parent}{os.sep}" if is_split else model_instance.fname_out
  4504. logger.info(f"Model successfully exported to {out_path}")
  4505. if __name__ == '__main__':
  4506. main()