ggml-metal.metal 170 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972
  1. #include <metal_stdlib>
  2. using namespace metal;
  3. #define MAX(x, y) ((x) > (y) ? (x) : (y))
  4. #define MIN(x, y) ((x) < (y) ? (x) : (y))
  5. #define SWAP(x, y) { auto tmp = (x); (x) = (y); (y) = tmp; }
  6. #define QK4_0 32
  7. #define QR4_0 2
  8. typedef struct {
  9. half d; // delta
  10. uint8_t qs[QK4_0 / 2]; // nibbles / quants
  11. } block_q4_0;
  12. #define QK4_1 32
  13. typedef struct {
  14. half d; // delta
  15. half m; // min
  16. uint8_t qs[QK4_1 / 2]; // nibbles / quants
  17. } block_q4_1;
  18. #define QK5_0 32
  19. typedef struct {
  20. half d; // delta
  21. uint8_t qh[4]; // 5-th bit of quants
  22. uint8_t qs[QK5_0 / 2]; // nibbles / quants
  23. } block_q5_0;
  24. #define QK5_1 32
  25. typedef struct {
  26. half d; // delta
  27. half m; // min
  28. uint8_t qh[4]; // 5-th bit of quants
  29. uint8_t qs[QK5_1 / 2]; // nibbles / quants
  30. } block_q5_1;
  31. #define QK8_0 32
  32. typedef struct {
  33. half d; // delta
  34. int8_t qs[QK8_0]; // quants
  35. } block_q8_0;
  36. #define N_SIMDWIDTH 32 // assuming SIMD group size is 32
  37. enum ggml_sort_order {
  38. GGML_SORT_ASC,
  39. GGML_SORT_DESC,
  40. };
  41. // general-purpose kernel for addition, multiplication and division of two tensors
  42. // pros: works for non-contiguous tensors, supports broadcast across all dims
  43. // cons: not very efficient
  44. kernel void kernel_add(
  45. device const char * src0,
  46. device const char * src1,
  47. device char * dst,
  48. constant int64_t & ne00,
  49. constant int64_t & ne01,
  50. constant int64_t & ne02,
  51. constant int64_t & ne03,
  52. constant uint64_t & nb00,
  53. constant uint64_t & nb01,
  54. constant uint64_t & nb02,
  55. constant uint64_t & nb03,
  56. constant int64_t & ne10,
  57. constant int64_t & ne11,
  58. constant int64_t & ne12,
  59. constant int64_t & ne13,
  60. constant uint64_t & nb10,
  61. constant uint64_t & nb11,
  62. constant uint64_t & nb12,
  63. constant uint64_t & nb13,
  64. constant int64_t & ne0,
  65. constant int64_t & ne1,
  66. constant int64_t & ne2,
  67. constant int64_t & ne3,
  68. constant uint64_t & nb0,
  69. constant uint64_t & nb1,
  70. constant uint64_t & nb2,
  71. constant uint64_t & nb3,
  72. constant int64_t & offs,
  73. uint3 tgpig[[threadgroup_position_in_grid]],
  74. uint3 tpitg[[thread_position_in_threadgroup]],
  75. uint3 ntg[[threads_per_threadgroup]]) {
  76. const int64_t i03 = tgpig.z;
  77. const int64_t i02 = tgpig.y;
  78. const int64_t i01 = tgpig.x;
  79. const int64_t i13 = i03 % ne13;
  80. const int64_t i12 = i02 % ne12;
  81. const int64_t i11 = i01 % ne11;
  82. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + offs;
  83. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  84. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + offs;
  85. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  86. const int i10 = i0 % ne10;
  87. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) + *((device float *)(src1_ptr + i10*nb10));
  88. }
  89. }
  90. kernel void kernel_mul(
  91. device const char * src0,
  92. device const char * src1,
  93. device char * dst,
  94. constant int64_t & ne00,
  95. constant int64_t & ne01,
  96. constant int64_t & ne02,
  97. constant int64_t & ne03,
  98. constant uint64_t & nb00,
  99. constant uint64_t & nb01,
  100. constant uint64_t & nb02,
  101. constant uint64_t & nb03,
  102. constant int64_t & ne10,
  103. constant int64_t & ne11,
  104. constant int64_t & ne12,
  105. constant int64_t & ne13,
  106. constant uint64_t & nb10,
  107. constant uint64_t & nb11,
  108. constant uint64_t & nb12,
  109. constant uint64_t & nb13,
  110. constant int64_t & ne0,
  111. constant int64_t & ne1,
  112. constant int64_t & ne2,
  113. constant int64_t & ne3,
  114. constant uint64_t & nb0,
  115. constant uint64_t & nb1,
  116. constant uint64_t & nb2,
  117. constant uint64_t & nb3,
  118. uint3 tgpig[[threadgroup_position_in_grid]],
  119. uint3 tpitg[[thread_position_in_threadgroup]],
  120. uint3 ntg[[threads_per_threadgroup]]) {
  121. const int64_t i03 = tgpig.z;
  122. const int64_t i02 = tgpig.y;
  123. const int64_t i01 = tgpig.x;
  124. const int64_t i13 = i03 % ne13;
  125. const int64_t i12 = i02 % ne12;
  126. const int64_t i11 = i01 % ne11;
  127. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  128. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  129. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  130. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  131. const int i10 = i0 % ne10;
  132. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) * *((device float *)(src1_ptr + i10*nb10));
  133. }
  134. }
  135. kernel void kernel_div(
  136. device const char * src0,
  137. device const char * src1,
  138. device char * dst,
  139. constant int64_t & ne00,
  140. constant int64_t & ne01,
  141. constant int64_t & ne02,
  142. constant int64_t & ne03,
  143. constant uint64_t & nb00,
  144. constant uint64_t & nb01,
  145. constant uint64_t & nb02,
  146. constant uint64_t & nb03,
  147. constant int64_t & ne10,
  148. constant int64_t & ne11,
  149. constant int64_t & ne12,
  150. constant int64_t & ne13,
  151. constant uint64_t & nb10,
  152. constant uint64_t & nb11,
  153. constant uint64_t & nb12,
  154. constant uint64_t & nb13,
  155. constant int64_t & ne0,
  156. constant int64_t & ne1,
  157. constant int64_t & ne2,
  158. constant int64_t & ne3,
  159. constant uint64_t & nb0,
  160. constant uint64_t & nb1,
  161. constant uint64_t & nb2,
  162. constant uint64_t & nb3,
  163. uint3 tgpig[[threadgroup_position_in_grid]],
  164. uint3 tpitg[[thread_position_in_threadgroup]],
  165. uint3 ntg[[threads_per_threadgroup]]) {
  166. const int64_t i03 = tgpig.z;
  167. const int64_t i02 = tgpig.y;
  168. const int64_t i01 = tgpig.x;
  169. const int64_t i13 = i03 % ne13;
  170. const int64_t i12 = i02 % ne12;
  171. const int64_t i11 = i01 % ne11;
  172. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01;
  173. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11;
  174. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1;
  175. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  176. const int i10 = i0 % ne10;
  177. *((device float *)(dst_ptr + i0*nb0)) = *((device float *)(src0_ptr + i0*nb00)) / *((device float *)(src1_ptr + i10*nb10));
  178. }
  179. }
  180. // assumption: src1 is a row
  181. // broadcast src1 into src0
  182. kernel void kernel_add_row(
  183. device const float4 * src0,
  184. device const float4 * src1,
  185. device float4 * dst,
  186. constant uint64_t & nb [[buffer(28)]],
  187. uint tpig[[thread_position_in_grid]]) {
  188. dst[tpig] = src0[tpig] + src1[tpig % nb];
  189. }
  190. kernel void kernel_mul_row(
  191. device const float4 * src0,
  192. device const float4 * src1,
  193. device float4 * dst,
  194. constant uint64_t & nb [[buffer(28)]],
  195. uint tpig[[thread_position_in_grid]]) {
  196. dst[tpig] = src0[tpig] * src1[tpig % nb];
  197. }
  198. kernel void kernel_div_row(
  199. device const float4 * src0,
  200. device const float4 * src1,
  201. device float4 * dst,
  202. constant uint64_t & nb [[buffer(28)]],
  203. uint tpig[[thread_position_in_grid]]) {
  204. dst[tpig] = src0[tpig] / src1[tpig % nb];
  205. }
  206. kernel void kernel_scale(
  207. device const float * src0,
  208. device float * dst,
  209. constant float & scale,
  210. uint tpig[[thread_position_in_grid]]) {
  211. dst[tpig] = src0[tpig] * scale;
  212. }
  213. kernel void kernel_scale_4(
  214. device const float4 * src0,
  215. device float4 * dst,
  216. constant float & scale,
  217. uint tpig[[thread_position_in_grid]]) {
  218. dst[tpig] = src0[tpig] * scale;
  219. }
  220. kernel void kernel_relu(
  221. device const float * src0,
  222. device float * dst,
  223. uint tpig[[thread_position_in_grid]]) {
  224. dst[tpig] = max(0.0f, src0[tpig]);
  225. }
  226. kernel void kernel_tanh(
  227. device const float * src0,
  228. device float * dst,
  229. uint tpig[[thread_position_in_grid]]) {
  230. device const float & x = src0[tpig];
  231. dst[tpig] = precise::tanh(x);
  232. }
  233. constant float GELU_COEF_A = 0.044715f;
  234. constant float GELU_QUICK_COEF = -1.702f;
  235. constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
  236. kernel void kernel_gelu(
  237. device const float4 * src0,
  238. device float4 * dst,
  239. uint tpig[[thread_position_in_grid]]) {
  240. device const float4 & x = src0[tpig];
  241. // BEWARE !!!
  242. // Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
  243. // This was observed with Falcon 7B and 40B models
  244. //
  245. dst[tpig] = 0.5f*x*(1.0f + precise::tanh(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
  246. }
  247. kernel void kernel_gelu_quick(
  248. device const float4 * src0,
  249. device float4 * dst,
  250. uint tpig[[thread_position_in_grid]]) {
  251. device const float4 & x = src0[tpig];
  252. dst[tpig] = x*(1.0f/(1.0f+exp(GELU_QUICK_COEF*x)));
  253. }
  254. kernel void kernel_silu(
  255. device const float4 * src0,
  256. device float4 * dst,
  257. uint tpig[[thread_position_in_grid]]) {
  258. device const float4 & x = src0[tpig];
  259. dst[tpig] = x / (1.0f + exp(-x));
  260. }
  261. kernel void kernel_sqr(
  262. device const float * src0,
  263. device float * dst,
  264. uint tpig[[thread_position_in_grid]]) {
  265. dst[tpig] = src0[tpig] * src0[tpig];
  266. }
  267. kernel void kernel_sum_rows(
  268. device const float * src0,
  269. device float * dst,
  270. constant int64_t & ne00,
  271. constant int64_t & ne01,
  272. constant int64_t & ne02,
  273. constant int64_t & ne03,
  274. constant uint64_t & nb00,
  275. constant uint64_t & nb01,
  276. constant uint64_t & nb02,
  277. constant uint64_t & nb03,
  278. constant int64_t & ne10,
  279. constant int64_t & ne11,
  280. constant int64_t & ne12,
  281. constant int64_t & ne13,
  282. constant uint64_t & nb10,
  283. constant uint64_t & nb11,
  284. constant uint64_t & nb12,
  285. constant uint64_t & nb13,
  286. constant int64_t & ne0,
  287. constant int64_t & ne1,
  288. constant int64_t & ne2,
  289. constant int64_t & ne3,
  290. constant uint64_t & nb0,
  291. constant uint64_t & nb1,
  292. constant uint64_t & nb2,
  293. constant uint64_t & nb3,
  294. uint3 tpig[[thread_position_in_grid]]) {
  295. int64_t i3 = tpig.z;
  296. int64_t i2 = tpig.y;
  297. int64_t i1 = tpig.x;
  298. if (i3 >= ne03 || i2 >= ne02 || i1 >= ne01) {
  299. return;
  300. }
  301. device const float * src_row = (device const float *) ((device const char *) src0 + i1*nb01 + i2*nb02 + i3*nb03);
  302. device float * dst_row = (device float *) ((device char *) dst + i1*nb1 + i2*nb2 + i3*nb3);
  303. float row_sum = 0;
  304. for (int64_t i0 = 0; i0 < ne00; i0++) {
  305. row_sum += src_row[i0];
  306. }
  307. dst_row[0] = row_sum;
  308. }
  309. kernel void kernel_soft_max(
  310. device const float * src0,
  311. device const float * src1,
  312. device float * dst,
  313. constant int64_t & ne00,
  314. constant int64_t & ne01,
  315. constant int64_t & ne02,
  316. constant float & scale,
  317. threadgroup float * buf [[threadgroup(0)]],
  318. uint tgpig[[threadgroup_position_in_grid]],
  319. uint tpitg[[thread_position_in_threadgroup]],
  320. uint sgitg[[simdgroup_index_in_threadgroup]],
  321. uint tiisg[[thread_index_in_simdgroup]],
  322. uint ntg[[threads_per_threadgroup]]) {
  323. const int64_t i03 = (tgpig) / (ne02*ne01);
  324. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  325. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  326. device const float * psrc0 = src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  327. device const float * pmask = src1 != src0 ? src1 + i01*ne00 : nullptr;
  328. device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  329. // parallel max
  330. float lmax = -INFINITY;
  331. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  332. lmax = MAX(lmax, psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f));
  333. }
  334. // find the max value in the block
  335. float max_val = simd_max(lmax);
  336. if (ntg > N_SIMDWIDTH) {
  337. if (sgitg == 0) {
  338. buf[tiisg] = -INFINITY;
  339. }
  340. threadgroup_barrier(mem_flags::mem_threadgroup);
  341. if (tiisg == 0) {
  342. buf[sgitg] = max_val;
  343. }
  344. threadgroup_barrier(mem_flags::mem_threadgroup);
  345. max_val = buf[tiisg];
  346. max_val = simd_max(max_val);
  347. }
  348. // parallel sum
  349. float lsum = 0.0f;
  350. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  351. const float exp_psrc0 = exp((psrc0[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
  352. lsum += exp_psrc0;
  353. pdst[i00] = exp_psrc0;
  354. }
  355. // This barrier fixes a failing test
  356. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  357. threadgroup_barrier(mem_flags::mem_none);
  358. float sum = simd_sum(lsum);
  359. if (ntg > N_SIMDWIDTH) {
  360. if (sgitg == 0) {
  361. buf[tiisg] = 0.0f;
  362. }
  363. threadgroup_barrier(mem_flags::mem_threadgroup);
  364. if (tiisg == 0) {
  365. buf[sgitg] = sum;
  366. }
  367. threadgroup_barrier(mem_flags::mem_threadgroup);
  368. sum = buf[tiisg];
  369. sum = simd_sum(sum);
  370. }
  371. const float inv_sum = 1.0f/sum;
  372. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  373. pdst[i00] *= inv_sum;
  374. }
  375. }
  376. kernel void kernel_soft_max_4(
  377. device const float * src0,
  378. device const float * src1,
  379. device float * dst,
  380. constant int64_t & ne00,
  381. constant int64_t & ne01,
  382. constant int64_t & ne02,
  383. constant float & scale,
  384. threadgroup float * buf [[threadgroup(0)]],
  385. uint tgpig[[threadgroup_position_in_grid]],
  386. uint tpitg[[thread_position_in_threadgroup]],
  387. uint sgitg[[simdgroup_index_in_threadgroup]],
  388. uint tiisg[[thread_index_in_simdgroup]],
  389. uint ntg[[threads_per_threadgroup]]) {
  390. const int64_t i03 = (tgpig) / (ne02*ne01);
  391. const int64_t i02 = (tgpig - i03*ne02*ne01) / ne01;
  392. const int64_t i01 = (tgpig - i03*ne02*ne01 - i02*ne01);
  393. device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  394. device const float4 * pmask = src1 != src0 ? (device const float4 *)(src1 + i01*ne00) : nullptr;
  395. device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
  396. // parallel max
  397. float4 lmax4 = -INFINITY;
  398. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  399. lmax4 = fmax(lmax4, psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f));
  400. }
  401. const float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
  402. float max_val = simd_max(lmax);
  403. if (ntg > N_SIMDWIDTH) {
  404. if (sgitg == 0) {
  405. buf[tiisg] = -INFINITY;
  406. }
  407. threadgroup_barrier(mem_flags::mem_threadgroup);
  408. if (tiisg == 0) {
  409. buf[sgitg] = max_val;
  410. }
  411. threadgroup_barrier(mem_flags::mem_threadgroup);
  412. max_val = buf[tiisg];
  413. max_val = simd_max(max_val);
  414. }
  415. // parallel sum
  416. float4 lsum4 = 0.0f;
  417. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  418. const float4 exp_psrc4 = exp((psrc4[i00]*scale + (pmask ? pmask[i00] : 0.0f)) - max_val);
  419. lsum4 += exp_psrc4;
  420. pdst4[i00] = exp_psrc4;
  421. }
  422. const float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
  423. // This barrier fixes a failing test
  424. // ref: https://github.com/ggerganov/ggml/pull/621#discussion_r1425156335
  425. threadgroup_barrier(mem_flags::mem_none);
  426. float sum = simd_sum(lsum);
  427. if (ntg > N_SIMDWIDTH) {
  428. if (sgitg == 0) {
  429. buf[tiisg] = 0.0f;
  430. }
  431. threadgroup_barrier(mem_flags::mem_threadgroup);
  432. if (tiisg == 0) {
  433. buf[sgitg] = sum;
  434. }
  435. threadgroup_barrier(mem_flags::mem_threadgroup);
  436. sum = buf[tiisg];
  437. sum = simd_sum(sum);
  438. }
  439. const float inv_sum = 1.0f/sum;
  440. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  441. pdst4[i00] *= inv_sum;
  442. }
  443. }
  444. kernel void kernel_diag_mask_inf(
  445. device const float * src0,
  446. device float * dst,
  447. constant int64_t & ne00,
  448. constant int64_t & ne01,
  449. constant int & n_past,
  450. uint3 tpig[[thread_position_in_grid]]) {
  451. const int64_t i02 = tpig[2];
  452. const int64_t i01 = tpig[1];
  453. const int64_t i00 = tpig[0];
  454. if (i00 > n_past + i01) {
  455. dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
  456. } else {
  457. dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
  458. }
  459. }
  460. kernel void kernel_diag_mask_inf_8(
  461. device const float4 * src0,
  462. device float4 * dst,
  463. constant int64_t & ne00,
  464. constant int64_t & ne01,
  465. constant int & n_past,
  466. uint3 tpig[[thread_position_in_grid]]) {
  467. const int64_t i = 2*tpig[0];
  468. dst[i+0] = src0[i+0];
  469. dst[i+1] = src0[i+1];
  470. int64_t i4 = 4*i;
  471. const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
  472. const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
  473. const int64_t i00 = i4;
  474. for (int k = 3; k >= 0; --k) {
  475. if (i00 + 4 + k <= n_past + i01) {
  476. break;
  477. }
  478. dst[i+1][k] = -INFINITY;
  479. if (i00 + k > n_past + i01) {
  480. dst[i][k] = -INFINITY;
  481. }
  482. }
  483. }
  484. kernel void kernel_norm(
  485. device const void * src0,
  486. device float * dst,
  487. constant int64_t & ne00,
  488. constant uint64_t & nb01,
  489. constant float & eps,
  490. threadgroup float * sum [[threadgroup(0)]],
  491. uint tgpig[[threadgroup_position_in_grid]],
  492. uint tpitg[[thread_position_in_threadgroup]],
  493. uint ntg[[threads_per_threadgroup]]) {
  494. device const float * x = (device const float *) ((device const char *) src0 + tgpig*nb01);
  495. // MEAN
  496. // parallel sum
  497. sum[tpitg] = 0.0f;
  498. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  499. sum[tpitg] += x[i00];
  500. }
  501. // reduce
  502. threadgroup_barrier(mem_flags::mem_threadgroup);
  503. for (uint i = ntg/2; i > 0; i /= 2) {
  504. if (tpitg < i) {
  505. sum[tpitg] += sum[tpitg + i];
  506. }
  507. threadgroup_barrier(mem_flags::mem_threadgroup);
  508. }
  509. const float mean = sum[0] / ne00;
  510. // recenter and VARIANCE
  511. threadgroup_barrier(mem_flags::mem_threadgroup);
  512. device float * y = dst + tgpig*ne00;
  513. sum[tpitg] = 0.0f;
  514. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  515. y[i00] = x[i00] - mean;
  516. sum[tpitg] += y[i00] * y[i00];
  517. }
  518. // reduce
  519. threadgroup_barrier(mem_flags::mem_threadgroup);
  520. for (uint i = ntg/2; i > 0; i /= 2) {
  521. if (tpitg < i) {
  522. sum[tpitg] += sum[tpitg + i];
  523. }
  524. threadgroup_barrier(mem_flags::mem_threadgroup);
  525. }
  526. const float variance = sum[0] / ne00;
  527. const float scale = 1.0f/sqrt(variance + eps);
  528. for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
  529. y[i00] = y[i00] * scale;
  530. }
  531. }
  532. kernel void kernel_rms_norm(
  533. device const void * src0,
  534. device float * dst,
  535. constant int64_t & ne00,
  536. constant uint64_t & nb01,
  537. constant float & eps,
  538. threadgroup float * buf [[threadgroup(0)]],
  539. uint tgpig[[threadgroup_position_in_grid]],
  540. uint tpitg[[thread_position_in_threadgroup]],
  541. uint sgitg[[simdgroup_index_in_threadgroup]],
  542. uint tiisg[[thread_index_in_simdgroup]],
  543. uint ntg[[threads_per_threadgroup]]) {
  544. device const float4 * x = (device const float4 *) ((device const char *) src0 + tgpig*nb01);
  545. float4 sumf = 0;
  546. float all_sum = 0;
  547. // parallel sum
  548. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  549. sumf += x[i00] * x[i00];
  550. }
  551. all_sum = sumf[0] + sumf[1] + sumf[2] + sumf[3];
  552. all_sum = simd_sum(all_sum);
  553. if (ntg > N_SIMDWIDTH) {
  554. if (sgitg == 0) {
  555. buf[tiisg] = 0.0f;
  556. }
  557. threadgroup_barrier(mem_flags::mem_threadgroup);
  558. if (tiisg == 0) {
  559. buf[sgitg] = all_sum;
  560. }
  561. threadgroup_barrier(mem_flags::mem_threadgroup);
  562. all_sum = buf[tiisg];
  563. all_sum = simd_sum(all_sum);
  564. }
  565. const float mean = all_sum/ne00;
  566. const float scale = 1.0f/sqrt(mean + eps);
  567. device float4 * y = (device float4 *) (dst + tgpig*ne00);
  568. for (int i00 = tpitg; i00 < ne00/4; i00 += ntg) {
  569. y[i00] = x[i00] * scale;
  570. }
  571. }
  572. kernel void kernel_group_norm(
  573. device const float * src0,
  574. device float * dst,
  575. constant int64_t & ne00,
  576. constant int64_t & ne01,
  577. constant int64_t & ne02,
  578. constant uint64_t & nb00,
  579. constant uint64_t & nb01,
  580. constant uint64_t & nb02,
  581. constant int32_t & n_groups,
  582. constant float & eps,
  583. threadgroup float * buf [[threadgroup(0)]],
  584. uint tgpig[[threadgroup_position_in_grid]],
  585. uint tpitg[[thread_position_in_threadgroup]],
  586. uint sgitg[[simdgroup_index_in_threadgroup]],
  587. uint tiisg[[thread_index_in_simdgroup]],
  588. uint ntg[[threads_per_threadgroup]]) {
  589. const int64_t ne = ne00*ne01*ne02;
  590. const int64_t gs = ne00*ne01*((ne02 + n_groups - 1) / n_groups);
  591. int start = tgpig * gs;
  592. int end = start + gs;
  593. start += tpitg;
  594. if (end >= ne) {
  595. end = ne;
  596. }
  597. float tmp = 0.0f; // partial sum for thread in warp
  598. for (int j = start; j < end; j += ntg) {
  599. tmp += src0[j];
  600. }
  601. threadgroup_barrier(mem_flags::mem_threadgroup);
  602. tmp = simd_sum(tmp);
  603. if (ntg > N_SIMDWIDTH) {
  604. if (sgitg == 0) {
  605. buf[tiisg] = 0.0f;
  606. }
  607. threadgroup_barrier(mem_flags::mem_threadgroup);
  608. if (tiisg == 0) {
  609. buf[sgitg] = tmp;
  610. }
  611. threadgroup_barrier(mem_flags::mem_threadgroup);
  612. tmp = buf[tiisg];
  613. tmp = simd_sum(tmp);
  614. }
  615. const float mean = tmp / gs;
  616. tmp = 0.0f;
  617. for (int j = start; j < end; j += ntg) {
  618. float xi = src0[j] - mean;
  619. dst[j] = xi;
  620. tmp += xi * xi;
  621. }
  622. tmp = simd_sum(tmp);
  623. if (ntg > N_SIMDWIDTH) {
  624. if (sgitg == 0) {
  625. buf[tiisg] = 0.0f;
  626. }
  627. threadgroup_barrier(mem_flags::mem_threadgroup);
  628. if (tiisg == 0) {
  629. buf[sgitg] = tmp;
  630. }
  631. threadgroup_barrier(mem_flags::mem_threadgroup);
  632. tmp = buf[tiisg];
  633. tmp = simd_sum(tmp);
  634. }
  635. const float variance = tmp / gs;
  636. const float scale = 1.0f/sqrt(variance + eps);
  637. for (int j = start; j < end; j += ntg) {
  638. dst[j] *= scale;
  639. }
  640. }
  641. // function for calculate inner product between half a q4_0 block and 16 floats (yl), sumy is SUM(yl[i])
  642. // il indicates where the q4 quants begin (0 or QK4_0/4)
  643. // we assume that the yl's have been multiplied with the appropriate scale factor
  644. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  645. inline float block_q_n_dot_y(device const block_q4_0 * qb_curr, float sumy, thread float * yl, int il) {
  646. float d = qb_curr->d;
  647. float2 acc = 0.f;
  648. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 1 + il/2);
  649. for (int i = 0; i < 8; i+=2) {
  650. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  651. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  652. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  653. + yl[i + 9] * (qs[i / 2] & 0xF000);
  654. }
  655. return d * (sumy * -8.f + acc[0] + acc[1]);
  656. }
  657. // function for calculate inner product between half a q4_1 block and 16 floats (yl), sumy is SUM(yl[i])
  658. // il indicates where the q4 quants begin (0 or QK4_0/4)
  659. // we assume that the yl's have been multiplied with the appropriate scale factor
  660. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  661. inline float block_q_n_dot_y(device const block_q4_1 * qb_curr, float sumy, thread float * yl, int il) {
  662. float d = qb_curr->d;
  663. float m = qb_curr->m;
  664. float2 acc = 0.f;
  665. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 2 + il/2);
  666. for (int i = 0; i < 8; i+=2) {
  667. acc[0] += yl[i + 0] * (qs[i / 2] & 0x000F)
  668. + yl[i + 1] * (qs[i / 2] & 0x0F00);
  669. acc[1] += yl[i + 8] * (qs[i / 2] & 0x00F0)
  670. + yl[i + 9] * (qs[i / 2] & 0xF000);
  671. }
  672. return d * (acc[0] + acc[1]) + sumy * m;
  673. }
  674. // function for calculate inner product between half a q5_0 block and 16 floats (yl), sumy is SUM(yl[i])
  675. // il indicates where the q5 quants begin (0 or QK5_0/4)
  676. // we assume that the yl's have been multiplied with the appropriate scale factor
  677. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  678. inline float block_q_n_dot_y(device const block_q5_0 * qb_curr, float sumy, thread float * yl, int il) {
  679. float d = qb_curr->d;
  680. float2 acc = 0.f;
  681. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 3 + il/2);
  682. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  683. for (int i = 0; i < 8; i+=2) {
  684. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  685. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  686. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  687. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  688. }
  689. return d * (sumy * -16.f + acc[0] + acc[1]);
  690. }
  691. // function for calculate inner product between half a q5_1 block and 16 floats (yl), sumy is SUM(yl[i])
  692. // il indicates where the q5 quants begin (0 or QK5_1/4)
  693. // we assume that the yl's have been multiplied with the appropriate scale factor
  694. // that corresponds to the missing bit shifts (1, 1/16, 1/256, 1/4096)
  695. inline float block_q_n_dot_y(device const block_q5_1 * qb_curr, float sumy, thread float * yl, int il) {
  696. float d = qb_curr->d;
  697. float m = qb_curr->m;
  698. float2 acc = 0.f;
  699. device const uint16_t * qs = ((device const uint16_t *)qb_curr + 4 + il/2);
  700. const uint32_t qh = *((device const uint32_t *)qb_curr->qh);
  701. for (int i = 0; i < 8; i+=2) {
  702. acc[0] += yl[i + 0] * ((qs[i / 2] & 0x000F) | ((qh >> (i+0+il ) << 4 ) & 0x00010))
  703. + yl[i + 1] * ((qs[i / 2] & 0x0F00) | ((qh >> (i+1+il ) << 12) & 0x01000));
  704. acc[1] += yl[i + 8] * ((qs[i / 2] & 0x00F0) | ((qh >> (i+0+il+QK5_0/2) << 8 ) & 0x00100))
  705. + yl[i + 9] * ((qs[i / 2] & 0xF000) | ((qh >> (i+1+il+QK5_0/2) << 16) & 0x10000));
  706. }
  707. return d * (acc[0] + acc[1]) + sumy * m;
  708. }
  709. // putting them in the kernel cause a significant performance penalty
  710. #define N_DST 4 // each SIMD group works on 4 rows
  711. #define N_SIMDGROUP 2 // number of SIMD groups in a thread group
  712. //Note: This is a template, but strictly speaking it only applies to
  713. // quantizations where the block size is 32. It also does not
  714. // giard against the number of rows not being divisible by
  715. // N_DST, so this is another explicit assumption of the implementation.
  716. template<typename block_q_type, int nr, int nsg, int nw>
  717. void mul_vec_q_n_f32_impl(
  718. device const void * src0,
  719. device const float * src1,
  720. device float * dst,
  721. int64_t ne00,
  722. int64_t ne01,
  723. int64_t ne02,
  724. int64_t ne10,
  725. int64_t ne12,
  726. int64_t ne0,
  727. int64_t ne1,
  728. uint r2,
  729. uint r3,
  730. uint3 tgpig, uint tiisg, uint sgitg) {
  731. const int nb = ne00/QK4_0;
  732. const int r0 = tgpig.x;
  733. const int r1 = tgpig.y;
  734. const int im = tgpig.z;
  735. const int first_row = (r0 * nsg + sgitg) * nr;
  736. const uint i12 = im%ne12;
  737. const uint i13 = im/ne12;
  738. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  739. device const block_q_type * x = (device const block_q_type *) src0 + offset0;
  740. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  741. float yl[16]; // src1 vector cache
  742. float sumf[nr] = {0.f};
  743. const int ix = (tiisg/2);
  744. const int il = (tiisg%2)*8;
  745. device const float * yb = y + ix * QK4_0 + il;
  746. // each thread in a SIMD group deals with half a block.
  747. for (int ib = ix; ib < nb; ib += nw/2) {
  748. float sumy = 0;
  749. for (int i = 0; i < 8; i += 2) {
  750. sumy += yb[i] + yb[i+1];
  751. yl[i+0] = yb[i+ 0];
  752. yl[i+1] = yb[i+ 1]/256.f;
  753. sumy += yb[i+16] + yb[i+17];
  754. yl[i+8] = yb[i+16]/16.f;
  755. yl[i+9] = yb[i+17]/4096.f;
  756. }
  757. for (int row = 0; row < nr; row++) {
  758. sumf[row] += block_q_n_dot_y(x+ib+row*nb, sumy, yl, il);
  759. }
  760. yb += QK4_0 * 16;
  761. }
  762. for (int row = 0; row < nr; ++row) {
  763. const float tot = simd_sum(sumf[row]);
  764. if (tiisg == 0 && first_row + row < ne01) {
  765. dst[im*ne0*ne1 + r1*ne0 + first_row + row] = tot;
  766. }
  767. }
  768. }
  769. kernel void kernel_mul_mv_q4_0_f32(
  770. device const void * src0,
  771. device const float * src1,
  772. device float * dst,
  773. constant int64_t & ne00,
  774. constant int64_t & ne01,
  775. constant int64_t & ne02,
  776. constant uint64_t & nb00,
  777. constant uint64_t & nb01,
  778. constant uint64_t & nb02,
  779. constant int64_t & ne10,
  780. constant int64_t & ne11,
  781. constant int64_t & ne12,
  782. constant uint64_t & nb10,
  783. constant uint64_t & nb11,
  784. constant uint64_t & nb12,
  785. constant int64_t & ne0,
  786. constant int64_t & ne1,
  787. constant uint & r2,
  788. constant uint & r3,
  789. uint3 tgpig[[threadgroup_position_in_grid]],
  790. uint tiisg[[thread_index_in_simdgroup]],
  791. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  792. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  793. }
  794. kernel void kernel_mul_mv_q4_1_f32(
  795. device const void * src0,
  796. device const float * src1,
  797. device float * dst,
  798. constant int64_t & ne00,
  799. constant int64_t & ne01,
  800. constant int64_t & ne02,
  801. constant uint64_t & nb00,
  802. constant uint64_t & nb01,
  803. constant uint64_t & nb02,
  804. constant int64_t & ne10,
  805. constant int64_t & ne11,
  806. constant int64_t & ne12,
  807. constant uint64_t & nb10,
  808. constant uint64_t & nb11,
  809. constant uint64_t & nb12,
  810. constant int64_t & ne0,
  811. constant int64_t & ne1,
  812. constant uint & r2,
  813. constant uint & r3,
  814. uint3 tgpig[[threadgroup_position_in_grid]],
  815. uint tiisg[[thread_index_in_simdgroup]],
  816. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  817. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  818. }
  819. kernel void kernel_mul_mv_q5_0_f32(
  820. device const void * src0,
  821. device const float * src1,
  822. device float * dst,
  823. constant int64_t & ne00,
  824. constant int64_t & ne01,
  825. constant int64_t & ne02,
  826. constant uint64_t & nb00,
  827. constant uint64_t & nb01,
  828. constant uint64_t & nb02,
  829. constant int64_t & ne10,
  830. constant int64_t & ne11,
  831. constant int64_t & ne12,
  832. constant uint64_t & nb10,
  833. constant uint64_t & nb11,
  834. constant uint64_t & nb12,
  835. constant int64_t & ne0,
  836. constant int64_t & ne1,
  837. constant uint & r2,
  838. constant uint & r3,
  839. uint3 tgpig[[threadgroup_position_in_grid]],
  840. uint tiisg[[thread_index_in_simdgroup]],
  841. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  842. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  843. }
  844. kernel void kernel_mul_mv_q5_1_f32(
  845. device const void * src0,
  846. device const float * src1,
  847. device float * dst,
  848. constant int64_t & ne00,
  849. constant int64_t & ne01,
  850. constant int64_t & ne02,
  851. constant uint64_t & nb00,
  852. constant uint64_t & nb01,
  853. constant uint64_t & nb02,
  854. constant int64_t & ne10,
  855. constant int64_t & ne11,
  856. constant int64_t & ne12,
  857. constant uint64_t & nb10,
  858. constant uint64_t & nb11,
  859. constant uint64_t & nb12,
  860. constant int64_t & ne0,
  861. constant int64_t & ne1,
  862. constant uint & r2,
  863. constant uint & r3,
  864. uint3 tgpig[[threadgroup_position_in_grid]],
  865. uint tiisg[[thread_index_in_simdgroup]],
  866. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  867. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  868. }
  869. #define NB_Q8_0 8
  870. void kernel_mul_mv_q8_0_f32_impl(
  871. device const void * src0,
  872. device const float * src1,
  873. device float * dst,
  874. constant int64_t & ne00,
  875. constant int64_t & ne01,
  876. constant int64_t & ne02,
  877. constant int64_t & ne10,
  878. constant int64_t & ne12,
  879. constant int64_t & ne0,
  880. constant int64_t & ne1,
  881. constant uint & r2,
  882. constant uint & r3,
  883. uint3 tgpig[[threadgroup_position_in_grid]],
  884. uint tiisg[[thread_index_in_simdgroup]],
  885. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  886. const int nr = N_DST;
  887. const int nsg = N_SIMDGROUP;
  888. const int nw = N_SIMDWIDTH;
  889. const int nb = ne00/QK8_0;
  890. const int r0 = tgpig.x;
  891. const int r1 = tgpig.y;
  892. const int im = tgpig.z;
  893. const int first_row = (r0 * nsg + sgitg) * nr;
  894. const uint i12 = im%ne12;
  895. const uint i13 = im/ne12;
  896. const uint offset0 = first_row * nb + (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  897. device const block_q8_0 * x = (device const block_q8_0 *) src0 + offset0;
  898. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  899. float yl[NB_Q8_0];
  900. float sumf[nr]={0.f};
  901. const int ix = tiisg/4;
  902. const int il = tiisg%4;
  903. device const float * yb = y + ix * QK8_0 + NB_Q8_0*il;
  904. // each thread in a SIMD group deals with NB_Q8_0 quants at a time
  905. for (int ib = ix; ib < nb; ib += nw/4) {
  906. for (int i = 0; i < NB_Q8_0; ++i) {
  907. yl[i] = yb[i];
  908. }
  909. for (int row = 0; row < nr; row++) {
  910. device const int8_t * qs = x[ib+row*nb].qs + NB_Q8_0*il;
  911. float sumq = 0.f;
  912. for (int iq = 0; iq < NB_Q8_0; ++iq) {
  913. sumq += qs[iq] * yl[iq];
  914. }
  915. sumf[row] += sumq*x[ib+row*nb].d;
  916. }
  917. yb += NB_Q8_0 * nw;
  918. }
  919. for (int row = 0; row < nr; ++row) {
  920. const float tot = simd_sum(sumf[row]);
  921. if (tiisg == 0 && first_row + row < ne01) {
  922. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  923. }
  924. }
  925. }
  926. [[host_name("kernel_mul_mv_q8_0_f32")]]
  927. kernel void kernel_mul_mv_q8_0_f32(
  928. device const void * src0,
  929. device const float * src1,
  930. device float * dst,
  931. constant int64_t & ne00,
  932. constant int64_t & ne01,
  933. constant int64_t & ne02,
  934. constant uint64_t & nb00,
  935. constant uint64_t & nb01,
  936. constant uint64_t & nb02,
  937. constant int64_t & ne10,
  938. constant int64_t & ne11,
  939. constant int64_t & ne12,
  940. constant uint64_t & nb10,
  941. constant uint64_t & nb11,
  942. constant uint64_t & nb12,
  943. constant int64_t & ne0,
  944. constant int64_t & ne1,
  945. constant uint & r2,
  946. constant uint & r3,
  947. uint3 tgpig[[threadgroup_position_in_grid]],
  948. uint tiisg[[thread_index_in_simdgroup]],
  949. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  950. kernel_mul_mv_q8_0_f32_impl(src0,src1,dst,ne00,ne01,ne02,ne10,ne12,ne0,ne1,r2,r3,tgpig,tiisg,sgitg);
  951. }
  952. #define N_F32_F32 4
  953. void kernel_mul_mv_f32_f32_impl(
  954. device const char * src0,
  955. device const char * src1,
  956. device float * dst,
  957. constant int64_t & ne00,
  958. constant int64_t & ne01,
  959. constant int64_t & ne02,
  960. constant uint64_t & nb00,
  961. constant uint64_t & nb01,
  962. constant uint64_t & nb02,
  963. constant int64_t & ne10,
  964. constant int64_t & ne11,
  965. constant int64_t & ne12,
  966. constant uint64_t & nb10,
  967. constant uint64_t & nb11,
  968. constant uint64_t & nb12,
  969. constant int64_t & ne0,
  970. constant int64_t & ne1,
  971. constant uint & r2,
  972. constant uint & r3,
  973. uint3 tgpig[[threadgroup_position_in_grid]],
  974. uint tiisg[[thread_index_in_simdgroup]]) {
  975. const int64_t r0 = tgpig.x;
  976. const int64_t rb = tgpig.y*N_F32_F32;
  977. const int64_t im = tgpig.z;
  978. const uint i12 = im%ne12;
  979. const uint i13 = im/ne12;
  980. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  981. device const float * x = (device const float *) (src0 + offset0);
  982. if (ne00 < 128) {
  983. for (int row = 0; row < N_F32_F32; ++row) {
  984. int r1 = rb + row;
  985. if (r1 >= ne11) {
  986. break;
  987. }
  988. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  989. float sumf = 0;
  990. for (int i = tiisg; i < ne00; i += 32) {
  991. sumf += (float) x[i] * (float) y[i];
  992. }
  993. float all_sum = simd_sum(sumf);
  994. if (tiisg == 0) {
  995. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  996. }
  997. }
  998. } else {
  999. device const float4 * x4 = (device const float4 *)x;
  1000. for (int row = 0; row < N_F32_F32; ++row) {
  1001. int r1 = rb + row;
  1002. if (r1 >= ne11) {
  1003. break;
  1004. }
  1005. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1006. device const float4 * y4 = (device const float4 *) y;
  1007. float sumf = 0;
  1008. for (int i = tiisg; i < ne00/4; i += 32) {
  1009. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1010. }
  1011. float all_sum = simd_sum(sumf);
  1012. if (tiisg == 0) {
  1013. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1014. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1015. }
  1016. }
  1017. }
  1018. }
  1019. [[host_name("kernel_mul_mv_f32_f32")]]
  1020. kernel void kernel_mul_mv_f32_f32(
  1021. device const char * src0,
  1022. device const char * src1,
  1023. device float * dst,
  1024. constant int64_t & ne00,
  1025. constant int64_t & ne01,
  1026. constant int64_t & ne02,
  1027. constant uint64_t & nb00,
  1028. constant uint64_t & nb01,
  1029. constant uint64_t & nb02,
  1030. constant int64_t & ne10,
  1031. constant int64_t & ne11,
  1032. constant int64_t & ne12,
  1033. constant uint64_t & nb10,
  1034. constant uint64_t & nb11,
  1035. constant uint64_t & nb12,
  1036. constant int64_t & ne0,
  1037. constant int64_t & ne1,
  1038. constant uint & r2,
  1039. constant uint & r3,
  1040. uint3 tgpig[[threadgroup_position_in_grid]],
  1041. uint tiisg[[thread_index_in_simdgroup]]) {
  1042. kernel_mul_mv_f32_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1043. }
  1044. #define N_F16_F16 4
  1045. kernel void kernel_mul_mv_f16_f16(
  1046. device const char * src0,
  1047. device const char * src1,
  1048. device float * dst,
  1049. constant int64_t & ne00,
  1050. constant int64_t & ne01,
  1051. constant int64_t & ne02,
  1052. constant uint64_t & nb00,
  1053. constant uint64_t & nb01,
  1054. constant uint64_t & nb02,
  1055. constant int64_t & ne10,
  1056. constant int64_t & ne11,
  1057. constant int64_t & ne12,
  1058. constant uint64_t & nb10,
  1059. constant uint64_t & nb11,
  1060. constant uint64_t & nb12,
  1061. constant int64_t & ne0,
  1062. constant int64_t & ne1,
  1063. constant uint & r2,
  1064. constant uint & r3,
  1065. uint3 tgpig[[threadgroup_position_in_grid]],
  1066. uint tiisg[[thread_index_in_simdgroup]]) {
  1067. const int64_t r0 = tgpig.x;
  1068. const int64_t rb = tgpig.y*N_F16_F16;
  1069. const int64_t im = tgpig.z;
  1070. const uint i12 = im%ne12;
  1071. const uint i13 = im/ne12;
  1072. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1073. device const half * x = (device const half *) (src0 + offset0);
  1074. if (ne00 < 128) {
  1075. for (int row = 0; row < N_F16_F16; ++row) {
  1076. int r1 = rb + row;
  1077. if (r1 >= ne11) {
  1078. break;
  1079. }
  1080. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1081. float sumf = 0;
  1082. for (int i = tiisg; i < ne00; i += 32) {
  1083. sumf += (half) x[i] * (half) y[i];
  1084. }
  1085. float all_sum = simd_sum(sumf);
  1086. if (tiisg == 0) {
  1087. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1088. }
  1089. }
  1090. } else {
  1091. device const half4 * x4 = (device const half4 *)x;
  1092. for (int row = 0; row < N_F16_F16; ++row) {
  1093. int r1 = rb + row;
  1094. if (r1 >= ne11) {
  1095. break;
  1096. }
  1097. device const half * y = (device const half *) (src1 + r1*nb11 + im*nb12);
  1098. device const half4 * y4 = (device const half4 *) y;
  1099. float sumf = 0;
  1100. for (int i = tiisg; i < ne00/4; i += 32) {
  1101. for (int k = 0; k < 4; ++k) sumf += (half) x4[i][k] * y4[i][k];
  1102. }
  1103. float all_sum = simd_sum(sumf);
  1104. if (tiisg == 0) {
  1105. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (half) x[i] * y[i];
  1106. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1107. }
  1108. }
  1109. }
  1110. }
  1111. void kernel_mul_mv_f16_f32_1row_impl(
  1112. device const char * src0,
  1113. device const char * src1,
  1114. device float * dst,
  1115. constant int64_t & ne00,
  1116. constant int64_t & ne01,
  1117. constant int64_t & ne02,
  1118. constant uint64_t & nb00,
  1119. constant uint64_t & nb01,
  1120. constant uint64_t & nb02,
  1121. constant int64_t & ne10,
  1122. constant int64_t & ne11,
  1123. constant int64_t & ne12,
  1124. constant uint64_t & nb10,
  1125. constant uint64_t & nb11,
  1126. constant uint64_t & nb12,
  1127. constant int64_t & ne0,
  1128. constant int64_t & ne1,
  1129. constant uint & r2,
  1130. constant uint & r3,
  1131. uint3 tgpig[[threadgroup_position_in_grid]],
  1132. uint tiisg[[thread_index_in_simdgroup]]) {
  1133. const int64_t r0 = tgpig.x;
  1134. const int64_t r1 = tgpig.y;
  1135. const int64_t im = tgpig.z;
  1136. const uint i12 = im%ne12;
  1137. const uint i13 = im/ne12;
  1138. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1139. device const half * x = (device const half *) (src0 + offset0);
  1140. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1141. float sumf = 0;
  1142. if (ne00 < 128) {
  1143. for (int i = tiisg; i < ne00; i += 32) {
  1144. sumf += (float) x[i] * (float) y[i];
  1145. }
  1146. float all_sum = simd_sum(sumf);
  1147. if (tiisg == 0) {
  1148. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1149. }
  1150. } else {
  1151. device const half4 * x4 = (device const half4 *) x;
  1152. device const float4 * y4 = (device const float4 *) y;
  1153. for (int i = tiisg; i < ne00/4; i += 32) {
  1154. for (int k = 0; k < 4; ++k) sumf += (float)x4[i][k] * y4[i][k];
  1155. }
  1156. float all_sum = simd_sum(sumf);
  1157. if (tiisg == 0) {
  1158. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1159. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1160. }
  1161. }
  1162. }
  1163. [[host_name("kernel_mul_mv_f16_f32_1row")]]
  1164. kernel void kernel_mul_mv_f16_f32_1row(
  1165. device const char * src0,
  1166. device const char * src1,
  1167. device float * dst,
  1168. constant int64_t & ne00,
  1169. constant int64_t & ne01,
  1170. constant int64_t & ne02,
  1171. constant uint64_t & nb00,
  1172. constant uint64_t & nb01,
  1173. constant uint64_t & nb02,
  1174. constant int64_t & ne10,
  1175. constant int64_t & ne11,
  1176. constant int64_t & ne12,
  1177. constant uint64_t & nb10,
  1178. constant uint64_t & nb11,
  1179. constant uint64_t & nb12,
  1180. constant int64_t & ne0,
  1181. constant int64_t & ne1,
  1182. constant uint & r2,
  1183. constant uint & r3,
  1184. uint3 tgpig[[threadgroup_position_in_grid]],
  1185. uint tiisg[[thread_index_in_simdgroup]]) {
  1186. kernel_mul_mv_f16_f32_1row_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1187. }
  1188. #define N_F16_F32 4
  1189. void kernel_mul_mv_f16_f32_impl(
  1190. device const char * src0,
  1191. device const char * src1,
  1192. device float * dst,
  1193. constant int64_t & ne00,
  1194. constant int64_t & ne01,
  1195. constant int64_t & ne02,
  1196. constant uint64_t & nb00,
  1197. constant uint64_t & nb01,
  1198. constant uint64_t & nb02,
  1199. constant int64_t & ne10,
  1200. constant int64_t & ne11,
  1201. constant int64_t & ne12,
  1202. constant uint64_t & nb10,
  1203. constant uint64_t & nb11,
  1204. constant uint64_t & nb12,
  1205. constant int64_t & ne0,
  1206. constant int64_t & ne1,
  1207. constant uint & r2,
  1208. constant uint & r3,
  1209. uint3 tgpig[[threadgroup_position_in_grid]],
  1210. uint tiisg[[thread_index_in_simdgroup]]) {
  1211. const int64_t r0 = tgpig.x;
  1212. const int64_t rb = tgpig.y*N_F16_F32;
  1213. const int64_t im = tgpig.z;
  1214. const uint i12 = im%ne12;
  1215. const uint i13 = im/ne12;
  1216. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1217. device const half * x = (device const half *) (src0 + offset0);
  1218. if (ne00 < 128) {
  1219. for (int row = 0; row < N_F16_F32; ++row) {
  1220. int r1 = rb + row;
  1221. if (r1 >= ne11) {
  1222. break;
  1223. }
  1224. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1225. float sumf = 0;
  1226. for (int i = tiisg; i < ne00; i += 32) {
  1227. sumf += (float) x[i] * (float) y[i];
  1228. }
  1229. float all_sum = simd_sum(sumf);
  1230. if (tiisg == 0) {
  1231. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1232. }
  1233. }
  1234. } else {
  1235. device const half4 * x4 = (device const half4 *)x;
  1236. for (int row = 0; row < N_F16_F32; ++row) {
  1237. int r1 = rb + row;
  1238. if (r1 >= ne11) {
  1239. break;
  1240. }
  1241. device const float * y = (device const float *) (src1 + r1*nb11 + im*nb12);
  1242. device const float4 * y4 = (device const float4 *) y;
  1243. float sumf = 0;
  1244. for (int i = tiisg; i < ne00/4; i += 32) {
  1245. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1246. }
  1247. float all_sum = simd_sum(sumf);
  1248. if (tiisg == 0) {
  1249. for (int i = 4*(ne00/4); i < ne00; ++i) all_sum += (float) x[i] * y[i];
  1250. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1251. }
  1252. }
  1253. }
  1254. }
  1255. [[host_name("kernel_mul_mv_f16_f32")]]
  1256. kernel void kernel_mul_mv_f16_f32(
  1257. device const char * src0,
  1258. device const char * src1,
  1259. device float * dst,
  1260. constant int64_t & ne00,
  1261. constant int64_t & ne01,
  1262. constant int64_t & ne02,
  1263. constant uint64_t & nb00,
  1264. constant uint64_t & nb01,
  1265. constant uint64_t & nb02,
  1266. constant int64_t & ne10,
  1267. constant int64_t & ne11,
  1268. constant int64_t & ne12,
  1269. constant uint64_t & nb10,
  1270. constant uint64_t & nb11,
  1271. constant uint64_t & nb12,
  1272. constant int64_t & ne0,
  1273. constant int64_t & ne1,
  1274. constant uint & r2,
  1275. constant uint & r3,
  1276. uint3 tgpig[[threadgroup_position_in_grid]],
  1277. uint tiisg[[thread_index_in_simdgroup]]) {
  1278. kernel_mul_mv_f16_f32_impl(src0, src1, dst, ne00, ne01, ne02, nb00, nb01, nb02, ne10, ne11, ne12, nb10, nb11, nb12, ne0, ne1, r2, r3, tgpig, tiisg);
  1279. }
  1280. // Assumes row size (ne00) is a multiple of 4
  1281. kernel void kernel_mul_mv_f16_f32_l4(
  1282. device const char * src0,
  1283. device const char * src1,
  1284. device float * dst,
  1285. constant int64_t & ne00,
  1286. constant int64_t & ne01,
  1287. constant int64_t & ne02,
  1288. constant uint64_t & nb00,
  1289. constant uint64_t & nb01,
  1290. constant uint64_t & nb02,
  1291. constant int64_t & ne10,
  1292. constant int64_t & ne11,
  1293. constant int64_t & ne12,
  1294. constant uint64_t & nb10,
  1295. constant uint64_t & nb11,
  1296. constant uint64_t & nb12,
  1297. constant int64_t & ne0,
  1298. constant int64_t & ne1,
  1299. constant uint & r2,
  1300. constant uint & r3,
  1301. uint3 tgpig[[threadgroup_position_in_grid]],
  1302. uint tiisg[[thread_index_in_simdgroup]]) {
  1303. const int nrows = ne11;
  1304. const int64_t r0 = tgpig.x;
  1305. const int64_t im = tgpig.z;
  1306. const uint i12 = im%ne12;
  1307. const uint i13 = im/ne12;
  1308. const uint offset0 = r0*nb01 + (i12/r2)*nb02 + (i13/r3)*nb02*ne02;
  1309. device const half4 * x4 = (device const half4 *) (src0 + offset0);
  1310. for (int r1 = 0; r1 < nrows; ++r1) {
  1311. device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
  1312. float sumf = 0;
  1313. for (int i = tiisg; i < ne00/4; i += 32) {
  1314. for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
  1315. }
  1316. float all_sum = simd_sum(sumf);
  1317. if (tiisg == 0) {
  1318. dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
  1319. }
  1320. }
  1321. }
  1322. kernel void kernel_alibi_f32(
  1323. device const float * src0,
  1324. device float * dst,
  1325. constant int64_t & ne00,
  1326. constant int64_t & ne01,
  1327. constant int64_t & ne02,
  1328. constant int64_t & ne03,
  1329. constant uint64_t & nb00,
  1330. constant uint64_t & nb01,
  1331. constant uint64_t & nb02,
  1332. constant uint64_t & nb03,
  1333. constant int64_t & ne0,
  1334. constant int64_t & ne1,
  1335. constant int64_t & ne2,
  1336. constant int64_t & ne3,
  1337. constant uint64_t & nb0,
  1338. constant uint64_t & nb1,
  1339. constant uint64_t & nb2,
  1340. constant uint64_t & nb3,
  1341. constant float & m0,
  1342. constant float & m1,
  1343. constant int & n_heads_log2_floor,
  1344. uint3 tgpig[[threadgroup_position_in_grid]],
  1345. uint3 tpitg[[thread_position_in_threadgroup]],
  1346. uint3 ntg[[threads_per_threadgroup]]) {
  1347. const int64_t i03 = tgpig[2];
  1348. const int64_t i02 = tgpig[1];
  1349. const int64_t i01 = tgpig[0];
  1350. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1351. const int64_t i3 = n / (ne2*ne1*ne0);
  1352. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1353. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1354. //const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1355. const int64_t k = i3*ne3 + i2;
  1356. float m_k;
  1357. if (k < n_heads_log2_floor) {
  1358. m_k = pow(m0, k + 1);
  1359. } else {
  1360. m_k = pow(m1, 2 * (k - n_heads_log2_floor) + 1);
  1361. }
  1362. device char * dst_row = (device char *) dst + i3*nb3 + i2*nb2 + i1*nb1;
  1363. device const char * src_row = (device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01;
  1364. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1365. const float src_v = *(device float *)(src_row + i00*nb00);
  1366. device float * dst_v = (device float *)(dst_row + i00*nb0);
  1367. *dst_v = i00 * m_k + src_v;
  1368. }
  1369. }
  1370. static float rope_yarn_ramp(const float low, const float high, const int i0) {
  1371. const float y = (i0 / 2 - low) / max(0.001f, high - low);
  1372. return 1.0f - min(1.0f, max(0.0f, y));
  1373. }
  1374. // YaRN algorithm based on LlamaYaRNScaledRotaryEmbedding.py from https://github.com/jquesnelle/yarn
  1375. // MIT licensed. Copyright (c) 2023 Jeffrey Quesnelle and Bowen Peng.
  1376. static void rope_yarn(
  1377. float theta_extrap, float freq_scale, float corr_dims[2], int64_t i0, float ext_factor, float mscale,
  1378. thread float * cos_theta, thread float * sin_theta
  1379. ) {
  1380. // Get n-d rotational scaling corrected for extrapolation
  1381. float theta_interp = freq_scale * theta_extrap;
  1382. float theta = theta_interp;
  1383. if (ext_factor != 0.0f) {
  1384. float ramp_mix = rope_yarn_ramp(corr_dims[0], corr_dims[1], i0) * ext_factor;
  1385. theta = theta_interp * (1 - ramp_mix) + theta_extrap * ramp_mix;
  1386. // Get n-d magnitude scaling corrected for interpolation
  1387. mscale *= 1.0f + 0.1f * log(1.0f / freq_scale);
  1388. }
  1389. *cos_theta = cos(theta) * mscale;
  1390. *sin_theta = sin(theta) * mscale;
  1391. }
  1392. // Apparently solving `n_rot = 2pi * x * base^((2 * max_pos_emb) / n_dims)` for x, we get
  1393. // `corr_fac(n_rot) = n_dims * log(max_pos_emb / (n_rot * 2pi)) / (2 * log(base))`
  1394. static float rope_yarn_corr_factor(int n_dims, int n_orig_ctx, float n_rot, float base) {
  1395. return n_dims * log(n_orig_ctx / (n_rot * 2 * M_PI_F)) / (2 * log(base));
  1396. }
  1397. static void rope_yarn_corr_dims(
  1398. int n_dims, int n_orig_ctx, float freq_base, float beta_fast, float beta_slow, float dims[2]
  1399. ) {
  1400. // start and end correction dims
  1401. dims[0] = max(0.0f, floor(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_fast, freq_base)));
  1402. dims[1] = min(n_dims - 1.0f, ceil(rope_yarn_corr_factor(n_dims, n_orig_ctx, beta_slow, freq_base)));
  1403. }
  1404. typedef void (rope_t)(
  1405. device const void * src0,
  1406. device const int32_t * src1,
  1407. device float * dst,
  1408. constant int64_t & ne00,
  1409. constant int64_t & ne01,
  1410. constant int64_t & ne02,
  1411. constant int64_t & ne03,
  1412. constant uint64_t & nb00,
  1413. constant uint64_t & nb01,
  1414. constant uint64_t & nb02,
  1415. constant uint64_t & nb03,
  1416. constant int64_t & ne0,
  1417. constant int64_t & ne1,
  1418. constant int64_t & ne2,
  1419. constant int64_t & ne3,
  1420. constant uint64_t & nb0,
  1421. constant uint64_t & nb1,
  1422. constant uint64_t & nb2,
  1423. constant uint64_t & nb3,
  1424. constant int & n_past,
  1425. constant int & n_dims,
  1426. constant int & mode,
  1427. constant int & n_orig_ctx,
  1428. constant float & freq_base,
  1429. constant float & freq_scale,
  1430. constant float & ext_factor,
  1431. constant float & attn_factor,
  1432. constant float & beta_fast,
  1433. constant float & beta_slow,
  1434. uint tiitg[[thread_index_in_threadgroup]],
  1435. uint3 tptg[[threads_per_threadgroup]],
  1436. uint3 tgpig[[threadgroup_position_in_grid]]);
  1437. template<typename T>
  1438. kernel void kernel_rope(
  1439. device const void * src0,
  1440. device const int32_t * src1,
  1441. device float * dst,
  1442. constant int64_t & ne00,
  1443. constant int64_t & ne01,
  1444. constant int64_t & ne02,
  1445. constant int64_t & ne03,
  1446. constant uint64_t & nb00,
  1447. constant uint64_t & nb01,
  1448. constant uint64_t & nb02,
  1449. constant uint64_t & nb03,
  1450. constant int64_t & ne0,
  1451. constant int64_t & ne1,
  1452. constant int64_t & ne2,
  1453. constant int64_t & ne3,
  1454. constant uint64_t & nb0,
  1455. constant uint64_t & nb1,
  1456. constant uint64_t & nb2,
  1457. constant uint64_t & nb3,
  1458. constant int & n_past,
  1459. constant int & n_dims,
  1460. constant int & mode,
  1461. constant int & n_orig_ctx,
  1462. constant float & freq_base,
  1463. constant float & freq_scale,
  1464. constant float & ext_factor,
  1465. constant float & attn_factor,
  1466. constant float & beta_fast,
  1467. constant float & beta_slow,
  1468. uint tiitg[[thread_index_in_threadgroup]],
  1469. uint3 tptg[[threads_per_threadgroup]],
  1470. uint3 tgpig[[threadgroup_position_in_grid]]) {
  1471. const int64_t i3 = tgpig[2];
  1472. const int64_t i2 = tgpig[1];
  1473. const int64_t i1 = tgpig[0];
  1474. const bool is_neox = mode & 2;
  1475. float corr_dims[2];
  1476. rope_yarn_corr_dims(n_dims, n_orig_ctx, freq_base, beta_fast, beta_slow, corr_dims);
  1477. device const int32_t * pos = src1;
  1478. const int64_t p = pos[i2];
  1479. const float theta_0 = (float)p;
  1480. const float inv_ndims = -1.f/n_dims;
  1481. if (!is_neox) {
  1482. for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
  1483. const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
  1484. float cos_theta, sin_theta;
  1485. rope_yarn(theta, freq_scale, corr_dims, i0, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1486. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1487. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1488. const T x0 = src[0];
  1489. const T x1 = src[1];
  1490. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1491. dst_data[1] = x0*sin_theta + x1*cos_theta;
  1492. }
  1493. } else {
  1494. for (int64_t ic = 2*tiitg; ic < ne0; ic += 2*tptg.x) {
  1495. if (ic < n_dims) {
  1496. const int64_t ib = 0;
  1497. // simplified from `(ib * n_dims + ic) * inv_ndims`
  1498. const float cur_rot = inv_ndims*ic - ib;
  1499. const float theta = theta_0 * pow(freq_base, cur_rot);
  1500. float cos_theta, sin_theta;
  1501. rope_yarn(theta, freq_scale, corr_dims, cur_rot, ext_factor, attn_factor, &cos_theta, &sin_theta);
  1502. const int64_t i0 = ib*n_dims + ic/2;
  1503. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1504. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1505. const float x0 = src[0];
  1506. const float x1 = src[n_dims/2];
  1507. dst_data[0] = x0*cos_theta - x1*sin_theta;
  1508. dst_data[n_dims/2] = x0*sin_theta + x1*cos_theta;
  1509. } else {
  1510. const int64_t i0 = ic;
  1511. device const T * const src = (device T *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
  1512. device T * dst_data = (device T *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1513. dst_data[0] = src[0];
  1514. dst_data[1] = src[1];
  1515. }
  1516. }
  1517. }
  1518. }
  1519. template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
  1520. template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
  1521. kernel void kernel_im2col_f16(
  1522. device const float * x,
  1523. device half * dst,
  1524. constant int32_t & ofs0,
  1525. constant int32_t & ofs1,
  1526. constant int32_t & IW,
  1527. constant int32_t & IH,
  1528. constant int32_t & CHW,
  1529. constant int32_t & s0,
  1530. constant int32_t & s1,
  1531. constant int32_t & p0,
  1532. constant int32_t & p1,
  1533. constant int32_t & d0,
  1534. constant int32_t & d1,
  1535. uint3 tgpig[[threadgroup_position_in_grid]],
  1536. uint3 tgpg[[threadgroups_per_grid]],
  1537. uint3 tpitg[[thread_position_in_threadgroup]],
  1538. uint3 ntg[[threads_per_threadgroup]]) {
  1539. const int32_t iiw = tgpig[2] * s0 + tpitg[2] * d0 - p0;
  1540. const int32_t iih = tgpig[1] * s1 + tpitg[1] * d1 - p1;
  1541. const int32_t offset_dst =
  1542. (tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
  1543. (tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
  1544. if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
  1545. dst[offset_dst] = 0.0f;
  1546. } else {
  1547. const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
  1548. dst[offset_dst] = x[offset_src + iih * IW + iiw];
  1549. }
  1550. }
  1551. kernel void kernel_upscale_f32(
  1552. device const char * src0,
  1553. device char * dst,
  1554. constant int64_t & ne00,
  1555. constant int64_t & ne01,
  1556. constant int64_t & ne02,
  1557. constant int64_t & ne03,
  1558. constant uint64_t & nb00,
  1559. constant uint64_t & nb01,
  1560. constant uint64_t & nb02,
  1561. constant uint64_t & nb03,
  1562. constant int64_t & ne0,
  1563. constant int64_t & ne1,
  1564. constant int64_t & ne2,
  1565. constant int64_t & ne3,
  1566. constant uint64_t & nb0,
  1567. constant uint64_t & nb1,
  1568. constant uint64_t & nb2,
  1569. constant uint64_t & nb3,
  1570. constant int32_t & sf,
  1571. uint3 tgpig[[threadgroup_position_in_grid]],
  1572. uint3 tpitg[[thread_position_in_threadgroup]],
  1573. uint3 ntg[[threads_per_threadgroup]]) {
  1574. const int64_t i3 = tgpig.z;
  1575. const int64_t i2 = tgpig.y;
  1576. const int64_t i1 = tgpig.x;
  1577. const int64_t i03 = i3;
  1578. const int64_t i02 = i2;
  1579. const int64_t i01 = i1/sf;
  1580. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1581. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1582. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1583. dst_ptr[i0] = src0_ptr[i0/sf];
  1584. }
  1585. }
  1586. kernel void kernel_pad_f32(
  1587. device const char * src0,
  1588. device char * dst,
  1589. constant int64_t & ne00,
  1590. constant int64_t & ne01,
  1591. constant int64_t & ne02,
  1592. constant int64_t & ne03,
  1593. constant uint64_t & nb00,
  1594. constant uint64_t & nb01,
  1595. constant uint64_t & nb02,
  1596. constant uint64_t & nb03,
  1597. constant int64_t & ne0,
  1598. constant int64_t & ne1,
  1599. constant int64_t & ne2,
  1600. constant int64_t & ne3,
  1601. constant uint64_t & nb0,
  1602. constant uint64_t & nb1,
  1603. constant uint64_t & nb2,
  1604. constant uint64_t & nb3,
  1605. uint3 tgpig[[threadgroup_position_in_grid]],
  1606. uint3 tpitg[[thread_position_in_threadgroup]],
  1607. uint3 ntg[[threads_per_threadgroup]]) {
  1608. const int64_t i3 = tgpig.z;
  1609. const int64_t i2 = tgpig.y;
  1610. const int64_t i1 = tgpig.x;
  1611. const int64_t i03 = i3;
  1612. const int64_t i02 = i2;
  1613. const int64_t i01 = i1;
  1614. device const float * src0_ptr = (device const float *) (src0 + i03*nb03 + i02*nb02 + i01*nb01);
  1615. device float * dst_ptr = (device float *) (dst + i3*nb3 + i2*nb2 + i1*nb1);
  1616. if (i1 < ne01 && i2 < ne02 && i3 < ne03) {
  1617. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1618. if (i0 < ne00) {
  1619. dst_ptr[i0] = src0_ptr[i0];
  1620. } else {
  1621. dst_ptr[i0] = 0.0f;
  1622. }
  1623. }
  1624. return;
  1625. }
  1626. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  1627. dst_ptr[i0] = 0.0f;
  1628. }
  1629. }
  1630. // bitonic sort implementation following the CUDA kernels as reference
  1631. typedef void (argsort_t)(
  1632. device const float * x,
  1633. device int32_t * dst,
  1634. constant int64_t & ncols,
  1635. uint3 tgpig[[threadgroup_position_in_grid]],
  1636. uint3 tpitg[[thread_position_in_threadgroup]]);
  1637. template<ggml_sort_order order>
  1638. kernel void kernel_argsort_f32_i32(
  1639. device const float * x,
  1640. device int32_t * dst,
  1641. constant int64_t & ncols,
  1642. uint3 tgpig[[threadgroup_position_in_grid]],
  1643. uint3 tpitg[[thread_position_in_threadgroup]]) {
  1644. // bitonic sort
  1645. int col = tpitg[0];
  1646. int row = tgpig[1];
  1647. if (col >= ncols) return;
  1648. device const float * x_row = x + row * ncols;
  1649. device int32_t * dst_row = dst + row * ncols;
  1650. // initialize indices
  1651. if (col < ncols) {
  1652. dst_row[col] = col;
  1653. }
  1654. threadgroup_barrier(mem_flags::mem_threadgroup);
  1655. for (int k = 2; k <= ncols; k *= 2) {
  1656. for (int j = k / 2; j > 0; j /= 2) {
  1657. int ixj = col ^ j;
  1658. if (ixj > col) {
  1659. if ((col & k) == 0) {
  1660. if (order == GGML_SORT_ASC ? x_row[dst_row[col]] > x_row[dst_row[ixj]] : x_row[dst_row[col]] < x_row[dst_row[ixj]]) {
  1661. SWAP(dst_row[col], dst_row[ixj]);
  1662. }
  1663. } else {
  1664. if (order == GGML_SORT_ASC ? x_row[dst_row[col]] < x_row[dst_row[ixj]] : x_row[dst_row[col]] > x_row[dst_row[ixj]]) {
  1665. SWAP(dst_row[col], dst_row[ixj]);
  1666. }
  1667. }
  1668. }
  1669. threadgroup_barrier(mem_flags::mem_threadgroup);
  1670. }
  1671. }
  1672. }
  1673. template [[host_name("kernel_argsort_f32_i32_asc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_ASC>;
  1674. template [[host_name("kernel_argsort_f32_i32_desc")]] kernel argsort_t kernel_argsort_f32_i32<GGML_SORT_DESC>;
  1675. kernel void kernel_leaky_relu_f32(
  1676. device const float * src0,
  1677. device float * dst,
  1678. constant float & slope,
  1679. uint tpig[[thread_position_in_grid]]) {
  1680. dst[tpig] = src0[tpig] > 0.0f ? src0[tpig] : src0[tpig] * slope;
  1681. }
  1682. kernel void kernel_cpy_f16_f16(
  1683. device const half * src0,
  1684. device half * dst,
  1685. constant int64_t & ne00,
  1686. constant int64_t & ne01,
  1687. constant int64_t & ne02,
  1688. constant int64_t & ne03,
  1689. constant uint64_t & nb00,
  1690. constant uint64_t & nb01,
  1691. constant uint64_t & nb02,
  1692. constant uint64_t & nb03,
  1693. constant int64_t & ne0,
  1694. constant int64_t & ne1,
  1695. constant int64_t & ne2,
  1696. constant int64_t & ne3,
  1697. constant uint64_t & nb0,
  1698. constant uint64_t & nb1,
  1699. constant uint64_t & nb2,
  1700. constant uint64_t & nb3,
  1701. uint3 tgpig[[threadgroup_position_in_grid]],
  1702. uint3 tpitg[[thread_position_in_threadgroup]],
  1703. uint3 ntg[[threads_per_threadgroup]]) {
  1704. const int64_t i03 = tgpig[2];
  1705. const int64_t i02 = tgpig[1];
  1706. const int64_t i01 = tgpig[0];
  1707. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1708. const int64_t i3 = n / (ne2*ne1*ne0);
  1709. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1710. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1711. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1712. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1713. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1714. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1715. dst_data[i00] = src[0];
  1716. }
  1717. }
  1718. kernel void kernel_cpy_f16_f32(
  1719. device const half * src0,
  1720. device float * dst,
  1721. constant int64_t & ne00,
  1722. constant int64_t & ne01,
  1723. constant int64_t & ne02,
  1724. constant int64_t & ne03,
  1725. constant uint64_t & nb00,
  1726. constant uint64_t & nb01,
  1727. constant uint64_t & nb02,
  1728. constant uint64_t & nb03,
  1729. constant int64_t & ne0,
  1730. constant int64_t & ne1,
  1731. constant int64_t & ne2,
  1732. constant int64_t & ne3,
  1733. constant uint64_t & nb0,
  1734. constant uint64_t & nb1,
  1735. constant uint64_t & nb2,
  1736. constant uint64_t & nb3,
  1737. uint3 tgpig[[threadgroup_position_in_grid]],
  1738. uint3 tpitg[[thread_position_in_threadgroup]],
  1739. uint3 ntg[[threads_per_threadgroup]]) {
  1740. const int64_t i03 = tgpig[2];
  1741. const int64_t i02 = tgpig[1];
  1742. const int64_t i01 = tgpig[0];
  1743. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1744. const int64_t i3 = n / (ne2*ne1*ne0);
  1745. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1746. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1747. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1748. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1749. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1750. device const half * src = (device half *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1751. dst_data[i00] = src[0];
  1752. }
  1753. }
  1754. kernel void kernel_cpy_f32_f16(
  1755. device const float * src0,
  1756. device half * dst,
  1757. constant int64_t & ne00,
  1758. constant int64_t & ne01,
  1759. constant int64_t & ne02,
  1760. constant int64_t & ne03,
  1761. constant uint64_t & nb00,
  1762. constant uint64_t & nb01,
  1763. constant uint64_t & nb02,
  1764. constant uint64_t & nb03,
  1765. constant int64_t & ne0,
  1766. constant int64_t & ne1,
  1767. constant int64_t & ne2,
  1768. constant int64_t & ne3,
  1769. constant uint64_t & nb0,
  1770. constant uint64_t & nb1,
  1771. constant uint64_t & nb2,
  1772. constant uint64_t & nb3,
  1773. uint3 tgpig[[threadgroup_position_in_grid]],
  1774. uint3 tpitg[[thread_position_in_threadgroup]],
  1775. uint3 ntg[[threads_per_threadgroup]]) {
  1776. const int64_t i03 = tgpig[2];
  1777. const int64_t i02 = tgpig[1];
  1778. const int64_t i01 = tgpig[0];
  1779. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1780. const int64_t i3 = n / (ne2*ne1*ne0);
  1781. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1782. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1783. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1784. device half * dst_data = (device half *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1785. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1786. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1787. dst_data[i00] = src[0];
  1788. }
  1789. }
  1790. kernel void kernel_cpy_f32_f32(
  1791. device const float * src0,
  1792. device float * dst,
  1793. constant int64_t & ne00,
  1794. constant int64_t & ne01,
  1795. constant int64_t & ne02,
  1796. constant int64_t & ne03,
  1797. constant uint64_t & nb00,
  1798. constant uint64_t & nb01,
  1799. constant uint64_t & nb02,
  1800. constant uint64_t & nb03,
  1801. constant int64_t & ne0,
  1802. constant int64_t & ne1,
  1803. constant int64_t & ne2,
  1804. constant int64_t & ne3,
  1805. constant uint64_t & nb0,
  1806. constant uint64_t & nb1,
  1807. constant uint64_t & nb2,
  1808. constant uint64_t & nb3,
  1809. uint3 tgpig[[threadgroup_position_in_grid]],
  1810. uint3 tpitg[[thread_position_in_threadgroup]],
  1811. uint3 ntg[[threads_per_threadgroup]]) {
  1812. const int64_t i03 = tgpig[2];
  1813. const int64_t i02 = tgpig[1];
  1814. const int64_t i01 = tgpig[0];
  1815. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1816. const int64_t i3 = n / (ne2*ne1*ne0);
  1817. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1818. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1819. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0);
  1820. device float * dst_data = (device float *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1821. for (int64_t i00 = tpitg.x; i00 < ne00; i00 += ntg.x) {
  1822. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1823. dst_data[i00] = src[0];
  1824. }
  1825. }
  1826. kernel void kernel_cpy_f32_q8_0(
  1827. device const float * src0,
  1828. device void * dst,
  1829. constant int64_t & ne00,
  1830. constant int64_t & ne01,
  1831. constant int64_t & ne02,
  1832. constant int64_t & ne03,
  1833. constant uint64_t & nb00,
  1834. constant uint64_t & nb01,
  1835. constant uint64_t & nb02,
  1836. constant uint64_t & nb03,
  1837. constant int64_t & ne0,
  1838. constant int64_t & ne1,
  1839. constant int64_t & ne2,
  1840. constant int64_t & ne3,
  1841. constant uint64_t & nb0,
  1842. constant uint64_t & nb1,
  1843. constant uint64_t & nb2,
  1844. constant uint64_t & nb3,
  1845. uint3 tgpig[[threadgroup_position_in_grid]],
  1846. uint3 tpitg[[thread_position_in_threadgroup]],
  1847. uint3 ntg[[threads_per_threadgroup]]) {
  1848. const int64_t i03 = tgpig[2];
  1849. const int64_t i02 = tgpig[1];
  1850. const int64_t i01 = tgpig[0];
  1851. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1852. const int64_t i3 = n / (ne2*ne1*ne0);
  1853. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1854. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1855. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK8_0;
  1856. device block_q8_0 * dst_data = (device block_q8_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1857. for (int64_t i00 = tpitg.x*QK8_0; i00 < ne00; i00 += ntg.x*QK8_0) {
  1858. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1859. float amax = 0.0f; // absolute max
  1860. for (int j = 0; j < QK8_0; j++) {
  1861. const float v = src[j];
  1862. amax = MAX(amax, fabs(v));
  1863. }
  1864. const float d = amax / ((1 << 7) - 1);
  1865. const float id = d ? 1.0f/d : 0.0f;
  1866. dst_data[i00/QK8_0].d = d;
  1867. for (int j = 0; j < QK8_0; ++j) {
  1868. const float x0 = src[j]*id;
  1869. dst_data[i00/QK8_0].qs[j] = round(x0);
  1870. }
  1871. }
  1872. }
  1873. kernel void kernel_cpy_f32_q4_0(
  1874. device const float * src0,
  1875. device void * dst,
  1876. constant int64_t & ne00,
  1877. constant int64_t & ne01,
  1878. constant int64_t & ne02,
  1879. constant int64_t & ne03,
  1880. constant uint64_t & nb00,
  1881. constant uint64_t & nb01,
  1882. constant uint64_t & nb02,
  1883. constant uint64_t & nb03,
  1884. constant int64_t & ne0,
  1885. constant int64_t & ne1,
  1886. constant int64_t & ne2,
  1887. constant int64_t & ne3,
  1888. constant uint64_t & nb0,
  1889. constant uint64_t & nb1,
  1890. constant uint64_t & nb2,
  1891. constant uint64_t & nb3,
  1892. uint3 tgpig[[threadgroup_position_in_grid]],
  1893. uint3 tpitg[[thread_position_in_threadgroup]],
  1894. uint3 ntg[[threads_per_threadgroup]]) {
  1895. const int64_t i03 = tgpig[2];
  1896. const int64_t i02 = tgpig[1];
  1897. const int64_t i01 = tgpig[0];
  1898. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1899. const int64_t i3 = n / (ne2*ne1*ne0);
  1900. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1901. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1902. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_0;
  1903. device block_q4_0 * dst_data = (device block_q4_0 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1904. for (int64_t i00 = tpitg.x*QK4_0; i00 < ne00; i00 += ntg.x*QK4_0) {
  1905. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1906. float amax = 0.0f; // absolute max
  1907. float max = 0.0f;
  1908. for (int j = 0; j < QK4_0; j++) {
  1909. const float v = src[j];
  1910. if (amax < fabs(v)) {
  1911. amax = fabs(v);
  1912. max = v;
  1913. }
  1914. }
  1915. const float d = max / -8;
  1916. const float id = d ? 1.0f/d : 0.0f;
  1917. dst_data[i00/QK4_0].d = d;
  1918. for (int j = 0; j < QK4_0/2; ++j) {
  1919. const float x0 = src[0 + j]*id;
  1920. const float x1 = src[QK4_0/2 + j]*id;
  1921. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 8.5f));
  1922. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 8.5f));
  1923. dst_data[i00/QK4_0].qs[j] = xi0;
  1924. dst_data[i00/QK4_0].qs[j] |= xi1 << 4;
  1925. }
  1926. }
  1927. }
  1928. kernel void kernel_cpy_f32_q4_1(
  1929. device const float * src0,
  1930. device void * dst,
  1931. constant int64_t & ne00,
  1932. constant int64_t & ne01,
  1933. constant int64_t & ne02,
  1934. constant int64_t & ne03,
  1935. constant uint64_t & nb00,
  1936. constant uint64_t & nb01,
  1937. constant uint64_t & nb02,
  1938. constant uint64_t & nb03,
  1939. constant int64_t & ne0,
  1940. constant int64_t & ne1,
  1941. constant int64_t & ne2,
  1942. constant int64_t & ne3,
  1943. constant uint64_t & nb0,
  1944. constant uint64_t & nb1,
  1945. constant uint64_t & nb2,
  1946. constant uint64_t & nb3,
  1947. uint3 tgpig[[threadgroup_position_in_grid]],
  1948. uint3 tpitg[[thread_position_in_threadgroup]],
  1949. uint3 ntg[[threads_per_threadgroup]]) {
  1950. const int64_t i03 = tgpig[2];
  1951. const int64_t i02 = tgpig[1];
  1952. const int64_t i01 = tgpig[0];
  1953. const int64_t n = i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
  1954. const int64_t i3 = n / (ne2*ne1*ne0);
  1955. const int64_t i2 = (n - i3*ne2*ne1*ne0) / (ne1*ne0);
  1956. const int64_t i1 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0) / ne0;
  1957. const int64_t i0 = (n - i3*ne2*ne1*ne0 - i2*ne1*ne0 - i1*ne0)/QK4_1;
  1958. device block_q4_1 * dst_data = (device block_q4_1 *) ((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
  1959. for (int64_t i00 = tpitg.x*QK4_1; i00 < ne00; i00 += ntg.x*QK4_1) {
  1960. device const float * src = (device float *)((device char *) src0 + i03*nb03 + i02*nb02 + i01*nb01 + i00*nb00);
  1961. float min = FLT_MAX;
  1962. float max = -FLT_MAX;
  1963. for (int j = 0; j < QK4_1; j++) {
  1964. const float v = src[j];
  1965. if (min > v) min = v;
  1966. if (max < v) max = v;
  1967. }
  1968. const float d = (max - min) / ((1 << 4) - 1);
  1969. const float id = d ? 1.0f/d : 0.0f;
  1970. dst_data[i00/QK4_1].d = d;
  1971. dst_data[i00/QK4_1].m = min;
  1972. for (int j = 0; j < QK4_1/2; ++j) {
  1973. const float x0 = (src[0 + j] - min)*id;
  1974. const float x1 = (src[QK4_1/2 + j] - min)*id;
  1975. const uint8_t xi0 = MIN(15, (int8_t)(x0 + 0.5f));
  1976. const uint8_t xi1 = MIN(15, (int8_t)(x1 + 0.5f));
  1977. dst_data[i00/QK4_1].qs[j] = xi0;
  1978. dst_data[i00/QK4_1].qs[j] |= xi1 << 4;
  1979. }
  1980. }
  1981. }
  1982. kernel void kernel_concat(
  1983. device const char * src0,
  1984. device const char * src1,
  1985. device char * dst,
  1986. constant int64_t & ne00,
  1987. constant int64_t & ne01,
  1988. constant int64_t & ne02,
  1989. constant int64_t & ne03,
  1990. constant uint64_t & nb00,
  1991. constant uint64_t & nb01,
  1992. constant uint64_t & nb02,
  1993. constant uint64_t & nb03,
  1994. constant int64_t & ne10,
  1995. constant int64_t & ne11,
  1996. constant int64_t & ne12,
  1997. constant int64_t & ne13,
  1998. constant uint64_t & nb10,
  1999. constant uint64_t & nb11,
  2000. constant uint64_t & nb12,
  2001. constant uint64_t & nb13,
  2002. constant int64_t & ne0,
  2003. constant int64_t & ne1,
  2004. constant int64_t & ne2,
  2005. constant int64_t & ne3,
  2006. constant uint64_t & nb0,
  2007. constant uint64_t & nb1,
  2008. constant uint64_t & nb2,
  2009. constant uint64_t & nb3,
  2010. uint3 tgpig[[threadgroup_position_in_grid]],
  2011. uint3 tpitg[[thread_position_in_threadgroup]],
  2012. uint3 ntg[[threads_per_threadgroup]]) {
  2013. const int64_t i03 = tgpig.z;
  2014. const int64_t i02 = tgpig.y;
  2015. const int64_t i01 = tgpig.x;
  2016. const int64_t i13 = i03 % ne13;
  2017. const int64_t i12 = i02 % ne12;
  2018. const int64_t i11 = i01 % ne11;
  2019. device const char * src0_ptr = src0 + i03*nb03 + i02*nb02 + i01*nb01 + tpitg.x*nb00;
  2020. device const char * src1_ptr = src1 + i13*nb13 + i12*nb12 + i11*nb11 + tpitg.x*nb10;
  2021. device char * dst_ptr = dst + i03*nb3 + i02*nb2 + i01*nb1 + tpitg.x*nb0;
  2022. for (int i0 = tpitg.x; i0 < ne0; i0 += ntg.x) {
  2023. if (i02 < ne02) {
  2024. ((device float *)dst_ptr)[0] = ((device float *)src0_ptr)[0];
  2025. src0_ptr += ntg.x*nb00;
  2026. } else {
  2027. ((device float *)dst_ptr)[0] = ((device float *)src1_ptr)[0];
  2028. src1_ptr += ntg.x*nb10;
  2029. }
  2030. dst_ptr += ntg.x*nb0;
  2031. }
  2032. }
  2033. //============================================ k-quants ======================================================
  2034. #ifndef QK_K
  2035. #define QK_K 256
  2036. #else
  2037. static_assert(QK_K == 256 || QK_K == 64, "QK_K must be 256 or 64");
  2038. #endif
  2039. #if QK_K == 256
  2040. #define K_SCALE_SIZE 12
  2041. #else
  2042. #define K_SCALE_SIZE 4
  2043. #endif
  2044. typedef struct {
  2045. uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
  2046. uint8_t qs[QK_K/4]; // quants
  2047. half d; // super-block scale for quantized scales
  2048. half dmin; // super-block scale for quantized mins
  2049. } block_q2_K;
  2050. // 84 bytes / block
  2051. typedef struct {
  2052. uint8_t hmask[QK_K/8]; // quants - high bit
  2053. uint8_t qs[QK_K/4]; // quants - low 2 bits
  2054. #if QK_K == 64
  2055. uint8_t scales[2];
  2056. #else
  2057. uint8_t scales[K_SCALE_SIZE]; // scales, quantized with 6 bits
  2058. #endif
  2059. half d; // super-block scale
  2060. } block_q3_K;
  2061. #if QK_K == 64
  2062. typedef struct {
  2063. half d[2]; // super-block scales/mins
  2064. uint8_t scales[2];
  2065. uint8_t qs[QK_K/2]; // 4-bit quants
  2066. } block_q4_K;
  2067. #else
  2068. typedef struct {
  2069. half d; // super-block scale for quantized scales
  2070. half dmin; // super-block scale for quantized mins
  2071. uint8_t scales[K_SCALE_SIZE]; // scales and mins, quantized with 6 bits
  2072. uint8_t qs[QK_K/2]; // 4--bit quants
  2073. } block_q4_K;
  2074. #endif
  2075. #if QK_K == 64
  2076. typedef struct {
  2077. half d; // super-block scales/mins
  2078. int8_t scales[QK_K/16]; // 8-bit block scales
  2079. uint8_t qh[QK_K/8]; // quants, high bit
  2080. uint8_t qs[QK_K/2]; // quants, low 4 bits
  2081. } block_q5_K;
  2082. #else
  2083. typedef struct {
  2084. half d; // super-block scale for quantized scales
  2085. half dmin; // super-block scale for quantized mins
  2086. uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
  2087. uint8_t qh[QK_K/8]; // quants, high bit
  2088. uint8_t qs[QK_K/2]; // quants, low 4 bits
  2089. } block_q5_K;
  2090. // 176 bytes / block
  2091. #endif
  2092. typedef struct {
  2093. uint8_t ql[QK_K/2]; // quants, lower 4 bits
  2094. uint8_t qh[QK_K/4]; // quants, upper 2 bits
  2095. int8_t scales[QK_K/16]; // scales, quantized with 8 bits
  2096. half d; // super-block scale
  2097. } block_q6_K;
  2098. // 210 bytes / block
  2099. //====================================== dot products =========================
  2100. void kernel_mul_mv_q2_K_f32_impl(
  2101. device const void * src0,
  2102. device const float * src1,
  2103. device float * dst,
  2104. constant int64_t & ne00,
  2105. constant int64_t & ne01,
  2106. constant int64_t & ne02,
  2107. constant int64_t & ne10,
  2108. constant int64_t & ne12,
  2109. constant int64_t & ne0,
  2110. constant int64_t & ne1,
  2111. constant uint & r2,
  2112. constant uint & r3,
  2113. uint3 tgpig[[threadgroup_position_in_grid]],
  2114. uint tiisg[[thread_index_in_simdgroup]],
  2115. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2116. const int nb = ne00/QK_K;
  2117. const int r0 = tgpig.x;
  2118. const int r1 = tgpig.y;
  2119. const int im = tgpig.z;
  2120. const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2121. const int ib_row = first_row * nb;
  2122. const uint i12 = im%ne12;
  2123. const uint i13 = im/ne12;
  2124. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2125. device const block_q2_K * x = (device const block_q2_K *) src0 + ib_row + offset0;
  2126. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2127. float yl[32];
  2128. float sumf[N_DST]={0.f}, all_sum;
  2129. const int step = sizeof(block_q2_K) * nb;
  2130. #if QK_K == 256
  2131. const int ix = tiisg/8; // 0...3
  2132. const int it = tiisg%8; // 0...7
  2133. const int iq = it/4; // 0 or 1
  2134. const int ir = it%4; // 0...3
  2135. const int is = (8*ir)/16;// 0 or 1
  2136. device const float * y4 = y + ix * QK_K + 128 * iq + 8 * ir;
  2137. for (int ib = ix; ib < nb; ib += 4) {
  2138. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2139. for (int i = 0; i < 8; ++i) {
  2140. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2141. yl[i+ 8] = y4[i+32]; sumy[1] += yl[i+ 8];
  2142. yl[i+16] = y4[i+64]; sumy[2] += yl[i+16];
  2143. yl[i+24] = y4[i+96]; sumy[3] += yl[i+24];
  2144. }
  2145. device const uint8_t * sc = (device const uint8_t *)x[ib].scales + 8*iq + is;
  2146. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2147. device const half * dh = &x[ib].d;
  2148. for (int row = 0; row < N_DST; row++) {
  2149. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2150. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2151. for (int i = 0; i < 8; i += 2) {
  2152. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2153. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2154. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2155. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2156. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2157. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2158. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2159. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2160. }
  2161. float dall = dh[0];
  2162. float dmin = dh[1] * 1.f/16.f;
  2163. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2164. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[2] & 0xF) * 1.f/ 4.f +
  2165. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[4] & 0xF) * 1.f/16.f +
  2166. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[6] & 0xF) * 1.f/64.f) -
  2167. dmin * (sumy[0] * (sc[0] & 0xF0) + sumy[1] * (sc[2] & 0xF0) + sumy[2] * (sc[4] & 0xF0) + sumy[3] * (sc[6] & 0xF0));
  2168. qs += step/2;
  2169. sc += step;
  2170. dh += step/2;
  2171. }
  2172. y4 += 4 * QK_K;
  2173. }
  2174. #else
  2175. const int ix = tiisg/2; // 0...15
  2176. const int it = tiisg%2; // 0...1
  2177. device const float * y4 = y + ix * QK_K + 8 * it;
  2178. for (int ib = ix; ib < nb; ib += 16) {
  2179. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2180. for (int i = 0; i < 8; ++i) {
  2181. yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
  2182. yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
  2183. yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
  2184. yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
  2185. }
  2186. device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
  2187. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2188. device const half * dh = &x[ib].d;
  2189. for (int row = 0; row < N_DST; row++) {
  2190. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2191. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2192. for (int i = 0; i < 8; i += 2) {
  2193. acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
  2194. acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
  2195. acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
  2196. acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
  2197. acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
  2198. acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
  2199. acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
  2200. acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
  2201. }
  2202. float dall = dh[0];
  2203. float dmin = dh[1];
  2204. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
  2205. (acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
  2206. (acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
  2207. (acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
  2208. dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
  2209. qs += step/2;
  2210. sc += step;
  2211. dh += step/2;
  2212. }
  2213. y4 += 16 * QK_K;
  2214. }
  2215. #endif
  2216. for (int row = 0; row < N_DST; ++row) {
  2217. all_sum = simd_sum(sumf[row]);
  2218. if (tiisg == 0) {
  2219. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2220. }
  2221. }
  2222. }
  2223. [[host_name("kernel_mul_mv_q2_K_f32")]]
  2224. kernel void kernel_mul_mv_q2_K_f32(
  2225. device const void * src0,
  2226. device const float * src1,
  2227. device float * dst,
  2228. constant int64_t & ne00,
  2229. constant int64_t & ne01,
  2230. constant int64_t & ne02,
  2231. constant uint64_t & nb00,
  2232. constant uint64_t & nb01,
  2233. constant uint64_t & nb02,
  2234. constant int64_t & ne10,
  2235. constant int64_t & ne11,
  2236. constant int64_t & ne12,
  2237. constant uint64_t & nb10,
  2238. constant uint64_t & nb11,
  2239. constant uint64_t & nb12,
  2240. constant int64_t & ne0,
  2241. constant int64_t & ne1,
  2242. constant uint & r2,
  2243. constant uint & r3,
  2244. uint3 tgpig[[threadgroup_position_in_grid]],
  2245. uint tiisg[[thread_index_in_simdgroup]],
  2246. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2247. kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2248. }
  2249. #if QK_K == 256
  2250. void kernel_mul_mv_q3_K_f32_impl(
  2251. device const void * src0,
  2252. device const float * src1,
  2253. device float * dst,
  2254. constant int64_t & ne00,
  2255. constant int64_t & ne01,
  2256. constant int64_t & ne02,
  2257. constant int64_t & ne10,
  2258. constant int64_t & ne12,
  2259. constant int64_t & ne0,
  2260. constant int64_t & ne1,
  2261. constant uint & r2,
  2262. constant uint & r3,
  2263. uint3 tgpig[[threadgroup_position_in_grid]],
  2264. uint tiisg[[thread_index_in_simdgroup]],
  2265. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2266. const int nb = ne00/QK_K;
  2267. const int64_t r0 = tgpig.x;
  2268. const int64_t r1 = tgpig.y;
  2269. const int64_t im = tgpig.z;
  2270. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2271. const uint i12 = im%ne12;
  2272. const uint i13 = im/ne12;
  2273. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2274. device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
  2275. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2276. float yl[32];
  2277. //const uint16_t kmask1 = 0x3030;
  2278. //const uint16_t kmask2 = 0x0f0f;
  2279. const int tid = tiisg/4;
  2280. const int ix = tiisg%4;
  2281. const int ip = tid/4; // 0 or 1
  2282. const int il = 2*((tid%4)/2); // 0 or 2
  2283. const int ir = tid%2;
  2284. const int n = 8;
  2285. const int l0 = n*ir;
  2286. // One would think that the Metal compiler would figure out that ip and il can only have
  2287. // 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
  2288. // with these two tales.
  2289. //
  2290. // Possible masks for the high bit
  2291. const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
  2292. {0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
  2293. {0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
  2294. {0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
  2295. // Possible masks for the low 2 bits
  2296. const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
  2297. const ushort4 hm = mm[2*ip + il/2];
  2298. const int shift = 2*il;
  2299. const float v1 = il == 0 ? 4.f : 64.f;
  2300. const float v2 = 4.f * v1;
  2301. const uint16_t s_shift1 = 4*ip;
  2302. const uint16_t s_shift2 = s_shift1 + il;
  2303. const int q_offset = 32*ip + l0;
  2304. const int y_offset = 128*ip + 32*il + l0;
  2305. const int step = sizeof(block_q3_K) * nb / 2;
  2306. device const float * y1 = yy + ix*QK_K + y_offset;
  2307. uint32_t scales32, aux32;
  2308. thread uint16_t * scales16 = (thread uint16_t *)&scales32;
  2309. thread const int8_t * scales = (thread const int8_t *)&scales32;
  2310. float sumf1[2] = {0.f};
  2311. float sumf2[2] = {0.f};
  2312. for (int i = ix; i < nb; i += 4) {
  2313. for (int l = 0; l < 8; ++l) {
  2314. yl[l+ 0] = y1[l+ 0];
  2315. yl[l+ 8] = y1[l+16];
  2316. yl[l+16] = y1[l+32];
  2317. yl[l+24] = y1[l+48];
  2318. }
  2319. device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
  2320. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + l0);
  2321. device const uint16_t * a = (device const uint16_t *)(x[i].scales);
  2322. device const half * dh = &x[i].d;
  2323. for (int row = 0; row < 2; ++row) {
  2324. const float d_all = (float)dh[0];
  2325. scales16[0] = a[4];
  2326. scales16[1] = a[5];
  2327. aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
  2328. scales16[0] = a[il+0];
  2329. scales16[1] = a[il+1];
  2330. scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
  2331. float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
  2332. for (int l = 0; l < n; l += 2) {
  2333. const int32_t qs = q[l/2];
  2334. s1 += yl[l+0] * (qs & qm[il/2][0]);
  2335. s2 += yl[l+1] * (qs & qm[il/2][1]);
  2336. s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
  2337. s4 += yl[l+16] * (qs & qm[il/2][2]);
  2338. s5 += yl[l+17] * (qs & qm[il/2][3]);
  2339. s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
  2340. }
  2341. float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2342. float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2343. sumf1[row] += d1 * (scales[0] - 32);
  2344. sumf2[row] += d2 * (scales[2] - 32);
  2345. s1 = s2 = s3 = s4 = s5 = s6 = 0;
  2346. for (int l = 0; l < n; l += 2) {
  2347. const int32_t qs = q[l/2+8];
  2348. s1 += yl[l+8] * (qs & qm[il/2][0]);
  2349. s2 += yl[l+9] * (qs & qm[il/2][1]);
  2350. s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
  2351. s4 += yl[l+24] * (qs & qm[il/2][2]);
  2352. s5 += yl[l+25] * (qs & qm[il/2][3]);
  2353. s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
  2354. }
  2355. d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
  2356. d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
  2357. sumf1[row] += d1 * (scales[1] - 32);
  2358. sumf2[row] += d2 * (scales[3] - 32);
  2359. q += step;
  2360. h += step;
  2361. a += step;
  2362. dh += step;
  2363. }
  2364. y1 += 4 * QK_K;
  2365. }
  2366. for (int row = 0; row < 2; ++row) {
  2367. const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
  2368. sumf1[row] = simd_sum(sumf);
  2369. }
  2370. if (tiisg == 0) {
  2371. for (int row = 0; row < 2; ++row) {
  2372. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = sumf1[row];
  2373. }
  2374. }
  2375. }
  2376. #else
  2377. void kernel_mul_mv_q3_K_f32_impl(
  2378. device const void * src0,
  2379. device const float * src1,
  2380. device float * dst,
  2381. constant int64_t & ne00,
  2382. constant int64_t & ne01,
  2383. constant int64_t & ne02,
  2384. constant int64_t & ne10,
  2385. constant int64_t & ne12,
  2386. constant int64_t & ne0,
  2387. constant int64_t & ne1,
  2388. constant uint & r2,
  2389. constant uint & r3,
  2390. uint3 tgpig[[threadgroup_position_in_grid]],
  2391. uint tiisg[[thread_index_in_simdgroup]],
  2392. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2393. const int nb = ne00/QK_K;
  2394. const int64_t r0 = tgpig.x;
  2395. const int64_t r1 = tgpig.y;
  2396. const int64_t im = tgpig.z;
  2397. const int row = 2 * r0 + sgitg;
  2398. const uint i12 = im%ne12;
  2399. const uint i13 = im/ne12;
  2400. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2401. device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
  2402. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2403. const int ix = tiisg/4;
  2404. const int il = 4 * (tiisg%4);// 0, 4, 8, 12
  2405. const int iq = il/8; // 0, 0, 1, 1
  2406. const int in = il%8; // 0, 4, 0, 4
  2407. float2 sum = {0.f, 0.f};
  2408. for (int i = ix; i < nb; i += 8) {
  2409. const float d_all = (float)(x[i].d);
  2410. device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
  2411. device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
  2412. device const uint16_t * s = (device const uint16_t *)(x[i].scales);
  2413. device const float * y = yy + i * QK_K + il;
  2414. const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
  2415. const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
  2416. const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
  2417. const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
  2418. for (int l = 0; l < 4; l += 2) {
  2419. const uint16_t hm = h[l/2] >> iq;
  2420. sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
  2421. + y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
  2422. + y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
  2423. + y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
  2424. sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
  2425. + y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
  2426. + y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
  2427. + y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
  2428. }
  2429. }
  2430. const float sumf = sum[0] + sum[1] * 1.f/256.f;
  2431. const float tot = simd_sum(sumf);
  2432. if (tiisg == 0) {
  2433. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2434. }
  2435. }
  2436. #endif
  2437. [[host_name("kernel_mul_mv_q3_K_f32")]]
  2438. kernel void kernel_mul_mv_q3_K_f32(
  2439. device const void * src0,
  2440. device const float * src1,
  2441. device float * dst,
  2442. constant int64_t & ne00,
  2443. constant int64_t & ne01,
  2444. constant int64_t & ne02,
  2445. constant uint64_t & nb00,
  2446. constant uint64_t & nb01,
  2447. constant uint64_t & nb02,
  2448. constant int64_t & ne10,
  2449. constant int64_t & ne11,
  2450. constant int64_t & ne12,
  2451. constant uint64_t & nb10,
  2452. constant uint64_t & nb11,
  2453. constant uint64_t & nb12,
  2454. constant int64_t & ne0,
  2455. constant int64_t & ne1,
  2456. constant uint & r2,
  2457. constant uint & r3,
  2458. uint3 tgpig[[threadgroup_position_in_grid]],
  2459. uint tiisg[[thread_index_in_simdgroup]],
  2460. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2461. kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2462. }
  2463. #if QK_K == 256
  2464. void kernel_mul_mv_q4_K_f32_impl(
  2465. device const void * src0,
  2466. device const float * src1,
  2467. device float * dst,
  2468. constant int64_t & ne00,
  2469. constant int64_t & ne01,
  2470. constant int64_t & ne02,
  2471. constant int64_t & ne10,
  2472. constant int64_t & ne12,
  2473. constant int64_t & ne0,
  2474. constant int64_t & ne1,
  2475. constant uint & r2,
  2476. constant uint & r3,
  2477. uint3 tgpig[[threadgroup_position_in_grid]],
  2478. uint tiisg[[thread_index_in_simdgroup]],
  2479. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2480. const uint16_t kmask1 = 0x3f3f;
  2481. const uint16_t kmask2 = 0x0f0f;
  2482. const uint16_t kmask3 = 0xc0c0;
  2483. const int ix = tiisg/8; // 0...3
  2484. const int it = tiisg%8; // 0...7
  2485. const int iq = it/4; // 0 or 1
  2486. const int ir = it%4; // 0...3
  2487. const int nb = ne00/QK_K;
  2488. const int r0 = tgpig.x;
  2489. const int r1 = tgpig.y;
  2490. const int im = tgpig.z;
  2491. //const int first_row = (r0 * N_SIMDGROUP + sgitg) * N_DST;
  2492. const int first_row = r0 * N_DST;
  2493. const int ib_row = first_row * nb;
  2494. const uint i12 = im%ne12;
  2495. const uint i13 = im/ne12;
  2496. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2497. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2498. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2499. float yl[16];
  2500. float yh[16];
  2501. float sumf[N_DST]={0.f}, all_sum;
  2502. const int step = sizeof(block_q4_K) * nb / 2;
  2503. device const float * y4 = y + ix * QK_K + 64 * iq + 8 * ir;
  2504. uint16_t sc16[4];
  2505. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2506. for (int ib = ix; ib < nb; ib += 4) {
  2507. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2508. for (int i = 0; i < 8; ++i) {
  2509. yl[i+0] = y4[i+ 0]; sumy[0] += yl[i+0];
  2510. yl[i+8] = y4[i+ 32]; sumy[1] += yl[i+8];
  2511. yh[i+0] = y4[i+128]; sumy[2] += yh[i+0];
  2512. yh[i+8] = y4[i+160]; sumy[3] += yh[i+8];
  2513. }
  2514. device const uint16_t * sc = (device const uint16_t *)x[ib].scales + iq;
  2515. device const uint16_t * q1 = (device const uint16_t *)x[ib].qs + 16 * iq + 4 * ir;
  2516. device const half * dh = &x[ib].d;
  2517. for (int row = 0; row < N_DST; row++) {
  2518. sc16[0] = sc[0] & kmask1;
  2519. sc16[1] = sc[2] & kmask1;
  2520. sc16[2] = ((sc[4] >> 0) & kmask2) | ((sc[0] & kmask3) >> 2);
  2521. sc16[3] = ((sc[4] >> 4) & kmask2) | ((sc[2] & kmask3) >> 2);
  2522. device const uint16_t * q2 = q1 + 32;
  2523. float4 acc1 = {0.f, 0.f, 0.f, 0.f};
  2524. float4 acc2 = {0.f, 0.f, 0.f, 0.f};
  2525. for (int i = 0; i < 8; i += 2) {
  2526. acc1[0] += yl[i+0] * (q1[i/2] & 0x000F);
  2527. acc1[1] += yl[i+1] * (q1[i/2] & 0x0F00);
  2528. acc1[2] += yl[i+8] * (q1[i/2] & 0x00F0);
  2529. acc1[3] += yl[i+9] * (q1[i/2] & 0xF000);
  2530. acc2[0] += yh[i+0] * (q2[i/2] & 0x000F);
  2531. acc2[1] += yh[i+1] * (q2[i/2] & 0x0F00);
  2532. acc2[2] += yh[i+8] * (q2[i/2] & 0x00F0);
  2533. acc2[3] += yh[i+9] * (q2[i/2] & 0xF000);
  2534. }
  2535. float dall = dh[0];
  2536. float dmin = dh[1];
  2537. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc8[0] +
  2538. (acc1[2] + 1.f/256.f * acc1[3]) * sc8[1] * 1.f/16.f +
  2539. (acc2[0] + 1.f/256.f * acc2[1]) * sc8[4] +
  2540. (acc2[2] + 1.f/256.f * acc2[3]) * sc8[5] * 1.f/16.f) -
  2541. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2542. q1 += step;
  2543. sc += step;
  2544. dh += step;
  2545. }
  2546. y4 += 4 * QK_K;
  2547. }
  2548. for (int row = 0; row < N_DST; ++row) {
  2549. all_sum = simd_sum(sumf[row]);
  2550. if (tiisg == 0) {
  2551. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2552. }
  2553. }
  2554. }
  2555. #else
  2556. void kernel_mul_mv_q4_K_f32_impl(
  2557. device const void * src0,
  2558. device const float * src1,
  2559. device float * dst,
  2560. constant int64_t & ne00,
  2561. constant int64_t & ne01,
  2562. constant int64_t & ne02,
  2563. constant int64_t & ne10,
  2564. constant int64_t & ne12,
  2565. constant int64_t & ne0,
  2566. constant int64_t & ne1,
  2567. constant uint & r2,
  2568. constant uint & r3,
  2569. uint3 tgpig[[threadgroup_position_in_grid]],
  2570. uint tiisg[[thread_index_in_simdgroup]],
  2571. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2572. const int ix = tiisg/4; // 0...7
  2573. const int it = tiisg%4; // 0...3
  2574. const int nb = ne00/QK_K;
  2575. const int r0 = tgpig.x;
  2576. const int r1 = tgpig.y;
  2577. const int im = tgpig.z;
  2578. const int first_row = r0 * N_DST;
  2579. const int ib_row = first_row * nb;
  2580. const uint i12 = im%ne12;
  2581. const uint i13 = im/ne12;
  2582. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2583. device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
  2584. device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2585. float yl[8];
  2586. float yh[8];
  2587. float sumf[N_DST]={0.f}, all_sum;
  2588. const int step = sizeof(block_q4_K) * nb / 2;
  2589. device const float * y4 = y + ix * QK_K + 8 * it;
  2590. uint16_t sc16[4];
  2591. for (int ib = ix; ib < nb; ib += 8) {
  2592. float2 sumy = {0.f, 0.f};
  2593. for (int i = 0; i < 8; ++i) {
  2594. yl[i] = y4[i+ 0]; sumy[0] += yl[i];
  2595. yh[i] = y4[i+32]; sumy[1] += yh[i];
  2596. }
  2597. device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
  2598. device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
  2599. device const half * dh = x[ib].d;
  2600. for (int row = 0; row < N_DST; row++) {
  2601. sc16[0] = sc[0] & 0x000f;
  2602. sc16[1] = sc[0] & 0x0f00;
  2603. sc16[2] = sc[0] & 0x00f0;
  2604. sc16[3] = sc[0] & 0xf000;
  2605. float2 acc1 = {0.f, 0.f};
  2606. float2 acc2 = {0.f, 0.f};
  2607. for (int i = 0; i < 8; i += 2) {
  2608. acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
  2609. acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
  2610. acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
  2611. acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
  2612. }
  2613. float dall = dh[0];
  2614. float dmin = dh[1];
  2615. sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
  2616. (acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
  2617. dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
  2618. qs += step;
  2619. sc += step;
  2620. dh += step;
  2621. }
  2622. y4 += 8 * QK_K;
  2623. }
  2624. for (int row = 0; row < N_DST; ++row) {
  2625. all_sum = simd_sum(sumf[row]);
  2626. if (tiisg == 0) {
  2627. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
  2628. }
  2629. }
  2630. }
  2631. #endif
  2632. [[host_name("kernel_mul_mv_q4_K_f32")]]
  2633. kernel void kernel_mul_mv_q4_K_f32(
  2634. device const void * src0,
  2635. device const float * src1,
  2636. device float * dst,
  2637. constant int64_t & ne00,
  2638. constant int64_t & ne01,
  2639. constant int64_t & ne02,
  2640. constant uint64_t & nb00,
  2641. constant uint64_t & nb01,
  2642. constant uint64_t & nb02,
  2643. constant int64_t & ne10,
  2644. constant int64_t & ne11,
  2645. constant int64_t & ne12,
  2646. constant uint64_t & nb10,
  2647. constant uint64_t & nb11,
  2648. constant uint64_t & nb12,
  2649. constant int64_t & ne0,
  2650. constant int64_t & ne1,
  2651. constant uint & r2,
  2652. constant uint & r3,
  2653. uint3 tgpig[[threadgroup_position_in_grid]],
  2654. uint tiisg[[thread_index_in_simdgroup]],
  2655. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2656. kernel_mul_mv_q4_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2657. }
  2658. void kernel_mul_mv_q5_K_f32_impl(
  2659. device const void * src0,
  2660. device const float * src1,
  2661. device float * dst,
  2662. constant int64_t & ne00,
  2663. constant int64_t & ne01,
  2664. constant int64_t & ne02,
  2665. constant int64_t & ne10,
  2666. constant int64_t & ne12,
  2667. constant int64_t & ne0,
  2668. constant int64_t & ne1,
  2669. constant uint & r2,
  2670. constant uint & r3,
  2671. uint3 tgpig[[threadgroup_position_in_grid]],
  2672. uint tiisg[[thread_index_in_simdgroup]],
  2673. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2674. const int nb = ne00/QK_K;
  2675. const int64_t r0 = tgpig.x;
  2676. const int64_t r1 = tgpig.y;
  2677. const int im = tgpig.z;
  2678. const int first_row = (r0 * N_SIMDGROUP + sgitg) * 2;
  2679. const uint i12 = im%ne12;
  2680. const uint i13 = im/ne12;
  2681. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2682. device const block_q5_K * x = (device const block_q5_K *) src0 + first_row*nb + offset0;
  2683. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2684. float sumf[2]={0.f};
  2685. const int step = sizeof(block_q5_K) * nb;
  2686. #if QK_K == 256
  2687. #
  2688. float yl[16], yh[16];
  2689. const uint16_t kmask1 = 0x3f3f;
  2690. const uint16_t kmask2 = 0x0f0f;
  2691. const uint16_t kmask3 = 0xc0c0;
  2692. const int tid = tiisg/4;
  2693. const int ix = tiisg%4;
  2694. const int iq = tid/4;
  2695. const int ir = tid%4;
  2696. const int n = 8;
  2697. const int l0 = n*ir;
  2698. const int q_offset = 32*iq + l0;
  2699. const int y_offset = 64*iq + l0;
  2700. const uint8_t hm1 = 1u << (2*iq);
  2701. const uint8_t hm2 = hm1 << 1;
  2702. const uint8_t hm3 = hm1 << 4;
  2703. const uint8_t hm4 = hm2 << 4;
  2704. uint16_t sc16[4];
  2705. thread const uint8_t * sc8 = (thread const uint8_t *)sc16;
  2706. device const float * y1 = yy + ix*QK_K + y_offset;
  2707. for (int i = ix; i < nb; i += 4) {
  2708. device const uint8_t * q1 = x[i].qs + q_offset;
  2709. device const uint8_t * qh = x[i].qh + l0;
  2710. device const half * dh = &x[i].d;
  2711. device const uint16_t * a = (device const uint16_t *)x[i].scales + iq;
  2712. device const float * y2 = y1 + 128;
  2713. float4 sumy = {0.f, 0.f, 0.f, 0.f};
  2714. for (int l = 0; l < 8; ++l) {
  2715. yl[l+0] = y1[l+ 0]; sumy[0] += yl[l+0];
  2716. yl[l+8] = y1[l+32]; sumy[1] += yl[l+8];
  2717. yh[l+0] = y2[l+ 0]; sumy[2] += yh[l+0];
  2718. yh[l+8] = y2[l+32]; sumy[3] += yh[l+8];
  2719. }
  2720. for (int row = 0; row < 2; ++row) {
  2721. device const uint8_t * q2 = q1 + 64;
  2722. sc16[0] = a[0] & kmask1;
  2723. sc16[1] = a[2] & kmask1;
  2724. sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
  2725. sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
  2726. float4 acc1 = {0.f};
  2727. float4 acc2 = {0.f};
  2728. for (int l = 0; l < n; ++l) {
  2729. uint8_t h = qh[l];
  2730. acc1[0] += yl[l+0] * (q1[l] & 0x0F);
  2731. acc1[1] += yl[l+8] * (q1[l] & 0xF0);
  2732. acc1[2] += yh[l+0] * (q2[l] & 0x0F);
  2733. acc1[3] += yh[l+8] * (q2[l] & 0xF0);
  2734. acc2[0] += h & hm1 ? yl[l+0] : 0.f;
  2735. acc2[1] += h & hm2 ? yl[l+8] : 0.f;
  2736. acc2[2] += h & hm3 ? yh[l+0] : 0.f;
  2737. acc2[3] += h & hm4 ? yh[l+8] : 0.f;
  2738. }
  2739. const float dall = dh[0];
  2740. const float dmin = dh[1];
  2741. sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
  2742. sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
  2743. sc8[4] * (acc1[2] + 16.f*acc2[2]) +
  2744. sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
  2745. dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
  2746. q1 += step;
  2747. qh += step;
  2748. dh += step/2;
  2749. a += step/2;
  2750. }
  2751. y1 += 4 * QK_K;
  2752. }
  2753. #else
  2754. float yl[8], yh[8];
  2755. const int il = 4 * (tiisg/8); // 0, 4, 8, 12
  2756. const int ix = tiisg%8;
  2757. const int iq = il/8; // 0, 0, 1, 1
  2758. const int in = il%8; // 0, 4, 0, 4
  2759. device const float * y = yy + ix*QK_K + il;
  2760. for (int i = ix; i < nb; i += 8) {
  2761. for (int l = 0; l < 4; ++l) {
  2762. yl[l+0] = y[l+ 0];
  2763. yl[l+4] = y[l+16];
  2764. yh[l+0] = y[l+32];
  2765. yh[l+4] = y[l+48];
  2766. }
  2767. device const half * dh = &x[i].d;
  2768. device const uint8_t * q = x[i].qs + il;
  2769. device const uint8_t * h = x[i].qh + in;
  2770. device const int8_t * s = x[i].scales;
  2771. for (int row = 0; row < 2; ++row) {
  2772. const float d = dh[0];
  2773. float2 acc = {0.f, 0.f};
  2774. for (int l = 0; l < 4; ++l) {
  2775. const uint8_t hl = h[l] >> iq;
  2776. acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
  2777. + yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
  2778. acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
  2779. + yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
  2780. }
  2781. sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
  2782. q += step;
  2783. h += step;
  2784. s += step;
  2785. dh += step/2;
  2786. }
  2787. y += 8 * QK_K;
  2788. }
  2789. #endif
  2790. for (int row = 0; row < 2; ++row) {
  2791. const float tot = simd_sum(sumf[row]);
  2792. if (tiisg == 0) {
  2793. dst[r1*ne0 + im*ne0*ne1 + first_row + row] = tot;
  2794. }
  2795. }
  2796. }
  2797. [[host_name("kernel_mul_mv_q5_K_f32")]]
  2798. kernel void kernel_mul_mv_q5_K_f32(
  2799. device const void * src0,
  2800. device const float * src1,
  2801. device float * dst,
  2802. constant int64_t & ne00,
  2803. constant int64_t & ne01,
  2804. constant int64_t & ne02,
  2805. constant uint64_t & nb00,
  2806. constant uint64_t & nb01,
  2807. constant uint64_t & nb02,
  2808. constant int64_t & ne10,
  2809. constant int64_t & ne11,
  2810. constant int64_t & ne12,
  2811. constant uint64_t & nb10,
  2812. constant uint64_t & nb11,
  2813. constant uint64_t & nb12,
  2814. constant int64_t & ne0,
  2815. constant int64_t & ne1,
  2816. constant uint & r2,
  2817. constant uint & r3,
  2818. uint3 tgpig[[threadgroup_position_in_grid]],
  2819. uint tiisg[[thread_index_in_simdgroup]],
  2820. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2821. kernel_mul_mv_q5_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2822. }
  2823. void kernel_mul_mv_q6_K_f32_impl(
  2824. device const void * src0,
  2825. device const float * src1,
  2826. device float * dst,
  2827. constant int64_t & ne00,
  2828. constant int64_t & ne01,
  2829. constant int64_t & ne02,
  2830. constant int64_t & ne10,
  2831. constant int64_t & ne12,
  2832. constant int64_t & ne0,
  2833. constant int64_t & ne1,
  2834. constant uint & r2,
  2835. constant uint & r3,
  2836. uint3 tgpig[[threadgroup_position_in_grid]],
  2837. uint tiisg[[thread_index_in_simdgroup]],
  2838. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2839. const uint8_t kmask1 = 0x03;
  2840. const uint8_t kmask2 = 0x0C;
  2841. const uint8_t kmask3 = 0x30;
  2842. const uint8_t kmask4 = 0xC0;
  2843. const int nb = ne00/QK_K;
  2844. const int64_t r0 = tgpig.x;
  2845. const int64_t r1 = tgpig.y;
  2846. const int im = tgpig.z;
  2847. const int row = 2 * r0 + sgitg;
  2848. const uint i12 = im%ne12;
  2849. const uint i13 = im/ne12;
  2850. const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
  2851. device const block_q6_K * x = (device const block_q6_K *) src0 + row * nb + offset0;
  2852. device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
  2853. float sumf = 0;
  2854. #if QK_K == 256
  2855. const int tid = tiisg/2;
  2856. const int ix = tiisg%2;
  2857. const int ip = tid/8; // 0 or 1
  2858. const int il = tid%8;
  2859. const int n = 4;
  2860. const int l0 = n*il;
  2861. const int is = 8*ip + l0/16;
  2862. const int y_offset = 128*ip + l0;
  2863. const int q_offset_l = 64*ip + l0;
  2864. const int q_offset_h = 32*ip + l0;
  2865. for (int i = ix; i < nb; i += 2) {
  2866. device const uint8_t * q1 = x[i].ql + q_offset_l;
  2867. device const uint8_t * q2 = q1 + 32;
  2868. device const uint8_t * qh = x[i].qh + q_offset_h;
  2869. device const int8_t * sc = x[i].scales + is;
  2870. device const float * y = yy + i * QK_K + y_offset;
  2871. const float dall = x[i].d;
  2872. float4 sums = {0.f, 0.f, 0.f, 0.f};
  2873. for (int l = 0; l < n; ++l) {
  2874. sums[0] += y[l+ 0] * ((int8_t)((q1[l] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  2875. sums[1] += y[l+32] * ((int8_t)((q2[l] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  2876. sums[2] += y[l+64] * ((int8_t)((q1[l] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
  2877. sums[3] += y[l+96] * ((int8_t)((q2[l] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  2878. }
  2879. sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
  2880. }
  2881. #else
  2882. const int ix = tiisg/4;
  2883. const int il = 4*(tiisg%4);
  2884. for (int i = ix; i < nb; i += 8) {
  2885. device const float * y = yy + i * QK_K + il;
  2886. device const uint8_t * ql = x[i].ql + il;
  2887. device const uint8_t * qh = x[i].qh + il;
  2888. device const int8_t * s = x[i].scales;
  2889. const float d = x[i].d;
  2890. float4 sums = {0.f, 0.f, 0.f, 0.f};
  2891. for (int l = 0; l < 4; ++l) {
  2892. sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
  2893. sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
  2894. sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
  2895. sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
  2896. }
  2897. sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
  2898. }
  2899. #endif
  2900. const float tot = simd_sum(sumf);
  2901. if (tiisg == 0) {
  2902. dst[r1*ne0 + im*ne0*ne1 + row] = tot;
  2903. }
  2904. }
  2905. [[host_name("kernel_mul_mv_q6_K_f32")]]
  2906. kernel void kernel_mul_mv_q6_K_f32(
  2907. device const void * src0,
  2908. device const float * src1,
  2909. device float * dst,
  2910. constant int64_t & ne00,
  2911. constant int64_t & ne01,
  2912. constant int64_t & ne02,
  2913. constant uint64_t & nb00,
  2914. constant uint64_t & nb01,
  2915. constant uint64_t & nb02,
  2916. constant int64_t & ne10,
  2917. constant int64_t & ne11,
  2918. constant int64_t & ne12,
  2919. constant uint64_t & nb10,
  2920. constant uint64_t & nb11,
  2921. constant uint64_t & nb12,
  2922. constant int64_t & ne0,
  2923. constant int64_t & ne1,
  2924. constant uint & r2,
  2925. constant uint & r3,
  2926. uint3 tgpig[[threadgroup_position_in_grid]],
  2927. uint tiisg[[thread_index_in_simdgroup]],
  2928. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  2929. kernel_mul_mv_q6_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, tgpig, tiisg, sgitg);
  2930. }
  2931. //============================= templates and their specializations =============================
  2932. // NOTE: this is not dequantizing - we are simply fitting the template
  2933. template <typename type4x4>
  2934. void dequantize_f32(device const float4x4 * src, short il, thread type4x4 & reg) {
  2935. float4x4 temp = *(((device float4x4 *)src));
  2936. for (int i = 0; i < 16; i++){
  2937. reg[i/4][i%4] = temp[i/4][i%4];
  2938. }
  2939. }
  2940. template <typename type4x4>
  2941. void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg) {
  2942. half4x4 temp = *(((device half4x4 *)src));
  2943. for (int i = 0; i < 16; i++){
  2944. reg[i/4][i%4] = temp[i/4][i%4];
  2945. }
  2946. }
  2947. template <typename type4x4>
  2948. void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
  2949. device const uint16_t * qs = ((device const uint16_t *)xb + 1);
  2950. const float d1 = il ? (xb->d / 16.h) : xb->d;
  2951. const float d2 = d1 / 256.f;
  2952. const float md = -8.h * xb->d;
  2953. const ushort mask0 = il ? 0x00F0 : 0x000F;
  2954. const ushort mask1 = mask0 << 8;
  2955. for (int i=0;i<8;i++) {
  2956. reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
  2957. reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
  2958. }
  2959. }
  2960. template <typename type4x4>
  2961. void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
  2962. device const uint16_t * qs = ((device const uint16_t *)xb + 2);
  2963. const float d1 = il ? (xb->d / 16.h) : xb->d;
  2964. const float d2 = d1 / 256.f;
  2965. const float m = xb->m;
  2966. const ushort mask0 = il ? 0x00F0 : 0x000F;
  2967. const ushort mask1 = mask0 << 8;
  2968. for (int i=0;i<8;i++) {
  2969. reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
  2970. reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
  2971. }
  2972. }
  2973. template <typename type4x4>
  2974. void dequantize_q5_0(device const block_q5_0 *xb, short il, thread type4x4 & reg) {
  2975. device const uint16_t * qs = ((device const uint16_t *)xb + 3);
  2976. const float d = xb->d;
  2977. const float md = -16.h * xb->d;
  2978. const ushort mask = il ? 0x00F0 : 0x000F;
  2979. const uint32_t qh = *((device const uint32_t *)xb->qh);
  2980. const int x_mv = il ? 4 : 0;
  2981. const int gh_mv = il ? 12 : 0;
  2982. const int gh_bk = il ? 0 : 4;
  2983. for (int i = 0; i < 8; i++) {
  2984. // extract the 5-th bits for x0 and x1
  2985. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  2986. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  2987. // combine the 4-bits from qs with the 5th bit
  2988. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  2989. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  2990. reg[i/2][2*(i%2)+0] = d * x0 + md;
  2991. reg[i/2][2*(i%2)+1] = d * x1 + md;
  2992. }
  2993. }
  2994. template <typename type4x4>
  2995. void dequantize_q5_1(device const block_q5_1 *xb, short il, thread type4x4 & reg) {
  2996. device const uint16_t * qs = ((device const uint16_t *)xb + 4);
  2997. const float d = xb->d;
  2998. const float m = xb->m;
  2999. const ushort mask = il ? 0x00F0 : 0x000F;
  3000. const uint32_t qh = *((device const uint32_t *)xb->qh);
  3001. const int x_mv = il ? 4 : 0;
  3002. const int gh_mv = il ? 12 : 0;
  3003. const int gh_bk = il ? 0 : 4;
  3004. for (int i = 0; i < 8; i++) {
  3005. // extract the 5-th bits for x0 and x1
  3006. const uint8_t xh_0 = ((qh >> (gh_mv + 2*i )) << gh_bk) & 0x10;
  3007. const uint8_t xh_1 = ((qh >> (gh_mv + 2*i+1)) << gh_bk) & 0x10;
  3008. // combine the 4-bits from qs with the 5th bit
  3009. const int32_t x0 = ((((qs[i] ) & mask) >> x_mv) | xh_0);
  3010. const int32_t x1 = ((((qs[i] >> 8) & mask) >> x_mv) | xh_1);
  3011. reg[i/2][2*(i%2)+0] = d * x0 + m;
  3012. reg[i/2][2*(i%2)+1] = d * x1 + m;
  3013. }
  3014. }
  3015. template <typename type4x4>
  3016. void dequantize_q8_0(device const block_q8_0 *xb, short il, thread type4x4 & reg) {
  3017. device const int8_t * qs = ((device const int8_t *)xb->qs);
  3018. const half d = xb->d;
  3019. for (int i = 0; i < 16; i++) {
  3020. reg[i/4][i%4] = (qs[i + 16*il] * d);
  3021. }
  3022. }
  3023. template <typename type4x4>
  3024. void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg) {
  3025. const float d = xb->d;
  3026. const float min = xb->dmin;
  3027. device const uint8_t * q = (device const uint8_t *)xb->qs;
  3028. float dl, ml;
  3029. uint8_t sc = xb->scales[il];
  3030. #if QK_K == 256
  3031. q = q + 32*(il/8) + 16*(il&1);
  3032. il = (il/2)%4;
  3033. #endif
  3034. half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3035. uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3036. dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
  3037. for (int i = 0; i < 16; ++i) {
  3038. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  3039. }
  3040. }
  3041. template <typename type4x4>
  3042. void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
  3043. const half d_all = xb->d;
  3044. device const uint8_t * q = (device const uint8_t *)xb->qs;
  3045. device const uint8_t * h = (device const uint8_t *)xb->hmask;
  3046. device const int8_t * scales = (device const int8_t *)xb->scales;
  3047. #if QK_K == 256
  3048. q = q + 32 * (il/8) + 16 * (il&1);
  3049. h = h + 16 * (il&1);
  3050. uint8_t m = 1 << (il/2);
  3051. uint16_t kmask1 = (il/4)>1 ? ((il/4)>2 ? 192 : 48) : \
  3052. ((il/4)>0 ? 12 : 3);
  3053. uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
  3054. uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
  3055. int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
  3056. : (scale_2&kmask2) | ((scale_1&kmask1) << 4);
  3057. half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
  3058. const half ml = 4.h * dl;
  3059. il = (il/2) & 3;
  3060. const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3061. const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3062. dl *= coef;
  3063. for (int i = 0; i < 16; ++i) {
  3064. reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
  3065. }
  3066. #else
  3067. float kcoef = il&1 ? 1.f/16.f : 1.f;
  3068. uint16_t kmask = il&1 ? 0xF0 : 0x0F;
  3069. float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
  3070. float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
  3071. uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3072. uint8_t m = 1<<(il*2);
  3073. for (int i = 0; i < 16; ++i) {
  3074. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
  3075. }
  3076. #endif
  3077. }
  3078. static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
  3079. return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
  3080. : uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
  3081. }
  3082. template <typename type4x4>
  3083. void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
  3084. device const uchar * q = xb->qs;
  3085. #if QK_K == 256
  3086. short is = (il/4) * 2;
  3087. q = q + (il/4) * 32 + 16 * (il&1);
  3088. il = il & 3;
  3089. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  3090. const float d = il < 2 ? xb->d : xb->d / 16.h;
  3091. const float min = xb->dmin;
  3092. const float dl = d * sc[0];
  3093. const float ml = min * sc[1];
  3094. #else
  3095. q = q + 16 * (il&1);
  3096. device const uint8_t * s = xb->scales;
  3097. device const half2 * dh = (device const half2 *)xb->d;
  3098. const float2 d = (float2)dh[0];
  3099. const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
  3100. const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
  3101. #endif
  3102. const ushort mask = il<2 ? 0x0F : 0xF0;
  3103. for (int i = 0; i < 16; ++i) {
  3104. reg[i/4][i%4] = dl * (q[i] & mask) - ml;
  3105. }
  3106. }
  3107. template <typename type4x4>
  3108. void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg) {
  3109. device const uint8_t * q = xb->qs;
  3110. device const uint8_t * qh = xb->qh;
  3111. #if QK_K == 256
  3112. short is = (il/4) * 2;
  3113. q = q + 32 * (il/4) + 16 * (il&1);
  3114. qh = qh + 16 * (il&1);
  3115. uint8_t ul = 1 << (il/2);
  3116. il = il & 3;
  3117. const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
  3118. const float d = il < 2 ? xb->d : xb->d / 16.h;
  3119. const float min = xb->dmin;
  3120. const float dl = d * sc[0];
  3121. const float ml = min * sc[1];
  3122. const ushort mask = il<2 ? 0x0F : 0xF0;
  3123. const float qh_val = il<2 ? 16.f : 256.f;
  3124. for (int i = 0; i < 16; ++i) {
  3125. reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
  3126. }
  3127. #else
  3128. q = q + 16 * (il&1);
  3129. device const int8_t * s = xb->scales;
  3130. const float dl = xb->d * s[il];
  3131. uint8_t m = 1<<(il*2);
  3132. const float coef = il<2 ? 1.f : 1.f/16.f;
  3133. const ushort mask = il<2 ? 0x0F : 0xF0;
  3134. for (int i = 0; i < 16; ++i) {
  3135. reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
  3136. }
  3137. #endif
  3138. }
  3139. template <typename type4x4>
  3140. void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
  3141. const half d_all = xb->d;
  3142. device const uint8_t * ql = (device const uint8_t *)xb->ql;
  3143. device const uint8_t * qh = (device const uint8_t *)xb->qh;
  3144. device const int8_t * scales = (device const int8_t *)xb->scales;
  3145. #if QK_K == 256
  3146. ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
  3147. qh = qh + 32*(il/8) + 16*(il&1);
  3148. half sc = scales[(il%2) + 2 * ((il/2))];
  3149. il = (il/2) & 3;
  3150. #else
  3151. ql = ql + 16 * (il&1);
  3152. half sc = scales[il];
  3153. #endif
  3154. const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
  3155. const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
  3156. const half coef = il>1 ? 1.f/16.h : 1.h;
  3157. const half ml = d_all * sc * 32.h;
  3158. const half dl = d_all * sc * coef;
  3159. for (int i = 0; i < 16; ++i) {
  3160. const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
  3161. : ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
  3162. reg[i/4][i%4] = dl * q - ml;
  3163. }
  3164. }
  3165. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
  3166. kernel void kernel_get_rows(
  3167. device const void * src0,
  3168. device const char * src1,
  3169. device float * dst,
  3170. constant int64_t & ne00,
  3171. constant uint64_t & nb01,
  3172. constant uint64_t & nb02,
  3173. constant int64_t & ne10,
  3174. constant uint64_t & nb10,
  3175. constant uint64_t & nb11,
  3176. constant uint64_t & nb1,
  3177. constant uint64_t & nb2,
  3178. uint3 tgpig[[threadgroup_position_in_grid]],
  3179. uint tiitg[[thread_index_in_threadgroup]],
  3180. uint3 tptg [[threads_per_threadgroup]]) {
  3181. //const int64_t i = tgpig;
  3182. //const int64_t r = ((device int32_t *) src1)[i];
  3183. const int64_t i10 = tgpig.x;
  3184. const int64_t i11 = tgpig.y;
  3185. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3186. const int64_t i02 = i11;
  3187. for (int64_t ind = tiitg; ind < ne00/16; ind += tptg.x) {
  3188. float4x4 temp;
  3189. dequantize_func(
  3190. ((device const block_q *) ((device char *) src0 + r*nb01 + i02*nb02)) + ind/nl, ind%nl, temp);
  3191. *(((device float4x4 *) ((device char *) dst + i11*nb2 + i10*nb1)) + ind) = temp;
  3192. }
  3193. }
  3194. kernel void kernel_get_rows_f32(
  3195. device const void * src0,
  3196. device const char * src1,
  3197. device float * dst,
  3198. constant int64_t & ne00,
  3199. constant uint64_t & nb01,
  3200. constant uint64_t & nb02,
  3201. constant int64_t & ne10,
  3202. constant uint64_t & nb10,
  3203. constant uint64_t & nb11,
  3204. constant uint64_t & nb1,
  3205. constant uint64_t & nb2,
  3206. uint3 tgpig[[threadgroup_position_in_grid]],
  3207. uint tiitg[[thread_index_in_threadgroup]],
  3208. uint3 tptg [[threads_per_threadgroup]]) {
  3209. const int64_t i10 = tgpig.x;
  3210. const int64_t i11 = tgpig.y;
  3211. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3212. const int64_t i02 = i11;
  3213. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3214. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3215. ((device float *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3216. }
  3217. }
  3218. kernel void kernel_get_rows_f16(
  3219. device const void * src0,
  3220. device const char * src1,
  3221. device float * dst,
  3222. constant int64_t & ne00,
  3223. constant uint64_t & nb01,
  3224. constant uint64_t & nb02,
  3225. constant int64_t & ne10,
  3226. constant uint64_t & nb10,
  3227. constant uint64_t & nb11,
  3228. constant uint64_t & nb1,
  3229. constant uint64_t & nb2,
  3230. uint3 tgpig[[threadgroup_position_in_grid]],
  3231. uint tiitg[[thread_index_in_threadgroup]],
  3232. uint3 tptg [[threads_per_threadgroup]]) {
  3233. const int64_t i10 = tgpig.x;
  3234. const int64_t i11 = tgpig.y;
  3235. const int64_t r = ((device int32_t *) ((device char *) src1 + i11*nb11 + i10*nb10))[0];
  3236. const int64_t i02 = i11;
  3237. for (int ind = tiitg; ind < ne00; ind += tptg.x) {
  3238. ((device float *) ((device char *) dst + i11*nb2 + i10*nb1))[ind] =
  3239. ((device half *) ((device char *) src0 + r*nb01 + i02*nb02))[ind];
  3240. }
  3241. }
  3242. #define BLOCK_SIZE_M 64 // 8 simdgroup matrices from matrix A
  3243. #define BLOCK_SIZE_N 32 // 4 simdgroup matrices from matrix B
  3244. #define BLOCK_SIZE_K 32
  3245. #define THREAD_MAT_M 4 // each thread take 4 simdgroup matrices from matrix A
  3246. #define THREAD_MAT_N 2 // each thread take 2 simdgroup matrices from matrix B
  3247. #define THREAD_PER_BLOCK 128
  3248. #define THREAD_PER_ROW 2 // 2 thread for each row in matrix A to load numbers
  3249. #define THREAD_PER_COL 4 // 4 thread for each row in matrix B to load numbers
  3250. #define SG_MAT_SIZE 64 // simdgroup matrix is of shape 8x8
  3251. #define SG_MAT_ROW 8
  3252. // each block_q contains 16*nl weights
  3253. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3254. void kernel_mul_mm_impl(device const uchar * src0,
  3255. device const uchar * src1,
  3256. device float * dst,
  3257. constant int64_t & ne00,
  3258. constant int64_t & ne02,
  3259. constant uint64_t & nb01,
  3260. constant uint64_t & nb02,
  3261. constant int64_t & ne12,
  3262. constant uint64_t & nb10,
  3263. constant uint64_t & nb11,
  3264. constant uint64_t & nb12,
  3265. constant int64_t & ne0,
  3266. constant int64_t & ne1,
  3267. constant uint & r2,
  3268. constant uint & r3,
  3269. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3270. uint3 tgpig[[threadgroup_position_in_grid]],
  3271. uint tiitg[[thread_index_in_threadgroup]],
  3272. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3273. threadgroup half * sa = (threadgroup half *)(shared_memory);
  3274. threadgroup float * sb = (threadgroup float *)(shared_memory + 4096);
  3275. const uint r0 = tgpig.y;
  3276. const uint r1 = tgpig.x;
  3277. const uint im = tgpig.z;
  3278. // if this block is of 64x32 shape or smaller
  3279. short n_rows = (ne0 - r0 * BLOCK_SIZE_M < BLOCK_SIZE_M) ? (ne0 - r0 * BLOCK_SIZE_M) : BLOCK_SIZE_M;
  3280. short n_cols = (ne1 - r1 * BLOCK_SIZE_N < BLOCK_SIZE_N) ? (ne1 - r1 * BLOCK_SIZE_N) : BLOCK_SIZE_N;
  3281. // a thread shouldn't load data outside of the matrix
  3282. short thread_row = ((short)tiitg/THREAD_PER_ROW) < n_rows ? ((short)tiitg/THREAD_PER_ROW) : n_rows - 1;
  3283. short thread_col = ((short)tiitg/THREAD_PER_COL) < n_cols ? ((short)tiitg/THREAD_PER_COL) : n_cols - 1;
  3284. simdgroup_half8x8 ma[4];
  3285. simdgroup_float8x8 mb[2];
  3286. simdgroup_float8x8 c_res[8];
  3287. for (int i = 0; i < 8; i++){
  3288. c_res[i] = make_filled_simdgroup_matrix<float, 8>(0.f);
  3289. }
  3290. short il = (tiitg % THREAD_PER_ROW);
  3291. const uint i12 = im%ne12;
  3292. const uint i13 = im/ne12;
  3293. uint offset0 = (i12/r2)*nb02 + (i13/r3)*(nb02*ne02);
  3294. ushort offset1 = il/nl;
  3295. device const block_q * x = (device const block_q *)(src0 + (r0 * BLOCK_SIZE_M + thread_row) * nb01 + offset0) + offset1;
  3296. device const float * y = (device const float *)(src1
  3297. + nb12 * im
  3298. + nb11 * (r1 * BLOCK_SIZE_N + thread_col)
  3299. + nb10 * (BLOCK_SIZE_K / THREAD_PER_COL * (tiitg % THREAD_PER_COL)));
  3300. for (int loop_k = 0; loop_k < ne00; loop_k += BLOCK_SIZE_K) {
  3301. // load data and store to threadgroup memory
  3302. half4x4 temp_a;
  3303. dequantize_func(x, il, temp_a);
  3304. threadgroup_barrier(mem_flags::mem_threadgroup);
  3305. #pragma unroll(16)
  3306. for (int i = 0; i < 16; i++) {
  3307. *(sa + SG_MAT_SIZE * ((tiitg / THREAD_PER_ROW / 8) \
  3308. + (tiitg % THREAD_PER_ROW) * 16 + (i / 8) * 8) \
  3309. + (tiitg / THREAD_PER_ROW) % 8 + (i & 7) * 8) = temp_a[i/4][i%4];
  3310. }
  3311. *(threadgroup float2x4 *)(sb + (tiitg % THREAD_PER_COL) * 8 * 32 + 8 * (tiitg / THREAD_PER_COL)) = *((device float2x4 *)y);
  3312. il = (il + 2 < nl) ? il + 2 : il % 2;
  3313. x = (il < 2) ? x + (2+nl-1)/nl : x;
  3314. y += BLOCK_SIZE_K;
  3315. threadgroup_barrier(mem_flags::mem_threadgroup);
  3316. // load matrices from threadgroup memory and conduct outer products
  3317. threadgroup half * lsma = (sa + THREAD_MAT_M * SG_MAT_SIZE * (sgitg % 2));
  3318. threadgroup float * lsmb = (sb + THREAD_MAT_N * SG_MAT_SIZE * (sgitg / 2));
  3319. #pragma unroll(4)
  3320. for (int ik = 0; ik < BLOCK_SIZE_K / 8; ik++) {
  3321. #pragma unroll(4)
  3322. for (int i = 0; i < 4; i++) {
  3323. simdgroup_load(ma[i],lsma + SG_MAT_SIZE * i);
  3324. }
  3325. simdgroup_barrier(mem_flags::mem_none);
  3326. #pragma unroll(2)
  3327. for (int i = 0; i < 2; i++) {
  3328. simdgroup_load(mb[i],lsmb + SG_MAT_SIZE * i);
  3329. }
  3330. lsma += BLOCK_SIZE_M / SG_MAT_ROW * SG_MAT_SIZE;
  3331. lsmb += BLOCK_SIZE_N / SG_MAT_ROW * SG_MAT_SIZE;
  3332. #pragma unroll(8)
  3333. for (int i = 0; i < 8; i++){
  3334. simdgroup_multiply_accumulate(c_res[i], mb[i/4], ma[i%4], c_res[i]);
  3335. }
  3336. }
  3337. }
  3338. if ((r0 + 1) * BLOCK_SIZE_M <= ne0 && (r1 + 1) * BLOCK_SIZE_N <= ne1) {
  3339. device float * C = dst + (BLOCK_SIZE_M * r0 + 32 * (sgitg & 1)) \
  3340. + (BLOCK_SIZE_N * r1 + 16 * (sgitg >> 1)) * ne0 + im*ne1*ne0;
  3341. for (int i = 0; i < 8; i++) {
  3342. simdgroup_store(c_res[i], C + 8 * (i%4) + 8 * ne0 * (i/4), ne0);
  3343. }
  3344. } else {
  3345. // block is smaller than 64x32, we should avoid writing data outside of the matrix
  3346. threadgroup_barrier(mem_flags::mem_threadgroup);
  3347. threadgroup float * temp_str = ((threadgroup float *)shared_memory) \
  3348. + 32 * (sgitg&1) + (16 * (sgitg>>1)) * BLOCK_SIZE_M;
  3349. for (int i = 0; i < 8; i++) {
  3350. simdgroup_store(c_res[i], temp_str + 8 * (i%4) + 8 * BLOCK_SIZE_M * (i/4), BLOCK_SIZE_M);
  3351. }
  3352. threadgroup_barrier(mem_flags::mem_threadgroup);
  3353. device float * C = dst + (BLOCK_SIZE_M * r0) + (BLOCK_SIZE_N * r1) * ne0 + im*ne1*ne0;
  3354. if (sgitg == 0) {
  3355. for (int i = 0; i < n_rows; i++) {
  3356. for (int j = tiitg; j < n_cols; j += BLOCK_SIZE_N) {
  3357. *(C + i + j * ne0) = *(temp_str + i + j * BLOCK_SIZE_M);
  3358. }
  3359. }
  3360. }
  3361. }
  3362. }
  3363. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3364. kernel void kernel_mul_mm(device const uchar * src0,
  3365. device const uchar * src1,
  3366. device float * dst,
  3367. constant int64_t & ne00,
  3368. constant int64_t & ne02,
  3369. constant uint64_t & nb01,
  3370. constant uint64_t & nb02,
  3371. constant int64_t & ne12,
  3372. constant uint64_t & nb10,
  3373. constant uint64_t & nb11,
  3374. constant uint64_t & nb12,
  3375. constant int64_t & ne0,
  3376. constant int64_t & ne1,
  3377. constant uint & r2,
  3378. constant uint & r3,
  3379. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3380. uint3 tgpig[[threadgroup_position_in_grid]],
  3381. uint tiitg[[thread_index_in_threadgroup]],
  3382. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3383. kernel_mul_mm_impl<block_q, nl, dequantize_func>(
  3384. src0,
  3385. src1,
  3386. dst,
  3387. ne00,
  3388. ne02,
  3389. nb01,
  3390. nb02,
  3391. ne12,
  3392. nb10,
  3393. nb11,
  3394. nb12,
  3395. ne0,
  3396. ne1,
  3397. r2,
  3398. r3,
  3399. shared_memory,
  3400. tgpig,
  3401. tiitg,
  3402. sgitg);
  3403. }
  3404. template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread half4x4 &)>
  3405. kernel void kernel_mul_mm_id(
  3406. device const uchar * ids,
  3407. device const uchar * src1,
  3408. device uchar * dst,
  3409. constant uint64_t & nbi1,
  3410. constant int64_t & ne00,
  3411. constant int64_t & ne02,
  3412. constant uint64_t & nb01,
  3413. constant uint64_t & nb02,
  3414. constant int64_t & ne12,
  3415. constant int64_t & ne13,
  3416. constant uint64_t & nb10,
  3417. constant uint64_t & nb11,
  3418. constant uint64_t & nb12,
  3419. constant int64_t & ne0,
  3420. constant int64_t & ne1,
  3421. constant uint64_t & nb1,
  3422. constant uint & r2,
  3423. constant uint & r3,
  3424. constant int & idx,
  3425. device const uchar * src00,
  3426. device const uchar * src01,
  3427. device const uchar * src02,
  3428. device const uchar * src03,
  3429. device const uchar * src04,
  3430. device const uchar * src05,
  3431. device const uchar * src06,
  3432. device const uchar * src07,
  3433. threadgroup uchar * shared_memory [[threadgroup(0)]],
  3434. uint3 tgpig[[threadgroup_position_in_grid]],
  3435. uint tiitg[[thread_index_in_threadgroup]],
  3436. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3437. device const uchar * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3438. const int64_t bid = tgpig.z/(ne12*ne13);
  3439. tgpig.z = tgpig.z%(ne12*ne13);
  3440. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3441. kernel_mul_mm_impl<block_q, nl, dequantize_func>(
  3442. src0[id],
  3443. src1 + bid*nb11,
  3444. (device float *) (dst + bid*nb1),
  3445. ne00,
  3446. ne02,
  3447. nb01,
  3448. nb02,
  3449. ne12,
  3450. nb10,
  3451. nb11,
  3452. nb12,
  3453. ne0,
  3454. ne1,
  3455. r2,
  3456. r3,
  3457. shared_memory,
  3458. tgpig,
  3459. tiitg,
  3460. sgitg);
  3461. }
  3462. #if QK_K == 256
  3463. #define QK_NL 16
  3464. #else
  3465. #define QK_NL 4
  3466. #endif
  3467. //
  3468. // get rows
  3469. //
  3470. typedef void (get_rows_t)(
  3471. device const void * src0,
  3472. device const char * src1,
  3473. device float * dst,
  3474. constant int64_t & ne00,
  3475. constant uint64_t & nb01,
  3476. constant uint64_t & nb02,
  3477. constant int64_t & ne10,
  3478. constant uint64_t & nb10,
  3479. constant uint64_t & nb11,
  3480. constant uint64_t & nb1,
  3481. constant uint64_t & nb2,
  3482. uint3, uint, uint3);
  3483. //template [[host_name("kernel_get_rows_f32")]] kernel get_rows_t kernel_get_rows<float4x4, 1, dequantize_f32>;
  3484. //template [[host_name("kernel_get_rows_f16")]] kernel get_rows_t kernel_get_rows<half4x4, 1, dequantize_f16>;
  3485. template [[host_name("kernel_get_rows_q4_0")]] kernel get_rows_t kernel_get_rows<block_q4_0, 2, dequantize_q4_0>;
  3486. template [[host_name("kernel_get_rows_q4_1")]] kernel get_rows_t kernel_get_rows<block_q4_1, 2, dequantize_q4_1>;
  3487. template [[host_name("kernel_get_rows_q5_0")]] kernel get_rows_t kernel_get_rows<block_q5_0, 2, dequantize_q5_0>;
  3488. template [[host_name("kernel_get_rows_q5_1")]] kernel get_rows_t kernel_get_rows<block_q5_1, 2, dequantize_q5_1>;
  3489. template [[host_name("kernel_get_rows_q8_0")]] kernel get_rows_t kernel_get_rows<block_q8_0, 2, dequantize_q8_0>;
  3490. template [[host_name("kernel_get_rows_q2_K")]] kernel get_rows_t kernel_get_rows<block_q2_K, QK_NL, dequantize_q2_K>;
  3491. template [[host_name("kernel_get_rows_q3_K")]] kernel get_rows_t kernel_get_rows<block_q3_K, QK_NL, dequantize_q3_K>;
  3492. template [[host_name("kernel_get_rows_q4_K")]] kernel get_rows_t kernel_get_rows<block_q4_K, QK_NL, dequantize_q4_K>;
  3493. template [[host_name("kernel_get_rows_q5_K")]] kernel get_rows_t kernel_get_rows<block_q5_K, QK_NL, dequantize_q5_K>;
  3494. template [[host_name("kernel_get_rows_q6_K")]] kernel get_rows_t kernel_get_rows<block_q6_K, QK_NL, dequantize_q6_K>;
  3495. //
  3496. // matrix-matrix multiplication
  3497. //
  3498. typedef void (mat_mm_t)(
  3499. device const uchar * src0,
  3500. device const uchar * src1,
  3501. device float * dst,
  3502. constant int64_t & ne00,
  3503. constant int64_t & ne02,
  3504. constant uint64_t & nb01,
  3505. constant uint64_t & nb02,
  3506. constant int64_t & ne12,
  3507. constant uint64_t & nb10,
  3508. constant uint64_t & nb11,
  3509. constant uint64_t & nb12,
  3510. constant int64_t & ne0,
  3511. constant int64_t & ne1,
  3512. constant uint & r2,
  3513. constant uint & r3,
  3514. threadgroup uchar *,
  3515. uint3, uint, uint);
  3516. template [[host_name("kernel_mul_mm_f32_f32")]] kernel mat_mm_t kernel_mul_mm<float4x4, 1, dequantize_f32>;
  3517. template [[host_name("kernel_mul_mm_f16_f32")]] kernel mat_mm_t kernel_mul_mm<half4x4, 1, dequantize_f16>;
  3518. template [[host_name("kernel_mul_mm_q4_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_0, 2, dequantize_q4_0>;
  3519. template [[host_name("kernel_mul_mm_q4_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_1, 2, dequantize_q4_1>;
  3520. template [[host_name("kernel_mul_mm_q5_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_0, 2, dequantize_q5_0>;
  3521. template [[host_name("kernel_mul_mm_q5_1_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_1, 2, dequantize_q5_1>;
  3522. template [[host_name("kernel_mul_mm_q8_0_f32")]] kernel mat_mm_t kernel_mul_mm<block_q8_0, 2, dequantize_q8_0>;
  3523. template [[host_name("kernel_mul_mm_q2_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q2_K, QK_NL, dequantize_q2_K>;
  3524. template [[host_name("kernel_mul_mm_q3_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q3_K, QK_NL, dequantize_q3_K>;
  3525. template [[host_name("kernel_mul_mm_q4_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q4_K, QK_NL, dequantize_q4_K>;
  3526. template [[host_name("kernel_mul_mm_q5_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q5_K, QK_NL, dequantize_q5_K>;
  3527. template [[host_name("kernel_mul_mm_q6_K_f32")]] kernel mat_mm_t kernel_mul_mm<block_q6_K, QK_NL, dequantize_q6_K>;
  3528. //
  3529. // indirect matrix-matrix multiplication
  3530. //
  3531. typedef void (mat_mm_id_t)(
  3532. device const uchar * ids,
  3533. device const uchar * src1,
  3534. device uchar * dst,
  3535. constant uint64_t & nbi1,
  3536. constant int64_t & ne00,
  3537. constant int64_t & ne02,
  3538. constant uint64_t & nb01,
  3539. constant uint64_t & nb02,
  3540. constant int64_t & ne12,
  3541. constant int64_t & ne13,
  3542. constant uint64_t & nb10,
  3543. constant uint64_t & nb11,
  3544. constant uint64_t & nb12,
  3545. constant int64_t & ne0,
  3546. constant int64_t & ne1,
  3547. constant uint64_t & nb1,
  3548. constant uint & r2,
  3549. constant uint & r3,
  3550. constant int & idx,
  3551. device const uchar * src00,
  3552. device const uchar * src01,
  3553. device const uchar * src02,
  3554. device const uchar * src03,
  3555. device const uchar * src04,
  3556. device const uchar * src05,
  3557. device const uchar * src06,
  3558. device const uchar * src07,
  3559. threadgroup uchar *,
  3560. uint3, uint, uint);
  3561. template [[host_name("kernel_mul_mm_id_f32_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<float4x4, 1, dequantize_f32>;
  3562. template [[host_name("kernel_mul_mm_id_f16_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<half4x4, 1, dequantize_f16>;
  3563. template [[host_name("kernel_mul_mm_id_q4_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_0, 2, dequantize_q4_0>;
  3564. template [[host_name("kernel_mul_mm_id_q4_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_1, 2, dequantize_q4_1>;
  3565. template [[host_name("kernel_mul_mm_id_q5_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_0, 2, dequantize_q5_0>;
  3566. template [[host_name("kernel_mul_mm_id_q5_1_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_1, 2, dequantize_q5_1>;
  3567. template [[host_name("kernel_mul_mm_id_q8_0_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q8_0, 2, dequantize_q8_0>;
  3568. template [[host_name("kernel_mul_mm_id_q2_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q2_K, QK_NL, dequantize_q2_K>;
  3569. template [[host_name("kernel_mul_mm_id_q3_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q3_K, QK_NL, dequantize_q3_K>;
  3570. template [[host_name("kernel_mul_mm_id_q4_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q4_K, QK_NL, dequantize_q4_K>;
  3571. template [[host_name("kernel_mul_mm_id_q5_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q5_K, QK_NL, dequantize_q5_K>;
  3572. template [[host_name("kernel_mul_mm_id_q6_K_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_q6_K, QK_NL, dequantize_q6_K>;
  3573. //
  3574. // matrix-vector multiplication
  3575. //
  3576. [[host_name("kernel_mul_mv_id_f32_f32")]]
  3577. kernel void kernel_mul_mv_id_f32_f32(
  3578. device const char * ids,
  3579. device const char * src1,
  3580. device uchar * dst,
  3581. constant uint64_t & nbi1,
  3582. constant int64_t & ne00,
  3583. constant int64_t & ne01,
  3584. constant int64_t & ne02,
  3585. constant uint64_t & nb00,
  3586. constant uint64_t & nb01,
  3587. constant uint64_t & nb02,
  3588. constant int64_t & ne10,
  3589. constant int64_t & ne11,
  3590. constant int64_t & ne12,
  3591. constant int64_t & ne13,
  3592. constant uint64_t & nb10,
  3593. constant uint64_t & nb11,
  3594. constant uint64_t & nb12,
  3595. constant int64_t & ne0,
  3596. constant int64_t & ne1,
  3597. constant uint64_t & nb1,
  3598. constant uint & r2,
  3599. constant uint & r3,
  3600. constant int & idx,
  3601. device const char * src00,
  3602. device const char * src01,
  3603. device const char * src02,
  3604. device const char * src03,
  3605. device const char * src04,
  3606. device const char * src05,
  3607. device const char * src06,
  3608. device const char * src07,
  3609. uint3 tgpig[[threadgroup_position_in_grid]],
  3610. uint tiitg[[thread_index_in_threadgroup]],
  3611. uint tiisg[[thread_index_in_simdgroup]],
  3612. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3613. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3614. const int64_t bid = tgpig.z/(ne12*ne13);
  3615. tgpig.z = tgpig.z%(ne12*ne13);
  3616. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3617. kernel_mul_mv_f32_f32_impl(
  3618. src0[id],
  3619. src1 + bid*nb11,
  3620. (device float *) (dst + bid*nb1),
  3621. ne00,
  3622. ne01,
  3623. ne02,
  3624. nb00,
  3625. nb01,
  3626. nb02,
  3627. ne10,
  3628. ne11,
  3629. ne12,
  3630. nb10,
  3631. nb11,
  3632. nb12,
  3633. ne0,
  3634. ne1,
  3635. r2,
  3636. r3,
  3637. tgpig,
  3638. tiisg);
  3639. }
  3640. [[host_name("kernel_mul_mv_id_f16_f32")]]
  3641. kernel void kernel_mul_mv_id_f16_f32(
  3642. device const char * ids,
  3643. device const char * src1,
  3644. device uchar * dst,
  3645. constant uint64_t & nbi1,
  3646. constant int64_t & ne00,
  3647. constant int64_t & ne01,
  3648. constant int64_t & ne02,
  3649. constant uint64_t & nb00,
  3650. constant uint64_t & nb01,
  3651. constant uint64_t & nb02,
  3652. constant int64_t & ne10,
  3653. constant int64_t & ne11,
  3654. constant int64_t & ne12,
  3655. constant int64_t & ne13,
  3656. constant uint64_t & nb10,
  3657. constant uint64_t & nb11,
  3658. constant uint64_t & nb12,
  3659. constant int64_t & ne0,
  3660. constant int64_t & ne1,
  3661. constant uint64_t & nb1,
  3662. constant uint & r2,
  3663. constant uint & r3,
  3664. constant int & idx,
  3665. device const char * src00,
  3666. device const char * src01,
  3667. device const char * src02,
  3668. device const char * src03,
  3669. device const char * src04,
  3670. device const char * src05,
  3671. device const char * src06,
  3672. device const char * src07,
  3673. uint3 tgpig[[threadgroup_position_in_grid]],
  3674. uint tiitg[[thread_index_in_threadgroup]],
  3675. uint tiisg[[thread_index_in_simdgroup]],
  3676. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3677. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3678. const int64_t bid = tgpig.z/(ne12*ne13);
  3679. tgpig.z = tgpig.z%(ne12*ne13);
  3680. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3681. kernel_mul_mv_f16_f32_impl(
  3682. src0[id],
  3683. src1 + bid*nb11,
  3684. (device float *) (dst + bid*nb1),
  3685. ne00,
  3686. ne01,
  3687. ne02,
  3688. nb00,
  3689. nb01,
  3690. nb02,
  3691. ne10,
  3692. ne11,
  3693. ne12,
  3694. nb10,
  3695. nb11,
  3696. nb12,
  3697. ne0,
  3698. ne1,
  3699. r2,
  3700. r3,
  3701. tgpig,
  3702. tiisg);
  3703. }
  3704. [[host_name("kernel_mul_mv_id_q8_0_f32")]]
  3705. kernel void kernel_mul_mv_id_q8_0_f32(
  3706. device const char * ids,
  3707. device const char * src1,
  3708. device uchar * dst,
  3709. constant uint64_t & nbi1,
  3710. constant int64_t & ne00,
  3711. constant int64_t & ne01,
  3712. constant int64_t & ne02,
  3713. constant uint64_t & nb00,
  3714. constant uint64_t & nb01,
  3715. constant uint64_t & nb02,
  3716. constant int64_t & ne10,
  3717. constant int64_t & ne11,
  3718. constant int64_t & ne12,
  3719. constant int64_t & ne13,
  3720. constant uint64_t & nb10,
  3721. constant uint64_t & nb11,
  3722. constant uint64_t & nb12,
  3723. constant int64_t & ne0,
  3724. constant int64_t & ne1,
  3725. constant uint64_t & nb1,
  3726. constant uint & r2,
  3727. constant uint & r3,
  3728. constant int & idx,
  3729. device const char * src00,
  3730. device const char * src01,
  3731. device const char * src02,
  3732. device const char * src03,
  3733. device const char * src04,
  3734. device const char * src05,
  3735. device const char * src06,
  3736. device const char * src07,
  3737. uint3 tgpig[[threadgroup_position_in_grid]],
  3738. uint tiitg[[thread_index_in_threadgroup]],
  3739. uint tiisg[[thread_index_in_simdgroup]],
  3740. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3741. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3742. const int64_t bid = tgpig.z/(ne12*ne13);
  3743. tgpig.z = tgpig.z%(ne12*ne13);
  3744. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3745. kernel_mul_mv_q8_0_f32_impl(
  3746. src0[id],
  3747. (device const float *) (src1 + bid*nb11),
  3748. (device float *) ( dst + bid*nb1),
  3749. ne00,
  3750. ne01,
  3751. ne02,
  3752. ne10,
  3753. ne12,
  3754. ne0,
  3755. ne1,
  3756. r2,
  3757. r3,
  3758. tgpig,
  3759. tiisg,
  3760. sgitg);
  3761. }
  3762. [[host_name("kernel_mul_mv_id_q4_0_f32")]]
  3763. kernel void kernel_mul_mv_id_q4_0_f32(
  3764. device const char * ids,
  3765. device const char * src1,
  3766. device uchar * dst,
  3767. constant uint64_t & nbi1,
  3768. constant int64_t & ne00,
  3769. constant int64_t & ne01,
  3770. constant int64_t & ne02,
  3771. constant uint64_t & nb00,
  3772. constant uint64_t & nb01,
  3773. constant uint64_t & nb02,
  3774. constant int64_t & ne10,
  3775. constant int64_t & ne11,
  3776. constant int64_t & ne12,
  3777. constant int64_t & ne13,
  3778. constant uint64_t & nb10,
  3779. constant uint64_t & nb11,
  3780. constant uint64_t & nb12,
  3781. constant int64_t & ne0,
  3782. constant int64_t & ne1,
  3783. constant uint64_t & nb1,
  3784. constant uint & r2,
  3785. constant uint & r3,
  3786. constant int & idx,
  3787. device const char * src00,
  3788. device const char * src01,
  3789. device const char * src02,
  3790. device const char * src03,
  3791. device const char * src04,
  3792. device const char * src05,
  3793. device const char * src06,
  3794. device const char * src07,
  3795. uint3 tgpig[[threadgroup_position_in_grid]],
  3796. uint tiitg[[thread_index_in_threadgroup]],
  3797. uint tiisg[[thread_index_in_simdgroup]],
  3798. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3799. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3800. const int64_t bid = tgpig.z/(ne12*ne13);
  3801. tgpig.z = tgpig.z%(ne12*ne13);
  3802. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3803. mul_vec_q_n_f32_impl<block_q4_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3804. src0[id],
  3805. (device const float *) (src1 + bid*nb11),
  3806. (device float *) ( dst + bid*nb1),
  3807. ne00,
  3808. ne01,
  3809. ne02,
  3810. ne10,
  3811. ne12,
  3812. ne0,
  3813. ne1,
  3814. r2,
  3815. r3,
  3816. tgpig,
  3817. tiisg,
  3818. sgitg);
  3819. }
  3820. [[host_name("kernel_mul_mv_id_q4_1_f32")]]
  3821. kernel void kernel_mul_mv_id_q4_1_f32(
  3822. device const char * ids,
  3823. device const char * src1,
  3824. device uchar * dst,
  3825. constant uint64_t & nbi1,
  3826. constant int64_t & ne00,
  3827. constant int64_t & ne01,
  3828. constant int64_t & ne02,
  3829. constant uint64_t & nb00,
  3830. constant uint64_t & nb01,
  3831. constant uint64_t & nb02,
  3832. constant int64_t & ne10,
  3833. constant int64_t & ne11,
  3834. constant int64_t & ne12,
  3835. constant int64_t & ne13,
  3836. constant uint64_t & nb10,
  3837. constant uint64_t & nb11,
  3838. constant uint64_t & nb12,
  3839. constant int64_t & ne0,
  3840. constant int64_t & ne1,
  3841. constant uint64_t & nb1,
  3842. constant uint & r2,
  3843. constant uint & r3,
  3844. constant int & idx,
  3845. device const char * src00,
  3846. device const char * src01,
  3847. device const char * src02,
  3848. device const char * src03,
  3849. device const char * src04,
  3850. device const char * src05,
  3851. device const char * src06,
  3852. device const char * src07,
  3853. uint3 tgpig[[threadgroup_position_in_grid]],
  3854. uint tiitg[[thread_index_in_threadgroup]],
  3855. uint tiisg[[thread_index_in_simdgroup]],
  3856. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3857. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3858. const int64_t bid = tgpig.z/(ne12*ne13);
  3859. tgpig.z = tgpig.z%(ne12*ne13);
  3860. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3861. mul_vec_q_n_f32_impl<block_q4_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3862. src0[id],
  3863. (device const float *) (src1 + bid*nb11),
  3864. (device float *) ( dst + bid*nb1),
  3865. ne00,
  3866. ne01,
  3867. ne02,
  3868. ne10,
  3869. ne12,
  3870. ne0,
  3871. ne1,
  3872. r2,
  3873. r3,
  3874. tgpig,
  3875. tiisg,
  3876. sgitg);
  3877. }
  3878. [[host_name("kernel_mul_mv_id_q5_0_f32")]]
  3879. kernel void kernel_mul_mv_id_q5_0_f32(
  3880. device const char * ids,
  3881. device const char * src1,
  3882. device uchar * dst,
  3883. constant uint64_t & nbi1,
  3884. constant int64_t & ne00,
  3885. constant int64_t & ne01,
  3886. constant int64_t & ne02,
  3887. constant uint64_t & nb00,
  3888. constant uint64_t & nb01,
  3889. constant uint64_t & nb02,
  3890. constant int64_t & ne10,
  3891. constant int64_t & ne11,
  3892. constant int64_t & ne12,
  3893. constant int64_t & ne13,
  3894. constant uint64_t & nb10,
  3895. constant uint64_t & nb11,
  3896. constant uint64_t & nb12,
  3897. constant int64_t & ne0,
  3898. constant int64_t & ne1,
  3899. constant uint64_t & nb1,
  3900. constant uint & r2,
  3901. constant uint & r3,
  3902. constant int & idx,
  3903. device const char * src00,
  3904. device const char * src01,
  3905. device const char * src02,
  3906. device const char * src03,
  3907. device const char * src04,
  3908. device const char * src05,
  3909. device const char * src06,
  3910. device const char * src07,
  3911. uint3 tgpig[[threadgroup_position_in_grid]],
  3912. uint tiitg[[thread_index_in_threadgroup]],
  3913. uint tiisg[[thread_index_in_simdgroup]],
  3914. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3915. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3916. const int64_t bid = tgpig.z/(ne12*ne13);
  3917. tgpig.z = tgpig.z%(ne12*ne13);
  3918. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3919. mul_vec_q_n_f32_impl<block_q5_0, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3920. src0[id],
  3921. (device const float *) (src1 + bid*nb11),
  3922. (device float *) ( dst + bid*nb1),
  3923. ne00,
  3924. ne01,
  3925. ne02,
  3926. ne10,
  3927. ne12,
  3928. ne0,
  3929. ne1,
  3930. r2,
  3931. r3,
  3932. tgpig,
  3933. tiisg,
  3934. sgitg);
  3935. }
  3936. [[host_name("kernel_mul_mv_id_q5_1_f32")]]
  3937. kernel void kernel_mul_mv_id_q5_1_f32(
  3938. device const char * ids,
  3939. device const char * src1,
  3940. device uchar * dst,
  3941. constant uint64_t & nbi1,
  3942. constant int64_t & ne00,
  3943. constant int64_t & ne01,
  3944. constant int64_t & ne02,
  3945. constant uint64_t & nb00,
  3946. constant uint64_t & nb01,
  3947. constant uint64_t & nb02,
  3948. constant int64_t & ne10,
  3949. constant int64_t & ne11,
  3950. constant int64_t & ne12,
  3951. constant int64_t & ne13,
  3952. constant uint64_t & nb10,
  3953. constant uint64_t & nb11,
  3954. constant uint64_t & nb12,
  3955. constant int64_t & ne0,
  3956. constant int64_t & ne1,
  3957. constant uint64_t & nb1,
  3958. constant uint & r2,
  3959. constant uint & r3,
  3960. constant int & idx,
  3961. device const char * src00,
  3962. device const char * src01,
  3963. device const char * src02,
  3964. device const char * src03,
  3965. device const char * src04,
  3966. device const char * src05,
  3967. device const char * src06,
  3968. device const char * src07,
  3969. uint3 tgpig[[threadgroup_position_in_grid]],
  3970. uint tiitg[[thread_index_in_threadgroup]],
  3971. uint tiisg[[thread_index_in_simdgroup]],
  3972. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  3973. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  3974. const int64_t bid = tgpig.z/(ne12*ne13);
  3975. tgpig.z = tgpig.z%(ne12*ne13);
  3976. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  3977. mul_vec_q_n_f32_impl<block_q5_1, N_DST, N_SIMDGROUP, N_SIMDWIDTH>(
  3978. src0[id],
  3979. (device const float *) (src1 + bid*nb11),
  3980. (device float *) ( dst + bid*nb1),
  3981. ne00,
  3982. ne01,
  3983. ne02,
  3984. ne10,
  3985. ne12,
  3986. ne0,
  3987. ne1,
  3988. r2,
  3989. r3,
  3990. tgpig,
  3991. tiisg,
  3992. sgitg);
  3993. }
  3994. [[host_name("kernel_mul_mv_id_q2_K_f32")]]
  3995. kernel void kernel_mul_mv_id_q2_K_f32(
  3996. device const char * ids,
  3997. device const char * src1,
  3998. device uchar * dst,
  3999. constant uint64_t & nbi1,
  4000. constant int64_t & ne00,
  4001. constant int64_t & ne01,
  4002. constant int64_t & ne02,
  4003. constant uint64_t & nb00,
  4004. constant uint64_t & nb01,
  4005. constant uint64_t & nb02,
  4006. constant int64_t & ne10,
  4007. constant int64_t & ne11,
  4008. constant int64_t & ne12,
  4009. constant int64_t & ne13,
  4010. constant uint64_t & nb10,
  4011. constant uint64_t & nb11,
  4012. constant uint64_t & nb12,
  4013. constant int64_t & ne0,
  4014. constant int64_t & ne1,
  4015. constant uint64_t & nb1,
  4016. constant uint & r2,
  4017. constant uint & r3,
  4018. constant int & idx,
  4019. device const char * src00,
  4020. device const char * src01,
  4021. device const char * src02,
  4022. device const char * src03,
  4023. device const char * src04,
  4024. device const char * src05,
  4025. device const char * src06,
  4026. device const char * src07,
  4027. uint3 tgpig[[threadgroup_position_in_grid]],
  4028. uint tiitg[[thread_index_in_threadgroup]],
  4029. uint tiisg[[thread_index_in_simdgroup]],
  4030. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4031. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4032. const int64_t bid = tgpig.z/(ne12*ne13);
  4033. tgpig.z = tgpig.z%(ne12*ne13);
  4034. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4035. kernel_mul_mv_q2_K_f32_impl(
  4036. src0[id],
  4037. (device const float *) (src1 + bid*nb11),
  4038. (device float *) ( dst + bid*nb1),
  4039. ne00,
  4040. ne01,
  4041. ne02,
  4042. ne10,
  4043. ne12,
  4044. ne0,
  4045. ne1,
  4046. r2,
  4047. r3,
  4048. tgpig,
  4049. tiisg,
  4050. sgitg);
  4051. }
  4052. [[host_name("kernel_mul_mv_id_q3_K_f32")]]
  4053. kernel void kernel_mul_mv_id_q3_K_f32(
  4054. device const char * ids,
  4055. device const char * src1,
  4056. device uchar * dst,
  4057. constant uint64_t & nbi1,
  4058. constant int64_t & ne00,
  4059. constant int64_t & ne01,
  4060. constant int64_t & ne02,
  4061. constant uint64_t & nb00,
  4062. constant uint64_t & nb01,
  4063. constant uint64_t & nb02,
  4064. constant int64_t & ne10,
  4065. constant int64_t & ne11,
  4066. constant int64_t & ne12,
  4067. constant int64_t & ne13,
  4068. constant uint64_t & nb10,
  4069. constant uint64_t & nb11,
  4070. constant uint64_t & nb12,
  4071. constant int64_t & ne0,
  4072. constant int64_t & ne1,
  4073. constant uint64_t & nb1,
  4074. constant uint & r2,
  4075. constant uint & r3,
  4076. constant int & idx,
  4077. device const char * src00,
  4078. device const char * src01,
  4079. device const char * src02,
  4080. device const char * src03,
  4081. device const char * src04,
  4082. device const char * src05,
  4083. device const char * src06,
  4084. device const char * src07,
  4085. uint3 tgpig[[threadgroup_position_in_grid]],
  4086. uint tiitg[[thread_index_in_threadgroup]],
  4087. uint tiisg[[thread_index_in_simdgroup]],
  4088. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4089. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4090. const int64_t bid = tgpig.z/(ne12*ne13);
  4091. tgpig.z = tgpig.z%(ne12*ne13);
  4092. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4093. kernel_mul_mv_q3_K_f32_impl(
  4094. src0[id],
  4095. (device const float *) (src1 + bid*nb11),
  4096. (device float *) ( dst + bid*nb1),
  4097. ne00,
  4098. ne01,
  4099. ne02,
  4100. ne10,
  4101. ne12,
  4102. ne0,
  4103. ne1,
  4104. r2,
  4105. r3,
  4106. tgpig,
  4107. tiisg,
  4108. sgitg);
  4109. }
  4110. [[host_name("kernel_mul_mv_id_q4_K_f32")]]
  4111. kernel void kernel_mul_mv_id_q4_K_f32(
  4112. device const char * ids,
  4113. device const char * src1,
  4114. device uchar * dst,
  4115. constant uint64_t & nbi1,
  4116. constant int64_t & ne00,
  4117. constant int64_t & ne01,
  4118. constant int64_t & ne02,
  4119. constant uint64_t & nb00,
  4120. constant uint64_t & nb01,
  4121. constant uint64_t & nb02,
  4122. constant int64_t & ne10,
  4123. constant int64_t & ne11,
  4124. constant int64_t & ne12,
  4125. constant int64_t & ne13,
  4126. constant uint64_t & nb10,
  4127. constant uint64_t & nb11,
  4128. constant uint64_t & nb12,
  4129. constant int64_t & ne0,
  4130. constant int64_t & ne1,
  4131. constant uint64_t & nb1,
  4132. constant uint & r2,
  4133. constant uint & r3,
  4134. constant int & idx,
  4135. device const char * src00,
  4136. device const char * src01,
  4137. device const char * src02,
  4138. device const char * src03,
  4139. device const char * src04,
  4140. device const char * src05,
  4141. device const char * src06,
  4142. device const char * src07,
  4143. uint3 tgpig[[threadgroup_position_in_grid]],
  4144. uint tiitg[[thread_index_in_threadgroup]],
  4145. uint tiisg[[thread_index_in_simdgroup]],
  4146. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4147. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4148. const int64_t bid = tgpig.z/(ne12*ne13);
  4149. tgpig.z = tgpig.z%(ne12*ne13);
  4150. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4151. kernel_mul_mv_q4_K_f32_impl(
  4152. src0[id],
  4153. (device const float *) (src1 + bid*nb11),
  4154. (device float *) ( dst + bid*nb1),
  4155. ne00,
  4156. ne01,
  4157. ne02,
  4158. ne10,
  4159. ne12,
  4160. ne0,
  4161. ne1,
  4162. r2,
  4163. r3,
  4164. tgpig,
  4165. tiisg,
  4166. sgitg);
  4167. }
  4168. [[host_name("kernel_mul_mv_id_q5_K_f32")]]
  4169. kernel void kernel_mul_mv_id_q5_K_f32(
  4170. device const char * ids,
  4171. device const char * src1,
  4172. device uchar * dst,
  4173. constant uint64_t & nbi1,
  4174. constant int64_t & ne00,
  4175. constant int64_t & ne01,
  4176. constant int64_t & ne02,
  4177. constant uint64_t & nb00,
  4178. constant uint64_t & nb01,
  4179. constant uint64_t & nb02,
  4180. constant int64_t & ne10,
  4181. constant int64_t & ne11,
  4182. constant int64_t & ne12,
  4183. constant int64_t & ne13,
  4184. constant uint64_t & nb10,
  4185. constant uint64_t & nb11,
  4186. constant uint64_t & nb12,
  4187. constant int64_t & ne0,
  4188. constant int64_t & ne1,
  4189. constant uint64_t & nb1,
  4190. constant uint & r2,
  4191. constant uint & r3,
  4192. constant int & idx,
  4193. device const char * src00,
  4194. device const char * src01,
  4195. device const char * src02,
  4196. device const char * src03,
  4197. device const char * src04,
  4198. device const char * src05,
  4199. device const char * src06,
  4200. device const char * src07,
  4201. uint3 tgpig[[threadgroup_position_in_grid]],
  4202. uint tiitg[[thread_index_in_threadgroup]],
  4203. uint tiisg[[thread_index_in_simdgroup]],
  4204. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4205. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4206. const int64_t bid = tgpig.z/(ne12*ne13);
  4207. tgpig.z = tgpig.z%(ne12*ne13);
  4208. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4209. kernel_mul_mv_q5_K_f32_impl(
  4210. src0[id],
  4211. (device const float *) (src1 + bid*nb11),
  4212. (device float *) ( dst + bid*nb1),
  4213. ne00,
  4214. ne01,
  4215. ne02,
  4216. ne10,
  4217. ne12,
  4218. ne0,
  4219. ne1,
  4220. r2,
  4221. r3,
  4222. tgpig,
  4223. tiisg,
  4224. sgitg);
  4225. }
  4226. [[host_name("kernel_mul_mv_id_q6_K_f32")]]
  4227. kernel void kernel_mul_mv_id_q6_K_f32(
  4228. device const char * ids,
  4229. device const char * src1,
  4230. device uchar * dst,
  4231. constant uint64_t & nbi1,
  4232. constant int64_t & ne00,
  4233. constant int64_t & ne01,
  4234. constant int64_t & ne02,
  4235. constant uint64_t & nb00,
  4236. constant uint64_t & nb01,
  4237. constant uint64_t & nb02,
  4238. constant int64_t & ne10,
  4239. constant int64_t & ne11,
  4240. constant int64_t & ne12,
  4241. constant int64_t & ne13,
  4242. constant uint64_t & nb10,
  4243. constant uint64_t & nb11,
  4244. constant uint64_t & nb12,
  4245. constant int64_t & ne0,
  4246. constant int64_t & ne1,
  4247. constant uint64_t & nb1,
  4248. constant uint & r2,
  4249. constant uint & r3,
  4250. constant int & idx,
  4251. device const char * src00,
  4252. device const char * src01,
  4253. device const char * src02,
  4254. device const char * src03,
  4255. device const char * src04,
  4256. device const char * src05,
  4257. device const char * src06,
  4258. device const char * src07,
  4259. uint3 tgpig[[threadgroup_position_in_grid]],
  4260. uint tiitg[[thread_index_in_threadgroup]],
  4261. uint tiisg[[thread_index_in_simdgroup]],
  4262. uint sgitg[[simdgroup_index_in_threadgroup]]) {
  4263. device const char * src0[8] = {src00, src01, src02, src03, src04, src05, src06, src07};
  4264. const int64_t bid = tgpig.z/(ne12*ne13);
  4265. tgpig.z = tgpig.z%(ne12*ne13);
  4266. const int32_t id = ((device int32_t *) (ids + bid*nbi1))[idx];
  4267. kernel_mul_mv_q6_K_f32_impl(
  4268. src0[id],
  4269. (device const float *) (src1 + bid*nb11),
  4270. (device float *) ( dst + bid*nb1),
  4271. ne00,
  4272. ne01,
  4273. ne02,
  4274. ne10,
  4275. ne12,
  4276. ne0,
  4277. ne1,
  4278. r2,
  4279. r3,
  4280. tgpig,
  4281. tiisg,
  4282. sgitg);
  4283. }