llama.cpp 102 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025
  1. // Defines fileno on msys:
  2. #ifndef _GNU_SOURCE
  3. #define _GNU_SOURCE
  4. #include <cstddef>
  5. #include <cstdint>
  6. #include <cstdio>
  7. #endif
  8. #include "llama-util.h"
  9. #include "llama.h"
  10. #include "ggml.h"
  11. #ifdef GGML_USE_CUBLAS
  12. #include "ggml-cuda.h"
  13. #elif defined(GGML_USE_CLBLAST)
  14. #include "ggml-opencl.h"
  15. #endif
  16. #include <array>
  17. #include <ctime>
  18. #include <cinttypes>
  19. #include <fstream>
  20. #include <random>
  21. #include <map>
  22. #include <unordered_map>
  23. #include <queue>
  24. #include <cassert>
  25. #include <cstring>
  26. #include <climits>
  27. #include <memory>
  28. #include <algorithm>
  29. #include <initializer_list>
  30. #include <thread>
  31. #include <atomic>
  32. #include <mutex>
  33. #include <sstream>
  34. #include <numeric>
  35. #define LLAMA_USE_SCRATCH
  36. #define LLAMA_MAX_SCRATCH_BUFFERS 16
  37. // available llama models
  38. enum e_model {
  39. MODEL_UNKNOWN,
  40. MODEL_7B,
  41. MODEL_13B,
  42. MODEL_30B,
  43. MODEL_65B,
  44. };
  45. static const size_t MB = 1024*1024;
  46. // computed for n_ctx == 2048
  47. // TODO: dynamically determine these sizes
  48. // needs modifications in ggml
  49. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
  50. {
  51. static std::map<e_model, size_t> k_sizes = {
  52. { MODEL_7B, 512ull * MB },
  53. { MODEL_13B, 512ull * MB },
  54. { MODEL_30B, 512ull * MB },
  55. { MODEL_65B, 1024ull * MB },
  56. };
  57. return k_sizes;
  58. }
  59. static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
  60. {
  61. static std::map<e_model, size_t> k_sizes = {
  62. { MODEL_7B, 512ull * MB },
  63. { MODEL_13B, 512ull * MB },
  64. { MODEL_30B, 512ull * MB },
  65. { MODEL_65B, 1024ull * MB },
  66. };
  67. return k_sizes;
  68. }
  69. // 2*n_embd*n_ctx*n_layer*sizeof(float16)
  70. static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
  71. {
  72. static std::map<e_model, size_t> k_sizes = {
  73. { MODEL_7B, 1026ull * MB },
  74. { MODEL_13B, 1608ull * MB },
  75. { MODEL_30B, 3124ull * MB },
  76. { MODEL_65B, 5120ull * MB },
  77. };
  78. return k_sizes;
  79. }
  80. // this is mostly needed for temporary mul_mat buffers to dequantize the data
  81. // not actually needed if BLAS is disabled
  82. static const std::map<e_model, size_t> & MEM_REQ_EVAL()
  83. {
  84. static std::map<e_model, size_t> k_sizes = {
  85. { MODEL_7B, 768ull * MB },
  86. { MODEL_13B, 1024ull * MB },
  87. { MODEL_30B, 1280ull * MB },
  88. { MODEL_65B, 1536ull * MB },
  89. };
  90. return k_sizes;
  91. }
  92. // default hparams (LLaMA 7B)
  93. struct llama_hparams {
  94. uint32_t n_vocab = 32000;
  95. uint32_t n_ctx = 512; // this is provided as user input?
  96. uint32_t n_embd = 4096;
  97. uint32_t n_mult = 256;
  98. uint32_t n_head = 32;
  99. uint32_t n_layer = 32;
  100. uint32_t n_rot = 64;
  101. enum llama_ftype ftype = LLAMA_FTYPE_MOSTLY_F16;
  102. bool operator!=(const llama_hparams & other) const {
  103. return static_cast<bool>(memcmp(this, &other, sizeof(llama_hparams)));
  104. }
  105. };
  106. struct llama_layer {
  107. // normalization
  108. struct ggml_tensor * attention_norm;
  109. // attention
  110. struct ggml_tensor * wq;
  111. struct ggml_tensor * wk;
  112. struct ggml_tensor * wv;
  113. struct ggml_tensor * wo;
  114. // normalization
  115. struct ggml_tensor * ffn_norm;
  116. // ff
  117. struct ggml_tensor * w1;
  118. struct ggml_tensor * w2;
  119. struct ggml_tensor * w3;
  120. };
  121. struct llama_kv_cache {
  122. struct ggml_tensor * k;
  123. struct ggml_tensor * v;
  124. struct ggml_context * ctx = NULL;
  125. llama_ctx_buffer buf;
  126. int n; // number of tokens currently in the cache
  127. ~llama_kv_cache() {
  128. if (ctx) {
  129. ggml_free(ctx);
  130. }
  131. }
  132. };
  133. struct llama_model {
  134. e_model type = MODEL_UNKNOWN;
  135. llama_hparams hparams;
  136. struct ggml_tensor * tok_embeddings;
  137. struct ggml_tensor * norm;
  138. struct ggml_tensor * output;
  139. std::vector<llama_layer> layers;
  140. // context
  141. struct ggml_context * ctx = NULL;
  142. // key + value cache for the self attention
  143. // TODO: move to llama_state
  144. struct llama_kv_cache kv_self;
  145. // the model memory buffer
  146. llama_ctx_buffer buf;
  147. // model memory mapped file
  148. std::unique_ptr<llama_mmap> mapping;
  149. // objects representing data potentially being locked in memory
  150. llama_mlock mlock_buf;
  151. llama_mlock mlock_mmap;
  152. // for quantize-stats only
  153. std::vector<std::pair<std::string, struct ggml_tensor *>> tensors_by_name;
  154. ~llama_model() {
  155. if (ctx) {
  156. ggml_free(ctx);
  157. }
  158. }
  159. };
  160. struct llama_vocab {
  161. using id = int32_t;
  162. using token = std::string;
  163. struct token_score {
  164. token tok;
  165. float score;
  166. };
  167. std::unordered_map<token, id> token_to_id;
  168. std::vector<token_score> id_to_token;
  169. };
  170. struct llama_context {
  171. std::mt19937 rng;
  172. int64_t t_load_us = 0;
  173. int64_t t_start_us = 0;
  174. bool has_evaluated_once = false;
  175. int64_t t_sample_us = 0;
  176. int64_t t_eval_us = 0;
  177. int64_t t_p_eval_us = 0;
  178. int32_t n_sample = 0; // number of tokens sampled
  179. int32_t n_eval = 0; // number of eval calls
  180. int32_t n_p_eval = 0; // number of tokens in eval calls for the prompt (with batch size > 1)
  181. llama_model model;
  182. llama_vocab vocab;
  183. size_t mem_per_token = 0;
  184. // decode output (2-dimensional array: [n_tokens][n_vocab])
  185. std::vector<float> logits;
  186. bool logits_all = false;
  187. // input embedding (1-dimensional array: [n_embd])
  188. std::vector<float> embedding;
  189. // memory buffers used to evaluate the model
  190. // TODO: move in llama_state
  191. llama_ctx_buffer buf_compute;
  192. llama_ctx_buffer buf_scratch[LLAMA_MAX_SCRATCH_BUFFERS];
  193. int buf_last = 0;
  194. size_t buf_max_size[LLAMA_MAX_SCRATCH_BUFFERS] = { 0 };
  195. void use_buf(struct ggml_context * ctx, int i) {
  196. #if defined(LLAMA_USE_SCRATCH)
  197. size_t last_size = 0;
  198. if (i == -1) {
  199. last_size = ggml_set_scratch(ctx, { 0, 0, nullptr, });
  200. } else {
  201. auto & buf = buf_scratch[i];
  202. last_size = ggml_set_scratch(ctx, { 0, buf.size, buf.addr, });
  203. }
  204. if (buf_last >= 0) {
  205. buf_max_size[buf_last] = std::max(buf_max_size[buf_last], last_size);
  206. }
  207. buf_last = i;
  208. #else
  209. (void) i;
  210. (void) ctx;
  211. #endif
  212. }
  213. size_t get_buf_max_mem(int i) const {
  214. #if defined(LLAMA_USE_SCRATCH)
  215. return buf_max_size[i];
  216. #else
  217. (void) i;
  218. return 0;
  219. #endif
  220. }
  221. };
  222. template <typename T>
  223. static T checked_mul(T a, T b) {
  224. T ret = a * b;
  225. if (a != 0 && ret / a != b) {
  226. throw format("overflow multiplying %llu * %llu",
  227. (unsigned long long) a, (unsigned long long) b);
  228. }
  229. return ret;
  230. }
  231. static size_t checked_div(size_t a, size_t b) {
  232. if (b == 0 || a % b != 0) {
  233. throw format("error dividing %zu / %zu", a, b);
  234. }
  235. return a / b;
  236. }
  237. static std::string llama_format_tensor_shape(const std::vector<uint32_t> & ne) {
  238. char buf[256];
  239. snprintf(buf, sizeof(buf), "%5u", ne.at(0));
  240. for (size_t i = 1; i < ne.size(); i++) {
  241. snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " x %5u", ne.at(i));
  242. }
  243. return buf;
  244. }
  245. static size_t llama_calc_tensor_size(const std::vector<uint32_t> & ne, enum ggml_type type) {
  246. size_t size = ggml_type_size(type);
  247. for (uint32_t dim : ne) {
  248. size = checked_mul<size_t>(size, dim);
  249. }
  250. return size / ggml_blck_size(type);
  251. }
  252. struct llama_load_tensor_shard {
  253. std::vector<uint32_t> ne;
  254. size_t size;
  255. enum ggml_type type;
  256. size_t file_idx;
  257. size_t file_off;
  258. void calc_size() {
  259. size = llama_calc_tensor_size(ne, type);
  260. }
  261. };
  262. enum llama_split_type {
  263. SPLIT_NONE,
  264. SPLIT_BY_COLUMNS,
  265. SPLIT_BY_ROWS
  266. };
  267. struct llama_load_tensor {
  268. std::vector<llama_load_tensor_shard> shards;
  269. std::string name;
  270. enum ggml_type type = GGML_TYPE_F32;
  271. llama_split_type split_type = SPLIT_NONE;
  272. std::vector<uint32_t> ne;
  273. size_t size;
  274. struct ggml_tensor * ggml_tensor = NULL;
  275. uint8_t * data;
  276. llama_load_tensor(const std::string & name) : name(name) {}
  277. void calc_all() {
  278. calc_type();
  279. calc_split_type();
  280. calc_ne();
  281. calc_size();
  282. }
  283. void calc_type() {
  284. const auto & first_shard = shards.at(0);
  285. for (const auto & shard : shards) {
  286. if (shard.type != first_shard.type) {
  287. throw format("inconsistent tensor shard type in '%s'", name.c_str());
  288. }
  289. }
  290. type = first_shard.type;
  291. }
  292. void calc_split_type() {
  293. if (shards.at(0).ne.size() == 1 || // 1D tensors are just duplicated in every file
  294. shards.size() == 1) { // only one file?
  295. split_type = SPLIT_NONE;
  296. } else if (name.find("tok_embeddings.") == 0 ||
  297. name.find(".attention.wo.weight") != std::string::npos ||
  298. name.find(".feed_forward.w2.weight") != std::string::npos) {
  299. split_type = SPLIT_BY_COLUMNS;
  300. } else {
  301. split_type = SPLIT_BY_ROWS;
  302. }
  303. }
  304. void calc_ne() {
  305. const auto & first_shard = shards.at(0);
  306. for (const auto & shard : shards) {
  307. if (shard.ne != first_shard.ne) {
  308. throw format("inconsistent tensor shard shape in '%s': first was %s, other was %s",
  309. name.c_str(), llama_format_tensor_shape(first_shard.ne).c_str(), llama_format_tensor_shape(shard.ne).c_str());
  310. }
  311. }
  312. ne = first_shard.ne;
  313. LLAMA_ASSERT(shards.size() <= UINT32_MAX);
  314. uint32_t n_shards = (uint32_t) shards.size();
  315. switch (split_type) {
  316. case SPLIT_NONE:
  317. ne = first_shard.ne;
  318. break;
  319. case SPLIT_BY_COLUMNS:
  320. ne = {checked_mul<uint32_t>(first_shard.ne[0], n_shards),
  321. first_shard.ne[1]};
  322. break;
  323. case SPLIT_BY_ROWS:
  324. ne = {first_shard.ne[0],
  325. checked_mul<uint32_t>(first_shard.ne[1], n_shards)};
  326. break;
  327. }
  328. }
  329. void calc_size() {
  330. size = llama_calc_tensor_size(ne, type);
  331. }
  332. };
  333. struct llama_load_tensors_map {
  334. // tensors is kept in a separate vector to preserve file order
  335. std::vector<llama_load_tensor> tensors;
  336. std::unordered_map<std::string, size_t> name_to_idx;
  337. };
  338. enum llama_file_version {
  339. LLAMA_FILE_VERSION_GGML,
  340. LLAMA_FILE_VERSION_GGMF_V1, // added version field and scores in vocab
  341. LLAMA_FILE_VERSION_GGJT_V1, // added padding
  342. LLAMA_FILE_VERSION_GGJT_V2, // changed quantization format
  343. LLAMA_FILE_VERSION_GGJT_V3, // changed Q4 and Q8 quantization format
  344. };
  345. struct llama_file_loader {
  346. llama_file file;
  347. llama_file_version file_version;
  348. llama_hparams hparams;
  349. llama_vocab vocab;
  350. llama_file_loader(const char * fname, size_t file_idx, llama_load_tensors_map & tensors_map)
  351. : file(fname, "rb") {
  352. fprintf(stderr, "llama.cpp: loading model from %s\n", fname);
  353. read_magic();
  354. read_hparams();
  355. read_vocab();
  356. read_tensor_metadata(file_idx, tensors_map);
  357. }
  358. void read_magic() {
  359. uint32_t magic = file.read_u32();
  360. if (magic == LLAMA_FILE_MAGIC_GGML) {
  361. file_version = LLAMA_FILE_VERSION_GGML;
  362. return;
  363. }
  364. uint32_t version = file.read_u32();
  365. switch (magic) {
  366. case LLAMA_FILE_MAGIC_GGMF:
  367. switch (version) {
  368. case 1: file_version = LLAMA_FILE_VERSION_GGMF_V1; return;
  369. }
  370. break;
  371. case LLAMA_FILE_MAGIC_GGJT:
  372. switch (version) {
  373. case 1: file_version = LLAMA_FILE_VERSION_GGJT_V1; return;
  374. case 2: file_version = LLAMA_FILE_VERSION_GGJT_V2; return;
  375. case 3: file_version = LLAMA_FILE_VERSION_GGJT_V3; return;
  376. }
  377. }
  378. throw format("unknown (magic, version) combination: %08x, %08x; is this really a GGML file?",
  379. magic, version);
  380. }
  381. void read_hparams() {
  382. hparams.n_vocab = file.read_u32();
  383. hparams.n_embd = file.read_u32();
  384. hparams.n_mult = file.read_u32();
  385. hparams.n_head = file.read_u32();
  386. hparams.n_layer = file.read_u32();
  387. hparams.n_rot = file.read_u32();
  388. hparams.ftype = (enum llama_ftype) file.read_u32();
  389. }
  390. void read_vocab() {
  391. vocab.id_to_token.resize(hparams.n_vocab);
  392. for (uint32_t i = 0; i < hparams.n_vocab; i++) {
  393. uint32_t len = file.read_u32();
  394. std::string word = file.read_string(len);
  395. float score = 0.0f;
  396. if (file_version >= LLAMA_FILE_VERSION_GGMF_V1) {
  397. file.read_raw(&score, sizeof(score));
  398. }
  399. vocab.token_to_id[word] = i;
  400. auto & tok_score = vocab.id_to_token[i];
  401. tok_score.tok = std::move(word);
  402. tok_score.score = score;
  403. }
  404. }
  405. void read_tensor_metadata(size_t file_idx, llama_load_tensors_map & tensors_map) {
  406. while (file.tell() < file.size) {
  407. llama_load_tensor_shard shard;
  408. uint32_t n_dims = file.read_u32();
  409. uint32_t name_len = file.read_u32();
  410. shard.type = (enum ggml_type) file.read_u32();
  411. shard.ne.resize(n_dims);
  412. file.read_raw(shard.ne.data(), sizeof(shard.ne[0]) * n_dims);
  413. std::string name = file.read_string(name_len);
  414. if (n_dims < 1 || n_dims > 2) {
  415. throw format("llama.cpp: tensor '%s' should not be %u-dimensional", name.c_str(), n_dims);
  416. }
  417. switch (shard.type) {
  418. case GGML_TYPE_F32:
  419. case GGML_TYPE_F16:
  420. case GGML_TYPE_Q4_0:
  421. case GGML_TYPE_Q4_1:
  422. case GGML_TYPE_Q5_0:
  423. case GGML_TYPE_Q5_1:
  424. case GGML_TYPE_Q8_0:
  425. break;
  426. default: {
  427. throw format("unrecognized tensor type %u\n", shard.type);
  428. }
  429. }
  430. if (file_version >= LLAMA_FILE_VERSION_GGJT_V1) {
  431. // skip to the next multiple of 32 bytes
  432. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  433. }
  434. shard.file_idx = file_idx;
  435. shard.file_off = file.tell();
  436. shard.calc_size();
  437. file.seek(shard.size, SEEK_CUR);
  438. auto it = tensors_map.name_to_idx.find(name);
  439. size_t idx;
  440. if (it != tensors_map.name_to_idx.end()) {
  441. idx = it->second;
  442. } else {
  443. tensors_map.tensors.emplace_back(name);
  444. idx = tensors_map.tensors.size() - 1;
  445. tensors_map.name_to_idx.emplace(name, idx);
  446. }
  447. tensors_map.tensors.at(idx).shards.push_back(shard);
  448. }
  449. }
  450. };
  451. struct llama_file_saver {
  452. llama_file file;
  453. llama_file_loader * any_file_loader;
  454. llama_file_saver(const char * fname, llama_file_loader * any_file_loader, enum llama_ftype new_ftype)
  455. : file(fname, "wb"), any_file_loader(any_file_loader) {
  456. fprintf(stderr, "llama.cpp: saving model to %s\n", fname);
  457. write_magic();
  458. write_hparams(new_ftype);
  459. write_vocab();
  460. }
  461. void write_magic() {
  462. file.write_u32(LLAMA_FILE_MAGIC); // magic
  463. file.write_u32(LLAMA_FILE_VERSION); // version
  464. }
  465. void write_hparams(enum llama_ftype new_ftype) {
  466. const llama_hparams & hparams = any_file_loader->hparams;
  467. file.write_u32(hparams.n_vocab);
  468. file.write_u32(hparams.n_embd);
  469. file.write_u32(hparams.n_mult);
  470. file.write_u32(hparams.n_head);
  471. file.write_u32(hparams.n_layer);
  472. file.write_u32(hparams.n_rot);
  473. file.write_u32(new_ftype);
  474. }
  475. void write_vocab() {
  476. if (any_file_loader->file_version == LLAMA_FILE_VERSION_GGML) {
  477. fprintf(stderr, "llama.cpp: WARNING: input is an old file that doesn't have scores; will add dummy scores\n");
  478. }
  479. uint32_t n_vocab = any_file_loader->hparams.n_vocab;
  480. for (uint32_t i = 0; i < n_vocab; i++) {
  481. const auto & token_score = any_file_loader->vocab.id_to_token.at(i);
  482. file.write_u32((uint32_t) token_score.tok.size());
  483. file.write_raw(token_score.tok.data(), token_score.tok.size());
  484. file.write_raw(&token_score.score, sizeof(token_score.score));
  485. }
  486. }
  487. void write_tensor(llama_load_tensor & tensor, enum ggml_type new_type, const void * new_data, size_t new_size) {
  488. switch (new_type) {
  489. case GGML_TYPE_F32:
  490. case GGML_TYPE_F16:
  491. case GGML_TYPE_Q4_0:
  492. case GGML_TYPE_Q4_1:
  493. case GGML_TYPE_Q5_0:
  494. case GGML_TYPE_Q5_1:
  495. case GGML_TYPE_Q8_0:
  496. break;
  497. default: LLAMA_ASSERT(false);
  498. }
  499. file.write_u32((uint32_t) tensor.ne.size());
  500. file.write_u32((uint32_t) tensor.name.size());
  501. file.write_u32(new_type);
  502. file.write_raw(tensor.ne.data(), sizeof(tensor.ne[0]) * tensor.ne.size());
  503. file.write_raw(tensor.name.data(), tensor.name.size());
  504. file.seek(-static_cast<ptrdiff_t>(file.tell()) & 31, SEEK_CUR);
  505. LLAMA_ASSERT(new_size == llama_calc_tensor_size(tensor.ne, new_type));
  506. file.write_raw(new_data, new_size);
  507. }
  508. };
  509. struct llama_model_loader {
  510. std::vector<std::unique_ptr<llama_file_loader>> file_loaders;
  511. llama_load_tensors_map tensors_map;
  512. bool use_mmap;
  513. size_t num_ggml_tensors_created = 0;
  514. struct ggml_context * ggml_ctx = NULL;
  515. std::unique_ptr<llama_mmap> mapping;
  516. llama_model_loader(const std::string & fname_base, bool use_mmap, bool vocab_only) {
  517. auto * first_file = new llama_file_loader(fname_base.c_str(), 0, tensors_map);
  518. file_loaders.emplace_back(first_file);
  519. uint32_t n_parts = vocab_only ? 1 : guess_n_parts();
  520. for (uint32_t i = 1; i < n_parts; i++) {
  521. std::string fname = fname_base + "." + std::to_string(i);
  522. auto * ith_file = new llama_file_loader(fname.c_str(), i, tensors_map);
  523. file_loaders.emplace_back(ith_file);
  524. if (ith_file->hparams != first_file->hparams) {
  525. throw format("llama.cpp: hparams inconsistent between files");
  526. }
  527. }
  528. if (!llama_mmap::SUPPORTED) {
  529. use_mmap = false;
  530. }
  531. if (use_mmap && alignment_prevents_mmap()) {
  532. fprintf(stderr, "llama.cpp: can't use mmap because tensors are not aligned; convert to new format to avoid this\n");
  533. use_mmap = false;
  534. }
  535. this->use_mmap = use_mmap;
  536. for (llama_load_tensor & lt : tensors_map.tensors) {
  537. lt.calc_all();
  538. }
  539. }
  540. bool alignment_prevents_mmap() {
  541. for (const llama_load_tensor & lt : tensors_map.tensors) {
  542. for (const llama_load_tensor_shard & shard : lt.shards) {
  543. if (shard.file_off & 3) {
  544. return true;
  545. }
  546. }
  547. }
  548. return false;
  549. }
  550. uint32_t guess_n_parts() const {
  551. auto it = tensors_map.name_to_idx.find("tok_embeddings.weight");
  552. if (it == tensors_map.name_to_idx.end()) {
  553. throw std::string("missing tok_embeddings.weight");
  554. }
  555. const llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  556. return file_loaders.at(0)->hparams.n_embd / lt.shards.at(0).ne.at(0);
  557. }
  558. void calc_sizes(size_t * ctx_size_p, size_t * mmapped_size_p) const {
  559. *ctx_size_p = *mmapped_size_p = 0;
  560. for (const llama_load_tensor & lt : tensors_map.tensors) {
  561. *ctx_size_p += sizeof(struct ggml_tensor) + GGML_OBJECT_SIZE;
  562. *(use_mmap ? mmapped_size_p : ctx_size_p) += lt.size;
  563. }
  564. }
  565. struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) {
  566. auto it = tensors_map.name_to_idx.find(name);
  567. if (it == tensors_map.name_to_idx.end()) {
  568. throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
  569. }
  570. llama_load_tensor & lt = tensors_map.tensors.at(it->second);
  571. if (lt.ne != ne) {
  572. throw format("llama.cpp: tensor '%s' has wrong shape; expected %s, got %s",
  573. name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
  574. }
  575. return get_tensor_for(lt, backend);
  576. }
  577. struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) {
  578. struct ggml_tensor * tensor;
  579. if (lt.ne.size() == 2) {
  580. tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
  581. } else {
  582. LLAMA_ASSERT(lt.ne.size() == 1);
  583. tensor = ggml_new_tensor_1d(ggml_ctx, lt.type, lt.ne.at(0));
  584. }
  585. ggml_set_name(tensor, lt.name.c_str());
  586. LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
  587. tensor->backend = backend;
  588. lt.ggml_tensor = tensor;
  589. num_ggml_tensors_created++;
  590. return tensor;
  591. }
  592. void done_getting_tensors() const {
  593. if (num_ggml_tensors_created != tensors_map.tensors.size()) {
  594. throw std::string("llama.cpp: file contained more tensors than expected");
  595. }
  596. }
  597. void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
  598. size_t data_size = 0;
  599. size_t prefetch_size = 0;
  600. for (const llama_load_tensor & lt : tensors_map.tensors) {
  601. data_size += lt.size;
  602. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  603. prefetch_size += lt.size;
  604. }
  605. }
  606. if (use_mmap) {
  607. mapping.reset(new llama_mmap(&file_loaders.at(0)->file, prefetch_size));
  608. if (!lmlock) {
  609. // Don't call the callback since the actual loading will be lazy
  610. // and we can't measure it.
  611. progress_callback = NULL;
  612. }
  613. if (lmlock) {
  614. lmlock->init(mapping->addr);
  615. }
  616. }
  617. size_t done_size = 0;
  618. for (llama_load_tensor & lt : tensors_map.tensors) {
  619. if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
  620. continue;
  621. }
  622. if (progress_callback) {
  623. progress_callback((float) done_size / data_size, progress_callback_user_data);
  624. }
  625. LLAMA_ASSERT(lt.ggml_tensor); // unused tensors should have been caught by load_data already
  626. lt.data = (uint8_t *) lt.ggml_tensor->data;
  627. load_data_for(lt);
  628. lt.ggml_tensor->data = lt.data;
  629. done_size += lt.size;
  630. if (use_mmap && lmlock) {
  631. lmlock->grow_to(done_size);
  632. }
  633. }
  634. }
  635. void load_data_for(llama_load_tensor & lt) {
  636. if (use_mmap) {
  637. LLAMA_ASSERT(lt.shards.size() == 1);
  638. lt.data = (uint8_t *) mapping->addr + lt.shards.at(0).file_off;
  639. } else if (lt.split_type == SPLIT_NONE) {
  640. llama_file & file = file_loaders.at(lt.shards.at(0).file_idx)->file;
  641. file.seek(lt.shards.at(0).file_off, SEEK_SET);
  642. file.read_raw(lt.data, lt.size);
  643. } else if (lt.split_type == SPLIT_BY_ROWS) {
  644. size_t offset = 0;
  645. for (llama_load_tensor_shard & shard : lt.shards) {
  646. llama_file & file = file_loaders.at(shard.file_idx)->file;
  647. file.seek(shard.file_off, SEEK_SET);
  648. file.read_raw(lt.data + offset, shard.size);
  649. offset += shard.size;
  650. }
  651. LLAMA_ASSERT(offset == lt.size);
  652. } else if (lt.split_type == SPLIT_BY_COLUMNS) {
  653. // Let's load the data into temporary buffers to ensure the OS performs large loads.
  654. std::vector<llama_buffer> tmp_bufs(lt.shards.size());
  655. for (size_t i = 0; i < lt.shards.size(); i++) {
  656. llama_load_tensor_shard & shard = lt.shards.at(i);
  657. llama_file & file = file_loaders.at(shard.file_idx)->file;
  658. file.seek(shard.file_off, SEEK_SET);
  659. tmp_bufs.at(i).resize(shard.size);
  660. file.read_raw(tmp_bufs.at(i).addr, shard.size);
  661. }
  662. // Then reshape.
  663. size_t num_rows = lt.ne.at(1);
  664. size_t per_shard_row_size = lt.shards.at(0).size / num_rows;
  665. size_t out_offset = 0;
  666. for (size_t row = 0; row < num_rows; row++) {
  667. for (llama_buffer & tmp_buf : tmp_bufs) {
  668. memcpy(lt.data + out_offset,
  669. tmp_buf.addr + row * per_shard_row_size,
  670. per_shard_row_size);
  671. out_offset += per_shard_row_size;
  672. }
  673. }
  674. LLAMA_ASSERT(out_offset == lt.size);
  675. }
  676. if (0) {
  677. print_checksum(lt);
  678. }
  679. }
  680. static void print_checksum(llama_load_tensor & lt) {
  681. uint32_t sum = 0;
  682. for (size_t i = 0; i < lt.size; i++) {
  683. uint8_t byte = lt.data[i];
  684. sum = byte + (sum << 6) + (sum << 16) - sum; // sdbm hash
  685. }
  686. fprintf(stderr, "%s checksum: %#08x (%s, size %zu)\n", lt.name.c_str(), sum,
  687. llama_format_tensor_shape(lt.ne).c_str(), lt.size);
  688. }
  689. };
  690. //
  691. // kv cache
  692. //
  693. static bool kv_cache_init(
  694. const struct llama_hparams & hparams,
  695. struct llama_kv_cache & cache,
  696. ggml_type wtype,
  697. int n_ctx) {
  698. const int n_embd = hparams.n_embd;
  699. const int n_layer = hparams.n_layer;
  700. const int64_t n_mem = n_layer*n_ctx;
  701. const int64_t n_elements = n_embd*n_mem;
  702. cache.buf.resize(2u*n_elements*ggml_type_size(wtype) + 2u*MB);
  703. struct ggml_init_params params;
  704. params.mem_size = cache.buf.size;
  705. params.mem_buffer = cache.buf.addr;
  706. params.no_alloc = false;
  707. cache.ctx = ggml_init(params);
  708. if (!cache.ctx) {
  709. fprintf(stderr, "%s: failed to allocate memory for kv cache\n", __func__);
  710. return false;
  711. }
  712. cache.k = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  713. cache.v = ggml_new_tensor_1d(cache.ctx, wtype, n_elements);
  714. ggml_set_name(cache.k, "cache_k");
  715. ggml_set_name(cache.v, "cache_v");
  716. return true;
  717. }
  718. struct llama_context_params llama_context_default_params() {
  719. struct llama_context_params result = {
  720. /*.n_ctx =*/ 512,
  721. /*.gpu_layers =*/ 0,
  722. /*.seed =*/ -1,
  723. /*.f16_kv =*/ true,
  724. /*.logits_all =*/ false,
  725. /*.vocab_only =*/ false,
  726. /*.use_mmap =*/ true,
  727. /*.use_mlock =*/ false,
  728. /*.embedding =*/ false,
  729. /*.progress_callback =*/ nullptr,
  730. /*.progress_callback_user_data =*/ nullptr,
  731. };
  732. return result;
  733. }
  734. bool llama_mmap_supported() {
  735. return llama_mmap::SUPPORTED;
  736. }
  737. bool llama_mlock_supported() {
  738. return llama_mlock::SUPPORTED;
  739. }
  740. void llama_init_backend() {
  741. ggml_time_init();
  742. // needed to initialize f16 tables
  743. {
  744. struct ggml_init_params params = { 0, NULL, false };
  745. struct ggml_context * ctx = ggml_init(params);
  746. ggml_free(ctx);
  747. }
  748. }
  749. int64_t llama_time_us() {
  750. return ggml_time_us();
  751. }
  752. //
  753. // model loading
  754. //
  755. static const char *llama_file_version_name(llama_file_version version) {
  756. switch (version) {
  757. case LLAMA_FILE_VERSION_GGML: return "'ggml' (old version with low tokenizer quality and no mmap support)";
  758. case LLAMA_FILE_VERSION_GGMF_V1: return "ggmf v1 (old version with no mmap support)";
  759. case LLAMA_FILE_VERSION_GGJT_V1: return "ggjt v1 (pre #1405)";
  760. case LLAMA_FILE_VERSION_GGJT_V2: return "ggjt v2 (pre #1508)";
  761. case LLAMA_FILE_VERSION_GGJT_V3: return "ggjt v3 (latest)";
  762. }
  763. return "unknown";
  764. }
  765. static const char *llama_ftype_name(enum llama_ftype ftype) {
  766. switch (ftype) {
  767. case LLAMA_FTYPE_ALL_F32: return "all F32";
  768. case LLAMA_FTYPE_MOSTLY_F16: return "mostly F16";
  769. case LLAMA_FTYPE_MOSTLY_Q4_0: return "mostly Q4_0";
  770. case LLAMA_FTYPE_MOSTLY_Q4_1: return "mostly Q4_1";
  771. case LLAMA_FTYPE_MOSTLY_Q4_1_SOME_F16:
  772. return "mostly Q4_1, some F16";
  773. case LLAMA_FTYPE_MOSTLY_Q5_0: return "mostly Q5_0";
  774. case LLAMA_FTYPE_MOSTLY_Q5_1: return "mostly Q5_1";
  775. case LLAMA_FTYPE_MOSTLY_Q8_0: return "mostly Q8_0";
  776. default: return "unknown, may not work";
  777. }
  778. }
  779. static const char *llama_model_type_name(e_model type) {
  780. switch (type) {
  781. case MODEL_7B: return "7B";
  782. case MODEL_13B: return "13B";
  783. case MODEL_30B: return "30B";
  784. case MODEL_65B: return "65B";
  785. default: LLAMA_ASSERT(false);
  786. }
  787. }
  788. static void llama_model_load_internal(
  789. const std::string & fname,
  790. llama_context & lctx,
  791. int n_ctx,
  792. int n_gpu_layers,
  793. ggml_type memory_type,
  794. bool use_mmap,
  795. bool use_mlock,
  796. bool vocab_only,
  797. llama_progress_callback progress_callback,
  798. void * progress_callback_user_data) {
  799. lctx.t_start_us = ggml_time_us();
  800. std::unique_ptr<llama_model_loader> ml(new llama_model_loader(fname, use_mmap, vocab_only));
  801. lctx.vocab = std::move(ml->file_loaders.at(0)->vocab);
  802. auto & model = lctx.model;
  803. model.hparams = ml->file_loaders.at(0)->hparams;
  804. llama_file_version file_version = ml->file_loaders.at(0)->file_version;
  805. auto & hparams = model.hparams;
  806. uint32_t n_ff = ((2*(4*hparams.n_embd)/3 + hparams.n_mult - 1)/hparams.n_mult)*hparams.n_mult;
  807. {
  808. switch (hparams.n_layer) {
  809. case 32: model.type = e_model::MODEL_7B; break;
  810. case 40: model.type = e_model::MODEL_13B; break;
  811. case 60: model.type = e_model::MODEL_30B; break;
  812. case 80: model.type = e_model::MODEL_65B; break;
  813. }
  814. hparams.n_ctx = n_ctx;
  815. }
  816. {
  817. fprintf(stderr, "%s: format = %s\n", __func__, llama_file_version_name(file_version));
  818. fprintf(stderr, "%s: n_vocab = %u\n", __func__, hparams.n_vocab);
  819. fprintf(stderr, "%s: n_ctx = %u\n", __func__, hparams.n_ctx);
  820. fprintf(stderr, "%s: n_embd = %u\n", __func__, hparams.n_embd);
  821. fprintf(stderr, "%s: n_mult = %u\n", __func__, hparams.n_mult);
  822. fprintf(stderr, "%s: n_head = %u\n", __func__, hparams.n_head);
  823. fprintf(stderr, "%s: n_layer = %u\n", __func__, hparams.n_layer);
  824. fprintf(stderr, "%s: n_rot = %u\n", __func__, hparams.n_rot);
  825. fprintf(stderr, "%s: ftype = %u (%s)\n", __func__, hparams.ftype, llama_ftype_name(hparams.ftype));
  826. fprintf(stderr, "%s: n_ff = %u\n", __func__, n_ff);
  827. fprintf(stderr, "%s: n_parts = %zu\n", __func__, ml->file_loaders.size());
  828. fprintf(stderr, "%s: model size = %s\n", __func__, llama_model_type_name(model.type));
  829. }
  830. if (file_version < LLAMA_FILE_VERSION_GGJT_V2) {
  831. if (hparams.ftype != LLAMA_FTYPE_ALL_F32 &&
  832. hparams.ftype != LLAMA_FTYPE_MOSTLY_F16 &&
  833. hparams.ftype != LLAMA_FTYPE_MOSTLY_Q8_0) {
  834. throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1405)");
  835. }
  836. }
  837. if (file_version < LLAMA_FILE_VERSION_GGJT_V3) {
  838. if (hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ||
  839. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q4_1 ||
  840. hparams.ftype == LLAMA_FTYPE_MOSTLY_Q8_0) {
  841. throw format("this format is no longer supported (see https://github.com/ggerganov/llama.cpp/pull/1508)");
  842. }
  843. }
  844. if (vocab_only) {
  845. return;
  846. }
  847. auto & ctx = model.ctx;
  848. size_t ctx_size;
  849. size_t mmapped_size;
  850. ml->calc_sizes(&ctx_size, &mmapped_size);
  851. fprintf(stderr, "%s: ggml ctx size = %7.2f MB\n", __func__, ctx_size/1024.0/1024.0);
  852. // create the ggml context
  853. {
  854. lctx.model.buf.resize(ctx_size);
  855. if (use_mlock) {
  856. lctx.model.mlock_buf.init(lctx.model.buf.addr);
  857. lctx.model.mlock_buf.grow_to(lctx.model.buf.size);
  858. }
  859. struct ggml_init_params params = {
  860. /*.mem_size =*/ lctx.model.buf.size,
  861. /*.mem_buffer =*/ lctx.model.buf.addr,
  862. /*.no_alloc =*/ ml->use_mmap,
  863. };
  864. model.ctx = ggml_init(params);
  865. if (!model.ctx) {
  866. throw format("ggml_init() failed");
  867. }
  868. }
  869. #ifdef GGML_USE_CUBLAS
  870. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA
  871. #else
  872. #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
  873. #endif
  874. // prepare memory for the weights
  875. size_t vram_total = 0;
  876. {
  877. const uint32_t n_embd = hparams.n_embd;
  878. const uint32_t n_layer = hparams.n_layer;
  879. const uint32_t n_vocab = hparams.n_vocab;
  880. ml->ggml_ctx = ctx;
  881. model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU);
  882. model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU);
  883. // "output" tensor
  884. {
  885. ggml_backend backend_output;
  886. if (n_gpu_layers > int(n_layer)) { // NOLINT
  887. backend_output = LLAMA_BACKEND_OFFLOAD;
  888. } else {
  889. backend_output = GGML_BACKEND_CPU;
  890. }
  891. model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output);
  892. }
  893. const int i_gpu_start = n_layer - n_gpu_layers;
  894. model.layers.resize(n_layer);
  895. for (uint32_t i = 0; i < n_layer; ++i) {
  896. const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
  897. auto & layer = model.layers[i];
  898. std::string layers_i = "layers." + std::to_string(i);
  899. layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend);
  900. layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend);
  901. layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend);
  902. layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend);
  903. layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend);
  904. layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend);
  905. layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend);
  906. layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend);
  907. layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend);
  908. if (backend == GGML_BACKEND_CUDA) {
  909. vram_total +=
  910. ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
  911. ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
  912. ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
  913. }
  914. }
  915. }
  916. ml->done_getting_tensors();
  917. // print memory requirements
  918. {
  919. const size_t scale = memory_type == GGML_TYPE_F32 ? 2 : 1;
  920. // this is the total memory required to run the inference
  921. const size_t mem_required =
  922. ctx_size +
  923. mmapped_size - vram_total + // weights in VRAM not in memory
  924. MEM_REQ_SCRATCH0().at(model.type) +
  925. MEM_REQ_SCRATCH1().at(model.type) +
  926. MEM_REQ_EVAL().at(model.type);
  927. // this is the memory required by one llama_state
  928. const size_t mem_required_state =
  929. scale*MEM_REQ_KV_SELF().at(model.type);
  930. fprintf(stderr, "%s: mem required = %7.2f MB (+ %7.2f MB per state)\n", __func__,
  931. mem_required / 1024.0 / 1024.0, mem_required_state / 1024.0 / 1024.0);
  932. #ifdef GGML_USE_CUBLAS
  933. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  934. fprintf(stderr, "%s: [cublas] offloading %d layers to GPU\n", __func__, n_gpu);
  935. if (n_gpu_layers > (int) hparams.n_layer) {
  936. fprintf(stderr, "%s: [cublas] offloading output layer to GPU\n", __func__);
  937. }
  938. fprintf(stderr, "%s: [cublas] total VRAM used: %zu MB\n", __func__, vram_total / 1024 / 1024);
  939. #elif !defined(GGML_USE_CLBLAST)
  940. (void) n_gpu_layers;
  941. #endif
  942. }
  943. // populate `tensors_by_name`
  944. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  945. model.tensors_by_name.emplace_back(lt.name, lt.ggml_tensor);
  946. }
  947. ml->load_all_data(progress_callback, progress_callback_user_data, use_mlock ? &lctx.model.mlock_mmap : NULL);
  948. #ifdef GGML_USE_CUBLAS
  949. {
  950. size_t done_size = 0;
  951. size_t data_size = 0;
  952. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  953. data_size += lt.size;
  954. if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
  955. done_size += lt.size;
  956. }
  957. }
  958. for (llama_load_tensor & lt : ml->tensors_map.tensors) {
  959. if (lt.ggml_tensor->backend != GGML_BACKEND_CUDA) {
  960. continue;
  961. }
  962. if (progress_callback) {
  963. progress_callback((float) done_size / data_size, progress_callback_user_data);
  964. }
  965. ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off);
  966. done_size += lt.size;
  967. }
  968. }
  969. #elif defined(GGML_USE_CLBLAST)
  970. {
  971. const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
  972. fprintf(stderr, "ggml_opencl: offloading %d layers to GPU\n", n_gpu);
  973. size_t vram_total = 0;
  974. for (int i = 0; i < n_gpu; ++i) {
  975. const auto & layer = model.layers[i];
  976. ggml_cl_transform_tensor(layer.wq); vram_total += ggml_nbytes(layer.wq);
  977. ggml_cl_transform_tensor(layer.wk); vram_total += ggml_nbytes(layer.wk);
  978. ggml_cl_transform_tensor(layer.wv); vram_total += ggml_nbytes(layer.wv);
  979. ggml_cl_transform_tensor(layer.wo); vram_total += ggml_nbytes(layer.wo);
  980. ggml_cl_transform_tensor(layer.w1); vram_total += ggml_nbytes(layer.w1);
  981. ggml_cl_transform_tensor(layer.w2); vram_total += ggml_nbytes(layer.w2);
  982. ggml_cl_transform_tensor(layer.w3); vram_total += ggml_nbytes(layer.w3);
  983. }
  984. if (n_gpu_layers > (int) hparams.n_layer) {
  985. fprintf(stderr, "ggml_opencl: offloading output layer to GPU\n");
  986. ggml_cl_transform_tensor(model.output); vram_total += ggml_nbytes(model.output);
  987. }
  988. fprintf(stderr, "ggml_opencl: total VRAM used: %zu MB\n", vram_total / 1024 / 1024);
  989. }
  990. #endif
  991. if (progress_callback) {
  992. progress_callback(1.0f, progress_callback_user_data);
  993. }
  994. model.mapping = std::move(ml->mapping);
  995. // loading time will be recalculate after the first eval, so
  996. // we take page faults deferred by mmap() into consideration
  997. lctx.t_load_us = ggml_time_us() - lctx.t_start_us;
  998. }
  999. static bool llama_model_load(
  1000. const std::string & fname,
  1001. llama_context & lctx,
  1002. int n_ctx,
  1003. int n_gpu_layers,
  1004. ggml_type memory_type,
  1005. bool use_mmap,
  1006. bool use_mlock,
  1007. bool vocab_only,
  1008. llama_progress_callback progress_callback,
  1009. void *progress_callback_user_data) {
  1010. try {
  1011. llama_model_load_internal(fname, lctx, n_ctx, n_gpu_layers, memory_type, use_mmap, use_mlock,
  1012. vocab_only, progress_callback, progress_callback_user_data);
  1013. return true;
  1014. } catch (const std::string & err) {
  1015. fprintf(stderr, "error loading model: %s\n", err.c_str());
  1016. return false;
  1017. }
  1018. }
  1019. // evaluate the transformer
  1020. //
  1021. // - lctx: llama context
  1022. // - tokens: new batch of tokens to process
  1023. // - n_past: the context size so far
  1024. // - n_threads: number of threads to use
  1025. //
  1026. static bool llama_eval_internal(
  1027. llama_context & lctx,
  1028. const llama_token * tokens,
  1029. const int n_tokens,
  1030. const int n_past,
  1031. const int n_threads) {
  1032. // enforce that the first token is BOS
  1033. if (n_past == 0 && tokens[0] != llama_token_bos()) {
  1034. fprintf(stderr, "%s: first token must be BOS\n", __func__);
  1035. return false;
  1036. }
  1037. const int64_t t_start_us = ggml_time_us();
  1038. const int N = n_tokens;
  1039. const auto & model = lctx.model;
  1040. const auto & hparams = model.hparams;
  1041. const auto & kv_self = model.kv_self;
  1042. LLAMA_ASSERT(!!kv_self.ctx);
  1043. const int n_embd = hparams.n_embd;
  1044. const int n_layer = hparams.n_layer;
  1045. const int n_ctx = hparams.n_ctx;
  1046. const int n_head = hparams.n_head;
  1047. const int n_vocab = hparams.n_vocab;
  1048. const int n_rot = hparams.n_embd/hparams.n_head;
  1049. auto & mem_per_token = lctx.mem_per_token;
  1050. auto & buf_compute = lctx.buf_compute;
  1051. struct ggml_init_params params = {
  1052. /*.mem_size =*/ buf_compute.size,
  1053. /*.mem_buffer =*/ buf_compute.addr,
  1054. /*.no_alloc =*/ false,
  1055. };
  1056. struct ggml_context * ctx0 = ggml_init(params);
  1057. // for big prompts, if BLAS is enabled, it is better to use only one thread
  1058. // otherwise, the threads are spin-lock waiting for the BLAS calls and are degrading the performance
  1059. ggml_cgraph gf = {};
  1060. gf.n_threads = N >= 32 && ggml_cpu_has_blas() && !ggml_cpu_has_gpublas() ? 1 : n_threads;
  1061. struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
  1062. ggml_set_name(embd, "embd");
  1063. memcpy(embd->data, tokens, N*ggml_element_size(embd));
  1064. struct ggml_tensor * inpL = ggml_get_rows(ctx0, model.tok_embeddings, embd);
  1065. for (int il = 0; il < n_layer; ++il) {
  1066. struct ggml_tensor * inpSA = inpL;
  1067. struct ggml_tensor * cur;
  1068. lctx.use_buf(ctx0, 0);
  1069. // norm
  1070. {
  1071. cur = ggml_rms_norm(ctx0, inpL);
  1072. // cur = cur*attention_norm(broadcasted)
  1073. cur = ggml_mul(ctx0, cur, model.layers[il].attention_norm);
  1074. }
  1075. // self-attention
  1076. {
  1077. // compute Q and K and RoPE them
  1078. struct ggml_tensor * Qcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wq, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
  1079. struct ggml_tensor * Kcur = ggml_rope_inplace(ctx0, ggml_reshape_3d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wk, cur), n_embd/n_head, n_head, N), n_past, n_rot, 0);
  1080. ggml_set_name(Qcur, "Qcur");
  1081. ggml_set_name(Kcur, "Kcur");
  1082. // store key and value to memory
  1083. {
  1084. // compute the transposed [N, n_embd] V matrix
  1085. struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, ggml_mul_mat(ctx0, model.layers[il].wv, cur), n_embd, N));
  1086. struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd, (ggml_element_size(kv_self.k)*n_embd)*(il*n_ctx + n_past));
  1087. struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd,
  1088. ( n_ctx)*ggml_element_size(kv_self.v),
  1089. (il*n_ctx)*ggml_element_size(kv_self.v)*n_embd + n_past*ggml_element_size(kv_self.v));
  1090. // important: storing RoPE-ed version of K in the KV cache!
  1091. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
  1092. ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
  1093. }
  1094. struct ggml_tensor * Q =
  1095. ggml_permute(ctx0,
  1096. Qcur,
  1097. 0, 2, 1, 3);
  1098. ggml_set_name(Q, "Q");
  1099. struct ggml_tensor * K =
  1100. ggml_permute(ctx0,
  1101. ggml_reshape_3d(ctx0,
  1102. ggml_view_1d(ctx0, kv_self.k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(kv_self.k)*n_embd),
  1103. n_embd/n_head, n_head, n_past + N),
  1104. 0, 2, 1, 3);
  1105. ggml_set_name(K, "K");
  1106. // K * Q
  1107. struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
  1108. ggml_set_name(KQ, "KQ");
  1109. // KQ_scaled = KQ / sqrt(n_embd/n_head)
  1110. struct ggml_tensor * KQ_scale = ggml_new_f32(ctx0, 1.0f/sqrtf(float(n_embd)/n_head));
  1111. ggml_set_name(KQ_scale, "1/sqrt(n_embd/n_head)");
  1112. // KQ_scaled shape [n_past + N, N, n_head, 1]
  1113. struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
  1114. ggml_set_name(KQ_scaled, "KQ_scaled");
  1115. // KQ_masked = mask_past(KQ_scaled)
  1116. struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
  1117. ggml_set_name(KQ_masked, "KQ_masked");
  1118. // KQ = soft_max(KQ_masked)
  1119. struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
  1120. ggml_set_name(KQ_soft_max, "KQ_soft_max");
  1121. // split cached V into n_head heads
  1122. struct ggml_tensor * V =
  1123. ggml_view_3d(ctx0, kv_self.v,
  1124. n_past + N, n_embd/n_head, n_head,
  1125. n_ctx*ggml_element_size(kv_self.v),
  1126. n_ctx*ggml_element_size(kv_self.v)*n_embd/n_head,
  1127. il*n_ctx*ggml_element_size(kv_self.v)*n_embd);
  1128. ggml_set_name(V, "V");
  1129. #if 1
  1130. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
  1131. ggml_set_name(KQV, "KQV");
  1132. #else
  1133. // make V contiguous in memory to speed up the matmul, however we waste time on the copy
  1134. // on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
  1135. // is there a better way?
  1136. struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd/n_head, n_head));
  1137. struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
  1138. #endif
  1139. // KQV_merged = KQV.permute(0, 2, 1, 3)
  1140. struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
  1141. ggml_set_name(KQV_merged, "KQV_merged");
  1142. // cur = KQV_merged.contiguous().view(n_embd, N)
  1143. cur = ggml_cpy(ctx0,
  1144. KQV_merged,
  1145. ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
  1146. ggml_set_name(cur, "KQV_merged_contiguous");
  1147. // projection (no bias)
  1148. cur = ggml_mul_mat(ctx0,
  1149. model.layers[il].wo,
  1150. cur);
  1151. }
  1152. lctx.use_buf(ctx0, 1);
  1153. struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
  1154. // feed-forward network
  1155. {
  1156. // norm
  1157. {
  1158. cur = ggml_rms_norm(ctx0, inpFF);
  1159. // cur = cur*ffn_norm(broadcasted)
  1160. cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
  1161. }
  1162. struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
  1163. model.layers[il].w3,
  1164. cur);
  1165. cur = ggml_mul_mat(ctx0,
  1166. model.layers[il].w1,
  1167. cur);
  1168. // SILU activation
  1169. cur = ggml_silu(ctx0, cur);
  1170. cur = ggml_mul(ctx0, cur, tmp);
  1171. cur = ggml_mul_mat(ctx0,
  1172. model.layers[il].w2,
  1173. cur);
  1174. }
  1175. cur = ggml_add(ctx0, cur, inpFF);
  1176. // input for next layer
  1177. inpL = cur;
  1178. }
  1179. lctx.use_buf(ctx0, 0);
  1180. // used at the end to optionally extract the embeddings
  1181. struct ggml_tensor * embeddings = NULL;
  1182. // norm
  1183. {
  1184. inpL = ggml_rms_norm(ctx0, inpL);
  1185. // inpL = inpL*norm(broadcasted)
  1186. inpL = ggml_mul(ctx0, inpL, model.norm);
  1187. embeddings = inpL;
  1188. }
  1189. // lm_head
  1190. inpL = ggml_mul_mat(ctx0, model.output, inpL);
  1191. lctx.use_buf(ctx0, -1);
  1192. // logits -> probs
  1193. //inpL = ggml_soft_max_inplace(ctx0, inpL);
  1194. // run the computation
  1195. ggml_build_forward_expand(&gf, inpL);
  1196. ggml_graph_compute (ctx0, &gf);
  1197. #ifdef GGML_PERF
  1198. // print timing information per ggml operation (for debugging purposes)
  1199. // requires GGML_PERF to be defined
  1200. ggml_graph_print(&gf);
  1201. #endif
  1202. // plot the computation graph in dot format (for debugging purposes)
  1203. //if (n_past%100 == 0) {
  1204. // ggml_graph_dump_dot(&gf, NULL, "llama.dot");
  1205. //}
  1206. //embd_w.resize(n_vocab*N);
  1207. //memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  1208. // update kv token count
  1209. lctx.model.kv_self.n = n_past + N;
  1210. // extract logits
  1211. {
  1212. auto & logits_out = lctx.logits;
  1213. if (lctx.logits_all) {
  1214. logits_out.resize(n_vocab * N);
  1215. memcpy(logits_out.data(), (float *) ggml_get_data(inpL), sizeof(float)*n_vocab*N);
  1216. } else {
  1217. // return result for just the last token
  1218. logits_out.resize(n_vocab);
  1219. memcpy(logits_out.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
  1220. }
  1221. }
  1222. // extract embeddings
  1223. if (!lctx.embedding.empty()) {
  1224. auto & embedding_out = lctx.embedding;
  1225. embedding_out.resize(n_embd);
  1226. memcpy(embedding_out.data(), (float *) ggml_get_data(embeddings) + (n_embd*(N - 1)), sizeof(float)*n_embd);
  1227. }
  1228. if (mem_per_token == 0) {
  1229. mem_per_token = ggml_used_mem(ctx0)/N;
  1230. }
  1231. #if 0
  1232. printf("\n%s: used_mem = %.3f MB, scratch -- %.3f MB %.3f MB\n", __func__,
  1233. ggml_used_mem(ctx0)/1024.0/1024.0,
  1234. lctx.get_buf_max_mem(0)/1024.0/1024.0,
  1235. lctx.get_buf_max_mem(1)/1024.0/1024.0);
  1236. #endif
  1237. ggml_free(ctx0);
  1238. // measure the performance only for the single-token evals
  1239. if (N == 1) {
  1240. lctx.t_eval_us += ggml_time_us() - t_start_us;
  1241. lctx.n_eval++;
  1242. }
  1243. else if (N > 1) {
  1244. lctx.t_p_eval_us += ggml_time_us() - t_start_us;
  1245. lctx.n_p_eval += N;
  1246. }
  1247. return true;
  1248. }
  1249. //
  1250. // tokenizer
  1251. //
  1252. static size_t utf8_len(char src) {
  1253. const size_t lookup[] = { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 4 };
  1254. uint8_t highbits = static_cast<uint8_t>(src) >> 4;
  1255. return lookup[highbits];
  1256. }
  1257. struct llama_sp_symbol {
  1258. using index = int;
  1259. index prev;
  1260. index next;
  1261. const char * text;
  1262. size_t n;
  1263. };
  1264. static_assert(std::is_trivially_copyable<llama_sp_symbol>::value, "llama_sp_symbol is not trivially copyable");
  1265. struct llama_sp_bigram {
  1266. struct comparator {
  1267. bool operator()(llama_sp_bigram & l, llama_sp_bigram & r) {
  1268. return (l.score < r.score) || (l.score == r.score && l.left > r.left);
  1269. }
  1270. };
  1271. using queue_storage = std::vector<llama_sp_bigram>;
  1272. using queue = std::priority_queue<llama_sp_bigram, queue_storage, comparator>;
  1273. llama_sp_symbol::index left;
  1274. llama_sp_symbol::index right;
  1275. float score;
  1276. size_t size;
  1277. };
  1278. // original implementation:
  1279. // https://github.com/ggerganov/llama.cpp/commit/074bea2eb1f1349a0118239c4152914aecaa1be4
  1280. struct llama_tokenizer {
  1281. llama_tokenizer(const llama_vocab & vocab): vocab_(vocab) {}
  1282. void tokenize(const std::string & text, std::vector<llama_vocab::id> & output) {
  1283. // split string into utf8 chars
  1284. int index = 0;
  1285. size_t offs = 0;
  1286. while (offs < text.size()) {
  1287. llama_sp_symbol sym;
  1288. size_t char_len = std::min(text.size() - offs, utf8_len(text[offs]));
  1289. sym.text = text.c_str() + offs;
  1290. sym.n = char_len;
  1291. offs += char_len;
  1292. sym.prev = index - 1;
  1293. sym.next = offs == text.size() ? -1 : index + 1;
  1294. index++;
  1295. symbols_.emplace_back(sym);
  1296. }
  1297. // seed the work queue with all possible 2-character tokens.
  1298. for (size_t i = 1; i < symbols_.size(); ++i) {
  1299. try_add_bigram(i - 1, i);
  1300. }
  1301. // keep substituting the highest frequency pairs for as long as we can.
  1302. while (!work_queue_.empty()) {
  1303. auto bigram = work_queue_.top();
  1304. work_queue_.pop();
  1305. auto & left_sym = symbols_[bigram.left];
  1306. auto & right_sym = symbols_[bigram.right];
  1307. // if one of the symbols already got merged, skip it.
  1308. if (left_sym.n == 0 || right_sym.n == 0 ||
  1309. left_sym.n + right_sym.n != bigram.size) {
  1310. continue;
  1311. }
  1312. // merge the right sym into the left one
  1313. left_sym.n += right_sym.n;
  1314. right_sym.n = 0;
  1315. //printf("left = '%*s' size = %zu\n", (int) left_sym.n, left_sym.text, bigram.size);
  1316. // remove the right sym from the chain
  1317. left_sym.next = right_sym.next;
  1318. if (right_sym.next >= 0) {
  1319. symbols_[right_sym.next].prev = bigram.left;
  1320. }
  1321. // find more substitutions
  1322. try_add_bigram(left_sym.prev, bigram.left);
  1323. try_add_bigram(bigram.left, left_sym.next);
  1324. }
  1325. for (int i = 0; i != -1; i = symbols_[i].next) {
  1326. auto & symbol = symbols_[i];
  1327. auto token = vocab_.token_to_id.find(std::string(symbol.text, symbol.n));
  1328. if (token == vocab_.token_to_id.end()) {
  1329. // output any symbols that did not form tokens as bytes.
  1330. for (int j = 0; j < (int) symbol.n; ++j) {
  1331. llama_vocab::id token_id = static_cast<uint8_t>(symbol.text[j]) + 3;
  1332. output.push_back(token_id);
  1333. }
  1334. } else {
  1335. output.push_back((*token).second);
  1336. }
  1337. }
  1338. }
  1339. private:
  1340. void try_add_bigram(int left, int right) {
  1341. if (left == -1 || right == -1) {
  1342. return;
  1343. }
  1344. const std::string text = std::string(symbols_[left].text, symbols_[left].n + symbols_[right].n);
  1345. auto token = vocab_.token_to_id.find(text);
  1346. if (token == vocab_.token_to_id.end()) {
  1347. return;
  1348. }
  1349. if (static_cast<size_t>((*token).second) >= vocab_.id_to_token.size()) {
  1350. return;
  1351. }
  1352. const auto &tok_score = vocab_.id_to_token[(*token).second];
  1353. llama_sp_bigram bigram;
  1354. bigram.left = left;
  1355. bigram.right = right;
  1356. bigram.score = tok_score.score;
  1357. bigram.size = text.size();
  1358. work_queue_.push(bigram);
  1359. }
  1360. const llama_vocab & vocab_;
  1361. std::vector<llama_sp_symbol> symbols_;
  1362. llama_sp_bigram::queue work_queue_;
  1363. };
  1364. static std::vector<llama_vocab::id> llama_tokenize(const llama_vocab & vocab, const std::string & text, bool bos) {
  1365. llama_tokenizer tokenizer(vocab);
  1366. std::vector<llama_vocab::id> output;
  1367. if (text.empty()) {
  1368. return output;
  1369. }
  1370. if (bos) {
  1371. output.push_back(llama_token_bos());
  1372. }
  1373. tokenizer.tokenize(text, output);
  1374. return output;
  1375. }
  1376. //
  1377. // sampling
  1378. //
  1379. void llama_sample_softmax(struct llama_context * ctx, llama_token_data_array * candidates) {
  1380. assert(candidates->size > 0);
  1381. const int64_t t_start_sample_us = ggml_time_us();
  1382. // Sort the logits in descending order
  1383. if (!candidates->sorted) {
  1384. std::sort(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1385. return a.logit > b.logit;
  1386. });
  1387. candidates->sorted = true;
  1388. }
  1389. float max_l = candidates->data[0].logit;
  1390. float cum_sum = 0.0f;
  1391. for (size_t i = 0; i < candidates->size; ++i) {
  1392. float p = expf(candidates->data[i].logit - max_l);
  1393. candidates->data[i].p = p;
  1394. cum_sum += p;
  1395. }
  1396. for (size_t i = 0; i < candidates->size; ++i) {
  1397. candidates->data[i].p /= cum_sum;
  1398. }
  1399. if (ctx) {
  1400. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1401. }
  1402. }
  1403. void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * candidates, int k, size_t min_keep) {
  1404. const int64_t t_start_sample_us = ggml_time_us();
  1405. k = std::max(k, (int) min_keep);
  1406. k = std::min(k, (int) candidates->size);
  1407. // Sort scores in descending order
  1408. if (!candidates->sorted) {
  1409. auto comp = [](const llama_token_data & a, const llama_token_data & b) {
  1410. return a.logit > b.logit;
  1411. };
  1412. if (k == (int) candidates->size) {
  1413. std::sort(candidates->data, candidates->data + candidates->size, comp);
  1414. } else {
  1415. std::partial_sort(candidates->data, candidates->data + k, candidates->data + candidates->size, comp);
  1416. }
  1417. candidates->sorted = true;
  1418. }
  1419. candidates->size = k;
  1420. if (ctx) {
  1421. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1422. }
  1423. }
  1424. void llama_sample_top_p(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1425. if (p >= 1.0f) {
  1426. return;
  1427. }
  1428. const int64_t t_start_sample_us = ggml_time_us();
  1429. llama_sample_softmax(ctx, candidates);
  1430. // Compute the cumulative probabilities
  1431. float cum_sum = 0.0f;
  1432. size_t last_idx = candidates->size;
  1433. for (size_t i = 0; i < candidates->size; ++i) {
  1434. cum_sum += candidates->data[i].p;
  1435. // Check if the running sum is greater than p or if we have kept at least min_keep tokens
  1436. if (cum_sum > p && i >= min_keep) {
  1437. last_idx = i;
  1438. break;
  1439. }
  1440. }
  1441. // Resize the output vector to keep only the top-p tokens
  1442. candidates->size = last_idx;
  1443. if (ctx) {
  1444. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1445. }
  1446. }
  1447. void llama_sample_tail_free(struct llama_context * ctx, llama_token_data_array * candidates, float z, size_t min_keep) {
  1448. if (z >= 1.0f || candidates->size <= 2) {
  1449. return;
  1450. }
  1451. const int64_t t_start_sample_us = ggml_time_us();
  1452. llama_sample_softmax(nullptr, candidates);
  1453. // Compute the first and second derivatives
  1454. std::vector<float> first_derivatives(candidates->size - 1);
  1455. std::vector<float> second_derivatives(candidates->size - 2);
  1456. for (size_t i = 0; i < first_derivatives.size(); ++i) {
  1457. first_derivatives[i] = candidates->data[i].p - candidates->data[i + 1].p;
  1458. }
  1459. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1460. second_derivatives[i] = first_derivatives[i] - first_derivatives[i + 1];
  1461. }
  1462. // Calculate absolute value of second derivatives
  1463. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1464. second_derivatives[i] = abs(second_derivatives[i]);
  1465. }
  1466. // Normalize the second derivatives
  1467. float second_derivatives_sum = std::accumulate(second_derivatives.begin(), second_derivatives.end(), 0.0f);
  1468. for (float & value : second_derivatives) {
  1469. value /= second_derivatives_sum;
  1470. }
  1471. float cum_sum = 0.0f;
  1472. size_t last_idx = candidates->size;
  1473. for (size_t i = 0; i < second_derivatives.size(); ++i) {
  1474. cum_sum += second_derivatives[i];
  1475. // Check if the running sum is greater than z or if we have kept at least min_keep tokens
  1476. if (cum_sum > z && i >= min_keep) {
  1477. last_idx = i;
  1478. break;
  1479. }
  1480. }
  1481. // Resize the output vector to keep only the tokens above the tail location
  1482. candidates->size = last_idx;
  1483. if (ctx) {
  1484. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1485. }
  1486. }
  1487. void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * candidates, float p, size_t min_keep) {
  1488. // Reference implementation:
  1489. // https://github.com/huggingface/transformers/compare/main...cimeister:typical-sampling:typical-pr
  1490. if (p >= 1.0f) {
  1491. return;
  1492. }
  1493. const int64_t t_start_sample_us = ggml_time_us();
  1494. // Compute the softmax of logits and calculate entropy
  1495. llama_sample_softmax(nullptr, candidates);
  1496. float entropy = 0.0f;
  1497. for (size_t i = 0; i < candidates->size; ++i) {
  1498. entropy += -candidates->data[i].p * logf(candidates->data[i].p);
  1499. }
  1500. // Compute the absolute difference between negative log probability and entropy for each candidate
  1501. std::vector<float> shifted_scores;
  1502. for (size_t i = 0; i < candidates->size; ++i) {
  1503. float shifted_score = fabsf(-logf(candidates->data[i].p) - entropy);
  1504. shifted_scores.push_back(shifted_score);
  1505. }
  1506. // Sort tokens based on the shifted_scores and their corresponding indices
  1507. std::vector<size_t> indices(candidates->size);
  1508. std::iota(indices.begin(), indices.end(), 0);
  1509. std::sort(indices.begin(), indices.end(), [&](size_t a, size_t b) {
  1510. return shifted_scores[a] < shifted_scores[b];
  1511. });
  1512. // Compute the cumulative probabilities
  1513. float cum_sum = 0.0f;
  1514. size_t last_idx = indices.size();
  1515. for (size_t i = 0; i < indices.size(); ++i) {
  1516. size_t idx = indices[i];
  1517. cum_sum += candidates->data[idx].p;
  1518. // Check if the running sum is greater than typical or if we have kept at least min_keep tokens
  1519. if (cum_sum > p && i >= min_keep - 1) {
  1520. last_idx = i + 1;
  1521. break;
  1522. }
  1523. }
  1524. // Resize the output vector to keep only the locally typical tokens
  1525. std::vector<llama_token_data> new_candidates;
  1526. for (size_t i = 0; i < last_idx; ++i) {
  1527. size_t idx = indices[i];
  1528. new_candidates.push_back(candidates->data[idx]);
  1529. }
  1530. // Replace the data in candidates with the new_candidates data
  1531. std::copy(new_candidates.begin(), new_candidates.end(), candidates->data);
  1532. candidates->size = new_candidates.size();
  1533. if (ctx) {
  1534. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1535. }
  1536. }
  1537. void llama_sample_temperature(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
  1538. const int64_t t_start_sample_us = ggml_time_us();
  1539. for (size_t i = 0; i < candidates_p->size; ++i) {
  1540. candidates_p->data[i].logit /= temp;
  1541. }
  1542. if (ctx) {
  1543. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1544. }
  1545. }
  1546. void llama_sample_repetition_penalty(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens, size_t last_tokens_size, float penalty) {
  1547. if (last_tokens_size == 0 || penalty == 1.0f) {
  1548. return;
  1549. }
  1550. const int64_t t_start_sample_us = ggml_time_us();
  1551. for (size_t i = 0; i < candidates->size; ++i) {
  1552. const auto * token_iter = std::find(last_tokens, last_tokens + last_tokens_size, candidates->data[i].id);
  1553. if (token_iter == last_tokens + last_tokens_size) {
  1554. continue;
  1555. }
  1556. // The academic publication that described this technique actually just only divided, but that would cause tokens with negative logits to become more likely, which is obviously wrong.
  1557. // This is common fix for this problem, which is to multiply by the penalty instead of dividing.
  1558. if (candidates->data[i].logit <= 0) {
  1559. candidates->data[i].logit *= penalty;
  1560. } else {
  1561. candidates->data[i].logit /= penalty;
  1562. }
  1563. }
  1564. candidates->sorted = false;
  1565. if (ctx) {
  1566. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1567. }
  1568. }
  1569. void llama_sample_frequency_and_presence_penalties(struct llama_context * ctx, llama_token_data_array * candidates, const llama_token * last_tokens_p, size_t last_tokens_size, float alpha_frequency, float alpha_presence) {
  1570. if (last_tokens_size == 0 || (alpha_frequency == 0.0f && alpha_presence == 0.0f)) {
  1571. return;
  1572. }
  1573. const int64_t t_start_sample_us = ggml_time_us();
  1574. // Create a frequency map to count occurrences of each token in last_tokens
  1575. std::unordered_map<llama_token, int> token_count;
  1576. for (size_t i = 0; i < last_tokens_size; ++i) {
  1577. token_count[last_tokens_p[i]]++;
  1578. }
  1579. // Apply frequency and presence penalties to the candidates
  1580. for (size_t i = 0; i < candidates->size; ++i) {
  1581. auto token_iter = token_count.find(candidates->data[i].id);
  1582. if (token_iter == token_count.end()) {
  1583. continue;
  1584. }
  1585. int count = token_iter->second;
  1586. candidates->data[i].logit -= float(count) * alpha_frequency + float(count > 0) * alpha_presence;
  1587. }
  1588. candidates->sorted = false;
  1589. if (ctx) {
  1590. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1591. }
  1592. }
  1593. llama_token llama_sample_token_mirostat(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, int m, float * mu) {
  1594. assert(ctx);
  1595. auto N = float(llama_n_vocab(ctx));
  1596. int64_t t_start_sample_us;
  1597. t_start_sample_us = ggml_time_us();
  1598. llama_sample_softmax(nullptr, candidates);
  1599. // Estimate s_hat using the most probable m tokens
  1600. float s_hat = 0.0;
  1601. float sum_ti_bi = 0.0;
  1602. float sum_ti_sq = 0.0;
  1603. for (size_t i = 0; i < size_t(m - 1) && i < candidates->size - 1; ++i) {
  1604. float t_i = logf(float(i + 2) / float(i + 1));
  1605. float b_i = logf(candidates->data[i].p / candidates->data[i + 1].p);
  1606. sum_ti_bi += t_i * b_i;
  1607. sum_ti_sq += t_i * t_i;
  1608. }
  1609. s_hat = sum_ti_bi / sum_ti_sq;
  1610. // Compute k from the estimated s_hat and target surprise value
  1611. float epsilon_hat = s_hat - 1;
  1612. float k = powf((epsilon_hat * powf(2, *mu)) / (1 - powf(N, -epsilon_hat)), 1 / s_hat);
  1613. // Sample the next word X using top-k sampling
  1614. llama_sample_top_k(nullptr, candidates, int(k), 1);
  1615. if (ctx) {
  1616. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1617. }
  1618. llama_token X = llama_sample_token(ctx, candidates);
  1619. t_start_sample_us = ggml_time_us();
  1620. // Compute error as the difference between observed surprise and target surprise value
  1621. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1622. return candidate.id == X;
  1623. }));
  1624. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1625. float e = observed_surprise - tau;
  1626. // Update mu using the learning rate and error
  1627. *mu = *mu - eta * e;
  1628. if (ctx) {
  1629. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1630. ctx->n_sample++;
  1631. }
  1632. return X;
  1633. }
  1634. llama_token llama_sample_token_mirostat_v2(struct llama_context * ctx, llama_token_data_array * candidates, float tau, float eta, float * mu) {
  1635. assert(ctx);
  1636. int64_t t_start_sample_us;
  1637. t_start_sample_us = ggml_time_us();
  1638. llama_sample_softmax(ctx, candidates);
  1639. // Truncate the words with surprise values greater than mu
  1640. candidates->size = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1641. return -log2f(candidate.p) > *mu;
  1642. }));
  1643. // Normalize the probabilities of the remaining words
  1644. llama_sample_softmax(ctx, candidates);
  1645. // Sample the next word X from the remaining words
  1646. if (ctx) {
  1647. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1648. }
  1649. llama_token X = llama_sample_token(ctx, candidates);
  1650. t_start_sample_us = ggml_time_us();
  1651. // Compute error as the difference between observed surprise and target surprise value
  1652. size_t X_idx = std::distance(candidates->data, std::find_if(candidates->data, candidates->data + candidates->size, [&](const llama_token_data & candidate) {
  1653. return candidate.id == X;
  1654. }));
  1655. float observed_surprise = -log2f(candidates->data[X_idx].p);
  1656. float e = observed_surprise - tau;
  1657. // Update mu using the learning rate and error
  1658. *mu = *mu - eta * e;
  1659. if (ctx) {
  1660. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1661. }
  1662. return X;
  1663. }
  1664. llama_token llama_sample_token_greedy(struct llama_context * ctx, llama_token_data_array * candidates) {
  1665. const int64_t t_start_sample_us = ggml_time_us();
  1666. // Find max element
  1667. auto * max_iter = std::max_element(candidates->data, candidates->data + candidates->size, [](const llama_token_data & a, const llama_token_data & b) {
  1668. return a.logit < b.logit;
  1669. });
  1670. llama_token result = max_iter->id;
  1671. if (ctx) {
  1672. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1673. ctx->n_sample++;
  1674. }
  1675. return result;
  1676. }
  1677. llama_token llama_sample_token(struct llama_context * ctx, llama_token_data_array * candidates) {
  1678. assert(ctx);
  1679. const int64_t t_start_sample_us = ggml_time_us();
  1680. llama_sample_softmax(nullptr, candidates);
  1681. std::vector<float> probs;
  1682. probs.reserve(candidates->size);
  1683. for (size_t i = 0; i < candidates->size; ++i) {
  1684. probs.push_back(candidates->data[i].p);
  1685. }
  1686. std::discrete_distribution<> dist(probs.begin(), probs.end());
  1687. auto & rng = ctx->rng;
  1688. int idx = dist(rng);
  1689. llama_token result = candidates->data[idx].id;
  1690. ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
  1691. ctx->n_sample++;
  1692. return result;
  1693. }
  1694. //
  1695. // quantization
  1696. //
  1697. static void llama_model_quantize_internal(const std::string & fname_inp, const std::string & fname_out, enum llama_ftype ftype, int nthread) {
  1698. ggml_type quantized_type;
  1699. switch (ftype) {
  1700. case LLAMA_FTYPE_MOSTLY_Q4_0: quantized_type = GGML_TYPE_Q4_0; break;
  1701. case LLAMA_FTYPE_MOSTLY_Q4_1: quantized_type = GGML_TYPE_Q4_1; break;
  1702. case LLAMA_FTYPE_MOSTLY_Q5_0: quantized_type = GGML_TYPE_Q5_0; break;
  1703. case LLAMA_FTYPE_MOSTLY_Q5_1: quantized_type = GGML_TYPE_Q5_1; break;
  1704. case LLAMA_FTYPE_MOSTLY_Q8_0: quantized_type = GGML_TYPE_Q8_0; break;
  1705. default: throw format("invalid output file type %d\n", ftype);
  1706. };
  1707. if (nthread <= 0) {
  1708. nthread = std::thread::hardware_concurrency();
  1709. }
  1710. std::unique_ptr<llama_model_loader> model_loader(new llama_model_loader(fname_inp, /*use_mmap*/ false,
  1711. /*vocab_only*/ false));
  1712. llama_file_saver file_saver(fname_out.c_str(), model_loader->file_loaders.at(0).get(), ftype);
  1713. size_t total_size_org = 0;
  1714. size_t total_size_new = 0;
  1715. std::vector<int64_t> hist_all(1 << 4, 0);
  1716. std::vector<std::thread> workers;
  1717. std::mutex mutex;
  1718. size_t idx = 0;
  1719. for (llama_load_tensor & tensor : model_loader->tensors_map.tensors) {
  1720. llama_buffer read_data;
  1721. read_data.resize(tensor.size);
  1722. tensor.data = read_data.addr;
  1723. model_loader->load_data_for(tensor);
  1724. printf("[%4zu/%4zu] %36s - %16s, type = %6s, ",
  1725. ++idx, model_loader->tensors_map.tensors.size(),
  1726. tensor.name.c_str(), llama_format_tensor_shape(tensor.ne).c_str(),
  1727. ggml_type_name(tensor.type));
  1728. // This used to be a regex, but <regex> has an extreme cost to compile times.
  1729. bool quantize = tensor.name.rfind("weight") == tensor.name.size() - 6; // ends with 'weight'?
  1730. // quantize only 2D tensors
  1731. quantize &= (tensor.ne.size() == 2);
  1732. // uncomment this to keep the output layer in FP16
  1733. //if (tensor.name == "output.weight") {
  1734. // quantize = false;
  1735. //}
  1736. enum ggml_type new_type;
  1737. void * new_data;
  1738. size_t new_size;
  1739. llama_buffer work;
  1740. if (!quantize) {
  1741. new_type = tensor.type;
  1742. new_data = tensor.data;
  1743. new_size = tensor.size;
  1744. printf("size = %8.3f MB\n", tensor.size/1024.0/1024.0);
  1745. } else {
  1746. new_type = quantized_type;
  1747. float * f32_data;
  1748. size_t nelements = tensor.ne.at(0) * tensor.ne.at(1);
  1749. llama_buffer f32_conv_buf;
  1750. if (tensor.type == GGML_TYPE_F32) {
  1751. f32_data = (float *) tensor.data;
  1752. } else if (tensor.type == GGML_TYPE_F16) {
  1753. f32_conv_buf.resize(nelements * sizeof(float));
  1754. f32_data = (float *) f32_conv_buf.addr;
  1755. const auto * f16_data = (const ggml_fp16_t *) tensor.data;
  1756. for (size_t i = 0; i < nelements; i++) {
  1757. f32_data[i] = ggml_fp16_to_fp32(f16_data[i]);
  1758. }
  1759. } else {
  1760. throw format("type %s unsupported for integer quantization", ggml_type_name(tensor.type));
  1761. }
  1762. printf("quantizing .. ");
  1763. fflush(stdout);
  1764. work.resize(nelements * 4); // upper bound on size
  1765. new_data = work.addr;
  1766. std::vector<int64_t> hist_cur(1 << 4, 0);
  1767. int chunk_size = 32 * 512;
  1768. const int nchunk = (nelements + chunk_size - 1)/chunk_size;
  1769. const int nthread_use = nthread > 1 ? std::max(1, std::min(nthread, nchunk)) : 1;
  1770. if (nthread_use < 2) {
  1771. new_size = ggml_quantize_chunk(new_type, f32_data, new_data, 0, nelements, hist_cur.data());
  1772. } else {
  1773. size_t counter = 0;
  1774. new_size = 0;
  1775. auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, nelements, chunk_size] () {
  1776. std::vector<int64_t> local_hist;
  1777. size_t local_size = 0;
  1778. while (true) {
  1779. std::unique_lock<std::mutex> lock(mutex);
  1780. size_t first = counter; counter += chunk_size;
  1781. if (first >= nelements) {
  1782. if (!local_hist.empty()) {
  1783. for (int j=0; j<int(local_hist.size()); ++j) {
  1784. hist_cur[j] += local_hist[j];
  1785. }
  1786. new_size += local_size;
  1787. }
  1788. break;
  1789. }
  1790. lock.unlock();
  1791. size_t last = std::min(nelements, first + chunk_size);
  1792. if (local_hist.empty()) {
  1793. local_hist.resize(hist_cur.size(), 0);
  1794. }
  1795. local_size += ggml_quantize_chunk(new_type, f32_data, new_data, first, last - first, local_hist.data());
  1796. }
  1797. };
  1798. if ((int) workers.size() < nthread_use - 1) {
  1799. workers.resize(nthread_use - 1);
  1800. }
  1801. for (int it = 0; it < nthread_use - 1; ++it) {
  1802. workers[it] = std::thread(compute);
  1803. }
  1804. compute();
  1805. for (int it = 0; it < nthread_use - 1; ++it) {
  1806. workers[it].join();
  1807. }
  1808. }
  1809. printf("size = %8.2f MB -> %8.2f MB | hist: ", tensor.size/1024.0/1024.0, new_size/1024.0/1024.0);
  1810. for (size_t i = 0; i < hist_cur.size(); i++) {
  1811. hist_all[i] += hist_cur[i];
  1812. }
  1813. for (size_t i = 0; i < hist_cur.size(); i++) {
  1814. printf("%5.3f ", hist_cur[i] / float(nelements));
  1815. }
  1816. printf("\n");
  1817. }
  1818. total_size_org += tensor.size;
  1819. total_size_new += new_size;
  1820. file_saver.write_tensor(tensor, new_type, new_data, new_size);
  1821. }
  1822. printf("%s: model size = %8.2f MB\n", __func__, total_size_org/1024.0/1024.0);
  1823. printf("%s: quant size = %8.2f MB\n", __func__, total_size_new/1024.0/1024.0);
  1824. {
  1825. int64_t sum_all = 0;
  1826. for (size_t i = 0; i < hist_all.size(); i++) {
  1827. sum_all += hist_all[i];
  1828. }
  1829. printf("%s: hist: ", __func__);
  1830. for (size_t i = 0; i < hist_all.size(); i++) {
  1831. printf("%5.3f ", hist_all[i] / float(sum_all));
  1832. }
  1833. printf("\n");
  1834. }
  1835. }
  1836. //
  1837. // interface implementation
  1838. //
  1839. struct llama_context * llama_init_from_file(
  1840. const char * path_model,
  1841. struct llama_context_params params) {
  1842. ggml_time_init();
  1843. llama_context * ctx = new llama_context;
  1844. if (params.seed < 0) {
  1845. params.seed = time(NULL);
  1846. }
  1847. unsigned cur_percentage = 0;
  1848. if (params.progress_callback == NULL) {
  1849. params.progress_callback_user_data = &cur_percentage;
  1850. params.progress_callback = [](float progress, void * ctx) {
  1851. unsigned * cur_percentage_p = (unsigned *) ctx;
  1852. unsigned percentage = (unsigned) (100 * progress);
  1853. while (percentage > *cur_percentage_p) {
  1854. *cur_percentage_p = percentage;
  1855. fprintf(stderr, ".");
  1856. fflush(stderr);
  1857. if (percentage >= 100) {
  1858. fprintf(stderr, "\n");
  1859. }
  1860. }
  1861. };
  1862. }
  1863. ctx->rng = std::mt19937(params.seed);
  1864. ctx->logits_all = params.logits_all;
  1865. ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
  1866. if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_gpu_layers, memory_type,
  1867. params.use_mmap, params.use_mlock, params.vocab_only,
  1868. params.progress_callback, params.progress_callback_user_data)) {
  1869. fprintf(stderr, "%s: failed to load model\n", __func__);
  1870. llama_free(ctx);
  1871. return nullptr;
  1872. }
  1873. // reserve memory for context buffers
  1874. if (!params.vocab_only) {
  1875. if (!kv_cache_init(ctx->model.hparams, ctx->model.kv_self, memory_type, ctx->model.hparams.n_ctx)) {
  1876. fprintf(stderr, "%s: kv_cache_init() failed for self-attention cache\n", __func__);
  1877. llama_free(ctx);
  1878. return nullptr;
  1879. }
  1880. {
  1881. const size_t memory_size = ggml_nbytes(ctx->model.kv_self.k) + ggml_nbytes(ctx->model.kv_self.v);
  1882. fprintf(stderr, "%s: kv self size = %7.2f MB\n", __func__, memory_size / 1024.0 / 1024.0);
  1883. }
  1884. const auto & hparams = ctx->model.hparams;
  1885. // resized during inference
  1886. if (params.logits_all) {
  1887. ctx->logits.reserve(hparams.n_ctx*hparams.n_vocab);
  1888. } else {
  1889. ctx->logits.reserve(hparams.n_vocab);
  1890. }
  1891. if (params.embedding){
  1892. ctx->embedding.resize(hparams.n_embd);
  1893. }
  1894. ctx->buf_compute.resize(MEM_REQ_EVAL().at(ctx->model.type));
  1895. ctx->buf_scratch[0].resize(MEM_REQ_SCRATCH0().at(ctx->model.type));
  1896. ctx->buf_scratch[1].resize(MEM_REQ_SCRATCH1().at(ctx->model.type));
  1897. }
  1898. return ctx;
  1899. }
  1900. void llama_free(struct llama_context * ctx) {
  1901. delete ctx;
  1902. }
  1903. int llama_model_quantize(
  1904. const char * fname_inp,
  1905. const char * fname_out,
  1906. enum llama_ftype ftype,
  1907. int nthread) {
  1908. try {
  1909. llama_model_quantize_internal(fname_inp, fname_out, ftype, nthread);
  1910. return 0;
  1911. } catch (const std::string & err) {
  1912. fprintf(stderr, "%s: failed to quantize: %s\n", __func__, err.c_str());
  1913. return 1;
  1914. }
  1915. }
  1916. int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  1917. fprintf(stderr, "%s: applying lora adapter from '%s' - please wait ...\n", __func__, path_lora);
  1918. auto & model = ctx->model;
  1919. const int64_t t_start_lora_us = ggml_time_us();
  1920. auto fin = std::ifstream(path_lora, std::ios::binary);
  1921. if (!fin) {
  1922. fprintf(stderr, "%s: failed to open '%s'\n", __func__, path_lora);
  1923. return 1;
  1924. }
  1925. // verify magic and version
  1926. {
  1927. uint32_t magic;
  1928. fin.read((char *) &magic, sizeof(magic));
  1929. if (magic != LLAMA_FILE_MAGIC_GGLA) {
  1930. fprintf(stderr, "%s: bad file magic\n", __func__);
  1931. return 1;
  1932. }
  1933. uint32_t format_version;
  1934. fin.read((char *) &format_version, sizeof(format_version));
  1935. if (format_version != 1) {
  1936. fprintf(stderr, "%s: unsupported file version\n", __func__ );
  1937. return 1;
  1938. }
  1939. }
  1940. int32_t lora_r;
  1941. int32_t lora_alpha;
  1942. fin.read((char *) &lora_r, sizeof(lora_r));
  1943. fin.read((char *) &lora_alpha, sizeof(lora_alpha));
  1944. float scaling = (float)lora_alpha / (float)lora_r;
  1945. fprintf(stderr, "%s: r = %d, alpha = %d, scaling = %.2f\n", __func__, lora_r, lora_alpha, scaling);
  1946. // create a temporary ggml context to store the lora tensors
  1947. // todo: calculate size from biggest possible tensor
  1948. std::vector<uint8_t> lora_buf(1024ull * 1024ull * 1024ull);
  1949. struct ggml_init_params params;
  1950. params.mem_size = lora_buf.size();
  1951. params.mem_buffer = lora_buf.data();
  1952. params.no_alloc = false;
  1953. ggml_context * lora_ctx = ggml_init(params);
  1954. std::unordered_map<std::string, struct ggml_tensor *> lora_tensors;
  1955. // create a name -> tensor map of the model to accelerate lookups
  1956. std::unordered_map<std::string, struct ggml_tensor*> model_tensors;
  1957. for (auto & kv: model.tensors_by_name) {
  1958. model_tensors.insert(kv);
  1959. }
  1960. // load base model
  1961. std::unique_ptr<llama_model_loader> model_loader;
  1962. ggml_context * base_ctx = NULL;
  1963. llama_buffer base_buf;
  1964. if (path_base_model) {
  1965. fprintf(stderr, "%s: loading base model from '%s'\n", __func__, path_base_model);
  1966. model_loader.reset(new llama_model_loader(path_base_model, /*use_mmap*/ true, /*vocab_only*/ false));
  1967. size_t ctx_size;
  1968. size_t mmapped_size;
  1969. model_loader->calc_sizes(&ctx_size, &mmapped_size);
  1970. base_buf.resize(ctx_size);
  1971. ggml_init_params base_params;
  1972. base_params.mem_size = base_buf.size;
  1973. base_params.mem_buffer = base_buf.addr;
  1974. base_params.no_alloc = model_loader->use_mmap;
  1975. base_ctx = ggml_init(base_params);
  1976. model_loader->ggml_ctx = base_ctx;
  1977. // maybe this should in llama_model_loader
  1978. if (model_loader->use_mmap) {
  1979. model_loader->mapping.reset(new llama_mmap(&model_loader->file_loaders.at(0)->file, /* prefetch */ 0));
  1980. }
  1981. }
  1982. // read tensors and apply
  1983. bool warned = false;
  1984. int n_tensors = 0;
  1985. while (true) {
  1986. int32_t n_dims;
  1987. int32_t length;
  1988. int32_t ftype;
  1989. fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
  1990. fin.read(reinterpret_cast<char *>(&length), sizeof(length));
  1991. fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
  1992. if (fin.eof()) {
  1993. break;
  1994. }
  1995. int32_t ne[2] = { 1, 1 };
  1996. for (int i = 0; i < n_dims; ++i) {
  1997. fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
  1998. }
  1999. std::string name;
  2000. {
  2001. char buf[1024];
  2002. fin.read(buf, length);
  2003. name = std::string(buf, length);
  2004. }
  2005. // check for lora suffix and get the type of tensor
  2006. const std::string lora_suffix = ".lora";
  2007. size_t pos = name.rfind(lora_suffix);
  2008. if (pos == std::string::npos) {
  2009. fprintf(stderr, "%s: error: '%s' is not a lora tensor\n", __func__, name.c_str());
  2010. return 1;
  2011. }
  2012. std::string lora_type = name.substr(pos + lora_suffix.length());
  2013. std::string base_name = name;
  2014. base_name.erase(pos);
  2015. // fprintf(stderr, "%s: %s => %s (lora type %s) ", __func__, name.c_str(),base_name.c_str(), lora_type.c_str());
  2016. if (model_tensors.find(base_name) == model_tensors.end()) {
  2017. fprintf(stderr, "%s: unknown tensor '%s' in lora adapter\n", __func__, name.data());
  2018. return 1;
  2019. }
  2020. // create ggml tensor
  2021. ggml_type wtype;
  2022. switch (ftype) {
  2023. case 0: wtype = GGML_TYPE_F32; break;
  2024. case 1: wtype = GGML_TYPE_F16; break;
  2025. default:
  2026. {
  2027. fprintf(stderr, "%s: invalid tensor data type '%d'\n",
  2028. __func__, ftype);
  2029. return false;
  2030. }
  2031. }
  2032. ggml_tensor* lora_tensor;
  2033. if (n_dims == 2) {
  2034. lora_tensor = ggml_new_tensor_2d(lora_ctx, wtype, ne[0], ne[1]);
  2035. }
  2036. else {
  2037. fprintf(stderr, "%s: unsupported tensor dimension %d\n", __func__, n_dims);
  2038. return 1;
  2039. }
  2040. // load tensor data
  2041. size_t offset = fin.tellg();
  2042. size_t tensor_data_size = ggml_nbytes(lora_tensor);
  2043. offset = (offset + 31) & -32;
  2044. fin.seekg(offset);
  2045. fin.read((char*)lora_tensor->data, tensor_data_size);
  2046. lora_tensors[name] = lora_tensor;
  2047. // check if we have both A and B tensors and apply
  2048. if (lora_tensors.find(base_name + ".loraA") != lora_tensors.end() &&
  2049. lora_tensors.find(base_name + ".loraB") != lora_tensors.end()) {
  2050. ggml_tensor * dest_t = model_tensors[base_name];
  2051. ggml_tensor * base_t;
  2052. if (model_loader) {
  2053. // load from base model
  2054. if (model_loader->tensors_map.name_to_idx.find(base_name) == model_loader->tensors_map.name_to_idx.end()) {
  2055. fprintf(stderr, "%s: error: tensor '%s' not found in base model\n", __func__, base_name.c_str());
  2056. return 1;
  2057. }
  2058. size_t idx = model_loader->tensors_map.name_to_idx[base_name];
  2059. llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
  2060. base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU);
  2061. lt.data = (uint8_t *) lt.ggml_tensor->data;
  2062. model_loader->load_data_for(lt);
  2063. lt.ggml_tensor->data = lt.data;
  2064. }
  2065. else {
  2066. base_t = dest_t;
  2067. }
  2068. if (ggml_is_quantized(base_t->type)) {
  2069. if (!warned) {
  2070. fprintf(stderr, "%s: warning: using a lora adapter with a quantized model may result in poor quality, "
  2071. "use a f16 or f32 base model with --lora-base\n", __func__);
  2072. warned = true;
  2073. }
  2074. }
  2075. ggml_tensor * loraA = lora_tensors[base_name + ".loraA"];
  2076. ggml_tensor * loraB = lora_tensors[base_name + ".loraB"];
  2077. if (base_t->ne[0] != loraA->ne[1] || base_t->ne[1] != loraB->ne[1]) {
  2078. fprintf(stderr, "%s: incompatible tensor dimensions (%" PRId64 " and %" PRId64 ");"
  2079. " are you sure that this adapter is for this model?\n", __func__, base_t->ne[0], loraA->ne[1]);
  2080. return 1;
  2081. }
  2082. // w = w + BA*s
  2083. ggml_tensor * BA = ggml_mul_mat(lora_ctx, loraA, loraB);
  2084. if (scaling != 1.0f) {
  2085. ggml_tensor * scale_tensor = ggml_new_f32(lora_ctx, scaling);
  2086. BA = ggml_scale_inplace(lora_ctx, BA, scale_tensor);
  2087. }
  2088. ggml_tensor * r;
  2089. if (base_t == dest_t) {
  2090. r = ggml_add_inplace(lora_ctx, dest_t, BA);
  2091. }
  2092. else {
  2093. r = ggml_add(lora_ctx, base_t, BA);
  2094. r = ggml_cpy(lora_ctx, r, dest_t);
  2095. }
  2096. struct ggml_cgraph gf = ggml_build_forward(r);
  2097. gf.n_threads = n_threads;
  2098. ggml_graph_compute(lora_ctx, &gf);
  2099. // we won't need these tensors again, reset the context to save memory
  2100. ggml_free(lora_ctx);
  2101. lora_ctx = ggml_init(params);
  2102. lora_tensors.clear();
  2103. n_tensors++;
  2104. if (n_tensors % 4 == 0) {
  2105. fprintf(stderr, ".");
  2106. }
  2107. }
  2108. }
  2109. // TODO: this should be in a destructor, it will leak on failure
  2110. ggml_free(lora_ctx);
  2111. if (base_ctx) {
  2112. ggml_free(base_ctx);
  2113. }
  2114. const int64_t t_lora_us = ggml_time_us() - t_start_lora_us;
  2115. fprintf(stderr, " done (%.2f ms)\n", t_lora_us / 1000.0);
  2116. return 0;
  2117. }
  2118. int llama_apply_lora_from_file(struct llama_context * ctx, const char * path_lora, const char * path_base_model, int n_threads) {
  2119. try {
  2120. return llama_apply_lora_from_file_internal(ctx, path_lora, path_base_model, n_threads);
  2121. } catch (const std::string & err) {
  2122. fprintf(stderr, "%s: failed to apply lora adapter: %s\n", __func__, err.c_str());
  2123. return 1;
  2124. }
  2125. }
  2126. int llama_get_kv_cache_token_count(const struct llama_context * ctx) {
  2127. return ctx->model.kv_self.n;
  2128. }
  2129. #define LLAMA_MAX_RNG_STATE (64*1024)
  2130. void llama_set_rng_seed(struct llama_context * ctx, int seed) {
  2131. if (seed < 0) {
  2132. seed = time(NULL);
  2133. }
  2134. ctx->rng.seed(seed);
  2135. }
  2136. // Returns the *maximum* size of the state
  2137. size_t llama_get_state_size(const struct llama_context * ctx) {
  2138. // we don't know size of rng until we actually serialize it. so reserve more than enough memory for its serialized state.
  2139. // for reference, std::mt19937(1337) serializes to 6701 bytes.
  2140. const size_t s_rng_size = sizeof(size_t);
  2141. const size_t s_rng = LLAMA_MAX_RNG_STATE;
  2142. const size_t s_logits_capacity = sizeof(size_t);
  2143. const size_t s_logits_size = sizeof(size_t);
  2144. const size_t s_logits = ctx->logits.capacity() * sizeof(float);
  2145. const size_t s_embedding_size = sizeof(size_t);
  2146. const size_t s_embedding = ctx->embedding.size() * sizeof(float);
  2147. const size_t s_kv_size = sizeof(size_t);
  2148. const size_t s_kv_ntok = sizeof(int);
  2149. const size_t s_kv = ctx->model.kv_self.buf.size;
  2150. const size_t s_total = (
  2151. + s_rng_size
  2152. + s_rng
  2153. + s_logits_capacity
  2154. + s_logits_size
  2155. + s_logits
  2156. + s_embedding_size
  2157. + s_embedding
  2158. + s_kv_size
  2159. + s_kv_ntok
  2160. + s_kv
  2161. );
  2162. return s_total;
  2163. }
  2164. // Copies the state to the specified destination address
  2165. size_t llama_copy_state_data(struct llama_context * ctx, uint8_t * dst) {
  2166. uint8_t * out = dst;
  2167. // copy rng
  2168. {
  2169. std::stringstream rng_ss;
  2170. rng_ss << ctx->rng;
  2171. const size_t rng_size = rng_ss.str().size();
  2172. char rng_buf[LLAMA_MAX_RNG_STATE];
  2173. memset(&rng_buf[0], 0, LLAMA_MAX_RNG_STATE);
  2174. memcpy(&rng_buf[0], rng_ss.str().data(), rng_ss.str().size());
  2175. memcpy(out, &rng_size, sizeof(rng_size)); out += sizeof(rng_size);
  2176. memcpy(out, &rng_buf[0], LLAMA_MAX_RNG_STATE); out += LLAMA_MAX_RNG_STATE;
  2177. }
  2178. // copy logits
  2179. {
  2180. const size_t logits_cap = ctx->logits.capacity();
  2181. const size_t logits_size = ctx->logits.size();
  2182. memcpy(out, &logits_cap, sizeof(logits_cap)); out += sizeof(logits_cap);
  2183. memcpy(out, &logits_size, sizeof(logits_size)); out += sizeof(logits_size);
  2184. if (logits_size) {
  2185. memcpy(out, ctx->logits.data(), logits_size * sizeof(float));
  2186. }
  2187. out += logits_cap * sizeof(float);
  2188. }
  2189. // copy embeddings
  2190. {
  2191. const size_t embedding_size = ctx->embedding.size();
  2192. memcpy(out, &embedding_size, sizeof(embedding_size)); out += sizeof(embedding_size);
  2193. if (embedding_size) {
  2194. memcpy(out, ctx->embedding.data(), embedding_size * sizeof(float));
  2195. out += embedding_size * sizeof(float);
  2196. }
  2197. }
  2198. // copy kv cache
  2199. {
  2200. const auto & kv_self = ctx->model.kv_self;
  2201. const auto & hparams = ctx->model.hparams;
  2202. const int n_layer = hparams.n_layer;
  2203. const int n_embd = hparams.n_embd;
  2204. const int n_ctx = hparams.n_ctx;
  2205. const size_t kv_size = kv_self.buf.size;
  2206. const int kv_ntok = llama_get_kv_cache_token_count(ctx);
  2207. memcpy(out, &kv_size, sizeof(kv_size)); out += sizeof(kv_size);
  2208. memcpy(out, &kv_ntok, sizeof(kv_ntok)); out += sizeof(kv_ntok);
  2209. if (kv_size) {
  2210. const size_t elt_size = ggml_element_size(kv_self.k);
  2211. char buffer[4096];
  2212. ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
  2213. ggml_cgraph gf{};
  2214. gf.n_threads = 1;
  2215. ggml_tensor * kout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2216. kout3d->data = out;
  2217. out += ggml_nbytes(kout3d);
  2218. ggml_tensor * vout3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2219. vout3d->data = out;
  2220. out += ggml_nbytes(vout3d);
  2221. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2222. n_embd, kv_ntok, n_layer,
  2223. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2224. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2225. kv_ntok, n_embd, n_layer,
  2226. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2227. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, k3d, kout3d));
  2228. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, v3d, vout3d));
  2229. ggml_graph_compute(cpy_ctx, &gf);
  2230. ggml_free(cpy_ctx);
  2231. }
  2232. }
  2233. const size_t written = out - dst;
  2234. const size_t max_size = llama_get_state_size(ctx);
  2235. LLAMA_ASSERT(written <= max_size);
  2236. return written;
  2237. }
  2238. // Sets the state reading from the specified source address
  2239. size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
  2240. uint8_t * inp = src;
  2241. // set rng
  2242. {
  2243. size_t rng_size;
  2244. char rng_buf[LLAMA_MAX_RNG_STATE];
  2245. memcpy(&rng_size, inp, sizeof(rng_size)); inp += sizeof(rng_size);
  2246. memcpy(&rng_buf[0], inp, LLAMA_MAX_RNG_STATE); inp += LLAMA_MAX_RNG_STATE;
  2247. std::stringstream rng_ss;
  2248. rng_ss.str(std::string(&rng_buf[0], rng_size));
  2249. rng_ss >> ctx->rng;
  2250. LLAMA_ASSERT(rng_ss.fail() == false);
  2251. }
  2252. // set logits
  2253. {
  2254. size_t logits_cap;
  2255. size_t logits_size;
  2256. memcpy(&logits_cap, inp, sizeof(logits_cap)); inp += sizeof(logits_cap);
  2257. memcpy(&logits_size, inp, sizeof(logits_size)); inp += sizeof(logits_size);
  2258. LLAMA_ASSERT(ctx->logits.capacity() == logits_cap);
  2259. if (logits_size) {
  2260. ctx->logits.resize(logits_size);
  2261. memcpy(ctx->logits.data(), inp, logits_size * sizeof(float));
  2262. }
  2263. inp += logits_cap * sizeof(float);
  2264. }
  2265. // set embeddings
  2266. {
  2267. size_t embedding_size;
  2268. memcpy(&embedding_size, inp, sizeof(embedding_size)); inp += sizeof(embedding_size);
  2269. LLAMA_ASSERT(ctx->embedding.capacity() == embedding_size);
  2270. if (embedding_size) {
  2271. memcpy(ctx->embedding.data(), inp, embedding_size * sizeof(float));
  2272. inp += embedding_size * sizeof(float);
  2273. }
  2274. }
  2275. // set kv cache
  2276. {
  2277. const auto & kv_self = ctx->model.kv_self;
  2278. const auto & hparams = ctx->model.hparams;
  2279. const int n_layer = hparams.n_layer;
  2280. const int n_embd = hparams.n_embd;
  2281. const int n_ctx = hparams.n_ctx;
  2282. size_t kv_size;
  2283. int kv_ntok;
  2284. memcpy(&kv_size, inp, sizeof(kv_size)); inp += sizeof(kv_size);
  2285. memcpy(&kv_ntok, inp, sizeof(kv_ntok)); inp += sizeof(kv_ntok);
  2286. if (kv_size) {
  2287. LLAMA_ASSERT(kv_self.buf.size == kv_size);
  2288. const size_t elt_size = ggml_element_size(kv_self.k);
  2289. char buffer[4096];
  2290. ggml_context * cpy_ctx = ggml_init({ sizeof(buffer), buffer, /* no_alloc */ true });
  2291. ggml_cgraph gf{};
  2292. gf.n_threads = 1;
  2293. ggml_tensor * kin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.k->type, n_embd, kv_ntok, n_layer);
  2294. kin3d->data = (void *) inp;
  2295. inp += ggml_nbytes(kin3d);
  2296. ggml_tensor * vin3d = ggml_new_tensor_3d(cpy_ctx, kv_self.v->type, kv_ntok, n_embd, n_layer);
  2297. vin3d->data = (void *) inp;
  2298. inp += ggml_nbytes(vin3d);
  2299. ggml_tensor * k3d = ggml_view_3d(cpy_ctx, kv_self.k,
  2300. n_embd, kv_ntok, n_layer,
  2301. elt_size*n_embd, elt_size*n_embd*n_ctx, 0);
  2302. ggml_tensor * v3d = ggml_view_3d(cpy_ctx, kv_self.v,
  2303. kv_ntok, n_embd, n_layer,
  2304. elt_size*n_ctx, elt_size*n_ctx*n_embd, 0);
  2305. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, kin3d, k3d));
  2306. ggml_build_forward_expand(&gf, ggml_cpy(cpy_ctx, vin3d, v3d));
  2307. ggml_graph_compute(cpy_ctx, &gf);
  2308. ggml_free(cpy_ctx);
  2309. }
  2310. ctx->model.kv_self.n = kv_ntok;
  2311. }
  2312. const size_t nread = inp - src;
  2313. const size_t max_size = llama_get_state_size(ctx);
  2314. LLAMA_ASSERT(nread <= max_size);
  2315. return nread;
  2316. }
  2317. bool llama_load_session_file(struct llama_context * ctx, const char * path_session, llama_token * tokens_out, size_t n_token_capacity, size_t * n_token_count_out) {
  2318. llama_file file(path_session, "rb");
  2319. // sanity checks
  2320. {
  2321. const uint32_t magic = file.read_u32();
  2322. const uint32_t version = file.read_u32();
  2323. if (magic != LLAMA_SESSION_MAGIC || version != LLAMA_SESSION_VERSION) {
  2324. fprintf(stderr, "%s : unknown (magic, version) for session file: %08x, %08x\n", __func__, magic, version);
  2325. return false;
  2326. }
  2327. llama_hparams session_hparams;
  2328. file.read_raw(&session_hparams, sizeof(llama_hparams));
  2329. if (session_hparams != ctx->model.hparams) {
  2330. fprintf(stderr, "%s : model hparams didn't match from session file!\n", __func__);
  2331. return false;
  2332. }
  2333. }
  2334. // load the prompt
  2335. {
  2336. const uint32_t n_token_count = file.read_u32();
  2337. if (n_token_count > n_token_capacity) {
  2338. fprintf(stderr, "%s : token count in session file exceeded capacity! %u > %zu\n", __func__, n_token_count, n_token_capacity);
  2339. return false;
  2340. }
  2341. file.read_raw(tokens_out, sizeof(llama_token) * n_token_count);
  2342. *n_token_count_out = n_token_count;
  2343. }
  2344. // restore the context state
  2345. {
  2346. const size_t n_state_size_cur = file.size - file.tell();
  2347. const size_t n_state_size_max = llama_get_state_size(ctx);
  2348. if (n_state_size_cur > n_state_size_max) {
  2349. fprintf(stderr, "%s : the state size in session file is too big! max %zu, got %zu\n", __func__, n_state_size_max, n_state_size_cur);
  2350. return false;
  2351. }
  2352. std::vector<uint8_t> state_data(n_state_size_max);
  2353. file.read_raw(state_data.data(), n_state_size_cur);
  2354. llama_set_state_data(ctx, state_data.data());
  2355. }
  2356. return true;
  2357. }
  2358. bool llama_save_session_file(struct llama_context * ctx, const char * path_session, const llama_token * tokens, size_t n_token_count) {
  2359. llama_file file(path_session, "wb");
  2360. file.write_u32(LLAMA_SESSION_MAGIC);
  2361. file.write_u32(LLAMA_SESSION_VERSION);
  2362. file.write_raw(&ctx->model.hparams, sizeof(llama_hparams));
  2363. // save the prompt
  2364. file.write_u32((uint32_t) n_token_count);
  2365. file.write_raw(tokens, sizeof(llama_token) * n_token_count);
  2366. // save the context state
  2367. {
  2368. const size_t n_state_size_max = llama_get_state_size(ctx);
  2369. std::vector<uint8_t> state_data(n_state_size_max);
  2370. const size_t n_state_size_cur = llama_copy_state_data(ctx, state_data.data());
  2371. file.write_raw(state_data.data(), n_state_size_cur);
  2372. }
  2373. return true;
  2374. }
  2375. int llama_eval(
  2376. struct llama_context * ctx,
  2377. const llama_token * tokens,
  2378. int n_tokens,
  2379. int n_past,
  2380. int n_threads) {
  2381. if (!llama_eval_internal(*ctx, tokens, n_tokens, n_past, n_threads)) {
  2382. fprintf(stderr, "%s: failed to eval\n", __func__);
  2383. return 1;
  2384. }
  2385. // get a more accurate load time, upon first eval
  2386. // TODO: fix this
  2387. if (!ctx->has_evaluated_once) {
  2388. ctx->t_load_us = ggml_time_us() - ctx->t_start_us;
  2389. ctx->has_evaluated_once = true;
  2390. }
  2391. return 0;
  2392. }
  2393. int llama_tokenize(
  2394. struct llama_context * ctx,
  2395. const char * text,
  2396. llama_token * tokens,
  2397. int n_max_tokens,
  2398. bool add_bos) {
  2399. auto res = llama_tokenize(ctx->vocab, text, add_bos);
  2400. if (n_max_tokens < (int) res.size()) {
  2401. fprintf(stderr, "%s: too many tokens\n", __func__);
  2402. return -((int) res.size());
  2403. }
  2404. for (size_t i = 0; i < res.size(); i++) {
  2405. tokens[i] = res[i];
  2406. }
  2407. return res.size();
  2408. }
  2409. int llama_n_vocab(const struct llama_context * ctx) {
  2410. return ctx->vocab.id_to_token.size();
  2411. }
  2412. int llama_n_ctx(const struct llama_context * ctx) {
  2413. return ctx->model.hparams.n_ctx;
  2414. }
  2415. int llama_n_embd(const struct llama_context * ctx) {
  2416. return ctx->model.hparams.n_embd;
  2417. }
  2418. float * llama_get_logits(struct llama_context * ctx) {
  2419. return ctx->logits.data();
  2420. }
  2421. float * llama_get_embeddings(struct llama_context * ctx) {
  2422. return ctx->embedding.data();
  2423. }
  2424. const char * llama_token_to_str(const struct llama_context * ctx, llama_token token) {
  2425. if (token >= llama_n_vocab(ctx)) {
  2426. return nullptr;
  2427. }
  2428. return ctx->vocab.id_to_token[token].tok.c_str();
  2429. }
  2430. llama_token llama_token_bos() {
  2431. return 1;
  2432. }
  2433. llama_token llama_token_eos() {
  2434. return 2;
  2435. }
  2436. llama_token llama_token_nl() {
  2437. return 13;
  2438. }
  2439. void llama_print_timings(struct llama_context * ctx) {
  2440. const int64_t t_end_us = ggml_time_us();
  2441. const int32_t n_sample = std::max(1, ctx->n_sample);
  2442. const int32_t n_eval = std::max(1, ctx->n_eval);
  2443. const int32_t n_p_eval = std::max(1, ctx->n_p_eval);
  2444. fprintf(stderr, "\n");
  2445. fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us / 1000.0);
  2446. fprintf(stderr, "%s: sample time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_sample_us, n_sample, 1e-3 * ctx->t_sample_us / n_sample);
  2447. fprintf(stderr, "%s: prompt eval time = %8.2f ms / %5d tokens (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_p_eval_us, n_p_eval, 1e-3 * ctx->t_p_eval_us / n_p_eval);
  2448. fprintf(stderr, "%s: eval time = %8.2f ms / %5d runs (%8.2f ms per token)\n", __func__, 1e-3 * ctx->t_eval_us, n_eval, 1e-3 * ctx->t_eval_us / n_eval);
  2449. fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0);
  2450. }
  2451. void llama_reset_timings(struct llama_context * ctx) {
  2452. ctx->t_start_us = ggml_time_us();
  2453. ctx->t_sample_us = ctx->n_sample = 0;
  2454. ctx->t_eval_us = ctx->n_eval = 0;
  2455. ctx->t_p_eval_us = ctx->n_p_eval = 0;
  2456. }
  2457. const char * llama_print_system_info(void) {
  2458. static std::string s;
  2459. s = "";
  2460. s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
  2461. s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
  2462. s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
  2463. s += "AVX512_VBMI = " + std::to_string(ggml_cpu_has_avx512_vbmi()) + " | ";
  2464. s += "AVX512_VNNI = " + std::to_string(ggml_cpu_has_avx512_vnni()) + " | ";
  2465. s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
  2466. s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
  2467. s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
  2468. s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
  2469. s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
  2470. s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
  2471. s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
  2472. s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
  2473. s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
  2474. return s.c_str();
  2475. }
  2476. // For internal test use
  2477. std::vector<std::pair<std::string, struct ggml_tensor *>>& llama_internal_get_tensor_map(struct llama_context * ctx) {
  2478. return ctx->model.tensors_by_name;
  2479. }